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Abstract

Dielectric properties of a special category of high loss materials
= susceptors - and their microwave heqting are discussed. To analyse
the data for the 2.45+0.050 GHz ISM band, a cavity perturbation sethod
employing a TMOIZ right circular cylindrical cavity vis described.
Using the above technique, the dielectric data are obtained, 23~1400C,
on the white and yolk of chicken egg, some chloride pastes and sugar-
alcohol mixtures. ' The accuracv ind precision of this cavity

perturbation method are estimated on the basis of the accuracy of the
)

~h
dielectric constants of the calibrating liquids and the experimen

errors. The perturbation equation i1s also derived - for the TMOl’
in an ideal circular cylindrical cavity ‘of identical dimens
it 1s found that this equation does not hold for the actual cgvity.
The dielectric daiz.obtained from time domaln measurements on some
‘medium and high loss liquids, which are used as calibrating 1liquids,
for - example ethyl acetate, méthanol and pure water, are also given.
Various sources of errors in-the time domain transmission methods are
analysed and discussed. |

A model® for the ;stimation of the absorption, in a microwave oven,
by a thin laminar load, 1is given; and the absorptioqs in a microwave
transparent conducting film and thin water loads are codmputed. The
complex dielectric constant of pure water 1is expressed by a
'polyﬁomial, in the frequency range 0.9 - 6GHz, from 0-60°c. Browning
tests done on foods 1in a microwave oven with some commercially

available edible browning agents and sugar-alcohol wmixtures are

described.
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CHAPTER I

Introduction

The main objective in this theéia is to investigate the dielectric
and microwave heating properties of lossy dielectric materials. With
a proper choice of dielectric properties, microwave differential
heéting in layered materials can be used to advantage, for example in
‘the heatiég ot prepackaged foods, susceptors [l] and 1interactive
heaters [2,3].

Layer heating and differential heating between layers are quite
complex [4]. Designing foods and their packages, for microwave
heating, 1s one area where this i3 important. Research in this area is
relatively new; Risman et al. have recently,discussed some of these
problems ([5]. There is agreement on a need for more r;séarch in this
area. A part of the work done for this thesis is Iin respomnse to ‘the
}abové need.

Although microwave energy has either been proposed or used in a
varlety of applicatlions such as drying of wood, paper, film, printing
inks and textiles [6,7]; heating of plastics, rubbersrand wood [8];
hkating of tumours [9]); transmission of power [10] and powering og
aircrafts [1l1]; etc., it 1is the food and beverage 1ndustry where
microwave power has one of the . largest applications [12] - an
application which is growing at an exponential rate [1].

The first report of microwave heating of foods in ca§ities, in the

800-3000 MHz frequency range, appeared lmmediately after World War II

[13,14]. In 1946 the first microwave oven for cooking purposes was

-



‘made by ' Raytheon Manufackuring ‘Company and an improved model was

considprable

savings 1in cooking time and the fas f precooked y, which

are possible in a microwave oven, were the most attracti;e features
which triggered & slow development for these appliances. Thelir large
slize and high cost>were the main disadvantages which precluded then
from being sold as home appliances. By 1956, however, microwave ovens
had been reduced 1in sige and price to the point that 2500 units were
sold for home use that }eﬁr in the U.S. By 1974, approximdtely 700,000
doméstic microwave ovens were sold in the U.S. due to wlidespread
awareness of the advantages of this applicance in soclety, added safety
from radiation (better door seals), smaller size, longer magnetron life
and lower prices [15]. Subsequent development has been fast and by the
mid-eighties about 15 million ovens were sold in the world per year
with a projected sale of about 21M/year in 1990, according to a survey
of industry reports [16].

Along with the rising sales of ovens, sales of “wmicrowavable"
prepackaged foods also started growing exponentially in the late 70's
[1]. One example of microwavable food, available in the marketplace,

_thin conducting film with a higher heating rate. When this package is
heated in a wmicrowave oven, the film acquires a high temperature
(ZQOOOC) and acts as a conventional hot plate which convectively heats
and browns one side of the pizza. Some other examples are popcofn and

bags for french-fried potatoes- However, 1in 1986 the sales of



\

microwavab*e foods 1in the U.S. were only one pﬁ&cent of the' annual

food-rela expenses of the population {1]. It is felt that the main

reason fét the relatively slow growth of microwavable foods 1s their
duplicate the characteristics of conventionally prepared

&Pg, browning, flavour, aroma and the sizzling sound of

#
$ %o M,

One of %ﬁé ways to solve the problem of crisping and browning 1is
by wusing a thermostatic susceptor {in a microwave food package.
Susceptors, when heated in an oven, absorb microwave energy and re-emit
that energy as heat. Thus, thesg'.susceptors can serve as 4
conventlonal hot-plate inside or outside a microwave oven. To provide
thermostatic (self-limiting) heating, the loss characteristics of these
susceptors should ideally follow the pattern shown in Fig. 1 with a
small, temperature—independent value for £t A ‘few materials
suggested for thelr yse as susceptors are thin microwave traansparent
conducting fllms [17] and some chloride pastes [2,3]. Some sugar-
alcohol mixtures, discussed in Chapter II, also have a potential for
uge as susceptoré.

In microwave heating, heat 1s generated inside the material 1in
contrast to the conventional heating where, 1in general, the heat {s
first transferred to the surface of the material =~ by ’gither
conductiPn, convection, radiation, or by.a combination of any two or
all of the three mechanisms - and then to the 1interior by thermal
®

conduction. The wmicrowave heat generated 1inside a amaterial is

proportional to power absorbed per unit volume and is given as



—’—\\/

Pe WE " RS (1.1)

where P - Power absorbed per unit volume inside the material, and

E - Electric fileld intensity (rms) inside the material.
For a particular material geometry and at a fixed /frequency,
temﬁerature, and moisture content the electric fleld intensity 1inside
a small volume of a material {s constant. According to Equation 1.1,
therefore, the microwave power absorbed in a material depends only upon
¢” of the material: 1in reality other parameters such as :' and thermal
conductivity also affect P. For lossy materials, In general, the loss
factor depends upon temperature and thus the :"(T) of a load (T
represents temperature) 1{s a critical parameter in the design of a
microwave heating system. Therefore, 1t is essential to have data on
£"(T) on a load to be able to predict its microwave heating response.
The measurements done on some lossy materials, and given in Chapter II,
are In response to this need.

Almost all modern microwave ovens have a multimode cavity with a
constant speed mode-stirrer which renders the field in the cavity
homogeneous and idotropic on a time—-average basis [18]. Thus for a
small single-layer load, which does not excessively perturb the fleld
pattern inside the cavity, Stratton's solution for the reflection and
transmission of a plane wave normally incident on a layer of a
dielectric material seems reasonable for the estimation of absorption
(19]. Similarly, for a muléllayer load Wait's solution could be used

[20]. For loads that are not very small, compared to the cavity,

oy

~

~
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these models could be applicable only in an approximate sense,. The
measurement of ¢"(T) and the variation of absorption In a layered
material with {ts thickness and temperature are analysed in Chapters I[1

and IV.

1.1 Overview of Thesis Contents

The dielectric data on eggs, chloride pastes ?nd sugar—4icohol
mixtures, obtalned 1in a search for sultable high loss {nteractive
microwave heatling materials, are given In Sectlons 2.5 to 2.8. In
addition, the following {s {ncluded i{n Chapter II: a brief discussion
on the loss factor, the proposed classification of high, medium and low
loss materials; and a brief ddscussion on various techniques for
dielectric measurement 1in frequency domain with some {mport4nt
references which may help in selecting the appropriate dielectric
measurement technique for a given material. In Sections 2.3 to 2.5
dlfferent aspects of the measurement technique, used for all the

frequency domain measurements reported in this thesis, are ziven.

Finally, a discussion on the accuracy and precislon of the dielectric
. 1

”

measupgment method are gliven at the end of this Chapt.-.

ﬂhough a cavity perturbation technique Is one of the wmost
accurate dielctric measurement techniques [21], it suffers from the
defect of remaining confined to only one frequency. ' In an effort to
determine the suitability of a time domain transmission meahod, for its
use over a wide range Qf dielectric materials, measuréments were done

on the calibrating liquids. The results of these wmeasurements along

with the following are given in Chapter I1I. In Section 3.1 the

! ’



theoreticalb basis for the time domain transmissi{on method 1s given;
experimental apparatu; and_procedure of measurement 18 given Lln Section
3.2, This 13 tﬁen followed by a brief dlscussion on the results
obtained along with the sampling requirements for TDR waveforms. [,
Section 3.4 a discussion 1s given on various sources of error {n a time
domaln transmission method. Jn the basls of the theory developed In
this section, an estimate 1s also made of the magnitude »f. the error {1
the results.

In Chapter IV a mathematical model (s glven to estlmate the
absorption {n different layers of a load placed fn a mlcrowave oven.
This model s useful in the desizn of new food packages
for microwave heating. It i{s also shown that the model can be used tor
computing mlcrowave absorption {n thin conducting susceptor filirs
in microwave food packages.

The microwave browning of foods, s Well 1s d{fterent methods o)

achieve this bro ng, are briefly discussed {n Section 5.° Thls (s

followed by discussion on the results of actual brownlng tests on
50 in a microwave oven uging pastes iand mixtures similar to

those discussed in Chapter I1.
[n Appendix I the cavity pert.ination equatinn for the TW)X, aode
in the 1idealized version of the cavity 1s derived. In Appendix LI,

mathematical models are glven to compute the absorption In layered

media. Fortran 77 programs are included for computing the absorptioa.
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CHAPTER II
Dielectric Materials and Measurements

'All.rthe non-megals on this earth can be classified as dielectric
materials. The Greek philosophers called these materials "insulators”.
However, all modern dielectrigs are not insulators, for example,
'conducting polyacetylene and some other ﬁblymers are classified as
dielectrics f22,23,24,25]. Although 1insulators were known to the
uancient philosophers, it was Faraday who first conducted detailed
sclentific measurements on these matefials ahd_in 1837 for the first
time, published the results of‘his scienfific measurements and called
them "dielectrics” [26]. Faraday's eiperiments indicated that the

3
capacity of a condensor was dependent on the nature of the material

separating the conducting surféces. Faraday introduced the term
"specific inductive capacity” for the ratio be;ween.the c!pacity of a
condenser filled with a dielectric and the capacity of the same
condenser when it is émpty. This quantity is now called the relative
permittivity or the dielectric coanstant and denoted by €',
Dielectric ma;efggis can be further classifie& ing?‘ different
categories on the basis of their characteristics as follows:
(a) Physical State - Solids, liquids, gases and vacuum.
(b) Types of material-Piezoelectric, ferroelectric, ferrimagnetic,
\ semi-conductors, organic materials, inorganic
"materials, biological materials, forest products,
and foods, etc.
Since our interest lies mainly in lossy materials and the measurement

of their losses, all the materlals are classified on the basis of their
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dielectric losses.

When a dielectric material is placed in an électric field 1t shows
losses. The total diélectric losses can be either due to er of the
following mechanisms or any combination of them:

(1) Losses due to the conductivity;
(11)Losses due to interfacial polarisation or Maxwell-Wagner losses;
and

(111)Losses due to other types of polarisations

For example, in a sample of commerclal rubber, the observed value of

dielectric loss factor (e") is given as:
arved) = €"(conductivity ) +
¢ "(Maxwell-Wagner) + ¢"(Dipolar absorption). (2.1)

For most dielectric materials, <" is a function of temperature,

frequency, moilsture content and density. The loss tangent, tané = i;

1s a measure of the lossiness of a dielectric'material. In the I1-
10GHz frequenc& range and at room temperature theb'range of 1loss
tangent is from about lxlO—5 for good 1nsulators to-about 5.0’for some
solls. However, for polyethylene a value of loss tangent as low as
3.7}:10“7 has been measured at 2.2K tempe;ature and 6.5GHz [27]. This is
claimed to be the lowest measured’value of loss tangent. Von Hippel et
al [28] have reported a value of tand of 8490 at'lkHz for a sample of
loamy soll having 13.77% moisture. This seems to be the highest
measured value of tané .
Oﬁ.the basis of their loss tangents, all dielectric materials can

be divided into three categories - 1low, medium and high loss
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materials. As stated earlier, the loss tangent of a dielectric
material varies with its temperature, fre"ency of operation, moisture
content and amount and type :of impurities, therefore, in some cases, a

material may have to be classified (at differeat frequencies and
temperatures) 1into different categories. In the liter;ture, the
transition points (in terms of the values of ‘loss tangents) betwee: .
-medium loss‘;and low loss materials and high 1loss and medium 1lo
materials are not clearly defined.’

. The American ~Institute of Physics Handbook [29] and von Hippel
[28]) define materials'haviné\loss tangents more than one as high 1loss
materials. The rationale behind this definition seems to be the fact
that when tans>l, the angle § 1s more than 450, and the loss current
would be more than the charging current, 1f this material were used 1in
a capacitor. The above definition of high loss materials (tans>1) does
not agree with the values of the loss tangents for high loss q§terials
in recent miquwave journals, It seems that the above definition of
high loss materials is more applicable at radio frequencies, where the
values of loss tangents of the order of thousands exist for some
materials (for example, sand, biological materials aﬁd foods). A
proposed classification for high, wmedium and low loss materials in the
microwave region is given below. \

2.1 Proposed Classification

(1) Low Loss Materials

All the materials with their loss tangents less than or equal to
1()01:10—4 can be classified as low loss materials. Some of the
materials falling in this category are: fused quartz, ice (below -

120C), polythene and PVC.

(ii) Medium Loss Materials

TN
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All the materials with their loss tangents in the range from

4 to 1000x10-4 (0.1) can be classified as medium loss materials.

100x10~
Some materials belonging to this category are: araldite, synthétic
rubber and tufnol.

(111) High Loss Mater}al;

There 1s a lack of consensus in the definition of high 1loss
materials. Kilp '[30] mentions chlorobenzene with its loés tangent as
0.1077 as a medium loss liquid. This means that 1f Kilp were to de e
a high loss material, perhaps -~ would have chosen 0.3 as the mi‘fzzm
initial value for tand for this range. van Loon and Finsey [31] definé
chloroform with 1{its 1loss tang-'nt equal to 0.2329 as a high loss
material. Zanforlin [32] mentioned ethanol (tan§=0.3) as a high loss
liquid. Burdick et al. [33] mention 0.1 as a "large loss tangent”.
Dakermandji {34] defines a m;terial with its loss tangent greater than
0.1 as a "very high loss material Cook and Jones [35] mention a
material with its_tané>0.1004 as a very high loss material.

On the basls of the above survey of the 1literature, it {is
suggested that all the materials with their loss tangent§ more than 0.1
can be classified as "high loss materials”. Most of the biological and
water—bearing materials fall under this category. The proposed

{

classification is given in Table 1l.

2.2 Selection of the Measurement Method
LY L

For many sclentific and technologiéal applications, dielectric

data are required on a large varlety of materials under different
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TABLE 1 .
« ,
Clasgification of 'High, Medium and Low Loss Materials on the

Basis of Their Loss Tangents

/

" High Medium Low
tans tans>0.1 1000x10™%> tans<100x10™"*

fanéleOxlO—A

Re;}esentative Some soils, Araldite, Fused quartz,
dielectric biological synthetic rubper polythene,
materials *  materials, tufnol PVC

moist materials

(foods and '

pastes)

physical condixions. This xyould include: data over a wide range of
temperature o w loss dielectrics for telecommunications, dielectric
lenses, radomes and microwave integrated circuit (MIC) substrates,
high loss pastes for the design of new food packages for michwave
heating, biologicgl materials (in vivo) for diathermy and plasmas for
fusion experiments. Différent materials require different techniques
for their measurements. The many measurement methods are well
documented 1in books [28,36], 1in conference proceedings [37] and in
review papers, for example, by Magid [38], Cohn and Kélly [39], Bussey
[407, .and Lynch [41]. Some recent reviews on dielagtric measurements
have been done by Birch and Clark from 30 to 1000 GHz [42], and Afsar,
Birch and Clark from 1 MHz to 1500 GHz [18]. In this thesis, the
frequency range of ingerest is from 900 MHz to 10 GHz, which covers the

three ISM frequency bands at 0.915, 2.45 and 5.80 GCHz. A brief
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discussion of the different measurement techniques is given below.

\
All e the methods for measuring the complex dielectric constaants of

‘materials can be classified 1into the following three categories:

(1) Free wave propagation, (ii) Transmisst:p line,  and (1i1) Cavity.
Free wave propagation methods are essentiaily based on optical-
type - measurements and are not generally considered.suitable fo;f‘the
\
frequency range under consideration. These are more suitable at ' dm
wavelengths [43] and are discussed in detail by Musif and Zacek [44].
In the transmission 1line methods the dielectric materiai is
placed in a transmission line (between outer and inner conductors of a
coaxial line, or inside a waveguide). The complex dielectric constant
of the material 1s then determined b; the measurement of the input
. ¥
impedance of the dfelectric-filled line. iIn one of these methods,
known as Roberts and von Hippel's method [28], a waveguide is
termifated by the sample in physical contact with a short cirpcuit.
This method has been used extensively in the past and is one ‘of the
recommended methods by the American Society for Testing and Materials
(ASTM). Nelson [45] has made this method more coavenient and:versatlile
to use by writing a computer-program which exactly computes E* for
high-loss as well as low-loss materials. This program is applicable to
measurements made 1in rectangular and clrcular waveguldes as well as
coaxial 1lines. Corrections are also included in the program for the
influence of the slot 1in a slotted-waveguide sectioh, and\ the
difference 1n velocity of propagation in air and in vacuum. n 1if

these corrections are lgnored, it {s claimed that the error in computed

resuLRE is only 0.5% for ¢' and 2-3% for ¢". ° The cavity methods are
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discussed in Sections 2.3 to 2.5.

Fo; about the }ast 15 years automatic network analysers (ANA) -have
also been useq for measuring the reflection coefficient in a
tranémission line. In this method, the error from mismatches between
differené‘ components of the transmisqion’line 1s minimized by a
standard error correction procedure [46,47]). With wide~band sweepers,

and under the control of a computer, dielectric meagurements can be

.done by ANA's over a wide range of frequencies. In this thesis, these

methods have been classified in the transmission line category.
In Table 2, some dielectric measurement methods are given for
different categories of materials as reported in journals. In this

table all the dielectric materials are . divided 1into different

categories on the basis of their physical state. This table 1is

i

. o :
expected to prove useful in selecting a dielectric measurement method
for a given material. However, in the last 40 years, the total number
of papers published on this subject is substantial and of these only a

few, considered important, are given in this Table.

