

Incorporation of 3-D Mixing in Long-term

Production Scheduling Optimization for Block

Caving Mines

by

Firouz Khodayari

A thesis submitted in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

Mining Engineering

Department of Civil and Environmental Engineering

University of Alberta

©Firouz Khodayari, 2018

ii

Abstract

As open-pit mines go deeper, because of the massive amount of waste removal which is

required to extract the ore as well as high operational costs per tonne, underground mining has

become more attractive. Block caving is the only underground mining method that its production

rates and operating costs are comparable to open-pit mining. Therefore, block-cave mining has

become more popular in the last few years, and the trend is expected to continue.Long periods

of development and the resulting high capital cost is one of the main challenges of this

method; therefore, a practical production schedule with the possibility of generating higher

revenues earlier in the project can significantly improve the cash flow by increasing the net

present value of the project and change a deep low-grade ore resource to a valuable ore reserve.

In block caving, production scheduling is the decision of the amount of caved rock to extract

from drawpoints in different periods. Relying only on manual planning methods or computer

software based on heuristic algorithms will lead us to mine schedules that are not necessarily the

optimal global solution. Instead, the mathematical programming can guarantee the optimality, or

give us an estimation of how close the answer is to the optimal solution in case of integer

programming.

This study presents a stochastic optimization model that aims to maximize the net

present value of block caving operations. Technical constraints such as mining capacity,

production grade, number of active drawpoints, continuous mining during the life of the mine,

mine reserve, draw rate, draw life, precedence of extraction among slices, and mining direction

are included in the model. One of the main differences between block caving and other mining

methods is the influence of the material flow on production and draw control in general. Some

production scheduling optimization models for block caving exist in the literature; however, few

of them consider the material flow and resulting dilution within the production schedule.

In this research, to achieve more reliable production schedules, a 3-D mixing methodology

is proposed to be incorporated in the production scheduling optimization model; a model

that maximizes the net present value of the mining project while taking different scenarios of

mixing into consideration. The scenarios are generated based on the particles that fall into a cone

of movement, CoM, to capture horizontal and vertical mixing. The mathematical

Abstract

iii

programming formulation is a stochastic mixed integer linear programming model where

decision variables are associated with individual slices and draw columns, the output production

schedule determines which slices are extracted from each drawpoint in each period. The

objective function maximizes the net present value of the project during the life of the mine

and minimizes deviations of production grades and tonnages from the defined targets for all

probable scenarios resulting from the movements of the fragmented rock between drawpoints.

This feature provides a flexible tool for mine planners to control the draw based on the

company’sgoalsduringthe life of the mine.

The model was tested on different real-case block caving mines in different steps

of development. The last version of the model is a block caving scheduling optimizer, BCSO,

which includes mixing in the production scheduling optimization. The BCSO was verified on a

block caving mine with 424 drawpoints; also, a number of production schedules were generated

for the same mine using GEOVIA PCBC software. Based on the features of the BCSO and

PCBC, three different cases were tested: without draw rate constraint and mixing, with draw

rate constraint and without mixing, and with draw rate constraint and mixing. In each case,

the BCSO was validated against three different scheduling methods that exist in PCBC:

AUTO, SMOOTH, and COMBO. The resulting production schedules show that the BCSO can

improve the NPV of the project by 2% to 4% compared to the best case generated by PCBC. In

all cases, the precedence among drawpoints, which is traditionally decided manually, was

determined by the mining direction finder embedded in BCSO and used for PCBC as well.

Application of this feature of BCSO into production scheduling improves the profitability of

block caving mines. Due to the limitations of PCBC, not all of the constraints that BCSO is

capable to model were used for the comparison purposes. However, an additional case was run

by BCSO to test the target grade option and it was shown that the desired target grade of 1%

copper can be achieved for all periods during the life of the mine when the processing plant

operates only by a certain grade. In addition, other constraints such as draw life and number of

active drawpoints can be implemented in the BCSO based on the technical and economic

limitations of the mine.

The major novelties of this thesis are: determination of the best mining direction in the block

caving layout and defining precedence of drawpoints accordingly, NPV maximization for block

caving mines using mathematical programming where technical constraints of the operations are

Abstract

iv

satisfied, minimization of deviations of production tonnages and grades from the company’s

targets, and incorporation of caving flow and its uncertainties in the production scheduling

optimization model.

v

Preface

This thesis is an original work by Firouz Khodayari. All or parts of chapters 2 to 5 have been

published as peer-reviewed papers or submitted for peer review and publication. I have been

responsible for model development, computer programming, writing, and editing of these papers.

Dr. Yashar Pourrahimian is the supervisory author and was involved with the guidance of

concept formation and manuscript composition.

Chapter 2 of this work has been published as Khodayari F, Pourrahimian Y. 2015.

Mathematical programming applications in block-caving scheduling: a review of models and

algorithms. International Journal of Mining and Mineral Engineering (IJMME). 6(3): 234-257.

Chapter 3 of this work has been published as Khodayari F, Pourrahimian Y. 2017. Production

scheduling in block caving with consideration of material flow. Aspects in Mining and Mineral

Science (AMMS). 1(1).

Chapter 4 of this work has been submitted (under review) as Khodayari F, Pourrahimian Y.,

Liu V. 2018. Production scheduling with horizontal mixing simulation in block-cave mining,

Journal of Mining Science.

Chapter 5 of this work has been submitted (under review) as Khodayari F, Pourrahimian Y.

2018. Long-term production scheduling optimisation and 3-D material mixing analysis for block

caving mines, Mining Technology (TIMM A).

vi

Dedication

This Thesis is Dedicated to:

My first and best teachers, my lovely parents:

Aliasgar and Khadijeh,

my amazing siblings:

Sedigheh, Behrooz, Jamshid, Derakhshan, Nowrooz, Roudabeh, and Arman,

my wonderful mother and siblings-in-law:

Molouk , Parvin, Somayeh, Maliheh, Shahriar, Kiumars, and Ali,

and my sweet nieces and nephews:

Kowsar, Mahdis, Nazanin, Armita, Mehrsa, Panisa, Mohammad, Amirali, and Hossein,

and my cousin Naser.

vii

Acknowledgment

First and foremost, I would like to thank my supervisor, Dr. Yashar Pourrahimian, for

giving me the opportunity to join his research group and for his great support. He has always

been there to help as a supervisor, mentor, colleague, and as a good friend. I have enjoyed

working with him and I appreciate the wonderful relationship that we have had during this

journey.

I also want to thank Dr. Hooman Askari-Nasab for helping and supporting me during

my Ph.D., I have learned a lot from him during different stages of my program and his inputs

to my thesis have been very helpful. In addition, I would like to thank Dr. Wei Victor Liu as

a member of my supervisory committee, his inputs have always guided me in the right direction.

I would like to express appreciation to my senior colleagues Dr. Mohammad Tabesh and Dr.

Shiv Upadhyay for their help and support in different stages of my program. During the problem

definition stage of my research, Dr. Tony Diering and Dr. Nelson Morales provided great

insights and support to me. I would like to recognize the rest of my incredible colleagues for

their support during my program: Ali M., Zeinab, Shahrokh, Saha, Roberto, Magreth, Enrique,

Luisa, Eduardo, Hongshuo, Amir, Vahid, Farshad, and Ali Y.

I am grateful for the amazing friends that I have met in Edmonton during my Ph.D. journey:

Alireza T, Fahimeh, Fereshteh, Reza, Amanda, Aya, Danoush, Arina, Elizabeth, Behnaz, Arash,

Nasim, Sasan, Ali K, Mahsa, Tannaz, Mahmoudreza, Mehdi, Amir, Hossein, Teddy, Alireza,

Bahman, Farshad, Mehdi, Ramiar, Jenifer, Masoud, Shahed, Behnam, Fariba, Atefeh, Ahura,

Maryam, Sarah, Sasha, Lorena, Susie, Yuliya, Janita, Mahsa, Amin, Mohammad PMB, Maria,

and Katherine. Also, special thanks to my wonderful roommates: Ramin, Reza, and Saeidreza.

I am also thankful for my amazing friends from all over the world who have been supporting me:

Amin, Hossein, Mohammad, Mehdi, Mohsen, Franziska, Karim, Hamed, Margarita, Saeid,

Bahman, Arash, Keyvan, Saeid, Mojtaba, Samad, Sepehr, Ebrahim, Pourya, Sajad, and my

friends from a House in Navab, a House in Naft, and a House in Lashgar.

I had the honor of serving students as the Vice-President Academic for Graduate

Students’ Association at the University of Alberta for two consecutive terms (2016-2018).

Nothing pleases me more than serving my family and my community; for the past few

Acknowledgment

viii

years, University of Alberta has been not only my community but also my second family and

this position fulfilled my ambitions. It was a wonderful experience representing more than

7,000 master and Ph.D. students, working alongside students, faculty, and staff trying hard

to improve the experience of students at this university. I would like to thank all of those students

who put their trust in me to represent them in different levels of governance at the University. I

am also grateful to all of my colleagues who helped me in this role to improve the quality of

academic life of graduate students at this university. It was indeed a tough, delightful, and

invaluable experience for me.

My academic achievements would not have been possible without the support of my lovely

family, my father who has always supported me as a mentor and a friend, my mother who taught

me love, my sisters and brothers who have always been my best friends.

Finally, I want to acknowledge and express appreciation for the funding organizations at the

University of Alberta that put their trust in me and provided me the opportunity to

receive scholarships and awards during my Ph.D.

Firouz Khodayari

September 2018

Table of Content

ix

Table of Content

Abstract ... ii

Preface .. v

Dedication .. vi

Acknowledgment .. vii

Table of Content .. ix

List of Tables .. xii

List of Figures .. xiii

List of Abbreviations .. xv

List of Nomenclatures .. xvi

Chapter 1 General Introduction .. 1

1.1. Overview .. 2

1.1.1. Block Caving .. 2

1.1.2. Production Scheduling in Underground Mining ... 6

1.1.3. Mathematical Programming Methods ... 8

1.1.4. Stochastic Optimization .. 9

1.1.5. Caving Flow .. 9

1.2. Research Motivation .. 11

1.3. Research Objectives ... 11

1.4. Organization of Thesis ... 11

Chapter 2 Literature Review ... 13

2.1. Production Scheduling Optimization in Block-cave Mining ... 14

2.2. Material Flow ... 28

2.3. Summary .. 30

Chapter 3 Optimization of Production Scheduling in Block Caving Operations with Consideration

of Grade Targets ... 32

3.1. Introduction .. 33

3.2. Methodology .. 33

3.2.1. Notation ... 34

3.2.2. Objective Function .. 37

3.2.3. Constraints .. 37

3.2.4. Mining direction (mining advancement) determination.. 40

3.3. Solving the Optimization Problem ... 44

3.4. Case Study ... 44

3.5. Summary .. 50

Table of Content

x

Chapter 4 Production Scheduling with Horizontal Mixing Consideration in Block-cave Mining 51

4.1. Introduction .. 52

4.2. Problem Statement and Formulation .. 53

4.2.1. Notation ... 53

4.2.2. Preliminaries ... 56

4.2.3. Objective Function .. 58

4.2.4. Constraints .. 58

4.3. Solving the Optimization Model .. 61

4.4. Numerical Results .. 62

4.5. Summary .. 69

Chapter 5 Long-term Production Scheduling Optimization and 3-D Material Mixing Analysis for

Block Caving Mines .. 71

5.1. Introduction .. 72

5.2. Methodology .. 73

5.2.1. 3-D Mixing .. 73

5.2.2. Optimization Model .. 76

5.2.3. Model Structure and Programming Tools ... 82

5.3. Verification and Validation .. 82

5.4. Summary .. 91

Chapter 6 Conclusions and Recommendations .. 92

6.1. Conclusions .. 93

6.2. Recommendations .. 94

References .. 96

Appendix A: MATLAB Codes ... 101

Programming Description ... 102

A1. A_Import_Param ... 105

A2. B_Import_Drawpoints .. 107

A3. C_Import_Slices ... 108

A4. E_ScenarioGenerator_HVConeMixing .. 110

A5. F_MiningDirectionEvaluation .. 114

A6. ObjectiveFunction_MILP_Stoch .. 115

A7. Const_ActiveDrawpoints .. 118

A8. Const_Binary_Slc ... 120

A9. Const_ContinuousMining ... 124

A10. Const_DrawLife .. 126

A11. Const_Grade ... 128

A12. Const_DrawRate ... 130

Table of Content

xi

A13. Const_LowerandUpperBounds ... 132

A14. Const_MiningCapacity ... 134

A15. Const_Precedence_Polygon_DPs ... 136

A16. Const_ProdTar .. 142

A17. Const_Precedence_VShaped_DPs .. 144

A18. Const_Precedence_Slc .. 150

A19. Const_Reserve .. 152

A20. Run_MILP .. 153

A21. Exporting_Results ... 156

A22. Plot_ActivePerPeriod .. 160

A23. Plot_BHOD ... 161

A24. Plot_ ProductionPerPeriod .. 163

A25. Plot_ DrawRate_All .. 164

A26. Plot_ DrawRate_Slc .. 166

A27. Plot_ DrawRate_Slc_Seq .. 168

A28. Plot_ GradePerPeriod .. 170

A29. Plot_ MiningDirection_DPS ... 172

A30. Plot_ PB_DEV .. 173

A31. Plot_ ProductionPerPeriod .. 175

A32. Plot_ Slc_Seq_Height ... 177

A33. Plot_ PlotDCs .. 179

A34. Plot_ PlotDPs .. 180

A35. Plotdps_Active .. 181

A36. Plotdps_Life .. 182

A37. Plotdps_StartingPeriods .. 183

A38. allfitdist ... 185

A39. Neighb_numel ... 194

A40. ThousandSep ... 195

A41. ProjectPoint ... 196

List of Tables

xii

List of Tables

Table 1.1. Some real cases for different block-caving methods (Song 1989; Julin 1992; Bergen et al.

2009; Inc. 2012) .. 4
Table 2.1. Summary of applied MP models in block-caving production scheduling 22
Table 2.2. Advantages and disadvantages of applied mathematical methodologies in block-caving

production scheduling ... 28
Table 3.1. Scheduling parameters for the case study .. 45
Table 3.2. Comparing the original model with the results of deterministic and stochastic models 50
Table 4.1. An example of creating a population and generating 15 scenarios ... 57

Table 4.2. Testing the model based on two sets of penalties for the case study ... 64

Table 4.3. Scheduling parameters for the case study .. 65
Table 5.1. The set of grades for the candidate slices in the CoM (illustrative example) 75

Table 5.2. The generated scenarios (illustrative example) .. 76
Table 5.3. Scheduling parameters for the case study .. 86
Table 5.4. Comparison of the results .. 88

List of Figures

xiii

List of Figures

Figure 1.1. Block-cave Mining (Khodayari and Pourrahimian 2015b) .. 3

Figure 1.2. Typical offset Herringbone layout (after Brown, 2007) ... 5
Figure 1.3. Typical El Teniente layout (after Brown 2007) .. 5
Figure 1.4. Different types of fragmentation in caving operations (after Sun et al. 2018) 10
Figure 1.5. Particle movement within the draw columns (after Pierce 2010) ... 10
Figure 3.1. Material flow and its impact on the production grade .. 34

Figure 3.2. Example of mining direction for a block caving layout ... 41
Figure 3.3. Adjacent drawpoints for the considered drawpoint with the adjacent radius of R (small circles

represent the drawpoints) .. 42
Figure 3.4. Mining direction determination based on the PBEV concept... 43

Figure 3.5. Drawpoint layout (circles represent drawpoints) .. 44
Figure 3.6. A conceptual view of the draw columns... 44

Figure 3.7. Average production grade resulting from stochastic and deterministic models 46
Figure 3.8. Ore production during the life of the mine (stochastic model) ... 46

Figure 3.9. Ore production during the life of the mine (deterministic model) .. 47
Figure 3.10. Sequence of extraction for drawpoints resulting from the stochastic model (2D precedence)
 .. 47
Figure 3.11. Sequence of extraction for drawpoints resulting from the deterministic model (2D

precedence) ... 48
Figure 3.12. Sequence of extraction for slices in draw column associated with drawpoint 75 (numbers

represent ID of slices in the draw column) ... 48

Figure 3.13. Active and new opened drawpoints for the stochastic model ... 49
Figure 3.14. Active and new opened drawpoints for the deterministic model .. 49

Figure 4.1. Slice model ... 52
Figure 4.2. Horizontal mixing and its impact on production: below HIZ (left figure) and above HIZ (right

figure) .. 53
Figure 4.3. Adjacency concept: adjacent drawpoints (left figure) and adjacent slices (right figure); in the

plan view, the black circles represent drawpoints with the cross sign as their center point, the red circle is

considered as neighborhood for the orange-colored drawpoint in the center ... 56

Figure 4.4. Layout of the drawpoints .. 62
Figure 4.5. Histogram of copper grade for the slice model .. 63
Figure 4.6. Histogram of tonnage for the slice model... 63
Figure 4.7. Distribution of economic value of ore in the mining layout ... 64
Figure 4.8. Ore production during the life of the mine (case A) ... 66

Figure 4.9. Production grade compared to the target grade (case A) .. 66

Figure 4.10. Production grade compared to the target grade (case B) .. 67

Figure 4.11. Ore production during the life of the mine (case B) ... 68
Figure 4.12. Sequence of extraction for drawpoints based on the defined mining direction 68
Figure 4.13. Number of active drawpoints during the life of the mine ... 69
Figure 4.14. Height of draw columns after extraction compared to their initial height 69
Figure 5.1. Block model (on the left), drawpoints and slice model (on the right) 72

Figure 5.2. Cone of Movement (CoM) and the overlap between CoMs in the same neighborhood 74
Figure 5.3. Candidate slices that are located in the CoM (yellow balls)... 75
Figure 5.4. Layout of drawpoints .. 83

List of Figures

xiv

Figure A. 1. Flowchart of the optimization model (MATLAB functions) ... 102

Figure 5.5. The created slice model in PCBC (Scale: 1:5000) ... 84

Figure 5.6. Distribution of copper grade for slices in the slice model .. 84
Figure 5.7. Distribution of tonnage for slices in the slice model .. 85
Figure 5.8. Desired mining direction in the drawpoint layout .. 85

Figure 5.9. Production tonnages and grades for case (1) .. 89
Figure 5.10. Production tonnages and grades for case (2) .. 89
Figure 5.11. Production tonnages and grades for case (3) .. 90
Figure 5.12. Resulting BCSO production grade based on a target copper grade of 1% for 10 scenarios ... 90

List of Abbreviations

xv

List of Abbreviations

BCSO Block Caving Scheduling Optimizer

BHOD Best Height of Draw

CoM Cone of Movement

DEM Discrete Element Method

FEM Finite Element Methods

FlowSim Flow Simulation

HIZ Height of Interaction Zone

IP Integer Programming

LP Linear Programming

MILP Mixed Integer Linear Programming

MIP Mixed Integer Programming

MIQP Mixed Integer Quadratic Programming

PCBC Personal Computer Block Caving

PFC Particle Flow Code

QP Quadratic Programming

REBOP Rapid Emulator Based On PFC

List of Nomenclatures

xvi

List of Nomenclatures

The notations used in this study are described in each chapter with the formulations.

1

Chapter 1

General Introduction

Chapter 1 gives a general introduction about block-cave mining and its different methods

of operations, production scheduling in underground mining, mathematical programming, and

caving flow. It also elaborates on research motivation, objectives, and the organization of this

document.

Chapter 1 Introduction

2

1.1. Overview

These days, most surface mines work in a higher stripping ratio than in the past. In the

following conditions, a surface mine can be less attractive to operate and underground mining is

used instead. These conditions are (i) too much waste has to be removed in order to access the

ore (high stripping ratio), (ii) waste storage space is limited, (iii) pit walls fail, or (iv)

environmental considerations are more important than exploitation profits (Newman et al. 2010).

Among underground mining methods, block-cave mining, because of its high production rate

and low operating cost, could be considered an appropriate alternative. Mining companies are

looking for an underground method with a high rate of production, similar to that of open-pit

mining. Therefore, there is an increased interest in using block-cave mining to access deep and

low-grade ore bodies.

Production scheduling is one of the most important steps in the block-caving design process.

Optimum production schedules could add significant value to a mining project. The goal of long-

term mine production scheduling is to determine the mining sequence, which optimizes the

company’s strategic objectives while honoring the operational limitations over the mine life. The

production schedule defines the management investment strategy. An optimal plan in mining

projects will reduce costs; increase equipment use; and lead to the optimum recovery of marginal

ores, steady production rates, and consistent product quality (Dagdelen and Johnson 1986;

Chanda 1990; Wooller 1992; Chanda and Dagdelen 1995; Winkler 1996). Although manual

planning methods or computer software based on heuristic algorithms are generally used to

generate a good solution in a reasonable time, they cannot guarantee mine schedules that are the

optimal global solution.

Mathematical programming with exact solution methods is considered a practical tool to

model block-caving production scheduling problems; this tool makes it possible to search for the

optimum values while considering all of the constraints involved in the operation. Solving these

models with exact solution methodologies results in solutions within known limits of optimality.

1.1.1. Block Caving

Generally speaking, underground mining methods can be classified in three categories: (i)

caving methods such as block caving, sublevel caving, and longwall mining; (ii) stoping methods

Chapter 1 Introduction

3

such as room-and-pillar, sublevel stoping, and shrinkage; and (iii) other methods such as

postpillar cut-and-fill, and Avoca (Carter 2011).

Block caving is usually appropriate for low grade and massive ore bodies in which natural

caving could occur after an undercut layer is created under the ore-body. Laubscher (1994) refers

blockcaving“toallminingoperationsinwhichtheore-body caves naturally after undercutting

itsbase.Thecavedmaterialisrecoveredusingdrawpoints.”

Depending on the ore-body dimensions, inclination, and rock characteristics, block caving

could be implemented as block caving, panel caving, inclined drawpoint caving, and front

caving. The low-cost operation could be understood from the natural caving. In other words,

during the extraction period, there is no cost for caving unless some small blasting is needed to

deal with hang-ups. In block caving (Figure 1.1), the pre-development period can last for more

than five years. This is a significant period of time with no cash back. But when the production

starts, the extraction network can be used for the life of drawpoints, so the operating cost is low

and the production rate can be remarkable. To sum up, block caving has the lowest operating

cost of all underground mining methods and in some cases, its cost is comparable to that of open-

pit mining.

Figure 1.1. Block-cave Mining (Khodayari and Pourrahimian 2015b)

Chapter 1 Introduction

4

There are three methods of block caving. In the grizzly or gravity system, the ore from the

drawpoints flows directly to the transfer raises after sizing at the grizzly, and then is gravity-

loaded into ore cars. In the slusher system, slusher scrapers are used for the main production unit.

In the load-haul-dump (LHD) system, rubber tired equipment are used for ore handling in

production level (Hustrulid 2001). Table 1.1 shows some examples for each method. Caterpillar

jointly with the Chilean mining company Codelco has developed a continuous haulage

technology for block caving operation. In this method, the LHD at the drawpoint is replaced by a

rock feeder. This device pushes the rock into the haulage access, where it drops onto a hard rock

production conveyor.

The size of the caved material, the mine site location, availability of labor, and economics are

some aspects which determine the block-caving system (Julin 1992). Factors that have to be

considered in block caving include caveability, fragmentation, draw patterns for different types

of ore, drawpoint or draw zone spacing, layout design, undercutting sequence, and support

design (Laubscher 2011). Some large-scale open-pit mines will be transferred to underground

mining as they go deeper; they need to produce in a similar rate to open-pit mines to provide

their processing plants with feed, so block caving with a high production rate could be an

attractive alternative. Around the world, more than 60 mines have been closed, are operating or

are planned to be mined by block caving (Woo et al. 2009).

Table 1.1. Some real cases for different block-caving methods (Song 1989; Julin 1992; Bergen et al. 2009; Inc.

2012)

Method Mine Ore Type Location

Gravity (Grizzly)
San Manuel Copper Arizona

Andina Copper Chile

Slusher
Climax Molybdenum Colorado

Tong Kuang Yu Copper China

LHD

Henderson Molybdenum Colorado

Ertsberg Copper Indonesia

El Teniente Copper Chile

 New Afton Copper-Gold Canada

Laubscher (2000) identified 10 different horizontal LHD layouts as having been used in block

caving mines, Figure 1.2 and Figure 1.3 present two of them. Figure 1.2 shows offset

Herringbone in which the drawpoints on opposite sides of a production drift are offset. This

Chapter 1 Introduction

5

helps to improve both the stability conditions and the operational efficiency. This layout was

used initially at the Henderson Mine, USA, and Bell Mine, Canada. Figure 1.3 shows the layout

developed at the El Teniente Mine, Chile. In this layout, the drawpoint drifts are developed in

straight lines oriented at 60 degrees to the production drift (Brown 2003).

Figure 1.2. Typical offset Herringbone layout (after Brown, 2007)

Figure 1.3. Typical El Teniente layout (after Brown 2007)

One of the most critical processes in block-cave mining is undercutting. The undercutting

strategy can have a significant influence on cave propagation and on the stresses induced in, and

the performance of the extraction level installations (Brown 2003, 2007). The three mostly used

undercutting strategies are post, pre, and advanced undercutting. In the post-undercutting

strategy, undercut drilling and blasting takes place after the production level has been developed.

In the pre-undercutting method, no development or construction takes place on the production

level before the undercut has been blasted. In the advanced-undercutting strategy, the production

Chapter 1 Introduction

6

level is developed in advance of the blasting of the undercut. This method was introduced to

reducethedrawpoints’exposuretotheabutmentstresszones,whichwereinducedasaresult of

the undercutting process.

Generally speaking, confronting future challenges in block-cave mining can be divided into

two categories: (i) operational and (ii) economic. Block caving is known as a low-cost mining

method which makes it possible to mine the low-grade ore-bodies, therefore, an optimal

production schedule with lower cost is required. Block-cave mining is one of the best solutions

for continuing the operation after shutting down the mine in deep open-pit mines. The new

operation (block caving) has to feed the processing plant which used to be fed by the open-pit

mine. Therefore, the production rate in the block-cave operation has to be as high as the open-pit

mining. Although some semi-auto mining equipment has been introduced for block caving, it is

just the starting point to reach the full automated operations. Also, making decisions about the

geometry of drawpoints, the best height of draw, undercut level, and the production level are

critical and challenging. Block-cave mining usually requires much more development compared

to other mining methods which need a long period of time before starting the production, so the

high capital cost is needed to run the project. High capital cost increases the risk of the project.

The operational costs of block cave mining are low but if the rock mass caveability is not

achieved as it expected, the costs for additional drilling and blasting can be definitely

challenging.

1.1.2. Production Scheduling in Underground Mining

Production scheduling in mining operations is the decision of which blocks to extract and the

time of their extraction during the life of the mine while considering geomechanical, operational,

economic, and environmental constraints. Production scheduling for any mining system has an

enormous effect on the operation’s economics. Some of the benefits expected from better

production schedules include increased equipment use, optimum recovery of marginal ores,

reduced costs, steady production rates, and consistent product quality (Dagdelen and Johnson

1986; Chanda 1990; Wooller 1992; Chanda and Dagdelen 1995; Winkler 1996).

There are three time horizons for production scheduling: long-, medium-, and short-term.

Long-term mine-production scheduling provides a strategic plan for mining operations, whereas

medium-term scheduling provides a monthly operational scheme for mining while tracking the

Chapter 1 Introduction

7

strategic plan. Medium-term schedules include more detailed information that allows for a more

accurate design of ore extraction from a special area of the mine, or information that allows for

necessary equipment substitution or the purchase of necessary equipment and machinery. The

medium-term schedule is also divided into short-term periods (Osanloo et al. 2008).

The majority of scheduling publications to date have been concerned with open-pit mining

applications. As a result, the software development for underground operations has been delayed

and many of the scheduling concepts and algorithms developed for surface mining have found

their way into underground mining. Underground mining methods are characterized by complex

decision combinations, conflicting goals, and interaction between production constraints.

Current practice in underground-mine scheduling has tended toward using simulation and

heuristic software to determine feasible, rather than optimal, schedules. A compromise between

schedule quality and problem size has forced the use of mine design and planning models, which

incorporate the essential characteristics of the mining system while remaining mathematically

tractable. Different types of methods have been applied to underground mine scheduling. Similar

to open-pit mines, production scheduling algorithms and formulations in literature can be divided

into two main research areas: (i) heuristic methods and (ii) exact solution methods for

optimization. Heuristic methods are generally used to generate a good solution in a reasonable

amount of time. These methods are used when there is no known method to find an optimal

solution under the given constraints. Despite shortcomings such as frequently required

intervention and the lack of a way to prove optimality, simulation and heuristics are able to

handle non-linear relationships as part of the scheduling procedure (Pourrahimian 2013).

In addition to these categories, other methods such as queuing theory, network analysis, and

dynamic programming have been used to schedule production and/or material transport. In

block-cave mining, production schedule determines the amount of material which should be

mined from each drawpoint in each period of production, the number of new drawpoints that

need to be constructed, and their sequence during the life of mine (Pourrahimian 2013). The

same concerns in deep open-pit mining can be applied to block-cave mining; the possibility of

value changes of the project through scheduling is remarkable.

Chapter 1 Introduction

8

1.1.3. Mathematical Programming Methods

Mathematical programming (MP) is the use of mathematical models, particularly optimization

models, to assist in making decisions. An MP model comprises an objective function that should

be maximized or minimized while meeting some constraints which determine the solution space

and a set of decision variables whose values are to be determined. Objectives and constraints are

functions of the variables and problem data. Mathematically, an MP problem can be stated as,

0 0Minimize (,)f a x

(1.1)

Subject to

0 (,) 0, 1,...,i ff a x i m (1.2)

0 (,) 0, 1,..., i gg a x i m

(1.3)

0 .x D

(1.4)

Where 0 0 0(,)f f a x is the objective function, 0(,), 1,..., i i ff f a x i m and

0(,), 1,..., i i gg g a x i m are the constraint functions,
1 2(, ...) T r

rx x x x R is control vector, and

1 2(, ...) T v

va a a a R is vector of parameters (Marti 2015).

The modeling process in mathematical programming has eight steps (Eiselt and Sandblom

2010): problem recognition, authorization to model, model building and data collection, model

solution, model validation, model presentation, implementation, and monitoring and control. The

mathematical programming models which are considered for production scheduling are linear

programming (LP), mixed-integer linear programming (MILP), non-linear programming (NLP),

dynamic programming (DP), multi-criteria optimization, network optimization, and stochastic

programming (Shapiro 1993). In an LP problem, when all or some of the variables must be

integers, the problem is called pure integer (IP) and mixed-integer programming (MIP, MILP)

respectively. A linearly constrained optimization problem with a quadratic objective function is

called a quadratic program (QP) and it is called mixed integer quadratic programming (MIQP) if

there are integer decision variables in the model. Caving flow is one of the unique characteristics

of block caving that distinguishes it from other mining methods and it can directly influence the

Chapter 1 Introduction

9

production schedule and increase its uncertainties. Next section briefly introduces stochastic

optimization as a tool that can model caving operations and its uncertainties.

1.1.4. Stochastic Optimization

In equation (1.1), the optimization model is called deterministic if vector
1 2(, ...) T

va a a a is a

given fixed quantity and it is stochastic when the model parameters is not a fixed quantity (Marti

2015). In many real-world problems, model parameters are often unknown and stochastic models

can be used in order to optimize such systems. In the case of production scheduling in block

caving mines, because of the uncertainties of caving flow, parameters such as grade and tonnage

are not fixed quantities. Therefore, in this research, stochastic optimization is used to model such

a problem. The caving flow, as the main source of uncertainties in caving operations is described

in the next section of this chapter.

1.1.5. Caving Flow

Fragmentation in caving operations can be divided into three categories (Eadie (2002); Pierce

(2010); Dorador et al. (2014)): (i) in-situ fragmentation, this is the natural fractures and

discontinuities that exist within the rock mass; (ii) primary fragmentation, which occurs when the

particles detach from the cave back as the undercut is created and the caving begins; (iii)

secondary fragmentation, this happens when the detached particles move within the draw

columns in the caving zone (Figure 1.4).

For the fragmented rock in the caving zone, particles do not necessarily move down to the

drawpoints located below them, they can move between different draw columns before extracted

from a drawpoint. This usually happens because of the size and velocity difference among

particles (Figure 1.5).

The movement of particles within the caving zone results in material mixing in and

uncertainties in the production as the extraction continues from drawpoints. Therefore, mixing is

an important part of caving operations and should be included in the production scheduling. j

The uncertainties of material flow can change the outputs of the production in a block cave

mining operations; unlike open-pit mining, the production grades and tonnages can vary from the

expected values from the mine plan. In such a situation, any strategic decision should be made

with the consideration of movements of the fragmented rock within the caving area and resulting

Chapter 1 Introduction

10

mixing. Stochastic optimization can play a critical role to model material movements and its

uncertainties during the production. In this research, a strategy for block cave mining is proposed

in which the material flow and its uncertainties are modeled within the mine plan.

Figure 1.4. Different types of fragmentation in caving operations (after Sun et al. 2018)

Figure 1.5. Particle movement within the draw columns (after Pierce 2010)

Chapter 1 Introduction

11

1.2. Research Motivation

There are several existing models to optimize the production schedule for block caving mines

without consideration of the caving flow and its impact on the production. Also, some models

and tools exist for simulation of the material flow that are not capable of scheduling. Considering

these two aspects of block caving at the same time can lead us to more reliable production

schedules.

In this research, a material mixing methodology, called Cone of Movement (CoM), is

introduced and then stochastic optimization is used to incorporate mixing into the production

scheduling optimization. The aim is to develop an optimization model that maximizes the net

present value of block caving mines and minimizes the deviations from target production grades

and tonnages during the life of the mine while captures the material mixing and its uncertainties.

The production scheduling model should also include operational constraints into optimization in

order to result in practical mine plans for block caving. Such a model should guarantee the

optimality of its results and report the gap from the optimum solution.

1.3. Research Objectives

This research has three-fold objectives:

 to develop a model that optimizes production scheduling in block caving mines.

 to include technical constraints of the caving operations in the production scheduling

optimization model.

 to incorporate 3-D material mixing and its impact into the production scheduling.

1.4. Organization of Thesis

This work is divided into six chapters, all of which (except parts of the first chapter and the last

chapter) have been published as peer-reviewed journal papers or are under review for

publication. As a result, there might be some repetition of text, figures, or tables in the chapters.

Chapter 1 gives a general introduction about block-cave mining and its different methods of

operations, production scheduling in underground mining, mathematical programming, and

caving flow. It also elaborates on the research motivation, the objectives, and the organization of

this thesis.

Chapter 1 Introduction

12

Chapter 2 presents the literature review of the application of mathematical programming in

production scheduling of block caving; this chapter has been published as a peer-reviewed paper

in 2015. Also, recent models and publications have been added to this chapter and the presented

literature review is up-to-date. In addition, because of the importance of material flow and its

role in the proposed model in this research, a review of the literature on this topic has been

included in this chapter.

Chapter 3 and 4 describe two optimization models that maximize the NPV of caving

operations while minimizing deviations from the company’s targets. In chapter 3, targets are

only for production grades and the mixing occurs within draw columns in a big scale; however,

both production grades and tonnages are included in chapter 4 and the mixing is assumed to be

horizontal and within slices.

Chapter 5 describes the block caving production scheduling optimizer, BCSO, in which the

NPV is maximized and deviations from target grades and tonnages are minimized for all

scenarios during the life of the mine. Cone of Movement, CoM, is introduced in order to take

horizontal and vertical mixing into consideration for production scheduling optimization. The

BCSO is tested for a block caving mine and then the results have been validated against

GEOVIA PCBC software.

Chapter 6 provides key conclusions from this research and some recommendations for future

studies.

The references from all chapters are combined and presented after chapter 6. Also, the

MATLAB codes are presented in appendix A.

13

Chapter 2

Literature Review

 Chapter 2 presents the literature review of the application of mathematical programming

in production scheduling of block caving. A version of this chapter has been published in the

International Journal of Mining and Mineral Engineering (IJMME) in 2015. Also, recent models

and publications have been added to this chapter and the presented literature review is up-to-

date. In addition, because of the importance of material flow and its role in the proposed model

in this research, a review of the literature on this topic has been included in this chapter.

Khodayari F, Pourrahimian Y. 2015. Mathematical programming applications in block-

caving scheduling: a review of models and algorithms. International Journal of Mining and

Mineral Engineering (IJMME). 6(3): 234-257.

Chapter 2 Mathematical Programming in Block-Caving Scheduling

14

2.1. Production Scheduling Optimization in Block-cave Mining

Using mathematical programming optimization with exact solution methods to solve the long-

term production planning problem has proved to be robust and results in answers within known

limits of optimality (Pourrahimian 2013). Lerchs and Grossmann (1965) applied mathematical

programming in mine planning (open-pit mining) for the first time. Since the 1960’s,

considerable research has been done in mine planning using mathematical programming, both in

open-pit and underground mining. Newman et al. (2010) and Osanloo et al. (2008) have

mentioned many of the studies related to open-pit mining. Alford (1995) listed problems which

have the potential of being considered optimization problems in underground mining. These

problems are: (i) primary development (shaft and decline location); (ii) selection from alternative

mining methods; (iii) mine layout (i.e., sublevel location and spacing, stope envelope); (iv)

production sequencing; (v) product quality control (material blending); (vi) mine ventilation; and

(vii) production scheduling (ore transportation and activity scheduling).

Among these problems, product quality control and production scheduling have received the

greatest consideration for optimization (Rahal 2008). Production scheduling optimization is so

important because its impact on a project’s net present value (NPV) is critical. Therefore, it

should be updated periodically. Scheduling underground mining operations is primarily

characterized by discrete decisions regarding mine blocks of ore, along with complex sequencing

relationships between blocks. To optimize block-caving scheduling, most researchers have used

mathematical programming, LP (Winkler 1996; Guest et al. 2000; Hannweg and Van Hout

2001), MILP (Song 1989; Chanda 1990; Winkler 1996; Guest et al. 2000; Rubio 2002; Rahal et

al. 2003; Rubio and Diering 2004; Rahal 2008; Rahal et al. 2008; Weintraub et al. 2008;

Smoljanovic et al. 2011; Epstein et al. 2012; Parkinson 2012; Pourrahimian 2013; Alonso-Ayuso

et al. 2014; Khodayari and Pourrahimian 2014, 2017; Malaki et al. 2017;

Nezhadshahmohammad et al. 2017) QP (Rubio and Diering 2004; Diering 2012), and MIQP

(Khodayari and Pourrahimian 2016). LP is the simplest method for modeling and solving. Since

LP models cannot capture the discrete decisions required for scheduling, MIP is generally the

appropriate MP approach for scheduling (Pourrahimian 2013). Solving an MILP problem can be

difficult when the production system is large, but MILP is a useful methodology for underground

Chapter 2 Mathematical Programming in Block-Caving Scheduling

15

scheduling (Rahal 2008). This section includes reviews of MP applications in block-caving

scheduling and some features for each methodology.

Song (1989) used simulation and an MILP model to find the optimal mining sequence in the

block-cave operations at the Tong Kuang Yu mine in China. To obtain an optimal mining

sequence, Song first simulated the caving process dependent on undercut parameters. Then, he

determined ore-draw spacing and pressure distribution during ore-draw. Finally, he used caving

simulation and analysis results to obtain the optimal mining sequence. He optimized the

production schedule using total mining cost minimization while considering the geometrical and

operational limitations which guarantee caveability and stability demands. Defining linear

functions was an advantage of his methodology. The disadvantage, especially in long-term

scheduling, was the solution time.

Chanda (1990) combined simulation with MIP to model the problem of scheduling

drawpoints for production at the Chingola Mine, in Zambia. He computerized a model for short-

term production scheduling in a block-caving mine. The model used MIP to determine the

production rate in finger raises in each production drift considering some quality and quantity

constraints. The objective was to minimize the deviation in the average production grade

between operating shifts.

Guest et al. (2000) developed LP and MILP models to maximize the NPV of block-caving

scheduling (long-term scheduling) over the mine life of a diamond mine in South Africa. This

model tried to consider, as constraints, related aspects of mining: mining capacity, metallurgical

issues, economic parameters, grades and geotechnical limitations. Applying this wide range of

constraints is a remarkable advantage of this model. However, there were two problems with this

approach; maximizing tonnage or mining reserves will not necessarily lead to maximum NPV;

and draw control is a planning constraint and not an objective function. The objective function,

in this case, would be to maximize tonnage, minimize dilution or maximize mine life (Rubio

2002).

Rubio (2002) formulated two strategic goals; maximization of NPV and optimization of the

mine life in block caving. As constraints, he considered geomechanical aspects, resource

management, the mining system, and metallurgical parameters involved in the mining operation.

One of the main advantages of his model was that it integrated estimates of mineral reserves and

Chapter 2 Mathematical Programming in Block-Caving Scheduling

16

the development rate that resulted from the production scheduling. Traditionally these

parameters were computed independent of production scheduling. Rubio also formulated a

relationship between the draw control factor and the angle of draw. This relationship was built

into the actual draw function to compute schedules with high performance in draw control.

Opportunity cost in block caving was defined as the financial cost of delaying production from

newer drawpoints; a drawpoint will stay active at any given period of the schedule, if it has

enough remaining value to pay the financial cost of delaying production from newer drawpoints

that may have a higher remaining value.

Rahal et al. (2003) described an MILP goal program with dual objectives of minimizing

deviation from the ideal draw profile while achieving a production target. They performed a

schedule optimization using a-life-of-mine approach in which all production periods were

optimized simultaneously. They assumed that material mixing in the short-term has a minimal

effectonthepanel’s long-termstate.Themodel’sconstraintsweredeviation from ideal practice,

panel state, material flow conservation, production quality, material flow capacity, and

production control. They applied the model to De Beers kimberlite mine. The results showed

how different production control constraints regulate production from individual drawpoints, as

well as recovery of the ideal panel profile by implementing an optimized draw schedule.

Diering (2004) described the basic problem in block-caving scheduling as trying to determine

the best tonnages to extract from a number of drawpoints for various periods of time. Those

periods could range from a day to the life of the mine. Diering singled out NPV as the overall

objective to maximize, subject to some constraints: minimum tonnage per period, maximum

tonnage per period, maximum total tonnage per drawpoint, maximum total tonnage per period,

ratio of tonnage from current drawpoint compared with neighbors, height of draw of current

drawpoint with respect to neighbors, percentage drawn for current drawpoint with respect to

neighbors, and maximum tonnage from selected groups of drawpoints in a period (usually the

groups of drawpoints are referred to as production blocks or panels). Diering emphasized that it

would be better to formulate the problem as an LP instead of NLP because of solution time and

the size of problems. He applied a multi-step non-linear optimization model to minimize the

deviation between a current draw profile and a defined target. It was shown that this algorithm

could also be used to link the short-term plan with the long-term plan.

Chapter 2 Mathematical Programming in Block-Caving Scheduling

17

Rubio and Diering (2004) applied MP to maximize the NPV, optimize the draw profile and

minimize the gap between long- and short-term planning. They integrated the opportunity cost

into GEOVIA PCBC for computing the best height of draw in a dynamic manner. To solve their

problem, they used different mathematical techniques such as direct iterative methods, LP, a

golden section search technique, and integer programming. In their formulation, mining reserves

were not part of the set of constraints; the mining reserves were computed as a result of the

optimal production schedule. They also used QP to minimize the differences between actual

heights of draw versus a desired target.

Rahal (2008) presented a draw control model that indirectly increases resource value by

controlling production based on geotechnical constraints. He used MILP to formulate a goal

programming model with two strategic targets: total monthly production tonnage and cave shape.

This approach increased value by ensuring that reserves are not lost due to poor draw practice.

Themodel’sadvantagewasthatitallowsanynumberofprocessingplantstofeedfrom multiple

sources (caves, stockpiles, and dumps). There were three main production control constraints in

the MILP: the draw maturity rules, minimum draw rate, and relative draw rate (RDR). Rahal

used MILP to quantify production changes caused by varying geotechnical constraints, limiting

haulage capacity, and reversing mining direction. He showed that tightening the RDR constraint

decreases total cave production. He applied his model for three case studies and illustrated how

the MILP can be used by a draw control engineer to analyze production data and develop long-

term production targets both before and after a cave is brought into full production.

Rahal et al. (2008) used MILP to develop an optimized production schedule for Northparkes

E48 mine. They described the system constraints as minimum and maximum draw tonnage, the

permissible relative draw rate difference between adjacent drawpoints, drawpoint availability,

and the capacity of the materials handling system. The impact of different production constraints

on total cave capacity was examined. It was shown that the strength of using MILP lies in its

ability to generate realistic production schedules that require little manual manipulation.

Weintraub et al. (2008) developed an approach to aggregate the reduced models (which have

been derived from a global model) using the original data for an MIP mine planning model in a

large block-caving mine. The aggregation was based on clustering analysis. The MIP model was

developed to support decisions for planning extraction of blocks and the decisions of exact

Chapter 2 Mathematical Programming in Block-Caving Scheduling

18

timing for each block in the extraction columns. The final model was developed to integrate all

mines for corporate decisions, to determine extraction from each sector, in each mine, for each

period (for a five-year horizon). Weintraub et al. used two types of aggregation: Priori

aggregation and Posteriori approach. Comparing the original model with the disaggregation, the

first approach reduced execution time by 74% and the model dimension by 90%. The second

approach reduced solution time by 88% and the model dimension by 15%.

Smoljanovic et al. (2011) presented a model to optimize the sequence of drawpoint opening

over a given time horizon. They incorporated sequencing and capacity constraints. Their model

was based on an open-pit model (BOS2) adapted to underground mining. Binary variables were

used to indicate whether or not a specific drawpoint had been opened. The real numbers

represent the percentage of the column that was extracted. The model was applied in a panel

caving mine in which the studied layout included 332 drawpoints. It was shown that the

sequencing can change the value of objective function by as much as 50%. Smoljanovic (2012)

applied MILP to optimize NPV and the mining material handling system in a panel caving mine.

The model output selected the best sequence after considering different mining systems. Results

showed that the out-coming NPV of the objective function for different systems could vary by up

to 18%. The importance of the mining system and capacity constraints in the sequencing was

shown in comparison to different scenarios.

Parkinson (2012) developed three integer programming models for sequence optimization in

block-cave mining: Basic, Malkin, and 2Cone. The research was carried out to provide a

required input to a PCBC program to find an optimized sequence in which the drawpoints are

opened in an automated manner. The models were applied on two data sets, a simple answer was

not found, and therefore a combination of the presented models was proposed to help the planner

to optimize the sequence. Parkinson demonstrated that integer programming models can generate

opening sequences but that the process can be complicated.

Epstein et al. (2012) presented a methodology for long-term mine planning based on a general

capacitated multi-commodity network flow formulation. They considered underground and

open-pit ore deposits sharing multiple downstream processing plants over a long horizon. The

model’s targetwas optimization of severalmines as an integratedproblem.LP and IPwith a

customized procedure were applied to solve the combined model. For the production phase in

Chapter 2 Mathematical Programming in Block-Caving Scheduling

19

underground mine, which it was block caving, constraints were production per sector, product

and period, production cost, extraction times for each block (at most once), block and period

priority, minimum blocks for each column, order of drawpoints, maximum duration of a

drawpoint, extraction rate of each column, the column in each period, similarity of heights in

neighboring columns, bounds on the area, extracted rock per period, and each sector extraction

within its time window. The model developed by Epstein et al. has been implemented at

Codelco, production plans for a single mine and integrating multiple mines increased the NPV.

Diering (2012) used QP techniques for block-caving production scheduling, focusing on

single-period formulations. He explained that the block caving process is non-linear (the tons

which you mine in later periods will depend on the tons mined in earlier periods), so it would not

be appropriate to use LP for production scheduling in block caving. The objective function was

the shape of the cave. Three sets of constraints were applied in the model: mandatory, modifying,

and grade-related. This formulation omitted the sequence of drawpoint development (interaction

between neighboring drawpoints) as a constraint.

Pourrahimian et al. (2012) presented two MILP formulations at two different levels of

resolution: (i) drawpoint level, and (ii) aggregated drawpoints (cluster level). The objective

function was to maximize the NPV. They usedPCBC’sslicefileasaninputintotheirmodel,but

their models treat the problem in the drawpoint or cluster level as a strategic long-term plan, and

the slices are not used in the presented formulations. To reduce the number of binary variables,

Pourrahimian et al. used Fuzzy c-means clustering to aggregate the drawpoints into clusters

based on similarities between draw columns and the physical location of the drawpoint and its

tonnage. They used same data for both models and solved the problem for four different

advancement directions. The execution time for aggregated drawpoints was reduced by more

than 99%.

