
Leader-Follower Formation Control of ROS Enabled Mobile Robots
Subject to Robots Failure

by

Yusuf Abdul-Razaq

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

in

CONTROL SYSTEMS

Department of Electrical and Computer Engineering
University of Alberta

© Yusuf Abdul-Razaq, 2022

Abstract

Over the years, control of autonomous vehicles in a defined formation has been the

subject of much research. Albeit leader-follower approach being one of the most used

in formation control, it suffers a major practical drawback of leader failure while cruis-

ing in formation. In this work, we aim to solve this problem by proposing a novel

assignment algorithm that assigns a new leader from the follower robots to ensure

robots complete their given task when their leader fails. This algorithm also assign

role to new robots joining the group, and also to the failed robot when rescued back to

the team. We drive robots towards their desired trajectories to achieve formation us-

ing a Lyapunov-based time-varying state tracking controller from the literature. Due

to role switching amongst member robots, we propose a limit-cycle obstacle avoidance

control algorithm to ensure smooth and collision free transition. Simulations and ex-

periments are performed using the Robot Operating System (ROS) framework due

to its flexibility to verify the effectiveness and reliability of the proposed algorithms.

ii

To my parents.

iii

Acknowledgments

The completion of this thesis could not have been possible without the generosity

and support from a large group of people. Foremost, I’m extremely grateful to my

supervisor, Prof. Horacio J Marquez for his priceless advice, support, and patience

during my time in his research group. His copious experience and immense knowledge

have helped me in all the time of my academic research. Special thanks to Hamid

Alian who was extremely generous in providing insights on how to code robots better.

I would also like to thank the National Sciences and Engineering Research Council of

Canada (NSERC) for their financial support which has made this research possible.

Thanks to Dr. Olufemi Oni for making Canada feel like home to me, and to my

friends turned brothers, Temitayo and Mubarak for their emotional support through-

out my graduate degree.

I would like to express my gratitude to my parents for their support and encour-

agement throughout my academic career. Special thanks to my selfless brother, Dr.

Abdulgaffar Abdulrazaq, and family at large for their invaluable support during my

time away from home. Finally, special thanks to my other half, Nafisat Nasir for her

patience and words of encouragement.

iv

Table of Contents

1 Introduction 1

1.1 Background and motivation . 1

1.2 Literature review . 3

1.2.1 Formation tracking problems 3

1.2.2 Formation generating problems 5

1.3 Statement of contribution . 6

1.4 Synopsis . 7

2 Technical preliminaries 9

2.1 Graph theory . 9

2.2 Lyapunov stability . 10

2.3 E-puck2 robot . 12

2.4 ZED Stereo camera . 13

2.5 The Robot Operating System (ROS) 15

2.6 Markers . 16

2.7 Drivers . 18

3 Formation control with obstacle avoidance and periodic leader switch 21

3.1 Introduction . 21

3.2 Robot dynamics . 22

3.3 Trajectory tracking . 22

3.4 Leader-follower formation control . 25

v

3.5 Obstacle avoidance . 26

3.5.1 Theory . 26

3.5.2 Algorithm . 28

3.6 Hierarchical action selection algorithm 30

3.7 Implementation . 31

3.7.1 Simulations . 32

3.7.2 Experiment . 37

4 Formation control subject to leader failure 44

4.1 Multi-robot algorithms . 44

4.2 Assignment algorithm . 45

4.3 Implementation . 47

4.3.1 Simulations . 47

4.3.2 Experiment . 52

4.4 Technical difficulties . 55

5 Summary and conclusions 60

Bibliography 63

vi

List of Figures

1.1 (a) Amazon Logistic warehouse [1],(b) UGV robots [2], (c) Drone

swarms [3] (d) subCULTron Underwater Acoustic Sensor Networks

(UASN) concept [4] . 2

2.1 (a) Directed graph (b) Undirected graph [23]. 9

2.2 E-puck2 robot [26] . 13

2.3 ZED Stereo camera [32] . 14

2.4 Basic ROS model . 16

2.5 Example of fiducial markers [37] . 17

2.6 AR tags [38] . 18

2.7 E-puck2 ROS topics [39] . 19

2.8 ZED camera RQT Graph Using AR Tags 20

3.1 Robot schematic . 23

3.2 Reference and current posture [42] . 24

3.3 Phase portrait of the limit-cycle defined by equations 3.13 and 3.14. . 27

3.4 Definition of robot’s position relative to an obstacle. 29

3.5 Choice of controller at an instance [21] 31

3.6 Robot-Obstacle setting showing the region of influence of the obstacle. 31

3.7 Robot and obstacle on a ground plane. 33

3.8 (a) Desired and robot’s trajectories, (b) Tracking errors and control

inputs. 34

vii

3.9 (a) Robot’s and reference trajectories, (b)Tracking errors and input

velocities. 34

3.10 Trajectory tracking with multiple obstacle avoidance. 35

3.11 (a) Robots at initial position, (b) Robots moving in a formation . . . 36

3.12 Trajectories of (a) Robot0, (b) Robot1, and (c) Robot2. 37

3.13 Trajectories of (a) Robot0, (b) Robot1, (c) Robot2, and (d) Robot3. . 38

3.14 Experimental setup. 39

3.15 Workspace for our experiments. 40

3.16 (a) Robot0 just before the region of influence of robot1, (b) Robot0

inside the region of influence of robot1 and avoiding it, (c) Robot0 back

to trajectory tracking after avoiding robot1 completely. 41

3.17 (a) Reference trajectory and robot0 motion trajectory, (b) Robot0

tracking errors and input velocities. 41

3.18 Desired formation shape. 42

3.19 (a) Robot0 leading the group, (b) Robot1 leading the group, (c) Robot2

leading the group, (d) Robot3 leading the group. 43

4.1 Role positions in a square shaped formation with robots occupying

positions sequentially. 46

4.2 Desired formation shape. 47

4.3 (a) Robots’ trajectories with no robot failure, (b) Trajectories under

leader failure. 48

4.4 (a) Robots’ trajectories with no robot failure, (b) Trajectories under

failure of robot occupying role 1. 49

4.5 (a) Robots’ trajectories with no robot failure, (b) Trajectories under

failure of robot occupying role 2. 50

4.6 (a) Robots’ trajectories with no robot failure, (b) Trajectories under

failure of robot occupying role 3. 50

viii

4.7 (a) Robots’ trajectories with no robot failure, (b) Trajectories under

failure of multiple robots. 51

4.8 (a) Robots’ trajectories with no robot failure, (b) Trajectories with

failed robot recovery. 52

4.9 Four robots in a formation (a) before leader failure, (b) when the leader

failed, (c) when the failed robot is recovered. 53

4.10 Four robots in a formation (a) before leader failure, (b) when the leader

failed, (c) when the failed robot is recovered. 54

4.11 Four robots in a formation (a) before role 2 robot failure, (b) when role

2 robot failed, (c) when the failed robot is recovered. 54

4.12 Four robots in a formation (a) before role 3 robot failure, (b) when role

3 robot failed, (c) when the failed robot is recovered. 55

4.13 Test pose estimate. 56

4.14 (a) Test robot tracking a circular trajectory, (b)Plots for tracking errors

and input velocities. 57

4.15 non-smooth generated trajectories. 58

4.16 Obstacle avoidance under large pose estimation error. 59

ix

List of Algorithms

1 : Orbital obstacle avoidance . 30

2 : Hierarchical action selection . 32

3 : Assignment algorithm . 46

x

Abbreviations & Acronyms

AI Artificial Intelligence.

AUV Autonomous Underwater Vehicles.

PSO Particle Swarm Optimization.

ROS Robot Operating System.

UAV Ummanned Ariel Vehicle.

UGV Ummanned Ground Vehicle.

xi

Chapter 1

Introduction

1.1 Background and motivation

The study of multi-robot coordination has grown significantly over the last two

decades with advances in robotics and control theory, embedded systems, communica-

tion systems, and AI integration. It has attracted enormous attention form different

fields such as monitoring and control, search and rescue, transportation, factory floor,

homecare, fault diagnosis, just to name a few. This is of course, due to its ability

to solve difficult problems that are impossible with a single robot. Loosely speak-

ing, multi-robot systems consist of a group of unmanned ground or aerial vehicles or

underwater robots interacting in a certain way to achieve some defined tasks. Some

examples are shown in Figure 1.1.

These applications are realized through various cooperative control strategies, this

includes cooperative search, formation control, rendezvous, flocking, foraging, just to

name a few. With significant research activity in the area of cooperative control, a

lot has been published on formation control problem, making it the most actively

studied area in multi-robot coordination. Extensive survey in [5] classified formation

control strategies into distance-based, position-based, and displacement-based, based

on sensing capabilities and interaction topology of agents. In [6], formation control

problems are studied through the lens of feedback and communication mechanisms,

network topologies, and collective behaviour. In addition, the reference [7] present a

1

Figure 1.1: (a) Amazon Logistic warehouse [1],(b) UGV robots [2], (c) Drone swarms
[3] (d) subCULTron Underwater Acoustic Sensor Networks (UASN) concept [4]

substantial survey, paying attention to methods that adopts flexible formation shape

to achieve collision avoidance for multi-vehicle systems. The common control ap-

proaches in multi-robot systems are centralized, decentralized, and distributed control

approach. This thesis involves the use of distributed formation control, we therefore

do not present background knowledge on centralized approach.

According to fundamental ideas in control schemes, references [8, 9] have classified

formation control into leader–follower, behavioral, and virtual structure approaches.

Leader-follower formation control strategy has been investigated frequently in recent

years for its distributed nature and ease of implementation. Basically, one of the

robots is designated as the leader and other robots designated as followers, followers

track position and orientation of the leader with some prescribed offset. Possible vari-

ations include designating multiple leaders, forming a chain, and other tree topologies.

2

Despite its simplicity and wide range of applications, it suffers a major practical draw-

back of leader failure. This in turn, result in failure of the whole system to achieve the

defined task, which makes the strategy less robust and hence, the need for a lasting

solution. While some works as in [10] maneuvered out of this problem by proposing

a rather local solution, a flood of papers presented this strategy without addressing

this practical problem.

1.2 Literature review

In this section, a brief review on formation control will be provided. We will then

briefly review some recent research results relevant to our work, with a more detailed

review to be provided in each of the main chapters.

Depending on whether or not desired formations are time varying, formation con-

trol problems are generally divided into two, that is, formation generating problems

and formation tracking problems. In their review, [5] described briefly how the exist-

ing literature addressed each of these problems. They described formation generating

problems as problems whose objective of agents is to achieve a prescribed desired for-

mation shape, usually addressed through matrix theory based approach, Lyapunov

based approach, graph rigidity based approach, and receding horizon based approach.

On the other hand, formation tracking problems as problems where agents are con-

trolled to track some prescribed reference trajectories, usually addressed through

matrix theory based approach, potential function based approach, Lyapunov based

approach among others.