2.3 Cav%fy Perturbation Technique .

' The cavity perturbation technique was originally used by Bethe and
Schwinger [77], ané then bby Kahan [78], and Siater [79] for the
calculation of the effect on the resonant frequehqy of ‘a cavity of a
small deformation on its boundary. Casimir [80] applied this technique
for\ measuring the dielectric and the magnetic properties of the
materials introduced into a cavity. Since then many workers have used‘
this technique for measuring the electrical properties of materlals

[52,74;§1,82] including plasmas [64,65]. Perturbation techniques have

been discussed in detail by Argence and Kahan [78], Lax and Button
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Table 2
. Suitable Dielectric Measurement Methods, 900MHz-10GHz
Methods and References
Dielectric
Material Transmission line Cavity perturbation Time domain
Solid H[(48,49,50], M[51) L[52] L{53,54]°
L[55,56]
Paste H{s7,58], M{4, 58]
Powder M(53] H(s7,s8], Mfs7,58)
Cellular & fibrous |
material,c.g. RAM H{8)
Liquid H[59,56,48,60] uls2], Lis Hlo1,62], L(63]
Plasma < H64,65]
Biological Material " « °
(a) In vitro H(66,07] H{ns]
v e R
(b) In vivo n{66,47,56] o8]
Rock .
(In situ) 169, r69] \\\ i[70], M[70)
. -
Miscellaneous H[Foods,71,72J M[ann, 73] H[Fish,75]
M[Rubber, 74] H,M[Agriculeurall
’ Materials, 76!

T H- High loss dielectric material, M-Medium loss, L-Low loss. Reference numbers

in brackets describe the measurement technique and give results.

b "

- Description and re<:lts of time domain dielectric measurements on agricultural

material - both hipn and medium loss - given in [76].

-

¥



'(83), Waldron [84] and Baden Fuller (85].

A naterial specimen, when introduced into a cavity, alters 1{ts:
characteristic parameters: the resonance gtequegcy, fr, and the loaded
quality factor, QL' These changes depend upon the real and imaginary
parts of the complex dielectric constant (considering either weak ly
magnetic substances or location into the cavity where the magnetic
fleld is zero) and on the geometry of the sample and the cavity. For
a very small specimen in an arbitrarily shaped cavity, the first-order

perturbation theory gives [86]

’ -
[ S 2.2)
; = 2F(t. 1) ‘ (
r .
oLy o 2.3)
L(=—) = Fi (2.
QL

where, Af and L(I/QL) are changes 1in fr and Q; with the insertion of
,saaple in the cavity. The factor F is a function of sample volume,
total cavity volume, and the electric field within the sample.

In the past, most workers have preferred simple geometrical shapes
such as cylindrical [81] and rectangular daveguide cavities [52],

9
perhaps for the fact that the perturbation equations are easier to

derive. However, cavities of special shape having strong fields in
some regioms have also been used to increase the sensitivity of the
measurement; an example 1s the re-entrant cylindrical cavity used by?
1s one of t . most popular cavities for perturbation measurements. In

this cavity, cylindrical samples are introduced along the axis of the

cavity such that the length of the specimen 1s equal to the height of
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the cavity. This geometrical arrangement has, Aowever, the following
two disadvantages [88]: (a) The fit of the sample {n the cavity 1is
critical, especially 1in the measuremen£ of materlals having large ¢',
Attaining the exact fit for hard and brittle materials is a problem,
because the ends of the sample rod tend to chip and crack, (b) It
requires disassembling of the <cavity for the insertion and correct
positioning of the saample. This may lead to difficulties 1in
reproducing the reference QL and the resonant frequency. To overegQme
the above two difficulties, Labuda and LeCraw [88] wused a right
circular cylindrical cavity in the TMO12 mode. This cavity had small
holes at both ends which permitted insertion of the sample without
disassembling the cavity. The sample was suspended with a nylon thread
such that the electric field was zero at the ends of the sample. This
eliminated any error either due to the toleranci.in the length, or non-
uniformities at the ends-of the sample. Risman [57] further modified
this geometry for ease of sample insertion. Two such cavities were
used in this work; Walker [89] has previously used one of these for
dlelectric measurements on cryoprotective“ agents. The field
distribution and the mechanical arrangement to hold the sample {n the
centre of the cavity are shown in f:g. 2. As shown in the Figure, the
cavity is divided {nto three parts and these parts flt together by lips
rather than screws for easy sample insertion. The bottom plexiglass
divider has a teflon cone placed in its centre, which keeps the sample
holder 1in the centre of the cavffy. The sample holdeé 1s wvertically
fixed through a small hole in the top plexiglass divider. For a thin

sample, t(he total electric field is parallel to the sample and reduces

to zero at iroth ends. In this way geometrical non-uniformities at the



ends of the sample have negligible effect on the results.

In a cavity perturbation technique there are two methods . for
determining the dielectric values of an unknown sample: (a) from the
perturbation equation of the cavity, and (b) from the calibration of
the - cavity against some known material;. For all the measurements
reported {n this thesis the second approach has been followed. Risman
(57,58]) 1initially adopted the calibration approach which was followed
by Walker [89] and later on by this author. In both the approaches the
method of determining .' is essentially the same: the shift 1in the
resonant frequency (:f) is used to compute :'. In the first method the
perturbation equation 1s used, whereas in the second a regression
function 1s used. However, the determination of " i;‘different: in
the first method, QL values of the cavity with a sample and without the
sample are used, whereas in the second method a change in transmission
attenuation, due to the insertion of the sample into the cavity, {s
used. F;; this cavity it seems that the determination of €' from the
measurements of QL 1s not practicable for certain lossy materlals; that
is so on account of the interfering TMOll mode at 2.59 GHz which moves
upwards in frequency with the igsertion of a sample into the cavity and
Interferes with the dominant mode.

In order to compare the results obtained from the calibration
method with those from the perturbation method, the perturbation
equation is derived for the TMOIZ mode 1in an ideal clrcular
cylindrical cavity of identical dimensions.This equaibon was then used
té compute ' and <" for some calibrating liquids of Table 3. A

comparison between the computed values and those given in Table 3 1{s

shown 1n Table A.1. It is seen from this table that the difference
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between the theoretical and experimental values of c¢* is outside the
range of errors of the measurement method. Most probably the difference
18 due to neglecting the effects of the construction of the cavity
(three splece construction along with slots on the walls) and the
arrangement for holding the sample and too much perturbation of the
resonant frequency (7% for water).
2.4 Calibrating of the Cavity

Risman [57,5§l,o:iginally used a TMOLZ cavity shown in Fig. 2 for
the dlelectric méasurements; an exact copy of Risman's cavity has been
used 1n this work. - He callibrated his cavity with the first five
liquids of Table 3, as he knew the dielectric data on these liqulds i?
3 high level of confidence. Later on Walker [89) ca}ﬁbrate& a similar

'

cavity with all the se;;n liquids of Table 3 using pyrex glass vials of

4.9um diameter (internal) and 93.10mm length and obtained the following

relationaj

»

- -O.7294+O.3347(;f)—l.8085x10—3(1f)2+0.9650x10—5(‘f)3
(2.4
log, "(25)=0.2302 + 0.289810g(, '~1)
-] 2
+ 0.9960x10 " (log(. '~1))
-1, , 3
+ 0.3125x10 “({log(.'-1))
(2.5)

. LT
and £" = Antilog (55 + loge"(25)-1.25) (2.6)
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where Af tQ the frequency shift in MHz and AT is the difference in

-
(V)

transmission attenuation in dBs due to the insertion of the sample into
the cavity in the standard vials. ,"(25) is an arbitrary parameter
which 1{s the :" of a hypothetical dielectric material having : ' equal
to that of the unknown material but transmission attenuation ('T) equal
to 25dB. For this cawtty ‘T is a function of both ;‘ and . ", L.e.,
for a given T, ." depemds upon the ' of the sample. The term log.'(25)
appearing 1In Equatlon (2.6) attaches a weight to “ according to the
value “of ' of the sample. The method of measurement s lescribed

below. "

o]

2.5 Maalut§gont Method Used

'g
The measurement procedure consists of placing the saaple {n the

cavity and measuring the changes in resonant frequency ( f) ab;::/ the
LI

empty sample holder rédsonant frequency (fr)and the transmission
Attenuation ('T) at resonance, relatlve to the empty (low-loss) saaple
holder. The two-step method {s also shown 1{n Fig. . Sten
determines the shift fr—‘f; step 2 determines T and refines the
measurement of “f to +/- IMHz. After the determination of § ind T
- ' and . " are computed from Equations 2.4 = 2.h. For aeasureme-its
above room temperature, the cavity s inserted inf@I 1 teaperitire-
controlled oven.

Sample handling and temperature measurements (with needle
thermocouples) are simple with liquids and thin pastes. Sdamples can he
quickly inserted or removed from the cavity without changiag the
unloaded Q. Considerable care i{s required with materials which undergo

volume and state-changes, with temperature. This can be a serious
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sample holderg and leave no room for the expansion of the material with
temperature. With the vials open-at one end above the "actiig".volume
of the cavity (E ,parallel to the sample reduces to zero at the
plexiglass disc) small expansions and contractions of a material can be
managed, although . considerable patience is required; trial runs are
needed {n some cases tg ensure that the right amount of material 1is
‘uniformly present at a given temperature, without air voids. The
material 1s constrained by virtue of the small opening (4.9%9mm) relative
to the length of the vial (9.3 cm). The rate of change of temperature
of the sample has to be slow to achieve a wuniform density. Each
temperature run (22 - 140°C) reported in this thesis took 1.5 +/- 0.25
h. In spite of these factors there are two advantages qf this cavity
method: first,‘it is possible to achieve uniform samples and, secondly,
the measureménts are then made at the natural density of the material
at the particular temperature.

In order ¢to find suitable high loss materials for thelr use 1in
microwave heating, the dielectric constants of the constituents of
eggs, séme sug;r—alcohol mixtures and cﬁioride pastes Qere measured in
this cavity; The dielectric data on these’méterials are given ;n the
following sections. At the end of this chapter, the accuraéy and the

precision of the data obtained from this cavity is discussed.

2.6 Dielectric Data On Eggs v
2.6.1 Chemical Composition and Sample Prepagétion
The constituents of an egg ( both yolk and white) are complex
dielectric mixt;res. The dielectric properties of these mixtures vary
with the grade of the eggs, freshness and even with the diet of a hen

[90]. Typlcally an egg contains 65% white and 35% yolk, by volume.

- BN
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Table 3

-Cavity Calibration Liquids, 2.9 GHz and 20-23°c2

Substance Values used
p €' o

Methanol 22.0 13.0b
(Anechemia 99.8% pure; 5
<0.2% H20)
Distilled Water - 78.0  11.0°
Methanol (60%) and 46.0 17.0°
Distilled water (40%)
Acetone (10%), methanol ' 7.30  1.60°
(20%) and benzene (70%)
Methanol (6%), benzene (94%) 2.98 0.18b
Additional liquids:
Monochlorobenzene 5.54 0.67
Ethyl acetate 6.40 0.34

Cavity f = 2.92GHz, if =-208MHz

r max
Risman's values [57]
~t

24



25

Y
Water is the chief constituent of egg white (typic;ily 882%2) followed by
A
protein * (typically 11%). The flemainder are a trace of fat “with
minerals and sugars (glucose, etc). Ovalbumin, a glycoprotein, is the

chief protein constituent. Oromucin, a mucoprotein, is responsible for

-~y

the thickness of the 'white: a 4 to 1 range in oromucin content occurs
naturally. The albumen content is even more variable. The total range
#*s from 1 (minimum for the inner thin Jhite) to 80% (for thicé.ﬁhite).
The total solids content of egg yolk is about 50%Z. The major
constituents of the yolk solids are proteins and lipids. The fatty
acid content depends on the diet of the hen. Half of the water content
of yolk is free; the rest 1s bound to protein and lipopro%eins.
Dielectric data for egg constituents have been reported by
Westphal [91], WNorris and Brant [92] and Rzepecka [52]. Rzepecka's
data, at 2450 MHz and 15 - 60°C, is the most extensive but there is ﬁo
agreement between these writers. Egg variability and ;nspecified
'le preparéti’on may be. one reason; heating time (moisture and oil
content) may be another factor. For this work, five batches of
Canadian Grade A eggs [90] were purchased over a 6 month period; 3 frou
each batch were used for permittivity measurements. All eggs were kept
refrigerated (+7°C) and used after 6 +/- 2 days of purchase. White and
yolk were separated and measurements began within 1 hour of separation.
The thick albumen (;ypically 25% of the white’%y volume) was not used;
the remainder of the white was gently mixed as fairly as possible for
sample preparation. Egg yolks were gently mixed and samples prepared.
Additional eggs from tﬁe batghes were used for density measurements.
Powdered yolk was obtalned by cooking and then hot-air drying, with the

density measured at the time of the dielectric measurements. Other
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eggs from the batches were used for void observations and other related

measurements. This convinced us that we had fairly sampled and

prepared tﬂe same material (in appearance) from eggs laid over a 6-
month period.
2.6.2 Regults and Discussion

The data obtained are shown in Figs. 4 and 5. The arrows indica;;
the direction of temperature change. Least—squares fitted straight
lines relate to the data poilnts marked; the spread 1s considered
typical. The values are éiven on t;e graphs to define the typical
E*(T) relationships. Variability (the range of all v%lues recorded)
are shown at 23 and 80°C. A sample standard deviation is also shown
for egg yolk at 23°¢C for the measurements taken on the temperature
runs: these illustrate precision with a limited natural wvariability -
values which arose from egés coming from one batch. For egg white
samples, 1t was determined, 1in separate experiments, that the water
loss was <1%, with a volume expansion of about 5% when heated slowly in
the vials, in water, to 90% and held at that temperature for 10
minutes. -Voids 1in the vials were small. Under the same conditions egg
yolk was reduced in weight by about 10% with a small ( <10%) loss 1in
volume. Insertion of the material in the vials required care for all
measurements. The specific gravity of the dried yolk was fdund to be
0.91 +/- 0.01,

The dielectric constant of the thin egg white, Fig. 4(a), is less
than water but follows a similar negative temperature coeffiQient.' The
bars show the adjusted range of values obtained (maximum recorded +
maximum estimated experimental error to minimum rgcorded ~ maximum

experimental error). The mid range value is 65.5 (23°C). The 1line

shown 1s fitted to a temperature run and the markers (+, etc) relate to

N
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the line. The range is also shown at 80°C. Once the material 1is
cooked the variability 1is much less; it was not measured in detail.
.The data for the dielectric loss factor 1; Fig. 4(b) show a greater
adjusted range (9.5 to 17.5, 23°C). The loss factor Iincreases with
temperature (Qith a wide range of initial possible values) up to 100°C
and then drops rapidly. Above 100°C the dielectric éonstant drops
rapidly as the water becomes bound in the solid material.

Egg white may be a dielectrically - ideal food surface browning
agent. In fact, the temperature response of the dielectric loss factor
follows that of a susceptor material (see Fig. 1) [2]; were it possible
to shift E"max from 100 to about 160°C the browning potential would be
enhanced. The lower curves, in Figs. 4(a) and 4(b), show the efféct of
temperature on the cooked material. At constant*&eight these curves
are “reversible"; that is, they apply to an increase or decrease in
temperature.

The egg yolk data (Figs. 5(a) and 5(b)) show that both ¢' and <"
have negative temperature coefficients except In the dried state (then
both are small and positive). Tan¢ is large and is similar for both

constituents but in terms of what may be an important heating property

with egg white, tand does not reveal the transition at 100°cC.

2.7 Dielectric Data on Chloride Pastes and Microwave Broyning

égeﬁts

Chloride pastes are among the new interactive (ipsceptor)
heating materials being used ﬁg or propoéed for microwave food packages.
(1,17,93]. These pastes, which have been called chemical susceptors
[3], heat rapidly into the rénge 140°-200°¢ and then dry, 'providing a

controlled "hot plate” for foods packaged with them. Examples are

1
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pac*agea for.‘pizia and fried potatoes. These pastes represent one

family of suceptor materials whose dielectric prOpesties have not been

reported, although the trend of the loss factor (¢") can be deduced

from the carefully reported microwave heating experiments in the patent
. .

literature {2,3].

The dielectric measurements were, therefore, made on two CaCl2
pastes. These \zgsg:then compared with data on some of theilr nearest
edible counterparts, all of which are (or have been suggesgfd as)
microwave browning agents [94]. These matdrials are MarmiteTM, a stiff
savoury paste of yeast, vegetables and saly, which turns light brown if

cooked [95]; Cross & Blackwell BrowningTM [96]; and Xitchen BouquetTﬁ,

a dark meat-and gravy sauce [97]. The latter two are liquids rather

than pastes. . >

2.7.1 Sample Preparation
Two calcium chloride pastes were made with a conéistency

similar to those described in the patent literature for 1interactive
heating elements [2]. Data are given in Fig. ‘6.A The pastes were
packed into the 4.%9mm (internal diameter) thin-walled pyrex vials useg
in the perturbaéion—cavity. It is believed that the intermal pressure
with heating, the expansion and the loss of water, are similar by
virtue of the relative geometries of the vial and the vented plastic

/

bags wused, or proposed, 1in practice. The samples were heated aﬁd
stabilized slowly in the cavity placed ;ithin a temperature controlled
oven; although this 1s quite different from the rapid heating that
occurs iﬁ a microwave oven, 1t should still be representative of the

material's condition at each temperature under microwave heating.: If

samples did not maintain a sually uniform density they were not used.

Dry value measurements were made by the same method, but the technique
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y ,
is not particularly accurate or precise fot small ¢' (112.5) and e" (K

0.1). In some cases (see graphs) dry aampIés\were obtained by rapid
heating 1in a microwave oven and werevthen reheated in the cavity for
the dielectric measurement. The other materials were handled in the

same fashion in order to make the results comparable.

2.7.2 Results and Discussion

The dielectric data for the materials measured are shown in
Figs. 6 - 9, The nearest linear or quadratic curve was computed for
the measured values recorded; the equations are given on each figure,
which also (in the legend) includé the physical parameters of the

samples used.