Pourrahimian et al. (2013) developed a theoretical optimization framework based on a MILP

model for block-cave long-term production scheduling. The objective function was to maximize

the NPV. They formulated three MILP models for three levels of problem resolution: cluster

level, drawpoint level, and drawpoint-and-slice level. They showed that the formulations can be

used in both the single-step method, in which each of the formulations is used independently;

and as a multi-step method, in which the solution of each step is used to reduce the number of

Chapter 2 Mathematical Programming in Block-Caving Scheduling

20

variables in the next level and consequently to generate a practical block-cave schedule in a

reasonable amount of CPU runtime for large-scale problems. They considered mining capacity,

grade blending, the maximum number of active clusters or drawpoints, the number of new

clusters or drawpoints, continuous mining, mining precedence, reserves, and the draw rate as

constraints which were involved in all three levels of resolutions. Using such a flexible

formulation is very helpful because depending on the level of studies — prefeasibility studies

(PFS), feasibility studies (FS) or detailed feasibility studies (DFS) — a mine planner can use the

appropriate level of solution and the related runtime. They developed and tested their

methodology in a prototype open-source software application with the graphical user interface

DSBC (Drawpoint Scheduling in Block-Caving).

Alonso-Ayuso et al. (2014) considered uncertainty in copper prices along with a given time

horizon (five years) using a multistage scenario tree to maximize the NPV of a block-cave mine

in Chile, then the stochastic model was converted into a MIP model. They applied the stochastic

model in both risk-neutral and risk-averse environments. Results showed the advantage of using

the risk-neutral strategy over the traditional deterministic approach, as well as the advantage of

using any risk-averse strategy over the risk-neutral one.

Rubio (2014) introduced the concept of portfolio optimization for block caving. In this

method, every decision related to mine design and mine planning could be a component of a set

that defines a feasible portfolio. This set is optimized for different production targets to

maximize the return subject to a given level of reliability. Using this approach, a frontier

efficient is proposed as a boundary to display different strategic designs and planning options for

the set of variables under study. By this method, decision makers can define a point along the

frontier efficient where they want to place a given project.

Khodayari and Pourrahimian (2014) proposed a model in which the best height of draw

(BHOD) is determined as part of the sequence optimization in block caving. In other words, the

mining reserve was an output of the optimization, not an input. In another paper, they presented a

methodology to find the best mining direction in the block caving layout (Khodayari and

Pourrahimian 2015a). Total dollar values of draw columns located in different neighborhoods

were used to determine the direction and then the precedence of extraction among drawpoints.

Khodayari and Pourrahimian (2016) also proposed a mixed integer quadratic programming

Chapter 2 Mathematical Programming in Block-Caving Scheduling

21

(MIQP) model for production scheduling, the goal was to achieve a uniform extraction profile in

order to reduce the potential dilutions in the production. They also presented an MILP model to

optimize the production schedule during the life of the mine while taking the material flow into

account (Khodayari and Pourrahimian 2017). Their stochastic optimization model was based on

a mixing environment that includes a set of draw columns that are located in the same

neighborhood. Using this methodology, the resulting schedule is more reliable as it is closer to

what happens in the real-world operations, it was recommended to develop the objective function

and the mixing approach.

Nezhadshahmohammad et al. (2017) proposed an MILP model to maximize the NPV with

consideration of draw rate curve as a geotechnical constraint. Nezhadshahmohammad et al.

(2017) used a clustering model to optimize a long-term production schedule for block caving

operations. They also used a draw control system within the neighborhood while maximizing the

NPV of the project. Malaki et al. (2017) applied sequential Gaussian simulation and MILP to

find the best level of extraction in block caving while considering the grade estimation

uncertainties.

Sepúlveda et al. (2018) used a multi-objective optimization approach to maximize the

economic return of block-cave mining operations while minimizing the risk associated with

geometallurgical uncertainty. It was shown that the combination of maximization of economic

values and minimization of deviations from production targets results in lower risks in an

uncertain environment. They recommended the incorporation of caving flow into the production

schedule for future research. Another stochastic optimization model was proposed by Dirkx et al.

(2018) to include the uncertainty of grade and resulting delays from hang-ups into the production

schedule. Testing the model for a low-grade copper deposit showed an improvement in the NPV

compared to deterministic models. Table 2.1 shows the summary of the aforementioned MP

applications in block-caving scheduling.

GEOVIA PCBC is the most used commercial software in block caving mines. The program is

integrated into a general purpose geological modeling and mine planning system so that it can be

used for studies ranging from pre-feasibility to daily draw control. The simulation of mixing is

an important part of the program. PCBC simulates the extraction from each active drawpoint

Chapter 2 Mathematical Programming in Block-Caving Scheduling

22

period-by-period subject to a range of constraints and inputs (Diering 2000). More details about

GEOVIA PCBC is presented in section 5.1 where it is used for validation of the BCSO.

Table 2.1. Summary of applied MP models in block-caving production scheduling

Author Model Model objective(s) Constraint(s)

Song (1989)
Simulation

and MILP

Minimization of total mining

cost

Geometrical limitations

Operational limitations

Chanda (1990)
Simulation

and MIP

Minimization of the deviation in

the average production grade

between operating shifts

Maximum allowable output per shift

Maximum allowable number of working

drawpoints per shift

Declaration of exhaustion for exhausted

drawpoints

Required grade for each shift (equality)

Tonnage of blended ore in each shift

Guest et al.

(2000)
LP and MILP Maximization of NPV

Geotechnical constraints

Column draw rates

Precedence of accumulated tons drawn

Limits in differences of accumulated tons

drawn between columns within time

horizons

Limits in ratios of tons drawn between

columns (neighbors) within time horizons

Mining constraints

Ore flow constraints (tunnels, ore passes,

haulage, underground accumulation areas,

shaft systems)

Metallurgical constraints

Treatment plant (capacities per period)

Economic constraints (revenue, costs)

Geological constraints (grade, size)

Rubio (2002)
MILP and

NLP

Two models (a) maximization of

NPV and (b) optimization of the

mine life

Development rate

Undercut sequence

Drawpoint status

Maximum opened production area

Draw rate

Period constraints

Mining reserves

Rubio and

Diering (2004)
MILP and QP

Maximization of NPV,

optimization of draw profile, and

minimization of the gap between

long- and short-term planning

Development rate

Undercut sequence

Maximum opened production area

Draw rate

Draw ratio

Period constraints

Chapter 2 Mathematical Programming in Block-Caving Scheduling

23

Table 2.1. Summary of applied MP models in block-caving production scheduling (continued)

Author Model Model objective (s) Constraint(s)

Diering (2004) NLP

Maximizing NPV for M periods

and minimization of the

deviation between a current

draw profile and a defined target

Minimum and maximum tonnage per period

Maximum total tonnage per drawpoint and

per period

Ratio of tonnage from current drawpoint

compared with neighbors.

Height of draw of current drawpoint with

respect to neighbors

Percentage drawn for current drawpoint

with respect to neighbors

Maximum tonnage from selected groups of

drawpoints in a period

Rahal (2008) MILGP

Minimizing deviation from the

ideal draw profile while

achieving a production target

Deviation From Ideal Plan

Ideal depletion

Panel production rate

Production from external sources

Contents of material sources

Material flow conservation (blocks, tunnels,

ore pass, haulage, accumulation, shaft,

plant)

Material flow and capacity (source flow,

block, externals, ore pass, haulage,

accumulation, shaft, plant)

Production Control

Block available for draw

Relative draw rate

Block flow bounds

Draw maturity rules (Lower Depletion

Bound/Upper Production Bound)

Product quality and quantity

Economics

Weintraub et

al. (2008)
MIP Maximization of profit

Each cluster can be extracted only once

Sequence of extractions

The allowable speed

Capacity of extraction

Conservation of flows and logical

relationships between variables

Smoljanovic

et al. (2011)
MILP

Optimization of NPV and

mining material handling system

Production Constraints

Max and min amount of tonnage to be

extracted per time period

The overall mine capacity

Chapter 2 Mathematical Programming in Block-Caving Scheduling

24

Table 2.1. Summary of applied MP models in block-caving production scheduling (continued)

Author Model Model objective(s) Constraint(s)

Smoljanovic

et al. (2011)

(continued)

MILP
Optimization of NPV and

mining material handling system

Total number of drawpoints to be opened at

each time period

Capacity per drawpoint

Min percent of extraction for each

drawpoint

Lifetime of a drawpoint

Capacity of haulage system

Geometric constraints

Connectivity and shape constraints

Epstein et al.

(2012)
MIP Maximization of NPV

Production per sector (product and period)

Production cost

Extraction times for each block

Block and period priority

Minimum blocks for each column

Order of drawpoints

Maximum duration of a drawpoint

Extraction rate of each column

The column in each period

Neighboring columns heights similarity

Bounds on the area

Extracted rock per period

Each sector extraction within its time

window

Parkinson

(2012)

IP Finding an optimal opening

sequence in an automated

manner

Each drawpoint starts once

Global capacity (processing plant capacity)

Tunnel development

Additional constraints:

Within-tunnel contiguity

Across-tunnel contiguity

Diering (2012) QP

Objective tonnage

(to optimize the shape of the

cave)

Mandatory constraints

Production capacity

A maximum tonnage for each drawpoint

based on the drawpoint maturity curve

A minimum tonnage for each drawpoint.

Modifying constraints

Maximum tonnage from production tunnels

Maximum tonnage from an orepass or

crusher

Maximum tonnage from an entire sector

Grade-related constraints

Chapter 2 Mathematical Programming in Block-Caving Scheduling

25

Table 2.1. Summary of applied MP models in block-caving production scheduling (continued)

Author Model Model objective(s) Constraint

Pourrahimian et

al. (2013)
MILP Maximization of NPV

Mining capacity

Grade blending

Maximum number of active clusters or

drawpoints (according to the model

resolution)

Number of new clusters or drawpoints

(according to the model resolution)

Continuous mining

Mining precedence

Slice

Drawpoint

Cluster

Reserves

Draw rate

Draw column

Cluster

Alonso-Ayuso et

al. (2014)
MILP

Maximization of NPV while

considering uncertainty in

copper price

Each cluster is processed at most once

If a cluster is processed at a given period

then all predecessor clusters are also

processed by that period

The clusters in each set would be extracted

simultaneously in each sector

Number of tons processed in each sector at

each period

Flow conservation constraints for the

processing stream

Number of tons processed in each period

Upper and lower bounds for the total area

processed in each sector

Number of tons processed in each period

Upper bound due to the capacity of

processing stream

The maximum increase and decrease of tons

in each sector in each period

Khodayari and

Pourrahimian

(2014)

MILP
Maximization of NPV and

finding the BHOD

Mining capacity

Production grade

Number of active drawpoints

Continuous mining

Mining precedence

Reserves

Draw rate

Khodayari and

Pourrahimian

(2015a)

LP
Finding the best mining

direction
-

Chapter 2 Mathematical Programming in Block-Caving Scheduling

26

Table 2.1. Summary of applied MP models in block-caving production scheduling (continued)

Author Model Model objective(s) Constraint

Khodayari and

Pourrahimian

(2016)

MIQP
Achieving smoother caving

shape to reduce the dilution

Mining capacity

Production grade

Number of active drawpoints

Continuous mining

Mining precedence

Reserves

Khodayari and

Pourrahimian

(2017)

MILP

(Stochastic)

Maximization of NPV and

incorporation of material flow

in the optimization model

Mining capacity

Production grade

Number of active drawpoints

Continuous mining

Drawpoint precedence

Slice precedence

Reserves

Draw rate

Draw life

Grade deviations

Nezhadshahmoha

mmad et al.

(2017)

MILP Maximization of NPV

Mining capacity

Production grade

Number of active drawpoints

Continuous mining

Mining precedence

Reserves

Draw rate

Number of new drawpoints

Nezhadshahmoha

mmad et al.

(2017)

MILP Maximization of NPV

Mining capacity

Production grade

Number of active drawpoints

Continuous mining

Mining precedence

Reserves

Draw rate

Draw life

Number of new drawpoints

Malaki et al.

(2017)
MILP

Finding the best level of

extraction while considering the

grade estimation uncertainties

Mining capacity

Production grade

Continuous mining

Mining precedence

Reserves

Number of new big blocks

Chapter 2 Mathematical Programming in Block-Caving Scheduling

27

Table 2.1. Summary of applied MP models in block-caving production scheduling (continued)

Author Model Model objective(s) Constraint

Sepúlveda et al.

(2018)

MILP

(Stochastic)

Maximization of the net smelter

return and reducing

geometallurgical uncertainty

Mining capacity

Grade blending

Maximum number of active drawpoints

Continuous mining

Mining precedence

Reserves

Draw rate

Draw life

Number of new draw-points

Dirkx et al.

(2018)

MILP

(Stochastic)

Maximization of NPV and

minimizing deviations from

targets

Extraction capacity

Drawpoint precedence

Slice precedence

Continuous mining

Ratio of extraction between adjacent

drawpoints

Deviations of hang-up delays

Tonnage deviations

Grade deviations

Bottleneck constraints

Reserve

In mathematical programming, we look for values of variables which are allowed and do not

violate the constraints. This defines what is called a solution space, in which the edges of this

space are the constraints. In case of an LP formulation, the solution must be on a boundary of

this space. In the case of block-cave scheduling, an LP formulation will always seek to take the

maximum tons from the highest value drawpoints and the least tons from the lower valued

drawpoints (Diering 2012). As a result, this kind of scheduling may result in high levels of

horizontal mixing between drawpoints because the draw columns have different heights. This is

a potential disadvantage of LP application in block-caving scheduling. Table 2.2 summarizes the

advantages and disadvantages of methodologies examined in previous studies.

Chapter 2 Mathematical Programming in Block-Caving Scheduling

28

Table 2.2. Advantages and disadvantages of applied mathematical methodologies in block-caving production

scheduling

Methodology Features

LP

Advantage
LP method has been used most extensively (Rahal 2008)

It can provide a mathematically provable optimum schedule (Rahal, 2008)

Disadvantage

Straight LP lacks the flexibility to directly model complex underground

operations which require integer decision variables (Winkler 1996)

Mine scheduling is too complex to model using LP and the only possible

approach is to use some combination of theoretical and heuristic methods to

ensure a good, if not optimal schedule (Scheck et al. 1988)

MILP

Advantage

Computational ease in solving a MIP problem (and MILP) is dependent upon the

formulation structure (Williams 1974)

MILP could be used to provide a series of schedules which are marginally inferior

to a provable optimum (Hajdasinski 2001)

MILP is superior to simulation when used to generate sub-optimal schedules,

because the gap between the MILP feasible solution and the relaxed LP solution

provides a measure of solution quality (Rahal 2008)

MILP can provide a mathematically provable optimum schedule (Rahal 2008)

Disadvantage

It is often difficult to optimize large production systems using the branch-and-

bound search method (Rahal 2008)

The block-caving process is non-linear (the tons which you mine in later periods

will depend on the tons mined in earlier periods), so it would not be appropriate to

use LP for production scheduling in block caving (Diering 2012)

QP (MIQP)

Advantage

Since the block-caving process is non-linear, QP could be an appropriate option to

model it

It can find solutions in the interior of the solution space, which results in an even

height of drawpoints as well as lower horizontal mixing between drawpoints

(Diering 2012)

Disadvantage
Solving this kind of problem could be a challenge. It must be changed to LP and

then be solved, to ensure conversion errors

Stochastic

Optimization
Advantages

It can capture the uncertainties of the caving operations such as: material flow,

hang-ups, production grades, and production tonnages

Disadvantage The solution time is usually more than deterministic models

2.2. Material Flow

The literature on material flow can be divided into three categories: numerical models, pilot

tests, and full-scale experiments. As part of the development of FlowSim software, Castro R et

al. (2009) used numerical methods to simulate the gravity flow of caved rock. They calibrated

the proposed model with real data from two mining operations in Chile. Another numerical

model was developed by Pierce (2010), he used discrete element method to identify different

zones of movement (or isolations) in the caved material.

Chapter 2 Mathematical Programming in Block-Caving Scheduling

29

A stochastic approach was proposed by Gibson (2014) to study the material flow in block-

cave operations. He used Pascal cone theory to assess the probabilities of material that move

within their neighborhood when an empty space is created because of extraction from

drawpoints. He found it useful to use stochastic models instead of Finite Element methods

although it needs a certain amount of information about the rock mass. The cell size was one of

themaincriteriaintheGibosn’smodel, and any changes can remarkably affect the results.

Castro RL et al. (2014) designed a test setup to study the flow mechanisms of cohesionless

material when extracting from a single drawpoint. It was shown that the fragmentation size, the

diameter of the opening, and the vertical load (the amount of material above a drawpoint) are the

factors that affect the material flow. Jin et al. (2017) studied the shape of the ellipsoid draw by

some pilot tests; they proposed a new methodology to predict the extraction and movement zone

shapes and their change trends. Brunton et al. (2016) performed a full-scale experiment in

Ridgeway Deeps and Cadia East block caving mines in Australia. They used markers to quantify

and assess the development and shape of the extraction zone and find the mechanisms that

control the flow behavior. It was shown that marker experiments can provide a good

understanding about development of the extraction zone during undercutting and production

stages.

Garcés et al. (2016) applied smart marker technology in block 2 of Esmeralda mine, El

Teniente to study the gravity flow. The main objectives were to check the interaction between

extraction zones, estimate the mining recovery, evaluate the flow characteristics of caved rock,

and develop a model for flow. Results showed that the extraction zone mainly depends on the

fragmentation condition and the mine plan which means these two are interconnected. It was also

observed that the horizontal mixing is higher in the case of a non-concurrent draw. Using particle

flow code (PFC), Sun et al. (2018) developed a material flow simulation model that takes into

account the effects of particle bond strength on the secondary fragmentation and isolated zones

in the caving. They tested the model against experimental results; it was shown that the isolated

zones are wider in the case of weaker rock when the secondary fragmentation results in smaller

average fragment size and more fines.

Chapter 2 Mathematical Programming in Block-Caving Scheduling

30

2.3. Summary

Increasing the use of block caving in new-world mining environments has led many

researchers to focus on this area to make mining operations as optimal as possible. Production

scheduling in block caving, becauseof its significant impact on the project’s profitability and

feasibility, has been considered a key issue to be improved. The problem is complex, unique for

each case, and large-scale. Researchers have applied different methods to model production

scheduling in block caving, for short-term and long-term periods of mining, some for real case

studies as industry projects and others as academic research projects.

Most of the researchers have applied MILP to model production scheduling; it can be useful

because both the integer variables (whether a block, slice, or draw column should be extracted)

and continues variables (the constraints and mining operation details) can be modeled so that the

optimal values can be achieved while considering the system’sconstraints.

As computer based algorithms are improved, we expect to see the development of more

detailed models with more complexity, models that try to be more practical and include all

aspects of mining systems with new algorithms for faster solutions. In block-caving operations,

decisions about current actions are often based on how those actions affect the next steps in the

operations.

There are some uncertainties in block-cave mining that should be involved in production

scheduling. Grade uncertainty is one of the most common, because of the nature of ore-body, but

in block-caving operations grade uncertainty is more critical and complicated, due to the vertical

and horizontal mixing which occurs during the caving and production. Once the rock is

fragmented, particles flow towards the production level in different ways depending on the

fragmentation profile and distribution.

In summary, a significant amount of research exists in production scheduling optimization

and material flow; however, both concepts have been investigated separately, and there is a gap

of optimizing the mine plan with the material flow consideration. An optimized mine plan will

provide a guide towards a successful operation, and a material flow simulation model can give us

a valuable understanding of the caving process; however, these two will not be helpful enough if

they are not studied simultaneously. The goal of this research is to take into consideration the

material flow uncertainties as part of the production scheduling optimization; in other words, to

Chapter 2 Mathematical Programming in Block-Caving Scheduling

31

have an optimum production schedule in which not only the technical constraints are satisfied

but also the material mixing is incorporated into the optimization. This approach results in

achieving more reliable mine plans for block caving mines.

32

Chapter 3
Optimization of Production Scheduling in Block Caving

Operations with Consideration of Grade Targets

Chapter 3 describes an optimization model that maximizes the NPV of caving operations

while minimizing deviations from grade targets. In this model, the mixing occurs within draw

columns on a big scale. First, the methodology is presented and then the model is tested on a

real block caving mine. A version of this chapter has been published in Aspects of Mining and

Mineral Science, in 2017.

Khodayari F, Pourrahimian Y. 2017. Production scheduling in block caving with consideration

of material flow. Aspects in Mining and Mineral Science (AMMS). 1(1).

Chapter 3 Production Scheduling with Consideration of Material Flow

33

3.1. Introduction

Any planning and financial analysis in a mining project depends on the production schedule

in which the amount of ore and waste removal in each period of time is determined. An optimum

reliable production schedule can significantly improve the overall practicality and profitability of

the project. Block-cave mining operation is involved with uncertainties that should not be

ignored in the production scheduling; while the caving is occurring, the flow of material (which

happens because of the gravity) can be unpredictable. This will result in grade and tonnage

uncertainties in the production during the life of the mine. Numerical methods are useful tools to

model the material flow and using stochastic optimization, it is possible to capture the

uncertainty of material flow while optimizing the production schedule.

Production schedule in a block-cave mine can be investigated from different levels of

resolutions: cluster level, drawpoint level, or slice level (Pourrahimian et al. 2013). In this

research, the slices are the decision units. The output of the production schedule at this level

would be the periods in which each of the slices within a draw column is extracted and sent to

the processing plant. These decisions are made based on the defined goal(s) in the objective

function while considering the limitations of the operations as the constraints of the model. The

proposed production scheduling model is a stochastic optimization model in which the net

present value of the project is maximized during the life of the mine while the deviations from

target production grade(s) are minimized. Different scenarios of grade for the slice model are

generated to capture the uncertainty of the production grade that exists in the material flow

during production.

3.2. Methodology

The proposed model maximizes the NPV of the mining project during the life of mine while

minimizing the deviations of production grade from target grade(s). To be able to capture the

uncertainty of production in block-cave mining, the model is a stochastic optimization in which

different scenarios of grade mixing are considered. The formulation of the objective function was

inspired by a stochastic optimization model which was used by MacNeil and Dimitrakopoulos

(2017) for determining the optimal depth of transition from open-pit to underground mining. The

scenarios are defined based on the grade distribution in the mineral reserve. Each scenario

represents one circumstance that can happen during the production based on the flow of the

Chapter 3 Production Scheduling with Consideration of Material Flow

34

material. Figure 3.1 shows the flow of material between draw columns and how it can impact the

production.

Figure 3.1. Material flow and its impact on the production grade

While extracting from a drawpoint (DP8), material can move not only from the column above

(DC8) but also from the columns located in its neighborhood (DC1…DC7) into the intended

drawpoint (DP8). This material movement during the caving is the main source of the

uncertainties in the operations. A production schedule would be more reliable if these

uncertainties are captured. As it was mentioned, the decision units for the proposed model in this

paper are the slices; the slice model is built based on the resource block model, the column above

each drawpoint is divided into slices. In this section, the mathematical programming model is

presented in details.

3.2.1. Notation

Indices

{1,..., }t T Index for scheduling periods.

{1,..., }sl Sl Index for individual slices.

Chapter 3 Production Scheduling with Consideration of Material Flow

35

{1,..., }dp Dp Index for individual drawpoints.

{1,..., }s S Index for individual scenarios.

{1,..., }a A Index for the adjacent drawpoints.

{1,..., }j J Index for individual production blocks.

Variables

t

slX Binary decision variable that determines if slice " "sl is extracted in

period " "t (1t

slX) or not (0t

slX).

t

dpY Binary decision variable which determines whether drawpoint " "dp in

period " "t is active (1t

dpY) or not (0t

dpY).

t

dpZ Binary decision variable which determines whether drawpoint dp at

period " "t (periods 1, 2,..,t) has started its extraction (1t

dpZ) or not (

0t

dpZ).

[0,] t

usd Continuous decision variable representing excessive amount from the

target grade (the metal content).

[0,] t

lsd Continuous decision variable representing deficient amount from the

target grade (the metal content).

Model Parameters

slg Copper (Cu) grade of slice " "sl .

Eslg Expected (average) copper grade for slice " "sl based on all scenarios.

slton Ore tonnage of slice " "sl .

ct Current period.

Chapter 3 Production Scheduling with Consideration of Material Flow

36

dpsl Number of slices associated with drawpoint " "dp .

jPBEV Economic value of production block " "j .

Input Parameters

TarGrade The target grade of production which is defined based on the production

goalsandprocessingplant’srequirements.

minM Minimum mining capacity based on the capacity of the plant and mining

equipment.

maxM Maximum mining capacity based on the capacity of the plant and mining

equipment.

ActMin Minimum number of active drawpoints in each period.

ActMax Maximum number of active drawpoints in each period.

M An arbitrary big number, it is determined based on the maximum number

of slices in a single draw column.

MinDrawLife Minimum drawpoint life.

MaxDrawLife Maximum drawpoint life.

MinDR Minimum draw rate (tonne per period).

MaxDR Maximum draw rate (tonne per period).

IntRate Discount rate.

RampUp Ramp up period.

ScenNum Number of scenarios.

Chapter 3 Production Scheduling with Consideration of Material Flow

37

ct

dpDP
Drawpoint depletion percentage which is the portion of draw column dp

which has been extracted from drawpoint " "dp till period " "ct .

Price Copper price ($/tonne).

Cost Operating costs ($/tonne).

uC Cost (penalty) for excessive amount ($).

lC Cost (penalty) for deficient amount ($).

Rec Recovery of the processing plant (%)

3.2.2. Objective Function

The objective function is defined as follows:

1 1 1 1

 {()} { }

T Sl T S

t t t

sl sl s

t sl t s

Maximize E NPV X Grade deviations

1 1

1 1

((/100)) (os)

(1)

1
()

(1)

T Sl
tEsl sl sl
slt

t sl

t tT S
ls l us u

t
t s

Price Rec g ton C t ton
X

IntRate

d c d c

S IntRate

(3.1)

The first part of the objective function maximizes the NPV of the project during the life of the

mine by finding the optimum sequence of extraction for the slices in the mineral reserve. The

second part minimizes deviations of the production grades from the targets in different scenarios

during the life of the mine, this is done by allocating penalties to the deviations in different

scenarios.

3.2.3. Constraints

Operational and technical constraints of block-cave mining are considered to control the

practicality of the production schedule. Total number of decision variables depends on the

number of drawpoints, the number of slices in each drawpoint, and the production timeline.

Chapter 3 Production Scheduling with Consideration of Material Flow

38

 Logical constraints

There are two extra sets of binary decision variables in the proposed model which will be

required for defining different constraints (" , "Y Z). Logical constraints connect the main

decision variables (" "X) to the new decision variables (" , "Y Z), each set contains two

inequality equations:

[0,1],

t

dp

dp Dp
Y

t T

1

{1,..., } {1,..., } 0&

dpsl

t t

dp sl

sl

t T dp Dp Y M X (3.2)

1

{1,..., } {1,..., } * 0&

dpsl

t t

sl dp

sl

t T dp Dp X M Y (3.3)

 [0,1],

t

dp

dp Dp
Z

t T

1

{1,..., }

c

c

t
t t

dp dp

t

dp Dp DP Y (3.4)

{1,..., } {1,..., } * 0& ct t

dp dpt T dp Dp DP M Z (3.5)

{1,..., } {1,..., } * 0& ctt

dp dpt T dp Dp Z M DP (3.6)

 Mining Capacity

Mining capacity is limited based on the production goals and availability of equipment.

maxmin
1

{1,..., }

Sl

t
sl sl

sl

t T M ton X M (3.7)

 Production grade

This constraint ensures that the production grade is as close as possible to the target grade in

different scenarios.

Chapter 3 Production Scheduling with Consideration of Material Flow

39

Deviations from the target grade for all scenarios in different periods of production during the

life of the mine are considered for this constraint.

1

{1,..., } {1,..., }) 0& (

 l u

Sl
t

tarsl sl sl
sl

t T S d ds g G ton X (3.8)

 Reserve

This constraint makes sure that not more than the existing mineral resources can be extracted,

the output of the model would be the mineral reserve.

1

{1,..., } 1

T

t
sl

t

sl Sl X (3.9)

 Active drawpoints

A limited number of drawpoints can be in operation at each period of time; the mining layout,

equipment availability, and geotechnical parameters can determine this constraint.

1

{1,..., }

Dp

t

dp

dp

t T ActMin Y ActMax (3.10)

 Mining precedence (horizontal)

The precedence is defined based on the mining direction in the layout. Production from each

drawpoint can be started only if the drawpoints in its neighborhood which are located ahead

(based on the mining direction) have already been opened. Equation (3.12) presents this

constraint.

1

{1,..., } {1,..., } *&

A

t t

dp a

a

t T dp Dp A Z Z (3.11)

Where " "A is the number of drawpoints in the neighborhood of drawpoint " "dp which are

located ahead (based on the defined advancement direction) and " "Z is the second set of binary

variables. Advancement direction is the direction of mining among drawpoints in which, the

horizontal precedence among drawpoints is defined based on.

 Mining precedence (vertical)

Chapter 3 Production Scheduling with Consideration of Material Flow

40

The precedence of extraction between slices within draw columns during the life of mine is

defined by this constraint.

1

1

{1,..., } {1,..., } {1,..., }& &

ct

t t

sl sl

t

t T dp Dp sl Sl X X (3.12)

This equation ensures that in each period of " "t , slice " "sl (in the draw column associated

with drawpoint " "dp) is extracted only if slice " 1"sl located beneath is already extracted in

the periods before or at the same period (" "ct).

 Continuous mining

This constraint guarantees a continuous production for each of drawpoints during the life of

the mine. In other words, if a drawpoint is opened, it is active in consecutive years (with at least

the minimum draw rate of " "MinDR) untill it is closed.

1{1,..., } {1,..., } (1)& t t t

dp dp dpt T dp Dp Y Y Z (3.13)

 Draw rate

The total production of each drawpoint in each period is limited to a minimum and maximum

amount of draw rate.

1

{1,..., } {1,..., }&

dpsl

t t

Min dp sl sl Max

sl

t T dp Dp DR Y ton X DR (3.14)

 Draw life

Drawpoints can be in production during a certain time which is called draw life. The draw life

is limited to the minimum and maximum years of operations by the following equation:

1

{1,..., }

T

t

dp

t

dp Dp MinDrawLife Y MaxDrawLife (3.15)

3.2.4. Mining direction (mining advancement) determination

A more detailed version of this section was presented in the 5th International Symposium of

Mineral Resources and Mine Development by the authorof this research (Khodayari and

Pourrahimian 2015a).

Chapter 3 Production Scheduling with Consideration of Material Flow

41

In block-cave mining, production starts from one part of the ore-body and then inadirection

continues to the other side (s) of mining layout. For example, Figure 3.2 shows a mining

direction in which the drawpoints are opened from the north-east side of the layout and then the

extraction continues towards south-west (from A to B). Mining direction is determined based

on different factors such as geotechnical parameters of the ore-body and overburden, grade

distribution in different parts of the ore-body, commodity price, and equipment availability.

Figure 3.2. Example of mining direction for a block caving layout

The direction can be defined as a straight line (s), curve (s), or triangles. Based on the

proposed methodology in this research, at the first step, adjacent drawpoints are defined using

the distance between drawpoints so that combination of each drawpoint with its adjacent

drawpoints is called a production block (PB). Based on the locations of drawpoints in the

production layout, each drawpoint can appear in several production blocks with its different sets

of adjacent drawpoints. Therefore, in a layout with “n” drawpoints, there are “n” production

blocks. Figure 3.3 shows the schematic view of this methodology. In this figure, for the

considered drawpoint (the circle in the centre of the hatched block), the adjacent drawpoints are

determined using the defined adjacent radius of “R”. Depending on the geometry of the

production layout, there might be some production blocks with smaller number of drawpoints

Chapter 3 Production Scheduling with Consideration of Material Flow

42

compared to the other production blocks (this situation happens in the boundaries of the layout).

The adjacent radius is imported to the model as an input parameter and then the adjacent

drawpoints for each drawpoint is determined. The adjacent radius depends on different factors,

such as geotechnical parameters of the ore-body and its host rock (s), mining equipment, and

operational constraints.

Figure 3.3. Adjacent drawpoints for the considered drawpoint with the adjacent radius of R (small circles

represent the drawpoints)

In the input model, the draw economic value (DEV) for each draw column is calculated based

on the ore tonnages and grades of the slices. Using draw economic values, the summation of

DEV for each production block is calculated, and then the production block economic value

(PBEV) profile is created.

1 1 1

(Price Rec /100) ()

A A Sl

j a sl sl sl

a a sl

PBEV DEV ton g Cost ton (3.16)

The adjacent drawpoints for each drawpoint are determined based on X and Y coordinates of

the drawpoints and then the production block economic values are calculated. In the next step,

the production block with the highest economic value is selected as the starting area. The

production is started from the neighbourhood with the maximum economic value and then it

continues to the areas with lower economic values. During the production periods, the economic

Chapter 3 Production Scheduling with Consideration of Material Flow

43

value of the current production block is equal or less than the previous one and greater or equal

than the next one.

For verification purposes, the methodology has been applied for a real case block-cave mining

project with 941 drawpoints (Figure 3.2). In total, 941 production blocks are defined for the

production layout based on the 25 meter adjacent radius. The results show that the central area of

the production layout is the best choice for starting the caving operation. Based on the

proposed methodology, two major directions are suggested for moving from the central part of

the ore-body to the boundaries. The mining directions are from the center to the east (direction 1)

and to the south (direction 2) of the layout (Figure 3.4).

Figure 3.4. Mining direction determination based on the PBEV concept

This methodology has been used to determine the mining direction and the horizontal

precedence in the other models presented in this research.

Chapter 3 Production Scheduling with Consideration of Material Flow

44

3.3. Solving the Optimization Problem

The proposed stochastic model has been developed in MATLAB (TheMathWorksInc. 2017),

and is solved in the CPLEX environment (IBM 2017). CPLEX uses branch-and-cut search for

solving the problem to achieve a solution within the defined mip gap (or the closest lower gap).

3.4. Case Study

The proposed model was tested on a block-cave mining operation with 102 drawpoints. It was

a copper-gold deposit with the total ore of 22.5 million tonnes and the weighted average grade of

0.85% copper. The draw column heights vary from 320 to 351 meters. Figure 3.5 and Figure 3.6

show the drawpoints layout (2D) and a conceptual view of the draw columns (3D). Each draw

column consists of a number of slices with the height of 10 meters (33 to 36 slices for each draw

column). In total, the model was built based on 3,470 slices. The goal is to produce a maximum

of 2 million tonnes of ore per year during 10 years of operations. The details of the input

parameters for the case study are presented in Table 3.1.

Figure 3.5. Drawpoint layout (circles represent

drawpoints)

Figure 3.6. A conceptual view of the draw columns

In this case study, different scenarios were created by generating random numbers in

MATLAB; a linear function was defined based on the original grades of the slices to produce

different scenarios. Also, the problem was solved as a deterministic model in which there were

no penalties for deviation from defined target grades, which means that the second part of the

Chapter 3 Production Scheduling with Consideration of Material Flow

45

objective function was not used. Production grades in different scenarios of the stochastic model

and the production grade resulting from the deterministic model are shown in Figure 3.7.

Table 3.1. Scheduling parameters for the case study

Parameter Value Unit Description

T 10 Year Number of periods (life of the mine)

Gmin 0.5 % Minimum average grade for Cu per each period

Gmax 1.6 % Maximum average grade for Cu per each period

GTar 1.3 % Target production grade (Cu)

Mmin 0 Mt Minimum mining capacity per period

Mst 0.5 Mt Mining capacity in the first year of production

Mmax 2 Mt Maximum mining capacity per period

Ramp-up 3 Year
The time in which the production is increased from starting amount to the

full capacity

ActMin 0 - Minimum number of active drawpoints per period

ActMax 70 - Maximum number of active drawpoints per period

MIPgap 5 %
Relative tolerance on the gap between the best integer objective and the

objective of the best node remaining

Radius 8.2 m The radius of the drawpoints

Density 2.7 t/m
3
 The average density of the material

M 100 - Arbitrary big number

MinDrawLife 0 Year Minimum life of drawpoints

MaxDrawLife 4 Year Maximum life of drawpoints

DRMin 13,000 Tonne/year Minimum draw rate

DRMax 75,000 Tonne/year Maximum draw rate

Recovery 85 % Recovery of the processing plant

Price 5,000 $/tonne Copper price per tonne of copper

Cost 15 $/tonne Operating costs per tonne of ore (Mining+Processing)

IntRate 10 % Discount rate

S 50 - Number of scenarios

It can be seen that for the stochastic model, production grades for all scenarios are as close as

possible to the defined target grade during the life of the mine. The deterministic model

Chapter 3 Production Scheduling with Consideration of Material Flow

46

maximizes the NPV and as a result the higher-grade ore is extracted earlier and then the lower

grades later during the life of the mine. The mining capacity constraint regulates ore production

and the ramp-up and ramp-down are almost achieved in both stochastic and deterministic models

(Figure 3.8 and Figure 3.9).

Figure 3.7. Average production grade resulting from stochastic and deterministic models

Figure 3.8. Ore production during the life of the mine (stochastic model)

Horizontal precedence, which is the precedence of extraction between drawpoints, was

achieved for both of models based on the defined V-shaped mining direction (Figure 3.10 and

Figure 3.11). Vertical precedence determines the precedence of extraction between slices in each

of draw columns.

Chapter 3 Production Scheduling with Consideration of Material Flow

47

Figure 3.9. Ore production during the life of the mine (deterministic model)

Figure 3.12 shows the resulted sequence of extraction among slices in draw column with ID

number of 75. Extraction from this drawpoint starts from year 5 and ends at year 8; the sequence

of extraction is from bottom to top and the production is continuous which means both the

vertical precedence and continuous mining constraints are satisfied.

Figure 3.10. Sequence of extraction for drawpoints resulting from the stochastic model (2D precedence)

The original height of draw column number 75 is 330.1 meters with the total ore of 212,397

tonnes which contains 34 slices. Based on the optimization results (Figure 3.12), the optimum

Chapter 3 Production Scheduling with Consideration of Material Flow

48

height of draw or BHD (Best Height of Draw) is 260 meters with the optimum draw tonnage of

168,650; this means that 26 out of 34 slices are extracted during the life of mine.

Figure 3.11. Sequence of extraction for drawpoints resulting from the deterministic model (2D precedence)

Number of active drawpoints and number of new drawpoints that are opened in each year for

both models are presented in Figure 3.13 and Figure 3.14. Comparing the new drawpoints to be

opened in each year for two models, the stochastic model does not suggest big changes from one

year to another while the deterministic model shows such a pattern. In other words, the results of

the stochastic model are more practical than the deterministic model.

Figure 3.12. Sequence of extraction for slices in draw column associated with drawpoint 75 (numbers represent ID

of slices in the draw column)

Chapter 3 Production Scheduling with Consideration of Material Flow

49

A brief comparison among the original ore resource model, the results of the deterministic

model, and the results of the stochastic model is presented in Table 3.2. For this case study, the

mining reserve and the NPV of the project for both models are almost the same (2% difference in

ore reserve and 0.7% difference in NPV). The stochastic model takes longer to solve, mainly

because of the required number of decision variables and constraints for each model.

Figure 3.13. Active and new opened drawpoints for the stochastic model

Figure 3.14. Active and new opened drawpoints for the deterministic model

Chapter 3 Production Scheduling with Consideration of Material Flow

50

Table 3.2. Comparing the original model with the results of deterministic and stochastic models

Comparison item

Original Model

(Mineral

resource)

Mineral reserve

Deterministic

Model
Stochastic Model

Ore tonnage (Mt) 22.5 14 13.7

Number of slices 3,470 2,160 2,106

Average weighted grade (%) 0.85 1.28 1.3

Height of draw in individual draw columns 320-351 30-320 30-310

Number of slices in individual draw columns 33-36 3-32 3-31

NPV (M$) - 357.1 359.7

Solution time (Seconds) - 5,292 55,601

3.5. Summary

Production scheduling for block-cave mining operations could be challenging because of the

material flow uncertainties. In this chapter, a stochastic optimization model was proposed to

maximize the NPV of the project while minimizing the production grade deviations from the

target grades. Results show that stochastic models can be effective in production scheduling for

block-cave mining: the production goals are achieved, the constraints of the mining project are

satisfied, the uncertainty of the material flow is captured, the optimum height of draw (best

height of draw) is calculated as part of the optimization, and the net present value of the project

is maximized. Unlike deterministic models that do not consider the uncertainty of the material

flow, stochastic models can maximize the profitability of the project while taking mixing into

account for production scheduling. In the next chapters, consideration of both grade and tonnage

uncertainties in the production schedule as well as developing the methodology of generating

scenarios are discussed.

51

Chapter 4
Production Scheduling with Horizontal Mixing

Consideration in Block-cave Mining

Chapter 4 presents an optimization model to maximize the NPV and minimize deviations of

production grades and tonnages from the targets. Horizontal mixing is considered within slices

that are located in the same neighborhood. The model is introduced and implemented on a real-

case caving operation, and then the results are discussed.

A version of this chapter has been submitted to Journal of Mining Science and it is under review:

Khodayari F, Pourrahimian Y., Liu V. 2018. Production scheduling with horizontal mixing simulation in

block-cave mining. Journal of Mining Science, © Springer, (under review, 20 pages, June 2018).

Chapter 4 Production Scheduling with Horizontal Mixing

52

4.1. Introduction

Gravity is the main driver in block-cave mining: an undercut is developed beneath the

orebody, the rock fractures because of the created empty space, the caved material is extracted

using the designed drawpoints, and finally, the ore is transported to the surface for processing.

For scheduling purposes, the resulting block model from the resource estimation is used to create

a slice model where each slice is an aggregation of several blocks (Figure 4.1). Similar to blocks

in block model, each slice is represented by its grade, density, volume, and a decision variable

(for the mathematical modeling) in the slice model. Production scheduling for this type of

operation determines the mining direction in the layout as well as the amount of material to

extract from each drawpoint in each period.

Figure 4.1. Slice model

Similar to open-pit mining, production scheduling has significant impacts on the feasibility of

a mining project as it directly controls the cash flow. However, in block caving, because of the

uncertainties involved in the flow of the caved material, material movement influences the

production. As a result, the production scheduling optimization is more complicated, and an

optimum mine plan without consideration of the material flow can be impractical.

In this chapter, a stochastic optimization model is presented that aims to take some of the

uncertainties involved in material flow into production scheduling. To do this, the Height of

Interaction Zone (HIZ) is used to study theparticles’movements in theflow(Figure 4.2). The

slices that are located within the HIZ are directly extracted from their associated drawpoint

which means no horizontal mixing occurs.

Chapter 4 Production Scheduling with Horizontal Mixing

53

Figure 4.2. Horizontal mixing and its impact on production: below HIZ (left figure) and above HIZ (right figure)

Different scenarios are generated to simulate the potential horizontal movements of the

material within an adjacency radius from each slice. The aim is to achieve production targets and

maximize the net present value (NPV) of the mining project as well as consider the horizontal

mixing between draw columns as the caved rock is extracted from drawpoints. Integer and

continuous decision variables in the stochastic mixed-integer optimization model represent

slices, drawpoints, and deviations from targets. In addition, the best height of draw (BHOD) is

calculated as part of the optimization, which means that this part of optimization is also included

in the production scheduling.

4.2. Problem Statement and Formulation

In this section, formulations of the proposed model are presented. The model includes

technical constraints that are common among block caving operations.

4.2.1. Notation

Indices

{1,..., }t T Index for scheduling periods.

{1,..., }s S Index for individual slices.

{1,..., }d D Index for individual drawpoints.

{1,..., }n N Index for individual scenarios.

Chapter 4 Production Scheduling with Horizontal Mixing

54

{1,..., }a A

Index for adjacent drawpoints, " "A is number of slices that are located in

the same neighborhood.

Variables

,s tx

Binary decision variable that determines if slice " "s is extracted in period

" "t (
, 1s tx) or not (

, 0s tx).

,d ty

Binary decision variable which determines whether drawpoint " "d in

period " "t is active (
, 1d ty) or not (

, 0d ty).

,d tz

Binary decision variable which determines whether drawpoint " "d at

period " "t has started its extraction (
, 1d tz) or not (

, 0d tz).

, [0,) uo

n tdev

Continuous decision variable representing excessive amount from the

target production ore in scenario " "n at period " "t .

, [0,) lo

n tdev

Continuous decision variable representing deficient amount from the target

production ore in scenario " "n at period " "t .

g

, [0,) u

n tdev

Continuous decision variable representing excessive amount from the

target production grade (the metal content) in scenario " "n at period " "t .

g

, [0,) l

n tdev

Continuous decision variable representing deficient amount from the target

production grade (the metal content) in scenario " "n at period " "t .

Model Parameters

e

sg
Grade of element " "e for slice " "s .

s

eEg Expected grade of element " "e for slice " "s based on all scenarios.

s Density of slice " "s (t/m
3
).

sE Expected density of slice s (t/m
3
) based on all scenarios.

sV Volume of slice " "s (m
3
).

t
Current period, used for defining decision variable " "z .

Chapter 4 Production Scheduling with Horizontal Mixing

55

SdN Number of slices associated with drawpoint " "d .

pd

ID for a drawpoint that should be opened before drawpoint " "d based on

the defined mining direction, related to the precedence constraint.

ps
Slice which is located below slice " "s and must be extracted before " "s .

Input Parameters

ˆ e

tg

The target grade of production for element " "e in period " "t , which is

defined based on production goals and processing requirements.

,s to
The ore production resulting from extraction of slice " "s in period " "t .

ˆ
to

The target ore production in period " "t which is defined based on the

production goals and processing requirements.

min tAct Minimum number of active drawpoints in period " "t .

max tAct Maximum number of active drawpoints in period " "t .

M

A big number, this is chosen based on the maximum number of slices in

draw columns.

minDL Minimum drawpoint life.

maxDL Maximum drawpoint life.

minDR Minimum draw rate (tonne per period).

maxDR Maximum draw rate (tonne per period).

i
Discount rate.

Ramp up Ramp-up time.

ScenNum
Number of scenarios.

,d tDP
 Drawpoint depletion percentage: the portion of draw column associated

with drawpoint " "d that has been extracted during periods " 1"t to " "t

ep Price of element " "e ($/tonne).

c Operating costs ($/tonne).

Chapter 4 Production Scheduling with Horizontal Mixing

56

loc
Cost (penalty) for deficient amount of ore production from targets ($).

uoc
Cost (penalty) for excessive ore production from targets ($).

lgc
Cost (penalty) for deficient production grade from targets ($).

ugc
Cost (penalty) for excessive production grade from targets ($).

er
Recovery of the processing plant for element " "e (%).

R Adjacency radius.

4.2.2. Preliminaries

Mixing scenarios are generated based on the neighborhood concept within the caved material.

For each slice, a horizontal neighborhood is defined using a radius (adjacency radius) from the

center of the slice; all of the slices that are located in that neighborhood (meaning that the

distance from their center to the center of slice " "s is less than or equal to R) are called adjacent

slices for that slice (Figure 4.3). Therefore, a population (Ps) is created for slice " "s that includes

slice " "s and all of its adjacent slices. In the next step, random samples are generated from this

population representing different scenarios of horizontal movement while extracting from

drawpoints during the caving operations.

Figure 4.3. Adjacency concept: adjacent drawpoints (left figure) and adjacent slices (right figure); in the plan view,

the black circles represent drawpoints with the cross sign as their center point, the red circle is considered as

neighborhood for the orange-colored drawpoint in the center

In this research, only horizontal mixing is considered as the neighborhood is defined in two

dimensions (2-D). The ore tonnage (Ps,o) and grade (Ps,g) populations for each slice are defined

based on the adjacent slices, and then the scenarios are generated by sampling from those

populations. The following equations present the procedure:

Chapter 4 Production Scheduling with Horizontal Mixing

57

 , 1= ,..., 1,...,s o Ao oP s S (4.1)

 , , () 1,..., , 1,..., s n s oSample Po n N s S (4.2)

 , 1= ,..., 1,...,s g Ag gP s S (4.3)

 , , () 1,..., , 1,..., s n s gSample Pg n N s S (4.4)

As an example, for slice " "s with an original grade of 0.51% and considering the closest 19

slices that are located in its adjacency (based on the adjacency radius), the population is defined

as a set of the original grades of all adjacent slices including " "s . In the next step, the scenarios,

in this case 15 scenarios, are generated (Table 4.1).

Table 4.1. An example of creating a population and generating 15 scenarios

Population ID Grade (%) Scenarios Grade (%)

1 0.51 1 0.45

2 0.71 2 0.51

3 0.61 3 0.64

4 0.71 4 0.51

5 0.6 5 0.71

6 0.64 6 0.44

7 0.56 7 0.47

8 0.41 8 0.56

9 0.49 9 0.43

10 0.41 10 0.51

11 0.46 11 0.49

12 0.44 12 0.41

13 0.45 13 0.49

14 0.47 14 0.49

15 0.45 15 0.71

16 0.49

 17 0.44

 18 0.49

 19 0.44

 20 0.43

Chapter 4 Production Scheduling with Horizontal Mixing

58

As shown in Figure 4.2 and Figure 4.3, this model assumes that in each draw column, the

material located in the interaction zone is extracted from the same drawpoint (the drawpoint

associated with that draw column); in other words, horizontal mixing will not occur for the slices

that are located within the HIZ. HIZ can be calculated based on the curve that was presented by

Laubscher (1994).