1.2.1 Formation tracking problems

Formation tracking problems have greater application potential, therefore have re-

ceived a lot of attention among researchers. An example is in the reference [11],

in their work, receding-horizon leader-follower control framework is used to solve the

formation problem of multiple non-holonomic mobile robots with a rapid error conver-

3

gence rate. They proposed two formation schemes; a separation bearing orientation

scheme (SBOS) for two robots such that the follower robot follow its leader at a

prescribed desired bearing, distance, and orientation deviation. And a separation

separation orientation scheme (SSOS) for three robots such that one follower robot

follows two leaders by maintaining desired separation with respect to both leaders,

and a desired orientation deviation with respect to one of the leaders. They designed

in their work, a controller that explicitly control the orientation deviation between

leaders and followers to solve what they termed as “formation backward problem”,

that is, formation problem when robots move backward. Another example is in [12],

they propose an optimal formation controller that determines the optimal formation

among predefined formations according to the environment. In each of their pre-

defined formation, leader robot move at a constant speed, while follower robots are

controlled using a receding-horizon based controller to track leader robot at a pre-

scribed distance. The reference [13] later extend the work in [12] by proposing an

automatic formation control method with temporal logic constraints. This is to en-

able them achieve an optimal formation switching in a cluttered or sufficiently small

environment among predetermined formations in real time using receding-horizon

based controller.

Lyapunov based approach is used in [10] with leader-follower strategy to solve for-

mation control problem. They treat formation control problem as an extension of

trajectory tracking problem. They feed trajectory information to the leader, and the

leader has the task of generating a desired pose for each follower robot at some point

relative to its pose. Due to nonholonomic constraint of the robot they consider, the

desired orientation of each follower is generated such that the reference trajectory

will be feasible. They employ the use of an existing Lyapunov based backstepping

controller to drive robots to track their respective reference trajectories. In the refer-

ence [14] a Lyapunov based tracking controller is designed coupled with an avoidance

function for trajectory tracking and obstacle avoidance for a single robot. The result

4

is then extended to solve formation control problem using the leader-follower strat-

egy. In their approach, leader robot sends its position information to follower robots,

then follower robots compute and track a desired posture using the Lyapunov based

controller based on the desired distance and bearing sent by a supervisor. The incor-

poration of avoidance function into their controller ensures robots do not collide with

one another when the supervisor decides to switch their formation shape. In [15],

multiple autonomous underwater vehicles (AUV) are controlled using a Lyapunov

based controller to achieve formation by utilizing the leader-follower formation con-

trol strategy in the presence of discrete data transmission between the leader AUV

and the follower AUVs. A continuous-discrete extended Kalman filtering (CD-EKF)

is designed in this work for follower agents to estimate the position and velocity of

the leader when communication constraints occur. Another formation control study

of AUV is in [16]. In their work, they designed a novel Lyapunov based tracking con-

trol algorithm for the leader robot, and a control law using the Lyapunov theory and

feedback linearization techniques to navigate a group of follower robots in a desired

formation associated with the leader and follow it simultaneously.

1.2.2 Formation generating problems

Formation generating problem is studied in [17]. In their work, they proposed a de-

centralized formation control law to achieve desired formation and avoid collisions

with obstacles and other robots in the group. Their assumption is that robots get

information only form their local neighbours and were able to verify using a set of

simulations, the effectiveness of their proposed controller. The reference [18] analyzed

formation consensus problem using omnidirectional robots with multiple time delays

and noises. Their approach obtained critical stability of the maximum time delay

under noisy conditions, then proved that the system can be stabilized and achieve

the desired formation when all robot delays are less than the maximum time delay.

Relative to traditional Lyapunov method, they proved their solution’s lower conser-

5

vativeness and ease of extension to higher-order system.

Another formation generating problem is studied in [19]. Their work addressed

the problem of shape distortions in distance-based formation control when robots are

subjected to unknown external disturbances. Performance bounds that constrain the

inter-robot distance errors are used to handle connectivity maintenance and collision

avoidance among neighboring robots. They established using graph theory, input to

state stability, and Lyapunov analysis, a decentralized control scheme that increases

formation robustness against shape distortions and formation convergence to unde-

sired shapes under the effect of external disturbances.

1.3 Statement of contribution

Although there is abundance of literature on the leader-follower strategy to solving

formation control problems, we have not come across to the best of our knowledge at

the time of this work, a research result that explicitly address the practical problem

of leader failure in this strategy. A number of research results consider limited com-

munication resources, while a lot have not even considered the possibility of leader

failure. Because follower robots rely on their leader to get formation information,

its failure means failure of the whole group to complete the given task. We propose

a new approach to solve this problem which consist of the following: foremost, the

assumption as reported in bulk of the work on leader-follower strategy is that robots

in a particular group are homogeneous. This means we can make any of the robots to

be a designated leader, so the challenge is what do to do with follower robots when

failure condition of their leader is met. We allot ranks to each of the nodes in a

particular formation so that robots can know the range of things they can do when

on a particular node. We then design a control framework that autonomously assign

a leader from the group robots at the beginning of the task and choose a new leader

from the group of followers based on the node they occupy when failure occurs to the

current leader, other robots then follow the new leader to complete the task. Should

6

in case we are able to recover the failed robot, our solution is designed such that

robots joining a team that already has a leader will join as follower robots, therefore

this recovered robot follows in the group complete the task. Our approach provides

follower robots with the ability to overcome leader failure and offers the flexibility to

easily introduce new robots to the group. This approach solves not only the problem

of leader failure, but also, failure of any robot in the group, as it allows other robots

to change node where necessary when a robot in the group fails, thanks to pliancy of

ROS that made the implementation of this approach easier.

To achieve this, we use an existing Lyapunov-based tracking controller based on the

backstepping technique from the literature to drive leader robot to track a reference

trajectory, and follower robots to track a desired posture from the leader so they can

all move in a defined formation. To ensure active robots do not collide with the failed

robot during transitions, we propose avoidance algorithm using the limit-cycle strat-

egy so robots can safely avoid obstacles present along the trajectory. Our avoidance

algorithm is different from what is reported in [20–22] in the sense that their work

assumes that obstacles are somewhere between robot and goal positions, contrary

to trajectory tracking problems where same goal and robot’s positions is expected.

We also investigate the case of periodically switching the leader autonomously in a

practical setting as an alternative, though not a lasting solution to problem of leader

failure.

1.4 Synopsis

This thesis is organized as follows: Chapter 1 introduces the research topic, giving a

brief background of multi-robot coordination. We briefly introduce formation control

as an active research area in multi-robot systems, we stated our research objectives,

statement of contribution, and lastly the thesis outline. We introduce some techni-

cal preliminaries in chapter 2, discussing the theory needed to achieve our research

goals, then an overview of the hardware and software used for simulations and ex-

7

periment. In chapter 3, a new limit-cycle obstacle avoidance strategy is presented,

together with leader-follower formation control with periodic switch. We then present

simulations and experimental results to validate the effectiveness of our strategy. As-

signment algorithm to fix the problem of leader failure is presented in chapter 4, along

with simulations and experimental results to show the effectiveness of our algorithm.

Summary and conclusions, and directions for future research come in the last chapter,

chapter 5.

8

Chapter 2

Technical preliminaries

In this section, we present some concepts of graph theory, stability theory of nonlinear

systems using the Lyapunov approach, and an overview of the tools and libraries used

during our simulations and experiments.

2.1 Graph theory

A graph is an object that consist of a set of non-empty set of vertices and another

set of edges. These edges may be directed or undirected depending on whether the

edges have orientations or not. Example of a directed and undirected graphs is given

in Figure 2.1 (a) and (b) respectively.

Figure 2.1: (a) Directed graph (b) Undirected graph [23].

With respect to leader-follower formation control technique, [24] describe the for-

mation configuration as a directed graph or diagraph as the leader robot is used to

9

control the other follower robots in the formation. Also, specific formations lead to

the development of unique diagraphs, and a particular set of shape variables associ-

ated with each graph structure. The authors added that sometimes in the presence

of obstacles, it is necessary to switch from one diagraph to another which leads to in-

ternal dynamics of the graph, and hence, resulting to a graph that is non-isomorphic

to the original graph.

In reference to [23], a directed graph or diagraph D, consist of a non-empty finite

set V(D) of elements called vertices, and a finite family A(D) of ordered pairs of

elements of V(D) called arcs. V(D) is the vertex set and A(D) is the arc family of

D. An arc (v,w) is usually abbreviated to vw. Thus in Figure 2.1(a), V (D) is the

set (u, v, w, z) and A(D) consists of the arcs uv, vv, vw(twice), wv, wu, andzw, the

ordering of the vertices in an arc being indicated by an arrow. If D is a digraph, the

graph obtained from D by “removing the arrows” (that is, by replacing each arc of

the form vw by a corresponding edge vw) is the underlying graph of D (see Figure

2.1(b)).

2.2 Lyapunov stability

Throughout this work, we use two distinct controllers from the literature for trajectory

tracking control and obstacle avoidance control. The stability of these controllers is

proved using the Lyapunov method, therefore, it is important at the this point to

introduce Lyapunov stability in nonlinear systems. Before then, let us first introduce a

time-dependent positive definite function. Consider a scalar function W : D×R+ → R

with variables x ∈ D and time t. Assuming this function is continuous and has

continuous partial derivatives with respect to its arguments, then the function W (x, t)

is said to be positive semi definite in D if it satisfies the following conditions (see [25]):

i. 0 ∈ D

ii. W (0, t) = 0 ∀t ∈ R+

10

iii. W (x, t) ≥ 0, ∀x ̸= 0, x ∈ D

W (x, t) is said to be positive definite in D if conditions (i) and (ii) above are

satisfied, and there exists a time-invariant positive definite function V1(x) such that:

V1(x) ≤ W (x, t) ∀x ∈ D.

Similarly, W(x,t) is said to be negative definite (semi definite) in D if -W (x, t) is

positive definite (semi definite).

In addition, W(x,t) is said to be decrescent in D if there exists a positive definite

function V2(x) such that: |W (x, t)| ≤ V2(x)∀x ∈ D. More so, W (x, t) is radially

unbounded if W (x, t) → ∞ as x → ∞ uniformly on t.

Now, consider the system ẋ = f(x, t) f : D × R+ → Rn and assume that the

origin is an equilibrium state: f(0, t) = 0∀t ∈ R. Then if in a neighborhood D of the

equilibrium state x = 0 there exist a differentiable function W (., .) : D × [0,∞) × R

such that:

i. W (x, t) is positive definite.

ii. The derivative of W (., .) along any solution of ẋ = f(x, t) is negative semi

definite in D.

then, the equilibrium state is stable. Moreover, if W (x, t) is also decrescent then the

origin is uniformly stable.

The equilibrium state is uniformly asymptotically stable if

i. W (x, t) is positive definite and decrescent.

ii. The derivative of Ẇ (x, t) is negative definite in D

If there exists a differentiable function W (., .) : Rn × [0,∞) → R such that:

i. W (x, t) is positive definite, decrescent, and radially unbounded ∀x ∈ Rn and

that

11

ii. The derivative of Ẇ (x, t) is negative definite in ∀x ∈ Rn, then

the equilibrium state at x = 0 is globally uniformly asymptotically stable.

Suppose that the equilibrium state x=0 is uniformly asymptotically stable, and in

addition assume that there exist positive constants K1, K2 and K3 such that:

i. K1||x||p ≤ W (x, t) ≤ K2||x||p.

ii. Ẇ (x, t) ≤ −K3||x||p

Then the origin is exponentially stable. And if the conditions hold globally, then the

equilibrium state x = 0 is globally exponentially stable.