It 1is apparent from the results why CaCl2 pastes make suitable
A

\

interactive heating elements: the maximum temperature for water reléase
(about lSOOC) 1s xnown to be greater than that for NaCl [2,3] with a

consequently larger "

max(T); further at the cut—off temperature (Tc)

the value of " for the dry material is significant - high enough, 1in
Su
fact, to maintaln energy absorption (and thus the "hot plate” effect)
Into the critical food browning range - which, for rapid browning, 1is >
160°C. Certainly the higher the temp®ature the faster the browning -
[94]. For simple layer angkzultilayer model calculations, similar to
Fhose shown to be approximaéely true for water layers in wmicrowave
ovens [4], it 1s suggested that ' be taken as 10 (25¢T < 150°¢C) and S
as 2 + 0.15T over the same range: these :are the "trend” values.
Hoggve", it should be noted that <" is greater for the dfieg\(stiffer)
CaCl2 paste, thus higher values may be possible with mixture

optimization. The dielectric properties of these materials do not

appear to be well understood and data on any chloride-paste could not
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be found for a comparisoa.
~ ™

Marmite ', rich in NaCl, behaves in a similar fashion (Pig. 7),
but with a 1lower cut—offrtemperature (Tc); it has useful heating
properties and browns foodi:ﬁy virtue of 1its "susceptibility” with the
added effect of a staining action. This means that an edible chloride-—
yeast suscéptor (or browning agent) 1is possible. .

Crosse ‘& Blackwell (Microwave) BrowningTH (Fig. 8) also has
similar properties, particularly ¢"(T), but the maximum temperature for
water release 1ls only about 110°c. Also, 1t is not thick enough to
create a "food layer”, for interactive heating, in practice. The value

-

of d¢"/dT 1is, quite different from similar weak NaCl solutioans over the

same temperature range [98,99] suggesting agaln the need for a careful

evaluation of chloride-yeast mixtures. Kitchen BouquetTM (Fig. 9) has

~

quite different dielec{ric properties, ones which are similar to water

and weak NaCl solutiouns.

2.8 Dielectric Data on Sugar Alcohol Mixtures
Some mixtures of alcohol and sugar show synergistic die\ectric

absorption at room temperature and 1 - 3 GHz [100]. Howe;er: data are
not available 1in the °* literature at; higher tempertures 101,102].
feasuremnts werél; therefore, done on these materials in seaéfor more
effective "edible susceptors” or surface—activators for heating
microwave ‘ foods with the dielectric-temperature characteristics
discussed in Chapter I and shown in Fig. 1. The dielectric data [25-
lOOOC,. 2;9 GHz] on some sugar alcohol mixtures are given 1ia this
section in Figs. 10 - 13. Except for the sugar and water mixtures,

the variation of loss factor with temperature is similar, in nature for

all the solutions and wmixtures; it increases up to a certain

kN
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temperature = called the "cut-off temperature (Tc)" - before falling
sharply. This shows that these mixtures have a potential for use as

browning agents (Chapter V).

2.8.1 Sample Preparation

Three mixtures of icing sugar [103]), Aistilled water and
ethanol, with the following constitution were made. Ethanol was 98%
pure, %eagent grade. The sugar water mixture was a saturated solgtion
At room temperature: at a higher concentration,sugar settled to- the
bottom and maintaining a uniform density in the sample holdeY was
difficult. The sﬁ;ar and ethanol mixture was a thick paste; and sugar,
water, 'and ethanol mixture was a thick solution. The concentrations
and densities of these solutions and paste are given in Figs. 10-13.

Sample holdeﬂs open at one end were used, even then the measurements

could be made only up to the boiling polnts of these mixtures,

2.8.2 Results and Discussion

.

For sugar and distilled water mixtures, -" remains constant

—>

increases with temperature - Fig. 11. When heated beyond

whereas <

the boiling point of the mixture, the water evaporates and a thick
paste, with some bound water, remains in the sample holder. Thé J%tted
curves given below the solid ones are for those thick pastes. Simple
expressions for {*(T) are also given in these figures for c;lculating

absorption and transmission through a layer of this mixture with

» > 1

?7érowave heating. The heating résults for the sugar—-water mixture, at
. 4

’QSOC, matched c' very closely, c" not so closely - with those given by

Roebuck (101] for a sucrose mixture of ideftical concentration at 25°C

and 3 GHz. - (For comparison, Roebuck's values are also shown on Fig.

1
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11).  The value of c¢" for our mixture seems to differ from that of
Roebuck [101] due to the composition of the sugar used [103]. For
other mixtures, no previous data could be found in the literature. The
results shown in the other figures are explained in the captions.

On the basis of the information derived from the above results,
Sections 2.7 and 2.8, and from a general survey of the dielectric data
[104,105] some mixtures were synthesized in an effort to make an
"edible” browning agent. The composition of these mixtures and surface
browning done with these are discussed in Chapter V.

The accuracy and precision of the dielectric measurement method
are dlscussesd in the next section. An analyels of the deviation of
the data obtained about a mean'value Indicates the degree of preclsion.
Accuracy 1s more difficult to estimate. The most convincing way *of
demonstrating accuracy 1s to -measure, in the same system, the
dielectric properties of known felectric materials. The accuracy and
the precision of the cavity perturbation method, of Sections 2.3 - 2.5,

are discussed in the following section.

L
2.9 Accuracy and Precision of the Method

2.9.1 Accuracy

»

In a calibration metho¢,' the accuracy of a dielectric
measurement depends upon the accufagx‘of the dielectric values of the
calibrating liquids. Risman [57] has stated that, the materials, other
than water, given at serial numbers 1,3,4 and 5 1in Table 3 were
measured in the Physics Laboratory of the RVO T.N.O. 1in the Hague by
courtesy of Dr. De Loor, using a method described by Poley [106]. E{F
water, Risman [57] has stated: "The values of water were taken froam

the literature and corrections were made to f = 2.8GHz and +20°C." e
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also measured water 1in a TMOIO cavity and checked his experimental
results with those cal;ulated from the perturbation formula for that
cavity. Risman has stated that a comparison of all the three values of
h*, obtained as above, satisfied him of the accuracy of water's L* as
(78 - jl1) at 2.8 GHz and 20°C.

In view of Risman's above statement regarding water's dielectric
values 1t 1s considered desirable to estimate its dielectric values at
2.8GHz, 20°C from a separate source. Water {s chosen for the analysis,

because this is the only substance in Table 3 for which maximum data

are avallable in the literature.

A mathematical relation, based on a dielectric theory, does not
exist to calculate é*(f,T) for pure water. It i{s known that pure water
vdoes not obey Debye's theory for dielectrics {107]. Sheppard: Jordan
and Grant [108] and Sheppard and Grant [109], after analysing thetr
dlelectric data on water, have suggested that water obeys the Cole-
Cole equation. Based on a statistical analysis, Hasted [110] has given
the parameters of the Cole-Cole equation, which are used to

x .
ietermine - (f,T) for water as described &vllowing the next paragraph.

The observation that the dispersion of water is better
characterized by a small departure from Debye behaviour has also been
confirmed by others such as Schwan et al. {111] and Afsar et al. [112].
Thus, a small departure from the Debye behaviour now appears to be
accepted but the form of dispersion with which to replace it 1is not
obvious [113]. There are two schools of thought: one contends that
the dispersion of water can be modelled by superimposing two Debye

processes of equal amplitude with their relaxation times separated by a



factor of two whereas the other rejects this model [109,113]. It
should be possible to calculate e*(f) for water theoretically, when
these subtleties regarding the dielectric dispersion of water are
clarified.

Under these circumstances the only way to check the possible range
for »*(f,T) for water at a given temperature and frequency is from a
statistical analysis of the available experimental data. Accordingly,
4 polynomial was obtained from the parameters glven in Table 4, which
are from Hasted [110]. Hasted obtained these parameters from a
regression analysis of the experimental data of Collle, Hasted and
Ritson [l14], Saxton and Lane [115], Grant, Buchanan and Coox [107],
Cook- [116], Hasted and El §a§peh (117], Buchanan and Grant [118],
Sandus and Lubitz [119]) and~Hasted [120] at more than 40 frequencies
(from 0.50 to 900 GHz) and from 0-75°C.

From Stogryn's analysis [121] for the complex dielectric* constant
of saline water, 1{t 1s expected that for pure water a third-order

polynomial of the following form {s also required:

~ -

FCELT) = (e, T)-5 (LT, (L3

+a', f7+a'_ T +a'_ fT (2.8)

E"(f)T) = a"l + ... ,etc. (').9)



]
1* %

* ™ LANRED
relationship, , (f,T) (s computed at 0, 20, 40 and 60°C afithe Il

Wwhere a etc., are to be determined. To find the !%bove’

frequencles from the Cole-Cole equation and the parametergs given {n
‘ .

Table 4. The static dlelectric counstant, ’s(T)' was obtajned from the

Malmberg and Maryott relation [121], also given in Table 4;  this 1

accepted as the most accurate relati{onshlp available [11U]. The values
*

of . (f,T) so obtained are given In Column A of Table 5. The values

found by regression analysis are given in Column B. The regrP%SLOn‘

™ .

coefficients of the least-squared fltted polynomials for ., 20, 40 and

60°C are also shown ianable 5. It 1s found that the two inde}endent
\ x ! ’
variables, f and T, are interacting in thelr effect on ;  thus fghe

polynomial form of Equations (2.8 ~ 2.9) is‘quired with £, T and 7
terms. The results of a multiple regressid"analysls are sHown in .

Column C of Table 5; the coefficlents in this case are given In Table
6.

The coefficients of determination, Rz, which are the aeasure of
the variations 1in the experimental data explained by the aultipte
regression models [lZ%l, “are 0.99 for both . ' and . This 1Is the

I ;
reason for the choicg/of this model for -*(f,T). The computer prograas
asr been checked with an example given by Devore [122]. In Table y,
experimental values at 2.8 GHz, given by Risman [123], and the
regressed values obtained from Equatious (2.8 - 2.9) are shown,
together with values calculated from Hasted's data [110].

It 1is seen from Table 7 that the experimental value of ', used
for the calibration of the cavity, 1is very close to :Lat obtaingd from

the multiple regression analysis: the difference is only 0.53%. For

the experimental value.-differs as much as 20% from that obtained from



-
multiple regression. However, it seems that the‘actﬁal value of " at
2.8GHz, 20°C is near 11.0 as deduced below.’

In Table 8 experimental values of ¢" are give& at 3GHz and 20-25°C
from four different sources. The valtes differ considerably; the
divergence can be ascribed to the accuracy and_precision.of different
methods wused to obtain the data. As shown in this Table, the most
probable range for ¢" is 12+1 at 3GHz and 11.50+1 at 2.8GHz. It 1is,
therefore, reasonable to belleve that the value of ' for water in

Table 2 is within +1% of the actual value, and that of e within +5%

.

(taking < =1..3), Stace Risman checked the dielectric values of other
calibrating liquids i{n the same way as that of water (by using a T‘Olo
cavity), it .s accepted that ‘n the worst case ¢' and " in Table 3 are
within +5% of thelr actual values.

Thus, this method will give about 5% accurate results, for a
sample which has its dielectric values close to a‘cg;;bration liquid.
For materials with their dielectric vaieeefidifferent than qhe,
calibration liquids results within +10% were obtained (more errer’ in
R few examples are N/10 NaCl soiution (75.9-318.1) and d-butyl
alcohol (3.5-jl.64). For others such as ethylene glycol (12-0‘j;2.0)
the meaeured values werez up to +20% of those 1in the literature.
However, thils comparison it=self is inecehrate, because the reference
) W e ) L SR R

‘dielectric values are mostly at 3 GHz and” never at’ thes - resonant
"y -

frequency of this Eavity. N

e The two sources of error*that - from an uncertainty in the

| I i
dielectric m:ralues of the calibrating liquids and that from the
calisailion procedure ‘- are independent random errors. The total

error, therefore, is the quadrature sum of individual errors [124]. 1f
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v (.}) (

the error due to calibdration procedure is taken as +10Z, the total

error E1 is

El-/(lo)2 + (5)° (2.10)
or, El- +11.18%

This 1s- the upper bound of error in an extreme case. For materials

with their dielectric values near calibrating liquids total estimated

’

error, E2’ is *
E, = ()% + (5)° 7 (2.11)
or, E2= i7.07%

| LR
2.9.2 Precision

The precision of the cavity 1s estimated to be +2% for lossy
materials. This 1s 1llustrated by considering the measurement errors
in the case of egg white at 24°C in thé 4.9mm diameter vial, shown 1in
Table 9. The frequency counter has a resolution of 0.1KHz. As the
frequency shift 1s used to calculate c¢', this effect is negligible.
For all the measurements, 1t was always possible to determine the’peak
transmission of the frequency response to +1 MHz with 2£<200 MHz. The

poyer meter used to measure the transmission through the cavity was

R

calibrated against 1its 1iunternal standard before each segie; of

temperature measurements. The calibration.removes the effect of small

5 .
d ~»

. . b 4
impedance mismatches of the 'sensor and its R#‘#osses. The error on the

}~'; B ' R ORI
7 .
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measurements 1s then theoretically the uncertainty of the power meter
itself, which, according to the manufacturer, is +/- 0.07 dB
(relative). The cumulative effect 1is illustrated in Table 9: if the
assumptions are true a precision of +/- 2% on €¢", +/- 1% on ¢' when ¢'
18 70, <£"=16 is expected. For 16.5-j8.3 a similar calculation glives
+/=1.7% for ¢<". At thellower end of the calibration range, 1.e., for
£'=6, ¢"=0.4, the precision isitQ.SZ for .

e

When the dielectric féagé 'is"required over a wide band of
frequencies, a cavity perturbation method serves only a iimited
purpose- Other frequency domain methods are also not very convenlent
and time-efficient. For example, to determie the optimum frequency for
the design of arr applicator for hyperthermia, we may require the

dielectric data on a tumor from 13 MHz to 5.88 GHz in the ISM band

[10,125]. Similarly, for the determination of the gp

range for selective dielectric heating of insects, T ﬁ%ntrol of”

stored-grain 1insects, dielectric data on ipsglks '5f:”agricultural

products were needed in a wide frequency rangh® "~ For these and

\“ © T
other applications of this nature, the time domain methods, discussed

in dhapter III, provide a convenient alternative.

. / .
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Table 4

Relaxation Parameters for Watéi’

T ~
°c - e LMy a1073
0 4,46 1.79 14
10 4.10 Y 1.26 14
'\a\
20 4.23 0:93 13
30 4.20 0.72 12
40 4.16 *0.58 9 !
50 4.13 0.48 13
60 4.21 0.39 11
75 4.49 0.32 -
'-k 1"1
in: - (d)'£m+(es - = M1+ )

[z

where: 53’87.740 - O.AET + 9.398 x IO-A'I‘2 - 1.410 x 10-6'1‘:}121],

© 1s the relaxation time and : is the shape parameter of the Cole=Cole

equation.

T o o e e e e e e et e L = = . e @ = T = e e e = = e W s @ = > = W = . . - ——— <m - - -

a Numerical values from Hasted [110].

b The average value of ¢ _1s 4.25; the experimental accuracy of the

values of - 1in the table is typically + 0.16 [110].
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Table 6
The Multdple Regression Analysis Third Order Polynomial for

€' and ¢" for Water

e* = + f + T + f2 + T2 + fT + fZT + a sz
217 azt v a, a5 3¢ a; 8
Regression
Coefficients For c': For ¢":
a, 90.38934 0.70905
a, - 2.53070 9.67392
a, - 0.51207 -0.16301
a, - 0.33793 -0.57724
ag 0.00237 0.00285
a, 0.14718 -0.18456
a7 0.00565 0.01122
ag ~ 0.00185 0.00061
*
s ? 0.82 0.76
e )
.2
*R 0.99 0.99

Se is the multiple standard error of the estimate, as defined

in [122]

R2 1s the coefficient of multiple determination, as defined

in [l%?]
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Table 7
Comparison between Experimental and Regressed

L0 Values of e* for Water at 2.8 GHz .

Experimental Hasted Multiple

Experimental Hasted «Multiple

1% [(123] [110] [123] [110]
e

_

0 83.0 79.57 79.65 21.0 23.87  23.27\
10 79.7 79.61 78.82 15.0 17.01  17.81
20 78.0 77.80 ,  77.41 11.0 12.28  13.26
30 74 75.18" " 75.45 8.4 9.19 9.62
40 71.9 72.31 72.91 6.6 7.09 6.90
50 69.3 § O 69.82 5.1 5.67 5.09
60 66.7 66.43 66.16 4.3 4.39 4.19
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Experimental Values of ¢" for Watér, 20~-25°¢

¢" (Experimental)

e (Estimated)a

Freq.  Value

Temp. ., Freq. Value

(°c) (GHz) (GHz)

20 3 13.05 [110] 2.8 12.24

20 3 | 13.0 [107] z.é ~ 12.20

25 3 12.04 [28] 2.8 11.29

25 3 11.0 [111] 2.8 10.32
2.8 11.51°

2 Estimated from the Cole-Cole equation

(6.19% less than at 3 GHz)

Average of the four estimated values
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CHAPTER III

Time Domain Methods

. Time domain %ethods for dielectric measurements offer.three
distinct advantages over frequengy domain methods. First, time domain
methods are inherently of wide béndwidth as compared to the traditional
frequency domain methods (wavegulde and cavity perturbation gethods).
For example, 1in the waveguide technique, at least. four waveguide
systems are needed to measure dielectric,PFoperties over 1 to 10 GHz,
along with samples of different shapes and sizes coﬁpatible with the

’ -~

waveguide dimensions for different bands (L~,S-,C- and X-bands

Second, the t#me required for performing a time domain neasure
) »

valid" over a wide range of frequencies 1s considerably less than that

required for‘multiple frequency domain measurements. Thus time domain

methods are more suitable for materials whose characteristics may not
2

remain constant over a period of time, such as some biological

materials. Third, &he instrumentation required for time doéain methods
\ .

requires less capital investment as compared to an automated network

analyzer. v
~

Time dqméin\\methods for dielectric measurements can be divided
» : \ “~ .
. ' \, ~
into two broad categbries: reflection methods and transm n methOdﬁﬂgj
- A
.~ Initially, reflection methods wele used in electrical engineering for
the testing of transmission lines agd these techniques are called' "Time
Domain Reflectometry"” (TDR/’[126,127T. Later, transmission wmethods
W .
were used by Sugget [128] and van Gemert [129] for dielectric
measurements. Both the reflection and transmission techniques are
\ [

. »
collectively known as "Time Domain Spectroscopy” (TDS).

