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Abstract

Let Cat(∞,∞) denote the (∞, 1)-category of (∞,∞)-categories with weakly inductive equiv-

alences. The main objective of this thesis is to demonstrate that Cat(∞,∞) satisfies universal

properties with respect to homotopy-coherent internalisation and enrichment. To achieve

these universal properties, we extend the theory of endofunctor algebras to the (∞, 1)-

categorical setting, and establish an analogue of Adámek’s free algebra construction. For any

∞-topos X, we define an (∞, 1)-category Sh(n,r)(X) of sheaves of (n, r)-categories over X,

where 0 ≤ n ≤ ∞, and 0 ≤ r ≤ n+2, and relate these categories through a general construc-

tion of complete Segal space objects over X, and observe that presheaves of (n, r)-categories

admit a well-defined notion of sheafification. By realising the construction of complete Segal

space objects as an endofunctor over an appropriately-defined (∞, 1)-category of distribu-

tors, we use our generalised theory of endofunctor algebras to prove that Sh(∞,∞)(X) is the

universal distributor that is invariant under the construction of complete Segal space ob-

jects. We then study the theory of (∞, 1)-categorical enrichment and analyse the continuity

of this construction to prove similarly that Cat(∞,∞) is the initial object among presentably

symmetric monoidal (∞, 1)-categories that are invariant under enrichment.

ii



Preface

This thesis is an original work by Z. Goldthorpe.

Chapter 2 is an overview of existing literature. The mathematical content in this chapter

is unoriginal, with the only exception being Section 2.1.1: the notion and limit characteri-

sation of marked strict ω-categories is original, but has not been published.

Chapter 3 is based on the original work [13]. The work is available on the arXiv, and has

been submitted for publication. Chapters 4 and 5 are mostly adapted—with corrections—

from the published work [11]. The only exception is Section 5.2.2, which proves [11, Conjec-

ture 3.4.3], and is based on the original work [12]. This work is available on the arXiv, but

has not been submitted for publication.
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Chapter 1

Introduction

Classically, the structures of many mathematical objects admit similar general forms: such

an object typically consists of a set of elements, and is equipped with various structure

supported on this set. In general, elements of a set are distinct from one another, but they

do not have any identifying characteristics; it is the structures on the set that give individual

elements significance.

For example, in the two-dimensional vector space R2 = SpanR{x, y}, the x- and y-axes are
distinct, but interchangeable. However, if we endow R2 with the structure of a multiplication

(a, b)× (c, d) := (ac− bd, ad+ bc), the result is the field C of complex numbers, wherein the

“real” x-axis and “imaginary” y-axis carry distinct meaning.

Since the characteristics of elements of a mathematical object are completely determined

by the object’s structure, we are typically less interested in an object’s underlying set of

elements. In particular, objects with “the same structure” should be considered to be the

same, even if their underlying sets are different. In other words, we are often only interested

in mathematical objects up to isomorphism: a 1-to-1 correspondence between the underlying

sets of objects that preserves the structure of the objects.

Category theory provides a general framework for the holistic study of mathematical

objects with the same type of structure. Specifically, a category consists of:

� a class of objects, and

� between two objects A and B, a collection of morphisms f : A→ B.

such that morphisms can be composed like functions; see Definition 2.0.0.1. The objects

of a category represent the mathematical objects of a certain type of structure, and the

morphisms denote structure-preserving functions between these objects. For example, there

is a category VectR whose objects are real vector spaces, and whose morphisms are the linear

transformations between them.
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What is curious about a category is that its objects—like elements of a set—do not carry

any intrinsic identifying characteristics: they are nothing but abstract points, connected

between each other via the morphisms of the category. Reducing elaborate mathematical

structure to mere points seems like a gross oversimplification, but all of the structural infor-

mation of these objects is encoded in the morphisms. Indeed, one of the most fundamental

insights of category theory—a consequence of the Yoneda Lemma—is that an object A of a

category is completely determined up to isomorphism by its morphisms S → A.

As a result, categories provide a natural context within which to study objects up to iso-

morphism, rather than building objects from their underlying sets. In particular, categorical

constructions of objects are defined in terms of universal properties, which uniquely charac-

terise an object’s structure up to isomorphism. For example, the cartesian product A × B
of two objects A and B is defined by the universal property that a morphism S → A × B
naturally corresponds to a pair of morphisms S → A and S → B. It is then automatic that

if A′ is isomorphic to A, and B′ is isomorphic to B, then A′ × B′ is isomorphic to A × B
also.

Despite the broad success of category theory, particularly in algebra and geometry, iso-

morphisms are sometimes too rigid a notion of equivalence between objects: an isomorphism

always asserts a 1-to-1 correspondence between the underlying sets. The prototypical ex-

ample of a weaker identification than isomorphism is homotopy equivalence, which identifies

topological spaces that can be continuously deformed into one another. For instance, a solid

disk can be continuously contracted into a point, and this exhibits a homotopy equivalence

between the disk and a singleton. This cannot be an isomorphism: the disk has (uncount-

ably) infinitely many underlying points, whereas the singleton has just one. Therefore,

homotopy equivalence cannot be meaningfully expressed as an isomorphism of structure.

Higher category theory is a generalisation of category theory developed with the intention

to address these weaker notions of equivalence. In particular, a higher category consists of

� a class of objects,

� between two objects A and B, a collection of 1-morphisms f : A→ B,

� between 1-morphisms f, g : A→ B, a collection of 2-morphisms α : f ⇒ g,

� between 2-morphisms α, β : f ⇒ g, a collection of 3-morphisms Γ : α⇛ β,

� and so on, ad infinitum.

Just as morphisms determine the structure of objects, (n+1)-morphisms determine structure

on n-morphisms for every n ≥ 1. For example, given topological spaces X and Y , we
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Figure 1.1: The shape of a 3-morphism Γ : α⇛ β.

can use 2-morphisms to describe continuous deformations between two continuous functions

f, g : X → Y .

The catch is that higher categories are significantly more difficult to define—so much so

that it is impractical to define them algebraically. Instead, higher categories are presented

via geometric models.

For example, say that a higher category is an∞-groupoid if its k-morphisms are invertible

for all k > 0. Then, the Homotopy Hypothesis (see Hypothesis 2.3.2.1) stipulates that

topological spaces serve as a geometric model for∞-groupoids: objects correspond to points

of the space, 1-morphisms correspond to continuous paths between points, 2-morphisms

correspond to continuous deformations of paths (which are called homotopies), 3-morphisms

correspond to continuous deformations of homotopies, and so on.

There are several geometric models for various classes of higher categories. Among these

models are the n-fold Segal spaces of [5], the Segal n-categories of [33], (n+k, n)-Θ-spaces of

[29], n-quasicategories of [2], and complicial sets of [34]. Fortunately, these models have been

proven to be suitably equivalent; see also [27] and [19]. In fact, if we call a higher category

an (∞, r)-category if its k-morphisms are invertible for all k > r, then the Unicity Theorem

of [6] gives a unique characterisation of the theory of (∞, r)-categories for each finite r ≥ 0.

One iterative approach to higher categories is based on the following observation: given

two objects x and y of a higher category C, the collection HomC(x, y) of 1-morphisms x→ y,

and the k-morphisms between them, forms another higher category! In particular, if every

HomC(x, y) is an (∞, r)-category, then C is an (∞, r+1)-category. This observation motivates

studying higher categories through enrichment.

Roughly speaking, a higher category C is said to be enriched in a higher category V if every

HomC(x, y) can be viewed as an object of V. A general theory of enrichment is developed

in [10], associating to any monoidal (∞, 1)-category V an (∞, 1)-category VCat of higher

categories enriched in V.

This allows us to construct the (∞, 1)-category Cat(∞,r) of (∞, r)-categories by induction

on r. Indeed, by the Homotopy Hypothesis, take Cat(∞,0) to be the (∞, 1)-category of

spaces. Then, given Cat(∞,r), define Cat(∞,r+1) := (Cat(∞,r))Cat.

In order to obtain fully general (∞,∞)-categories, we need to take an appropriate “limit”
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as r →∞. Although the Unicity Theorem ensures satisfactory uniqueness of Cat(∞,r) when

r is finite, there is inevitable ambiguity when extending the theory to r =∞.

We have an infinite tower of inclusions

Cat(∞,0) ⊆ Cat(∞,1) ⊆ Cat(∞,2) ⊆ · · ·

where each inclusion Cat(∞,r) ⊆ Cat(∞,r+1) admits a left adjoint π≤r and a right adjoint

κ≤r. Given an (∞, r + 1)-category C, the right adjoint yields the sub-(∞, r)-category κ≤rC
of C obtained by discarding all non-invertible (r + 1)-morphisms. On the other hand, the

left adjoint yields the (∞, r)-category π≤rC obtained by formally inverting all of the (r+1)-

morphisms in C.

Taking limits along either family of adjoints yields two distinct models of (∞,∞)-categories:

Catω := lim←−
(︂
· · · → Cat(∞,2)

π≤1−−→ Cat(∞,1)
π≤0−−→ Cat(∞,0)

)︂
Cat(∞,∞) := lim←−

(︂
· · · → Cat(∞,2)

κ≤1−−→ Cat(∞,1)
κ≤0−−→ Cat(∞,0)

)︂
The discrepancy arises from an ambiguity in the notion of equivalence in the fully general

setting of (∞,∞)-categories. Roughly speaking the notion of equivalence is the strongest

possible in Catω, whereas it is the weakest possible in Cat(∞,∞); see Remarks 3.2.3.6

and 3.2.3.10. Note that there are also intermediate notions of equivalence; see Defini-

tions 2.1.1.4 and 2.1.1.5 and Remark 2.1.1.14. We are particularly interested in Cat(∞,∞),

wherein the equivalences are the most flexible.

Any theory of (∞,∞)-categories should be self-contained with respect to enrichment: a

higher category C where HomC(x, y) is an (∞,∞)-category for all objects x, y of C should

be an (∞,∞)-category itself. The main objective of this thesis is to prove not only that

Cat(∞,∞) is self-contained with respect to enrichment, but it is universally characterised

by this fact. More precisely, for any well-behaved (∞, 1)-category V with an equivalence

V ≃ VCat, there is an essentially unique map Cat(∞,∞) → V; see Theorem 5.2.0.1.

1.1 Outline

Chapter 2 sets the stage for the thesis. In Section 2.1, we define strict n-categories for

0 ≤ n ≤ ω, which are higher categories where the composition of higher morphisms are

strictly associative in all dimensions. This serves as a convenient toy model for gaining

some intuition for the general case. We explore in Section 2.1.1 the various notions of

equivalence in a strict ω-category. Lemma 2.1.0.2 implies that the 1-category ωCat of

strict ω-categories is analogous to the (∞, 1)-category Catω, and we note in Remark 2.1.1.6

that the natural notion of equivalence in ωCat induced from its realisation as a limit of
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π≤r maps corresponds to weakly coinductive equivalences. On the other hand, Cat(∞,∞) is

analogous to a variant of ωCat where strict ω-categories are endowed with a marking, which

indicates which k-morphisms of a strict ω-category are equivalences; this is demonstrated in

Proposition 2.1.1.13.

The remaining sections of Chapter 2 are expository, briefly touching on the history leading

up to (∞, 1)-category theory. In Section 2.2, we review the connection between equivalences

in higher categories and homotopy theory. We justify weakening the strictly associative

composition in higher categories in Section 2.3 by discussing the Homotopy Hypothesis,

relating n-groupoids and homotopy n-types. We then discuss the combinatorial model of

homotopy types via simplicial sets, and discuss Kan complexes as our ambient model of

∞-groupoids. In Section 2.4, we discuss quasicategories as our ambient model of (∞, 1)-
categories.

In Chapter 3, we study an explicit model of sheaves of (n, r)-categories relative to an

(∞, 1)-topos, for arbitrary n and r, including n = r = ∞. In particular, by specialising

to the (∞, 1)-topos of spaces, we obtain our model of (n, r)-categories. The construction is

heavily inspired by iterated complete Segal spaces as in [5]. We motivate the axioms of a

complete Segal space in Section 3.1. The sheaves of (n, r)-categories, as well as the sheaves

of ω-categories, are defined in Section 3.2.

In Section 3.3, we relate our model with the theory of complete Segal spaces in distributors

as described in [27]. In Section 3.3.2, we construct (∞, 1)-categories of distributors over a

fixed (∞, 1)-topos, and prove that these categories are complete and cocomplete. Then, we

show that taking complete Segal spaces is functorial in Section 3.3.3. In Theorem 3.3.3.7,

we prove that the functor preserves weakly contractible limits of right adjoints.

We employ the above theory in Section 3.3.4 to prove that sheaves of (∞, r)-categories and
of ω-categories form distributors. This is already known when r is finite, so the interesting

case is when r =∞. We moreover prove in Theorem 3.3.4.5 that sheaves of (∞,∞)-categories

are invariant under the formation of complete Segal spaces. In Section 3.3.5, we briefly ex-

plore an analogue of geometric morphisms for distributors. We demonstrate the functoriality

of the construction of sheaves of (n, r)-categories and of ω-categories with respect to these

geometric morphisms in Corollary 3.3.5.5. We then prove in Proposition 3.3.5.8 that all

π≤r are geometric morphisms of distributors. Finally, in Theorem 3.3.5.10, we show that

if C is an (∞, 1)-site, then there is a well-defined sheafification on Fun(Cop,Cat(n,r)) and

Fun(Cop,Catω) yielding sheaves of higher categories in C.

In Chapter 4, we extend the theory of endofunctor algebras and coalgebras to the (∞, 1)-
categorical setting, in order to use this theory to study universal fixed points. We review

the 1-categorical theory in Section 4.1, and motivate the theory with the toy example of

induction and coinduction. In Section 4.2, we generalise endofunctor (∞, 1)-algebras to lax
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algebras, to simplify (and generalise) the proof that Adámek’s construction in the (∞, 1)-
categorical setting yields free endofunctor algebras. We study Adámek’s construction in

Section 4.3, and also briefly explore the ramifications of this construction in the context of

understanding free endofunctor fixed points.

Finally, in Chapter 5, we study higher categories from the perspective of enrichment. We

review the prerequisite theory for enrichment in Section 5.1.1, and prove that enrichment pre-

serves suitably nice weakly contractible limits of monoidal (∞, 1)-categories in Section 5.1.2.

We then apply the fixed point theory of Chapter 4 to enrichment in Section 5.2 to prove our

main results. We show in Section 5.2.1 that Cat(∞,∞) is initial among the presentably sym-

metric monoidal fixed points of enrichment. In Section 5.2.2, for completeness, we calculate

the initial non-presentably symmetric monoidal fixed point of enrichment, and characterise

it as a full subcategory of Cat(∞,∞).
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Chapter 2

Background and Motivation

Definition 2.0.0.1. A (locally small) category C consists of:

� a class of objects A ∈ C,

� for objects A,B ∈ C, a set HomC(A,B) of morphisms f : A→ B,

� for A,B,C ∈ C, a composition map

◦ : HomC(B,C)× HomC(A,B)→ HomC(A,C)

� for A ∈ C, an identity morphism idA : A→ A,

subject to the following axioms:

� Composition is associative: for f : A→ B, g : B → C, and h : C → D, we have

(h ◦ g) ◦ f = h ◦ (g ◦ f)

� Composition is unital : for f : A→ B, we have

f ◦ idA = f ; idB ◦f = f

Through the Yoneda embedding, we can view any object A of a category C as a “set” with

structure—more precisely, every object A is determined up to isomorphism by the set-valued

presheaf hA it represents.

However, in some cases, viewing objects of a category as mere structured sets is too

reductive to encapsulate the particular behaviour of these objects. For example, the notions

of product A×B and coproduct A⊔B of objects A and B make sense in a general category,

but are typically distinct since the product corresponds to the cartesian product of sets,

whereas the coprodct corresponds to the disjoint union of sets:

A×B = {(a, b) | a ∈ A; b ∈ B}; A ⊔B = {(a, 0) | a ∈ A} ∪ {(0, b) | b ∈ B}

7



On the other hand, for categories such as the category of abelian groups, the category of

modules of a ring, and the category of chain complexes, (finite) products and coproducts

coincide and yield the direct sum A ⊕ B. The key is that, in each of the aforementioned

categories with direct sums, we can view the objects therein as abelian groups with additional

structure, so that we can express the key identity

(a, b) = (a, 0) + (0, b)

that allows us to identify A×B and A ⊔B.

We can modify the notion of a category to capture additional “built-in” structure of its

objects through a generalisation called enriched category theory, developed extensively in

[24].

Definition 2.0.0.2. Let (V ,⊗,1) be a monoidal category (see [24, §1.1]). Then, a V-enriched
category C consists of:

� a class of objects A ∈ C,

� for objects A,B ∈ C, an object HomC(A,B) ∈ V ,

� for A,B,C ∈ C, a composition morphism

◦ : HomC(B,C)⊗ HomC(A,B)→ HomC(A,C)

� for A ∈ C, an identity jA : 1→ HomC(A,A),

subject to the following axioms:

� Composition is associative: for all A,B,C,D ∈ C, the diagram

(HomC(C,D)⊗ HomC(B,C))⊗ HomC(A,B) HomC(C,D)⊗ (HomC(B,C)⊗ HomC(A,B))

HomC(B,D)⊗ HomC(A,B) HomC(A,D) HomC(C,D)⊗ HomC(A,C)

∼

(◦)⊗id id⊗(◦)

◦ ◦

commutes, and

� Composition is unital : for all A,B ∈ C, the diagram

HomC(A,B)⊗ 1 HomC(A,B) 1⊗ HomC(A,B)

HomC(A,B)⊗ HomC(A,A) HomC(B,B)⊗ HomC(A,B)

∼

id⊗jA

∼

jB⊗id◦ ◦

commutes.
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From [24, §1.2], every monoidal category (V ,⊗,1) defines a category VCat of small V-
enriched categories and the V-enriched functors between them. If V is moreover symmetric

monoidal, then VCat inherits a symmetric monoidal tensor product as well; see [24, §1.4].

Given V-enriched categories C and D, the objects of C ⊗ D are given by pairs (C,D) where

C ∈ C and D ∈ D. Between two objects (C,D), (C ′, D′) ∈ C ⊗ D, the hom-object is given

by

HomC⊗D((C,D), (C ′, D′)) := HomC(C,C
′)⊗ HomD(D,D

′)

The symmetric monoidal structure on V ensures that C ⊗ D has well-defined composition.

For example, if (V ,×, ∗) is a cartesian monoidal category—that is, if the tensor product

is given by the cartesian product—then the induced tensor product on VCat is cartesian

monoidal as well.

Moreover, a lax monoidal functor F : V → W between monoidal categories V and W
induces a functor F∗ : VCat→WCat, which associates to a V-enriched category C the W-

enriched category F∗C that has the same objects of C, but for C,D ∈ F∗C has the hom-object

HomF∗C(C,D) := F (HomC(C,D)). The lax monoidal structure on F ensures that F∗C has

well-defined composition.

If the functor F is a symmetric monoidal functor between symmetric monoidal categories,

then the induced functor F∗ is likewise symmetric monoidal with respect to the induced

tensor products on VCat and WCat.

2.1 Strict higher categories

Let Set denote the category of sets and the functions between them. By design, categories

enriched in Set with its cartesian monoidal tensor product are precisely the (locally small)

categories of Definition 2.0.0.1. Therefore, (Set)Cat ∼= 1Cat recovers the usual category of

small categories and the functors between them.

Enriching in 1Cat yields categories C where each HomC(A,B) is a category. The objects

of HomC(A,B) serve as the morphisms for C, so the morphisms of HomC(A,B) map between

the morphisms of C and can therefore be thought of as 2-morphisms of C. This suggests that
enrichment provides a means for constructing higher categories.

Definition 2.1.0.1. For n ≥ 0, define the category nCat of small strict n-categories induc-

tively as follows.

Define 0Cat := Set to be the category of sets. Then, given the category nCat, define

(n+ 1)Cat := (nCat)Cat to be the category of small categories enriched in nCat with its

cartesian monoidal tensor product.
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In a strict (n+1)-category C and k ≥ 0, define the 1-morphisms of C to be the objects of

HomC(A,B) for A,B ∈ C. Recursively, define the (k + 1)-morphisms of C, for k > 0, to be

the k-morphisms of HomC(A,B) for A,B ∈ C.

We have an adjoint triple

π ⊣ i ⊣ Ob : Set 1Cati

Ob

π

where i : Set ↪→ Cat identifies a set X with a category whose objects are given by the

elements of X, and whose only morphisms are identities. For a small category C, the right

adjoint yields the underlying set Ob(C) of objects of C. On the other hand, πC is the set of

equivalence classes in Ob(C) under the equivalence generated by asserting A ∼ B whenever

there exists a morphism A→ B; that is, πC is the set of path-connected components on the

underlying graph of C.
All of these functors preserve the cartesian product. By iteratively applying enrichment,

we obtain an adjoint triple

π≤n ⊣ i≤n ⊣ u≤n : nCat (n+ 1)Cat
i≤n

u≤n

π≤n

for every n ≥ 0.

Lemma 2.1.0.2. In the huge 1-category ˆ︁1Cat of large categories, the limits

lim←−
(︂
· · · → 3Cat

u≤2−−→ 2Cat
u≤1−−→ 1Cat

u≤0−−→ 0Cat
)︂
,

lim←−
(︂
· · · → 3Cat

π≤2−−→ 2Cat
π≤1−−→ 1Cat

π≤0−−→ 0Cat
)︂

are isomorphic.

Proof. Note that the following diagrams commute:

2Cat 1Cat

1Cat 0Cat

π≤1

u≤1

u≤0

u≤0

1Cat 0Cat

2Cat 1Cat

π≤0

π≤1

u≤1

π≤0

By iterating enrichment and overlaying these diagrams, we obtain the commutative diagram

· · · 4Cat 3Cat 2Cat 1Cat 0Cat

· · · 4Cat 3Cat 2Cat 1Cat 0Cat

π≤3

u≤3

π≤2

u≤2

π≤1

u≤1

π≤0

u≤0

u≤3

π≤3

u≤2

π≤2

u≤1

π≤1

u≤0

π≤0

The lemma now follows from observing that the inclusion of either of the rows in the above

diagram is coinitial (dual to cofinality); see [23, §2.5].
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Definition 2.1.0.3. Define the category of small strict ω-categories to be the category ωCat

isomorphic to either (and thus both) of the limits in Lemma 2.1.0.2. It follows for any n ≥ 0

that we have an adjoint triple

π≤n ⊣ i≤n ⊣ u≤n : nCat ωCat
i≤n

u≤n

π≤n

For a strict ω-category C, define its k-morphisms to be the k-morphisms of u≤kC. In partic-

ular, a strict ω-category has k-morphisms for all finite k ≥ 1.

2.1.1 Equivalences in a higher category

One of the main purposes of the higher-dimensional morphisms in a higher category is to

express more nuanced relationships between mathematical objects. An important example

is when we wish to express weaker notions of equivalence than isomorphisms. For a concrete

example, consider the large strict 2-category Cat where

� the objects of Cat are the small categories,

� the 1-morphisms are the functors F : C → D,

� the 2-morphisms are the natural transformations α : F ⇒ G.

Recall that the purpose of ordinary categories is to study mathematical objects up to

isomorphism, rather than equality. In particular, when studying a category C, we are not

interested in the underlying set Ob(C) of its objects, but rather the set τC of isomorphism

classes of its objects.

On the other hand, a functor F : C → D between categories is an isomorphism (in the

1-category ˆ︁1Cat) if and only if it is fully faithful, and induces a bijection on objects. In

particular, isomorphisms of categories do not account for isomorphism classes in the domain

and codomain.

A functor F : C → D more appropriately exhibits an equivalence of categories if it is fully

faithful, and is essentially surjective in the sense that it induces a surjection τC → τD (and

thus a bijection, if the functor is also fully faithful). With the axiom of choice, a functor

F : C → D is an equivalence of categories in the above sense if and only if it admits a

pseudo-inverse: a functor G : D → C with natural isomorphisms

G ◦ F ∼
=⇒ idC; idD

∼
=⇒ F ◦G

which is readily expressible in the strict 2-category Cat of categories.
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Remark 2.1.1.1. In fact, reasoning recursively, since the 1-morphisms of a strict 2-category

are precisely the objects of its hom-categories, we should only be interested in the structure of

1-morphisms up to 2-isomorphism. In particular, when defining a 1-morphism f : A→ B to

be an equivalence of objects, it is inconsistent to ask for the existence of an inverse g : B → A

that admits equalities g ◦ f = idA and f ◦ g = idB. Instead, the composites g ◦ f and f ◦ g
should only be 2-isomorphic to the respective identity 1-morphisms. In the strict 2-category

Cat, this recovers precisely the above notion of an equivalence of categories.

Definition 2.1.1.2. We define the equivalence relation (≃) in a strict n-category C by

induction.

Equivalence in a strict 0-category (that is, a set) is given by equality of elements. Given a

notion of equivalence in strict n-categories, say that two objects A and B in a strict (n+1)-

category C are equivalent if there exists a pair of 1-morphisms f : A → B and g : B → A

such that g ◦ f ≃ idA in HomC(A,A), and f ◦ g ≃ idB in HomC(B,B). In this situation, call

f : A→ B an equivalence.

Remark 2.1.1.3. The functor π≤n : (n + 1)Cat → nCat preserves equivalence for all n ≥ 0

precisely because when n = 0, the functor sends isomorphisms to identities. On the other

hand, the functor u≤n does not preserve equivalence, since the underlying set of a category

forgets the isomorphisms altogether.

We therefore have a well-defined notion of equivalence in any strict n-category so long as

n is finite. However, it is not obvious how an equivalence should be defined in the context

of a strict ω-category. Two desiderata are clear:

(EQ1) Identity k-morphisms should be equivalences.

(EQ2) A k-morphism α : f → g should be an equivalence if and only if there exists another

k-morphism β : g → f , and (k + 1)-morphisms

η : idg
∼−→ α ◦ β; ϵ : β ◦ α ∼−→ idf

such that η and ϵ are equivalences.

In a strict n-category with n finite, this uniquely characterises the class of equivalences in

the sense of Definition 2.1.1.2: (EQ2) eventually terminates at identities of n-morphisms.

For strict ω-categories, there are already two distinct means of generating equivalences:

Definition 2.1.1.4. Fix a strict ω-category C. For a k-morphism α in C, a collection I of

higher morphisms in C is said to be invertibility data for α if:

� α ∈ I, and

12



� for all ℓ-morphisms (λ : p → q) ∈ I, there exist an ℓ-morphism (ρ : q → p) ∈ I and

(ℓ+ 1)-morphisms (idp → ρ ◦ λ) ∈ I and (λ ◦ ρ→ idq) ∈ I.

Say that a k-morphism α of C is a coinductive equivalence if α admits invertibility data.

On the other hand, say that a k-morphism α of C is an inductive equivalence if α admits

invertibility data I wherein all ℓ-morphisms in I are identities for ℓ≫ 0. These are precisely

the higher morphisms generated by induction from (EQ1) and (EQ2).

Note that k-isomorphisms are inductive equivalences, and all inductive equivalences are

coinductive equivalences. Moreover, the projections π≤n : ωCat → nCat send all coinduc-

tive equivalences to equivalences.

However, the inductive and coinductive notions of equivalence in ωCat are not the only

natural notions of equivalence that extend Definition 2.1.1.2.

Definition 2.1.1.5. Using the realisation of ωCat as the limit

lim←−
(︂
· · · → 3Cat

π≤2−−→ 2Cat
π≤1−−→ 1Cat

π≤0−−→ 0Cat
)︂

say that a k-morphism in a strict ω-category C is a weakly coinductive equivalence if it maps

to an equivalence in π≤nC for every finite n ≥ 0.

Remark 2.1.1.6. Every coinductive equivalence is weakly coinductive. However, the converse

is not true. For a k-morphism α : f → g to be a weakly coinductive equivalence, we only

need to ensure for every finite n ≥ 1 that there exists a set In of higher morphisms such that

� α ∈ In, and

� for all ℓ-morphisms (λ : p → q) ∈ In with ℓ < n, there exist (ρ : q → p) ∈ I and

(ℓ+ 1)-morphisms (idp → ρ ◦ λ) ∈ I and (λ ◦ ρ→ idq) ∈ I.

In particular, the n-morphisms in In need not be invertible in any sense. Therefore,
⋃︁
n In

does not necessarily exhibit α as a coinductive equivalence.

An explicit counterexample demonstrating that these two notions of equivalence are dis-

tinct can be found in [20, Construction 4.29].

One might argue that weakly coinductive equivalences are too weak a notion of equiv-

alence. After all, the functor π≤n : ωCat → nCat collapses a strict ω-category C into a

strict n-category by taking the n-morphisms of π≤nC to be classes of n-morphisms of C con-

nected by zig-zags of (n + 1)-morphisms. In other words, π≤n sends all (n + 1)-morphisms

to identities, even if they are non-invertible in any reasonable sense.

This motivates considering a less destructive truncation functor:
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Definition 2.1.1.7. Let τ : 1Cat → Set denote the functor that associates to a category

C the set τC of isomorphism classes of C. This functor preserves products, and therefore

induces truncations τ≤n : (n+ 1)Cat→ nCat for every n ≥ 0.

Remark 2.1.1.8. For a strict n-category C, a k-morphism in C is an equivalence if and only

if it corresponds to a k-isomorphism in τ≤kC.

Remark 2.1.1.9. From the above remark, we might be tempted to define a k-morphism of a

strict ω-category C to be an equivalence if and only if it descends to a k-isomorphism in τ≤kC.
However, this approach is circular: without establishing a notion of equivalence, we cannot

define functors τ≤n : ωCat→ nCat. In other words, a choice of definition of equivalence on

strict ω-categories corresponds to a cone from ωCat to the diagram

· · · → 3Cat
τ≤2−−→ 2Cat

τ≤1−−→ 1Cat
τ≤0−−→ 0Cat

In particular, a limit of the above diagram would, in some sense, classify the notions of

equivalence on strict ω-categories.

Definition 2.1.1.10. A marked strict ω-category is a pair (C,W ), where C is a strict ω-

category, and W is a class of k-morphisms such that

� W contains all identity k-morphisms for k ≥ 1, and

� W is saturated in the sense that a k-morphism α : f → g is in W if and only if there

exists a k-morphism β : g → f and (k + 1)-morphisms

ϵ : β ◦ α→ idf ; η : idg → α ◦ β

such that ϵ, η ∈ W .

Call a k-morphism marked if it lies in W .

Say that a functor F : C → C ′ between marked strict ω-categories preserves the marking

if F (α) is marked in C ′ whenever α is marked in C. Let ωCat+ denote the category of small

marked strict ω-categories and marked functors between them.

Remark 2.1.1.11. Fix a marked strict ω-category (C,W ). If W≥n denotes the set of marked

k-morphisms with k ≥ n, then the saturation condition on W implies that W is completely

determined by W≥n for any finite n.

In particular, if C is a strict n-category, in that its only k-morphisms for k > n are

identities, then C admits a unique marking consisting of precisely the equivalences of Defi-

nition 2.1.1.2.
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Remark 2.1.1.12. The marking on a strict ω-category is analogous to the stratification on

weak complicial sets as in [34]. In particular, the saturation condition on the marking on a

strict ω-category corresponds to the saturation condition on weak complicial sets given in

[31, Definition 3.2.7].

Proposition 2.1.1.13. We have an isomorphism of 1-categories

ωCat+ ∼= lim←−
(︂
· · · → 3Cat

τ≤2−−→ 2Cat
τ≤1−−→ 1Cat

τ≤0−−→ 0Cat
)︂

Proof. Define the projection τ≤n : ωCat+ → nCat as follows. For a marked strict ω-category

(C,W ), take τ≤nC to be strict n-category obtained by discarding the (n+1)-morphisms from

the quotient of the strict (n + 1)-category u≤(n+1)C that identifies n-morphisms that are

connected by a marked (n+ 1)-morphism. The saturation condition ensures that we have a

commutative triangle

ωCat+ (n+ 1)Cat

nCat

τ≤(n+1)

τ≤n
τ≤n

for every n ≥ 0.