2.3 E-puck2 robot

The e-puck2 is a small (7cm in diameter) differential drive robot developed at the

Swiss Federal Institute of Technology in Lausanne (EPFL) in collaboration with GC-

tronic. The hardware and software of e-puck2 is fully open source, providing low

level access to every electronic device and offering unlimited extension possibilities.

It is powered by an STM32F4 microcontroller and features a large number of sensors:

IR proximity, sound I/O, 9×IMU, ToF distance sensor, camera, and uSD storage.

The robot is a full system with USB hub, debugger/programmer, Wi-Fi module [26].

Figure 2.3 shows what the e-puck2 robot is made up, featuring sensors, actuators,

microcontroller, and few other components.

Due to its elegant design, flexibility, user friendly, and low-cost, a lot of research

work has been implemented using this robot especially in the area of multi-agent

systems. It is integrated with the Webots simulation software for programming, sim-

ulation, and control of the robot. An early implementation can be found in [27] where

swarm of e-pucks are remotely controlled by external users over the internet using

Web Services communication protocol. The available support for ROS makes it even

more suitable for robotics research in multi-agent systems as it provides easy access

12

Figure 2.2: E-puck2 robot [26]

to the robot’s sensors and actuators, as well as easy communication via Bluetooth

or Wi-Fi among robots. Some lately research implementations can be found in [28]

where four e-puck2 robots are used for cooperative localization using event-triggered

mechanism with minimum communication exchange implemented using the ROS in-

terface. In the reference [29], a Particle Swarm Optimization (PSO) is implemented

on three e-puck2 robots with a camera placed on top of the environment to locate the

robots using image processing technique and navigate each robot to its next position.

This with abundance of references online make e-puck2 our ideal choice for all our

experimental implementations in this thesis.

2.4 ZED Stereo camera

In multi-robot applications such as locomotion, path planning, where accurate posture

of robots is essential, localization can be challenging especially when using small-sized

13

low-cost robots such as the e-puck2. One of the common strategies to localizing these

robots is by using an overhead camera with some detecting algorithms that can detect

markers mounted on the robots. An example is in [30] where an effective vision-

based system is proposed to accurately track mobile robots’ true pose using multiple

overhead cameras. Their system can localize multiple mobile robots simultaneously

in a 3m ×6m arena with each robot assigned with a symbol marker for identification.

In [12], an overhead camera is used to localize a group of e-puck2 robots to address

formation control problem using Model Predictive Control. During the experiment,

pose estimates of the robots is sent to the PC in real time via the video camera

attached for the computer to calculate optimal inputs to the robots.

In this work, we use the ZED stereo camera to localize our robots due to growing

localization error observed from the odometry readings of the robots. ZED is a

passive stereo camera that reproduces the way human vision works. Using its two

“eyes” and through triangulation, the ZED creates a three-dimensional model of the

scene it observes, introducing for the first time indoor and outdoor long range depth

perception and positional tracking [31].

Figure 2.3: ZED Stereo camera [32]

Figure 2-3 shows the ZED stereo camera, it has an integrated 2.0m USB3.0 cable,

with minimum system requirements of USB3.0 port, CUDA 6.5, NVIDIA GPU with

compute capability greater than 2.0, 4GB RAM, Dual-core 2,3GHz, and windows 7 or

14

Ubuntu 14.04 or later to run the system development toolkit provided by StereoLabs.

The camera can be interfaced with multiple third-party libraries and environments

such as OpenCV, ROS, PyTorch, TensorFlow, MATLAB, just to name a few. We

chose ZED camera to localize our robots because both can be interfaced with ROS,

which makes it easier for the camera to communicate pose estimates to individual

robots.

2.5 The Robot Operating System (ROS)

Robots need to communicate with the camera to get their respective pose data and

communicate with other agents in the group to achieve formation, avoid obstacles, or

perform any given task as a group. Therefore, a reliable system is required for robots

to interact with the camera and other agents, and one of such systems is the Robot

Operating System (ROS).

ROS is a modular open-source framework for writing robot software. It is a col-

lection of tools, libraries, and conventions that aim to simplify the task of creating

complex and robust robot behavior across a wide variety of robotics platform [33]

. It provides functionality for hardware abstraction, communication between pro-

cesses over multiple machines, and great tools for visualization. It also provides the

flexibility to work with heterogeneous devices in a shared environment. Control of

individual robots and communication between robots and other devices is realized

using some software processes called “nodes” that can register with the ROS master

node. They can execute tasks independently or by communicating with other nodes

within the system. The communication mechanism used by ROS is through sending

and receiving messages grouped into specific categories called topics. A message is

defined by the type of message and data format, a node can send data by publishing

it on a defined topic and receive data by subscribing to the topic of interest. Figure

2.4 shows the basic ROS model consisting of nodes registered with the ROS master

communicating data via topics.

15

Figure 2.4: Basic ROS model

The modularity of ROS makes working with heterogeneous devices easier as addi-

tional functionalities can be easily incorporated to the platform. It also makes code

reusability easier in robotics research as one can use packages from other projects to

serve some purpose in another project. This along with several other reasons makes

ROS the ideal framework to implement our algorithms. We carefully select packages

that meets our requirements for implementation.

2.6 Markers

An important step to implementing our work is finding a way to accurately localize

our robots. With the ZED camera, we use visual localization to estimate the pose of

each robot within the field of view of the camera. Visual localization involves the prob-

lem of determining the camera pose of one or multiple query images in a database

scene. This problem is highly relevant for a wide range of applications, including

autonomous robots, augmented reality (AR), loop closure detection re-localization,

SLAM, and Structure-from-Motion (SFM) systems [34]. The complexities associated

with detecting our robots can be avoided using patterns designed to be reliably de-

16

tected by computer vision, such patterns are termed “fiducial markers” (see Figure

2.5). A lot of research papers have employed the use of fiducial markers to localize

robots, or to improve localization accuracy. An example is in [35] where AR Tag

markers are used for robot localization with an overhead camera viewing the robots

from above with a unique marker mounted on each robot. To solve a formation con-

trol problem, [36] used overhead camera to determine the pose estimates of a group

of e-puck2 robots by mounting patterns on each of the robots.

Figure 2.5: Example of fiducial markers [37]

In our work, we employ the use of AR Tag markers, a square pattern of size 5 by 5

printed on a flat surface with black and white patches, and relatively thick solid outer

boundary (see Figure 2.6). These tags are provided by the ar track alvar package,

which is a ROS wrapper for alvar, an open-source AR tag tracking library.

17

Figure 2.6: AR tags [38]

2.7 Drivers

We use dedicated ROS wrappers for our hardware devices to be able to receive data or

send control commands using ROS. The e-puck2 ROS driver maintained by GCtronic,

is designed to enable the use of e-puck2 with ROS, with a python and C++ versions

available to enable user chose its preferred programming language. Robots can be

connected to a computer via either Bluetooth or Wi-Fi, and all sensors and actuators

are exposed to ROS so commands can be sent to the robot or receive data from it.

Figure 2.7 is an rqt graph showing all the topics published by the e-puck2 Wi-Fi ROS

node. Although the node is publishing a lot of different topics for both sensors and

actuators, the necessity to involve an external camera for localization mean we will be

using just the /mobile base/cmd vel topic to publish velocity command on the robot.

To be able to use the ZED stereo camera with ROS, we use the dedicated ZED ROS

wrapper, which outputs the camera left and right images, depth map, point cloud, and

pose. It also supports the use of multiple cameras. Since our interest is to localize AR

markers (each mounted on a robot) within the field of view of the camera, we intend

to use the zed ros examples repository – a subdivision of the ZED ROS wrapper –

which will enable us to use the ar track alvar package. Figure 2.8 shows the rqt graph

of the camera using the ar track alvar package. In the list of all published topics

by the tracking node, our topics of interest are the /zed/visualization marker and

/zed/ar pose marker which are only updated when a marker is visible. As seen in

18

the graph, the tracking node also updates the /tf topic to have the pose of observed

markers published in the TF Tree.

Figure 2.7: E-puck2 ROS topics [39]

19

Figure 2.8: ZED camera RQT Graph Using AR Tags

20

Chapter 3

Formation control with obstacle
avoidance and periodic leader
switch

3.1 Introduction

This section presents formation tracking problem that involves the use of leader-

follower formation control strategy coupled with obstacle avoidance algorithm. Most

of the existing leader-follower strategy in the literature involve the use of dedicated

leader(s) (see examples in [11–13]), and assumed an obstacle free environment, there-

fore did not involve obstacle avoidance. The work in [10] consider a case of leader

switching, however, the leader is teleoperated using the ROS teleop twist keyboard.

Followers are delayed until the new leader is ready to share formation data with fol-

lowers, hence, they did not see the need to add obstacle avoidance. In this work

however, we use tracking controller to drive all robots in the group to achieve and

maintain formation. We also aim to periodically change the leader; hence, robots will

break from existing formation to follow the new leader. Therefore, we find it nec-

essary to integrate avoidance control in our strategy to ensure robots do not collide

with one another during transition.

21

3.2 Robot dynamics

Consider a nonholonomic constrained mobile robot in Figure 3-1 whose dynamics are

modeled by the following nonlinear ordinary differential equations:

⎡⎢⎢⎢⎣
ẋ

ẏ

θ̇

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
cosθ −sinθ 0

sinθ cosθ 0

0 0 1

⎤⎥⎥⎥⎦ r

2

⎡⎢⎢⎢⎣
φ̇1 + φ̇2

0

(φ̇1−φ̇2)
l

⎤⎥⎥⎥⎦ (3.1)

r represents the radius of the wheel, φ̇i is the angle of rotation of wheel i, and l is

the distance between each of the wheels. With v = r(φ̇1+φ̇2)
2

and ω = r(φ̇1−φ̇2)
2l

, we can

rewrite equation 3.1 as:

⎡⎢⎢⎢⎣
ẋ

ẏ

θ̇

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
cosθ 0

sinθ 0

0 1

⎤⎥⎥⎥⎦
⎡⎣v
ω

⎤⎦ (3.2)

Here, x ∈ R and y ∈ R are the Cartesian coordinates of the center of mass of the

vehicle, θ ∈ [0, 2π) is the heading of the robot with respect to the coordinate axis, v

and ω are the control inputs for linear and angular velocity, respectively.

3.3 Trajectory tracking

Trajectory tracking control problem can be solved in a number of ways. Among

the most popular techniques is the use of Model Predictive Control (MPC). In this

technique, the trajectory tracking task is taken as predictive control problem with

multi-constraints by transforming the continuous time system into a discrete state-

space mode with fixed sampling period [40]. The references [12, 13] also employ the

use of MPC to drive their robots to follow a reference leader. In their comparative

study, [40] demonstrate the accuracy of the controller but conclude that it is prone to

instability under harsh driving conditions. Another popular method is the Lyapunov

based approach, it involves the use of a Lyapunov function to design control inputs to

22

Figure 3.1: Robot schematic

make the zero equilibrium of the system stable. A lot of references (examples include:

[10, 17, 41, 42]) have reported the use of a Lyapunov based controller to drive robots

to track a reference trajectory. In this work, controller design is not our main focus,

we therefore consider using the backstepping controller designed in [42] to drive our

robots.

