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Abstract

A constraint programming approach to problem solving usually goes through two 

phases: modeling the problem as a CSP and then solving the CSP. It has been recently 

recognized that both choosing the right solving algorithm and the right problem 

model are crucial for efficient problem solving. In the past, much of the research 

activities in the constraint community has been concentrated on developing various 

improving techniques to the naive backtracking algorithm (BT). These techniques 

can be classified as look-ahead schemes and look back schemes. Unfortunately, it has 

been observed by different researchers that the enhancement of look-ahead techniques 

is sometimes counterproductive to the effects of look-back techniques. In this thesis, 

we show theoretically that the effect of the backjumping will be diminished as a 

backtracking algorithm is equipped with an appropriate variable ordering heuristic or 

a certain level of local consistency enforcement. We propose a new algorithm, named 

GAC-CBJ. In contrast to Bessiere and Regin’s conclusion (1996) that CBJ is useless to 

an algorithm maintaining arc consistency (MAC or GAC), our experiments in several 

problem domains show that the use of CBJ can provide significant improvements on 

the hard instances.

There also exists a variety of techniques to improve the quality of a CSP formu

lation. The dual graph transformation and hidden variable transformation are two 

important modeling techniques that translate a general CSP to an equivalent binary 

CSP. However, little has been known about how these transformations will influence 

the effectiveness of the CSP solving techniques. Some preliminary results include: 

Stergiou and Walsh (1999) study the the effectiveness of consistency techniques un

der the above transformations, and Bacchus and van Beek (1998) study how the two 

transformations will affect the performance of the forward checking algorirhm (FC)
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In this thesis, we present a comprehensive theoretical comparison of these two trans

formations for BT, FC and MAC (GAC). Among other results, we show that FC 

applied on the hidden problem is only bounded worse than FC applied on the dual 

problem, and GAC applied on the original problem visits exactly the same nodes as 

MAC applied on the hidden problem.
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Chapter 1 

Introduction

Constraint programming (CP) is the study of computational systems based on con
straints. A constraint is simply a logical relation among several unknowns or variables, 
each taking a value in a given domain. Constraint programming has recently emerged 
as a research area that combines ideas from a number of fields, including artificial 
intelligence, programming languages, symbolic computing, complexity theory, opera
tions research and computational logic [47]. The most appealing characteristic is that 
constraint programming techniques can be more declarative and maintainable than 
standard imperative languages, without sacrificing efficiency. It is remarkable that, in 
the last ten years, constraint programming has moved from purely academic research 
into commercial products, e.g., CHIP, ECLiPSe and Ilog Solver. Constraint pro
gramming has been successfully applied in numerous domains. Recent applications 
include computer graphics [12], natural language processing [97], database systems 
[20], scheduling and planning problems [73], and electrical circuit design [105].

In this introductory chapter, we will give a brief review of the basic elements of the 
constraint programming approach in problem solving, and various ways to improve 
problem solving efficiency with respect to the problem modeling and problem solving 
techniques. Then, we will explain the motivations and contributions in this work, 
and give an overview of the structure of the dissertation.

1.1 Constraint Programming Approach

The success of constraint programming is largely ascribed to its general applicability. 
Under the same problem solving framework, problems from a wide range of domains 
can be solved efficiently while the performance is competitive to those of specially 
designed software packages[l, 122]. The basic theoretical foundation for constraint

1
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r . g . b  X.,

Figure 1 . 1 : The CSP representation of a graph coloring problem

programming is a generic problem solving framework called constraint satisfaction 
problems, or CSPs. A constraint satisfaction problem consists of a set of variables, 
each associated with a domain of values, and a set of constraints. Each of the con
straints is expressed as a relation, defined on some subset of the variables, denoting 
the consistent value assignments that satisfy the constraint. A solution to a CSP is 
an assignment of a value from its domain to every variable, in such a way that every 
constraint is satisfied [34, 75, 77, 85].

E xam ple 1.1 3-SAT problems can be formulated as CSPs. Consider a 3-SAT prob
lem with 6 propositions, x i , . . . ,x $ ,  and 4 clauses. x\ V x3 V x6. ->Xi V - -x3 V x t . 

x.t V - 1X5  V Xfj and x3  V X4  V - 1X5 . In one CSP representation of the J-SAT problem,  

there is a variable for each proposition, x i , . . .  ,xs, each variable has the domain of val
ues {0 , 1 }, and there is a constraint for each clause specifying the value combinations 
that will make the clause be true. For example, there is a constraint C (x[,x 3 .x6) for 
the first clause. The constraint can be represented implicitly, saying “xi = 1 or x3  =  1 

or x 6  =  1 , ” or it can be represented explicitly by listing all valid value combinations. 
{ ( 0 , 0 , 1) , ( 0 , 1, 0 ), (0 , 1, 1), ( 1, 0 , 0), (1, 0 , 1), (1, 1, 0 ), ( 1, 1, 1)} .

E xam ple 1 . 2  Given a graph G =  (K E) and k colors, the graph coloring problem 
asks whether the vertices of the graph can be labelled by these colors in a way such that 
each pair of adjacent vertices are labelled with different colors. The graph coloring 
problem can be formulated as a CSP in which each vertex is given a variable, and each 
variable has the same domain of k values, denoting the k colors. There is a constraint 
for each pair of adjacent vertices such that two variables must have different values.  

Figure 1.1 shows the CSP representation of a graph coloring problem on u graph with 
4 vertices and 3 colors.

2
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Since 3-SAT and graph coloring are well known NP-complete problems, in general, 
to find a solution for a CSP instance is NP-complete [51, 75]. Fortunately, like most 
combinatorial problems, some CSP instances are not so “hard” to solve in practice. 
For large real world applications, a carefully built CSP formulation can speed up the 
problem solving dramatically.

Constraint programming has become a vast field. Research interests in CSPs 
include problem modeling techniques, consistency inference, systematic search algo
rithms, heuristics, stochastic search methods, structure-driven algorithms, tractable 
problems, generating hard instances, over-constrained problems, and applications.

A constraint programming approach to problem solving generally goes through 
two phases: modeling the problem as a CSP and then solving the CSP. The modeling 
translates the problem description from a natural language to the language of CSPs. 
i.e., defining variables, domains and constraints of the CSP. Having formulated the 
problem as a CSP, there are plenty of constraint techniques to solve the CSP. In 
the past, most of the research activities were concentrated on developing various 
constraint solving algorithms or techniques and relatively less attention wits given 
to modeling techniques. However, recently the importance of problem modeling has 
been recognized and it is known that b o th  choosing the right model and choosing 
the right constraint satisfaction algorithm are crucial for efficient problem solving.

1.1.1 Solving Constraint Satisfaction Problems
Constraint satisfaction problems are usually solved by search methods, among which 
the backtracking algorithm (BT) and its improvements are the most widely used. BT 
incrementally attempts to extend a partial solution that instantiates consistent values 
for some of the variables, towards a complete solution, by repeatedly assigning a value 
for an uninstantiated variable from its domain. If that value is not consistent with 
the values in the current partial solution, BT is able to identify that the subspace 
given by the Cartesian product of the domains of the uninstantiated variables does 
not contain a solution and thus can be pruned. The heart of the constraint satisfac
tion approach is to use constraints to prune the search space; a number of techniques 
have been developed to improve the naive backtracking algorithm by more intelli
gently exploiting the constraint. Improvements to the backtracking algorithm have 
focused on the two phases of the algorithm, looking backward [32, 48, 52, 57, 92] and 
looking ahead [16, 60, 85, 87, 96]. An appropriate integration of these techniques can 
dramatically improve the performance of the backtracking algorithm. Sometimes all

3
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these algorithms are named as backtracking algorithms to emphasize their backtrack
ing nature, while the naive backtracking algorithm is then identified as chronological 
backtracking algorithm.

The family of backtracking algorithms are capable of finding all solutions of a 
CSP or reporting it is insoluble if no solutions exist, and they will halt in at most 
exponential number of steps. In fact, they belong to an important class of approaches, 
namely, systematic search methods. The other systematic methods include solut ion  

synthesis algorithms, which aim to find all solutions of a CSP instance [42. 1 UU. ll)9j. 
In contrast to the systematic methods, stochastic search methods do not always find a 
solution if the solution exists and will not always terminate if there is no solution. In 
the last few years, local search strategies have been reintroduced into the satisfiability 
and constraint satisfaction literature [58, 89]. These algorithms incrementally alter 
inconsistent value assignments to all the variables. They use a “repair” or “hill climb
ing” metaphor to move towards more and more complete solutions. To avoid getting 
stuck at “local optima”, they are equipped with various heuristics for randomizing 
the search. Their stochastic nature generally voids the guarantee of completeness 
provided by the systematic search methods. In some problem domains, stochastic 
methods are very successful in solving large and hard problems that are too hard for 
backtracking algorithms [102]. However, throughout this dissertation, we will limit 
our attention to the family of backtracking algorithms.

Consistency inferencing [42. 75. 78. 84. 119] is a well known operation on CSPs 
which acts as a way of problem reduction that makes the constraints tighter. In 
the last two decades, consistency techniques have been extensively studied in the 
constraint programming community. Many consistencies have been proposed in
cluding node consistency, arc consistency, path consistency, and more generalized 
k-consistency [42, 43, 75, 77]. Generally speaking, backtracking will benefit from 
representations that are as explicit as possible; that is, from representations having a 
high level of consistency. Some levels of consistency can be so powerful that no search 
is required after a CSP is made consistent, such as strong n-consistency [42, 43] and 
adaptive consistency [37].

In a backtracking algorithm, both the variable to be instantiated and the value 
assigned to that variable can be determined on the fly. They are called dynamic vari
able ordering (DVO) and dynamic value ordering respectively. A “good” heuristic 
can improve the search by several orders of magnitude. Examples of dynamic variable 
ordering heuristics include the minimum width ordering [43] which exploits informa
tion of the graph of a CSP, and the fail first heuristic [60] which chooses the next
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variable with the smallest remaining size, often used in a look-ahead backtracking 
algorithm. An example of a dynamic value ordering heuristic is the minimal-conflicts 
heuristic [81].

The identification of tractable classes of CSPs that can be solved in polynomial 
time is important from both the theoretical and the practical point of view and has 
been extensively studied over the last two decades. Such work involves identifying 
either the topological properties of CSPs, or the properties of constraints in the CSPs. 
or both. One of the basic topological properties that supports tractability is a tree 
structure. This has been observed from different perspectives, in constraint theory, 
complexity theory and database theory. The induced width [43, 44] of constraint 
satisfaction problem is an important property and the complexity of solving a CSP 
is known to be bounded by an exponential in its induced width. Thus a topological 
structure that has a bounded induced width is tractable, e.g.. the k-tree structure 
[45]. Tractable classes that are characterized by constraint properties are thoroughly 
studied in [26, 62, 63, 64]. Generally speaking, a CSP is tractable if all the constraints 
in the CSP are restricted to a family of constraints which are closed under some 
algebraic operations.

Structure driven techniques emerged from an attempt to exploit the tractabil
ity properties. Various graph based techniques whose complexity are tied to graph 
parameters were identified. These techniques include adaptive consistency [37], tree 
clustering [38], and graph based learning [30], all of which are exponentially bounded 
by the induced width of the constraint graph, and the cycle-cutset scheme [32], which 
is exponentially bounded by the size of the constraint graph’s cycle-cutset [74]. Fur
thermore, a CSP with a tree structure can be solved in a backtrack free manner after 
it is made arc consistent. A path consistent row convex CSP can also be solved in a 
backtrack free manner [112, 113].

1.1.2 Problem Modeling
Problem statements are usually stated in natural languages. A very important part 
of solving real-life problems using the constraint programming approach is modeling 
the problem in terms of CSPs, i.e., variables, domains and constraints.

Generating a Formulation

Let us consider the well known “SEND +  MORE =  MONEY” puzzle used in [114], 
The problem can be stated as “to give each letter (S, E, N, D, M, O . R . Y }  a different
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digit from { 0 ,...,9 }  so that the equation SEND 4- MORE =  MONEY is satisfied”.

Exam ple 1.3 The easiest way to model this problem is to give one variable for each 
of the letters and set one constraint corresponding to the equation and an alldif- 
ferent constraint specifying that each of the letters must take a different value from 
{ 0 ... .,  9}. In such a CSP formulation, there are 8  variables, {s, e, n, d, m. o. r, y} and 
each variable has the same domain of values { 0 ,.. ..  9}. Two non-binary constraints 
are

103(s 4- m) 4 - 102(e 4- o) 4- 10(n + r) + d  + e = 104m 4- 103o 4- 102n 4- lOe 4- y,
alldifferent(s, e, n, d, m, o, r, y ) .

For BT, this model is not very efficient because with BT, all of the variables need to 
be instantiated before the “large” equation constraint and the alldifferent constraint 
can be tested. Thus little of the search space can be pruned to speed up the solving. 
If an algorithm performing more consistency checks at each step of the backtrack 
search is applied to solve the CSP, e.g., the maintaining arc consistency algorithm (see 
Section 2.5.4), the search space can be more effectively pruned. However, generally it 
is very expensive to enforce arc consistency on the two global constraints unless there 
exists some specially designed methods to speed up the constraint propagation.

Exam ple 1.4 A more efficient model uses the carry bits to decompose the "large" 
equation constraint into a collection of “small” constraints. With a little thought, we
can see that M  must have the value 1  and S  can only take values from { 1 ........ 9}.
Besides the variables in the first model, the new model includes three “carrier” vari
ables, Ci, C2 , C3 . The domains of variables e, n, d, 0 , r and y are { 0 .....  9}, the domain 
of s is { 1 ,...,9 } , the domain of m contains a single value {1}, and the domains of 
all the carrier variables Ci,C2 ,C3  are {0,1}. With the help o f the carrier variables, the 
equation constraint can be decomposed into several smaller constraints,

e + d =  y4-10ci,

Ci4-n4-r  =  e410co,

C2 + e + o =  n 4- 10c3,

C3  4- s 4- m = 10m 4- 0 .

The alldifferent constraint is unchanged, i.e., alldifferent (s, e. n, d, m, o, r. y).
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The advantage of this model is that these smaller constraints can be tested earlier 
in the backtrack search, and thus many inconsistent valuations can be pruned. Also, 
when the maintaining arc consistency algorithm is used, it is relatively cheaper to 
achieve arc consistency over these smaller constraints than over the original global 
constraint.

In the above formulations, the alldifferent constraint can also be replaced by a set 
of “small” constraints, e.g., s e, . . . ,  r  ^  y, and we obtain a third and a fourth model 
for the problem. However, if the maintaining arc consistency algorithm is used to solve 
the CSP, we have to decide whether it is worth decomposing the alldifferent constraint 
as enforcing arc consistency on alldifferent constraints can be processed very quickly 
by using some specially designed methods, or propagators [94]. A propagator enables 
the constraints to be checked earlier and more efficiently and sometimes it enforces 
a stronger consistency than enforcing arc consistency on the decomposition of the 
constraints [94]. However, it is usually more difficult and time-consuming to design a 
propagator for a class of constraints than to find a decomposition scheme for them, 
and the use of propagators may hardly be combined with other CSPs techniques, e.g.. 
the backjumping method. In contrast, a decomposition solution does not demand such 
special treatment and thus it can be used with all possible CSP solving methods.

As we can see, there are often many different approaches to formulating a given 
problem and these formulations result in very different problem solving performances. 
For another example, Nadel [8 6 ] presents 9 essentially different formulations for the n- 
Queens problem, which asks “to place n queens on an n x n chess board such that none 
of the queens attacks the other”. In order to facilitate the expression of constraint 
satisfaction problems, several languages or tools have been developed. Examples of 
these range from the earliest Alice [72], to modern languages like ILOG Solver [61]. 
CHIP [2, 40], ECLiPSe [41], Oz [107], and Prolog III [24].

However, it is one thing to say “all one has to do is to express the problem with 
constraints” . It is another to express the constraints in a manner which permits effi
cient solution. In the past, the quality of a problem formulation has largely depended 
on a problem solver’s experience or on trial and error. Alternatively, some very gen
eral guidelines have been suggested to aid the problem solver to find a high quality 
formulation. Examples of such guidelines, or rules of thumb, include the use of redun
dant constraints, making the constraints as tight as possible and keeping the arity of 
of the constraints as low as possible. More practically, there are some methodologies 
to improve a given CSP formulation with respect to a certain class of problem solving 
techniques. These methodologies include adding or removing redundant constraints,
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adding or removing redundant variables, exploiting symmetries, and transforming a 
CSP formulation into a different but equivalent representation.

Improving the Formulations

There can be many ways of representing a problem with constraints. A constraint in 
a CSP is called redundant if its removal does not change the solutions of the CSP. 
Adding redundant constraints in a CSP formulation makes the implicit knowledge 
of the problem explicit and by using such knowledge, or in constraint programming 
words, by using these constraints, during the backtrack search, a large portion of the 
search space that does not contain a solution can be pruned at an early stage of the 
search. In particular, adding redundant constraints is crucial to solving real world 
problems [56, 90, 111, 114]. In the second formulation of the puzzle problem (see 
Example 1.4), we make use of the fact that variable m must have the value 1 explicit 
which immediately prunes the search space that assigns the other values to m. Adding 
redundant constraints is somehow similar to achieving a certain level of consistency in 
the CSP formulation, but in a less systematic manner. Should redundant constraints 
always be added into the formulation? Sometimes removing redundant constraints 
can also improve the problem solving. Dechter and Dechter [29] argue that there are 
cases for removing redundant constraints such that the CSP instance becomes acyclic 
and thus can be solved in polynomial time.

A redundant variable or hidden variable does not participate in the solution of 
a problem. Adding redundant variables may help to represent a constraint which 
otherwise must be expressed as a global constraint. For example, the carrier vari
ables in Example 1.4 are redundant variables used to decompose the global equation 
constraint. Removing redundant variables is also meaningful because the size of the 
search space is decreased as the CSP has fewer variables. The variables in a CSP for
mulation can also be manipulated in the form of variable joining or variable grouping 
[32]. That is, several variables can be condensed to one variable and thus the aritv of 
constraints over those variables may be decreased.

Symmetries widely exist in non-random problems. For example, a flip of a solution 
of the n-Queens problem is also a valid solution. In a graph coloring problem, a 
permutation of colors in one labelling scheme will also fulfill the problem requirements. 
Exploiting such symmetries by adding constraints to exclude the symmetries can 
greatly reduce the search space [111]. Symmetries can also be used in the form of meta 
values in variable domains. A meta value of a variable is an abstraction of a subset 
of domain values which behave similarly in the constraints involving the variable.

8

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r th e r  reproduction  prohibited without perm iss ion .



The use of meta values can reduce the search space by several orders of magnitude. 
Current methods include identifying meta values by interchange-ability properties of 
the domain values [13, 46]. For example, Weigel and Faltings [121] present a method 
to take advantage of interchange-abilities to represent sets of equivalent values by 
meta values and thus obtain more compact representations.

A CSP formulation can be transformed into an equivalent representation in which 
a different set of variables and constraints are defined. The original formulation is 
equivalent to its transformation under a proper definition of equivalence [9-V. <\</.. 
a solution of the original formulation can be extracted from a solution of its trans
formation in a polynomial number of steps. Sometimes, it is useful to completely 
change the denotation of the variables in the original formulation and thus redefine 
the constraints. For example, two general transformation techniques exist to trans
late a general CSP into an equivalent binary CSP, namely the dual graph, method 
[38, 95] and hidden variable method [95]. The other transformation approaches in
clude: Jegou [65] considers transforming CSP formulations based on an analysis of 
what he describes as the “micro-structure” of the CSP. Weigel et al [120] describe a 
method to convert a general CSP into a binary boolean form which can be used to 
find different formulations of the original CSP.

The ability to generate a range of different CSP formulations can result in very 
different solving performance. One significant and open question, “which is the best 
formulation?” needs to be addressed. A precise answer to the above question seems 
unlikely. First, it cannot be answered without tying the formulation with a spe
cific problem solving technique. For example, a backtracking algorithm will generally 
benefit from adding more redundant constraints. However, the redundant constraints 
should be carefully selected as they may not always contribute to the pruning of the* 
search space but just result in the backtracking algorithm performing more constraint 
checks at each step of the search. Second, modeling still remains an “art” in most 
problem domains. The quality of the formulations has largely depended on the prob
lem solver’s experience and knowledge in the problem domain. Selman et al [101] list 
10 challenges in Al research, in which the challenge for problem modeling is stated 
as, “characterize the computational properties of different encodings of a real-world 
problem domain, and/or give general principles that hold over a range of domains.”
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1.2 Motivations and Contributions

Since constraint satisfaction problems are intractable in the general case, it is natural 
to use all possible techniques to improve the efficiency. Given a problem statement, 
we may ask what is the best CSP formulation for the problem, and given a CSP 
formulation, we may want the best solving algorithm. Perhaps, we are more interested 
in the best combination of algorithm and formulation. Nevertheless, these demand 
a better understanding of the modeling techniques, the solving techniques, and the 
interactions between them.

In the past, most of the research activities in the constraint programming com
munity have concentrated on the development of efficient problem solving techniques. 
Among these solving techniques, the backtracking algorithm is a very important CSP 
solving method. So far, a number of improvements to the naive backtracking algo
rithm have been proposed. These techniques can be conveniently classified as look
ahead schemes and look-back schemes [34]. In general look-ahead schemes involve 
enforcing a certain level of consistency, using a dynamic variable ordering heuristic 
and using a dynamic value ordering heuristic. The backtracking algorithms using 
look-ahead schemes include the well known forward checking algorithm (FC) and the 
maintaining arc consistency algorithm (MAC). Whenever the algorithm encounters 
a dead-end and prepares for the backtracking step, look-back schemes are invoked 
to perform the functions that decide how far to backtrack by analyzing the reasons 
for the dead-end (backjumping), and record the reasons for the dead-end in the form 
of new constraints so that the same conflicts will not arise again later in the search 
(learning). The hybrids of the above two schemes, including the forward checking 
with conflicts-directed backjumping algorithm (FC-CBJ) and maintaining arc consis
tency algorithm with conflicts-directed backjumping algorithm (MAC-CBJ). have also 
been developed in the literature. Unfortunately, sometimes the look-ahead schemes 
are counterproductive to the look-back schemes. For example, Prosser [91] observes 
the fact that, in some cases, backjumping may become less efficient after enforcing 
consistency. Bacchus and van Run [8 ] observe that adding CBJ to an algorithm that 
already uses a dynamic variable ordering based on the minimal domain heuristic is 
unlikely to yield much improvement. Previous experiments on random harder prob

lems and benchmark problems show that FC-CBJ significantly improves FC in most 
cases, but MAC-CBJ hardly improves MAC in these experiments and may actually 
show a degradation in performance [16]. As a result. MAC is evaluated to be the best 
algorithm that is capable of solving large and hard CSP instances, and CBJ seems to
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be a “costly gadget” for MAC as it rarely provides enough benefits compared to its 
overhead in the backtrack search.

In this dissertation, we argue that the above observations have serious limita
tions. First, they are established purely on experiments on random binary problems 
and some toy problems, and those problems are not hard to solve using today’s com
putational power. Second, there exists little theoretical justification for the above 
conclusions about CBJ. We theoretically investigate the relation between some look
ahead techniques, including dynamic variable ordering and consistency enforcement, 
and the backjumping technique. Our theoretical results partially explain why a back
tracking algorithm doing more in the look-ahead phase cannot benefit more from the 
backjumping schemes. We propose a new algorithm, called GAC-CBJ, a hybrid of 
generalized maintaining arc consistency algorithm (GAC) and conflict directed back- 
jumping (CBJ) that can be applied to general CSPs. Although Bessiere and Regin 
[16] conclude from their experiments on random binary CSPs that the enhancement 
of CBJ to MAC (the binary version of GAC) will not pay off in the general cases, 
our experiments in some real world domains show that GAC-CBJ improves GAC 
by several orders of magnitude on hard and large instances and does not degrade 
performance too much on relatively easier instances.

Different formulations for a given problem can be roughly evaluated by identifying 
one or more characteristics or parameters of the formulations. These parameters 
include the size of the search space, the density of solutions, and the “constrainedness" 
of search used in “phase transition” analysis [55]. Sometimes these parameters can 
provide a good “predictor” of how difficult it would be to solve the formulation. For 
example, random instances are usually hard to solve when the “constrainedness” is 
close to 1 . Nadel [8 6 ] presents an evaluation of different formulations of the n-Queens 
problem by a theoretical estimate of the expected cost of search for a particular 
algorithm and search ordering. Borrett extends Nadel’s work to more general cases 
in [19]. However, their approach depends on a statistical model to compute the 
expected cost of a given backtracking algorithm, and the assumptions made in the 
analysis do not hold for real world problems. Also, their evaluations cannot be used 
to provide a general principle saying under which circumstances one formulation is 
better than the other.

We are more interested in a purely theoretical evaluation of modeling techniques 
depending only on the basic elements of a CSP formulation, i.e., variables, domains 
and constraints. To evaluate a modeling technique, we mean to fix the solving method 
and apply the modeling technique to the original CSP formulation to see how such a
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reformulation affects the performance of the solving method or whether the reformu
lated model can be improved with respect to the solving method. Such an evaluation 
can provide a general guideline for problem modeling as to whether or not a model
ing technique should be applied. Also, it may help us to understand the interaction 
between a modeling technique and a solving method and thus to design a new algo
rithm or improve an existing algorithm that may work better in a specific problem 
formulation. Furthermore, such a comparison is useful to the problem solving ap
proaches based on commercial constraint programming packages, e.g., ILog Solver, 
in which the solving methods are fixed to several well-known fast algorithms, such as 
the forward checking algorithm and the maintaining arc consistency algorithm.

In this dissertation, we theoretically study two modeling techniques, the dual and 
hidden transformations, which translate a general CSP into an equivalent binary rep
resentation. We choose the above two modeling techniques for the following reasons. 
First, in the past, much research has concentrated in binary CSPs because such trans
formations exist. However, to date, few results have been given which evaluate the 
performance of backtracking algorithms on the original formulation and its trans
lated representations. Our results can be used to justify whether we should apply the 
transformation and solve the binary CSP or whether we should just select a back
tracking algorithm to solve the original non-binary problem directly. Second, there 
exists strict definitions of the above two transformations, which enable a theoretical 
analysis on the efficiency of the solving techniques. Third, although a "pure” form of 
the dual or hidden transformation is rarely used in modeling a problem, the dual and 
hidden transformations contribute to a wide range of modeling techniques, often in 
the form of partial conversions. Thus, the results are meaningful to guide modeling 
in practice.

We compare an original problem formulation, its dual transformation, and its hid
den transformation to see whether one formulation is “stronger” than or “equivalent” 
to another with respect to the effectiveness of achieving arc consistency. We find that 
arc consistency on the original formulation and the hidden translation are "equiva
lent” under the above meaning, but arc consistency on the dual translation is stronger 
than the arc consistency on the original formulation. Moreover, if the original problem 
has a special structure, arc consistency on the dual is “equivalent” to arc consistency 
on the original and the hidden representations. Then we compare more extensive 
consistency properties that can be applied to the dual and hidden formulations, and 
establish a hierarchy of the above “strongness” relation with respect to the combi
nations of consistency and formulation. Some of these relations have been identified
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by Stergiou and Walsh in [106]. For example, they compare arc consistency on the 
original problem and the one on its dual and hidden transformations. However, they 
only give some illustrative proofs for their results. We present here stricter proofs for 
the above relations based on the formal definitions of the dual and hidden transfor
mations. Bacchus and van Beek [7] compare the performance of the forward checking 
algorithm under the above three formulations. For example, they give examples to 
show that FC on the original may be exponentially better or worse than FC on the 
dual problem or hidden problem. In this dissertation, we extend their comparison to 
include two more backtracking algorithms, the chronological backtracking algorithm 
and the maintaining arc consistency algorithm, and we also present some new results 
about the forward checking algorithm, e.g., the relation between its performance on 
the dual transformation and the hidden transformation. As a result, we either give a 
theoretical bound saying how much one formulation is better than the other under a 
given algorithm, or give examples to show that such a bound does not exist. These 
comparisons contribute exactly to the question which Selman et al [1 0 1 ] regard as a 
challenge in future Al research.

1.3 Overview of the Dissertation

The rest of the dissertation is organized as follows. Chapter 2 gives the definition of 
constraint satisfaction problems and a review of local consistency and backtracking 
algorithms. Then we define the search tree explored by backtracking algorithms. 
Also in Chapter 2, we present our specification of the arc consistency achievement 
algorithm and several backtracking algorithms, which will be used in later chapters. 
It is worth noting that all these algorithms can be applied to non-binary CSPs.

Chapter 3 studies the relationship between look-back and look-ahead techniques 
for backtracking algorithms. First, we show by example that CBJ may be exponen
tially better than an algorithm that maintains strong ^-consistency in the backtrack 
search and we show that backjumping becomes useless if an appropriate variable 
ordering strategy is used in the chronological backtracking. Second, we use the con
cept of backjump level in the execution of a backjumping algorithm and show that 
an algorithm maintaining strong ^-consistency always visits no more nodes than a 
backjumping algorithm that is allowed to backjump no more than k levels. Third, 
we present a new algorithm, GAC-CBJ, which is an extension of Prosser's MAC-CBJ 
[93] to general CSPs. In our experiments, GAC-CBJ shows significant improvements 
over GAC on some real world problems.
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The formal definitions of the dual and hidden transformations are given in Chapter 
4. We compare the “strongness” of arc consistency on three formulations of any prob
lem, an original formulation, and its dual and hidden transformations. We show that 
arc consistency on the original formulation and its hidden transformation are “equiv
alent” , but arc consistency on the dual transformation is “stronger" than the one on 
the original formulation. Then we compare several local consistency properties that 
can be applied to the dual and hidden formulations, and establish a hierarchy for the 
various combinations of consistency and formulation with respect to the “strongness” 
relation.

In Chapter 5, we compare the performance of selected backtracking algorithms 
on the above three formulations. Given a backtracking algorithm, we identify one 
of two mutually exclusive relations between two formulations, either “one may be 
exponentially worse than another” or “it is at most (polynomiallv) bounded worse 
than another.” Three algorithms are used in the comparisons, including the chrono
logical backtracking algorithm, the forward checking algorithm, and the maintaining 
arc consistency algorithm. In this chapter, we present a hierarchy for the various 
combinations of algorithm and formulation with respect to the above relations.

Chapter 6  concludes the dissertation and discusses about possible future work.
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Chapter 2 

Background

In this chapter, we introduce much of the background necessary to understand the 
rest of the dissertation. We give formal definitions of constraint satisfaction problems 
and solutions of a CSP. Then we briefly review various local consistency techniques 
and backtracking algorithms and define the search tree explored by backtracking 
algorithms. At last, we present our specification of the arc consistency achievement 
algorithm and several backtracking algorithms that will be used in later chapters.

2.1 Definition

D efinition 2 . 1  (C SP) An instance of a constraint satisfaction problem. P. is a 
tuple {V,V,C), where 1

•  V =  {xi, ... ,£ „ }  is a finite set o fn  variables,

•  V  = {dom(xi ) , . . . ,  dom{xn)} is a set of domains. Each variable x  6  V is asso
ciated with a finite domain of possible values, dom(x). The maximum domain 
size maxl 6 v|dom(x)| is denoted by d,

• C = { C i , . . . ,C m} is a finite set of m constraints or relations. Each constraint 
C  € C is a pair (vars(C), rel(C)), where

— vars(C) =  {xil?.. . ,x tr.} is an ordered subset of the variables, called the 
constraint scope or scheme, the size of vars(C) is known as the arity of 
the constraint. I f  the arity of the constraint is equal to 2, it is called a bi
nary constraint. A non-binary constraint is a constraint with arity greater

th ro u g h o u t the dissertation, we use n, d, m , and r to denote the number of variables, the 
maximum domain size, the number of constraints, and the maximum arity of the constraints in the 
CSP, respectively.
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than 2. The maximum arity of the constraints in C, maxcec\vars{C)\, is 
denoted by r,

-  rel(C) is a subset of the Cartesian product dom(xil) x • • • x dom(xlr>) that 
specifies allowed combinations of values for the variables in vars(C). An 
element of the Cartesian product dom (iil ) x ••• x dom(xlr ) is called a 
tuple on vars[C). Thus, rel(C) is often regarded as a set of tuples over 
vars(C).

Generally, we do not consider a variable that is not involved in any constraint. In 
the following, we assume that for any variable x € V, there is at least one constraint 
C  6  C such that x  6  vars(C). By definition, a tuple over a set of variables X  = 
{xL,...,Xfc} is an ordered list of values (ai,...,Ofc} such that a, € dom(xi), i =
1.. . . ,  k. A tuple over X  can also be regarded as a set of variable-value pairs {xi <—
01.. . . ,  xjt at}. Furthermore, a tuple over X  can be viewed as a function t : X  —> 
Ul 6 ,\:dom(x) such that for each variable x 6  X , f[x] 6  dom(x). For a subset of 
variables X '  C X ,  we use i[AT'] to denote a tuple over X ' by restricting t over X'. We 
also use vars{t) to denote the set of variables for tuple t.

An assignment to a set of variables A' is a tuple over X . We say an assignment t 
to X  is consistent with a constraint C  if either vars(C) 2  -V or t[ ',nrs(C); € rtl(C). 
A partial solution to a CSP is an assignment to a subset of variables. We say a partial 
solution is consistent if it is consistent with each of the constraints. A solution to a 
CSP is a consistent partial solution over all the variables. If no solution exists, the 
CSP is said to be insoluble. The set of solutions to a CSP P  is denoted by sols(P). 
Given two CSP instances Pi and P2, we say Pi =  P2  if they have exactly the same 
set of variables, the same set of domains and the same set of constraints between the 
variables; i.e., they are syntactically the same. We say PL is equivalent to P> iff they 
have exactly the same set of solutions, i.e., sols(Pi) =  sois(P2) 2. It is easy to verify 
that, if Pi =  P2, then Pi is equivalent to P2. A CSP is empty if either one of its 
variables has an empty domain or one of its constraints has an empty set of tuples. 
Obviously, an empty CSP is insoluble, i.e., it has an empty set of solutions.

D efinition 2.2 (p ro jection) Given a constraint C and a subset of variables S  C

2Two equivalent CSPs do not always have the same domains and the same constraints, but 
they do have the same variables. Equivalence is usually used in consistency techniques, as will be 
discussed in the next section. However, there exists other types of equivalence between two CSPs 
which do not have the same variables. For example, the dual transformation and hidden-variable 
transformation of a CSP are equivalent to the original representation. In that case, a more flexible 
definition should be used, as in [95].
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vars(C), the projection %sC is a constraint, where vars(irsC) =  S  and rel(irsC) =  
{t[S\ 11 e  reZ(C)}.

D efin ition  2.3 (selection) Given a constraint C and an assignment t to a subset of 
variables X  C vars(C), the selection atC is a constraint, where vars(atC) =  vars(C) 
and rel(atC) = (s  | s[.Y] =  t and s € reZ(C)}.

2.2 Consistency Techniques

Consistency achievement is a process of removing values from domains, removing 
tuples from constraints, and adding new constraints into the set of constraints, with
out removing any solutions from a CSP. A local inconsistency or inconsistency in a 
CSP formulation is a partial solution over k — 1  variables that cannot be consistently 
extended to a kth variable and so cannot be part of any solution of the CSP. Some
times, an inconsistency is also called a no-good [32, 48]. The basic idea of consistency 
techniques is that if we can deduce an inconsistency in the CSP formulation, then it 
can be removed by means of removing a value from the domain of a variable if the 
inconsistency involves only one variable, removing a tuple from a constraint if the 
variables in the inconsistency are already constrained by a constraint, or adding a 
new constraint if there is no such a constraint that constrains those variables in the 
inconsistency. By removing inconsistencies, we reduce a CSP to an equivalent but 
tighter problem.

The objective of consistency achievement is not to solve the problem, but to get 
a formulation having as few inconsistencies as possible. A minimal network 3 is a 
formulation that does not have any inconsistency; i.e., for each value in the domain 
of a variable, there is a solution having that value assigned to the variable, and for 
each tuple in a constraint, there is a solution in which the tuple appears. To compute 
the minimal network of a CSP formulation is an NP-complete task [75. 84].

Although consistency achievement alone rarely generates solutions, it can help to 
solve CSPs in various ways. It can be used in preprocessing, which means reducing 
the problem before any other techniques are applied to find solutions. It can also be 
used during a backtrack search, by pruning off search space after each step to extend 
the partial solution.

Consistency techniques were first introduced for binary CSPs. Mackworth [75. 77]

3It is called a network because in early research, binary CSPs are usually identified with a 
constraint graph, or constraint network.
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defines three properties of binary CSPs that characterize local consistencies: node. 
arc, and path consistency. A binary CSP is node consistent if for each unary constraint 
C  constraining a single variable x, and for each value a G dom(x), {x a} satisfies 
C. The CSP is arc consistent if for each constraint C  constraining a pair of variables 
x and y, and for each value a G dom(x), there is a value b G dom{y) such that 
{x <— a, y <— 6 } satisfies C. The CSP is path consistent if for any triple of variables 
x, y and z , and any value a G dom(x) and 6 G dom(y) such that {x <— a, y <- 6} 
is consistent, there is a value c G dom(z) such that { x ( - a , i / f - L ? f -  c} is also 
consistent.

The concept of Mackworth’s arc consistency has been generalized to non-binarv 
CSPs [76].

D efinition  2.4 (arc consistency) Let P =  (V./D.C) be a CSP. Given a constraint 
C and a variable x  G vars(C), a value a G dom(x) is supported in C if there is a 
tuple t G rel(C), such that t[x] =  a. t is then called a support for {x <— a} in C . 
C is arc consistent iff for each of the variables x  G vars(C), and each of the values 
a G dom(x), (x <— a} is supported in C. P is arc consistent iff each of its constraints 
is arc consistent.

Freuder [42,43] generalizes Mackworth’s consistencies to a family of ̂ -consistencies.

D efin ition  2.5 (^-consistency) A CSP is k-consistent if and only if given any con
sistent partial solution over k — 1  distinct variables, there exists an instantiation of 
any kth variable such that the partial solution plus that instantiation is consistent. .4 
CSP is strongly k-consistent iff it is j-consistent for all 1  < j  < k.

For binary CSPs, node, arc and path consistency correspond to one-, two- and 
three-consistency, respectively. Moreover, the definition of ^-consistency does not 
require the CSP to be binary. Note that arc consistency is not the same as two- 
consistency for general CSPs. A strongly n-consistent CSP is called globally consis
tent. Globally consistent CSPs have the property that any consistent partial solution 
can be successively extended to a full solution of the CSP without backtracking [35]. 
A globally consistent CSP formulation is always a minimal network, but in general 
the converse is not true.

Mackworth [75] presents several algorithms to achieve node, arc, or path consis
tency on a binary CSP. Arc consistency is widely used in solving CSPs because it
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only changes the domains of variables 4. It can be easily implemented and cheaply 
achieved but has more pruning power than node consistency. The algorithms to 
achieve arc consistency on binary CSPs have been extensively studied. Mackworth 
presents three successively improved arc consistency achievement algorithms, named 
AC-1, AC-2 and AC-3. The worst case complexity of the best among them, AC-3, 
is 0 (m d 3). Mohr and Henderson propose AC-4 [82] which has an optimal worst case 
complexity of 0{mcP). However, AC-4 lags behind AC-3 on average time complexity, 
while AC-4 is too near to the worst case time complexity, and AC-3 runs faster than 
AC-4 in practice despite its non-optimal worst case complexity [78, 118]. AC-5 [115] 
is a generic framework which summarizes all previous algorithms and with which 
special routines can be designed for particular constraint classes. AC-6 and AC-7 
[14, 15] keep the optimal worst case complexity 0{m d2) and improve the average 
time complexity significantly. Furthermore, Schiex et al proposes a “lazy" version of 
AC-7, called lazy arc consistency [98]. Lazy arc consistency does not enforce full arc 
consistency on a CSP instance but guarantees if a CSP passes a lazy arc consistency 
test, it will also be able to pass an arc consistency test. Thus it is cheaper than 
AC-7 when used in a backtrack search but has the ability to prune branches. AC-3 
can be easily extended to non-binary CSPs. Mackworth proposes the algorithm CX 
[76], which is a kind of generalization of AC-3 and has the worst case complexity 
of 0 (m r2dr+l). Mohr and Massini propose GAC4 [83], based on AC-4 for binary 
CSPs, which has the worst case complexity of O(mcT). An AC-7 version of an arc 
consistency achievement algorithm for non-binary CSPs is given in [17].

Cooper [25, 108] proposes an algorithm optimal in the worst case for achieving 
strong ^-consistency. The principle is that if a partial solution is found to be incon
sistent and therefore rejected, all tuples in which the partial solution is a projection 
will be rejected. Enforcing arc consistency on a CSP will only remove the inconsistent 
values from their domains and will not change the constraints. However, enforcing 
strong A:—consistency for k > 3 will remove inconsistent tuples from the constraints 
and possibly add more constraints to the CSP. Thus achieving strong ^-consistency 
may dramatically change the formulation of a CSP, as the number of new constraints 
could be exponential in k. Consequently, it is more expensive to maintain strong 
A:—consistency for A: > 3 in a backtrack search. In fact, it is not evident yet that it is 
worthwhile to maintain a stronger consistency than arc consistency. Thus maintaining 
strong A;-consistency in a backtrack search is currently only of theoretical interest.