Suppose we have a cone of functors Fn : X → nCat for every n ≥ 0. From the commu-

tative diagram

· · · 4Cat 3Cat 2Cat 1Cat 0Cat

· · · 4Cat 3Cat 2Cat 1Cat 0Cat

τ≤3

u≤3

τ≤2

u≤2

τ≤1

u≤1

τ≤0

u≤0

u≤3 u≤2 u≤1 u≤0

the above cone induces a unique functor F : X → ωCat. Explicitly, the k-morphisms of

FX are given by the k-morphisms of Fk+1X.

Since the Fn define a cone, we have for every n ≥ 0 that FnX = τ≤n(Fn+1X). In order to

endow FX with a suitable marking such that τ≤n(FX) = FnX for every n ≥ 0, we therefore

need an n-morphism of FX to be marked if and only if its corresponding n-morphism in

Fn+1X is an equivalence in the sense of Definition 2.1.1.2.

That this choice of marking contains the identities and is saturated is by design, and the

marking is moreover completely determined by the cone. It follows that F : X → ωCat lifts

uniquely to a functor F : X → ωCat+ such that τ≤nF = Fn for every n ≥ 0, proving that

ωCat+ with the projections defined above is a universal cone, proving the proposition.

Remark 2.1.1.14. The above proposition makes precise the claim in Remark 2.1.1.9. We have

an obvious forgetful functor ωCat+ → ωCat, and the sections of this functor are precisely

functorial choices of markings (i.e., equivalences) on strict ω-categories.
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Note that the forgetful functor ωCat+ → ωCat admits a left and a right adjoint. The left

adjoint associates to any strict ω-category the marking given by the inductive equivalences.

On the other hand, the right adjoint associates to any strict ω-category the marking given

by the coinductive equivalences: indeed, for a marked strict ω-category (C,W ), the class W

serves as invertibility data for every f ∈ W .

2.2 Abstract homotopy theory

By the Yoneda Lemma, objects A of a category C are completely determined, up to iso-

morphism, by the class of morphisms S → A, where S varies over all objects of C. This

enables us to readily define isomorphism-invariant constructions in a category by character-

ising how morphisms map into (or out of) these constructions; that is, define constructions

using universal properties.

With weaker notions of equivalence available in (strict) n-categories, we expect con-

structions in n-categories to be invariant under these notions of equivalence. Note that

1-categorical universal properties are insufficient to this end.

Example 2.2.0.1. Let I denote the “walking isomorphism”; that is, the unique category

with two objects⊥,⊤, where the only non-identity morphisms are f : ⊥ → ⊤ and g : ⊤ → ⊥.
Then, the commutative square

∅ {⊤}

{⊥} I

⌟

exhibits ∅ as the fibre product {⊥} ×I {⊤} in the 1-category 1Cat.

However, I is contractible; that is, the map I → ∗ into the singleton is an equivalence of

categories, and the corresponding commutative square

∅ {⊤}

{⊥} ∗

is not a pullback square.

Following the philosophy of Remark 2.1.1.1, the issue with 1-categorical universal prop-

erties in preserving the weaker notion of equivalence in a higher category is the fact that

1-categorical universal properties completely characterise incoming 1-morphisms up to equal-

ity, rather than up to 2-isomorphism.

An example of a 2-categorical universal property is given below:
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Definition 2.2.0.2. Given a cospan A
f−→ C

g←− B of 1-morphisms in a (strict) 2-category

C, the corresponding 2-fibre product is any object A ×C B with projection 1-morphisms

πA : A×C B → A and πB : A×C B → B as well as a 2-isomorphism

A×C B B

A C

πB

πA g

f

ϕ

∼

with the following 2-universal properties:

� Any diagram

L

B

A C

ℓB

ℓA
g

f

∼

decomposes (not necessarily uniquely) into a pasting diagram of the form

L

A×C B B

A C

ℓB

ℓA

πB

πA

∼

∼

g

f

ϕ

∼

� For all 1-morphisms p, q : L → A ×C B and 2-morphisms α : πA ◦ p ⇒ πB ◦ q and

β : πB ◦ p⇒ πB ◦ q such that

L

A×C B A×C B

A B

C

p q

πA

α

πBπA

f

ϕ

∼
g

=

L

A×C B A×C B

A B

C

p q

πA πB

β

πB

f

ϕ

∼
g

there exists a unique 2-morphism ψ : p⇒ q such that α = πA ∗ ψ and β = πB ∗ ψ.

Evidently, even 2-categorical universal properties are significantly more involved than their

1-categorical counterparts, all to ensure that the result is invariant under weaker equivalences.
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2.2.1 Model categories

The fibre product of a cospan A
f−→ C

g←− B of sets is the set

A×C B = {(a, b) | f(a) = g(b)}

of pairs of elements living over the same basepoint.

A closer inspection of 2-fibre products in the strict 2-category Cat offers a more intuitive

understanding of the failure of 1-categorical limits in being invariant under equivalence.

Example 2.2.1.1. The 2-fibre product of a cospan of categories A F−→ C G←− B can be

described explicitly as follows. The objects of A ×C B are given by triples (A,B, ϕ) where

A ∈ A, B ∈ B, and ϕ : FA
∼−→ GB is an isomorphism in C. The morphisms (A,B, ϕ) →

(A′, B′, ϕ′) are given by pairs (f, g) where f : A→ A′ in A and g : B → B′ in B such that

FA FA′

FB FB′

ϕ
∼

Ff

ϕ′

∼

Fg

commutes in C.

Therefore, the 2-fibre product is the category of pairs of elements living over isomorphic

basepoints (with an explicit witness for the isomorphism of the basepoints). In particular,

the 1-categorical fibre product in Example 2.2.0.1 fails to exhibit a 2-fibre product precisely

because the fibres of the functor {⊤} → I are not equivalent, despite the objects of I being
isomorphic.

This suggests that we might be able to use 1-categorical fibre products to compute 2-

fibre products, so long as the fibres of the morphism we pull back along behave well under

isomorphisms in the base. Indeed, this can be verified directly in the context of Cat:

Definition 2.2.1.2. Say that a functor F : C → D is an isofibration if for all isomorphisms

f : F (C)
∼−→ D in D, there exists a lift ˜︁f : C

∼−→ C ′ in C such that F ˜︁f = f .

Proposition 2.2.1.3. Suppose A F−→ C G←− B is a cospan of categories such that G is an

isofibration. If A×1
C B denotes the fibre product computed in the 1-category ˆ︁1Cat, then the

canonical functor A×1
C B → A×C B into the 2-fibre product is an equivalence of categories.

In order to make effective use of the above proposition, we also need a canonical way of

“resolving” any given functor into an isofibration:

Proposition 2.2.1.4. Every functor F : C → D admits a factorisation C
˜︁G−→ ˜︁C ˜︁F−→ D where˜︁F is an isofibration, and ˜︁G is an equivalence of categories.
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Proof. Let (C ↓∼= D) denote the following category:

� The objects are triples (C,D, ϕ), where C ∈ C, D ∈ D, and ϕ : FC
∼−→ D is an

isomorphism in D.

� The morphisms (C,D, ϕ)→ (C ′, D′, ϕ′) are given by pairs (f, g), where f : C → C ′ in

C and g : D → D′ in D such that

FC FC ′

D D′

Ff

ϕ

∼

ϕ′

∼
g

commutes in D.

Then, the canonical functor C → (C ↓∼= D) sending C ↦→ (C,F (C), idF (C)) is an equivalence

of categories, the functor (C ↓∼= D) → D sending (C,D, ϕ) ↦→ D is an isofibration, and the

composite of these two is precisely F : C → D.

This phenomenon generalises to many higher categories of interest, typically arising from

homotopy theory or derived categories, leading to the notion of a model category.

Definition 2.2.1.5. A lifting problem in a category C is the problem of finding a lift k that

fits in the commutative square below:

• •

• •
ℓ r ⇝

• •

• •
ℓ r

k (2.1)

such that both triangles in the diagram commute.

Given a class R of morphisms of C, denote by llp(R) the class of morphisms of C that

satisfy the left lifting property with respect to R: a morphism ℓ lies in llp(R) if and only if

a lift k in Eq. (2.1) exists for all r ∈ R.

Dually, given a class L of morphisms of C, denote by rlp(L) the class of morphisms of C
that satisfy the right lifting property with respect to L.

A pair (L,R) of classes of morphisms of C is called a weak factorisation system if:

� Every morphism f in C admits a factorisation f = r ◦ ℓ with ℓ ∈ L and r ∈ R, and

� R = rlp(L) and L = llp(R).

Definition 2.2.1.6. [30, Definition 2.1] A model category is a complete and cocomplete

categoryM equipped with three classes of morphisms:
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� A class W of weak equivalences, denoted f : A
∼−→ B,

� A class F of fibrations, denoted f : A↠ B,

� A class C of cofibrations, denoted f : A↣ B,

subject to the following axioms:

� Both (C ∩W,F ) and (C,W ∩ F ) form weak factorisation systems on K, and

� W satisfies 2-out-of-3 : if two of the morphisms in a commutative triangle

B

A C

lie in W , then so does the third.

Remark 2.2.1.7. A morphism is a trivial or acyclic fibration if it is both a fibration and

a weak equivalence; dually, a morphism is a trivial or acyclic cofibration if it is both a

cofibration and a weak equivalence.

Remark 2.2.1.8. Call an object A in a model categoryM fibrant if the unique map A→ ∗
is a fibration. By the weak factorisation property, every object A is connected via acyclic

cofibration to a fibrant object A RA∼ . Call any such object a fibrant resolution of A.

Dually, call an object A cofibrant if the unique map ∅ → A is a cofibration. By the weak

factorisation property, every object A is connected via acyclic fibration to a cofibrant object

QA A∼ . Call any such object a cofibrant resolution of A.

Example 2.2.1.9. The 1-category 1Cat admits a model structure called the canonical model

structure where

(W) The weak equivalences are the equivalences of categories,

(F) The fibrations are the isofibrations,

(C) The cofibrations are the functors that are (strictly) injective on objects.

In particular, all categories are cofibrant and fibrant in this model structure.

Example 2.2.1.10. The category Top of topological spaces and continuous functions be-

tween them admits a model called the Quillen model structure where

(W) The weak equivalences are the weak homotopy equivalences,
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(F) The fibrations are the Serre fibrations ; that is, maps with the right lifting property

against the inclusions Dn × {0} ↪→ Dn × [0, 1], where Dn is the n-disk, and [0, 1] is the

unit interval,

(C) The cofibrations are the retracts of relative cell complexes.

In particular, all topological spaces are fibrant, and the cofibrant spaces are precisely the

retracts of cell complexes.

Example 2.2.1.11. The category Ch≥0(R) of bounded chain complexes of R-modules for

a ring R admits a model structure called the projective model structure where

(W) The weak equivalences are the quasi-isomorphisms,

(F) The fibrations are the chain maps that are epimorphisms in all positive degrees,

(C) The cofibrations are the chain maps that are levelwise monomorphisms with projective

cokernel.

In particular, all bounded chain complexes are fibrant, and the cofibrant complexes are

precisely the complexes of projective modules.

Despite the abstract nature of the weak equivalences in a general model category, every

model category has an intrinsic homotopy theory; see [21, Chapter 7].

Definition 2.2.1.12. Fix a model category M. A cylinder object of an object A is any

factorisation

∇ : A ⊔ A I⊗ A A
[∂0,∂1]

∼

of the fold map.

Then, a left homotopy between two morphisms f, g : A→ B is a morphism H : I⊗A→ B

such that H ◦ ∂0 = f and H ◦ ∂1 = g.

If A is cofibrant, then left homotopy defines an equivalence relation on HomM(A,B) for

any B. Let Ho(M) denote the category where the objects are the cofibrant-fibrant objects

ofM, and the morphisms are left homotopy classes of morphisms inM. This is called the

homotopy category ofM.

Theorem 2.2.1.13 (Whitehead Theorem for model categories). For a model category M,

the homotopy category Ho(M) is equivalent to the category obtained by formally inverting the

weak equivalences ofM. In particular, a morphism inM between cofibrant-fibrant objects is

a weak equivalence if and only if its corresponding morphism in Ho(M) is an isomorphism.
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Remark 2.2.1.14. As every object is connected to a cofibrant-fibrant object via a zig-zag

of weak equivalences, and cofibrant-fibrant objects are precisely the objects for which the

homotopy theory encoded by a model category is most well-defined, we can think of the non-

cofibrant or non-fibrant objects as scaffolding necessary for the homotopy theory of Ho(M)

to be studied using solely 1-categorical language. In particular, the objects of particular

interest in a model category are just the cofibrant-fibrant ones.

2.2.2 Homotopy limits and colimits

With model categories as a context for abstract homotopy theory, we briefly discuss how to

compute homotopy-coherent limits and colimits using appropriately-prepared 1-categorical

limits and colimits; see also [21, Chapters 8 and 18].

Definition 2.2.2.1. Let M,M′ be model categories. An adjunction F : M ⇄ M′ : U

is a Quillen adjunction if F preserves cofibrations and U preserves fibrations. A Quillen

adjunction induces an adjunction LF : Ho(M) ⇄ Ho(M′) : RU of total derived functors

between the corresponding homotopy categories.

A Quillen adjunction is called a Quillen equivalence if the induced adjunction of total

derived functors is an equivalence of homotopy categories.

Remark 2.2.2.2. For an arbitrary object A ∈ M, the total left derived functor LF acts by

computing F on a (functorially chosen) cofibrant resolution QA of A; that is we have a

weak equivalence LF (A) ≃ F (QA). By Ken Brown’s Lemma, left Quillen functors preserve

weak equivalences between cofibrant objects, so the cofibrant resolutions ensure that F is

“corrected” to be invariant under weak equivalence. This is analogous to derived functors

in homological algebra.

We want to ensure that if two diagrams F,G : J → M into a model category are

levelwise weakly equivalent—for instance, there exists a natural transformation F ⇒ G

where F (A) → G(A) is a weak equivalence for every A ∈ M—then the corresponding

homotopy limits of F and G are weakly equivalent inM.

IfM is any complete and cocomplete category, then for all small categories J , the diagonal
functor ∆ :M→ Fun(J ,M) admits left and right adjoints lim−→ ⊣ ∆ ⊣ lim←− given by taking

colimits and limits, respectively. In particular, if we can show that the diagonal is both a left

and a right Quillen functor, then we can compute homotopy limits and colimits by taking

the derived functors associated to the adjoints of ∆.

Proposition 2.2.2.3. [26, Proposition A.2.8.2] Let M be a combinatorial model category,

and J a small category. Then,
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� There exists a projective model structure on Fun(J ,M) where the weak equivalences

and the fibrations are determined pointwise onM.

� There exists an injective model structure on Fun(J ,M) where the weak equivalences

and the cofibrations are determined pointwise onM.

Remark 2.2.2.4. If M is a combinatorial model category, and J is a small category, then

the identity functor on Fun(J ,M) induces a Quillen equivalence

id : Fun(J ,M)proj ⇄ Fun(J ,M)inj : id

Let M be a combinatorial model category, and J a small category. Since the diago-

nal functor ∆ : M → Fun(J ,M) preserves projective fibrations and projective acyclic

fibrations, it defines a right Quillen functorM→ Fun(J ,M)proj.

Likewise, the diagonal functor also preserves injective cofibrations and injective acyclic

cofibrations, and so defines a left Quillen functor M → Fun(J ,M)inj. Following Re-

mark 2.2.2.2, this justifies the following definition.

Definition 2.2.2.5. LetM be a combinatorial model category. Then, a homotopy limit of

a functor F : J →M for J a small category is any object inM that is weakly equivalent

to the limit lim←−RinjF of an injectively fibrant resolution of F .

Dually, a homotopy colimit of F is any object in M that is weakly equivalent to the

colimit lim−→QprojF of a projectively cofibrant resolution of F .

Example 2.2.2.6. By [26, Proposition A.2.4.4(i)], if a cospan A
f−→ C

g←− B in a model

category consists of fibrant objects, and g is a fibration, then the (1-categorical) fibre product

A×CB is weakly equivalent to the homotopy fibre product. This generalises the phenomenon

observed in Proposition 2.2.1.3.

2.3 The fundamental ∞-groupoid

To any topological space X, we can associate a category Π1X where the objects are the

points of X, and the morphisms x → y are continuous paths from x to y in X modulo

endpoint-preserving homotopy. As all of the morphisms in Π1X are invertible, it defines

a groupoid, and is called the fundamental groupoid of X. This construction is moreover

functorial: any continuous function f : X → Y induces a functor f∗ : Π1X → Π1Y via

postcomposition of paths with f .

The fundamental groupoid Π1X encodes all of the 1-homotopical data of the spaceX. The

set π0X of path-connected components is precisely the set π≤0Π1X of isomorphism classes
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of Π1X, and for any x ∈ X, the fundamental group π1(X, x) is precisely the automorphism

group AutΠ1X(x) of the corresponding point in Π1X.

One might hope that this construction generalises: can we encode the 2-homotopical data

of a space X with a 2-category Π2X? A natural guess is to take the objects of Π2X to

be the points of X, the 1-morphisms x → y to be continuous paths from x to y, and then

take the 2-morphisms f ⇒ g of paths to be endpoint-preserving homotopies f ≃ g modulo

boundary-preserving higher homotopies.

However, this construction fails to define a strict 2-category: part of the reason why

Π1X takes homotopy classes of paths as morphisms is to ensure that concatenation of paths

induces a well-defined and associative composition operation. Defining concatenation g ·f of

paths f, g : [0, 1]→ X usually requires choosing a homeomorphism [0, 1] ⊔∗ [0, 1] ∼= [0, 1]. If

this homeomorphism is fixed, iterated composition is no longer associative: for compatible

paths f, g, h, we instead only have a canonical (endpoint-preserving) homotopy equivalence

(h · g) · f ≃ h · (g · f)

In particular, our putative 2-category Π2X does not immediately admit an associative com-

position induced by path composition.

If X is Hausdorff, then [16] shows how the näıve idea above can be modified to define a

fundamental strict 2-groupoid for X by identifying paths if they are connected by thin homo-

topies. In fact, a fundamental strict 2-groupoid can be achieved in general; see [15, §2.4.3].

However, it is impossible to generalise further—we cannot even encode the 3-homotopical

data of cell complexes with strict 3-categories; see [14, Remark 8.8].

In order to define the fundamental 2-groupoid in a more natural and generalisable way,

we need a notion of 2-category that allows the composition to be associative in a weaker

sense—that is, up to canonical 2-isomorphism. This is consistent with the philosophy of

Remark 2.1.1.1: we should not be asserting associativity through equality of 1-morphisms in

a 2-category in the first place! This adjustment leads to a notion that is historically known

as a bicategory in [7].

Definition 2.3.0.1. A 2-category B consists of the following data:

� A class of objects A ∈ B,

� For objects A,B ∈ B, a category HomB(A,B) of 1-morphisms and 2-morphisms be-

tween them,

� For A,B,C ∈ B, a composition functor

◦ : HomB(B,C)× HomB(A,B)→ HomB(A,B)
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� For A ∈ B, an identity morphism idA ∈ HomB(A,A),

� For 1-morphisms f : A→ B, g : B → C, h : C → D, an associator

αh,g,f : (h ◦ g) ◦ f
∼
=⇒ h ◦ (g ◦ f)

natural in f, g, h, and

� For 1-morphisms f : A→ B, left and right unitors

λf : idB ◦f
∼
=⇒ f, ρf : f ◦ idA

∼
=⇒ f

natural in f ,

subject to the following coherence axioms:

� The associators satisfy the pentagon axiom: for all f : A→ B, g : B → C, h : C → D,

i : D → E, the diagram

(i ◦ h) ◦ (g ◦ f)

((i ◦ h) ◦ g) ◦ f i ◦ (h ◦ (g ◦ f))

(i ◦ (h ◦ g)) ◦ f i ◦ ((h ◦ g) ◦ f)

∼
αi,h,g◦f

∼
αi◦h,g,f

∼
αi,h,g∗f

∼
αi,h◦g,f

∼
i∗αh,g,f

commutes in HomB(A,E), and

� The associators and unitors satisfy the triangle axiom: for all 1-morphisms f : A→ B

and g : B → C, the diagram

(g ◦ idB) ◦ f g ◦ (idB ◦f)

g ◦ f

αg,idB,f

∼

ρg∗f
∼

g∗λf
∼

commutes in HomB(A,C).

Now, the näıve definition of Π2X yields a well-defined 2-category in general, which we may

call the fundamental 2-groupoid of X; see [17]. In particular, the fundamental 2-groupoid

Π2X recovers the second homotopy groups π2(X, x) for x ∈ X as the automorphism groups

of the 1-morphisms idx in Π2X.

Unfortunately, higher categories defined with fully weak associativity are remarkably more

complicated than their strict analogues. For instance, in a 3-category—historically called a

tricategory—the pentagon and triangle axioms are replaced with 3-isomorphisms (called the

pentagonator and triangulator), which are then subject to their own coherence axioms. A

fully algebraic definition of a 3-category can be found in [15, Definition 3.1.2].
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2.3.1 Simplicial sets

Revisiting the fundamental 1-groupoid Π1X of a space, it is natural to wonder if we can

classify the essential image of this construction: which groupoids are equivalent to the funa-

mental 1-groupoid of a space? It turns out that this functor is essentially surjective:

Proposition 2.3.1.1. For a small groupoid G, there exists a topological space K(G) such

that Π1K(G) ≃ G and πn(K(G), x) is trivial for all x ∈ K(G) and n ≥ 2.

The construction of K(G) is quite intuitive, and is discussed in [4, §1.4]:

� Every object of G should correspond to a point in K(G), so introduce a point in K(G)
for every object of G.

� For every morphism x → y in G, glue a path from x to y in K(G); that is, introduce
a copy of the unit interval [0, 1], and glue its endpoints to the points x and y already

present in K(G).

� To ensure that the composition of paths in Π1K(G) is consistent with that of G,
introduce for every commutative triangle

y

x z

gf

h

in G a topological triangle in K(G), and glue its boundaries to the paths corresponding

to f , g, and h according to the above diagram.

� The above three steps suffice in ensuring that Π1K(G) ≃ G. To kill the second homo-

topy groups, however, we need to introduce for every commutative tetrahedron

y

w

x z

g

j

f

h

i k

a topological 3-simplex, glued to the topological triangles associated to each of the four

faces of the above diagram.

� Likewise, to kill the higher homotopy groups, we need to introduce topological n-

simplices for every commutative n-simplex in G.
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In particular, the construction of K(G) can be divided into two distinct constructions:

first, we extract from G a complex of n-simplices for every n ≥ 0; then, we use the complex

of n-simplices as a blueprint for realising a topological space.

We can combinatorially encode a complex of simplices using simplicial sets.

Definition 2.3.1.2. Define the simplex category ∆ to be the category whose objects are

the finite chains

[n] := {0 < 1 < · · · < n}

and whose morphisms are the order-preserving functions between them. Then, define the

category of simplicial sets to be the functor category sSet := Fun(∆op,Set). For a simplicial

set X : ∆op → Set, write Xn := X([n]) for the set of n-cells of X.

Remark 2.3.1.3. The morphisms of the simplex category are generated by

� the coface map δi : [n] → [n + 1] for 0 ≤ i ≤ n + 1, which is the unique monotone

injection whose image does not contain i ∈ [n+ 1], and

� the codegeneracy map σi : [n] → [n − 1] for 0 ≤ i ≤ n − 1, where σi is the unique

monotone surjection such that σi(i) = σi(i+ 1).

In particular, the structure of a simplicial set X is completely determined by its face maps

di := X(δi) : Xn+1 → Xn and its degeneracy maps si : X(σi) : Xn−1 → Xn.

Call an n-cell of X degenerate if it lies in the image of one of the degeneracy maps of X.

Example 2.3.1.4. Define the standard n-simplex ∆[n] to be the simplicial set given by the

presheaf represented by [n]; that is, the k-cells of ∆[n] correspond to order-preserving maps

[k]→ [n].

In particular, ∆[n] has exactly n vertices (i.e., 0-cells), which we may identify with the

elements {0, 1, . . . , n}. We then view any k-cell of ∆[n] as being supported on the vertices

in the image of its corresponding map [k] → [n]. By convention, we also view a 1-cell

α : [1]→ [n] as a directed edge from α(0) to α(1).

The co-Yoneda Lemma implies that every simplicial set can be realised as a canonical

colimit of the representable simplicial sets; that is, every simplicial set is obtained by formally

gluing together standard simplices. In particular, if we specify how to realise each standard

simplex as a topological space, we can then follow the same gluing procedure to realise an

arbitrary simplicial set as a topological space as well.
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{︂
0
}︂

(a) ∆[0]

{︂
0 1

}︂
(b) ∆[1]

⎧⎪⎪⎨⎪⎪⎩
1

0 2

⎫⎪⎪⎬⎪⎪⎭
(c) ∆[2]

Figure 2.1: The non-degenerate cells of the first few standard simplices.

Definition 2.3.1.5. For n ≥ 0, define the topological n-simplex to be the subspace

∆Top[n] :=
{︁
(x0, . . . , xn) ∈ Rn+1

≥0 :
⃓⃓
: x0 + · · ·+ xn = 1

}︁
⊂ Rn+1

This construction defines a functor ∆Top[−] : ∆→ Top, where

δi : ∆Top[n]→ ∆Top[n+ 1], σi : ∆Top[n]→ ∆Top[n− 1],

(x0, . . . , xn) ↦→ (x0, . . . , xi−1, 0, xi, . . . , xn) (x0, . . . , xn) ↦→ (x0, . . . , xi + xi+1, . . . , xn)

In particular, this functor induces an adjunction

| − | : sSet⇄ Top : Sing

The right adjoint is the singular nerve, which associates to a topological space X the sim-

plicial set Sing(X) whose n-cells correspond to continuous functions ∆Top[n] → X. On

the other hand, the left adjoint is the geometric realisation, which is given by the left Kan

extension of ∆Top[−] along the Yoneda embedding ∆ ↪→ sSet.

On the other hand, we can also realise the standard simplices as commutative diagrams

in 1Cat, through which we can probe groupoids to extract their simplicial structure.

Definition 2.3.1.6. We have a fully faithful embedding ∆ ⊂ 1Cat that identifies [n] with

the category {0 → 1 → · · · → n}. Through this functor, we can define the nerve of any

small category C as the simplicial set NC whose n-cells correspond to functors [n]→ C.
As every category can be written as a canonical colimit of these chains (that is, the

inclusion ∆ ⊂ 1Cat is dense in the sense of [24, Chapter 5]), it follows that the nerve

defines a fully faithful functor 1Cat ↪→ sSet.

Remark 2.3.1.7. In particular, we can make the construction of K(G) in Proposition 2.3.1.1

precise: the topological space is precisely the geometric realisation of the nerve of the

groupoid G; that is, K(G) = |NG|.
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2.3.2 The Homotopy Hypothesis

Although the definition of a general n-category is impractically technical, the näıve construc-

tion of a fundamental n-groupoid ΠnX is very straightforward. Specifically, the fundamental

∞-groupoid Π∞X should be an ∞-category where:

� the objects of Π∞X are the points of X,

� the 1-morphisms of Π∞X are the continuous paths in X,

� the 2-morphisms of Π∞X are the endpoint-preserving homotopies in X,

� the 3-morphisms of Π∞X are the boundary-preserving higher homotopies in X,

� and so on.

Composition of k-morphisms should be given by concatenation, which is well-defined up to

canonical homotopy. In some sense, all of the required coherence should already be built into

the topological structure of the space X. The fundamental n-groupoid can then be obtained

by truncating Π∞X.

This construction should also be functorial: a continuous function f : X → Y should

induce a functor of ∞-groupoids f∗ : Π∞X → Π∞Y . Moreover, homotopies between con-

tinuous functions should induce natural transformations between fundamental∞-groupoids,

and likewise for higher homotopies. In particular, a continuous function should induce an

equivalence of fundamental∞-groupoids whenever the function is a homotopy equivalence of

spaces. Conversely, since the fundamental ∞-groupoid should encode all homotopical data

of the space, if a continuous function induces an equivalence of fundamental∞-groupoids, it

should induce an isomorphism of homotopy groups in all directions; that is, such a continuous

function should be a weak homotopy equivalence.

The construction of Proposition 2.3.1.1 should generalise to any appropriate notion of∞-

groupoid: given an ∞-groupoid G, there should exist a space K(G) such that Π∞K(G) ≃ G.

From the previous discussion, K(G) should be completely determined up to weak homotopy

equivalence. Altogether, these musings lead us to the following:

Hypothesis 2.3.2.1 (The Homotopy Hypothesis). [4, §2.3] There is an equivalence between

∞-groupoids and homotopy types (topological spaces modulo weak homotopy equivalence).

Assuming the Homotopy Hypothesis, we can use topological spaces as a model for ∞-

groupoids, circumventing the need to formalise higher categories. However, the category

of topological spaces is poorly behaved, and topological spaces do not reflect the expected
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combinatorial nature of (higher) categories. Recall that the construction of K(G) in Propo-

sition 2.3.1.1 factors through simplicial sets, which are combinatorial structures that form a

presheaf category. This motivates exploring a simplicial model for ∞-groupoids instead.

Definition 2.3.2.2. Define the boundary ∂∆[n] of the standard n-simplex to be the simpli-

cial subset of ∆[n] obtained by discarding the unique non-degenerate n-cell corresponding to

the identity [n] → [n] (and therefore also discarding all k-cells corresponding to surjections

[k]→ [n]).

For 0 ≤ i ≤ n, define the ith horn Λi[n] of ∆[n] to be the simplicial subset of ∂∆[n]

obtained by discarding the (n−1)-cell corresponding to δi : [n−1]→ [n] (and therefore also

discarding all k-cells corresponding to maps [k]→ [n] whose image contains [n] \ {i}).

⎧⎪⎪⎨⎪⎪⎩
1

0 2

⎫⎪⎪⎬⎪⎪⎭
(a) Λ0[2]

⎧⎪⎪⎨⎪⎪⎩
1

0 2

⎫⎪⎪⎬⎪⎪⎭
(b) Λ1[2]

⎧⎪⎪⎨⎪⎪⎩
1

0 2

⎫⎪⎪⎬⎪⎪⎭
(c) Λ2[2]

Figure 2.2: The horns of ∆[2].

Proposition 2.3.2.3. [26, Proposition 1.1.2.2] The essential image of the fully faithful func-

tor N : 1Cat ↪→ sSet consists of those simplicial sets K : ∆op → Set such that every map

Λi[n]→ K for 0 < i < n admits a unique extension

Λi[n] K

∆[n]

∃!

If extensions also exist when i = 0 and i = n, even if the extensions are not unique a priori,

then K is moreover isomorphic to the nerve of a groupoid.

Proof sketch. Given a simplicial set K with the unique extension property with respect to

Λi[n] for 0 < i < n, we construct a category with set of objects given by K0 and set of

morphisms given by K1. Referring to Fig. 2.2, a map Λ1[2]→ K corresponds to a choice of

a composable pair of 1-cells x
f−→ y and y

g−→ z. We therefore define the composite g ◦ f to be

the third face of the unique extension of Λ1[2]→ K along Λ1[2] ⊂ ∆[2]; that is, the unique
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choice of dashed 1-cell in the diagram

y

x z

gf

∃!

On the other hand, identity morphisms are selected via s0 : K0 → K1.

The unique extensions along the horn inclusions Λi[3] ⊂ ∆[3] for i = 1, 2 assert that

iterated composites (h ◦ g) ◦ f and h ◦ (g ◦ f) coincide for all composable 1-cells f, g, h. This

proves that the 0-cells and 1-cells with the above composition does indeed define a category.

The unique extensions in higher dimensions are necessary to ensure that the nerve of this

category recovers all of K.

If the nerve NC of a category admits extensions along Λi[n] ⊂ ∆[n] for i = 0, n, then

taking n = 2 implies in particular that we can always find dashed arrows in the diagrams

y

x x

f

id

x

y y

f

id

making the triangles commute. In other words, the lifts imply that every morphism in C
admits a section and a retraction, meaning that every morphism is an isomorphism.