4.2.3. Objective Function

The objective function is defined as follows:

, , , ,

1 1 1 1 1 1

 {()} { } { }

T S T N T N

s t s t n t n t

t s t n t n

Maximize E NPV x Ore deviations Grade deviations

,

1 1

lg lg g

n, , n, ,

1 1 1 1

(1)

1 1

(1) (1)

e e e
T S

s s s

s tt
t s

lo lo uo uo ug uT N T N
t n t t n t

t t
t n t n

p r Eg c E V
x

i

c dev c dev c dev c dev

N i N i

(4.5)

The first part of equation (4.5) maximizes the NPV of the project; this is calculated based on

the units of production, which are the slices. Decision variable
," "s tx is a member of the first set

of decision variables and represents slice " "s in period " "t ; it is 1 if slice " "s is extracted in

period " "t or zero if it is not. The second and third parts minimize deviations of production from

target tonnages and grades, respectively. The expected values of tonnage and grade are

considered for calculation of NPV and both the revenue and cost of deviations are discounted by

the discount rate. Four penalties control the deviations in the objective function: two for

excessive and deficient amounts of ore tonnage (c
lo

, c
uo

) and two for excessive and deficient

amounts of grade (c
lg

, c
ug

) from the targets.

4.2.4. Constraints

Two types of constraints, logical and technical constraints, are defined and discussed in this

section.

 Logical constraints

Logical constraints connect the decision variables. The first set of decision variables,
," "s tx , is

Chapter 4 Production Scheduling with Horizontal Mixing

59

associated with the slices and the second set,
," "s ty , is associated with the drawpoints. The

following equations show the logic:

 , ,

1

0 1,..., , 1,...,
SdN

d t s t

s

y M x d D t T

 (4.6)

 , ,

1

0 1,..., , 1,...,
SdN

s t d t

s

x M y d D t T

 (4.7)

The third set of decision variables is used to define the continuous mining and the precedence

constraints. This set is defined using the draw percentage;
," "s tz represents drawpoint " "d in

period " "t , which is 0 if draw percentage of drawpoint is zero and 1 if not; equations (4.8) to

(4.10) connect the second and third set of decision variables.

 , ,

1

 1,..., , 1,...,

t

d t d t

t

DP y d D t T (4.8)

 , , 1,..., , 1,..., d t d tDP M z d D t T (4.9)

 , , 1,..., , 1,..., d t d tz M DP d D t T (4.10)

where " "t is the current period and the constraints must be satisfied for all periods (

 ' 1,...,t T). Technical constraints model the practical restrictions of the operations and are as

follows:

 Production targets

Production tonnage is limited by the mining equipment, requirements of the processing plant,

the market demand, and the goals of the management team. This constraint ensures that

production in different scenarios is as close as possible to the targets during the life of the mine.

 ,,
1

ˆ 0 1,..., , 1,...,

 lo uo

s s t t n n

S

s n
s

V x o dev dev n N t T (4.11)

 Grade targets

Production grade is limited by the requirements of the processing plant and it is unique in case

of block-cave mining because of the material flow uncertainties. This constraint ensures that

production grade for element " "e is as close as possible to the target grade in different scenarios

during the life of the mine.

Chapter 4 Production Scheduling with Horizontal Mixing

60

 lg

,, ,
1

) 0 1,..., , 1,...,ˆ(

 e ug

t s s t n n

S

s n s n
s

V x dev dev n N t Tg g (4.12)

 Reserve

This is a control constraint that ensures the model does not extract more than the existing

mineral resource. It can also force the model to extract the whole resource (in case of equality) if

maximum ore extraction is the goal.

 ,
1

1,...,1

T

s t
t

Sx s (4.13)

 Active drawpoints

Because of operational considerations, only a certain number of drawpoints can be extracted

(active) at the same time.

 ,

1

min max 1,...,

D

t d t t

d

Act y Act t T (4.14)

 Mining direction

The decision of the starting point and the mining direction within the designed layout of

block-cave drives the development and operational priorities during the life of the mine. The

mining direction, which is the horizontal sequence of extraction among drawpoints, can be

chosen based on economic or geotechnical criteria. If there are no geotechnical limitations that

dictate the direction, the economic value of the draw columns is the main driver of the starting

point and the direction. Khodayari and Pourrahimian (2015a) proposed a methodology to find the

optimum mining direction based on the economic value of draw columns. This methodology is

used in this chapter to find the best starting point and mining direction, and then sequence of

extractions between drawpoints in the given layout is defined. Equation (4.15) ensures that

sequence of extraction is achieved in the production schedule.

 , , 1,..., , 1,...,
pd t d tz y d D t T (4.15)

 Slice sequence (vertical)

This constraint controls sequence of extraction between the slices in draw columns during the

life of the mine. Equation (4.16) ensures that in each period of " "t , slice " "s (located in draw

Chapter 4 Production Scheduling with Horizontal Mixing

61

column associated with drawpoint " "d) is extracted only if slice " "ps , which is located beneath

it, is extracted in the periods before or at the same period " "t .

 , ,

1

 1,..., , 1,...,

 p

t

s t s t

t

x x d D t T (4.16)

 Continuous mining

In block-cave mining, when a drawpoint is opened, its extraction must be continued until the

end of its life. Any discontinuation can cause compaction and necessity of blasting or losing of

the remaining ore in the draw column. In other words, if a drawpoint is opened, it is active in

consecutive years with at least a minimum draw rate of
min" "DR until it is closed.

 , , 1 ,(1) 1,..., , 1,..., d t d t d ty y z d D t T (4.17)

 Draw rate

Draw rate, which is the total extraction from each drawpoint in each period, is limited to a

minimum and maximum amount. Geomechanical parameters, geometry of drawpoints and ore

passes, mining equipment, and production targets dictate this constraint. This constraint keeps

the draw rate of each drawpoint within a defined range; however, it is possible to consider a

production rate curve.

 , ,

1

 1,..., , 1,...,

ds

min d t s s s t max

s

DR y V x DR d D t T (4.18)

 Draw life

Drawpoints can be open during a certain time which is called draw life. Draw life is

determined based on geomechanical, operational, and economic parameters. This constraint

ensures that each drawpoint is active for a certain time period.

 min , max

1

 1,...,

T

d t

t

DL y DL d D (4.19)

4.3. Solving the Optimization Model

MATLAB R2017a (2017) was used to build the model based on the mentioned objective

function and the constraints. Then CPLEX IBM 12.7.1 is used to solve the model. CPLEX uses

branch-and-cut algorithm to solve the MILP problem. In this algorithm, a search tree consisting

Chapter 4 Production Scheduling with Horizontal Mixing

62

of nodes is created; the nodes represent LP subproblems to be solved and analyzed further.

Nodes are processed until either no more active nodes are available or some limit has been

reached. Creation of two nodes from a parent is called a branch. A cut is a constraint added to the

model in order to reduce the size of the solution domain (IBM 2017).

4.4. Numerical Results

The proposed model was applied on a block-cave mining project with a production layout of

640 drawpoints (Figure 4.4). According to the designed layout, each draw column above a

drawpoint is divided into a number of slices, and the total number of slices is 5,260. For the first

set of decision variables, one decision variable has to be assigned to each slice in each period.

Figure 4.5 and Figure 4.6 show the distribution of grade and tonnage in the slice model,

respectively. The mine life is 15 years with a starting production of 3 million tonnes and a ramp-

up period of 3 years to reach the full production of 7 million tonnes per year as the target. The

“datasample”functioninMATLABisusedtogenerate15mixingscenarios.

Figure 4.4. Layout of the drawpoints

Chapter 4 Production Scheduling with Horizontal Mixing

63

Figure 4.5. Histogram of copper grade for the slice model

Figure 4.6. Histogram of tonnage for the slice model

Chapter 4 Production Scheduling with Horizontal Mixing

64

Mining precedence between drawpoints was defined using the methodology described in

section 4.2.4; in this case study, material with higher economic value is located in the northwest

of the layout (the red area in Figure 4.7). Also, a V-shape mining advancement was considered to

have a concave face for the undercut level which provides better control of major structures and

more secure undercut (Laubscher DA 2000). Therefore, the extraction starts from location A

(x=1962, y=1434) and moves towards southeast and northwest by two V-shapes at the same time

(Figure 4.7).

Figure 4.7. Distribution of economic value of ore in the mining layout

The penalties for deviations are set based on the target grades and tonnages. For the current

caving operations, based on the targets, two different sets of penalties (case A and B) were tested

to study the impact of the penalties on the results (Table 4.2). Table 4.3 presents more detail about

the input parameters.

Table 4.2. Testing the model based on two sets of penalties for the case study

Case/Penalties Deviations from grade ($) Deviations from tonnage ($)

A 10 10

B 50 10

Chapter 4 Production Scheduling with Horizontal Mixing

65

Table 4.3. Scheduling parameters for the case study

Parameter Value Unit Description

T 15 Year Production schedule timeline (the life of the mine)

ˆ cu

tg 0.52 % Target production grade for copper (Cu) 1,..., t T

1̂o 3 Mt The ore target at the first year of production

2ô 5 Mt The ore target at the second year of production

ˆ
to 7 Mt The ore target 3,..., t T

Ramp-up

time
3 Year

The time in which the production is increased from starting amount

to the full capacity

minAct 70 - Minimum number of active drawpoints per period

maxAct 200 - Maximum number of active drawpoints per period

MIPgap 5 %
Relative tolerance on the gap between the best integer objective and

the objective of the best node remaining

DLmin 0 Year Minimum life of drawpoints

DLmax 6 Year Maximum life of drawpoints

DRmin 30,000 Tonne/year Minimum draw rate

DRmax 50,000 Tonne/year Maximum draw rate

p
cu

 5,000 $/tonne Copper price

c 15 $/tonne Operating costs per tonne of ore (Mining+Processing)

i 10 % Discount rate

r
cu

85 % Recovery of the processing plant for copper (cu)

N 15 - Number of scenarios

R 50 meter Adjacency radius

HIZ 76 meter Height of Interaction Zone

Production tonnages for the 15 generated scenarios follow the target production line

with minor deviations in some periods (Figure 4.8). However, compared to tonnage deviations,

the resulting production grade shows visible deviations in some periods (Figure 4.9); this is

mainly because of the grade distribution in the orebody and the defined mining direction. In

other words, the extraction starts from high-grade area of the orebody, which has high

economic values and then moves to the low-grade area. Therefore, the production grade is higher

than the target in the first few years and lower in the last few years of production. The model is

defined in a way that the penalties control the deviations; a reduction in the deviations is

expected by increasing the penalties although the NPV might decrease.

Chapter 4 Production Scheduling with Horizontal Mixing

66

The case study was solved with CPLEX 12.7.1 (Academic license) in a

MATLAB environment on a computer with two Intel Xeon CPU E5-2630 version 0 @ 2.3 GHz

processors and 64 GB RAM. The results show that both production tonnages and grades are as

close as possible to the defined targets with the NPV of 473 M$ for the project (considering the

first part of the objective function).

Figure 4.8. Ore production during the life of the mine (case A)

Figure 4.9. Production grade compared to the target grade (case A)

Chapter 4 Production Scheduling with Horizontal Mixing

67

The model was run for the same case study and input parameters but with higher penalties for

grade deviations (case B). The results show a decrease in deviations of production grade

compared to the target grade among all scenarios during the life of the mine (Figure 4.10). On

the other hand, deviations of production tonnages from the targets have increased because, in this

case, the penalties in the objective function for grade deviations are higher than tonnage

deviations (Figure 4.11). In addition, as expected, the NPV of the project is decreased to 450 M$.

As a result, the model is flexible and the mining engineer, or management team, can make

decisions based on their priorities: low deviations from the target grades with lower NPVs or

accepting some deviations for achieving a higher NPVs.

The penalties are chosen based on the priorities of the mine planner, however, the average

metal content to be extracted from the mine in a period of operation can be used as a guideline to

start with. Based on the experience that was gain in this research, $10 can be a starting point and

running the model with this number would give us an idea of how the penalties can be set.

Figure 4.10. Production grade compared to the target grade (case B)

Plotting the periods in which different drawpoints are opened (starting periods) shows the

resulting sequence of extraction in the mining layout (Figure 4.12). Comparing the expected

mining direction in Figure 4.7 and the resulting sequence of extraction shows that the production

Chapter 4 Production Scheduling with Horizontal Mixing

68

schedule follows the desired mining direction in addition to satisfying the number of active

drawpoints constraint (Figure 4.13). The BHOD and as a result, the mining reserve is calculated

as one of the outputs of the production schedule. Figure 4.14 shows the BHOD for draw columns

compared to their initial heights. Additionally, the mineral reserve can be determined according

to the BHODs as an output of the production scheduling optimization.

Figure 4.11. Ore production during the life of the mine (case B)

Figure 4.12. Sequence of extraction for drawpoints based on the defined mining direction

Chapter 4 Production Scheduling with Horizontal Mixing

69

Figure 4.13. Number of active drawpoints during the life of the mine

Figure 4.14. Height of draw columns after extraction compared to their initial height

4.5. Summary

Despite its significant impact on production scheduling, material flow and its uncertainties

have not been part of production scheduling models. These uncertainties can cause gaps between

the production goals and actual operations resulting in an inefficient mine to mill system. In this

Chapter 4 Production Scheduling with Horizontal Mixing

70

chapter, using stochastic optimization, an MILP model was proposed to capture the horizontal

mixing that occurs in material flow when extracting from drawpoints in block-cave mining.

Adjacent slices located in the same neighborhood were used to generate scenarios in order to

simulatethehorizontalmovementsofmaterial.Toaddresstheprocessingplant’sobjectives,in

addition to technical and operational constraints, the model was built based on two production

targets: tonnage and grade. For the presented case study, the resulting tonnages show only minor

deviations from the targets in all scenarios and there are visible deviations between the target

grade and the resulting production grade which is mainly because of the defined mining

direction. The BHOD calculation was also brought into the optimization, which means that the

mineral reserve is the output of the production scheduling and not an input; this takes us one step

closer towards overall optimization. The model was run for two different sets of penalties for

grade deviations and it was shown that increasing the penalties will provide us with closer results

to the targets but most probably lower NPVs. As a result, mine planners can use the proposed

stochastic optimization model as a flexible tool by setting the penalties for deviations of

production from their specified targets based on their priorities: higher penalties will result in

low deviations from the targets but probably lower NPVs, and vice versa. In the next chapter, the

model is more developed to include both vertical and horizontal mixing in the production

scheduling and then it is validated against a commercial software.

71

Chapter 5
Long-term Production Scheduling Optimization and 3-D

Material Mixing Analysis for Block Caving Mines

Chapter 5 presents block caving production scheduling optimizer, BCSO, in which the NPV is

maximized and deviations from target grades and tonnages are minimized for all scenarios

during the life of the mine. Cone of Movement, CoM, is introduced in order to take horizontal

and vertical mixing into consideration for production scheduling optimization. The BCSO is

tested for a block caving mine and then the results have been validated against GEOVIA PCBC

software.

A version of this chapter has been submitted to Mining Technology (TIMM A) and it is under review:

Khodayari F, Pourrahimian Y. 2018. Long-term production scheduling optimisation and 3-D material

mixing analysis for block caving mines. Mining Technology (TIMM A), © IOM3, (Under review, 18

pages, July 2018).

Chapter 5 Long-term Production Scheduling with 3D Material Mixing

72

5.1. Introduction

For production planning purposes, similar to blocks in open-pit mining, ‘slices’ are the

decision units in block caving; the height of a slice is usually equal to the height of one block in

the block model, and its area depends on the geometry of drawpoints in the layout (Figure 5.1).

Similar to a block, each slice is represented by its grade, density, volume, and other properties

as needed.

Figure 5.1. Block model (on the left), drawpoints and slice model (on the right)

Since the rock is fractured and moved into drawpoints by gravity, operating cost in block

caving is lower than other underground mining methods. However, long periods of development

requires high capital costs and this is one of the main challenges of this method; therefore, a

practical production schedule with the possibility of generating higher revenues earlier in the

project can significantly improve the cash flow of the project and change a deep low-grade ore

resource to a valuable ore reserve.

As the caved rock flows down into drawpoints, different types of mixing occur mainly

because of the diverse sizes and velocities of particles. This mixing can result in dilution and

changes in the grades and tonnages extracting from drawpoints, drawpoint must be shut down if

Chapter 5 Long-term Production Scheduling with 3D Material Mixing

73

dilution is more than the acceptable limit. Therefore, production scheduling in block caving

should take into account the material mixing and its impact on the production as a whole.

Although very useful, most of the current optimization models do not incorporate the

material flow, the mixing that occurs in the caved material within the draw columns, and its

uncertainties in the production schedule. Khodayari and Pourrahimian (2017) used stochastic

optimization to include horizontal mixing in the production scheduling model. In their

methodology, the model generates a series of scenarios based on the grade distribution in

each draw column and the slices in the neighborhood of each drawpoint. In this chapter, the

new version of this optimization model is presented in which 3-D mixing, including vertical and

horizontal movements, of caved rock within drawpoints is considered. Scenarios are defined for

both production grades and tonnages to analyze the impact of mixing on the production schedule

and propose more reliable plans compared to the existing models.

PCBC (Personal Computer for Block Caving) software is used almost by all mining

companies working in block caving across the world (DassaultSystèmes 2018). Constructing the

slice model, calculation of the best height of draw (BHOD) for drawpoints, implementation of

mixing algorithms, finding a footprint, and production schedule optimization are the main

features of this software. The software has been in use for more than 30 years, it was developed

by Gemcom Software International Inc. and now is owned by Dassault Systèmes (Diering 2013).

Because of the reputation of GEOVIA PCBC, it was chosen for validation of BCSO.

In the following sections, first the methodology that is used for developing the BCSO is

explained and formulations of the mathematical programming model are presented, then a real

block caving mine is used to test the proposed prototype. In the next step, 3 cases are considered

to run the BCSO as well as to generate production schedules using PCBC. Additionally, another

case is run by the BCSO to test the target grade option as one of its features, this case is not

compared with PCBC because it does not offer this application. Finally, the results are discussed.

5.2. Methodology

5.2.1. 3-D Mixing

The goal is to generate a series of scenarios that can provide us with an understanding

of movements of caved rock within a draw column and its neighbors based on the slice model, as

Chapter 5 Long-term Production Scheduling with 3D Material Mixing

74

the material is extracted from drawpoints. For each step of draw from a drawpoint, when a slice

is extracted, an open space is available that can be filled by the slices above and in the

neighborhood. These candidate slices fall into a three-dimensional space called Cone of

Movement (CoM). Based on the geometry of drawpoints and the caving propagation, the shape

is a cone (Laubscher 1994). To understand the scale in which particles can move within the

caved area, researchers have used theoretical, experimental (pilot and full-scale), and numerical

analysis (Sun et al. 2018).

As a numerical example, Pierce (2010) developed a model to study the gravity flow; he

proposed some formulations to predict the particle movements and resulting dilution.

Application of these equations requires a lot of information about rock properties and caving

operations and is limited to certain conditions. On the other hand, in a full-scale experiment at

the El Teniente block caving mine, Alvial (1992, as cited in Laubscher (2000)) concluded that

horizontal displacement (HD) can range between 2 and 42 meters and vertical slip angle (VSA)

can vary from 60 to 80 degrees. Although this study was carried out long time ago, these ranges

can provide an invaluable guideline to include caving flow into production planning. Since the

focus of this research is optimization of long-term production schedule, the proposed ranges by

Alvial are used to define the CoM. Figure 5.2 shows an example of a single CoM and how

different CoMs located in the same neighborhood can overlap with each other. As it can be seen,

a CoM is represented by its HD and VSA.

Figure 5.2. Cone of Movement (CoM) and the overlap between CoMs in the same neighborhood

When a slice is extracted from a drawpoint, we can imagine that a void space is formed at

the entrance of the drawpoint that can be filled by the other slices located in the CoM

Chapter 5 Long-term Production Scheduling with 3D Material Mixing

75

(Figure 5.3). Although the probabilities to fill the void space for each of those slices in the CoM

are different, it is almost impossible to calculate the exact probabilities. Instead, all of the slices

in the CoM are considered to generate a series of scenarios of grade and tonnage to be

implemented in the optimization model. Therefore, the resulting production schedule takes into

account the flow of material within the caved area, and this leads us to more reliable mine plans.

An illustrative example of how the grades of slices in the CoM are used to generate the scenarios

is presented below.

Figure 5.3. Candidate slices that are located in the CoM (yellow balls)

Equation (5.1) shows the first step where a " "Set of candidate slices that fall into the CoM is

formed, " "ag is grade for individual slices in the CoM and " "A is number of candidates (slices).

Let us suppose that for an available void space above a drawpoint, a CoM is formed that contains

20 slices and based on the resource model, the grades of these slices are used to form the set

(Table 5.1).

 1 = ,..., ASet g g (5.1)

Table 5.1. The set of grades for the candidate slices in the CoM (illustrative example)

Slices 1 to 10 1.31 1.18 1.18 1.18 1.09 1.15 1.08 1.12 0.98 1.21

Slices 11 to 20 0.90 1.18 0.91 1.00 1.46 1.40 1.41 1.50 1.35 1.42

Chapter 5 Long-term Production Scheduling with 3D Material Mixing

76

Then, " "N random grades are generated based on the set of candidates as it is shown in

equation (5.2), where " "N is number of scenarios. In this example, 10 scenarios are generated

(Table 5.2).

 () 1,..., n RandSample Setg n N (5.2)

Table 5.2. The generated scenarios (illustrative example)

Scenario # 1 2 3 4 5 6 7 8 9 10

Grade (%) 1.40 1.12 1.09 0.98 1.18 1.18 1.35 1.42 1.18 1.18

It should be noted that in this research, as the smallest units in the model, slices are considered

to generate the population and the scenarios.

5.2.2. Optimization Model

In this section, first the notations that are used in this chapter are introduced and then the

objective function and constraints of the model are discussed.

Notation

Indices

{1,..., }t T Index for scheduling periods.

{1,..., }s S Index for individual slices.

{1,..., }d D Index for individual drawpoints.

{1,..., }n N Index for individual scenarios.

{1,..., }a A
Index for adjacent drawpoints, " "A is number of slices that are located in

the same neighborhood.

Variables

,s tx

Binary decision variable that determines if slice " "s is extracted in period

" "t (
, 1s tx) or not (

, 0s tx), for each slice one decision variable is

considered.

,d ty

Binary decision variable which determines whether drawpoint " "d in

period " "t is active (
, 1d ty) or not (

, 0d ty), one decision variable for

each drawpoint.

Chapter 5 Long-term Production Scheduling with 3D Material Mixing

77

,d tz

Binary decision variable determining whether drawpoint " "d at period " "t

has started its extraction (
, 1d tz) or not (

, 0d tz), one decision variable

for each drawpoint.

, [0,) uo

n tdev
Continuous decision variable representing excessive amount from the

target production ore in scenario " "n at period " "t .

, [0,) lo

n tdev
Continuous decision variable representing deficient amount from the target

production ore in scenario " "n at period " "t .

g

, [0,) u

n tdev
Continuous decision variable representing excessive amount from the

target production grade (the metal content) in scenario " "n at period " "t .

g

, [0,) l

n tdev
Continuous decision variable representing deficient amount from the target

production grade (the metal content) in scenario " "n at period " "t .

Model Parameters

e

sg Grade of element " "e for slice " "s .

,n s Density of slice " "s (t/m
3
) for scenario " "n .

sV Volume of slice " "s (m
3
).

t

Current period, this notaion is used for defining
," "d tz , it represents

periods 1 up to the period that the constraint is calculating for.

SdN Number of slices in draw column" "d that are located above drawpoint" "d .

pd

Drawpoint that its extraction should be started before drawpoint " "d based

on the defined mining direction.

ps

Index for the slice that is a precedence for slice " "s , " "ps represents the

slices that are located below " "s in the same draw column and must be

extracted before slice " "s .

Input Parameters

ˆ e

tg
Target production grade for element " "e in period" "t , which is defined

based on the production goals and processing requirements.

Chapter 5 Long-term Production Scheduling with 3D Material Mixing

78

,s to Ore production resulting from extraction slice " "s in period" "t .

ˆ
to

Target ore production in period " "t which is defined based on the

production goals and processing requirements.

min tAct Minimum number of active drawpoints in period " "t .

max tAct Maximum number of active drawpoints in period " "t .

M

A big number, this is chosen based on the maximum number of slices in

draw columns.

minDL Minimum drawpoint life.

maxDL Maximum drawpoint life.

minDR Minimum draw rate (tonne per period).

maxDR Maximum draw rate (tonne per period).

i
Discount rate.

Ramp up Ramp-up time used for production goals.

ScenNum Number of scenarios.

,d tDP
 Drawpoint depletion percentage: the portion of draw column associated

with drawpoint " "d that has been extracted from '1 t to t t .

ep Price of element " "e ($/tonne).

c Operating costs ($/tonne).
loc Cost (penalty) for deficient amount of ore production from the targets ($).

uoc Cost (penalty) for excessive ore production from the targets ($).

lgc Cost (penalty) for deficient production grade from the targets ($).

ugc Cost (penalty) for excessive production grade from the targets ($).

er Recovery of the processing plant for element " "e (%).

Objective function

The objective function is defined as follows:

Chapter 5 Long-term Production Scheduling with 3D Material Mixing

79

, , , ,

1 1 1 1 1 1

 {()} { } { }

T S T N T N

s t s t n t n t

t s t n t n

Maximize E NPV x Ore deviations Grade deviations

 , ,

,

1 1 1

lg lg g

n, , n, ,

1 1 1 1

1

(1)

1 1

(1) (1)

e e e
T S N

n s n s s

s tt
t s n

lo lo uo uo ug uT N T N
t n t t n t

t t
t n t n

p r g c V
x

N i

c dev c dev c dev c dev

N i N i

(5.3)

Equation (5.3) maximizes the NPV of the project for the life of the mine (the first part) while

minimizes the deviations of production tonnages and production grades for all mixing scenarios

(the second part). The calculated NPV is based on the generated mixing scenarios resulting from

the caving flow. The decision variables in the production scheduling model are based on slices,

and the resulting solution determines the slices to extract from each draw column and the time in

which they should be extracted. This will improve flexibility of the operations by providing the

mining engineers with a detailed plan to follow in order to achieve the production targets and the

maximum NPV for the life of the mine.

The mine planer makes the decision about the penalties (c
lo

, c
uo

,

c

lg
, c

ug
) for deviations from

the targets (ˆto , ˆ e

tg); depends on the company’s priorities, higher penalties will result in lower

deviations but potentially longer computational time and lower NPVs; also, it is expected to

achieve higher NPVs and to spend less time for solving the problem when choosing lower values

for the penalties. Number of scenarios is a factor of mixing in the caved zone above drawpoints,

for example, more mixing scenarios should be considered for a more diverse range of particles

with different sizes and as a result different velocities.

Constraints

First, we should define some relations between the decision variables that represent

drawpoints and the ones that represent slices, in other words, we need to know whether any

slices are extracted from drawpoint " "d in period " "t , which means checking the status of the

drawpoint to see if it is active or not in each period. Equation (5.4) and (5.5) present such a

relationship in which " "x and " "y decision variables are connected.

Chapter 5 Long-term Production Scheduling with 3D Material Mixing

80

 , ,

1

0 1,..., , 1,...,

SdN

d t s t

s

y M x d D t T (5.4)

 , ,

1

0 1,..., , 1,...,

SdN

s t d t

s

x M y d D t T (5.5)

Using these equations, we can control the number of drawpoints that can be active in each

period; this is done in equation (5.6) and helps the mine manager to plan ahead for equipment

selection and also the allocation of resources in the operations.

 ,

1

min max 1,...,

D

t d t t

d

Act y Act t T (5.6)

We also introduce a new set of decision variables called " "z that makes it possible to not

only implement the precedence of extraction among drawpoints within the layout but also to

maintain a continuous production during the life of the mine, as it has been shown in equations

(5.7), (5.8), and (5.9).

 , ,

1

 1,..., , 1,...,
t

d t d t

t

DP y d D t T

 (5.7)

 , , 1,..., , 1,..., d t d tDP M z d D t T (5.8)

 , , 1,..., , 1,..., d t d tz M DP d D t T (5.9)

where " "t is the current period that the model is monitoring and this has to be done for all

periods (' 1,...,t T). In each period, ," "d tz , which is a binary decision variable, is 1 if

drawpoint " "d has been opened in periods before or at '" "t and 0 if not. Continuous

production is critical in block caving for preventing compaction and its consequences, means that

if a drawpoint starts its extraction, then it is kept open until its life is over and it will not be active

after closure. Equation (5.10) guarantees a continuous production during the life of the mine.

 , , 1 ,(1) 1,..., , 1,..., d t d t d ty y z d D t T (5.10)

Chapter 5 Long-term Production Scheduling with 3D Material Mixing

81

To define the precedence of drawpoints, a proper mining direction within the designed layout

should be defined. Khodayari and Pourrahimian (2015a) proposed a methodology that finds the

mining direction based on the dollar values of the metal content in draw columns. When the

precedence of drawpoints is determined using this technique, equation (5.11) can implement the

precedence between drawpoints in the optimization model and makes sure that the desired

mining direction is followed during life of the mine. Since in PCBC this procedure is done

manually, the input precedence for PCBC can be provided by the BCSO for achieving higher

NPVs. This is shown in the case study later in this chapter.

 , , 1,..., , 1,...,
pd t d tz y d D t T (5.11)

In addition to the precedence between drawpoints, slices should be extracted based on a

precedence that is defined using their vertical locations in draw columns; in other words, a slice

cannot be extracted from a drawpoint unless all slices located below (in the same draw column)

are already extracted. This vertical precedence is formulated by equation (5.12).

 , ,

1

 1,..., , 1,...,
p

t

s t s t

t

x x d D t T

 (5.12)

Two constraints are added to minimize production deviations from targets (tonnage and

grade). Equations (5.13) and (5.14) are two soft constraints that keep the production tonnages

and production grades as close as possible to the targets in all scenarios.

 ,,

1

ˆ 0 1,..., , 1,...,

 lo uo

s s t t n n

S

s n

s

V x o dev dev n N t T (5.13)

 lg
,, ,

1

) 0 1,..., , 1,...,ˆ(

 e ug
t s s t n n

S

s n s n

s

V x dev dev n N t Tg g (5.14)

Extraction per year from individual drawpoints or draw rate, and life of drawpoints (draw life)

are two other criteria that have to be considered for developing a practical production schedule.

These are limited by factors such as availability of mining equipment, geotechnical conditions of

the orebody and the host rock, geometry of drawpoints, and height of draw columns. Equations

Chapter 5 Long-term Production Scheduling with 3D Material Mixing

82

(5.15) and (5.16) control draw rate and draw life as two of the constraints for the optimization

model.

 , ,

1

 1,..., , 1,...,

ds

min d t s s s t max

s

DR y V x DR d D t T (5.15)

 min , max

1

 1,...,

T

d t

t

DL y DL d D (5.16)

Finally, we have to make sure that the mineral reserve, which is the total tonnage resulting

from the production schedule, is less than or equal to the mineral resource (the input model to the

production schedule). This is implemented in the model using equation (5.17).

 ,
1

1,...,1
T

s t
t

Sx s

 (5.17)

5.2.3. Model Structure and Programming Tools

As it was presented above, the optimization model consists of three sets of decision variables:

(1) binary variables that represent slices, size of this set is equal to total number of slices in the

original reserve model multiplied by the scheduling periods, (2) binary variables that represent

drawpoints, size of this set is equal to number of drawpoints multiplied by periods of scheduling,

(3) continuous variables representing mixing scenarios, its size is a multiplication of number of

scenarios by the scheduling periods.

The model was coded in MATLAB (TheMathWorksInc. 2017) and is solved by calling

CPLEX solver (IBM 2017) through MATLAB. CPLEX solves the optimization problem using

branch-and-cut in which a search tree with a series of nodes is created where each node

represents an LP subproblem. Nodes are analyzed until no more active nodes are available or

some limit has been reached (IBM 2017).

5.3. Verification and Validation

To verify the BCSO, it is tested on a real case block caving mine. The mineral resource

contains 220.5 million tonnes of ore with the average grade of 0.86% copper. The mine is

planned to be operated in a layout of 424 drawpoints (Figure 5.4); the slice model is created in

Chapter 5 Long-term Production Scheduling with 3D Material Mixing

83

PCBC using the original block model with the block height of 20 meters (Figure 5.5), copper

grade and ore tonnage distributions for slices in the slice model are presented in Figure 5.6 and

Figure 5.7.

As it was already mentioned in section 5.2.2, the mining direction dictates the precedence of

extraction among drawpoints and it is chosen based on economic and geomechanical

considerations. In this case study, we assume that economic parameters are drivers for making

such a decision. Therefore, the methodology proposed by Khodayari and Pourrahimian (2015) is

used to find the mining direction. Figure 5.8 shows that the best direction would be starting from

the south side of the deposit, then moving towards the center and finishing in the north east of

the layout. As a result, a V-shape direction with the starting coordination of (100, 1050), ending

coordination of (600, 1650), and V-shape angle of 150 degrees is considered. This mining

direction and the resulting optimal precedence of extraction for drawpoints, which is generated

by the BCSO, is used as an input for this case study in PCBC. This procedure is manual in PCBC

and the precedence is given by the user. However, in this research, the precedence is generated

by the BCSO and as a result, higher NPVs are expected even for the resulting schedule from

PCBC.

Figure 5.4. Layout of drawpoints

Chapter 5 Long-term Production Scheduling with 3D Material Mixing

84

Figure 5.5. The created slice model in PCBC (Scale: 1:5000)

Figure 5.6. Distribution of copper grade for slices in the slice model

Chapter 5 Long-term Production Scheduling with 3D Material Mixing

85

Figure 5.7. Distribution of tonnage for slices in the slice model

Figure 5.8. Desired mining direction in the drawpoint layout

The input scheduling parameters are presented in Table 5.3. The target grade is only used for

the last case, where the target grade feature of BCSO is tested and will be discussed later in this

chapter.

Chapter 5 Long-term Production Scheduling with 3D Material Mixing

86

Table 5.3. Scheduling parameters for the case study

Parameter Value Unit Description

T 10 Year Production scheduling timeline (the life of the mine).

ˆ cu

tg 1 % Target production grade for copper (Cu) 1,..., t T .

1̂o 8 Mt Ore production target in the first year of production.

2ô 16.5 Mt Ore production target in the second year of production.

ˆ
to 25 Mt Ore production target for operating in the full capacity 3,..., t T .

Ramp-up

time
3 Year

The time in which the production is increased from starting amount to the

full capacity.

MIP gap 1 %
Relative tolerance on the gap between the best integer objective and the

objective of the best node remaining.

DRmin 0 tonne/year Minimum draw rate.

DRmax 100,000 tonne/year Maximum draw rate.

p
cu

 6,500 $/tonne Copper price.

c 23 $/tonne Operating costs of ore (Mining + Processing).

i 10 % Discount rate.

r
cu

85 % Recovery of the processing plant for copper (Cu).

N 10 - Number of scenarios.

M 100 -
M must be greater than the maximum number of slices for an individual

drawpoint (
sdN), the maximum

sdN for this case study is 36.

HD 30 meter Horizontal Displacement.

VSA 60 degree Vertical Slip Angle.

Production schedules are generated using the BCSO and PCBC. To have a thorough

comparison and discussion, different cases are considered based on the flexibility of both tools.

In all of the following cases, constraints for precedence of drawpoints, precedence of slices,

continuous mining, and reserve are included and satisfied as part of the optimization. The three

cases are as follows:

Case (1): this is the base case to see how much the ore reserve could be if there are no

limitations for the draw rate, mixing is not considered,

Case (2): a draw rate limit of 100,000 tonnes per year is added to the constraints, mixing is

not involved,

Case (3): in addition to a draw rate limit of 100,000 tonnes per year, 10 mixing scenarios are

generated using the 3-D CoM and included in the BCSO. In PCBC, the Template Mixing tool is

used in the production scheduling.

Chapter 5 Long-term Production Scheduling with 3D Material Mixing

87

For PCBC, three different scheduling methods (AUTO, SMOOTH, and COMBO) were used:

AUTO extracts the maximum tonnages allowed by the production rate curve (draw rate

constraint) for each drawpoint to achieve the required tonnage (target tonnage). The tonnages for

the remaining active drawpoints will be set to 0 and those drawpoints are flagged as idle. In case

of too many idle drawpoints in different periods, using the AUTO method is probably

inappropriate (DassaultSystèmes 2018). SMOOTH is an extension to AUTO while in this

method when idle drawpoints are encountered, the tonnage will be increased linearly between the

most newly opened drawpoints and the older ones to make sure that there are no idle drawpoints

(DassaultSystèmes 2018). COMBO takes the total requested tonnage and divides it among all

active drawpoints in the proportion of the amount of material remaining in each draw column.

Higher columns are drawn faster than columns with less material. In this method, all drawpoints

are active in all periods during the life of the mine while the maximum draw rate constraint is

satisfied (DassaultSystèmes 2018).

Table 5.4 summarizes the results for the production schedules generated by the BCSO and

different methods under PCBC. Some of the findings are explained below:

Results show that for case (1), both the BCSO and PCBC extract the whole mineral

resource (220.5 million tonnes of ore) during the life of the mine (10 years), turning the whole

mineral resource to mineral reserve. However, the BCSO can improve the NPV of the project for

the same amount of production by 4%, 6%, and 11% compared to the AUTO, SMOOTH, and

COMBO methods in (Figure 5.9). For all of these methodologies, the solution (computational)

time was less than one minute.

In case (2), adding the draw rate constraint, as it was expected, has resulted in

smaller mineral reserves and lower NPVs; a total production of 215.25 and 201.32 million tonnes

of ore are planned by the BCSO and PCBC AUTO while BCSO generates a higher NPV (+2%).

The NPV for SMOOTH is similar to that of AUTO but with higher tonnages (204.5 million

tonnes) to extract, and COMBO suggests a mineral reserve of 216 million tonnes with the lowest

NPV (Figure 5.10). Also, it took less than one minute to solve the problem using the BCSO or to

generate a production schedule in PCBC.

Case (3) includes material mixing into the production scheduling. Results show that

the total tonnage and NPV reduce for the proposed production schedule from the BCSO and

Chapter 5 Long-term Production Scheduling with 3D Material Mixing

88

the generated schedule in the PCBC. The total tonnage and NPV for the BCSO are 198.9

million tonnes and $3.4 billion while these values for PCBC AUTO are 192.4 million tonnes and

$3.27 billion (Figure 5.11). The BCSO has suggested a mine plan with a higher NPV (+ 4%)

compared to the AUTO. Similar to case (2), SMOOTH has generated the same NPV but higher

tonnage (197 Mt) compared to the AUTO method. Moreover, COMBO generates the highest

tonnage (199 Mt) but lowest NPV ($3.12 billion). Incorporation of mixing adds to complexity of

the scheduling problem and as a result, the solution time increases.

For testing the target optimizer feature in the BCSO, a target grade of 1% was set for the same

block caving mine. In this case, ten mixing scenarios were considered within the scheduling, and

the objective function’s goal was to maximize the NPV while minimizing deviations of

production grades from the desired target grade in all scenarios. A cost of $20 was assumed as

the penalty for excessive or deficient production grades from the target grade. This assumption

can change based on priorities of the mine planner; lower values for deviations and NPV is

expected for higher penalty rates, and vice versa. Figure 5.12 shows that production grades in

different scenarios are significantly close to the target grade during the life of the mine. In this

case, the ‘AverageScen’ represents the average values calculated based on all scenarios. This

case has not been compared with the PCBC because it does not offer such a feature that target

grades could be set.

Table 5.4. Comparison of the results

Description Method Total Tonnage (Mt) NPV (B$) NPV Dif.

Case (1):

 No mixing

 No draw rate constraint

BCSO 220.5 3.59 0%

PCBC (AUTO) 220.5 3.46 - 4%

PCBC (SMOOTH) 220.5 3.4 - 6%

PCBC (COMBO) 220.5 3.24 - 11%

Case (2):

 No mixing

 With draw rate constraint

BCSO 215.25 3.5 0%

PCBC (AUTO) 201.32 3.4 - 2%

PCBC (SMOOTH) 204.5 3.4 - 2%

PCBC (COMBO) 216 3.2 - 8%

Case (3):

 With mixing

 With draw rate constraint

BCSO 198.9 3.4 0%

PCBC (AUTO) 192.4 3.27 - 4%

PCBC (SMOOTH) 197 3.28 - 4%

PCBC (COMBO) 199 3.12 - 9%

Chapter 5 Long-term Production Scheduling with 3D Material Mixing

89

Figure 5.9. Production tonnages and grades for case (1)

Figure 5.10. Production tonnages and grades for case (2)

Chapter 5 Long-term Production Scheduling with 3D Material Mixing

90

Figure 5.11. Production tonnages and grades for case (3)

Figure 5.12. Resulting BCSO production grade based on a target copper grade of 1% for 10 scenarios

Chapter 5 Long-term Production Scheduling with 3D Material Mixing

91

5.4. Summary

In this chapter, a stochastic optimization model was presented that incorporates material

mixing in the production scheduling optimization, the prototype software application with a

graphical interface is called block caving production scheduling optimizer (BCSO). The

proposed model was tested against PCBC, as the commercial software which has been developed

and used during the past 30 years. Based on the available features of the PCBC, different cases

were studied to carry out production scheduling for a block caving mine. This chapter’saimwas

to introduce and validate the BCSO by testing this prototype against a commercial software with

a high reputation such as PCBC. For a block caving mine of 424 drawpoints, the resulted

production schedules were close; however, the BCSO generates higher NPVs for all three cases

that were studied. The solution times were reasonable and significantly close for cases (1)

and (2), but it took longer for BCSO to run case (3) when the mixing was added to the problem.

Due to the limitations of PCBC for using different constraints in the scheduling, only 6 (out of 9)

existing constraints in the BCSO were used for the comparison purposes. The prototype has

more to offer and it is flexible in terms of adding new constraints based on the specifications of

the mining project. The precedence of drawpoints based on advancement direction, which is an

input to production scheduling, is traditionally chosen manually by the user. However, in this

research, the precedence was generated by the BCSO using an automated method. Then the

obtained optimal precedence of extraction from BCSO was used as an input for scheduling in

PCBC instead of manual methods. In addition, the target grade option embedded in the BCSO

was tested for situations where the processing plant is limited to be fed by a certain ore grade. It

was shown that the desired production grade could be achieved during the life of the mine by

activating the target grade option in the BCSO. In this case, PCBC was not used for comparison

because it does not offer such a feature. Incorporating mixing and considering its impact on the

production helps us to achieve more reliable mine plans for block caving; the developed

prototype uses the CoM concept to take into account material mixing within the caving flow in

the production scheduling optimization in addition to the ability to satisfy the operational

constraints in the block-cave mining.

92

Chapter 6

Conclusions and Recommendations

Chapter 6 provides key conclusions from this research and some recommendations for future

studies.

Chapter 6 Conclusions and Recommendations

93

This study presents a mathematical programming model that optimizes the production

schedule in block caving during the life of the mine. The model was verified based on real-case

data from block caving operations and validated against the current practice in the mining

industry.

6.1. Conclusions

The key conclusions from this study can be summarized under the following points:

 An optimum production schedule can significantly add to the dollar values of a mining

project. As a strong tool, mathematical programming can be used to optimize the

production schedule for block caving; it can generate practical plans by satisfying

technical constraints of the operations and determine how far the final solution is from

the optimal one by reporting the optimality gap in case of integer programming.

 Caving flow and the resulting mixing impacts the production and it should be included

in the production scheduling optimization. CoM provides a good perspective about

materialflowandtheprobabilitiesofparticles’movementswithindrawcolumns.

 The proposed block caving scheduling optimizer, BCSO, incorporates mixing into

production scheduling while maximizing the NPV of the project and satisfying the

technical constraints. While being capable of modeling more constraints for the caving

operations, it can offer higher NPVs compared to commercial tools such as PCBC.

 Using the BCSO, different mixing scenarios can be generated to capture the probable

material flow within the caving zone. In the resulting production schedule, the target

production grades and tonnages are achieved for all scenarios during the life of the

mine while the defined limitations are satisfied.

 The mixing tool in BCSO requires a minimum level of information about the caving

flow and is useful for long-term production scheduling purposes, where many

parameters are unknown. On the other hand, mixing template tool in PCBC is

dependent on input parameters that require a higher level of information that could

only be available during operations.

 The precedence of drawpoints based on advancement direction, which is an input to

production scheduling, is traditionally chosen manually by the user. However, the

Chapter 6 Conclusions and Recommendations

94

precedence can be generated by the BCSO using an automated method. Then the

resulting precedence of extraction from BCSO can be used as an input for scheduling

in PCBC instead of results of manual methods.

 The BCSO is a flexible scheduling tool in which more technical constraints, based on

the specifics of the mining operations, can be added to the existing constraints in the

current optimization model.

 Dependingontheminingcompany’sstrategicplan,new targets with different levels

of priorities can be included in the scheduling, the BCSO uses the penalties as

prioritizing factors to minimize deviations of the final production schedule from the

targets.

6.2. Recommendations

In this study, several simplifying assumptions were made for the caving flow and mixing, the

technical limitations of the operations, the price, the cost, and production targets. To address

these limitations, the following points are recommended as possible directions for future studies.

 The caving flow and its resulting mixing could be looked at in more details and a more

developed version of CoM can be used to include in the BCSO. However, it should be

noted that the caving flow could be case-specific and such level of detail is not usually

available for long-term planning unless production has started and drawpoints are

monitored for a long time.

 More technical constraints can be added to the BCSO based on the specifics of the

mining project such as: geometry,equipment, company’s limitations, final product’s

market, and processing plant.

 The price and cost were assumed to not change during the life of the mine, other

approaches such as variable price and cost for each year based on the forecasts can be

considered. Also, uncertainties of price and cost can be included in the model.

 Only production grades and tonnages are included for targets in the current model,

othertargetsbasedonthemarketdemand,processinglimitations,andthecompany’s

strategic plan can be added to the model.

Chapter 6 Conclusions and Recommendations

95

 Since the proposed model is valid for long-term production scheduling, it is

recommended to consider the short-term production scheduling for a real-case block

caving operations and study the practicality of transition from long-term to short-term

planning.

 It is recommended that to investigate the possibility of consideration of uncertainties

of the caving flow in a dynamic model in which the impact of production on the flow

can simultaneously be studied.

 Consideration of the total tonnages and weighted grades of draw columns for the

mining direction finder can be a limitation of this methodology; application of other

approaches can be studied to improve this feature of the model.

96

References

[1] Alonso-Ayuso A, Carvallo F, Escudero LF, Guignard M, Pi J, Puranmalka R, Weintraub

A. 2014. Medium range optimization of copper extraction planning under uncertainty in

future copper prices. European Journal of Operational Research. 233(3):711-726.

[2] Bergen D, Rennie W, Scott C. 2009. Technical Report on the New Afton Project, British

Columbia, Canada. New Gold Inc., Vancouver, British Columbia. 1416.

[3] Brown ET. 2003. Block caving geomechanics. Indooroopilly, Queensland: Julius

Kruttschnitt Mineral Researh Centre, The University of Queensland.

[4] Brown ET. 2007. Block caving geomechanics. Indooroopilly, Qld.: Julius Kruttschnitt

Mineral Research Centre, The University of Queensland.

[5] Brunton I, Lett J, Sharrock G, Thornhill T, Mobilio B. 2016. Full Scale Flow Marker

Experiments at the Ridgeway Deeps and Cadia East Block Cave Operations. Massmin

2016; May 9-11; Sydney, Australia.

[6] Carter PG. 2011. Chapter 6.3, Selection Process for hard-Rock Mining. In: Darling P,

editor. SME mining engineering handbook [electronic resource]. 3 ed. [Englewood, Colo.]

: Society for Mining, Metallurgy, and Exploration, c2011.; p. 357-376.

[7] Castro R, Gonzalez F, Arancibia E. 2009. Development of a gravity flow numerical model

for the evaluation of drawpoint spacing for block/panel caving. Journal of the Southern

African Institute of Mining and Metallurgy. 109(7):393-400. English.

[8] Castro RL, Fuenzalida MA, Lund F. 2014. Experimental study of gravity flow under

confined conditions. International Journal of Rock Mechanics and Mining Sciences.

67:164-169.

[9] Chanda E, Dagdelen K. 1995. Optimal blending of mine production using goal

programming and interactive graphics systems. International Journal of Surface Mining,

Reclamation and Environment. 9(4):203-208.

[10] Chanda ECK. 1990. An application of integer programming and simulation to production

planning for a stratiform ore body. Mining Science and Technology. 11(2):165-172.