4Sometimes, a constraint may be represented implicitly by a predicate or function call, thus it is 
very difficult to update the constraint.
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One issue for algorithms to achieve the same consistency on a CSP instance is, 
whether they all compute the same results, i.e., whether the CSP instance after ap
plying the consistency achievement algorithms has the same domain for each of the 
variables, and the same set of constraints. For arc consistency, as we will show in 
a later chapter, there is a unique arc consistent subdomain, called arc consistency 
closure and each arc consistency achievement algorithm should compute the arc con
sistency closure. For ^-consistency achievement algorithms, in general, the results 
are not unique. One reason is that new constraints can be added into the CSP so 
that universal constraints, i.e., those that permit any tuples, can be arbitrarily added 
or removed from the CSP formulation, and sometimes different non-universal con
straints can also be added. However, it is reasonable to assume that after achieving 
strong fc-consistency, the domains of the variables are the same for different strong 
^-consistency achievement algorithms.

Also, the concepts a CSP is X-consistent and a CSP can be made X-consistent 
should be distinguished. We say a CSP is X-consistent if it conforms to the conditions 
defined in X-consistency. Otherwise, there are some domain values and tuples in the 
formulation that violate the consistency, and by removing them using a consistency 
achievement algorithm we can establish X-consistency in the new CSP formulation. 
We say a CSP can be made X-consistent if the resulting CSP is not empty.

A rc  C onsistency  A chievem ent A lgorithm  (AC-3)

We achieve arc consistency by removing from the domains those values that are not 
supported in some constraint. When a value is removed from its domain, some tuples 
using the value in a constraint restricting that variable become invalid. The invalid 
tuples are removed from the constraints implicitly. The changes in one domain are 
propagated to other variables for which a new support needs to be sought in the 
tightened constraints.

We present a variant of AC-3 for general CSPs in Figure 2.1. The original ver
sion of AC3 propagates the deletions of domain values via constraints, while we use 
a variable propagation strategy. In experiments, the above two strategies are com
petitive to each other. S  in AC-3 is a queue or stack to keep those deletions which 
have not yet been propagated. Function exists in AC3 tries to find a valid support 
for (t> <— solution[v]} in constraint C. A generic implementation of exists is to enu
merate and verify every possible tuple in which v receives value solution[vJ according 
to the current domains of the variables. Certainly, this brute-force approach may be 
very expensive if the arity of the constraint is large. It is possible to use specially
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function  exists( in C : constra in t; in  v : variable ) : boolean; 
%% return true if solution[v] has a valid support in constraint C.

function  revise( in C : constra in t; in  v : variable ) : boolean:
1  changed <— false;
2  for each a 6  dam(v) do
3 soiution[x] <— a;
4 if no t exists( C, v ) th en
5 changed«— true;
6  dom(v) <— dom(v) — {a};
7 if  changed th en  push( v, S  );
8  if  \dom(v)\ =  0  th en  re tu rn  false else re tu rn  true;

function  AC3() : boolean;
1  S < -V ;
2 w hile S  /  0 do
3 y <r- top( S  ); pop( 5  );
4 for each C  € C and  y 6  vars(C) do
5 for each v 6  vars(C) and  v ^  y do
6  if  no t revise( C, v ) th e n  re tu rn  false;
7 r e tu rn  true;

Figure 2.1: AC-3.
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designed routines for some classes of constraints to speed up the above process as 
long as completeness is guaranteed.

2.3 Search Tree and Backtracking Algorithms

The simplest algorithm to solve a CSP is the generate and test (GT) algorithm. The 
GT algorithm starts from a null assignment or an empty partial solution, and recur
sively extends the partial solution to a full solution by first choosing an uninstantiated 
variable and then assigning it a value from the domain. When a full assignment is 
obtained, the full assignment is checked whether it is a solution of the CSP that satis
fies all the constraints. The GT algorithm terminates when each possible assignment 
over all the variables has been examined or a certain number of solutions have been 
found.

A generate and test search tree or search tree for short can be constructed from the 
execution of the GT algorithm. Each partial solution generated in the execution of 
the GT algorithm is identified by a node. There is an edge from node u to node u if u is 
an immediate extension of u. The empty solution at the start is the root of the search 
tree. At each node in the search tree, each variable occurring in the current partial 
solution is said to be instantiated to some value from its domain. The variable being 
chosen to be instantiated is called the current variable. Accordingly, the variables 
having been instantiated are called past variables and the variables having not been 
instantiated yet are called future variables.

In the search tree, if there is an edge from node u to node r. u is called the parent 
of v and v is a child of u. If there is a path from u to tv. u is called an ancestor of 
w and w is a descendant of u. A node with no children is called a leaf node. The 
leaf nodes in the search tree are the full assignments which can not be extended. The 
total number of leaf nodes in the search tree is fliev \dom(x)\ if all solutions are to 
be found. A node u and all its descendants form a subtree of the search tree, u is 
called the root of the subtree. The level of node u in a search tree is the length of 
the path from the root to u. Hence, the nodes in the search tree can be classified as 
first level nodes, second level nodes, and so on. The levels closer to the root are called 
lower levels and the levels farther from the root are called higher levels.

The construction of a search tree is determined by several factors, including the 
variable ordering and value ordering used to generate a full assignment, and the 
solutions requirements. The influence of variable ordering strategy and value ordering 
strategy will be discussed in the next section. The solutions requirements means
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whether a single solution, a certain number of solutions, or all solutions are to be 
found.

The execution of a backtracking algorithm or a backtrack search can be seen as a 
search tree5  traversal to extend a current partial solution to a full solution of the CSP. 
At each node in the search tree explored by a backtracking algorithm, an uninstanti
ated variable is selected and assigned a value from its domain to extend the current 
partial solution. Constraints are used to check whether such an extension may lead to 
a possible solution of the CSP and to prune subtrees containing no solutions based on 
the current partial solution. For example, the chronological backtracking algorithm 
checks whether the current partial solution is consistent with all the constraints and 
rejects those inconsistent ones. A dead-end is the situation where all values of the 
current variables are rejected by a backtracking algorithm when it tries to extend 
a partial solution. In such a case, some instantiated variables become uninstanti
ated, i.e., they are removed from the current partial solution. This process is called 
backtracking. If only the most recently instantiated variable becomes uninstantiated 
then it is called chronological backtracking: otherwise, it is called backjumping. A 
backtracking algorithm terminates when all possible assignments have been tested or 
a certain number of solutions have been found. We say that a backtracking algo
rithm visits a node in the search tree if at some stage of the algorithm's execution 
the current partial solution identifies the node. The nodes visited by a backtracking 
algorithm form a subset of all the nodes belonging to the search tree. We call this 
subset, together with the connecting edges, the backtrack search tree generated by a 
backtracking algorithm.

Much of the work in constraint satisfaction during the last several decades has 
been devoted to improving the performance of the naive backtracking algorithm. 
Because the problem is known to be NP-complete [51], polynomial variants of back
tracking algorithms are unlikely. Nevertheless, the average performance of the naive 
backtracking algorithm can be improved tremendously by equipping it with various 
enhancements.

The techniques to improve the naive backtracking algorithm can be convenienrlv 
classified as look-ahead schemes and look-back schemes, in accordance with back

5The search tree discussed here is the search tree generated by the GT algorithm. If a static 
variable instantiation order and a static value instantiation order are used, we know such a search 
tree exists because the entire execution of the GT algorithm is known according to the orderings. 
However, if a  dynamic variable ordering or a dynamic value ordering strategy is used in the backtrack 
search, we may not be able to declaratively describe the execution of the GT algorithm under the 
dynamic ordering. We will address this issue later in the next section.
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tracking’s two main phases of going forward to extend current partial solution and 
going back in case of a dead-end [36]. Look-ahead schemes can be invoked whenever 
the algorithm is preparing to assign a value to the current variable. The essence of 
these schemes is to reduce the search space through the use of a dynamic variable 
ordering, a dynamic value ordering, and a certain amount of constraint propagation 
or consistency enforcement. Enforcing a local consistency in the backtrack search 
has two benefits: The dead-ends are found out earlier such that backtracking occurs 
immediately and much futile search effort can be avoided, and inconsistent values 
are temporarily removed from the domain of the future variables and we need not 
consider these values until they are restored in backtracking. However, enforcing a 
local consistency in the backtrack search brings extra costs which may outweigh its 
benefits. Because the complexity of enforcing strong ^-consistency is exponential in 
k , in practice, only restricted levels of consistencies are enforced. Among the back
tracking algorithms with look-ahead enhancements, forward checking algorithm (FC) 
[60] and maintaining arc consistency algorithm (MAC) [96] are widely used to solve 
relatively hard and large CSPs [18]. For most applications, there is no evidence yet 
that enforcing a higher level consistency in the backtrack search will be better than 
FC and MAC.

Look-back schemes are invoked when the algorithm is preparing the backtracking 
step after encountering a dead-end. The reasons for the dead-end are analyzed. 
Knowing that the same dead-end will be encountered again if the instantiations which 
caused the dead-end have not been changed, the algorithm goes back directly to the 
source of the failure, instead of the immediate preceding variable in the ordering, e.g.. 
the conflict-directed backjumping algorithm (CBJ). Look-back schemes also include 
various learning algorithms which record the reasons for the dead-end in the form 
of new constraints so that the same conflicts will not arise again later in the search 
[30, 99].

A backtracking algorithm can be a hybrid of both a look-ahead scheme and a 
look-back scheme. A successful hybrid is the forward checking with conflict-directed 
backjumping algorithm (FC-CBJ) [92]. Over a long period, FC-CBJ was evaluated 
empirically [60, 87, 92] as the fastest algorithm until MAC was rediscovered to be the 
best in solving harder CSPs [96].
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2.4 Variable Ordering and Value Ordering

It is known that a dynamic variable ordering can be a great improvement over a static 
variable ordering. The improvements from value ordering heuristics may not be as 
significant as those from variable ordering heuristics, especially in the case that all 
solutions are searched6. Throughout this dissertation, we assume that a static value 
ordering is used in the backtrack search.

We view a backtrack search as a search tree traversal in which the search tree is 
as generated by the GT algorithm. If a static variable instantiation order and a static 
value instantiation order are used, we know the search tree in advance because the en
tire execution of the GT algorithm is known. However, if a dynamic variable ordering 
or a dynamic value ordering is used in the backtrack search, we do not know the search 
tree before the execution of the backtracking algorithm. Nevertheless, such a search 
tree does exist and we can figure it out after the completion of the backtrack search. 
Because we know the order of instantiations made by the backtracking algorithm, the 
GT algorithm can follow this ordering. The ordering information could be missed 
at some node due to the pruning of an insoluble subtree. In such a case. GT algo
rithm will follow a pre-defined variable ordering, for example. x lt — x„. and choose 
the first uninstantiated variable in the ordering to be the current variable. Thus the 
search tree can be constructed after the execution of the backtracking algorithm.

E xam ple 2.1 Consider an integer linear program with 5 variables, x t . — x5. The 
domain for each variable is restricted to contain only 3 values, {0 , 1 , 2 }. The linear 
constraints are

X \  ■+■ Xo < £3

X l  + £ 3 > £ 5  +  1

£ 2  — £ 4 > £5

Figure 2.2 shows a fragment of the B T  backtrack search tree to solve the above CSP 
instance. A (hypothetical) dynamic variable ordering is used in the backtrack search. 
For example, X4  is instantiated before x$ when X3  is instantiated with 0 and 1 . and 
x 4  is instantiated after X5  when X3  is instantiated with 2. An inconsistent node is 
represented by a shadowed node and a solution node is marked with a sign. In the 
above figure, since (x t <— 0,x 2  <— 1 ,X3  <— 0} is an inconsistent node, B T  does not

8However, value ordering may affect backjumping algorithms dramatically [50].

25

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r th e r  reproduction  prohibited without perm iss ion .



X I  +  X 2  <  X 3

X I +  X 3 >  I s  +  L 

1 2  — X 4 >  I S
X l «— 0

X3

151 5 .

V

Figure 2.2: A fragment of the BT backtrack search tree for the CSP in Example 2.1

extend this branch. The dashed part attached to this node denotes a subtree in the 
generate and test search tree which is not part of the backtrack tree generated by BT.

2.5 Backtracking Algorithms

In this section, we will introduce several backtracking algorithms used in our study: 
BT, CBJ, FC, GAC, and FC-CBJ. We identify an algorithm by presenting a specifi
cation that is close to an implementation. There could be many possible ways to im
plement an algorithm. It is important, however, that all implementations of the same 
algorithm generate the same backtrack tree under the same variable ordering and rhe 
same ordering of constraint checks '. These algorithms are implemented to stop after 
finding the first solution. In order to find all solutions, a simple change to the termi
nation condition is sufficient for the algorithms doing chronological backtracking, e.g.. 
BT, FC, and GAC, but in the cases of CBJ and its hybrids further modifications are 
necessary. For more explanations, please see [6 8 ]. It is also worth noting that all these 
algorithms can be applied to non-binary CSPs and the C + +  implementations of the 
algorithms can be obtained from “ftp://ftp.cs.ualberta.ca/pub/xinguang/csp.zip."

7The order of constraint checking can affect the computation of the conflicts sets and thus the 
calculation of the backjumping point from a dead-end state.
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2.5.1 Chronological Backtracking (BT)
Chronlogical backtracking (BT) is the starting point for all the more sophisticated 
backtracking algorithms. The pseudo code of BT is shown in Figure 2.3. BT 
uses the following data structures: current identifies the current level in the search 
tree starting from level 1 ; solution[x] stores the current instantiation to variable x: 
instantiated[x] marks whether x is currently instantiated and initially it is set to be 
false; order[i] identifies the ith variable instantiated in the current partial solution: 
and count-uninst[C\ counts the number of uninstantiated variables in the scheme of 
constraint C and it is intialized to be |uars(C)|, i.e., all the variables in the scheme are 
initially uninstantiated. BT starts from level 1  and terminates when it reaches level 
n + 1  at which a solution is found. At level i, BT first chooses the next uninstantiated 
variable to be the current variable and records it in order[i\. Then BT tentatively 
instantiates the current variable with a value in its domain and checks whether the 
current partial solution is consistent with all the constraints, count Mninst[C\ is used 
to control whether the constraint C is checkable at this stage, where C is check
able only if all the variables in its scheme have been instantiated; i.e.. the condition 
count.uninst[C} =  0  is satisfied. If the current partial solution passes the consistency 
check, the instantiation of the current variable is admitted and BT goes on to the 
next level. Otherwise, the next value in the domain is tried. When all values in the 
domain of the current variable fail to extend the partial solution, a dead-end state is 
encountered and BT backtracks one level to the most recently instantiated variable, 
revokes the value assigned to that variable and continues at that stage. BT reports 
the problem is insoluable if a dead-end state is encountered at level 1 .

2.5.2 Conflicts-directed Backjumping (CBJ)
An inconsistency or a no-good is a partial solution that does not appear in any 
solution. If the current partial solution is found to contain a no-good, it cannot be 
extended to a full solution and some variables must be chosen to be removed from 
the current partial solution to invalidate the no-good. A dead-end state indicates 
that the current partial solution t failed to extend to the current variable, and thus 
t is found to be a no-good. The backtracking step in BT removes the most recent 
variable from t and invalidates the no-good. However, if t has a no-good subtuple 
not including that variable, BT will inevitably fail to extend the current branch. A 
minimal no-good does not have no-good subtuples. To compute the minimal no
good from a dead-end state is computationally prohibitive. However, there are many
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procedure  update_constraint_counts( in x : variable);
%% As x is chosen to be instantiated next, update (decrease) the number
%% of uninstantiated variables for each of the constraints involving x.
for each C  6  C and  x € vars(C) do count.uninst[C\ <— count.uninst[C] — 1 :

p rocedure  restore.constraint_counts( in x : variable);
%% As a backtracking occurs at the current level, restore (increase) the number
%% of uninstantiated variables for each of the constraints involving x .

for each C g C  and  x € vars(C) do count.uninst[C\ <— count.unirist[C] -f 1 :

function  consistent in cu rren t : integer) : boolean;
%% check whether it is possible to extend the current partial solution to 
%% a full solution.

1  x <— order[current]:
2  for each C  6  C and x € vars{C) do
3 if count.uninst[C] =  0 th e n
4 if not check_constraint( C, solution ) th en  re tu rn  false;
5 re tu rn  true;

function  BT( in current : in teger ) r boolean;
1  if  current > n th en  re tu rn  true ;
2  x «— get_next_var( current ); order[current\ =  x;
3 update_constraint_counts( x ):
4 for each a € dom{x) do
5 solution[x] «— a;
6  instantiated[x] «— tru e ;
7 if consistent ( current ) th en
8  if BT( current +  1 ) th e n  re tu rn  true;
9 instantiated[x\ «— false;
1 0  restore.constraint_counts( x ):
1 1  r e tu rn  false;

Figure 2.3: BT.
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function  consistent ( in  cu rren t : integer) : boolean;
%% check whether it is possible to extend the current partial solution to 
%% a full solution.

1 x 4— order[current];
2  for each C € C an d  x  € vars(C) do
3 if  count.uninst[C\ =  0  th en
4 if no t check_constraint( C, solution ) th en
5 cs[x] 4— cs[x] U (vars(C) — {x});
6  re tu rn  false;
7 re tu rn  true;

function  CBJ( in current : in teger ) : integer;
1  if current > n th e n  re tu rn  true;
2 x 4— get_next_var( current ); order[current] = x;
3 update.constraint.counts( x );
4 for each a € dorn(x) do
5 solution[x} 4- a;
6  instantiated[x\ true;
7 if  consistent current ) then
8  j  4— CBJ( current );
9 if j  7̂  current then
1 0  instantiated[x\ <— false;
11 restore_constraint_counts( x );
1 2  return j;
13 instantiated[x] 4— false;
14 j  4— max{ i | 1 < i < current and order[i] 6  cs[x] };
15 cs[order\j]] 4— (cs[order\j]\ U cs[x|) — {order[j}};
16 for i 4— j  + 1 to  current do cs[order[i]] 4— 0;
17 restore.constraint.counts( x );
18 re tu rn  j ;

Figure 2.4: CBJ.
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ways to cleverly use the no-goods information discovered in the consistency checks. 
Backjumping (BJ) [53, 54] computes a set of past variables, called conflicts, which 
contributed to some failures in the consistency check for the current variable. Every 
time the current partial solution fails to satisfy a constraint, the variables except 
the current variable in the scheme of the constraint are added to the conflict set. If 
all values of the current variable failed in the consistency check, BJ jumps back to 
the highest variable in the conflicts set. BJ backjumps only from the special case 
of dead-end states. All other backtracks are chronological. To perform a "multiple 
backjumpings” from any dead-end states, conflicts-directed backjumping (CBJ) [91] 
maintains for each past variable (and the current variable) its own conflicts set. We 
use cs[x] to denote the set of past variables in the current conflicts set of variable 
x. In a dead-end state, CBJ backjumps to the highest variable, called the culprit 
variable, in the conflicts set of the current variable. At the same time, the conflicts 
set of the current variable is merged into the conflicts set of the culprit variable. The 
pseudo code of CBJ is shown in Figure 2.4.

2.5.3 Forward Checking (FC)
BT and CBJ perform consistency checks backward; that is, a constraint is checked 
only if all the variables in its scheme have been instantiated. In constrast, the forward 
checking algorithm (FC) [60] performs consistency checks forward; i.e.. a constraint 
is chosen to be checked even if some of its variables have not been instantiated. 
Generally, a constraint is forward checkable at the current state if all but one of its 
variables was instantiated 8. The uninstantiated variable is called the forward checked 
variable in the constraint. In the consistency checks of FC, for each forward checkable 
constraint, the domain of the forward checked variable is filtered in the following way: 
for each value in the domain, if the instantiation of the forward checked variable with 
that value along with the instantiations in the current partial solution do not satisfy 
the constraint, the value is temporarily removed from or marked inactive in its domain 
at the current level. The consistency check fails if the domain of a forward checked 
variable is found to be empty, which is called a domain wipe out (dwo). If the current 
partial solution fails a consistency check or later in extending to a full solution, the 
effect of forward checking is undone; i.e., all the values removed from the domains 
of future variables in the forward checking at the current level are restored in their

8Following Van Hentenryck [114], we say that a k-ary constraint, k >  2, is forward checkable if 
k — 1 of its variables have been instantiated and the remaining variable is uninstantiated.
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procedure  restore( in current : integer);
1  x order[current];
2 for each y 6  V and  instantiated[y\ do
3 if checking[x][y] > 0 th en
4 cheching[x][y\ «- 0;
5  for each a € dom(y) and  domains[y][a] =  current do
6  domains[y][a] <— 0 ;
7 domain.count[y] <— domain.count[y] +  1;

function  check-forward( in C : constrain t; in current : integer) : boolean;
1  x order[current];
2 y f— the uninstantiated variable in uars(C);
3 changed 4— false;
4 for each a 6  dom(y) and  domains[y\[a] =  0 do
5 solution[y\ a;
6  if no t check.constraint( C. solution ) then
7 changed«— true;
8  domains[y][a] <— current;
9  domain.count[y\ «— domam_count[y] — 1 ;
1 0  if changed th e n  checking[x][y] = current;
1 1  if  domain.count[y] =  0  then  re tu rn  false;
1 2  else re tu rn  true;

function  consistent ( in  current : in teger) : boolean;
1  x  «— order[current];
2 for each C e C  and  x  € vars(C) do
3 if  count.uninst[C] =  1  th en
4 if no t check_forward( C, cu rren t) th en  re tu rn  false:
5 r e tu rn  true ;

Figure 2.5: FC.
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function  FC( in  current : in teger ) : boolean;
1  if  current > n  th en  re tu rn  true ;
2  x  «— get_next_var( current ); order[current] =  x;
3 update_constraint.counts( x );
4 for each a € dom(x) and domains[x\[a] =  0 do
5 solution[x] <— a;
6  instantiated[x\ <— true;
7 if  consistent ( current ) th en
8  if  FC( current +  1  ) th e n  r e tu rn  true;
9 restore( cu rren t);
1 0  instantiated[x\ <— false;
1 1  restore_constraint .counts ( x );
1 2  r e tu rn  false;

Figure 2.5: FC.

domains. FC backtracks chronologically in the case of dead-ends.
The pseudo code of FC is shown in Figure 2.5. FC uses three additional data 

structures beside those in BT, domains, domain.count and checking. domains[x][a\ 
denotes whether value a is active in the domain of variable x, where domain[x][a\ =  0  

indicates that a is still an active value in its domain, and domain[x][a] =  i > 0  

indicates that a has been removed from the domain at level i of the backtrack search. 
domain.count[x] records the number of active values in the domain of variable x. For 
example, if value a is marked inactive in the domain of x at level i, domain[x\[a] is 
set to be i to indicate that a is inactive now and domain.count[x\ is deducted by 
1 . Thus, a dwo can be found if the condition domain.count[x\ =  0 is satisfied for 
some future variable x. checking[x\[y\ is set to be i if at level i the instantiation 
of the current variable x makes some constraint become forward checkable and the 
domain of the forward checked variable y  is pruned in forward checking. W hen the  

instantiation of x is revoked, checking[x\[y\ is restored to be 0 . and for each value a 
in the domain of y, if condition domain[y][a] =  i is true, domains[y\[a\ is restored to 
be 0  and domainjcount[y\ is increased by 1 .

2.5.4 Generalized Maintaining Arc Consistency (GAC)
GAC performs at each node in the search tree, one full cycle of arc consistency. An 
arc consistency achievement algorithm is applied to the problem instantiated with the 
current assignments and the tentative value of the current variable being considered.
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p ro ced u re  restore( in current : integer);
1  x  «— order [current];
2 for each y 6  V and  instantiated]?/] do
3 if  checking[x][y] > 0 th en
4 checking[x\[y\ <- 0;
5  for each a 6  dom(y) an d  domains[y][a] = current do
6  domains[y\[a\ <— 0 ;
7  domain.connt[(/] <— domain_ccmnt[y] + 1 ;

function  check-forward( in  C  : constra in t; in  current : integer) : boolean;
1 x  order[current];
2 y the uninstantiated variable in vars(C );
3 changed «— false;
4 for each a € dom(y) and domains[y] [a] =  0 do
5 soiufion[y] <— a;
6 if  not check_constraint( C. solution ) then
7 changed <— true;
8 domains[y][a] current;
9 domain.connt[y] <— domain-countfy] — 1;
10 if  changed then
11 checking[x][y\ =  1; push( y, S  );
12 if domain-count[y\ =  0 then return false;
13 else return true;

function  exists( in  C : constra in t; in v : variable ) : boolean:
%% return ture if solution]u] has a valid support in constraint C.

function  revise( in C: constra in t; in  v : variable;
in current : in teger) : boolean;

1  x  <— order[current\;
2  changed <— false;
3  for each a € dom(v) and  domains[v][a] =  0  do
4 solution[v] «— a;
5 if  n o t exists( C, v ) th en
6  changed <— true ;
7 domains[v][a] current;
8  domain.count[v] <— domain.count[v\ — 1 ;
9 if  changed th en
1 0  checking[x][v] =  1 ; push( v, S  );
1 1  if  domainjcount[v\ =  0  th e n  r e tu rn  false;
12 else re tu rn  true;

Figure 2.6: GAC. 
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function  consistent in current : integer) : boolean;
1  S < -0 ;
2  x order[current];
3 for each C  £ C and  x € vars{C) do
4 if count-uninst[C] =  1  th e n
5 if no t check-forward( C, cu rren t) th en  re tu rn  false:
6  push( x, S  );
7 while S ^  0 do
8  y top( S  ); pop( S  );
9 for each C  6  C and  y 6  vars{C) do
1 0  if count-uninst[C\ > 2  th en
1 1  for each v 6  vars(C) an d  not instantiated[u] an d  c #  y do
1 2  if not revise( C, v, current ) th en  re tu rn  false;
13 re tu rn  true;

function  GAC( in current : in teg er ) : boolean;
1  if  current > n th en  re tu rn  true ;
2  x <— get_next_var( current ); order[current\ = x;
3 update.constraint_counts( x );
4 for each a 6  dom(x) and  domains[x][a] — 0 do
5 solution[x\ <— a;
6  instantiated[x\ <— true;
7 if consistent ( cu rren t) th en
8  if GAC( current +  1  ) th e n  re tu rn  true;
9 restore( current );
1 0  instantiated[x] <— false;
1 1  restore_constraint_counts( x );
1 2  r e tu rn  false;

Figure 2.6: GAC.
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If, as a  result, one of the future domains becomes empty, the tentative value will lead 
to a dead-end and it should be excluded. If none of the future domains becomes empty, 
the tentative value will be selected. The pseudo code of generalized maintaining arc 
consistency (GAC) is shown in Figure 2.6. As achieving arc consistency is a costly 
process, the general wisdom is to perform cheap consistency checks first: that is. a 
forward checking phase is performed before the full propagation. A constraint is said 
to be arc consistency checkable at the current state if at least two of its variables 
have not been instantiated 9. Again, count Jnst[C\ is used to determine whether a 
constraint should participate in the arc consistency check at the current level.

2.5.5 Forward Checking with Conflict-directed Backjumping 
(FC-CBJ)

Both look-backward and look-ahead strategies make a tradeoff, doing extra work at 
one phase of the backtracking search in order to reduce the amount of work required 
later. This extra work, however, frequently leads to a significantly reduced search 
space. It is reasonable to conjecture that a combination of improvement techniques 
will be useful on some problems. A hybrid of FC and CBJ, known as FC-CBJ [92], 
outperforms its parents by several orders of magnitude on many applications.

Unlike CBJ, FC-CBJ performs consistency checks on future variables. It is con
venient to divide the conflicts information into two pieces. The no-goods found in 
the forward checking phase are recorded in checking, in which checkin g[x][y\ denotes 
the instantiation of variable x has caused some constraints to be forward checkable 
and the domain of the forward checked variable y is pruned. However, checking 
is used differently here than in FC and GAC. FC and GAC only need to restore 
those inactive values in future domains which are pruned as a result of the instan
tiation of the current variable. For the current variable x  and the pruned variable 
y , checking[x][y] set to be the current level i is enough for such a purpose. With 
forward checking enhanced with backjumping, at level i, once a future variable y is 
forward checked in constraint C, for each of the instantiated variables x 6  vars(C), 
if checking[x\[y] =  0, checking[x}[y\ is set to be i to record a complete no-good. Be
cause x  may have multiple chances to participate in a forward checkable constraint to 
forward check against y10, FC-CBJ only keeps the lowest level checking occurrence:

9  A more sophisticated control of arc consistency checkability can be determined, for example, by 
the numbers of active values in the domains of uninstantiated variables.

l0For instance, the variable x i can check against r 4  twice by two constraints, C {x \ . . a n d  
C(xi ,X 3 ,X4 ), and two forward checkings occur at different levels of the search tree.
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procedure  restore(in current: integer);
1  x  <— order[current\;
2  for i <— current + 1  to  n do
3 y <— order[i];
4 if checking[x][y] =  current then
5 for each a € dom(y) and  domain[y][a] = current do domain[y}[a\ <— 0;
6  for j  <— 1  to  current do
7 v <— order[j];
8  if c/iecArm [̂w][j/] =  current th en  checking[u\[y\ = 0;

p rocedure record_checking( in C: constraint; in  y: variable; in current: integer)
%% bookmark the fact that the domain of y was pruned due to the propagation
%% on the constraint C.

1  for each v € vars(C) an d  v ^  y do
2 if checking[v][y] = 0  th e n  checking[v][y\ <— current:

function  check_forward( in  C : constraint; in current : integer:
o u t fa il : variable) : boolean;

1  x order[current\;
2  y <— the uninstantiated variable in vars(C);
3 changed«- false;
4 for each a 6  dom(y) an d  domains[y][a] =  0 do
5 solution[y] a;
6  if no t check_constraint( C, solution ) th en
7 changed <— true;
8  domains[y}[a] <— current;
9 domain.count[y] domain.count[y\ — 1 ;
1 0  H changed th e n  record_checking( C, </, current );
1 1  fa il <- (/;
1 2  if dama'm_count[f/] =  0  th e n  re tu rn  false:
13 else re tu rn  true ;

Figure 2.7: FC-CBJ.

36

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r th e r  reproduction  prohibited without perm iss ion .



function  consistent^ in current : in teger; ou t fa il  : variable) : boolean:
1  x «— arder[current];
2  for each C EC  and  x e  uars(C) do
3 if  count juninst[C] =  1 th en
4  if no t checkjfonvard( C, current, fa il  ) th e n  re tu rn  false;
5 re tu rn  true ;

function  FC.CBJ( in current : in teger ) : boolean;
1  if  current > n  th e n  re tu rn  true;
2  x  <— get_next_var( current ); order[current] =  x;
3 update_constraint_counts( x  );
4 for each a € dom(x) and  domains[x][a] =  0 do
5 solution[x\ a;
6  instantiated[x] «— true;
7 if  consistent ( current, fa il ) th en
8  j  <— FC_CBJ( current + 1  );
9 if j  ^  current then
1 0  restore( current );
1 1  instantiated[x\ <— false;
1 2  restore_constraint_counts( x  );
13 re tu rn  j;
14 else
15 cs[x] «— cs[x] U { y \ instantiated[y\ and checking[y\[f ail] /  0}:
16 restore( cu rren t);
17 instantiated[x] f -  false;
18 cs[x] cs[x] U { y | instan tia ted^  and checking[y][x] #  0};
19 j  <— max{ i \ 1 < i < current and order[i\ 6 cs[x] };
20 cs[order[j]\ <— (cs[order[j]] U csjx]) — [order[j]};
21 for i <— j  +  1 to  current do cs[(3rder[i]] <— 0;
2 2  restore_constraint_counts( x );
23 return j ;

Figure 2.7: FC-CBJ.
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that is, checking[x][y] =  i indicates that x  first checked against y by some constraint 
at level i. Thus until a backtracking occurs at level i, we know that x  is still in 
the conflicts set of y. The no-goods found in the backward phase, i.e., those from a 
conflicts set of a high level variable in a backjumping, are still recorded in the data 
structure cs. When a dead-end is encountered, these two pieces of information are 
merged together to form a complete conflicts set for the current variable. The pseudo 
code of FC-CBJ is shown in Figure 2.7.
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Chapter 3 

Look-ahead and Backjumping

The techniques for improving the naive backtracking algorithm can be conveniently 
classified as look-ahead schemes and look-back schemes [34]. Look-ahead schemes 
are invoked whenever the algorithm is preparing to assign a value to the current 
variable or to choose the next variable to be instantiated. In general, look-ahead 
schemes involve enforcing a certain level of consistency (on the subproblem consisting 
of all the future variables), using a dynamic variable ordering and using a dynamic 
value ordering heuristic. Look-back schemes are invoked whenever the algorithm 
encounters a dead-end and prepares for the backtracking step. Look-back schemes 
perform the functions that decide how far to backtrack by analyzing the reasons for 
the dead-end, and record the reasons for the dead-end in the form of new constraints 
so that the same conflicts will not arise again later in the search. Unfortunately, 
sometimes the look-ahead schemes are counterproductive to the look-back schemes, 
as it is well believed [60] th a t : “Look ahead to the future in order not to worry about 
the past.” That is, the more we do in the forward phase, the less we can save in rlie 

backward phase. For example, Bacchus and van Run [8] observe that adding CBJ 
to an algorithm that already uses a dynamic variable ordering based on the minimal 
domain heuristic is unlikely to yield much improvement. They explain that the use 
of the minimal domain heuristic will tend to cluster conflicted variables together, and 
hence CBJ is unlikely to generate large backjumps and its savings are likely to be 
minimal. Also, in [16], Bessiere and Regin state that: “CBJ was cheap to incorporate 
in BT, it was not prohibitive in FC, but it palpably slows down the search in MAC.” 
Thus they conjectured that “when MAC and a good variable ordering heuristic are 
used, CBJ becomes useless.”

However, all the above observations are based on experimental results, and they 
have never been justified theoretically. There is a preliminary result in Kondrak
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and van Beek’s work [69] saying that: “Given a binary CSP and a static variable 
ordering, FC always visits fewer nodes than BJ does.” Furthermore, the previous 
experimental results for CBJ have been limited to random and toy problems, which 
are usually formulated as binary CSPs. For example, Bacchus and van Run [8] use 
the zebra problem, n-Queens problem, and random binary problems to evaluate the 
effect of the minimal domain heuristic on several backtracking algorithms. They 
observe that CBJ provides hardly any savings if the minimal domain heuristic is 
used in the backtracking search. Bessiere and Regin’s conclusion about MAC-CBJ is 
solely based on experiments on random binary CSPs. On the other hand, it has been 
observed that look-back techniques, including backjumping and learning mechanisms, 
can dramatically improve problem solving on hard 3-SAT problems and real-world 
planning problems [10, 11].

This chapter presents three results that deepen our understanding of the relation
ship between look-back and look-ahead schemes. First, we show by example that CBJ 
may be exponentially better than an algorithm that maintains strong ^-consistency 
in the backtrack search and we show that backjumping becomes useless if an appro
priate variable ordering strategy is used in the chronological backtracking algorithm. 
Second, we introduce the concept of backjump level in the execution of a backjumping 
algorithm and some background results for maintaining strong ^-consistency. Then 
we show that an algorithm maintaining strong ^-consistency always visits no more 
nodes than a backjumping algorithm that is allowed to backjump no more than k lev
els. Third, we introduce a new backjumping algorithm, named GAC-CBJ. which is 
an extension of Prosser’s MAC-CBJ [93] to general CSPs. We show by experimental 
results that for some real world problems, GAC-CBJ can provide a huge amount of 
improvement over GAC.

3.1 CBJ and Variable Ordering

Experimental comparisons have shown that CBJ is, on average, not competitive with 
look-ahead algorithms, such as FC and MAC [8, 16, 92]. For example, the experi
mental results in [8] show that CBJ usually runs twice as slow as FC (in terms of 
the number of the constraint checks performed) when solving the zebra problem, n- 
Queens problem, and random binary problems. However, as the next example shows. 
CBJ has the potential to defeat many look-ahead algorithms.

E xam ple  3.1 Given a fixed integer k, we can construct a binary CSP with, n + k + 2
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Figure 3.1: A CSP mixed with two pigeon-hole problems.

variables, x t, . . . ,  z„_fc+L. y i , ■.., yk+u xn-k+2 , ■ ■ ■ , Zn+i, where dorn{xt) = { 1  n}
for 1  < i < n +  1  and dom(yj) =  { 1 ,....  A:} for  1  < j  < k + 1 . The constraints 
are: Xi  ^  X j ,  for i ^  j , and yt ^  yj, for i /  j .  The problem consists of two 
separate pigeon-hole subproblems, one over variables x \ , . . .  ,x n+i and the other over 
variables y i , . . . ,  yk+i, and is insoluble. As we know, the pigeon-hole problem is highly 
locally consistent [110]. The first subproblem is strongly n-consistent and the second 
is strongly k-consistent. Under the above static variable ordering, a backtracking algo
rithm maintaining strong k-consistency would not encounter a dead-end until x n- k+i 
is instantiated. Then it would find that the subproblem of x n- k+i , . . .  , x n+l is not 
strongly k-consistent. Thus the algorithm will backtrack before it reaches the second 
pigeon-hole subproblem. It will explore -*j nodes at level ri-k+l of the search tree and 
thus take an exponential number of steps to find the problem is insoluble. CBJ does 
not encounter a dead-end at the level of xn- k+i and it continues to the second pigeon
hole problem. Eventually it will find the second-pigeon hole problem is insoluble and 
backjump to the root of the search tree. The total number of nodes explored is bounded 
by a constant, 0 ((k  +  l) fc), for a fixed k. Therefore, CBJ can be exponentially better 
than an algorithm maintaining strong k-consistency.

Independently, Bacchus and Grove present a similar example in [6 ] to show that 
given a fixed k , CBJ may be exponentially better than an algorithm called MlkC. 
which essentially maintains ^-consistency in the backtrack search for binary CSPs.

Theorem  3.1 For any fixed integer k, there is a CSP instance and a static vari
able ordering such that CBJ visits exponentially fewer nodes than an algorithm that 
maintains strong k-consistency in the backtrack search.

Proof: It is true from the CSP in Example 3.1. |

One may argue that in the above example, if FC or MAC explores the smaller 
pigeon-hole problem first, it could perform much better under the new variable order-
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ing. It is true that if an appropriate variable ordering strategy is used, an algorithm 
doing chronological backtracking usually backtracks to the most relevant variable to 
the current dead-end such that backjumping becomes less useful. For example, it was 
said in [8 ]: “CBJ is unlikely to generate large backjumps and its savings are likely to 
be minimal if we use a good variable ordering heuristic.”

We are going to justify the above statement more precisely. That is, given a CSP 
instance and a variable ordering strategy for CBJ, there is a variable ordering strategy 
for the chronological backtracking algorithm (BT) such that BT visits no more nodes 
than CBJ does. We first consider the case of insoluble CSPs. When CBJ is applied 
to solve an insoluble CSP, it always backjumps from a dead-end state; i.e., it will not 
terminate or backjump from a situation in which a solution of the CSP is found.

Lem m a 3.2 Given an insoluble CSP instance and a (possibly dynamic) variable or
dering strategy for CBJ, there is a (possibly dynamic) variable ordering strategy for 
BT, such that B T  visits no more nodes than CBJ to solve the CSP.

Proof: In the backtrack tree generated by CBJ under the variable ordering strategy, 
let the last backjump that terminates the execution of CBJ be from variable Xj to 
the root of the backtrack tree. We choose Xj to be the first variable for BT. For 
each value a in the domain of xj, the next variable chosen to be instantiated after 
assigning a to Xj is the variable that backjumps to x3 and causes the assignment 
Xj <— a to be revoked. For example, in Figure 3.2, the first variable chosen for BT is 
Xj. After assigning value a to Xj, variable xJa is instantiated next, and so on. The 
entire variable ordering for BT can be worked out in a recursive manner. The only 
situation where BT could possibly be unable to follow the above ordering is if, at 
some stage, CBJ finds out that the current node is inconsistent so that there is no 
such backjump from a higher level variable to the current variable, but because BT 
instantiates fewer variables along the path from the root to the dead-end. it might not 
be able to detect the inconsistency and so it has to extend the current node. We can 
prove that such a situation does not exist in the ordering constructed for BT. That is. 
the variables skipped in the variable ordering constructed for BT are irrelevant to the 
dead-end states encountered by CBJ. Suppose at a stage we have ordered the variables 
to be instantiated for BT as xJk, and for value a €. dom(xJk) we choose the
next variable Xjk+l as the variable which backjumps to the current variable x n in 
the CBJ backtrack tree. We will prove by induction that the conflicts set of xJk_. 
used in the backjumping is subsumed by {x j,,. . .  k = I is the case of the last
backjump that terminates the execution of CBJ. The hypothesis is true because the
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Figure 3.2: A backtrack tree generated by CBJ to solve an insoluble CSP.

conflicts set of x7l is an empty set. Suppose it is true for the case of k. Because x]k^  
backjumps to Xjk, the conflicts set of xJk+l is merged in the conflicts set of x]k. From
the inductive assumption, the conflicts set of Xjk is subsumed by {xJt xJk_l}. and
thus the conflicts set of X j k+l  is subsumed by {x_,t , . . . ,  x j k }. Therefore, the hypothesis 
holds for the case of k + 1. If CBJ finds out that instantiation xjk <— a is inconsistent 
with the assignments of some past variables which are added to the conflicts set of 
X j k , BT is also able to find out the inconsistency because the conflicts set of xJk is 
subsumed by {xJl, . . . , £ j ii;_l}. Thus it is a feasible variable ordering for BT. Under 
such a variable ordering, BT visits no more nodes than CBJ does. |
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Figure 3.3: A backtrack tree generated by CBJ to find one solution.