For dielectric - measurements, most dd:ggrs have preferreds

')?;'{‘;‘. ) A
D e



68
"'.I'

reflection metho;s to transmiséion methods. A comprehensive review of
different variations on the time domain reflection “and transmission
methods has been gi;en by van Gemert [129].. Of the few who have used
the ttansm%saioﬁ méthod only Gestblom [130] has given quantitative
expérimental results. The dielectric constants for six liquids are
measured using all of the three variations for the transmission method
described by van Gemert [129], and the results are gﬁmpared with the
published data [57,89].
3.1 THEORY

In tide.domain methodé;a‘gteplike waveform (resembling an ideal
step) 1is propagated in a low-loss coaxial line containing a section

filled with the ”nown Yielectric sample, For a lossless line, the

4

[ ] .
shape of the input step waveform, v'(f), remains unchanged as long as

_the characteristic impedance “of the 1ine remains constant wi"espgc‘t v

! »
to the !ﬁ;ation along\the line. Accordingly, when the step waveform
Y A | &
meets the gection filled with thg‘dielectric material the waveform is

partially reflected [vrl(t)] and pgrtially transmitted [vtl(t)], where

(t) and v

Vrl £l

$
reflected and transmitted waves. e waveshape of these reflected and
: a

transmitted waves can be analyzed to provide values for the dieleq{;bc
. .

constant of the material over a wide range of frequencies. o

The Single Reflection Method (SRM) is based oa a study ’gf the

hY

first reflected pulse, vr};;). The equation for the reflection

coefficient in the fre uency dgmain is a
* d .

*

o - -

) -F{vrl(t)] ) (3.1
I AT I ~ o

o

(t) are respecﬁively the amplikudes of  the first
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»
where F[v (t)] and F[v (t)] are respectively the Fourier transforms of
the time domain waveform,(WFMs) v, (t) and v (t) and y is the angular
frequency of measurement., From transmission line theory, the .,

-

reflection coefficient at tﬁe‘ai:rdielectric interface is given as

*
oGy = 1o Cw) (3.2)
/e (ju)

), the complex dielectric cdﬁgtant of the dielectric

be obtained from Equations 3.1 and 3.2.

-é Single Transmission Method (STM) is based on a study of the
first transmitted pulse, vtl(t). The éaqationé for the tgﬂnsmfgg!bh

coefficient in the frequency domaln are:

AN ,
Flv,,(0)] ‘
Tl(ju) = —— : (3.3)
Flv, ()] - Co
i
‘1‘I.L&. and : <
EEEER 'Y
' 6/e” () jul | *
T, (jw)= T exp T (27 (Ju)-1) (3.4)
[1+/e (ju) ] c
where ¢ 1s the length of the dielectric sample and ¢ is the velocity of "
light In free space.’ Gestblom [130] has described Equation 3.4. Note
- .
that ¢ (jw) can be determined from an dimplicit solution of
Equations 3.3 and 3.4. | '

I4
The Multiple Transmission Method (MTM) is based on the comparison

of the totally transmitted signal, vt(c)‘ﬁithftQig’incident signal

vi(t). The total transmission coefficieént at a frejuency w through a



A J
sample of i;ng;h'ﬂ is given by [130] ’ ' £::}
Flv, ()] '
. : () = (3.5)
i < ' F[vi(t)}} " :
. ’ , " ‘ -
andv -y
\ 2 74; wiﬁ} * . o
(1-p“)exp 2L < e (_jw)-dfm W G, )
T (jw)= : 2 . “’.V, (3.6) . )
t 3 2 -2 2/ *( . ) ,..?* " vﬁ‘ ‘o
— : 1-p"exp{ Jutve (o } A il LA
. N c o ""ﬁ’. . ¢ ; .

x .
>-Again, note that ¢ (jw) can be determined frowm an impliéit solution of
" Equations 3.5 and 3.6.

» @ In the above analysis, the affect of connectors at the ends of
the sample has been neglected. Although precision 7-mm coannectors were
. o

used, (connéctors C{ and C, in Fig. 14), these do have a finite

. reflection® ficient  which tends to increase with use. Strictly
v

speaking, therefore, the transfer function of a saible holder is made

up of " three compbnents as shown in Fig. 14; HC and ch are the
: 1 Z

transfer functigs of the connectors aridhi fer function

of the section f¥lled with dielectric material. Vi(jw) is the Fou?&er
transform of the incident waveform and Vo(jm) 1s ther Fourier transform
A“ﬁ* of the waveform at the far end of :he samgle'hal'lr{ If two sample
holders of lengths 4 and i, are chosen, and %atio of the transform® -
of transmitted @yFM'sﬁ througﬁ two samples of different 1length are

studied then the method is c#&kled the ratio method [131]. If VOl(ju)

and Voz(jw) are the Fourler transforms of the first transamitted

waveforms,QQth(t) and vtz(t), at the far end of the sample holders of ©

Lengthé 11 and 22,_the equations for the singly-transmitted wavq‘ are

£
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»

- VOl(jw) }

~ . B =0 (S0, GuH (Ju) (3.7)
, Vi(jw) < b <, ;

‘ » ’ s
ACh ) ) (3.8)
» - =H_ (jwH, (GwH (Jw 3.
Vi(Jw) Cl 22 <, ‘

and -

: H i * X ‘| .

zpl(jw) zlfJu) —jw{ﬂl-lz}/a (jw) : ey
.w{/ o) = a € ) = exp . . (3.3)*
. 02 J(ﬁy L 2? _‘](vu) RV % o Pt

L)

’ - »

-

A o
Since ”vtl(t) and vtz(t) are the initial transmitted waves through the

sample holders of lengths 21 and R?_ ' . , < ‘:..
. ) | ), LASEENN

1. - N

b} - . 'q"

Y 5 R
Vo  Gw) Flv ()] ¢.G:10) - Sy

v . = e
02 (3% F[vtz(t)] s

4 L

* . ) N o
where again it {s aoted that ¢ (ju) can be computed by afy 1@plic‘;$

" solutlon of Equations 3.9 and 3.10.

Theoretically the ratio method should give more accurate results

.

1

than ‘STM or MTIM, becauses for the forward tr§elling wave the

’

effect of the discontinuities at the 1interface of the coaﬁ}al cable and
the' connectors of the sample holder is removed. Although this method
was first suggested by Loeb [131], not ﬁ;ny results obtaimed using
this method appear to have been published. Some experimental results,
«using this method, are presented in this thesis.
A problem inherent in the time domain method using steplike.

> N
excitatYon arises when transforming Vhe time domain data  to the

-

frequency domain. ‘Fhis problem is defined in Figure 15 [132]. The®
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time domain method provid;; a limited-duration time domain datq set
shown '1n Figure 15(;). Taking the FFT of this data set glves the
spectrum for the periodic version figure 15(a) namely of Figure
15(b) and not the spectrum for the steplike TDR signal shown in Fﬁ‘lre
15(¢). There are two approaches to deal with the above problem: (ai
Use of window functions, (b) Other techntques. Harris [133] has given
an excellent review o&'the usg of window tunct;éns. However, window
functions are not suitable for TDR type signal§fas these attach weights
to the data points depending upon their pegition in the observation
window. Another rsew‘on alternative spectvral estimation techniques

has been given by " and Marple [134], where the authors have glven,
a

’
techniques used in radar, sonar and geoselsmological applications.

For TDR signals, Samulon's [135], and Nicholson's method [136]
have “been used. A discussion on these methods is given by Waldmeyer
[137]" and Shaarawi [138]. For this work, the Extended Function Fast
Fourier Tpansform (EF-FFT) method\ proposed by Cormack and Binder [132].
has been used. With fhe heip of an éxample, these authors have proved
thas the EF-FFT techniqu77gzcés results closer to reality than :hose

~

obtained from the uge of eit cholson's method [136) or the Hanning

windgw. . “\“\“\\

4

3.2 EXPERIMENTAL APPARATUS.AND PROCEDURE

The experimental apparatus is shown in Fig. "16. It consists of a

s

»

Tektrenix 7854 oscilloscope, 7S12 TDR/Sampler Plug-in, S-52 Pulse
¥ -

Geng;ator Head and a S-4 Sampling Head; both have a rise time of 25ps

or less, Thus the rise time ofsthe pulse at the output of the sampler

1s 35 ps or less. The sample holder containing the dielectric liquid

bein méasured is connected between the pulse generator and .the
g ecte P g \

e

rd
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sampling head. Both coaxial and stripline geometries were used; both
provide TEM propagation, Four coaxial-line sample holders
(mechanically identical to HPF precieidn line model 11566A) of lengths
17, 9, 6 and 3.5 cm were used. The strip line sample holder was 1 cm
long. ¥recision 7-mm connectors were used at the ends of the sample
holders. The plastig‘beads in these connectors provided a leak-tight
seal at each end for all organic 1liquids except those such as
monochlorobenzene which dissolQed these beads. These liqqids could have ~
been used 1f the plastic beads had beén replaced with a ceramic’
material. Different sample holder lengths were requir%S to maximize
measurement accuracy -for difﬁe{ent liquids at differe&f frequencie;.
For example, for lossy liquidsfliQe-hethanol)accurate results Aaround -«
10GHz were obtained usiqg_a lcm sample holdde whereas at 3GHz a longer
sample holdé; such as 3.5 cm was needeﬁsg .

3,
i

The measurement procedure 1s simple and straightforward.

i

Initially the_ empty sample holder is connected to the TDR and the

desired wavef(& - either first transmitted wave or the multiply

transmitted wave - 1s stored‘in the oscilloscope, and called the loput
\ i L]

waveform (IN WFM). The material to be meaSyred 1s then poured into the

sample holder and again the trinsmi:ted waveform through the samgf%
. - - .

. - 3 J
holder 1is stored 1in the oscilloscope. This is called the o“igziﬁ v

waveform (OUT WFM). The ;;stem t;@nsfer ﬁﬂpccion 1s thus given as #\Mf
F[(OUT WFM)]/F{(IN WFM)] where F denotés‘lhe Fast Fourier Transform
operator. Each stored waveform cqnsists oé an array of 1024 wavefornm
values, eacg value corresponding to the waveform amplitude at one of

the 1024 equai‘y spaced points along the time axis of the display. To

s
redute the effect of pandom noise, signal averaging over 1000 traces

-
-

\-\\ E | »
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Figure 14. Schematic layout of a coaxial sample holder

and its transfer function :
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was used. thus 1mproving the 'S/N ratio by about 30 dB. The factors
1nf£uencing the sampling requirements foé a TDR WFM and Fhus governing
the choice of the time window are given in Section 3.6.'

The stored waveforms in the oscilloscope were transferred to a
personal  computer (PC) with the help of an Interactive signal
processing program. The PC with sultable software, developiptin-house,
then computes the Fourler teansform of the stored waveforms and the
transfer functions given by Equations 3.3, 3.5 or 3.10. '*(Jn) s then

computed from the transcendental Equation 3.4, 3.6, or 3.9 depending

upon whether the STM, MTM or the ratio method was used.

3.3 Sampling Requirements for TDR Waveforms

(1)  Desired Spectral Components: The total duration of the ctime

L)
window, T, determines the frequency interval, -f, between successive

spectral components. Thus

T=t.n, and T =1/ °f (3.11)

A Y
where t Is the sample interval and n is the number of samples, chosen
as 1024. Therefore, to obtaln results at 0 MHz, 10 MHz, etc., T should
b
equal (1.0/1.0E+07) or 100 ns. However, the following factors must also

be considered. “

(11) AlLasing: Aliasing occurs when the sampling rate {s less thdn the
1) ’
Nyquist rate. Therefore, the minimum . sampling rate for a 35-ps rise-,

t:ne pulse 1is about 20 Gsamples/s which implies °t=50 ps, *To

be sure of avoiding aliasing, Ramirez [139] suggestgqd a more

[ 4
stringent requirement for sampling At a rate of - At ‘leasyg

r ’

£



.3 samples per Hz, which glves a sampling interval of (1.0/30, OE+093 sec
or, t=33.3 ps. Thus the required window should be (33. 3*1024)ps, ‘of

T-34.13 ns to avo}d aliasing. ’

(111)Experimental Experience: The experlence acquired fro®/this work

= : .
dictates that the greatest accuracy in e-(j;b is obtained when 5 to 10
\

samples are taken in the rising portion of the step WFM. If 7 samples Z!F

are taken during the 35 ps rise time of the pulse, t=5'ps and T equals
N . ’ . )

&

(5%1024), or 5.12 ns.

¢

7

In conclus%&;, the record length should s;“g;lz ns\ or 'lessé
Although most measurements in the present work were made wigh 5 or 10
ns time windows, some were made with 20 and 50 ns time windgws which
ylelded less accurate values for e*(jM).

In the following Section various sources of error In the
measurements from the\\bsCIIIOScope and other components, such as

connectors and adapters, are discussed. \\\:)

3.4 Sources of Error
There are five sourtes of error ln the experimental results:

(1) Mismatch error due to the connectors and the adapters

between the S$-52, pulse generat3p; and the dielectric sample,

also betwe#n the dielectric sample and the S-4, 'sampfing
head;
(i1) Error due to a shift in the time origin occurriang between the

' measurements of input and output signals;

(111) Error in the signal amplitude caused by the nonlinearity in
ch vertical amplifiers of the oscilloscope; o
(iv) Errdr in the signal amplitude from the aperture jitter of the

-

sampler; and
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r(w) Other errors. .. . ' :
‘The effec? of each 6f these errors is discussed below. -
3.4.1 Mismatch error due to the connectors and adapters
>3.4.1f1 Single&Transmission Method

In this section the error, for a singly transmitted wave

through Ithe‘liquid » due to spurious refle;tions caused'by.~non-ideal
iadapters and connectors at the en&s of the sample ‘hddder is discussed.
The schemattc representation, alopg with VSWR's of various components
between the S-52 pulse generator head and S-4 sampling head, are shown
" in Fig. 17(a). It is assumed that the cable between the 5=52 and - the
SMA/7mm adapter is matched to the output of the pulse generator; the
same 1s assumed true for the cable between thé §=4 and the other
adapter.“ The signal travelling from the pulse generator toward the
sampling head 1is defined as the "forward signal” and that {in the
» Opposite direction the "reflected signal”.
) A‘Av' The maximum voltage standing wave ratio of a 7um precision coaxial

Connector, VSWRI, and that of a SMA/7mm adapter, VSWR2, if terminated

in their characteristic lmpedances are [140]

o

VSWRL = 1.003 + 0.002f (3.12)
VSWR2 = 1.025 + 0.002f (3.13)

where f is the frequenqy in GHz. The mismatch error is considered only
up to 10 GHz as that is the highest frequency in the measurements. At

10 GHz, from Equations 3.12 and 3 13, VSWRl = 1.023 and VSWRZ = 1.045.
S

Thus, at a fnequency less than or equal to 10 GHz the maximum possible

VSWR due to a coanector and an adapter on the transmission line in Fig.

.

17(a), 1is VSWR3 = VSWR1 x VSWR2, or 1.069. The effects of botn these

\
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discontinuities. can be lumped tbgether and replaced with imaginary
discontinuities at the interfaces A and D As shown in Figuré 17(b).
Thus the VSWR's of the sections of transmission line ffam A to B and C
to D 18 1.069 and a caorresponding value of reflection coefficient,* Ol,

for a wave incident .on the interface A in Fig. 17(c) i§"0.0333. The

’

-length of each of these éections, 21 1s taken as the effective length

of a connector, Cl’ and an adapter, Al’ as shown in Figure 17(a). wl

1s the propagation constant per ugit length in sections AB:and CD and
i1s given by

I}

Yl = ijuo-jwel . (3.14)

Where 51 1s the equivalent dielectwfe constant of these lines which is

related to the reflection coeffiéient\ii by
(1+0)° .
€)= ———— (3.15)
' (1-¢ )

The 1length of the liquid in the sample holder is - and is the same as

the length of the tcansnission‘liie BC in Fig._ 17(c). is the
propagation constant per unit length in the transmission line section
—
BC and is given by, '
A\\> . =g e (3.16) *
i

,

The reflection coefficlent, DL, of the interface B for the forward wave

*
is related to ¢ and ° by

A

~

s
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3.an .

For eage of description,, the sides of the interfacéa A,B,C and D 1in
Fié. 17(c) are numbered 1,2,......8. The amplitudes of signals on these
intqr%&éeshgre glven below.

If ‘a wave of unit amplitude 1s incident on side 1 of interface A
of Fig. 17(c), ;hg part rﬁflected, with ampligude Ol; 1s absorbed by

the pulse genéfatof. The amplitude of the signal on side 2 of the
interface A 1is the algebraic sum oé the incident and the reflected
gzghals at interface 1. This is denoted by S, and is equal to (1—nl);
'A part of Ehis transmitted signal, (l-ol), upon'reaching interface B is

transmitted igto section BC. Its amplitude on side 4 1is (l-

ul)(l+oL)e 1 as shown in Fig. 17(c). The signal reflected at

interface 3, (l-ol) oLe_YlQI, .is multiply-reflected in section AB.
' Physicalfy £1<Z. With any:of the calibrating liquids of Table 3 iq
section BC, 2\‘3; at least an order of magnitudé‘larger than 21. Thus,
fhe multiply réflected waves in section AB closely follow the first-
transmigﬁgd wave and the first fe; of these multiply-reflected waves
can' not be excluded from the first-transmitted wave in a transmission
measurement Qescribed in Section 3.2. As the magnitude of ©) 1s pu the
order of 0,01, only the first few multiply—refiected waves are
significaht; others have negligible amplitudes: their Inclusion in the
fo%lowing analysis will negligibly affect the final result. Therefore,
for the sake of the mathematical convenience, all the infinite number

of multiple reflections in section AB are summed up and added to the

first transmitted wave through section BC. The above is repeated for
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*

the multiple reflections 1in section CD for similar reasons. The

: amplitudes “of the first-transmitted waves with ivliquid and air in the

sample holder are given below:

(1) Output signal with a liquid in the sample holder.
/
When the incident signal on side 1 of interface A is real and has
unity amplitude, the signal on side 2 of interface A is denoted as S,

and 1s given by Equation 3.18.
82 - (l+ol) L (3.18)

The total signal on side 3, S3, due to multiple r?flections in section

ey

C . -y -y, 8 -2y %
S.=(1-0)e T le(1p ye Il b1
30 °1 °LP1
-y. 2 -2y.2
171 171,2
+ (1-ol)e (oLole YR
or
)
171
(1 Pl)e
5 .- e 3.19
(l-p,o.e 1 l)
L1>L .
The signél on side 4,i.e., transmitted through interface B is, S/=S3
. +

S, = 83(1+CL). The signal on side 5 of interface C is

4
SS: 83(1+OL) e_Y“, Similarly, the signal on side 6 of interface C is
-y
- - + - (3.2
S6 83(1 OL) e (1 DL) (3.20)

and the signal on side 7 of interface D is

-

¢ . 171
L (3.21)
! -2y
AR

l—O lOLe
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The signal at interface 8, with liquid in the sample holder, SOPL 1is

SOPL = S7 (1 + ?1)

s q Av-

-2v,4
2 -
((=p (12 ye 11 12 .

or SOPL = o (3.22)

(l-p,p. e B 1)2
1"L
’
(11) Output signal with air in the sample holder. !