In the singular nerve Sing(X) of a topological space X, the 0-cells are the points of the

space X, and the 1-cells are the continuous paths in X. If α : ∆Top[2] → X is a 2-cell of

Sing(X), then α can be viewed as tracing an endpoint-preserving homotopy

α(0, 1, 0)

α(1, 0, 0) α(0, 0, 1)

d0α≃d2α

d1α

from the concatenation of paths d0α · d2α to the path d1α, exhibiting d1α as the composite

of d2α with d0α. The higher-dimensional cells of Sing(X) can be viewed similarly as higher

homotopies as well.

In particular, the singular nerve construction seems to be completely analogous to the

desired construction of the fundamental ∞-groupoid of a space. Moreover, the singular

nerve behaves very similarly to the nerve of a groupoid: since every |Λi[n]| is a retract of

|∆[n]| ∼= ∆Top[n], we can extend any map Λi[n] → Sing(X) along Λi[n] ⊂ ∆[n], albeit not

uniquely.
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Definition 2.3.2.4. A simplicial set K is a Kan complex if every map Λi[n] → K for

0 ≤ i ≤ n admits an extension

Λi[n] K

∆[n]

∃

Analogous to the proof sketch of Proposition 2.3.2.3, given a composable pair of 1-cells

x
f−→ y and y

g−→ z exhibited by a map Λ1[2]→ K, an extension along Λ1[2] ⊂ ∆[2] produces

a 2-simplex
y

x z

gf

∃h

which we can view as exhibiting h as a composite of f and g. Although h is not unique, any

two choices h and h′ of composites are connected by a canonical 2-cell of K using extensions

of appropriate maps Λ1[3]→ K along Λ1[3] ⊂ ∆[3] suggested by the diagram below

y

z

x z

g

gf

h

h′

Likewise, the extensions along horn inclusions Λi[3] ⊂ ∆[3] for i = 1, 2 connect iterated

composites (h ◦ g) ◦ f and h ◦ (g ◦ f) via zig-zags of 2-cells, demonstrating that composition

in K (which is already ambiguous up to 2-cells) is associative up to 2-cells. Extensions along

higher-dimensional (inner) horn inclusions imply that the 2-cells exhibiting associativity are

coherent up to higher-dimensional cells in K. In particular, the structure of a Kan complex

encodes homotopy-coherent compositional structure analogous to that of Definition 2.3.0.1.

On the other hand, the extensions along Λ0[2] ⊂ ∆[2] and Λ2[2] ⊂ ∆[2] imply that

1-cells in K admit left and right inverses up to canonical 2-cell, and extensions along higher-

dimensional (outer) horn inclusions imply that these inverses are homotopically coherent.

This suggests that Kan complexes may serve as a geometric model of∞-groupoids. Assuming

the Homotopy Hypothesis, we can formalise this suggestion with the following theorem:

Theorem 2.3.2.5 (Quillen). [22, Theorems 3.6.4 and 3.6.7] There is a model structure on

sSet (called the Kan-Quillen model structure) where

(W) The weak equivalences are those f : X → Y such that the induced map |X| → |Y | of
geometric realisations is a weak homotopy equivalence of spaces,
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(F) The fibrations are those f : X → Y that satisfy the right lifting property with respect

to all horn inclusions Λi[n] ⊂ ∆[n] for 0 ≤ i ≤ n, which are called Kan fibrations. In

particular, the fibrant objects are precisely the Kan complexes,

(C) The cofibrations are the monomorphisms. In particular, all simplicial sets are cofibrant.

Moreover, the geometric realisation and singular nerve define a Quillen equivalence between

sSetQuillen and TopQuillen (see Example 2.2.1.10).

2.4 Quasicategories

Comparing the nerve of 1-groupoids with Kan complexes, the characterisation of the nerve

of arbitrary 1-categories motivates the following relaxation of Definition 2.3.2.4:

Definition 2.4.0.1. Say that a simplicial set C is a quasicategory if every map Λi[n] → C

for 0 < i < n admits an extension

Λi[n] C

∆[n]

∃

The extension property with respect to inner horns implies, just as with Kan complexes,

that a quasicategory carries a homotopy-coherent compositional structure. Excluding exten-

sions along outer horn inclusions removes the additional constraint on Kan complexes that

this compositional structure is invertible. In particular, quasicategories should correspond

to a more general class of higher categories where 1-morphisms are not necessarily invertible.

Note that the homotopy coherence of this compositional structure relies on the interpre-

tation of k-cells for k ≥ 2 as encoding invertible k-morphisms of C; in particular, quasicat-

egories cannot hope to encode fully general higher categories, but rather just those whose

k-morphisms are invertible for k ≥ 2.

Definition 2.4.0.2. Fix a notion of higher category, with k-morphisms for all k ≥ 1, and a

corresponding notion of when a k-morphism is an equivalence. For integers 0 ≤ n, r ≤ ∞,

say that such a higher category is an (n, r)-category if:

� for k > n, any parallel k-morphisms are equivalent, and

� for k > r, any k-morphism is an equivalence.

Here, two k-morphisms are called parallel if they map from the same source to the same

target.
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Example 2.4.0.3. For any reasonable notion of higher category, the following identifications

should hold:

� Vacuously, every higher category is an (∞,∞)-category.

� A small (0, 0)-category is a set, a (1, 1)-category is an ordinary category, and a (2, 2)-

category is a 2-category in the sense of Definition 2.3.0.1. More generally, an (n, n)-

category is precisely an n-category.

� An (n, 0)-category is, by definition, an n-groupoid.

� A (0, 1)-category is a set with a preorder (a reflexive and transitive relation). Likewise,

a (1, 2)-category is a 2-category whose hom-categories are preordered sets.

Note that every preordered set is equivalent as a category to a partially ordered set.

Remark 2.4.0.4. In an (n, r)-category, every k-endomorphism for k > n is equivalent to an

identity, and is therefore an equivalence. This implies that any k-morphism for k > n with

equivalent source and target must already be an equivalence. As k-morphisms for k > 1

necessarily map between parallel (k − 1)-morphisms, it follows in an (n, r)-category that

every k-morphism is an equivalence for k > n+1. In particular, every (n,∞)-category is an

(n, n+ 1)-category.

Remark 2.4.0.5. The notion of an (n, r)-category can be extended to allow for n or r to be

negative; see [4, §2].

Remark 2.4.0.6. The term “∞-category” commonly refers specifically to (∞, 1)-categories,
rather than the fully general (∞,∞)-categories. This is the convention in [26], for instance.

We want to view quasicategories as a model for (∞, 1)-categories.

2.4.1 Simplicially-enriched categories

A more direct approach to defining (∞, 1)-categories is to rely on the observation that

an (∞, 1)-category is a higher category C such that HomC(x, y) is an ∞-groupoid for all

x, y ∈ C. Through the Homotopy Hypothesis, we are led to studying categories enriched in

(sSet,×,∆[0]), where we also endow sSet with the Kan-Quillen model structure.

As we are only interested in simplicial sets up to weak equivalence, we must similarly

weaken our notion of equivalence between sSet-enriched categories. Note that the tensor

product on (sSet,×,∆[0]) is compatible with the model structure on sSet in that it de-

fines a monoidal model category in the sense of [26, Definition A.3.1.2]. This implies that

Ho(sSet) inherits a total derived tensor product, and any sSet-enriched category C induces

a Ho(sSet)-enriched category h(C). Since the isomorphisms in Ho(sSet) correspond to the
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weak equivalences in sSet, we want to consider sSet-enriched categories as weakly equivalent

whenever their induced Ho(sSet)-enriched categories are equivalent.

Theorem 2.4.1.1. [26, Proposition A.3.2.4 and Theorem A.3.2.24] The category (sSet)Cat

admits a left proper combinatorial model structure uniquely determined by the following:

(W) The weak equivalences are those functors F : C → D of sSet-enriched categories such

that the induced functor h(C)→ h(D) of Ho(sSet)-enriched categories is an equivalence

in the strict 2-category (Ho(sSet))Cat,

(F) The fibrant objects are those sSet-enriched categories C such that HomC(X, Y ) is a

Kan complex for all X, Y ∈ C.

(C) The cofibrations are generated by ∅ ↪→ ∗ and the inclusions Σ(∂∆[n]) ↪→ Σ(∆[n]),

where ΣK is the sSet-enriched category with two objects ⊥,⊤ such that

HomΣK(x, y) =

⎧⎪⎨⎪⎩
∗, if x = y,

K, if x = ⊥ and y = ⊤,
∅, if x = ⊤ and y = ⊥

Remark 2.4.1.2. Bergner characterises the fibrations in the above model structure in [8] as

those functors F : C → D such that HomC(X, Y ) → HomD(FX,FY ) is a Kan fibration for

all X, Y ∈ C, and the ordinary functor underlying h(C) → h(D) is an isofibration in the

sense of Definition 2.2.1.2.

The Homotopy Hypothesis implies that the model category (sSet)Cat already provides

a model of higher categories. We can therefore use this model to transfer homotopy theory

to the subcategory of sSet spanned by quasicategories.

Definition 2.4.1.3. [26, Definitions 1.1.5.1, 1.1.5.3] For [n] ∈ ∆, define the sSet-enriched

category C[n] as follows:

� Take the objects of C[n] to be the elements of {0, 1, . . . , n},

� For i, j ∈ [n], define HomC[n](i, j) to be the nerve of the category of subsets of the

interval [i, j] := {i, i+ 1, . . . , j − 1, j} that contain i and j.

� Composition HomC[n](j, k)×HomC[n](i, j)→ HomC[n](i, k) is induced by the monotone

map that sends a pair of subsets S ⊆ [i, j] and T ⊆ [j, k] to their union S ∪ T ⊆ [i, k].

An order-preserving map ϕ : [n]→ [m] induces a functor C[n]→ C[m] by sending i ↦→ ϕ(i),

and the simplicial map HomC[n](i, j)→ HomC[m](ϕ(i), ϕ(j)) is induced by the monotone map

that sends a subset S ⊆ [i, j] to its image ϕ(S) ⊆ [ϕ(i), ϕ(j)].
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We therefore have a functor C : ∆→ (sSet)Cat, which induces an adjunction

C : sSet⇄ (sSet)Cat : N

The right adjoint is the homotopy-coherent nerve, which associates to a sSet-enriched cate-

gory C the simplicial set NC whose n-cells correspond to functors C[n] → C. On the other

hand, the left adjoint is the left Kan extension of C along the Yoneda embedding ∆ ↪→ sSet.

Remark 2.4.1.4. If C is an ordinary category, where its hom-sets are viewed as discrete

(constant) simplicial sets, then the homotopy-coherent nerve of C coincides with the nerve

of C in the sense of Definition 2.3.1.6.

Theorem 2.4.1.5. [26, Theorem 2.2.5.1] There is a model structure on sSet (called the

Joyal model structure) uniquely determined by the following:

(W) The weak equivalences are the categorical equivalences: those maps f : X → Y such

that the induced map C[X] → C[Y ] is a weak equivalence in the model structure of

Theorem 2.4.1.1,

(F) The fibrant objects are the quasicategories,

(C) The cofibrations are the monomorphisms. In particular, all simplicial sets are cofibrant.

Moreover, the adjunction C ⊣ N defines a Quillen equivalence between the model categories

sSetJoyal and (sSetQuillen)Cat.

In particular, we can view quasicategories as a model for (∞, 1)-categories.

2.4.2 The theory of (∞, 1)-categories

An (∞, 1)-category is a homotopy-coherent generalisation of an ordinary 1-category. In

particular, most basic results of ordinary category theory have a homotopy-coherent analogue

in the theory of (∞, 1)-categories—such as the theory of limits or colimits, adjunctions, Kan

extensions, local presentability, and toposes—most of which is explained in-depth in [26].

Since HomC(x, y) is an∞-groupoid—and thus a homotopy type—for all objects x, y in an

(∞, 1)-category C, the Yoneda Lemma implies that we can view objects of C as homotopy

types with additional structure. In other words, C is a context within which one can study

abstract homotopy theory. On the other hand, model categories are designed specifically to

study abstract homotopy theories with 1-categorical language.

We can reconcile the two languages quite readily, at least assuming that the model cate-

gories are enriched in sSetQuillen in the sense of [26, Definition A.3.1.5].
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Definition 2.4.2.1. SupposeM is a sSetQuillen-enriched model category. Then, for cofibrant

X and fibrant Y , the simplicial set HomM(X, Y ) is a Kan complex. In particular, the full

subcategoryM◦ ofM spanned by the cofibrant-fibrant objects is fibrant in the huge model

category of sSetQuillen-enriched categories.

Since the homotopy-coherent nerve is a right Quillen functor, it follows that N(M◦) is a

large quasicategory, which is called the underlying (∞, 1)-category ofM.

Definition 2.4.2.2. sSetQuillen is self-enriched from being a monoidal model category with

respect to its cartesian tensor product. Denote its underlying (∞, 1)-category by S. By the

Homotopy Hypothesis, this is also the (∞, 1)-category of small ∞-groupoids.

Definition 2.4.2.3. sSetJoyal is a monoidal model category, and therefore self-enriched.

However, it is not enriched over sSetQuillen.

Nonetheless, we can define an (∞, 1)-category Cat∞ of small (∞, 1)-categories as the

homotopy-coherent nerve of the sSet-enriched category qCat whose objects are the qua-

sicategories, and whose simplicial hom-set HomqCat(C,D) is given by the maximal Kan

complex contained in the quasicategory Fun(C,D).

Remark 2.4.2.4. There is a Cartesian model structure sSet+Cart on marked simplicial sets

that is Quillen equivalent to sSetJoyal defined in [26, Proposition 3.1.3.7]. By [26, Corollary

3.1.4.4], sSet+Cart is a simplicial model category, so we can equivalently define Cat∞ as the

(∞, 1)-category underlying sSet+Cart.

Remark 2.4.2.5. By [26, Proposition 5.2.4.6, Corollary A.3.1.12], every simplicial Quillen

adjunction F : M ⇄ M′ : U between simplicial model categories induces an adjunction

LF : N(M◦) ⇄ N(M′◦) : RU of underlying (∞, 1)-categories. If F ⊣ U is moreover a

Quillen equivalence, then LF ⊣ RU is an adjoint equivalence of (∞, 1)-categories.
Similarly, [26, Theorem 4.2.4.1] implies that homotopy limits and colimits in a simplicial

model category agree with the limits and colimits in the underlying (∞, 1)-category.

37



Chapter 3

Towards Higher Categories

Although (∞, 1)-categories are not fully general higher categories, they form the smallest

class of higher categories that simultaneously encapsulate ordinary category theory and

provide access to higher-dimensional morphisms to encode weaker notions of equivalence. In

particular, every higher category has an underlying (∞, 1)-category obtained by discarding

the non-invertible k-morphisms for k > 1 (analogous to Definition 2.1.1.7).

This makes (∞, 1)-category theory a convenient framework in which to formalise models

of (n, r)-categories for arbitrary n and r. As discussed in the introduction, there are several

models of higher categories in the literature; see [2, 5, 29, 33, 34] for examples. The Unicity

Theorem of [6] characterises the (∞, 1)-category of small (∞, r)-categories for 0 ≤ r < ∞,

up to an action of (Z/2)r given by reversing k-morphisms in each dimension, giving a means

to prove that any two “reasonable” models of (∞, r)-categories are equivalent in a precise

sense. Note, however, that the “versality” condition asserted in the Unicity Theorem is

quite strong, and requires the majority of the effort when invoking that a putative theory of

(∞, r)-categories is correct.
We can characterise (n, r)-categories recursively by the observation that a higher category

C is an (n + 1, r + 1)-category precisely if HomC(x, y) is an (n, r)-category for all x, y ∈ C.

In particular, this suggests that we can approach general higher categories using iterated

enrichment, as in Section 2.1. However, it is highly nontrivial to describe enrichment in the

(∞, 1)-categorical setting: the compositional structure needs to be coherently associative up

to the notion of higher homotopy encoded in the enriching monoidal (∞, 1)-category.
Such a homotopy-coherent theory of enrichment is described in [10], and we will study

higher categories through this lens in Chapter 5. However, the level of generality of this

theory obfuscates the resulting presentation of higher categories; the model proposed in this

chapter is much more elementary.

The purpose of this chapter is to describe a uniform presentation of the (∞, 1)-category of

small (n, r)-categories for any fixed −2 ≤ n ≤ ∞ and 0 ≤ r ≤ n+2 in terms of localisations
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of presheaf (∞, 1)-categories. In fact, we construct an (∞, 1)-category of sheaves of (n, r)-

categories over any (∞, 1)-topos. The definition is based on the iterated construction of

complete Segal space objects as in [27], which we make precise in Section 3.3. This allows us

to prove that, when n =∞ and r is finite, our construction fits in the context of the Unicity

Theorem (and is therefore “correct”); see Corollary 3.3.4.4.

Convention 3.0.0.1. Throughout this chapter, and the remaining chapters, we omit the

“(∞, 1)” prefix. That is, a category refers to an (∞, 1)-category, and likewise for other

categorical notions such as groupoids, limits and colimits, et cetera. We will refer to the

classical variants as ordinary categories or 1-categories. If misinterpretation is possible, we

may also refer to (∞, 1)-categories as ∞-categories ; see Remark 2.4.0.6.

3.1 The Segal condition

The purpose of this section is to motivate the definition provided in Section 3.2. In particular,

the material presented in this section is well-known.

Recall the construction of the nerve NC of an ordinary category C from Definition 2.3.1.6:

the n-cells of NC correspond to the functors [n]→ C. Since [n] is the free category generated

by the graph

0→ 1→ 2→ · · · → n

it follows that functors [n]→ C correspond to chains of composable morphisms

x0
f1−→ x1

f2−→ x2 → . . .
fn−→ xn

in C. This leads to the following alternative characterisation of the nerve of an ordinary

category:

Proposition 3.1.0.1. A simplicial set X : ∆op → Set is isomorphic to the nerve of a small

1-category if and only if X satisfies the Segal condition: for every n ≥ 0, the map

Xn → X1 ×X0 X1 ×X0 · · · ×X0 X1⏞ ⏟⏟ ⏞
n

induced by the inclusions [1] ∼= {i, i+ 1} ⊂ [n] is an isomorphism.

Proof. That the nerve of a 1-category satisfies the Segal condition follows from observing

that the inclusions {i, i+ 1} ⊂ [n] induce an isomorphism of 1-categories

[n] ∼= [1] ⊔[0] [1] ⊔[0] · · · ⊔[0] [1]⏞ ⏟⏟ ⏞
n
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Conversely, suppose X satisfies the above condition, then we construct a 1-category C by

taking its set of objects to be X0, and its set of morphisms to be X1, where f ∈ X1 is viewed

as a morphism from d1f to d0f .

For x ∈ X, the corresponding identity morphism is given by s0x, and composition in C is

induced by

c : X1 ×X0 X1
∼←− X2

d1−→ X1

That this composition is associative follows from the commutativity of the diagram

X3 X2

X1 ×X0 X1 ×X0 X1 X1 ×X0 X1

X2 X1 ×X0 X1 X1

d1

d2

∼ ∼

d1
c×X0

X1

X1×X0
c c

∼

d1

c

A similar diagram demonstrates that the composition is also unital. Therefore, C is a well-

defined 1-category.

One can then readily check that the maps Xn → X1×X0 · · ·×X0X1 induce an isomorphism

X ∼= NC.

From the above argument, any simplicial object X : ∆op → X into a finitely complete

1-category X satisfying the Segal condition is completely determined by the maps

d0, d1 : X1 ⇒ X0; s0 : X0 → X1; c : X1 ×X0 X1 → X1

and the simplicial structure implies that (X0, X1, d0, d1, s0, c) defines a category object in X ,
in the sense of [3, Definition 2.1]. This suggests that a possible approach to higher categories

is through internalisation: the idea is to characterise (n + 1, r + 1)-categories as category

objects in the category of (n, r)-categories. However, arbitrary category objects are too

general.

For example, a category object D1 ⇒ D0 in the 1-category 1Cat of small 1-categories

yields a double category in the sense of [9, Définition 10]:

� The objects of D0 are taken to be the objects of the double category D•,

� The morphisms of D0 are the vertical morphisms of D•, denoted v : A→ B,

� The objects of D1 are the horizontal morphisms of D•, denoted f : A ↦→ B,
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� The morphisms of D1 are the 2-cells of D, and can be visualised as squares

A B

C D

f

|
u v

g

|

Nonetheless, we can view strict 2-categories as those double categories D1 ⇒ D0 such that

D0 is a set, ensuring that there are no nontrivial vertical morphisms.

This suggestion leads to a characterisation of (n + 1, r + 1)-categories as functors X :

∆op → Cat(n,r) such that

� X0 is discrete; that is, X0 is equivalent to a set, and

� X• satisfies the Segal condition in that for k ≥ 0, the canonical map

Xk → X1 ×X0 · · · ×X0 X1⏞ ⏟⏟ ⏞
k

is an equivalence of (n, r)-categories.

This leads to the notion of a Segal category, as studied in [33]. While this approach offers a

relatively elementary characterisation of (n, r)-categories, the tradeoff of this approach is that

the appropriate notion of equivalence is more complicated. This is because the “underlying

set” of a higher category is not invariant under equivalence, and therefore an equivalence

between Segal categories X• and Y• needs not induce a bijection between X0 and Y0.

We therefore take an adjacent approach where the equivalences remain simple (nothing

but equivalences of the underlying functors) in exchange for a more technical condition on

the (n, r)-categories themselves. Rather than taking X0 to be a set, we instead ask that X0

is an ∞-groupoid, and that X1 is an (n, r)-category. This introduces two distinct notions

of equivalence between objects of the higher category: the horizontal equivalences from the

categorical structure of X•, and the vertical equivalences from the ∞-groupoid X0.

We reconcile this by asserting a univalence condition that the horizontal and vertical

equivalences coincide, which we refer to as Rezk-completeness. This implies that X0 is the

underlying (n+ 1)-groupoid of X• obtained by discarding all non-invertible k-morphisms in

X• for all k ≥ 1. Such objects are called complete Segal spaces, which were first introduced

in [29] as a model for (∞, 1)-categories.
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3.2 Higher category objects

In this section, we give an explicit definition of the category of (n, r)-category-valued sheaves

for any −2 ≤ n ≤ ∞ and 0 ≤ r ≤ n + 2. In particular, taking sheaves over a point,

we obtain an explicit definition of the category of (n, r)-categories. These categories are

obtained as accessible localisations of functor categories valued in an ∞-topos, so we recall

some preliminary notions below.

Definition 3.2.0.1. [26, Definition 5.5.4.1] Let C be a category, and S a collection of mor-

phisms in C. An object x ∈ C is S-local if for all f : y → z in S, the induced map

HomC(z, x)→ HomC(y, x) is an equivalence.

Remark 3.2.0.2. [26, Proposition 5.5.4.15] If C is locally presentable, and S is a small set

of morphisms in C, then the full subcategory S−1C of C spanned by the S-local objects is

locally presentable also, and the inclusion S−1C ⊆ C is accessible.

Let S denote the strongly saturated class of morphisms generated by S; that is, the smallest

class of morphisms containing S and closed under:

� pushouts along arbitrary morphisms of C,

� small colimits in Fun([1],C),

� 2-out-of-3.

The fully faithful inclusion S−1C ⊆ C admits a left adjoint L : C → S−1C, and for f a

morphism in C, its image Lf in S−1C is an equivalence if and only if f ∈ S. In particular,

the left adjoint L exhibits S−1C as the localisation of C at the morphisms in S; that is, S−1C

is the category obtained by formally inverting the morphisms in S. By [26, Proposition

5.5.4.2], every accessible localisation of a locally presentable category arises in this way.

Definition 3.2.0.3. [26, Definition 6.1.0.4] Define a site of sheafification to be a small

category C equipped with an accessible left exact localisation functor (−)# : P(C) → P(C).

For such a site of sheafification C, define its corresponding category of sheaves Sh(C) to be

the essential image of (−)#. Then, a category X is an∞-topos if it is of the form X ≃ Sh(C)

for some site of sheafification C.

Remark 3.2.0.4. Every small category C equipped with a Grothendieck topology defines a

site of sheafification. However, not every ∞-topos can be written as a category of sheaves

over a Grothendieck topology; see [26, §6.2.2].

Moreover, although every 1-category is an (∞, 1)-category, note that 1-categorical topoi

do not form a subclass of∞-topoi: ∞-categorical sheaves on a 1-categorical site do not form

a 1-topos, but rather a 1-localic ∞-topos.
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3.2.1 Polysimplicial sheaves

Our definition of (n, r)-categories is obtained by unfolding iterated complete Segal spaces.

We can therefore build the theory in terms of presheaves on ∆×r. Since we assert that

the 0-cells form a groupoid, we can preemptively quotient ∆×r by this assertion. In this

subsection, we establish all of the preliminary notions necessary for defining (n, r)-categories

with this approach.

Definition 3.2.1.1. Define the polysimplex category Σ∞ as follows:

� The objects of Σ∞ are infinite sequences [⃗k] = (k0, k1, k2, . . . ) such that there exists

some r ≥ 0 for which kn = 0 if and only if n ≥ r. Call r the dimension of [⃗k], denoted

dim[⃗k] := r.

� The morphisms ϕ⃗ : [⃗k]→ [ℓ⃗] are sequences of morphisms ϕn : [kn]→ [ℓn] in the simplex

category ∆ such that there exists some r ≥ 0 for which ϕn is constant if and only if

n ≥ r.

The composite of two morphisms [⃗k]
ϕ⃗−→ [ℓ⃗]

ψ⃗−→ [m⃗] is given as follows. Let r ≥ 0 be

minimal such that ψrϕr is constant. Then,

(ψ⃗ ◦ ϕ⃗)n =

{︄
ψnϕn, if n ≤ r

ψrϕr, otherwise

For 0 ≤ r ≤ ∞, denote by Σr the full subcategory of Σ∞ spanned by the polysimplices [⃗k]

with dim[⃗k] ≤ r.

Remark 3.2.1.2. The category Σr is equivalent to the quotient category Θr of ∆×r defined

in [32, §2]. We choose different notation so as to not confuse the polysimplex category with

Joyal’s disk category.

Definition 3.2.1.3. For a polysimplex [⃗k] and r ≥ 0, define the polysimplices

[⃗k]<r := (k0, k1, k2, . . . , kr−1, 0, . . . )

[⃗k]≥r := (kr, kr+1, kr+2, . . . )

These constructions extend to define endofunctors on Σ∞. Note that [−]<r restricts to a

right adjoint to the inclusion Σr ⊆ Σ∞.

Given two polysimplices [⃗k] and [ℓ⃗], denote their concatenation by [⃗k, ℓ⃗]; that is, [⃗k, ℓ⃗] is

the unique polysimplex such that [⃗k, ℓ⃗]<r = [⃗k] and [⃗k, ℓ⃗]≥r = [ℓ⃗], where r = dim[⃗k].
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Definition 3.2.1.4. For 0 ≤ r ≤ ∞, we have a canonical projection map

∆×Σr → Σr+1

([n], [⃗k]) ↦→

{︄
[0], n = 0

[n, k⃗], n > 0

For any category X, this induces a fully faithful inclusion

Fun(Σop
r+1,X) ⊆ Fun(∆op ×Σop

r ,X) ≃ Fun(∆op,Fun(Σop
r ,X))

whose essential image consists of those F : ∆op → Fun(Σop
r ,X) such that F0 : Σop

r → X is

essentially constant.

Definition 3.2.1.5. Fix a site of sheafification C, and let X := Sh(C). Then, a polysimplicial

sheaf over C is defined to be a functor Σop
∞ → X.

For a polysimplicial sheaf X : Σop
∞ → X and a polysimplex [⃗k], let ∆[⃗k,X] : Σop

∞ → X

denote the polysimplicial sheaf given by the left Kan extension ofX along [⃗k,−] : Σ∞ → Σ∞.

By definition, it follows for all polysimplicial sheaves X ′ that we have a natural equivalence

Map(∆[⃗k,X], X ′) ≃ Map(X,X ′
k⃗,•)

We are particularly interested in a couple of special cases:

� For a polysimplex [⃗k] and an object U ∈ C, define the U-local k⃗-polysimplex to be

the object ∆U [⃗k] := ∆[⃗k, h#U ] that corepresents the functor Fun(Σ
op
∞,X)→ S mapping

X• ↦→ Xk⃗(U).

� Define the suspension of a polysimplicial sheaf X to be ΣX := ∆[1, X], which is left

adjoint to the desuspension ΩX ′ := X ′1,•.

Remark 3.2.1.6. The functor [0,−] : Σ∞ → Σ∞ is constant on the terminal object [⃗0]. In

particular, the polysimplicial sheaf ∆[0, X] is independent of X, so we denote this object by

∆[0].

On the other hand, the U -local 0-polysimplex ∆U [0] is not the terminal object; rather,

it is the corepresenting object for the functor mapping X• ↦→ X0(U). This is precisely the

representable sheaf ∆U [0] ≃ h#U .

Remark 3.2.1.7. As Fun(Σop
∞,X) is a reflective localisation of P(Σ∞×C), every polysimplicial

sheaf is a canonical colimit of the local polysimplices ∆U [⃗k].

Remark 3.2.1.8. Left Kan extension along the functor Σr ⊆ Σ∞ defines a fully faithful

inclusion Fun(Σop
r ,X) ⊆ Fun(Σop

∞,X). We refer to objects in the essential image of this

inclusion as r-polysimplicial sheaves. Explicitly, a functor X : Σop
r → X is viewed as a

polysimplicial sheaf by taking Xk⃗ := Xk⃗<r
for every [⃗k] ∈ Σ∞.
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Definition 3.2.1.9. Let X = Sh(C) be an∞-topos of sheaves. For U ∈ C, left Kan extension

of ∆U [−] : ∆ → Fun(Σop
r ,X) along the Yoneda embedding ∆ ↪→ P(∆) induces a U-local

realisation

|−|#U : P(∆)→ Fun(Σop
r ,X)

which is left adjoint to the functor Fun(Σop
r ,X)→ P(∆) sending X• ↦→ X•(U).

Remark 3.2.1.10. The above construction generalises readily to define, for any X : Σop
r → X,

an action (−)⊙X : P(∆)→ Fun(Σop
r+1,X) via left Kan extension along ∆[−, X].

Remark 3.2.1.11. For a simplicial set S, the maps |S|#U → X• of polysimplicial sheaves

correspond to maps S• → X•(U) in P(∆) by viewing S as a simplicial space via

Fun(∆op,Set) ⊆ Fun(∆op, S) = P(∆)

On the other hand, the functor Fun(Σop
r ,X) → S sending X ↦→ HomS(S,X(U)) is corepre-

sented by S ×∆U [0], where S × (−) acts pointwise as a product of spaces on ∆U [0].

3.2.2 Sheaves of higher categories

We say that a simplicial space X : ∆op → S satisfies the Segal condition if, for all k ≥ 0, the

induced map

Xk → X1 ×X0 · · · ×X0 X1⏞ ⏟⏟ ⏞
k

is an equivalence. In particular, X satisfies the Segal condition if and only if it is local in

the sense of Definition 3.2.0.1 with respect to the canonical inclusions

∆[1] ⊔∆[0] · · · ⊔∆[0] ∆[1]⏞ ⏟⏟ ⏞
k

⊆ ∆[k]

for all k ≥ 0. The simplicial space on the left is called the spine of ∆[k], which we generalise

below.

Definition 3.2.2.1. Let X = Sh(C) be an ∞-topos of sheaves. For a polysimplex [⃗k] and

an object U ∈ C, define the U-local k⃗-spine to be the pushout

SpU [⃗k] := ∆U [1, k⃗≥1] ⊔∆U [0] · · · ⊔∆U [0] ∆U [1, k⃗≥1]⏞ ⏟⏟ ⏞
k0

in Fun(Σop
∞,X). Note that the U -local k⃗-spine admits a canonical inclusion SpU [⃗k] ⊆ ∆U [⃗k].

For Rezk-completeness, we need to probe the categorical equivalences in a polysimplicial

set satisfying the Segal condition.
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Notation 3.2.2.2. Let I denote the walking isomorphism, which is the (1-)groupoidification

of the 1-category [1]. We tacitly identify I with its nerve, which means explicitly that

Ik = {⊥,⊤}×(k+1), where the face maps are given by projections, and the degeneracy maps

are given by diagonal inclusions.