[11] Dagdelen K, Johnson TB. 1986. Optimum open pit mine production scheduling by

lagrangian parameterization. 19th Application of Computers and Operations Research in

the Mineral Industry Proceedings; April 14 to 18; Pennsylvania, USA.

[12] DassaultSystèmes. 2018. GEOVIA PCBC Version 6.7.

[13] Diering T. 2000. PC-BC: A Block Cave Design and Draw Control System. Massmin

2000; Oct 29 to Nov 02; Brisbane, Australia.

[14] Diering T. 2004. Computational considerations for production scheduling of block cave

mines. MassMin 2004; Aug 22-25; Santiago, Chile.

[15] Diering T. 2012. Quadratic Programming applications to block cave scheduling and cave

management. Massmin 2012; June 10-14, 2012; Sudbury, Ontario, Canada.

[16] Diering T. 2013. Ore Reserve estimation for Block Cave Mines Using GEOVIA PCBC.

White Paper.

References

97

[17] Dirkx R, Dimitrakopoulos R, Kazakidis V. 2018. Stochastic optimisation of long-term

block cave scheduling with hang-up and grade uncertainty. International Journal of

Mining, Reclamation and Environment.1-18. English.

[18] Dorador L, Eberhardt E, Elmo D, Aguayo A. 2014. Influence of secondary fragmentation

and column height on block size distribution and fines migration reaching drawpoints. 3rd

International Symposium on Block and Sublevel caving (CAVING 2014); Jun 5-6;

Santiago, Chile.

[19] Eadie B. 2002. A framework for modelling fragmentation in block caving [Ph.D.]. Julius

Kruttschnitt Mineral Research Centre: The University of Queensland.

[20] Eiselt HA, Sandblom CL. 2010. Operations Research (A Model-Based Approach).

Springer Berlin Heidelberg.

[21] Epstein R, Goic M, Weintraub A, Catalán J, Santibáñez P, Urrutia R, Cancino R, Gaete S,

Aguayo A, Caro F. 2012. Optimizing Long-Term Production Plans in Underground and

Open-Pit Copper Mines. Operations Research. 60(1):4-17.

[22] Garcés D, Viera E, Castro R, Meléndez M. 2016. Gravity Flow Full‐scale Tests at

Esmeralda Mine's Block‐2, El Teniente. Massmin 2016; May 9-11; Sydney, Australia.

[23] Gibson W. 2014. Stochastic Models For Gravity Flow: Numerical Considerations. Caving

2014; Jun 5-6; Santiago, Chile.

[24] Guest AR, Van Hout GJ, Von Johannides A. 2000. An Application of Linear

Programming for Block Cave Draw Control. MassMin 2000; Oct 29- Nov 2; Brisbane,

Australia.

[25] Xie H, Wang Y, Jiang Y, editors. Suboptimal Solutions in Practical Operations-Research

Applications. 29th Computer Applications in the Minerals Industries; April 25-27 2001;

Beijing, China. A.A. Balkema.

[26] Hannweg LA, Van Hout GJ. 2001. Draw control at Koffiefontein Mine. 6th International

Symposium on Mine Mechanization and Automation May 21-24; Johannesburg, South

Africa.

[27] Hustrulid WA. 2001. Underground mining methods: engineering fundamentals and

international case studies. Society for Mining, Metallurgy, and Exploration (SME).

[28] IBM. 2017. IBM ILOG CPLEX Optimization Studio V12.7.1 New York: IBM

Corporation.

[29] Inc. NG. 2012. New Afton project. New Gold Inc.; [accessed 2014].

[30] Jin A, Sun H, Wu S, Gao Y. 2017. Confirmation of the upside-down drop shape theory in

gravity flow and development of a new empirical equation to calculate the shape.

International Journal of Rock Mechanics and Mining Sciences. 92:91-98.

[31] Julin DE. 1992. Chapter 20.3, Block Caving. In: Hartman HL, editor. Mining Engineering

Handbook. 2 ed. Littleton, Colorado: SME (Society for Mining, Metallurgy, and

Exploration, Inc.); p. 1815-1836.

[32] Khodayari F, Pourrahimian Y. 2014. Determination of the best height of draw in block

cave sequence optimization. 3rd International Symposium on Block and Sublevel caving

(CAVING 2014); Jun 5-6; Santiago, Chile.

References

98

[33] Khodayari F, Pourrahimian Y. 2015a. Determination of development precedence for

drawpoints in block-cave mining. 5th International Symposium Mineral Resources and

Mine Development (AIMS 2015); May 27-28; Aachen, Germany.

[34] Khodayari F, Pourrahimian Y. 2015b. Mathematical programming applications in block-

caving scheduling: a review of models and algorithms. International Journal of Mining

and Mineral Engineering (IJMME). 6(3):234-257.

[35] Khodayari F, Pourrahimian Y. 2016. Quadratic Programming Application in Block-cave

Mining. Presentation presented at: Mine Planning. 1st International Conference of

Underground Mining (U-Mining 2016); Oct 19-21; Santiago, Chile.

[36] Khodayari F, Pourrahimian Y. 2017. Production scheduling in block caving with

consideration of material flow. Aspects in Mining and Mineral Science (AMMS). 1(1).

[37] Laubscher DA. 1994. Cave mining-the state of the art. The Journal of The South African

Institute of Mining and Metallurgy. 94(10):279-293.

[38] Laubscher DA. 2000. A practical manual on block caving. Prepared for International

Caving Study (1997-2000).

[39] Laubscher DA. 2011. Chapter 13.7, Cave Mining. In: Darling P, editor. SME mining

engineering handbook [electronic resource] 3ed. Society for Mining, Metallurgy, and

Exploration, c2011.; p. 1385-1397.

[40] Laubscher DH. 2000. Block caving manual (prepared for International Caving Study).

JKMRC and Itasca Consulting Group, Inc: Brisbane.

[41] Lerchs H, Grossmann I. 1965. Optimum design of open-pit mines. Canadian Mining

Metallurgical Bull. 58:17-24.

[42] MacNeil JAL, Dimitrakopoulos RG. 2017. A stochastic optimization formulation for the

transition from open pit to underground mining. Optimization and Engineering.

18(3):793–813.

[43] Malaki S, Khodayari F, Pourrahimian Y, Liu WV. 2017. An application of mathematical

programming and sequencial Gaussian simulation for block-cave production scheduling.

1st International Conference on Underground Mining Technology (UMT 2017); October

11-13; Sudbury, Ontario, Canada.

[44] Marti K. 2015. Stochastic optimization methods : applications in engineering and

operations research. Third edition ed. Berlin: Springer-Verlag Berlin Heidelberg.

[45] Newman AM, Rubio E, Caro R, Weintraub A, Eurek K. 2010. A Review of Operations

Research in Mine Planning. Interfaces. 40(3):222-245.

[46] Nezhadshahmohammad F, Aghababaei H, Pourrahimian Y. 2017. Presentation and

application of a multi-index clustering technique for the mathematical programming of

block-cave production scheduling. International Journal of Mining Science and

Technology.

[47] Nezhadshahmohammad F, Khodayari F, Pourrahimian Y. 2017. Draw rate optimization in

block cave production scheduling using mathematical proframming. 1st International

Conference on Underground Mining Technology (UMT 2017); October 11-13; Sudbury,

Ontario, Canada.

[48] Nezhadshahmohammad F, Pourrahimian Y, Aghababaei H. 2017. Presentation and

application of a multi-index clustering technique for the mathematical programming of

References

99

block-cave production scheduling. International Journal of Mining Science and

Technology. https://doi.org/10.1016/j.ijmst.2017.11.005.

[49] Osanloo M, Gholamnejad J, Karimi B. 2008. Long-term open pit mine production

planning: a review of models and algorithms. International Journal of Mining,

Reclamation and Environment. 22(1):3-35.

[50] Parkinson A. 2012. Essays on Sequence Optimization in Block Cave Mining and

Inventory Policies with Two Delivery Sizes [Ph.D.]. The University Of British Columbia.

[51] Pierce ME. 2010. A Model for Gravity Flow of Fragmented Rock in Block Caving Mines

[Ph.D.]. The University of Queensland: The University of Queensland.

[52] Pourrahimian Y. 2013. Mathematical programming for sequence optimization in block

cave mining [Ph.D.]. Ann Arbor: University of Alberta (Canada).

[53] Pourrahimian Y, Askari-Nasab H, Tannant D. 2012. Mixed-Integer Linear Programming

formulation for block-cave sequence optimisation. Int J Mining and Mineral Engineering.

4, No. 1:26-49.

[54] Pourrahimian Y, Askari-Nasab H, Tannant D. 2013. A multi-step approach for block-cave

production scheduling optimization. International Journal of Mining Science and

Technology. 23(5):739-750.

[55] Rahal D. 2008. Draw Control in Block Caving Using Mixed Integer Linear Programming

[Ph.D.]. The University of Queensland.

[56] Rahal D, Dudley J, Hout Gv. 2008. Developing an optimised production forecast at

Northparkes E48 mine using MILP. 5th International Conference and Exhibition on Mass

Mining; Jun 9-11; Luleå, Sweden.

[57] Rahal D, Smith M, Van Hout G, Von Johannides A. 2003. The use of mixed integer linear

programming for long-term scheduling in block caving mines. 31st International

Symposium on Application of Computers and Operations Research in the Minerals

Industries; 14-16 May; Cape Town, South Africa.

[58] Rubio E. 2002. Long term planning of block caving operations using mathematical

programming tools [M.Sc.]. The University of British Columbia.

[59] Rubio E. 2014. Block caving strategic mine planning using Risk-Return portfilio

optimization. 3rd International Symposium on Block and Sublevel Caving (Caving 2014);

Jun 5-6; Santiago, Chile.

[60] Rubio E, Diering T. 2004. Block cave production planning using operation research tool.

Massmin 2004; Aug 22-25; Santiago, Chile.

[61] Fytas K, Collins J-L, Singhal RK, editors. Multiple resource constrained underground

mine scheduling. Computer Applications in the Mineral Industry; March 7-9 1988;

Quebec, Canada. Balkema.

[62] Sepúlveda E, Dowd PA, Xu C. 2018. The optimisation of block caving production

scheduling with geometallurgical uncertainty – a multi-objective approach. Mining

Technology: Transactions of the Institute of Mining and Metallurgy. 127(3):131-145.

English.

[63] Shapiro JF. 1993. Chapter 8 Mathematical programming models and methods for

production planning and scheduling. In: S.C Graves AHGRK, Zipkin PH, editors.

Handbooks in Operations Research and Management Science. Elsevier; p. 371-443.

References

100

[64] Smoljanovic M. 2012. Optimum sequencing of underground ore reserves for different

mining systems [M.Sc.]. University of Chile.

[65] Smoljanovic M, Rubio E, Morales N. 2011. Panel Caving Scheduling Under Precedence

Constraints Considering Mining System. 35th APCOM Symposium; Sept 24-30;

Wollongong, NSW, Australia.

[66] Song X. 1989. Caving process simulation and optimal mining sequence at Tong Kuang Yu

mine, China. 21st International Symposium on Application of Computers and Operations

Research in the Mineral Industry; 27 February-2 March; Las Vegas, USA.

[67] Sun H, Gao Y, Jin A, Wu S, Elmo D, Dorador L. 2018. A Study of Gravity Flow Based on

the Upside-Down Drop Shape Theory and Considering Rock Shape and Breakage

[Article]. Rock Mech Rock Eng. https://doi.org/10.1007/s00603-018-1514-1(1434-

453X):1-13.

[68] TheMathWorksInc. 2017. MATLAB Massachusetts, United States.

[69] Weintraub A, Pereira M, Schultz X. 2008. A Priori and A Posteriori Aggregation

Procedures to Reduce Model Size in MIP Mine Planning Models. Electronic Notes in

Discrete Mathematics 30:297–302.

[70] Williams HP. 1974. Chapter 7, Experiments in the formulation of integer programming

problems. In: Balinski ML, editor. Approaches to Integer Programming. Springer Berlin

Heidelberg; p. 180-197.

[71] Winkler BM. 1996. Using MILP to Optimize Period Fix Costs in Complex Mine

Sequencing and Scheduling Problems. Twenty sixth proceedings of the application of

computers and operations research in the minerals industry (APCOM); September 16-20;

Pennsylvania, USA.

[72] Characterization and empirical analysis of block caving induced surface subsidence and

macro deformations. the 3rd CANUS Rock Mechanics Symposium; May 9-15 2009;

Toronto, Canada.

[73] Wooller R. 1992. Production scheduling system. Transactions of the Institution of Mining

and Metallurgy, Section A, Mining Industry. 101:A47-A54.

101

Appendix A: MATLAB Codes

102

Programming Description

This appendix presents the MATLAB codes that have been developed in this research.

Functions 1 to 4 must be run in the mentioned order, function 20 must be run when functions 1 to

19 have already been run, and function 21 is used when the problem is solved by CPLEX and

function 20 has concluded. Functions 22 to 41 are used for plotting purposes and can be run after

running function 21. Figure A. 1 presents the flowchart of the optimization model and how the

functions are connected.

Figure A. 1. Flowchart of the optimization model (MATLAB functions)

The functions are presented in the following order:

A1- A_Import_Param

A2- B_Import_Drawpoints

A3- C_Import_Slices

Programming Description

103

A4- E_ScenarioGenerator_HVConeMixing

A5- F_MiningDirectionEvaluation

A6- ObjectiveFunction_MILP_Stoch

A7- Const_ActiveDrawpoints

A8- Const_Binary_Slc

A9- Const_ContinuousMining

A10- Const_DrawLife

A11- Const_DrawRate

A12- Const_Grade

A13- Const_LowerandUpperBounds

A14- Const_MiningCapacity

A15- Const_Precedence_Polygon_DPs

A16- Const_Precedence_VShaped_DPs

A17- Const_Precedence_Slc

A18- Const_ProdTar

A19- Const_Reserve

A20- Run_MILP

A21- Exporting_Results

A22- Plot_ActivePerPeriod

A23- Plot_BHOD

A24- Plot_DrawLife

A25- Plot_DrawRate_All

A26- Plot_DrawRate_Slc

A27- Plot_DrawRate_Slc_Seq

Programming Description

104

A28- Plot_GradePerPeriod

A29- Plot_MiningDirection_DPS

A30- Plot_PB_DEV

A31- Plot_ProductionPerPeriod

A32- Plot_Slc_Seq_Height

A33- PlotDCs

A34- PlotDPS

A35- Plotdps_Active

A36- Plotdps_Life

A37- Plotdps_StartingPeriods

A38- allfitdist

A39- Neighb_numel

A40- ProjectPoint

A41- ThousandSep

105

A1. A_Import_Param

0001 %==%%%%%%%%%%%%%%

0002 %==%%%%%%%%%%%%%%

0003 % University of Alberta %%%%%%%%%%%%%%

0004 % Department of Civil and Environmental Engineering %%%%%%%%%%%%%%

0005 % School of Mining and Petroleum Engineering %%%%%%%%%%%%%%

0006 % This program was written by: Firouz Khodayari, %%%%%%%%%%%%%%

0007 % Student ID: 1402853 %%%%%%%%%%%%%%

0008 % PhD Candidate in Mining Engineering %%%%%%%%%%%%%%

0009 %==%%%%%%%%%%%%%%

0010 %==%%%%%%%%%%%%%%

0011 function A_Import_Param

0012

0013 %This function is used to import the parameters, read and then save them in the

Data folder

0014

0015 %reading the directory and the name of input data

0016 [f,p] = uigetfile('*.xlsx');

0017 pf = [p,f];

0018

0019 Param.T = xlsread(pf,'Param','T'); %Number of periods (life of the mine)

0020 Param.DCF = xlsread(pf,'Param','DCF'); %Draw Control Factor in the draw rate

curve

0021 Param.Intrate = xlsread(pf,'Param','Intrate')/100; %Interest rate of return

0022 Param.Gmin = xlsread(pf,'Param','Gmin'); %Minimum allowable production average

grade for CU per each period

0023 Param.Gmax = xlsread(pf,'Param','Gmax'); %Maximum allowable production average

grade for CU per each period

0024 Param.Mmin = xlsread(pf,'Param','Mmin'); %Minimum production rate or mining

capacity

0025 Param.Mst = xlsread(pf,'Param','Mst'); %Starting production rate or mining

capacity (Production Curve)

0026 Param.Mmax = xlsread(pf,'Param','Mmax'); %Maximum production rate or mining

capacity

0027 Param.RampUpTime = xlsread(pf,'Param','RampUpTime'); %Ramp Up Time for the

Production Schedule

0028 Param.Actmin = xlsread(pf,'Param','Actmin'); %Minimum number of active

drawpoints per period

0029 Param.Actmax = xlsread(pf,'Param','Actmax'); %Maximum number of active

drawpoints per period

0030 Param.MIPgap = xlsread(pf,'Param','MIPgap'); %Sets a relative tolerance on the

gap between the best integer objective and the objective of the best node remaining

0031 Param.Radius = xlsread(pf,'Param','Radius'); %The average radius of the

drawpoints

0032 Param.Density = xlsread(pf,'Param','Density'); %The average density of the

material

0033 Param.DPRMin = xlsread(pf,'Param','DPRMin'); %Minimum draw rate for each

period

0034 Param.DPRMax = xlsread(pf,'Param','DPRMax'); %Maximum draw rate for each

period

0035 Param.DCRMin = xlsread(pf,'Param','DCRMin'); %Minimum draw column rate for

each period

0036 Param.DCRMax = xlsread(pf,'Param','DCRMax'); %Maximum draw column rate for

each period

0037 Param.M = xlsread(pf,'Param','M'); %An arbitrary big number

0038 Param.cost = xlsread(pf,'Param','cost'); %Cost of mining and processing and

selling

0039 Param.price = xlsread(pf,'Param','price'); %Price of the product

0040 Param.recovery = xlsread(pf,'Param','recovery')/100; %Recovery

0041 Param.MinDrawLife = xlsread(pf,'Param','MinDrawLife'); %Minimum life for

drawpoints

file:///D:/Drive/Thesis/Matlab/Codes/doc/1_Importing/A_Import_Param.html%23_subfunctions

A1 A_Import_Param

106

0042 Param.MaxDrawLife = xlsread(pf,'Param','MaxDrawLife'); %Maximum life for

drawpoints

0043 Param.AdjRadius = xlsread(pf,'Param','AdjRadius'); %The Adjacent Radius to

determine the Adjacent Drawpoints (Drawcolumns) for each drawpoint

0044 Param.InvPower = xlsread(pf,'Param','InvPower'); %Inverse Distance Power for the

Probability Function

0045 Param.AdjWeight = xlsread(pf,'Param','AdjWeight'); %Weight of the Adjacent

Drawcolumns for the Probability Function

0046 Param.ClustMinTon = xlsread(pf,'Param','ClustMinTon'); %Minimum Tonnage for the

Clustering (Tonnage Simillarity Boundary)

0047 Param.ClustMaxTon = xlsread(pf,'Param','ClustMaxTon'); %Maximum Tonnage for the

Clustering (Tonnage Simillarity Boundary)

0048 Param.ScenNum = xlsread(pf,'Param','ScenNum'); %Number of Scenarios for

Stochastic Optimization

0049 Param.GradeDevCost = xlsread(pf,'Param','GradeDevCost'); %Devation Cost for

Grade in the objective function

0050 Param.TonDevCost = xlsread(pf,'Param','TonDevCost'); %Devation Cost for Grade in

the objective function

0051 Param.TarGrade = xlsread(pf,'Param','TarGrade'); %Target Grade

0052 Param.HIZ = xlsread(pf,'Param','HIZ'); %Height of Izolated Zone

0053 Param.DirStart_X = xlsread(pf,'Param','DirStart_X'); %Mining direction: X

coordination of the starting point 1

0054 Param.DirStart_Y = xlsread(pf,'Param','DirStart_Y'); %Mining direction: Y

coordination of the starting point 1

0055 Param.Dir1End_X = xlsread(pf,'Param','Dir1End_X'); %Mining direction: X

coordination of the end point 1

0056 Param.Dir1End_Y = xlsread(pf,'Param','Dir1End_Y'); %Mining direction: Y

coordination of the end point 1

0057 Param.Dir2End_X = xlsread(pf,'Param','Dir2End_X'); %Mining direction: X

coordination of the end point 2

0058 Param.Dir2End_Y = xlsread(pf,'Param','Dir2End_Y'); %Mining direction: Y

coordination of the end point 2

0059 Param.VShapeAngle = xlsread(pf,'Param','VShapeAngle'); %%Angle of the V Shape

(in degrees), this is the angle between two lines of the triangle

0060 Param.HD = xlsread(pf,'Param','HD'); %Horizontal Displacement (Mixing Parameter)

0061 Param.VSA = xlsread(pf,'Param','VSA'); %Vertical Slip Angle (Mixing Parameter)

0062

0063 save ('Data/Param','Param');

0064

0065 end

0066 %==%%%%%%%%%%%%%%

0067 %==%%%%%%%%%%%%%%

0068 % The End %%%%%%%%%%%%%%

0069 %==%%%%%%%%%%%%%%

0070 %==%%%%%%%%%%%%%%

107

A2. B_Import_Drawpoints

0001 %==%%%%%%%%%%%%%%

0002 %==%%%%%%%%%%%%%%

0003 % University of Alberta %%%%%%%%%%%%%%

0004 % Department of Civil and Environmental Engineering %%%%%%%%%%%%%%

0005 % School of Mining and Petroleum Engineering %%%%%%%%%%%%%%

0006 % This program was written by: Firouz Khodayari, %%%%%%%%%%%%%%

0007 % Student ID: 1402853 %%%%%%%%%%%%%%

0008 % PhD Candidate in Mining Engineering %%%%%%%%%%%%%%

0009 %==%%%%%%%%%%%%%%

0010 %==%%%%%%%%%%%%%%

0011

0012 function B_Import_Drawpoints

0013

0014 %This function is used to import the input data, read and then save them in the

Data folder

0015

0016 load('Data/Param.mat'); %Loading the input parameters

0017 if exist('Data/InData.mat')== 2

0018 load('Data/InData.mat');

0019

0020 else

0021 end

0022 %reading the directory and the name of input data

0023 [f,p] = uigetfile('*.xlsx');

0024 pf = [p,f];

0025 [num,txt,raw] = xlsread(pf);

0026

0027 InData.Excel.DPs.General = raw; %the whole table with everything in

it

0028 InData.Excel.DPs.record = xlsread(pf,'DPs','Record');

0029 InData.Excel.DPs.X = xlsread(pf,'DPs','Coord_X'); %x coordinate of

each drawpoint

0030 InData.Excel.DPs.Y = xlsread(pf,'DPs','Coord_Y'); %y coordinate of

each drawpoint

0031 InData.Excel.DPs.Z = xlsread(pf,'DPs','Coord_Z'); %z coordinate of

each drawpoint

0032 InData.Excel.DPs.BHOD = xlsread(pf,'DPs','BHOD');

0033 InData.Excel.DPs.DEV = xlsread(pf,'DPs','DEV');

0034 InData.Excel.DPs.dnum = xlsread(pf,'DPs','Record');

0035 InData.Excel.DPs.ton = xlsread(pf,'DPs','Tonnage'); %tonnage table for

draw columns

0036 InData.Excel.DPs.grade = xlsread(pf,'DPs','CU'); %grade table for draw

columns

0037 %==

0038 X = InData.Excel.DPs.X;

0039 N = length(X);

0040 InData.Parameters.N = N;

0041

0042 save ('Data/InData','InData');

0043

0044 end

0045 %==%%%%%%%%%%%%%%

0046 %==%%%%%%%%%%%%%%

0047 % The End %%%%%%%%%%%%%%

0048 %==%%%%%%%%%%%%%%

0049 %==%%%%%%%%%%%%%%

file:///D:/Drive/Thesis/Matlab/Codes/doc/1_Importing/B_Import_Drawpoints.html%23_subfunctions

108

A3. C_Import_Slices

0001 %==%%%%%%%%%%%%%%

0002 %==%%%%%%%%%%%%%%

0003 % University of Alberta %%%%%%%%%%%%%%

0004 % Department of Civil and Environmental Engineering %%%%%%%%%%%%%%

0005 % School of Mining and Petroleum Engineering %%%%%%%%%%%%%%

0006 % This program was written by: Firouz Khodayari, %%%%%%%%%%%%%%

0007 % Student ID: 1402853 %%%%%%%%%%%%%%

0008 % PhD Candidate in Mining Engineering %%%%%%%%%%%%%%

0009 %==%%%%%%%%%%%%%%

0010 %==%%%%%%%%%%%%%%

0011

0012 function C_Import_Slices

0013

0014 %This function is used to import the input data, read and then save them in the

Data folder

0015

0016 load('Data/Param.mat'); %Loading the input parameters

0017 load('Data/InData.mat');

0018 N = InData.Parameters.N; %number of drawpoints(draw columns)

0019

0020 %reading the directory and the name of input data

0021 [f,p] = uigetfile('*.xlsx');

0022 pf = [p,f];

0023 [num,txt,raw] = xlsread(pf);

0024 Height = xlsread(pf,'Slice_Info','Height');

0025 Density = xlsread(pf,'Slice_Info','Density');

0026 Tons = xlsread(pf,'Slice_Info','Tons');

0027 CU = xlsread(pf,'Slice_Info','CU');

0028 % AU = xlsread(pf,'Slice_Info','AU');

0029 counter = 0;

0030 SliceNumMat = zeros(N,1);

0031 for iloop = 1:N

0032 counter = counter+1;

0033 SlNumTemp = 1;

0034 while counter <= numel(Height) & Height(counter,1) > 0

0035 if CU(counter) > 0.1

0036 DpSlHeight(iloop,SlNumTemp) = Height(counter);

0037 DpSlDensity(iloop,SlNumTemp) = Density(counter);

0038 DpSlTons(iloop,SlNumTemp) = Tons(counter);

0039 DpSlCU(iloop,SlNumTemp) = CU(counter);

0040 % DpSlAU(iloop,SlNumTemp) = AU(counter);

0041

0042 SlNumTemp = SlNumTemp + 1;

0043 else

0044 %nothing

0045 end

0046 counter = counter + 1;

0047

0048 end

0049 SliceNumMat(iloop,1) = nnz(DpSlHeight(iloop,:));

0050 end

0051 InData.Parameters.SliceNumMat = SliceNumMat;

0052 MaxNumSlices = size(DpSlHeight,2);

0053 InData.Parameters.MaxNumSlices = MaxNumSlices;

0054 InData.Excel.Slices.General = raw; %the whole slice table with

everything in it

0055 InData.Excel.Slices.DpSlHeight = DpSlHeight; %Height of slices

0056 InData.Excel.Slices.DpHeight = max(DpSlHeight,[],2);

0057 InData.Excel.Slices.DpSlDensity = DpSlDensity; %Density of slices

0058 InData.Excel.Slices.DpSlTons = DpSlTons; %Tonnages of slices

file:///D:/Drive/Thesis/Matlab/Codes/doc/1_Importing/C_Import_Slices.html%23_subfunctions

A3 C_Import_Slices

109

0059 InData.Excel.Slices.DpSlCU = DpSlCU; %Copper Grade of slices

0060 % InData.Excel.Slices.DpSlAU = DpSlAU; %Gold grade of slices

0061 InData.Parameters.NumberOfX = sum(SliceNumMat);

0062 %******Save Original slice file data separately before replacing it with

Clusters***********

0063 InData.Parameters.Original.SliceNumMat = SliceNumMat;

0064 InData.Excel.Original.Slices.DpSlHeight = DpSlHeight; %Height of slices

0065 InData.Excel.Original.Slices.DpHeight = max(DpSlHeight,[],2);

0066 InData.Excel.Original.Slices.DpSlDensity = DpSlDensity; %Density of

slices

0067 InData.Excel.Original.Slices.DpSlTons = DpSlTons; %Tonnages of slices

0068 InData.Excel.Original.Slices.DpSlCU = DpSlCU; %Copper Grade of slices

0069 % InData.Excel.Original.Slices.DpSlAU = DpSlAU; %Gold grade of slices

0070 %==

0071 save ('Data/InData','InData');

0072

0073 end

0074 %==%%%%%%%%%%%%%%

0075 %==%%%%%%%%%%%%%%

0076 % The End %%%%%%%%%%%%%%

0077 %==%%%%%%%%%%%%%%

0078 %==%%%%%%%%%%%%%%

110

A4. E_ScenarioGenerator_HVConeMixing

0001 %==%%%%%%%%%%%%%%

0002 %==%%%%%%%%%%%%%%

0003 % University of Alberta %%%%%%%%%%%%%%

0004 % Department of Civil and Environmental Engineering %%%%%%%%%%%%%%

0005 % School of Mining and Petroleum Engineering %%%%%%%%%%%%%%

0006 % This program was written by: Firouz Khodayari, %%%%%%%%%%%%%%

0007 % Student ID: 1402853 %%%%%%%%%%%%%%

0008 % PhD Candidate in Mining Engineering %%%%%%%%%%%%%%

0009 %==%%%%%%%%%%%%%%

0010 %==%%%%%%%%%%%%%%

0011

0012 function E_ScenarioGenerator_HVConeMixing

0013

0014 %This function generates both grade and tonnage scenarios by sampling form

0015 %grade and tonnage original data from drawpoints and their adjacent ones

0016 %which means both vertical and horizontal dilutions (movements) are

0017 %considered at the same time

0018 %==

0019 load('Data/Param.mat'); %Loading the input parameters

0020 load('Data/InData.mat');

0021 if exist('Data/ModelF.mat')== 2

0022 load('Data/ModelF.mat');

0023

0024 else

0025 end

0026 T = Param.T; %number of periods

0027 N = InData.Parameters.N; %number of drawpoints(draw columns)

0028 X_DPs = InData.Excel.DPs.X;

0029 Y_DPs = InData.Excel.DPs.Y;

0030 AdjRadius = Param.AdjRadius;

0031 NumberOfX = InData.Parameters.NumberOfX;

0032 ScenNum = Param.ScenNum;

0033 SliceNumMat = InData.Parameters.SliceNumMat; %the Matrix which shows how many

slices are in each drawcolumn

0034 Ton = InData.Excel.Slices.DpSlTons; %Height of Clusters

0035 Density = InData.Excel.Slices.DpSlDensity; %Tonnages of Clusters

0036 Grade = InData.Excel.Slices.DpSlCU; %Copper Grade of Clusters

0037 DpSlHeight = InData.Excel.Slices.DpSlHeight;

0038 HD = Param.HD; %Mixing Parameter ********************

0039 VSA = Param.VSA; %Mixing Parameter ********************

0040 X_DPs_Vvector = InData.Excel.DPs.X;

0041 Y_DPs_Vvector = InData.Excel.DPs.Y;

0042

0043 X_DPs_Hvector = X_DPs_Vvector';

0044 Y_DPs_Hvector = Y_DPs_Vvector';

0045 %***

0046

0047 %###

0048 %Distance Calculator (finding teh adjacent drawpoints for each drawpoint)

0049 %###

0050

0051 %=== calculating distance between

drawpoints in X direction, Craete dX^2

0052 X_DPS_1 = repmat(X_DPs_Hvector,N,1);

0053 X_DPS_2 = repmat(X_DPs_Vvector,1,N);

0054

0055 dX = (X_DPS_1)-(X_DPS_2);

0056 dX_square = dX.^2;

0057

file:///D:/Drive/Thesis/Matlab/Codes/doc/1_Importing/E_ScenarioGenerator_HVConeMixing.html%23_subfunctions

A4 E_ScenarioGenerator_HVConeMixing

111

0058 %=== calculating distance between

drawpoints in Y direction, Craete dY^2

0059 Y_DPS_1 = repmat(Y_DPs_Hvector,N,1);

0060 Y_DPS_2 = repmat(Y_DPs_Vvector,1,N);

0061

0062 dY = (Y_DPS_1)-(Y_DPS_2);

0063 dY_square = dY.^2;

0064

0065 %=== DISTANCE^2=dX^2+dY^2

0066 Distance_square = dX_square+dY_square;

0067

0068 %=== Distance between darwpoints

0069 Distance_DPs = sqrt(Distance_square);

0070 %###

0071 Adjacents = [];

0072 Adjacents = cell(N,1);

0073 for iloop = 1:N

0074 temp = find(Distance_DPs(iloop,:)<=AdjRadius & Distance_DPs(iloop,:)>0);

0075 %indices(i,1:numel(temp)) = temp;

0076 temp = [iloop,temp];

0077 Adjacents{iloop,1} = temp;

0078 end

0079 %Tonnage and Grade***

0080 SlcCnt = 0;

0081 TempMat0 = zeros(1,T*NumberOfX);

0082 SumTempGrade = zeros(size(Grade,1),size(Grade,2));

0083 SumTempTon = zeros(size(Ton,1),size(Ton,2));

0084 for dp = 1:N

0085 DpAdj = Adjacents{dp,1};

0086 for Slc = 1:SliceNumMat(dp,1);

0087 cx = X_DPs(dp,1);

0088 cy = Y_DPs(dp,1);

0089 cz = DpSlHeight(dp,Slc)-(DpSlHeight(dp,1)/2);

0090 r0 = 0;

0091 rh = HD;

0092 h = rh/tand(VSA);

0093 SlcCnt = SlcCnt + 1;

0094 SlcAdjCnt = 0;

0095 %===============================

0096 for AdjCount = 1:numel(DpAdj)

0097 Adjtemp = DpAdj(1, AdjCount);

0098 for SlcAdj = 1:SliceNumMat(Adjtemp,1);

0099 px = X_DPs(Adjtemp,1);

0100 py = Y_DPs(Adjtemp,1);

0101 pz = DpSlHeight(Adjtemp,SlcAdj)-(DpSlHeight(Adjtemp,1)/2);

0102 if (h^2)*((px-cx)^2)+(h^2)*((py-cy)^2) <= ((h-pz)*r0+pz*rh)^2

&& pz <= cz + h

0103 SlcAdjCnt = SlcAdjCnt + 1;

0104 DataGrade(SlcCnt,SlcAdjCnt) = Grade(Adjtemp,SlcAdj);

0105 DataDensity(SlcCnt,SlcAdjCnt) = Density(Adjtemp,SlcAdj);

0106 else

0107 %Nothing

0108 end

0109 end

0110 end

0111 TempGrade = datasample(DataGrade(SlcCnt,1:SlcAdjCnt),ScenNum);

0112 TempDensity =

datasample(DataDensity(SlcCnt,1:SlcAdjCnt),ScenNum);

0113 for jloop = 1:ScenNum

0114 eval(sprintf('Scenarios.Grade.GradeScen%d(dp,Slc) =

TempGrade(jloop)',jloop));

0115 eval(sprintf('Scenarios.Ton.TonScen%d(dp,Slc) =

TempDensity(jloop)*((Ton(dp,Slc))/(Density(dp,Slc)))',jloop));

A4 E_ScenarioGenerator_HVConeMixing

112

0116 SumTempGrade(dp,Slc) = SumTempGrade(dp,Slc) +

TempGrade(jloop);

0117 SumTempTon(dp,Slc) = SumTempTon(dp,Slc) +

(TempDensity(jloop)*((Ton(dp,Slc))/(Density(dp,Slc))));

0118 end

0119 end

0120 end

0121

0122 EGrade = SumTempGrade./ScenNum;

0123 ETon = SumTempTon./ScenNum;

0124 GradeVarMat = zeros(1,NumberOfX);

0125 EGradeVarMat = zeros(1,NumberOfX);

0126 TonVarMat = zeros(1,NumberOfX);

0127 ETonVarMat = zeros(1,NumberOfX);

0128 VarCount1 = 0;

0129 VarCount2 = 0;

0130 for tloop = 1:T

0131

0132 for iloop = 1:N

0133 VarCount2 = VarCount2 + SliceNumMat(iloop,1);

0134 if tloop ==1

0135 TonVarMat(1,VarCount1+1:VarCount2) =

Ton(iloop,1:SliceNumMat(iloop,1));

0136 GradeVarMat(1,VarCount1+1:VarCount2) =

Grade(iloop,1:SliceNumMat(iloop,1));

0137 EGradeVarMat(1,VarCount1+1:VarCount2) =

EGrade(iloop,1:SliceNumMat(iloop,1));

0138 ETonVarMat(1,VarCount1+1:VarCount2) =

ETon(iloop,1:SliceNumMat(iloop,1));

0139 for jloop = 1:ScenNum

0140 TempMatGrade2 =

Scenarios.Grade.(['GradeScen',num2str(jloop)])(iloop,1:SliceNumMat(iloop,1));

0141

eval(sprintf('Scenarios.Grade.GradeScenVarMat%d(1,VarCount1+1:VarCount2) =

TempMatGrade2',jloop));

0142 TempMatTon2 =

Scenarios.Ton.(['TonScen',num2str(jloop)])(iloop,1:SliceNumMat(iloop,1));

0143

eval(sprintf('Scenarios.Ton.TonScenVarMat%d(1,VarCount1+1:VarCount2) =

TempMatTon2',jloop));

0144 end

0145 else

0146 end

0147 VarCount1 = VarCount1 + SliceNumMat(iloop,1);

0148

0149 end

0150 end

0151 ModelF.Inputs.TonVarMat = TonVarMat;

0152 ModelF.Inputs.GradeVarMat = GradeVarMat;

0153 ModelF.Inputs.Scenarios.Grade.EGradeVarMat = EGradeVarMat;

0154 ModelF.Inputs.Scenarios.Ton.ETonVarMat = ETonVarMat;

0155 ModelF.Inputs.Scenarios.Grade.Scen = Scenarios.Grade;

0156 ModelF.Inputs.Scenarios.Grade.EGrade = EGrade;

0157 ModelF.Inputs.Scenarios.Ton.Scen = Scenarios.Ton;

0158 ModelF.Inputs.Scenarios.Ton.ETon = ETon;

0159 ModelF.Inputs.Scenarios.ScenNum = ScenNum;

0160 ModelF.Inputs.Adjacents = Adjacents;

0161 save ('Data/InData','InData');

0162 save('Data/ModelF','ModelF');

0163 end

0164 %==%%%%%%%%%%%%%%

0165 %==%%%%%%%%%%%%%%

0166 % The End %%%%%%%%%%%%%%

A4 E_ScenarioGenerator_HVConeMixing

113

0167 %==%%%%%%%%%%%%%%

0168 %==%%%%%%%%%%%%%%

114

A5. F_MiningDirectionEvaluation

0001 %==%%%%%%%%%%%%%%

0002 %==%%%%%%%%%%%%%%

0003 % University of Alberta %%%%%%%%%%%%%%

0004 % Department of Civil and Environmental Engineering %%%%%%%%%%%%%%

0005 % School of Mining and Petroleum Engineering %%%%%%%%%%%%%%

0006 % This program was written by: Firouz Khodayari, %%%%%%%%%%%%%%

0007 % Student ID: 1402853 %%%%%%%%%%%%%%

0008 % PhD Candidate in Mining Engineering %%%%%%%%%%%%%%

0009 %==%%%%%%%%%%%%%%

0010 %==%%%%%%%%%%%%%%

0011

0012 function F_MiningDirectionEvaluation

0013

0014 load('Data/Param.mat');

0015 load('Data/InData.mat');

0016 if exist('Data/ModelF.mat')== 2

0017 load('Data/ModelF.mat');

0018 else

0019 end

0020 T = Param.T;

0021 N = InData.Parameters.N;

0022 Adjacents = ModelF.Inputs.Adjacents;

0023 DEV = InData.Excel.DPs.DEV;

0024

0025 PB = zeros(N,1);

0026 for i = 1:N

0027

0028 PB(i,1) = sum(DEV(Adjacents{i,1}))+DEV(i,1);

0029

0030 end

0031

0032 InData.PB = PB;

0033 save('Data/ModelF','ModelF');

0034 save('Data/InData','InData');

0035 Plot_PB_DEV

0036 end

0037 %==%%%%%%%%%%%%%%

0038 %==%%%%%%%%%%%%%%

0039 % The End %%%%%%%%%%%%%%

0040 %==%%%%%%%%%%%%%%

0041 %==%%%%%%%%%%%%%%

file:///D:/Drive/Thesis/Matlab/Codes/doc/1_Importing/F_MiningDirectionEvaluation.html%23_subfunctions

115

A6. ObjectiveFunction_MILP_Stoch

0001 %==%%%%%%%%%%%%%%

0002 %==%%%%%%%%%%%%%%

0003 % University of Alberta %%%%%%%%%%%%%%

0004 % Department of Civil and Environmental Engineering %%%%%%%%%%%%%%

0005 % School of Mining and Petroleum Engineering %%%%%%%%%%%%%%

0006 % This program was written by: Firouz Khodayari, %%%%%%%%%%%%%%

0007 % Student ID: 1402853 %%%%%%%%%%%%%%

0008 % PhD Candidate in Mining Engineering %%%%%%%%%%%%%%

0009 %==%%%%%%%%%%%%%%

0010 %==%%%%%%%%%%%%%%

0011

0012 function ObjectiveFunction_MILP_Stoch

0013

0014 %This function is used to create the coefficient matrix of the objective

0015 %function and save it in the MATLAB structure

0016 %###

0017 % Minimize sum(sum(Absolute(tonij-ton0ij))) ===> Minimize sum(sum(Zij))

0018 % ModelF format: fval = C'*x #

0019 %###

0020 load('Data/Param.mat');

0021 load('Data/InData.mat');

0022 if exist('Data/ModelF.mat')== 2

0023 load('Data/ModelF.mat');

0024 else

0025 end

0026

0027 T = Param.T;

0028 N = InData.Parameters.N;

0029 ScenariosTon = ModelF.Inputs.Scenarios.Ton;

0030 ScenariosGrade = ModelF.Inputs.Scenarios.Grade;

0031 price = Param.price;

0032 ton = InData.Excel.Slices.DpSlTons;

0033 grade = InData.Excel.Slices.DpSlCU;

0034 rec = Param.recovery;

0035 cost = Param.cost;

0036 r = Param.Intrate;

0037 SliceNumMat = InData.Parameters.SliceNumMat;

0038 NumberOfX = InData.Parameters.NumberOfX;

0039 %Parameters

0040 MiningCapacity_st = Param.Mst*1000000; %Starting production rate or mining

capacity (based on production Curve)

0041 MiningCapacity_max = Param.Mmax*1000000; %Maximum production rate or mining

capacity

0042 RampUpTime = Param.RampUpTime; %Ramp Up time for the production schedule

0043 ScenNum = Param.ScenNum;

0044 GradeDevCost = Param.GradeDevCost;

0045 TonDevCost = Param.TonDevCost;

0046 TarGrade = Param.TarGrade;

0047 MiningCapacity_st = Param.Mst*1000000; %Starting production rate or mining

capacity (based on production Curve)

0048 MiningCapacity_max = Param.Mmax*1000000; %Maximum production rate or mining

capacity

0049 RampUpTime = Param.RampUpTime; %Ramp Up time for the production schedule

0050 %@@@@@@@@@@@

0051 TonVarMat = ModelF.Inputs.TonVarMat;

0052 GradeVarMat = ModelF.Inputs.GradeVarMat;

0053 EGradeVarMat = ModelF.Inputs.Scenarios.Grade.EGradeVarMat;

0054 ETonVarMat = ModelF.Inputs.Scenarios.Ton.ETonVarMat;

0055 ETon = ModelF.Inputs.Scenarios.Ton.ETon;

0056 EGrade = ModelF.Inputs.Scenarios.Grade.EGrade;

file:///D:/Drive/Thesis/Matlab/Codes/doc/2_ObjectiveFunction/ObjectiveFunction_MILP_Stoch.html%23_subfunctions

A6 ObjectiveFunction_MILP_Stoch

116

0057

0058 %@@@@@@@@@@@@

0059 %Target Tonnage

0060 for tloop = 1:T

0061 if tloop <= RampUpTime

0062 TarTon(tloop,1) = ((MiningCapacity_max - MiningCapacity_st)/(RampUpTime -

1))*(tloop - 1) + MiningCapacity_st;

0063 elseif tloop > T-RampUpTime

0064 TarTon(tloop,1) = ((MiningCapacity_st - MiningCapacity_max)/(RampUpTime -

1))*(tloop - (T-RampUpTime+1)) + MiningCapacity_max;

0065 else

0066 TarTon(tloop,1) = MiningCapacity_max;

0067 end

0068 end

0069 TarMetalCont = TarGrade*TarTon;

0070

0071 %Creating the Objective Funcion Matrix

0072 f = zeros(1,(T*NumberOfX)+(2*T*N)+(4*T*ScenNum));

0073 % f2 = zeros(1,2*T*ScenNum);

0074

0075 VarCount1 = 0;

0076 VarCount2 = 0;

0077 for tloop = 1:T

0078

0079 for iloop = 1:N

0080 VarCount2 = VarCount2 + SliceNumMat(iloop,1);

0081 %****

0082 for sloop = 1:ScenNum

0083 TempTon = ScenariosTon.Scen.(['TonScen',num2str(sloop)]);

0084 TempGrade = ScenariosGrade.Scen.(['GradeScen',num2str(sloop)]);

0085

0086 f(1,VarCount1+1:VarCount2) =

(1/ScenNum)*(((price*rec.*(TempGrade(iloop,1:SliceNumMat(iloop,1))/100).*TempTon(iloop

,1:SliceNumMat(iloop,1))))-

(cost.*TempTon(iloop,1:SliceNumMat(iloop,1))))/((1+r)^tloop); %creating coefficient

matrix for the objective function

0087 %8888

0088 % f(1,VarCount1+1:VarCount2) =

(((price*rec.*(EGrade(iloop,1:SliceNumMat(iloop,1))/100).*ETon(iloop,1:SliceNumMat(ilo

op,1))))-(cost.*ETon(iloop,1:SliceNumMat(iloop,1))))/((1+r)^tloop); %creating

coefficient matrix for the objective function

0089 end

0090 VarCount1 = VarCount1 + SliceNumMat(iloop,1);

0091

0092 end

0093 end

0094

0095 for tloop = 1:T

0096 for iloop = 1:ScenNum

0097

0098 f(1,(T*NumberOfX)+(2*T*N)+(tloop-1)*ScenNum+iloop) = -

(GradeDevCost/ScenNum)/((1+r)^tloop); %Deviation for lowerbound

0099 f(1,(T*NumberOfX)+(2*T*N)+(T*ScenNum)+(tloop-

1)*ScenNum+iloop) = -(GradeDevCost/ScenNum)/((1+r)^tloop); %Deviation for Upperbound

0100 f(1,(T*NumberOfX)+(2*T*N)+(2*T*ScenNum)+(tloop-

1)*ScenNum+iloop) = -(TonDevCost/ScenNum)/((1+r)^tloop); %Deviation for lowerbound

0101 f(1,(T*NumberOfX)+(2*T*N)+(3*T*ScenNum)+(tloop-

1)*ScenNum+iloop) = -(TonDevCost/ScenNum)/((1+r)^tloop); %Deviation for Upperbound

0102

0103 end

0104 end

0105 ModelF.Inputs.Obj.f = f';

0106 CounterTemp = 1;

A6 ObjectiveFunction_MILP_Stoch

117

0107 DrawID = zeros(N,1);

0108 for iloop = 1:N

0109 DrawID(iloop,1) = CounterTemp;

0110 CounterTemp = CounterTemp + SliceNumMat(iloop,1);

0111 end

0112 ModelF.Inputs.DrawID = DrawID;

0113 ModelF.Inputs.TarMetalCont = TarMetalCont;

0114 InData.Parameters.NumberOfX = NumberOfX;

0115 save('Data/ModelF','ModelF');

0116 save('Data/InData','InData');

0117

0118 end

0119 %==%%%%%%%%%%%%%%

0120 %==%%%%%%%%%%%%%%

0121 % The End %%%%%%%%%%%%%%

0122 %==%%%%%%%%%%%%%%

0123 %==%%%%%%%%%%%%%%

118

A7. Const_ActiveDrawpoints

0001 %==%%%%%%%%%%%%%%

0002 %==%%%%%%%%%%%%%%

0003 % University of Alberta %%%%%%%%%%%%%%

0004 % Department of Civil and Environmental Engineering %%%%%%%%%%%%%%

0005 % School of Mining and Petroleum Engineering %%%%%%%%%%%%%%

0006 % This program was written by: Firouz Khodayari, %%%%%%%%%%%%%%

0007 % Student ID: 1402853 %%%%%%%%%%%%%%

0008 % PhD Candidate in Mining Engineering %%%%%%%%%%%%%%

0009 %==%%%%%%%%%%%%%%

0010 %==%%%%%%%%%%%%%%

0011

0012 function Const_ActiveDrawpoints

0013 %This function creates the coefficient matrices for number of active

0014 %drawpoints in order to control the number of operating drawpoints for each

0015 %period

0016

0017 %##

0018 % Number of Active Drawpoints #

0019 %##

0020 %***

0021 % for each t =======> ActMin <= sum(Y1) <= ActMax

0022 %***

0023 load('Data/Param.mat'); %Loading the input parameters

0024 load('Data/InData.mat');