3

In this case OL-OI' On making this substitution, Equation 3.22

gives the output signal with air in the sample holder, SOPA, as

(3.23)

where ' 13 the propagation constant per unit length in the sample
holder filled with air and is given as ya'ju/hoso. Therefore, the
transfer function of the liquid, Tl'(jm), for a singly-transmitted wave

with non-ideal connectors and adapters {is,

SOPL

TG = Soa \

or



\ .
‘ -2y,% Y
2-)(1--012e e '

— o . (3.24)
"t Y,

(1-0,) (10 0 ) e .

(l—oL

Tl'(jw) -

When the connectors and adapters ére ideal, o1 = 0 and the-Above

- : »
equation reduces to Equation 3.4. The range of ¢ defined by the

4

~ :
range of ©, can be obthined from Equation 3.24. For the connectors’ ?}

< 0.0333.# This gives the

[ 4

and adapters used in this work 0.0106 < .

range of uncertainty'in the calculated values of

..

3.4.1.2 Multiple transmission method.
b ’ .

~d
For MTM, the approach of wave tracing, successfully used in
STM, becomes unwieldy and difficult to follow. Therefore, ABCD
parameter representation [ihl] 'is used for each section of the

transmission line AD of Fig. 17(c). The schematic representation, of

.

the transmission line AD, as a cascaded network is shown in Fig. 18, ﬁ
where [AC] 1s tﬁEIABCD matrix representation for the transmission line

*
AB of Fig. 17(c), and [A ] that for BC. The propagation constant, L

In AC 1s the same as in AB (of Fig. 17(c)) and is given by Equation

3.14; the characteristic impedance, Zl’

is defined by:

.

-

9]
4 The VSWR on lines AB and CD, VSWR3, can vary from VSWR2/VSWRI

to  VSWR2.VSWRI, Jcorresponding to », = 0.0106 and 0.0333,

respectively,



(3.25) A
where Ei is defined.by Equation 3.15. The hropagation constant, v, {n
* ®
- A 18 defined by Equation 3.16, and the characteristic impedance, Z ,

is section of line is deflned as

(3.26)

*

where ¢ 1{s the complex dielectric constant of the liquid in the sample
*

holder. The ABCD matrices for the cascaded sections AC and A of Fig.

18 are given as,

Coshylnl ZlSth\lil

AC = : (3.27)
Z Sinh; l"l Cosh*(ln1

1
‘ —— /
and X
a *
Coshy 1 Z Sinh«
*

A = . (3.28)
) .
—*Slnhyi Coshy
Z

*
Each element of matrices AC and A is a function of frequency, -,

through v of Fig. 18

1 Zl’ ¥ and Z. The relationship between Vg and VO
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{s, therefore, given as

- AC A AC v,/2, (3.29)

[t may be noted that, 1{n general, Vg, I and V. are functions

)

frequency and more specifically could be written as Vg(.), L ()
1

1i

and Vo(m). Let

AL = AC ) AC
R
4 A2
A = (3.30)
921 %22

Therefore, from Equations' 3,29 and 3.30,

Vg—ZgIi = allv0+a12VO/ZL ‘ (3.31)

and,

Ii = a21V0+a22VOZL ) (3.32)

of



From Equations 3.31 and 3.32, {t can be shown that

Vo) 1
V ('n)
8

(3.33)

[all+a12/ZL+Z a, +Z a_,/ZL]

g 21 "g 22

Equation 3.29 can be similarly solved, when the sample holder f{g
filled with air. The propagation constant, a? of the section BC of

Fig. 17(c) and {ts charactertstics impedance Zi are glven by

= i 3.34)
4
and
o=, T (3.395)
~ i 0 O
',-:\' ’
*
The ABCD matrix A becomes,
tosh . CoSinn.
ad A i
* *
A -A - / }- 36)
a
!
——sinl . . osh
‘ i i
3
Let,
\
N
®
a? = AC A AC
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A Y.
- (3.37)
[ ] \
221 42

[fv {s the output signal with alr in the sample holder, VvV /v

v cAn
B A
be obtalned as )
v (] .
a . o 3,380
VotL) r ' ' o ' ,
1 ta P O SR f e PE
" U ST 2
Therefore, the transfer functlon of the liquid, T 03.), Us glven oy
["”1.) Vot
A TS T - S E3030
t . ” )
{. L) to
oa 2
aor,
Liv feoa o a0 )
R T I G 3w
- Jra A I 1, ’:
' | io AR [E R t
where A Yo 1y ind 4,, Are 2lven by Equation 3.3) and L a'l,,
a'71 and 3'22 by Equation 3.37. Equation 3.4 {s solved numericallv,
*
because A A etc., 4are compllicated functions of ., | SERE

and 1 For example, ) ls given by the expression
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*

a,,=Cos (v, 2,)[{Cosh(y 2 )Cosh(¥1) #{ < Sinh(y

)Sinh(y2)}
= 1

12

\

— ' + {31nh(yz)}2

. a4  * Sinh(y,2,)Sinh(v2)Cosh(y2)
+ { =

£y Cosh(ylﬂl) H

»

Equation 3.40, like Equation.3.24, gives a range ofﬁhalues for

x _
e , depending upon the range of op* In the special case when the pulse

N

generator, sampie holder and load are perfectly matched,

g L a
. — * -
coshy? Z sinhy®
3 ox (
- ! A - (3.41)
— - l;sinhyz coshy 2
Z
coshYaZ Zasinhaaﬁ
T %
< - Aa - . (3.42)
o - E;Slnhyal coshyai

Thus, Equation 3.40 reduces to the familiar form of Equation 3.6, 1.e.,

Tt'(jw) = Tt(jm)-

3.4.2 Error due to time shift between input and output waveforus
This error arises from the small and undesirable time shift

that can occur between the input (IN WFM) and output waveforms (QUT
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WFM). The time shift can occur due to a }itter in the time base of
fhe oscilloscope. For example, with the Tgﬁfronix §-52 pulse generator
head and S-6 sampling head plug—=ins in the 7S1% TDR/sampler unit, the
specified tipe jitter of the time basg of the sampler, without signal
averaging, 1s less than 10 ps. fof the S—-4 sampliiig head, without
gignal averaging, the jitter Is mofe than 10 ps. As the jitter arilses

from a random noise in the time base of the oscilloscope, 1its effect

’

reduces as 1//5, where n ishthe number of signal averages. Every’

«

waveform, therefore, was avéraged 1000 times, before being stored. If

the maximum jitter s takeén as 20 ps (equal to that with the S-5 unit), .

it #s expected that in the worst case the jitter in the origin of time

is 20//I6666 PS, ,°£ 0.63 ps. Although, this seems small, the
sensitivities of E; and €" to a time shift of this magnitude can be
substantial as will now be show;.

A timing error, (At, in the time domain introduces a p;ase error,
2d=uit, 1in the transfer function for the liquid being measured. This
phase error produces an err;r in both the real-and imaginary components
of the computed complex dielectric constant. The sensitivity of -the

+

é{electric constanyg S_+, and loss factor, SE" to this phase error for

N ’

alli\Tﬁ:eg;<c¥pé§ of transmission method and for two lengths of the

sample holder have been computed and the plots of these sensitivities
are given 1n Filgures 19-24, Before discussing the results, the
apprcach followed for thé calculations of the sensitivities of £' and
¢" with respect to the phase, ', of the transfer function, T(j~), of
Equatiois 3.4 and 3.6 1s given below.

3.4.2.1 Senéitivity of €' and "

Equations 3.4 and 3.6 can also be written as

-

~



T(jw) = |T] exp'—je)
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(3.43)
4
%
Also, T(jw) = f(e )
4 '
or, T(jw) = fl(v',»") + 12(V','") (3.44)
where j = /~I. From Equations 3.43 and 3.44 "
T = /¢ , =) NGRS ) (3.45)
N 1 2
and
" -
lf (C',L”)I
A= = tan_l —i—— (3-46)
= fl(E')EH)j
— —
Therefore, the total iifferentials of ?T{ and® - are
, siT! 31T ,
d|T! 2T "de '+ e y -de'(3.47)
3€ P 9t o
"¢""=Const. ¢ =Const.
dy = 82,’ de'+ 22,,—* -de" (3.48)
h = Tev=Const. ‘ "e'=C.onst

It is known that |T! is not affected by a change in

in this case dfT{ = 0,

Therefore, from Equation 3.47, de"

v Therefore,

1s equal to
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[3|T|/3e" Jde"

de" = (3.49)
[3lT|/3e"]
From Equations 3.48 and 3.49
)
ar e alT[/ety
dE' - :)E' [}?TI/SEH ° :/d” (3'50)
Similarly for FAL . 'f?
iy
do 3= (3T ae" 39 :
g e o L (3|T|/3€'] BEEN (3:51)
The per ceat sensitivitles of ¢' and ¢ for a change in can be
defined by
S o= ( L %%' ) -+ 100 (3.52)
and
S. de" ' 3.
Sers (545 w0 (3.33)
£ dv

»

The numerical value of S ., cowmputed from Equation 3.53, gives the
. .

per cent change in the value of <" for a shift of 1 radian in the phase

of the transfer function, T(jw). At 3 GHz, a phase shift of one radian

correspords to a time shift (AT) of 53 ps. To elaborate further, 1if

Sen = 5 from Equation 3.53, for a phase shift of one radian, the value

L
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of €" will change by 5% for a 53 ps shift in the time ‘origin. The
same 1g trﬁe for ', | |
Theée sensitivites were computed with the help of the MathCADTM
package [142] over the following ranges of c¢' and e¢": ¢' = 2,4,... 82
and " = 0.5,1,...18. These ranges for ¢' and ¢" cover all the
matérials glven in Table 2 except those having ¢"<0.5. When £"<0.5,

S » becomes a very large negative number for both 2 ™ 3.5 and <= 17 cm
[

for STM’ as well as fop MTM.

3.4.2.2 Results ‘.‘

The validity of Equations 3.52 and 3.53 was checked by comparing
the = predictions of these equations with a figigg d;}ference
calculation. In the latter, a specific OUT WFM was égifted with
respect to its corresponding IN WFM by a time increment of 5 ps, which
approximately equals the time interval between two samples for a record
length of 5 ns. These two waveforms were then analyzed using the
procedure described in Section 3.3 to yleld values of ¢' and ¢". For 5
ps time shift (or, 5x10—12u phase shift), the ¢! and £" values for the
time shifted case and ¢' and €" values from the unshifted OUT WFM and
IN WFM were wused to determine finite difference approximations to
de'/d® and de"/d 5. The values obtained matched very well with those
computed from Equations 3.52 and 3.53. This verification was repeatea
for time shifts of 10 ps and 15 ps; the results agreed for these tine
shifts also. After this verification of correctness, these two
equations were used to compute values of S , and Se" for all three

£

transmission methods. The results covered the following ranges of

parameters:

LTS

-
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(1) Single Transmission Method

(a) Results given in Figure 19(a), (b) for:

’

¢ =17 cm, £ = 3 GHz;
e' = 2,4,...82, ¢" = 0.5,1,...18

(b) Results are given in Figures 20(a), (b) and 21 (a), (b)

for:
; = 3.5 cm, f = 3 GHz;
e = 2,4,....40; 4Q, 42,...82,
. ‘)

e” = 1,1.2,...5; 5, 5.65,...18.

(11) Multiple Transmission Method

(a) Results are in Figures 22(a), (b) for:

. =17 cm, £ =3 GHz;h | . 4}{
et = 2,4,...82, ¢7 = 0.5,1,...18.

(b) Results in Figure 23(a), (b) for:

¢ =3,5cm, f =3 GHz;

e' = 2,4,...82, ¢" = 0,5, 1,...18
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(111)Ratio method: Results in Figures 24(a), (b) are for:

£, = 17 cm, ¢

1 = 3.5 cm,

2

f = 3 GHz;

e' = 2,4,...82, ¢" =~ 0.5,1,...18.

-

From Figs. 19-24, it can be concluded that i{f there is an
uncertainty regarding the time origin, the method along with the sample
leng®h should be chosen to obtain small values for SE, and S .. The

=

_t
5

best results, 1in this respect, are obtainable for those values of
and €" for which the sensitivity - surfaces intersect, or are close to,
the €'e” planes of Figs. 19-24. It is also concluded that the MTM ;ill
not give accurate results when the sensitivity functions have large
magnitudes, for.example close to the peaks of Figs. 22(b) and 23(b).
Figs. 25-27 provide the prospective user with guidance as to the
ranges of ¢' and ¢" that yield low values for S_, and SE" for each of

the transmission methods. For example, the range of ' and ¢ for
which :l%<S€,<lZ for the single transmission method at 3 GHz, .=17 and
3.5 cm are given in Fig. 25. In Fig. 25(a) in the reglon enclosed by
the solid lines, SE, will change by + 1% and Se" from 5.0 to 2.08% for
a AT = 53 ps.  As discussed earlier it is expected that in the worst
case AT< 5 ps. Therefore, at 3GHz for the STM with 1=17 cm and for the

range of materials of Fig 25(a), the results are expected to be within

+ 0.1% for ¢' and 0.5% for ¢" due to the time shift error. The region
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of 1low sensitivity shown in Fig. 25(b) 1s considerably smaller than
that of Fig. 25(a).

The phase shift suffered by a wave in its transmission\through a
sample holder depends upon the e* of the material and the length of the
sample holder. Therefore, for a longer sample holder, the per cent
phase shift due to a given timing error, 4t, is smaller. Thus, with a
longer sample holder, materials havingea wider range of 5* can be
measured within a specified limit of timing sensitivity. This argument
also applies to the MTM as shown in Fig. 26; the range of g* ié more
for a longer sample holder. However, 1n this case as shown in Figs.
22(b) and 23(b), the sensitivity in ", SE", changes wildly. These
fluctuations limit the range of the materials which can be measured
with MIM within a specified limit of sensitivity (e.g., -1% < S v <
1%). For the ratio method it is seen that SE" 1s always more than .1%.
The area shown in this case is for SE"<ZZ. SE, variéé from 4.04% at *
= (34-30.5) to 2.6% at g* = (83-318). For the ratio method, the
overall error in SE" due to the shift of time origin s larger than
other methods discussed for the same range of E*.

The above discussion would suggest that one should choose a long
sample holder to reduce the error due to the shift of tﬁe time origin.
However, for a 1long sample holder the attenuation is large and the
desired signal to noise ratio at the output end places an upper limit
on the length of the sample holder. At 3 GHz, it was found that the 17
cm sample holder was unsuitable for measuring methanol, a methanol and
water mixture (see Table 3), and distilled water, dﬁe to the large

attenuation of these liquids. At frequencies above 3 GHz this problen

will be worse as the amplitudes of the spectral components of an ideal
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step pulse drop as w-l.

3.4.3 Error’fr;m the nonlinearity in the vertical amplifier of the
oscilloscope. .
According to the wmanufacturer of the Tektronix 7854

oscilloscope, the accurécy of the veritical amplifier is +3% of the

4

" scale. That 1s, the maximum possible error in the ratio of OUT WFM and
IN WFM could be up to 6%, at a particular point in time. Since the
Fourler transform is a linear operation on the time domain signal, this

will result in a corresponding maximum error of 6% in the magnitude of

the ratio of the Fourier coefficients, 1.e., T(juw).

x3.4.4 Error from the aperture jitter of the sampler

This amplitude error is proportional to the rate of change of
the signal and the magnitude of the time jitter. According to the
manufacturer, the jitter (without signal averaging) in the 7S12 unit is
less than 20 ps; with signal averaging this jitter 1s substantially
reduced. If a normal distribution is assumed for time jitter, taking
1000 averages reduces this random error by a factor of 1/+1000 [143].
Thus, the average estimated time jitter 1s 20/1000 ps, or 0.64 ps. For
a 200 wmv step pulse with a rise time of 35 ps, the amplitude error
could be up to 160/35 x 0.64 = 2.92 mV, or 1.46%, 1if the average slew
rate of the Input is taken equal to the slew rate of the signal at the

time of sampling. This error 1s non~deterministic 1in nature and

manifests itself as a nolse in the Fourier coefficients. >
3.4.5 Other errors T,
(1) Low frequency errors

Although the EF-FFT algorithm substantially reduces ' this



\ _ 100

error, the magnitudes- of the few lowest frequency components are
slightly in error due to the EF-FFT modelling equations. These

spec?ral ' components at the extreme lower end of the spectrum haye not

been jused.

(117".t High frequency errors

In the above set up the output data obtained with the FFT

'

pro re contains noise components larger than the signal components

gifor g§'~
v‘-.- f frequency s the ratio of two small, noise-dominated
il TN

components. These noilsy high frequency components have not been used

ﬁgfequencies above about 8 GHz. Thus, the transfer functlon

in the computation of the dielectric constant.

3.4.6 Summary

In this section (3.4) the ef!!hts of the posdible sources of error
in the transmission measurements wefe analysed and dlscussed. Flve
sources of error were identified and the first three were considered
significant.

Equations 3.24 and 3.40, for the STM and MTM respectively, account
for the multiple reflections at the connector and adapter Interfaces.
These equations thus give the results which would be obtained with non-
ideal connectors and adapters. The quantitative analysis for this
connection mismatch error was given in Sectlon 3.4.1.

The effect of the shift of the time origin between IN and out WFJ~
was analysed in Section 3.4.2. From this analysis the per cent error
in tha results‘can be computed, 1f the error, '€, due to the time shift
is known. For example, 1f Lt'lps,.at 3GHz phase error, ., from this

=12

time shift 1is j~'27(3.109)(1x10 ), or 0.018 radians. And, the total

”
.
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-

q:@ ' due to this As equals (S 'x0.018) and that {n "

per cdBt erro

as (SC“xO.OIB). At 3 GHz and for the given sample lengths, the curves

given in Figs. 19-24 can also be used to estimate this error.