Finally, to truncate theories of higher categories to n-categories, we appeal to the Homo-

topy Hypothesis. Specifically, recall that a space X is a homotopy n-type—that is, πm(X, x)

is trivial for all x ∈ X and m > n—if and only if every map Sm → X is homotopic to a

constant map for m > n.

Notation 3.2.2.3. For m > −2, define the simplicial m-sphere to be Sm := ∂∆[m+ 1].

We can now provide our definition of (n, r)-categories in terms of polysimplicial sheaves.

Definition 3.2.2.4. Let X = Sh(C) be an ∞-topos of sheaves.

For −2 ≤ n ≤ ∞ and 0 ≤ r ≤ n + 2, let W(n,r) denote the strongly saturated class of

morphisms in Fun(Σop
∞,X) generated by:

(W1) Σm SpU [⃗k] ↪→ Σm∆U [⃗k] for U ∈ C, m ≥ 0, and [⃗k] ∈ Σ∞,

(W2) Σm|I|#U → Σm∆U [0] for U ∈ C, and m ≥ 0,

(W3) Σm(Sk−m ×∆U [0])→ Σm∆U [0] for U ∈ C, and finite m ≥ r and k > n, and

(W4) Σm∆U [1]→ Σm∆U [0] for U ∈ C, and finite m ≥ r.

Call a polysimplicial sheaf a sheaf of (n, r)-categories if it isW(n,r)-local. Denote by Sh(n,r)(C)

the full subcategory of Fun(Σop
∞,X) spanned by the sheaves of (n, r)-categories.

Notation 3.2.2.5. Over the ∞-topos S ≃ Sh(∗) of spaces, let −2 ≤ n ≤ ∞ and 0 ≤ r ≤
n+ 2. Then, we take the category of small (n, r)-categories to be Cat(n,r) := Sh(n,r)(∗).

Remark 3.2.2.6. SupposeM is a left proper combinatorial simplicial model category whose

underlying∞-category is an∞-topos X. For −2 ≤ n ≤ ∞ and 0 ≤ r ≤ n+2, we can endow

the 1-category Fun(Σop
∞,M) with a simplicial model structure such that

(C) A morphism f : X• → X ′• is a cofibration if and only if the map Xk⃗ → X ′
k⃗
is a

cofibration inM for every [⃗k] ∈ Σ∞,

(W) The levelwise weak equivalences are among the weak equivalences in Fun(Σop
∞,M),

and

(F) An object X• is fibrant if and only if it is injectively fibrant (see Proposition 2.2.2.3),

and the induced map N(Σ∞)
op → N(X) in the underlying ∞-category Fun(Σop

∞,X)

is a sheaf of (n, r)-categories.
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Indeed, this follows the same argument as [27, Proposition 1.5.4].

By Lemma 3.2.3.3, we can moreover restrict Fun(Σop
∞,M) to a Quillen equivalent model

structure on the subcategory Fun(Σop
r ,M).

Lemma 3.2.2.7. For an ∞-topos X = Sh(C), fix 0 ≤ r ≤ ∞ and suppose [ℓ] ∼= [ℓ1] ⊔[0] [ℓ
2]

in ∆. Then, for all X : Σop
r → X, the inclusion

j : ∆[ℓ1, X] ⊔∆[0] ∆[ℓ2, X] ↪→ ∆[ℓ,X]

lies in the strongly saturated class of morphisms generated by the local spine inclusions in

Fun(Σop
r+1,X).

Proof. As the strongly saturated class of morphisms is closed under colimits in the arrow

category Fun([1],Fun(Σop
r+1,X)), it follows from Remark 3.2.1.7 that it suffices to prove

the case where X ≃ ∆U [⃗k]. In this situation, consider the factorisation of the local spine

inclusion SpU [ℓ, k⃗] ⊆ ∆U [ℓ, k⃗] given by

SpU [ℓ, k⃗] SpU [ℓ
1, k⃗] ⊔∆[0] SpU [ℓ

2, k⃗] ∆U [ℓ
1, k⃗] ⊔∆[0] ∆U [ℓ

2, k⃗] ∆U [ℓ, k⃗]
∼ i j

Since i is a pushout of local spine inclusions, it follows from 2-out-of-3 that j lies in the

strongly saturated class of morphisms, as desired.

Corollary 3.2.2.8. Fix an ∞-topos X = Sh(C) and 0 ≤ r ≤ ∞. For any class W of

morphisms in Fun(Σop
r ,X). Then, the following classes of morphisms generate the same

strongly saturated class of morphisms in Fun(Σop
r+1,X):

(1)
{︁
∆[ℓ1, X] ⊔∆[0] ∆[ℓ2, X] ↪→ ∆[ℓ,X] :

⃓⃓
: [ℓ] = [ℓ1] ⊔[0] [ℓ2];X : Σop

r → X
}︁
∪ {∆[ℓ, f ] :|: f ∈ W ; ℓ > 0}

(2)
{︂
SpU [⃗k] ↪→ ∆U [⃗k] :

⃓⃓⃓
: [⃗k] ∈ Σr+1;U ∈ C

}︂
∪ {Σf :|: f ∈ W}

Proof. Let W1 and W2 denote the strongly saturated classes of morphisms generated by (1)

and (2), respectively, then clearly W2 ⊆ W1.

Conversely, any ∆[ℓ1, X] ⊔∆[0] ∆[ℓ2, X] ↪→ ∆[ℓ,X] lies in W2 by Lemma 3.2.2.7. For a

polysimplicial sheaf X•, let

Sp[ℓ,X] := ΣX ⊔∆[0] · · · ⊔∆[0] ΣX⏞ ⏟⏟ ⏞
ℓ

↪→ ∆[ℓ,X]

then this inclusion also lies in W2.

For f : X• → X ′• in W , the induced map Sp[ℓ,X]→ Sp[ℓ,X ′] is a pushout of elements of

W2 and is thus an element of W2 as well. From the commutative square

Sp[ℓ,X] ∆[ℓ,X]

Sp[ℓ,X ′] ∆[ℓ,X ′]

∈W2

∈W2 ∆[ℓ,f ]

∈W2
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it follows from 2-out-of-3 that ∆[ℓ, f ] ∈ W2, as desired.

Corollary 3.2.2.9. If C and C′ are two sites of sheafification such that Sh(C) ≃ Sh(C′),

then Sh(n,r)(C) ≃ Sh(n,r)(C
′) for all −2 ≤ n ≤ ∞ and 0 ≤ r ≤ n+ 2.

Proof. Let X ≃ Sh(C). Lemma 3.2.2.7 implies that the strongly saturated class of morphisms

generated by (W1) is independent of the choice of site C. The independence of the class

W(n,r) then follows from observing that for any simplicial space S, locality in Fun(Σop
∞,X)

with respect to Σm|S|#U → Σm∆U [0] for all U ∈ C is equivalent to locality with respect to

Σm(S ⊙X)→ ΣmX for all X : Σop
∞ → X.

We conclude this subsection with a recursive description of sheaves of (n, r)-categories.

Proposition 3.2.2.10. Fix an ∞-topos X = Sh(C). For −2 ≤ n ≤ ∞ and 0 ≤ r ≤ n + 2,

the essential image of the fully faithful inclusion

Sh(n+1,r+1)(C) ⊆ Fun(Σop
∞,X) ⊆ Fun(∆op,Fun(Σop

∞,X))

induced by Definition 3.2.1.4 consists of those F : ∆op → Fun(Σop
∞,X) such that:

(S1) F0 : Σ
op
∞ → X is essentially constant,

(S2) F1 is a sheaf of (n, r)-categories over C,

(S3) F satisfies the Segal condition: for every k ≥ 2, the canonical map

Fk → F1 ×F0 · · · ×F0 F1⏞ ⏟⏟ ⏞
k

is an equivalence in Fun(Σop
∞,X), and

(S4) F is Rezk-complete: it is local with respect to |I|#U → ∆U [0] for every U ∈ C.

Remark 3.2.2.11. If F satisfies (S1), (S2), and (S3) and n =∞, then Fk is a sheaf of (∞, r)-
categories over C for every k ≥ 0. In particular, we can characterise Sh(∞,r+1)(C) as the full

subcategory of Fun(∆op,Sh(∞,r)(C)) spanned by those F : ∆op → Sh(∞,r)(C) such that

� F0 is essentially constant,

� F satisfies the Segal condition, and

� F is Rezk-complete.

This recovers the model of (∞, r)-categories as r-fold complete Segal spaces described in [5].

Note that if n is finite, then F0 is a sheaf of (n+1)-groupoids, and therefore F cannot be

identified with a functor ∆op → Sh(n,r)(C).
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Proof of Proposition 3.2.2.10. A functor F : ∆op × Σop
∞ → X factors through the functor

∆ × Σ∞ → Σ∞ of Definition 3.2.1.4 if and only if F satisfies (S1). Assuming F satisfies

(S1), we therefore tacitly identify F with its underlying functor F : Σop
∞ → X.

By definition, (S2) is equivalent to asserting that F is local with respect to Σ(W(n,r)); that

is, F is local with respect to:

(W1’) Σm+1 SpU [⃗k] ↪→ Σm+1∆U [⃗k] for U ∈ C, m ≥ 0, and [⃗k] ∈ Σ∞,

(W2’) Σm+1|I|#U → Σm+1∆U [0] for U ∈ C, and m ≥ 0,

(W3’) Σm+1(Sk−m ×∆U [0])→ Σm+1∆U [0] for U ∈ C, and finite m ≥ r and k > n, and

(W4’) Σm+1∆U [1]→ Σm+1∆U [0] for U ∈ C, and finite m ≥ r.

all of which are a subset of the generators for W(n+1,r+1). In particular, F is the image of

a sheaf of (n + 1, r + 1)-categories if and only if F satisfies (S1) and (S2), and is moreover

local with respect to

� SpU [⃗k] ↪→ ∆U [⃗k] for [⃗k] ∈ Σr and U ∈ C, and

� |I|#U → ∆U [0] for U ∈ C.

Locality with respect to |I|#U → ∆U [0] is precisely condition (S4). It remains to show that

(S3) is equivalent to locality with respect to the remaining spine inclusions.

The Segal condition (S3) is equivalent to locality with respect to Sp[k,X] ↪→ ∆[k,X] for

every k ≥ 2 and all polysimplicial sheaves X. By Remark 3.2.1.7, it suffices to assert locality

with respect to SpU [⃗k] ↪→ ∆U [⃗k] for U ∈ C and all [⃗k] ∈ Σ∞. Assuming (S2), locality with

respect to Σm+1∆U [1] → Σm+1∆U [0] for all finite m ≥ r implies that the Segal condition is

equivalent to locality with respect to SpU [⃗k] ↪→ ∆U [⃗k] for U ∈ C and [⃗k] ∈ Σr, as desired.

3.2.3 Sheaves of (∞,∞)-categories

Recall from the context of strict higher categories that we have three sections of the inclusion

i≤n : nCat ↪→ (n+ 1)Cat:

� The left adjoint π≤n, which acts by trivialising all (n+ 1)-morphisms,

� The right adjoint u≤n, which discards all (n+ 1)-morphisms,

� The truncation functor τ≤n from Definition 2.1.1.7, which trivialises invertible (n+1)-

morphisms, and discards the non-invertible (n+ 1)-morphisms.
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The goal of this section is to construct analogous functors for (n, r)-categories, and estab-

lish analogues of Lemma 2.1.0.2 and Proposition 2.1.1.13. Throughout the subsection, fix

an ∞-topos X = Sh(C).

Definition 3.2.3.1. For n ≤ n′ and r ≤ n′, we have an inclusion W(n′,r′) ⊆ W(n,r) of classes

of morphisms in Fun(Σop
∞,X). We therefore have a fully faithful inclusion

Sh(n,r)(C) ⊆ Sh(n′,r′)(C)

of reflective subcategories of Fun(Σop
∞,X). In particular, this inclusion admits a left adjoint,

which we may denote π≤(n,r).

Remark 3.2.3.2. The inclusion Sh(n,r)(C) ⊆ Sh(n′,r′)(C) does not admit a right adjoint in

general. For instance, a right adjoint fails to exist for the inclusion Cat(0,0) ⊆ Cat(1,0) of the

1-category of sets into the (2, 1)-category of small groupoids. If such a right adjoint u were

to exist, then we would have for any small groupoid G an equivalence

u(G) ∼= HomSet(∗, u(G)) ≃ HomGrpd(∗,G) ≃ G

of groupoids, implying that every groupoid is essentially discrete.

Although right adjoints to general inclusions Sh(n,r)(C) ⊆ Sh(n′,r′)(C) fail to exist, they

do exist whenever n = n′.

Lemma 3.2.3.3. For 0 ≤ r < ∞, the category Sh(∞,r)(C) is precisely the full subcategory

of Sh(∞,∞)(C) spanned by those X : Σop
∞ → X that factor through [−]<r : Σop

∞ → Σop
r .

Proof. We prove the case where r = 0; the rest follow by induction with Proposition 3.2.2.10.

When r = 0, we are showing that X : Σop
∞ → X is a sheaf of (∞, 0)-categories precisely if it

is essentially constant.

Note that W(∞,0) is generated by Σm SpU [⃗k] ↪→ Σm∆U [⃗k] and Σm∆U [1] → Σm∆U [0] for

U ∈ C, m ≥ 0, and [⃗k] ∈ Σ∞. By induction with Corollary 3.2.2.8, W(∞,0) therefore contains

the morphisms ∆U [⃗k, 1]→ ∆U [⃗k] for all [⃗k] ∈ Σ∞, as well as the morphisms

∆U [⃗k, 1] ⊔∆U [⃗k] · · · ⊔∆U [⃗k] ∆U [⃗k, 1]⏞ ⏟⏟ ⏞
ℓ

≃ ∆[⃗k, SpU [ℓ]]→ ∆U [⃗k, ℓ]

for all [⃗k] ∈ Σ∞ and ℓ ≥ 0. This implies that W(∞,0) contains ∆U [⃗k, ℓ] → ∆U [⃗k] for every

U ∈ C and [⃗k, ℓ] ∈ Σ∞, implying that X is W(∞,0)-local if and only if X is essentially

constant, as desired.

Proposition 3.2.3.4. For −2 ≤ n ≤ ∞ and 0 ≤ r < r′ ≤ n+ 2, the fully faithful inclusion

Sh(n,r)(C) ⊆ Sh(n,r′)(C) admits a right adjoint κ≤r.
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Proof. First suppose n =∞. The right adjoint to the inclusion Fun(Σop
r ,X)→ Fun(Σop

r′ ,X)

is given by restriction to Σr ⊆ Σr′ (see Remark 3.2.1.8). By Lemma 3.2.3.3, restriction

descends to a right adjoint κ≤r : Sh(∞,r′)(C)→ Sh(∞,r)(C).

The general case follows from observing that the above right adjoint descends further to

a right adjoint Sh(n,r′)(C)→ Sh(n,r)(C) for n <∞.

As Cat(n,r) is the full subcategory of Cat(n,r+1) consisting of those higher categories whose

(r+1)-morphisms are invertible, the left adjoint π≤r acts on an (n, r+1)-category by formally

inverting all (r + 1)-morphisms, whereas κ≤r acts by discarding all non-invertible (r + 1)-

morphisms. In particular, the right adjoint κ≤r behaves like a homotopy-coherent analogue

of τ≤r from Definition 2.1.1.7.

Proposition 3.2.3.5. The functors κ≤r : Sh(∞,∞)(C) → Sh(∞,r)(C) exhibit Sh(∞,∞)(C) as

the limit

Sh(∞,∞)(C) ≃ lim←−
(︂
· · · → Sh(∞,3)(C)

κ≤2−−→ Sh(∞,2)(C)
κ≤1−−→ Sh(∞,1)(C)

κ≤0−−→ Sh(∞,0)(C)
)︂

in ˆ︂Cat∞.

Proof. Since Σ∞ ≃ lim−→r
Σr, we have an equivalence Fun(Σop

∞,X) ≃ lim←−r Fun(Σ
op
r ,X). As

fully faithful functors are stable under limits, this allows us to identify the limit lim←−r Sh(∞,r)(C)

of right adjoints with the full subcategory of Fun(Σop
∞,X) on those X : Σop

∞ → X that restrict

on Σr to a sheaf of (∞, r)-categories for every 0 ≤ r <∞, but these are precisely the sheaves

of (∞,∞)-categories.

Remark 3.2.3.6. As κ≤r is a homotopy-coherent analogue of τ≤r (see also Proposition 5.2.1.3),

Propositions 2.1.1.13 and 3.2.3.5 suggest that Cat(∞,∞) is a homotopy-coherent analogue of

the 1-category ωCat+ of marked strict ω-categories.

The “marked 1-morphisms” in an (∞,∞)-category C : Σop
∞ → S are implicit in the choice

of space C0 which, by Rezk-completeness, encodes the underlying ∞-groupoid of C.

This result motivates studying the complementary construction below, which should be

a homotopy-coherent analogue of the 1-category ωCat of (unmarked) strict ω-categories of

Definition 2.1.0.3:

Definition 3.2.3.7. Define the category of sheaves of ω-categories over C to be the limit

Shω(C) := lim←−
(︂
· · · → Sh(∞,3)(C)

π≤2−−→ Sh(∞,2)(C)
π≤1−−→ Sh(∞,1)(C)

π≤0−−→ Sh(∞,0)(C)
)︂

in ˆ︂Cat∞.
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Remark 3.2.3.8. As Shω(C) is given as a limit of left adjoints between locally presentable

categories, it is locally presentable. Moreover, we have by [26, Proposition 5.5.3.13 and

Corollary 5.5.3.4] that it can be computed equivalently as the colimit

Shω(C) ≃ lim−→
R
(︁
Sh(∞,0)(C) ⊆ Sh(∞,1)(C) ⊆ Sh(∞,2)(C) ⊆ · · ·

)︁
in PresR∞.

Moreover, the right adjoint inclusions Sh(∞,r)(C) ⊆ Sh(∞,∞)(C) induce a canonical right

adjoint functor Shω(C)→ Sh(∞,∞), whose left adjoint may be denoted by π≤ω.

Notation 3.2.3.9. We similarly define the category of ω-categories to be Catω := Shω(∗),
as in Notation 3.2.2.5.

Remark 3.2.3.10. Intuitively, Catω consists of (∞,∞)-categories wherein the equivalences

are precisely the weakly coinductive equivalences ; see Remark 2.1.1.6.

3.3 Distributors and complete Segal spaces

Lurie axiomatises the construction of complete Segal spaces in [27]: given a suitable category

Y and a subcategory X ⊆ Y of “spaces”, there exists a category CSSX(Y) of simplicial objects

in Y satisfying the axioms of a complete Segal space.

The goal of this section is to show that our model of (sheaves of) (∞, r)-categories fits into
this abstract framework of complete Segal space objects, extending Remark 3.2.2.11. This

will imply, for instance, that our model defines a theory of (∞, r)-categories in the sense of

[6]; see Corollary 3.3.4.4. We moreover prove in Theorem 3.3.4.5 that Sh(∞,∞)(C) is closed

under the construction of complete Segal spaces.

3.3.1 Preliminaries

In this subsection, we recall the theory of distributors in the sense of [27], and the construction

of complete Segal space objects. In particular, none of the content here is original.

Definition 3.3.1.1. [27, Definition 1.2.1] Fix a category Y and a full subcategory X. Say

that Y is an X-distributor if the following hold:

(D1) X and Y are locally presentable,

(D2) The inclusion X ⊆ Y admits both a left adjoint πX called X-truncation, and a right

adjoint κX called X-core,

(D3) For all y → x in Y with x ∈ X, the pullback functor X/x → Y/y preserves small colimits,

and
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(D4) The functor χ : X → (ˆ︂Cat∞)
op, x ↦→ Y/x, which sends morphisms in X to pullback

functors, preserves small limits.

Remark 3.3.1.2. [27, Example 1.2.3 and Remark 1.2.6] If Y is an X-distributor, then X is

necessarily an ∞-topos. Conversely, every ∞-topos X is a distributor relative to itself.

Definition 3.3.1.3. For X a finitely complete category, let Cat(X) denote the full subcate-

gory of Fun(∆op,X) spanned by those X : ∆op → X satisfying the Segal condition; that is,

the canonical maps

Xn → X1 ×X0 · · · ×X0 X1

are equivalences for every n ≥ 0.

Further, define Grpd(X) to be the full subcategory of Cat(X) spanned by those X• such

that whenever [n] = S ∪ S ′ with S ∩ S ′ = {i}, the induced map

Xn → XS ×X{i} XS′

is an equivalence.

Remark 3.3.1.4. If X is locally presentable, then Cat(X) andGrpd(X) are strongly reflective

subcategories of Fun(∆op,X); in particular, they are locally presentable as well.

Definition 3.3.1.5. [27, Definition 1.2.7] Fix an ∞-topos X and an X-distributor Y. Then,

define SSX(Y) to be the full subcategory of Cat(Y) spanned by those Y ∈ Cat(Y) such that

Y0 ∈ X. Such objects are called Segal space objects in Y.

Remark 3.3.1.6. As SSX(Y) ≃ Cat(Y)×XY is a fibre product of right adjoints between locally

presentable categories, SSX(Y) is also locally presentable, and SSX(Y) ⊆ Cat(Y) is a right

adjoint.

Lemma 3.3.1.7. [27, Proposition 1.1.14] If X is a category with all finite limits, then the

inclusion Grpd(X) ⊆ Cat(X) admits a right adjoint X• ↦→ X∼• .

Proof sketch. If X ≃ S, then we construct the right adjoint explicitly. For X• ∈ Cat(S),

define the Ho(S)-enriched category hX where its objects are the underlying points of X0, and

the mapping space HomhX(x, y) is the homotopy class of the fibre product {x}×X0X1×X0{y}
in Ho(S). Then, we define X∼n to be the full subspace of Xn spanned by those cells α ∈ Xn

for which each diα descends to an isomorphism in hX.

If X ≃ P(C), then Cat(X) ≃ Fun(Cop,Cat(S)) and Grpd(X) ≃ Fun(Cop,Grpd(X)), so

the right adjoint in this case is given pointwise by the right adjoint for S.

For a general X, let X• ∈ Cat(X), and consider the object jX• ∈ Cat(P(X)) obtained by

pointwise post-composition with the Yoneda embedding j : X ↪→ P(X). Then, the reflection

(jX•)
∼ ∈ Grpd(P(X)) turns out to be pointwise representable, allowing it to descend to an

object X∼• ∈ Grpd(X).
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Corollary 3.3.1.8. [27, Notation 1.2.9] For an ∞-topos X and an X-distributor Y, the

inclusion Grpd(X) ⊆ SSX(Y) admits a right adjoint Gp : SSX(Y)→ Grpd(X).

Remark 3.3.1.9. Explicitly, Gp• Y ≃ (κX,∗Y•)
∼, where κX,∗ applies the core pointwise. By

the proof sketch of Lemma 3.3.1.7, the canonical map Gp0 Y → Y0 is an equivalence for all

Y• ∈ SSX(Y).

Definition 3.3.1.10. Fix an X-distributor Y. Say that a morphism f : Y• → Y ′• in SSX(Y)

is a Segal equivalence if the following conditions hold:

(E1) f is fully faithful, in that

Y1 Y ′1

Y0 × Y0 Y ′0 × Y ′0
is a pullback square, and

(E2) f is essentially surjective in that the induced map |Gp• Y | → |Gp• Y
′| is an equivalence

in X.

Note for Y• a Segal space object, |Y•| := lim−→Y denotes its geometric realisation.

Say that Y• ∈ SSX(Y) is a complete Segal space if it is local with respect to the Segal

equivalences. Denote by CSSX(Y) the full subcategory of SSX(Y) spanned by the complete

Segal spaces.

Remark 3.3.1.11. By [27, Theorem 1.2.13], Y• ∈ SSX(Y) is a complete Segal space if and

only if Gp• Y is essentially constant; that is, Gp• Y lies in the essential image of the diagonal

X ⊆ Grpd(X).

Proposition 3.3.1.12. [27, Proposition 1.3.2] If Y is an X-distributor, then the fully faithful

diagonal functor X ⊆ CSSX(Y) exhibits CSSX(Y) as an X-distributor as well.

Remark 3.3.1.13. The truncation functor πX : CSSX(Y) → X, being left adjoint to the

diagonal, is given by geometric realisation πXY ≃ |Y•|. On the other hand, the core functor

κX : CSSX(Y)→ X is given by κXY ≃ Y0.

3.3.2 Limits and colimits of distributors

In preparation for proving that Sh(∞,∞)(C) is invariant under the construction of complete

Segal space objects, we lay the necessary groundwork to demonstrate the functoriality of

CSSX(Y) in Y.
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Definition 3.3.2.1. Fix an ∞-topos X. Then, define DistLX to be the subcategory of

(ˆ︂Cat∞)X/ where the objects are X-distributors X ⊆ Y, and a functor ψ : Z → Y under

X is a morphism of DistLX if and only if

(L1) ψ preserves colimits, and

(L2) ψ preserves truncation, in that πXψ ≃ πX.

On the other hand, define DistRX to be the subcategory of (ˆ︂Cat∞)X/ where the objects are

again the X-distributors X ⊆ Y, and a functor ϕ : Y→ Z under X is a morphism of DistRX if

and only if

(R1) ϕ preserves limits and λ-filtered colimits for some λ≫ 0, and

(R2) ϕ preserves cores, in that κXϕ ≃ κX.

Remark 3.3.2.2. Since X-distributors are necessarily locally presentable, (L1) is equivalent

by [26, Corollary 5.5.2.9] to asserting that ψ admits a right adjoint ϕ. As truncation is left

adjoint to the inclusion of X, (L2) is then equivalent to asserting that the right adjoint ϕ lies

under X; that is, ϕ|X ≃ idX.

Dually, (R1) is likewise equivalent to asserting that ϕ admits a left adjoint ψ. As core is

right adjoint to the inclusion of X, (R2) is equivalent to asserting that the left adjoint ψ lies

under X; that is ψ|X ≃ idX. This demonstrates that the two categories of Definition 3.3.2.1

are formally dual: DistLX ≃ (DistRX)
op.

Proposition 3.3.2.3. For any ∞-topos X, the functor DistRX → (ˆ︂Cat∞)/X sending an

X-distributor Y to its core κX : Y→ X creates all small limits.

Proof. Let Y• : K → DistRX be a small diagram indexed by a simplicial set K. The limit

of the diagram K → (ˆ︂Cat∞)/X can be computed as the limit of the corresponding diagram

K▷ → ˆ︂Cat∞ that sends the cocone point of K▷ to X via core maps κX : Yk → X. By [26,

Theorem 5.5.3.18], the limit is equivalent to the limit of the diagram ˜︁Y• : K▷ → PresR∞.

Let Y := lim←−k
˜︁Yk, then Y is locally presentable, and the projection map κX : Y → X is a

right adjoint. The left adjoint coincides with the functor X→ Y ≃ lim←−k
˜︁Yk in ˆ︂Cat∞ induced

by the inclusions X ⊆ Yk for k ∈ K▷. In particular, since these inclusions are fully faithful

right adjoints, it follows that the left adjoint X→ Y is also a fully faithful right adjoint. This

proves that Y satisfies (D1) and (D2).

Let y → x in Y with x ∈ X. Note that Y/y ≃ lim←−k(
˜︁Yk)/yk , where yk is the image of y under

the projection Y → Yk. Indeed, this follows from the right adjoint property of slicing (see

[26, Proposition 4.2.1.5], and just above it) which induces a right Quillen functor (as the

alternative join of [26, Definition 4.2.1.1] is a left Quillen functor by design), and the limit
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creation property of functor categories in the second argument. Now, the map X/x → Y/y is

the canonical map induced by the functors X/x → (˜︁Yk)/yk for each k ∈ K▷.

Since each Yk is an X-distributor, the functor X/x → (˜︁Yk)/yk is a left adjoint for every

k ∈ K▷. By [26, Proposition 5.5.3.13], X/x → Y/y must be a left adjoint as well, establishing

(D3).

For k ∈ K▷, let χk : X → (ˆ︂Cat∞)
op denote the functor mapping x ∈ X to the category

(˜︁Yk)/x. Since each χk preserves limits from ˜︁Yk being an X-distributor, the same is true for

the induced functor χ⃗ : X → Fun(K▷, (ˆ︂Cat∞)
op) that sends each x ∈ X to the functor

mapping k ↦→ (˜︁Yk)/x. Now, the functor χ : X→ (ˆ︂Cat∞)
op sending x ↦→ Y/x ≃ lim←−k(

˜︁Yk)/x is

precisely the composite of limit-preserving functors

X
χ⃗−→ Fun(K▷, (ˆ︂Cat∞)

op)
lim←−−→ (ˆ︂Cat∞)

op

and thus preserves limits, establishing (D4).

Therefore, the limit Y is an X-distributor, and the canonical projections Y→ Yk are core-

preserving right adjoints. Suppose we have a cone from an X-distributor Z to Y• in DistRX .

This induces a cone from Z to ˜︁Y• in PresR∞, inducing an essentially unique right adjoint

Z → Y. Moreover, since the functors Z → Yk lie under X, the same is true for Z → Y,

ensuring that the canonical functor Z→ Y is a morphism of DistRX , proving that Y is indeed

a limit of Y• in DistRX .

In particular, most limits in DistRX can be computed on the underlying categories.

Lemma 3.3.2.4. For any category D and functor p : S → D, the forgetful functor Dp/ → D

creates colimits indexed by weakly contractible simplicial sets.

Proof. By [26, Corollary 2.1.2.2], the forgetful functor Dp/ → D is a left fibration. Therefore,

by the dual of [26, Proposition 2.4.2.4], the forgetful functor is a cocartesian fibration where

every morphism of Dp/ is cocartesian. In particular, if K is a weakly contractible simplicial

set, then any functorK▷ → Dp/ is a colimit diagram relative to the forgetful functorDp/ → D

by [26, Proposition 4.3.1.12]. By [26, Proposition 4.3.1.5(2)], this means that such a diagram

K▷ → Dp/ is a colimit diagram if and only if its composite K▷ → D is a colimit diagram, as

desired.

Corollary 3.3.2.5. For any ∞-topos X, the forgetful functor DistRX → ˆ︂Cat∞ creates all

small weakly contractible limits.

Proposition 3.3.2.6. For any ∞-topos X, the functor DistLX → (ˆ︂Cat∞)/X sending an X-

distributor Y to its truncation πX : Y→ X creates all small limits.
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Proof. Let Y• : K → DistLX be a small diagram indexed by a simplicial set K. The limit

of the diagram K → (ˆ︂Cat∞)/X can be computed as a limit of the corresponding diagram

K▷ → ˆ︂Cat∞ that sends the cocone point of K▷ to X via truncation maps πX : Yk → X.

By [26, Proposition 5.5.3.13], we can compute this limit instead as a limit of the diagram˜︁Y• : K▷ → PresL∞.

Let Y := lim←−k
˜︁Yk, then Y is locally presentable, and the projection map πX : Y→ X is a left

adjoint. The right adjoint coincides with the functor X→ Y ≃ lim←−k
˜︁Yk in ˆ︂Cat∞ induced by

the inclusions X ⊆ Yk for k ∈ K▷. In particular, since these inclusions are fully faithful left

adjoints, the same is true for the right adjoint X→ Y. This proves that Y satisfies (D1) and

(D2). Moreover, that Y satisfies (D3) and (D4) follows the argument in Proposition 3.3.2.3

verbatim.

Therefore, the limit Y is an X-distributor, and the canonical projections Y → Yk are

truncation-preserving left adjoints. Suppose we have a cone from an X-distributor Z to Y•

in DistLX. This induces a cone from Z to ˜︁Y• in PresL∞, inducing an essentially unique left

adjoint Z→ Y. Moreover, since the functors Z→ Yk lie under X, the same is true for Z→ Y,

ensuring that the canonical functor Z→ Y is a morphism of DistLX, proving that Y is indeed

a limit of Y• in DistLX.