For soluble CSPs, we further distinguish the problem between finding one solution 
and finding all solutions. When just one solution is required, CBJ will stop once it 
has found the first solution, {xi 4— tq , . . . ,  xn 4— an}, as shown in Figure 3.3.

Lem m a 3.3 Given a CSP instance and a variable ordering for CBJ to find the first 
solution, there is a variable ordering strategy for B T  such that B T  will visit no more 
nodes than CBJ to find the first solution.

Proof: A variable ordering for BT can be constructed in the following way: The first 
variable chosen for BT is xt as it is the first variable in the path from the root to 
the solution in the CBJ backtrack tree. Because we assume a static value ordering 
in the backtrack search, all values in the domain of xi that precede value cq must 
be rejected by CBJ and BT before value cq is used to instantiate Furthermore, 
because {xi 4 -  a t, . . . , x n 4— an} is the first solution encountered by CBJ under 
the above variable ordering and value ordering, the instantiation of x t with a value 
preceding at leads to an insoluble subproblem and eventually CBJ will backjump 
from a higher level variable to Xi to revoke that assignment. Note that x L cannot be 
skipped by a backjump from a higher level variable because x t is on the first level of 
the search tree and there is a solution for the CSP. We can arrange the instantiation 
order for BT in the insoluble subproblem, after assigning xi with each of the values 
that precede a\ in its domain. Whenever X* is instantiated with value a*, x^+l is 
chosen to be the next variable, as it follows x* in the path from the root to the 
solution in the CBJ backtrack tree. Again, all values in the domain of x*+l that 
precede ak+i in the value ordering must be rejected by CBJ and BT before ajt+i is 
assigned to Xk+i- The instantiation of xjt+i with each of these values will lead to an
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insoluble subproblem and eventually CBJ will backjump from a higher level variable 
to Xk+i. Similarly, x*+l cannot be skipped by a backjump from a higher level variable 
because otherwise at least one of the assignments to x l t . . .  ,x* must be changed so 
that {xi «— a l?. . . ,  x„ <— an} is not the first solution encountered by CBJ. We can 
arrange the instantiation order for BT in these insoluble subproblems. Finally, x n is 
instantiated with an and BT finds the solution. Under the above ordering, BT will 
visit no more nodes than CBJ does. |

When CBJ is used to find all solutions, special steps must be taken to handle 
the conflicts sets. The problem here is that the conflict sets of CBJ are meant to 
indicate which instantiations are responsible for some previously discovered inconsis
tency. However, after a solution is found, conflict sets cannot always be interpreted 
in this way. It is the search for other solutions, rather than an inconsistency, that 
causes the algorithm to backtrack. We need to differentiate between two causes of 
CBJ backtracks: (1 ) detecting an inconsistency, and (2) searching for other solutions. 
In the latter case, the backtrack must be always chronological; that is, to the imme
diately preceding variable. A simple solution is to remember the number of solutions 
found so far when a variable is chosen to be instantiated, and later when a dead-end 
state is encountered at this level, we compare the recorded number with the current 
number of solutions. A difference indicates that some solutions have been found in 
this interval of search, and forces the algorithm to backtrack chronologically. Other
wise the algorithm performs a normal backjumping by analyzing the conflicts set of 
the current variable.

Lemma 3.4 Given a CSP instance and a variable ordering for CBJ to find all so
lutions, there is a variable ordering strategy for B T  such that B T  will visit no more 
nodes than CBJ to find all solutions.

Proof: Let the first solution found by CBJ be {x! <— a L, . . .  ,x n <— a„} in the order 
of x l t . . .  ,x„. We first construct the variable ordering for BT as it is applied to find 
the first solution. However, because BT follows a strict chronological backtracking, 
it will inevitably visit all the nodes {xt <— a t , . . . , x7_t <— a; _ t,x ; <— a'}, where 
1  < j  < n  and a, precedes a!j in the domain of Xj. If CBJ skips any of these 
nodes, for example, from a higher level variable x/, to Xj_i, while the instantiations of 
X i,. . . , Xj have not been changed, BT will possibly visit more nodes than CBJ does. 
We will show this cannot happen by induction on the distance between the current 
level j  and the highest level n. After CBJ has found the solution at level n. it will
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try other values for x„ and eventually backtrack to xn_i. So the nodes at level n 
cannot be skipped. Suppose it is true for the case of level j  + 1  and now we consider 
the case of level j .  Because Xj <— aj was not skipped in the backjumping, if a3 is the 
last value in its domain, CBJ will backtrack to Xj_i because the number of solutions 
has been changed. So it is true for the case of j .  Otherwise CBJ will change the 
instantiation of Xj to the next value in its domain. Let the current partial solution 
be t =  {xi <— a i,...,X j_ i «— aj_i,x_, «— a'}. If the subtree rooted by t contains 
solutions, from the inductive hypothesis. CBJ will not skip this node because it is on 
level j .  If the subtree rooted by t contains no solution, there exists a backjump from 
a higher level variable x* to escape this subtree. Could it jump beyond Xj such that
t is skipped? In that case, the conflicts set of X/, is subsumed in {xt  -fj-i}- From
the definition of conflicts set, we know that the current instantiations of the variables 
in the conflicts set cannot lead to a solution. However the current instantiations of 
{xt , . . .  ,Xj_i} do lead to a solution, {xt <— a t , . . .  ,x„ <— a„}. That is a contradiction. 
So the conflicts set of x* must contain Xj and thus the node t at level j  cannot 
be skipped. After all the values in the domain of x; have been tried. CBJ will 
chronologically backtrack to x_,_i because the number of solutions has changed. Thus 
Xj_i aj-L will not be skipped. The hypothesis is true for the case of any level j. 
Then we construct the variable ordering for BT in the following way: If the current 
partial solution t =  {xt <— ai,...,x_ j_ i <— aj_i,Xj <— a'} cannot be extended to a 
solution, we construct a variable ordering for the insoluble subproblem. If t can be 
extended to a solution, we construct a variable ordering for BT as the case of finding 
the first solution in this subproblem, and recursively apply the above steps until a 
backjump to level Xj changes the instantiation Xj r -  a '. Under the above variable 
ordering, BT will visit no more nodes than CBJ does. |

T heorem  3.5 Given a CSP instance and a variable ordering for CBJ, there is a 
variable ordering strategy for B T  such that B T  will visit no more nodes than CBJ to 
solve the CSP.

P roof: It is straightforward from Lemma 3.2, Lemma 3.3, and Lemma 3.4. |

E xam ple 3.2 Figure 3-4 shows the B T  backtrack tree based on the variable ordering 
constructed from the execution of CBJ to solve the CSP in Example 2.1 under a 
(hypothetical) dynamic variable ordering. The first solution found by CBJ is {xi <— 
0,x 2  <r- 0, x3  <— 2,xs f -  0 ,x 4  <— 0}. Thus B T  first instantiates x L and x 2  to 0. The
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Figure 3.4: An example of the variable ordering constructed for BT from the CBJ 
backtrack tree.
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node {xi <— 0 ,x 2  0 ,X3  <— 0} and {xi <- 0,x 2  <— 0, x2  «- 1} in the CBJ backtrack
tree lead to two insoluble subproblems. The variable ordering for B T  at each of these 
nodes is constructed as in the case of insoluble CSPs. For example, in the CBJ 
backtrack tree, the last backjump to revoke the node {xt <— 0,x2 0. x:i <— 0} is
from X5  to X3 , so the next variable instantiated in B T  at this node is X5 . Under such 
an ordering, B T  avoids instantiating X4  and visits fewer nodes than CBJ. Then B T  
instantiates X3  to 2, X5  to 0 , and X4  to 0 , and finds the first solution. As we can see in 
the above figure, after CBJ finds the first solution, denoted by {x'L 4— a i , . . .  ,x'n <— ari}, 
none of the nodes {x;t a t, . . . , x '_ L aj_l:x' <— a'} , where j  < n  and a3 precedes 
a'j in the domain of x ', is skipped by CBJ. Thus, both B T  and CBJ will visit these 
nodes and the variable ordering for B T  at each of these nodes is constructed in the 
same way as in the case for the insoluble subproblems or the case of finding the first 
solution in the subproblem.

Therefore, the effect of backjumping may be degraded by the use of an appropriate 
variable ordering. Of course, the above ‘‘perfect” variable ordering strategy for BT 
will, in general, not be known until the completion of CBJ. So we have used too much 
magic to make BT perform better than CBJ. Also, in practice, it is not our primary 
goal to devise a variable ordering that enables a chronological backtracking algorithm 
to simulate the execution of the CBJ, but to find a variable ordering that can greatly 
improve the backtrack search. There are many efficient heuristics for solving CSPs. 

For example, the fail first heuristic selects the next variable to be instantiated with 
the minimal remaining domain size. As a result, variables that have conflicts with 
past instantiations are likely to be instantiated sooner, and thus the conflict variables 
tend to be clustered together in the backtrack search. Hence, CBJ is unlikely to 
generate large backjumps [8 ]. However, the fail first heuristic is not always consistent 
with the above “perfect” variable ordering. Hypothetically, because we do not have 
the “perfect” variable ordering a priori, or we do not want to use it in the backtrack 
search even if we could find one, CBJ still has the chance to improve the search 
and sometimes it can be dramatically better than an algorithm doing chronological 
backtracking.

3.2 Backjump Level and BJ^

From Theorem 3.1, we know that under a static variable ordering. CBJ can per
form much better than a look-ahead algorithm that maintains strong ^-consistency
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Figure 3.5: An illustration of backjump levels in a CBJ backtrack tree to solve the 
CSP in Example 2 .1 .

in the backtrack search. The use of consistency in a backtrack search will reduce the 
“chances” for backjumping. To analyze the influence of the level of consistency on 
the backjumping, we need the notion of backjump level. Informally, the level of a 
backjump is the distance, measured in backjumps, from the backjump destination to 
the “farthest” dead-end [6 8 ].

D efinition  3.1 (backjum p level) The definition of backjump level is recursive:
1. A backjump from variable £j to variable x/, is of level 1 if it is performed directly 
from a dead-end state in which all values of Xj fail in the consistency check.
2. A backjump from variable x, to variable x/, is of level d > 2 , if all backjumps 
performed to variable x, are of level less than d, and at least one of them is of level 
d — 1.

Figure 3.5 shows the backjump levels in the CBJ backtrack tree to solve the CSP 
in Example 2.1. There is a one-level backjump from x 5  to X3  because all values in the 
domain of x5  fail in consistency checks. Then CBJ finds two solutions for the problem 
and thus it chronologically backtracks from x 4  to x5, and later to x3. The backjumps 
are of level one and two respectively. At last there is a three-level backjump from .r:i 
to x2.

By classifying the backjumps performed by a backjumping algorithm into different 
levels, we can now weaken CBJ into a series of backjumping algorithms which perform 
limited levels of backjumps. BJ* is a backjumping algorithm which is allowed to
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perform at most /c-level backjumps and it chronologically backtracks when a j-level 
backjump for j  > k is encountered l . BJn is equivalent to CBJ, which performs 
unlimited backjumps, and BJt is equivalent to Gaschnig’s BJ [53], which only does 
the first level backjumps.

One may immediately conclude that BJfc+i is always better than BJjt because it 
does one more level of backjumps. However, to be more precise, we need to justify 
that a situation where BJ* may skip a node visited by BJt+ 1  does not exist. Similar 
to the proof of Theorem 9 in Kondrak’s work [6 8 ], we can show that:

Theorem  3.6 BJk visits all the nodes that BJk+1 visits.

3.3 Maintaining Strong A;-Consistency (MC*.)

Many people in the CSP community have talked about the possibility of applying a 
higher level of consistency in a backtrack search. However, a backtracking algorithm 
maintaining strong ^-consistency (MC*) has never been fully addressed in the litera
ture. In order to study the relation between BJ* and MC*, we need some background 
on strong ^-consistency and MC*.

3.3.1 Achieving Strong fc-Consistency
Strong ^-consistency achievement is a “rough” concept because two algorithms both 
achieving strong ^-consistency may not always compute the same resulting CSP 2. One 
reason is that some redundant constraints or universal constraints can be arbitrarily 
added into and removed from the CSP, without affecting its consistency. For example, 
given a CSP with three constraints aq ^  xo, £i ^  £ 3 , and £ 2  7  ̂ ^ 3 * the constraint. 
alldifferent{xuX2 ,xz) is redundant and it can be added into or removed from the CSP 
without affecting its consistency.

After a CSP instance is made strongly ^-consistent, for any partial solution 
over less than k variables, t =  {xit <— an  x l} <— aij} where j  < k. t is ei
ther inconsistent in the resulting CSP, or it can be consistently extended to any 
(j +  l) t/l variable. The execution of a strong ^-consistency achievement algorithm 
can be viewed as a proving process. That is, an algorithm enforcing strong k- 
consistency on a CSP instance should detect and remove all those inconsistencies

lBJ/t is only o f theoretical interest since in practice one would use CBJ rather than artificially 
prevent backjumping; i.e., one has to actually add code to prevent backjumping.

2Also an algorithm enforcing strong (Ar+l)-consistency can be used to achieve strong k- 
consistency.
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Figure 3.6: A three-proof-tree for {xt <— g} in the graphing coloring problem. All 
leaf nodes are inconsistent in the CSP.

t =  {x^ «— ait, . . . ,  *r- aij} where j  < k and t is consistent but cannot be consis
tently extended to some (j + l)th variable xlj+l. To remove an inconsistency, we make 
it inconsistent in the resulting CSP by means of removing values from the domains, 
removing the inconsistent tuples from the existing constraints, and adding new con
straints to the CSP. Usually, we are more interested in the domains of the variables 
after achieving strong ^-consistency. We assume that for each variable x .  if there is a 
unary constraint C over x in the resulting CSP. then for each value a in the domain 
of x, a is removed from the domain if {x a} does not satisfy C.

We use the concept of fc-proof-tree to characterize the strong ^-consistency achieve
ment algorithms.

D efinition 3.2 (fc-proof-tree) A k-proof-tree for a partial solution t over no more 
than k variables in a CSP is a tree in which each node is associated with a partial 
solution over at most k variables in the CSP, where (1) the root of the k-proof-tree 
is associated with t, and (2) each leaf node of the k-proof-tree is inconsistent in the
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CSP, and (3) each intermediate node s of the k-proof-tree is consistent in the CSP, 
and the children of s at the next level are nodes s' U (x ax s' U {x <— a;} such 
that s ' C s , i ^  uars(s), and dom[x) =  {ai , . . . ,  a/}.

Figure 3.6 shows a three-proof-tree (more than one is possible) for {./ [ <— <j) in 
the given graphing coloring problem. For example, in the above figure, the root of the 
three-proof-tree is {xL <— g} and all the leaf nodes are inconsistent in the original CSP. 
Because node {xi <— g} is consistent in the original CSP, it is not a leaf node. In this 
three-proof-tree, its children at the next level are {xi g,x* <— r}, {xi <— g..r> g) 
and {xt g ,x2 b}.

After a CSP is made strong ^-consistent, if a partial solution t over no more than k 
variables is inconsistent in the resulting CSP, we can construct a fc-proof-tree for t from 
the execution of the strong ^-consistency achievement algorithm. If t is inconsistent in 
the original CSP, the A>proof-tree contains a single node t. Otherwise, there must exist 
a point in the execution of the algorithm at which t or a subtuple t' of t failed to be 
extended to one additional variable x. That is, at this point, all the partial solutions 
t' U {x <— a ^ , . . . ,  f ' u  {x aj}, where dom(x) =  ( a i , . . .  , a/}, are inconsistent in the 
resulting CSP. Then we can construct the A:-proof-tree recursively for each of those 
inconsistencies. On the other hand, given a A:-proof-tree for an inconsistency in a 
CSP, any algorithm achieving strong fc-consistencv is able to deduce and remove the 
inconsistency. After applying a strong fc-consistency achievement algorithm on the 
CSP, if all the children of a node in the A:-proof-tree are inconsistent in the resulting 
CSP, that node is also inconsistent in the resulting CSP because one of its subtuples 
cannot be consistently extended to one additional variable. Because all the leaf nodes 
in the A:-proof-tree are inconsistent in the original CSP and thus in a bottom-up 
manner, the inconsistency on the root of the tree can be deduced and removed from 
the resulting CSP.

3.3.2 Induced CSP and Maintaining Strong fc-Consistency
A generic scheme to maintain a level of local consistency in a backtrack search is to 
perform at each node in the search tree, one full cycle of consistency achievement. 
A consistency achievement algorithm is applied to the problem instantiated with the 
current partial solution. This problem is called an induced CSP of the original CSP. If. 
as a result, the induced CSP becomes empty after applying the consistency algorithm, 
the instantiation of the current variable will lead to a dead-end and it should be 
excluded. If the resulting CSP is not empty, the instantiation of the current variable
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is accepted and the search continues to the next level.
The simplest form of an induced CSP, as used in GAC, is to restrict the domains 

of the instantiated variables to have only one value and leave the set of constraints 
unchanged. This idea can be traced back to Gaschnig’s implementation of MAC. 
referred to as DEEB [54], i.e., Domain Element Elimination with Backtracking. In 
DEEB, when a variable x  is instantiated with a value a, the domain of the current vari
able is set momentarily to a single value, i.e., dom(x) <— {a}, and the uninstantiated 
variables are then made arc consistent. An identical approach was taken by Burke 
when designing the constraint maintenance system for the Distributed Asynchronous 
Scheduler. A scheduling decision is viewed as the addition of a unary constraint [23].

D efinition 3.3 (induced C SP) Given a partial solution t of a CSP P, the CSP 
induced by t, denoted by P\t, is exactly the same as the original CSP except that the 
domain of each variable x  € vars(t) contains only one value f[x], which has been 
assigned to x  by t.

For example, GAC at each node of the search tree performs generalized arc consistency 
achievement on the CSP induced by the current partial solution 3. GAC continues 
to extend the current partial solution if none of the future domains becomes empty 
after achieving arc consistency on the induced CSP.

However, MC* cannot be simply defined as applying strong fc-consistencv achieve
ment on the induced CSP at each node in the backtrack search. Such an implemen
tation is problematic. For example, if a CSP contains only (Ar-Pl)-ary constraints, its 
induced CSPs are always strong ^-consistent because no constraint can be checked 
for a tuple with no more than k  variables. Intuitively, the arity of a constraint should 
be lowered if some of its variables have been instantiated. That is, the subproblem 
used to achieve strong ^-consistency should include the selections and projections of 
the constraints with respect to the current partial solution. For example, if there is a 
constraint C (x i ,x 2 ,x 3) and Xi has been instantiated in the current partial solution t. 
the constraint 7r{X2 ]l3 }(T{I l^ f[II]}C(xi,X2 ,X3 ) should be included in the induced CSP. 
In order to establish a relation between BJ* and MC*, we need a more restricted 
definition of the induced CSP, called s-induced CSP, where "s" denotes selections of 
the constraints.

3In our implementation of GAC, the arc consistency achievement algorithm is applied to a more 
restricted problem than the induced CSP, in which the domains of future variables are also pruned 
according to the result of the arc consistency achievement at an earlier stage. Nevertheless, these 
domain prunings would be redone in the case that the arc consistency algorithm was applied to the 
induced CSP.
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D efinition 3.4 (s-induced C SP) Given a partial solution t of a CSP P, the CSP 
s-induced by t, denoted by P |j , is constructed as the following: P|* has all the variables 
in P  except those having been instantiated by t. The domains of the variables are the 
same as those in P . For each of the constraints C in P where vars(C) % vars(t), a 
new constraint C' is added to P\st , where vars(C') = vars{C) — vars(t) and rel(C) = 
{s[-yars(C) — uars(t)] | s E rel(C) and s[uars(C) Duars(f)] = t[cars{C)r\ curs{t)\}.

E xam ple 3.3 Consider the graph coloring problem in Figure 3.6. The original CSP 
has 4 variables, x i , . . . , x 4, where x i ,x 2 , x 3  6  {r,g,b} and x4  E {r}. There are 5 
binary constraints, x t ^  x2, x L ^  x3, x> ^  x3, x2  ^  x4  and x3  x4. Given a partial 
solution, t =  {xi •e- g}, the induced subproblem P\t has 4 variables, x i , . . . , x 4, 
where the domains of x i , . . . , x 4  are {<?}, {r,g,b}, {r,g,b} and {r}, respectively. The 
constraints in P\t are the same as those in the original CSP. The CSP s-induced by 
t, P \st , has 3 variables, x2j x3  and x4. The constraints in P\*t are, C '(x2) = {(r), (6 )}, 
C'{xf) =  {(r), (6 )}, x2  7  ̂x3) x2  ^  x4  and x3 #  x4.

We may notice the difference between the induced CSP and the s-induced CSP. 
The induced CSP has all the variables and the constraints in the original CSP, but 
restricts the domains of the instantiated variable (in the partial solution) to have only- 
one value. The s-induced CSP has only the uninstantiated variables (with respect to 
the partial solution) in the original CSP. The constraints in the s-induced CSP are 
the selections (and projections) of the constraints in the original CSP.

The maintaining strong ^-consistency algorithm (MC*) at each node in the back
track search tree applies a strong ^-consistency achievement algorithm to the CSP 
s-induced by the current partial solution. Under such an architecture. FC can be 
viewed as maintaining one-consistency, and for binary CSPs, MAC can be viewed as 
maintaining strong two-consistency 4.

The following lemmas (Lemma 3.7 to Lemma 3.12) reveals some basic properties 
about the induced (s-induced) CSPs and the strong ^-consistency enforcement on 
the induced (s-induced) CSPs, which will be used in the proofs of Theorem 3.14 and 
Theorem 3.18.

L em m a 3.7 Given a CSP P  and two partial solutions t and t' o f P, if t C  t '. then 
P\t' — (-PltJIt'-t ond P\se =  (P|?)|?*_£.

P roof: It is easy to verify that P\t> = (P |t)|t'-t. Note that P|f/ and (P|f)[(<_£ have 
the same set of variables and the same set of domains. For each constraint C in P.

4However, for general CSPs, arc consistency is not equivalent to strong two-consistency.
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because vruarj(C)—vars{t']Gt'C — ftvaTs(C)—vars(t')&t'—t(jtvars(C)—uars(t)&tC)% the constraint 
C  makes the same selection and projection in P\3t, and (P |£)|£<_£- Therefore. P |(\ and 
(P|?)|£_t have the same set of constraints. That is, P\f, = (P |f )|f/_£. |

L em m a 3.8 Given a CSP P, i f  P is not empty after achieving strong k-consistency, 
it is not empty either after achieving strong j-consistency, for j  < A.

P roof: Suppose P  is empty after enforcing strong j-consistency. Thus there is a 
j-proof-tree for the empty inconsistency in P. Because a j-proof-tree is also a A- 
proof-tree for j  < k, P  is empty after achieving strong ^-consistency. That is a 
contradiction. |

Intuitively, the s-induced CSP is more restrictive than the induced CSP. Given 
a CSP P  and a consistent partial solution t, if P\t is empty after enforcing strong 
A-consistency, there is a A-proof-tree for the empty inconsistency in P |(. We can 
convert the A-proof-tree of P |t into a A-proof-tree for the empty incousistencv in P j .  
The transformation is done in two steps:
(1 ) Each node t' in the original A-proof-tree is replaced by t'[vars{t') -  cars(t)]. N'ote 
that tr[vars{tf) — i/ars(£)] is a valid partial solution in P\3 (because P\*t does not 
have the variables in uars(t)). Furthermore, if t' is not a leaf node in the original 
A-proof-tree, i.e., t‘ is consistent in P |t, it is easy to verify that t'[vars(t') -  cars(f)] 
is consistent in P |f , i.e., t^va rs^ )  — uars(f)] is a valid intermediate node in the A- 
proof-tree (from the definition of A-proof-tree, an intermediate node in a A-proof-tree 
must be consistent in the CSP). If t1 is a leaf node in the original A-proof-tree, then 
vars(tf) — vars(t) 0. Otherwise, we have t1 C t. Because t is consistent in P 
and thus t is consistent in P |t (note that P |t has exactly the same set of constraints 
as P  and t is a valid partial solution in P\t), thus t1 is consistent in P |£. That is a 
contradiction. Because t1 is inconsistent in P |£, there is a constraint C in P |£ such that 
f  does not satisfy C, and thus f/[uars(£/) — uars(£)] does not satisfy the selection of C 
in P |j. Therefore £/[uars(£') — i/ars(£)] is inconsistent in P |f. i.e.. t'lvarsit1) -  rrzr*(M’ 
is a valid leaf node in the A-proof-tree.
(2) For each node tf in the original A-proof-tree. if a subtuple t" C t' is used to be 
extended to a variable x  instantiated in f, because the domain of x  has only one value 
£[x] in P |£, f  has only one descendant t" U {x <— £[x]} at the next level. After t' 
is replaced by tf[vars(t1) — uars(f)] and t" U {x f[x]} is replaced by t"[vars(t") — 
uars(t)], we notice that t"[vars(t") — uars(£)] is subsumed in t'[uars{t') — vars(t)]. 
We further drop the node £"[uars(£") — uars(£)] and make all its descendants to be

55

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r th e r  reproduction  prohibited without perm iss ion .



12

* 1 X4

*1 €  {3 J. X 2 . X J  e ( r , s , 6 } , x 4 €  { r>
C ( x i . x j ) ■ *1 * * 3
C ( x 1 , x j ) : *1  *  *3
C ( i i . x j ) : * 2  *  *3
C ( x j , x 4 ) : * 2  *  *4
C ( x j , x 4 ) : * 3  *  **

* 2 . * 3  €  { r . 3 . 6 ) . x 4 €  ( r )  
C ( r - )  : {( r ) . (6)>
C ( x j )  : { ( r t .  t&)>
C l x j . x j )
C ( x j , x 4 )
C ( x j . x 4 )

*1 ♦— 9 , ^  ri 9 •
r 2 ** p / -^ £ 2  b

~  * 3  — .7 ’
^  X2 —  b

* 2 — b ' P r j  * •  6 r 4 — r \ J  r 3 • -  r •  r ,  ~  fc
* 3 - 9 X3 * * 6

xj
X4

Figure 3.7: In the above graph coloring example, given a partial solution t =  {xi <— 
<7 }, there is a three-proof-tree for the empty inconsistency in the induced problem. 
Furthermore, this three-proof-tree can be converted into a three-proof-tree for the 
empty inconsistency in the s-induced problem.
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the descendants of t'[vars(t') — uars(t)]. This operation is necessary because x  is not 
a variable in P\st and from the definition of A-proof-tree, a node in a A.--pro of-tree can 
only be extended to a variable of the CSP.

E xam ple 3.4 Consider the graph coloring example again. Given a partial solution 
t =  {xi <— g}, we can construct a three-proof-tree for the empty inconsistency in 
the induced subproblem. Furthermore, the three-proof-tree can be converted into a 
three-proof-tree for the empty inconsistency in the s-induced subproblem, as shown 
in Figure 3.7. For example, in the above figure, the node {xt <— g ,x2 «— g} in the 
original three-proof-tree is replaced by the node {x2 <— g}, while {xi <— g. x2 <— g} is 
inconsistent in the induced subproblem and {x2 g} is inconsistent in the s-induced 
subproblem. /Is we can see, the root of the original three-proof-tree is extended to 
variable x t , which is instantiated in t. The root has only one descendant {xt <— g) 
at the level of x i. In the three-proof-tree for the s-induced subproblem, the above two 
nodes are merged into one node e.

After the above operations, we have made a A-proof-tree for the empty inconsis
tency in P\st . Hence, we have the following result.

Lem m a 3.9 Given a CSP P and a consistent partial solution t, if P\\ is not empty 
after achieving strong k-consistency, P\t is not empty either after achieving strong 
k-consistency.

Lem m a 3.10 Given a CSP P  and a partial solution t of P, if P\t is not empty 
after achieving strong k-consistency, P  is not empty either after achieving strong k- 
consistency. Furthermore, for each variable x  € vars(t), value t[x] m il not be removed 
from the domain of x  when achieving strong k-consistency on P.

Proof: Suppose P  is empty after achieving strong ^-consistency. Thus there is a 
A-proof-tree for the empty inconsistency in P. By removing all the nodes (and their 
descendents) in the A-proof-tree that are invalid in P\t, i.e., the tuple has instantiated 
a variable with a value not in its domain in P\t, we can construct a A-proof-tree for 
the empty inconsistency in P\t. Therefore, P\t is empty after achieving strong A- 
consistency. That leads to a contradiction. For each variable x E vars{t), suppose 
value t[x] is removed from the the domain of x when achieving strong ^-consistency 
on the original CSP, there is a A-proof-tree for (x  <— t[x]} in P. Similarly, we can 
construct a A-proof-tree for {x <— f[x]} in P\t by removing all the invalid nodes of 
the original A-proof-tree. Therefore, the only value t[x] in the domain of x in the P |t
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must be removed when achieving strong ^-consistency and thus P\t is empty after 
achieving strong ^-consistency. That is a contradiction. |

C orollary  3.11 Given a CSP P and a consistent partial solution t of P, if  P|* is 
not empty after achieving strong k-consistency, P  is not empty after achieving strong 
k-consistency. Furthermore, for each variable x  6  vars(t), value t[x] will not be 
removed from the domain of x  when achieving strong k-consistency on P.

Proof: It is straightforward from Lemma 3.9 and Lemma 3.10. |

Lem m a 3.12 Given a CSP P, i f  P is not empty after achieving strong k-consisttncy 
and a value a € dom(x) is not removed from the domain of variable x  in the re
sulting CSP, the s-induced CSP P|{x<_a} is not empty after achieving strong (k-IJ- 
consistency.

Proof: Suppose P | |x<_a} is empty after achieving strong (fc-l)-consistency. Thus 
there is a (Ar-l)-proof-tree for the empty inconsistency in P | |x+_a}. We now convert 
the (fc-l)-proof-tree to a fc-proof-tree for {x <— a} in P. For each node t in the 
original (A;-l)-proof-tree, t is replaced by t U {x <— a}. Thus the root of the tree 
becomes {x «— a}. Furthermore, if t is not a leaf node in the original (fc-l)-proof-tree: 
i.e., t is consistent in P | |x«_a}, it is easy to verify that t\ j{ x  «— a} is consistent in P. If 
t is a leaf node in the original (fc-l)-proof-tree; i.e., t is inconsistent in P|{x_„}. there 
is a constraint C' in P | |x<_a} such that t does not satisfy C'. Let C' be the selection 
and projection of the constraint C  in P. Thus, t does not satisfy the constraint C 
in P. Therefore, t U {x «- a} is inconsistent in P. Hence, we have constructed a 
A:-proof-tree for (x a} in P  and thus a will be removed from the domain of x when 
achieving strong fc-consistency on P . That is a contradiction. |

MC* will extend the current node if the s-induced CSP by the current partial 
solution is not empty after achieving strong ^-consistency. The node is thus called a 
k-consistent node.

D efinition 3.5 (^-consistent node) A node t in the search tree is a ^-consistent 
node i f  the CSP s-induced by t is not empty after enforcing strong k-consistency.

Lem m a 3.13 I f  node t is k-consistent, its ancestors are also k-consistent.
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Proof: Let tf be one of t ’s ancestors. Because if C t, from Lemma 3.7, P\*t = 
Thus P\3t is an s-induced subproblem of P|£,. From Corollary 3.11. if 

P\3t is not empty after achieving strong ^-consistency, P\st, is not empty either after 
achieving strong ^-consistency. Thus t' is ^-consistent. |

The following theorem applies to the case of finding all solutions.

T heorem  3.14 MCk visits a node only if its parent is k-consistent. MCk visits a 
node i f  it is k-consistent.

Proof: The first part is true because MC* will not branch on this node if its parent 
was found not strong fc-consistent. We prove the second part by induction on the 
depth of the search tree. The hypothesis is trivial for j  — 1. Suppose it is true for j  
and we have a ^-consistent node t at level j  + 1. Let the current variable be x. From 
Lemma 3.13, t's parent t' at level j  is ^-consistent. Thus MC* will visit t'. From 
Lemma 3.7, P|* =  (Pl?/)!!*^*]}- Because is not empty after achieving
strong ^-consistency, from Corollary 3.11. value f[x] will not be removed from the 
domain of x  when achieving strong ^-consistency in P\f,. As a consequence. MCfc will 
visit t. |

A sufficient and necessary condition for MC* to visit a node t is: t's parent is 
^-consistent and the value assigned to current variable by t has not been removed 
from its domain when enforcing strong ^-consistency on t's parent.

T heorem  3.15 Given a CSP instance and a variable ordering strategy, MCk visits 
all the nodes that MCk+i visits.

Proof: It is true from Theorem 3.14 and Lemma 3.10. |

3.4 Backjumping Interleaved w ith Consistency En
forcement

In this section, we first study the relation between MCk and BJ*. Kondrak and van 
Beek [69] have shown that for binary CSPs, BJ (BJx) visits all the nodes that FC’ 
(MCj) visits. We can extend their result to the case of general CSPs.

L em m a 3.16 I f  CBJ performs a one-level backjump from a higher level variable x t 
to a low level variable Xh, the node t^ at the level of Xh is not one-consistent.
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i fc-Ievel backjumping

/  conflicts set S,
- 0- - e

V
' l-level backjumping, i < k

_  _  ' conflicts set S.----------------------- -Q .------- . 0 ------------------------x;

Figure 3.8: A scenario in the CBJ backtrack search tree used in the proof of Lemma 
3.17.

Proof: Let S* be the conflicts set of Xj used in the backjumping in which X/, is the 
highest level variable. We will show that X* will experience a domain wipe out when 
enforcing one-consistency on the s-induced CSP Pl^s,]- Each node tt at the level of 
Xi is a leaf node; i.e., f* is inconsistent in P. Suppose f* does not satisfy constraint 
C  where X* 6  vars(C) and vars{C) C Si U {xj}. The selection of C  in P\lk[s,\- which 
constrains only one variable {xj}, should prohibit value fj[xj] of £i. Thus x, will 
experience a domain wipe out when enforcing one-consistency on Pl^s,]- ^ ote that 
P\sth is an s-induced subproblem of Plf^s,]- From Corollary 3.11, P\sth is empty after 
enforcing one-consistency. Thus t/, at the level of x/, is not one-consistent. |

Lem m a 3.17 If CBJ performs a k-level backjump from a higher level uaiiable x, to 
a low level variable x^, the current node th at the level of Xh is not k-consistent.

Proof: Let S,- be the current conflicts set of xt in which x^ is the highest level variable. 
We will show that if there is a A:-level backjump from x, to x/,, then P|?h[stj is empty 
after enforcing strong ^-consistency and thus t/, is not fc-consistent. We perform an 
induction on k in the above statement, k = 1 is true from Lemma 3.16. Suppose 
the hypothesis is true for the case of k — 1 but it is not true for the case of k. That 
is, there is a Ar-level backjump from x* to x/,, but the s-induced CSP P\th{s,] is not 
empty after enforcing strong fc-consistency. So there is at least one value a left in 
the domain of xt after enforcing strong ^-consistency on We know that the
node ti at the level of Xj instantiating x, with a is either incompatible with f/,; i.e.. 
it is a leaf node, or /-level backjumped from some higher level variable Xj, for some
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1  <  I < k. ti cannot be a leaf node otherwise a will be removed from the domain of 
Xi when enforcing strong ^-consistency. Let Sj be the conflict set of xr  From the 
hypothesis, the s-induced CSP j Is empty after achieving strong /-consistency. 
Because the s-induced CSP P \ is not empty after achieving strong ^-consistency 
and value a is not removed from the resulting CSP, from Lemma 3.12, the s-induced 
CSP P ^ ^ u fn -a }  *s not empty after achieving strong (Ar-l)-consistencv. Because 
U [ S j ]  C U {x <— a}, the s-induced CSP is not empty after achieving
strong (A:-Inconsistency. That leads to a contradiction. Thus P |th[Si] is empty after 
achieving strong ^-consistency and th at the level of x h is not ^-consistent. |

T heo rem  3.18 Given a CSP instance and a variable ordering strategy, BJk visits 
all the nodes that MCk visits.

Proof: We prove it by performing induction on the level of the search tree. If MC* 
visits a node at level j  in the search tree, BJ* will visit the same node, j  = 1 is 
trivial. Suppose that it is true for the case of j  and we have a node t visited by MC* 
at level j  +  1. We know both MC* and BJ* will visit f:s parent at level j .  The only 
chance that t may be skipped by BJ* is that BJ* backjumps from some higher level 
variable x* at level i to a low level variable xh at level h, such that h < j  -i- 1 < i. 
Thus the node at level h is not ^-consistent. Since the node at level h is an ancestor 
of t and we know t’s parent is fc-consistent from Lemma 3.13. the node at level h is 
fc-consistent. That is the contradiction. Therefore, BJ* will visit t at level k+  1. |

We have proved that MC* always visits no more nodes than BJ*. When k =  n. 
because MCn, i.e., maintaining strong n-consistency in the search, can solve the 
problem without backtracking [39], it always visits fewer nodes than CBJ. Thus the 
more we check forward, the less we jump backward. Certainly, in most cases. MC* 
will visit dramatically fewer nodes than CBJ does, but there are instances such that 
it is exponentially worse than BJ*:+i. For instance, in Example 3.1, BJ*+l can be 
exponentially better than MC*.

Presumably, MC* may be combined with backjumping, namely MQt-CBJ. pro
vided the conflicts sets are computed correctly after achieving strong ^-consistency 
on the s-induced CSPs.

T h eo rem  3.19 Given a CSP instance and a variable ordering strategy, MCk visits 
all the nodes that MCk-CBJ visits.
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Figure 3.9: A hierarchy for BJ*, MCfc, and their hybrids in terras of the size of the 
backtrack search tree.

P roof: Because MCfc-CBJ behaves exactly the same as MC* in the forward phase of 
a backtrack search, it is easy to verify that MCfc-CBJ visits a node t only if t's parent is 
^-consistent and the value assigned to the current variable by t was not removed from 
its domain when achieving strong Ar-consistency on t ’s parent. Therefore. MCfc-CBJ 
always visits no more nodes than MC* does. |

Consider Example 3.1 again. At each level of the backtrack tree, the instantiation 
of each of the past variables removes one distinct value from the domain of the current 
variable (because of the binary difference constraints), thus the conflicts set of the 
current variable should include all the past variables. Therefore, there are no chances 
for MCfc-CBJ to backjump in the specially constructed CSP so that MCfc-CBJ and 
MCfc visit exactly the same nodes. Consequently, BJfc+i can be exponentially better 
than MCfc-CBJ. Furthermore, because MCfc_i-CBJ can reach the second pigeon-hole
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problem without encountering a dead-end, it can finally retreat from the second 
pigeon-hole problem to the root of the backtrack search tree by backjumps. Thus. 
MCfc_i-CBJ may be exponentially better than MCfc-CBJ.

In Figure 3.9, we present a hierarchy in term of the size of the backtrack search 
tree, for BJfc, MC* and MCfc-CBJ. If there is a path from algorithm A  to algorithm 
B in the figure, we know that A  always visits no more nodes than B does. Otherwise, 
there are instances to show A  may be exponentially better than B, and vice versa.

Although the benefits from backjumping are offset by the efforts of look-ahead. 
FC-CBJ is a good trade-off between FC and CBJ and it may improve FC and CBJ by 
orders of magnitude. Could the combination of CBJ with an algorithm maintaining a 
stronger consistency still provide improvement? In the following, we will discuss the 
combination of CBJ with MAC or GAC, which enforces a stronger consistency than 
FC does.

3.5 Generalized Maintaining Arc Consistency with 
Conflict-directed Backjumping (GAC-CBJ)

Maintaining arc consistency with conflict-directed backjumping for binary CSPs. 
called MAC-CBJ, was proposed by Prosser [93]. Prosser's implementation of MAC- 
CBJ is based on the AC3 algorithm for binary CSPs [75]. We present a generalized 
version of MAC-CBJ, called GAC-CBJ.