The effect of error from nonlinearity in the amplififers of the
oscilloscope 1s discussed in Section 3.4.3. It 18 found that this
error could be wup to 6% of the magnitude of the transfer tgpction,
expressed by Equations 3.4 and 3.6. The estimation of the effect of

this error on ' and + " can be done simplistically by scaling these

Fourier coefficients up or down by 6%.

3.5 RESULTS AND DISCUSSION

To determine the accuracy of the transmi{ssion methods (STM and
MTM), the complex permittivities of six liquids of Table 3, were
measured. Different time windows were taken to check the effect of the
variation of the sampling interval (t), and sample holders of different
lengths were used to determine the effect of the length of sample
holder on the results.

The results obtalned with various transmission methods and the
percent deviations compared to the reference values for the six liquids
are given 1n Table 10. As previously mentioned, at 3 GHz the complex
permittivities of these liquids are known to acceptable accuracles.
The accuracy of the transmission methods is taken as the percent
deviations givgn in Table 10: 1t {s assumed that the reference values
';re free of error. Although the results have been checked for
quantitative accuracy at only 3 GHz, the variation of the dielectric

constant with frequency had an acceptable trend.
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From the above measurements {t is found that:
(1) The single transmission method, 1in most cases, gives the nmost
accurate results. This seems reasonable for the following two reasons:
(a) Spurious reflections from the pulse generafbr do not affect the
recorded waveforms; and (b) For STM, generally S’" 18 smaller.
(11) For medium loss matertals in Table 3, for example for a mixture of
methanol (62%) and benzene (94%) and for ethyl acetate, wuse of longer
sample holder (. =17cm) gives more accurate results. For the errors in
the STM results of Table 10, 1{t i{s found that the contribution of the
spurious reflections from the connectors and adapters, to the total
error, 1is not very large. For water, this error from spurious
reflections 1s up to 1% fér ' and 4% for . "; for other 1liquids of
Table 2, the error {s still lower. It is also found that for materials
with their ."<0.5, the magnitude ;f S»' and S'" are very large. It L3,
therefore, concluded that for these materials the tlme shift and
nonlinearity of the amplifiers of the oscilloscope are the bigger
sources of errors. [n general, the relative phase error from a fixed
time shift between IN and OUT -¥Ms would be less for a longer saample
holder, because the wave suffers larger phase shift in 1ts passage
through 1it. This explains the more accurate results, for medium loss
materials, obtained from a longer sample holder.

On the contrary, for high loss mateYlals smaller sample holders
(1, 3.5 or 6 cm) should be used. Otherwise the amplitudes of the
spectral components at higher frequencies, for example at 3GHz, are
very low und the system noise affects the results a@gersely.
(111) As can be seen from Table 10, the results obtained from the ratio

method are not always more accurate than those obtained from the single



transaission method and sultiple transaission method. This 1indicates
that, similar to the STM and MM, for the ratio -method the
mismatch error {s not the source of the largest error.

As discussed above, the magnitude of error due to the mismatch
between the connectors and adapters {3 not very large. If desired the

effect of these errors can be removed by using Equation 3.24 for the

single transm{ssion method and Equation 3.40 for the multiple
transmission method. For the esti{mation of the error from a shift {1

the time origin, an experimental method based on a technique described

by Peyrelasse et al. [144) s suggested below. Peyrelasse's techalque

{s sultable for a time domain reflection measurement. For the
transmission method a number of !:.put waveforms with an empty  sample
holder (IN WFM) should be recorded at some {ntervals of time,

t t . These are denoted as vl(t), v,(tktl)

1’ 2’ ""n 2

v3(t+t°)"'vn(t+tn)’ The Fourier transforms of all these wavgforms,
. "«

with respect to th:\reference wavefornm, vl(t), which are given as
VZ(w)/Vl(*)’ V3(“)/V1(.), etc., are then computed. [deally all the

spectral components of these transforms should be 1[9; however, this is

not always true. From the relative phases of V,(.)/VL(.), V3(.)/V!( ),
- 1
A S

l’tZ"'tn-l’ (at a given frequency) can he

etc., the time jitters, t
determined. TIf tav {s the average time jitter, all the OUT WF'(s mav
c?en be shifted by a time, cav’. with respect '+ their [N WF'ts, to

orrect for the above error.
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CHAPTER 1V

A Model for Packaged Food Heating in Microwave Ovens

4 \ A
4.1 Absorption in a Layered Medium in a Microwave Oven

Most‘modern foods, when packaged for heating in a microwave oven,
are layered media. Two schematic representations are given.in Fig. 28.
An individual layer for example, meat shown in Fig. 28(c), may further
be a multilayered medium. With a constantly rising projected demand
for microwave ovens and packaged foods [16,146], there is a need for a
better understa g of the microwave heating of layered foods. In this
chapter a mode is given which can be used to estimate the energy
abséfption in various layers of a pre-packaged food. This model can
also be used for browning calculations: e.g., the model predicts a
spacing of 10-50 mm between pizza and a transparent conducting film for
optimum results (incidentally, the spacing in a commercial package of
Pillsbury, Ltd. is 28 mm).

Food heating in a microwave oven is a complex pheﬁ;ﬁenon involving
heat and mass transfer. Water vapours from the lower layers rise
upwards and make the dielectric properties of all food layers a
function of time. This process ?akes exact calculations extremely
difficult. The static model éiven in this chapter 1{s only an’
approximation of the actual heating process; to fully account for the
reality a dynamic model is required. The research in this area is new
as discussed recently by Risman [5], and it is expected to take some
1ime before a realistic model is fully developed. If this méthod were

appl%pable, even in a very approximate sense, to heating of layered
T

120
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foods 1n microwave ovens, it could provide wuseful 1initial design
information for food packaging and susceptor materials. It {is shown 1in
Section 4.3 that the absorption in a thin water load.in a microwave
oven follows this model approximately. The model also demonstrates the
significance of the temperature dependence of the complex dielectric
constant of a material when heating layers 4in, for example, pre-
packaged foeods. The theoretical basis for the model 1is given in the

next section.

4.2 Theoretical Basis for the Model

The preliminary heating tests on thin water loads (3 mm - 10 mm),
in a microwave oven, showed that the absorption is a function of
thickness of the water 1load. Straéton's [{19] solution for the
reflection and transmission of a plane wave normally incident on a
layer of water in air also shows a similar absorptidn response. It is,
therefore, considered that simple plane wave solutions merit
investigation for studying absorption 1in a laygred material i1in a
gésonant (multimode) microwave oven. Accordingly, in Fig. 29 the
normal incidence of a plane wave on two homogeneous layers backed by
perfect metal reflector is considered. The reflection coefficient, R,
from the upper surface is given by [20]:

R = (2 )/(Zl+n0) (4.1)

1 "0

1/2

where WO=(LO/50) » the free space value (377 ohms), and
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. 4

Z1=”1(ZZ+”1 tanh (Yldl))/(”1+22 tanh (Yldl)) (4.2)

s

Zz=n2 tanh Y2d2’ Z3 =0

o
[n  the above equations YI’YZ; dl’dZ; and nysn, are the propagation
coastants, the thickness of the layers and the fantriasic impedances of
layers 1 and 2 respectively. n

! and n, are, In general, coaplex

quantities.

The transmission coefficient from layer | to layex 2, le, is

given by [20]:

-1
2n 22z n o~ Zo™ )
2 2 ~2y,d - vid
T = 1 - 0 1 1 Y19y Y19y
L2 nl + ", 22¥ nl (ﬁ:‘-nj) (22 nl)e e
(4.3)
'the absorption in layer | is given by:‘
2 -
fAl( =1 - [sz - {lelz (n Real (z, l)] (4.4)

0

-1
2

becomes o 1. All these terms are temperature dependent through the

In the special case where layer 2 ts free space, Real (2 )
. 1 3
complex relative dielectric constant e (8) = ¢'(g) - je"(g) where o
signifies temperature.
To check the results from the above model, Equation 4.4 was used
to solve for two cases at 2,450 MHz: a film of water in free space
(Fig. 29(b)) and a film of water backed by a perfect metal reflector

(Fig. 29(c)). Io doing this the dielectric data for water according to
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Risman [123] at three temperatures, 20, 50 and BOOC, was used. These
values are given in Table 11. In order to verify the computer
solutions for the model, first an example given by Stratton [19] was
solved. The results oPtaine& were 1n agreement with Stratton [19].
However, the results, for a similgr problem, obtained from this model
did not agree with those given by Ruck ([147]. Therefore, the
reflection and transmissién of a slab of lossy dielectric material wére
computed from two more models, one given by van Gemert (129] and
another by Jones [148] and also by Fuoss [149], see Appendix II. The
results obtained from both the above models also fmatched exactly with
those from Equation 4.4 and Stratton's solution.

For a systed’with two layers the results have been checked by
solving an example given by Ramo [150]. The solution obtained using
Wait's model [20] and the Jones/Fuoss matrix model [148,149] agree with
that of Ramo [150].

>Solutions obtained for a system of three layers (water on a
borosiliééte glass plate backed by a metal sheet) from the above two
models [20;148,149] also agree very weil, as discussed below. It was
felt necessary to investigate all the models and check the solutions,
because one result obtained from this plane wave model (for a semi-
transparent conducting film)may be important in practice.

The theoretical plots of absorption vs. water layer thickness, d,
obtained from Equation 4.4 are shown in Figures 30 and 31. Two
lmportant points are apparent. First, a small change 1in layer
thickness (i.e., one quarter wavelength in the water, Lkw/4) can alter

the absorption by almost one order of magnitude (e.g., from Py to Py in
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f
Fig. 31). This effect 1s more pronounced with the metal reflector.

Secondly, maximum absorption at ond temperature {n a layer becomes a
minimum for a change of only 30°¢ (e.g., Py and p; on Figs. 30 and 31).
Thus, 1f a film is regarded as analogous to a susceptor at temperature

g it is an "anti-susceptor” at

1 where ”2’?1 is quite small with

to
water. It may be emphasized that this is so far very thevretical: {t
11lustrates only layer resonance phenomena - and it; temperature
dependence - in the case of water.

If the above 1s extended to more general cases (Fig. 29(a)), it is
found that the resonance absorption {s still pronounced. As an example
(and one which‘ 1s the logical. next step for microwave oven
considerations) a solution has been obtained when a. low=~loss

) ’ *
boros{licate glass plate (¢ = 4.05 - j0.0043) is included as a layer

between the water film and the metal. This example 1s shown in Flg.

32. Both models [20;148,149] give identical results. A high peak—-to- -

valley ratio for absorption with changing layer thickness still occurs
and the temperature separations (between 1 and “2) are still

pronounced.

It was also computed from this model that a transparent conducting

o)
film of thickness 20 A, when placed at a distance off10-50 mm over a
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thick mifal sheet would absorb about 50% of the energy in an incident
plane wave, - see Fig. 33. Therefore, with a 6.4 mm horosilicate glass
tray (e* = 4.05 - jd\0043) in the bottom of the oven cavity the optimum
distance of such a film, for near maximum absorption in 1{t, 1is O-
37.5 mm (substract the effective thickness, 6.4/4.05 mm, of the glass
tray from 10-50 mm). This calculation possibly explains 28 mm as the
chosen height of a metallized plastic browning film above the oven base
in a commercial pizza package (Pillsbury, Ltd.).

For the above caleulations the model of Fig. 29(a) is used with

the following parameters: d1-2OA, € "=4.84x107 (see ahead), and

J
£

=1.0. The optically thin metallized plastic film is modelled as a
dielectric sheet for the above calculations, because analogous to a
dielectric sheet, this film also reflects and transmits an 1incident
wave. The ¢ " of the film was calculated from its surface resistance,
which was calculated as 75.0 ohms per square from the reflection

N

coefficient of the film at 2.45 GHz [151]. . The numerical evaluation

of ¢” 1s as follows: RS‘I/UL or, 1/oL=75 ohms per square, where - is
the alternating current bulk conductivity at 2.45 GHz and 'L is the
thickness of the film. L was estimated to be 20 A. This gives
5=0.66x10’ S/m, or we"/eo=o.6f>x107 S/m, for which = "=4.84x10" at 2.45
GHz. Even if L were greater in reality - 402 or 603 - the dis;ance, d
of Fig. 33 for the optimum absorption remains almost unaltered; only
the per cent absorption in the film decreases. Such a film would only
require more time for producing the desired heating effect.

The choice of <'= ] (0 seems justified by the fact that the number

¢

of bound charges, in the film, is negligible in comparison to the free

-
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charges. However, it 1is found that even if ¢' were in the range l-
"100, the error in the comJuted values .of A 1s negligible, because the

. .
magnitude of the ¢ of the film is determined by the large value of ¢".

A

4.3 Experimental Analysis

Experiments were designed to measure-;he energy absorbed in water
layers 1in a microwave oven having a top power feed and a mode stirrer.
The objective was to determine whether the power absorbed in a tray of
water could be related to the plane wave model. In order to make depth
measurements more easlly, a trace of non-ionic surfactant (Wyandotte

Pluronic F68) was used in the water to reduce the meniscus.

Two types of heating tests were done: constant-time heating test

—/’\\A

and constant-temperature-rise test. In a constant-time heating test
‘the water lafer 1s started from below‘ambient in an attempt to reduce
the heat loss. In these tests, layers of different thicknesses were
heated for the same time; thus, the incident energy was the same for
all cases. This caused different temperature rises for different
volumes and, therefore, some error in the results due to différent
radiation 1losses and ranges of e*(#). Total heat absorbed by water
layers in the thickness range 3 < d < 25 mm and different surface areas
is shown 1n Fig. 34. The trendguith these curves is to show the
theoretical resonance effect; however, the magnitudes measured are <
2.1 (peak-to-valley). It was difficult to make consistent measurements
on water films having d <3 mm. /"

In an attempt to improve the accuracy by further reducing the heat

‘loss, water layers were heated in a thermally 1insulated styrofoan

/
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contfinet (Pisher Sciéntific U3-531 serum biomailer; internal diameter
16.2 cm, wall thickness 3 cm) for different durations of time, such
that the temperature rise was almost the same (to within + 5°C) for all
layer thicknesses. This reduced thg error due to the variation of e*
with temperature. This is called a constant—temperature-risge t;st. As
the heating times were different for different d's, total power
abgsorbed for a fi;ed time was then calculated from the measured total
power. The results are shown in FPig. 35, inset lower curve. The upper
curve (inset) results from applying an oven efficiency correction
factor, according to Filg. 36 [152]) for the different volumes of water
involved 1in each layer heating test. Although this is a reasonable
correction to apply, it is imprecise and merely indicates that the
peak-to-valley ratio is greater in practice. With the same correction
applied to the results 1in Fig. 34 together with a temperature
correction factor using the data in Table 11, the largest estimated
peak-to-valley ratio from all these experiments is about 5:1 (d < 10
mm, Fig. 34(d) and still typically of the order of 2:1 in all other
cases.

The absorption 1in water layers in the styrofoam contalner at
oblique incidence 1s.also computed. It i{s found that the ratio of Amax
to Amin decreases continuously with increasing angle of 1incidence.
Near the Brewster angle for water (~83°) the maximum ra 1s about
5:1, as shown in Fig. 37. Here total reflectance, IR!Z is taken as*
[|R11}2+IRL}2]/2, where R is the reflection coefficlent for the

Il

parallel polarized wave and RL is that for perpendicularly polarized

wave., Equations A.2~4 and A.2<5 of Appendix II were modified to

include the effect of the angle of incidefce according to [147,148].
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4.4 Discussion 1

Although the peak~to-valley ratio may be small #n practice,

enhanced heating can obviously occur in layers of selected thickness.
If the oven cavity between'the mode~-stirrer and the load 1s taken as a
wavegulide with dimensions 39.4x34.8 cm (base dimensions of the oven in
this case, Figs. 34 and 35), then Xg'12.39 cm for the TEIO mode
(\0-12.24 cm at 2,450 MHz). Higher order modes will have larger values
of \g' From Fig. 34 {t 1s seen that the peak-to-valley separations In
water films correspond to an “equivalent average free space
wavelength™, 4, 1in the range 12.0 + 0.5 cm, an agreement which is not
as close as one would expect to see. From the experimental results
given 1in Filg. 35, T o1s 12.20 cm, which 18 also less Lhan the
theoretical minimum value of 12.39 cm. Temperature effects of g* may
again be responsible. This observation supports the belief that a TE
cavity mode behaves like a TEM wave 1n$ide a high dielectric constant
load [5]. /j ‘ ’

+ The temperature dependence'of a resonance responce of the type
studied may be significant in practice; certainly the magnitude of the
effects 1llustrated in Figs. 29-31 and verified, albeit weakly, for
water merlt further investigation. In showing, by analogy, that a
susceptor at one temperature can be the opposite, an anti-susceptor at
another, it 1s being suggested that, 1in principle, there 1is a
possibility of achieving either hot planes and/or controlled
temperature gradients 1in layered foods with the correct material

dimensions and packaging. For example, 1f the temperature function of

the diclectric constant were known, 1t may be possible to choose a
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critical thickness for a material such that it 1{s susceptible to
heating at -10°C but not at 20°c. If this 1is sg, 1t might be possible
to thaw small food portions rapidly and uniformly. Another application
of this principle could be in enhanced dielectric heating of the
surfaces of layered foods for browning: here a film would act as a
"susceptor” up to a predetermined temperature (e.g., 200°C) and then
only as an insulator.

In the next chapter, the heating tests done in a microwave oven on

some browning agents, pastes and sugar-alcohol mixtures are described.



130

Table 11

Dielectric Data for Water at 2.45 GHza, 10 - 80°%

T e e = = = = T N e N P = s - o e > - . - - - - - m -

Tempegature
() !
10 80.5 13.2
20 77.4 9.7
30 74.9 7.4
50 69.4 4.5
80 61.8 2.8
PR
e According to Risman's estimate [123]; these values, for 2.45 GHz,

do not appear in the immediate literature. These have been estimated,
by the use of Debye's first-order approximation of dtaleberic

dispersion, from data measured at 2.8 GHz.
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CHAPTER V
Microwave Browning

The need to brown certain cooked food surfaces needs no emphasis.
Foods such as pizza, meat, crispy snack foods, and french fries, etc.,
on heating in a microwave oven, are either dried due to uniform heating
or _the moisture 1s driven towards the outer surface resulting 1in
undesirable sogginess. Browning, thus, remalns a problem in microwave
heating.