0025 if exist('Data/ModelF.mat')== 2

0026 load('Data/ModelF.mat');

0027 else

0028 end

0029

0030 T = Param.T; %number of periods

0031 N = InData.Parameters.N; %number of drawpoints(draw columns)

0032 NumberOfX = InData.Parameters.NumberOfX;

0033 DrawID = ModelF.Inputs.DrawID;

0034 ScenNum = Param.ScenNum;

0035

0036 %**********************%****

0037 %***********************%***

0038 NoOfActiveDP_min = Param.Actmin; %Minimum number of active drawpoints per

period

0039 NoOfActiveDP_max = Param.Actmax; %Maximum number of active drawpoints per

period

0040 %**********************%****

0041 %*********************%*****

0042 ModelF.Inputs.Parameters.NoOfActiveDP_min = NoOfActiveDP_min;

0043 ModelF.Inputs.Parameters.NoOfActiveDP_max = NoOfActiveDP_max;

0044 %*********************%*****

0045 DpActVar = sparse(T,T*N);

0046 for tloop = 1:T;

0047 DpActVar(tloop,(tloop-1)*N+1:tloop*N) = 1;

0048 end

0049 % aa = full(DpActVar);

0050 ModelF.Inputs.Constraints.Parameters.DpActVar = DpActVar; %Drawpoint Activation

Variable per period, if a drawpoint has extraction using it's column, then it is

active

0051

0052 Aeq_p1 = sparse(T,T*NumberOfX);

0053 Aeq_p2 = DpActVar;

0054 Aeq_p3 = sparse(T,T*N);

0055 Aeq_p4 = sparse(T,4*T*ScenNum);

0056

file:///D:/Drive/Thesis/Matlab/Codes/doc/3_Constraints/Const_ActiveDrawpoints.html%23_subfunctions

A7 Const_ActiveDrawpoints

119

0057 Aineq_ActiveDrawPoints = [Aeq_p1,Aeq_p2,Aeq_p3,Aeq_p4]; %Left hand side, the

maximum number of active drawpints per each period of t

0058 bineq_ActiveDrawPoints_U = NoOfActiveDP_max * ones(T,1); % right hand sidethe

maximum number of active drawpints per each period of t

0059 bineq_ActiveDrawPoints_L = NoOfActiveDP_min * ones(T,1); % right hand sidethe

maximum number of active drawpints per each period of t

0060

0061 ModelF.Inputs.Constraints.Aineq_ActiveDrawPoints = Aineq_ActiveDrawPoints; % the

left hand side matrix for the Number of Active Drawpoints constrain

0062 save('Data/ModelF','ModelF');

0063

0064 ModelF.Inputs.Constraints.bineq_ActiveDrawPoints_U = bineq_ActiveDrawPoints_U; %

the Right hand side matrix for the Number of Active Drawpoints

0065 ModelF.Inputs.Constraints.bineq_ActiveDrawPoints_L = bineq_ActiveDrawPoints_L; %

the Left hand side matrix for the Number of Active Drawpoints

0066

0067 save('Data/ModelF','ModelF');

0068

0069 end

0070 %==%%%%%%%%%%%%%%

0071 %==%%%%%%%%%%%%%%

0072 % The End %%%%%%%%%%%%%%

0073 %==%%%%%%%%%%%%%%

74 %==%%%%%%%%%%%%%%

120

A8. Const_Binary_Slc

0001 %==%%%%%%%%%%%%%%

0002 %==%%%%%%%%%%%%%%

0003 % University of Alberta %%%%%%%%%%%%%%

0004 % Department of Civil and Environmental Engineering %%%%%%%%%%%%%%

0005 % School of Mining and Petroleum Engineering %%%%%%%%%%%%%%

0006 % This program was written by: Firouz Khodayari, %%%%%%%%%%%%%%

0007 % Student ID: 1402853 %%%%%%%%%%%%%%

0008 % PhD Candidate in Mining Engineering %%%%%%%%%%%%%%

0009 %==%%%%%%%%%%%%%%

0010 %==%%%%%%%%%%%%%%

0011

0012 function Const_Binary_Slc

0013 %This function creates the coefficient matrices for the binary variables in the

model

0014 % 4 set of binary variables are defined in order to be able to define the

0015 % related constraints for the Mixed Integer Quadratic Programming (MIQP)

0016 % Model:

0017

0018 %{Y1} Set 1: variables (T*NumberOfX)+1 to (2*T*NumberOfX)

0019 %this set determines if the slice i is active in period t or not so

0020 %that if there is extraction in that (x>0) then Y1=1 and if

0021 %there is no extraction (x=0) then Y1=0

0022 %{Y2} Set 2: Variables (2*T*NumberOfX)+1 to 3*T*NumberOfX

0023 %this set determines if the drawpoint i is active in period t or not so

0024 %that if there is extraction in that (x>0) then Y2=1 and if

0025 %there is no extraction (x=0) then Y2=0

0026 %{Y3} Set 3: Variables (3*T*NumberOfX)+1 to 4*T*NumberOfX

0027 %this set determines if drawpoint i has started its production or not. In

other words the depletion percentage of drawpoint i in period t is 0 or not

0028 %if the depletion percentage is 0 (DP=0) then Y3=0 and if depletion

0029 %percentage is greater than 0 (DP>0) then Y3=1

0030 %depletion percentage (DP) is the summation of the x values for drawpoint i

from

0031 %period 1 till period t

0032

%***

0033 load('Data/Param.mat'); %Loading the input parameters

0034 load('Data/InData.mat');

0035 if exist('Data/ModelF.mat')== 2

0036 load('Data/ModelF.mat');

0037 else

0038 end

0039

0040 T = Param.T; %number of periods

0041 N = InData.Parameters.N; %number of drawpoints(draw columns)

0042 NumberOfX = InData.Parameters.NumberOfX;

0043 SliceNumMat = InData.Parameters.SliceNumMat; %the Matrix which shows how many

slices are in each drawcolumn

0044 DrawID = ModelF.Inputs.DrawID;

0045 ScenNum = Param.ScenNum;

0046

0047 %***

0048 %Parameters

0049 M = Param.M; %an arbitrary big number

0050

0051 % %##

0052 % % Set 1 ===> Active Slices (Sls) #

0053 % %##

0054 % %***************************************

file:///D:/Drive/Thesis/Matlab/Codes/doc/3_Constraints/Const_Binary_Slc.html%23_subfunctions

A8 Const_Binary_Slc

121

0055 % % eq1 =======> y1-M1x <=0

0056 % % eq2 =======> x-M*y1<=0

0057 % %***************************************

0058 % %Left hand sides

0059 % Aeq_S1_eq1_p1 = (-M)*speye(T*NumberOfX); % -M*x

0060 % Aeq_S1_eq1_p2 = speye(T*NumberOfX); % y1

0061 % Aeq_S1_eq1_p3 = sparse(T*NumberOfX,T*NumberOfX);

0062 % Aeq_S1_eq1_p4 = sparse(T*NumberOfX,T*NumberOfX);

0063 % Aeq_S1_eq1_p5 = sparse(T*NumberOfX,2*T*ScenNum);

0064 %

0065 % Aeq_S1_eq2_p1 = speye(T*NumberOfX); % x

0066 % Aeq_S1_eq2_p2 = (-M)*speye(T*NumberOfX); % -M*y1

0067 % Aeq_S1_eq2_p3 = sparse(T*NumberOfX,T*NumberOfX);

0068 % Aeq_S1_eq2_p4 = sparse(T*NumberOfX,T*NumberOfX);

0069 % Aeq_S1_eq2_p5 = sparse(T*NumberOfX,2*T*ScenNum);

0070 %

0071 % %concatination

0072 % Aeq_S1_eq1 =

[Aeq_S1_eq1_p1,Aeq_S1_eq1_p2,Aeq_S1_eq1_p3,Aeq_S1_eq1_p4,Aeq_S1_eq1_p5]; % y1-Mx <=0

0073 % Aeq_S1_eq2 =

[Aeq_S1_eq2_p1,Aeq_S1_eq2_p2,Aeq_S1_eq2_p3,Aeq_S1_eq2_p4,Aeq_S1_eq2_p5]; % x-y1 <=0

0074 %

0075 % %Right hand sides

0076 % beq_S1_eq1 = sparse(T*NumberOfX,1); %right hand side matrix for the first

equation y1-Mx <=0

0077 % beq_S1_eq2 = sparse(T*NumberOfX,1); %right hand side matrix for the second

equation x-y1 <=0

0078

0079 %##

0080 % Set 2 ===> Active DrawPoints (DPs) #

0081 %##

0082 %***************************************

0083 % eq1 =======> y2-Mx <=0

0084 % eq2 =======> x-M*y2<=0

0085 %***************************************

0086 %##

0087 % PRECALCULATIONS for the rest of the binary variables

0088 %##

0089 %Defining the required matrix to calculate the Depletion Percentage for each

0090 %drawpoint at each periodDDP = sparse(T*N,T*NumberOfX); %DP = sum(x) , for t <=

ti

0091 Y3MAT = sparse(T*N,T*NumberOfX);

0092 VarCount1 = 0;

0093 VarCount2 = 0;

0094 Y2MATTemp = sparse(N,NumberOfX);

0095 DDPtemp = sparse(N,NumberOfX);

0096 for iloop = 1:N;

0097 VarCount2 = VarCount2 + SliceNumMat(iloop,1);

0098 DDPtemp(iloop,VarCount1+1:VarCount2) = 1;

0099 Y2MATTemp(iloop,VarCount1+1) = 1;

0100 VarCount1 = VarCount1 + SliceNumMat(iloop,1);

0101 end

0102 DpActTemp = eye(N);

0103 bb = eye(T);

0104 DpAct = kron(bb,DpActTemp);

0105 Y2MAT = kron(bb,Y2MATTemp);

0106 XMAT = kron(bb,DDPtemp);

0107 DDP = sparse(T*N,T*N);

0108 for tloop = 1:T

0109 a = sparse(tloop:T,1:T-tloop+1,1,T,T);

0110 dptloop = kron(a,DpActTemp);

0111 DDP = DDP + dptloop;

0112 end

A8 Const_Binary_Slc

122

0113 cc = eye(T);

0114 DpStart = kron(cc,DpActTemp);

0115 Y3MAT = kron(cc,Y2MATTemp);

0116 %*****

0117 %Left hand sides

0118 Aeq_S2_eq1_p1 = -M*XMAT; % -M1*x

0119 Aeq_S2_eq1_p2 = DpAct; % y2

0120 Aeq_S2_eq1_p3 = sparse(T*N,T*N);

0121 Aeq_S2_eq1_p4 = sparse(T*N,4*T*ScenNum);

0122

0123 Aeq_S2_eq2_p1 = XMAT; % x

0124 Aeq_S2_eq2_p2 = (-M)*DpAct; % -M*y2

0125 Aeq_S2_eq2_p3 = sparse(T*N,T*N);

0126 Aeq_S2_eq2_p4 = sparse(T*N,4*T*ScenNum);

0127

0128 %concatination

0129 Aeq_S2_eq1 = [Aeq_S2_eq1_p1,Aeq_S2_eq1_p2,Aeq_S2_eq1_p3,Aeq_S2_eq1_p4]; % y1-Mx

<=0

0130 Aeq_S2_eq2 = [Aeq_S2_eq2_p1,Aeq_S2_eq2_p2,Aeq_S2_eq2_p3,Aeq_S2_eq2_p4]; % x-y1

<=0

0131

0132 %Right hand sides

0133 beq_S2_eq1 = sparse(T*N,1); %right hand side matrix for the first equation y1-Mx

<=0

0134 beq_S2_eq2 = sparse(T*N,1); %right hand side matrix for the second equation x-y1

<=0

0135

0136 % %##

0137 % Set 3 ===> Has the DP been opened? #

0138 % %##

0139 % %***************************************

0140 % % DDP <= y =====> DDP - M*y3 <= 0

0141 % % y <= M*DDP =====> y3 - M*DDP <= 0

0142 % %***************************************

0143

0144 Aeq_S3_eq1_p1 = sparse(T*N,T*NumberOfX); %DPP This has to be only for drawpoints

not for columns, because we will be using that for the precedence constraint!

0145 Aeq_S3_eq1_p2 = DDP;

0146 Aeq_S3_eq1_p3 = -M*DpStart; % -y3

0147 Aeq_S3_eq1_p4 = sparse(T*N,4*T*ScenNum);

0148

0149

0150 Aeq_S3_eq2_p1 = sparse(T*N,T*NumberOfX);

0151 Aeq_S3_eq2_p2 = -M*DDP; % -(M*DDP)

0152 Aeq_S3_eq2_p3 = DpStart; % y3

0153 Aeq_S3_eq2_p4 = sparse(T*N,4*T*ScenNum);

0154

0155

0156 beq_S3_eq1 = sparse(T*N,1); %right hand side matrix for the first equation "DP -

y <=0"

0157 beq_S3_eq2 = sparse(T*N,1); %right hand side matrix for the second equation "y -

M*DP <= 0"

0158

0159 %concatination

0160 Aeq_S3_eq1 = [Aeq_S3_eq1_p1,Aeq_S3_eq1_p2,Aeq_S3_eq1_p3,Aeq_S3_eq1_p4]; % DP - y

<= DCF

0161 Aeq_S3_eq2 = [Aeq_S3_eq2_p1,Aeq_S3_eq2_p2,Aeq_S3_eq2_p3,Aeq_S3_eq2_p4]; % y - DP

<= (1-DCF)

0162

0163

%###

#########################

0164 %Concatinating the matrices

A8 Const_Binary_Slc

123

0165

%###

#########################

0166

0167 %creating the last matrix which is the concatenation of all constraints

0168 %related to the binary variables for 0 and 1 situations

0169

0170 Aineq_Binary = [Aeq_S2_eq1;Aeq_S2_eq2;Aeq_S3_eq1;Aeq_S3_eq2];

0171 bineq_Binary_U = [beq_S2_eq1;beq_S2_eq2;beq_S3_eq1;beq_S3_eq2];

0172 SizeTemp = size(bineq_Binary_U,1);

0173 bineq_Binary_L = -inf*ones(SizeTemp,1);

0174 ModelF.Inputs.Constraints.Aineq_Binary = Aineq_Binary;

0175 ModelF.Inputs.Constraints.bineq_Binary_U = bineq_Binary_U;

0176 ModelF.Inputs.Constraints.bineq_Binary_L = bineq_Binary_L;

0177

0178 %Saving

0179 save('Data/ModelF','ModelF');

0180 end

0181 %==%%%%%%%%%%%%%%

0182 %==%%%%%%%%%%%%%%

0183 % The End %%%%%%%%%%%%%%

0184 %==%%%%%%%%%%%%%%

0185 %==%%%%%%%%%%%%%%

124

A9. Const_ContinuousMining

0001 %==%%%%%%%%%%%%%%

0002 %==%%%%%%%%%%%%%%

0003 % University of Alberta %%%%%%%%%%%%%%

0004 % Department of Civil and Environmental Engineering %%%%%%%%%%%%%%

0005 % School of Mining and Petroleum Engineering %%%%%%%%%%%%%%

0006 % This program was written by: Firouz Khodayari, %%%%%%%%%%%%%%

0007 % Student ID: 1402853 %%%%%%%%%%%%%%

0008 % PhD Candidate in Mining Engineering %%%%%%%%%%%%%%

0009 %==%%%%%%%%%%%%%%

0010 %==%%%%%%%%%%%%%%

0011

0012 function Const_ContinuousMining

0013

0014 %This function is going to control the continuous mining operation for drawpoints

0015 %*******************

0016 %loading the matlab file (InData.mat) which contains the input data that we are

going to use for defining this constraint

0017 %loading the matlab file (ModelF.mat) if it exists to save the built matrixin

that.

0018 %depends on the order in which we run the constraints and objective function

functionsthis file may exist or not, so we use if function

0019 load('Data/Param.mat'); %Loading the input parameters

0020 load('Data/InData.mat');

0021 if exist('Data/ModelF.mat')== 2

0022 load('Data/ModelF.mat');

0023 else

0024 end

0025

0026 %Calling the related inputs

0027 T = Param.T; %number of periods

0028 N = InData.Parameters.N; %number of drawpoints(draw columns)

0029 NumberOfX = InData.Parameters.NumberOfX;

0030 DrawID = ModelF.Inputs.DrawID;

0031 ScenNum = Param.ScenNum;

0032

0033 %**

0034

0035 ContinMin1 = sparse((T-1)*N,T*N);

0036 ContinMin2 = sparse((T-1)*N,T*N);

0037

0038 for tloop = 1:T-1

0039 for iloop = 1:N

0040 ContinMin1((tloop-1)*N+iloop,(tloop-1)*N+iloop) = -1; %One period before

0041 ContinMin1((tloop-1)*N+iloop,(tloop-1)*N+N+iloop) = 1; %Same period

0042 ContinMin2((tloop-1)*N+iloop,(tloop-1)*N+iloop) = 1; %Same period

0043 end

0044 end

0045 temp = sparse(N,T*N);

0046 ContinMin1 = [temp;ContinMin1];

0047 ContinMin2 = [temp;ContinMin2];

0048

0049 %##

0050 % Continuous Mining Constraint #

0051 %##

0052 %***************************************

0053 % Y2(t) <= Y2(t-1) + (1-Y3(t)) =====> Y2(t) - Y2(t-1) + Y3(t-1)) <= 1

0054 %***************************************

0055 %Left hand sides

0056 Aeq_p1 = sparse(T*N,T*NumberOfX);

0057 Aeq_p2 = ContinMin1; % Y1(t)-Y1(t-1)

file:///D:/Drive/Thesis/Matlab/Codes/doc/3_Constraints/Const_ContinuousMining.html%23_subfunctions

A9 Const_ContinuousMining

125

0058 Aeq_p3 = ContinMin2 ; %Y3(t-1)

0059 Aeq_p4 = sparse(T*N,4*T*ScenNum);

0060

0061 Aeq = [Aeq_p1,Aeq_p2,Aeq_p3,Aeq_p4];

0062

0063 %Right hand sides

0064 beq = ones(T*N,1);

0065

0066 %concatinating the matrices

0067 Aineq_ContinuousMining = Aeq; %left hand side matrix for Continuous Mining

Constraint

0068 bineq_ContinuousMining_U = beq; %right hand side matrix for Continuous Mining

Constraint

0069

0070 %Making it ready for saving

0071 ModelF.Inputs.Constraints.Aineq_ContinuousMining = Aineq_ContinuousMining;

0072 save('Data/ModelF','ModelF');

0073

0074 ModelF.Inputs.Constraints.bineq_ContinuousMining_U = bineq_ContinuousMining_U;

0075 SizeTemp = size(bineq_ContinuousMining_U,1);

0076 ModelF.Inputs.Constraints.bineq_ContinuousMining_L = -inf*ones(SizeTemp,1);

0077 save('Data/ModelF','ModelF');

0078

0079 end

0080 %==%%%%%%%%%%%%%%

0081 %==%%%%%%%%%%%%%%

0082 % The End %%%%%%%%%%%%%%

0083 %==%%%%%%%%%%%%%%

0084 %==%%%%%%%%%%%%%%

126

A10. Const_DrawLife

0001 %==%%%%%%%%%%%%%%

0002 %==%%%%%%%%%%%%%%

0003 % University of Alberta %%%%%%%%%%%%%%

0004 % Department of Civil and Environmental Engineering %%%%%%%%%%%%%%

0005 % School of Mining and Petroleum Engineering %%%%%%%%%%%%%%

0006 % This program was written by: Firouz Khodayari, %%%%%%%%%%%%%%

0007 % Student ID: 1402853 %%%%%%%%%%%%%%

0008 % PhD Candidate in Mining Engineering %%%%%%%%%%%%%%

0009 %==%%%%%%%%%%%%%%

0010 %==%%%%%%%%%%%%%%

0011

0012 function Const_DrawLife

0013

0014 %This function creates the coefficient matrices for constraint related to the

life of drawpoints

0015 %so that each drawpoint is extracted during a defined number of periods

0016 %(years)

0017 %the equation is simply as following:

0018 % for drawpoint n ===> SUM(Y1) <= MaxDrawLife, t = 1:T

0019 %in which Y1 is the first set of binary variables in the model which for each

drawpoint in each period is 1

0020 %if the drawpoint is ACTIVE and 0 if it is not.

0021

0022 %==

0023 load('Data/Param.mat'); %Loading the input parameters

0024 load('Data/InData.mat');

0025 if exist('Data/ModelF.mat')== 2

0026 load('Data/ModelF.mat');

0027

0028 else

0029 end

0030 T = Param.T; %number of periods

0031 N = InData.Parameters.N; %number of drawpoints(draw columns)

0032 NumberOfX = InData.Parameters.NumberOfX;

0033 SliceNumMat = InData.Parameters.SliceNumMat;

0034 DrawID = ModelF.Inputs.DrawID;

0035 MinDrawLife = Param.MinDrawLife;

0036 MaxDrawLife = Param.MaxDrawLife;

0037 DrawLife = sparse(N,T*N);

0038 ScenNum = Param.ScenNum;

0039

0040 Counter = 1;

0041 for iloop = 1:N

0042

0043 for tloop = 1:T

0044 DrawLife(iloop,(tloop-1)*N+iloop) = 1;

0045 end

0046 Counter = Counter + SliceNumMat(iloop,1);

0047 end

0048

0049 Aeq_p1 = sparse(N,T*NumberOfX);

0050 Aeq_p2 = DrawLife; %SUM(Y2)

0051 Aeq_p3 = sparse(N,T*N);

0052 Aeq_p4 = sparse(N,4*T*ScenNum);

0053

0054 ModelF.Inputs.Constraints.Aineq_DrawLife = [Aeq_p1,Aeq_p2,Aeq_p3,Aeq_p4];

0055 save('Data/ModelF','ModelF');

0056 bineq_DrawLife_L = -inf*ones(N,1);

0057 bineq_DrawLife_U = MaxDrawLife*ones(N,1);

0058

file:///D:/Drive/Thesis/Matlab/Codes/doc/3_Constraints/Const_DrawLife.html%23_subfunctions

A10 Const_DrawLife

127

0059 ModelF.Inputs.Constraints.bineq_DrawLife_U = bineq_DrawLife_U;

0060 ModelF.Inputs.Constraints.bineq_DrawLife_L = bineq_DrawLife_L;

0061 save('Data/ModelF','ModelF');

0062

0063 end

0064 %==%%%%%%%%%%%%%%

0065 %==%%%%%%%%%%%%%%

0066 % The End %%%%%%%%%%%%%%

0067 %==%%%%%%%%%%%%%%

0068 %==%%%%%%%%%%%%%%

128

A11. Const_Grade

0001 %==%%%%%%%%%%%%%%

0002 %==%%%%%%%%%%%%%%

0003 % University of Alberta %%%%%%%%%%%%%%

0004 % Department of Civil and Environmental Engineering %%%%%%%%%%%%%%

0005 % School of Mining and Petroleum Engineering %%%%%%%%%%%%%%

0006 % This program was written by: Firouz Khodayari, %%%%%%%%%%%%%%

0007 % Student ID: 1402853 %%%%%%%%%%%%%%

0008 % PhD Candidate in Mining Engineering %%%%%%%%%%%%%%

0009 %==%%%%%%%%%%%%%%

0010 %==%%%%%%%%%%%%%%

0011

0012 %This function is used to create the grade constraint matrix

0013 %the grade constraint is the allowable average grade of production for each

period of production

0014 %it creates both the left hand side and right hand side matrices

0015

0016 function Const_Grade

0017 %loading the matlab file (InData.mat) which contains the input data that we are

going to use for defining this constraint

0018 %loading the matlab file (ModelF.mat) if it exists to save the built matrixin

that.

0019 %depends on the order in which we run the constraints and objective function

functionsthis file may exist or not, so we use if function

0020 load('Data/Param.mat'); %Loading the input parameters

0021 load('Data/InData.mat');

0022 if exist('Data/ModelF.mat')== 2

0023 load('Data/ModelF.mat');

0024 else

0025 end

0026

0027 Gmin = Param.Gmin; %minimum allowable

production average grade for CU per each period

0028 Gmax = Param.Gmax; %maximum allowable

production average grade for CU per each period

0029 InData.Parameters.G_min_CU = Gmin;

0030 InData.Parameters.G_max_CU = Gmax;

0031 TarGrade = Param.TarGrade;

0032 InData.Parameters.TarGrade = TarGrade; %Target Grade

0033 save('Data/InData','InData');

0034 Scenarios = ModelF.Inputs.Scenarios.Grade;

0035 T = Param.T; %number of periods

0036 N = InData.Parameters.N; %number of drawpoints(draw columns)

0037 TonVarMat = ModelF.Inputs.TonVarMat;

0038 NumberOfX = InData.Parameters.NumberOfX;

0039 ScenNum = Param.ScenNum;

0040 TarMetalCont = ModelF.Inputs.TarMetalCont;

0041 LandaGrade = 1;

0042

0043 TempMat0 = sparse(T,T*NumberOfX+2*T*N+4*T*ScenNum);

0044 for jloop = 1:ScenNum

0045 eval(sprintf('Scenarios.GradeConst%d = TempMat0',jloop));

0046 end

0047

0048 for tloop = 1:T

0049 for iloop = 1:ScenNum

0050 TempMat1 =

Scenarios.Scen.(['GradeScenVarMat',num2str(iloop)])(1,1:NumberOfX);

0051 TempMat2 = (TempMat1(1,1:NumberOfX)-TarGrade).*TonVarMat(1,1:NumberOfX);

0052 eval(sprintf('Scenarios.GradeConst%d(tloop,(tloop-

1)*NumberOfX+1:tloop*NumberOfX) = TempMat2',iloop));

file:///D:/Drive/Thesis/Matlab/Codes/doc/3_Constraints/Const_Grade.html%23_subfunctions

A11 Const_Grade

129

0053 eval(sprintf('Scenarios.GradeConst%d(tloop,(T*NumberOfX)+(2*T*N)+(tloop-

1)*ScenNum+iloop) = 1*LandaGrade',iloop));

0054

eval(sprintf('Scenarios.GradeConst%d(tloop,(T*NumberOfX)+(2*T*N)+(T*ScenNum)+(tloop-

1)*ScenNum+iloop) = -1*LandaGrade',iloop));

0055 end

0056 end

0057

0058 GradeConst = [];

0059 for iloop = 1:ScenNum

0060 xx = Scenarios.(['GradeConst',num2str(iloop)]);

0061 GradeConst = [GradeConst;xx];

0062 end

0063 Aineq_GradeConst = GradeConst; %Creating the left hand side matrix by combining

the max and min left hand side matrices

0064 bineq_GradeConst = zeros(T*ScenNum,1);

0065 ModelF.Inputs.Constraints.Aineq_GradeConst = Aineq_GradeConst; % the left hand

side matrix for the grade constrain

0066 save('Data/ModelF','ModelF');

0067

0068 ModelF.Inputs.Constraints.bineq_GradeConst_U = bineq_GradeConst; % the right

hand side matrix for the grade constrain

0069 ModelF.Inputs.Constraints.bineq_GradeConst_L = bineq_GradeConst;

0070 save('Data/ModelF','ModelF');

0071 end

0072 %==%%%%%%%%%%%%%%

0073 %==%%%%%%%%%%%%%%

0074 % The End %%%%%%%%%%%%%%

0075 %==%%%%%%%%%%%%%%

0076 %==%%%%%%%%%%%%%%

130

A12. Const_DrawRate

0001 %==%%%%%%%%%%%%%%

0002 %==%%%%%%%%%%%%%%

0003 % University of Alberta %%%%%%%%%%%%%%

0004 % Department of Civil and Environmental Engineering %%%%%%%%%%%%%%

0005 % School of Mining and Petroleum Engineering %%%%%%%%%%%%%%

0006 % This program was written by: Firouz Khodayari, %%%%%%%%%%%%%%

0007 % Student ID: 1402853 %%%%%%%%%%%%%%

0008 % PhD Candidate in Mining Engineering %%%%%%%%%%%%%%

0009 %==%%%%%%%%%%%%%%

0010 %==%%%%%%%%%%%%%%

0011

0012 function Const_DrawRate

0013

0014 %This function is going to control the draw rate for each period

0015 %*******************

0016 %loading the matlab file (InData.mat) which contains the input data that we are

going to use for defining this constraint

0017 %loading the matlab file (ModelF.mat) if it exists to save the built matrixin

that.

0018 %depends on the order in which we run the constraints and objective function

functionsthis file may exist or not, so we use if function

0019 load('Data/Param.mat'); %Loading the input parameters

0020 load('Data/InData.mat');

0021 if exist('Data/ModelF.mat')== 2

0022 load('Data/ModelF.mat');

0023 else

0024 end

0025

0026 %Calling the related inputs

0027 T = Param.T; %number of periods

0028 N = InData.Parameters.N; %number of drawpoints(draw columns)

0029 DRMin = Param.DPRMin;

0030 DRMax = Param.DPRMax;

0031 NumberOfX = InData.Parameters.NumberOfX;

0032 TonVarMat = ModelF.Inputs.TonVarMat;

0033 SliceNumMat = InData.Parameters.SliceNumMat;

0034 ScenNum = Param.ScenNum;

0035

0036 %***

0037

0038 %##

0039 % PRECALCULATIONS

0040 %##

0041 %Defining the required matrix to calculate the Draw Percentage for each

0042 %drawpoint at each period

0043 VarCount1 = 0;

0044 VarCount2 = 0;

0045 Y1MATTemp = sparse(N,N);

0046 DRtemp = sparse(N,NumberOfX);

0047 for iloop = 1:N;

0048 VarCount2 = VarCount2 + SliceNumMat(iloop,1);

0049 DRtemp(iloop,VarCount1+1:VarCount2) = TonVarMat(1,VarCount1+1:VarCount2);

0050 % Y1MATTemp(iloop,iloop) = 1;

0051 VarCount1 = VarCount1 + SliceNumMat(iloop,1);

0052 end

0053 Y1Temp = eye(N);

0054 cc = eye(T);

0055 DRMat = kron(cc,Y1Temp);

0056 DR = kron(cc,DRtemp);

0057 %##

file:///D:/Drive/Thesis/Matlab/Codes/doc/3_Constraints/Const_DrawRate.html%23_subfunctions

A12 Const_DrawRate

131

0058 % Set 1 #

0059 %##

0060 %***************************************

0061 % Y1*DRMin <= DR <= DRMax_temp====>

0062 % eq1=====> Y2*DRMin <= DR =====> Y2*DRMin-DR <= 0

0063 % eq2=====> DR <= DRMax

0064 %**

0065 %Equation 1: eq1=====> Y2*DRMin <= DR =====> Y2*DRMin-DR <= 0

0066 %**

0067 %Left hand sides

0068 Aeq_eq1_p1 = -DR; %-DR

0069 Aeq_eq1_p2 = DRMat.*DRMin; % C*DRMin

0070 Aeq_eq1_p3 = sparse(T*N,T*N);

0071 Aeq_eq1_p4 = sparse(T*N,4*T*ScenNum);

0072

0073 Aeq_eq1 = [Aeq_eq1_p1,Aeq_eq1_p2,Aeq_eq1_p3,Aeq_eq1_p4];

0074

0075 %Right hand sides

0076 beq_eq1_U = sparse(N*T,1);

0077 %**

0078 %Equation 2: % eq2=====> DR <= DRMax

0079 %**

0080 %Left hand sides

0081 Aeq_eq2_p1 = DR; %DR

0082 Aeq_eq2_p2 = sparse(T*N,T*N);

0083 Aeq_eq2_p3 = sparse(T*N,T*N);

0084 Aeq_eq2_p4 = sparse(T*N,4*T*ScenNum);

0085

0086 Aeq_eq2 = [Aeq_eq2_p1,Aeq_eq2_p2,Aeq_eq2_p3,Aeq_eq2_p4];

0087

0088 %Right hand sides

0089 beq_eq2_U = ones(N*T,1).*DRMax;

0090

0091 %concatinating the matrices

0092 Aineq_DrawRate = [Aeq_eq1;Aeq_eq2]; %left hand side matrix for drawcontrol

boundaries

0093 bineq_DrawRate_U = [beq_eq1_U;beq_eq2_U];

0094 SizeTemp = size(bineq_DrawRate_U,1);

0095 bineq_DrawRate_L = -inf*ones(SizeTemp,1);

0096

0097 %Making it ready for saving

0098 ModelF.Inputs.Constraints.Aineq_DrawRate = Aineq_DrawRate;

0099 ModelF.Inputs.Constraints.bineq_DrawRate_U = bineq_DrawRate_U;

0100 ModelF.Inputs.Constraints.bineq_DrawRate_L = bineq_DrawRate_L;

0101

0102 aa = full(DR);

0103 bb = full(DRMat);

0104

0105 %saving

0106 save('Data/ModelF','ModelF');

0107

0108 end

0109 %==%%%%%%%%%%%%%%

0110 %==%%%%%%%%%%%%%%

0111 % The End %%%%%%%%%%%%%%

0112 %==%%%%%%%%%%%%%%

0113 %==%%%%%%%%%%%%%%

132

A13. Const_LowerandUpperBounds

0001 %==%%%%%%%%%%%%%%

0002 %==%%%%%%%%%%%%%%

0003 % University of Alberta %%%%%%%%%%%%%%

0004 % Department of Civil and Environmental Engineering %%%%%%%%%%%%%%

0005 % School of Mining and Petroleum Engineering %%%%%%%%%%%%%%

0006 % This program was written by: Firouz Khodayari, %%%%%%%%%%%%%%

0007 % Student ID: 1402853 %%%%%%%%%%%%%%

0008 % PhD Candidate in Mining Engineering %%%%%%%%%%%%%%

0009 %==%%%%%%%%%%%%%%

0010 %==%%%%%%%%%%%%%%

0011

0012 %This function is used to create the upper and lower bound for the decision

variables

0013 %in this case, we have N*T continuous (variables 1:N*T) and N*T binary variables

(variables N*T+1:2*N*T), for all variables the upper bound is 1 and lower bound is 0

0014 %it creates both the left hand side and right hand side matrices

0015

0016 function Const_LowerandUpperBounds

0017

0018 %loading the matlab file (InData.mat) which contains the input data that we are

going to use for defining this constraint

0019 %loading the matlab file (ModelF.mat) if it exists to save the built matrixin

that.

0020 %depends on the order in which we run the constraints and objective function

functionsthis file may exist or not, so we use if function

0021 load('Data/Param.mat'); %Loading the input parameters

0022 load('Data/InData.mat');

0023 if exist('Data/ModelF.mat')== 2

0024 load('Data/ModelF.mat');

0025 else

0026 end

0027

0028 T = Param.T; %number of periods

0029 N = InData.Parameters.N; %number of drawpoints(draw columns)

0030 NumberOfX = InData.Parameters.NumberOfX;

0031 ScenNum = Param.ScenNum;

0032

0033 lb_1 = sparse(T*NumberOfX,1);

0034 lb_2 = sparse(T*N,1);

0035 lb_3 = sparse(T*N,1);

0036 lb_4 = sparse(4*T*ScenNum,1);

0037

0038 lb = [lb_1;lb_2;lb_3;lb_4]; %Lower bound for x(the decision variables)

0039

0040 ub_1 = ones(T*NumberOfX,1);

0041 ub_2 = ones(T*N,1);

0042 ub_3 = ones(T*N,1);

0043 ub_4 = inf.*ones(4*T*ScenNum,1);

0044

0045 ub = [ub_1;ub_2;ub_3;ub_4]; %Upper bound for x(the decision variables)

0046

0047

0048 ModelF.Inputs.Constraints.lb = lb;

0049 save('Data/ModelF','ModelF');

0050

0051 ModelF.Inputs.Constraints.ub = ub;

0052

0053 %saving created data in matlab structure

0054

0055 save('Data/ModelF','ModelF');

file:///D:/Drive/Thesis/Matlab/Codes/doc/3_Constraints/Const_LowerandUpperBounds.html%23_subfunctions

A13 Const_LowerandUpperBounds

133

0056

0057

0058 end

0059 %==%%%%%%%%%%%%%%

0060 %==%%%%%%%%%%%%%%

0061 % The End %%%%%%%%%%%%%%

0062 %==%%%%%%%%%%%%%%

0063 %==%%%%%%%%%%%%%%

134

A14. Const_MiningCapacity

0001 %==%%%%%%%%%%%%%%

0002 %==%%%%%%%%%%%%%%

0003 % University of Alberta %%%%%%%%%%%%%%

0004 % Department of Civil and Environmental Engineering %%%%%%%%%%%%%%

0005 % School of Mining and Petroleum Engineering %%%%%%%%%%%%%%

0006 % This program was written by: Firouz Khodayari, %%%%%%%%%%%%%%

0007 % Student ID: 1402853 %%%%%%%%%%%%%%

0008 % PhD Candidate in Mining Engineering %%%%%%%%%%%%%%

0009 %==%%%%%%%%%%%%%%

0010 %==%%%%%%%%%%%%%%

0011

0012 %This function is used to create the Mining Capacity constraint matrix

0013 %it creates both the left hand side and right hand side matrices

0014 %the grade constraint is the allowable average grade of production for each

period of production

0015

0016 function Const_MiningCapacity

0017

0018 %loading the matlab file (InData.mat) which contains the input data that we are

going to use for defining this constraint

0019 %loading the matlab file (ModelF.mat) if it exists to save the built matrixin

that.

0020 %depends on the order in which we run the constraints and objective function

functionsthis file may exist or not, so we use if function

0021 load('Data/Param.mat'); %Loading the input parameters

0022 load('Data/InData.mat');

0023 if exist('Data/ModelF.mat')== 2

0024 load('Data/ModelF.mat');

0025 else

0026 end

0027

0028

0029 %Calling the related inputs

0030 N = InData.Parameters.N; %number of drawpoints(draw columns)

0031 T = Param.T; %number of periods

0032 NumberOfX = InData.Parameters.NumberOfX;

0033 TonVarMat = ModelF.Inputs.TonVarMat;

0034 %***

0035 %Parameters

0036 MiningCapacity_min = Param.Mmin*1000000; %Minimum production rate or mining

capacity

0037 MiningCapacity_st = Param.Mst*1000000; %Starting production rate or mining

capacity (based on production Curve)

0038 MiningCapacity_max = Param.Mmax*1000000; %Maximum production rate or mining

capacity

0039 RampUpTime = Param.RampUpTime; %Ramp Up time for the production schedule

0040 ScenNum = Param.ScenNum;

0041 Scenarios = ModelF.Inputs.Scenarios.Ton;

0042 %Creating the Production Curve which includes 3 lines

0043

0044

0045

0046 Aineq_MiningCapacity = sparse(T,(T*NumberOfX)+(2*T*N)+(2*T*ScenNum)); %Max Mining

Capacity constraint matrix (the left hand side of equation, a sub matrix of "Aineq")

0047

0048 % bineq_MiningCapacity_U = repmat(MiningCapacity_max,T,1); %the right hand side

of the grade constraint matrix, for the Maximum

0049 bineq_MiningCapacity_L_temp = repmat(MiningCapacity_min,T,1); %the right hand

side of the grade constraint matrix, for the Minimum

0050

file:///D:/Drive/Thesis/Matlab/Codes/doc/3_Constraints/Const_MiningCapacity.html%23_subfunctions

A14 Const_MiningCapacity

135

0051 for tloop = 1:T

0052 % Aineq_MiningCapacity(tloop,(tloop-1)*NumberOfX+1:tloop*NumberOfX) =

TonVarMat(1,1:NumberOfX); %Mining Capacity Constraint(upper bound)

0053

0054 if tloop <= RampUpTime

0055 bineq_MiningCapacity_U_temp(tloop,1) = ((MiningCapacity_max -

MiningCapacity_st)/(RampUpTime - 1))*(tloop - 1) + MiningCapacity_st;

0056 elseif tloop > T-RampUpTime

0057 bineq_MiningCapacity_U_temp(tloop,1) = ((MiningCapacity_st -

MiningCapacity_max)/(RampUpTime - 1))*(tloop - (T-RampUpTime+1)) + MiningCapacity_max;

0058 else

0059 bineq_MiningCapacity_U_temp(tloop,1) = MiningCapacity_max;

0060 % bineq_MiningCapacity_U_temp(tloop,1) = inf;

0061 end

0062

0063 end

0064

0065 TempMat0 = sparse(T,(T*NumberOfX)+(2*T*N)+2*T*ScenNum+2*T*ScenNum);

0066 for jloop = 1:ScenNum

0067 eval(sprintf('Scenarios.TonConst%d = TempMat0',jloop));

0068 end

0069 Counter = 1;

0070 for tloop = 1:T

0071 for iloop = 1:ScenNum

0072 TempMat1 =

Scenarios.Scen.(['TonScenVarMat',num2str(iloop)])(1,1:NumberOfX);

0073 % TempMat2 = TempMat1(1,1:NumberOfX);

0074 eval(sprintf('Scenarios.TonConst%d(tloop,(tloop-

1)*NumberOfX+1:tloop*NumberOfX) = TempMat1',iloop));

0075 %

eval(sprintf('Scenarios.TonConst%d(tloop,(T*NumberOfX)+(2*T*N)+(2*T*ScenNum)+(tloop-

1)*ScenNum+iloop) = 1',iloop));

0076 %

eval(sprintf('Scenarios.TonConst%d(tloop,(T*NumberOfX)+(2*T*N)+(3*T*ScenNum)+(tloop-

1)*ScenNum+iloop) = -1',iloop));

0077

0078 end

0079 end

0080

0081 Aineq_MiningCapacity = [];

0082 for iloop = 1:ScenNum

0083 xx = Scenarios.(['TonConst',num2str(iloop)]);

0084 Aineq_MiningCapacity = [Aineq_MiningCapacity;xx];

0085 end

0086 bineq_MiningCapacity_U = repmat(bineq_MiningCapacity_U_temp,ScenNum,1);

0087 bineq_MiningCapacity_L = repmat(bineq_MiningCapacity_L_temp,ScenNum,1);

0088 %saving the created matrices in the matlab structure

0089 ModelF.Inputs.Constraints.Aineq_MiningCapacity = Aineq_MiningCapacity;

0090 save('Data/ModelF','ModelF');

0091 ModelF.Inputs.Constraints.bineq_MiningCapacity_U = bineq_MiningCapacity_U;

0092 ModelF.Inputs.Constraints.bineq_MiningCapacity_L = bineq_MiningCapacity_L;

0093

0094 save('Data/ModelF','ModelF');

0095 end

0096 %==%%%%%%%%%%%%%%

0097 %==%%%%%%%%%%%%%%

0098 % The End %%%%%%%%%%%%%%

0099 %==%%%%%%%%%%%%%%

0100 %==%%%%%%%%%%%%%%

136

A15. Const_Precedence_Polygon_DPs

0001 %==%%%%%%%%%%%%%%

0002 %==%%%%%%%%%%%%%%

0003 % University of Alberta %%%%%%%%%%%%%%

0004 % Department of Civil and Environmental Engineering %%%%%%%%%%%%%%

0005 % School of Mining and Petroleum Engineering %%%%%%%%%%%%%%

0006 % This program was written by: Firouz Khodayari, %%%%%%%%%%%%%%

0007 % Student ID: 1402853 %%%%%%%%%%%%%%

0008 % PhD Candidate in Mining Engineering %%%%%%%%%%%%%%

0009 %==%%%%%%%%%%%%%%

0010 %==%%%%%%%%%%%%%%

0011

0012 function Const_Precedence_Polygon_DPs

0013

0014 %This function creates the coefficient matrices for precedence constraint

0015 %so that each drawpoint is extracted if the drawpoint(s) with higher priority to

that have

0016 %been extracted

0017 %the priority is based on the sequence which has been determined in the

0018 %ImportdataAndSequence function which is based on the defined direction

0019 %in order to define this constraint, these equations have been considered

0020 %to be added to the model: (bij is the binary variable (0 or 1) assiciated with

0021 %continuous decision variable xij which is representing the portion of draw

column i

0022 %that is going to be extracted in period j)

0023 %for example for T=2 and N=3 we have to add these constraints (6 equations):

0024 %n*Y11 <= Y12+Y13+Y14

0025

0026 %==

0027 load('Data/Param.mat'); %Loading the input parameters

0028 load('Data/InData.mat');

0029 if exist('Data/ModelF.mat')== 2

0030 load('Data/ModelF.mat');

0031

0032 else

0033 end

0034 T = Param.T; %number of periods

0035 N = InData.Parameters.N; %number of drawpoints(draw columns)

0036 X_DPs = InData.Excel.DPs.X;

0037 Y_DPs = InData.Excel.DPs.Y;

0038 AdjRadius = Param.AdjRadius;

0039 NumberOfX = InData.Parameters.NumberOfX;

0040 DrawID = ModelF.Inputs.DrawID;

0041 ScenNum = Param.ScenNum;

0042 DirStart_X = Param.DirStart_X;

0043 DirStart_Y = Param.DirStart_Y;

0044 Dir1End_X = Param.Dir1End_X;

0045 Dir1End_Y = Param.Dir1End_Y;

0046 Dir2End_X = Param.Dir2End_X;

0047 Dir2End_Y = Param.Dir2End_Y;

0048 VShapeAngle = Param.VShapeAngle;

0049 %***

0050 %##

0051 % The Mining Direction

0052 %##

0053 %##

0054 Dir1 = [DirStart_X DirStart_Y;Dir1End_X Dir1End_Y]; %A-->B [Ax Ay;Bx By]

0055 Dir2 = [DirStart_X DirStart_Y;Dir2End_X Dir2End_Y]; %A-->B [Ax Ay;Bx By]

0056 VShapedAngle = VShapeAngle; %Angle of the V Shape (in degrees), this is the angle

between two lines of the triangle

0057 %##

file:///D:/Drive/Thesis/Matlab/Codes/doc/3_Constraints/Const_Precedence_Polygon_DPs.html%23_subfunctions

A15 Const_Precedence_Polygon_DPs

137

0058 %##

0059 StPoint1 = [Dir1(1,1), Dir1(1,2)]; %Starting Point on the Mining Direction Line

0060 EnPoint1 = [Dir1(2,1), Dir1(2,2)]; %Ending Point on the Mining Direction Line

0061 StPoint2 = [Dir2(1,1), Dir2(1,2)]; %Starting Point on the Mining Direction Line

0062 EnPoint2 = [Dir2(2,1), Dir2(2,2)]; %Ending Point on the Mining Direction Line

0063 StepDis = 1; %The Step Distance in which the V Shape is going to be moved from

the starting point to end

0064 PlotStepSize = 5;

0065 PlotCounter = 0;

0066 Dir1LineSlop = (EnPoint1(2)-StPoint1(2))/(EnPoint1(1)-StPoint1(1)); %Slope of the

Direction Line

0067 Dir2LineSlop = (EnPoint2(2)-StPoint2(2))/(EnPoint2(1)-StPoint2(1)); %Slope of the

Direction Line

0068 Dir1LineLegnth = sqrt(((EnPoint1(1)-StPoint1(1))^2)+((EnPoint1(2)-

StPoint1(2))^2));

0069 Dir2LineLegnth = sqrt(((EnPoint2(1)-StPoint2(1))^2)+((EnPoint2(2)-

StPoint2(2))^2));

0070 PrecVShape = zeros(N,2);

0071 PrecVShape (1:N,1) = 1:N;

0072 PrecCounter = 1;

0073 while PrecCounter <= N

0074 for iloop = 1:N

0075

0076

0077 if StPoint1(1) == EnPoint1(1) %Vertical Direction (when X_Start == X_End)

0078 VShape1Point2 = [StPoint1(1) + StepDis*tand(VShapedAngle/2),

StPoint1(2)];

0079 VShape1Point3 = [StPoint1(1) - StepDis*tand(VShapedAngle/2),

StPoint1(2)];

0080 if StPoint1(2) < EnPoint1(2)

0081 VShape1Point1 = [StPoint1(1), StPoint1(2) + StepDis];

0082 else

0083 VShape1Point1 = [StPoint1(1), StPoint1(2)-StepDis];

0084 end

0085 elseif StPoint1(2) == EnPoint1(2) %Horizontal Direction (when Y_Start ==

Y_End)

0086 VShape1Point2 = [StPoint1(1), StPoint1(2) +

StepDis*tand(VShapedAngle/2)];

0087 VShape1Point3 = [StPoint1(1), StPoint1(2) -

StepDis*tand(VShapedAngle/2)];

0088 if StPoint1(1) < EnPoint1(1)

0089 VShape1Point1 = [StPoint1(1) + StepDis, StPoint1(2)];

0090 else

0091 VShape1Point1 = [StPoint1(1) - StepDis, StPoint1(2)];

0092 end

0093 else

0094

0095 XVpointDir1Point1 = (StepDis/sqrt(1+(Dir1LineSlop^2)))+StPoint1(1); % X

coordination of the point in whch the V shape and the Direction Line intersect (first

situation which means considering + sign for the square root calculations of the

coordinates)