Corollary 3.3.2.7. For any ∞-topos X, the forgetful functor DistLX → ˆ︂Cat∞ creates all

small weakly contractible limits.

Remark 3.3.2.8. From the duality in Remark 3.3.2.2, DistRX has all small limits and colimits

(and likewise for DistLX).

3.3.3 The complete Segal space functor

In this subsection, we prove that CSSX is functorial over DistRX , and moreover prove that

the construction preserves certain limits and colimits.

Definition 3.3.3.1. Let Y be a category with full subcategory X ⊆ Y. Say that a functor

ϕ : Y→ Z preserves fibre products over X if for every fibre product y1×x y2 in Y with x ∈ X,

the induced map ϕ(y1 ×x y2)→ ϕ(y1)×ϕ(x) ϕ(y2) is an equivalence in Z.

If X has finite limits, and X ⊆ Y preserves these limits, then say that a functor ϕ : Y→ Z

is relatively left exact (relative to X) if ϕ| : X→ Z is left exact, and ϕ preserves fibre products

over X.

The functorial nature of CSSX can be summarised as follows:

Lemma 3.3.3.2. Let g∗ : X→ X′ be a geometric morphism of∞-topoi. Fix an X-distributor

Y and an X′-distributor Y′, and let ϕ : Y→ Y′ be a functor such that
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� ϕ extends g∗, in that ϕ|X ≃ g∗,

� ϕ commutes with cores, in that ϕκX ≃ κX′ϕ, and

� ϕ preserves fibre products over X.

Then, ϕ∗ : Fun(∆
op,Y)→ Fun(∆op,Y′) restricts to a functor ϕ∗ : CSSX(Y)→ CSSX′(Y′).

Remark 3.3.3.3. In the situation of Lemma 3.3.3.2, ϕ∗ : CSSX(Y) → CSSX′(Y′) acts point-

wise on the underlying functors. Since limits of complete Segal spaces are computed point-

wise, this ensures that ϕ∗ preserves fibre products over X. Likewise, Remark 3.3.1.13 ensures

that ϕ∗ commutes with cores as well. Therefore, Lemma 3.3.3.2 combined with Proposi-

tion 3.3.1.12 implies an endofunctorial nature of the construction of complete Segal spaces.

Proof of Lemma 3.3.3.2. Since ϕ is relatively left exact, it follows that ϕ∗ restricts to a

functor SSX(Y) → SSX′(Y′). Similarly, the left exactness of the left adjoint g∗ ⊣ g∗ induces
a commutative square of left adjoints

Grpd(X′) Cat(X′)

Grpd(X) Cat(X)

g∗ g∗

Taking right adjoints implies for any X• ∈ Cat(X) that (g∗X•)
∼ ≃ g∗(X

∼
• ). It therefore

follows for any Y• ∈ SSX(Y) that

Gp•(ϕ∗Y ) ≃ ((κX′ ◦ ϕ)∗Y )∼ (Remark 3.3.1.9)

≃ ((ϕ ◦ κX)∗Y )∼ (ϕ commutes with cores)

≃ ((g∗ ◦ κX)∗Y )∼ (ϕ extends g∗)

≃ g∗(κX,∗Y )∼ ≃ g∗(Gp• Y ) (Remark 3.3.1.9)

In particular, if Y• is a complete Segal space, then Gp•(ϕ∗Y ) ≃ g∗Gp• Y is essentially

constant, ensuring that ϕ∗Y• is a complete Segal space by Remark 3.3.1.11.

Lemma 3.3.3.4. Fix an ∞-topos X, and let Y be an X-distributor. Choose λ≫ 0 such that

Y is locally λ-presentable and the core functor κX : Y→ X is λ-accessible. Then,

(i) CSSX(Y) is stable under λ-filtered colimits in Fun(∆op,Y).

(ii) λ-filtered colimits in CSSX(Y) commute with λ-small limits.

(iii) The core functor κX : CSSX(Y)→ X preserves λ-filtered colimits.
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Proof. This follows the proof of [27, Proposition 1.2.29] mutatis mutandis, noting that λ-

filtered colimits commute with λ-small limits in any locally λ-presentable category.

Proposition 3.3.3.5. For an ∞-topos X, the construction of complete Segal spaces defines

a functor CSSX : DistRX → DistRX , where the functor ϕ∗ : CSSX(Y)→ CSSX(Z) induced by

any ϕ : Y→ Z in DistRX acts pointwise.

Proof. Let ϕ : Y → Z be a morphism of DistRX . Then, Lemma 3.3.3.2 implies that point-

wise application of ϕ defines a functor ϕ∗ : CSSX(Y) → CSSX(Z). Moreover, this functor

preserves cores and small limits.

Choose λ ≫ 0 so that ϕ : Y → Z is a λ-accessible functor between locally λ-presentable

categories. Then, Lemma 3.3.3.4 implies that λ-filtered colimits in CSSX(Y) and CSSX(Z)

are computed pointwise, and are thus preserved by ϕ∗. Therefore, ϕ∗ is indeed a morphism

of DistRX .

Remark 3.3.3.6. By Remark 3.3.2.2, the construction of complete Segal spaces also defines

an endofunctor on DistLX. However, the functor ψ! : CSSX(Z) → CSSX(Y) induced by

ψ : Z → Y does not act pointwise; rather, if SegX : Fun(∆op,Y) → CSSX(Y) denotes a left

adjoint to the inclusion, then ψ! is given on Z• ∈ CSSX(Z) by (ψ!Z)• ≃ SegX(ψ∗Z•).

We can now establish the continuity of the construction of complete Segal spaces:

Theorem 3.3.3.7. For an ∞-topos X, the functor CSSX : DistRX → DistRX preserves small

weakly contractible limits.

Proof. Let Y• : K → DistRX be a diagram indexed by a weakly contractible simplicial set K,

and let Y := lim←−k Yk, with canonical projection mapsϖk : Y→ Yk. Consider the commutative

square

CSSX(Y) lim←−
k

CSSX(Yk)

Fun(∆op,Y) lim←−
k

Fun(∆op,Yk)∼

where the limits are computed in ˆ︂Cat∞. By Corollary 3.3.2.5, the limit Y = lim←−k Yk can be

computed on underlying categories in ˆ︂Cat∞, implying that the bottom arrow in the above

diagram is an equivalence. Corollary 3.3.2.5 also implies that it suffices to show that the top

arrow in the above diagram is an equivalence as well. As all other functors are fully faithful,

the top arrow is fully faithful. Therefore, it remains to show that the top arrow is essentially

surjective.
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From the commutative diagram, we can identify lim←−kCSSX(Yk) with the full subcategory

of Fun(∆op,Y) spanned by those Y : ∆op → Y for which ϖkY : ∆op → Yk lies in CSSX(Yk)

for every k ∈ K. It suffices to show that any such functor Y : ∆op → Y is already a complete

Segal space in Y.

Certainly Y0 ∈ X, since ϖkY0 ∈ X for all k ∈ K. Since ϖk is a morphism of DistRX , it

preserves limits. In particular, for n ≥ 0, the canonical map

Yn → Y1 ×Y0 · · · ×Y0 Y1⏞ ⏟⏟ ⏞
n

in Y descends via ϖk to an equivalence in Yk for every k ∈ K, and is therefore also an

equivalence. In particular, Y• ∈ SSX(Y).

As K is weakly contractible, it is nonempty, so fix some k0 ∈ K. Since ϖk0 preserves

cores and limits, the proof of Lemma 3.3.3.2 implies that Gp•(ϖk0,∗Y•) ≃ Gp• Y . Since

Gp•(ϖk0,∗Y•) is essentially constant, this proves that Y• is a complete Segal space, as desired.

3.3.4 The distributor of sheaves of (∞, r)-categories

Throughout this subsection, fix an ∞-topos of sheaves X = Sh(C). In this section, we prove

that the category Sh(∞,r)(C) defines an X-distributor for every 0 ≤ r ≤ ∞. Note that

Corollary 3.3.2.7 then ensures that the category Shω(C) defines an X-distributor as well.

Lemma 3.3.4.1. Let Y be an X-distributor. Then, Y• ∈ SSX(Y) is a complete Segal space

if and only if it is local with respect to |I|#U → ∆U [0] for every U ∈ C.

Proof. Since Gp• Y ∈ Grpd(X) satisfies the Segal condition, it is essentially constant if and

only if the map Gp1 Y → Gp0 Y is an equivalence, which is equivalent to asserting that the

underlying functor Gp• Y : ∆op → X is local with respect to ∆U [1]→ ∆U [0] for every U ∈ C.

Now, note that

HomFun(∆op,X)(∆U [1],Gp• Y )

≃ HomP(∆)(∆[1],Gp• Y (U)) (Definition 3.2.1.5)

≃ HomCat(S)(∆[1],Gp• Y (U)) (both ∆[1] and Gp• Y (U) satisfy the Segal condition)

≃ HomGrpd(S)(I,Gp• Y (U)) (I is the groupoidification of ∆[1])

≃ HomP(∆)(I,Gp• Y (U)) (Grpd(S) ⊆ P(∆) is fully faithful)

≃ HomFun(∆op,X)(|I|#U ,Gp• Y ) (Definition 3.2.1.9)

≃ HomGrpd(X)(|I|#U ,Gp• Y ) (both |I|#U and Gp• Y are groupoid objects in X)

≃ HomSSX(Y)(|I|
#
U , Y•) (Corollary 3.3.1.8)
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and similarly for ∆U [0]. Therefore, Gp• Y is essentially constant if and only if Y• is local

with respect to |I|#U → ∆U [0] for every U ∈ C, as desired.

Corollary 3.3.4.2. The category Sh(∞,r)(C) is an X-distributor for every 0 ≤ r < ∞.

Moreover, we have a canonical equivalence Sh(∞,r+1)(C) ≃ CSSX(Sh(∞,r)(C)).

Proof. This is clear if r = 0, since Sh(∞,0)(C) ≃ X. The result for r > 0 follows by induction

from combining Lemma 3.3.4.1 with Proposition 3.2.2.10.

Remark 3.3.4.3. That iterated application of CSSX to X yields sheaves of (∞, r)-categories
is already suggested in [27, Variant 1.3.8].

Corollary 3.3.4.4. Cat(∞,r) defines a theory of (∞, r)-categories in the sense of [6] for all

r ≥ 0.

Proof. This follows from Corollary 3.3.4.2 and [6, Theorem 14.6].

We are particularly interested in the limit cases.

Theorem 3.3.4.5. The category Sh(∞,∞)(C) is an X-distributor. Moreover, there is a canon-

ical equivalence CSSX(Sh(∞,∞)(C))
∼−→ Sh(∞,∞)(C).

Proof. By Proposition 3.2.3.5 and Corollary 3.3.4.2, we can compute Sh(∞,∞)(C) as the limit

of categories

Sh(∞,∞)(C) ≃ lim←−
(︂
· · · → CSS3

X(X)
κX,∗−−→ CSS2

X(X)
κX,∗−−→ CSSX(X)

κX−→ X
)︂

By Corollary 3.3.2.5, this limit can be lifted to a limit in DistRX , proving that Sh(∞,∞)(C)

is indeed an X-distributor. Moreover, Theorem 3.3.3.7 proves that the induced functor

CSSX(Sh(∞,∞)(C))→ Sh(∞,∞)(C) is an equivalence, as desired.

Remark 3.3.4.6. By Corollary 4.3.1.8, which we will prove in Section 4.3, and the observation

that X is a terminal object in DistRX , the above proof moreover implies that Sh(∞,∞)(C) is a

terminal coalgebra for CSSX. In particular, Sh(∞,∞)(C) is the terminal object of the full sub-

category FixRCSS of DistRX spanned by those X-distributors Y equipped with an equivalence

Y
∼−→ CSSX(Y).

3.3.5 Geometric morphisms and sheafification

Throughout this subsection, fix a sheaf ∞-topos X = Sh(C).

The goal of this subsection is to prove various comparison results between categories of

sheaves. We prove in Corollary 3.3.5.5 that the construction Sh(n,r)(−) or Shω(−) is func-
torial with respect to geometric morphisms, sending geometric morphisms to right adjoints
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with relatively left exact left adjoints. In Proposition 3.3.5.8 and Corollary 3.3.5.9, we prove

that π≤r : Sh(∞,r′)(C) → Sh(∞,r)(C) and π≤ω : Sh(∞,∞)(C) → Shω(C) are relatively left ex-

act. Finally, we show in Theorem 3.3.5.10 that Sh(n,r)(C) is a relatively left exact accessible

localisation of Fun(Cop,Cat(n,r)), and likewise Shω(C) is a relatively left exact accessible

localisation of Fun(Cop,SSω).

Lemma 3.3.5.1. Suppose K is sifted in the sense of [26, Definition 5.5.8.1]. Then, the

functor lim−→ : Fun(K,X) → X preserves fibre products over X, where X is viewed as a full

subcategory of Fun(K,X) spanned by the essentially constant functors.

Proof. Suppose F → x ← G is a cospan of functors K → X, where x ∈ X is viewed as a

constant functor. Since K is sifted, the diagonal K → K ×K is cofinal. Therefore,(︄
lim−→
k∈K

F (k)

)︄
×x

(︄
lim−→
ℓ∈K

G(ℓ)

)︄
≃ lim−→

(k,ℓ)∈K×K

(︂
F (k)×x G(ℓ)

)︂
(colimits are universal in X)

≃ lim−→
j∈K

(︂
F (j)×x G(j)

)︂
(K → K ×K is cofinal)

showing that lim−→ : Fun(K,X)→ X preserves the fibre product F ×x G.

Lemma 3.3.5.2. Fix an X-distributor Y. Suppose a morphism Y• → Z• in SSX(Y) is a

Segal equivalence. Then, for any cospan Z• → x ← Z ′• in SSX(Y) with x ∈ X, the induced

map Y ×x Z ′ → Z ×x Z ′ is a Segal equivalence.

Proof. The functor Y ×x Z ′ → Z ×x Z ′ is certainly fully faithful in the sense of (E1), since

limits commute with limits. We need to show that the map is also essentially surjective in

the sense of (E2); that is, |Gp•(Y ×x Z ′)| → |Gp•(Z ×x Z ′)| is an equivalence in X.

Since Gp• is a right adjoint that restricts to the identity on X, we have an equivalence

Gp•(Y ×x Z ′) ≃ (Gp• Y )×x (Gp• Z
′), with a similar equivalence for Z ×x Z ′. On the other

hand, since ∆op is sifted by [26, Lemma 5.5.8.4], geometric realisation also preserves fibre

products over X by Lemma 3.3.5.1.

Therefore, Y ×x Z ′ → Z ×x Z ′ satisfies (E2) if and only if the corresponding functor

|Gp• Y | ×x |Gp• Z
′| → |Gp• Z| ×x |Gp• Z

′| is an equivalence, which follows from the fact

that the is the base change of the map |Gp• Y | → |Gp• Z| along |Gp• Z
′| → x, which is an

equivalence since Y → Z is a Segal equivalence.

Proposition 3.3.5.3. For an X-distributor Y, the left adjoint SegX : SSX(Y) → CSSX(Y)

to inclusion preserves fibre products over X.

Proof. Suppose Y → x ← Y ′ is a cospan in SSX(Y), where x ∈ X. Since complete Segal

spaces are closed under limits in SSX(Y), (SegX Y ) ×x (SegX Y ′) is a complete Segal space.
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Therefore, it suffices to show that the map Y ×x Y ′ → (SegX Y ) ×x (SegX Y ′) is a Segal

equivalence, as it would then induce an equivalence SegX(Y ×x Y ′)→ (SegX Y )×x (SegX Y ′).
Since Y ×x Y ′ → (SegX Y )×x (SegX Y ′) factors as

Y ×x Y ′ → (SegX Y )×x Y ′ → (SegX Y )×x (SegX Y ′)

the fact that it is a Segal equivalence follows from Lemma 3.3.5.2, since Y → SegX Y and

Y ′ → SegX Y
′ are Segal equivalences.

Lemma 3.3.5.4. In the situation of Lemma 3.3.3.2, suppose ϕ : Y → Y′ admits a left

adjoint ψ. Then, the induced functor ϕ∗ : CSSX(Y) → CSSX′(Y′) admits a left adjoint ψ!.

If moreover ψ : Y′ → Y preserves fibre products over X′, then the same is true for ψ!.

Proof. Choose λ ≫ 0 so that ϕ : Y → Z is a λ-accessible functor between locally λ-

presentable categories. Then, Lemma 3.3.3.4 implies that λ-filtered colimits in CSSX(Y)

and CSSX(Z) are computed pointwise, and are thus preserved by ϕ∗. In particular, [26,

Corollary 5.5.2.9] implies that ϕ∗ admits a left adjoint ψ!.

If ψ preserves fibre products over X′, then the induced functor ψ∗ : SSX′(Y′) → SSX(Y)

is left adjoint to ϕ∗ : SSX(Y) → SSX′(Y′). Taking left adjoints of the functors in the

commutative square

CSSX(Y) CSSX′(Y′)

SSX(Y) SSX′(Y′)

ϕ∗

ϕ∗

yields the commutative square in the diagram

CSSX′(Y) SSX′(Y′) SSX(Y)

CSSX′(Y′) CSSX(Y)

id

ψ∗

SegX′ SegX

ψ!

where the vertical functors preserve fibre products over X′ by Proposition 3.3.5.3, and the

inclusion preserves all limits from being a right adjoint. Therefore, ψ! preserves fibre products

over X′ as well.

Corollary 3.3.5.5. Given a geometric morphism g∗ : Sh(C) → Sh(C′) of ∞-topoi of

sheaves, we have for all −2 ≤ n ≤ ∞ and 0 ≤ r ≤ n an adjunction

g∗ : Sh(n,r)(C
′)⇄: Sh(n,r)(C) : g∗

and similarly an adjunction

g∗ : Shω(C
′)⇄: Shω(C) : g∗

where each g∗ acts pointwise, and the corresponding left adjoints g∗ are relatively left exact.
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Lemma 3.3.5.6. Let K be a filtered simplicial set, and (Ak → Bk)k∈K a diagram in

Fun(∆[1],Cat∞) consisting of cofinal functors. Then, the colimit of this diagram is again

a cofinal functor.

Proof. Let A → B denote the colimit of the diagram of cofinal functors. By Quillen’s

Theorem A [26, Theorem 4.1.3.1], we show for any B ∈ B that AB/ := A×B BB/ is weakly

contractible.

Choose k ∈ K so that B ∈ Bk; that is, so that B is in the essential image of the

coprojection Bk → B. Since K is filtered, the canonical functor Kk/ → K is cofinal.

Therefore,

A×B BB/ ≃

(︄
lim−→
ℓ

Aℓ

)︄
×(︂

lim−→ℓ
Bℓ

)︂
(︄
lim−→
ℓ

Bℓ

)︄
B/

≃

(︄
lim−→
k→ℓ

Aℓ

)︄
×(︂

lim−→k→ℓ
Bℓ

)︂
(︄
lim−→
k→ℓ

Bℓ

)︄
B/

(cofinality of Kk/ → K)

≃

(︄
lim−→
k→ℓ

Aℓ

)︄
×(︂

lim−→k→ℓ
Bℓ

)︂
(︄
lim−→
k→ℓ

Bℓ
B/

)︄
(B ∈ Bk)

≃ lim−→
k→ℓ

(︁
Aℓ ×Bℓ Bℓ

B/

)︁
(filtered colimits are left exact in Cat∞)

By assumption, every Aℓ×Bℓ Bℓ
B/ is weakly contractible for every k → ℓ, implying the same

for A×B BB/, as desired.

Corollary 3.3.5.7. The full subcategory of Cat∞ spanned by sifted categories is closed under

filtered colimits.

Proposition 3.3.5.8. For 0 ≤ r < r′ ≤ ∞, the functor π≤r : Sh(∞,r′)(C) → Sh(∞,r)(C) is

relatively left exact.

Proof. We prove the proposition by induction on r, so suppose first that r = 0.

Let ∆∞ denote the full subcategory of ∆×∞ spanned by those [⃗k] = (k0, k1, k2, . . . ) such

that kn = 0 for all n ≫ 0. For 0 ≤ r′ ≤ ∞, denote by ∆r′ the full subcategory of ∆∞

spanned by those [⃗k] such that kn = 0 for all n ≥ r′. Then, we have a fully faithful inclusion

Σr′ ⊆∆r′ for every 0 ≤ r′ ≤ ∞.

The functor π≤0 : Sh(∞,r′)(C) → Sh(∞,0)(C) ≃ X is left adjoint to the diagonal inclusion

X ⊆ Sh(∞,r′)(C). The composite of right adjoints

X ⊆ Sh(∞,r′)(C) ⊆ Fun(Σop
r′ ,X) ⊆ Fun(∆op

r′ ,X)

where the rightmost inclusion is right Kan extension alongΣr′ ⊆∆r′ is precisely the diagonal

inclusion, which implies that π≤0 is the restriction of the left adjoint lim−→ : Fun(∆op
r′ ,X)→ X

to the diagonal. By Lemma 3.3.5.1, it suffices to prove that∆op
r′ is sifted for every 0 ≤ r′ ≤ ∞.
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For r′ < ∞, note that ∆r′ ≃ ∆×r
′
. Since ∆op is sifted by [26, Lemma 5.5.8.4], and [26,

Corollary 4.1.1.13 and Proposition 4.1.1.3(2)] imply that sifted categories are closed under

finite products, it follows that ∆op
r′ is sifted for r′ finite. Since

∆∞ ≃ lim−→(∆0 ⊆∆1 ⊆∆2 ⊆ . . . )

it follows from Corollary 3.3.5.7 that ∆op
∞ is sifted as well.

Now, let r > 0, and suppose all π≤(r−1) preserve fibre products over X. Then,

π≤(r−1),∗ : Fun(∆
op,Sh(∞,r′−1)(C))→ Fun(∆op,Sh(∞,r−1)(C))

restricts to a functor SSX(Sh(∞,r′−1)(C))→ SSX(Sh(∞,r−1)(C)) that also preserves fibre prod-

ucts over X.

As π≤r ≃ π≤(r−1),! is the image of π≤(r−1) under CSSX : DistLX → DistLX, and π≤(r−1)

preserves fibre products over X by assumption, it follows by Lemma 3.3.5.4 that π≤r preserves

fibre products over X.

Corollary 3.3.5.9. The localisation functor π≤ω : Sh(∞,∞)(C) → Shω(C) is relatively left

exact.

The remainder of this section is dedicated to proving the following result:

Theorem 3.3.5.10 (Sheafification). For −2 ≤ n ≤ ∞ and 0 ≤ r ≤ n + 2, the category

Sh(n,r)(C) includes fully faithfully into Fun(Cop,Cat(n,r)), and this inclusion admits a rela-

tively left exact left adjoint.

Likewise, Shω(C) includes fully faithfully into Fun(Cop,Catω), and the inclusion admits

a relatively left exact left adjoint.

Proof. Follows from combining Proposition 3.3.5.12 below with Lemma 3.3.5.4.

Lemma 3.3.5.11. Let Y be an X-distributor. For every small category K, the category

Fun(Kop,Y) is a distributor over Fun(Kop,X). Moreover, we have an equivalence

CSSFun(Kop,X)(Fun(K
op,Y)) ≃ Fun(Kop,CSSX(Y))

Proof. Fun(Kop,X) and Fun(Kop,Y) are certainly locally presentable, verifying (D1). The

inclusion X ⊆ Y preserves small limits and colimits, and limits and colimits in functor

categories are computed pointwise, which proves (D2). By [27, Corollary 1.2.5], Fun(Kop,Y)

is then a distributor over Fun(Kop,X) if and only if the following holds:

(∗) For any simplicial set J and natural transformation α : p ⇒ q : J▷ → Fun(Kop,Y)

such that q is a colimit diagram in Fun(Kop,X) and the naturality squares of α = α|K
are pullback squares, then p is a colimit diagram in Fun(Kop,Y) if and only if the

naturality squares of α are pullback squares.
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This condition can be checked pointwise, and [27, Corollary 1.2.5] implies that the analogous

result holds for X ⊆ Y. Therefore, Fun(Kop,Y) is then a distributor over Fun(Kop,X), as

desired.

Since Fun(∆op,Fun(Kop,Y)) ≃ Fun(Kop,Fun(∆op,Y)) and fibre products are computed

pointwise in functor categories, we have SSFun(Kop,X)(Fun(K
op,Y)) ≃ Fun(Kop,SSX(Y)).

Finally, since the conditions for a transformation to be a Segal equivalence can be checked

pointwise, this equivalence descends to an equivalence

CSSFun(Kop,X)(Fun(K
op,Y)) ≃ Fun(Kop,CSSX(Y))

as desired.

Proposition 3.3.5.12. Let −2 ≤ n ≤ ∞ and 0 ≤ r ≤ n+ 2. If X ≃ P(C), then we have an

equivalence Sh(n,r)(C) ≃ Fun(Cop,Cat(n,r)). Similarly, Shω(C) ≃ Fun(Cop,SSω).

Proof. Suppose first that n = ∞. If r = 0, then Sh(∞,0)(C) ≃ P(C) and Cat(∞,0) ≃ S.

Iteratively applying Lemma 3.3.5.11 then proves the proposition if r is finite. For r = ∞,

we have

Sh(∞,∞)(C) ≃ lim←−
(︂
. . .

κ≤1−−→ Sh(∞,1)(C)
κ≤0−−→ Sh(∞,0)(C)

)︂
≃ lim←−

(︂
. . .

κ≤1,∗−−−→ Fun(Cop,Cat(∞,1))
κ≤0,∗−−−→ Fun(Cop,Cat(∞,0))

)︂
≃ Fun

(︂
Cop, lim←−

(︂
. . .

κ≤2−−→ Cat(∞,1)
κ≤1−−→ Cat(∞,0)

)︂)︂
≃ Fun(Cop,Cat(∞,∞))

Similarly,

Shω(C) ≃ lim←−
(︂
. . .

π≤1−−→ Sh(∞,1)(C)
π≤0−−→ Sh(∞,0)(C)

)︂
≃ lim←−

(︂
. . .

π≤1,∗−−−→ Fun(Cop,Cat(∞,1))
π≤0,∗−−−→ Fun(Cop,Cat(∞,0))

)︂
≃ Fun

(︂
Cop, lim←−

(︂
. . .

π≤2−−→ Cat(∞,1)
π≤1−−→ Cat(∞,0)

)︂)︂
≃ Fun(Cop,SSω)

Now suppose n <∞. Then, Sh(n,r)(C) is the localisation of Sh(∞,r)(C) ≃ Fun(Cop,Cat(∞,r))

at the maps Σm(Sk−m ×∆U [0]) → Σm∆U [0] for m ≥ r, k > n, and U ∈ C. Now, the result

follows from the observation that a functor F : Cop → Cat(∞,r) is local with respect to the

maps Σm(Sk−m ×∆U [0])→ Σm∆U [0] if and only if F (U) ∈ Cat(∞,r) is local with respect to

ΣmSk−m → Σm∗.
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Chapter 4

Endofunctor Fixed Points and
Algebras

In Theorem 3.3.4.5, we demonstrated thatCat(∞,∞) is closed under the formation of complete

Segal space objects; that is, Cat(∞,∞) is a fixed point (up to equivalence) of a suitable functor

CSS : DistR → DistR. The crux of the proof is the observation that the category arises as

the result of an indefinite iterative application of the functor CSS to an object of DistR.

The construction of fixed points through iterative function application is certainly not

novel. The theory of fixed points in ordinary category theory was already developed by the

1970s; see [1, 25]. We review this theory in Section 4.1.

The goal of this chapter is to provide an∞-categorical generalisation of this theory. We lay

the necessary technical groundwork in Section 4.2, introducing the notion of (lax) algebras

of an endofunctor. In Section 4.3, we employ the language of lax endofunctor algebras to

establish an ∞-categorical analogue of Adámek’s construction, and then apply this theory

to study fixed points of a general class of endofunctors.

4.1 Classical theory

Suppose that we are interested in studying the fixed points of the functor S : Set → Set

that maps X ↦→ X ⊔ {⊥}. Starting with the empty set ∅, we can construct a fixed point

through infinite application of S as a colimit

lim−→
(︂
∅ !−→ S(∅)

S(!)−−→ S2(∅)→ · · ·
)︂

By identifying Sn(∅) with the set {0, 1, . . . , n − 1}, the canonical map Sn(∅) → Sn+1(∅)

is given by inclusion, and the colimit is isomorphic to the set N = {0, 1, 2, . . . } of natural

numbers.
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The canonical map lim−→n
Sn+1(∅)→ S(lim−→n

Sn(∅)) is inverse to the map

succ : N ⊔ {⊥} → N

succ(n) =

{︄
n+ 1, n ∈ N
0, n = ⊥

which is bijective. In particular, N defines a fixed point of S.

This bijection is, in some sense, reflective of the inductive structure of N: the formally-

adjoined point maps to the base 0, and the rest of the function encodes the successor op-

eration on N. This structure allows us to exhibit the induction axiom on N as a universal

property: given a set X with a chosen point x⊥ ∈ X and a function f : X → X, we have

by induction a unique sequence x• : N → X such that x0 = x⊥, and xn+1 = f(xn). Note

that a choice of point x⊥ and a function f : X → X is equivalent to defining a function

f : X ⊔ {⊥} → X. Therefore, we have

Proposition 4.1.0.1. For any function f : S(X) → X, there exists a unique function

x• : N→ X such that

S(N) S(X)

N X

S(x•)

succ

∼

f

x•

commutes.

Alternatively, if we start with the singleton set ∗, we can construct a fixed point through

infinite application of S as a limit

lim←−
(︂
· · · → S2(∗) S(!)−−→ S(∗) !−→ ∗

)︂
By identifying Sn(∗) with the set {0, 1, . . . , n− 1,∞}, the map Sn+1(∗)→ Sn(∗) is the pro-
jection that sends (n−1) ↦→ ∞. The limit is then isomorphic to the set N = {0, 1, 2, . . . ,∞}
of extended natural numbers, where the projection N→ {0, 1, . . . , n− 1,∞} sends all k ≥ n

to ∞.

The canonical map S(lim←−n S
n(∗))→ lim←−n S

n+1(∗) is then inverse to the map

pred : N→ N ⊔ {⊥}

pred(m) =

⎧⎪⎨⎪⎩
m− 1, 0 < m <∞
⊥, m = 0

∞, m =∞

In general, a function p : X → X ⊔{⊥} can be thought of as a partial function X → X that

sends a point to its “predecessor”, where root elements in X with no predecessor are mapped
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to ⊥. We can then define a function d : X → N that associates to each point x ∈ X its

“depth”: the number of predecessors of x. Indeed, such a function is defined by coinduction:

if x has no predecessor, then d(x) = 0; otherwise, d(x) = d(p(x)) + 1.

Proposition 4.1.0.2. For any function p : X → S(X), there exists a unique function

d : X → N such that

X N

S(X) S(N)

d

p

∼

pred

S(d)

commutes.

In particular, Propositions 4.1.0.1 and 4.1.0.2 imply that N and N are universal fixed

points of S: specifically, N is the initial fixed point, and N is the terminal fixed point.

4.1.1 Adámek’s construction

This subsection reviews the theory studied in [1]; in particular, none of the content here is

original. Throughout this subsection, fix a 1-category K and a functor F : K → K.

Definition 4.1.1.1. An F -algebra is a pair (A, µ), where A ∈ K, and µ : FA → A is the

action on A.

Given two F -algebras (A, µ), (A′, µ′), a morphism φ : A→ A′ is an F -algebra homomor-

phism if

FA FA′

A A′

Fφ

µ µ′

φ

commutes. Let K(F ) denote the 1-category of F -algebras and F -algebra homomorphisms.

Moreover, let Fix(F ) denote the full subcategory of K(F ) spanned by those F -algebras

(A, µ) where µ is an isomorphism.

Remark 4.1.1.2. We can similarly define an F -coalgebra as a pair (C, ν) where C ∈ K and

ν : C → FC is the coaction. Denote the 1-category of F -coalgebras by Kco(F ). The category

Fix(F ) is then equivalent to the full subcategory of Kco(F ) spanned by those F -coalgebras

whose coactions are isomorphisms.