Consider a tracking control problem where a robot is tasked to follow a reference

robot with a posture Pr = (xr, yr, θr) and reference control inputs vr and ωr.

Consider Figure 3.1 where robot’s posture (x, y, θ) is given, the error coordinates

can be denoted by (see [41]):

⎡⎢⎢⎢⎣
ex

ey

eθ

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
cosθ sinθ 0

−sinθ cosθ 0

0 0 1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
xr − x

yr − y

θr − θ

⎤⎥⎥⎥⎦ (3.3)

The error dynamics are (see [41]):

23

Figure 3.2: Reference and current posture [42]

⎡⎢⎢⎢⎣
ėx

ėy

ėθ

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
vrcoseθ + ωey − v

vrsineθ − ωex

ωr − ω

⎤⎥⎥⎥⎦ (3.4)

A Lyapunov stable time-varying state-tracking control law is designed in [42] based

on backstepping technique to control robot to track reference trajectory. According

to [42], if v̇r, ω̇r, vr,and ωr and bounded with the assumption that either vr or ωr

does not converge to zero, the global asymptotic stability of the error dynamics in

equation 3.4 is guaranteed, and thus errors converge to zero using the control inputs

in equation 3.5 (see [42] for proof of convergence).

⎡⎣v
ω

⎤⎦ =

⎡⎣ vrcoseθ + kxex

ωr + kyeysineθ
eθ

+ kxeθ

⎤⎦ (3.5)

with a =
√︁

v2r + bω2
r , kx = 2ϵa, ky = b|vr|, ϵ > 0 and b > 0.

24

3.4 Leader-follower formation control

Leader-follower formation control involve the use of a robot called the “leader” to

generate trajectory information for other robots in the team called “followers”. With

each follower robot tracking the leader at a prescribed desired distance and bearing,

leader-follower formation control problem can be viewed as a natural extension of tra-

jectory tracking problem. The references [10, 14] formulated formation control prob-

lem as a trajectory tracking problem by defining a desired posture Pd = (xd, yd, θd)

using parameters l and ϕ as desired distance and bearing, respectively, relative to the

posture of a leader robot or center of mass of the desired formation. This formulation

is defined by equations 3.6-3.8 below (see [10, 14]).

xd = xl + lcos (ϕ + θl) (3.6)

yd = yl + lsin (ϕ + θl) (3.7)

θd = atan2(ẏd, ẋd) + kπ, k = 0, 1 (3.8)

where k = 0; 1 defines the desired drive direction (0 for forward and 1 for reverse

motion) and atan2 is the four-quadrant inverse tangent function. As outlined in [10], it

is possible for a nonholonomic constrained mobile robot to track a reference trajectory

if equations 3.6-3.8 respect the nonholonomic constraint of the robot, meaning it

should be consistent with the following form:⎡⎢⎢⎢⎣
ẋd

ẏd

θ̇d

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
cosθd 0

sinθd 0

0 1

⎤⎥⎥⎥⎦
⎡⎣vd
ωd

⎤⎦ (3.9)

Therefore, [10] chose the desired orientation as in equation 3.8 for the desired

trajectory to satisfy 3.9.

25

Given posture of the follower robot Pf = (xf , yf , θf) and that of the generated

desired posture Pd = (xd, yd, θd), formation is achieved if each follower robot tracks

its corresponding desired trajectory generated by the leader robot. Mathematically,

formation is achieved if lim
t→∞

(xd − xf) = 0 and lim
t→∞

(yd − yf) = 0, the condition

lim
t→∞

(θd − θf) = 0 is desirable but not necessary, however must be bounded. The

desired velocities vd and ωd are derived from equation 3.9 as:

vd = ±
√︂

ẋ2
d + ẏ2d

(3.10)

ωd = θ̇d =
ẋdÿd + ẏdẍd

ẋ2
d + ẏ2d (3.11)

The sign ± depends on whether the motion is forward or backward. Note that the

necessary conditions for reference path design according to (Jiang & Nijmeijer, 1997)

is a nonzero desired linear velocity (vd ̸= 0) and a smooth twice differentiable path.

Similar to equation 3.5, the control inputs in equation 3.12 will drive the follower

agents to the desired position Pd to achieve desired formation.

⎡⎣vf
ωf

⎤⎦ =

⎡⎣ vdcoseθ + kxex

ωd + kyeysineθ
eθ

+ kxeθ

⎤⎦ (3.12)

with kx = 2ϵa, ky = b|vd|, a =
√︁

ω2
d + bv2d, ϵ > 0 and b > 0.

3.5 Obstacle avoidance

3.5.1 Theory

We want robots to avoid static obstacles along their respective trajectories and avoid

collision with other robots when switching roles in case of failure of leader failure. Sev-

eral avoidance strategies can be found in the literature. An interesting overview of

some of these strategies is given in [43]. References [14, 17] addressed avoidance con-

trol using avoidance function defined in [44, 45], which is active only in the bounded

26

sensing regions of individual robot and do not interfere with robot’s individual opti-

mal control law outside of this region. Another notable approach is the limit-cycle

avoidance strategy proposed by [20]). This work employs a limit-cycle avoidance

strategy to safely avoid obstacles while cruising.

In limit-cycle avoidance strategy, robot needs to follow accurately limit-cycle vector

fields defined by the following differential equations (see [20, 21]):

ẋs = (sign)ys + xs

(︁
R2

c − x2
s − y2s

)︁
(3.13)

ẏs = −(sign)xs + ys
(︁
R2

c − x2
s − y2s

)︁
(3.14)

Here, (xs, ys) is the position of the robot according to the center of convergence of

the limit-cycle, Rc defines the radius of the limit-cycle, and ”sign = ±1” for clockwise

and counter-clockwise avoidance, respectively. Figure 3.3 shows the phase portrait

of limit-cycle if radius Rc = 1 with directions of trajectories - clockwise limit-cycle

(left) and counter-clockwise limit-cycle (right) - according to the xsandys axis. The

trajectories from all points (xs, ys) including inside the circle, move toward the circle.

Figure 3.3: Phase portrait of the limit-cycle defined by equations 3.13 and 3.14.

27

To control robot to follow these trajectories when an obstacle is detected, references

[21, 22] used what is called the orientation control. The robot desired orientation is

derived from the differential equation of the limit-cycle as:

θd = atan2(ẏs, ẋs) (3.15)

And the error is given by

θe = θd − θ (3.16)

It is proved in [21] that with k > 0, the input ω = θ̇d + kθe will drive the robot to

the desired orientation, and with a constant nominal speed v, the robot will be able

to accurately follow the limit-cycle.

3.5.2 Algorithm

The avoidance algorithm in [21, 22] assumed obstacle to be somewhere between the

robot and the target destination. This is not the case in trajectory tracking problem

where a near zero tracking error is expected, hence, robot’s and goal positions are

approximately the same. We therefore propose a new avoidance algorithm to enable

the use of this strategy in trajectory tracking applications. To avoid obstacle, the

following are necessary:

• Detect obstacle to avoid.

• Define escape criterion which determine if an obstacle is completely avoided or

not.

We define Dj, the Euclidean distance between agent and obstacle j. Choose obsta-

cle with the least distance to the robot, this obstacle is characterized by its position

(xo, yo) and radius Ro. Given position (x, y) of the robot, the obstacle’s position

(xo, yo) is the center of the limit-cycle. Expressing the robot’s position (xs, ys) with

respect to the center of convergence of the limit-cycle, we have: xs = (x − xo) and

28

ys = (y− yo). Dj is defined by equation 3.17, the radius of the region of influence Ri

and that of the limit-cycle Rc are defined by equations 3.18 and 3.19 respectively:

Dj =
√︁

x2
s + y2s (3.17)

Ri = Ro + Rr + δ (3.18)

Rc = Ri − ε, ε < δ (3.19)

Rr is the radius of the robot, δ is a safe margin for collision avoidance, and ε

relatively small positive number. Because we are dealing with dynamic obstacles

(other agents), the sign in equations 3.13 and 3.14 is set to -1 (counterclockwise

avoidance). A robot approaching an obstacle from any direction can have coordinate

positions (xs, ys) to be either positive or negative values (see Figure 3.4). This is used

to define escape criterion by keeping track of the signs of xs and ys.

Figure 3.4: Definition of robot’s position relative to an obstacle.

Define sgnxs and sgnys as the signs of xs and ys respectively, just after the robot

enters the circle of influence of the obstacle, and let n sgnxs and n sgnys be the signs

29

of xs and ys respectively, when the robot is avoiding the obstacle. We compare

(sgnxs, sgnys) and
(︁
n sgnxs, n sgnys

)︁
and say that an obstacle is completely avoided

and switch to tracking controller when the conditions ”sgnxs ̸= n sgnxs” and ”sgnys ̸=

n sgnys” are satisfied.. The pseudo code for the orbital obstacle avoidance algorithm

is as follows:

Algorithm 1 : Orbital obstacle avoidance

1 if Dj ≤ Ri then
2 Avoidance controller
3 if n sgnxs ̸= sgnxs & n sgnys ̸= sgnys then
4 Tracking controller
5 else:
6 Avoidance controller
7 else:
8 Tracking controller

3.6 Hierarchical action selection algorithm

We have two distinct controllers at our disposal and can activate only one at a time.

Tracking controller is the primary while avoidance controller is active only when an

obstacle that can obstruct the robot’s motion is detected. Figure 3.5 show how these

two controllers would be managed while guaranteeing stability of the overall control.

While reactive approach in [46] and [47] activate avoidance controller only when the

robot is close to an obstacle, the hierarchical action selection approach introduced

in [20–22, 48] activate avoidance controller as soon existence of an obstacle that can

obstruct motion of the robot is detected, thus reducing the amount to time needed

to reach the target. Inspired by [21], we activate the tracking controller as soon as

the robot enters the region of influence of radius Ri of the obstacle.

Figure 3.6 depicts robot outside the region of influence of an obstacle of radius Ro

and region of influence of radius Ri. Given Dj, the Euclidean distance between a

robot and the nearest obstacle j, the pseudo code for the hierarchical action selection

algorithm is as follows:

30

Figure 3.5: Choice of controller at an instance [21]

Figure 3.6: Robot-Obstacle setting showing the region of influence of the obstacle.

3.7 Implementation

What follows in this section presents the implementation of our limit-cycle obstacle

avoidance algorithm, along with formation control with autonomous periodic leader

switch using simulations and experiment.

31

Algorithm 2 : Hierarchical action selection

1 if Dj ≤ Ri then
2 Avoidance controller
3 else:
4 Tracking controller

3.7.1 Simulations

In this section, simulations are presented to verify the performance of our avoidance

algorithm. In addition, we present results for formation control with periodic leader

switch looking at cases regarding number of robots in the group and type of the

trajectory. To run our simulations, we use Dell G7 15 laptop with NVIDIA GPU

(GeForce RTX 2070 with Max-Q design). We then install and integrate GAZEBO,

an open-source 3D robotics simulator to ROS melodic, running on Ubuntu 18.04. It

is necessary for robot to be aware of its pose as well as where the rest of the world

(obstacles and other robots) is in relation to itself. In our simulations, position of

obstacles is provided by the /gazebo/model states topic. This topic publishes a list

of positions of all models on the ground plane, therefore, we subscribe to each of the

model’s position by accessing the data of its index in the list. We get the robots’ pose

estimates through odometry data by subscribing to their respective /odom topic.