0096 YVpointDir1Point1 =

Dir1LineSlop*(StepDis/sqrt(1+(Dir1LineSlop^2)))+StPoint1(2); % Y coordination of the

point in whch the V shape and the Direction Line intersect (first situation which

means considering + sign for the square root calculations of the coordinates)

0097

0098 XVpointDir2Point1 = (StepDis/sqrt(1+(Dir2LineSlop^2)))+StPoint2(1); % X

coordination of the point in whch the V shape and the Direction Line intersect (first

situation which means considering + sign for the square root calculations of the

coordinates)

0099 YVpointDir2Point1 =

Dir2LineSlop*(StepDis/sqrt(1+(Dir2LineSlop^2)))+StPoint1(2); % Y coordination of the

A15 Const_Precedence_Polygon_DPs

138

point in whch the V shape and the Direction Line intersect (first situation which

means considering + sign for the square root calculations of the coordinates)

0100

0101 XVpointDir1Point2 = -(StepDis/sqrt(1+(Dir1LineSlop^2)))+StPoint1(1); % X

coordination of the point in whch the V shape and the Direction Line intersect (second

situation which means considering - sign for the square root calculations of the

coordinates)

0102 YVpointDir1Point2 = -

Dir1LineSlop*(StepDis/sqrt(1+(Dir1LineSlop^2)))+StPoint1(2); % Y coordination of the

point in whch the V shape and the Direction Line intersect (Second situation which

means considering - sign for the square root calculations of the coordinates)

0103

0104 XVpointDir2Point2 = -(StepDis/sqrt(1+(Dir2LineSlop^2)))+StPoint2(1); % X

coordination of the point in whch the V shape and the Direction Line intersect (second

situation which means considering - sign for the square root calculations of the

coordinates)

0105 YVpointDir2Point2 = -

Dir2LineSlop*(StepDis/sqrt(1+(Dir2LineSlop^2)))+StPoint2(2); % Y coordination of the

point in whch the V shape and the Direction Line intersect (Second situation which

means considering - sign for the square root calculations of the coordinates)

0106

0107 XVpointPerLine1Point1 =

((StepDis*tand(VShapedAngle/2))/(sqrt(1+(1/(Dir1LineSlop^2)))))+StPoint1(1); % X

coordination of the point in whch the V shape and the Perpendicular line (to the

Direction Line) intersect (first point)

0108 YVpointPerLine1Point1 = (-

1/Dir1LineSlop)*(((StepDis*tand(VShapedAngle/2))/(sqrt(1+(1/(Dir1LineSlop^2))))))+StPo

int1(2); % Y coordination of the point in whch the V shape and the Perpendicular line

(to the Direction Line) intersect (first point)

0109

0110 XVpointPerLine2Point1 =

((StepDis*tand(VShapedAngle/2))/(sqrt(1+(1/(Dir2LineSlop^2)))))+StPoint2(1); % X

coordination of the point in whch the V shape and the Perpendicular line (to the

Direction Line) intersect (first point)

0111 YVpointPerLine2Point1 = (-

1/Dir2LineSlop)*(((StepDis*tand(VShapedAngle/2))/(sqrt(1+(1/(Dir2LineSlop^2))))))+StPo

int2(2); % Y coordination of the point in whch the V shape and the Perpendicular line

(to the Direction Line) intersect (first point)

0112

0113 XVpointPerLine1Point2 = -

((StepDis*tand(VShapedAngle/2))/(sqrt(1+(1/(Dir1LineSlop^2)))))+StPoint1(1); % X

coordination of the point in whch the V shape and the Perpendicular line (to the

Direction Line) intersect (second point)

0114 YVpointPerLine1Point2 = (-1/Dir1LineSlop)*(-

((StepDis*tand(VShapedAngle/2))/(sqrt(1+(1/(Dir1LineSlop^2))))))+StPoint1(2); % Y

coordination of the point in whch the V shape and the Perpendicular line (to the

Direction Line) intersect (second point)

0115

0116 XVpointPerLine2Point2 = -

((StepDis*tand(VShapedAngle/2))/(sqrt(1+(1/(Dir2LineSlop^2)))))+StPoint2(1); % X

coordination of the point in whch the V shape and the Perpendicular line (to the

Direction Line) intersect (second point)

0117 YVpointPerLine2Point2 = (-1/Dir2LineSlop)*(-

((StepDis*tand(VShapedAngle/2))/(sqrt(1+(1/(Dir2LineSlop^2))))))+StPoint2(2); % Y

coordination of the point in whch the V shape and the Perpendicular line (to the

Direction Line) intersect (second point)

0118

0119 %Distance Calculator

0120 Dis1VpointToVpoint1 = sqrt(((EnPoint1(1)-

XVpointDir1Point1)^2)+((EnPoint1(2)-YVpointDir1Point1)^2)); %Calculating the distance

between the point of intersection of V shape (and Direction Line) and end point in

first situation

A15 Const_Precedence_Polygon_DPs

139

0121 Dis1VpointToVpoint2 = sqrt(((EnPoint1(1)-

XVpointDir1Point2)^2)+((EnPoint1(2)-YVpointDir1Point2)^2)); %Calculating the distance

between the point of intersection of V shape (and Direction Line) and end point in

second situation

0122

0123 Dis2VpointToVpoint1 = sqrt(((EnPoint1(1)-

XVpointDir2Point1)^2)+((EnPoint2(2)-YVpointDir2Point1)^2)); %Calculating the distance

between the point of intersection of V shape (and Direction Line) and end point in

first situation

0124 Dis2VpointToVpoint2 = sqrt(((EnPoint1(1)-

XVpointDir2Point2)^2)+((EnPoint2(2)-YVpointDir2Point2)^2)); %Calculating the distance

between the point of intersection of V shape (and Direction Line) and end point in

second situation

0125

0126 if Dis1VpointToVpoint1 < Dis1VpointToVpoint2 %Comparing the two

distances to find the lower one and pick that as the correct point for the triangle of

the V shape

0127 VShape1Point1 = [XVpointDir1Point1,YVpointDir1Point1]; %if dis1 <

dis2 then dis1 is the correct point

0128 else

0129 VShape1Point1 = [XVpointDir1Point2,YVpointDir1Point2]; %if dis1 >

dis2 then dis2 is the correct point

0130 end

0131 VShape1Point2 = [XVpointPerLine1Point1,YVpointPerLine1Point1]; %Second

point of the V shape (triangle) which is the first intersection of the V Shape and the

Perpendicular Line (Perpendicular to the Direction Line)

0132 VShape1Point3 = [XVpointPerLine1Point2,YVpointPerLine1Point2]; %Third

point of the V shape (triangle) which is the second intersection of the V Shape and

the Perpendicular Line (Perpendicular to the Direction Line)

0133 %22222222222222222222

0134 if Dis2VpointToVpoint1 < Dis2VpointToVpoint2 %Comparing the two

distances to find the lower one and pick that as the correct point for the triangle of

the V shape

0135 VShape2Point1 = [XVpointDir2Point1,YVpointDir2Point1]; %if dis1 <

dis2 then dis1 is the correct point

0136 else

0137 VShape2Point1 = [XVpointDir2Point2,YVpointDir2Point2]; %if dis1 >

dis2 then dis2 is the correct point

0138 end

0139 VShape2Point2 = [XVpointPerLine2Point1,YVpointPerLine2Point1]; %Second

point of the V shape (triangle) which is the first intersection of the V Shape and the

Perpendicular Line (Perpendicular to the Direction Line)

0140 VShape2Point3 = [XVpointPerLine2Point2,YVpointPerLine2Point2]; %Third

point of the V shape (triangle) which is the second intersection of the V Shape and

the Perpendicular Line (Perpendicular to the Direction Line)

0141 %for plotting purposes to be used in PlotDPS_starting_Periods.m function

0142 if StepDis > (Dir1LineLegnth/15) & StepDis < (Dir1LineLegnth/10)

0143 ModelF.PlotData.Triangle1 =

[VShape1Point1;VShape1Point2;VShape1Point3];

0144 else

0145 end

0146 %222222222222222222222222222222222222

0147 if StepDis > (Dir2LineLegnth/15) & StepDis < (Dir2LineLegnth/10)

0148 ModelF.PlotData.Triangle2 =

[VShape2Point1;VShape2Point2;VShape2Point3];

0149 else

0150 end

0151 %-----------------------------

0152 end

0153 xv = [VShape1Point1(1,1), VShape1Point2(1,1), VShape1Point3(1,1),

VShape2Point1(1,1), VShape2Point2(1,1), VShape2Point3(1,1),VShape1Point1(1,1),

VShape1Point3(1,1)];

A15 Const_Precedence_Polygon_DPs

140

0154 yv = [VShape1Point1(1,2), VShape1Point2(1,2), VShape1Point3(1,2),

VShape2Point1(1,2), VShape2Point2(1,2), VShape2Point3(1,2),VShape1Point1(1,2),

VShape1Point3(1,2)];

0155 xvall(StepDis,:) = xv;

0156 yvall(StepDis,:) = yv;

0157 [in,on] = inpolygon(X_DPs(iloop,1),Y_DPs(iloop,1),xv,yv);

0158

0159 %Check if the drawpoint falls into the V shape (triangle) or not

0160 if (in==1 | on==1) && (PrecVShape(iloop, 2) == 0)

0161 PrecVShape(iloop, 2) = PrecCounter;

0162 PrecCounter = PrecCounter + 1;

0163 else

0164 end

0165 end

0166

0167 StepDis = StepDis + 1;

0168

0169 if StepDis == PlotStepSize && PlotCounter <= 10;

0170 PlotCounter = PlotCounter+1;

0171 plot(xv,yv);

0172 hold on

0173 PlotStepSize = PlotStepSize + 40;

0174 MiningDirectionPlotDataX(PlotCounter,:) = xv;

0175 MiningDirectionPlotDataY(PlotCounter,:) = yv;

0176

0177 else

0178 end

0179 end

0180 ModelF.Inputs.Seq = PrecVShape;

0181 %Plotting the 3 lines of the V shape and the Direction Line to see if it works

fine and we have the correct V shape compare to the Direction Line

0182 for dp = 1:N

0183 DpPrec = PrecVShape(dp,2);

0184 counter = 1; %Counting the predecessors of "dp"

0185

0186 for AdjCount = 1:N %Loop for the Adjacent drawpoints of "dp"....for dp 1 is 3

0187 AdjPrec = PrecVShape(AdjCount,2);

0188

0189 if (DpPrec == 1)

0190 Prec(dp,1) = dp;

0191 elseif (AdjPrec + 1 == DpPrec)

0192 Prec(dp,1) = AdjCount; %Comparing the distances of the projected

points from the starting point (A) for the adjacent drawpoints and the dp itself. The

PREDECESSORS are the ones that have a smaller distance compare to dp.

0193 counter = counter+1;

0194

0195 else

0196

0197 end

0198 end

0199

0200 end

0201 precedence = Prec;

0202 ModelF.Inputs.precedence = precedence;

0203 lhs_temp = sparse(N,N);

0204 rhs_temp = sparse(N,N);

0205 for iloop = 1:N

0206 prectemp = precedence(iloop,1);

0207 preccount = numel(prectemp);

0208 if prectemp == iloop

0209 %do nothing

0210 else

0211 lhs_temp(iloop,iloop) = preccount;

A15 Const_Precedence_Polygon_DPs

141

0212 for jloop = 1:preccount

0213 rhs_temp(iloop,prectemp(1,jloop)) = 1;

0214 end

0215 end

0216 end

0217 % a = full(lhs_temp);

0218 % b = full(rhs_temp);

0219 % [row, col] = find(isnan(rhs));

0220 % aaa = [row, col];

0221 % [row, col] = find(isnan(lhs));

0222 % bbb = [row, col];

0223 % lhsCell = repmat({lhs},1,T);

0224 % lhs = blkdiag(lhsCell{:});

0225 % rhsCell = repmat({rhs},1,T);

0226 % rhs = blkdiag(rhsCell{:});

0227 aa = eye(T);

0228 lhs = kron(aa,lhs_temp);

0229 rhs = kron(aa,rhs_temp);

0230 Aeq_p1 = sparse(T*N,T*NumberOfX);

0231 Aeq_p2 = sparse(T*N,T*N);

0232 Aeq_p3 = lhs-rhs;

0233 Aeq_p4 = sparse(T*N,4*T*ScenNum);

0234

0235 arhs = full(rhs);

0236 blhs = full(lhs);

0237 % cc = full(Aeq_p4);

0238 ModelF.Inputs.Constraints.Aineq_Precedence_DPs = [Aeq_p1,Aeq_p2,Aeq_p3,Aeq_p4];

0239 save('Data/ModelF','ModelF');

0240 bineq_Precedence_U = sparse(T*N,1);

0241 ModelF.Inputs.Constraints.bineq_Precedence_U_DPs = bineq_Precedence_U;

0242 SizeTemp = size(bineq_Precedence_U,1);

0243 ModelF.Inputs.Constraints.bineq_Precedence_L_DPs = -inf*ones(SizeTemp,1);

0244 save('Data/ModelF','ModelF');

0245

0246 end

0247 %==%%%%%%%%%%%%%%

0248 %==%%%%%%%%%%%%%%

0249 % The End %%%%%%%%%%%%%%

0250 %==%%%%%%%%%%%%%%

0251 %==%%%%%%%%%%%%%%

142

A16. Const_ProdTar

0001 %==%%%%%%%%%%%%%%

0002 %==%%%%%%%%%%%%%%

0003 % University of Alberta %%%%%%%%%%%%%%

0004 % Department of Civil and Environmental Engineering %%%%%%%%%%%%%%

0005 % School of Mining and Petroleum Engineering %%%%%%%%%%%%%%

0006 % This program was written by: Firouz Khodayari, %%%%%%%%%%%%%%

0007 % Student ID: 1402853 %%%%%%%%%%%%%%

0008 % PhD Candidate in Mining Engineering %%%%%%%%%%%%%%

0009 %==%%%%%%%%%%%%%%

0010 %==%%%%%%%%%%%%%%

0011

0012 %This function is used to create the Mining Capacity constraint matrix

0013 %it creates both the left hand side and right hand side matrices

0014 %the grade constraint is the allowable average grade of production for each

period of production

0015

0016 function Const_ProdTar

0017

0018 %loading the matlab file (InData.mat) which contains the input data that we are

going to use for defining this constraint

0019 %loading the matlab file (ModelF.mat) if it exists to save the built matrixin

that.

0020 %depends on the order in which we run the constraints and objective function

functionsthis file may exist or not, so we use if function

0021 load('Data/Param.mat'); %Loading the input parameters

0022 load('Data/InData.mat');

0023 if exist('Data/ModelF.mat')== 2

0024 load('Data/ModelF.mat');

0025 else

0026 end

0027

0028

0029 %Calling the related inputs

0030 N = InData.Parameters.N; %number of drawpoints(draw columns)

0031 T = Param.T; %number of periods

0032 NumberOfX = InData.Parameters.NumberOfX;

0033 TonVarMat = ModelF.Inputs.TonVarMat;

0034 %***

0035 %Parameters

0036 MiningCapacity_min = Param.Mmin*1000000; %Minimum production rate or mining

capacity

0037 MiningCapacity_st = Param.Mst*1000000; %Starting production rate or mining

capacity (based on production Curve)

0038 MiningCapacity_max = Param.Mmax*1000000; %Maximum production rate or mining

capacity

0039 RampUpTime = Param.RampUpTime; %Ramp Up time for the production schedule

0040 ScenNum = Param.ScenNum;

0041 Scenarios = ModelF.Inputs.Scenarios.Ton;

0042

0043 %Creating the Production Curve which includes 3 lines

0044

0045

0046

0047 Aineq_MiningCapacity0 = sparse(T,(3*T*NumberOfX)+(2*T*ScenNum)+(2*T*ScenNum));

%Max Mining Capacity constraint matrix (the left hand side of equation, a sub matrix

of "Aineq")

0048

0049 % bineq_MiningCapacity_U = repmat(MiningCapacity_max,T,1); %the right hand side

of the grade constraint matrix, for the Maximum

file:///D:/Drive/Thesis/Matlab/Codes/doc/3_Constraints/Const_ProdTar.html%23_subfunctions

A16 Const_ProdTar

143

0050 bineq_MiningCapacity_L = repmat(MiningCapacity_min,T,1); %the right hand side of

the grade constraint matrix, for the Minimum

0051

0052 for tloop = 1:T

0053 Aineq_MiningCapacity0(tloop,(tloop-1)*NumberOfX+1:tloop*NumberOfX) =

TonVarMat(1,1:NumberOfX); %Mining Capacity Constraint(upper bound)

0054

0055 if tloop <= RampUpTime

0056 TarTon(tloop,1) = ((MiningCapacity_max - MiningCapacity_st)/(RampUpTime -

1))*(tloop - 1) + MiningCapacity_st;

0057 elseif tloop > T-RampUpTime

0058 TarTon(tloop,1) = ((MiningCapacity_st - MiningCapacity_max)/(RampUpTime -

1))*(tloop - (T-RampUpTime+1)) + MiningCapacity_max;

0059 else

0060 TarTon(tloop,1) = MiningCapacity_max;

0061 end

0062

0063 end

0064 ModelF.Inputs.TarTons = TarTon;

0065 TempMat0 = sparse(T,(T*NumberOfX)+(2*T*N)+(2*T*ScenNum+2*T*ScenNum));

0066 for jloop = 1:ScenNum

0067 eval(sprintf('Scenarios.TonConst%d = TempMat0',jloop));

0068 end

0069 Counter = 1;

0070 for tloop = 1:T

0071 for iloop = 1:ScenNum

0072 TempMat1 =

Scenarios.Scen.(['TonScenVarMat',num2str(iloop)])(1,1:NumberOfX);

0073 % TempMat2 = TempMat1(1,1:NumberOfX);

0074 eval(sprintf('Scenarios.TonConst%d(tloop,(tloop-

1)*NumberOfX+1:tloop*NumberOfX) = TempMat1',iloop));

0075

eval(sprintf('Scenarios.TonConst%d(tloop,(T*NumberOfX)+(2*T*N)+(2*T*ScenNum)+(tloop-

1)*ScenNum+iloop) = 1',iloop));

0076

eval(sprintf('Scenarios.TonConst%d(tloop,(T*NumberOfX)+(2*T*N)+(3*T*ScenNum)+(tloop-

1)*ScenNum+iloop) = -1',iloop));

0077

0078 end

0079 end

0080

0081 TonConst = [];

0082 for iloop = 1:ScenNum

0083 xx = Scenarios.(['TonConst',num2str(iloop)]);

0084 TonConst = [TonConst;xx];

0085 end

0086 TarTonMat = repmat(TarTon,ScenNum,1);

0087 %saving the created matrices in the matlab structure

0088 ModelF.Inputs.Constraints.Aineq_TarTon = TonConst;

0089 save('Data/ModelF','ModelF');

0090 ModelF.Inputs.Constraints.TarTon_U = TarTonMat;

0091 ModelF.Inputs.Constraints.TarTon_L = TarTonMat;

0092 save('Data/ModelF','ModelF');

0093 end

0094 %==%%%%%%%%%%%%%%

0095 %==%%%%%%%%%%%%%%

0096 % The End %%%%%%%%%%%%%%

0097 %==%%%%%%%%%%%%%%

0098 %==%%%%%%%%%%%%%%

144

A17. Const_Precedence_VShaped_DPs

0001 %==%%%%%%%%%%%%%%

0002 %==%%%%%%%%%%%%%%

0003 % University of Alberta %%%%%%%%%%%%%%

0004 % Department of Civil and Environmental Engineering %%%%%%%%%%%%%%

0005 % School of Mining and Petroleum Engineering %%%%%%%%%%%%%%

0006 % This program was written by: Firouz Khodayari, %%%%%%%%%%%%%%

0007 % Student ID: 1402853 %%%%%%%%%%%%%%

0008 % PhD Candidate in Mining Engineering %%%%%%%%%%%%%%

0009 %==%%%%%%%%%%%%%%

0010 %==%%%%%%%%%%%%%%

0011

0012 function Const_Precedence_VShaped_DPs

0013

0014 %This function creates the coefficient matrices for precedence constraint

0015 %so that each drawpoint is extracted if the drawpoint(s) with higher priority to

that have

0016 %been extracted

0017 %the priority is based on the sequence which has been determined in the

0018 %ImportdataAndSequence function which is based on the defined direction

0019 %in order to define this constraint, these equations have been considered

0020 %to be added to the model: (bij is the binary variable (0 or 1) assiciated with

0021 %continuous decision variable xij which is representing the portion of draw

column i

0022 %that is going to be extracted in period j)

0023 %for example for T=2 and N=3 we have to add these constraints (6 equations):

0024 %n*Y11 <= Y12+Y13+Y14

0025

0026 %==

0027 load('Data/Param.mat'); %Loading the input parameters

0028 load('Data/InData.mat');

0029 if exist('Data/ModelF.mat')== 2

0030 load('Data/ModelF.mat');

0031

0032 else

0033 end

0034 T = Param.T; %number of periods

0035 N = InData.Parameters.N; %number of drawpoints(draw columns)

0036 X_DPs = InData.Excel.DPs.X;

0037 Y_DPs = InData.Excel.DPs.Y;

0038 AdjRadius = Param.AdjRadius;

0039 NumberOfX = InData.Parameters.NumberOfX;

0040 ScenNum = Param.ScenNum;

0041 DirStart_X = Param.DirStart_X;

0042 DirStart_Y = Param.DirStart_Y;

0043 DirEnd_X = Param.Dir1End_X;

0044 DirEnd_Y = Param.Dir1End_Y;

0045

0046 VShapeAngle = Param.VShapeAngle;

0047

0048 X_DPs_Vvector = InData.Excel.DPs.X;

0049 Y_DPs_Vvector = InData.Excel.DPs.Y;

0050

0051 X_DPs_Hvector = X_DPs_Vvector';

0052 Y_DPs_Hvector = Y_DPs_Vvector';

0053 %***

0054 %##

0055 % The Mining Direction

0056 %##

0057 %##

0058 Dir = [DirStart_X DirStart_Y;DirEnd_X DirEnd_Y]; %A-->B [Ax Ay;Bx By]

file:///D:/Drive/Thesis/Matlab/Codes/doc/3_Constraints/Const_Precedence_VShaped_DPs.html%23_subfunctions

A17 Const_Precedence_VShaped_DPs

145

0059 VShapedAngle = VShapeAngle; %Angle of the V Shape (in degrees), this is the angle

between two lines of the triangle

0060 %##

0061 ModelF.Inputs.Parameters.Direction = Dir; %A-->B [Ax Ay;Bx By]

0062

0063 %###

0064 %Distance Calculator

0065 %###

0066

0067 % %=== calculating distance between

drawpoints in X direction, Craete dX^2

0068 % X_DPS_1 = repmat(X_DPs_Hvector,N,1);

0069 % X_DPS_2 = repmat(X_DPs_Vvector,1,N);

0070 %

0071 % dX = (X_DPS_1)-(X_DPS_2);

0072 % dX_square = dX.^2;

0073 %

0074 % %=== calculating distance between

drawpoints in Y direction, Craete dY^2

0075 % Y_DPS_1 = repmat(Y_DPs_Hvector,N,1);

0076 % Y_DPS_2 = repmat(Y_DPs_Vvector,1,N);

0077 %

0078 % dY = (Y_DPS_1)-(Y_DPS_2);

0079 % dY_square = dY.^2;

0080 %

0081 % %=== DISTANCE^2=dX^2+dY^2

0082 % Distance_square = dX_square+dY_square;

0083 %

0084 % %=== Distance between darwpoints

0085 % Distance_DPs = sqrt(Distance_square);

0086 % InData.Distance_DPs = Distance_DPs;

0087 % ModelF.Inputs.Distance_DPs = Distance_DPs;

0088 % ModelF.Inputs.Distance_square = Distance_square;

0089 %###

0090 %Adjacent Drawpoint Finder Based on the defined radius (maxdist)

0091 %###

0092 StPoint = [Dir(1,1), Dir(1,2)]; %Starting Point on the Mining Direction Line

0093 EnPoint = [Dir(2,1), Dir(2,2)]; %Ending Point on the Mining Direction Line

0094 ModelF.Inputs.Parameters.VShapedAngle = VShapedAngle;

0095 StepDis = 1; %The Step Distance in which the V Shape is going to be moved from

the starting point to end

0096 DirLineSlop = (EnPoint(2)-StPoint(2))/(EnPoint(1)-StPoint(1)); %Slope of the

Direction Line

0097 DirLineLegnth = sqrt(((EnPoint(1)-StPoint(1))^2)+((EnPoint(2)-StPoint(2))^2));

0098 DirPerLineSlop = -1/DirLineSlop; %Slope of the line which is Perpendicular to the

direction line

0099 PrecVShape = zeros(N,2);

0100 PrecVShape (1:N,1) = 1:N;

0101 PrecCounter = 1;

0102 while PrecCounter <= N

0103 for iloop = 1:N

0104

0105

0106 if StPoint(1) == EnPoint(1) %Vertical Direction (when X_Start == X_End)

0107 VShapePoint2 = [StPoint(1) + StepDis*tand(VShapedAngle/2),

StPoint(2)];

0108 VShapePoint3 = [StPoint(1) - StepDis*tand(VShapedAngle/2),

StPoint(2)];

0109 if StPoint(2) < EnPoint(2)

0110 VShapePoint1 = [StPoint(1), StPoint(2) + StepDis];

0111 else

0112 VShapePoint1 = [StPoint(1), StPoint(2)-StepDis];

0113 end

A17 Const_Precedence_VShaped_DPs

146

0114 elseif StPoint(2) == EnPoint(2) %Horizontal Direction (when Y_Start ==

Y_End)

0115 VShapePoint2 = [StPoint(1), StPoint(2) +

StepDis*tand(VShapedAngle/2)];

0116 VShapePoint3 = [StPoint(1), StPoint(2) -

StepDis*tand(VShapedAngle/2)];

0117 if StPoint(1) < EnPoint(1)

0118 VShapePoint1 = [StPoint(1) + StepDis, StPoint(2)];

0119 else

0120 VShapePoint1 = [StPoint(1) - StepDis, StPoint(2)];

0121 end

0122 else

0123

0124 XVpointDirPoint1 = (StepDis/sqrt(1+(DirLineSlop^2)))+StPoint(1); % X

coordination of the point in whch the V shape and the Direction Line intersect (first

situation which means considering + sign for the square root calculations of the

coordinates)

0125 YVpointDirPoint1 =

DirLineSlop*(StepDis/sqrt(1+(DirLineSlop^2)))+StPoint(2); % Y coordination of the

point in whch the V shape and the Direction Line intersect (first situation which

means considering + sign for the square root calculations of the coordinates)

0126

0127 XVpointDirPoint2 = -(StepDis/sqrt(1+(DirLineSlop^2)))+StPoint(1); % X

coordination of the point in whch the V shape and the Direction Line intersect (second

situation which means considering - sign for the square root calculations of the

coordinates)

0128 YVpointDirPoint2 = -

DirLineSlop*(StepDis/sqrt(1+(DirLineSlop^2)))+StPoint(2); % Y coordination of the

point in whch the V shape and the Direction Line intersect (Second situation which

means considering - sign for the square root calculations of the coordinates)

0129

0130 XVpointPerLinePoint1 =

((StepDis*tand(VShapedAngle/2))/(sqrt(1+(1/(DirLineSlop^2)))))+StPoint(1); % X

coordination of the point in whch the V shape and the Perpendicular line (to the

Direction Line) intersect (first point)

0131 YVpointPerLinePoint1 = (-

1/DirLineSlop)*(((StepDis*tand(VShapedAngle/2))/(sqrt(1+(1/(DirLineSlop^2))))))+StPoin

t(2); % Y coordination of the point in whch the V shape and the Perpendicular line (to

the Direction Line) intersect (first point)

0132

0133 XVpointPerLinePoint2 = -

((StepDis*tand(VShapedAngle/2))/(sqrt(1+(1/(DirLineSlop^2)))))+StPoint(1); % X

coordination of the point in whch the V shape and the Perpendicular line (to the

Direction Line) intersect (second point)

0134 YVpointPerLinePoint2 = (-1/DirLineSlop)*(-

((StepDis*tand(VShapedAngle/2))/(sqrt(1+(1/(DirLineSlop^2))))))+StPoint(2); % Y

coordination of the point in whch the V shape and the Perpendicular line (to the

Direction Line) intersect (second point)

0135 %Distance Calculator

0136 DisVpointToVpoint1 = sqrt(((EnPoint(1)-XVpointDirPoint1)^2)+((EnPoint(2)-

YVpointDirPoint1)^2)); %Calculating the distance between the point of intersection of

V shape (and Direction Line) and end point in first situation

0137 DisVpointToVpoint2 = sqrt(((EnPoint(1)-XVpointDirPoint2)^2)+((EnPoint(2)-

YVpointDirPoint2)^2)); %Calculating the distance between the point of intersection of

V shape (and Direction Line) and end point in second situation

0138

0139 if DisVpointToVpoint1 < DisVpointToVpoint2 %Comparing the two

distances to find the lower one and pick that as the correct point for the triangle of

the V shape

0140 VShapePoint1 = [XVpointDirPoint1,YVpointDirPoint1]; %if dis1 <

dis2 then dis1 is the correct point

0141 else

A17 Const_Precedence_VShaped_DPs

147

0142 VShapePoint1 = [XVpointDirPoint2,YVpointDirPoint2]; %if dis1 >

dis2 then dis2 is the correct point

0143 end

0144 VShapePoint2 = [XVpointPerLinePoint1,YVpointPerLinePoint1]; %Second point

of the V shape (triangle) which is the first intersection of the V Shape and the

Perpendicular Line (Perpendicular to the Direction Line)

0145 VShapePoint3 = [XVpointPerLinePoint2,YVpointPerLinePoint2]; %Third point

of the V shape (triangle) which is the second intersection of the V Shape and the

Perpendicular Line (Perpendicular to the Direction Line)

0146 %for plotting purposes to be used in PlotDPS_starting_Periods.m function

0147 if StepDis > (DirLineLegnth/15) & StepDis < (DirLineLegnth/10)

0148 ModelF.PlotData.Triangle = [VShapePoint1;VShapePoint2;VShapePoint3];

0149 else

0150 end

0151 %-----------------------------

0152 end

0153 %Check if the drawpoint falls into the V shape (triangle) or not

0154 P=[X_DPs(iloop,1), Y_DPs(iloop,1)];

0155 s = det([VShapePoint1-VShapePoint2;VShapePoint3-VShapePoint1]);

0156 t = s*det([VShapePoint3-P;VShapePoint2-VShapePoint3])>=0 &

s*det([VShapePoint1-P;VShapePoint3-VShapePoint1])>=0 & s*det([VShapePoint2-

P;VShapePoint1-VShapePoint2])>=0;

0157 if t==1 && PrecVShape(iloop, 2) == 0

0158 PrecVShape(iloop, 2) = PrecCounter;

0159 PrecCounter = PrecCounter + 1;

0160 else

0161 end

0162

0163 end

0164

0165 StepDis = StepDis + 1;

0166 end

0167 %Plotting the 3 lines of the V shape and the Direction Line to see if it works

fine and we have the correct V shape compare to the Direction Line

0168 figure('units','normalized','outerposition',[0 0 1 1]);

0169 line([VShapePoint1(1), VShapePoint2(1)], [VShapePoint1(2), VShapePoint2(2)]);

0170 line([VShapePoint2(1), VShapePoint3(1)], [VShapePoint2(2), VShapePoint3(2)],

'color', 'g');

0171 line([VShapePoint3(1), VShapePoint1(1)], [VShapePoint3(2), VShapePoint1(2)]);

0172 line([StPoint(1),EnPoint(1)],[StPoint(2),EnPoint(2)], 'color', 'r');

0173

0174 %

0175 % %###

0176 % indices = [];

0177 % indices = cell(N,1);

0178 % for iloop = 1:N

0179 % temp = find(Distance_DPs(iloop,:)<=AdjRadius & Distance_DPs(iloop,:)>0);

0180 % %indices(i,1:numel(temp)) = temp;

0181 % indices{iloop,1} = temp;

0182 % end

0183 % ModelF.Inputs.indices = indices;

0184 % Neigbs = indices;

0185 for dp = 1:N

0186 DpPrec = PrecVShape(dp,2);

0187 counter = 1; %Counting the predecessors of "dp"

0188

0189 for AdjCount = 1:N %Loop for the Adjacent drawpoints of "dp"....for dp 1 is 3

0190 AdjPrec = PrecVShape(AdjCount,2);

0191

0192 if (DpPrec == 1)

0193 Prec{dp,1}(counter) = dp;

0194 elseif (AdjPrec + 1 == DpPrec)

A17 Const_Precedence_VShaped_DPs

148

0195 Prec{dp,1}(counter) = AdjCount; %Comparing the distances of the

projected points from the starting point (A) for the adjacent drawpoints and the dp

itself. The PREDECESSORS are the ones that have a smaller distance compare to dp.

0196 counter = counter+1;

0197

0198 else

0199

0200 end

0201 end

0202

0203 end

0204 %***** Using the defined direction to build the precidence matrix *********

0205 %n*Y33 <= Y22+Y44 (n = 2)

0206 ModelF.Inputs.Sequence = PrecVShape;

0207 precedence = Prec;

0208 ModelF.Inputs.precedence = precedence;

0209 lhs_temp = sparse(N,N);

0210 rhs_temp = sparse(N,N);

0211 for iloop = 1:N

0212 prectemp = precedence{iloop,1};

0213 preccount = numel(prectemp);

0214 if prectemp == iloop

0215 %do nothing

0216 else

0217 lhs_temp(iloop,iloop) = preccount;

0218 for jloop = 1:preccount

0219 rhs_temp(iloop,prectemp(1,jloop)) = 1;

0220 end

0221 end

0222 end

0223 % a = full(lhs_temp);

0224 % b = full(rhs_temp);

0225 % [row, col] = find(isnan(rhs));

0226 % aaa = [row, col];

0227 % [row, col] = find(isnan(lhs));

0228 % bbb = [row, col];

0229 % lhsCell = repmat({lhs},1,T);

0230 % lhs = blkdiag(lhsCell{:});

0231 % rhsCell = repmat({rhs},1,T);

0232 % rhs = blkdiag(rhsCell{:});

0233 aa = eye(T);

0234 lhs = kron(aa,lhs_temp);

0235 rhs = kron(aa,rhs_temp);

0236 Aeq_p1 = sparse(T*N,T*NumberOfX);

0237 Aeq_p2 = sparse(T*N,T*N);

0238 Aeq_p3 = lhs-rhs;

0239 Aeq_p4 = sparse(T*N,4*T*ScenNum);

0240

0241 % arhs = full(rhs);

0242 % blhs = full(lhs);

0243 % cc = full(Aeq_p4);

0244 ModelF.Inputs.Constraints.Aineq_Precedence_DPs = [Aeq_p1,Aeq_p2,Aeq_p3,Aeq_p4];

0245 save('Data/ModelF','ModelF');

0246 bineq_Precedence_U = sparse(T*N,1);

0247 ModelF.Inputs.Constraints.bineq_Precedence_U_DPs = bineq_Precedence_U;

0248 SizeTemp = size(bineq_Precedence_U,1);

0249 ModelF.Inputs.Constraints.bineq_Precedence_L_DPs = -inf*ones(SizeTemp,1);

0250 save('Data/ModelF','ModelF');

0251

0252 end

0253 %==%%%%%%%%%%%%%%

0254 %==%%%%%%%%%%%%%%

0255 % The End %%%%%%%%%%%%%%

A17 Const_Precedence_VShaped_DPs

149

0256 %==%%%%%%%%%%%%%%

0257 %==%%%%%%%%%%%%%%

150

A18. Const_Precedence_Slc

0001 %==%%%%%%%%%%%%%%

0002 %==%%%%%%%%%%%%%%

0003 % University of Alberta %%%%%%%%%%%%%%

0004 % Department of Civil and Environmental Engineering %%%%%%%%%%%%%%

0005 % School of Mining and Petroleum Engineering %%%%%%%%%%%%%%

0006 % This program was written by: Firouz Khodayari, %%%%%%%%%%%%%%

0007 % Student ID: 1402853 %%%%%%%%%%%%%%

0008 % PhD Candidate in Mining Engineering %%%%%%%%%%%%%%

0009 %==%%%%%%%%%%%%%%

0010 %==%%%%%%%%%%%%%%

0011

0012 function Const_Precedence_Slc

0013

0014 %This function creates the coefficient matrices for precedence constraint

0015 %so that each drawpoint is extracted if the drawpoint(s) with higher priority to

that have

0016 %been extracted

0017 %the priority is based on the sequence which has been determined in the

0018 %ImportdataAndSequence function which is based on the defined direction

0019 %in order to define this constraint, these equations have been considered

0020 %to be added to the model: (bij is the binary variable (0 or 1) assiciated with

0021 %continuous decision variable xij which is representing the portion of draw

column i

0022 %that is going to be extracted in period j)

0023 %for example for T=2 and N=3 we have to add these constraints (6 equations):

0024 %n*Y11 <= Y12+Y13+Y14

0025

0026 %==

0027 load('Data/Param.mat'); %Loading the input parameters

0028 load('Data/InData.mat');

0029 if exist('Data/ModelF.mat')== 2

0030 load('Data/ModelF.mat');

0031

0032 else

0033 end

0034 T = Param.T; %number of periods

0035 N = InData.Parameters.N; %number of drawpoints(draw columns)

0036 NumberOfX = InData.Parameters.NumberOfX;

0037 SliceNumMat = InData.Parameters.SliceNumMat;

0038 DrawID = ModelF.Inputs.DrawID;

0039 temp3 = sparse(NumberOfX,NumberOfX);

0040 ScenNum = Param.ScenNum;

0041

0042 %..

0043 SDP = sparse(T*(NumberOfX-N),T*NumberOfX);

0044 Y1MAT = sparse(T*(NumberOfX-N),T*NumberOfX);

0045 RowCounter = 1;

0046 ColCounter = 0;

0047 DDPtemp = sparse(NumberOfX-N, NumberOfX);

0048 temp = sparse(NumberOfX-N, NumberOfX);

0049

0050 for iloop = 1:N

0051 ColCounter = ColCounter+1;

0052 for jloop = 1 : SliceNumMat(iloop,1) - 1

0053 DDPtemp(RowCounter, ColCounter) = 1;

0054 temp(RowCounter, ColCounter+1) = 1;

0055 RowCounter = RowCounter+1;

0056 ColCounter = ColCounter+1;

0057 end

0058

file:///D:/Drive/Thesis/Matlab/Codes/doc/3_Constraints/Const_Precedence_Slc.html%23_subfunctions

A18 Const_Precedence_Slc

151

0059 end

0060 for tloop = 1:T

0061 aa = sparse(tloop:T,1:T-tloop+1,1,T,T);

0062 dptloop = kron(aa,DDPtemp);

0063 SDP = SDP + dptloop;

0064 end

0065 a = eye(T);

0066 Y1MAT = kron(a,temp);

0067 %***************************************

0068 %Y2 <= Y1

0069 %***************************************

0070 Aeq_p1 = Y1MAT-SDP;

0071 Aeq_p2 = sparse(T*(NumberOfX-N),T*N);

0072 Aeq_p3 = sparse(T*(NumberOfX-N),T*N);

0073 Aeq_p4 = sparse(T*(NumberOfX-N),4*T*ScenNum);

0074

0075 ModelF.Inputs.Constraints.Aineq_Precedence_Slc = [Aeq_p1,Aeq_p2,Aeq_p3,Aeq_p4];

0076 save('Data/ModelF','ModelF');

0077 bineq_Precedence_Slc_U = sparse(T*(NumberOfX-N),1);

0078 ModelF.Inputs.Constraints.bineq_Precedence_Slc_U = bineq_Precedence_Slc_U;

0079 SizeTemp = size(bineq_Precedence_Slc_U,1);

0080 ModelF.Inputs.Constraints.bineq_Precedence_Slc_L = -inf*ones(SizeTemp,1);

0081 save('Data/ModelF','ModelF')

0082

0083 end

0084 %==%%%%%%%%%%%%%%

0085 %==%%%%%%%%%%%%%%

0086 % The End %%%%%%%%%%%%%%

0087 %==%%%%%%%%%%%%%%

0088 %==%%%%%%%%%%%%%%

152

A19. Const_Reserve

0001 %==%%%%%%%%%%%%%%

0002 %==%%%%%%%%%%%%%%

0003 % University of Alberta %%%%%%%%%%%%%%

0004 % Department of Civil and Environmental Engineering %%%%%%%%%%%%%%

0005 % School of Mining and Petroleum Engineering %%%%%%%%%%%%%%

0006 % This program was written by: Firouz Khodayari, %%%%%%%%%%%%%%

0007 % Student ID: 1402853 %%%%%%%%%%%%%%

0008 % PhD Candidate in Mining Engineering %%%%%%%%%%%%%%

0009 %==%%%%%%%%%%%%%%

0010 %==%%%%%%%%%%%%%%

0011

0012 function Const_Reserve

0013 %this constraint makes sure that the whole reserve will be extracted

0014 load('Data/Param.mat'); %Loading the input parameters

0015 load('Data/InData.mat');

0016 if exist('Data/ModelF.mat')== 2

0017 load('Data/ModelF.mat');

0018 else

0019 end

0020

0021 T = Param.T;

0022 N = InData.Parameters.N;

0023 NumberOfX = InData.Parameters.NumberOfX;

0024 ResTemp = sparse(NumberOfX,T*NumberOfX);

0025 ScenNum = Param.ScenNum;

0026 % for iloop = 1:NumberOfX

0027 % for tloop = 1:T

0028 % ResTemp(iloop,(tloop-1)*NumberOfX+iloop) = 1;

0029 % end

0030 % end

0031 temp1 = ones(1,T);

0032 temp2 = speye(NumberOfX);

0033 ResTemp = kron(temp1,temp2);

0034 reserve_1 = ResTemp;

0035 reserve_2 = sparse(NumberOfX,T*N);

0036 reserve_3 = sparse(NumberOfX,T*N);

0037 reserve_4 = sparse(NumberOfX,4*T*ScenNum);

0038

0039 reserve = [reserve_1,reserve_2,reserve_3,reserve_4];

0040

0041 Aeq_reserve = reserve; %left hand side matrix

0042 beq_reserve = ones(NumberOfX,1); %right hand side matrix

0043

0044 %Equality

0045 ModelF.Inputs.Constraints.Aeq_reserve = Aeq_reserve;

0046 ModelF.Inputs.Constraints.bineq_reserve_U = beq_reserve;

0047 ModelF.Inputs.Constraints.bineq_reserve_LEq = beq_reserve;

0048 SizeTemp = size(beq_reserve,1);

0049 %InEquality

0050 ModelF.Inputs.Constraints.bineq_reserve_LIneq = sparse(SizeTemp,1);

0051

0052 save('Data/ModelF','ModelF');

0053

0054 end

0055 %==%%%%%%%%%%%%%%

0056 %==%%%%%%%%%%%%%%

0057 % The End %%%%%%%%%%%%%%

0058 %==%%%%%%%%%%%%%%

0059 %==%%%%%%%%%%%%%%

file:///D:/Drive/Thesis/Matlab/Codes/doc/3_Constraints/Const_Reserve.html%23_subfunctions

153

A20. Run_MILP

0001 %==%%%%%%%%%%%%%%

0002 %==%%%%%%%%%%%%%%

0003 % University of Alberta %%%%%%%%%%%%%%

0004 % Department of Civil and Environmental Engineering %%%%%%%%%%%%%%

0005 % School of Mining and Petroleum Engineering %%%%%%%%%%%%%%

0006 % This program was written by: Firouz Khodayari, %%%%%%%%%%%%%%

0007 % Student ID: 1402853 %%%%%%%%%%%%%%

0008 % PhD Candidate in Mining Engineering %%%%%%%%%%%%%%

0009 %==%%%%%%%%%%%%%%

0010 %==%%%%%%%%%%%%%%

0011

0012 function Run_MILP

0013 %This function calls all required coefficient matrices which have been

0014 %created by running related functions (Importdata.mat, Objective_vector.mat,

0015 %Const_Reserve.mat, Const_MiningCapacity.mat,

0016 %Const_LowerandUpperBounds.mat, Const_Grade.mat, Const_ActiveDrawpoints.mat

0017 %) and then using CPLEX solves the MILP problem and saves the results.