The browning in foods can be of two types: enzymic and nonenzymic.
Whereas the enzymic browning of certain foods, e.g., frults and
vegetables, is unde$irable [153], the nonenzymic browning of some foods
is highly desirable. The nonenzymic browning reactions are either due
to carbonization or caramelization and require a temperature around
200°¢ [154]. Three different approaches have geen used for achieving
the browning in microwave cooking. These are:

(1) Usfng susceptor materlals;

(a) Ferrite trays [155],

(b) Chemical susceptors [2,3], and

(c) Film type susceptors (resistive or semiconducting films) {17];
(11) Using field intensification [156]; and
({11)From browning agents
The results of the browning tests done on different foods with the
mixtures and pastes of Chapter II and some other mixtures are glven in

the following section.
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5.1 Browning Tests in a Microwave Oven
Simple evaluations were made of some of the pastes and mixtures
discussed in Chapter II. A few other mixtures containing equal volumes

of honey and glycerin with salp (NaCl) from 0-12.52, by welght, were

also tested to find the optimum NaCl concentration for heating
performance; the dielectrif constants of some of these mixtures are
given 1in Table 12. Taste was also considered. These tests Aare
intended to show the behavioural trend of a few materfﬁ&s: The tests

performed can be classified into three categories:

»
(a) Browning with inert substrates and dry foods

To evaluate the individual performance of the pastes and mixtures,
a thin layer (- 2 mm thick) of these was spread on either an inert
substrate, such as a piece of cardboard (* 6x4x0.15 cm) or on a dry
laminar food, e.g., a rice cracker. Cardboard pieces were chosen to
Slmulate a dry food, because when heated these neither release water
vapour nor absérb any to alter thelr dielectric properties
substantially. A cardboard substrate thus represents an inert surface

of the layer heating model of Chapter IV. The results are shown 1in
Flgs. 38, 39, 41 and 43.

(b) Browning with moist foods

A thin layer was applied on french fries, potato wedges, pizza and

ham. The results are shown in Fig. 42.

(c) Effect of height on browning

Rice crackers and cardboard pieces, each with a thin layer of a

mixture or paste, were placed on styrofoam pedestals of heights from

< /4 to 5 /4 from the metal bases of the oven cavity; © 1s the
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average estimated wavelength in QYen cavity as discusssed in Chagter
}

IV. The results are shown in Fig. 40.

5.2 Discussion

(1) A sugar and glycerin mixture has potential as a browning agent on
dry laminar foods. While glycerin boils (bp ”ZBOOC), this mixture
lmparts a brown colour to the food surface partly due to searing and
partly due to caramelizatt‘ﬁ”of sugar. However, 1t 1{s unsuitable for?®
non-laminar foods, e.8., ,potato wedges and chips with cruapled

]

surfaces, because the mixture, which is not a paste, flows and collects
N

at low spots on the food. This results in burning.

(11) A sugar alcohol mixture does not seem sultable for meats (for

example, ham), mainly due to a strong influence on their taste.

(111) The effect of food-helght, from the metal base of the oven

cavity, on the rate of heating of the food could not be established.
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Dielectric Data for Some Mixtures and Their Constituents

2.9 GHz, 23°%

Material ' "
a 5 &b
1. (a) Egg yolk 43 12.5
(b) 1 egg yolk plus lg glucose 25 11
(c) 1 g NaCl added to (by 15 11
1) Egg yolk plus glycerin
33%(y/ V)¢ 9 14,5
(b) 1 g NaCl add B a) 29 15
(C) 1 g KC1 added to 29 18
3. (a) Honey 7 2.3
(b) Honey/glycerin®, equal volumes 7 2.1
(¢) 1 g NaCl with Sml each of
honey and glycerin 8 , &
(d) Sml HZO added to 3(c) 69 29
(e) Sml egg yolk added to 3(d) 69 31
% From Section 2.6 where temperature data is given.
b

€ 2/3 yolk, 1/3 glycerin.

® Fisher Sclentific Company, U.S.A.; Lot 732371.

Clear commercial honey: BeeMaidTM, Canada.

When :">10, value is rounded to nearest 0.5.



Fig. 38. Surface browning tests in a 700W Panasonic oven on cardboard
pleces (w6x4x0.15 cm). A thin layer (2 mm) of mixture #3 (10 nl honey
+ 10 ml glycerin + 0.5 g NaCl) on the left, mixture #12 (paste  of
icing sugar and glycerin + 1 g NaCl) in the centre, and Marmite[TI]
[95] on the right-all heated, for 45 s on full poWwer, on a 2.5 cm
(. 1/4) pedestal placed over the oven's borosilicate glass base-plate
(thickness 0.64 cm).

Fig. 39. Surface browning tests with some mixtures in a 700 W
Panasonic oven at full power:

(a) Observation #1, top right hand paper towel. Rice crackers (Taipan
brand) heated for 60 s with thin layers of mixture #2 (10 ml honey + 10
ml glycerin + 1 g NaCl) on the left, mixture #3 (10 ml hqpey + 10 ml
glycerin + 0.5 g NaCl) in the centre and mixture #13 (10 ml honey + 10
ml glycerin + 0.25 g NaCl) on the right.

(b) Observation #2, bottom righpfhand papér towel. Rice crackers

(Taipan brand) heap d for 60,5 with tht; layers of mixture #3 on the
left, mixture™ #7 (10 ml1 hotwsr + W) mlﬁgygcerg in the centre, and
mixture #1$ (19 ,g&iger 2 * 5°g icing .4ugar, +D.5 g NaCl) on the
L ‘ ST R

right. - J “a, .

. . R ‘2‘

4 f; s . a “?,-":. v 3, .
(c) Observatiox#3,. top f;ft‘hgpd pa er ‘tdwel.- Taco tortilla chips
A0ld Dutch’ bradd) hkeated for %Y s.with thin layers of mixture #3 on

the left, mixthge #13 in'the cén@%e ﬁnd mix§ute #15 on the right.

(d) Q$servafign #4, boﬁhqq\héft}hahﬂ'péper towel. Taco tortilla chips

(01d brand) heated fow 40 s wifh thin layers of mixture #2 on the
left &ture #17 (15 ml glycerin + 5 ml Crosse and Blackwall
Bro M][96]) "{n the centre and 'mixture #7 on t* 'eft.

Lo
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Fig. 40. Surface browning tests when food at a variable height froa
< 2/4 to 3 1/4 from the 700 W Panasonic oven's base metal sheet. Rice
crackers (Taipan brand) with thin layers (v 2 mm) of mixture #3 heated
for 60 s on full power on pedestals of heights shown; » 1s the
equivalent average free space' wavelength in the oven, ~12 cm (see
Chapter 1IV).

Fig. 41. Browning results of Fig. 40 (on the right hadd paper

towel) compared with those of Marmite[TM][95](on the left hand paper
towel). Rice crackers (Taipan brand) with Marmite[TM] heated for 40 s
1n a 700 W Panasonic oven at full power on pedestals of variable heights
as indicated in Fig. 40.

Fig. 42. Surface browning tests on ham. Two pleces preheated for 60 s
on full power in the 700 W Panasonic oven. Mixture #18 (10 ml honey + 10
ml glycerin + 2.5 g NéCl) liberally applied and further heated for
150 s, '



Figs. 40(top), 41l(center), and 42(bottom). Figure titles on facing page

p:



Fig. 43. Surface browning tests on cardboard pieces (Vv 6x4x0.15 cm) in
a Panasoni¢ microwave oven at its full rated power(700 W).

(@) A thin film (v 2 mm) of Paste#l (icing sugar {103] and ethanol
paste of Fig.l10) on the left and Paste#2 (same conceatration Aas
Paste#l, but ethanol replaced with glycerin) on the right for 2 min.,

(b) Paste#3 (Paste#l + 1 g NaCl) on the left and Paste#é (thick paste
of itcing sugar in 10 ml glycerin + 1 g.NaCl) on the right for 50 s,

(¢) Mixture #2 on the left and Paste#9 (1 egg yolk + 2 g wheat flour +
2 g NaCl) on the right for 1 wmin. .
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Figs. 43: a(top), b(cerdtet), c(bottom). Figure titdes on facing page.
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[\
Figure 43 Surface browning tests on cardboard pleces (™ 6x4x0.15 cm) in
the Panasonic microwave oven at its full rated power (700 W).

-

(d) Mixture #3 on the left, Paste#% in the centre and Marmite{TM][95)]
on the right for 50 s,

(e) Mixture #2 on the right and Marmtie[TM] on the left for 1 ain.,

(£) Mixture #1 (10 ml honey + 10 ml glycerin + 2 g NaCl) on the left,
mixture #2 in the centre, and mixture #3 on the tight for 40 s.

.
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CHAPTER VI

Conclusions and Suggestions for Purther Work

6.1 Conclusions

On the basis,of the work reported in this thesis, the following

conclusions are drawn:
(1) For the TMOIZ cavity in the laboratory, the calibration method
discussed 1in Sections 2.3 to 2.5 is more appropriate than using the
perturbation equation (Appendix I). The difference between the actual
dieleétric constants (') of the calibrating liquids of Table 3 and
those computed from the perturbation equation varies from 8% for
distilled water to 63% for ethyl acetate as given in Table A.l of
Appendix I; the deviation for the loss factor (¢") varies from 3% to
138%. large.

It seems that these deviations are due to the cavity's mechanical
arrangement forAholding the sample, three-piece construction, slots on
the walls of the cavity and excessive perturbation allowed; for
example, for water it is 7%. Due to the above, the actual relationship

“Tetween < and 4f, and <" and 6(1/QL), are‘o longer linear.
(11) The worst case accuracy of the measurement technique 1is estimated
to be 11%; and, the precision 2%.
(111) Similar to chloride pastes, some sugar-alcohol mixtures have a
potgftial for use as a thermostatic’ susceptor material. By their
virtue of being edible, sugar-alcohol mixtures have an advantage over
chloride pastes: apart from their possible use 1in sealed pouches
(similar to chloride pastes as discussed in the US Patent [2]), these
mixtures can also possibly be used as “"spray-on" browning agents on

some foods.
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(1v) As discussed in Chapter 1V, a semi~transparent conducting film can
be modelled as a lossy dielectric ’sheet. Thus, by 1rsing semi-
trangparent films with different surface resigstances different heating
rates can be ,achieved. This concéﬁt can be used in designing microwave
dinner packages, 1in which different food-items require heating at
different rates, to attain the desired degree of cobking at the sanme
time.
(v) Time domain transmission methods can be used for dielectric
measurements on the liquids listed in Table 3. The Highest frequency
of measurement 1s determined by the total rise-time of the pulse
generator and sampling head. By using sample holders of differenﬁ
lengths, liquids with different loss factors can be measured up to this
highest frequency. The lowest frequency of measurement 1is determined
from the sampling requirements discussed in Section 3.3.

The single transmission method is considered more accurate than
the multiple transmission method for the following reasons:
(a) spurious reflections In the system which are not Included 1in the
analysis presented in Section 3.4.1, e.g., at the pulse generator and
the sampling head, can be avolded in single transmission method, and
(b) errors due to the sﬁ%%%hin time origin, S , and SE”, are smaller.
[t 1is found that, 1in a single transm ,sion method, these multiple
reflections cause a larger error in the measured ;* for materials like
distilled Xater (€*=78—jll, 3 GHz) than for a liquid mixture with
close to Ggg}? However, in different single transmission measurements
on distiiiiaywater, the maximum possible error from the above source is

~zx

computed to be of the order of 1% for <', and 4% for -". These results

show 1 that the mismatch between components located between the pulse

-k W
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generator and the sampling head is not the largest source of error. In
fact, the contribution to the total error can be larger either from the
time shift between input and output waveforgs or from the nonlinearity
in the amplifiers of the oscilloscope. The error from the time shift
between input and output waveforms can be substantial for a material,
for a given length of sample holder and frequency (Section 3.4.2). For
the ranges of n*, given in Filgures 25-27, the time jitter error has a
relatively smaller effect on the results and these may be acceptable
for applications such as migrowave heating. A technique 1is also
discussed 1in Section 3.5(1ii) which may be helpful in estimating the
error due to time jitter in a particular measurement setup.

It 1s concluded that 1{f precautions are taken to minimize the
time origin error, the non-linearity 1in the amplifiers of the

oscilloscope 1is the single largest source of error 1in time domain

transmission methods.
6.2 Suggested Further Work

6.2.1 Dielectric measurements in an untuned cavity

Microwave oven cavities have £een used for dielectric measurements
in the mm wave region, at 156 GHz [157]} and 70 GHz [158]. At 70 GHz,
the dimenslons of a,commercial oven cavity (e.g., Panasonic NE-7800CA)
are about 100 times that of the wavelength; and thus, for samples
larger than the wavelength, the field is essentially uniform. It may
be useful to find the lowest frequency at which an untuned cavity of a
reasonable size (or internal structure, such as more than one wmode
stirrer) could be wused for dielectric wmeasurements. This method, 1if

applicable at 2.45 GHz, will provide an opportunity for conducting
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measurements in the real heating environment. Also, this seems to be
the only possible method in which the dielectric measurements can be
made on actual loads at theii‘specified rate of heating.

It 18 suspected that the final s* (and u*) of a ceramic depends
upbn its rate of heating. An immediate application of the above
technique could be in the confirmation of the above statement. If the
above statement 1Is found true, the n* and u* of ceramics can be
tallored simply by adjusting the rates of thelir heating. This concept
may be of wuse 1{n the developing field of wmicrowave sintering of
ceramics., :

6.2.2 Automation of the dielectric measurement

About five hours are required to obtain the simple curve shown in
Figure 4. Of these five hours, about an hour is needed for sample
preparation and the rest of the time goes 1into conducting the
temperature run, computing u*(T) and then drawing the curve, If a
substantial number of measurements have to be taken, automatlon of the
entire sequence of operations may be worth the effort.

The equipment needed for the suggested automation is as fnllows:
(a) A microwave source with HP-I3 interfaée (HP 8350B)

(b) Power meter with {{P-IB interface (HP 436A)

(c) Plotter with HP-IB interface (HP 7470A)

(d) A microcomputer (HP 85)

(e) Temperature controlled oven with an HP-I3 compatible interface

(Despatch Lab oven)

The above hardware can be connected as shown In Fig. 44, and

programmed to imitate the steps of measurements described im Section

2.5. Once the measurements are complete, the microcomputer can be
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-

%
instructed to compute ¢ at different temperatures, according to the
Equations given in Section 2.4. Finally, with the help of another

®
program, a plot of « vs. temperature can be obtained on the plotter.
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APPENDIX I

A.l Pertﬂrbation Equation for the‘TMO12 Cayity
A.l.1 Field Equations for a TMO12 Cavity

i ) In this section, the field eduations are deriv;: for an 1deal
right circular cylindrical TMOIZ cavity of length 1 and radious b. In
the following section (A.1.2), these equations are then used to deriQe
the perturbation eqﬁatibn‘for an idealized.version of the cavity used

in}this work.

N The wave equation in cylindrical coordinates is

o
2 » ‘ : A.l-1
7o+ kZ v =0 . N ) ( )
where
kz = wur and
N AR - . 07

—

. )
i A
\) z-direction, 7 represents the electric

For the TM wave propagating i

field, E7, and r, e,-i represent the coordinates of an arbitrary point.

All other symbols have their wusual meanings. For obtaining the

©

//ig—e\n unctions of -etallic enclosure, Equation A.l-1 is solved for

the boundary conditions imposed by the geometry of that enc}osure. For
the propagating solutions varying as e_JB ¢ 8 1s the phase constant),

the solutions of Equation A.l-1 are [159],

176
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Yy =D Jn(y r) cos(n 9) ej( wt-Bz). (A.1-2)

’

In Equation A.1-2 Jn(y r) is the Bessel's functlion of order n and

/ 2
argument y r, where vy =/k - 82 n takes Iintegral values from 0 to *,

b

and ejw t represents the time variation of the field. Therefore, for

-
aT™ wiyp propagating in z-direction,

E. =D J (y r)cos(ng ) ej(w t -8z (A.13) .
A n e

»

.

For a metallic enclosure of radious b, EZ =0 at r = b. This glves
Jn(Y b) = 0. For each value?bf n, Jn(Y b) has an {infinite n;mber of
zeros; these are denoted as Pag In Pom the first subscript an denotes
the number of complete cycles of variatiom of. the axial field component
in 9 -dirgction, fo(‘ékﬁfﬁﬂ , and the second subscript m tepresents the
number of zeros of tHe axial field in the radial direction, for OEr_Sb.

For TMO12 ‘mode? n=0 and m=1; which gives Pom ©T» Py = 2.405.

Therefore,

Similarly, the boundary conditions in the z-direction require that
gi=p 7 ; where, p=0,1,2..., and 2 1is the length 6f the cavity. This

gives

P (A.1-5)

Ll -

Therefore, from Equations A.1-3, A.l-4 and A.1-5, Ez is given as



= (&) . 9
Ez EO Jn( pOlr/b) cos(nf) cos(p mz/%) e

J
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<

vt (A.1-6)

In Equdtion A.l-6, D has been replaced with a new coastant Eo.

TM012 mode, n=0, m=1 and p=2. Therefore, Ez

.= B ooy

r/b) cos(271z/) e

ju t

is

For

(A.1-7)

»
As only time harmonic fields are being considered, the term e v t

Equation A.1-7 will be suppressed in the rest of the derivation.

other field components are [159],

A 1 A

"
A S
r P a‘(
H::__u_)_é_ C
r ~ -9

w e
Hg = E

From Equation A.l1-2, it {s seen that

- E

o/

e
o

(_\,)
3
=

1
E = —

Y

/

N

_jk‘g =

D)‘(L/

:’(-

(A.1-8)
(A.1-9)

{A.1-10)

Therefore,

in

The
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- E, 0 r\.—-’ ) 21
or, E = — ( : -
r 2 - ! .
YO % L
| ~ .
. . .
Fo 2 Uy g 2RE
or, E_=- 'TQ'_ e Y ¢
From Equation A.l- 8,Er 1s given as
!
- = - ! - -
B T ! g (‘L‘ ~‘;_
Er’— b 3 T ~ (A.1-11)
o1
and
. [ *E.ﬁ/
E = - ————— o7 (A.1-12)

? T 0=

From Equation A.1-7, it is seen that EZ 1s constant with respect to a
variation in 8 , therefore E, =0. Since E. =0, from Equation A.1-9

it 1s seen that H_=0. From Equations A.1=8 and A.1-11, Hy 1s glven as
; X ,

KN

3\

= - J.Cp r/b) sin(2 mz/%)
k g Por o O 701 -~

From Equation A.1~2, it can be seen- that (—l/jgg;fi . Therefore,
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e B
T w e t) o ! FBL]'\ (:on 27 v

: ) - . - oy — 1- )
, b , - / 3 (A.1-13
ot b \ ,

Thus the electric and magnetic fields at a point 1inside the TMOIZ

cavity are given by Equations A.l1-7, A.l-11 and A.1-13. These

equations are used 1in the next section to derive the perturbatioh

equation for the cavity.