3.7.1.1 Obstacle avoidance

We run a series of simulations to verify the effectiveness of our avoidance algorithm.

We consider the following cases:

• Single obstacle along a circular trajectory: Consider a nonholonomic

constrained mobile robot on a ground plane whose initial position is chosen at

random relatively close to the trajectory (see Figure 3.7). The goal is to track a

given reference circular trajectory and simultaneously avoid an obstacle present

along the trajectory. We define a trajectory in equation 3.20 of radius r = 4m

centered at (xc, yc) = (7, 7) on the ground plane. We task the robot to complete

32

the circle over a period of T = 160s. The obstacle present along the trajectory

is of radius 0.14m. We set the control parameters for the tracking controller to

be ϵ = 0.9 and b = 2, while the parameter for the avoidance controller is set for

k = 1.8

Figure 3.7: Robot and obstacle on a ground plane.

⎡⎣xr

yr

⎤⎦ =

⎡⎣xc

yc

⎤⎦ + r

⎡⎣cosαt
sinαt

⎤⎦ , α =
2π

T
(3.20)

Figure 3.8(a) shows how the robot is able to detect and avoid the obstacle

during the trajectory tracking, while 3.8(b) displays tracking errors converging

to zero after the obstacle is avoided.

• Singe obstacle along a linear trajectory: In this case, we use the same

parameters as in case 1 for both controllers. With two obstacles present at po-

sitions (5, 5),and (10, 10) respectively, the robot’s initial pose is set for (0.5, 1, π
4
).

The trajectory is a straight line of gradient 1, defined by equation 3.21, and the

robot is to track it over a period of T = 100s.

33

Figure 3.8: (a) Desired and robot’s trajectories, (b) Tracking errors and control in-
puts.

⎡⎣xr

yr

⎤⎦ =

⎡⎣xi

yi

⎤⎦ +

⎡⎣αt
αt

⎤⎦ , α =
4.14π

T
(3.21)

Figure 3.9: (a) Robot’s and reference trajectories, (b)Tracking errors and input ve-
locities.

The starting point of the trajectory is set for (xi, yi) = (1, 1). Note that the

robot’s initial posture is randomly chosen somewhere near (xi, yi), the obsta-

cles’ positions are chosen so that they can obstruct the robot’s motion along the

trajectory. It can the seen in Figures 3.9(a) and 3.9(b) that the robot avoids col-

lision with both obstacles successfully while maintaining roughly zero tracking

34

error in the absence of obstacles.

Multiple obstacles along circular trajectory:Since we will be dealing with

multiple robots, we consider the case of having more than just two obstacles

along the trajectory. The aim here is to verify that the robot can detect each

of the individual obstacles and avoid only the one that can obstruct its motion,

and as well with the minimum distance to the robot. Figure 3.10(a) depicts

the robot avoiding three different obstacles (each with dimensions the same

as the first case) positioned at (11, 7), (3, 7), and (7, 3), respectively. It can

be observed from Figure 3.10(b) that the tracking error grows in the presence

of an obstacle, which asymptotically converge to approximately zero when the

obstacle is completely avoided, that is, when the tracking controller is active.

Figure 3.10: Trajectory tracking with multiple obstacle avoidance.

3.7.1.2 Formation control with periodic leader switch

As discussed in the previous sections, leader-follower formation control strategy is

easy to implement, but suffers a major practical drawback of leader failure, resulting

in followers’ inability to complete the given task. One way to solve this problem

is by periodically changing the leader, this is different from what the reference [10]

presented in the sense that new leader selection is automatic, all robots are controlled

using a single workstation, and as well, our leader robot is controlled by tracking and

35

avoidance controllers. At each transition, the new leader breaks out of the formation

to continue with the trajectory tracking, and of course, avoid collision with other

robots. Followers and former leader then take new positions with respect to the new

leader and move in a formation. To demonstrate this, we consider two cases as follows:

• Three robots in a circular trajectory: Consider three robots on a ground

plane tasked with tracking a circular trajectory in a defined formation shape.

We intend to periodically switch the team leader such that each of the robots

leads the group for one-third of the period. The Lyapunov based tracking and

avoidance controllers are implemented on each of the robots. The group is

required to form an equilateral triangle of length 0.7m, that is, with one of

the robots leading the team, the two follower robots are to follow the leader

at a distance of 0.7m and bearings 5π
6

and 7π
6

respectively. We use the same

trajectory defined by equation 3.21 centered at (7, 7) with radius 4m over a

period of T = 180s. Figure 3.11 shows the robots at random initial positions

and a tapped image of the robots moving in a formation.

Figure 3.11: (a) Robots at initial position, (b) Robots moving in a formation

As shown in Figure 3.12, robot0 leads the group for the first one-third of the

period with robots 1 and 2 following robot0 at bearings 7π
6

and 5π
6

, respectively.

Robot1 then autonomously takes the leadership in the second one-third with

robots 2 and 0 following robot0 at bearings 7π
6

and 5π
6

respectively, and in the

36

Figure 3.12: Trajectories of (a) Robot0, (b) Robot1, and (c) Robot2.

last one-third robot2 leads while robots 0 and 1 follow. It can be seen from

the plots that robots leading the team at a particular time track accurately the

trajectory, while follower robots follow the desired trajectory received from the

leader.

• Four robots in a linear trajectory: This case is a lot similar to the previous

case, but in this case, four robots are involved in tracking a linear trajectory

defined by equation 3.21 in a square formation shape for a period of 160 seconds,

with each robot to leading the team for 40s. The formation is of length 0.6m,

and bearings 5π
6
, π and 7π

6
from the leader.

Figure 3.13 shows robot3 following robot0 at bearing of 5π
6

, robot1 at a bearing

of π, and robot2 at a bearing of 7π
6

during the first, second, and third quarter

respectively, and finally leading the team in the last quarter. The case is similar

for robots 0, 1, and 2 respectively.

3.7.2 Experiment

Being that uncertainties are marginally handled in simulations, we run experiments

using low-cost robots to demonstrate our avoidance algorithm and periodic leader

switch working on real robot using four e-puck2 robots. The robot does not have

laser sensor, or an inbuild camera that can provide us with point cloud data. It only

offers a short laser reading of just about 8cm derived from interpolating data from six

of its proximity sensors on the front side. This means we can not use this robot for

37

Figure 3.13: Trajectories of (a) Robot0, (b) Robot1, (c) Robot2, and (d) Robot3.

simultaneous localization and mapping (SLAM) in a large environment. We employ

the use ZED Stereo camera to provide the pose estimate of each of the four robots.

We mount a unique AR Tag on each of the robots so the camera can detect it using

the ar track alvar package. We use zed ar track alvar driver to get pose estimates of

the AR tags from the camera, and C++ Wi-Fi version of the ROS e-puck2 driver to

get sensor readings from the robots as well as ROS topics for the control script to

publish commands on actuators.

Figure 3.14 depicts the whole setup consisting of a Dell G7 workstation with

Ubuntu 18.04 and ROS Melodic installed on it, a ZED Stereo camera mounted at

about 2m above the ground, four e-puck2 robots each with a unique AR tag mounted

38

Figure 3.14: Experimental setup.

on top, and a D-Link router that connects the robots and the workstation via wireless

communication. Throughout the experiment, the parameters for the tracking con-

troller are set for ϵ = 0.9 and b = 10, while the parameter for the avoidance controller

is set for k = 2.2. Due to the limited view of the camera in the setup, we use circular

trajectory defined by equation 3.20 throughout the experiment. The trajectory is

centered at (0, 0) with radius r = 0.4m and period T = 180s. Figure 3-15 is the

physical network setup for all experiments to be reported in this thesis.

3.7.2.1 Obstacle avoidance

To demonstrate obstacle avoidance, we use two e-puck2 robots 0 and 1, with robot0

tracking a circular trajectory and robot1 static at a random position along the tra-

39

Figure 3.15: Workspace for our experiments.

jectory. As shown in Figure 3.16, robot 0 was able to detect and avoid robot1 located

at approximately (−0.18,−0.36) along the trajectory, then switched to tracking af-

ter avoidance is complete. Figure 3.17(a) shows the trajectory of the robot tracking

the reference trajectory and simultaneously avoiding obstacles present along. Figure

3.17(b) represents the tracking errors and input velocities, it can be observed from

the plots that the linear velocity is constant when the avoidance controller is active,

confirming the switch between controllers based on the hierarchical action selection

algorithm.

3.7.2.2 Formation control with periodic leader switch

For this experiment, we task four e-puck2 robots to track the circular trajectory

with three of the robots following the leader, and then automatically switch leader

40

Figure 3.16: (a) Robot0 just before the region of influence of robot1, (b) Robot0
inside the region of influence of robot1 and avoiding it, (c) Robot0 back to trajectory
tracking after avoiding robot1 completely.

Figure 3.17: (a) Reference trajectory and robot0 motion trajectory, (b) Robot0 track-
ing errors and input velocities.

each time a circle is complete. We implement it such that robots move in a square

formation of size 0.15m, with follower robots following the leader at bearings of 180◦,

225◦, and 270◦ (see Figure 3.18). After completing a circle, robot at a bearing of 270◦

from the leader becomes the new leader, follower robots at bearings 180◦ and 225◦

follow the new leader at bearings 225◦, and 270◦ respectively (meaning the follow new

leader at a bearing 45◦ more than their previous). The former leader then follows the

new leader at 180◦ bearing. Some tapped images from the video of this experiment

shown in Figure 3-19 show scenes with each of the robots leading the team, the yellow

arrow on each of the scenes points the direction of motion at that moment. The group

41

tracks the trajectory four times during this experiment with each of the robots leading

the team once for a complete circle.

Figure 3.18: Desired formation shape.

42

Figure 3.19: (a) Robot0 leading the group, (b) Robot1 leading the group, (c) Robot2
leading the group, (d) Robot3 leading the group.

43

Chapter 4

Formation control subject to leader
failure

4.1 Multi-robot algorithms

Lately, we have seen a surge in the use of multi-robot systems (MRS) in a wide

variety of applications. A lot of MRS are being deployed in a variety of domains,

examples include: warehouse [1], hospital logistics [49], transport [50], just to name

a few. In order to develop and deploy robust MRS in real-world applications, a

number of challenging problems needs to be solved. These problems include, but are

not limited to, task allocation, group formation, cooperative object detection and

tracking, communication relaying and self organization to name just a few [51].

Great number of algorithms are present in the literature to improve task allocation

problems in MRS. Multirobot task allocation (MRTA) refers to the assigning of a

series of tasks to multiple robots with certain constraints to achieve an objective, such

as minimizing the total travel distance of all robots or the average cost of each task

and so on [51]. As reported in the survey by [52], consensus-based bundle algorithm,

consensus-based auction algorithm, fair subdivision algorithm, learning automata-

based probabilistic algorithm, and S+T algorithm allocate tasks to robot with the

objective of minimizing time to reach the goal. And to minimize distance travel

by robots, the commonly used algorithms include Prim allocation algorithm, SET-

MASR algorithm, SIT-MASR algorithm, task-switching algorithm, and incremental

44

task allocation algorithm.