The theory of F -coalgebras is entirely dual to the theory of F -algebras. In particular, we

have an equivalence Kco(F ) ≃ (Kop(F ))op. Therefore, we focus on the theory of F -algebras

in this subsection.

69



Remark 4.1.1.3. Let S : Set → Set, X ↦→ X ⊔ {⊥} as in the beginning of Section 4.1.

Proposition 4.1.0.1 shows that (N, succ) defines an initial S-algebra; that is, an initial object

in Set(S). On the other hand, Proposition 4.1.0.2 shows that (N, pred) defines a terminal

S-coalgebra.

Lemma 4.1.1.4 (Lambek). [25, Lemma 2.2] If (I, i) is an initial object in K(F ), then the

action i : FI → I is an isomorphism. In particular, (I, i) is also an initial object in Fix(F ).

Remark 4.1.1.5. Conversely, we will see in Theorem 4.3.2.5 that the inclusion Fix(F ) ⊆ K(F )
preserves small colimits if F is moderately well-behaved.

In [1], Adámek studies the construction of free F -algebras generated by objects of K, and
provides a general-purpose algorithm for constructing them.

Definition 4.1.1.6. Let U : K(F ) → K denote the forgetful functor. A free F -algebra

generated by an object K ∈ K is, if it exists, a corepresenting object for the functor

HomK(K,U(−)) : K(F )→ Set.

If K has an initial object ∅, then note that the free F -algebra on ∅ is precisely the initial

F -algebra. In this case, Adámek’s construction reduces to the following:

Proposition 4.1.1.7. Suppose K has an initial object ∅, and consider the diagram

∅ !−→ F (∅) F (!)−−→ F 2(∅) F 2(!)−−−→ F 3(∅)→ · · ·

If this diagram has a colimit I, and the canonical map j : FI → I is an isomorphism, then

(I, j−1) is an initial F -algebra.

Remark 4.1.1.8. Adámek’s construction allows for the number of applications of F on ∅ to be
transfinite if necessary, assuming the relevant intermediate colimits exist. We only present

the countable case above since it is the easiest to state, and is the most relevant case for our

purposes (once generalised to ∞-categories).

Remark 4.1.1.9. The general construction of a free F -algebra generated by an object K ∈ K
is based on a similarly iterative construction of the form

K → K ⊔ FK → K ⊔ F (K ⊔ FK)→ K ⊔ F (K ⊔ F (K ⊔ FK))→ · · ·

If the above construction “stabilises” (after possibly transfinitely many steps), then it sta-

bilises on the free F -algebra generated by K; see [1, p. 592] for the precise construction.
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4.2 Algebras of (∞, 1)-endofunctors

Throughout this section, fix an∞-category K and an endofunctor F : K→ K. We continue

to follow Convention 3.0.0.1 and omit the “(∞, 1)” prefix in categorical notions.

We can readily generalise Definition 4.1.1.1 as follows.

Definition 4.2.0.1. Define the category K(F ) of F -algebras as the pullback

K(F ) K∆[1]

K K×K

⌟

(F,id)

Note that the vertical map on the right is induced by the inclusion {0, 1} ↪→ ∆[1], and is

thus a categorical fibration. Therefore, the pullback is a homotopy pullback of∞-categories.

Remark 4.2.0.2. We obtain the category of F -coalgebras as Kco(F ) ≃ (Kop(F ))op, as in

Remark 4.1.1.2.

We can also prove Lambek’s lemma in this more general setting:

Lemma 4.2.0.3 (Lambek). Suppose (I, i) is an initial object in K(F ). Then, the action

i : FI → I is an equivalence.

Proof. Consider the F -algebra (FI, F i). Since (I, i) is initial, there is an essentially unique

F -algebra homomorphism u : (I, i) → (FI, F i). The composite i ◦ u thus defines an F -

algebra endomorphism of (I, i), and must therefore be homotopic to the identity; that is,

i ◦ u ≃ idI .

On the other hand, consider the diagram

FI FFI

I FI

Fu

i
F (i◦u)

Fi

u

The perimeter commutes up to homotopy because u is an F -algebra homomorphism, and

the upper triangle commutes by the functoriality of F . Since i ◦ u ≃ idI , it follows that also

u ◦ i ≃ F (i ◦ u) ≃ idFI . Therefore, u ≃ i−1, proving that i is an equivalence, as desired.

However, Adámek’s construction is a bit more difficult to reproduce.
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4.2.1 Lax algebras

In Proposition 4.1.1.7, the action of the initial F -algebra I is given by an inverse to the

canonical map j : I → FI. In an ∞-categorical setting, inverses are only unique up to

higher homotopy, and the universal property of an initial F -algebra is much more involved.

Therefore, we avoid choosing an inverse of the canonical map by studying lax F -algebras.

Definition 4.2.1.1. Define the category Klax(F ) of lax F -algebras as the pullback

Klax(F ) K{1←0→2}

K K{1} ×K{2}

⌟

(F,id)

The vertical map on the right is induced by the cofibration {1, 2} ↪→ {1 ← 0 → 2}, and
is thus a categorical fibration, showing that the pullback square is a homotopy pullback of

∞-categories.

Concretely, a lax F -algebra is given by a span FB
r←− E

a−→ B, where a is a lax action,

and r is a resolution.

Remark 4.2.1.2. Every square in the tower below is a pullback square:

Klax(F ) K{1←0→2}

K{0→2} K{1} ×K{0→2}

K{0} ×K{2} K{1} ×K{0} ×K{2}

K{2} K{1} ×K{2}

⌟

(F (2),id)

⌟

(F (2),id)

⌟

(F,id)

As the vertical maps on the right are induced by inclusions of simplicial sets, it follows that

they are categorical fibrations, showing that all of these pullback squares are also homotopy

pullback squares of ∞-categories.

Proposition 4.2.1.3. Let ˆ︁K(F ) denote the full subcategory of Klax(F ) spanned by those lax

F -algebras FB ← E → B where the resolution E → FB is invertible. Then, there is a

canonical equivalence K(F )
∼−→ ˆ︁K(F ).

Proof. Note that ˆ︁K(F ) can be defined equivalently as follows, using the cartesian model

structure on marked simplicial sets of [26, §3.1]. Let Λ0
+[2] := {1

+←− 0 → 2} denote the
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marked simplicial set obtained by taking the walking span Λ0[2] and marking the left-pointing

edge. Then, ˆ︁K(F ) is the pullback

ˆ︁K(F ) Map♭(Λ0
+[2],K

♮)

K K×K

⌟

(F,id)

where Map♭(X, Y ) is the underlying simplicial set of the internal hom of marked simplicial

sets, and K♮ is the category K marked at the equivalences. By [26, Remark 3.1.4.5], Map♭

provides the cartesian model structure with an enrichment in Joyal’s model structure on

simplicial sets. Note that K♮ is fibrant in the cartesian model structure, and so the vertical

map induced by an inclusion of marked simplicial sets is therefore a categorical fibration.

Let ∆[1]♭ denote the simplicial set ∆[1] marked only at the degenerate edges. Then, the

inclusion ∆[1]♭ → Λ0
+[2] that picks out the unmarked edge of Λ0

+[2] is marked anodyne by

[26, Proposition 3.1.1.5], and admits a retraction Λ0
+[2] → ∆[1]. By 2-out-of-3, it follows

that this retraction is a cartesian equivalence. Therefore, since K♮ is fibrant, the retraction

induces a categorical equivalence K∆[1] = Map♭(∆[1]♭,K♮)→ Map♭(Λ0
+[2],K

♮). In particular,

we have the following diagram:

K(F ) K∆[1]

ˆ︁K(F ) Map♭(Λ0
+[2],K

♮)

K K×K

∼

⌟

(F,id)

The perimeter is the definitional pullback square for K(F ), so both the perimeter and the

inner pullback square are homotopy pullbacks. Since the objects of the two pullback diagrams

are connected by categorical equivalences, the induced map K(F ) → ˆ︁K(F ) is a categorical

equivalence as well.

The embedding identifies an F -algebra (A,α) with the lax F -algebra FA = FA
α−→ A,

and conversely any lax F -algebra FB
r←− E

a−→ B with an invertible resolution induces an

F -algerba (B, ar−1). We therefore tacitly identify K(F ) with its essential image in Klax(F ).

In thet context of Adámek’s construction, we can now avoid explicitly inverting the canon-

ical map I → FI by instead proving that the lax F -algebra FI
∼←− I

id−→ I is initial in ˆ︁K(F ).
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4.2.2 Propagation pushout

As mentioned in Remark 4.1.1.9, Adámek’s general free F -algebra construction on an object

K is given as the colimit of a possibly transfinite sequence of the form

K → K ⊔ FK → K ⊔ F (K ⊔ FK)→ K ⊔ F (K ⊔ F (K ⊔ FK))→ · · ·

The morphisms in this sequence become more evident when presented as a transfinite se-

quence of pushout squares:

∅ FK F (K ⊔ FK) F (K ⊔ F (K ⊔ FK)) . . .

K K ⊔ FK K ⊔ F (K ⊔ FK) K ⊔ F (K ⊔ F (K ⊔ FK)) . . .

!

!
⌜

Fi1

⌜

Fi2

⌜

Fi3

i1 i2 i3 i4

Note that the first stage is precisely the pushout of the free lax F -algebra generated by K.

This suggests a natural generalisation of this “propagation” construction for lax F -algebras.

Definition 4.2.2.1. Suppose K has finite colimits. For any lax F -algebra FB
r←− E

a−→ B,

consider the following diagram:

FB F (B ⊔E FB)

E FB

B B ⊔E FB

Fi

r

r

a
⌜

Fi

i

The vertical arrows on the right define a lax F -algebra Π(FB ← E → B). This construction

extends to an endofunctor Π : Klax(F ) → Klax(F ), and the horizontal arrows define a

canonical natural transformation η : Id⇒ Π.

We refer to Π as the propagation of lax F -algebras, and η as the unit of the endofunctor.

The remainder of this subsection makes the above definition more precise; the reader may

safely skip to the next subsection.

Definition 4.2.2.2. Define the category K□(F ) to be the (homotopy) pullback

K□(F ) KΛ0[2]▷

K K×K

⌟

(F,id)
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Note that Λ0[2]▷ ∼= ∆[1]×∆[1] is the walking commutative square, so K□(F ) consists of

commutative squares of the form

E FB

B C

There is an evident forgetful functor U : K□(F )→ Klax(F ) given on objects by the mapping

⎧⎪⎪⎨⎪⎪⎩
E FB

B C

⎫⎪⎪⎬⎪⎪⎭ ↦→

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

FB

E

B

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
We can construct a precursor to the propagation endofunctor on Klax(F ) through K□(F ),

giving a functor Π□ : K□(F ) → Klax(F ) and a natural transformation η□ : U ⇒ Π□.

Intuitively, this functor and transformation come from the mapping

⎧⎪⎪⎪⎨⎪⎪⎪⎩
E FB

B C

r

c

⎫⎪⎪⎪⎬⎪⎪⎪⎭ ↦→

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

FB FC

E FB

B C

Fc

r

r

Fc

c

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(4.1)

To formalise this construction, consider the maps r, c : ∆[1] → Λ0[2]▷ which classify the

upper edge (corresponding to E → FB in the diagram) and lower edge (corresponding to

c : B → C in the diagram), respectively, then we can define a functor K□(F )→ KΛ1[2] via

K□(F )

KΛ1[2] K∆[1]

K∆[1] K

Fc∗

r∗

∃!

⌟

Explicitly, the dashed arrow describes the mapping⎧⎪⎪⎪⎨⎪⎪⎪⎩
E FB

B C

r

c

⎫⎪⎪⎪⎬⎪⎪⎪⎭ ↦→

⎧⎪⎪⎨⎪⎪⎩
FC

E FBr

Fc

⎫⎪⎪⎬⎪⎪⎭
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However, this mapping does not define a composite for this sequence of arrows. Since

Λ1[2] ↪→ ∆[2] is inner anodyne, and K is a quasicategory, the map K∆[2] → KΛ1[2] is a trivial

inner fibration. Therefore, we can find a section KΛ1[2] → K∆[2] by solving the lifting problem

∅ K∆[2]

KΛ1[2] KΛ1[2]

∼∃

This provides a functorial choice of composites to the diagram above, and particular provides

a functor K□(F )→ K∆[2].

In particular, since ∆[1] × ∆[1] ∼= Λ0[2]▷ = (∆[1]▷) ⊔∆[0]▷ (∆[1]▷) = ∆[2] ⊔∆[1] ∆[2] is

obtained by gluing two triangles along their hypotenuse, we can extend the above section to

define a map K□(F )→ K∆[1]×∆[1] corresponding to the mapping⎧⎪⎪⎪⎨⎪⎪⎪⎩
E FB

B C

r

c

⎫⎪⎪⎪⎬⎪⎪⎪⎭ ↦→

⎧⎪⎪⎨⎪⎪⎩
FB FC

E FB

Fc

r

r

Fc

⎫⎪⎪⎬⎪⎪⎭
which is precisely the upper square in the mapping sketched in (4.1). By gluing this square

with the forgetful functor K□(F ) → KΛ0[2]▷ = K∆[1]×∆[1], which describes the lower square

in (4.1), we obtain a functor

K□(F )→ K∆[1]×∆[1] ×K∆[1] K∆[1]×∆[1] ∼= KΛ0[2]×∆[1] = Fun(∆[1],KΛ0[2])

describing precisely the mapping sketched in (4.1). Moreover, it follows that the adjunct

K□(F )×∆[1]→ KΛ0[2] factors through the forgetful functor Klax(F )→ KΛ0[2].

The resulting functor K□(F )×∆[1]→ Klax(F ) corresponds to a map

η□ : ∆[1]→ Fun(K□(F ),Klax(F ))

In particular, η□ classifies a natural transformation between functors K□(F ) → Klax(F )

whose domain, by construction, is precisely the forgetful functor U .

Definition 4.2.2.3. Let Π□ be the codomain of the natural transformation constructed

above, and denote the natural transformation itself by η□ : U ⇒ Π□.

We can now use the above construction to create the propagation endofunctor on Klax(F ),

as well as its unit.

Definition 4.2.2.4. Let K be finitely cocomplete. By [26, Proposition 4.2.2.7], taking

colimits defines a functor lim−→ : KΛ0[2] → KΛ0[2]▷ , which restricts to lim−→ : Klax(F ) → K□(F ).

This is a section of the forgetful functor U : K□(F )→ Klax(F ).
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Define the propagation endofunctor Π on Klax(F ) to be the composite

Klax(F )
lim−→−→ K□(F )

Π□

−−→ Klax(F )

This functor then admits a unit given by the composite

η : ∆[1]
η□−→ Fun(K□(F ),Klax(F ))

lim−→
∗

−−→ Fun(Klax(F ),Klax(F ))

Indeed, this classifies a natural transformation Id⇒ Π because lim−→ is a section of U .

4.2.3 Colimits of lax algebras

Recall from Remark 4.2.1.2 that Klax(F ) fits into the pullback square

Klax(F ) KΛ0[2]

K∆[1] K×K∆[1]

u
⌟

(F (2),id)

The goal of this subsection is to prove that Klax(F ) has all colimits that K does.

Proposition 4.2.3.1. The forgetful functor Klax(F )
u−→ K∆[1] reflects colimits.

Specifically, let p : J → Klax(F ) be a map of simplicial sets, and say that the lax F -algebra

at pj is given by FBj ← Ej → Bj. Suppose up : J → K∆[1] admits a colimit E∞ → B∞.

Then, we have a cocone of maps Ej → FBj → FB∞, and so by the universal property of

E∞ = lim−→j
Ej, there is an essentially unique map E∞ → FB∞. The resulting lax F -algebra

FB∞ ← E∞ → B∞ is then a colimit of p : J → Klax(F ).

In order to prove this, we will rely on the following technical results:

Lemma 4.2.3.2. Let p : J → A×CB be a map of simplicial sets into a strict fibre product of

quasicategories, and suppose that the composite πAp : J → A admits a colimit π : J▷ → A.

Then, p admits a colimit in A×C B if and only if we can always solve the lifting problem

J ⋆ T B

J▷ ⋆ T A C

(4.2)

where T is any simplicial set, J ⋆ T → B extends πBp : J → B, and J▷ ⋆ T → A extends π.

Proof. If p admits a colimit, then certainly every such lifting problem (4.2) can be solved.

Conversely, suppose every lifting problem (4.2) can be solved. By taking T = ∅, we obtain a
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cocone p : J▷ → A×C B extending p. The goal is to show that p is indeed a colimit cocone

for p. Therefore, we need to find a dotted arrow fitting in any diagram

J ⋆ S J ⋆ T

J▷ ⋆ S J▷ ⋆ T A×C B B

A C

⌟

where the map J ⋆ T → A×C B extends p, and J▷ ⋆ S → A×C B extends p. Since we have a

colimit cocone π in A, we can find an arrow J▷ ⋆ T → A fitting as the dashed arrow in the

above diagram. This reduces the problem for finding a dotted arrow into solving a lifting

problem (4.2), which can be done by assumption.

Lemma 4.2.3.3. For all simplicial sets S, T , the diagram

(S × {0}) ⋆ (T × {1}) (S ×∆[1]) ⋆ (T × {1})

(S × {0}) ⋆ (T ×∆[1]) (S ⋆ T )×∆[1]
⌜

is a pushout square, which is moreover a homotopy pushout square as the maps are cofibra-

tions.

Proof. On n-cells, the square is given by

(Sn × {0}) ⊔ (Tn × {1}) ⊔
∐︂

i+j=n−1

(Si × {0})× (Tj × {1}) (Sn ×∆[1]n) ⊔ (Tn × {1}) ⊔
∐︂

i+j=n−1

(Si ×∆[1]i)× (Tj × {1})

(Sn × {0}) ⊔ (Tn ×∆[1]n) ⊔
∐︂

i+j=n−1

(Si × {0})× (Tj ×∆[1]j) (Sn ×∆[1]n) ⊔ (Tn ×∆[1]n) ⊔
∐︂

i+j=n−1

(Si × Tj ×∆[1]n)

Since colimits commute with colimits, it suffices to show that the diagram restricted to each

set of coproduct summands forms a pushout square. In other words, it suffices to show for

all i + j = n − 1 (where i, j ≥ −1 and we take K−1 := ∗ for any simplicial set K) that the

square

(Si × {0})× (Tj × {1}) (Si ×∆[1]i)× (Tj × {1})

(Si × {0})× (Tj ×∆[1]j) Si × Tj ×∆[1]i+j+1

is a pushout square. This is trivial if i = −1 or j = −1, so suppose i, j ≥ 0. Since sSet

is cartesian closed, products commute with colimits, which allows us to reduce further to
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showing that

∗ Hom∆([i], [1])

Hom∆([j], [1]) Hom∆([i+ j + 1], [1])

is a pushout square. Note that maps [i]→ [1] correspond to integers 0 ≤ c ≤ i+ 1, where c

indicates the first index of the map that is sent to 1 (and c = i + 1 means that the map is

constant at zero). With this interpretation, the top map picks out the morphism [i] → [1]

corresponding to the integer c = 0, while the vertical map on the left picks out the zero map

[j]→ [1]. Observing that we have a pushout square amounts to observing that a morphism

[i+ j + 1]→ [1] falls into one of the following three cases:

� it corresponds to a cut 0 ≤ c < j+1, in which case it comes from a nonzero morphism

[j]→ [1]

� it corresponds to a cut j + 1 < c ≤ i+ j + 2, in which case it comes from a morphism

[i] → [1] that starts at zero (the vertical map on the right shifts the index of the cut

up by j + 1)

� it corresponds to the cut c = j + 1, in which case it simultaneously comes from the

constant zero morphism [j]→ [1] and the constant one morphism [i]→ [1]

We moreover recall the following result:

Lemma 4.2.3.4. [26, Lemma 2.1.2.3] Let A0 ⊆ A and B0 ⊆ B be inclusions such that either

A0 ⊆ A is right anodyne, or B0 ⊆ B is left anodyne. Then, the inclusion

(A0 ⋆ B) ⊔A0⋆B0 (A ⋆ B0) ↪→ A ⋆ B

is inner anodyne.

Proof of Proposition 4.2.3.1. Suppose we have a diagram p : J → Klax(F ) such that the

composite up : J → K∆[1] admits a colimit pu : J
▷ → K∆[1]. By Lemma 4.2.3.2, it suffices to

show for any simplicial set T that we can find a lift for any problem

J ⋆ T Klax(F ) K{1←0→2} K{1←0}

J▷ ⋆ T K{0→2} K{1} ×K{0→2} K{1} ×K{0}

q

⌟

(F (2),id)

(4.3)
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where q extends the composite J
p−→ Klax(F ), and the leftmost arrow on the bottom extends

pu : J▷ → K∆[1]. Since we have the pullback square on the right, it suffices to find a lift

J▷ ⋆ T → K{0→1} to the upper right corner. By currying, we are finding a suitable map

(J▷ ⋆ T )×∆[1]→ K.

For the sake of clarity, we will refer to maps of simplicial sets based on an intuitive diagram

that they reflect. For this purpose, we will denote the lax F -algebra qj at j ∈ J ⊆ J ⋆ T

by FBj ← Ej → Bj, and we will denote the lax F -algebra qt at t ∈ T ⊆ J ⋆ T by

FCt ← Dt → Ct. Similarly, denote the colimit pu(∞) ∈ K{0→2} by E∞ → B∞. Then, the

desired lift (J▷ ⋆ T )×∆[1]→ K reflects the diagram⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

FBj FCt

FB∞

Ej Dt

E∞

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(4.4)

The first goal is to produce a map reflecting the diagram⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

FB∞

Ej E∞ FCt

Dt

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(4.5)

from which the dashed arrows can be recovered by the universal property of E∞ = lim−→j
Ej

(note that the dashed arrows E∞ → Dt are already provided from the bottom row of (4.3)

via the map {∞} ⋆ T ⊆ J▷ ⋆ T → K{0→2} → K{0}).

The commutative diagram ⎧⎪⎪⎨⎪⎪⎩
FBj FCt

Ej Dt

⎫⎪⎪⎬⎪⎪⎭ (4.6)

is obtained by the map (J ⋆ T )×∆[1]→ K given as the adjunct of the top row of (4.3). By

Lemma 4.2.3.3, we can write

(J ⋆ T )×∆[1] =
(︁
(J × {0}) ⋆ (T ×∆[1])

)︁
⊔(J×{0})⋆(T×{1})

(︁
(J ×∆[1]) ⋆ (T × {1})

)︁
In particular, we can isolate the upper-left triangle of (4.6) by restricting to the simplicial

subset (J ×∆[1]) ⋆ (T ×{1}) ↪→ (J ⋆ T )×∆[1]→ K. We also have a map J ⋆ {∞} ⋆ T → K
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obtained from the bottom row of (4.3) as the composite J▷ ⋆ T → K{1} × K{0→2} → K{1},

which reflects the diagram ⎧⎪⎪⎨⎪⎪⎩
FB∞

FBj FCt

⎫⎪⎪⎬⎪⎪⎭
Gluing with the upper left triangle of (4.6), we can produce a map

(J ×∆[1]) ⋆ {∞} ⋆ (T × {1})→ K

corresponding to the diagram ⎧⎪⎪⎨⎪⎪⎩
FBj FB∞

Ej FCt

⎫⎪⎪⎬⎪⎪⎭ (4.7)

as a solution to the lifting problem(︁
(J ×∆[1]) ⋆ (T × {1})

)︁
⊔(J×{1})⋆(T×{1})

(︁
(J × {1}) ⋆ {∞} ⋆ (T × {1})

)︁
K

(J ×∆[1]) ⋆ {∞} ⋆ (T × {1})

By applying Lemma 4.2.3.4 to the right anodyne map J × {1} = J ×Λ1[1] ↪→ J ×∆[1] and

the inclusion T × {1} ↪→ {∞} ⋆ (T × {1}), we see that the vertical map is inner anodyne.

Therefore, since K is a quasicategory, it follows that such a lift indeed exists.

Now, glue the map for (4.7) to the bottom-right triangle of (4.6) to produce a map(︁
(J × {0}) ⋆ (T ×∆[1])

)︁
⊔(J×{0})⋆(T×{1})

(︁
(J ×∆[1]) ⋆ {∞} ⋆ (T × {1})

)︁
→ K

In particular, we can restrict this map to the simplicial subset(︁
(J × {0}) ⋆ (T ×∆[1])

)︁
⊔(J×{0})⋆(T×{1})

(︁
(J × {0}) ⋆ {∞} ⋆ (T × {1})

)︁
∼= (J × {0}) ⋆

(︂
(T ×∆[1]) ⊔T×{1}

(︁
{∞} ⋆ (T × {1})

)︁)︂
reflecting the subdiagram ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

FB∞

Ej FCt

Dt

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
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which is precisely the perimeter of (4.5) required to invoke the universal property of E∞.

Indeed, since E∞ is a colimit of the diagram J
p−→ Klax(F ) → K{1←0→2} → K{0}, it follows

that we can find a dashed morphism fitting in the diagram

(J × {0}) ⋆ (T × {0}) (J × {0}) ⋆
(︂
(T ×∆[1]) ⊔T×{1}

(︁
{∞} ⋆ (T × {1})

)︁)︂

(J▷ × {0}) ⋆ (T × {0}) (J▷ × {0}) ⋆
(︂
(T ×∆[1]) ⊔T×{1}

(︁
{∞} ⋆ (T × {1})

)︁)︂

K

where the bottom map (J▷ × {0}) ⋆ (T × {0}) → K is the projection of the bottom row of

(4.3) onto K{0} that describes the complex of morphisms⎧⎪⎪⎨⎪⎪⎩
E∞

Ej Dt

⎫⎪⎪⎬⎪⎪⎭
This dashed morphism precisely recovers the diagram (4.5). To obtain the desired diagram

(4.4), we glue this morphism with the map (J × ∆[1]) ⋆ {∞} ⋆ (T × {1}) → K describing

(4.7). Indeed, we get a pushout square

(J × {0}) ⋆ {∞} ⋆ (T × {1}) (J ×∆[1]) ⋆ {∞} ⋆ (T × {1})

(J▷ × {0}) ⋆
(︂
(T ×∆[1]) ⊔T×{1}

(︁
{∞} ⋆ (T × {1})

)︁)︂
(J▷ ⋆ T )×∆[1]

K

⌜

(4.8)

and the dashed arrow precisely reflects the diagram (4.4), meaning that its adjunct map

J▷ ⋆ T → K{0→1} pulls back to give precisely a lift in (4.3), as desired.

To see that (4.8) is indeed a pushout square, note that by expanding the pushout on the

bottom left corner and using that joins preserve pushouts, this is equivalent to showing that

the diagram

(J × {0}) ⋆ {∞1} ⋆ (T × {1}) (J ×∆[1]) ⋆ {∞1} ⋆ (T × {1})

(J▷ × {0}) ⋆ (T × {1}) (J▷ × {0}) ⋆ {∞1} ⋆ (T × {1})

(J▷ × {0}) ⋆ (T ×∆[1]) (J▷ ⋆ T )×∆[1]
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is a universal cocone diagram, where I have tacitly replaced {∞} with {∞1}, to indicate

that its image in (J▷ ⋆ T )×∆[1] lies in the top cell (J ⋆ {∞1} ⋆ T )× {1}.
Note that (J×{0})▷⋆{∞1}⋆(T×{1}) is isomorphic to (J×{0})⋆({∞}×∆[1])⋆(T×{1})

using the associativity of the join operation and how {∞0}⋆{∞1} ∼= {∞}×∆[1]. Therefore,

the above diagram is precisely the result of pasting the following two pushout squares:

(J × {0}) ⋆ {∞1} ⋆ (T × {1}) (J ×∆[1]) ⋆ {∞1} ⋆ (T × {1})

(J▷ ⋆×{0}) ⋆ (T × {1}) (J × {0}) ⋆ ({∞} ×∆[1]) ⋆ (T × {1}) (J▷ ×∆[1]) ⋆ (T × {1})

(J▷ × {0}) ⋆ (T ×∆[1]) (J▷ ⋆ T )×∆[1]

⌜

⌜

Indeed, the bottom square is precisely an instance of Lemma 4.2.3.3, and the upper square

is the result of applying (−) ⋆ (T × {1}) to another instance of Lemma 4.2.3.3. This proves

that (4.8) is indeed a pushout square diagram, and thus we have our desired lift of (4.3).

A very similar result holds for colimits of coalgebras:

Proposition 4.2.3.5. The forgetful functor Kco(F ) → K sending an F -coalgebra to its

underlying object reflects colimits.

Proof. Note that Kco(F ) is equivalent to the full subcategory of Klax(F ) spanned by those

lax F -algebras where the lax action is invertible. Since the colimit of equivalences in K∆[1]

is an equivalence, the result follows from Proposition 4.2.3.1.

Corollary 4.2.3.6. The forgetful functor K(F )→ K reflects limits.

4.3 Universal fixed points

As in Section 4.2, we continue to fix a category K and an endofunctor F : K → K. The

goal of this section is to prove that Adámek’s construction also yields free F -algebras in the

∞-categorical setting. In particular, this establishes when transfinite application of F to an

initial object ∅ of K yields an initial fixed point of F ; see Corollary 4.3.1.8.

In Section 4.3.2, we focus on the construction of fixed points. Note that a free F -algebra

is generally not a fixed point of F .

Example 4.3.0.1. If S : Set→ Set, X ↦→ X ⊔ {⊥}, then it turns out that free S-algebras

are fixed points of S. Indeed, the free S-algebra generated by a set X is given by X ⊔ N,
where the S-algebra action is inherited from that of N, and is thus a bijection.
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Example 4.3.0.2. Let ∗ : Set → Set be the terminal endofunctor on Set; that is, the

functor that sends X ↦→ ∗ for all sets X. Then, the category of ∗-algebras is precisely the

1-category Set∗ of pointed sets.

The only fixed point of ∗ is the singleton. On the other hand, the free pointed set generated

by a set X is given by formally adjoining a basepoint X ⊔ {∗}. In particular, X generates a

fixed point of ∗ if and only if X = ∅.

Instead, we briefly study an orthogonal generalisation of Adámek’s initial algebra con-

struction focused on yielding fixed points. Specifically, we study free fixed points of F

generated by F -coalgebras. This is based on the fact that an initial object ∅ of K has a

unique F -coalgebra structure given by the coaction ! : ∅ → F (∅), which can be iterated to

produce a fixed point of F .

4.3.1 Free lax algebras

By the discussion in Section 4.2.2, Adámek’s free F -algebra construction is given by transfi-

nite application of a propagation pushout endofunctor Π via its unit η : Id⇒ Π. From this

perspective, Adámek’s construction can be thought of as a special case of a more abstract

result:

Theorem 4.3.1.1 (Free fixed point construction). Let L be a category, and Π : L→ L an

endofunctor with a unit; that is, with a natural transformation η : Id ⇒ Π. Denote by LΠ

the full subcategory of L spanned by objects K such that ηK : K → ΠK is an equivalence.

For an ordinal θ, let [θ] denote the nerve of the poset of all ordinals 0 ≤ ξ ≤ θ. For any

object L ∈ L, construct the diagrams Dθ
L : [θ]→ L by transfinite induction as follows:

� Define D0
L : [0]→ L to be the diagram picking out the object L.

� Given Dθ
L, define D

θ+1
L to be the extension of Dθ

L that sends the morphism θ ≤ θ + 1

in [θ + 1] to ηDθ
L(θ)

: Dθ
L(θ) → ΠDθ

L(θ). Note that this construction is well-defined

by, for example, identifying ∞-categories with strictly sSet-enriched categories as in

Theorem 2.4.1.5.

� Given Dθ
L for all θ < λ with λ a limit ordinal, let λ = lim−→θ<λ

[θ] be the nerve of the

poset of all ordinals 0 ≤ ξ < λ, which induces a functor D<λ
L : λ→ L. Since [λ] ∼= λ▷,

define Dλ
L to be a colimit cocone for D<λ

L , if it exists.

Suppose for some limit ordinal λ that the diagram Dλ
L : [λ] → L is well-defined, and letˆ︁L := Dλ

L(λ). Then, the following are equivalent:

(i) ˆ︁L ∈ LΠ.