3.5.1 Implementation
The pseudo code of GAC-CBJ is shown in Figure 3.10. GAC-CBJ can be viewed as 
an integration of GAC in Figure 2.6 and FC-CBJ in Figure 2.7 with careful handling 
of conflicts information in constraint propagation. Whenever value a of a future 
variable y fails to find a valid support in a constraint and thus is removed from its 
domain, GAC-CBJ needs to compute a no-good accountable for such a removal. To 
ensure completeness, Prosser suggests that the conflicts sets be propagated along with 
constraint propagation. The failure of y <— a to find a valid support in a constraint 
C  may be due to: (1) an instantiation of a past variable does not support y *— a in 
C  and thus the past variable should be added to the current conflicts set of variable 
y, (2) a value of an uninstantiated variable x, which could be used to form a support 
for a in C, is removed from its domain. Thus the current conflicts set of x. which 
is accountable for current removings in the domain of x, should be merged in the
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procedure  restore(in current: integer);
1 x  <— order[current];
2 for i current +  1 to  n  do
3 y <— order [i];
4 if  c/iecfciny[x][y] =  current th en
5 for each a £ dom(y) and  domain[y][a\ =  current do domain[y}[a\ <— 0;
6 for j  <— 1 to  current do
7 v order[/]; if  c/iecA:my[t/][y] =  current th e n  checfciny[u][y] =  0;

procedure  record_checking( in  C : constrain t; in y: variable; in current: integer):
1 for each v £ vars(C) an d  v £ y  do
2 if instantiated[v\ th en
3 if checking[v][y] =  0 th en  checking[v\[y\ <— current:
4 else
5 for i +- 1 to  current do
6 x  <— order[i];
7 if checking[x\[v\ ^  0 and  checking[x\[y] =  0 th e n  checking[x\[y\ <— current:

function  check_fonvard( in  C: constra in t; in current: integer;
o u t fail: variable) : boolean;

1 y the uninstantiated variable in the scheme of constraint C; changed <— false:
2 for each a £ dom(y) surd domains[y\[a\ =  0 do
3 solution[y\ <— a;
4 if no t check_constraint( C. solution ) th en
5 changed <— true; domains[y][a] <— current;
6 domain-countfy] domam_counf[y] — 1;
7 if changed th en
8 record.checking( C, y, current ); push( y, S  ); fa il  y;
9 if  domainjcount[y\ =  0 th en  re tu rn  false else re tu rn  true ;

function  revise( in C: constra in t: in u: variable;
in current : integer; ou t fa il : variable) : boolean:

1 changed <— false;
2 for each a € dom(v) an d  domains[v][a\ =  0 do
3 solution[v] <— a;
4 if n o t exists( C, v ) th en
5 changed <— true ; domains[v][a] <— current;
6 domainjcount[v\ <— domain.count[v\ — 1;

7 if  changed th en
8 record_checking( C, v, current ); push( v, S  ); fa il <— v:
9 if  domain jcount[v\ =  0 th e n  re tu rn  false else r e tu rn  true ;

Figure 3.10: GAC-CBJ.
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function  consistent( in current : integer; ou t fa il  : variable) : boolean:
1 S  f— 0;
2 x <— order[current];
3 for each C E C and x  6 vars(C) do
4 if count juninst[C] = 1 then
5 if  check_forward( C, current, fa il  ) then return false;
6 push( x, S  );
7 while S 7̂  0 do
8 y  <- top( S ); pop( S  );
9 for each C E C  and y  E vars(C) do
10 if count-uninst[C] > 2 then
11 for each v E vars(C) and not instantiated.^] and v ±  y do
12 if  not revise( C, v, current, fa il ) then return false;
13 return true;

function GAC-CBJ( in current : in teger ): boolean;
1 if current > n th e n  re tu rn  true ;
2 x <r- get_next_var( cu rren t); order[current] =  x:
3 update_constraint.counts( x  );
4 for each a E dom(x) and  domains[x\[a\ = 0 do
5 solution[x] <— a;
6 in sta n tia ted ^  <— true;
7 if consistent( current, fa il ) th en
8 j  «— GAC_CBJ( current +  1 );
9 if  j  ^  current th en
10 restore( current );
11 instantiated[x] <— false;
12 restore_constraint_counts( x  );
13 r e tu rn  j\
14 else
15 cs[x] cs[x] U { y | instantiated[y] and checking[y][fail] #  0};
16 restore( cu rren t);
17 instantiated[x\ <— false;
18 cs[x] <r- cs[x] U { y | instantiated[y\ and checking[y][x] ^  0};
19 j  <— max{ i \ 1 < i < current and order[i] E cs[xj };
20 cs[order[j]] (cs[order[j]] U cs[x|) — {order [j]};
21 for i <— j  +  1 to  current do cs[order\i]] <— 0;
22 restore_constraint.counts( x );
23 re tu rn  j;

Figure 3.10: GAC-CBJ.
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current conflicts set of y. Procedure record-checking in GAC-CBJ records all the 
above conflicts information in the checking data structure for y. Of course, the 
conflicts set built in such a way is far from minimal. However, to compute a smaller 
conflicts set in constraint propagation is not straightforward.

Bessiere and Regin show in experiments on random binary CSPs that MAC-CBJ 
does not provide noticeable improvement over MAC [16]. Moreover, the run time 
performance of MAC-CBJ is usually worse than the performance of MAC. Thus they 
conclude that CBJ becomes useless to MAC except for some sparse CSPs. What may 
affect the performance of the backjumping? We know that a “good” dynamic variable 
ordering may degrade the improvement of the backjumps. Besides the influence of 
the heuristics, in random CSPs, the conflicts sets used to backjump in MAC-CBJ 
are more likely to be saturated with all the past variables because the conflicts sets 
are propagated along with constraint propagation, so that MAC-CBJ most of the 
time performs a chronological backtracking. Grant and Smith [59] have studied the 
phase transition behavior of MAC and MAC-CBJ on several classes of random binary 
problems. They observe in experiments that the behavior of MAC and MAC-CBJ are 
very similar at the median and higher percentile levels apart from the maximum, for 
all random problem classes. This suggests that CBJ’s biggest effect be on the most 
difficult problems, and that its performance be otherwise similar to chronological 
backtracking when a dynamic variable ordering is used. They observe that MAC- 
CBJ does significantly reduce the difficulty of the exceptionally hard problems (ehps) 
[103] that MAC finds in the populations of the random problems in the experiments. 
A sparse random CSP is more likely to be an instance of ehps and it has been observed 
that CBJ is a useful technique to decrease the abnormal behaviors in ehps [10].

3.5.2 Empirical Evaluations
In the following, we evaluate GAC-CBJ over several domains of problems, besides the 
random CSPs. Bessiere and Regin’s conclusion for MAC-CBJ is based on empirical 
evaluations on random binary CSPs. However, the random problems used in their 
experiments are out-dated. For example, they compare the performance of MAC- 
CBJ and MAC on the problems used by Frost and Dechter in 1994 [49], while these 
problems can be solved in less than 0.01 seconds in a 400 MHz Pentinum II computer. 
Thus, such a comparison is less meaningful given today’s computational power. Note 
that MAC was once evaluated to be worse than FC-CBJ on some instances which 
were hard in the past and can be easily solved today. So, could it be possible that
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GAC-CBJ can produce noticeable improvements over GAC on harder problems? In 
this section, we compare the performance of GAC and GAC-CBJ on two sets of "real” 
hard non-binary random problems. Our experimental results show that GAC-CBJ 
is usually 10% slower than GAC on the dense problems, but GAC-CBJ can provide 
noticeable improvements over GAC on the sparse problems.

Furthermore, real world problems are very different to random binary CSPs. Real 
world problems are often more naturally represented as non-binary CSPs. Their 
CSP formulations tend to be structured; i.e., some variables are more likely to be 
constrained with each other, and the constraints rendered in the CSP are not ran
domly generated either. These problems are hard to solve because of the extremely 
huge search space to be explored. For example, in a CSP formulation for a logistics 
problem, there are hundreds of variables, and each variable may take tens of values. 
On the other hand, there are few constraints compared to the number of variables. 
There could be many solutions to the logistics problem because of the symmetries 
and parallelism among the planning actions. Thus the CSP is not in the "phase 
transition region” of the random CSPs. The question is: how can we quickly find one 
solution? So it is critical for any backtrack algorithm to efficiently prune the search 
space and avoid the thrashing searches. Intuitively, there are opportunities for an 
algorithm that performs more checks and uses a backjumping technique to improve 
the search. In fact, the improvement of look-back techniques to planning problems 
has been observed by Bayardo and Schrag [11]. They first model a planning problem 
as a SAT problem, then solve the SAT problem by the well-known Davis-Putnam 
[27] algorithm, the SAT version of maintaining arc consistency, along with advanced 
general heuristics for SAT problems. Most importantly, they use backjumping and 
learning mechanisms in the backtrack search. These enhancements have been shown 
to significantly improve the problem solving. So it is still too early to say that CBJ is 
useless to GAC. One reason that Bessiere and Regin did not test MAC-CBJ on real 
world problems may be due to an implementation of MAC-CBJ for general CSPs was 
not available. The generalization of MAC-CBJ to GAC-CBJ enables us to test several 
real world problems, the planning problems and the crossword puzzle problems. Our 
experimental results lead us to differ with their conclusion for GAC-CBJ. Although 
GAC-CBJ does not improve GAC on relatively easy instances, the overhead is al
most negligible. However, we do observe that GAC-CBJ can provide several orders 
of magnitude improvement over GAC on some harder instances.
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Table 3.1: Time(seconds) to solve 100 instances of (100,3,3,300.0.73) problems.

dom+deg dom/deg
GAC GAC-CBJ GAC GAC-CBJ

1 25.53 32.04 16.87 21.28
2 6.32 7.87 0.12 0.18
3 0.02 0.02 0.12 0.14
4 10.80 13.63 10.36 12.75
5 6.68 8.45 5.42 6.98
6 18.74 23.67 8.25 10.56
7 1.71 2.31 1.43 1.84
8 0.22 0.31 0.60 0.80
9 0.45 0.62 1.77 2.20
10 15.82 19.78 4.93 6.32

Average 13.55 17.32 7.00 8.90

R andom  C SPs

Both Bessiere and Regin’s evaluation of MAC-CBJ, and Grant and Smith’s study 
of the phase transition behavior of MAC-CBJ use binary random CSPs. because 
MAC-CBJ is only applicable to binary CSPs. As we may expect. GAC-CBJ will 
not provide much improvement over GAC on non-binary random CSPs. As the 
constraints become non-binary, the “saturation” problem of the conflicts sets is even 
worse because the conflicts sets of more uninstantiated variables are propagated along 
with the constraint propagation.

Table 3.1 and Table 3.2 show the run time performance of GAC and GAC-CBJ 
on two sets of randomly generated non-binary CSPs. Each set contains 100 random 
instances. The tables show the run time performance of the algorithms on the first 10 
instances from each set and the average on all instances. A set of random problems 
is defined by a 5-tuple (n ,d ,r,m ,q), where n is the number of the variables, d is the 
uniform domain size, r is the uniform arity of the constraints, m is the number of 
randomly generated constraints, and q is the uniform tightness of the constraints. The 
constraint tightness q is chosen to make about half of the instances in the population 
to be insoluble, i.e., q is in the phase transition region. Two dynamic orderings are 
used to solve the problems. One is the popular dom+deg heuristic which chooses the 
next variable with the minimal domain size and breaks ties by choosing the variable 
with the maximum static degree, i.e., the number of the constraints that constrain
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Table 3.2: Time(seconds) to solve 100 instances of (300,5,3,300,0.25) problems.

dom+deg dom/deg
GAC GAC-CBJ GAC GAC-CBJ

1 87.99 102.10 3.25 4.88
2 437.10 559.40 101.30 144.10
3 546.90 573.70 9.37 13.24
4 392.00 524.50 12.94 19.22
5 1277.00 600.60 1.91 2.10
6 0.33 0.27 0.11 0.15
7 11980.50 2522.00 22.89 34.70
8 27015.32 2713.00 0.73 1.01
9 787.40 577.40 31.64 44.12
10 11.32 11.98 0.76 0.97

Average 2617.59 1112.87 29.67 43.18

that variable. The other is the dom/deg heuristic proposed in [16] which chooses the 
next variable with the minimal value of the domain size divided by its degree. The 
experiments were run on 400 MHZ Pentinum II’s with 256 Megabytes of memory. 
The problems in (100,3,3,300,0.73) are relatively dense, in which GAC-CBJ is not 
expected to perform better than GAC. As we can see from the above tables. GAC- 
CBJ in general is about 30% slower than GAC in solving the problems, under both 
dynamic variable orderings. In contrast, the problems in (300.5.3.300.0.25) an* in 
general very sparse. As Bessiere and Regin suggest in [16], GAC-CBJ is more likely 
to provide improvements over GAC on these problems. For example, under dom+deg 
heuristic, GAC-CBJ ran an order of magnitude faster than GAC to solve instances 
7 and 8. Under dom/deg, both algorithms can solve the problems very quickly, and 
GAC-CBJ is generally about 40% slower than GAC.

Although GAC-CBJ could provide remarkable improvements on some sparse CSPs. 
in our experiments, it is usually 30% to 40% slower than GAC, thus it is question
able whether in practice we should pay the 40% overhead of CBJ enhancement to 
GAC and hope that it will sometimes produce significant savings. Nevertheless, the 
first implementation of GAC-CBJ can be improved. In the original version of GAC- 
CBJ, procedure record-checking takes 0(rn)  steps to record the conflicts information 
generated in the constraint propagation, and procedure restore takes 0 ( n 2 +  nd) 
steps to restore the domains and conflicts information in a backtracking step. As the
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procedure restore(in current: integer);
1 x  «— order[current\;
2 for i <— curren t +  1 to n do
3 y  i— order[i];
4 if checking[x][y] =  cu rren t  then
5 for each a € do m (y ) and domain[y][a] = curren t  do domain[y][a] «— 0;
6 top <— c/iecA:m(/Jop[(/];
7 while top >  0 and checking[checking.set[y\[top\\[y\ =  curren t  do
8 checking[checking-set[y][checking.top[y]}}[y\ «— 0:
9 checking.top[y\ checkingJtop[y\ — 1;
10 top «— checking.top[y\;

procedure record_checking( in C : constraint; in y: variable; in current: integer)
1 for each v  6 va rs(C )  and v ^  y  do
2 if in s tan tia ted [v] then
3 if  checking[v][y] =  0 then
4 checking[v][y] current;
5 checkingJop[y] <— checkingJop[y\ +  1;
6 top i— checking.top[y}; checking.set[y][top\ v;
7 else
8  for i <— 1 to checking Jop[v\  do
9 if checking[checkingset[v][i]][y\ =  0 then
10 checking[checkingset[v][i\}[y]  <- current:
11 checkingJop[y] •<— checkingJtop[y\ +  1;
12 top <— checkingJop[y}; checking[y][top] checking.set[v][i\:

Figure 3.11: Improved GAC-CBJ implementation.
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above two procedures are called very frequently in the backtrack search, the original 
implementation will cause noticeable overhead in the overall performance. For ex
ample, when we profile the execution of GAC-CBJ to solve the first instance of the 
(300,5,3,300,0.25) problems under dom+deg heuristic, the profiling result shows that 
the overhead on recordjchecking and restore procedures accounts for about 40% of 
the total run time. However, it is not necessary that it be so expensive to maintain the 
conflicts and domains information if the sizes of the conflicts sets found in the back
track search are much smaller than the number of the variables n. As shown in Figure 
3.11, the overhead in the above two procedures can be reduced by using two auxiliary 
data-structures, checking.set and checkingJop. Remember that the data-structure 
checking implements a table representation of the conflicts information founded in 
the forward phase of the backtrack search; i.e., checking[x][y] =  1  indicates that the 
instantiation of the past variable x  has caused some of the values in the domain of the 
future variable y to be pruned, while checking s e t  and checkingJop implement a list 
representation of the above conflicts information, in which checking.top[y] denotes the 
number of the past variables x  such that checking[x\[y\ =  1  and checking.set[y\[\\, —  
and checking.set[y][checking.top[y]\ record each of these variables. Again, we profile 
the execution of the new implementation of GAC-CBJ on the same instance men
tioned above. The profiling result shows that the overhead on recordjchecking and 
restore has been reduced to 13.6% of the overall run time.

We use the improved implementation of GAC-CBJ to solve the same set of prob
lems in the above. The results are shown in Table 3.3 and Table 3.4. On the dense 
(100,3,3,300,0.73) problems, GAC-CBJ is still slower than GAC. but the difference 
in their performance is reduced to less than 10%. As we can see in Table 3.3. the 
performance of the improved GAC-CBJ is generally better than the one of the origi
nal GAC-CBJ. On the sparse (300,5,3,300,0.25) problems, the improved GAC-CBJ 
ran faster than GAC on the first 1 0  instances under dom+deg heuristic, and under 
dom/deg heuristic, the difference between GAC and GAC-CBJ is reduced to less than 
1 0 %.

Planning Problem s

The constraint programming approach to planning problems is a relatively new but 
promising field of study. It is not surprising that a constraint planner can do much 
better in the planning domains, as the SAT methods have been successfully applied 
to solve some real world planning problems [6 6 , 67]. In the constraint programming 
methodology we formulate a planning problem as a CSP in terms of variables, do-
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Table 3.3: Time(seconds) to solve 100 instances of (100,3,3,300,0.73) problems.

dom+deg dom/deg
GAC GAC-CBJ GAC-CBJ GAC GAC-CBJ GAC-CBJ

original improved original improved
1 25.53 32.04 27.62 16.87 21.28 18.58
2 6.32 7.87 6.77 0 . 1 2 0.18 0.15
3 0 . 0 2 0 . 0 2 0 . 0 2 0 . 1 2 0.14 0.13
4 10.80 13.63 1 1 . 8 8 10.36 12.75 11.18
5 6 . 6 8 8.45 7.28 5.42 6.98 6 . 0 2

6 18.74 23.67 2 0 . 2 0 8.25 10.56 9.14
7 1.71 2.31 1.96 1.43 1.84 1.59
8 0 . 2 2 0.31 0.25 0.60 0.80 0.67
9 0.45 0.62 0.52 1.77 2 . 2 0 1.90

1 0 15.82 19.78 17.07 4.93 6.32 5.51

Average 13.55 17.32 14.92 7.00 8.90 7.73

Table 3.4: Time(seconds) to solve 100 instances of (300,5,3,300,0.25) problems.

dom+deg dom/deg
GAC GAC-CBJ

original
GAC-CBJ
improved

GAC GAC-CBJ
original

GAC-CBJ
improved

1 87.99 1 0 2 . 1 0 70.83 3.25 4.88 3.61
2 437.10 559.40 385.00 101.30 144.10 101.80
3 546.90 573.70 414.10 9.37 13.24 1 0 . 1 2

4 392.00 524.50 357.80 12.94 19.22 13.95
5 1277.00 600.60 452.60 1.91 2 . 1 0 1.75
6 0.33 0.27 0 . 2 2 0 . 1 1 0.15 0 . 1 2

7 11980.50 2522.00 1799.00 22.89 34.70 25.22
8 27015.32 2713.00 1900.00 0.73 1 . 0 1 0.79
9 787.40 577.40 409.40 31.64 44.12 33.66

1 0 11.32 11.98 9.24 0.76 0.97 o.so

Average 2617.59 1112.87 823.52 29.67 43.18 32.23
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mains, and constraints. The choice of the variables and domains defines the search 
space and the choice of the constraints defines how the search space can be reduced in 
a backtrack search. A state space formulation is to model each state by a collection 
of variables. For example, in the logistics problem, we define the following variables 
for each state St: packageu, truckJit, and plane^t, where i, j, k range over the number 
of packages, trucks and planes, respectively and t ranges over the number of steps 
in the plan. The domain of a package variable includes all possible locations for the 
package, trucks and planes that may be used to deliver the package. Assigning a 
package variable a location means the package is at that location in that state and 
assigning a package variable a truck means the package is in that truck in that state. 
The basic constraints enforce the assignments of variables to represent a consistent 
state or a valid transition between states. The essence in the constraint planner is 
to use domain knowledge, in terms of redundant constraints, to improve the back
track search. Most of the constraints are non-binary and represented intensionally as 
functions which return true or false, given a set of assignments to the variables in the 
scheme of the constraint. The compact representation of constraints is one advantage 
of the constraint planner to the SAT planner, which needs to convert each tuple in 
a constraint into clauses and thus demands a large amount of space to store those 
clauses.

Given a CSP formulation of the planning problem, we then need to determine 
which algorithm should be used to solve the CSP. Table 3.5 shows the comparison 
between GAC and GAC-CBJ in solving 35 instances of logistics problems. Each 
instance was tried to be solved within 20 hours of CPU time. Two heuristics are tested 
in the experiments, dom+deg and dom/deg. On about one third of the instances. 
GAC-CBJ has sh o w  improvement over GAC. The improvement is even significant 
on the hard instances. For example, on instance 18,20 and 27, GAC-CBJ ran several 
orders of magnitude faster than GAC, and on instance 15, GAC ran out the 2 0  

hours limit but GAC-CBJ can find a solution within 3 minutes. GAC-CBJ and GAC 
perform similarly on easier instances and sometimes GAC-CBJ is about 10% slower 
than GAC.

The improvement of GAC-CBJ may be partly ascribed to the variable ordering 
used in the backtrack search. A wrong decision at an early stage in the backtrack 
search will lead GAC to exhaustively explore an insoluble subproblem. GAC-CBJ 
has the ability to identify the source of inconsistencies and escape the insoluble sub
problem more quickly. However, in our experiments, both heuristics gave similar 
results. One reason is that adding redundant constraints has dramatically changed
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Table 3.5: Time (seconds) to solve logistics planning problems. The absence of an
entry indicates that the problem was not solved correctly within the given resource
limits.

dom+deg dom/deg
GAC GAC-CBJ GAC GAC-CBJ

1 0.03 0.03 0.03 0.03
2 0.03 0.05 0.03 0.06
3 10.91 0 . 8 6 9.63 0.81
4 0.16 0.17 0.14 0.18
5 1.51 1.54 1.54 1.57
6 36.49 16.86 35.77 16.76
7 0.08 0.08 0.08 0.09
8 0.15 0.15 0.14 0.16
9 0.30 0.33 0.32 0.33

1 0 .

1 1 0.04 0.05 0.05 0.05
1 2 0 . 1 1 0.13 0 . 1 1 0 . 1 1

13 0.54 0.57 0.54 0.56
14 0.63 0.64 0.64 0 . 6 8

15 ♦ 182.51 • 8540.58
16 12.49 0.42 12.32 0.41
17 264.46 0.32 261.33 0.32
18 15382.82 1165.54 15157.71 1184.67
19 1.29 1.37 1.33 1.31
2 0 6268.16 27.66 6125.87 28.55
2 1 0 . 6 6 0.70 0 . 6 8 0.74
2 2

23 . .

24 0.08 0.09 0.08 0.09
25 34.03 13.03 11.58 1 2 . 1 0

26
27 12239.26 47.06 12105.62 47.76
28 * ,

29 * .

30 * - • -
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Table 3.6: Time (seconds) to solve blocks planning problems. The absence of an entry
indicates that the problem was not solved correctly within the given resource limits.

dom+deg do m/ deg
GAC G AC-CBJ GAC GAC-CBJ

1 0.11 0.11 0.12 0.12
2 1.28 1.46 1.17 1.35
3 105.44 86.96 126.98 127.41
4 11712.28 11116.15 21534.81 21199.86

the structure of the CSP formulation. For example, we can increase the degree of a 
variable by adding more redundant constraints on that variable. Thus the heuristics 
depending on the degree of a variable may not work properly under our formulation 
of the problem. Unless there is a more precise and domain dependent heuristic, the 
general heuristics cannot help GAC to step away from a wrong decision at an early 
stage. GAC-CBJ is relatively robust to the heuristics as it can rescue a bad decision 
using backjumpings. This may be an advantage in problems where we do not have 
much domain knowledge a priori.

We ran the same experiments on the blocks world planning problems. The results 
are shown in Table 3.6. It worth noting that the run time performance of the original 
implementation of GAC-CBJ on these problems was about twice that of GAC. while 
the improved GAC-CBJ ran faster than GAC on the hard instances. In this domain. 
GAC-CBJ does not produce huge savings. A deep analysis shows that there are 
some large jumps during the execution of GAC-CBJ. but the skipped variables were 

usually instantiated with the last value in their domains. Thus the savings are not 
large. One explanation for the difference of GAC-CBJ’s behavior between the logistics 
problems and the blocks world problems is that the variables in the formulations of 
the blocks world problems have smaller domains, usually 4 values, than those in 
the logistics problems which may take 30 values. In fact, the logistics problems are 
very different from the blocks world problems. In a logistics problem, the whole 
planning task can be easily decomposed into several relatively independent sub-tasks. 
For example, the packages within different cities are competing for different trucks. 
These relatively independent sub-tasks provide many chances for CBJ to backjump 
and produce savings. In the blocks world problem, all the blocks are competing for one 
robotic arm. Thus it is not obvious that the whole planning task can be decomposed 
into several smaller sub-tasks.
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Table 3.7: Time (seconds) to solve gripper planning problems. The absence of an
entry indicates that the problem was not solved correctly within the given resource
limits.

dom+deg dom/deg
GAC GAC-CBJ GAC GAC-CBJ

1 0 . 0 1 0 . 0 1 0 . 0 0 0 . 0 0

2 0.03 0.03 0.03 0.03
3 0.08 0.07 0.06 0.08
4 0.15 0.16 0.13 0.14
5 0.27 0.29 0.23 0.27
6 0.43 0.48 0.39 0.42
7 0 . 6 8 0.76 0.59 0 . 6 6

8 1 . 0 2 1.13 0.87 0.96
9 1.45 1.62 1 . 2 1 1.36

1 0 2 . 0 2 2.25 1 . 6 6 1.90
1 1 2.74 3.06 2 . 2 2 2.53
1 2 3.62 4.04 2.90 3.33
13 4.71 5.26 3.72 4.28
14 6 . 0 0 6.70 4.73 5.44
15 7.55 8.43 5.87 6.75
16 9.37 10.47 7.22 8.36
17 11.51 12.87 8.79 10.17
18 13.97 15.65 10.63 12.33
19 16.81 18.86 12.67 14.73
2 0 20.09 22.52 15.04 17.62

Table 3.8: Time (seconds) to solve grid planning problems. The absence of an entry 
indicates that the problem was not solved correctly within the given resource limits.

dom+deg dom/deg
GAC GAC-CBJ GAC GAC-CBJ

1 0 . 6 6 0 . 6 8 1.58 0 . 8 6

2 762.47 33.33 3965.10 321.17
3 .

4 • 1753.13 .

5 * • * *
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Table 3.9: Time (seconds) to solve 5x5 crossword puzzle problems. The absence of an
entry indicates that the problem was not solved correctly within the given resource
limits.

dom+deg dom /d eg
UK Linux UK Linux

GAC G A C -C BJ GAC G A C -C BJ GAC G A C -C B J GAC GAC-CBJ
1 1.40 1.45 1.24 1.21 1.37 1.45 1.21 1.21
2 1.05 1.10 0.28 0.29 1.03 1.05 0.29 0.29
3 0.93 0.91 0.30 0.30 0.88 0.91 0.29 0.29
4 0.85 0.84 0.19 0.19 0.81 0.82 0.20 0.20
5 0.74 0.71 0.17 0.18 0.73 0.73 0.17 0.17
6 0.94 0.95 0.38 0.39 0.95 0.95 0.37 0.39
7 0.94 0.93 0.35 0.36 0.93 0.96 0.34 O.L'4
8 0.88 0.92 0.31 0.32 0.89 0.89 0.32 0.32
9 0.77 0.78 0.21 0.20 0.80 0.78 0.20 0.19
10 0.70 0.75 0.17 0.17 0.71 0.73 0.18 0.16

We tested the other two planning problems, the gripper problems and the grid 
problems. The gripper problems are easy to solve due to the use of domain knowledge 
in the formulation. Generally GAC-CBJ is about 10% slower than GAC. as shown in 
Table 3.7. The grid problems are much harder. As we can see in Table 3.8. two out 
of five instances cannot be solved by both algorithms in 20 hours. GAC-CBJ shows 
improvement on the grid problems. For example, it can solve problem 4 in about half 
an hour, but GAC failed to find a solution in 2 0  hours.

Crossword Puzzle Problem

The crossword puzzle problem is different from the planning problems we tested above. 
An instance of a crossword puzzle problem is shown in Example 4.3. As we know, there 
are at least 3 practical ways to formulate the problem, to give each letter a variable and 
set a non-binary constraint for each word in the puzzle to enforce the letters forming 
a legal word, or to transform the above formulation to the dual representation or 
hidden representation. In its original formulation, the domain of a variable consists 
of 26 letters, from a to z. The arity of a constraint reflects the length of the word 
that the constraint represents. For example, a word of 10 letters will result in a 
10-ary constraint over those letter variables. The tuples in the non-binary constraint 
represent the words that are of the same length as the arity of the constraint in a pre
defined dictionary. The number of tuples ranges from 5000 to 30000 according to the
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Table 3.10: Time (seconds) to solve 15x15 crossword puzzle problems. The absence of
an entry indicates that the problem was not solved correctly within the given resource
limits.

dom+deg dom/deg
UK Linux UK Linux

GAC GAC-CBJ GAC GAC-CBJ GAC GAC-CBJ GAC GAC-CBJ
1 18.79 19.13 112.70 114.80 25.71 25.73 12.06 11.72
2 30.30 30.54 345.00 339.20 35.30 35.58 129.10 126.58
3 26.30 27.90 9.50 9.40 29.13 29.59 13.72 13.29
4 16.95 17.26 3261.20 2082.80 18.42 18.74 .

5 19.11 19.76 7.50 7.60 31.34 31.42 8 . 2 0 8 . 1 0

6 41.58 42.27 10021.50 8910.70 74.93 75.10 9963.14 9593.49
7 123.17 124.15 14319.40 13170.80 33.22 33.68 29051.51 2422.66
8 18.55 18.77 9.10 9.30 19.00 19.58 7.60 7.79
9 22.82 23.28 8.30 8.60 21.79 22.27 8.56 8.67

1 0 39.93 41.05 • 36.62 37.64 12110.76 1239.8.72

Table 3.11: Time (seconds) to solve 19x19 crossword puzzle problems. The absence of 
an entry indicates that the problem was not solved correctly within the given resource 
limits.

dom+deg dom/deg
UK Linux UK Linux

GAC GAC-CBJ GAC GAC-CBJ GAC GAC-CBJ GAC GAC-CBJ
1 59.06 60.72 24.54 24.92 59.90 61.96 21.81 22.41
2 46.72 47.82 . . 59.35 60.29 *

3 70.87 72.58 . 76.64 77.24 .

4 30.89 31.82 . * 32.58 33.22
5 26.87 27.76 . 27.48 28.08 • 547.92
6 46.23 47.41 15.35 15.60 41.03 41.78 15.08 15.30
7 40.43 41.04 14.08 14.55 44.03 44.58 51.46 22.53
8 44.54 45.44 • 35.40 50.37 51.02 • 42.00
9 29.54 30.14 9.04 9.41 36.07 36.28 • 37.46

1 0 30.90 31.58 9.02 9.30 42.36 42.09 7.95 8.15
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Table 3.12: Time (seconds) to solve 21x21 crossword puzzle problems. The absence of
an entry indicates that the problem was not solved correctly within the given resource
limits.

dom+deg dom/deg
UK Linux UK Linux

GAC GAC-CBJ GAC GAC-CBJ GAC GAC-CBJ GAC GAC-CBJ
1 86.36 88.67 * . 12963.30 238.00
2 109.29 108.69 * . 94.87 97.40
3 92.33 87.75 69.20 70.81 85.10 8 6 . 0 1 98.97 99.70
4 202.54 206.07 . 8779.56 2122.34
5 127.76 128.41 . 109.89 110.93
6 86.77 87.65 • 77.36 97.08 98.00
7 93.26 95.89 98.05 89.23 94.81 96.89 43.54 41.37
8 76.33 78.84 30.65 31.13 92.88 95.21 37.73 37.43
9 114.79 119.22 77.14 55.62 101.07 100.26 52.97 53.08

1 0 2093.13 950.52 • • 23367.88 586.87 • •

Table 3.13: Time (seconds) to solve 23x23 crossword puzzle problems. The absence of 
an entry indicates that the problem was not solved correctly within the given resource 
limits.

dom+deg dom/deg
UK Linux UK Linux

GAC GAC-CBJ GAC GAC-CBJ GAC GAC-CBJ GAC GAC-CBJ
1 • 158.05 0.14 0.16 59.27 60.13 0.14 0.16
2 97.65 101.87 40.25 41.47 100.34 100.71 59.54 59.80
3 142.65 149.98 * 167.95 168.75
4 181.62 190.01 324.40 325.81
5 128.57 133.92 70.73 74.07 220.34 224.20 69.9 72.31
6 • 24642.63 609.70 607.88 .

7 112.85 117.80 * 183.11 175.09 . .

8 496.64 511.62 . . • 293.30
9 289.43 291.44 . 534.76 541.41 .

1 0 • • • • 2855.66 2921.58 - *
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dictionaries we used in the experiments. These constraints are very tight compared 
to all possible combinations of 26 letters. In the dual representation, each word in 
the puzzle is represented by a dual variable and thus the domain of a dual variable 
may have 5000 to 30000 values. A dual constraint enforces the instantiations of a pair 
of dual variables agreeing on their intersecting letter. In the hidden representation, 
each of the letters and each of the words in the puzzle are given a variable. A 
hidden constraint enforces an assignment of a letter variable to be compatible with 
an assignment of a word variable.

The original formulation, however, cannot be used to test GAC and GAC-CBJ, 
because of the large arity of the non-binary constraints. For example, a generic ap
proach to seek a valid support for a value in the constraint propagation is to enumerate 
all possible value combinations and return the first support in the list. To revise a 
non-binary constraint over 1 0  letter variables, the number of value combinations is 
2610, and because the non-binary constraint is very tight, it is rare to encounter a 
valid support in the list. The number of potential enumerations is too large to be 
accepted.

Therefore, all experiments were run on the dual representation of the puzzle prob
lem. Both GAC and GAC-CBJ use some specialized routines to take advantage of the 
dual constraints and thus speed up the constraint propagation. We use two dictionar
ies to solve the problem: the UK dictionary, which collects about 2 2 0 . 0 0 0  words and 
in which the largest domain for a word variable contains about 30,000 values, and the 
Linux dictionary, which collects 45,000 words and in which the largest domain for a 
word variable has about 5,000 values. Although use of a larger dictionary increases 
the size of search space, the number of solutions also increases. Generally the use 
of a larger dictionary makes the problem easier to solve. We tested 5 sets of puzzle 
instances, ranging from the easiest 5x5 puzzles, to the hardest 23x23 puzzles. Two 
heuristics, dom+deg and dom/deg, were used in the experiments.

The experimental results are shown in Table 3.9 to Table 3.13, each presenting 
the results for a set of instances. There are no noticeable difference between the 
performance of GAC and GAC-CBJ on smaller and easier puzzle problems, such as 
5x5 ones. For 15x15 puzzles, GAC-CBJ runs an order of magnitude faster than GAC 
on instance 8  under dom/deg heuristic with the Linux dictionary. For other instances, 
the two algorithms perform similarly. The noticeable difference shows up on 19x19 
puzzles. Those problems become hard for the Linux dictionary, as there are several 
absences in Table 3.11 for the Linux dictionary under both heuristics. With dom+deg 
heuristic, GAC-CBJ found a solution in less than one minute for instance 8  while
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GAC failed to solve the problem in 2 0  hours CPU time. With dom/deg heuristic, 
the difference is even more dramatic, GAC-CBJ found a solution very quickly for 
instance 5, 8  and 9, while GAC ran out of the time limit on these instances. 19x19 
puzzles formulated with the UK dictionary are not hard as both algorithms can solve 
them very quickly under both variable ordering heuristics. The 21x21 and 23x23 
puzzles are too hard for the Linux dictionary. Both algorithms time out in solving 
these instances. The difference in behaviors between GAC and GAC-CBJ shows up 
for the UK dictionary. We observed orders of magnitude improvement by GAC- 
CBJ on instance 1 , 4, and 10 under dom/deg heuristic for those 21x21 puzzles. On 
23x23 puzzles, GAC was more likely to time out but GAC-CBJ still could solve all 
the instances under dom/deg heuristic within 20 hours time limit. The cases that 
GAC-CBJ improves GAC are not rare, especially for hard problems. For example. 
GAC-CBJ can solve three out of ten 19x19 puzzles within 10 minutes with the Linux 
dictionary under dom/deg heuristic, which cannot be solved by GAC within the time 
limit.

3.6 Summary

We have given some theoretical evidence to show that look ahead techniques are 
counterproductive to backjumping. In general, there is a close relation between an 
algorithm maintaining strong ^-consistency and a backjumping algorithm doing a 
limited level of backjumps. Then we presented our implementation of GAC-CBJ. a 
generalized version of MAC-CBJ on general CSPs. Experimental results show that 
GAC-CBJ can significantly improve the backtrack search on large, hard real world 
problems, and the overhead of CBJ on those easy instances is negligible.
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Chapter 4 

Dual and Hidden Transformations 
w ith Consistencies

The dual and hidden transformations are two general methods to convert a non-binarv 
CSP into an equivalent binary CSP. The dual graph representation was introduced 
to the CSP community by Dechter and Pearl in the tree clustering method [38], and 
the basic idea comes from research in relational databases [79]. The hidden vari
able transformation has an even longer history. Peirce formally proved, in the field 
of philosophic logic, that binary and non-binary relations have the same expressive 
power [8 8 ], and Peirce’s method for representing a non-binary relation with a collec
tion of binary relations forms the foundation of the hidden variable method. Recently. 
Rossi et al showed that that a non-binary CSP is equivalent to its dual and hidden 
transformations under various definitions of equivalence in [95]. In the past, because 
such conversions exist between a non-binary CSP and its equivalent binary CSP rep
resentation, most solving techniques for CSPs have been restricted to binary CSPs. 
Moreover, the dual and hidden transformation methods are widely used in modeling 
practice and problem solving. For example, Freuder had used an incremental version 
of the dual method in a solution synthesis method [42]. Dechter shows how to repre
sent any non-binary relation with binary relations using hidden variables that have 
bounded domain sizes [33].

4.1 Definitions

In the dual transformation, the constraints of the original problem become variables 
in the new representation. VVe refer to these variables, which represent the original 
constraints, as dual variables, and the variables in the the original CSP a.s onluuin/
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C l

Figure 4.1: The dual transformation of the CSP in Example 1 . 1

variables. The domain of each dual variable is exactly the set of tuples that satisfy 
the original constraint and there is a binary constraint between two dual variables iff 
two original constraints share some variables. We refer to the binary constraints as 
dual constraints. A dual constraint prohibits pairs of tuples which do not agree on 
the shared variables.

Definition 4.1 (dual transformation) Given a CSP instance P  =  [V.V.C). its 
dual transformation dual(P) =  ( y dualip)̂ X>duâ p\C dual(p)) is defined as:

• Vdual{P) = ( c i , . . . ,  Cm} and they are called dual variables. Each dual variable c, 
corresponds to a unique constraint Ci £ C. In the following discussion, we may 
use vars(ci) and rel(Ci) to denote their correspondences vars(Ci) and rel(Ci) 
respectively if there are no ambiguities,

• 'Ddual(p) — [dom(ci) , . . .  ,dom(Cm)} is the set of domains for the dual variables. 
For each dual variable Ci, dom(ci) =  rel(Ci), i.e.. each value for Ci is a tuple 
over vars(Ci),

•  Cdual(p) is a set 0f  binary constraints over y Juai(p) and they are called dual 
constraints. There is a dual constraint between dual variables Ci and Cj if 
vars(ci) fl vars(cj) /  0  such that a tuple a € dom(ci) is compatible with a 
tuple b 6  dom{cj) iff a[uars(cj) fl yars(cj)] =  6 [uars(cj) n  vars(cj)]. he., they 
have the same values over the common variables, vars{ci) fl vars(cj).

Example 4.1 In the dual graph transformation of the CSP in Example 1.1, there are 
4 dual variables, c i , . . . , C4 , one for each 3-ary constraint in the original problem as 
shown in Figure 4-1- For example, the dual variable c\ corresponds to the non-binary
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Figure 4.2: The hidden transformation of the CSP in Example 1.1

constraint C (xi,X 3 ,x$) and the domain ofci contains the tuples (0 .0 .1 ) .__ (1 . 1 . 1 ).
The dual constraints enforce that the ordinary variables appearing in more than one 
dual variable have the same value. For example, in the dual constraint between c\ 
and Co, {ci <— (0 , 0 , 1 )} is compatible with {co <— (0 , 0 , 0 )}, but {ci <— (0 . 0 . 1 )} is not 
compatible with {co <— (0 , 1 , 0 )}.

In the hidden-variable transformation, the set of variables includes all the ordinary 
variables in the original problem with their original domains, plus a new set of hidden 
variables. For each constraint in the original problem, we add a hidden variable.
The domain of the hidden variable is the same as the domain of the dual variable, 
consisting of the set of tuples that satisfy the original constraint. There is a binary 
constraint between a hidden variable and an ordinary variable, if in the original 
problem the constraint represented by the hidden variable constrains that ordinary 
variable. The binary constraint is called a hidden constraint. A hidden constraint 
enforces that a value of the ordinary variable must be the same as the value assigned 
to that ordinary variable in a tuple of the hidden variable.

D efinition 4.2 (hidden-variable transform ation) Given a CSP instance P = 
(V ,V,C), its hidden variable transformation, or hidden transformation in short, hidden(P)
_  ^yh idden(P ) j) h id d e n (P )  Q hiddcn(P)} i s  d e f i n e d  OS:

• y AuWen(p) =  {xl , . . . , x n}U { c i , . . . , ^ } ,  where x i , . . . . x n are called ordinary 
variables and C\,. . .  ,cm are called hidden variables. Similar to dual variables, 
each hidden variable Ci corresponds to a unique constraint C, € C,
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• 'Dhldden(p) = {dom(xi ) , . . . ,  dom(xn)} U {dom (ci),. . . ,  dom(cm)}. For each hid- 
den variable c*, dom(ci) =  rel(Ci),

• Chtdden̂  is a set of binary constraints over \?hldden(p) and they are called hidden 
constraints. For each hidden variable c, there is a hidden constraint between c 
and each of the ordinary variables x  G vars(c) such that a tuple t G dom{c) 
is compatible with a value a G dom(x) if f[x] =  a. Thus each of the tuples 
t G dom(c) corresponds to a unique value t[x] G dom(x).