Our focus in this work is not to minimize time to reach goal or finding minimum

distance to the goal. We intend to fix the problem of leader failure in a formation by

assigning the task of leading the group to one of the follower robots so the group can

continue with the task (in this case, tracking a trajectory in a formation). We want

our system to be so robust to withstand the failure of not only the leader, but also

the failure of any robot in the group, or even in uncommon cases, failure of multiple

robots.

4.2 Assignment algorithm

Leader failure is the major drawback of leader-follower formation control strategy.

In [10], this problem is addressed by dynamically changing the leader, choosing a

new leader from the follower agents through a dedicated workstation, formation pa-

rameters are also (re)defined through this workstation. This seems like a good idea;

however, it does not really solve the problem because the newly selected leader could

fail as well. The approach also adds the burden of having a dedicated supervisor at

the workstation to manually select a new leader. In this work, we develop an algo-

rithm that assigns a role to each robot in the team. We rank roles serially from 0 to

(n− 1) with ”n” the number of robots in the team. Rank ”0” is the highest, defined

as the leadership-role. All other roles are follower-role with (n − 1) having the least

rank. Figure 4.1 shows the role positions in a defined formation shape and how we

ranked roles serially from 0 to (n− 1).

Roles are occupied by agents joining the team sequentially, each agent joining the

team takes the role with the highest rank from the vacant roles, meaning, the first

agent to join will take the leadership role, and the last to join takes the role with the

least rank. In case of a leader failure, this algorithm let agents change their roles to

that with a rank one step higher, meaning, agent with a previous role of ”one” will

take the leadership role ”zero”, and all other agents adjust their roles one step higher

45

Figure 4.1: Role positions in a square shaped formation with robots occupying posi-
tions sequentially.

to follow the new leader, leaving the least role vacant for another robot joining the

team to occupy. With this, the problem of leader failure is eliminated completely, as

the algorithm will let one of the followers to take leadership automatically, as well,

let other followers adjust their roles to follow the new leader. Additionally, any robot

in the team could fail without affecting the formation, the active robots only need to

automatically adjust their roles if a role ranked higher than their current role become

vacant. This also mean that if we can recover the failed robot, we can easily launch

it back to the team to occupy the vacant role.

The pseudo code for this algorithm is as follows:

Algorithm 3 : Assignment algorithm

1 for Robot in Robots do
2 while Active do
3 get lead vacant role()
4 if robot role == None then
5 robot role = lead vacant role
6 else:
7 if rank(lead vacant role) == rank(robot role) +1 then
8 robot role = lead vacant role
9 else:

10 robot role = robot role

46

4.3 Implementation

We run a series of simulations and experiments to describe how our algorithm works.

We use the same controllers and controller parameters previously used in Chapter 3

to drive robots for trajectory tracking and obstacle avoidance. The same workstation

in Chapter 3 is used for the implementation.

4.3.1 Simulations

Here, we consider a number of possible cases of robot failure that might happen to

robots in a formation. Using a maximum of four robots throughout the simulations,

we consistently launch the robots sequentially in the order robot0, robot1, robot2, and

robot3 so that the roles 0, 1, 2, and 3 are occupied by robots 0, 1, 2, and 3 respectively.

It should be noted that any robot can take available role with the highest rank, and

we only chose to launch them this way for the sake graphical clarity on how the

robots are adjusting their positions in the formation when a robot fails. The desired

formation shape as shown in Figure 4-2 is defined by a rhombus of length 1m, with

follower robots at bearings 135◦, 195◦, and 255◦. The trajectory used in this case is

defined by equation 3.20, centered at the origin (0, 0) with radius r = 4m and period

T = 180s.

Figure 4.2: Desired formation shape.

47

The cases considered in this simulation are as follows:

• Failure of robot occupying role 0: As stated earlier, the main objective of

this algorithm is to enable follower robots to overcome the problem of leader

failure. In Figure 4.3(a), robots 0, 1, 2, and 3 successfully tracks the trajectory

for a complete circle in a formation by respectively occupying the roles 0, 1, 2,

and 3. We then fail robot0 (the leader) by killing its node when it is at about

(−3.8, 1.6). It can be seen in Figure 4.3(b), robot1 which was occupying role 1

now takes the vacant role 0 and proceeds with tracking the trajectory. Robots

2 and 3 previously on the roles 2 and 3 now adjusts their roles respectively to

1 and 2 to follow the new leader leaving role 3 vacant.

Figure 4.3: (a) Robots’ trajectories with no robot failure, (b) Trajectories under
leader failure.

• Failure of robot occupying role 1: In this case, we consider failing robot1

which is occupying role 1. With reference to Figure 4.4(a), Figure 4.4(b) shows

robot0 maintaining its role as the leader (of course because it is on a role higher

than that of the failed robot), while robots 2 and 3 update their roles to one

with rank one step higher to maintain the formation, leaving role 3 vacant in

48

case the leader is recovered.

Figure 4.4: (a) Robots’ trajectories with no robot failure, (b) Trajectories under
failure of robot occupying role 1.

• Failure of robot occupying role 2: Similar to the previous cases, we sub-

jected the robot in role 2 to failure to see how our algorithm will handle the

case. As shown in figure 4.5(b), the group leader and robot on role 1 maintained

their roles, while robot 3 moved to the vacant role one step higher, leaving the

least role vacant.

• Failure of robot occupying role 3: We want to see if other robots will react

if the robot on a least ranked role fails, we therefore killed he robot on role

3. As we expect the algorithm to work, the active robots did not adjust their

roles to occupy the vacancy as they are already on a role with a higher rank.

Figures 4.6(a) and 4.6(b) respectively shows the robots’ trajectories without

robot failure and the trajectories when robot on role 3 fails.

• Multiple robots failure: We have previously considered cases where single

robot occupying a certain role fails and verified that the algorithm handles such

49

Figure 4.5: (a) Robots’ trajectories with no robot failure, (b) Trajectories under
failure of robot occupying role 2.

Figure 4.6: (a) Robots’ trajectories with no robot failure, (b) Trajectories under
failure of robot occupying role 3.

cases well. We now consider testing the algorithm in a rare possibility where

multiple robots fail. The aim is to show that unless if every single robot in the

team fails, there will be at least one robot that will keep up with the trajectory

tracking (or any given task). Consider four robots tracking the trajectory in a

50

formation (see Figure 4.7(a)) with three of them having the possibility of failure.

By respectively killing robots occupying the roles 2, 1, and 0 at different time

instances, it can be seen in Figure 4.7(b) how the robot on role 3 adjusted its

role to 2, 1, and finally 0. This proves the robustness of our algorithm to robots’

failure, and how it offers the flexibility to easily add new robots to the team or

remove the failed ones without affecting other robots.

Figure 4.7: (a) Robots’ trajectories with no robot failure, (b) Trajectories under
failure of multiple robots.

We have seen how the algorithm is able to handle different cases of failure among

robots, but what if we are able to recover a failed robot? that is, what will happen

if for example, a former leader robot gets back to the team? As mentioned earlier,

we designed our algorithm such that robots joining the team will only be assigned

role from the list of available roles. We implement it such that all failed robots have

their roles reset to ”None”, so they will be seen as robots with no previous roles.

This will enable the algorithm to assign them new roles from the list of vacant roles

regardless of what their previous role was. We show this in Figure 4.8(b) where we

assumed to have recover a failed leader (robot0 in this case). It can be seen that after

the followers have taken over that task of tracking, the failed leader joined back to

51

occupy the available role 3. There was no role conflict between current leader and

the former leader which is now in the group as a regular follower. This shows the

effectiveness of our algorithm in assigning appropriate roles to robots so they can

overcome the problem of failure from other robots in the group.

Figure 4.8: (a) Robots’ trajectories with no robot failure, (b) Trajectories with failed
robot recovery.

4.3.2 Experiment

To demonstrate the effectiveness of our algorithm on real robots, we use the experi-

mental setup in Chapter 3 (see Figure 3.15) for the same reasons stated therein. The

packages, driver, trajectory, and formation shape choices remain the same as well.

We run a set of experiments considering each of the possible cases of robot failure on

a particular role. We present each of the cases in details as follows:

• Failure of robot occupying role 0: We begin with demonstrating the case of

leader failure in a formation. Consider four e-puck2 robots each with a unique

AR tag tracking a circular trajectory in a square formation. Figure 4.9(a) shows

the group with the encircled robot leading the team. We made the leader fail in

52

Figure 4.9(b) by killing its control node, and we can see that the robot on role 1

takes the vacant role 0 with robots on roles 2 and 3 now following the new leader

on roles 1 and 2 respectively. Assuming to have recovered the failed robot, we

launched back to the group. Figure 4.9(c) shows the robot back in the group

right behind the leader occupying role 3. Similar to the result in simulation,

the algorithm enables follower robots to overcome leader failure, and the failed

robot launched back to the team takes available role not its former role as the

leader.

Figure 4.9: Four robots in a formation (a) before leader failure, (b) when the leader
failed, (c) when the failed robot is recovered.

• Failure of robot occupying role 1: We consider in this case, failure of the

successor (robot on role 1) which is at a bearing 270◦ from the leader. When

this robot fails, we expect the leader to maintain its role, and robots on roles

2 and 3 to respectively follow the leader on roles 1 and 2. The encircled robot

we see in Figure 4.10(a) is the robot on role 1 shortly before it fails, the leader

maintained its role, and other followers followed the leader on a new role as

shown in Figure 4.10(b). Figure 4-10(c) depicts the failed robot joining back

the team occupying the least ranked vacant role.

• Failure of robot occupying role 2: Similarly, the robot on role 2 failed, and

only the robot on role 3 adjust its role to fill the vacancy in role 2, while the

leader and robot on role 1 maintained their role. Figures 4.11(a) and 4.11(b)

53

Figure 4.10: Four robots in a formation (a) before leader failure, (b) when the leader
failed, (c) when the failed robot is recovered.

depicts the robot before and after failure respectively, while Figure 4.11(c) shows

the robot rejoining the team taking the vacant role 3.

Figure 4.11: Four robots in a formation (a) before role 2 robot failure, (b) when role
2 robot failed, (c) when the failed robot is recovered.

• Failure of robot occupying role 3: The last case we looked at is when the

robot on the least role fails. Of course, we don’t expect other robots to care as

they are already on a higher ranked roles, and this is exactly what happen as

seen in Figures 4.12(a), 4.12(b), and 4.12(c).

We have seen experimentally, the effectiveness of our algorithm in not only solving

the problem of leader failure, but also the failure of any robot in the team. In addition,

it also enables followers adjust their positions in the formation when necessary to make

room for robots joining the team.

54

Figure 4.12: Four robots in a formation (a) before role 3 robot failure, (b) when role
3 robot failed, (c) when the failed robot is recovered.

4.4 Technical difficulties

As to any research implementation that has to do with hardware devices, working

with mobile robots have its fundamental problems. Developing a good solution to

these problems is essential as robots become totally autonomous and continuously

expanding their range of application. As outlined in a review by [53], some of the

main challenges are navigation, path planning, localization, and obstacle avoidance.