84



(ii) ˆ︁L corepresents the functor HomL(L,−)| : LΠ → S; that is, ˆ︁L is the free object in LΠ

generated by L.

Proof. Since (ii) certainly implies (i), we need to show that (i) implies (ii), for which it is

enough to prove that the coprojection L → ˆ︁L induces a homotopy equivalence of mapping

spaces HomL(ˆ︁L,K)→ HomL(L,K) whenever K ∈ LΠ. Indeed, if ˆ︁L ∈ LΠ, this would prove

that HomLΠ(ˆ︁L,K) = HomL(L,K) for all K ∈ LΠ.

Fix K ∈ LΠ and let δθK : [θ] → L denote the constant diagram on K. By transfinite

induction, we can define a natural transformation δθK ⇒ Dθ
K for every ordinal θ, where the

component K = δθK(ξ)→ Dθ
K(ξ) is given by the transfinite composite

K
η−→ ΠK

Πη−→ Π2K → · · · → Dθ
K(ξ)

SinceK ∈ LΠ, the map ηK : K → ΠK is an equivalence, which ensures that the diagramsDθ
K

are well-defined for all ordinals θ, and moreover that the natural transformation δθK ⇒ Dθ
K

is a natural equivalence.

Now, consider the diagram

HomL(ˆ︁L,K) HomL(L,K)

Nat(Dλ
L, δ

λ
K) Nat(Dλ

L, D
λ
K)

∼

∼

The vertical map on the left is an equivalence by [26, Lemma 4.2.4.3(ii)], and the horizontal

map on the bottom is an equivalence since δλK ⇒ Dλ
K is a natural equivalence. The vertical

map on the right is given by the functoriality of the construction of the diagram Dλ
(−),

and admits a retraction (denoted by the dashed arrow) that acts by projecting a natural

transformation Dλ
L ⇒ Dλ

K to the zeroth component L→ K. Since the square commutes, it

follows from the 2-out-of-6 property that all of the arrows in the diagram are equivalences.

In particular, the map HomL(ˆ︁L,K)→ HomL(L,K) is an equivalence, as desired.

The following lemma explicitly bridges Adámek’s construction to the fixed point construc-

tion above.

Lemma 4.3.1.2. Let K be finitely cocomplete so that we have the propagation endofunctor

and unit on Klax(F ). Then, the inclusion K(F ) ↪→ Klax(F ) factors through the full subcat-

egory Klax(F )Π ⊂ Klax(F ) of Π-fixed points, and the corestriction K(F ) → Klax(F )Π is an

equivalence.
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Proof. Recall that the propagation unit at a lax F -algebra FB
r←− E

a−→ B is the morphism

consisting of the horizontal arrows in the diagram

FB F (B ⊔E FB)

E FB

B B ⊔E FB

Fi

r

r

a
⌜

Fi

i

(4.9)

By Proposition 4.2.1.3, K(F ) can be identified with the full subcategory of Klax(F ) on the

lax F -algebras FB
r←− E

a−→ B where the resolution r is an equivalence. In particular, this

implies that the pushout morphism i : B → B ⊔E FB is an equivalence (since pushouts

preserve equivalences), and thus that the top morphism Fi : FB → F (B ⊔E FB) is an

equivalence also. This shows that the inclusion K(F ) ↪→ Klax(F ) indeed factors through

Klax(F )Π.

Conversely, if a lax F -algebra FB
r←− E

a−→ B lies in Klax(F )Π, then the middle component

r : E → FB in (4.9) in particular is an equivalence. This implies that the lax F -algebra lies

in the essential image of K(F ), showing that the fully faithful inclusion K(F ) → Klax(F )Π

is essentially surjective, thus completing the proof.

Remark 4.3.1.3. By [26, Corollary 4.4.2.4], finite cocompleteness follows from assumingK has

pushouts and an initial object, which is necessary to ensure that the propagation endofunctor

is well-defined for the entire category Klax(F ). This assumption is not strictly necessary: we

can instead choose any full subcategory L ⊆ Klax(F ) that contains K(F ) and has enough

pushouts to construct a propagation functor Π : L → Klax(F ). If Π corestricts to an

endofunctor on L, then the above lemma can be adapted to show that K(F ) ↪→ LΠ is an

equivalence also.

Theorem 4.3.1.4 (Adámek’s construction on lax algebras). For a category K and endofunc-

tor F : K→ K, fix a lax F -algebra FB
r←− E

a−→ B. Construct the diagrams Dθ : [θ]→ K∆[1]

by transfinite induction, where θ is an ordinal:

� Take D0 : [0]→ K∆[1] to be the diagram that picks out the arrow a : E → B. Note that

the resolution map provides an arrow r0 := r : E → FB.

� Given Dθ : [θ] → K∆[1], denote by Eθ → Bθ the arrow of K picked out by Dθ(θ).

Suppose we have chosen an arrow rθ : Eθ → FBθ. Then, define Dθ+1 to be the
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extension of Dθ that sends the morphism θ ≤ θ + 1 in [θ + 1] to the pushout square

Eθ FBθ

Bθ Bθ+1

rθ

⌜

iθ+1

In particular, Dθ+1(θ + 1) picks out the arrow Eθ+1 → Bθ+1 where Eθ+1 := FBθ.

Moreover, choose rθ+1 := Fiθ+1 : E
θ+1 → FBθ+1.

� For a limit ordinal λ, and given Dθ for all θ < λ, let λ = lim−→θ<λ
[θ] be the nerve of the

poset of all ordinals 0 ≤ ξ < λ, so that the provided diagrams induce D<λ : λ→ K∆[1].

Then, define Dλ to be a colimit cocone for D<λ. If the colimit point Dλ(λ) is the

arrow Eλ → Bλ, then the choice of rθ for every θ < λ induces a canonical map

rλ : E
λ → FBλ by the universal property of Eλ.

Suppose for some limit ordinal λ that the diagram Dλ : [λ] → K∆[1] is well-defined, and let

E∗ → B∗ be the arrow picked out by Dλ(λ) in K∆[1]. If the canonical map r∗ : E
∗ → FB∗

induced by the rθ chosen in the construction is invertible, then FB∗
r−1
∗−−→ E∗ → B∗ defines

an action that realises B∗ as the free F -algebra generated by FB ← E → B.

Remark 4.3.1.5. Adámek’s construction for a lax F -algebra FB
r←− E

a−→ B can be described

more explicitly if the construction terminates after countably many steps (that is, λ = ω).

In this case, we are assuming that the pushout squares in the diagram

E FB F (B ⊔E FB) F (B ⊔E F (B ⊔E FB)) . . .

B B ⊔E FB B ⊔E F (B ⊔E FB) B ⊔E F (B ⊔E F (B ⊔E FB)) . . .

r

a

⌜

Fi1

⌜

Fi2

⌜

Fi3

i1 i2 i3

exist, and moreover that this diagram has a colimit E∗ → B∗ (in K∆[1]). If the canonical

map E∗ → FB∗ induced by the top row is invertible, then composing an inverse with the

colimit arrow defines an action FB∗
∼−→ E∗ → B∗ that realises B∗ as the free F -algebra

generated by FB ← E → B.

Proof of Theorem 4.3.1.4. For every θ ≤ λ, let Eθ → Bθ denote the arrow picked out by

Dλ(θ). With the rθ : Eθ → FBθ, we obtain lax F -algebras Aθ := {FBθ ← Eθ → Bθ},
where A0 is the original lax F -algebra A0 = A := {FB ← E → B}.

Let L denote the full subcategory of Klax(F ) spanned by K(F ) and the lax F -algebras

Aθ for θ ≤ λ. Assuming that Dλ is well-defined ensures that we have the pushouts in K

necessary to define the unital propagation functor Π : L→ Klax(F ) as in Definition 4.2.2.1.
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Moreover, we have by design that Π(Aθ) = Aθ+1 for every θ < λ, and Π(Aλ) ≃ Aλ since

we assume that the map rλ = r∗ is invertible. Therefore, Π corestricts to an endofunctor

L→ L.

For θ ≤ λ, let Dθ
A : [θ] → L denote the diagram constructed in Theorem 4.3.1.1 with

the endofunctor Π and the lax F -algebra A. We can see by transfinite induction that the

diagrams Dθ
A are indeed well-defined, and moreover that the lax F -algebra Dθ

A(θ) is precisely

Aθ.

� This is immediate if θ = 0.

� Given that Dθ
A is well-defined and Dθ

A(θ) = Aθ, it follows that Dθ+1
A exists and maps

(θ + 1) to Aθ+1 because Aθ+1 = Π(Aθ).

� Suppose for a limit ordinal ξ that Dθ
A is well-defined for all θ < ξ, and Dθ

A(θ) = Aθ. It

would follow that Dξ
A is well-defined and Dξ

A(ξ) = Aξ if we can show that the colimit

of D<ξ
A : ξ → L is Aξ.

To see this, recall that Eξ → Bξ is defined to be the colimit of D<ξ : ξ → K∆[1], and

the universal property of Eξ then canonically induces the map rξ from the maps rθ for

θ < ξ. This is precisely how the colimit lim−→D<ξ
A of lax F -algebras is constructed by

Proposition 4.2.3.1.

By assumption, the lax F -algebra Aλ = {FB∗ ← E∗ → B∗} has an invertible resolution

r∗, so A
λ = Dλ

A(λ) lies in LΠ. Therefore, the conclusion follows from Theorem 4.3.1.1 and

Lemma 4.3.1.2.

Corollary 4.3.1.6 (Adámek’s free algebra construction). Fix an object K ∈ K. Construct

the objects Kθ and morphisms iθ : K
θ → K⊔FKθ, for θ an ordinal, by transfinite induction:

� Take K0 := K and i0 : K → K ⊔ FK to be the first coprojection.

� Given Kθ → K ⊔ FKθ, we have a pushout square

FKθ F (K ⊔ FKθ)

K ⊔ FKθ K ⊔ F (K ⊔ FKθ)

Fiθ

⌜

where the vertical arrows are given by second coprojections for the respective coproducts.

Define Kθ+1 := K ⊔ FKθ and take iθ+1 : K
θ+1 → K ⊔ FKθ+1 to be the bottom row of

the above pushout square.
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� Suppose iθ : Kθ → K ⊔ FKθ = Kθ+1 is well-defined for every θ < λ with λ a limit

ordinal. Define Kλ := lim−→θ<λ
Kθ. Since Kθ+1 = K ⊔FKθ, we obtain a canonical map

iλ : K
λ → K ⊔ FKλ.

Suppose for some limit ordinal λ that Kλ is well-defined, and iλ : Kλ → K ⊔ FKλ is

invertible. Then, the map FKλ → Kλ induced by the coprojections FKθ → K⊔FKθ = Kθ+1

for θ < λ defines an action that realises Kλ as the free F -algebra generated by the object K.

Proof. Assume first that K has an initial object ∅. Then, the result follows from applying

Theorem 4.3.1.4 to the free lax F -algebra FK ← ∅ → K generated by the object K.

Now, suppose K does not have an initial object. Extend F to an endofunctor on K◁

by fixing the cone point, then K(F ) is a full subcategory of K◁(F ). Then, Kλ is a free

F -algebra in K◁(F ) generated by K by the previous paragraph. Since Kλ lives in K(F ) as

well, it restricts to a free F -algebra in K(F ) generated by K also.

Remark 4.3.1.7. As in Remark 4.3.1.5, Adámek’s construction of free F -algebras can be

described more succinctly if the construction terminates after countably many steps. In this

case, we suppose the coproducts in the diagram

FK F (K ⊔ FK) F (K ⊔ F (K ⊔ FK)) . . .

K K ⊔ FK K ⊔ F (K ⊔ FK) K ⊔ F (K ⊔ F (K ⊔ FK)) . . .

Fi1

⌜

Fi2

⌜

Fi3

i1 i2 i3 i4

exist (note that the top row is obtained from the bottom row by applying F ). If the bottom

row has a colimit K∗ in K that is preserved by the functor K ⊔ F (−) : K → K, then the

canonical map FK∗ → K∗ induced by the vertical arrows in the above diagram realises K∗

as the free F -algebra generated by K.

Corollary 4.3.1.8 (Adámek’s initial algebra construction). Let ∅ be an initial object of K.

Construct objects Iθ and maps jξ : I
ξ → FIθ for ξ ≤ θ by transfinite induction:

� Define I0 := ∅, with i0 the unique map I0 → FI0.

� Given jθ, define I
θ+1 := FIθ and jθ+1 := Fjθ.

� For a limit ordinal λ, given the maps jθ : Iθ → FIθ = Iθ+1 for every θ < λ, define

Iλ := lim−→θ<λ
Iθ. Since FIθ = Iθ+1, we then obtain a canonical map jλ : I

λ → FIλ.

Suppose for some limit ordinal λ that Iλ is well-defined, and jλ : Iλ → FIλ is invertible.

Then, the pair (Iλ, j−1λ ) defines an initial F -algebra.

Proof. Follows from Corollary 4.3.1.6 by taking K = ∅.
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Remark 4.3.1.9. The corollary implies in particular that if

∅ !−→ F∅ F (!)−−→ F 2∅ F 2(!)−−−→ F 3∅ → . . .

admits a colimit I, and the canonical map j : I → FI is an equivalence, then (I, j−1) is an

initial F -algebra.

4.3.2 Free fixed points

In this subsection, we study the fixed points K of F , exhibited by an explicit choice of

equivalence K
∼−→ FK.

Definition 4.3.2.1. Let I denote the nerve of the walking isomorphism defined in Nota-

tion 3.2.2.2. Then, define the category Fix(F ) as the pullback

Fix(F ) KI

K K×K

⌟

(F,id)

Note that the vertical map on the right is a categorical fibration, as it is induced by an in-

clusion of simplicial sets, meaning that the pullback is a homotopy pullback of∞-categories.

Recall that we denote by K(F ) the category of F -algebras, and Kco(F ) ≃ (Kop(F ))op the

category of F -coalgebras.

Proposition 4.3.2.2. The category Fix(F ) is equivalent to the full subcategory of K(F )

spanned by the F -algebras with trivial (i.e. invertible) action. Dually, Fix(F ) is also equiv-

alent to the full subcategory of Kco(F ) spanned by the F -coalgebras with trivial coaction.

Proof. Let I♮ = I♯ denote the walking isomorphism as a marked simplicial set, marked at

every edge. This is fibrant in the cartesian model structure on marked simplicial sets. Let

Kco(F )
F denote the full subcategory of Kco(F ) spanned by the F -coalgebras with trivial

coaction. We will establish that the forgetful functor Fix(F ) → Kco(F ) restricts to an

equivalence Fix(F )→ Kco(F )
F . The statement regarding F -algebras is similar.

Let ∆[1]♯ denote the simplicial set ∆[1] marked at all edges. Then, either inclusion

∆[1]♯ → I♮ is marked anodyne. In particular, one of these inclusions induces a trivial
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categorical fibration KI = Map♭(I♮,K♮)→ Map♭(∆[1]♯,K♮) fitting in the diagram

Fix(F ) KI

Kco(F )
F Map♭(∆[1]♯,K♮)

K K×K

∼

⌟

(id,F )

The perimeter commutes for a suitably chosen inclusion ∆[1]♯ → I♮, and is the definitional

pullback square for Fix(F ). As K♮ is marked at the equivalences, the inner square is also a

pullback square.

All of the vertical maps on the right are categorical fibrations, so the pullback diagrams

are both homotopy pullback diagrams in the Joyal model structure on simplicial sets. In

particular, since the corresponding objects of the two pullback diagrams are connected by

categorical equivalences, it follows that the induced map Fix(F )→ Kco(F )
F is a categorical

equivalence as well.

Remark 4.3.2.3. By Lemma 4.2.0.3, any initial F -algebra is then an initial object in Fix(F ).

Dually, any terminal F -coalgebra is a terminal object in Fix(F ).

Definition 4.3.2.4. For a limit ordinal λ, denote by λ the nerve of the poset of ordinals

0 ≤ ξ < λ. Then, define a λ-sequence in K to be a functor λ→ K.

Say that the pair (K, F ) is compatible with λ-sequences if:

� K is closed under colimits of θ-sequences for all limit ordinals 0 < θ ≤ λ, and

� F preserves colimits of λ-sequences.

Note that (K, F ) is automatically a compatible with λ-sequences for some regular cardinal

λ ≫ 0 if K is accessible, and F is an accessible functor. The remainder of this subsection

provides a cursory study of Fix(F ) in the case where (K, F ) is compatible with λ-sequences

for some limit ordinal λ.

The key observation is the following:

Theorem 4.3.2.5. Suppose (K, F ) is compatible with λ-sequences for some limit ordinal λ.

Then, the fully faithful inclusion Fix(F ) ↪→ Kco(F ) admits a left adjoint, realising Fix(F )

as a reflective localisation of the category of F -coalgebras.

Proof. Note that F induces a unital endofunctor on Kco(F ). Explicitly, the image under F

of an F -coalgebra is another F -coalgebra, and we have a unit η : Id⇒ F whose component
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on any coalgebra (C, ν) is its coaction ηC = ν. Moreover, the full subcategory Kco(F )
F of

the F -fixed points in Kco(F ) is precisely the full subcategory of F -coalgebras with trivial

coaction by definition. By Proposition 4.3.2.2, it therefore suffices to show that the inclusion

Kco(F )
F ↪→ Kco(F ) admits a left adjoint.

By Proposition 4.2.3.5, colimits of θ-sequences in Kco(F ) for θ ≤ λ exist and are computed

on the underlying objects in K. In particular, for any F -coalgebra (C, ν), the colimit IC of

the λ-sequence

C
ν−→ FC

Fν−→ F 2C
F 2ν−−→ F 3C → . . .

in Kco(F ) exists, with coaction given by the canonical map lim−→n
F (F nC) → F (lim−→n

F nC).

Since F preserves colimits of λ-sequences, this coaction is an equivalence. By Theorem 4.3.1.1,

it follows that the functor HomKco(F )(C,−)| : Kco(F )
F → S is corepresentable. Since this is

true for any F -coalgebra (C, ν), it follows that the inclusion Kco(F )
F ↪→ Kco(F ) admits a

left adjoint, as desired.

Definition 4.3.2.6. Let (K, F ) be compatible with λ-sequences for some limit ordinal λ.

Denote the left adjoint of the inclusion Fix(F ) ↪→ Kco(F ) by I(−) : Kco(F )→ Fix(F ). Call

an F -coalgebra homomorphism F -local if its image under I(−) is an equivalence in Fix(F ).

Example 4.3.2.7. If (C, ν) is an F -coalgebra, then the coaction ν trivially defines an F -

coalgebra homomorphism (C, ν)→ (FC, Fν). As F -coalgebra homomorphisms, all coactions

are F -local.

We now provide a complete characterisation of the F -local morphisms:

Proposition 4.3.2.8. Suppose (K, F ) is compatible with λ-sequences for some limit ordinal

λ. Let I(−) : Kco(F ) → Fix(F ) denote the left adjoint to the inclusion. Then, an F -

coalgebra homomorphism F : (C, ν)→ (D,µ) is F -local if and only if there exists a morphism

s : D → IC such that

C D

IC ID

φ

s

Iφ

commutes up to homotopy.

Proof. If φ is F -local, then IC → ID is an equivalence, which allows us to construct the

morphism s. Conversely, any s : D → IC induces a morphism s∗ : ID → IIC ≃ IC fitting in

the diagram

IC ID

IC ID

φ∗

∼ ∼s∗

φ∗
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showing that s∗ is a weak inverse of φ∗.

Corollary 4.3.2.9. Suppose (K, F ) is compatible with λ-sequences for some limit ordinal

λ. Let φ : (C, ν) → (D,µ) be an F -coalgebra homomorphism. If there exists a morphism

s : D → FC in K such that the diagram

C D

FC FD

φ

ν µ
s

Fφ

commutes up to homotopy, then φ is F -local.

Remark 4.3.2.10. By Proposition 4.3.2.2, we have a completely dual theory as well. In

particular, if K is closed under limits of inverse λ-sequences (that is, functors λop → K),

and F preserves these limits, then Fix(F ) is a coreflective subcategory of K(F ); that is, the

fully faithful inclusion admits a right adjoint T(−) : K(F )→ Fix(F ).

If we refer to an algebra homomorphism as F -colocal if its image under T(−) is an equiv-

alence, then we have in particular that an algebra homomorphism φ : (A,α) → (B, β) is

F -colocal whenever we can find a map s : FB → A such that the diagram

FA FB

A B

Fφ

α
s

β

φ

commutes up to homotopy.

We conclude this subsection with another universal property satisfied by the free fixed

point IC associated to an F -coalgebra C realised by studying F -algebras relative to C. More

specifically, let (C, ν) be an F -coalgebra. Then, we can define an endofunctor FC on the

undercategory KC/ by the composite

FC : KC/
F−→ KFC/

ν∗−→ KC/

where ν∗ acts by precomposition with the coaction ν : C → FC.

Lemma 4.3.2.11. Given a category C and a morphism f : x→ y in C, the precomposition

functor Cy/
f∗−→ Cx/ creates colimits indexed by weakly contractible simplicial sets.

Proof. We have a commutative triangle

Cy/ Cx/

C

f∗
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where the downward maps create colimits indexed by weakly contractible simplicial sets by

Lemma 3.3.2.4.

Proposition 4.3.2.12. Suppose (K, F ) is compatible with λ-sequences for some limit ordinal

λ. By Theorem 4.3.2.5, denote by I(−) : Kco(F )→ Fix(F ) the left adjoint to the inclusion.

For any F -coalgebra (C, ν), the free fixed point IC and the inverse of the induced equivalence

IC
∼−→ FIC define an initial FC-algebra in KC/; that is, an initial object in KC/(FC).

Proof. By assumption, F : K→ K preserves colimits of λ-sequences. Therefore, the induced

functor FC : KC/ → KC/ preserves colimits of λ-sequences by Lemma 4.3.2.11. In particular,

using Corollary 4.3.1.8, we can construct the initial FC-algebra by Adámek’s construction.

The initial object in KC/ is given by the identity on C, so Adámek’s construction builds the

λ-sequence

C
ν−→ FC

Fν−→ F 2C
F 2ν−−→ F 3C → . . .

in KC/. By Lemma 3.3.2.4, this colimit can be calculated in K, which is precisely the colimit

defining the free fixed point IC in Theorem 4.3.2.5.
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Chapter 5

Fixed Points of Enrichment

In Chapter 3, we defined the category of (n, r)-categories for −2 ≤ n ≤ ∞ and 0 ≤ r ≤ n+2

in terms of polysimplicial sheaves satisfying the axioms of a complete Segal space. This

offers a relatively concise model of these categories through internalisation. In this chapter,

we study the relationship between higher categories and enriched categories, analogous to

the development of strict higher categories in Section 2.1.

The theory of enrichment in a monoidal ∞-category V is extensively developed in [10].

In particular, they define a functorial construction of the ∞-category VCat of V-enriched

categories. If V is symmetric monoidal, then VCat inherits a symmetric monoidal structure

analogous to that of [24, §1.4], which allows for the construction V ↦→ VCat to be iterated.

Note that if V is cartesian monoidal, then the tensor product on VCat is cartesian monoidal

as well.

Proposition 5.0.0.1. For −2 ≤ n ≤ ∞ and 0 ≤ r ≤ n+ 2, we have an equivalence

Cat(n+1,r+1) ≃ (Cat(n,r))Cat

between (n+ 1, r + 1)-categories and categories enriched in Cat(n,r).

In particular, Cat(∞,∞) ≃ (Cat(∞,∞))Cat.

Proof. The crux of this argument is [18, Theorem 7.18], which proves for every S-distributor

Y that the category CSS(Y) of complete Segal spaces over Y is equivalent to the category

YCat of categories enriched in Y with its cartesian monoidal tensor product.

By Theorem 3.3.4.5, it then follows that Cat(∞,∞) ≃ (Cat(∞,∞))Cat. For finite r ≥ 0,

Corollary 3.3.4.2 likewise implies by induction that Cat(∞,r+1) ≃ (Cat(∞,r))Cat.

The general case follows from [10, Theorem 6.1.8] by observing for any (∞, r)-category C

that the suspension ΣC in the sense of Definition 3.2.1.5 satisfies the same universal property

as the Cat(∞,r)-enriched category ΣC in the sense of [10, Definition 4.3.21].
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Remark 5.0.0.2. This proposition demonstrates that our construction ofCat(n,r) is equivalent

to the category of (n, r)-categories defined in [10, §6.1] for all −2 ≤ n ≤ ∞ and finite

0 ≤ r ≤ n+ 2.

This shows, in particular, that Cat(∞,∞) is invariant under enrichment. Remark 3.3.4.6

moreover implies thatCat(∞,∞) is a universal S-distributor that is invariant under enrichment

in their cartesian monoidal structure.

The goal of this chapter is to prove that Cat(∞,∞) satisfies a much stronger universal

property with respect to being invariant under enrichment; namely, that it is the initial

locally presentable fixed point of enrichment. This is made precise in Theorem 5.2.0.1.

The approach is as follows. Enrichment defines an endofunctor on the large category

SymMon∞ of symmetric monoidal∞-categories and symmetric monoidal functors between

them, and moreover restricts to an endofunctor on the large category SymMonPres
∞ of

presentably symmetric monoidal ∞-categories and symmetric monoidal left adjoints be-

tween them. We prove in Proposition 5.2.1.4 that Cat(∞,∞) is the initial (−)Cat-algebra in

SymMonPres
∞ .

Note that the universal property of Cat(∞,∞) is restricted to the presentably symmet-

ric monoidal categories. In Theorem 5.2.2.14, we show that the initial (−)Cat-algebra in

SymMon∞ is given by the full subcategory of Cat(∞,∞) spanned by Noetherian (∞,∞)-

categories; that is, (∞,∞)-categories with a weak local finiteness condition.

5.1 The operadic approach to enrichment

In this section, we study the enrichment endofunctor on (presentably) symmetric monoidal

categories. The main goal of the section is to prove that enrichment preserves a broad class

of limits: namely, all limits of diagrams indexed by a weakly contractible simplicial set.

5.1.1 Nonsymmetric operads

In this subsection, we provide a brief overview of the necessary details regarding (generalised)

nonsymmetric coloured operads of [10] and symmetric coloured operads of [28]. In particular,

none of the content in this subsection is original.

Unless otherwise specified, operads are taken to refer to nonsymmetric coloured operads.

For an explanation behind the definitions of operads and their connection to enrichment, see

[10, §2].

Definition 5.1.1.1. A categorical pattern P in the sense of [10, Definition 3.2.1] consists of

a quasicategory C, a family of diagrams pα : K◁
α → C, and a marking on C such that every

edge in K◁
α is sent to a marked edge of C via pα.
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A map of categorical patterns from P = (C, {pα})to P′ = (C′, {p′β}) is a map f : C→ C′ of

marked simplicial sets such that for every index α, there is an index β such that f ◦ pα = p′β.

Theorem 5.1.1.2. [28, Theorem B.0.20, Proposition B.2.9] For a categorical pattern P =

(C, {pα : K◁
α → C}), there is a unique left proper combinatorial simplicial model structure

on sSet+/C such that the cofibrations are the morphisms of sSet+ whose underlying maps of

simplicial sets are monomorphisms, and whose fibrant objects are those π : X → C such that

� π is an inner fibration,

� every marked edge of C admits a π-cocartesian lift in X, and these π-cocartesian lifts

of marked edges of C are precisely the marked edges of X,

� for every index α, the pullback πα : X×CK
◁
α → K◁

α along pα is the cocartesian fibration

associated to a limit cone K◁
α → Cat∞,

� for every index α and any section s : K◁
α → X ×C K

◁
α of πα, the composite diagram

K◁
α

s−→ X ×C K
◁
α

πα−→ X is a π-limit cone.

Denote this model structure by sSet+P.

Moreover, given a map f : P → P′ of categorical patterns, composition with f induces a

left Quillen functor f! : sSet
+
P → sSet+P′.

Remark 5.1.1.3. The model structure induced by the trivial categorical pattern on ∆[0]

(with the unique marking, and no diagrams are chosen) on sSet+ has as fibrant objects the

∞-categories marked at their equivalences. Moreover, the ∞-category underlying sSet+ is

equivalent to the category Cat∞ of small ∞-categories.

By [28, Remark B.2.5], every model category sSet+P induced by a categorical pattern P

is canonically enriched over sSet+ endowed with the above model structure. In particular,

if X is P-fibrant, then HomP(−, X) : (sSet+P)
op → sSet+ is a right Quillen functor.

Definition 5.1.1.4. Say that a morphism ϕ : [n] → [m] in ∆ is inert if it is a subinterval

inclusion, meaning ϕ(i) = ϕ(0) + i for every 0 ≤ i ≤ n. We then construct the following

categories:

� Let Ogen denote the categorical pattern on ∆op obtained by marking ∆op at the inert

morphisms, and choosing as diagrams the subcategory inclusions G◁
[n] →∆op for n ≥ 0,

where G◁
[n] is spanned by the objects [0], [1], [n], and the inert morphisms between

them. Then, define the category Opdgen
∞ of generalised operads to be the ∞-category

underlying the model category sSet+Ogen .
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� Let O denote the categorical pattern on ∆op obtained by marking the inert morphisms,

and choosing as diagrams the subcategory inclusions K◁
[n] →∆op for n ≥ 0, where K◁

[n]

is spanned by the inert morphisms [1] → [n]. Then, define the category Opd∞ of

operads to be the ∞-category underlying the model category sSet+O.

� Let M denote the categorical pattern on ∆op obtained by marking all morphisms,

and taking the diagrams K◁
[n] → ∆op as above. Then, define the category Mon∞ of

monoidal categories as the ∞-category underlying the model category sSet+M.

The identity functor on ∆op induces maps of categorical patterns Ogen → O→M, and thus

left Quillen functors sSet+Ogen → sSet+O → sSet+M. Therefore, we have adjunctions

Opdgen
∞ ⊥ Opd∞ ⊥ Mon∞

Lgen

(−)⊗

Remark 5.1.1.5. The morphisms in Mon∞ are the strong monoidal functors. Let Monlax
∞

denote the full subcategory of Opd∞ spanned by the image of (−)⊗ : Mon∞ → Opd∞,

then Monlax
∞ is the category of monoidal small categories and lax monoidal functors.

Definition 5.1.1.6. Let Γop denote the category of finite pointed sets, generated by the

representatives ⟨n⟩ := {∗, 1, . . . , n} for n ≥ 0. Call a map ϕ : ⟨n⟩ → ⟨m⟩ inert if every

1 ≤ j ≤ m in ⟨m⟩ is the image of a unique element of ⟨n⟩. We now construct the following

categories:

� Let OΣ denote the categorical pattern on Γop obtained by marking Γop at the inert

morphisms, and choosing as diagrams the subcategory inclusionsK◁
⟨n⟩ → Γop for n ≥ 0,

where K◁
⟨n⟩ is spanned by the inert maps ⟨1⟩ → ⟨n⟩. Then, define the category OpdΣ

∞

of symmetric operads to be the ∞-category underlying the model category sSet+
OΣ .

� Fix a symmetric operad π : O→ Γop (that is, an object of OpdΣ
∞). Let MO denote the

categorical pattern on O obtained by marking all morphisms, and choosing as diagrams

all functors K◁
⟨n⟩ → O for n ≥ 0 that associate to each inert ⟨1⟩ → ⟨n⟩ in K◁

⟨n⟩ a π-

cocartesian lift in O. Then, define the category MonO of O-monoidal categories to be

the ∞-category underlying the model category sSet+MO
.

Remark 5.1.1.7. We have from [28, Construction 4.1.2.9] a functor c : ∆op → Γop defined

by sending [n] to the set of partitions (“cuts”) of [n] into at most two contiguous pieces.