The hidden transformation has some special properties. For example, the con
straint graph of the hidden transformation is a bipartite graph, i.e.. the ordinary 
variables are only constrained with the hidden variables, and vice versa, and the hid
den constraints are one-way functional constraints, in which a tuple in the domain 
of the hidden variable is compatible with at most one value in the domain of the 
ordinary variable.

Example 4.2 In the hidden variable transformation of the CSP in Example 1.1. 
there are 1 0  variables, including 6  ordinary variables from the original problem, and 
4 hidden variables, one for each of the original constraints, as shown in Figure 4-2- 
For example, the constraint C(xi, X3 , xg) corresponds to hidden variable c\, whose 
domain is the set of tuples {(0,0,1 ) , . . . . ( 1 ,1,1)}. The hidden constraints enforce 
a value of the ordinary variable to agree with a tuple of the hidden variable. For 
example, in the hidden constraint between C\ and x \, {ct <— (0 , 0 , 1 )} is compatible 
with {xl <— 0 }, but {ct t— (0 , 0 , 1 )} is not compatible with {xt <— 1 }.

A dual or hidden representation does not always arise as a transformation of the 
original CSP formulation. Sometimes, it is very natural to model the problem as a 
dual or hidden representation (of an “original” formulation).

Exam ple 4.3 Crossword puzzle generation can be formulated as a CSP. Figure 4-3 
shows a crossword puzzle with 5 by 5 grid. One such formulation consists of 19 vari
ables ( x i , . . . , X1 9 }, and each variable takes values from an alphabet set {a r}.
There are 3 unknown words with length 3 and 5 unknown words with length 5 in the 
puzzle, resulting in 8 non-binary constraints in the CSP. The tuples of the constraints 
are the words with 3 or 5 letters in a pre-defined dictionary. In its dual representation, 
each of the unknown words is represented by a dual variable which takes values from 
the dictionary. A pair of dual variables are constrained such that they have the same 
letter in the crossing grid. Thus, there are 8 dual variables and 15 dual constraints
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Figure 4.3: A crossword puzzle.

in the dual representation. Its hidden representation has 19 ordinary variables, and 
8 hidden variables corresponding to the 8 non-binary constraints in the original prob
lem. Each of the hidden variables is constrained with 3 or 5 ordinary variables in its 
scheme. Thus, the hidden representation has 34 hidden constraints.

In this chapter, given the original formulation of a problem, and its dual and hid
den transformations, we are going to compare various local consistency properties on 
the above three formulations. Similar to Debruyne and Bessiere's approach to com
paring some selected local consistency properties on binary CSPs in [28], we identify 
a “strongness” relation between two pairs of consistency property and formulation.

D efin ition  4.3 Given two local consistency properties CC / and EC2 , and two CSP 
formulations for a problem A  and B, We say EC t on formulation A  is stronger than 
EC2  on formulation B iff given any problem, if EC / can be achieved on A  without 
an empty resulting problem, then EC2 can also be achieved on B without an empty 
resulting problem, and ECi on A  is strictly stronger than EC2 on B iff furthermore 
there is a CSP instance on which EC2 can be achieved on B without an empty resulting 
problem but A  will experience a domain being wiped out when enforcing EC / on it. 
We say ECi on A  is equivalent to CC2 on B if  EC/ on A  is stronger than CC2 on B, 
and vice versa.
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In the following, we call a CSP instance the original problem with respect to its 
dual transformation and hidden transformation. Because we usually deal with more 
than one CSP formulation in a context, to our convenience, given a CSP formulation 
P, we use the notations Vp , V p and Cp to denote the set of variables, the set of 
domains and the set of constraints in P  respectively. Also, we use domp (x) to denote 
the domain of variable x  in P . The notations, V, V , C, and dom(x) are still used if 
there are no ambiguities in the context.

4.2 Related Work

The dual and hidden transformations are two fundamental methods in modeling prac
tice. They completely change the original formulation such that all the variables and 
constraints have to be rewritten. A serious drawback of these transformations is that 
if the non-binary constraints are represented implicitly, the above transformations 
could take exponential time and demand exponential space with respect to the size of 
the original problem. Sometimes it may require that the original problem be solved. 
For example, if an n-ary constraint over x i , . . . , x n is represented by a function or 
predicate / ( x l t . . .  ,xn), which returns true if the assignments to the variables satisfy 
the constraint, in the dual (hidden) transformation, each legal tuple in a constraint 
becomes a value in the domain of the corresponding dual (hidden) variable. Thus, it 
may take exponential steps to find all these tuples and use exponential space to store 
these tuples in the domain of the dual (hidden) variable. In the CSP formulation of 
the “Send+More=Money” puzzle in Example 1.3, if we try to represent two global 
constraints, the “equation" constraint and “alldifferent” constraint by two dual (hid
den) variables, we can then solve the problem by looking up the domains of two dual 
(hidden) variables and picking up common tuples in the two domains. In practice, 
often, a partial conversion is used to improve the formulation. That is. a subset of 
the constraints become dual variables, or a subset of the variables in a constraint 
are aggregated into a hidden variable and thus the arity of the constraint is lowered. 
Furthermore, with the help of identifying meta values in dual or hidden variables, the 
domains of the dual or hidden variables may be condensed to an acceptable degree.

In temporal reasoning, there are two approaches to representing temporal informa
tion. In the point-based representation [116, 117], each event A  is identified by a pair 
of end points, .4“ and A +, denoting the starting time and finishing time of the event. 
The temporal relations among events are represented by a set of inequalities, equali
ties and disequalities between any of two end points. For example, the relation that .4
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A meets B A . B

A overlaps B  |__  |

{meets, overlaps}

(a)

(b)

Figure 4.4: An example of translation between interval-based and point-based repre
sentation for temporal information.

must finish before B  starts can be represented by {.4~ < .4+,.4+ < B~ . B~ < B +}. 
In the interval-based representation [3, 4], each event .4 is identified by an interval. 
A temporal relation between two events is represented by a conjunction of basic re
lations. Allen [3] has identified a set of thirteen basic relations between two intervals 
and the relation between two events can be any subset of the set of basic relations. 
For example, as shown in Figure 4.4(a). one basic relation between interval .4 and 
B  says .4 meets B, which means that B  starts at the same time as .4 finishes. The 
basic relation .4 overlaps B  denotes the scenario in which .4 starts before B srarr». 
.4 finishes after B  starts, and .4 finishes before B  finishes. For a fuller description of 
the basic relations, see Allen’s paper [3].

Both the point-based representation and the interval-based representation can be 
formalized as CSPs. The domain of an end point is a set of time points allowed for the 
event under consideration. The domain of an interval contains all possible ordered 
pair of time points. The definitions of the constraints are straightforward from the 
temporal relations between two end points or two intervals respectively. The interval- 
based CSP can be regarded as a partial dual conversion of the point-based CSP l . 
For example, as shown in Figure 4.4(b) the interval relation {meet, overlaps} between 
event .4 and B  can be represented as,

(.4- < .4+) A (B~ < B +) A (.4- < B +) A (A+ > B~) A (A+ < B~)
*In general, such a conversion may not exist due to the restricted types of the relations adopted 

in the two representation schemes [70, 117].
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In such a conversion, some of the constraints, .4" < .4+ and B~ < B +, become dual 
variables and the other constraints are transformed into constraints over the dual 
variables. Also, when actually finding a consistent scenario for these networks, we 
solve the dual representation, which can often be processed very quickly [71].

The concept of a dual is also reflected in problem solving techniques. In a 
constraint scheduling problem, an activity A  is represented by a pair of variables, 
start(A) and end(A), denoting the starting and release time of A respectively. The 
domains of the variables contain all possible time points for the activity. There are 
two main classes of constraints, precedence constraints to specify sequencing require
ments among activities; for example, activity .4 must be scheduled to start at least 5 
steps after activity B  is released, start(A) > end(B) +  5, and resource constraints to 
specify that several tasks may compete for a resource with a certain capacity. Dis
junctive constraints are widely used to ensure that the time intervals over which two 
activities require the same resource do not overlap in time [73. 104]. For example, 
the constraint (end(A) < start(B)) V (start(A) > end(B)) ensures that the time 
intervals over two activities do not overlap in time when both .4 and B demand a 
unique resource. The time bounds of activities, i.e., the domains of variables, can be 
improved by a series of propagation techniques, known as edge-finding rules [5. 9]. 
To prove optimality of schedules, a branch and bound search is used. It is a general 
wisdom to not branch on variables, as a traditional backtracking algorithm does, but 
branch on constraints, especially the disjunctive constraints. For example, given a 
disjunctive constraint (end(A) < start(B)) V (start(A) > end(B)), we may choose 
ena(A) < start(B) or start(A) > end(B) as a choice point. The effect of branching 
on disjunctive constraints essentially establishes an order of activities which compete 
for a resource. New bounds can then be deduced after branching on the constraints 
and used to prove optimality. For example, in the job shop scheduling problem, the 
operation of branching on constraints is known as edge directing [2 1 , 2 2 ], where the 
job-shop problem is represented in a disjunctive graph, in which all precedence con
straints are represented by directed edges and all resource constraints are represented 
by undirected edges. Thus establishing an order is essential to giving a preference 
to all the undirected edges. Branching on constraints coincides with the idea of the 
dual, that is, treating constraints as variables. In the domain of scheduling problems, 
such techniques may bring significant improvements.

The dual and hidden variable techniques also help in the representation of large 
complex constraints. To model a problem as a CSP and solve the CSP using a back
tracking algorithm, a central problem is how to represent a constraint in an economic
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and efficient manner. A general guideline is to limit the number of the variables in 
each of the constraints. However, real world constraints are usually non-binary and 
the redundant constraints are more likely non-binary. The question turns out to be 
how to decompose a large constraint into several small constraints. An intuitive ap
proach is to project the constraint onto a set of pairs of variables and the projections 
are binary constraints. Unfortunately, such projections may lose information stored 
in the original constraint [31]. Another approach is to add projections for each of the 
subsets of the variables in the original constraint. This approach is dangerous as a 
possible exponential number of constraints would be added.

A general approach is to add extra hidden variables. The hidden variable trans
formation uses a star-decomposition scheme by adding one hidden variable. A draw
back of the star-decomposition is that the domain size of the hidden variable cannot 
be bounded to an acceptable degree. In fact, there could be many possible ways 
to decompose a constraint by adding more than one hidden variable. Example 1.4 
showed how to decompose the large “equation” constraint into 3 smaller constraints 
by adding some “carrier” (hidden) variables. Dechter [33] proposes a tree-structured 
decomposition scheme by adding multiple hidden variables with bounded domain 
sizes. Unfortunately, the number of the hidden variables is not bounded and there 
are cases that an exponential number of hidden variables are required.

4.3 Arc Consistency

Arc consistency (see Definition 2.4) is an important concept in constraint program
ming. Because achieving arc consistency on a CSP only changes the domains of the 
variables, it is moderately cheaper than achieving strong ^-consistency, for k > 2 . 
which may dramatically change the CSP formulation, as the number of new con
straints could be exponential in k. In this section, we are going to compare arc 
consistency on the original CSP with arc consistency on its dual and hidden trans
formations. The comparison is based on the justification that if one formulation is 
not empty after achieving arc consistency, the other formulation is not empty either 
after achieving arc consistency. (Thus arc consistency on the first formulation is at 
least as strong as arc consistency on the second formulation.) The relations between 
arc consistency on the original problem and the one on its dual and hidden trans
formations have been studied by Stergiou and Walsh [106]. However, they only give 
some illustrative proofs for their results. We present here stricter proofs for the above 
relations based on the formal definitions of the dual and hidden transformations.
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4.3.1 Arc Consistency Closure
As we discussed in Chapter 3, two strong ^-consistency achievement algorithms may 
not always compute the same results when achieving strong ^-consistency on a CSP. 
For arc consistency, as we are going to show in the following, the resulting arc con
sistent CSP is unique. We achieve arc consistency on a CSP by repeatlv removing 
from the domains those values that are not supported in a constraint. When a value 
is removed from its domain, some tuples using the value in a constraint involving 
that variable become invalid. The invalid tuples are removed from the constraint 
implicitly. The changes in one domain are propagated to other variables for which a 
new support needs to be sought in the tightened constraints.

D efinition 4.4 (subdom ain) A subdomain V  of a CSP P is a set of domains. 
{domv>(x \) , . .. ,domv'{xn)}, where domv '(xi) C domp (xi), for each of the variables 
Xi € V. In the following, we use the notation domv '(x) to denote the domain of 
variable x  in a subdomain V .  We say a subdomain is empty if it contains one 
empty domain for a variable. We say a subdomain V  is arc consistent iff for tack 
of the constraints C  € C, each of the variables x  6  vars(C) and each of the values 
a € domP'(x), {x <— a} has at least one support t in C. where t[x] = a. arid for 
each of the variables y € vars(C), f[y] € domP' [y). Given two subdomains of P .'D t 
and T>2 , we use T>, C  V 2 to denote the fact that for each of the variables x  € V. 

domPl {x) C domVl(x).

Note that a subdomain is a set of domains, each associated with a variable in the 
CSP. Under the above C  relation, the maximum subdomain is the set of the original 
domains in the CSP, and the minimal subdomain is the set of empty domains: i.e.. 
each variable has an empty domain. It is easy to verify that the minimal subdomain 
is arc consistent.

T heorem  4.1 Given two arc consistent subdomains T>, and T>2 of a CSP P, the 
union o fV i  and V 2, V ,  where domv'(x) =  dormPl [x) U domVs(x) for each variable 
x in P , is an arc consistent subdomain of P.

Proof: Because for each of the values a 6  domv’(x), either a 6  domD,{x) or a € 
dcrmV t(x), it is easy to verify that for each constraint C in P. each of the variables 
x  € vars(C), and for each value a 6  dcmp1 (x), {x «— a} has at least one support in

C. I
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Since the union of two arc consistent subdomains is still arc consistent and there 
are a finite number of subdomains in a CSP P , the union of all the arc consistent 
subdomains is arc consistent. Furthermore, the set of arc consistent subdomains of 
P  is not empty because it always includes the minimal subdomain in which each 
variable has an empty domain. Thus, there is a unique maximum arc consistent 
subdomain of P  and each arc consistency achievement algorithm should compute the 
maximum arc consistent subdomain. We denote the resulting CSP by ac(P), called 
the arc consistency closure of P . Thus the maximum arc consistent subdomain of 
the original CSP, i.e., the set of domains in ac(P), is Z?ac(P).

Corollary 4.2 Given a CSP P and an arc consistent subdomain V  of P, V  C
p  o c(P)

From the above corollary, an arc consistency subdomain of a CSP P  is also an arc 
consistent subdomain of ac(P).

4.3.2 Arc Consistency on the Hidden Transformation
Consider a CSP P  with 4 variables, x i , . . .  ,x4. The domain for each variable has 3 
values 0,1, and 2. There are 3 linear constraints between these variables, Xi + x2 < x3, 
x t + x 3  < x4  and x2  +  x3  < x4. Figure 4.5 shows the relations between the original 
CSP P , its arc consistency closure ac(P), its hidden transformation hidden(P). and 
the arc consistency closure of its hidden transformation ac(hidden(P)) which is also 
the hidden transformation of its arc consistency closure hidden(ac{P)). As we can 
see from the above figure, an ordinary variable has the same domain in ac( P) and 
ac(hidden(P)). The domain of a hidden variable in ac(hidden(P)) is the same as 
the set of tuples in the corresponding constraint, which have not been (implicitly) 
removed from the constraint when achieving arc consistency on the original problem. 
We are going to show in the following that the above relations are generally true.

T heorem  4.3 Given a CSP instance P, (1) P is arc consistent if and only if hidden(P) 
is arc consistent, (2) ac(P) is not empty if  and only i f  ac(hidden{P)) is not empty; 
and (3) hidden(ac(P)) =  ac(hidden(P)).

Proof: (1) Suppose the original problem P  is not arc consistent. There is a value 
a in the domain of an ordinary variable x and a constraint C  such that x *— a does 
not have a support in C. Thus, in hidden(P), x  <— a does not have a support in the
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p h i d d e n ( P )

Hidden Transformation

Achieving /Ire Consistency Achieving .-Ire Consistency

ac {P) ac {h id den{P) )  =  h idde n(a c(P) )

Hidden Transformation

X l , X 2 , 1 3 , 1 4

C i  : x i + X 2 <  1 3  
C s  : 1 1  +  X 3 <  1 4  

C3 : x t  + 1 3  < x 4

X l , X 2 , X 3 , X 4

Cl : X I  + I J  <  1 3  

Ct : n  + 1 3  <  X 4 

C 3  : X 2  +  X 3  <  X 4

yac{h idden(P )).
X l , X 2 , X 3 , X 4 ,  ci ,c t, C3

-pac(hidden(P )).
d o m *c ( h , d d 'n l p ) ) ( x  =  {0 } 
d o m a c ( f c id d < r n ( P ) ) ( x 2 ) _  {0 } 

d o m a c i h x d d e M P ) ) ^ x 3 )  =  { J }

domac<‘l" ud' nl p '>'l(x 4) = {2} 
domaelkiMenip , ){ci) =  {(0 . 0 . 1)} 
domac<-klddcn(p »{ct) = {(0,1,2)} 
<fomac<'‘“w' n(P»(c 3) = {(0,1.2)}

Qac(hidden(P)).

yh id d en (P ) .
X l , X 2 , X 3 , X 4 , C l , C 2 , C 3

qjhidden(P) .
d o m /.u M < n < P )( I l ) _  { 0 , 1, 2 }  

domK'ddcn^p \ x t )  = {0,1,2} 
domh,ddcn<p '(x3) = {0,1,2}
domkidd‘n(pHz 1) =  {0 , 1, 2}
domh,ddcn(p {̂ci) =

{ (0 , 0 , 1) , ( 1, 0 , 2 ) , ( 0 , 1, 2 )}

domh,ddcn,P){c2) =
{ ( 0 , 0 , 1), ( 1, 0 , 2 ),  (0 , 1, 2 )}

domk,ddcn<-p ) (C 3) =
{ ( 0 , 0 , 1) , ( 1, 0 , 2) , ( 0 , 1, 2 )}

Figure 4.5: An example to show the relations between an original CSP. its hidden 
transformation, its arc consistency closure, the arc consistency closure of its hidden 
transformation, and the hidden transformation of its arc consistency closure.
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hidden constraint between the ordinary variable x and the corresponding hidden vari
able c. Thus, hidden(P) is not arc consistent. On the contrast, suppose hidden(P) 
is not arc consistent. From the definition of the hidden transformation, a tuple in 
the domain of a hidden variable always has a support in a hidden constraint between 
the hidden variable and an ordinary variable. (Note that a tuple in a constraint is an 
element of the Cartesian product of the domains of the variables in the constraint.) 
Thus, in hidden(P), there is a value a of an ordinary variable x and a hidden variable 
c such that {x <— a} does not have a support in the hidden constraint between x and 
c. Thus {x <- a} does not have a support in the corresponding original constraint 
C in the original problem. Therefore, P  is not arc consistent. That is. P  is arc- 
consistent if and only if hidden{P) is arc consistent.
(2) Suppose ac(P) is not empty. Thus its hidden transformation hidden(ac(P)) is 

arc consistent and not empty. Because the set of the domains of hidden(ac(P)) is 

an arc consistent subdomain of hidden(P), from Corollary 4.2. for each ordinary 
variable x, domhldden('aĉ p^ (x) C  domaĉ hldden̂ p^ (x), and for each hidden variable c. 
domhldden(-ac(-p^(c) C  domac(-fl'dden(-p^ (c). Therefore, ac(hidden(P)) is not empty. On 
the other hand, suppose ac(hidden(P)) is not empty, then the set of the domains of 
all the ordinary variables in ac(hidden(P)) is an arc consistent subdomain of P. That 
is, for each ordinary variable x, domac(/u<Wen(p))(x) C  domac(P\x ) .  Thus ac(P) is not 
empty.
(3) The hidden transformation of ac(P), hidden(ac{P)), has the same variables as 
those in ac(hidden(P)), including ordinary variables and hidden variables. For an 
ordinary variable x in hidden(ac{P)), we know the facts that domh,dden('ac<'P^{x) = 
domac('P\x ) ,  domhlddtn[ac{P]]{x) C doma<hidden(P»{x) and damac{h,dden{P)){x) C  

domaĉ p^(x), thus domhtdden(’ac(‘P^ (x) = domac(-fl,dden̂ p^{x). Now we consider the hid
den variables. For each hidden variable c in ac(hidden(P)) and for each tuple t 
in the domain of c, because £[x] € dom“c(/l“Wen(P))(x) and thus t[x] € domac[P](x) 
for each of the ordinary variables x 6  uars{c). t will not be (implicitly) removed 
from the constraint C  when achieving arc consistency on the original problem. Thus 
t is a tuple in the domain of the hidden variable c in hidden(ac{P)). We have 
domac('hidden(‘P^ (c) C  domhtdden(ac(-pV(c). On the other hand, for each constraint C in 
ac(P) and for each tuple t in reZ(C), because t is not (implicitly) removed from rel{C) 
when achieving arc consistency on the original problem, that is, f[x] 6  dom“c(P)(x) 
and thus f[x] 6  domac('hldden('P^ (x) for each of the ordinary variables x € vars(C). the 
tuple t is not removed from the domain of the hidden variable c when achieving arc 
consistency on hidden(P) (otherwise, add t  to the domain of c and the hidden problem
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is still arc consistent). We have domhxdden(-ac(-p^ (c) C damac('hldden̂ \ c ) .  Therefore, 
for each of the hidden variables c, domhxdden̂ p^ (c) = dorrcac(/luWen(P),(c). The hidden 
constraints in a hidden transformation are set automatically having specified the or
dinary variables, the hidden variables, and their domains. Thus, hidden(ac(P)) and 
ac(hidden(P)) have exactly the same set of variables, the same set of domains, and 
the same set of hidden constraints; that is, they are syntactically the same. Therefore. 
hidden(ac(P)) = ac(hidden(P)). |

Theorem 4.3 was obtained independently by Stergiou and Walsh in [106].

C orollary  4.4 Given a CSP P , domac(-p'> (x) = domact'hlddent'P^ (x ), for each of the 
ordinary variables x  in P.

Although achieving arc consistency on the original problem is "equivalent" to 
achieving arc consistency on its hidden transformation, their performance could be 
quite different. The worst case complexity of achieving arc consistency on the original 
problem by AC3 is 0 (m r2dT+l) [76]. In its hidden transformation, there are n ordi
nary variables and m hidden variables. The maximum domain size of the ordinary 
variables is d and the maximum domain size of the hidden variables is bounded by 
cT. Thus it takes 0 ( t f +l) steps to revise a hidden constraint. During the execution 
of AC3, each time a value is removed from the domain of a variable x. all the con
straints involving x  need to be revised. Let deg(x) denote the degree of x. The total 
number of the steps in the execution of AC3 on the hidden problem is bounded by 
0{Y.xevk'ddtn(-p'> deg(x)d?T+l). Note that the term £ x6V*>,■/*„</>) deg{x) can be replaced 
by mr, which is a bound on the number of the constraints in hidden(P). Thus the 
worst case complexity of achieving arc consistency on the hidden problem by AC3 is 
0(mrd?T+l). Achieving arc consistency on the hidden problem is more expensive than 
on the original problem unless the constraints are very tight. In that case. let M  de
note the maximum domain size of the hidden variables, and the worst case complexity 
of AC3 on the hidden problem is rewritten as 0(m rdM 2). As discussed in Chapter 3. 
in the original formulation of the crossword puzzle problems, the constraints are very 
tight. For instance, there are about 30000 tuples among 102 6  possible value combina
tions in a non-binary constraint which represents an unknown word of 10 letters. It 
is less expensive to achieve arc consistency on the hidden representation than on the 
original non-binary problem. In contrast, if the constraints in the original problem 
are very loose, AC3 on the original problem can perform much better than the worst 
case complexity because it is easy to find a support in a constraint. Furthermore.
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AC3 on the original problem can use some specialized methods or propagators to 
speed up constraint propagation for some classes of constraints, e.g., an alldifferent 
constraint can be revised in 0 (d r15) worst case time [94]. Constraint propagation in 
the hidden problem can also be improved by exploiting the special properties (the 
bipartite graph topology and the one-way functionality of the hidden constraints) of 
the hidden transformation. For example, when a tuple t in the domain of a hidden 
variable needs to find a support in a hidden constraint, we need not go through the 
whole domain of the constrained ordinary variable x, but just check whether t[x\ is 
in the domain of x  at a constant cost.

4.3.3 Arc Consistency on the Dual Transformation
We have identified the equivalence relation that the original problem is arc consistent 
if and only if its hidden transformation is arc consistent. However, such an equivalence 
does not hold in the case of the dual transformation.

E xam ple 4.4 Consider a CSP P  with 4 Boolean variables, x l ; . . . .  x4, and three 
constraints

C{xl,x 2,x 3) =  {(0,0,0), (1,1,1)},

C{x 2,x 3 ,x4) =  {(0 , 0 , 0 ), ( 1 , 1 , 1 )},

C (:n ,x 3 ,x4) =  {(0 , 0 , 1 ), (1 . 1 , 0 )}.

The original problem P is arc consistent. In its dual transformation, let the dual vari
ables ci,c2, and C3  correspond to the above constraints, respectively. Because neither 
of the tuples (0 , 0 , 0 ) and (1 , 1 , 1 ) in the domain c2  has a support in the dual constraint 
between c2 and c3, the domain of c2 is wiped out after achieving arc consistency on the 
dual transformation. Thus dual(P) is not arc consistent and ac(dual[P)) is empty.

E xam ple 4.5 Consider a CSP P with three Boolean variables, x t . x2  and x3. and 
three constraints

C(x u x2) = {(1,1)},

C(x2,x 3) = {(1,1)},

C (x i,x3) =  {(1,1)}.

The dual transformation dual(P) is arc consistent. However, the original problem is 
not arc consistent, because value 0  for each of the variables m il be removed from the 
domain when achieving arc consistency.
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In Example 4.5, although the original problem is not initially arc consistent, it 
can be made arc consistent without a domain being wiped out. We will show that 
if the dual problem is not empty after achieving arc consistency, then the original 
problem is not empty either after achieving arc consistency.

Lem m a 4.5 Given a subdomain V  of the dual problem dual(P). V  is arc consistmt 
if  and only if for each pair of dual variables Cj and Cj in dual(P). where cars(c,) n 
vars(Cj) 7  ̂ 0, and for each subset of the ordinary variables S  C vars(ci) D uars(Cj), 
KsdomP' (cj) =  ■KSdomv ' {c-j).

Proof: The i f  part: In the dual problem, there is a dual constraint between a pair of 
dual variables c, and Cj if vars(ci) Dvars(cj) ^  0. Because 7Tvars(C.)nvars(Cj)domD‘(c,) 
— ^vars(ci)nvar3{cj)dornD'(cj), for each of the tuples £, € dcrmP'(c,), there exists a tuple 
tj in domv'(cj) such that U and tj agree on the part vars(ci) n  vars(cj). So {c, <— £,} 
has a valid support in the dual constraint. Thus V  is arc consistent. The only if 
part: For each of the tuples t e  irsdomP' (ci), there is a tuple U 6  domv'(ct) such 
that ti[S\ =  t. Because V  is arc consistent, there is a tuple tj 6  domv'(cj) such 
that £j[i/ars(cj) fl vars(cj)] = tj[vars(ci) fl uars(cj)]. Thus t = £,[5] = tj[S\. Because 
tj[S] € 7VsdcrmP'(cj), we have irsdom ^(c,) C ttsdomD'{c}). Similarly, we can show 
that TTsdoni0'(cj) C xs domD'(ct). Therefore. - sdomv'[ct) = r sdomD'(ij ). |

T heorem  4.6 dual(P) is arc consistent if and only if for each pair of dual uanables 
Ci and Cj, where vars(ci) C\vars(cj) ^  0 , and for each subset of the ordinary variables 
S  C vars(ci) C\vars(cj), ‘Ksdomdual̂ p\c i)  =  ■Ksdomdual̂ p\c j) .

Proof: The theorem is true by considering the set of the original domains in dual(P) 
in Lemma 4.5 | .

From the arc consistency closure of dual{P)), i.e., ac(dual{P)), we can construct 
a subdomain for the original problem P, denoted by X>dualaĉ p\  in which for each 
ordinary variable x  in P, we choose a dual variable c such that x € vars(c)2, and 
set domx>‘Wac(P) (x) to be TT[x}domaĉ duâ p^(c). From Lemma 4.5, for any two dual vari
ables a, and Cj such that xGc ;  and x € Cj, 7r{Iydomac(duâ P)) (c,) =  (c,)

2This is always possible because we have assumed that each variable should be constrained by at 
least one constraint in a CSP.
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Table 4.1: Comparison of the worst case complexity of AC3 on the original problem,
the dual problem, and the hidden problem.

AC3 worst case complexity
original 0 (m r2<F+l).
hidden 0(m rd2r+l) or 0 (m rdM 2).
dual 0 (m idir) (in the general case).

0{m 2d2r) or 0{m 2M 2) (if a propagator is used).

because ac(dual(P)) is arc consistent 3. So the domain of x in £>duo/ac(p) is irrelevant 
to whichever dual variable we choose to make the projection.

Note that J)dualac<~p) is a set of domains for the ordinary variables in P. and it 
is constructed from the set of domains for the dual variables in uc(duul(P)). Fur 

example, the dual problem of the CSP in Example 4.5 is arc consistent and let 
dual variables ct, c2  and C3  correspond to three original constraints, thus 'Dac(dual[P)) 
is {dom(cL) =  {(1, l)},dom(c2 ) =  {(1,1)}, dom(cf) =  {(1,1)}}, and X)tiuaiac(P) is 
{dom{x 1 ) =  {l},dom(x2) = {l},dom(x3) =  {1 }}.

T heorem  4.7 I f  ac(dual{P)) is not empty, ac(P) is not empty either.

Proof: Because the domain of each dual variable in ac(dual(P)) is not empty, its 
projection over an ordinary variable cannot be empty either. So there is no empty 
domain in 'Ddualac(p). In the original problem, for each ordinary variable x. for each 
of the values a 6  domX)‘w ‘‘c<P) (x), and for each constraint C. where x 6  vars(C), 
suppose a is the projection of the tuple t of the corresponding dual variable c. then 
for each of the variables y € vars(C), t[y] € domD‘Wac<P>(</). Thus t is a valid support 
for {x a} in constraint C. Therefore, ■p<fua/ac(p) is a non-empty arc consistent 
subdomain of P  and thus ac{P) is not empty. |

From Theorem 4.3 and Theorem 4.7, we have the following comparison between 
arc consistency on the dual problem and the one on the hidden problem.

C oro llary  4.8 I f  ac(dual(P)) is not empty, ac(hidden(P)) is not empty either.

3In a strict sense, Lemma 4.5 only applies to the dual transformation. However, ac{dual{P)) can 
be viewed as the dual transformation of a CSP, which has the same variables and domains as the 
original problem P , and in which the constraints in the original problem are tightened according to 
the domains of the corresponding dual variables in ac{dual(P)).
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In the dual transformation, there are m  dual variables. The maximum domain 
size is bounded by (F. The number of the dual constraints is bounded by m2, i.e.. 
each pair of dual variables constrain each other. Thus the worst case complexity of 
achieving arc consistency on the dual problem by AC3 is 0 {m 2dir). In the worst case, 
among arc consistency on the original problem, its hidden transformation and its dual 
transformation, the one on the dual is the most powerful and yet the most expensive. 
Constraint propagation in the dual problem can be speeded up by exploiting the 
special structure of the dual constraints. For example, given a dual constraint between 
two dual variables, C{ and cv  each time we want to find supports for the values in the 
domain of Cj, we allocate a table of size rfl«'°ri(c-)ni'ars(cj)l) and for each of the tuples 
tj  6  domdual(-p )(cj), we record the projection t j [vars(ci)r\vars{cj)}  in the table. Then 
we go through the domain of Cj and for each tuple £j € domdual{P]{ci), we check 
whether the projection £j[uars(cj) fl vars(cj)]  has been recorded in the table. If not. 
ti is removed from the domain of c,. By two passes of the domains, we can revise the 
dual constraint. Therefore, the worst case complexity of AC3 on the dual problem 
is lowered to 0 (m 2d2r), which is competitive to the one on the hidden problem. 
Achieving arc consistency on the dual problem is worth doing only in the case that 
the original constraints are very tight. Let M  denote the maximum domain size of the 
dual variables, the worst case complexity of AC3 on the dual problem can be rewritten 
as 0 (m 2M 2). For example, in Chapter 3, we have used the dual representation of the 
crossword puzzle problems to compare GAC and GAC-CBJ. in which arc consistency 
is enforced (on the induced problem) at each node in the backtrack search tree. Table 
4.1 summarizes the results about the worst case complexity of AC3 on the original 
problem, the dual problem, and the hidden problem.

We have shown that in general, arc consistency on the dual problem is stronger 
than arc consistency on the original problem and the hidden problem. However, for 
some CSPs with a special structure, achieving arc consistency on the dual is equivalent 
to achieving arc consistency on the original problem.

T heorem  4.9 Given a CSP P, if  for any two constraints Ci and C} of P. vars{Ci)r\ 
vars(Cj) contains at most one ordinary variable. (1) ac{dual(P)) is not empty if 
and only if ac(P) is not empty; (2) D duaiac(p) = X>ac(p); and (3) dual{ac(P)) =  
ac(dual{P)).

Proof: (1) From Theorem 4.7, if ac(dual(P)) is not empty, ac(P) is not empty. On 
the converse, suppose ac(P) is not empty, we have the dual transformation of ac( P) 
as dual(ac(P)). Note that X)‘<uo'(oc(P^, the set of the domains in dual{ac{P)). is a
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subdomain of dual(P) and j )dual(ac(.p)) is not empty. Given any two dual variables c, 
and Cj in dual(P), where vars(ci)Civars(cj)  0, let x  be the only ordinary variable in 
vars(ci) dvars(Cj) .  We will prove that -k[x}domdual('ac(‘P^(Ci) =  ir{x}domdua/(ac(P))(c,) 
=domac(-p\ x ) . From the definition of the dual transformation, because each tuple 
in the domain of a dual variable must be a valid tuple in the corresponding orig
inal constraint, we have -ir{x}domdual(-aĉ p^ (c*) C  domaĉ p\x ) .  Because each value 
a € domaĉ  (x) has at least one valid support in the constraint Ci in ac(P), we have 
domac(p)(x) C  7T(x}domdual(ac(pV(ci). Therefore, 7T{x}domduâ ac(P̂ (ci) = domac(P\ x ) . 
For the same reason, w{I}domduai{ac(P))(c;) =  domac(-p^(x). Thus. iT{x)domdual(-aĉ p^(cl) 
=  7r{I }do7 7i<iuai(ac(p^(cJ). From Lemma 4.5, D ‘iuai(“c(p)) is an arc consistent subdomain 
of dual(P). Therefore, Ddualiac(p)) c  ■p°ridua/(p)) and ac(dual(P)) is not empty.
(2) From the construction of D dualac(p\  domvi'MtttC('P) (x), the domain of an ordi
nary variable x  in 'Pdualac<.p). is set to be i-^ d o m ac{dual(P)){c) for some dual vari
able c. Because domaĉ ( x )  =  TT^domdual(-act'P^ (c) and D duatiacip)) is a subdo
main of ac(dual(P)), that means, domaĉ ( x )  C  7T{I jdom“c(,<"oi(P,)(c). and thus. 
d o m “d p )(x)  C  domDdualacl'P) (x). Therefore D ac(P) =  J)duatac(p ) ,
(3) Because £)dua,ac(P) is an arc consistent subdomain of ac(P). for any dual variable c 

in ac(dual(P)), and for each of the tuples t 6  domac(dua,(P))(c), £[x] € domac(P){x) for 
each of the ordinary variables x  € uars(c). Thus t is not removed from the correspond
ing original constraint C  in ac(P). Therefore, dom'Dac(d'iailP)) {c) C domDdaaUac[D>) {c). 
We have ,Dac(dual(p)) — j)duai(ac(D)) Because ac{duat{P)) and dual(ac{P)) have the 
same set of variables, the same set of domains and the same set of dual constraints. 
ac(dual(P)) =  dual(ac(P)). |

In a crossword puzzle problem, there is no overlap between two horizontal un
known words or two vertical unknown words, and a horizontal word overlaps with 
a vertical word on at most one letter. Thus, in its original formulation, every two 
non-binary constraints overlap on at most one ordinary variable. From the above 
theorem, we know that achieving arc consistency on the dual representation is equiv
alent to achieving arc consistency on the original representation. Given a CSP. if two 
original constraints overlap on more than one variable, arc consistency on the dual 
problem may be strictly stronger than arc consistency on the original problem. An 
example is the problem in Example 4.4.

For a binary CSP, we assume that there is at most one binary constraint between 
two variables. Thus, if the original problem is a binary CSP, each pair of the orig
inal constraints overlap on at most one ordinary variable. From Theorem 4.9. arc

100

R e p ro d u c e d  with perm iss ion  of  th e  copyright ow ner.  F u r th e r  reproduction  prohibited without perm iss ion .



consistency on its dual is equivalent to arc consistency on the original.

Corollary 4.10 Given a binary CSP P, (1) ac(P) is not empty if  and only if 
ac(dual(P)) is not empty; (2) V aĉ  =  'Ddttalac(p); and (3) dual(ac{P)) =  ac(dual{P)).

Because the dual representation is a binary CSP, Corollary 4.10 prevents the 
attempt to take the dual transformation of a dual problem in order to achieve a higher 
level consistency by enforcing arc consistency on the “double-dual” transformation.

4.4 Consistencies Hierarchy

Because both the dual problem and the hidden problem are binary CSPs. The kinds 
of consistency that only apply to binary CSPs can be used and compared on the dual 
problem and the hidden problem. Debruyne and Bessiere have studied and compared 
some selected local consistencies on binary CSPs in [28]. Following their definitions, 
a binary CSP is (z,.^-consistent iff it is not empty and any consistent partial solution 
over i variables can be extended to a consistent partial solution involving j  additional 
variables. A problem is arc consistent (AC) if it is (l.l)-consistent. A problem is path 
consistent (PC) if it is (2,l)-consistent. A problem is strongly path consistent (ACPC) 
if it is (z, Inconsistent for each 1 < i < 2. A problem is path inverse consistent (PIC) 
if it is (l,2)-consistent. A problem is neighborhood inverse consistent (NIC)  iff a m  

instantiation of a single variable x can be extended to a consistent partial solution over 
all the variables that are constrained with x, called the neighborhood of x. A problem 
is restricted path consistent (RPC) iff it is arc consistent and if an instantiation of 
a variable is consistent with just a single value of an adjoining variable, then for any 
other variable there exists a value compatible with these instantiations. A problem 
is singleton arc consistent (SAC) iff it is not empty, and the CSP induced by any 
instantiation of a single variable is not empty after achieving arc consistency.

Debruyne and Bessiere compare these consistencies in a way similar to our ap
proach in the above sections. They call a consistency property CC t is stronger than 
CC2 (CC,>CC2) iff in any problem in which CCt holds, then CC2 holds, and CCt 
is strictly stronger than CC2 (CCt >CC2) if CC{ is stronger than CC2 and there is 
at least one instance such that CC2 holds but CCt does not. They have shown that. 
ACPC > SAC > PIC > RPC > AC, and NIC > PIC. Note that our definition of 
the “strongness” is slightly different than theirs. We mean CC; on formulation A  is 
stronger than CC2 on formulation B if for any problem, if CC; can be achieved on
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A  without an empty resulting problem, CC2 can also be achieved on B  without an 
empty resulting problem 4. Nevertheless, we can justify that the above hierarchy still 
holds under our definition. Suppose in the above hierarchy, a local consistency prop
erty CCi is stronger than a local consistency property CC2. Given any CSP instance 
P, if CC i can be achieved without an empty resulting problem, there is a non-empty 
subproblem of P  in which CC / holds and thus CC2 also holds. Therefore CC2 can be 
achieved on P  without an empty resulting problem. As we can see, arc consistency 
lies at the bottom in the above hierarchy. Furthermore, it has been observed by Ster- 
giou and Walsh [106] that, due to the special topology of the hidden transformation, 
certain consistency techniques fail to achieve any additional pruning than AC.

T heorem  4.11 [106] Given a CSP instance P, hidden(P) is not empty after enforc
ing NIC if and only if  it is not empty after enforcing AC.