Earlier in this thesis, we present algorithms to tackle problems of leader failure in a

leader-follower formation control strategy and obstacle avoidance in trajectory track-

ing problems, it is therefore important to discuss problems encountered when vali-

dating our approach using real robots. What follows describes the challenges faced

and how we find way out of these problems.

• Localization: The challenging part of localization is estimating the robot po-

sition and orientation of which this information can be acquired from sensors

and other systems [53]. We are dealing specifically with formation control prob-

lem where follower robots get formation information from their leader. Since

this information is defined relative to the leader’s pose, some level of accuracy

is needed in estimating the robots’ posture so we could achieve the desired

formation shape. The e-puck2 robot we use in our experiments provides pose

55

estimates from the readings by the wheel odometer, and we can of course fuse

data form the Inertial Measurement Unit (IMU) using the Extended Kalman

Filter (EKF) for a more accurate pose estimation. Unfortunately, this robot

does not have laser sensor that will enable us to map our relatively large en-

vironment and eventually use the popular Adaptive Monte Carlo Localization

(AMCL) ROS package to track the pose of our robots.

With unique AR tag mounted on each robot, we involve the use of external

stereo camera to feed each of the robots with its pose estimate using the ar -

track alvar ROS package. This provides solution to our localization problem,

but also imposed constraints on where the robots can go due to the limited

view of the camera. We conducted a test using single robot to determine the

accuracy of the pose estimation and observed that at HD1080 resolution, we

get good estimates of the position with some jumps in the orientation data as

the robot moves away from the center of the camera’s field of view (see theta0

in Figure 4.13).

Figure 4.13: Test pose estimate.

Considering how we modeled the dynamics of our robot in equation 3.2 and

the desired formation in equations 3.6 to 3.8, these jumps in orientation data

creates big problem as it makes it difficult to control the robots to accurately

track the trajectory. Figure 4.14(a) depicts an e-puck2 robot tracking a circular

56

trajectory getting its pose estimate from the camera. In Figure 4.14(b), we can

see oscillations in orientation error ”θe” resulting from the oscillations in the

orientation data from the camera.

Figure 4.14: (a) Test robot tracking a circular trajectory, (b)Plots for tracking errors
and input velocities.

We plot formation data generated by a leader robot to observe the trajectories.

Figure 4.15 shows how the three non-smooth trajectories generated by the robot,

and how the robot tracks the trajectory with visible tracking errors.

To mitigate this problem, we increased the camera resolution to HD2K, reduced

the distance from camera to the robots to just about 2m, limit our trajectory

option to circular with maximum radius of 0.4m, and defined a square forma-

tion of size 0.15m. This helped us get better pose estimates to implement the

experimental results presented in the previous section. Even though we some-

times don’t get a perfect square formation, Figures 4.9 to 4.12 show fairly good

formation shapes.

• Obstacle avoidance: The obstacle avoidance controller used in this thesis con-

trols only angular velocity of the robot with a constant linear velocity to avoid

obstacles. The jumps in orientation data which in turn affects the orientation

error defined by equation 3.16 makes it challenging to use this avoidance strat-

egy. Prior to arriving at the result for the obstacle avoidance presented in this

57

Figure 4.15: non-smooth generated trajectories.

thesis, we obtained results where the robot avoids obstacle off the limit-cycle

(see Figure 4.16). This is mainly due to the pose estimation errors from the

camera which improve with improved localization. Another problem was with

the robot crashing into the obstacle when trying to track the origin instead of

the circumference of the limit-cycle. The reason was later found out to be the

choice of constant linear velocity and controller parameter. We carefully tuned

the parameter and velocity to arrive at the result in Figure 3-17.

58

Figure 4.16: Obstacle avoidance under large pose estimation error.

59

Chapter 5

Summary and conclusions

This thesis presents two novel algorithms: the obstacle avoidance algorithm that

enables the use of limit-cycle obstacle avoidance strategy in trajectory tracking ap-

plications, and Assignment algorithm that guarantee follower robots overcome the

practical problem of leader failure in leader-follower formation control strategy. We

introduced briefly in Chapter 2, some technical preliminaries. This includes Graph

theory as it applies to leader-follower formation control strategy whose formation con-

figuration is described as a diagraph, and Lyapunov stability theory which is used to

design both trajectory tracking and obstacle avoidance controllers from the literature.

In addition, we briefly describe the hardware devices used in our experiments, which

include the e-puck2 robot (a small differential drive robot) and the ZED Stereo cam-

era for localization. We introduce ROS – a flatform for writing robot software, fiducial

markers – to be detected by the camera for robot localization, and ROS drivers used

for our hardware devices to round up the second chapter.

We model our robot’s dynamics in Chapter 3, then introduced backstepping based

controller from the literature for the trajectory tracking problems which we used

throughout our implementations to drive our robots. We show from the literature

that trajectory tracking can be extended to solve formation control problem using

the leader-follower strategy. In leader-follower strategy, the leader having access to

the reference trajectory communicates formation information to its followers, this

60

formation information is a trajectory that must be feasible for the follower robots. The

formation information defined in Chapter 3 of this thesis ensure that the trajectory is

feasible, and follower robots can successfully follow their leader to move in a desired

formation. We also introduced a Lyapunov-based, backstepping controller from the

literature, this controller is used to drive both leader and follower robots to their

desired posture so they can maintain formation.

Avoiding obstacle is essential for a mobile robot to reach its goal especially in a

case where multiple robots are involved or when robots find themselves in a cluttered

environment. We present in Chapter 3, a novel algorithm that enable the use of limit-

cycle obstacle avoidance strategy in trajectory tracking applications. The stability of

the controller used to drive robots to track accurately a limit-cycle is proved using

the Lyapunov stability theory. Having two controllers to work with, a hierarchical

action selection algorithm from the literature is used to switch between the two con-

trollers. We use simulations and experimental results to validate the effectiveness of

our avoidance algorithm. It is presented in the literature that we can switch leader

to reduce the leadership burden on single robot, which can locally solve the problem

of leader failure. We implement this by adding a layer of automation on the work

found in the literature. Our approach uses reduced number of workstations needed to

control the robots, and the necessity human intervention at the workstation to switch

leader or define new formation parameters.

Assignment algorithm presented in Chapter 4 is aimed at providing lasting solution

to the practical problem of leader failure in leader-follower formation control strategy.

A mobile robot deployed for rescue missions or surveying can fail, cause of which can

be energy or communication failure, this mean a whole group of robots will fail if the

failed robot happens to be their leader. Our algorithm solves this problem by letting

robots joining the team to choose their role – whether to lead or to follow – from the

list of available roles, and for robots in the group to adjust their roles when necessary

if they lose a team member. This implies when a leader is lost, robot in the best

61

position to lead the group automatically becomes the new leader, and other follower

robots adjust their roles to follow this new leader. We have shown using simulations

and experiments using the ROS framework that unless if every robot in the team

fails, there will be at least one robot to continue with the assigned task. We proved

in practical setting that any robot in the group can fail without affecting the group

formation. We have also seen how the algorithm provides us with the flexibility to

easily add new robots to the group or remove failed robots from the group. We lastly

describe the technical difficulties we have faced during our experiments and how we

overcome such.

In conclusion, we proposed two novel algorithms and verified their effectiveness

using a set of simulations and experiments. Future work includes the use of our

algorithm in a more difficult task for robots in a formation and cooperative obstacle

avoidance. Lastly, we believe our algorithm can be applied in other distributed multi-

robot applications to mitigate problems that may arise from member robot failure.

62

Bibliography

[1] M. O’Brien. (2019). “Independent,” [Online]. Available: https://www.independent.
co.uk/news/business/robots-amazon-delivery-artificial-intelligence-technology-
a9264036.html (visited on 11/02/2021).

[2] L. Barnes, M. Fields, and K. Valavanis, “Unmanned ground vehicle swarm
formation control using potential fields,” in 2007 Mediterranean Conf. Control
Autom., 2007, pp. 1–8.

[3] R. Hoag. (2020). “Naval postgraduate school,” [Online]. Available: https://nps.
edu/-/nps-researchers-developing-the-defensive-playbook-against-large-scale-
drone-swarms (visited on 11/05/2021).

[4] I. Lončar, A. Babić, B. Arbanas, G. Vasiljević, T. Petrović, S. Bogdan, and N.
Mǐsković, “A heterogeneous robotic swarm for long-term monitoring of marine
environments,” Applied Sciences, vol. 9, no. 7, 2019.

[5] O. Kwang-Kyo, P. Myoung-Chul, and A. Hyo-Sung, “A survey of multi-agent
formation control,” Automatica, vol. 53, pp. 424–440, 2015.

[6] S. Knorn, Z. Chen, and R. H. Middleton, “Overview: Collective control of multi-
agent systems,” IEEE Trans. Control Network Syst., vol. 3, no. 4, pp. 334–347,
2016.

[7] Y. Liu and R. Bucknall, “A survey of formation control and motion planning
of multiple unmanned vehicles,” Robotica, vol. 36, no. 7, 1019–1047, 2018.

[8] W. B. Randal, L. Jonathan, and Y. H. Fred, “A coordination architecture
for spacecraft formation control,” IEEE Trans. Control Syst. Technol., vol. 9,
pp. 777–790, Nov. 2001.

[9] P. S. Daniel, Y. H. Fred, and R. P. Scott, “A survey of spacecraft formation
flying guidance and control (part ii): Control,” in Proc. 2004 Amer. Control
Conf., Boston, Massechussetts, 2004.

[10] L. B. Khadir, T. Radoslaw, K. Wojciech, and P. Jaroslaw, “Leader-follower for-
mation control for a group of ros-enabled mobile robots,” in 2019 6th Int. Conf.
Control. Dec. Information Technol. (CoDIT’19), Paris, France, Apr. 2019.

[11] J Chen, D Sun, J Yang, and C. H., “Leader-follower formation control of mul-
tiple non-holonomic mobile robots incorporating a receding-horizon scheme,”
Int. J. Rob. Res., vol. 29, pp. 727–747, 2010.

63

https://www.independent.co.uk/news/business/robots-amazon-delivery-artificial-intelligence-technology-a9264036.html
https://www.independent.co.uk/news/business/robots-amazon-delivery-artificial-intelligence-technology-a9264036.html
https://www.independent.co.uk/news/business/robots-amazon-delivery-artificial-intelligence-technology-a9264036.html
https://nps.edu/-/nps-researchers-developing-the-defensive-playbook-against-large-scale-drone-swarms
https://nps.edu/-/nps-researchers-developing-the-defensive-playbook-against-large-scale-drone-swarms
https://nps.edu/-/nps-researchers-developing-the-defensive-playbook-against-large-scale-drone-swarms

[12] H. Koki, Z. Tadanao, O. Noriaki, and L. Kang-Zhi, “Optimal formation control
of two-wheeled vehicles using model predictive control,” in 2015 10th Asian
Control Conf. (ASCC), Chiba, Japan, 2015.

[13] H. Shunta, Z. Tadanao, H. Koki, and L. Kang-Zhi, “Optimal automatic forma-
tion control for two-wheeled vehiles using model preditive control with tempo-
ral logic constraints,” 2018 12th France-Japan and 10th Eur-Asia Congress on
Mechatronics, pp. 161–164, 2018.