0018 load('Data/Param.mat'); %Loading the input parameters

0019 load('Data/ModelF');

0020 load('Data/InData');

0021

0022 warning off; %hiding the unnecessary warnings on the command window

0023 T = Param.T;

0024 N = InData.Parameters.N;

0025 f = ModelF.Inputs.Obj.f;

0026 NumberOfX = InData.Parameters.NumberOfX;

0027 ScenNum = Param.ScenNum;

0028

0029 %Calling the constraints

0030 % 0-RESERVE

0031 A0 = ModelF.Inputs.Constraints.Aeq_reserve;

0032 b0_U = ModelF.Inputs.Constraints.bineq_reserve_U;

0033 % b0_L = ModelF.Inputs.Constraints.bineq_reserve_LEq;

0034 b0_L = ModelF.Inputs.Constraints.bineq_reserve_LIneq;

0035 % 1-BINARY

0036 A1 = ModelF.Inputs.Constraints.Aineq_Binary;

0037 b1_U = ModelF.Inputs.Constraints.bineq_Binary_U;

0038 b1_L = ModelF.Inputs.Constraints.bineq_Binary_L;

0039 % % 2-MINING CAPACITY

0040 A2 = ModelF.Inputs.Constraints.Aineq_MiningCapacity;

0041 b2_U = ModelF.Inputs.Constraints.bineq_MiningCapacity_U;

0042 b2_L = ModelF.Inputs.Constraints.bineq_MiningCapacity_L;

0043 % % % % 2.2-Production Target

0044 A22 = ModelF.Inputs.Constraints.Aineq_TarTon;

0045 b22_U = ModelF.Inputs.Constraints.TarTon_U;

0046 b22_L = ModelF.Inputs.Constraints.TarTon_L;

0047 % % % % 3-GRADE

0048 A3 = ModelF.Inputs.Constraints.Aineq_GradeConst;

0049 b3_U = ModelF.Inputs.Constraints.bineq_GradeConst_U;

0050 b3_L = ModelF.Inputs.Constraints.bineq_GradeConst_L;

0051 % % 4-ACTIVE DRAWPOINTS

0052 A4 = ModelF.Inputs.Constraints.Aineq_ActiveDrawPoints;

0053 b4_U = ModelF.Inputs.Constraints.bineq_ActiveDrawPoints_U;

0054 b4_L = ModelF.Inputs.Constraints.bineq_ActiveDrawPoints_L; % the Left hand side

matrix for the Number of Active Drawpoints

0055 % % 5-Slices PRECEDENCE (Vertical Development)

0056 A5 = ModelF.Inputs.Constraints.Aineq_Precedence_Slc;

0057 b5_U = ModelF.Inputs.Constraints.bineq_Precedence_Slc_U;

0058 b5_L = ModelF.Inputs.Constraints.bineq_Precedence_Slc_L;

0059 % % % 6-DrawPoint PRECEDENCE (Horizontal Development)

file:///D:/Drive/Thesis/Matlab/Codes/doc/4_RunFunction/Run_MILP.html%23_subfunctions

A20 Run_MILP

154

0060 A6 = ModelF.Inputs.Constraints.Aineq_Precedence_DPs;

0061 b6_U = ModelF.Inputs.Constraints.bineq_Precedence_U_DPs;

0062 b6_L = ModelF.Inputs.Constraints.bineq_Precedence_L_DPs;

0063 % % % 7-CONTINUOUS MINING

0064 A7 = ModelF.Inputs.Constraints.Aineq_ContinuousMining;

0065 b7_U = ModelF.Inputs.Constraints.bineq_ContinuousMining_U;

0066 b7_L = ModelF.Inputs.Constraints.bineq_ContinuousMining_L;

0067 % % 8-DRAW LIFE

0068 A8 = ModelF.Inputs.Constraints.Aineq_DrawLife;

0069 b8_U = ModelF.Inputs.Constraints.bineq_DrawLife_U;

0070 b8_L = ModelF.Inputs.Constraints.bineq_DrawLife_L;

0071 % % % 9-DRAW Rate

0072 A9 = ModelF.Inputs.Constraints.Aineq_DrawRate;

0073 b9_U = ModelF.Inputs.Constraints.bineq_DrawRate_U;

0074 b9_L = ModelF.Inputs.Constraints.bineq_DrawRate_L;

0075

0076 %********************

0077

0078 % Aineq = [A0;A1;A2;A22;A4;A5;A6;A7];

0079 % bineq_U = [b0_U;b1_U;b2_U;b22_U;b4_U;b5_U;b6_U;b7_U];

0080 % bineq_L = [b0_L;b1_L;b2_L;b22_L;b4_L;b5_L;b6_L;b7_L;];

0081 %

0082 Aineq = [A0;A1;A2;A5;A6;A7;A9];

0083 bineq_U = [b0_U;b1_U;b2_U;b5_U;b6_U;b7_U;b9_U];

0084 bineq_L = [b0_L;b1_L;b2_L;b5_L;b6_L;b7_L;b9_L];

0085 %*********************

0086

0087 %Data check (checking the data to see if all is readable (true values)

0088 % [row, col] = find(isnan(Aineq));

0089 % AAA = [row, col];

0090 % [row, col] = find(isnan(bineq_U));

0091 % bbb_U = [row, col];

0092 % [row, col] = find(isnan(bineq_L));

0093 % bbb_L = [row, col];

0094 % [row, col] = find(isnan(f));

0095 % fff = [row, col];

0096 %###

0097 lb = ModelF.Inputs.Constraints.lb;

0098 ub = ModelF.Inputs.Constraints.ub;

0099 ctype_1 = [char('B'*ones(1,T*NumberOfX))]; %Defining type of the variables, 1:N*T

variables are Continuous {X}

0100 ctype_2 = [char('B'*ones(1,T*N))]; % (2*N*T)+1:(3*N*T) are Binary for the

DrawRate constraint {R}

0101 ctype_3 = [char('B'*ones(1,T*N))]; % (3*N*T)+1:(4*N*T) are Binary for the

DrawRate constraint {R}

0102 ctype_4 = [char('C'*ones(1,4*T*ScenNum))]; % (4*N*T)+1:(4*N*T)+2*T are Continuous

Variables for deviation of tonnage

0103

0104 ctype = [ctype_1,ctype_2,ctype_3,ctype_4];

0105

0106 addpath('C:\Program Files\IBM\ILOG\CPLEX_Studio1271\cplex\matlab\x64_win64');

%for CPLEX Version 12.7.1

0107 % addpath('C:\Program

Files\IBM\ILOG\CPLEX_Enterprise_Server126\CPLEX_Studio\cplex\matlab\x64_win64');

%for CPLEX Version 12.6

0108 % addpath('C:\Program

Files\IBM\ILOG\CPLEX_Enterprise_Server126\CPLEX_Studio\cplex\examples\src\matlab');

0109 %*** MODEL SIZE

0110 ModelF.Outputs.ModelSizeVar = size(f,1); %Number of the

Variables

0111 ModelF.Outputs.ModelSizeConst = size(Aineq,1); %Number of the

Constraints

0112 %*** MODEL SIZE

A20 Run_MILP

155

0113

0114 %888

0115 cplex = Cplex('MILP');

0116

0117 %Setting the parameters

0118 % cplex.Param.solutiontarget.Cur = 0; %For CPLEX version 12.6

0119 cplex.Param.optimalitytarget.Cur = 0; %For CPLEX version 12.7 %Specifies type of

optimality that CPLEX targets (optimal convex or first-order satisfaction) as it

searches for a solution::: CPX_OPTIMALITYTARGET_AUTO ==>Automatic: let CPLEX decide;

default

0120 cplex.Param.mip.tolerances.mipgap.Cur = (Param.MIPgap)/100; %Sets a relative

tolerance on the gap between the best integer objective and the objective of the best

node remaining

0121 cplex.Param.mip.tolerances.integrality.Cur = 0;

0122 cplex.Param.mip.strategy.file.Cur = 3;

0123 cplex.Param.workmem.Cur = 62000;

0124 cplex.Param.threads.Cur = 22;

0125 cplex.Param.conflict.display.Cur = 1;

0126 cplex.Param.read.datacheck.Cur = 1;

0127 % cplex.Param.timelimit.Cur = 86400;

0128 cplex.DisplayFunc;

0129 %MODEL

0130 cplex.Model.sense = 'maximize';

0131 cplex.Model.name = 'MILP';

0132 cplex.Model.obj = f;

0133 cplex.Model.lb = lb;

0134 cplex.Model.ub = ub;

0135 cplex.Model.A = Aineq;

0136 cplex.Model.lhs = bineq_L;

0137 cplex.Model.rhs = bineq_U;

0138 cplex.Model.ctype = ctype;

0139 % Results.out = CpxInfo(cplex);

0140 cplex.DisplayFunc;

0141 % cplex.refineConflict();

0142 % cplex.writeConflict('conflict.lp');

0143 % cplex.writeModel('myprob.lp');

0144 cplex.writeParam('myprob.prm');

0145 cplex.solve();

0146 Results.getChgParam = cplex.getChgParam();

0147 Results.getProbType = cplex.getProbType();

0148 Results.Solution = cplex.Solution;

0149 % Results.conflict = cplex.Conflict;

0150

0151 save('Data/Results.mat','Results');

0152 % Write the solution

0153 fprintf ('\nSolution status = %s \n', cplex.Solution.statusstring);

0154 fprintf ('\nSolution status value = %f \n', cplex.Solution.status);

0155 fprintf ('Solution Objective value = %f \n', cplex.Solution.objval);

0156 fprintf ('\nSolution method = %f \n', cplex.Solution.method);

0157 disp ('Values =');

0158 %##

0159

0160 %***

0161 save('Data/ModelF','ModelF');

0162 save('Data/Results.mat','Results');

0163 % Exporting_Results

0164 end

0165 %==%%%%%%%%%%%%%%

0166 %==%%%%%%%%%%%%%%

0167 % The End %%%%%%%%%%%%%%

0168 %==%%%%%%%%%%%%%%

0169 %==%%%%%%%%%%%%%%

156

A21. Exporting_Results

0001 %==%%%%%%%%%%%%%%

0002 %==%%%%%%%%%%%%%%

0003 % University of Alberta %%%%%%%%%%%%%%

0004 % Department of Civil and Environmental Engineering %%%%%%%%%%%%%%

0005 % School of Mining and Petroleum Engineering %%%%%%%%%%%%%%

0006 % This program was written by: Firouz Khodayari, %%%%%%%%%%%%%%

0007 % Student ID: 1402853 %%%%%%%%%%%%%%

0008 % PhD Candidate in Mining Engineering %%%%%%%%%%%%%%

0009 %==%%%%%%%%%%%%%%

0010 %==%%%%%%%%%%%%%%

0011

0012 function Exporting_Results

0013 %This function export the results to be saved in ModelF.Outputs and be used in

the plotting functions

0014 load('Data/Param.mat'); %Loading the input parameters

0015 load('Data/ModelF');

0016 load('Data/InData');

0017 load('Data/Results.mat');

0018

0019 warning off; %hiding the unnecessary warnings on the command window

0020 T = Param.T;

0021 N = InData.Parameters.N;

0022 NumberOfX = InData.Parameters.NumberOfX;

0023 TonVarMat = ModelF.Inputs.TonVarMat;

0024 GradeVarMat = ModelF.Inputs.GradeVarMat;

0025 SliceNumMat = InData.Parameters.SliceNumMat;

0026 DrawID = ModelF.Inputs.DrawID;

0027 Intrate = Param.Intrate;

0028 price = Param.price;

0029 cost = Param.cost;

0030 Rec = Param.recovery;

0031 GradeScen = ModelF.Inputs.Scenarios.Grade.Scen;

0032 TonScen = ModelF.Inputs.Scenarios.Ton.Scen;

0033 EGrade = ModelF.Inputs.Scenarios.Grade.EGrade;

0034 ETon = ModelF.Inputs.Scenarios.Ton.ETon;

0035 ScenNum = Param.ScenNum;

0036 EGradeVarMat = ModelF.Inputs.Scenarios.Grade.EGradeVarMat;

0037 ETonVarMat = ModelF.Inputs.Scenarios.Ton.ETonVarMat;

0038

0039 %**

0040 X = Results.Solution.x;

0041 fval = Results.Solution.objval;

0042 ModelF.Outputs.X = X;

0043 %exporting by period results for the CONTINUOUS variables

0044 %the first N decision variables(x1:xN) are for the first period and so on.

0045 for tloop = 1:T

0046 X_t(tloop,:) = X((tloop-1)*NumberOfX+1:NumberOfX*tloop,1);

0047 X_tTon(tloop,:) = ETonVarMat(1,:).*X_t(tloop,:);

0048 end

0049 ModelF.Outputs.X_t = X_t;

0050 ModelF.Outputs.X_tTon = X_tTon;

0051 X_t_sl = sum(X_t,1);

0052 Count1 = 0;

0053 Count2 = 0;

0054 X_DpResults = [];

0055 for iloop = 1:N

0056 Count2 = Count2 + SliceNumMat(iloop,1);

0057 X_DpResults(iloop,1:SliceNumMat(iloop,1)) = X_t_sl(1,Count1+1:Count2);

0058 Count1 = Count1 + SliceNumMat(iloop,1);

0059 end

file:///D:/Drive/Thesis/Matlab/Codes/doc/4_RunFunction/Exporting_Results.html%23_subfunctions

A21 Exporting_Results

157

0060 %***

0061 %exporting by period results for the FIRST set of binary variables

0062

0063 % for iloop = T+1:2*T

0064 % SlcAct_t(iloop-T,:) = X((iloop-1)*NumberOfX+1:NumberOfX*iloop,1);

0065 % end

0066 % ModelF.Outputs.SlcAct_t = SlcAct_t;

0067 % SlcAct_All = X(T*NumberOfX+1:2*T*NumberOfX);

0068 % ModelF.Outputs.SlcAct_All = SlcAct_All;

0069 %*************************

0070 %exporting by period results for the SECOND set of binary variables

0071 from = T*NumberOfX;

0072 to = 0;

0073 for tloop = 1:T

0074 to = from + N;

0075 DpAct_t(tloop,:) = X(from+1:to,1);

0076 from = from + N;

0077 end

0078 % for iloop = T+1:2*T

0079 % DpAct_t(iloop-T,:) = X((iloop-1)*NumberOfX+1:NumberOfX*iloop,1);

0080 % end

0081 ModelF.Outputs.DpAct_t = DpAct_t;

0082 DpAct_All = X(T*NumberOfX+1:T*NumberOfX+T*N);

0083 ModelF.Outputs.DpAct_All = DpAct_All;

0084 %*************************

0085 for nloop = 1:N

0086 DpActCompact_t(1:T,nloop) = DpAct_t(1:T,nloop,1);

0087 end

0088 ModelF.Outputs.DpActCompact_t = DpActCompact_t;

0089

0090 %*************************

0091 %exporting by period results for the SECOND set of binary variables

0092 for tloop = 1:T

0093 to = from + N;

0094 DpStart_t(tloop,:) = X(from:to,1);

0095 from = from + N;

0096 end

0097 % for iloop = 2*T+1:3*T

0098 % DpStart_t(iloop-2*T,:) = X((iloop-1)*NumberOfX+1:NumberOfX*iloop,1);

0099 % end

0100 ModelF.Outputs.DpStart_t = DpStart_t;

0101 DpStart_All = X(T*NumberOfX+T*N+1:T*NumberOfX+2*T*N);

0102 ModelF.Outputs.DpStart_All = DpStart_All;

0103 %*************************

0104 for nloop = 1:N

0105 DpStartCompact_t(1:T,nloop) = DpStart_t(1:T,nloop);

0106 end

0107 ModelF.Outputs.DpStartCompact_t = DpStartCompact_t;

0108

0109 %*************************

0110 DevResults_L = X(T*NumberOfX+2*T*N+1:T*NumberOfX+2*T*N+T*ScenNum);

0111 DevResults_U = X(T*NumberOfX+2*T*N+T*ScenNum+1:T*NumberOfX+2*T*N+2*T*ScenNum);

0112 for tloop = 1:T

0113 DevResults_L_t(tloop,:) = DevResults_L((tloop-1)*ScenNum+1:tloop*ScenNum);

0114 DevResults_U_t(tloop,:) = DevResults_U((tloop-1)*ScenNum+1:tloop*ScenNum);

0115 end

0116 % %Exporting results for the Production of Drawpoints per Period

0117

0118 ModelF.Outputs.DPPeriodicProduction = X_tTon;%total peroduction per each

period(tonne), it will be used to plot the "production per period" graph

0119

0120 %GGGGGGGGGGGGGG Average Grade per Period GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG

0121 OutputExpectedGrade = zeros(T,1);

A21 Exporting_Results

158

0122 ETonGrade = ETonVarMat.*EGradeVarMat;

0123 for iloop = 1:ScenNum

0124 TempMat = zeros(T,1);

0125 for tloop = 1:T

0126

0127 GradeTemp = GradeScen.(['GradeScenVarMat',num2str(iloop)]);

0128 TempMat(tloop,1) =

(GradeTemp(1,1:NumberOfX)*(X_tTon(tloop,:))')/(sum((X_tTon(tloop,:))));

0129 if iloop == 1

0130 OutputExpectedGrade(tloop,1) =

(X_t(tloop,:)*(ETonGrade(1,:))')/(sum((X_tTon(tloop,:))));

0131 MetalContent(tloop,1) = (X_t(tloop,:)*(ETonGrade(1,:))');

0132 else

0133 end

0134 end

0135 eval(sprintf('GradeScenariosOut.GradeOutput%d = TempMat',iloop));

0136 end

0137 ModelF.PlotData.ScenariosOut.OutputExpectedGrade = OutputExpectedGrade;

0138 ModelF.PlotData.ScenariosOut.Grade = GradeScenariosOut;

0139 %GGGGGGGGGGGGGG Average Grade per Period GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG

0140 OutputExpectedTon = zeros(T,1);

0141 for iloop = 1:ScenNum

0142 TempMat = zeros(T,1);

0143 for tloop = 1:T

0144

0145 TonTemp = TonScen.(['TonScenVarMat',num2str(iloop)]);

0146 TempMat(tloop,1) = (TonTemp(1,1:NumberOfX)*(X_t(tloop,:))');

0147 if iloop == 1

0148 OutputExpectedTon(tloop,1) = X_t(tloop,:)*(ETonVarMat(1,:))';

0149 else

0150 end

0151 end

0152 eval(sprintf('TonScenariosOut.TonOutput%d = TempMat',iloop));

0153 end

0154 ModelF.PlotData.ScenariosOut.OutputExpectedTon = OutputExpectedTon;

0155 ModelF.PlotData.ScenariosOut.Ton = TonScenariosOut;

0156 %PP

0157 %Exporting results: a plot that after each run shows the total portion of

extraction for each drawpoint

0158 blportions = sum(X_t); %the total portion of each drawpoint that will be

extracted based on the x results(summation of the all periods)

0159 ModelF.Outputs.blportions = blportions;

0160 plot(1:NumberOfX,blportions); %plotting the total portion of extraction during

all periods for drawpoints

0161

0162 % MinimumDrawRate = min(min(DPPeriodicProduction(DPPeriodicProduction>0)))

0163 % MaximumDrawRate = max(max(DPPeriodicProduction))

0164 NPV = zeros(T,1);

0165 production = zeros(T,1);

0166 for tloop = 1:T

0167 production(tloop,1) = sum(X_tTon(tloop,:));

0168 NPV(tloop,1) =

((price.*production(tloop,1)*(OutputExpectedGrade(tloop,1)/100).*Rec)-

(production(tloop,1).*cost))/((1+Intrate)^tloop);

0169 end

0170 NPVValue = sum(NPV(NPV>0));

0171 ModelF.Outputs.NPV_Value_Dollar = ThousandSep(NPVValue);

0172 NPV_Value_Dollar = ThousandSep(NPVValue)

0173 totalproduction = sum(production);

0174 ModelF.Outputs.TotalProduction_Tonnes = ThousandSep(totalproduction);

0175 TotalProduction_Tonnes = ThousandSep(totalproduction)

0176 %**

0177 %Exporting the results to plot the number of active drawpoints per each period

A21 Exporting_Results

159

0178 ActDPs = zeros(N,T);

0179 ActivePerPeriod = zeros(T,N);

0180 for tloop = 1:T

0181 VarCount1 = 0;

0182 VarCount2 = 0;

0183 for iloop = 1:N

0184 VarCount2 = VarCount2 + SliceNumMat(iloop,1);

0185 ActTemp = sum(X_t(tloop,VarCount1+1:VarCount2));

0186 if ActTemp > 0

0187 ActDPs (iloop,tloop) = 1;

0188 else

0189 end

0190 VarCount1 = VarCount1 + SliceNumMat(iloop,1);

0191 end

0192 end

0193 ActivePerPeriod = sum(ActDPs,1);

0194 ModelF.Outputs.Plots.ActivePerPeriod = ActivePerPeriod;

0195 %***

0196 save('Data/ModelF.mat','ModelF');

0197 save('Data/Results.mat','Results');

0198

0199 end

0200 %==%%%%%%%%%%%%%%

0201 %==%%%%%%%%%%%%%%

0202 % The End %%%%%%%%%%%%%%

0203 %==%%%%%%%%%%%%%%

0204 %==%%%%%%%%%%%%%%

160

A22. Plot_ActivePerPeriod

0001 %==%%%%%%%%%%%%%%

0002 %==%%%%%%%%%%%%%%

0003 % University of Alberta %%%%%%%%%%%%%%

0004 % Department of Civil and Environmental Engineering %%%%%%%%%%%%%%

0005 % School of Mining and Petroleum Engineering %%%%%%%%%%%%%%

0006 % This program was written by: Firouz Khodayari, %%%%%%%%%%%%%%

0007 % Student ID: 1402853 %%%%%%%%%%%%%%

0008 % PhD Candidate in Mining Engineering %%%%%%%%%%%%%%

0009 %==%%%%%%%%%%%%%%

0010 %==%%%%%%%%%%%%%%

0011

0012 function Plot_ActivePerPeriod

0013 load('Data/Param.mat'); %Loading the input parameters

0014 load('Data/ModelF');

0015 load('Data/InData');

0016 T = Param.T;

0017 N = InData.Parameters.N;

0018 NoActiveDP = ModelF.Outputs.Plots.ActivePerPeriod;

0019

0020 bar(1:T,NoActiveDP);

0021 xlabel('Period (Year)','fontsize',18','FontWeight','bold');

0022 ylabel('Number of Active Draw Points','fontsize',18','FontWeight','bold');

0023 % title('Number of Active Drawpoints per each

period','fontsize',17','FontWeight','bold');

0024 set(gca,'fontsize',18,'FontWeight','bold');

0025 hold on

0026 xl = [0,T+1];

0027 xu = [0,T+1];

0028 yl = [Param.Actmin,Param.Actmin];

0029 yu = [Param.Actmax,Param.Actmax];

0030 plot(xl,yl,'g')

0031 plot(xu,yu,'r')

0032 ylim([0 N+1])

0033 axis([0,T+1,0,Param.Actmax+10]);

0034

0035 ActivePeriod(1:T,1) = 1:T;

0036 ActivePeriod(1:T,2) = NoActiveDP(:);

0037 ModelF.PlotData.ActivePeriod = ActivePeriod;

0038 save('Data/ModelF','ModelF');

0039

0040 end

0041 %==%%%%%%%%%%%%%%

0042 %==%%%%%%%%%%%%%%

0043 % The End %%%%%%%%%%%%%%

0044 %==%%%%%%%%%%%%%%

0045 %==%%%%%%%%%%%%%%

file:///D:/Drive/Thesis/Matlab/Codes/doc/5_PlotFunctions/Plot_ActivePerPeriod.html%23_subfunctions

161

A23. Plot_BHOD

0001 %==%%%%%%%%%%%%%%

0002 %==%%%%%%%%%%%%%%

0003 % University of Alberta %%%%%%%%%%%%%%

0004 % Department of Civil and Environmental Engineering %%%%%%%%%%%%%%

0005 % School of Mining and Petroleum Engineering %%%%%%%%%%%%%%

0006 % This program was written by: Firouz Khodayari, %%%%%%%%%%%%%%

0007 % Student ID: 1402853 %%%%%%%%%%%%%%

0008 % PhD Candidate in Mining Engineering %%%%%%%%%%%%%%

0009 %==%%%%%%%%%%%%%%

0010 %==%%%%%%%%%%%%%%

0011

0012 function Plot_BHOD

0013 load('Data/Param.mat');

0014 load('Data/ModelF');

0015 load('Data/InData');

0016 T = Param.T;

0017 N = InData.Parameters.N;

0018 NumberOfX = InData.Parameters.NumberOfX;

0019 DrawID = ModelF.Inputs.DrawID;

0020 SliceNumMat = InData.Parameters.SliceNumMat;

0021 X_t = ModelF.Outputs.X_t;

0022 X_tTon = ModelF.Outputs.X_tTon;

0023 DpSlHeight = InData.Excel.Slices.DpSlHeight;

0024 %^^

0025 for iloop = 1:N

0026 for jloop = 1:size(DpSlHeight,2)

0027 if DpSlHeight(iloop,jloop) == 0

0028 DpSlHeightInterval(iloop,jloop) = 0;

0029 elseif jloop ==1

0030 DpSlHeightInterval(iloop,jloop) = DpSlHeight(iloop,jloop);

0031 else

0032 DpSlHeightInterval(iloop,jloop) = DpSlHeight(iloop,jloop) -

DpSlHeight(iloop,jloop-1);

0033 end

0034 end

0035 end

0036

0037

0038

0039 BHOD = zeros(N,1);

0040 for jloop = 1:N

0041 SlHeights = DpSlHeightInterval(jloop,:);

0042 VarFrom = DrawID(jloop,1);

0043 VarTo = VarFrom + SliceNumMat(jloop,1) - 1;

0044 for tloop = 1:T

0045 counter = 1;

0046 for iloop = VarFrom:VarTo

0047 DrawRate(tloop, counter) = X_t(tloop,iloop);

0048 BHOD(jloop,1) = BHOD(jloop,1) + X_t(tloop,iloop) *

SlHeights(1,counter);

0049 counter = counter+1;

0050 end

0051 end

0052 end

0053

0054 REC = InData.Excel.DPs.record;

0055 DPs_x = InData.Excel.DPs.X;

0056 DPs_y = InData.Excel.DPs.Y;

0057 DPs_z = InData.Excel.DPs.Y;

0058 N = numel(DPs_x);

file:///D:/Drive/Thesis/Matlab/Codes/doc/5_PlotFunctions/Plot_BHOD.html%23_subfunctions

A23 Plot_BHOD

162

0059 r = Param.Radius;

0060 g = REC(:,1);

0061 mark0 = num2str(g);

0062 mark = cellstr(mark0);

0063 figure('units','normalized','outerposition',[0 0 1 1]);

0064 % F = gscatter(DPs_x,DPs_y,g,'k','o',15,'off');

0065

0066 syms u v

0067

0068 for iloop = 1:N

0069

0070 ezsurf(DPs_x(iloop,1)+r*cos(u),DPs_y(iloop,1)+r*sin(u),v,[0 2*pi

DPs_z(iloop,1) DPs_z(iloop,1)+BHOD(iloop,1)]);

0071 axis equal

0072 hold on

0073 end

0074 % title('Draw Points');

0075 title('');

0076 set(gca,'fontsize',15,'FontWeight','bold');

0077 xlabel('Easting-X (m)','FontSize',17,'FontWeight','bold');

0078 ylabel('Northing-Y (m)','FontSize',17,'FontWeight','bold');

0079 zlabel('Elevation-Z (m)');

0080 % text(DPs_x-1,DPs_y,mark,'FontSiz',7,'color','blue');

0081 % hold

0082 % triplot(TR);

0083 datacursormode on

0084

0085 DPs_y = InData.Excel.DPs.Y;

0086 DPs_z = InData.Excel.DPs.Z;

0087 end

0088 %==%%%%%%%%%%%%%%

0089 %==%%%%%%%%%%%%%%

0090 % The End %%%%%%%%%%%%%%

0091 %==%%%%%%%%%%%%%%

0092 %==%%%%%%%%%%%%%%

163

A24. Plot_ ProductionPerPeriod

0001 %==%%%%%%%%%%%%%%

0002 %==%%%%%%%%%%%%%%

0003 % University of Alberta %%%%%%%%%%%%%%

0004 % Department of Civil and Environmental Engineering %%%%%%%%%%%%%%

0005 % School of Mining and Petroleum Engineering %%%%%%%%%%%%%%

0006 % This program was written by: Firouz Khodayari, %%%%%%%%%%%%%%

0007 % Student ID: 1402853 %%%%%%%%%%%%%%

0008 % PhD Candidate in Mining Engineering %%%%%%%%%%%%%%

0009 %==%%%%%%%%%%%%%%

0010 %==%%%%%%%%%%%%%%

0011

0012 function Plot_ProductionPerPeriod

0013 load('Data/Param.mat'); %Loading the input parameters

0014 load('Data/ModelF.mat');

0015 load('Data/InData');

0016 T = Param.T; %number of periods

0017 N = InData.Parameters.N; %number of drawpoints(draw columns)

0018 NumberOfX = InData.Parameters.NumberOfX;

0019 DrawID = ModelF.Inputs.DrawID;

0020 SliceNumMat = InData.Parameters.SliceNumMat;

0021 MinDrawLife = Param.MinDrawLife;

0022 MaxDrawLife = Param.MaxDrawLife;

0023 DpAct_All = ModelF.Outputs.DpAct_All;

0024 DrawLife = sparse(N,T*N);

0025 for iloop = 1:N

0026 for tloop = 1:T

0027 DrawLife(iloop,(tloop-1)*N+iloop) = 1;

0028 end

0029 end

0030 DrawLife = DrawLife*DpAct_All;

0031 % production(1:T,1) = 5;

0032 xl = [0,N+1];

0033 xu = [0,N+1];

0034 yl = [MinDrawLife,MinDrawLife];

0035 yu = [MaxDrawLife,MaxDrawLife];

0036 % bar(1:N,DrawLife);

0037 plot(1:N,DrawLife);

0038 set(gca,'XTick',(1:20:N));

0039 set(gca,'YTick',(1:1:MaxDrawLife));

0040 xlabel('Period (Year)','FontSize',18,'FontWeight','bold');

0041 ylabel('Draw Life','FontSize',18,'FontWeight','bold');

0042 % title('DrawLife of the Drawpoints','FontSize',15,'FontWeight','bold');

0043 set(gca,'fontsize',10,'FontWeight','bold');

0044

0045 hold on

0046 plot(xl,yl,'g')

0047 plot(xu,yu,'r')

0048

0049 DrawLifePeriod(1:N,1) = 1:N;

0050 DrawLifePeriod(1:N,2) = DrawLife(:);

0051 ModelF.PlotData.DrawLifePeriod = DrawLifePeriod;

0052

0053 save('Data/ModelF','ModelF');

0054

0055 end

0056 %==%%%%%%%%%%%%%%

0057 %==%%%%%%%%%%%%%%

0058 % The End %%%%%%%%%%%%%%

0059 %==%%%%%%%%%%%%%%

0060 %==%%%%%%%%%%%%%%

file:///D:/Drive/Thesis/Matlab/Codes/doc/5_PlotFunctions/Plot_DrawLife.html%23_subfunctions

164

A25. Plot_ DrawRate_All

0001 %==%%%%%%%%%%%%%%

0002 %==%%%%%%%%%%%%%%

0003 % University of Alberta %%%%%%%%%%%%%%

0004 % Department of Civil and Environmental Engineering %%%%%%%%%%%%%%

0005 % School of Mining and Petroleum Engineering %%%%%%%%%%%%%%

0006 % This program was written by: Firouz Khodayari, %%%%%%%%%%%%%%

0007 % Student ID: 1402853 %%%%%%%%%%%%%%

0008 % PhD Candidate in Mining Engineering %%%%%%%%%%%%%%

0009 %==%%%%%%%%%%%%%%

0010 %==%%%%%%%%%%%%%%

0011

0012 function Plot_DrawRate_All

0013 load('Data/Param.mat');

0014 load('Data/ModelF');

0015 load('Data/InData');

0016 T = Param.T;

0017 N = InData.Parameters.N;

0018 NumberOfX = InData.Parameters.NumberOfX;

0019 DrawID = ModelF.Inputs.DrawID;

0020 SliceNumMat = InData.Parameters.SliceNumMat;

0021 X_t = ModelF.Outputs.X_t;

0022 X_tTon = ModelF.Outputs.X_tTon;

0023 Seq = ModelF.Inputs.Sequence;

0024 DRMin = Param.DPRMin;

0025 DRMax = Param.DPRMax;

0026

0027 DrawRate = zeros(T,N);

0028 for tloop = 1:T

0029

0030 Counter1 = 0;

0031 Counter2 = 0;

0032 for iloop = 1:N

0033 Counter2 = Counter2 + SliceNumMat(iloop,1);

0034 DrawRateTemp = X_tTon(tloop, Counter1+1:Counter2);

0035 DrawRate(tloop,iloop) = sum(DrawRateTemp);

0036 Counter1 = Counter1 + SliceNumMat(iloop,1);

0037 end

0038 end

0039 ModelF.PlotData.DrawRate = DrawRate;

0040 SeqSort = sortrows(Seq,2);

0041 DrawRate_Seq = zeros(T,N);

0042 for iloop = 1:N

0043 SeqId = SeqSort(iloop,1);

0044 DrawRate_Seq(:,iloop) = DrawRate(:,SeqId);

0045 end

0046

0047 MinimumDrawRate = Param.DPRMin;

0048 MaximumDrawRate = Param.DPRMax;

0049 xl = [0,N+1];

0050 xu = [0,N+1];

0051 yl = [MinimumDrawRate,MinimumDrawRate];

0052 yu = [MaximumDrawRate,MaximumDrawRate];

0053 tt = T;

0054 for tloop = 1:tt

0055 % figure('units','normalized','outerposition',[0 0 1 1]);

0056 % title(['Draw Rates ',num2str(tloop)]);

0057 % bar(DrawRate(tloop,1:N));

0058 DrawTemp = DrawRate_Seq(tloop,1:N);

0059 DrawTemp(DrawTemp == 0) = NaN;

0060 subplot(2,5,tloop);

file:///D:/Drive/Thesis/Matlab/Codes/doc/5_PlotFunctions/Plot_DrawRate_All.html%23_subfunctions

A25 Plot_ DrawRate_All

165

0061 % plot(1:N,DrawTemp,'.','MarkerSize',5);

0062 bar(1:N,DrawTemp);

0063

0064 % plot(1:N,DrawRate(tloop,1:N),'*','MarkerSize',20);

0065

0066 % set(gca,'xticklabel',[1:N].')

0067 set(gca,'XTick',1:50:N);

0068 % ylim([0 DRMax+5000]);

0069 xlabel('Draw Points','FontSize',1,'FontWeight','bold');

0070 ylabel('Tonnage (tonne)','FontSize',1,'FontWeight','bold');

0071 title(['Draw Rates ','at year ',num2str(tloop)]);

0072 xlim([1 N]);

0073 % hold on

0074 % plot(xl,yl,'g--','LineWidth',3)

0075 % plot(xu,yu,'r--','LineWidth',3)

0076 set(gca,'fontsize',5,'FontWeight','bold');

0077

0078 end

0079

0080 datacursormode on

0081 end

0082 %==%%%%%%%%%%%%%%

0083 %==%%%%%%%%%%%%%%

0084 % The End %%%%%%%%%%%%%%

0085 %==%%%%%%%%%%%%%%

0086 %==%%%%%%%%%%%%%%

166

A26. Plot_ DrawRate_Slc

0001 %==%%%%%%%%%%%%%%

0002 %==%%%%%%%%%%%%%%

0003 % University of Alberta %%%%%%%%%%%%%%

0004 % Department of Civil and Environmental Engineering %%%%%%%%%%%%%%

0005 % School of Mining and Petroleum Engineering %%%%%%%%%%%%%%

0006 % This program was written by: Firouz Khodayari, %%%%%%%%%%%%%%

0007 % Student ID: 1402853 %%%%%%%%%%%%%%

0008 % PhD Candidate in Mining Engineering %%%%%%%%%%%%%%

0009 %==%%%%%%%%%%%%%%

0010 %==%%%%%%%%%%%%%%

0011

0012 function Plot_DrawRate_Slc

0013 load('Data/Param.mat');

0014 load('Data/ModelF');

0015 load('Data/InData');

0016 T = Param.T;

0017 N = InData.Parameters.N;

0018 NumberOfX = InData.Parameters.NumberOfX;

0019 DrawID = ModelF.Inputs.DrawID;

0020 SliceNumMat = InData.Parameters.SliceNumMat;

0021 X_t = ModelF.Outputs.X_t;

0022 X_tTon = ModelF.Outputs.X_tTon;

0023 %^^

0024 DpID = 15;

0025 %^^

0026 VarFrom = DrawID(DpID,1);

0027 VarTo = VarFrom + SliceNumMat(DpID,1) - 1;

0028 for tloop = 1:T

0029 counter = 1;

0030 for iloop = VarFrom:VarTo

0031

0032 DrawRate(tloop, counter) = X_t(tloop,iloop);

0033 counter = counter+1;

0034 end

0035 end

0036

0037 ModelF.PlotData.DrawRate = DrawRate;

0038 MinimumDrawRate = min(min(DrawRate(DrawRate>0)))

0039 MaximumDrawRate = max(max(DrawRate))

0040 xl = [0,N+1];

0041 xu = [0,N+1];

0042 yl = [MinimumDrawRate,MinimumDrawRate];

0043 yu = [MaximumDrawRate,MaximumDrawRate];

0044 tt = T;

0045 for tloop = 1:tt

0046 figure('units','normalized','outerposition',[0 0 1 1]);

0047 title(['Draw Rates ',num2str(tloop)]);

0048 bar(DrawRate(tloop,:));

0049 xlabel('Slices','FontSize',18,'FontWeight','bold');

0050 ylabel('Tonnage (tonne)','FontSize',18,'FontWeight','bold');

0051 title(['Draw Rates for Drawpoint ',num2str(DpID),' at year

0052 ',num2str(tloop)]);

0053 set(gca,'fontsize',18,'FontWeight','bold');

0054 end

0055 datacursormode on

0056 end

0057 %==%%%%%%%%%%%%%%

0058 %==%%%%%%%%%%%%%%

0059 % The End %%%%%%%%%%%%%%

0060 %==%%%%%%%%%%%%%%

file:///D:/Drive/Thesis/Matlab/Codes/doc/5_PlotFunctions/Plot_DrawRate_Slc.html%23_subfunctions

A26 Plot_ DrawRate_Slc

167

0061 %==%%%%%%%%%%%%%%

168

A27. Plot_ DrawRate_Slc_Seq

0001 %==%%%%%%%%%%%%%%

0002 %==%%%%%%%%%%%%%%

0003 % University of Alberta %%%%%%%%%%%%%%

0004 % Department of Civil and Environmental Engineering %%%%%%%%%%%%%%

0005 % School of Mining and Petroleum Engineering %%%%%%%%%%%%%%

0006 % This program was written by: Firouz Khodayari, %%%%%%%%%%%%%%

0007 % Student ID: 1402853 %%%%%%%%%%%%%%

0008 % PhD Candidate in Mining Engineering %%%%%%%%%%%%%%

0009 %==%%%%%%%%%%%%%%

0010 %==%%%%%%%%%%%%%%

0011

0012 function Plot_DrawRate_Slc_Seq

0013 load('Data/Param.mat');

0014 load('Data/ModelF');

0015 load('Data/InData');

0016 T = Param.T;

0017 N = InData.Parameters.N;

0018 NumberOfX = InData.Parameters.NumberOfX;

0019 DrawID = ModelF.Inputs.DrawID;

0020 SliceNumMat = InData.Parameters.SliceNumMat;

0021 X_t = ModelF.Outputs.X_t;

0022 X_tTon = ModelF.Outputs.X_tTon;

0023 %^^

0024 DpID = 355;

0025 %^^

0026 VarFrom = DrawID(DpID,1);

0027 VarTo = VarFrom + SliceNumMat(DpID,1) - 1;

0028 for tloop = 1:T

0029 counter = 1;

0030 for iloop = VarFrom:VarTo

0031 DrawRate(tloop, counter) = X_t(tloop,iloop);

0032 counter = counter+1;

0033 end

0034 end

0035

0036 ModelF.PlotData.DrawRate = DrawRate;

0037

0038 figure('units','normalized','outerposition',[0 0 1 1]);

0039

0040

0041 for iloop = 1:SliceNumMat(DpID,1)

0042 for tloop = 1:T

0043 plot(tloop,iloop);

0044 if DrawRate(tloop,iloop) > 0

0045

0046 text(tloop,iloop,[num2str(100*DrawRate(tloop,iloop)),'

%'],'Color',rand(1,3),'FontSize',14);

0047 % text(tloop,iloop,[num2str(iloop)],'Color',rand(1,3),'FontSize',18);

0048

0049 % str = num2str(100*DrawRate(tloop,iloop));

0050 % dim = [(tloop/T), (iloop./SliceNumMat(DpID,1)), .3, .3];

0051 %

annotation('textbox',dim,'String',str,'Color',rand(1,3),'FontSize',14,'FitBoxToText','

on');

0052 else

0053 end

0054

0055 hold on

0056 end

0057 end

file:///D:/Drive/Thesis/Matlab/Codes/doc/5_PlotFunctions/Plot_DrawRate_Slc_Seq.html%23_subfunctions

A27 Plot_ DrawRate_Slc_Seq

169

0058 xlim([0 T]);

0059 ylim([0 SliceNumMat(DpID,1)]);

0060 set(gca,'ytick',[0:1:SliceNumMat(DpID,1)]);

0061 xlabel('Periods','FontSize',18,'FontWeight','bold');

0062 ylabel('Slices','FontSize',18,'FontWeight','bold');

0063 % title(['Slice Extraction for DrawPoint ',num2str(DpID)]);

0064 set(gca,'fontsize',14,'FontWeight','bold');

0065

0066 datacursormode on

0067 end

0068 %==%%%%%%%%%%%%%%

0069 %==%%%%%%%%%%%%%%

0070 % The End %%%%%%%%%%%%%%

0071 %==%%%%%%%%%%%%%%

0072 %==%%%%%%%%%%%%%%

170

A28. Plot_ GradePerPeriod

0001 %==%%%%%%%%%%%%%%

0002 %==%%%%%%%%%%%%%%

0003 % University of Alberta %%%%%%%%%%%%%%

0004 % Department of Civil and Environmental Engineering %%%%%%%%%%%%%%

0005 % School of Mining and Petroleum Engineering %%%%%%%%%%%%%%

0006 % This program was written by: Firouz Khodayari, %%%%%%%%%%%%%%

0007 % Student ID: 1402853 %%%%%%%%%%%%%%

0008 % PhD Candidate in Mining Engineering %%%%%%%%%%%%%%

0009 %==%%%%%%%%%%%%%%

0010 %==%%%%%%%%%%%%%%

0011

0012 function Plot_GradePerPeriod

0013 load('Data/Param.mat'); %Loading the input parameters

0014 if exist('Data/ModelF.mat')== 2

0015 load('Data/ModelF.mat');

0016 else

0017 end

0018 load('Data/InData.mat');

0019 T = Param.T;

0020 G_min = Param.Gmin;

0021 G_max = Param.Gmax;

0022 TarGrade = Param.TarGrade;

0023 TonVarMat = ModelF.Inputs.TonVarMat;

0024 NumberOfX = InData.Parameters.NumberOfX;

0025 GradeVarMat = ModelF.Inputs.GradeVarMat;

0026 Scenarios = ModelF.Inputs.Scenarios.Grade;

0027 OutputExpectedGrade = ModelF.PlotData.ScenariosOut.OutputExpectedGrade;

0028 ScenariosOut = ModelF.PlotData.ScenariosOut.Grade;

0029 ScenNum = Param.ScenNum;

0030

0031 plot(1:T,OutputExpectedGrade,'b--o','LineWidth',3);

0032 set(gca,'XTick',[1:T]);

0033 %set(gca,'YTick',[G_min:0.5:G_max]);

0034 xlabel('Period (Year)','FontSize',18,'FontWeight','bold');

0035 ylabel('Average Grade (%)','FontSize',18,'FontWeight','bold');

0036 % title('Average Grade per each Period','FontSize',15,'FontWeight','bold');

0037 set(gca,'fontsize',18,'FontWeight','bold');

0038

0039 hold on

0040 xl = [1,T];

0041 xu = [1,T];

0042 yt = [TarGrade,TarGrade];

0043 plot(xl,yt,'g','LineWidth',5)

0044 ylim([G_min-0.2,G_max+0.2])

0045 hold on

0046 CC = jet(ScenNum);

0047 for iloop = 1:ScenNum

0048

0049 TempMat = ScenariosOut.(['GradeOutput',num2str(iloop)]);

0050 plot(1:T,TempMat,'color',CC(iloop,:),'marker','o','LineWidth',3);

0051 GradeOutPutAllScenarios(:,iloop) = TempMat;

0052 hold on

0053 end

0054

0055 GradePeriod(1:T,1) = 1:T;

0056 GradePeriod(1:T,2) = OutputExpectedGrade(:);

0057 ModelF.PlotData.OutputExpectedGrade = GradePeriod;

0058 ModelF.PlotData.GradeOutPutAllScenarios = GradeOutPutAllScenarios

0059 save('Data/ModelF','ModelF');

0060

file:///D:/Drive/Thesis/Matlab/Codes/doc/5_PlotFunctions/Plot_GradePerPeriod.html%23_subfunctions

A28 Plot_ GradePerPeriod

171

0061 end

0062 %==%%%%%%%%%%%%%%

0063 %==%%%%%%%%%%%%%%

0064 % The End %%%%%%%%%%%%%%

0065 %==%%%%%%%%%%%%%%

0066 %==%%%%%%%%%%%%%%

172

A29. Plot_ MiningDirection_DPS

0001 %==%%%%%%%%%%%%%%

0002 %==%%%%%%%%%%%%%%

0003 % University of Alberta %%%%%%%%%%%%%%

0004 % Department of Civil and Environmental Engineering %%%%%%%%%%%%%%

0005 % School of Mining and Petroleum Engineering %%%%%%%%%%%%%%

0006 % This program was written by: Firouz Khodayari, %%%%%%%%%%%%%%

0007 % Student ID: 1402853 %%%%%%%%%%%%%%

0008 % PhD Candidate in Mining Engineering %%%%%%%%%%%%%%

0009 %==%%%%%%%%%%%%%%

0010 %==%%%%%%%%%%%%%%

0011

0012 %This function plots the drawpoints on the layout

0013 function Plot_MiningDirection_DPS

0014 load ('Data/InData.mat');

0015 REC = InData.Excel.DPs.record;

0016 DPs_x = InData.Excel.DPs.X;

0017 DPs_y = InData.Excel.DPs.Y;

0018

0019 % BEV = InDataf.Excel.DPs.BEV;

0020 N = InData.Parameters.N;

0021 % Dps_o = [1:N]'; %the order of draw points

0022 % g = Dps_o;

0023 g = REC(:,1);

0024 mark0 = num2str(g);

0025 mark = cellstr(mark0);

0026 % figure('units','normalized','outerposition',[0 0 1 1]);

0027 F = gscatter(DPs_x,DPs_y,g,'k','o',11,'off');

0028 hold on

0029 for iloop = 1:PlotCounter

0030 plot(MiningDirectionPlotDataX(iloop,:),MiningDirectionPlotDataY(iloop,:));

0031 hold on

0032 end

0033 % title('Draw Points');

0034 set(gca,'fontsize',14,'FontWeight','bold');

0035 xlabel('X coordinate','FontSize',18,'FontWeight','bold');

0036 ylabel('Y coordinate','FontSize',18,'FontWeight','bold');

0037 text(DPs_x-2.4,DPs_y,mark,'FontSiz',10,'color','blue');

0038 % hold

0039 % triplot(TR);

0040 datacursormode on

0041 end

0042 %==%%%%%%%%%%%%%%

0043 %==%%%%%%%%%%%%%%

0044 % The End %%%%%%%%%%%%%%

0045 %==%%%%%%%%%%%%%%

0046 %==%%%%%%%%%%%%%%

file:///D:/Drive/Thesis/Matlab/Codes/doc/5_PlotFunctions/Plot_MiningDirection_DPS.html%23_subfunctions

173

A30. Plot_ PB_DEV

0001 %==%%%%%%%%%%%%%%

0002 %==%%%%%%%%%%%%%%

0003 % University of Alberta %%%%%%%%%%%%%%

0004 % Department of Civil and Environmental Engineering %%%%%%%%%%%%%%

0005 % School of Mining and Petroleum Engineering %%%%%%%%%%%%%%

0006 % This program was written by: Firouz Khodayari, %%%%%%%%%%%%%%

0007 % Student ID: 1402853 %%%%%%%%%%%%%%

0008 % PhD Candidate in Mining Engineering %%%%%%%%%%%%%%

0009 %==%%%%%%%%%%%%%%

0010 %==%%%%%%%%%%%%%%

0011

0012 %**** Description: This function plots a surface based on (X,Y,value) in

0013 %which the value here is the Draw Economic Value (first subplot) and Production

Block Economic Value (for the second subplot)

0014 %###

0015 %###

0016

0017 function Plot_PB_DEV

0018 % By Yashar Pourrahimian, Aug 20/2014

0019 %

0020 % Description:

0021 % This function plots a surface based on (X,Y,value)

0022 load InData.mat

0023 X_DP = InData.Excel.DPs.X;

0024 Y_DP = InData.Excel.DPs.Y;

0025 DEV = InData.Excel.DPs.DEV;

0026 REC = InData.Excel.DPs.record;

0027

0028 % PB = InData.PB;

0029

0030 MinX = min(X_DP);

0031 MaxX = max(X_DP);

0032

0033 MinY = min(Y_DP);

0034 MaxY = max(Y_DP);

0035

0036 u = linspace(MaxX,MinX,100);

0037 v = linspace(MaxY,MinY,100);

0038

0039

0040 % %plotting based on the DRaw Economic Values (DEV)

0041 figure;

0042

0043 %

0044 % subplot(2,1,1);

0045 % mesh(X,Y,Z);

0046 % xlabel('X(m)');

0047 % ylabel('Y(m)');

0048 % zlabel('DEV (M$)');

0049 % axis tight

0050 % shading interp

0051 % colorbar

0052 % %plotting based on the Production Block Values (PB)

0053 u = linspace(MaxX,MinX,100);

0054 v = linspace(MaxY,MinY,100);

0055

0056 %[X,Y] = meshgrid(X_DP,Y_DP);

0057 [X,Y] = meshgrid(u,v);

0058 Z = griddata(X_DP,Y_DP,DEV, X, Y);

0059 surf(X,Y,Z);

file:///D:/Drive/Thesis/Matlab/Codes/doc/5_PlotFunctions/Plot_PB_DEV.html%23_subfunctions

A30 Plot_ PB_DEV

174

0060 % %plotting based on the DRaw Economic Values (DEV)

0061 figure;

0062 % subplot(2,1,1);

0063 % mesh(X,Y,Z);

0064 % xlabel('X(m)');

0065 % ylabel('Y(m)');

0066 % zlabel('DEV (M$)');

0067 % axis tight

0068 % shading interp

0069 % colorbar

0070 % %plotting based on the Production B

0071 % subplot(2,1,2);

0072 Z = griddata(X_DP,Y_DP,DEV/1000, X, Y);

0073

0074 surf(X,Y,Z);

0075 xlabel('Easting-X (m)');

0076 ylabel('Northing-Y (m)');

0077 zlabel('Economic Value (M$)');

0078 axis tight

0079 shading interp

0080 colormap jet

0081 c = colorbar;

0082 c.Label.String = 'Economic Value (M$)';

0083 % hold on

0084 % %========Drawpoints==

0085 % g = REC(:,1);

0086 % mark0 = num2str(g);

0087 % mark = cellstr(mark0);

0088 % % figure('units','normalized','outerposition',[0 0 1 1]);

0089 % F = gscatter(X_DP,Y_DP,g,'k','o',11,'off');

0090 % % title('Draw Points');

0091 set(gca,'fontsize',18,'FontWeight','bold');

0092 % xlabel('X coordinate','FontSize',18,'FontWeight','bold');

0093 % ylabel('Y coordinate','FontSize',18,'FontWeight','bold');

0094 % text(X_DP-2.4,Y_DP,mark,'FontSiz',10,'color','green');

0095 % plot3(X_DP,Y_DP,PB+.5,'ko')

0096 end

0097 %==%%%%%%%%%%%%%%

0098 %==%%%%%%%%%%%%%%

0099 % The End %%%%%%%%%%%%%%

0100 %==%%%%%%%%%%%%%%

0101 %==%%%%%%%%%%%%%%

175

A31. Plot_ ProductionPerPeriod

0001 %==%%%%%%%%%%%%%%

0002 %==%%%%%%%%%%%%%%

0003 % University of Alberta %%%%%%%%%%%%%%

0004 % Department of Civil and Environmental Engineering %%%%%%%%%%%%%%

0005 % School of Mining and Petroleum Engineering %%%%%%%%%%%%%%

0006 % This program was written by: Firouz Khodayari, %%%%%%%%%%%%%%

0007 % Student ID: 1402853 %%%%%%%%%%%%%%

0008 % PhD Candidate in Mining Engineering %%%%%%%%%%%%%%

0009 %==%%%%%%%%%%%%%%

0010 %==%%%%%%%%%%%%%%

0011

0012 function Plot_ProductionPerPeriod

0013 load('Data/Param.mat'); %Loading the input parameters

0014 if exist('Data/ModelF.mat')== 2

0015 load('Data/ModelF.mat');