Proof: Since NIC is stronger than AC, we only need to consider the if part in the 
above. Suppose ac{hidden(P)) is not empty. For a hidden variable c. its neighborhood 
is vars(c) in ac{hidden{P)). Thus an instantiation of c with a tuple t from its domain 
in ac(hidden(P)) can be extended to a consistent partial solution including its neigh
borhood, where for each of the ordinary variables x € vars{c), x  is instantiated with 
f [x] (t[x] must be in the domain of x because it is the only support for t in the hidden 
constraint between x and c). For an ordinary variable x, x only constrains with hid
den variables. An instantiation of x with a value a from its domain in ac{hidden(P)) 
can be extended to a consistent partial solution including all its neighborhood, where 
for each of the hidden variables c in its neighborhood, c is instantiated with a tuple 
t such that t[x] =  a (also, such a tuple must exist because {x ■<— a} has at least one 
support in the hidden constraint between x and c). Therefore, the hidden problem is 
not empty after enforcing NIC. |

Because on the hidden problem NIC collapses down onto AC, those consisten
cies that are weaker than NIC but stronger than AC, e.g., PIC and RPC. are also 
equivalent to AC. However, for the dual problem, NIC is still strictly stronger than 
AC.

Exam ple 4.6 Consider a binary CSP with 3 Boolean variables. The constraints are

_______________________ C (xi,x2) =  {(0 , 0 ), (1 , 1 )},
4 Because in the comparison of arc consistency on the original problem and arc consistency on the 

dual problem, Debruyne and Bessiere’s definition of “strongness” cannot be applied. (See Example 
4.4 and Example 4.5.)
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C(x2,x 3) =  {(0,0), (1,1)},

C (xu x3) =  {(0,1),(1,0)}.

The original problem, is AC but not NIC. Also, its dual transformation is AC but not 
NIC. The dual transformation is neither PIC nor RPC.

Although on the hidden problem NIC and PIC do not provide any more pruning 
than AC, Stergiou and Walsh have shown by example that on the hidden problem. 
ACPC is strictly stronger than SAC, which itself is strictly stronger than AC [106].

T heorem  4.12 SAC on the dual problem is stronger than SAC on the hidden prob
lem.

Proof: If the dual problem is not empty after enforcing SAC, let sac{dual(P)) de
note the resulting CSP. We will show that the hidden problem is not empty either 
after enforcing SAC. From sac(dual(P)), we can construct a subdomain X>liua'sac(p) 
for the hidden problem, in which each hidden variable has the same domain as the 
corresponding dual variable in sac(dual(P)), and the domain of an ordinary variable 
x  is set to be iX{x)dom3aĉdual(P̂ {c) for some dual variable c such that x  € cars{c). 
Because sac(dual(P)) is arc consistent, from Lemma 4.5, the domain of x  is irrele
vant to whichever dual variable we choose to make the projection. For each hidden 
variable c and for each of the tuples t € domvd“aU“ciP)(c), hidden(P)|{c«-t} is arc con
sistent if and only if P\t is arc consistent. P\t is arc consistent because dual(P)|{c- £} 
is arc consistent. For each ordinary variable x  in hidden(P) and for each of the 
values a € domt>d'“'u'“:lP) (x), there is a hidden variable c and a tuple 1 of c such 
that x  € vars(c) and t[x] =  a. Thus hidden{P) |{n_a} is arc consistent because 
hidden{P)\[Ci- t} is arc consistent. |

In the hidden problem, for each pair of hidden variables c* and Cj. where cars(c,)n 
vars(cj)  #  0 , enforcing strong path consistency will add a constraint between c, and 
Cj, which restricts a tuple from c* to agree with a tuple from c, on the shared ordinary 
variables. The constraint is essentially the same as the dual constraint between ct and 
Cj in the dual transformation. Thus, enforcing strong path consistency on the hidden 
problem actually results in a subproblem, which is identical to the dual problem. 
Therefore, strong path consistency on the hidden problem is at least as strong as the 
one on the dual.

T heorem  4.13 Achieving strong path consistency on the hidden problem is equiva
lent to achieving strong path consistency on the dual problem.
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Proof: If the dual problem is not empty after enforcing strong path consistency, we 
will show that the hidden problem is not empty either after enforcing strong path 
consistency. Let pc(dual(P)) denote the resulting binary CSP after enforcing strong 
path consistency on the dual problem, and for each pair of dual variables c, and 
Cj, if there is one constraint between Ci and Cj in pc(dual(P)), let DC{ci,Cj) denote 
that constraint, otherwise, DC{ci,Cj) denotes the universal constraint between c, and 
Cj. Suppose pc{dual[P)) is not empty, we can make the hidden problem strongly 
path consistent without an empty resulting CSP. In the hidden problem, we do the 
following operations.

•  For each hidden variable c, its domain is restricted to be the domain of the 
dual variable c in pc(dual{P)). For each ordinary variable x. we choose a dual 
variable c in pc(dual{P)) such that x  € vars(c), and restrict the domain of x 
to be Z[x)dompê dual̂ p^(c). Because pc{dual{P)) is arc consistent, from Lemma 
4.5, the domain of x  is irrelevant to whichever dual variable we choose tu make 
the projection.

• Given two hidden variables c* and cv  we add a new constraint HC{c,.(j) be
tween Ci and Cj, which is the same as the constraint DC(ct,Cj) in pc(dunl(P)).

• Given an ordinary variable x  and a hidden variable c. If x  is included in vars(c). 
there is an original hidden constraint H C(x.c) between x  and c and we tighten 
this constraint according to the new domains. Otherwise x  is not included in 
vars(c). We choose another dual variable d  such that x  6  vars(c) U vars(d) 
(this is possible because x  involves at least one constraint). Then we add a new 
constraint HC(x, c) between x  and c in the hidden problem, which specifies a 
value a of x  to be compatible with a tuple t of c if there is a tuple t' in the domain 
of d, such that { c 4— t, d  4— £'} satisfies the constraint DC{c,d) and t'[x\ =  a. 
The new constraint is irrelevant to whichever dual variable we choose. Suppose 
there is a dual variable d' such that x  € vars(c) U vars(d'). If (c 4— t. d  4— £'} 
satisfies D(c, d), because pc(dual(P)) is strongly path consistent, there is a tuple 
t" of c", such that {d  4— t' ,d ' 4— £"} satisfies D C {d.d') and {c 4-  t.c" 4— f"} 
satisfies DC(c,d'). Note that x  6  uars(d) fl vars(d'). so t'[.r\ = t"[.r] = a. Thus 
a is also compatible with t in the case that c" is considered.

• Given two ordinary variables x  and y, we add a new constraint HC(x. y) between 
x  and y  in the hidden problem. If there is a dual variable c such that x  € 
vars(c) and y 6  vars(c), H C (x,y) is set to be ir{x^d o m pc(dual(P̂ {c). The
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new constraint is irrelevant to whichever dual vaxiable we choose to make the 
projection, because from Lemma 4.5, the domains of two dual variables will 
make the same projection over {x,y}. If there is no such a dual variable c 
that x  and y are contained in the scheme of c simultaneously, we choose two 
dual variables, Cj and c3, such that x G vars(ci) and y G vars(cj). H C(x.y) 
specifies that value a of x  is compatible with value b of y if there is a tuple f, 
of Cj and a tuple tj of c3, such that {cj <— t^Cj <— tj}  satisfies £>(c,,Cj). while 
ti[x] =  a and tj[y\ =  b. Also, the new constraint is irrelevant to whichever dual 
variables we choose. Suppose there are two dual variables o', and d} such that 
x  6  uars(di) and y G vars(d3). Because pc(dual(P)) is strongly path consistent, 
there is a tuple t} of o', such that {cj £j,Cj «— £'} satisfies the constraint 
DC(cj,Cj) and {ĉ  «— t\,Cj <— tj}  satisfies the constraint DC{di,cJ). Note that 
x  € vars(ci) nuars(Cj), so £'j[x] =  £j[x] =  a. Furthermore, there is a tuple £' 
of dj such that {Cj <— t\,dj <— £'} satisfies the constraint DC{di,dj) and {cj <— 
tj, dj <— tj} satisfies the constraint DC(cj, dj). Because y G vars(cj) n  vars{dj). 
we have £'[?/] =  tj\y\ =  6 . Thus a is also compatible with b in the case dL and d} 
are considered.

Let pc(hidden(P)) denote the resulting CSP. pc{hidden(P)) is not empty because 
none of the above projections is empty. Then we need to verify that pc{hidden(P)) 
is strongly path consistent. To verify that it is arc consistent, we need to consider 
three possibilities: a constraint between two hidden variables, a constraint between 
two ordinary variables and a constraint between an ordinary variable and a hid
den variable. The case of two hidden variables can be released because the do
mains of the hidden variables and the constraints between the hidden variables are 
the same as those in pc(dual(P)). To save space, we only discuss the case of two 
ordinary variables here. Given two ordinary variables x  and y. If the constraint 
H C {x,y) was constructed from a single dual variable c, i.e., x  G uars(c) and y G 
vars(c), note that dompdhtdden(~p^(x) = ~^xjdompĉ dual(-p^ (c) and dompc{'h'dden(P̂ {y) =  
7T{j,}dompc(-dual(-p^ (c), then for each value a of x, there is a tuple t in dompc(duoi(P))(c) 
such that t[x] =  o. Thus the value t[y\ in the domain of y is compatible with a in 
H C (x,y). If H C (x,y)  was constructed from two dual variables Cj and Cj. For each 
value a of x, there is a tuple ti of Cj such that £j[x] =  a. Because pc{dual{P)) is 
arc consistent, there is a tuple tj of Cj such that {cj ti,Cj <— tj} is consistent in 
DC[ci,Cj). Thus a is compatible with value tj[y\ in the domain of y. In either case, 
each value in the domain of x can find a support in the domain of y. Thus, HC{x, y)
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is arc consistent. Therefore, pc(hidden(P)) is arc consistent.
To verify pc(hidden(P)) is path consistent, we need to consider six possibilities, 

given any ordinary variables x, y and z, and hidden variables c,, cj and c/t, a consistent 
partial solution over x and y to be extended to a consistent partial solution over x. 
y and z, denoted by (1) (x,y) ->• z; (2) (x,y) -» c*; (3) (x,Cj) -* y; (4) (x,Cj) -* Cj\ 
(5) (c,-,Cj) —> x; and (6 ) (c,-, c,) -» c*. The case of (c,-,Cj) —> c* can be released 
because pc(dual(P)) is path consistent. To save space, we only discuss the case of 
(x, C{) —► Cj here. Suppose {x <— a,Ci <— £*} satisfies the constraint HC(x.Ci). If 
x 6  uars(ci) and x G uars(cj), because pc(dual(P)) is arc consistent, there is a tuple 
tj of Cj such that {c, <— ti,Cj tj}  satisfies the constraint HC(ci,Cj). Also, we have 
tj[x] =  a and tj[x] = a. That is, {x <— a,Cj tj}  satisfies the constraint HC{x.Cj). 
If x G vars(ci) but x £ vars(cj), then £j[x] =  a. The constraint HC(x.Cj) could 
be constructed from DC(cj,Ci). Because there is a tuple tj of Cj to be compatible 
with ti of Cj in the constraint H C (ti,tj), {x a,c} <— tj} satisfies the constraint 
H C {x,tj). If x G uars(cj) but x £ uars(ci), the constraint H C (x.ct) could be 
constructed from DC{ci,Cj). Because {x <— a,c, <— £,} satisfies H C (x.t\). there is 
a tuple tj of Cj such that {c* <— ti.Cj tj} satisfies HC(ct.Cj) and tj[x\ =  a. Thus 
{x <— a ,Cj <— tj}  satisfies the constraint HC{x,Cj). If x g  uars(ct) and x g  rars(tj). 
there is a dual variable c such that HC{x,Ci) was constructed from DC{ci,c), and 
HC(x,Cj) was constructed from DC(cj,c). Thus, there is a tuple t of c. such that 
{c <— £, Ci £*} satisfies the constraint HC{c,Ci) and £[x] =  a. Because pc(dual(P)) 
is path consistent, there is a tuple tj of Cj, such that {c t,Cj «— £_,} satisfies 
HC(c, Cj) and {c, f -  £i(Cj <— £_,} satisfies HC{Ci,Cj). We have {x <— a,Cj £_,} 
satisfies the constraint HC{x,Cj). Therefore, the case of (x, c,) —> Cj is verified after 
we have considered all the possibilities. |

We summarize the above results in a hierarchy graph, as shown in Figure 4.6. 
In the above figure, an appendix to a consistency denotes on which problem the 
consistency is applied. For example, NIC-dual denotes the case of NIC on the dual 
transformation. If there is a path between consistent properties A  and B in the figure, 
it means A  is stronger than B. If there is also a path from B  to A ,  then A  is equivalent 
to B.

4.5 Summary

In this chapter, we formally defined the dual transformation and the hidden variable 
transformation of an original CSP. We studied the arc consistency property on the
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Figure 4.6: A hierarchy about the relations between consistencies on the original 
problem, its dual transformation and its hidden transformation.

original problem, and its dual and hidden transformations. We show that arc consis
tency on the dual problem is stronger than arc consistency on the original problem, 
which itself is equivalent to arc consistency on the hidden problem. We identified a 
special structure of non-binary CSPs, in which arc consistency on the dual is equiv
alent to one on the original problem. We enriched the consistencies hierarchy by 
considering some other local consistencies that only apply to binary CSPs. For exam
ple, we show that path consistency on the hidden problem is equivalent to one on the 
dual, and singleton arc consistency on the dual is stronger than one on the hidden.
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Chapter 5 

Dual and Hidden Transformations 
with Backtracking Algorithms

In Chapter 4, we formally defined the dual and hidden transformations and gave 
some theoretical comparisons of the consistency properties on the original problem 
and its dual and hidden transformations. One may be more interested in how these 
transformations affect the problem solving. That is, given three formulations of a 
problem, the original formulation, its dual transformation and hidden transformation, 
how will they affect the backtracking algorithms when solving the problem. Bacchus 
and van Beek have presented some preliminary results based on the forward checking 
algorithm(FC)[7]. For example, they give examples to show that FC on the original 
may be exponentially better or worse than FC on the dual problem or hidden problem. 
Also, they present a new algorithm, known as FC+, as an enhancement to FC on the 
hidden problem, which is shown to be the best among those "algorithm+formulation" 
couples. We will present in this chapter more theoretical comparisons about the 
performance of the above three formulations in selected backtracking algorithms, 
including the chronological backtracking algorithm, the forward checking algorithm, 
and the maintaining arc consistency algorithm.

5.1 A Few Issues about the Comparisons

Given a CSP formulation of a problem, we can always transform the original for
mulation into the dual problem or the hidden problem. Note that our purpose is ro 
theoretically evaluate the modeling techniques (the dual and hidden transformationi 
by means of comparing the performance of the selected backtracking algorithms on the 
above formulations, which is different from the approach of evaluating (all possible)
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CSP formulations for a specific problem as Nadel [8 6 ] did for the n-Queens problem. A 
general methodology in algorithms evaluation is to compare their performance empir
ically or theoretically on the same CSP instance, i.e., to fix the problem formulation 
and evaluate the algorithm. Intuitively, the formulations evaluation should work in 
the reverse direction. That is, to fix the algorithm and compare the performance of 
the algorithm on each of the formulations. In practice, this approach is reasonable 
because there are only a few best algorithms that are widely studied in the literature 
and used in commercial systems, such as Ilog Solver [61], e.g., the forward checking 
algorithm and the maintaining arc consistency algorithm. Hence, in this chapter, we 
will focus on three main-stream backtracking algorithms, the chronological backtrack
ing algorithm, the forward checking algorithm and the maintaining arc consistency 
algorithm. However, given a backtracking algorithm and a CSP formulation, we are 
still unable to precisely describe the execution of the algorithm without knowing the 
instantiation order of the variables. As a matter of fact, different variable orderings 
may result in tremendous differences in the performance of the algorithm.

Exam ple 5.1 Consider a CSP over the set of Boolean variables, {xt, . . .  ,x„}. The 
constraints are

C{xu x2,x n) =  {(0 , 0 , 1 ) ,( 1 , 1 , 0 )},

C (xlfxn) =  {(0,0),(1 , 1 )},

C ( x „ _ t ,x „ )  =  { ( 0 . 0 ) , ( 1 , 1 ) } .

Under the static variable ordering X i,. . . ,  xn, FC applied to the original problem is able 
to detect that every node at the level of x-> is a dead-end, because the domain of xn will 
be wiped out due to the instantiations to X[ and x<i. In the hidden problem, if the vari
ables are instantiated in the order, x i , . . .  ,x n,c (x i,x 2 ,x n) ,c (x i,x n). —  c(x„_i.xn). 
FC applied on the hidden problem is unable to detect a dead-end until the variable x n 
has been instantiated. Thus, under the above variable orderings, FC applied on the 
hidden is exponentially worse than FC on the original problem. However, if the vari
ables in the hidden problem are instantiated in the order, Xi,X2 , c(xi. xo, x„), c(xi.xn) . . 
FC applied on the hidden is able to detect that every node at the level o /c (x i,x n) is 
inconsistent with x„. Therefore, under the new variable ordering, the performance of 
FC on the hidden problem is comparable to the one on the original.

The issue about variable ordering may not be a serious problem when we are 
comparing two algorithms on the same problem formulation, because the same static
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variable ordering or the same dynamic variable heuristic (if applicable) can be used 
for both algorithms [69]. However, because all three formulations that we an* going 
to evaluate have different sets of variables, inherently, we have to use a different vari
able ordering for each formulation. The question is. how can we select the variable 
orderings to ensure a fair and meaningful comparison? One simple solution is to 
assign each formulation a default static variable ordering. For example, the default 
variable ordering for the original problem is to instantiate the variables in a static 
order in which they are presented in the problem, usually in the lexicographic order 
as, £ i , . . . , x n. The default variable ordering for the dual problem is to instantiate 
the dual variables in the order in which their corresponding constraints are presented 
in the original problem, e.g., Ci,.. .,Cm. Such an arrangement is meaningful, because 
in the dual transformation, the first dual variable is usually given to the first original 
constraint and so on. If both the original problem and the dual problem are solved in 
a static variable ordering, it is very natural to instantiate the variables in the order in 
which they are presented in the formulation. Similarly, we can set the default variable 
ordering for the hidden problem as x t , . . . ,  x„, c i , . . . ,  Cm. By assigning each problem 
formulation a default variable ordering, we can show the worst case differences be
tween the performance of the formulations. For instance, in the above example, under 
the default variable orderings, FC applied on the hidden is exponentially worse than 
FC applied on the original problem.

Generally, given a backtracking algorithm, it is possible to find one instance to 
show that one formulation may be exponentially better than the other, and mean
while there is an instance in which the converse holds. Unlike the results of the 
algorithms evaluation (for example, it is known that CBJ is never worse than BT in 
terms of nodes visited and constraint checks performed) there is usually no constant 
relation between two formulations under the same algorithm, saying that one is al
ways better than the other. Although the above bounds are valid in the worst case 
or in the instances we constructed, they are not very interesting because too little 
information is provided to guide us to determine whether or not the dual or hidden 
transformation should be applied on the original problem. The problem here is that 
the restriction of the algorithm to the default variable orderings gives us too much 
freedom in contriving a CSP instance that maximally shows off the drawbacks of one 
formulation but relatively hides those from the other formulation.

In this chapter, given two formulations A  and B  of a problem, we are going to 
identify one of two relations between A  and B with respect to a fixed backtracking 
algorithm; namely, A  may be exponentially worse than B, or A  is only bounded worse
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than B.

D efin ition  5.1 Given a backtracking algorithm and two formulations A  and B of a 
problem, we say A  may be exponentially worse than B if there exists a CSP instance 
and a variable ordering for B such that the performance of the algorithm applied on A  
is exponentially worse than its performance on B no matter what variable ordering is 
used in A , and we say A  is only bounded worse than B if for any CSP instance and any 
variable ordering for B, there is a variable ordering for A  such that the performance 
of the algorithm applied on A  is bounded by a polynomial from its performance on B.

Note the above two relations are mutually exclusive. To be fair ancl meaningful, 
we have to restrict the variable orderings that can be constructed and used for A  
when proving that A  is only bounded worse than B. As we have learned from Theo
rem 3.5 about BT and CBJ, BT can always perform as well as CBJ if an appropriate 
variable ordering is used for BT to simulate the execution of CBJ, whereas CBJ is 
known to be never worse than BT. Note that the variable ordering constructed for 
BT entirely depends on the execution of the CBJ to solve the problem, i.e.. it cannot 
be known before the completion of the CBJ. Generally, a comparison conducted in 
such a way between two algorithms or two formulations is not fair and it does not 
reflect their actual performance in solving the problem. In the following, to prove the 
bounded worse relation between A  and B , we will use static variable orderings for 
both of them. That is, given any CSP instance and a static variable ordering for B, 
we can always construct a static variable ordering for A  from the the one of B. such 
that the performance of A  is bounded by a polynomial factor from the performance 
of B. Under certain circumstances, we can relax the static variable orderings to dy
namic ones. For example, since the hidden problem has all the information (domains, 
degrees, etc.) in the original problem, given a dynamic variable ordering heuristic 
for the original problem, e.g., FF+Deg, it is possible to construct a dynamic variable 
ordering for the hidden problem without knowing the execution of the algorithm on 
the original problem.

When proving the above relations between formulations .4 and B, we actually 
use the number of the nodes visited by the backtracking algorithm as the measure 
of its performance. Because the backtracking algorithm only performs a polynomial 
number of constraint checks at each node in the search tree, these relations are also 
valid if the number of the constraint checks performed by the algorithm is considered.
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The last issue is which of the parameters related to the size of a CSP formulation 
should be used to establish an exponential or a polynomial bound. Those parameters 
include the number of the variables, n, the maximum domain size. d. the maximum 
arity of the constraints, r, the number of constraints, m, and the maximum number 
of the tuples in the constraints, M l. We assume that the parameters d. r. and m 
are all bounded by a polynomial with respect to the number of variables n and M  is 
bounded by 0(cT) unless otherwise stated. Therefore, the exponential or polynomial 
bound can be expressed in terms of n, or a combination of n, d, r and m.

Figure 5.1 summarizes the results that we are going to present in this chapter. 
In the above figure, we refer to a backtracking algorithm X  applied on a problem 
formulation Y  as X-Y. For example, GAC-orig denotes the case in which GAC is 
applied on the original formulation of a problem. We will show that GAC-orig always 
visits that same nodes as MAC-hidden if MAC-hidden instantiates all the ordinary 
variables first in the backtrack search, and GAC-orig is only bounded worse than 
MAC-dual if in the original formulation every pair of constraints share at most one 
variable. The above relations related to the chronological backtracking algorithm 
are identified in Section 5.2, the relations about the forward checking algorithm are 
identified in Section 5.3, and those about the maintaining arc consistency algorithm 
are given in Section 5.4.

Given a CSP instance and the variable orderings for the original problem, the dual 
problem, and the hidden problem, because a backtracking algorithm explores distinct 
search trees over the above three formulations, in the following, we refer to the search 
tree explored by the backtracking algorithm in the original problem as the original 
search tree, the one explored in the dual problem as the dual search tree, and the 
one explored in the hidden problem as the hidden search tree. We prove the bounded 
worse relation for a given backtracking algorithm and two formulations A  and B by 
establishing a correspondence between (some) nodes in the search tree explored in 
A  and (some) nodes in the search tree explored in B. In the following, we will use 
notations orig-dual, hidden-orig, dual-hidden, hidden-dual, hidden, allhidden, dual 
and alldual to denote such correspondences, which will be defined in the context.

5.2 Chronological Backtracking Algorithm (BT)

The properties of the nodes in the BT backtrack tree have been characterized by 
Kondrak and van Beek [69].

1 Also, M  is the maximum domain size of the dual (hidden) variables in the dual (hidden) problem.
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A  -  8
A  is never w orse chan B

Algorithms
is b o u n d ed  by 0 ( / ( n ) )  from  8

m ay b e  ex p o n e n tia lly  worse chan 8

O ( r )

M A C -hidden 'exp

F C +

exp

expexp

0 ( ( m  +  l)d.Vf
O i r d

0 ( ( m  +• l ) d A / ) Formulations

( 1) In the case that all the ordinary variables in the hidden problem are instantiated Brst.

(2 ) In the case that each pair o f the original constraints share at most one variable.

Figure 5.1: A two dimensional diagram showing the relations between the combina
tions of algorithms and formulations.
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T heorem  5.1 [69] B T  visits a node if  it is consistent. B T  visits a node only if its 
parent is consistent 2.

In the following discussion, we denote BT applied on the original problem as BT- 
orig, BT applied on the dual problem as BT-dual, and BT applied on the hidden 
problem as BT-hidden.

E xam ple 5.2 Consider a CSP over the set of Boolean variables, {x l 5 . . .  ,x„}. The 
only constraint in the problem is an n-ary constraint over all the variables, C (x1, . . . ,  x„) 
=  { (0 ,..., 0), (1 ,. . . ,  1)}. The dual problem has only one variable and its domain has 
only two values. So BT-dual visits two nodes, each identifying a solution of the prob
lem. In the hidden problem, if the only hidden variable is instantiated first, each of 
the ordinary variables has only one value in the domain to be compatible with the 
instantiation of the hidden variable. Thus BT-hidden visits 2 n +  2  nodes. However, 
by any variable ordering, BT-orig is unable to check the constraint until all the vari
ables have been instantiated, then it m il recursively test every possible instantiations 
to x i , . . . ,x „ .  Thus, BT-dual and BT-hidden are exponentially better than BT-orig 
in the above example.

T heorem  5.2 There is a CSP instance in which BT-dual and BT-hidden are always 
exponentially better than BT-orig no matter what variable ordering is used in the 
original problem.

Proof: It is true from the CSP in Example 5.2. |

Exam ple 5.3 Consider a non-binary CSP with n Boolean variables. x t  xn and
n constraints given by (xi), (~>Xi V X2 ), (-,Xi V - ’Xo V X3 ) , . . . ,  and (->X[ V ->x> • • -xn). 
BT-orig would visit 2n nodes, whereas, because the maximum domain size of the dual 
(hidden) variables is 2” — 1, by any variable ordering strategy, BT-dual or BT-hidden 
has to visit at least 0 (2 ") nodes.

T heorem  5.3 There is a CSP instance in which BT-orig is always exponentially 
better than BT-dual and BT-hidden no matter what variable orderings are used in 
them.

P roof: It is true from the CSP in Example 5.3. |

2Their original result only applies to binary CSPs. However, it is also valid on non-binary CSPs 
from their proof.
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Figure 5.2: The correspondence between the ordering of the dual variables and the 
ordering of the ordinary variables.

5.2.1 BT-orig and BT-dual
In the worst case, BT-orig is exponentially worse than BT-dual and BT-hidden. As 
we can see from Example 5.2, the exponent comes from the arity of the non-binary 
constraint. We show next that: If the maximum arity of the constraints in the original 
problem is bounded by a constant r, BT-orig is only bounded worse than BT-dual. 
That is, given a variable ordering in the dual problem, we can construct a variable 
ordering in the original problem, such that the number of nodes visited by BT-orig in 
the original search tree is bounded by a polynomial from the number of nodes visited 
by BT-dual in the dual search tree.

Given an ordering of the dual variables, c t , . . . , ^ ,  because an instantiation of 
a dual variable is equivalent to the instantiations of several ordinary variables, we 
can arrange the ordinary variables in the original problem in the order that they are 
instantiated. For example, as shown in Figure 5.2, given the static ordering of the 
dual variables, c(xi,x 2 ,x3), c(x2 ,X4 ,x 5), and c(xi,x 3 ,x 5), the ordinary variables can 
be ordered as x t , x2, x3, x4, and x5. For convenience, we denote the ordinary variables, 
which are “instantiated” as the dual variable c* is instantiated, as x ^ , . . .  .x i>r>, i.e.. 
Xij € vars(ci) and xtJ £  U]t=li vars(ck). Therefore, under the above orderings, each 
ordinary variable in the original problem corresponds to a unique dual variable c, 
in the dual problem. However, not all the dual variables have some correspondence 
in the ordinary variables, such as the dual variable c3  in the above figure, which does
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not make any new instantiations to the ordinary variables. Therefore, in the original 
problem, Xjir, may not always be followed by Xj+1(i (because x,+lii may not exist).

Although BT-orig and BT-dual explore different search trees, as we show next, 
there exists a correspondence between (some) nodes at the level of x,-.ri in the original 
search tree and (some) nodes at the level of c, in the dual search tree. We then show 
that the total number of the nodes visited by BT-orig (in the original search tree) 
is bounded by a polynomial factor from the total number of the nodes visited by 
BT-dual (in the dual search tree).

Observation 5.1 Under the above orderings, if a node t at the level of x tSi in 
the original search tree is consistent with constraints CL, —  Ct, i.e., t[t’ars(Cj)] € 
rel(Cj), j  =  1 ,• • • ,! , t corresponds to a unique node at the level of Ci in the dual 
search tree, given by orig-dual(t) =  (ci *- f[uars(ci)],. . . ,  c\ <- £[uars(ci)]}.

The condition that t is consistent with the constraints cannot be re
laxed. Otherwise, suppose t does not satisfy a constraint C}, for 1 < j  < i. i.e.. 
t[vars(cj)] £  rel(Cj), then t[vars{cj)] is not a valid tuple in the domain of the dual 
variable Cj and thus orig-dual(t) is not a legal node in the dual search tree.

Lemma 5.4 I f  a node t at the level o fx^Tl in the original search tree is consistent, its 
corresponding node at the level of c, in the dual search tree, orig-dual(t). is consistent 
in the dual problem.

Proof: Suppose orig-dual{t) does not satisfy a dual constraint between two dual 
variables c3 and c*, where 1  < j, k < i. Thus orig-dual(t)[cj] does not agree with 
orig-dual{t)[ck\ on the part vars{cj) fl vars{ck). Because orig-dual{t)[cj] is set to be 
£[uars(cj)] and orig-dual(t)[ck\ is set to be £[uars(cfc)], they must agree on the shared 
ordinary variables. That is a contradiction. |

We have established the correspondence between (some of) the nodes at the level 
of Xiji in the original search tree and (some of) the nodes at the level of c, in the dual 
search tree. We now show that there is a correspondence between the nodes visited 
by BT-orig in the original search tree and (some of) the nodes visited by BT-dual in 
the dual search tree.

Theorem  5.5 Given any CSP instance, there is a variable ordering such that BT- 
orig visits at most 0(<f+l) times as many nodes as BT-dual does.
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Ck

C k + l

C i - l

Ci

Figure 5.3: The correspondence between the nodes visited by BT-orig in the original 
search tree and the nodes visited by BT-dual in the dual search tree.

Proof: From Lemma 5.4 and Theorem 5.1, if a node t at the level of x,.r, in the 
original search tree is consistent, its correspondence orig-dual{t) at the level of r, in 
the dual search tree is consistent and thus BT-dual will visit orig-dual(t). If BT-orig 
visits a node tyj at the level of Xij in the original search tree, let x k,rk be the variable 
immediately followed by xitl, from Theorem 5.1, t^ /s  ancestor tk<rk at the level of 
xk,rk is consistent. The total number of the descendants of tkyTk from the level of xtil 
to the level of x i>Ti is bounded by 0 (d r+l), as shown in Figure 5.3. Thus the total 
number of the nodes visited by BT-orig is at most 0 (d r+l) times as many as the total 
number of the consistent nodes in the dual search tree, which is bounded by the total 
number of the nodes visited by BT-dual. |

The above bound is tight as we can verify it in Example 5.2. Thus, BT-orig may 
be exponentially worse than BT-dual, but if the maximum arity of the non-binary 
constraints in the original problem is bounded by a constant, BT-orig is only bounded 
worse than BT-dual.

Exam ple 5.4 We apply BT-dual and BT-orig to solve the CSP in Example J.l. as 
shown in Figure 5.4■ Because the node (x t <— 0 ,x> <— 0 ,x 3  <— 2 } is consistent in 
the original problem, it has a correspondence at the level of Cy in the dual search tree. 
(c(xi,x 2 ,x 3) <— (0,0,2)}. From Lemma 5-4, its correspondence is consistent in the 
dual problem. Therefore, BT-orig will visit {(xt, x2, x3) <— (0,0,2)}, and BT-dual will 
trisit (c(x i,x 2 ,x 3) <— (0,0,2)}. Also, as we can see in the above figure, the consistent 
node {(xi,x 2 ,x 3 ,x 4 ,x 5) <— (0 , 0 , 2 , 0 , 0 )} at the level o /x 2 t 2  in the original search tree
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c ( X ( ,  I 2 , 1 3 ) 6  {(0, 0, 0 ) . (0 . 0 , I ) ,  ( 0 ,0 . 2 ), (0 , I , I ) , 
(0, 1 , 2 ) , ( 0 , 2 . 2 ) ,  (1 ,0 ,  I),  (1 .0 ,  2), (1, l , 2 ) , ( 2 , 0 , 2 ) >

C(X2 , 1 4 , 1 5 ) £  { ( 0 ,0 ,0 ) ,  ( 1 ,0 ,0 ) ,  (1 ,0 ,  I ) ,  ( I ,  1 .0 ). 
(2 ,0 .0), (2,0 , 1), (2 ,0 , 2 ), (2 , 1, 0 ). (2 . I, I), (2, 2,0 )}

c(x  1 , X 3 , I 5 )  6  {(0, 2, 0), (I, 1, 0), (I, 2,0), (I, 2, I), 
(2, 0 , 0 ) , ( 2 ,  1 .0 ) ,  (2, 1. 1), (2,  2 .0 ) ,  (2 , 2, I ) , (2, 2, 2)}

r i +  Xo < X 3

X I +  X3 > X5 +  I

X 2 ~ x * > x s

X l €  { 0 ,1 ,2 }

AAA
O  a consistent node 

9  an inconsistent node

Figure 5.4: The comparison of BT-dual and BT-orig in solving the CSP in Example 
2 . 1 .

corresponds to the consistent node {(c(il ,X2 ,X3 ))c(x2 ,X4 ,X5 ) <— ((0 , 0 , 2 ), (0 . 0 . 0 ))} 
at the level of c2  in the dual search tree. The node {(xL, x>, x3) <— (0,0,2)} has 12 
(bounded by 3*) descendents from the level of x2,t to the level of x2,> A  the original 
search tree, and the total number of the nodes visited by BT-orig is at most 3 ‘ times 
as many as the total number of the nodes visited by BT-dual.

5.2.2 BT-hidden and BT-orig

Note in Example 5.3, BT-hidden has to visit an exponential number of nodes because 
the maximum domain size of the hidden variables is exponential in n. However, if the 
maximum domain size of the hidden variables is bounded by a constant M, we can 
arrange a variable ordering for BT-hidden such that it is only bounded worse than 
BT-orig.

Given a variable ordering for BT-orig in the original problem, x l t . . .  ,x„, we can 
construct an ordering for BT-hidden on the hidden problem. The ordinary variables 
in the hidden problem are instantiated in the same order as they are in the original 
problem. Furthermore, at each node in the original search tree, if the instantiation of 
the current variable X* makes some constraints Ciyi , . . . ,  Chrt checkable, in the variable 
ordering for the hidden problem, we instantiate the hidden variables c,.!, c,.ri cor
responding to those newly checkable constraints (breaking ties arbitrarily). Thus the
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Cl.oXI

C3.0

•■•(■Cl. * 2 . * 3 ) J C3.1

c ( x i , r 3 . X 5 ) )  C j . i

c U 2 . * * . * s )  )  C 5 . 2X5

Figure 5.5: The correspondence between the variables in the original problem and 
the variables in the hidden problem.
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variable ordering for the hidden problem is clto,. . . ,  Ci<n, . . . ,  c^o,. . . ,  C n , n r , where Cij0 
denotes the ordinary variable x, and c, j  for j  > 1  denotes a hidden variable such that 
Xi € vars(cij) and vars(cij) C {x i,. . .  , X j } ,  i.e., the constraints CtJ becomes check
able at the level of x, in the original search tree. Note that the number r, is bounded 
by the total number of the constraints in the original problem, m. For example, sup
pose in the original problem the ordinary variables are ordered as x t , . . . ,  x5, and there 
are three constraints C (xl; x2, x3), C(x2, x4, x5) and C(xl , x3, x5). The variable order
ing constructed for the hidden problem is x l ,x 2 ,x 3 ,c(xl,x 2 ,x 3 ),x 4 .x 5 ,c(x 2 .x.l.x 5 ). 
c(xi,x 3 ,x5), as shown in Figure 5.5. Under the above orderings, a node t ar rhe level 
of C i s ,  in the hidden search tree, corresponds to a node hidden-orig(f) at the level of 
Xi in the original search tree, where hidden-orig(t)[xj] = t[xj] for 1 < j  < i.

Lem m a 5.6 I f  a node t at the level of chJ.t in the hidden search tree is consistent, its 
correspondence hidden-orig(t) is a consistent node at the level of x, in the original 
search tree.

Proof: Suppose hidden-orig(t) does not satisfy the constraint C, i.e.. 
hidden-orig(t)[vars{C)\ £ rel(C). That means, in the hidden problem, the instan
tiation of the hidden variable c, £[c] is incompatible with the instantiations to the 
ordinary variables in the scheme of c. Thus t is not consistent. That is a contradic
tion. |

Therefore, the total number of the consistent nodes at the level of ct.r, in the 
hidden search tree is bounded by the total number of the consistent nodes at the 
level of Xi in the original search tree.

T heorem  5.7 Given any CSP instance, there is a variable ordering such that BT- 
hidden visits at most 0 ((m  +  l)dM ) times as many nodes as BT-orig does.

Proof: If BT-hidden visits a node tij  at the level of Cij in the hidden search tree, we 
know that t j j ’s ancestor at the level of is consistent. Now we estimate
the total number of the descendants of at the levels of x,, Cj>t, . . . ,  cl>r,. ti-i.r,.!
has at most d children at the level of x t for each value in the domain of x,. Once the 
ordinary variable x; is instantiated, there is at most one tuple left in the domain of 
each of the hidden variables c*ti , . . . ,  c,,r, to be compatible with previous instantiations, 
as shown in Figure 5.6. The total number of the descendants of tt_i.ri_l at the levels 
of Xi, Cifi , . . . ,  Cirn is bounded by 0((ri +  1  )dM). Note that r, is bounded by the 
number of the constraints that involve x,-. Thus the total number of the nodes visited
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ht<Aien-ortg(ti-1,
X i - 1

c,.0 (x.)

~e—~e~~~0-

Figure 5.6: The total number of the descendants at the levels of x ,,c ,,i,. . .  ,ci-n of 
a consistent node at the level of in the hidden search tree is bounded by
0 ((n  +  1 )dM).

by BT-hidden is bounded by a factor 0((m  +  l)dM ) from the total number of the 
consistent nodes in the original search tree, which is bounded by the total number of 
the nodes visited by BT-orig. |

Exam ple 5.5 We apply BT-orig and BT-hidden to solve the CSP in Example 2.1. 
as shown in Figure 5.7. For example, in the hidden search tree, the node t =  
{(xi,X2 ,a:3 ,c(xi,a;2 ,X3 ),X4 ) <— (0 , 0 , 2 , (0 , 0 , 2 ), 0 )} at the level of c.i,o is consistent, 
thus it has a correspondence hidden-orig(t) =  {(xt,X2 ,X3 ,X4 ) «— (0 . 0 . 2 , 0 )} at the 
level of x 4  in the original search tree. From Lemma 5.6, its correspondence is con
sistent in the original problem. Therefore, BT-hidden will visit t. and BT-orig will 
visit hidden-orig(t). As we can see, t has 3 children at the level of C5 .0 , and each of 
these nodes has at most one consistent descendant at the level 0 /C 5 4  and the level of 
0 5 ,2 - Thus the total number of the descendants o f t  at the levels c5>0, C5 4  and c5 ,2  are 
bounded by ((m +  1  )dM).

5.2.3 BT-dual and BT-hidden
Given a variable ordering for the hidden problem, we can construct an ordering of the 
dual variables for BT-dual, in which the dual variables are ordered exactly the same 
as they are in the ordering of the hidden problem. For example, if variables in the
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r i , . . . , x5 € {0 , 1 , 2 }
H,...,is € {0 , 1,2 }
c ( l l , I 2 . l 3 ) €  { ( 0 , 0 . 0 ) ,  ( 0 . 0 , I ) .  i O. O.  21. (0 . I .  I 

(0, 1 ,2 ) , (0 ,  2, 2 ) , (1 ,0 ,  1), ( 1 ,0, 2), (1, I, 2). (2. 0 .2 ))

C ( I 2 , H , I 5 )  6  { ( 0 , 0 , 0 ) , ( 1. 0 , 0 ) . ( 1, 0 , I ) , ( I .  1, 0 ), 

( 2 , 0 , 0 ) .  ( 2 . 0 ,  I ) ,  ( 2 ,  0 . 2 ) .  ( 2 .  1 , 0 ) ,  ( 2 .  1,  I ) .  ( 2 ,  2 . 0 ) {

c ( l  1 ,13 ,1$ ) €  {(0, 2,0), (I, 1,0). (I, 2,0), (1.2. 1). 
( 2 . 0 , 0 ) .  (2. 1 .0 ) ,  (2, 1. I ) ,  (2. 2 .0 ) .  (2, 2. I) .  (2. 2. 2))

{ ( * l . * 2 . * S . e ( * l . * 2 . * s ) )  -  ( 0 . 0 ,  2 . ( 0 .  0 , 2 ) ) >{(*l.*2 .*3) *- (0 .0 .2U

~ Q -- ~0 _

o  a consistent node 

9  an inconsistent node

Figure 5.7: The comparison of BT-orig and BT-hidden in solving the CSP in Example 
2 .1.
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d u a l - h i d d e n ^ t ,  _ , )  r . - i
C .-1

  C,

‘i-l.r;., U (Ci •“ ‘.[Cil> ti

Figure 5.8: A node ti visited by BT-dual at the level of c, in the dual search tree 
corresponds to a unique node visited by BT-hidden at the level of c* in the hidden 
search tree.

hidden problem are ordered as x l,x 2 ,c (x i,x 2 ,x 3 ) ,x 3 ,x i ,c (x l.x 3 , x 5),x5,c{x2 ,x i ,x 5 ), 
the ordering for the dual problem is c(xi, X2 , xs),c(xi, X3 , x$), c fa ,  x±, x$).