A.1.2 Perturbation equation for the TMOIZ cavity
In an wunpegturbed state, let the electric and magnetic
‘fields for the TM017 mode of the cavity be
jwt
E=E e : (A.1-14(a))
Ho= ot el@F (A.1-14(b))

~S
where E1 and Hl are functions of position in the cavity. Wheg a

‘parameter of the cavity is slightly modified, let the fields become

E'= (E1+E2) exp{jluw+3wt) (A.1-15(a))

¢

H'= (H 4D exp(J(u + t] (A.1-15(b))

LY

where 1t 1s assumed that the fields in the perturbed sgate can be

represented as the sums of the unperturbed fields, E1 and . Hl’ and

additional fields, E2 and HZ’ with a small per cent change of the
frequency. In general, w and 6w are complex quantities. The

parameters of the cavity whose modification produces the above

. §

2
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¥
perturbation may be the'}kmensions of the cavity or the dfelectric
constant or vrelative permeability of the medium 1inside {it. The
perturbation should be small so that the total fields in Equations A.l-
14 and A.1-15 have the same.configurationg; their magnitudes may be
different. The smallness of the perturbation means a very small change

Lﬁ propegties over a large volume, as when a cavity {s filled with a

- ¥

dleleqtric consgant s to be measured, or a large change {n

proﬁgr f&s over a ume, as when a small sample {is

introduced into a cavity for e purpose of measuring its dlelectric or

magnetic properties. For the case of a small sample, E2 and H2 of

Equation A.1-15 will be small compared with E, and H

1 1 over most of the

cavity volume, except in the vicinity of the sample [84]. The
relative frequency shift of the cavity, . , can be obtained as [84],
.Y <» u_—’u ‘: —L’?/ 5"—.—‘ .5 2 J
E;&? Ve - - .
e B : S . —— (A.1-16)
L .
- 7 - , > = l
. ¢ Tt TR BT e
- ! .
—— =~

'Y

where VC 1s the volume of the cavity, and the sign,'.', means dot
product between two vectors. The rest of the symbols have thelr usual
meanings. Equation A.1-16 is exact i{f the cavity walls are perfectly

conducting. Next, an approximation is made of neglecting 02 and 82 in-

the denominator of Equation A.1-16 over most of the volume VC. This is

<<D, and B,<<B,. However, if D

justified by the fact that D 1 2 1

2 2 and B2 are

comparable to D1 and Bl’ this will be true only over a very small part of
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Vc’ in the neighbourhood of a sample (or a small deformation of the

o
cavity surface) and thus the contribution to the {integral, {in the

denominator of Equation A.1-16, from this small voluame is negligible.

After neglecting D2 and H2 from the denominator of Equatifon A.l-16,
v

. 1s given by

CALL=17)

In the TM,)I7 cavity of Fily. 7, the sample {5 placed  concentric
L <

with the axis of the cavity where the magnetic tiold teads to zero (see

k *
Equation A.1-13). Substitutiny H1=U, i, = and Dl’ﬁﬂﬁl, D,= 'qE](Cr‘l'
and BI= UOHI' Lquation x.1-1/7 becomes
- ~
- ro -
o, T T To o w o -1 E .=,
"’ B
—— = - - - : I em - (A.1-13)
- SR
N

For a thin sample, the only electric field at the sample s the
longitudinal component tangential to the sample (see Equations A.l-7
and A.l-11). Therefore, E,=E_and E,=0. The integration {in the

numerator of Equation A.1-18 is done over the volume of the sample.

Thus
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' . A S S
™~ ¢ ’( LT +, g
’ i
ol ' . N /
- - o ‘ -
= : (A.1-19)
(s .

If w {s the complex frequency {n Fquatton A,1-19,

i
' .y (A 1-20)
~
where “1 fs the real trequency, o Is the shitt In 0 due  to  the
lasertion of the sample into the cavity and (0, 15 the change  in

L
the loaded O of the cavity. From !Pjuations A.l=19 and A.1=200,

2

— 4
—_— = (Adl=210a )0
o
and
4

4 - . L ]

- ~ - - AY

. ] - CALL=210h,)

R 3 o0 " '

where “,= *r-j"r, FEqus o AJl=21 can be ‘used to calculate . and

e ’

ErOf a sample after per' rminy the !nteyration glven beldw. First

the denominator of Equation A.!-_. {s evaluated.

f the denominator of

this equation is denoted as "DEN",
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DEN = ‘ T v (A1=2D)

In cylindrlical coordfnates, dverdrd dz. Also there are two compounent s

of electric tield In the cavity, Er and lrlt. therefore, tota. electric

tield, K fou plven as

1'
: ) .
[ R 3 LTheretore,
i I ’

TN o= Aci=2 b
where o oand b oare e Toaptn o and L ob cavity respectively, AL
the  three teras ot Dpuatton ALT=23 are evaluated separately,  as viven
he'lnw,

)
bl -
. .
-
L4 /]
.- .
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The standard result [160)] Riven helow {6 used to (ntegrate the Beunel's

function appeari{ng {n the above equation,

. \
.’ 1 ! Y' . .
P Vot N 1 . Dl a
[ - v \ . P
2 ~ ‘ ! CAL 0N
’,

On {ntegratton and stmpltficatton,

Next the numerfcil vialues ot virious A L L O S T NI EI ( SY PN S

above equations  are evaluated. From a tahle ¢ o S EE LI O FUTPI S TSRO
(ip0 ],
Il(_‘.u) = .50

and, T 0l0h) = 0,497,

l

Using linear faterpolation,

FoOZ0Sue) = 005202 = s m -
i
For 4 rati{onal number «x, Ox o= oL - ,
“ ]
for x = Pyp = 2,405, Jolx) =0 -

Therefore, J 'in ) = —I/Q(I,\(;)’)‘H . Also
o i



. 186

where [ means  factorfal ot 2, And has a4 value ot 2. -

From the above pover serfes expansion, 1.00.40%) = J.43l4. Therefore,

ll'(l.lol)')) i - 1/ N A A . (AL 1=28)

Solviny, Fquatfone A 1-U6, A i-07 and v -0

.
.
- - A
. A
} .
v,
Y
tor the viven cavie s o/ LI S TR PR PR S ST i
. . v
AT
/
Next the tatesral oot R T St e voamme ot Uhe vl
1
l\ ‘ . -
]
From the trlivonometorlo relatiosg, .
the above {ntesral necomes
- ™
—- - +
- Lo
- o~y ‘( . .

5



when. integrated

zero. Therefore,
\

o]

Solving Equation A.

the second term of Equation A.1-30 turns

2

VAN
” T R
od

1-31 in the similar wéy as Equation A.1-24,

187
out ¢to
(A.1-31)

-~ 7-2 12
Klf’ PR - —-n D - 2 T
\ v = J
!l 2. [
-~
¢
/
. VRN -
| i | o= ' ( . A’]
L Ea AV = e 41 kfj 2
J /‘/;‘./ v (A.l-32)
Next the third term of Equation A.1-23 is evaluated
A\
‘/) ’,‘ Iﬂ i
H4 X Tg_i,l/
no 5T
, - ° [ o -
) ’v“;\\?-~'; ""l - " [ -
. __é,;_—;— . EEEN - o —
- L -
. \ r /'/) ~ -
SN2
! ~ I —~ vy
R S AT - ‘i
“ ".r—'
g~1
(,. // ~- -~ h - | |
\ -T =t 4 ' - —_—
- —_— e~ S No\,,l_-’ -~
- Nos s
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On integrétion the second term of this equétion becomes zero. Also
using the relation JO'(polr/b) = Jl(pOIr/b), and Jl(O) = 0, the above
- / .

-integral becomes

1

] 2/ -
- —) a

e nkE ZQ -

o (
— e JKJ\ N

U"
\ -

Since R b%, = Vc’ the above integral’'is

) ) ) : n (A-l-33)
v}

Thus from Equations A.l-29,

A.1-32 and A.1-33, the "DEN" of"

B
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(R

Equation A.1-22 is given as,
2 ’

DEN = éOEOZVc (0.0671 + 0.1347 + 0.2026)

.

» 2
or, DEN = 0.4182 € E Vv .

1. 1-34)
The numerator of Equation4A.lfl9 is given as
¢ =y N -~
NUM = - .
t - ,
\ l\ | - v -
Vi,
BN \? ;T{ ﬁh&i"
) ‘ - . = ' - ’ - (A.1-35)

Qhere a 1s the radius of the sample, and the sample extends from d. to

1
d2 in z-direction. On integration Equation A.1-35 gives

. 4
Sy S

If only the first four terms of the power series expansion of

JO(O.1246) and Jl(0.1246) are taken, JO(O.1246) = 00,9961 and Jl(0.1246)

=4
= 0.06216. Thus, the numerator, NUM, of Equation A.l-19 is

- A

NUM = -————

A
~(7
g~
€]
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£2 V(o275 . < = <L)
NUM —_ > - R (A.1-35)
. DEN / e -
. /T\D .4044. -~ 7 -~ VC—

}

Fori the cavity agd the sample holder used in this - work, VS/VC =
0.001432. Therefore,
g,‘*_)_ — (é ~ L) (o Cnon RS

f0 g (A.1-36)

7

« “
Equation A.1-36 1is the perturbation equation for the ideallized

version of the TMOIZ cavity used in this work. After the separation

of the real and imaginary parts this equation can be expréssed as

Sw) (A.1-37(a))

- = é- 1) (0.0008520)

w1

: . A.1-37(b)
—%~ 51/ )= ¢ (0.0008520) ( (b))

?

Equation A.1-37(b) can also be written as

(A.1-38)

(~ ) = 0.8520x107° -
U s :

where, is the loaded Q factor of the cavity with the sample in the

QLS
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-
sample holder and QLE 1s the Q factor of the cavity with an empty

sample holder. ~

" Equation A.1-37 was used to compute ¢ and €' for“four calibrating

liquids .of Table 3. A comparison between the computed values and the

actual values (of Table 3) is shown in Table A.1l.

N
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Table A.1l

*
€ for Calibration Liquids Co%puted from”the Perturbation Equation

S.No. Substance Actual? Compucedb Actual? Computedb
1. Methanol 22.0 39.33  © 13.0 23.5
2. Distilled 78.0 80.39  11.0 12.73
Water
3. . Methanol(60%) 46.0 41.25 17.0 16.48
and Distilled
Water (40%)
4, Ethyl Acetate ., 6.40 10.48 0.34 0.81
. | 4
% - From Table 3.
b ’ e
~ Computed frou the perturbation equation (Equation A.1-37).



Appendix II

A.2.1 Reflection from a dielectric slad

According to the model given by van Gemert [129] reflection
and transmission coefficients, R1 and Tl’ of a normally indident plane

wave on a dlelectric layer in free space are

[1-exp(-2vd)]

R1 = 5 > (A.2-1)
[1-0%exp(-2vd)] ~
anq ’
(1-09) exp (=yd) g
T, = °2 PL7Y (A.2-2)
- [1-p“exp(-2vd)]
where

o= (1= VeIl + Ve,

Yy 1s the propagation constant and d is the layer depth. When a
dielectric layer 1s on a metal reflector, the reflection coefficient,
RI; is given by

R, = L-exp(-2yd)
1 l-pexp(-2vd)

where o Is the reflection coefficient given above.
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A.2.2 The Jones/Fuoss model [148,149]
The other model [148,149] is based on a matrix representation
for each dilelectric layer. In this model the tangential fileld
components on two successive layers (e.g., free space and layer 1 in

Figure 29) can be related by a matri"fEZG}sion relation:

Eo o ! |
__— My (A.2-3)
Hy "y
— - pa— —_—
_ ¥ 4
where
— — — -
cosi, j ny sinay a, a12
- 1 = =
My
j sina ]
1 cosul a21 az2
"

Ml is a (2x2) transformation matrix and characterizes layer 1. For

normal incidence, = kldl’ where kl and d, are the complex wave

1

number and thickness for 1layer 1, respectively. The reflection

t
1

cozfficient, Rl’ when only one layer is present is:

Z—no
R1 = Z+n (A.2-4)
0
where
, - 2t A1)

(ay) npt ayy)
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The transamission coefficient, le. from layér I to 2 18s:

22

2
Tia = ajj2y%a ,4ng

(a Z +322) (A.2=5)

i .

where o and n, are the intrinsic impedances of the free space and
layer 1 respectively. Z2 1s the input Ilmpedance of the combination of
to layers 2 and 3 of Fig. 29.

The computer programs, in Fortran 77, to solve Equations A.2-4 and
A.2-5 are given at A.Z2.3, and that for Equation 4.4 is given at A.2.4
If -these programs are executed with the given parameters, absorption

vs. depth dataat 20°C for Fig. 33 will result.

T
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A.2.3 Computer program for solving Equations A.2-4 and A.2-5

c PROGAAM FOR THME CALCULATION OF PLECTION AND

(4 ASSORPYON COEFFICIENTS OF A& LAY €D OIELECTIRMIC

4 MEDIUM FOR A GIlvEN INCIDENCE ANGLE

¢ - . e e

¢ %. ST DRSS

c DIELECTAIC CONSTANT (ROS 1Y ANE CONSTANT ]

[ ACH LAYAR TOTaL & LAYERS

C OUR QJRCTIVE TO PIND THME ABSOAPT|ON [N THE SECOND LAY
fMPLICIY COMPLE

-~ OimEens iOn 1aK ¢ 8) ALIG) . IPMIIE) IPMTLE)

IMPERP (8) TALF(6) TLIB) 2EDS(8) TR (8) TPMI (B
TAKS I8 IR (8 IN(S) . ZASIG) TAMCS) IFMEI8) TT2312)

T - AMRAY TL STORES LAYERS THICKNESSES IN THMIS ExAaMPLE LAYER

cd 1S AIA AND ITS THICKNESS DOES NOT AFFECTY THE AESULT

Lavern 2 13 LOSSY MATERIAL(WATER ) wlTH vARTASLE THICKNESS .
THIRD LAYEA 1S a SOMOSILICATE GLASS PLATE FOURTH LAYVER
1S A THICK METAL LaTe

"# T g THICKNESS OF THE SECOND LAYER(TL(Z) ' S vam1@D N
RO Lo0OP 20 SELOwW TLID3) 1S THE THICKNESS OF Twne
OBOSILICATE GLASS TRAY © $4 CM TLIG&) INITIA&(LIED

W ARBITRAAY vYALUE SELOW ODOES wNOT AFFECT 7 inAL RESULT

nn“nh
o o
o
¥

- o Y

°
. °
osa
. ° .
4 y THE COMPLEX PERMETTY iVITY rems {1} FOR EACH LAYER
. < 7@ r INE PERTINENT CONSTANTS €838 AND E8322
< INMITIALIZIED YO ABBITRAAY VALUES DO NOT AFPFECY THE
Flima. RESULT AS THE IMPEDANCE OF THE FOURTHM LavER
! IS SEY EQUAL TO IERD SELOW
E®S 12817 @
EMS22=x9 7
ENS13e4 OF
ENS2320 004
EBS 18431 O
ES324x0 O
EBsSes 2%4F-17
IEWS . ' aCMPLX:ERS O O ‘
1€8S . 21 nEBSICMPLX (EBS 12 - EB322) .
TEBS 3 s ERSaCMP N(EBNST]I -EBSTY)
IEBS (A aEBRSeCMPLX(ENS IS -EBS24}
21eCMPLNIOD O 1 O
FRECwW2 4SE+ON
*i11 141893
CWAVEsSs3 OF+08
QMECA=? OeP|efFmED .
c ALAMDATCWAYE/FREQ
aMEyUsPisa 02 -0
¢ €Tat 1S THE INTRI{NSIC TMPEDANCE OF 'twWwE FRARE sPact
ETAa1=120 OeP
s18sp1/180 ©
¢ FINMD COMPLEX PERMEAB|LITY Tamey
aMEUIsT 00
TaNMaCro 0 ~
AMEUZTAMEU s TRNMAC
IAMEUTAMELSCMP LK AMEUY - AMEYZ!
< LOOP FOR CALCULAT!ION OF THE COMPLEX PROPOCA’T ON (ONSTANT
c Of EACW LavYER x{Jl DEFINED I[N THE PROCRAM A§ AN {0
0C 10 Jx1 &
IR R TAMEUSIERS U
TANK I U sOMECASCSORT (IR g
‘o CONT I HUE
4 LCOP WHMICH GCOYERNS TWHE INCREMENTAL THICKNESS OF .AYvER 7
00 20 Px0 001,0 060 .0 0O!
TL 2 e .
e
< LOOP *OR vaRYING THE ANCLE OF INCIOEMCE THETA
"00 9 uJEr g}
4 DEFINE THETG anOp CS THME SINEs®2 OF THAT AaNCLE THETAD
T 1S THME INCIDENCE ANGLE ON THE SECOND LAYER !N DEGREES
THMETADsO O
TMETADETHETAD 1 yue0 O -
THETASTHETADY ™D
TH2S INITHRTA .
CS2TwHer2
C L00P FOR CALCULATIOM QF TME PARMALLEL AND PERPENDICULAR
c COMPONENTS OF TWE INPUT IMPEDANCES OF LAYERS 2 aNO 3
< IMpARL (1] AND IMPERP( 1] RESPECTIVELY
¢ THE LOOP ALSO FINDS WECBESAAY QUANTITIES FOR THE
C CALCULOT)ON GF THE TRANSFORMATION MATRIN WHICH I
4 IMPORTANT !N FINOING T AND 2 LATER
-
Do 11 122,39 .
7aks tlia(2AK (V) /TAKIT ) )seQ
IK1 ] 1 aCSORTI 1 O-FJAKS [ 19CS)
INI11zCSORTYITAMEU/2ZEBS (1))
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