0016 else

0017 end

0018 load('Data/InData.mat');

0019 T = Param.T;

0020 MiningCapacity_st = Param.Mst*1000000; %Starting production rate or mining

capacity (based on production Curve)

0021 MiningCapacity_max = Param.Mmax*1000000; %Maximum production rate or mining

capacity

0022 RampUpTime = Param.RampUpTime; %Ramp Up time for the production schedule

0023 TonVarMat = ModelF.Inputs.TonVarMat;

0024 NumberOfX = InData.Parameters.NumberOfX;

0025 TonVarMat = ModelF.Inputs.TonVarMat;

0026 Scenarios = ModelF.Inputs.Scenarios.Ton;

0027 OutputExpectedTon = ModelF.PlotData.ScenariosOut.OutputExpectedTon;

0028 ScenariosOut = ModelF.PlotData.ScenariosOut.Ton;

0029 ScenNum = Param.ScenNum;

0030 for tloop = 1:T

0031 if tloop <= RampUpTime

0032 TarTon(tloop,1) = ((MiningCapacity_max - MiningCapacity_st)/(RampUpTime -

1))*(tloop - 1) + MiningCapacity_st;

0033 elseif tloop > T-RampUpTime

0034 TarTon(tloop,1) = ((MiningCapacity_st - MiningCapacity_max)/(RampUpTime -

1))*(tloop - (T-RampUpTime+1)) + MiningCapacity_max;

0035 else

0036 TarTon(tloop,1) = MiningCapacity_max;

0037 end

0038 end

0039 plot(1:T,OutputExpectedTon,'b--o','LineWidth',3);

0040 set(gca,'XTick',[1:T]);

0041 % set(gca,'YTick',[0:MiningCapacity_max + 2]);

0042 %set(gca,'YTick',[G_min:0.5:G_max]);

0043 xlabel('Period (Year)','FontSize',18,'FontWeight','bold');

0044 ylabel('Ton (%)','FontSize',18,'FontWeight','bold');

0045 % title('Ton per each Period','FontSize',15,'FontWeight','bold');

0046 set(gca,'fontsize',18,'FontWeight','bold');

0047 set(gcf,'color','w');

0048

0049 hold on

0050 plot(1:T,TarTon,'g','LineWidth',5, 'DisplayName','Mining Capacity UB');

0051 hold on

0052 CC = jet(ScenNum);

0053 for iloop = 1:ScenNum

0054

0055 TempMat = ScenariosOut.(['TonOutput',num2str(iloop)]);

0056 plot(1:T,TempMat,'color',CC(iloop,:),'marker','o','LineWidth',3);

file:///D:/Drive/Thesis/Matlab/Codes/doc/5_PlotFunctions/Plot_ProductionPerPeriod.html%23_subfunctions

A31 Plot_ ProductionPerPeriod

176

0057 TonOutPutAllScenarios(:,iloop) = TempMat;

0058 hold on

0059 end

0060 % legend('show','Location','northeast','Orientation','vertical');

0061

0062 TonPeriod(1:T,1) = 1:T;

0063 TonPeriod(1:T,2) = OutputExpectedTon(:);

0064 ModelF.PlotData.OutputExpectedTon = TonPeriod;

0065 ModelF.PlotData.TonOutPutAllScenarios = TonOutPutAllScenarios

0066 save('Data/ModelF','ModelF');

0067

0068 end

0069 %==%%%%%%%%%%%%%%

0070 %==%%%%%%%%%%%%%%

0071 % The End %%%%%%%%%%%%%%

0072 %==%%%%%%%%%%%%%%

0073 %==%%%%%%%%%%%%%%

177

A32. Plot_ Slc_Seq_Height

0001 %==%%%%%%%%%%%%%%

0002 %==%%%%%%%%%%%%%%

0003 % University of Alberta %%%%%%%%%%%%%%

0004 % Department of Civil and Environmental Engineering %%%%%%%%%%%%%%

0005 % School of Mining and Petroleum Engineering %%%%%%%%%%%%%%

0006 % This program was written by: Firouz Khodayari, %%%%%%%%%%%%%%

0007 % Student ID: 1402853 %%%%%%%%%%%%%%

0008 % PhD Candidate in Mining Engineering %%%%%%%%%%%%%%

0009 %==%%%%%%%%%%%%%%

0010 %==%%%%%%%%%%%%%%

0011

0012 function Plot_Slc_Seq_Height

0013 load('Data/Param.mat');

0014 load('Data/ModelF');

0015 load('Data/InData');

0016 T = Param.T;

0017 N = InData.Parameters.N;

0018 NumberOfX = InData.Parameters.NumberOfX;

0019 DrawID = ModelF.Inputs.DrawID;

0020 SliceNumMat = InData.Parameters.SliceNumMat;

0021 X_t = ModelF.Outputs.X_t;

0022 X_tTon = ModelF.Outputs.X_tTon;

0023 DpSlHeight = InData.Excel.Slices.DpSlHeight;

0024 %^^

0025 DpID = 255;

0026 %^^

0027 SlHeights = DpSlHeight(DpID,:);

0028 VarFrom = DrawID(DpID,1);

0029 VarTo = VarFrom + SliceNumMat(DpID,1) - 1;

0030 for tloop = 1:T

0031 counter = 1;

0032 for iloop = VarFrom:VarTo

0033 DrawRate(tloop, counter) = X_t(tloop,iloop);

0034 counter = counter+1;

0035 end

0036 end

0037

0038 ModelF.PlotData.DrawRate = DrawRate;

0039

0040 figure('units','normalized','outerposition',[0 0 1 1]);

0041

0042

0043 for iloop = 1:SliceNumMat(DpID,1)

0044 for tloop = 1:T

0045 plot(tloop,SlHeights(1,iloop));

0046 if DrawRate(tloop,iloop) > 0

0047

0048 % text(tloop,iloop,[num2str(100*DrawRate(tloop,iloop)),'

%'],'Color',rand(1,3),'FontSize',14);

0049 text(tloop-

0.2,SlHeights(1,iloop),[num2str(iloop)],'Color',rand(1,3),'FontSize',18);

0050

0051 % str = num2str(100*DrawRate(tloop,iloop));

0052 % dim = [(tloop/T), (iloop./SliceNumMat(DpID,1)), .3, .3];

0053 %

annotation('textbox',dim,'String',str,'Color',rand(1,3),'FontSize',14,'FitBoxToText','

on');

0054 else

0055 end

0056

file:///D:/Drive/Thesis/Matlab/Codes/doc/5_PlotFunctions/Plot_Slc_Seq_Height.html%23_subfunctions

A32 Plot_ Slc_Seq_Height

178

0057 hold on

0058 end

0059 end

0060 xlim([0 T]);

0061 ylim([0 SlHeights(1,SliceNumMat(DpID,1))]);

0062 set(gca,'ytick',[0:20:SlHeights(1,SliceNumMat(DpID,1))]);

0063 set(gca,'xtick',[0:1:T]);

0064 set(gca,'fontsize',14,'FontWeight','bold');

0065 xlabel('Period (Year)','FontSize',18,'FontWeight','bold');

0066 ylabel('Height (m)','FontSize',18,'FontWeight','bold');

0067 title(['Slice Extraction for DrawPoint ',num2str(DpID)]);

0068

0069 datacursormode on

0070 end

0071 %==%%%%%%%%%%%%%%

0072 %==%%%%%%%%%%%%%%

0073 % The End %%%%%%%%%%%%%%

0074 %==%%%%%%%%%%%%%%

0075 %==%%%%%%%%%%%%%%

179

A33. Plot_ PlotDCs

0001 %==%%%%%%%%%%%%%%

0002 %==%%%%%%%%%%%%%%

0003 % University of Alberta %%%%%%%%%%%%%%

0004 % Department of Civil and Environmental Engineering %%%%%%%%%%%%%%

0005 % School of Mining and Petroleum Engineering %%%%%%%%%%%%%%

0006 % This program was written by: Firouz Khodayari, %%%%%%%%%%%%%%

0007 % Student ID: 1402853 %%%%%%%%%%%%%%

0008 % PhD Candidate in Mining Engineering %%%%%%%%%%%%%%

0009 %==%%%%%%%%%%%%%%

0010 %==%%%%%%%%%%%%%%

0011

0012 %This function plots the drawpoints on the layout

0013 function PlotDCs

0014 load ('Data/InData.mat');

0015 load('Data/Param.mat');

0016

0017 REC = InData.Excel.DPs.record;

0018 DPs_x = InData.Excel.DPs.X;

0019 DPs_y = InData.Excel.DPs.Y;

0020 DPs_z = InData.Excel.DPs.Y;

0021 N = numel(DPs_x);

0022 r = Param.Radius;

0023 DpHeight = InData.Excel.Slices.DpHeight;

0024 g = REC(:,1);

0025 mark0 = num2str(g);

0026 mark = cellstr(mark0);

0027 figure('units','normalized','outerposition',[0 0 1 1]);

0028 % F = gscatter(DPs_x,DPs_y,g,'k','o',15,'off');

0029

0030 syms u v

0031

0032 for iloop = 1:N

0033

0034 ezsurf(DPs_x(iloop,1)+r*cos(u),DPs_y(iloop,1)+r*sin(u),v,[0 2*pi

DPs_z(iloop,1) DPs_z(iloop,1)+DpHeight(iloop,1)]);

0035 axis equal

0036 hold on

0037 end

0038 % title('Draw Points');

0039 title('');

0040 set(gca,'fontsize',15,'FontWeight','bold');

0041 xlabel('Easting-X (m)','FontSize',17,'FontWeight','bold');

0042 ylabel('Northing-Y (m)','FontSize',17,'FontWeight','bold');

0043 zlabel('Elevation-Z (m)');

0044 % text(DPs_x-1,DPs_y,mark,'FontSiz',7,'color','blue');

0045 % hold

0046 % triplot(TR);

0047 datacursormode on

0048

0049 DPs_y = InData.Excel.DPs.Y;

0050 DPs_z = InData.Excel.DPs.Z;

0051 end

0052 %==%%%%%%%%%%%%%%

0053 %==%%%%%%%%%%%%%%

0054 % The End %%%%%%%%%%%%%%

0055 %==%%%%%%%%%%%%%%

0056 %==%%%%%%%%%%%%%%

file:///D:/Drive/Thesis/Matlab/Codes/doc/5_PlotFunctions/PlotDCs.html%23_subfunctions

180

A34. Plot_ PlotDPs

0001 %==%%%%%%%%%%%%%%

0002 %==%%%%%%%%%%%%%%

0003 % University of Alberta %%%%%%%%%%%%%%

0004 % Department of Civil and Environmental Engineering %%%%%%%%%%%%%%

0005 % School of Mining and Petroleum Engineering %%%%%%%%%%%%%%

0006 % This program was written by: Firouz Khodayari, %%%%%%%%%%%%%%

0007 % Student ID: 1402853 %%%%%%%%%%%%%%

0008 % PhD Candidate in Mining Engineering %%%%%%%%%%%%%%

0009 %==%%%%%%%%%%%%%%

0010 %==%%%%%%%%%%%%%%

0011

0012 %This function plots the drawpoints on the layout

0013 function PlotDPs

0014 load ('Data/InData.mat');

0015 REC = InData.Excel.DPs.record;

0016 DPs_x = InData.Excel.DPs.X;

0017 DPs_y = InData.Excel.DPs.Y;

0018

0019 % BEV = InDataf.Excel.DPs.BEV;

0020 N = InData.Parameters.N;

0021 % Dps_o = [1:N]'; %the order of draw points

0022 % g = Dps_o;

0023 g = REC(:,1);

0024 mark0 = num2str(g);

0025 mark = cellstr(mark0);

0026 figure('units','normalized','outerposition',[0 0 1 1]);

0027 F = gscatter(DPs_x,DPs_y,g,'k','o',10,'off');

0028 % title('Draw Points');

0029 set(gca,'fontsize',14,'FontWeight','bold');

0030 xlabel('X coordinate','FontSize',18,'FontWeight','bold');

0031 ylabel('Y coordinate','FontSize',18,'FontWeight','bold');

0032 text(DPs_x-2.4,DPs_y,mark,'FontSiz',10,'color','blue');

0033 % hold

0034 % triplot(TR);

0035 datacursormode on

0036 end

0037 %==%%%%%%%%%%%%%%

0038 %==%%%%%%%%%%%%%%

0039 % The End %%%%%%%%%%%%%%

0040 %==%%%%%%%%%%%%%%

0041 %==%%%%%%%%%%%%%%

file:///D:/Drive/Thesis/Matlab/Codes/doc/5_PlotFunctions/PlotDPS.html%23_subfunctions

181

A35. Plotdps_Active

0001 %==%%%%%%%%%%%%%%

0002 %==%%%%%%%%%%%%%%

0003 % University of Alberta %%%%%%%%%%%%%%

0004 % Department of Civil and Environmental Engineering %%%%%%%%%%%%%%

0005 % School of Mining and Petroleum Engineering %%%%%%%%%%%%%%

0006 % This program was written by: Firouz Khodayari, %%%%%%%%%%%%%%

0007 % Student ID: 1402853 %%%%%%%%%%%%%%

0008 % PhD Candidate in Mining Engineering %%%%%%%%%%%%%%

0009 %==%%%%%%%%%%%%%%

0010 %==%%%%%%%%%%%%%%

0011

0012 function Plotdps_Active

0013 %plotting drawpoints whith their status (active or not) in diferent periods

0014 load('Data/Param.mat'); %Loading the input parameters

0015 load('Data/ModelF');

0016 load('Data/InData');

0017 T = Param.T;

0018 ActiveDPs = ModelF.Outputs.C_t;

0019

0020 DPs_x = InData.Excel.DPs.X; %the x coordinates for drawpoints

0021 DPs_y = InData.Excel.DPs.Y; %y coordinates for drawpoints

0022 N = numel(DPs_x);

0023 % prompt = 't = ? ';

0024 % t= input(prompt);

0025 for t=1:T

0026 Active = ActiveDPs (t,:);

0027 Dps_o = Active';

0028 g = Dps_o;

0029 mark0 = num2str(g);

0030 mark = cellstr(mark0);

0031

0032 % figure('units','normalized','outerposition',[0 0 1 1]);

0033 % F = gscatter(DPs_x,DPs_y,g,'','o',12,'on',c);

0034 subplot(2,5,t)

0035 gscatter(DPs_x,DPs_y,g,'br','ox',6);

0036 title(['Year ',num2str(t)]);

0037

0038 % text(DPs_x-1.5,DPs_y,mark,'FontSiz',7);

0039 set(gca,'fontsize',5,'FontWeight','bold');

0040

0041 end

0042 xlabel('X coordinate','FontSize',15,'FontWeight','bold');

0043 ylabel('Y coordinate','FontSize',15,'FontWeight','bold');

0044 set(gca,'fontsize',15,'FontWeight','bold');

0045 legend('Non-Active Drawpoints','Active Drawpoints');

0046 datacursormode on

0047 end

0048 %==%%%%%%%%%%%%%%

0049 %==%%%%%%%%%%%%%%

0050 % The End %%%%%%%%%%%%%%

0051 %==%%%%%%%%%%%%%%

0052 %==%%%%%%%%%%%%%%

file:///D:/Drive/Thesis/Matlab/Codes/doc/5_PlotFunctions/Plotdps_Active.html%23_subfunctions

182

A36. Plotdps_Life

0001 %==%%%%%%%%%%%%%%

0002 %==%%%%%%%%%%%%%%

0003 % University of Alberta %%%%%%%%%%%%%%

0004 % Department of Civil and Environmental Engineering %%%%%%%%%%%%%%

0005 % School of Mining and Petroleum Engineering %%%%%%%%%%%%%%

0006 % This program was written by: Firouz Khodayari, %%%%%%%%%%%%%%

0007 % Student ID: 1402853 %%%%%%%%%%%%%%

0008 % PhD Candidate in Mining Engineering %%%%%%%%%%%%%%

0009 %==%%%%%%%%%%%%%%

0010 %==%%%%%%%%%%%%%%

0011

0012 function Plotdps_Life

0013 %plotting drawpoints with numbers iside them which shows the life of the

0014 %drawpoint.

0015 %drawpoints with number 0 are those which there is no extraction for them

0016 %(the drawpoint is not opened during the life of the mine)

0017 load ('Data/InData.mat');

0018 load('Data/ModelF.mat');

0019 PeriodbyPeriodSolution = ModelF.Outputs.X_t;

0020

0021 DPs_x = InData.Excel.DPs.X; %the x coordinates for drawpoints

0022 DPs_y = InData.Excel.DPs.Y; %y coordinates for drawpoints

0023 N = numel(DPs_x);

0024 EndingPeriod = zeros(1,N);

0025 StartingPeriod = zeros(1,N);

0026

0027 for iloop = 1:N

0028 ExtractioPeriods = find(PeriodbyPeriodSolution(:,iloop));

0029 if isempty(ExtractioPeriods) == 0 %taking care of drawpoints with no

extraction during the life of the mine

0030 EndingPeriod(1,iloop) = ExtractioPeriods(end,1);

0031 ExtractionPeriods = find(PeriodbyPeriodSolution(:,iloop));

0032 StartingPeriod(1,iloop) = ExtractionPeriods(1,1);

0033 else

0034 EndingPeriod(1,iloop) = 0;

0035 StartingPeriod(1,iloop) = 1;

0036 end

0037 end

0038

0039 Dps_end = EndingPeriod'; %the order of draw points

0040 Dps_start = StartingPeriod'; %the order of draw points

0041

0042 g = (Dps_end - Dps_start)+1;

0043 mark0 = num2str(g);

0044 mark = cellstr(mark0);

0045 figure('units','normalized','outerposition',[0 0 1 1]);

0046 F = gscatter(DPs_x,DPs_y,g,'','o',15,'off');

0047 title('Life of Drawpoints');

0048 xlabel('X coordinate');

0049 ylabel('Y coordinate');

0050 text(DPs_x-0.5,DPs_y,mark,'FontSiz',10);

0051

0052 datacursormode on

0053 end

0054 %==%%%%%%%%%%%%%%

0055 %==%%%%%%%%%%%%%%

0056 % The End %%%%%%%%%%%%%%

0057 %==%%%%%%%%%%%%%%

0058 %==%%%%%%%%%%%%%%

file:///D:/Drive/Thesis/Matlab/Codes/doc/5_PlotFunctions/Plotdps_Life.html%23_subfunctions

183

A37. Plotdps_StartingPeriods

0001 %==%%%%%%%%%%%%%%

0002 %==%%%%%%%%%%%%%%

0003 % University of Alberta %%%%%%%%%%%%%%

0004 % Department of Civil and Environmental Engineering %%%%%%%%%%%%%%

0005 % School of Mining and Petroleum Engineering %%%%%%%%%%%%%%

0006 % This program was written by: Firouz Khodayari, %%%%%%%%%%%%%%

0007 % Student ID: 1402853 %%%%%%%%%%%%%%

0008 % PhD Candidate in Mining Engineering %%%%%%%%%%%%%%

0009 %==%%%%%%%%%%%%%%

0010 %==%%%%%%%%%%%%%%

0011

0012 function Plotdps_StartingPeriods

0013 %plotting drawpoints with numbers iside them which is the period in which the

extraction from drawpoint starts

0014 %zero means the drawpoint doesnt open during the life of the mine (no

0015 %extraction from that drawpoint.

0016 load('Data/Param.mat'); %Loading the input parameters

0017 load ('Data/InData.mat');

0018 load('Data/ModelF.mat');

0019 PeriodbyPeriodSolution = ModelF.Outputs.DpAct_t;

0020 NumberOfX = InData.Parameters.NumberOfX;

0021 DrawID = ModelF.Inputs.DrawID;

0022 DirStart_X = Param.DirStart_X;

0023 DirStart_Y = Param.DirStart_Y;

0024 DirStart = [DirStart_X, DirStart_Y];

0025 VShapedAngle = Param.VShapeAngle;

0026 DPs_x = InData.Excel.DPs.X; %the x coordinates for drawpoints

0027 DPs_y = InData.Excel.DPs.Y; %y coordinates for drawpoints

0028 N = numel(DPs_x);

0029 StartingPeriod = zeros(1,N);

0030

0031 for iloop = 1:N

0032 ExtractionPeriods = find(PeriodbyPeriodSolution(:,iloop));

0033 if isempty(ExtractionPeriods) == 0 %taking care of drawpoints with no

extraction during the life of the mine

0034 StartingPeriod(1,iloop) = ExtractionPeriods(1,1);

0035 else

0036 StartingPeriod(1,iloop) = 0;

0037 end

0038 end

0039

0040 Dps_o = StartingPeriod'; %the order of draw points

0041

0042 g = Dps_o;

0043 mark0 = num2str(g);

0044 mark = cellstr(mark0);

0045 figure('units','normalized','outerposition',[0 0 1 1]);

0046 F = gscatter(DPs_x,DPs_y,g,'','o',15,'on');

0047 title(['Starting Period for Drawpoints, V Angle = ', num2str(VShapedAngle), ',

Direction Start: ', num2str(DirStart,'%1d ')]);

0048 xlabel('X coordinate','FontSize',15,'FontWeight','bold');

0049 ylabel('Y coordinate','FontSize',15,'FontWeight','bold');

0050 text(DPs_x-1,DPs_y,mark,'FontSiz',12);

0051 set(gca,'fontsize',15,'FontWeight','bold');

0052 datacursormode on

0053 end

0054 %==%%%%%%%%%%%%%%

0055 %==%%%%%%%%%%%%%%

0056 % The End %%%%%%%%%%%%%%

0057 %==%%%%%%%%%%%%%%

file:///D:/Drive/Thesis/Matlab/Codes/doc/5_PlotFunctions/Plotdps_StartingPeriods.html%23_subfunctions

A37 Plotdps_StartingPeriods

184

0058 %==%%%%%%%%%%%%%%

185

A38. allfitdist

0001

%==%%%%%%%%%%%%%%

0002

%==%%%%%%%%%%%%%%

0003 % Support Function

%%%%%%%%%%%%%%

0004

%==%%%%%%%%%%%%%%

0005

%==%%%%%%%%%%%%%%

0006

0007 function [D PD] = allfitdist(data,sortby,varargin)

0008 %ALLFITDIST Fit all valid parametric probability distributions to data.

0009 % [D PD] = ALLFITDIST(DATA) fits all valid parametric probability

0010 % distributions to the data in vector DATA, and returns a struct D of

0011 % fitted distributions and parameters and a struct of objects PD

0012 % representing the fitted distributions. PD is an object in a class

0013 % derived from the ProbDist class.

0014 %

0015 % [...] = ALLFITDIST(DATA,SORTBY) returns the struct of valid

distributions

0016 % sorted by the parameter SORTBY

0017 % NLogL - Negative of the log likelihood

0018 % BIC - Bayesian information criterion (default)

0019 % AIC - Akaike information criterion

0020 % AICc - AIC with a correction for finite sample sizes

0021 %

0022 % [...] = ALLFITDIST(...,'DISCRETE') specifies it is a discrete

0023 % distribution and does not attempt to fit a continuous distribution

0024 % to the data

0025 %

0026 % [...] = ALLFITDIST(...,'PDF') or (...,'CDF') plots either the PDF or

CDF

0027 % of a subset of the fitted distribution. The distributions are

plotted in

0028 % order of fit, according to SORTBY.

0029 %

0030 % List of distributions it will try to fit

0031 % Continuous (default)

0032 % Beta

0033 % Birnbaum-Saunders

0034 % Exponential

0035 % Extreme value

0036 % Gamma

0037 % Generalized extreme value

0038 % Generalized Pareto

0039 % Inverse Gaussian

0040 % Logistic

0041 % Log-logistic

0042 % Lognormal

0043 % Nakagami

0044 % Normal

0045 % Rayleigh

0046 % Rician

file:///D:/Drive/Thesis/Matlab/Codes/doc/6_SupportFunctions/allfitdist.html%23_subfunctions

A38 allfitdist

186

0047 % t location-scale

0048 % Weibull

0049 %

0050 % Discrete ('DISCRETE')

0051 % Binomial

0052 % Negative binomial

0053 % Poisson

0054 %

0055 % Optional inputs:

0056 % [...] = ALLFITDIST(...,'n',N,...)

0057 % For the 'binomial' distribution only:

0058 % 'n' A positive integer specifying the N parameter

(number

0059 % of trials). Not allowed for other distributions.

If

0060 % 'n' is not given it is estimate by Method of

Moments.

0061 % If the estimated 'n' is negative then the maximum

0062 % value of data will be used as the estimated value.

0063 % [...] = ALLFITDIST(...,'theta',THETA,...)

0064 % For the 'generalized pareto' distribution only:

0065 % 'theta' The value of the THETA (threshold) parameter for

0066 % the generalized Pareto distribution. Not allowed

for

0067 % other distributions. If 'theta' is not given it is

0068 % estimated by the minimum value of the data.

0069 %

0070 % Note: ALLFITDIST does not handle nonparametric kernel-smoothing,

0071 % use FITDIST directly instead.

0072 %

0073 %

0074 % EXAMPLE 1

0075 % Given random data from an unknown continuous distribution, find

the

0076 % best distribution which fits that data, and plot the PDFs to

compare

0077 % graphically.

0078 % data = normrnd(5,3,1e4,1); %Assumed from unknown

distribution

0079 % [D PD] = allfitdist(data,'PDF'); %Compute and plot results

0080 % D(1) %Show output from best fit

0081 %

0082 % EXAMPLE 2

0083 % Given random data from a discrete unknown distribution, with

frequency

0084 % data, find the best discrete distribution which would fit that

data,

0085 % sorted by 'NLogL', and plot the PDFs to compare graphically.

0086 % data = nbinrnd(20,.3,1e4,1);

0087 % values=unique(data); freq=histc(data,values);

0088 % [D PD] =

allfitdist(values,'NLogL','frequency',freq,'PDF','DISCRETE');

0089 % PD{1}

0090 %

0091 % EXAMPLE 3

0092 % Although the Geometric Distribution is not listed, it is a special

A38 allfitdist

187

0093 % case of fitting the more general Negative Binomial Distribution.

The

0094 % parameter 'r' should be close to 1. Show by example.

0095 % data=geornd(.7,1e4,1); %Random from Geometric

0096 % [D PD]= allfitdist(data,'PDF','DISCRETE');

0097 % PD{1}

0098 %

0099 % EXAMPLE 4

0100 % Compare the resulting distributions under two different

assumptions

0101 % of discrete data. The first, that it is known to be derived from a

0102 % Binomial Distribution with known 'n'. The second, that it may be

0103 % Binomial but 'n' is unknown and should be estimated. Note the

second

0104 % scenario may not yield a Binomial Distribution as the best fit, if

0105 % 'n' is estimated incorrectly. (Best to run example a couple times

0106 % to see effect)

0107 % data = binornd(10,.3,1e2,1);

0108 % [D1 PD1] = allfitdist(data,'n',10,'DISCRETE','PDF'); %Force

binomial

0109 % [D2 PD2] = allfitdist(data,'DISCRETE','PDF'); %May be

binomial

0110 % PD1{1}, PD2{1} %Compare

distributions

0111 %

0112

0113 % Mike Sheppard

0114 % Last Modified: 17-Feb-2012

0115

0116

0117

0118

0119 %% Check Inputs

0120 if nargin == 0

0121 data = 10.^((normrnd(2,10,1e4,1))/10);

0122 sortby='BIC';

0123 varargin={'CDF'};

0124 end

0125 if nargin==1

0126 sortby='BIC';

0127 end

0128 sortbyname={'NLogL','BIC','AIC','AICc'};

0129 if ~any(ismember(lower(sortby),lower(sortbyname)))

0130 oldvar=sortby; %May be 'PDF' or 'CDF' or other commands

0131 if isempty(varargin)

0132 varargin={oldvar};

0133 else

0134 varargin=[oldvar varargin];

0135 end

0136 sortby='BIC';

0137 end

0138 if nargin < 2, sortby='BIC'; end

0139 distname={'beta', 'birnbaumsaunders', 'exponential', ...

0140 'extreme value', 'gamma', 'generalized extreme value', ...

0141 'generalized pareto', 'inversegaussian', 'logistic', 'loglogistic',

...

0142 'lognormal', 'nakagami', 'normal', ...

A38 allfitdist

188

0143 'rayleigh', 'rician', 'tlocationscale', 'weibull'};

0144 if ~any(strcmpi(sortby,sortbyname))

0145 error('allfitdist:SortBy','Sorting must be either NLogL, BIC, AIC,

or AICc');

0146 end

0147 %Input may be mixed of numeric and strings, find only strings

0148 vin=varargin;

0149 strs=find(cellfun(@(vs)ischar(vs),vin));

0150 vin(strs)=lower(vin(strs));

0151 %Next check to see if 'PDF' or 'CDF' is listed

0152 numplots=sum(ismember(vin(strs),{'pdf' 'cdf'}));

0153 if numplots>=2

0154 error('ALLFITDIST:PlotType','Either PDF or CDF must be given');

0155 end

0156 if numplots==1

0157 plotind=true; %plot indicator

0158 indxpdf=ismember(vin(strs),'pdf');

0159 plotpdf=any(indxpdf);

0160 indxcdf=ismember(vin(strs),'cdf');

0161 vin(strs(indxpdf|indxcdf))=[]; %Delete 'PDF' and 'CDF' in vin

0162 else

0163 plotind=false;

0164 end

0165 %Check to see if discrete

0166 strs=find(cellfun(@(vs)ischar(vs),vin));

0167 indxdis=ismember(vin(strs),'discrete');

0168 discind=false;

0169 if any(indxdis)

0170 discind=true;

0171 distname={'binomial', 'negative binomial', 'poisson'};

0172 vin(strs(indxdis))=[]; %Delete 'DISCRETE' in vin

0173 end

0174 strs=find(cellfun(@(vs)ischar(vs),vin));

0175 n=numel(data); %Number of data points

0176 data = data(:);

0177 D=[];

0178 %Check for NaN's to delete

0179 deldatanan=isnan(data);

0180 %Check to see if frequency is given

0181 indxf=ismember(vin(strs),'frequency');

0182 if any(indxf)

0183 freq=vin{1+strs((indxf))}; freq=freq(:);

0184 if numel(freq)~=numel(data)

0185 error('ALLFITDIST:PlotType','Matrix dimensions must agree');

0186 end

0187 delfnan=isnan(freq);

0188 data(deldatanan|delfnan)=[]; freq(deldatanan|delfnan)=[];

0189 %Save back into vin

0190 vin{1+strs((indxf))}=freq;

0191 else

0192 data(deldatanan)=[];

0193 end

0194

0195

0196

0197

0198

A38 allfitdist

189

0199 %% Run through all distributions in FITDIST function

0200 warning('off','all'); %Turn off all future warnings

0201 for indx=1:length(distname)

0202 try

0203 dname=distname{indx};

0204 switch dname

0205 case 'binomial'

0206 PD=fitbinocase(data,vin,strs); %Special case

0207 case 'generalized pareto'

0208 PD=fitgpcase(data,vin,strs); %Special case

0209 otherwise

0210 %Built-in distribution using FITDIST

0211 PD = fitdist(data,dname,vin{:});

0212 end

0213

0214 NLL=PD.NLogL; % -Log(L)

0215 %If NLL is non-finite number, produce error to ignore

distribution

0216 if ~isfinite(NLL)

0217 error('non-finite NLL');

0218 end

0219 num=length(D)+1;

0220 PDs(num) = {PD}; %#ok<*AGROW>

0221 k=numel(PD.Params); %Number of parameters

0222 D(num).DistName=PD.DistName;

0223 D(num).NLogL=NLL;

0224 D(num).BIC=-2*(-NLL)+k*log(n);

0225 D(num).AIC=-2*(-NLL)+2*k;

0226 D(num).AICc=(D(num).AIC)+((2*k*(k+1))/(n-k-1));

0227 D(num).ParamNames=PD.ParamNames;

0228 D(num).ParamDescription=PD.ParamDescription;

0229 D(num).Params=PD.Params;

0230 D(num).Paramci=PD.paramci;

0231 D(num).ParamCov=PD.ParamCov;

0232 D(num).Support=PD.Support;

0233 catch err %#ok<NASGU>

0234 %Ignore distribution

0235 end

0236 end

0237 warning('on','all'); %Turn back on warnings

0238 if numel(D)==0

0239 error('ALLFITDIST:NoDist','No distributions were found');

0240 end

0241

0242

0243

0244

0245

0246 %% Sort distributions

0247 indx1=1:length(D); %Identity Map

0248 sortbyindx=find(strcmpi(sortby,sortbyname));

0249 switch sortbyindx

0250 case 1

0251 [~,indx1]=sort([D.NLogL]);

0252 case 2

0253 [~,indx1]=sort([D.BIC]);

0254 case 3

file:///D:/Drive/Thesis/Matlab/Codes/doc/6_SupportFunctions/allfitdist.html%23_sub1
file:///D:/Drive/Thesis/Matlab/Codes/doc/6_SupportFunctions/allfitdist.html%23_sub2

A38 allfitdist

190

0255 [~,indx1]=sort([D.AIC]);

0256 case 4

0257 [~,indx1]=sort([D.AICc]);

0258 end

0259 %Sort

0260 D=D(indx1); PD = PDs(indx1);

0261

0262

0263

0264

0265

0266 %% Plot if requested

0267 if plotind;

0268 plotfigs(data,D,PD,vin,strs,plotpdf,discind)

0269 end

0270

0271

0272 end

0273

0274

0275

0276

0277

0278 function PD=fitbinocase(data,vin,strs)

0279 %% Special Case for Binomial

0280 % 'n' is estimated if not given

0281 vinbino=vin;

0282 %Check to see if 'n' is given

0283 indxn=any(ismember(vin(strs),'n'));

0284 %Check to see if 'frequency' is given

0285 indxfreq=ismember(vin(strs),'frequency');

0286 if ~indxn

0287 %Use Method of Moment estimator

0288 %E[x]=np, V[x]=np(1-p) -> nhat=E/(1-(V/E));

0289 if isempty(indxfreq)||~any(indxfreq)

0290 %Raw data

0291 mnx=mean(data);

0292 nhat=round(mnx/(1-(var(data)/mnx)));

0293 else

0294 %Frequency data

0295 freq=vin{1+strs(indxfreq)};

0296 m1=dot(data,freq)/sum(freq);

0297 m2=dot(data.^2,freq)/sum(freq);

0298 mnx=m1; vx=m2-(m1^2);

0299 nhat=round(mnx/(1-(vx/mnx)));

0300 end

0301 %If nhat is negative, use maximum value of data

0302 if nhat<=0, nhat=max(data(:)); end

0303 vinbino{end+1}='n'; vinbino{end+1}=nhat;

0304 end

0305 PD = fitdist(data,'binomial',vinbino{:});

0306 end

0307

0308

0309

0310

0311

file:///D:/Drive/Thesis/Matlab/Codes/doc/6_SupportFunctions/allfitdist.html%23_sub3
file:///D:/Drive/Thesis/Matlab/Codes/doc/6_SupportFunctions/allfitdist.html%23_subfunctions

A38 allfitdist

191

0312 function PD=fitgpcase(data,vin,strs)

0313 %% Special Case for Generalized Pareto

0314 % 'theta' is estimated if not given

0315 vingp=vin;

0316 %Check to see if 'theta' is given

0317 indxtheta=any(ismember(vin(strs),'theta'));

0318 if ~indxtheta

0319 %Use minimum value for theta, minus small part

0320 thetahat=min(data(:))-10*eps;

0321 vingp{end+1}='theta'; vingp{end+1}=thetahat;

0322 end

0323 PD = fitdist(data,'generalized pareto',vingp{:});

0324 end

0325

0326

0327

0328

0329

0330 function plotfigs(data,D,PD,vin,strs,plotpdf,discind)

0331 %Plot functionality for continuous case due to Jonathan Sullivan

0332 %Modified by author for discrete case

0333

0334 %Maximum number of distributions to include

0335 %max_num_dist=Inf; %All valid distributions

0336 max_num_dist=4;

0337

0338 %Check to see if frequency is given

0339 indxf=ismember(vin(strs),'frequency');

0340 if any(indxf)

0341 freq=vin{1+strs((indxf))};

0342 end

0343

0344 figure

0345

0346 %% Probability Density / Mass Plot

0347 if plotpdf

0348 if ~discind

0349 %Continuous Data

0350 nbins = max(min(length(data)./10,100),50);

0351 xi = linspace(min(data),max(data),nbins);

0352 dx = mean(diff(xi));

0353 xi2 = linspace(min(data),max(data),nbins*10)';

0354 fi = histc(data,xi-dx);

0355 fi = fi./sum(fi)./dx;

0356 inds = 1:min([max_num_dist,numel(PD)]);

0357 ys = cellfun(@(PD) pdf(PD,xi2),PD(inds),'UniformOutput',0);

0358 ys = cat(2,ys{:});

0359 bar(xi,fi,'FaceColor',[160 188 254]/255,'EdgeColor','k');

0360 hold on;

0361 plot(xi2,ys,'LineWidth',1.5)

0362 legend(['empirical',{D(inds).DistName}],'Location','NE')

0363 xlabel('Value');

0364 ylabel('Probability Density');

0365 title('Probability Density Function');

0366 grid on

0367 else

0368 %Discrete Data

file:///D:/Drive/Thesis/Matlab/Codes/doc/6_SupportFunctions/allfitdist.html%23_subfunctions
file:///D:/Drive/Thesis/Matlab/Codes/doc/6_SupportFunctions/allfitdist.html%23_subfunctions

A38 allfitdist

192

0369 xi2=min(data):max(data);

0370 %xi2=unique(x)'; %If only want observed x-values to be shown

0371 indxf=ismember(vin(strs),'frequency');

0372 if any(indxf)

0373 fi=zeros(size(xi2));

0374 fi((ismember(xi2,data)))=freq; fi=fi'./sum(fi);

0375 else

0376 fi=histc(data,xi2); fi=fi./sum(fi);

0377 end

0378 inds = 1:min([max_num_dist,numel(PD)]);

0379 ys = cellfun(@(PD) pdf(PD,xi2),PD(inds),'UniformOutput',0);

0380 ys=cat(1,ys{:})';

0381 bar(xi2,[fi ys]);

0382 legend(['empirical',{D(inds).DistName}],'Location','NE')

0383 xlabel('Value');

0384 ylabel('Probability Mass');

0385 title('Probability Mass Function');

0386 grid on

0387 end

0388 else

0389

0390 %Cumulative Distribution

0391 if ~discind

0392 %Continuous Data

0393 [fi xi] = ecdf(data);

0394 inds = 1:min([max_num_dist,numel(PD)]);

0395 ys = cellfun(@(PD) cdf(PD,xi),PD(inds),'UniformOutput',0);

0396 ys = cat(2,ys{:});

0397 if max(xi)/min(xi) > 1e4; lgx = true; else lgx = false; end

0398 subplot(2,1,1)

0399 if lgx

0400 semilogx(xi,fi,'k',xi,ys)

0401 else

0402 plot(xi,fi,'k',xi,ys)

0403 end

0404 legend(['empirical',{D(inds).DistName}],'Location','NE')

0405 xlabel('Value');

0406 ylabel('Cumulative Probability');

0407 title('Cumulative Distribution Function');

0408 grid on

0409 subplot(2,1,2)

0410 y = 1.1*bsxfun(@minus,ys,fi);

0411 if lgx

0412 semilogx(xi,bsxfun(@minus,ys,fi))

0413 else

0414 plot(xi,bsxfun(@minus,ys,fi))

0415 end

0416 ybnds = max(abs(y(:)));

0417 ax = axis;

0418 axis([ax(1:2) -ybnds ybnds]);

0419 legend({D(inds).DistName},'Location','NE')

0420 xlabel('Value');

0421 ylabel('Error');

0422 title('CDF Error');

0423 grid on

0424 else

0425 %Discrete Data

A38 allfitdist

193

0426 indxf=ismember(vin(strs),'frequency');

0427 if any(indxf)

0428 [fi xi] = ecdf(data,'frequency',freq);

0429 else

0430 [fi xi] = ecdf(data);

0431 end

0432 %Check unique xi, combine fi

0433 [xi,ign,indx]=unique(xi); %#ok<ASGLU>

0434 fi=accumarray(indx,fi);

0435 inds = 1:min([max_num_dist,numel(PD)]);

0436 ys = cellfun(@(PD) cdf(PD,xi),PD(inds),'UniformOutput',0);

0437 ys=cat(2,ys{:});

0438 subplot(2,1,1)

0439 stairs(xi,[fi ys]);

0440 legend(['empirical',{D(inds).DistName}],'Location','NE')

0441 xlabel('Value');

0442 ylabel('Cumulative Probability');

0443 title('Cumulative Distribution Function');

0444 grid on

0445 subplot(2,1,2)

0446 y = 1.1*bsxfun(@minus,ys,fi);

0447 stairs(xi,bsxfun(@minus,ys,fi))

0448 ybnds = max(abs(y(:)));

0449 ax = axis;

0450 axis([ax(1:2) -ybnds ybnds]);

0451 legend({D(inds).DistName},'Location','NE')

0452 xlabel('Value');

0453 ylabel('Error');

0454 title('CDF Error');

0455 grid on

0456 end

0457 end

0458

0459 end

0460

%==%%%%%%%%%%%%%%

0461

%==%%%%%%%%%%%%%%

0462 % The End

%%%%%%%%%%%%%%

0463

%==%%%%%%%%%%%%%%

0464

%==%%%%%%%%%%%%%%

194

A39. Neighb_numel

0001

%==%%%%%%%%%%%%%%

0002

%==%%%%%%%%%%%%%%

0003 % Support Function

%%%%%%%%%%%%%%

0004

%==%%%%%%%%%%%%%%

0005

%==%%%%%%%%%%%%%%

0006

0007 function NumberOfX = Neighb_numel(A)

0008 NumberOfX = 0;

0009 for i=1:numel(A)

0010 if iscell(A{i})

0011 NumberOfX = NumberOfX + Neighb_numel(A{i});

0012 else

0013 NumberOfX = NumberOfX + numel(A{i});

0014 end

0015 end

0016 end

0017

%==%%%%%%%%%%%%%%

0018

%==%%%%%%%%%%%%%%

0019 % The End

%%%%%%%%%%%%%%

0020

%==%%%%%%%%%%%%%%

0021

%==%%%%%%%%%%%%%%

file:///D:/Drive/Thesis/Matlab/Codes/doc/6_SupportFunctions/Neighb_numel.html%23_subfunctions
file:///D:/Drive/Thesis/Matlab/Codes/doc/6_SupportFunctions/Neighb_numel.html

195

A40. ThousandSep

0001

%==%%%%%%%%%%%%%%

0002

%==%%%%%%%%%%%%%%

0003 % Support Function

%%%%%%%%%%%%%%

0004

%==%%%%%%%%%%%%%%

0005

%==%%%%%%%%%%%%%%

0006

0007 function out = ThousandSep(in)

0008 %THOUSANDSEP adds thousands Separators to a 1x1 array.

0009 % Example:

0010 % ThousandSep(1234567)

0011 import java.text.*

0012 v = DecimalFormat;

0013 out = char(v.format(in));

0014 end

0015

%==%%%%%%%%%%%%%%

0016

%==%%%%%%%%%%%%%%

0017 % The End

%%%%%%%%%%%%%%

0018

%==%%%%%%%%%%%%%%

0019

%==%%%%%%%%%%%%%%

file:///D:/Drive/Thesis/Matlab/Codes/doc/6_SupportFunctions/ThousandSep.html%23_subfunctions

196

A41. ProjectPoint

0001

%==%%%%%%%%%%%%%%

0002

%==%%%%%%%%%%%%%%

0003 % Support Function

%%%%%%%%%%%%%%

0004

%==%%%%%%%%%%%%%%

0005

%==%%%%%%%%%%%%%%

0006

0007 % write function that projects the point (q = X,Y) on a vector

0008 % which is composed of two points - vector = [p0x p0y; p1x p1y].

0009 % i.e. vector is the line between point p0 and p1.

0010 %

0011 % The result is a point qp = [x y] and the length [length_q] of the

vector drawn

0012 % between the point q and qp . This resulting vector between q and qp

0013 % will be orthogonal to the original vector between p0 and p1.

0014 %

0015 % This uses the maths found in the webpage:

0016 % http://cs.nyu.edu/~yap/classes/visual/03s/hw/h2/math.pdf

0017 %

0018 function [ProjPoint, length_q] = ProjectPoint(vector, q)

0019 p0 = vector(1,:);

0020 p1 = vector(2,:);

0021 length_q = 1; %ignore for now

0022 a = [p1(1) - p0(1), p1(2) - p0(2); p0(2) - p1(2), p1(1) - p0(1)];

0023 b = [q(1)*(p1(1) - p0(1)) + q(2)*(p1(2) - p0(2)); ...

0024 p0(2)*(p1(1) - p0(1)) - p0(1)*(p1(2) - p0(2))] ;

0025 ProjPoint = a\b;

0026 end

0027

%==%%%%%%%%%%%%%%

0028

%==%%%%%%%%%%%%%%

0029 % The End

%%%%%%%%%%%%%%

0030

%==%%%%%%%%%%%%%%

0031

%==%%%%%%%%%%%%%%

file:///D:/Drive/Thesis/Matlab/Codes/doc/6_SupportFunctions/ProjectPoint.html%23_subfunctions

	Abstract
	Preface
	Dedication
	Acknowledgment
	Table of Content
	List of Tables
	List of Figures
	List of Abbreviations
	List of Nomenclatures
	Chapter 1 General Introduction
	1.1. Overview
	1.1.1. Block Caving
	1.1.2. Production Scheduling in Underground Mining
	1.1.3. Mathematical Programming Methods
	1.1.4. Stochastic Optimization
	1.1.5. Caving Flow

	1.2. Research Motivation
	1.3. Research Objectives
	1.4. Organization of Thesis

	Chapter 2 Literature Review
	2.1. Production Scheduling Optimization in Block-cave Mining
	2.2. Material Flow
	2.3. Summary

	Chapter 3 Optimization of Production Scheduling in Block Caving Operations with Consideration of Grade Targets
	3.1. Introduction
	3.2. Methodology
	3.2.1. Notation
	3.2.2. Objective Function
	3.2.3. Constraints
	3.2.4. Mining direction (mining advancement) determination

	3.3. Solving the Optimization Problem
	3.4. Case Study
	3.5. Summary

	Chapter 4 Production Scheduling with Horizontal Mixing Consideration in Block-cave Mining
	4.1. Introduction
	4.2. Problem Statement and Formulation
	4.2.1. Notation
	4.2.2. Preliminaries
	4.2.3. Objective Function
	4.2.4. Constraints

	4.3. Solving the Optimization Model
	4.4. Numerical Results
	4.5. Summary

	Chapter 5 Long-term Production Scheduling Optimization and 3-D Material Mixing Analysis for Block Caving Mines
	5.1. Introduction
	5.2. Methodology
	5.2.1. 3-D Mixing
	5.2.2. Optimization Model
	Notation
	Objective function
	Constraints

	5.2.3. Model Structure and Programming Tools

	5.3. Verification and Validation
	5.4. Summary

	Chapter 6 Conclusions and Recommendations
	6.1. Conclusions
	6.2. Recommendations

	References
	Appendix A: MATLAB Codes
	Programming Description
	A1. A_Import_Param
	A2. B_Import_Drawpoints
	A3. C_Import_Slices
	A4. E_ScenarioGenerator_HVConeMixing
	A5. F_MiningDirectionEvaluation
	A6. ObjectiveFunction_MILP_Stoch
	A7. Const_ActiveDrawpoints
	A8. Const_Binary_Slc
	A9. Const_ContinuousMining
	A10. Const_DrawLife
	A11. Const_Grade
	A12. Const_DrawRate
	A13. Const_LowerandUpperBounds
	A14. Const_MiningCapacity
	A15. Const_Precedence_Polygon_DPs
	A16. Const_ProdTar
	A17. Const_Precedence_VShaped_DPs
	A18. Const_Precedence_Slc
	A19. Const_Reserve
	A20. Run_MILP
	A21. Exporting_Results
	A22. Plot_ActivePerPeriod
	A23. Plot_BHOD
	A24. Plot_ ProductionPerPeriod
	A25. Plot_ DrawRate_All
	A26. Plot_ DrawRate_Slc
	A27. Plot_ DrawRate_Slc_Seq
	A28. Plot_ GradePerPeriod
	A29. Plot_ MiningDirection_DPS
	A30. Plot_ PB_DEV
	A31. Plot_ ProductionPerPeriod
	A32. Plot_ Slc_Seq_Height
	A33. Plot_ PlotDCs
	A34. Plot_ PlotDPs
	A35. Plotdps_Active
	A36. Plotdps_Life
	A37. Plotdps_StartingPeriods
	A38. allfitdist
	A39. Neighb_numel
	A40. ThousandSep
	A41. ProjectPoint