This functor defines a map of categorical patterns c : O → OΣ, and thus an adjunction

c! : Opd∞ ⇄ OpdΣ
∞ : c∗, where the right adjoint is the forgetful functor.
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Example 5.1.1.8. Consider the commutative operad E∞ given by the identity Γop → Γop,

and let SymMon∞ := MonE∞ denote the category of symmetric monoidal categories. By

definition, SymMon∞ is the category associated to the model category given by the cate-

gorical pattern obtained by marking Γop at all edges, and taking as diagrams the subcategory

inclusions K◁
⟨n⟩ → Γop for n ≥ 0. In particular, the identity functor on Γop induces a map

of categorical patterns OΣ → ME∞ and thus an adjunction OpdΣ
∞ ⇄ SymMon∞ : (−)⊗,

where the right adjoint is a (non-full) inclusion.

Definition 5.1.1.9. For a monoidal ∞-category V⊗ (viewed as an operad), we have from

Remark 5.1.1.3 a right Quillen functor HomO(−,V⊗) : (sSet+O)
op → sSet+. Denote the

associated functor by Alg(−)(V) : Opdop
∞ → Cat∞. In particular, for any operad O, we

have an category AlgO(V) of O-algebras in V. Denote the cartesian fibration associated to

Alg(−)(V) by Alg(V)→ Opd∞. This is the algebra fibration associated to V.

Remark 5.1.1.10. For a symmetric monoidal category V⊗, we also have a right Quillen functor

HomOΣ(−,V⊗) : (sSet+
OΣ)

op → sSet+ that induces AlgΣ
(−)(V) : (OpdΣ

∞)
op → Cat∞.

Example 5.1.1.11. Any category C with finite products induces a symmetric monoidal

structure C× under the cartesian product by [28, Corollary 2.4.1.9]. In particular, we

have a cartesian symmetric monoidal category Cat×∞. Now, [28, Remark 2.4.2.6] estab-

lishes an equivalence AlgΣ
O(Cat×∞) ≃ MonO for any symmetric operad O. In particular,

SymMon∞ ≃ AlgΣ
E∞(Cat×∞) establishes an equivalence between symmetric monoidal cate-

gories and commutative algebra objects in Cat×∞.

Remark 5.1.1.12. Let E1 denote the associative operad given in [28, Definition 4.1.1.3]. We

have by [10, Corollary 4.3.12] that Mon∞ ≃MonE1 ≃ AlgΣ
E1
(Cat×∞).

Recall from [28, Remark 4.8.1.6] that PresL∞ admits a symmetric monoidal tensor product

with the universal property tht cocontinuous functors A ⊗ B → C correspond to ordinary

functors A×B→ C that are cocontinuous in each variable. Using this monoidal structure,

we can define locally presentable analogues of monoidal ∞-categories:

Definition 5.1.1.13. For a symmetric ∞-operad O, define MonPres
O := AlgO(PresL,⊗∞ )

to be the ∞-category of presentably O-monoidal ∞-categories. In particular, define the

∞-category of presentably monoidal ∞-categories to be MonPres
∞ := MonPres

E1
, and the ∞-

category of presentably symmetric monoidal ∞-categories to be SymMonPres
∞ := MonPres

E∞ .

Lemma 5.1.1.14. All of the forgetful functors in the diagram

SymMonPres
∞ MonPres

∞ PresL∞

SymMon∞ Mon∞ Cat∞
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create limits.

Proof. Note that [28, Proposition 3.2.2.1] implies for any symmetric monoidal category V⊗

and any symmetric operad O that the forgetful functor AlgΣ
O(V)→ V creates limits. There-

fore, all of the functors on the bottom row of the above diagram create limits by noting that

Mon∞ ≃ AlgΣ
E1
(Cat×∞) and

SymMon∞ ≃ AlgΣ
E∞(Cat×∞) ≃ AlgΣ

E∞⊗E1
(Cat×∞)

≃ AlgΣ
E∞(AlgΣ

E1
(Cat×∞)

×) ≃ AlgΣ
E∞(Mon×∞)

using the closed symmetric monoidal structure on symmetric operads described in [28, §2.2.5,

§3.2.4], and the Dunn Additivity Theorem E∞⊗E1 ≃ E1. The fact that the functors on the

top row create limits follows similarly.

That the vertical functors create limits follows by [26, Proposition 5.5.3.13].

5.1.2 Continuity of enrichment

The purpose of this subsection is to describe the construction of the category VCat of V-

enriched categories from a monoidal category V, and prove that this functorial construction

preserves weakly contractible limits.

Definition 5.1.2.1. For a space S, let ∆op
S → ∆op be the cocartesian fibration associated

to the functor ∆op → Cat∞ mapping [n] ↦→ S×(n+1), where the degeneracies are given by

diagonal functors, and faces by projections. As described in [10, §4.1], this construction

defines a functor ∆op
(−) : S→ Opdgen

∞ .

For a monoidal category V⊗, define the category Algcat(V) of V-categorical algebras as

the pullback

Algcat(V) Alg(V)

S Opd∞

⌟

Lgen∆
op
(−)

where the vertical map on the right is the algebra fibration of Definition 5.1.1.9. In particular,

a V-categorical algebra with space of objects S is precisely a map of generalised operads

C : ∆op
S → V⊗.

Definition 5.1.2.2. Fix a monoidal category V⊗. For a space S, define the trivial V-category

EV
S on S to be the composite ∆op

S → ∆op B1−−→ V⊗, where B1 is the delooping of the tensor

unit of V⊗ viewed as a monoid (see [10, Proposition 3.1.18]). In particular, let E1 := EV
{0,1}

be the walking V-enriched equivalence, and E0 := EV
{0} = B1.
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Say that a V-categorical algebra C is a V-category if it is local with respect to the canonical

map E1 → E0. Then, define the category VCat of V-categories to be the full subcategory

of Algcat(V) spanned by the V-categories. By [10, Corollary 5.7.6], this construction defines

a functor (−)Cat : Monlax
∞ → Cat∞.

Remark 5.1.2.3. By [10, Theorem 5.6.6], the category VCat is precisely the localisation of

Algcat(V) at the V-functors that are fully faithful and essentially surjective.

Remark 5.1.2.4. The locality with respect to E1 → E0 asserts that the V-categorical algebra

is Rezk-complete, completely analogous to Lemma 3.3.4.1. In fact, this analogy is made

precise in [18, Proposition 7.16].

Proposition 5.1.2.5. [10, Corollary 5.7.12, Proposition 5.7.16] If V is a symmetric monoidal

category, then VCat admits a symmetric tensor product as well. If V is moreover pre-

sentably symmetric monoidal, then so is VCat. In particular, the enrichment functor canon-

ically restricts to an endofunctor on SymMon∞, and restricts further to an endofunctor on

SymMonPres
∞ also.

Remark 5.1.2.6. The tensor product above is a homotopy-coherent generalisation of the

classical tensor product of enriched 1-categories described in [24, §1.4].

The remainder of this section is dedicated to proving the following result:

Theorem 5.1.2.7. Suppose (Vi)i∈K is a diagram in Mon∞ indexed by a weakly contractible

simplicial set K. If each of the functors Fi,j : Vi → Vj induces natural equivalences

HomVi
(1Vi

,−)⇒ HomVj
(1Vj

, F (−))

for all edges i→ j in K, then the induced map(︄
lim←−
i∈K

Vi

)︄
Cat→ lim←−

i∈K
(ViCat)

is an equivalence.

In order to prove Theorem 5.1.2.7, we will piece through the construction of the enrichment

functor, and study the limits preserved at each step.

Lemma 5.1.2.8. Let C,D be categories, and F : Cop×D→ Cat∞ a functor. For a simplicial

set K, suppose D has all K-indexed limits, and that Fc : D → Cat∞ preserves these limits

for all c ∈ C0. Then, the corresponding functor D→ Cat∞,/C preserves K-indexed limits.
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Proof. Consider the adjunct functorD→ Fun(Cop,Cat∞). Since limits in functor categories

are computed pointwise by [26, Corollary 5.1.2.3], the assumptions of the lemma imply

that this adjunct functor preserves K-indexed limits. The desired functor is the composite

D → Fun(Cop,Cat∞) → Cat∞,/C of this adjunct with unstraightening, the latter of which

is a right adjoint by [26, Theorem 3.1.5.1(A0)].

Corollary 5.1.2.9. The functor Algcat : Mon∞ → Cat∞,/S preserves all limits.

Proof. Applying Lemma 5.1.2.8 to HomOpd∞(−,−) : Opdop
∞ × Opd∞ → Cat∞, we see

that the corresponding functor Opd∞ → Cat∞,/Opd∞ preserves all limits. Note that the

restriction of this functor to Monlax
∞ is precisely Alg(−) : Monlax

∞ → Cat∞,/Opd∞ . Since

Mon∞ → Opd∞ is a right adjoint, it follows that Alg : Mon∞ → Opd∞ → Cat∞,/Opd∞

is continuous. Observing that Algcat is recovered as the composite

Mon∞
Alg−−→ Cat∞,/Opd∞

(Lgen∆
op
(−)

)∗

−−−−−−−→ Cat∞,/S

and base change is a right adjoint, the result follows.

Corollary 5.1.2.10. The functor Algcat : Mon∞ → Cat∞ preserves limits of diagrams

indexed by weakly contractible simplicial sets.

Proof. Follows by combining Corollary 5.1.2.9 with the dual of Lemma 3.3.2.4.

Proof of Theorem 5.1.2.7. Let (Vi)i∈K be a weakly contractible diagram of monoidal cate-

gories where each Fi,j : Vi → Vj induces a natural equivalence

HomVi
(1Vi

,−)⇒ HomVj
(1Vj

, F (−))

of spaces.

Let V := lim←−i Vi in Mon∞ with strongly monoidal projections Fi : V → Vi. Then,

HomV(1V,−) ≃ lim←−iHomVi
(1Vi

, Fi(−)) is a limit of an essentially constant diagram, by

assumption, and therefore each Fi : V → Vi induces a natural equivalence HomV(1V,−) ⇒
HomVi

(1Vi
, Fi(−)).

Recall that VCat is the full subcategory ofAlgcat(V) spanned by the objects that are local

with respect to the morphism sV : E1 → E0. Note for any space S that the image of the trivial

V-category EV
S under the projection V→ Vi is precisely E

Vi
S . Indeed, since V→ Vi is strongly

monoidal, it preserves the tensor unit of V, and so the composite ∆op
S →∆op B1V−−→ V⊗ → V⊗i

is equivalent to EVi
S .

Moreover, since Fi induces a natural equivalence HomVi
(1Vi

,−) ⇒ HomVj
(1Vj

, F (−)),
it follows that the induced functor Fi,∗ : Algcat(V) → Algcat(Vi) induces natural equiv-

alences Homcat(E
V
S ,−) ⇒ Homcat(E

Vi
S , Fi,∗(−)) for every S. In particular, each Fi,∗ sends

V-categories to Vi-categories.
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If C is a categorical V-algebra, denote by Ci := Fi(C) the categorical Vi-algebra induced by

the canonical projection Fi : V → Vi. We have an equivalence Algcat(V) ≃ lim←−iAlgcat(Vi)

by Corollary 5.1.2.10. Therefore, we have for all C,D in Algcat(V) that Homcat(D, C) ≃
lim←−iHomcat(Di, Ci). In particular, if C is a categorical V-algebra such that Ci is a Vi-category

for every i, then the homotopy equivalences Homcat(E
0
i , Ci) → Homcat(E

1
i , Ci) induce a ho-

motopy equivalence lim←−iHomcat(E
0
i , Ci) → lim←−iHomcat(E

1
i , Ci). From the above discussion,

this is precisely the map Homcat(E
0, C) → Homcat(E

1, C) induced by sV. Therefore, C is a

V-category.

Altogether, this proves that C ∈ Algcat(V) is a V-category if and only if every projection

Ci ∈ Algcat(Vi) is a Vi-category. In other words, the equivalence of categories Algcat(V) ≃
lim←−iAlgcat(Vi) restricts to an equivalence VCat ≃ lim←−i (ViCat).

5.2 Universal fixed points

Let AlgEnr denote the category of algebras in SymMon∞ for the endofunctor (−)Cat, and

define FixEnr to be the full subcategory of AlgEnr spanned by those enrichment algebras

(V, τ) where the action τ : VCat → V is an equivalence. Analogously, let AlgPres
Enr denote

the category of enrichment algebras in SymMonPres
∞ , and FixPres

Enr the full subcategory of

AlgPres
Enr spanned by the locally presentable enrichment algebras with trivial action.

The goal of this section is to prove our main result:

Theorem 5.2.0.1. Cat(∞,∞) underlies an initial object of FixPres
Enr .

Proof. Follows from Proposition 5.2.1.4.

Remark 5.2.0.2. Note that the fixed point structure of Cat(∞,∞) in Theorem 5.2.0.1 coin-

cides with the equivalence provided in the proof of Proposition 5.0.0.1, which is induced by

Theorem 3.3.4.5.

To prove this result, we use the machinery developed in Chapter 4.

5.2.1 The initial presentable enrichment algebra

Proposition 2.1.1.13 suggests that Cat(∞,∞) is analogous to the category ωCat+ of marked

strict ω-categories from Definition 2.1.1.10. To strengthen this analogy, we need an appropri-

ate truncation map τ≤(n,r) : Cat(n+1,r+1) → Cat(n,r) analogous to that of Definition 2.1.1.7.

By Remark 3.2.3.2, however, the inclusion Cat(n,r) ↪→ Cat(n+1,r+1) does not admit a right

adjoint in general. Therefore, we construct τ≤(n,r) more directly.

Notation 5.2.1.1. For −2 ≤ n ≤ ∞ and 0 ≤ r ≤ n+ 2, let

τ≤(n,r) : Cat(n+1,r+1)

κ≤r−−→ Cat(n+1,r)

π≤n−−→ Cat(n,r)
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Lemma 5.2.1.2. For −2 ≤ n ≤ ∞ and 0 ≤ r < n+ 2, we have a commutative square

Cat(n+1,r+1) Cat(n+1,r)

Cat(n,r+1) Cat(n,r)

κ≤r

π≤n π≤n

κ≤r

Proof. By iterating (−)Cat, it suffices to prove that the square

Cat(n+1,1) Grpdn+1

Cat(n,1) Grpdn

κ≤0

π≤n π≤n

κ≤0

commutes for −2 ≤ n ≤ ∞. Note that the localisations are trivial when n =∞, so assume

n <∞.

The π≤n in this case can be described using the functors hn : Cat∞ → Cat(n,1) defined

in [26, Proposition 2.3.4.12]. Explicitly, for a simplicial set K, let [K,C]n be the subset of

Map(sknK,C) consisting of restrictions of maps skn+1K → C. Then, the k-cells of hnC are

homotopy classes of maps in [∆[k],C]n relative to skn−1(∆[k]).

For an (n + 1, 1)-category C, then we have π≤nC = hnC. Note that the k-cells of κ≤0hnC

are given by the k-cells of hnC whose edges are all invertible in hnC. On the other hand, the

k-cells of hnκ≤0C are given by homotopy equivalence classes of maps in [∆[k], κC]n relative

to skn−1(∆[k]), where k-cells of κ≤0C are the k-cells of C whose edges are all invertible in C.

If C is an (n+1, 1)-category, then all higher morphisms are invertible, which implies that an

edge of C is invertible if and only if its image in hnC is invertible. Therefore, both κ≤0hnC

and hnκ≤0C describe the same simplicial set: the k-cells are homotopy classes of maps in

[∆[k],C]n whose edges are all invertible in C.

Proposition 5.2.1.3. For all 0 ≤ n ≤ ∞ and finite 0 ≤ r ≤ n, the limit

Enr∞(Cat(n,r), τ≤(n,r)) := lim←−
(︂
· · · → Cat(n+2,r+2)

τ≤(n+1,r+1)−−−−−−→ Cat(n+1,r+1)

τ≤(n,r)−−−−→ Cat(n,r)

)︂
is equivalent to Cat(∞,∞).

Proof. Note first that Enr∞(Cat(n,r), τ≤(n,r)) ≃ Enr∞(Grpdn−r, τ≤(n−r,0)), so we may as-

sume without loss of generality that r = 0. By Lemma 5.2.1.2, the diagram

Cat(n+2,1) Cat(n+1,1)

Grpdn+2 Grpdn+1

Grpdn+1 Grpdn

κ≤0

π≤n+1

τ≤(n+1,0) κ≤0

κ≤0

τ≤(n,0)

π≤n+1 π≤n

π≤n
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commutes for every 0 ≤ n < ∞. Although the pair (SymMon∞, (−)Cat) is not neces-

sarily compatible with inverse ω-sequences in the sense of Remark 4.3.2.10, the commuta-

tivity of the above square implies through the argument proving Proposition 4.3.2.8 that

Enr∞(Grpdn, τ≤(n,0)) ≃ Enr∞(Grpdn+1, τ≤(n+1,0)) for every 0 ≤ n < ∞. The proposi-

tion now follows from the fact that Grpd∞ ≃ lim←−nGrpdn, noting that the truncation map

τ≤0 : Cat(n,1) → Grpdn reduces to κ≤0 when n = ∞. Indeed, the equivalence follows from

the fact that Postnikov towers converge in Grpd∞; see [26, Remark 5.5.6.24].

We now prove that Cat(∞,∞) enjoys a universal property with respect to enrichment in

the presentable setting.

Proposition 5.2.1.4. The category Cat(∞,∞) defines an initial object in AlgPres
Enr , the cate-

gory of algebras for the endofunctor (−)Cat over SymMonPres
∞ .

Proof. By definition, Cat(∞,∞) is given as the limit of categories

Cat(∞,∞) := lim←−
(︂
· · · → Cat(∞,3)

κ≤2−−→ Cat(∞,2)
κ≤1−−→ Cat(∞,1)

κ≤0−−→ Cat(∞,0)

)︂
where every κ≤n is a right adjoint. By [26, Theorem 5.5.3.18], this limit can be computed

in PresR∞. With [26, Corollary 5.5.3.4], we can therefore equivalently calculate Cat(∞,∞) as

the colimit of left adjoints

Cat(∞,∞) ≃ lim−→
(︁
Cat(∞,0) ⊆ Cat(∞,1) ⊆ Cat(∞,2) ⊆ · · ·

)︁
(5.1)

in PresL∞.

Now, the forgetful functor SymMonPres
∞ := AlgΣ

E∞(PresL,⊗∞ ) → Pres∞ creates sifted

colimits by [28, Corollary 3.2.3.2]. Therefore, we obtain the presentably symmetric monoidal

category Cat(∞,∞) as the colimit (5.1) computed in SymMonPres
∞ .

To see that this colimit of left adjoints is preserved by (−)Cat, it suffices to show the

preservation of the corresponding limit of right adjoints. For (∞, r)-categories C,D, the

space HomCat(∞,r)
(C,D) is the underlying groupoid of functors C → D. In particular,

HomCat(∞,r)
(∗,C) ≃ κ≤0C. This implies that κ≤r : Cat(∞,r+1) → Cat(∞,r) induces a nat-

ural equivalence HomCat(∞,r+1)
(∗,−) ⇒ HomCat(∞,r)

(∗, κ≤r(−)) of spaces. Therefore, Theo-

rem 5.1.2.7 ensures that the limit of right adjoints is preserved by (−)Cat, as desired.

By [10, Remark 3.1.25], the initial object of SymMonPres
∞ is Cat(∞,0) with its cartesian

monoidal structure. Therefore, the colimit (5.1) in SymMonPres
∞ is precisely Adámek’s

construction of an initial algebra for (−)Cat, and the construction terminates after countably

many steps, so the proposition follows by Corollary 4.3.1.8.

105



5.2.2 Noetherian (∞,∞)-categories

Proposition 5.2.1.4 establishes that Cat(∞,∞) is only the initial fixed point of enrichment

among the presentably monoidal categories. It is natural, then, to wonder what the initial

algebra for the endofunctor (−)Cat is over arbitrary symmetric monoidal categories. The

purpose of this subsection is to address this curiosity, which in turn resolves [11, Conjecture

3.4.3].

Proposition 5.2.2.1. Adámek’s construction of an initial algebra for (−)Cat over the cat-

egory SymMon∞ does not terminate after ω steps.

Proof. The initial object of SymMon∞ is the one-object category with its unique symmetric

tensor product, which is equivalent to Grpd−2. In particular, after ω steps, Adámek’s

construction produces the colimit

Cat<ω := lim−→
(︁
Cat(−2,0) ⊆ Cat(−1,1) ⊆ Cat(0,2) ⊆ Cat(1,3) ⊆ · · ·

)︁
=

⋃︂
0≤n<∞
r≥0

Cat(n,r)

which is the category of finite-dimensional higher categories.

On the other hand, the objects of (Cat<ω)Cat are the (∞,∞)-categories C that are

locally finite-dimensional, in the sense that HomC(x, y) is finite-dimensional for all x, y ∈ C.

In particular, the induced map Cat<ω ⊆ (Cat<ω)Cat is not an equivalence.

To better understand Adámek’s construction in this setting, we introduce the following

measure of finiteness to (∞,∞)-categories:

Definition 5.2.2.2. We define the rank of an (∞,∞)-category C by transfinite induction.

� Say that rankC < 0 if and only if C ≃ ∗.

� For an ordinal θ, say that rankC < θ + 1 if rankHomC(x, y) < θ for all x, y ∈ C.

� For a limit ordinal λ, say that rankC < λ if rankC < θ for some θ < λ.

Say rankC = θ if rankC < θ + 1 but rankC ̸< θ. Note that the rank of C is invariant under

equivalence.

For an ordinal θ, let Cat<θ denote the full subcategory of Cat(∞,∞) spanned by those C

with rankC < θ.

Remark 5.2.2.3. By Lemma 5.2.2.5 below, if rankC < θ and θ < θ′, then also rankC < θ′.

Example 5.2.2.4. As in Proposition 5.2.2.1, the category Cat<ω consists of the finite-

dimensional higher categories, and Cat<ω+1 consists of the locally finite-dimensional higher

categories.
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Lemma 5.2.2.5. The categories Cat<θ can be constructed through transfinite induction:

� Cat<0 ≃ Grpd−2 ≃ {∗},

� Cat<θ+1 ≃ (Cat<θ)Cat; in particular, Cat<θ is a full subcategory of Cat<θ+1,

� For a limit ordinal λ,

Cat<λ ≃ lim−→
θ<λ

Cat<θ

Proof. That Cat<0 ≃ {∗} and Cat<θ+1 ≃ (Cat<θ)Cat follow by definition. For the limit

case, suppose by transfinite induction that Cat<θ ⊆ Cat<θ′ for all θ < θ′ < λ. Then,

lim−→
θ<λ

Cat<θ ≃
⋃︂
θ<λ

Cat<θ = Cat<λ

as desired.

Lemma 5.2.2.6. For every ordinal θ, there is an (∞,∞)-category C such that rankC = θ;

that is, rankC < θ + 1 but rankC ̸< θ.

Proof. We prove this by transfinite induction. For θ = 0, we take C = ∅. Indeed, rankC < 1

is vacuous, and rankC ̸< 0 because C ̸≃ ∗.
Suppose we have an (∞,∞)-category D such that rankD = θ. Then, rankC = θ + 1 for

C := ΣD.

Finally, suppose λ is a limit ordinal such that for every θ < λ, there exists an (∞,∞)-

category Dθ such that rankDθ = θ. Then, take C :=
∐︁

θ<λD
θ.

Let x, y ∈ C. If x ∈ Dθ and y ∈ Dθ′ with θ ̸= θ′, then rankHomC(x, y) = rank∅ = 0 < λ.

Otherwise, rankHomC(x, y) = rankHomDθ(x, y) < λ. In particular, rankC < λ+ 1. On the

other hand, rankC ̸< θ for all θ < λ since Dθ is a (full) subcategory of C, and rankDθ ̸< θ.

Therefore, rankC ̸< λ, proving that rankC = λ, as desired.

Proposition 5.2.2.7. Adámek’s construction of an initial algebra for (−)Cat over the cat-

egory SymMon∞ does not terminate.

Proof. The θth stage of Adámek’s construction yields Cat<θ by Lemma 5.2.2.5. Therefore,

the proposition follows from Lemma 5.2.2.6.

The failure of Adámek’s construction to terminate is purely a size issue. For instance, let

(−)Cat<ω denote the subfunctor of (−)Cat that sends V to the full subcategory VCat<ω

of VCat spanned by those V-enriched categories with finitely many equivalence classes of

objects (that is, the underlying space of objects has finitely many path-connected compo-

nents). Then, Adámek’s construction for (−)Cat<ω terminates after ω steps, and the initial
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algebra consists of those finite-dimensional higher categories with finitely many equivalence

classes of k-morphisms for each k ≥ 0.

This phenomenon can be shown more generally:

Lemma 5.2.2.8. Fix a regular cardinal λ. Let C be an (∞,∞)-category such that the set

of equivalence classes of objects of C is λ-small, and rankHomC(x, y) < λ for all x, y ∈ C.

Then, rankC < λ.

Proof. For x, y ∈ C, let θx,y < λ such that rankHomC(x, y) < θx,y; such an ordinal exists

because a regular cardinal is necessarily a limit ordinal. Then, let θ := supx,y∈C θx,y. Note

that if x ≃ x′ and y ≃ y′, then θx,y = θx′,y′ . Since C has fewer than λ objects up to

equivalence, it follows from the fact that λ is a regular cardinal that θ < λ, and therefore

also that θ + 1 < λ. Therefore, rankC < θ + 1 < λ, as desired.

Proposition 5.2.2.9. For a regular cardinal λ, let (−)Cat<λ denote the subfunctor of

(−)Cat : SymMon∞ → SymMon∞ that associates to a symmetric monoidal category

V the full subcategory VCat<λ of VCat spanned by those V-enriched categories such that

the set of path-connected components of its underlying space of objects is λ-small. Then,

Adámek’s construction of an initial algebra for (−)Cat<λ over SymMon∞ terminates after

no fewer than λ steps.

Proof. For an ordinal θ, let Cat<λ<θ denote the full subcategory of Cat<θ on those (∞,∞)-

categories C such that the set of equivalence classes of k-morphisms is λ-small for every k ≥ 0.

Then, Cat<λ<θ can be constructed by transfinite induction, analogous to Lemma 5.2.2.5:

� Cat<λ<0 ≃ Grpd−2 ≃ {∗}, which is the initial object in SymMon∞,

� Cat<λ<θ+1 ≃ (Cat<λ<θ )Cat<λ,

� For a limit ordinal µ,

Cat<λ<µ ≃ lim−→
θ<µ

Cat<λ<θ

Following the proof of Lemma 5.2.2.6, there still exists C ∈ Cat<λ<θ+1 such that C /∈ Cat<λ<θ ,

so long as θ < λ. However, Lemma 5.2.2.8 shows that Cat<λ<λ ⊆ Cat<λ<θ is an equivalence for

all θ > λ.

Therefore, Adámek’s construction terminates in exactly λ steps, as desired, and Cat<λ<λ
carries the structure of an initial algebra for (−)Cat<λ over SymMon∞.

We conclude this subsection by proving that (−)Cat has an initial algerba over SymMon∞.
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Definition 5.2.2.10. A parallel morphism tower (α⃗, β⃗) in an (∞,∞)-category C is a (count-

able) sequence of pairs

(α0, β0), (α1, β1), (α2, β2), . . .

where α0, β0 are objects of C, and αn+1 and βn+1 are parallel (n+1)-morphisms αn → βn in

C for all n ≥ 0.

Say that an (∞,∞)-category C is Noetherian if for any parallel morphism tower (α⃗, β⃗),

there exists N ≫ 0 such that HomC(αN , βN) ≃ ∗.
Denote by CatNoeth

(∞,∞) the full subcategory of Cat(∞,∞) spanned by the Noetherian (∞,∞)-

categories.

Remark 5.2.2.11. The above definition of Noetherian is stronger than that proposed in [11,

Definition 3.4.2], which only requires that any parallel morphism tower (α⃗, β⃗) admits N ≫ 0

such that αn and βn are equivalences for all n ≥ N . Indeed, any ∞-groupoid satisfies this

weaker property, but not every∞-groupoid is Noetherian in the sense of Definition 5.2.2.10.

Remark 5.2.2.12. In some sense, the Noetherian (∞,∞)-categories are the (∞,∞)-categories

for which (EQ1) and (EQ2) from Section 2.1.1 uniquely determine its equivalences.

Lemma 5.2.2.13. For an (∞,∞)-category C, the following are equivalent:

(i) C is Noetherian,

(ii) C is locally Noetherian, in the sense that HomC(x, y) is Noetherian for all x, y ∈ C,

(iii) C has small rank, in that rankC < θ for some ordinal θ,

(iv) C locally has small rank, in that HomC(x, y) has small rank for all x, y ∈ C.

Proof. The equivalence between (i) and (ii) follows by definition.

Note that (iii) certainly implies (iv): if rankC < θ, then rankC < θ + 1, and therefore

rankHomC(x, y) < θ for all x, y ∈ C. Conversely, if for all x, y ∈ C there exists an ordinal

θx,y ≫ 0 such that rankHomC(x, y) < θx,y, choose λ ≫ 0 such that the set of equivalence

classes of objects in C is λ-small, and such that λ ≥ θx,y for all x, y ∈ C. Then, rankC < λ

by Lemma 5.2.2.8. This proves that (iii) is equivalent to (iv).

Since the singleton ∗ is certainly Noetherian, and locally Noetherian (∞,∞)-categories

are Noetherian, it follows by transfinite induction on the rank that every (∞,∞)-category

C with small rank is Noetherian. This shows that (iii) implies (i).

To prove the converse, suppose C does not have small rank. Then, C does not locally have

small rank, so there must exist α0, β0 ∈ C such that HomC(α0, β0) does not have small rank.

Proceeding recursively, we obtain a parallel morphism tower (α⃗, β⃗) where each HomC(αn, βn)

does not have small rank. In particular, HomC(αn, βn) ̸≃ ∗ for every n ≥ 0. Therefore, if C

does not have small rank, then C is not Noetherian, completing the proof.
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Theorem 5.2.2.14. CatNoeth
(∞,∞) carries the structure of an initial algebra for (−)Cat over

SymMon∞.

Proof. By Lemma 5.2.2.13, the canonical inclusion CatNoeth
(∞,∞) ⊆ (CatNoeth

(∞,∞))Cat is an equiv-

alence.

By expanding universes, let Λ denote the large ordinal of all (small) ordinals. Then,

Lemma 5.2.2.13 implies that CatNoeth
(∞,∞) is the Λ-filtered colimit

CatNoeth
(∞,∞) =

⋃︂
θ

Cat<θ ≃ lim−→
θ<Λ

Cat<θ

in SymMon∞, which by Lemma 5.2.2.5 is precisely Λ stages of Adámek’s initial algebra

construction. Since the construction terminates after Λ steps by the previous discussion, the

theorem follows from Corollary 4.3.1.8.

Remark 5.2.2.15. Although Adámek’s construction in this case requires a large colimit, this

colimit is small relative to an expanded universe, and Corollary 4.3.1.8 applies also to cate-

gories that are small (relative to the universe of discourse).
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Chapter 6

Conclusion

The purpose of this thesis was to study fully-general (∞,∞)-categories. By the Unicity

Theorem of [6], the theory of (∞, r)-categories is uniquely determined for all finite r ≥ 0.

However, the theory of (∞, r)-categories is ambiguous when r = ∞, as illustrated in the

strict case in Section 2.1.1, with the source of discrepancy being the notion of equivalence

in an (∞,∞)-category.

In Chapter 3, we provided an explicit model Cat(n,r) of (n, r)-categories for −2 ≤ n ≤ ∞
and 0 ≤ r ≤ n + 2. In this model, the (∞,∞)-categories have the weakest constraints on

their equivalences: they are generated inductively. Any theory of (∞,∞)-categories should

be invariant under enrichment. In Chapter 4, we extended the theory of endofunctor algebras

and endofunctor fixed points to the (∞, 1)-categorical setting, which enables us to study the

behaviour of Cat(∞,∞) under enrichment. We then employed the theory in Chapter 5 to

prove that Cat(∞,∞) is an initial locally presentable fixed point of enrichment. In particular,

this uniquely characterises Cat(∞,∞).

Note that Cat(∞,∞) is not initial among the fixed points of enrichment that are possibly

not locally presentable. In Section 5.2.2, we completed this picture by showing that the

full subcategory of Cat(∞,∞) spanned by the Noetherian (∞,∞)-categories form an initial

object among arbitrary fixed points.
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