O bservation  5.2 I f a node t at the level of Ci in the dual search tree is consistent, t 
corresponds to a unique node dual-hidden(t) at the level ofc , in the hidden .search tree, 

where for each hidden variable c. dual-hidden(t)[c\ is set to be /[rj. and f o r  each ord i 

nary variable x, if there is an instantiated dual variable c in t such tha t  x  €  c a r s ( c ). 

dual-hidden{t)[x\ is set to be the projection, (f[c])[x]. Otherwise, dual-hidden{t)[x\ is 
set to be the first value in the domain of x. Because t is consistent, dual-hidden{t)[x\ 
is irrelevant to whichever dual variable we choose to make the projection.

L em m a 5.8 I f a node t at the level of Ci in the dual search tree is consistent, its 
correspondence dual-hidden(t) is a consistent node at the level of c, in the hidden 
search tree.

P roof: Suppose dual-hidden{t) does not satisfy the hidden constraint between the 
hidden variable c and the ordinary variable x, where c 6  vars(t) and x  € vars{c). 
Because dual-hidden(t)[x] is set to be (i[c])[x] and dual-hidden(t)[c] is set to be t[c\. 
the instantiation of c is compatible with the instantiation of x  in dual-hidden(t). 
That is a contradiction. |

Because BT-dual visits a node only if its parent is consistent, we can immediately 
conclude that BT-dual visits at most O(M) times as many nodes as BT-hidden does. 
Moreover, we can prove BT-dual will never visit more nodes than BT-hidden does.

T h eo rem  5.9 Given a CSP instance and a variable ordering for BT-hidden. there is 
a variable ordering such that BT-dual never visits more nodes than BT-hidden does.
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Proof: Suppose BT-dual visits a node U at the level of c, in the dual search tree, we 
will prove that U corresponds to a unique node visited by BT-hidden at the level of 
Ci in the hidden search tree. From Theorem 5.1, t f s  parent £,_i at the level of c,_L 
in the dual search tree is consistent. Thus, dual-hidden{ti-\) is a consistent node 
at the level of c*_i in the hidden search tree. Suppose in the variable ordering for 
the hidden problem, the ordinary variables £ i_i,i,. . . ,  are instantiated after
Ci_i but before c*. We will show that dual-hidden(t{-i) has a consistent descendant 
ii-L.iw at the level of in the hidden search tree. For each of the ordinary
variables Xi_ij, if Xi-i,j G U lk2 ivaTSi.ck), i.e., £,_i.j has been "instantiated" by the 
instantiation to a hidden variable c, then f t- i^ .Jx .- i.j]  is set to be (f[q)L£t_lv/j. 
Because the node U-i is consistent in the dual problem, is irrelevant to
whichever hidden variable we choose to make the projection. Otherwise, if £,_[.; has 
not been “instantiated” from the instantiations of the hidden variables, 
is set to be the first value in the domain of Xi_i,j. is consistent because for
each of the ordinary variables £ j_ ij, if x,_tiJ is constrained with an instantiated 
hidden variable c, should satisfy the constraint. Therefore. BT-hidden will
visit ti— and extend it to the level of q . For each tuple t in the domain of c,, the 
node ti— U {q f— f} is visited by BT-hidden. Let the node ti corresponds to the
node, tj i,r,_t U {q «— fi[ci]}, visited by BT-hidden at the level of q  in the hidden
search tree, as shown in Figure 5.8. Therefore, the total number of the nodes visited 
by BT-dual is bounded by the total number of the nodes visited by BT-hidden. |

Exam ple 5.6 We apply BT-hidden and BT-dual to solve the CSP in E xam pl e  2.1, as 

shownin Figure 5.9. For example, BT-dual visits a node t-> =  {(c(x1 .x».x:i).c(.r1 . .r t. ./-,)) 
<— ( 0 , 0 , 2 ) ,  ( 1 , 1 , 0 ) }  at the level of Co in the dual search tree. Thus t >'s parent  

t\ =  { c (X [ ,X 2 , £ 3 ) «— (0 , 0 , 2 )} at the level of Ct is consistent in the dual  problem.  

From Lemma 5.8, t i ’s correspondence hidden-dual{t\) =  {(xt,X2 ,c(xt,X 2 ,X3 ))
<— (0,0, (0,0,2))} at the level of q  in the hidden search tree is consistent. Further
more, hidden-dual(ti) has a consistent descendant t i . 2  =  {(xi,X2 ,c(xi,X 2 ,X3 ),X3 .X4 ) <— 
(0 , 0 , (0 , 0 , 2 ), 2 , 0 ) at the level o /x l> 2 in the hidden search tree, and t2  corresponds to 
one of tip 's children {(xl ,x 2 ,c (x l,x 2 ,x 3 ),a:3 ,x 4 ,c (x i,x 3 ,x 5 ) ) «— (0 , 0 , (0 , 0 . 2 ). 2 , 0 , 
(1,1,0)) visited by BT-hidden at the level c2  in the hidden search tree. Note that x4 

is not in the scheme of the hidden variables Ci and c-i, thus the instantiation of £ 4  

in tip is set to be the first value in its domain. As we can see, BT-dual visits fewer 
nodes than BT-hidden does in the above example.
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X I  1 5  6  { 0 , 1 , 2 }

c ( x i ,X 2 ,X 3 ) £  { (0 ,0 ,0 ). (0 .0 . I) , (0 ,0 , 2), (0, I, I), 
(0. 1,2), (0 ,2 .2 ) ,  ( 1 . 0 , 1), (1 ,0 .  2), ( I .  1,2). (2 ,0 .2 ) )

c ( l l , X 3 , X 5 ) 6  { ( 0 , 2 , 0 ) , ( I ,  1 . 0 ) , ( I . 2 , 0 ) , ( I , 2 ,  I ) ,  

( 2 . 0 , 0 ) ,  ( 2 ,  1 , 0 ) ,  ( 2 ,  I ,  t ) ,  ( 2 ,  2 , 0 ) ,  ( 2 ,  2 .  I ) ,  ( 2 ,  2 , 2 ) )

C ( I 2 , X 4 , I 5 )  £  { ( 0 , 0 . 0 ) , ( l . 0 . 0 ) , ( l . 0 . I ) . ( I .  1, 0 ) ,  

(2, 0 . 0 ) ,  (2 ,0 ,  1), ( 2 , 0 , 2 ) ,  (2, 1 ,0 ) ,  (2, I.  I ) ,  (2. 2 ,0 ) )

O  a  c o n s is te n t n o d e  

®  a n  in c o n s is te n t n o d e

Figure 5.9: The comparison of BT-hidden and BT-dual in solving the CSP in Example 
2 .1.
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Figure 5.10: The correspondence between the variables in the hidden problem and 
the variables in the dual problem.

From Theorem 5.7 and Theorem 5.9, given a CSP instance and a variable ordering 
for BT-orig, we can construct a variable ordering for BT-hidden such that BT-hidden 
visits at most 0{m dM ) as many nodes as BT-orig does. Then we can construct a 
variable ordering for BT-dual such that BT-dual will never visit more nodes than 
BT-hidden does. Therefore, BT-dual will visit at most 0({m  +  l)dM ) as many nodes 
as BT-orig does.

C orollary  5.10 Given a CSP instance and a variable ordering for BT-orig. there is 
a variable ordering such that BT-dual visits at most 0 {(m  + l)d.\I) times as many 
nodes as BT-orig does.

We may conclude from the above results that BT-hidden visits at most 0 ((m  + 
1 )dr+2M) times as many nodes as BT-dual does. Moreover, we can construct a 
variable ordering for BT-hidden such that the above bound is even tight. Given a 
variable ordering in the dual problem, C i , . . . , ^ ,  we choose the hidden variable c\ 
to be the first in the ordering for the hidden problem. Then we instantiate each of 
the ordinary v a r i a b l e s . . . , x^.. in vars(ci) (if the ordinary variable has not been 
instantiated yet and breaking ties arbitrarily ). After ci and its ordinary variables 
have been instantiated, we go on to C2 , and so on. Thus, the variable ordering for
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the hidden problem is 2 :1 ,0 , 2 :1 , 1 , • • •, x i<Tl, • • •, £mi0, xmtl, • ••, *m,rm, where x ifi denote 
the hidden variable c* and x ,j is an ordinary variable such that € vars(ci) and 
Xij g  Ufc=li vars(ck). For example, as shown in Figure 5.10, if the dual variables are 
ordered as c(xi,x 2 ,X3 ) ,c (x i,x 3 ,X5 ) and c(x2 ,x 4 ,x 5), then the variable ordering in the 
hidden problem is c(xl ,x 2 ,x 3 ) ,x l ,x 2 ,x 3 ,c(xl ,x 3 ,x 5 ),x 5 ,c(x 2 .x 4 ,x 5 ).x 4 . Under the 
above orderings, for each of the nodes £ at the level of Xj,o in the hidden search tree, £ 
corresponds to a unique node hidden-dual(t) at the level of c* in the dual search tree, 
where for each of the instantiated dual variables c, hidden-dual (t)[c] is set to be £[c|.

Lem m a 5.11 I f the node t at the level of x , i0  in the hidden search tree is consistent, 
its correspondence hidden-dual (t) is a consistent node at the level of ct in the dual 
search tree.

Proof: Suppose hidden-dual(t) does not satisfy the dual constraint between Cj and 
Cfc,for 1 < j, k < i. That is, (£[cj])[uars(cj)fTi;ars(c/fc)l does not agree with (t[cfc])[t;ars(cJ) 
ni/ars(cjfc)]. Thus, there is an ordinary variable x € uars(cj) D vars(ck) such that 
(£[Cj])[x] 7  ̂ (t[ck})[x\. Because in the hidden problem x was constrained with hidden 
variables, Cj and c*, x must have been instantiated in £, either before the instantiation 
of Cj or the instantiation of Cfc, or both. Note that t is consistent in the hidden search 
tree. So that t[cj] and £[c*] must have the same value over x. That is a contradiction.

I

Thus the total number of the consistent nodes at the level of x , , 0  in the hidden 
search tree is bounded by the total number of the consistent nodes at the level of r, 
in the dual search tree.

T heorem  5.12 Given a CSP instance and a variable ordering for BT-dual. there is 
a variable ordering such that BT-hidden visits at most 0(rd) times as many nodes as 
BT-dual does.

Proof: For each of the consistent nodes £* ,0 at the level of x,.o in the hidden search
tree, £ * ,0  has exactly one consistent descendant at each of the levels. x ld x,.r,.
because the ordinary variables Xjti , . . .  ,Xj,ri only constrain with Xi,0  (c,) in the con
text, and each of them has only one value in the domain to be compatible with the 
instantiation of x;,o. Thus, the total number of the consistent nodes in the hidden 
search tree is bounded by a factor O(r) of the total number of the consistent nodes in 
the dual search tree. Therefore, the total number of the nodes visited by BT-hidden 
is at most 0(rd)  as many as the nodes visited by BT-dual in the dual search tree.

I
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c  {0,1,2}
c (x t , X 2 ,  X 3 )  €  {(0,0,0), (0.0. I), (0, 0. 2). (0, I, I), 

(0 ,1 ,2 ) , (0 ,2 , 2), (1 ,0 ,1 ), (1 ,0 ,2 ), ( I ,  I, 2), (2 ,0 ,2 )}

c ( l l , U , I s )  e  {(0,2,0), (I, 1,0), (1,2,0), (I, 2 .1),
(2,0.0). (2, 1,0). (2, 1,1), (2. 2,0), (2. 2, I). (2, 2, 2)}

c ( X 2 , 2 4 , X s )  €  { ( 0 , 0 , 0 ) , ( 1 , 0 . 0 ) , ( 1 , 0 ,  I ) .  ( 1 .  1 . 0 ) ,  

(2 ,0 .0 ) ,  (2 ,0 , 1), (2 ,0 , 2), (2, 1 ,0), (2, I. I), (2 .2 .0 )}

o a consistent node 

®  an inconsistent node

Figure 5.11: The comparison of BT-dual and BT-hidden in solving the CSP in Ex
ample 2.1 such that BT-hidden visits at most 0(rd) times as many nodes as BT-duai 
visits.

E xam ple 5.7 Again, we use BT-dual and BT-hidden to solve the CSP m Example 
2.1, but under different variable orderings, as shown in Figure 5.11. For example, 
in the hidden search tree, the node (c(xi,X 2 ,X3 ) <— (0 , 0 , 2 )} at the level of x i,0  is 
consistent, thus it corresponds to a unique node {c(xi,X2 ,X3 ) (0 , 0 , 2 )} at the level
of ci in the dual search tree. From Lemma 5.11, its correspondence is consistent in 
the dual problem. Furthermore, in the hidden search tree, {c(xl ,x 2 ,x 3) <— (0.0.2)} 
has at most one consistent descendant at each of the levels o f x^i, X[ 9  and X1.3 . 
Therefore, the total number of the nodes 'visited by BT-hidden is bounded by O(rd) 
from the total number of the nodes visited by BT-dual.
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A  ---------------------- J3
A  is never worse than S

A  —  0 ( f ( n ) ) -----J3

A  is b o u n d e d  bv Of f i n "  fm m  &

A  —  exp  JS

A  may be exponentially worse than S

Figure 5.12: The relations between BT-orig, BT-dual and BT-hidden.

We summarize the above results in Figure 5.12. As we can see. BT-dual and 
BT-hidden are always comparable to each other. BT-dual is never worse than BT- 
hidden whereas BT-hidden is at most O(n) times worse than BT-dual. BT-dual and 
BT-hidden are superior to BT-orig if the domains of the dual (hidden) variables are 
small, i.e., the constraints are tight. On the other hand. BT-orig is better when the 
maximum arity of the constraints is bounded.

5.3 Forward Checking Algorithm (FC)

In this section, We compare the performance of the forward checking algorithm (FC) 
[60, 80] on the three formulations. Following Van Hentenryck [114], we say that a 
k-ary constraint, A: > 2, is forward checkable if k — 1  of its variables have been instan
tiated and the remaining variable is uninstantiated. In that case, the uninstantiated 
variable is called the forward checked variable. At each node in the search tree, the 
instantiation of the current variable causes some (possibly empty) set of constraints 
to become forward checkable. For each newly forward checkable constraint. FC for
ward checks the remaining uninstantiated variable, i.e., the forward checked variable 
in the constraint. For each remaining value in the domain of the forward checked 
variable, FC checks whether or not the instantiation of the forward checked variable 
writh that value along with the instantiations in the current partial solution satisfies 
the constraint, and the inconsistent values are temporarily removed from the domain
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of the forward checked variable. The consistency check fails if a domain wipe out is 
encountered and the instantiation to the current variable is retracted.

Following Kondrak and van Beek [69], given a CSP and a partial solution t, we 
say t  is consistent with a variable if t can be extended to a consistent partial solution 
including that variable, and we say t is consistent with all the variables if t is consistent 
with each of the variables. It is easy to see that if a partial solution t is consistent with 
all the variables, a subtuple t' C t is also consistent with all the variables. Kondrak 
and van Beek have shown that:

Theorem . 5.13 [69] For binary CSPs, FC visits a node if only if it is consistent and 
its parent is consistent with all the variables.

In the following discussion, we denote FC applied on the original problem as FC- 
orig, FC applied on the dual problem as FC-dual, and FC applied on the hidden 
problem as FC-hidden.

5.3.1 FC-hidden
For a hidden problem, FC-hidden does not have to instantiate all the variables in order 
to find a solution. Once FC-hidden encounters a state in which for each of the hidden 
constraints, at least one of its variables has been instantiated, due to the forward 
checking, each of the uninstantiated variables has only one value remaining in the 
domain and a solution of the problem can be assembled in a backtrack free manner. 
For example, a partial solution over all the ordinary variables that is consistent with 
all the hidden variables, can be extend to a unique solution of the problem, since there 
is only one remaining tuple in the domain of each hidden variable. On the other hand, 
once all the hidden variables have been instantiated and there is no domain wipe-out. 
the domain of each ordinary variable has been reduced to exactly one value.

We will show in the sequel that a variable ordering for FC-hidden that instanti
ates all the ordinary variables is only bounded worse than any other variable' orderum
strategy. Given a variable ordering in the hidden problem, yL,  iji- in which y,
may be an ordinary variable or a hidden variable. We can construct a new order
ing for the ordinary variables only in the hidden problem. If y* is a hidden vari
able, since the instantiation of a hidden variable is equivalent to the instantiations 
of several ordinary variables, in the new ordering, all the uninstantiated ordinary 
variables x,-ti , . . . , x iirj in the scheme of y* are chosen to be instantiated (breaking 
ties arbitrarily). If yi is an ordinary variable and in the new ordering yt has not
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ys f ci-ct.x3.x5)

Figure 5.13: The correspondence between the variables in the original ordering and 
the variables in the new ordering for the hidden problem.
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been instantiated, i/j is instantiated in the new ordering and we denote it as x,.i- 
For example, suppose the variables in the hidden problem are originally ordered as 
x 1 ,c(x l,x 2 ,x 3 ),x 2 ,x 3 ,c(x 2 1 x4 ,x 5 ),x 4 ,x 5 ,c(x l ,x 3 ,x 5), the new variable ordering for 
the hidden problem is x l ,X2 ,X3 ,x 4  and X5 , as shown in Figure 5.13. Under the above 
orderings, each of the variables x, j  in the new ordering corresponds to a unique hid
den or ordinary variable y* in the original ordering. Note that, in the new ordering, 
Xj,ri may not always be followed immediately by x,+lil, because xi+l,i may not exist. 
To distinguish between the search trees generated under the above two orderings, 
we denote the search tree explored by FC-hidden under the original ordering as the 
original hidden tree, and the search tree explored under the new ordering as the new 
hidden search tree.

O bservation 5.3 I f a partial solution t over some ordinary variables of the hidden 
problem is consistent with all the variables, t can be extended to a unique partial so
lution allhidden(t) including all the hidden variables c such that vars(c) C cars(t). 
I f all the ordinary variables in the scheme of the hidden variable c have been instan
tiated in t, there is only one tuple t[vars(c)] in the domain of c that is compatible 
with t, and thus allhidden(t)[c] is set to be f[uars(c)]. Furthermore, if a node t at 
the level of x^ri in the new hidden search tree is consistent with all the variables, t 
corresponds to a unique node hidden(t) at the level of y, in the original search tree, 
where hidden(t) =  allhidden{t)[{y 1 , . . . ,  y j]  3.

Note that allhidden(t) is an extension of t (which is a partial solution on ordinary 
variables) to include all the hidden variables that are “instantiated” by t. hidden{t) 
is also a subtuple of allhidden{t), and only includes the instantiations of the variables 
y i , . . . ,V i .  For example, in Figure 5.13, given a partial solution t =  {(xi,x 2 ,x 3) 
(0,0,2)}, allhidden(t) is {(x1 ,x 2 ,X3 ,c(xi,X 2 ,X3 ) <— (0,0,2, (0,0,2))} and hidden(t) 
is {(xl ,c(xl,x 2 ,x 3)) <- (0 , (0 , 0 , 2 ))}.

Lem m a 5.14 I f  a node t at the level of x lXt in the new hidden search tree is consistent 
with all the variables, then allhidden(t) is consistent with all the variables. Further
more, its correspondence node hidden(t) at the level of y, in the original hidden search 
tree is consistent with all the variables.

Proof: Suppose allhidden{t) is not consistent with a future variable y. If y is an ordi
nary variable, there exists two hidden variables c and d  such that (allhidden(t)[c\)[y\ ±

3From the construction o f the new variable ordering, y i , . . . , y i  must have been instantiated in 
allhidden{t).
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Figure 5.14: A node £;j visited by FC-hidden at the level of x^j in the new hidden 
search tree corresponds to a unique node visited by FC-hidden at the level of y* in 
the original hidden search tree.

(allhidden{t){d\)[y\ (otherwise, all the hidden variables instantiated in allhidden(t) 
have the same value over y, thus y is consistent with allhidden(t)). Because allhidden{t)[c] 
is set to be f[t/ars(c)] and allhidden{t)[d] is set to be ffuarstc')], they must have the 
same value over y. That is a contradiction. If y is a hidden variable, because all the 
ordinary variables instantiated in allhidden(t) are instantiated with the same values 
in t. that means t is inconsistent with the hidden variable y. This is also a contradic
tion. Because hidden(t) is a subtuple of allhidden(t). hidden(t) is consistent with all 
the variables. |

Thus the total number of the nodes at the level of Xj>rt that are consistent with 
all the variables in the new hidden search tree is bounded by the total number of 
the nodes at the level of y,- in the original search tree that are consistent with all the 
variables .

Lem m a 5.15 I f  a node tij  at the level of x ^ ,  1 < j  < r,, in the new hidden search 
tree is consistent with all the variables, U,j corresponds to a node visited by FC-hidden 
at the level of yi in the original hidden search tree. Furthermore, for two distinct nodes 
at the level of x^j in the new hidden search tree, their correspondences in the original 
hidden search tree are different.

Proof: If yi is an ordinary variable, then j  is equal to 1 and xUJ is equal to yt. 
From Lemma 5.14, hidden(tij) at the level of y* in the original hidden search tree is
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consistent with all the variables, and thus it is visited by FC-hidden. Now suppose i/j 
is a hidden variable. Because t ij  is consistent with all the variables, let tk<rk denote 
Uj's ancestor at the level of xk,n , where immediately follows xk,r*4- We know that 
tk<rk is also consistent with all the variables. From Lemma 5.14, tk,rk's correspondence 
hidden(tk<rk) at the level of yk in the original hidden search tree is consistent with all 
the variables. Thus FC-hidden will visit hidden(tk,rk) and extend it to the variables 
Vk+i, • ■ ■ iVi-i and yt. From the construction of the new ordering, for each of the 
variables yk+1 , . . . ,  y»-i, if it is an ordinary variable, it must have been instantiated in 
tk,rk, and if it is a hidden variable, all the ordinary variables in its scheme must have 
been instantiated in tk,rk- Thus the node fj_i =  allhidden(tk,rk)[{yi,. . .  ,y,_i}] at the 
level of 2/i_l in the original hidden search tree is consistent with all the variables. Thus 
FC-hidden will visit £;_L and extend it to the level of yj. Because tij  is consistent with 
all the hidden variables, there is a tuple t in the domain of y* to be consistent with 
tij, that is, t[vars(tij) fl vars(yi)] =  tij[vars{tij) fi vars{yi)}. Because for each of the 
ordinary variables x  instantiated at the node tj_lt x  has the same instantiation in 
and tij, thus {yj <— t} is consistent with fj_t . Therefore. FC-hidden visits the node 

U {yi «— t} at the level of yj in the original hidden search tree. Let tUJ corresponds 
to the node U {yi  <— t } .  Given two distinct nodes at the level of x tJ in the new
hidden search tree, they have different values over the part vars(tij) f l  vars(yl). and 
thus they must be compatible with different tuples in the domain of y^ Thus, their 
correspondences at the level of yi in the original hidden search tree are different. |

T heo rem  5.16 Given a CSP instance and a variable ordering for the hidden prob
lem, we can construct a variable ordering for the ordinary variables in the hidden 
problem, such that FC-hidden under the new variable ordering visits at most 0 (rd ) 
times as many nodes as it visits under the original variable ordering.

Proof: Because the total number of the nodes that are consistent with all the vari
ables at the level of Xij in the new hidden search tree is bounded by the total number 
of the nodes at the level of yj in the original search tree, the total number of the 
nodes that are consistent with all the variables in the new hidden search tree is at 
most 0 (r) times as many as the total number of the nodes that are consistent with 
all the variables in the original hidden search tree. Note that FC-hidden visits a node 
only if its parent is consistent with all the variables, and each node may have at most 
d children. Thus the total number of the nodes visited by FC-hidden in the new

■•Because in the construction of the new ordering, Xj,rj may not always be followed by i t+ i.i ■
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i i , . . . , x s  6  { 0 , 1 , 2 }

c ( x i ,  1 2 ,  X 3 )  €  { ( 0 . 0 . 0 ) .  (0 .  0 ,  l ) ,  ( 0 ,0 ,  2 ) ,  (0 , I ,  I ) .  
(0 , I ,  2 ) . (0 , 2 ,2 ) ,  (1 ,0 , 1), ( 1 ,0 , 2), ( I .  1. 2 ) . ( 2 .0 ,  2)}

C ( I 2 , I 4 , X 5 )  6  { ( 0 , 0 , 0 ) .  ( I .  0 , 0 ) ,  ( 1 , 0 , 1 ) ,  ( I ,  1 , 0 ) ,  

(2, 0,0), (2.0.1 ) ,  (2, 0, 2), (2,1, 0), (2, 1, 1) ,  (2, 2, 0)}
C ( H , I 3 , I 5 )  6  { ( 0 . 2 , 0 ) ,  ( I ,  1 . 0 ) ,  ( 1 , 2 , 0 ) ,  ( 1 , 2 , 1 ) ,  

(2, 0,0), (2, 1,0), (2, 1,1), (2, 2,0), (2, 2, 1), (2, 2, 2)>

0 a node that is consistent with
all the variables

% a node visited by FC but is inconsistent
with at least one future variable

a node skipped by FC

{(I,.c(ri,r3,i3)) (0.(0.0.2))) { ( i , , x 3 , X 3 ) ( 0 . 0 . 2 ) )

y s

ya

Figure 5.15: The comparison of the search tree explored by FC-hidden under the 
original variable ordering and new variable ordering to solve the CSP in Example 2.1.

hidden search tree is at most O(rd) times as many as the total number of the nodes 
visited in the original hidden search tree. |

E xam ple  5.8 We use FC-hidden to solve the CSP in Example 2.1, under the above 
two variable orderings, as shown in Figure 5.15. For example, in the new hidden 
search tree, the node t5 =  {(xl ,x 2 ,X3 ,X4 ) (0 , 0 , 2 , 0 )} at the level of x 5 ,1  is con
sistent with all the variables, thus its parent f2 ( 2  =  {(zi,x2,£ 3) <— (0 . 0 . 2 )} at the 
level of x 2 > 2 is also consistent with all the variables. From Lemma 5.14, ha  corre
sponds to the node hidden(t2j2) — {(xi,c(xi,x 2 ,X3 )) <— (0 , (0 , 0 , 2 ))} at the level of 
y2 in the original hidden search tree. Furthermore, hidden(t2r2) has a descendant

135

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r th e r  reproduction  prohibited without perm iss ion .



* 4  =  {(xi,c(xi,x 2 ,x 3 ) ,x 2 ,X3 ) «- (0, (0,0,2), 0,2)} which is consistent with all the 
variables at the level of y± in the original hidden search tree, and t5A corresponds to 
one o /U ’s children, {xi,c(xi,x 2 ,x 3 ),x 2 ,x 3 ,c(x 2 ,x 4 ,x 5)) <— (0 , (0 , 0 , 2 ) . 0 , 2 . (0 . 0 . 0 ))} 
visited by FC-hidden at the level of y5 in the original hidden search tree.

As a special case, when only all the hidden variables are instantiated by FC- 
hidden, we can show that FC-hidden is equivalent to BT-dual. Because FC-hidden 
and BT-dual explore the same search tree, i.e., the search tree consists of the partial 
solutions on the dual or hidden variables, we assume that they use the same variable 
ordering.

Theorem  5.17 I f all the hidden variables are instantiated first in the hidden problem. 
FC-hidden visits exactly the same nodes as BT-dual.

Proof: Suppose that FC-hidden visits a node t. From Theorem 5.13. t's parent 
p(t) is consistent with all the ordinary variables. Thus, for any ordinary variable 
x, and for any two hidden variables Ci and e,, where c,.c, 6  cars{p(t)) and .r € 
vars(ci)  n  vars(cj) ,  (p(£)[c,])[x] =  (p(£)[cj])[x]. Thus {p(t)[ct])[cars(ct) r  curs[rl! = 
(p(£)[cj])[xars(cj) fl vars(Cj)\.  That means, p(t) is a consistent node in the dual 
search tree. From Theorem 5.1, BT-dual will visit t. Suppose that BT-dual visits 
a node t. Thus, t ’s parent p(£) is consistent in the dual problem. For any ordinary 
variable x, and for any two hidden variables Ci and c,, where c,.Cj 6  cars(p{t)) 
and x € vars(ci)  fl vars(cj) ,  p(£)[ci] and p{t)[cj] should have the same value on x. 
That means, in the hidden problem, p(£) is consistent with all the ordinary variables. 
Therefore, FC-hidden will visit t. |

So in general the variable ordering for FC-hidden that instantiates all the ordinary 
variables is only bounded worse them any other variable ordering strategy for FC- 
hidden. From now on, we assume that FC-hidden will only instantiate the ordinary 
variables. Therefore, FC-hidden and FC-orig explore the same search tree consisting 
of all the ordinary variables.

5.3.2 FC-orig, FC-dual and FC-hidden
Exam ple 5.9 Consider a non-binary CSP with only one constraint over n Boolean 
variables, C (xl t . . .  ,x n) =  {(0, . .. ,0 ) ,(1 , ...1 )} . FC applied on this problem will 
explore 0(2") nodes and perform 0(n2") constraint checks to find all solutions. There 
are only two nodes in the dual search tree, representing two solutions of the problem.
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FC-hidden( instantiating all the ordinary variables first) will visit 0 (n ) nodes and 
perform 0 (n) checks.

T heorem  5.18 [7] There is a CSP instance in which FC-dual and FC-hidden are 
always exponentially better than FC-orig no matter what variable ordering is used in 
the original problem.

Proof: It is true from the CSP in Example 5.9. |

Exam ple 5.10 Consider a CSP o /2 n +  1 variables, X[. x2n~i and each variable
has n values. I , . . .  , n. There are n constraints,

C ( X i , X 2 , X n + i )  {̂ -l -̂ 2 }

C ( X o ,  X3,  X n +o)  =  { ^ 2  =  ^ 3 }

C ( x n _ t ( X n , X 2 n ) ~  {^-n—I =  }

C’(xl ,X„,X2 „+i) — {-J-l 7^-^n}

This problem is insoluble because it enforces X\ to be equal to x2, . . . ,  and x„ and it 
also prohibits xi andxn to have the same value. Note in each of the above constraints, 
variable xn+i does not enforce anything but increase the arity and the number of tuples 
of the constraint. Given a static variable ordering, x i , . . .  ,X2 „+i, FC-orig and FC- 
hidden go along n paths, {(xt «— 0 , . . . , x n 0 }, . . . ,  and {xt «— n , . . . .x „  <— n}.
At each stage, there is only one value consistent with all the future variables in the 
domain of the current variable. Thus FC-orig and FC-hidden visit 0(n) nodes to 

conclude that the problem is insoluble. However, by any variable ordering st rategy .  

FC-dual has to instantiate at least log(n) — I dual variables to reach a dead-end.  .4/ 
each stage of FC-dual, it additionally instantiates one variable from xn_lr .. .x->n-i. 
which has no influence on the failure. The best variable ordering strategy for FC-dual 
is to break the problem into two subproblems at each step in the backtrack search, 
where one of the two subproblems in insoluble. For example, FC-dual first branches 
on the dual variable corresponding to the constraint C (x a ,x a+i,x n+a). For each of 
the n2 values in the domain of the dual variable, the current instantiation will result 
in one of the two subproblems to be insoluble, one consisting of the dual variables 
for the constraints C (x i,X2 ,x n+i ) , . . .  ,C (x a _ i,x a ,in+ i- i) .  and the other consisting 
of the dual variables for the constraints C (x i+i , x i +2 , i I1+i +[) ,. . .  ,C(x1, x71, x2„+l). 
Then the backtrack search will focus on the insoluble subproblem. So FC-dual has to 
explore at least 0 (nl°9̂ ~ l) nodes.
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T heorem  5.19 [7] There is a CSP instance in which FC-orig and FC-hidden are 
always exponentially better than FC-dual no matter what variable ordering is used in 
the dual problem.

Can FC-dual also be exponentially better than FC-hidden? In Example 5.9, we 
notice that FC-hidden visits 0(2n) times as many nodes as FC-dual does. This bound 
is generally true as we will show in the sequel. Given a variable ordering for FC-dual, 
Ci,. . .  ,Cm, we can arrange the ordinary variables in the hidden problem in the same 
way as we have done in the case of BT-dual and BT-orig. That is, the instantiation 
of the dual variable c* is equivalent to the instantiations of the ordinary variables 
Xi,i, ■. ■ where x id 6  vars(Ci) and x tj  £  Ufc=\ vars(ck).  An example of such 
a variable ordering arrangement is shown in Figure 5.2. Under the above variable 
orderings, each ordinary variable Xij in the hidden problem corresponds to a unique 
dual variable c* in the dual problem. However, not all the dual variables have some 
correspondence in the ordinary variables. Therefore, in the hidden problem. x lXl may 
not always be followed by Xj+lil (because Xj+i,i may not exist).

O bservation  5.4 I f a partial solution t over some ordinary variables in the hidden 
problem is consistent with all the hidden variables, t corresponds to a unique partial 
solution in the dual problem, alldual(t), including all the dual variables c such that 
uars(c) C vars(t). Because all the ordinary variables in the scheme of the hidden 
variable c have been instantiated, there is only one tuple f[i/ars(c)] in the domain of 
c to be compatible with t, and thus alldual(t)[c\ is set to £[uars(c)|. Furthermore, if a 
node t at the level of xitTi in the hidden search tree is consistent with all the variables, 
t corresponds to a unique node dual(t) at the level of Ci in the dual search tree, where 
dual(t) = alldual(t)[{ci,. . . ,  Ci}]5.

For example, under the variable orderings shown in Figure 5.2, given a partial 
solution t =  {(xi,x 2 ,x 3) <— (0 , 0 , 2 )}, alldual(t) is {c(xL,x 2 ,x 3) <— (0 , 0 , 2 )} and 
dual(t) is also (c(xi,x 2 ,x 3) <— (0,0,2)}. The condition that t is consistent with all 
the hidden variables cannot be relaxed. Otherwise, suppose £ is not consistent with 
a hidden variable Cj for < j  < i, i.e., £[wars(c,)] £ dom(cj), then £[uars(cJ)J is not a 
valid tuple in the domain of the dual variable Cj and thus dual(t) is not a valid node 
in the dual search tree.

L em m a 5.20 Under the above orderings, if  a node t at the level of x l Tt in the hidden
5From the construction of the variable ordering, ci , . . . ,Cj must have been instantiated in 

alldual{t).
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Figure 5.16: A node £ ,-,j visited by FC-hidden at the level of x trJ in the hidden search 
tree corresponds to a unique node visited by FC-dual at the level of c* in the dual 
search tree.

search tree is consistent with all the variables, then in the dual problem, alldual(t) is 
consistent with all the dual variables. Furthermore, its correspondence dual{t) at the 
level of Ci in the dual search tree is consistent with all the dual variables.

Proof: First, we prove that alldual{t) is consistent in the dual problem. Suppose 
alldual(t) does not satisfy the dual constraint between two dual variables c and d, then 
f[uars(c)| is not compatible with t[vars{d)]. That is, there is an ordinary’ variable 
x  € vars(c) fl vars(d) such that (t[uars(c)])[x] /  (t[uars(c/)])[x]. This could not 
happen because both (£[t/ars(c)])[x] and (£[t;ars(c')])[x] are equal to £[x]. That is 
a contradiction. Thus, alldual{t) is consistent. Now we prove that alldual(t) is 
consistent with all the dual variables. Because in the hidden problem t is consistent 
with all the hidden variables, for any hidden variable c. there must exist a tuple t, 
in the domain of c such that f[uars(£) fl uars(c)] =  tc[vars(t) fl vars{c)\. For each 
of the dual variables d  instantiated in alldual(t), because vars{c') C uars(t), thus 
t[vars(d) fl vars(c)] =  tc[vars{d) fl uars(c)]. Note that alldual{t)[d] is set to be 
£[uars(£/)], that is, {c <— tc} is compatible with alldual( t)^ ] . Therefore. alldual{t) is 
consistent with the dual variable c and thus it is consistent with all the dual variables. 
Because dual(t) is a subtuple of alldual(t), thus dual(t) is also consistent with all the 
dual variables. |

Thus the total number of the nodes at the level of xt Fi in the hidden search tree 
that are consistent with all the hidden variables is bounded by the total number of
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the nodes at the level of q  in the dual search tree that are consistent with all the 
dual variables.

T heorem  5.21 Given a CSP and a variable ordering for the dual problem, there is 
a variable ordering on the hidden problem such that FC-hidden visits at most O(rd) 
times nodes as many as FC-dual does.

Proof: Now we consider a node Uj at the level x*j  for 1  < 7  < r, in the hidden 
search tree that is consistent with all the hidden variables, tij's  ancestor tk,rk at the 
level of Xk,rk is consistent with all the variables, where x k,rk is immediately followed 
by xitl. From Lemma 5.20, x ^ ’s correspondence dual(xk,ric) at the level of c* in 
the dual search tree is consistent with all the dual variables. Thus FC-dual will 
visit dual(xk,rk) and extend it to the levels of qt+l, . . .  , q_i and q . Furthermore, 
because alldual(ffc,rJ  is consistent with all the dual variables, and for each of the 
dual variables c i , . . . ,q _ lt it must have been instantiated in alldual(tk,rk). the node 
£i-i =  alldual(tk,rk)[{ci,. . . ,  Ci-i}} at the level of q_i in the dual search tree must 
be consistent with all the dual variables. Thus FC-dual will visit f,_t and extend 
it to the level of q . Because Uj is consistent with all the hidden variables, there 
is a tuple t in the domain of q  such that £tJ [uars(£l,J) fl car.s(q)] = ) "
uars(q)]. For each of the dual variables q where 1  < I < i -  1 . note that £,_i[q] = 
alldual(tk,rk)[ci] =  £r,rfcb a 7*s(q)] = fjj[t/ars(q)]. That means, in the dual problem, 
{q <— £} is compatible with each of the instantiations {q <— £,_i[q]}. for 1 <  / < i — I. 
Thus FC-dual will visit node £j_i U {q «— t}. Therefore ttJ corresponds a node 
visited by FC-dual at the level of q  in the dual search tree, as shown in Figure 5.16. 
Furthermore, given two distinct nodes at the level of x^j in the hidden search tree, 
because they have different values on the part vars(tirj) fl vars(ci), they must be 
compatible with different tuples in the domain of q . Thus their correspondences in 
the dual search tree are different. Therefore, the total number of the nodes in the 
hidden search tree that are consistent with all the hidden variables is at most 0 (r) 
times as many as the total number of the nodes visited by FC-dual in the dual search 
tree. From Theorem 5.13, FC-hidden visits a node only if its parent is consistent with 
all the variables, and each node may have at most d children. The total number of 
the nodes visited by FC-hidden in the hidden search tree is at most O(rd) times as 
many as the total number of the nodes visited by FC-dual in the dual search tree.

I

In Example 5.9, FC-hidden visits O(rd) times nodes as many as FC-dual does.
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e  {o, 1,2}

c (x i , Xi ,Xi )  e  {(0.0,0), (0.0, I), (0,0, 2), (0, 1,1),
(0, 1,2). (0,2, 2), (1,0, I), (1,0, 2), (I, I, 2), (2,0, 2)}

c (x j ,x 4 ,r 5) 6  {(0,0,0), (1.0.0), (1.0, i) .( i .  1,0),
(2,0,0), (2,0, I). (2, 0, 2), (2, I. 0). (2, I, 1). (2, 2,0)>

C ( X I , X  3 , X 5 )  6  { ( 0 ,  2 , 0 ) ,  ( I ,  1 , 0 ) ,  ( 1 , 2 ,  0 ) ,  ( I ,  2 ,  I ) ,  

(2, 0, 0), (2, 1,0), (2, I, I), (2, 2, 0), (2,2, I), (2, 2. 2)}

0 a node that is consistent with
all the variables

a node visited by FC but is inconsistent
with at least one future variable

a  node skipped by FC

( c ( * | , < 2 , z , )  ( 0 , 0 , 2 ) ) { ( * 1 . * 2 . * 3 )  -  ( 0 . 0 , 2 ) )

C l

c, c(x2'x-».xs)

Figure 5.17: The comparison of FC-dual and FC-hidden to solve the CSP in Example 
2 .1.

Thus the above bound is tight. Thus, FC-hidden may be exponentially better than 
FC-dual and it can be only bounded worse than FC-dual.

E xam ple 5.11 We use FC-dual and FC-hidden to solve the CSP in Example 2.1. 
as shown in Figure 5.17. For example, in the hidden search tree, the node t-j,i = 
{(xi,X2 , x3 ,X4 ) «— (0 , 0 , 2 , 0 )} at the level of x2,\ is consistent with all the variables 
in the hidden problem, its parent f l ) 3  =  {(xi,X2 ,x 3) <— (0 , 0 , 2 )} at the level of x l:i 
is also consistent with all the variables. From Lemma 5.20, 1 1>3 corresponds to node 
dual(titz) =  (c(xi,X 2 , i 3) <— (0 , 0 , 2 )} at the level of ci in the dual search tree, which 
is consistent with all the variables in the dual problem, and thus tiA corresponds to 
node {(c(xl,X2 ,x 3 ),c(x 2 ,X4 ,x 3)) (0,0,2), (0,0,0)} visited by FC-dual at the level
of ci in the dual search tree.