[14] M. Silvia, M. S. Dušan, R. G. Christopher, A. I. Koji, and W. S. Mark, “For-
mation control and collision avoidance for multi-agent non-holonomic systems:
Theory and experiments,” Int. J. Rob. Res., vol. 27, pp. 107–126, Jan. 2008.

[15] R. Rout and B. Subudhi, “A backstepping approach for the formation control
of multiple autonomous underwater vehicles using a leader–follower strategy,”
J. Marine Engg. & Technol., vol. 15, no. 1, pp. 38–46, 2016.

[16] A. Keymasi Khalaji and R. Zahedifar, “Lyapunov-based formation control of
underwater robots,” Robotica, vol. 38, no. 6, 1105–1122, 2020.

[17] A. B. Siavash, R. Esteban, and W. Herbert, “Formation control of non-holonomic
agents with collision avoidance,” in 2015 Amer. Control Conf., Chicago, IL,
USA, Jul. 2015.

[18] H. Wei, Q. Lv, N. Duo, G. Wang, and B. Liang, “Consensus algorithms based
multi-robot formation control under noise and time delay conditions,” Appl.
Sci., vol. 9, no. 5, 2019.

[19] F. Mehdifar, C. P. Bechlioulis, F. Hashemzadeh, and M. Baradarannia, “Pre-
scribed performance distance-based formation control of multi-agent systems,”
Automatica, vol. 119, p. 109 086, 2020.

[20] K. Dong-Han and K. Jong-Hwan, “A real-time limit-cycle navigation method
for fast mobile robots and its application to robot soccer,” Robot. Autom. Syst.,
vol. 42, pp. 17–30, 2003.

[21] L. Adouane, “Orbital obstacle avoidance algorithm for reliable and on-line
mobile robot navigation,” in 9th Conf. on Auton. Robot. Syst. Competitions,
Castelo-Branco, Portugal, May 2009.

[22] B. Ahmed, A. Lounis, and M. Philippe, “Dynamic obstacle avoidance strategies
using limit cycle for the navigation of multi-robot system,” in 2012 IEEE/RSJ
IROS’12, 4th Workshop on Planning, Perception and Navigation for Intelligent
Vehicles, Vilamoura, Algarve, Portugal, Oct. 2012.

[23] R. J. Wilson, Introduction to Graph Theory. New York: John Wiley & Sons,
Inc., 1986.

[24] J. Desai, J. Ostrowski, and V. Kumar, “Controlling formations of multiple mo-
bile robots,” in Proc. 1998 Int. Conf. Robot. Autom., vol. 4, 1998, 2864–2869
vol.4.

[25] H. J. Marquez, Nonlinear Control Systems: Analysis and Design. New Jersey:
John Wiley & Sons, Inc., 2003.

64

[26] GCTronic. (2018). “E-puck,” [Online]. Available: http : //www.e - puck . org/
(visited on 11/12/2021).

[27] M. Sugisaka, H. Tanaka, V. Trifa, C. Cianci, and D. Guinard, “Dynamic control
of a robotic swarm using a service-oriented architecture,” Jan. 2008.

[28] T. K. Tasooji and H. J. Marquez, “Cooperative localization in mobile robots us-
ing event-triggered mechanism: Theory and experiments,” IEEE Trans. Autom.
Science. Engg., pp. 1–13, 2021.

[29] T. T. Harmanda, M. K. D. Hardhienata, and K. Priandana, “Development
of multi-robot systems using particle swarm optimization algorithm for task
allocation,” in 2021 IEEE Region 10 Symposium (TENSYMP), 2021, pp. 1–8.

[30] R. Visvanathan, S. M. Mamduh, K. Kamarudin, A. S. A. Yeon, A. Zakaria,
A. Y. M. Shakaff, L. M. Kamarudin, and F. S. A. Saad, “Mobile robot localiza-
tion system using multiple ceiling mounted cameras,” in 2015 IEEE SENSORS,
2015, pp. 1–4.

[31] StereoLab. (2020). “Stereo lab,” [Online]. Available: https://support.stereolabs.
com/hc/en-us/articles/207616785-Getting-Started-with-your-ZED-camera
(visited on 11/02/2021).

[32] StereoLab. (2020). “Stereo lab,” [Online]. Available: https://www.stereolabs.
com/zed/ (visited on 11/02/2021).

[33] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler,
and A. Ng, “Ros: An open-source robot operating system,” vol. 3, Jan. 2009.

[34] J. Schönberger, M. Pollefeys, A. Geiger, and T. Sattler, “Semantic visual local-
ization,” in 2018 IEEE Conf. Computer Vision and Pattern Recognition, Jun.
2018.

[35] M. Fiala, “Vision guided control of multiple robots,” in Proc. First Canadian
Conf. Computer. Robot. Vision., 2004, pp. 241–246.

[36] Q. Van Tran and H.-S. Ahn, “Distributed formation control of mobile agents
via global orientation estimation,” IEEE Trans. Control Network Syst., vol. 7,
no. 4, pp. 1654–1664, 2020.

[37] S Garrido-Jurado, R Muñoz Salinas, F. J. Madrid-Cuevas, and M. J. Maŕın-
Jiménez, “Automatic generation and detection of highly reliable fiducial mark-
ers under occlusion,” Pattern Recognit., vol. 47, no. 6, pp. 2280–2292, 2014.

[38] S. Isaac. (2016). “Ros.org,” [Online]. Available: http://wiki.ros.org/ar track
alvar (visited on 11/03/2021).

[39] GCtronic. (2020). “E-puck2 pc side development,” [Online]. Available: https:
//www.gctronic.com/doc/index.php?title=e-puck2 PC side development#
Connecting to the WiFi (visited on 11/06/2021).

[40] K. Yang, X. Tang, Y. Qin, Y. Huang, H. Wang, and H. Pu, “Comparative study
of trajectory tracking control for automated vehicles via model predictive con-
trol and robust h-infinity state feedback control,” Chin. J. Mech. Eng., vol. 34,
no. 74, 2021.

65

http://www.e-puck.org/
https://support.stereolabs.com/hc/en-us/articles/207616785-Getting-Started-with-your-ZED-camera
https://support.stereolabs.com/hc/en-us/articles/207616785-Getting-Started-with-your-ZED-camera
https://www.stereolabs.com/zed/
https://www.stereolabs.com/zed/
http://wiki.ros.org/ar_track_alvar
http://wiki.ros.org/ar_track_alvar
https://www.gctronic.com/doc/index.php?title=e-puck2_PC_side_development#Connecting_to_the_WiFi
https://www.gctronic.com/doc/index.php?title=e-puck2_PC_side_development#Connecting_to_the_WiFi
https://www.gctronic.com/doc/index.php?title=e-puck2_PC_side_development#Connecting_to_the_WiFi

[41] K. Yutaka, K. Yoshihiko, M. Fumio, and N. Tetsuo, “A stable tracking control
method for an autonomous mobile robot,” in Proc. Int. Conf. Robot. Autom,
Cincinnati, OH, USA, 1990.

[42] J. Zhong-Ping and N. Henk, “Tracking control of mobile robots: A case study
in backstepping,” Automatica, vol. 33, pp. 1393–1399, 1997.

[43] M. Javier, L. Florent, and L. Jean-Paul, “Motion planning and obstacle avoid-
ance,” Springer Handbook of Robotics, pp. 827–852, 2008.

[44] M. S. Dušan, F. H. Peter, W. S. Mark, and D. Š. Dragoslav, “Cooperative avoid-
ance control for multiagent systems,” J. Dyn. Syst. Meas. Control ., vol. 129,
pp. 699–707, 2007.

[45] G. Skowronski and J. Leitmann, “Avoidance control,” J. Optim. Theory Appl.,
vol. 23, pp. 581–591, 4 Dec. 1977.

[46] H. H. Wesley, R. F. Brett, R. F. Jonathan, and H. W. William, “Visual naviga-
tion and obstacle avoidance using a steering potential function,” Robot. Auton.
Syst., vol. 54, pp. 288–299, Jan. 2006.

[47] Z. Huidi, L. Shirong, and X. Y. Simon, “A hybrid robot navigation approach
based on partial planning and emotion-based behavior coordination,” in IEEE
Int. Conf. Intell. Robots Syst., Beijing, China, Oct. 2006.

[48] M. Mehdi, A. Lounis, K. Djamel, and M. Philippe, “Mobile robot navigation
and obstacles avoidance based on planning and re-planning algorithm,” in 10th
Int. IFAC Symposium on Robot Control (SYROCO’12), Dubrovnik, Croatia,
Sep. 2012.

[49] S. Jeon, J. Lee, and J. Kim, “Multi-robot task allocation for real-time hos-
pital logistics,” in Proc. Int. Conf. Syst. Man, and Cybernetics (SMC), 2017,
pp. 2465–2470.

[50] E. David. (2020). “Robotics and automation,” [Online]. Available: https : //
roboticsandautomationnews.com/2020/08/12/logistics-companies-turning-to-
robotics-and-automation-as-way-out-of-coronavirus-crisis/35041/ (visited on
11/09/2021).

[51] A. Khamis, A. Hussein, and A. Elmogy, “Multi-robot task allocation: A review
of the state-of-the-art,” in Cooperative Robots and Sensor Networks 2015, A.
Koubâa and J. Mart́ınez-de Dios, Eds. Cham: Springer Int. Publishing, 2015,
pp. 31–51.

[52] X. Jia and M. Q.-H. Meng, “A survey and analysis of task allocation algo-
rithms in multi-robot systems,” in 2013 Int. Conf. Robot. Biomimetics. (RO-
BIO), 2013, pp. 2280–2285.

[53] M. B. Alatise and G. P. Hancke, “A review on challenges of autonomous mobile
robot and sensor fusion methods,” IEEE Access, vol. 8, pp. 39 830–39 846, 2020.

66

https://roboticsandautomationnews.com/2020/08/12/logistics-companies-turning-to-robotics-and-automation-as-way-out-of-coronavirus-crisis/35041/
https://roboticsandautomationnews.com/2020/08/12/logistics-companies-turning-to-robotics-and-automation-as-way-out-of-coronavirus-crisis/35041/
https://roboticsandautomationnews.com/2020/08/12/logistics-companies-turning-to-robotics-and-automation-as-way-out-of-coronavirus-crisis/35041/

	Introduction
	Background and motivation
	Literature review
	Formation tracking problems
	Formation generating problems

	Statement of contribution
	Synopsis

	Technical preliminaries
	Graph theory
	Lyapunov stability
	E-puck2 robot
	ZED Stereo camera
	The Robot Operating System (ROS)
	Markers
	Drivers

	Formation control with obstacle avoidance and periodic leader switch
	Introduction
	Robot dynamics
	Trajectory tracking
	Leader-follower formation control
	Obstacle avoidance
	Theory
	Algorithm

	Hierarchical action selection algorithm
	Implementation
	Simulations
	Experiment

	Formation control subject to leader failure
	Multi-robot algorithms
	Assignment algorithm
	Implementation
	Simulations
	Experiment

	Technical difficulties

	Summary and conclusions
	Bibliography