5.3.3 FC+
E xam ple 5.12 Consider a non-binary CSP with n variables, x i , . . .x „  and all the 
variables have the same domain, {0,1,2}. There are n + 1  constraints,

C (xl ,x 2) =  {(0 , 0 ), (1 , 1 ), (2 , 2 )};

C (x2 ,x 3) =  {(0 , 0 ), (1 , 1 ), (2 , 2 )};

141

R e p ro d u c e d  with p erm iss ion  of th e  copyright ow ner.  F u r the r  reproduction  prohibited without perm iss ion .



C(xt-,xi+l) =  {(0,0), (0 , 1 ), (1,0), (1 , 1 ), (2 , 2 )}, i =  3 • • • n — 1 ;

C (xu x 2 ,x n) =  {(0,0,0),(1 , 1 , 1 ),(2,2,2)};

C(x2,x  3 ,x„) =  {(0 , 0 , 1 ) ,( 1 , 1 , 0 ) ,( 2 , 2 , 2 )}.

The only solution to this problem is {x[ = 2 , . . . ,x „  =  2}. FC-orig is able to detect  

that every node instantiating xt,x2, x3 with value 0  or 1 is incompatible with x n and 
it will explore 0 (n ) nodes to find the solution. However, under the default variable 
ordering, FC-dual and FC-hidden are unable to detect such dead-end and have to 
explore 0 (2 ”) nodes.

In the above example, if FC-hidden instantiates xn right after the instantiations of 
x i,x 2, and x3, FC-hidden can detect a dead-end because neither of the values in the 
domain ofx„ is consistent with the hidden variables for C(xl5x2,xn) and C(x2,x3,x„) 
simultaneously. Generally, given the execution of FC-orig, we can arrange the instan
tiation order for FC-hidden in the following way. If a node t in the hidden search tree 
is consistent with all the hidden variables, and t in the original search tree (note that 
FC-hidden only instantiates ordinary variables) is consistent with all the variables6, 
FC-hidden extends t with the same variable that FC-orig used to extend t in its ex
ecution. Otherwise, if t in the hidden search tree is consistent with all the hidden 
variables, but t in the original search tree is not consistent with one future variable r. 
i.e., for each of the values a (E dom(x), £U{x <— a} violates a constraint C. FC-hidden 
extends t to variable x. Then FC-hidden will detect none of the values in the domain 
of x is consistent with the corresponding hidden variable c. By such an arrangement. 
FC-hidden will visit at most 0(d) times as many nodes as FC-orig does. However, 
the above variable ordering for FC-hidden cannot be obtained without knowing the 
complete execution of FC-orig, because FC-hidden should know which of the future 
variables causes the dead-end in FC-orig. Without such an oracle, FC-hidden has to 
examine (instantiate) the forward checked variable in each of the forward checkable 
constraints. Thus FC-hidden has to instantiate more variables than FC-orig does 
at an early stage in the backtrack search, and because each of the forward checked 
variables may have more than one value in its domain, these extra instantiations by 
FC-hidden may cause exponential overhead over FC-orig.

However, there is a way to improve FC-hidden by doing more constraint propa
gation besides the forward checking. Following Bacchus and van Beek in [7]. after 
forward checking prunes the domain of any hidden variable, we additionally prune

6  Neither of the above two conditions implies the other.
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the domains of any uninstantiated ordinary variables constrained by that hidden vari
able so as to remove values whose support has been lost. As usual we backtrack if 
there is a domain wipe out of any future variable. From another point of view, in 
Example 5.9, FC-orig does not forward check the domain of any future variable until 
n — 1 variables have been instantiated. An extension to FC-orig is to make constraint 
checks as early as possible. Each time a variable has been instantiated, for each of 
the constraints involving this variable and for each of the uninstantiated variables 
involving this constraint, to remove all the values from its domain, which do not have 
a valid support in the constraint with respect to the current partial solution. In fact, 
these two approaches do the same work such as they explore exactly the same nodes. 
Bacchus and van Beek denote the new algorithm as F C +  [7].

Because FC+ performs more checking than FC and FC-hidden. intuitively. FCt  
should always visit no more nodes than FC-hidden and FC-orig.

T heorem  5.22 Given a CSP and a variable ordering, F C +  always visits fewer nodes 

than FC-hidden and FC-orig.

P roof: It is straightforward that FC-hidden and FC-orig visit all the nodes that FC+ 
visits. |

By Theorem 5.21, given a CSP instance P  and any variable ordering for its dual 
problem, there is a variable ordering on the hidden problem such that FC+ visits 
at most O (rd)  times as many nodes as FC-dual does. This bound can be further 
improved if P  is arc consistent.

Lem m a 5.23 If a non-binary CSP is arc consistent, F C +  applied on its hidden 

problem visits a node t only i f  t is consistent with all the variables.

P roof: Suppose FC-F visits a node t and t is inconsistent with a hidden variable 
c. Let the current variable instantiated by t be x  and p{t) denote t's parent in 
the search tree. There must exist a hidden constraint between x and c. i.e.. x  6 
uars(c), otherwise p(t)  is not consistent with c either and thus FC-t- will not visit 
t. If p(t)  is the root of the search tree, then t instantiates only one variable x. 
Because the original CSP is arc consistent, from Theorem 4.3, the hidden problem 
is also arc consistent. Therefore, {x f[x]} has a support in the hidden constraint 
between x and c and thus t  can be extended to a consistent partial solution including 
c. That is a contradiction. Suppose p (t)  is not the root of the seaxch tree, i.e.. 

v a rs(p ( t) )  0. Because t  is not consistent with c, for each of the tuples tc € dom{c).
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t c[vars(c) Pi vars( t)]  /  t [vars(c)  fl vars( t)] .  Thus, for each of the tuples tc € dom(c) 

such that t c[vars(p(t))  fluars(t)] =  t [va rs (p ( t)) n  uars(t)], that is, t c remains in the 
domain of c at the node p(t), we have ic[x] t[x]. Therefore {x <— f[x]} does not have 
a valid support in the domain of c at the node p(t) . t[x] will be removed from the 
domain of x in the second phase of the consistency checks in FC+ (from the hidden 
variables to the ordinary variables) at the node p(t)  and FC+ will not visit t. That 
is a contradiction. |

T heorem  5.24 Given an arc consistent CSP instance and any variable ordering for  

its dual problem, there is a variable ordering on the hidden problem such that FC+  

visits at most O (r)  times as m any nodes as FC-dual does.

Proof: From Lemma 5.20, the number of the nodes visited by FC+ at each level of 
the hidden search tree is bounded by a factor O(r) from the number of the nodes 
visited by FC-dual in the dual search tree. |

FC+ is an enhancement to FC-orig and FC-hidden to provide a tradeoff between 
a possibly exponential saving and a bounded more constraint checks. On the other 
hand, we can improve the original formulation by adding some redundant constraints 
to achieve the same effect. When FC-I- visits a node t and let the current variable be ,r. 
For each constraint C  involving x and for each uninstantiated variable x' involving C. 

FC+ will remove all the values from the domain of x! that do not have valid supports 
in C  with respect to the current partial solution t. Let S  = {vars( t)C \vars{C ))  U (x '|.  
The same pruning effect can be achieved by FC-orig if we add a redundant constraint 
7rsC , because ttsC  is forward checkable at the current node t and a valid support in 
7TsC for a value in the domain of the forward checked variable x' can be extended to 
a valid support in C  for that value. Thus, by adding some redundant constraints in 
the original problem, FC-orig can achieve the same improvement. Given a non-binarv 
CSP P, for each constraint C. we add a redundant constraint ~sC  for each subset 
of the variables S  C v a rs(C ) .  Let p r o j ( P )  denote the resulting CSP and FC-proj 

denote FC applied on p r o j(P ) .

T heorem  5.25 Given a CSP P  and any variable ordering. F C +  visits exactly the 

same nodes as FC-proj.

P roof: Because we had added all possible projections of a constraint in p r o j ( P ) .  FC- 
proj should perform more consistency checks than FC+ and visits no more nodes than 
FC-K Suppose both FC+ and FC-proj visit a node t and let the current variable be
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x. We will show that if value a is not removed from the domain of an uninstantiated 
variable x' by FC+, the value cannot be removed from the domain by FC-proj either. 
Because a is not removed by FC+, for any constraint C involving both the current 
variable x and the uninstantiated variable x', there is a tuple t! in rel(C) such that 
t'[x'] =  a and t'[vars{C) fl vars(t)] =  t[vars(C) C\ uars(t)}. Thus, in proj(P), for each 
subset of variables S  C vars(C), where x' 6 S  and vars(S) C vars(t) U {x'}, (that is,
7vsC is forward checkable at the current node and x' is the forward checked variable 
in 7rsC), value a cannot be removed from the domain of x' when FC forward checks 
the constraint 7rsC, because KsC allows the tuple t'[S], where (t'[S])[x'] =  a. Thus 
FC-proj makes no more domain prunings than FC+. Therefore, they visit exactly 
the same nodes in the backtrack search. |

As we can see in the above proof, not all the projections contribute to the do
main prunings. If a dynamic variable ordering is used, we have to add all possible 
projections for each constraint to establish the above equivalence. For each of the 
constraints C, there are in total 2|uara(C)| - 1  possible projections over C. Thus adding 
all the projections is not practical for a problem having some high arity constraints. 
When a static variable ordering is used to solve the problem, suppose the variable 
are instantiated in the order x l t . . . , x n, and for a constraint C(xil, . . . , x tr). where 
the order x it, x lr conforms the above static variable ordering, we only need to 
add the projections of C over the sets of variables, {x^}, {x^x*,}, —  {xj„x,r}. 
{xil ,x;2,Xt3}, . . . ,  {xi,,Xj,,Xjr}, . . . ,  and {x*,,. . .  ,x ir}. Thus given as ta tic  variable 
ordering, for each of the constraints C, the number of the projections is reduced to 
0 (|uars(C )|2).

Now we can present a hierarchy of the above relations in Figure 5.18. In the above 
figure, we identify three relations between two identities (formulation-t-algorithm) A  
and B. (1) A  is never worse than B. For example, FC-t- is never worse than FC-orig 
and FC-hidden. Furthermore, A  is equivalent to B if A  is never worse than B. and vice 
versa. For example, BT-dual is equivalent to FC-hidden if FC-hidden instantiates all 
the hidden variables first. Actually, BT-dual and FC-hidden under the above variable 
ordering visit exactly the same nodes. (2) A  is bounded worse than B. For example, 
FC-hidden visits at most 0[rd ) times as many nodes as BT-dual does. (3) A  may be 
exponentially worse than B. This relation is usually established from a CSP instance 
in which there is a variable ordering for B such that A  is exponentially worse than B 
no matter what variable ordering is used in A.
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A  is never worse than BFC-proj

A  —  0 ( / { n ) )  J3

A  is bounded by 0 ( / (n ) )  from B

FC+

FC-orig

A  may be exponentially worse than Bexp

exp 0(r)
0{ rd)

0 ( r d )
0 { r d )

FC-dual

FC-hidden1"

(1) In case that FC-hidden instantiates all the ordinary variables first

(2 ) In case that FC-hidden instantiates all the hidden variables firstBT-dual

Figure 5.18: The relations between FC-orig, FC-dual, FC-hidden and FC-r .
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5.4 Maintaining Arc Consistency Algorithm (GAC 
or MAC)

The maintaining arc consistency algorithm is called MAC in the CSP community. For 
general CSPs, we refer to the algorithm as GAC, namely, generalized maintaining arc 
consistency algorithm. At each node in the search tree, GAC achieves arc consistency 
on the subproblem induced by the current partial solution (see Definition 3.3). If, 
as a result, one of the uninstantiated variables experiences a domain wipe out. the 
instantiation of the current variables will lead to an insoluble subproblem and thus 
it should be retracted. If the induced subproblem is not empty after enforcing arc 
consistency, the instantiation to the current variable is accepted and GAC extends 
the current node to a future variable.

To recapitulate, the induced problem has exactly the same set of variables and the 
same set of constraints as the original problem, where the domain of each instantiated 
variable is restricted to contain one value.

D efinition 5.2 A partial solution t is arc consistent i f  the CSP induced by t is not 

em pty after enforcing arc consistency.

If the induced subproblem at the current node is not empty after enforcing arc 
consistency, the node is called an arc consistent node.

Lem m a 5.26 Given two partial solutions t and t' of  a CSP P ,  where t' C t. if t is 

arc consistent, then t' is arc consistent.

Proof: Because P \ t has more restrictive domains than P \ t>, an arc consistent sub- 
domain of P \ t is also an arc consistent subdomain of P \ t>, and because P \ t is not 
empty after achieving arc consistency, P \ t> is not empty either after achieving arc 
consistency. Therefore tl is also arc consistent. |

T heo rem  5.27 G A C  (M A C ) visits a node t only if t ’s parent is arc consistent: GAC  

(M A C) visits a node t i f  t  is arc consistent.

Proof: Because GAC will not continue to node t if the CSP induced by t's parent is 
empty after achieving arc consistency, GAC visits t only if t ’s parent is arc consistent. 
We prove the second part by induction on the depth of the search tree. The hypothesis 
is trivial for the case of 1. Suppose it is true for the case of k, and suppose there 
is an arc consistent node t  at level k + 1. From Lemma 5.26, t ’s parent at level k
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is axe consistent. Thus GAC visits its parent. Because t is arc consistent, the value 
assigned to the current variable by t cannot be removed from its domain when GAC 
enforces arc consistency on Vs parent. As a consequence, GAC will visit t. |

A sufficient and necessary condition for GAC visiting a node t is: Vs parent is 
arc consistent and the value assigned to the current variable by t has not been re
moved from its domain when enforcing arc consistency on Vs parent. In the following 
discussion, we denote GAC applied on the original problem as GAC-orig. MAC ap
plied on the dual problem as MAC-dual, and MAC applied on the hidden problem as 
MAC-hidden.

5.4.1 MAC-hidden
Similar to the case of FC-hidden, MAC-hidden does not need to instantiate all the 
variables in order to find a solution. Once MAC-hidden encounters a state in which 
for each of the hidden constraints, at least one of its variables has been instantiated, 
each of the uninstantiated variables has at most one value remaining in the domain 
and a solution can be assembled in a backtrack free manner. We will show in the 
sequel that a variable ordering for MAC-hidden that instantiates all the ordinary 
variables first is only bounded worse than any other variable ordering strategy.

Given a variable ordering in the hidden problem, yi .  —  yi, where yi may be an 
ordinary variable or a hidden variable, in the same way as we have done in the 
case of FC-hidden, we can construct a new variable ordering that instantiates all the 
ordinary variables first. That is, if y, is a hidden variable, in the new ordering, all the 
uninstantiated ordinary variables xitl, . . .  ,x iiri in the scheme of xji are chosen to be 
instantiated, otherwise if yi is an ordinary variable and it has not been instantiated 
in the new ordering, yi is chosen to be instantiated and we denote it as xtil. Xote 
that in the new ordering, Xi,n may not always be immediately followed by x i+[.i. We 
call the search tree explored by MAC-hidden under the original variable ordering as 
the original hidden search tree, and the search tree explored under the new variable 
ordering as the new hidden search tree.

If a partial solution t over some ordinary variables is consistent with all the vari
ables, t  can be extended to a partial solution allhidden(t) which additionally instan
tiates all the hidden variables c where vars(c) C vars(t). Furthermore, if a node t at 
the level of xt- r . in the new hidden search tree is consistent with all the variables, t 
corresponds to a unique node hidden(t) at the level of yi in the original hidden search 
tree, where hidden(t) =  allhidden(t)[{yi, -. -, yi}]-
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Lem m a 5.28 Given a CSP P  and the above variable orderings, i f  a node t at the 

level o f  XiyTi in the new hidden search tree is arc consistent, then allhidden(t) is arc 

consistent and the node hidden{t) at the level o fy i  in the original hidden search tree 

is also arc consistent. Furthermore, ac(h idden(P)\t) =  ac(h idden(P )\auhidden(.t)) =  
ac(hidden(P)\hidden{t))-

Proof: Because t  is arc consistent, for each hidden variable c, there is a tuple tc 

in the domain of c such that tc[vars(c) fl uars(£)] =  t[vars{c)  fl uars(t)] (other
wise, all the tuples in the domain of c will be removed when enforcing arc con
sistency on hidden(P )\t). That is, t is consistent with c. Therefore t is consis
tent with all the variables, and thus allhidden(t)  and hiddenit)  do exist. Note 
that h idden (P )\ t and hidden(P )\aiihidden(t) have the same domains over the ordinary 
variables, whereas in hidden(P )\auhidden(t)y for each of the hidden variables c such 
that vars(c)  C vars( t) ,  the domain of c is set to have only one tuple t[vurs(c)}. 

When enforcing arc consistency on h id d e n (P ) |f, for each of the hidden variables <■ 
such that vars(c)  C uars(t), and for each of the tuples tc in the domain of e. if 
tc i=- i[t/ars(c)], t c will be removed from the domain. Thus ac(h idden{P ) |t) has 
the same domains as ac(h idden(P)\auhidden{t)) ■ Since h id d e n (P )|t is not empty af
ter achieving arc consistency, hidden{P )\auhidden(t) is not empty either after achieving 
arc consistency and thus allhidden(t) is arc consistent. Because hidden{P )\auhidden{t) 

has more restrictive domains than hidden(P)\hidden(t), o.c(hidden(P)\htdden{t)) is not 
empty either. Therefore, hidden(t) is also arc consistent. For each of the ordi
nary variables x  instantiated in t, either there is an ordinary variable t/, instantiated 
in hidden{t) such that y, is equal to x  and (/; is instantiated with the value f[x] 
in hidden(t), or there is a hidden variable iji instantiated in hidden(t), such that 
x 6 vars(y i)  and (hidden(t)[yi\)[x\ =  f[x|. In either case, when achieving arc con
sistency on hidden(P)\hidden(t), the domain of x contains only one value f[x]. On 
the other hand, for each of the hidden variables c instantiated in hidden(t). be
cause vars(c)  C vars( t) ,  when enforcing arc consistency on h idden (P )|f. all the 
tuples tc in the domain of c where tc ^  f[rars(c)| will be removed from its domain. 
Therefore ac(hidden(P)\hidden{t)) has the same domains as ac(h idden(P )\t ). We have. 
ac(h idden(P )\t) —ac[hidden[P} \aiihidden(t)) —ac[hidden(P^ \kidden(t)) ■ |

Lem m a 5.29 Given three partial solutions t i , t 2 and f3 of a CSP P .  where £t C t> C  

t3, i f a c { P \ t l ) =  ac(P|t3), then ac(P \h ) =  ac{P \h ) =  ac {P \t3).

Proof: Because it C t2 C i3, an arc consistent subdomain of P |t3 is also an arc 
consistent subdomain of P |tj, and an arc consistent subdomain of P |t2 is also an arc
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Figure 5.19: A node Uj visited by MAC-hidden at the level of x UJ in the new hidden 
search tree corresponds to a unique node visited by MAC-hidden at the level of y, in 
the original hidden search tree.

consistent subdomain of P |tl. Because ac(P |tl) and ac(P |t3) have the same domains, 
we have ac(P |tl) =  ac(P |tJ  =  ac(P |f3). |

T h eo rem  5.30 Given a CSP and a variable ordering for the hidden problem, we can 
construct a variable ordering for the ordinary variables in the hidden problem, such 
that MAC-hidden under the new variable ordering visits at most 0 (r) times as many 
nodes as it does under the original variable ordering.

P roof: Suppose MAC-hidden visits a node tij  at the level of x tJ in the new hidden 
search tree. Let Xk,rk be immediately followed by in the new variable ordering
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and let tk,rk denote Uj's ancestor at the level of x*,rk.
(1) If yi is an ordinary variable, then j  is equal to 1 and x ,j is equal to yt. From Theo
rem 5.27, tk,rie is arc consistent and its correspondence hidden(tk rk) at the level of yk in 
the original hidden search tree is also arc consistent. Furthermore, in the original hid
den search tree, each of the variables j/jt+i,. . . ,  yi- 1  is instantiated in allhidden{tk,rk)- 
let U-i denote the node allhidden(tk,rk)[{yi, • • • ,1/t-i}], which is an extension of 
hidden(tk,rk)- From Lemma 5.29, a c ( h i d d e n ( P ) and ac(hidden(P)\hldden(tk,rk)) 
have the same domains and thus a c ( h i d d e n ( P ) and ac(hidden(P)|t ) have the 
same domains. Thus, fj_i at the level of yj_i in the original hidden search tree is arc 
consistent, and MAC-hidden will visit tj_i and extend it to the level of </,. Because 
the value £jj[xij] is not removed from the domain of x tJ (i.e.. yi) when enforcing arc 
consistency on the node tk<rk, Uj[x «.j] cannot be removed from the domain of y, when 
enforcing arc consistency on the node £i_L. Therefore, in the original hidden search 
tree, MAC-hidden will visit the node £j_i U {yt <— £,j[xij]} at the level of y,. Let tUJ 
correspond to the node £;_! U {yi <— £»j[xij]}, as shown in part (1) in Figure 5.19. 
Two distinct nodes at the level of x ifJ in the new hidden search tree have different 
values over Xij, and thus they correspond to different nodes at the level of y, in the 
original hidden search tree.
(2) Otherwise yi is a hidden variable. The node ti-i is introduced in the same way 
as the above. Because the value is not removed from the domain of x tJ when
MAC-hidden enforces arc consistency on f j j ’s parent, there is an unpruned tuple t in 
the domain of yj such that t[vars(tij) fl vars(yj)] =  tij[vars(tij) fl uars(yi)}. Thus, 
t cannot be removed from its domain when MAC-hidden enforces arc consistency on 
the node at the level of Xk,rk in the new hidden search tree (because tk,ric is an 
ancestor of tij) , and it cannot be pruned either when MAC-hidden enforces arc consis
tency on the node fj_t in the original hidden search tree (because ac(hidden(P)It,,,) 
and ac(hidden(P)\tk ) have the same domains). Therefore, MAC-hidden will visit 
the node U-i U {yj <— f} at the level of yi in the original hidden search tree. Let 
t i j  correspond to tj_i U {yi £}, as shown in part (2) in Figure 5.19. Because 
two distinct nodes at the level of Xjj have different supports from iji. which do not 
agree on the part vars(tij) fl vars(yi), their correspondences at the level of y, in the 
original hidden search tree are different. Thus the total number of the nodes visited 
by MAC-hidden in the new hidden search tree is bounded by a factor O(r) from the 
total number of the nodes visited by MAC-hidden in the original hidden search tree.

I
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5.4.2 GAC-orig and MAC-hidden
We know from Theorem 4.3, arc consistency on the hidden problem is equivalent to 
arc consistency on the original problem. Because GAC-orig and MAC-hidden explore 
the same search tree, intuitively, they should visit exactly the same nodes.

Lem m a 5.31 Given a partial solution t of a CSP P, ac(P |t) is not empty if and 
only if ac(hidden(P)\t) is not empty. Furthermore, for each ordinary variable .r. .r 
has the same domain in ac(P |£) and ac(hidden(P)\t).

Proof: From Theorem 4.3, ac(P |£) is not empty if and only if ac{hidden{P\t)) is 
not empty and for each ordinary variable x, x has the same domain in ac(P |£) 
and ac(hidden(P\t)). Note that hidden{P)\t and hidden(P\t) have the same do
mains for the ordinary variables. For each hidden variable c. the domain of c in 
hidden(P)\t contains all the tuples tc in the corresponding constraint C, whereas 
its domain in hidden(P\t) contains only the tuples tc in C  such that tc[vars(t) n 
uars(c)] =  t[vars(t) fl uars(c)]. However, for each of the tuples tc in the domain of 
c in hidden(P)\t, if tc[vars(t) fl uars(c)] ^  t[vars(t) fl uars(c)], tc does not have a 
support from at least one of the ordinary variables x € vars{c). and thus tc will be 
removed from the domain when achieving arc consistency on hidden(P)|£. Therefore. 
ac{hidden(P)\t) and ac(hidden{P\t)) have the same set of domains. Thus. ac(P |£) 
is not empty if and only if ac(hidden(P)\t) is not empty and they have the same 
domains for the ordinary variables. |

T heorem  5.32 Given a CSP and any variable ordering, GAC-orig visits exactly the 
same nodes as MAC-hidden does.

Proof: If a node t is arc consistent in the original problem, t is also arc consistent 
in the hidden problem. From Theorem 5.27, GAC visits a node t if and only if t's 
parent is arc consistent and the value assigned to the current variable by t has not be 
removed from its domain when enforcing arc consistency on t's parent. From Lemma 
5.31, GAC-orig and MAC-hidden visit exactly the same nodes. |

5.4.3 GAC-orig and MAC-dual
The following examples show that GAC-orig (and MAC-hidden) may be exponentially 
better or worse than MAC-dual.
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Exam ple 5.13 Consider a CSP of n(n +  l)/2  variables, x \ , . . . , x n, xi.2— .X[.n. 
. . .  ,ar„_i(n, and each variable has n — 1 values, 1 , . . . .  n — 1. There are n{n — l)/2  
constraints,

C {xu x 2 ,x i t 2) =  { i l ^ x 2}t

C(xl, x3, x1i3) =  {art #  ar3},

C(x,t_ i, xnt xn_iin) =  {xrt_i 7  ̂xn.}

It is essentially a pigeon-hole problem, except that we pad an extra variable x tJ in
each constraint. The pigeon-hole problem is insoluble but highly consistentfllO]. By 
any variable ordering, GAC-orig has to instantiate n — 2 variables to encounter a 
dead-end and it visits 0 (n logri) nodes to conclude the problem is insoluble. Because 
any two constraints overlap at most one ordinary variable, from Theorem 4-9, arc 
consistency on the dual representation is equivalent to arc consistency on the original 
problem. However, at each node of the dual search tree, MAC-dual has to additionally 
instantiate a variable x , j , which has no influence on the failure. So M A C - d u a l  has  

to explore 0{nn) nodes. Thus MAC-dual is exponentially worse than GAC-orig.

In the above example, MAC-dual has the same pruning power as GAC-orig be
cause each pair of the original constraints share at most one variable. However. 
MAC-dual has to do one useless instantiation at each node in the search tree. As 
a result, these extra instantiations cause MAC-dual to be exponentially worse than 
GAC-orig. The following example shows the converse: if two original constraints 
share more than one variable, arc consistency on the dual is stronger than arc con
sistency on the original problem, and MAC-dual may be exponentially better than 
GAC-orig.

Exam ple 5.14 Consider a CSP of An+ 2 variables, xt, . . .  ,x4n+2 and each variable 
has n values, 1 , . . . ,  n. There are 2n A- 1 constraints,

C{xi,x2,X3 ,x4) =  {(xt ■+■ x2  mod 2) (x3 -bx4 mod 2)}

C(x3,x 4,x5,x6) =  {(x3 + x 4 mod 2 ) /  (x5 -I-x6  mod 2 )}

C(x4n_ i,x 4„, x4n+i,x 4n+2) — {(x4n—1 ■+* x4„ mod 2 ) ^  (x4n+i + x 4 nj. 2  mod 2)}

C'(x4n+l, x4n+2,x lf x2) =  {(x4n+1 +  x4n+2 mod 2 ) ^  (xt +  x2  mod 2 )}
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Because (xi +  £2 mod 2) =  0 implies (x3 +  x4 mod 2) =  1, (x5 +  x6 mod 2) = 0 , . . . ,  
and (x4n+i +  ^4n+ 2  mod 2) =  0 and then (xt + x 2 mod 2) =  1. Thus the problem is 
insoluble. When enforcing arc consistency at a node in the original search tree, none 
will be removed from the domain of an ordinary variable unless the variable is the 
last uninstantiated variable in a constraint. The best variable ordering strategy in the 
original problem is to divide the problem in half by first branching on the variables 
Xi,Xo,X2n+i and :r2n+2 . Then we can branch on an insoluble subproblem consisting of 
x$ ,. . . ,  x-i n, or £271+3 , • • • > x4 n+2 - By this divide-and-conquer approach, the maximum 
depth of the original search tree is about 0(log(n)) and the total number of the nodes 
explored by GAC-orig is 0 (n l°9̂ ) .  In the dual problem, the dual constraints form a 
cycle in the constraint graph. Once a dual variable is instantiated, the cycle is broken 
so that the induced subproblem is empty after enforcing arc consistency. Thus MA C- 
dual only needs to instantiate one variable to conclude the problem is insoluble and it 
visits 0 (n 4) nodes. Therefore, MAC-dual is exponentially better than GAC-orig.

T heorem  5.33 There is a CSP instance in which GAC-orig and MAC-hidden are 
always exponentially better than MAC-dual no matter what variable ordering is used 
in the dual problem.

Proof: It is true from the CSP in Example 5.13. |

T heorem  5.34 There is a CSP instance in which MAC-dual is always exponentially 
better than GAC-orig and MAC-hidden no matter what variable ordering strategies 
are used for them.

Proof: It is true from the CSP in Example 5.14. |

From Theorem 4.9, we know that given a CSP where any two original constraints 
overlap on at most one ordinary variable, achieving arc consistency on the dual is 
equivalent to achieving arc consistency on the original problem. We will show that 
GAC-orig is only bounded worse than MAC-dual in such an instance. Given an or
dering of the dual variables, ci,...,C m , we can arrange the ordinary variables in the
original problem in the same way as we have done in the case of BT-orig and BT-dual.
That is, the instantiation to the dual variable c, is equivalent to the instantiations of 
the ordinary variables . . .  ,x ijFi, where x tj  €  vars(ci) and x tJ & (Jfc=\ vars(ck). 
An example of such a variable ordering arrangement is shown in Figure 5.2. Un
der the above variable orderings, each ordinary variable x iyj  in the original problem 
corresponds to a unique dual variable c* in the dual problem. However, not all the
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dual variables have some correspondences in the ordinary variables. Therefore, in the 
original problem, xiyTt may not be followed by rri+i,i (since £i+i,i may not exist).

O bservation  5.5 I f a partial solution t in the original problem is cons is tent ,  t cor 

responds to a unique partial solution alldual{t) in the dual problem including all the 
dual variables c such that vars(c) C uars(t). Because t is consistent, for each dual 
variable c where vars(c) C vars(t), the tuple t[uars(c)] is included in the domain o f  

c, and thus alldual(t)[c] is set to be t[vars(c)}. Furthermore, if  a node t at the level 
o fx itfi in the original search tree is consistent, t corresponds to a unique node dual(t) 
at the level of Cj in the dual search tree, where dual(t) =  alldual(t)[{ci,. . .  ,Cj}|.

Note that in the comparison of FC-hidden and FC-dual, we have used the notations 
alldual(t) and dual(t), we still use these notations in comparing MAC-orig and MAC- 
dual because they are exactly the same under the two situations.

L em m a 5.35 Given a CSP P  in which for any two constraints C and C' of P. 
vars(C)D vars(C ' ) contains at most one ordinary variable, and given the above vari
able orderings, if a node t at the level of x,.ri in the original search tree is arc consis
tent, then alldual{t) and dual(t) are also arc consistent. Furthermore, f o r  each or ig

inal constraint C, if a tuple tc is not (implicitly) removed from the constraint C when 
enforcing arc consistency on P\t, the tuple tc cannot be removed from the domain o f  

the corresponding dual variable c when enforcing arc consistency on dual(P)\anciuaiw 

and dual(P)\duai{t)-

P roof: In the original problem, for each of the constraints C  where vars{C) C 
vars(t), and for each of the variables x  € vars(C), the domain of x  in P |£ contains 
only one value £[x]. Because ac(P |£) is not empty, thus f[i/ars(C)] 6 rel(C). So t is 
consistent in the original problem. Thus alldual(t) and dual(t) do exist. Because 
ac(P |£) is not empty, from Theorem 4.7, ac(dual(P\t)) is not empty. Note that 
dual(P\t) and dual(P)\auduâ t) have the same domain for each dual variable c, where 
vars(c) C vars(t) (the domain of c contains only one tuple f[uars(c)]), or vars(c) fl 
vars(t) =  0 (the domain of c contains all the tuples in the corresponding constraint). 
For each dual variable c, where vars(c) fl vars(t) ^  0 and vars(c) £  vars(t). that 
means, c is not instantiated in alldual(t), but it is constrained with at least one 
of the dual variables instantiated in alldual(t). The domain of c in dual(P)\aiiduiti{t) 
contains all the tuples in the corresponding constraint, whereas its domain is dual(P\t) 
only contains those tuples tc in the corresponding constraint such that tc[vars{c) n  
vars(f)] =  £[t/ars(c) fl uars(£)]. However, for each of the tuples tc in the domain of
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Figure 5.20: A node tij visited by GAC-orig at the level of x ,j  in the original search 
tree corresponds to a unique node visited by MAC-dual at the level of c, in the dual 
search tree.

c in dual(P)\auduai(t) such that tc[vars(c) fl uars(f)] ^  t[vars(c) fl uars{t)\, because 
vars(t) = Ufc=ivars(ck) and {ci,...,C j} C alldual(t), there is one dual variable c} 
for 1 < j  < i, such that {c tc} is not compatible with {cj <— t [ t fa r .s (C j ) ]} .  Because 
£[uar.s(cj)] is the only tuple in the domain of Cj in dual(P)\auduaHt), tc will be removed 
from its domain when enforcing arc consistency on the dual constraint between c 
and Cj. Thus ac(dual(P\t)) and ac(dua/(P)|aH4/ua/(£)) have exactly the same domains 
for the dual variables. Because ac(P |£) is not empty, ac(dua/(P)|a£/(/ua£(£)) is not 
empty either. Therefore, alldual(t) is arc consistent. Furthermore, from Theorem 4.9. 
dual(ac{P\t)) =  ac{dual(P)\auduant)). That is, if a tuple tc is not (implicitly) removed 
from an original constraint C  in ac(P |£). tc cannot be removed from the domain of the 
corresponding dual variable c in ac(dual(P)\attliuai ^ ) . Because dual{t) is a subtuple of 
alldual(t), thus an arc consistent subdomain of dual{P)\aiiduait is also an arc consistent 
subdomain of dual{P)\duai{t)- Therefore, dual(t) is arc consistent and if a tuple tc is 
not implicitly removed from an original constraint C  in ac(P |£), tc cannot be removed 
from the domain of the corresponding dual variable c in ac(dual(P)\dUai{t))■ I

Thus the total number of the arc consistent nodes at the level of Xj,r, in the original 
search tree is bounded by the total number of the arc consistent nodes at the level of 
Ci in the dual search tree.
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T heorem  5.36 Let P be a CSP instance such that for any two constraints C and C' 
of P, vars(C) fl vars(C') contains at most one ordinary variable. Given any variable 
ordering for its dual representation, there is a variable ordering on the original prob
lem such that GAC-orig visits at most 0 (r) times as many nodes as MAC-dual does.

Proof: Suppose GAC-orig visits a node t i j  at the level of Xij  in the original search 
tree, let tk,Tk denote Uj's ancestor at the level of xk<rk, where x k,rk is followed by x lA 
in the variable ordering for the original problem. We know that tk,rk is arc consistent. 
From Lemma 5.35, its correspondence dual(tk<rk) is an arc consistent node at the level 
of ck in the dual search tree. Thus MAC-dual will visit dual(tk rk) and extend it to the 
levels of cjt+i,...,Ci_i and q . Furthermore, because alldual(tk<rk) is arc consistent, 
and each of the variables q , . . . , q _ i  must have been instantiated in alldual(tkj.k). 
the node £j_t =  alldual(tkfrk)[{ci,.. . ,q_i}] is an arc consistent node at the level of 

in the dual search tree. Thus MAC-dual will visit and extend it to the level 
of q . Because the value tij[xij] was not removed from the domain of xltJ when GAC- 
orig enforces arc consistency on tij s parent in the original problem, there is a tuple 
t 6 rel{Ci) such that t[uars(tij) fl car.s(Ct)] =  t^ luars^^j)  f l  cars(C,)] and t is not 
(implicitly) removed the constraint C, when enforcing arc consistency on f,./s parent. 
i.e., t is a valid support for {x,,j «— <»j[a:»j]}. Thus t will not be (implicitly) removed 
from the constraint Cj when GAC-orig enforces arc consistency on the node tktkr 
(because tk<rk is an ancestor of tij). From Lemma 5.35, t cannot be removed from the 
domain of the dual variable q  in ac(dual{P)\auduai(tkrk))- Because £j_t is a subtuple 
of alldual(tkiJ.k), thus t cannot be removed from the domain of q  in ac(dna£(P)|£i_1). 
Therefore, MAC-dual will visit the node £j_t U {q f— £} at the level of q  in the dual 
search tree. Let tij  correspond to £,•_i U {q «— £}, as shown in Figure 5.20. Given 
two distinct nodes visited by GAC-orig at the level of Xij in the original search tree, 
because they have the different instantiations on the part uars(ftJ ) fl vars(Ci), their 
correspondences at the level of q  in the dual search tree are different. Therefore, the 
total number of the nodes visited by GAC-orig in the original search tree is bounded 
by a factor O(r) from the total number of the nodes visited by MAC-dual in the dual 
search tree. |

5.4.4 Combined Formulation
MAC-dual may be exponentially better because it enforces a stronger consistency 
on the dual representation and MAC-hidden may be exponentially better because
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Figure 5.21: The combined formulation of the CSP in Example 1.1.

it makes less instantiations at each stage during the backtrack search. We observe 
that the advantages of the dual representation and the hidden representation can be 
combined into a new problem formulation.

D efinition  5.3 (com bined rep resen ta tion ) Given a CSP instance P =  (V. V.C). 
its combined representation comb(P) =  (yco,n6(p) r[)cornb(P) Qcomb{P)̂  ls defined as:

• y comb(p) = yhidden(P)' • e  ̂ £/je sei 0f  variables consists of the ordinary vari
ables from the original problem and the hidden variables corresponding to the 
constraints in the original problem,

• "Dcom6(p) =  ■D/"d<ien(p), i.e., the domain of an ordinary variable is the same as it 
in the original problem and the domain of a hidden variable consists of all the 
tuples in its corresponding constraint,

• Ccom6(p) =■ Qhidden(P) y  Qduai(P) j ’/ie set of constraints includes all the hidden 
constraints in the hidden representation and all the dual constraints in the dual 
representation.

The combined representation of the the CSP in Example 1.1 is shown in Figure 
5.21, which is essentially the combination of the hidden representation as shown in 
Figure 4.2 and the dual representation as shown in Figure 4.1. Note that the combined 
representation is a binary CSP, in which an ordinary variable only constrains with the
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hidden variables, whereas a hidden variable may have constraints with the ordinary 
variables and other hidden variables.

In the following, we denote MAC applied on the combined representation as MAC- 
comb. Similar to the case of MAC-hidden, we assume that all the ordinary variables 
are instantiated first in the combined representation. Thus. MAC-coinb explores rhe 
same search tree as GAC-orig does.

T heorem  5.37 Given a CSP P, ac(comb(P)) is not empty if  and only ifac{dual(P)) 
is not empty. Furthermore, a hidden variable has the same domain in ac(comb(P)) 
and ac(dual(P)).

Proof: Given a CSP P , because the dual problem is a subproblem in the combined 
representation, if ac{dual{P)) is empty, then ac(comb(P)) is empty too. On the 
other hand, if ac(dual(P)) is not empty, from ac{dual(P)), we can construct an arc- 
consistent subdomain for the original problem, ‘D<iuaiae(P) (see page 97). It is easy to 
verify that £)dua,ac(F) u  'pac(duaH.P)) js an arc consistent subdomain for camb[P). |

T heorem  5.38 Given a CSP and a variable ordering for the original problem, there 
is a variable ordering for the combined representation such that MAC-comb always 
visits no more nodes than GAC-orig does. On the other hand, there  exists  a C S l } 

instance in which MAC-comb is exponentially better than GAC-ong no matter what 
variable ordering is used in the original problem.

Proof: Because MAC-comb and GAC-orig explore the same search tree and at each 
node in the search tree, MAC-comb enforces a stronger consistency than GAC-orig 
does, GAC-orig visits all the nodes that MAC-comb visits. Since MAC-comb enforces 
a more powerful consistency, sometimes this will be paid off. For example. GAC-orig 
is exponentially worse than MAC-comb when solving the CSP in Example 5.14.

T heorem  5.39 Given a CSP and a variable ordering for the dual problem, there is a 
variable ordering for the combined representation such that MAC-comb visits at most 
0(r)  times as many nodes as MAC-dual visits. On the other hand, there exists a CSP 
instance in which MAC-dual is exponentially worse than MAC-comb no matter what 
variable ordering is used in the dual problem.

Proof: Since arc consistency on the combined representation is equivalent to arc 
consistency on the dual problem, in the same way as we have done in proving The
orem 5.36, we can show that MAC-comb is only bounded worse than MAC-dual.
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A  -----------------------J3
A  is never worse than B

A  —  0 ( /(r a )) -----J3

A  is bounded by 0 ( /(n ))  from S

A  —  exp  J3

A  may be exponentially worse than B

( 1) In the case that MAC-hidden instantiated all the ordinary variables first.

(2 ) In the case that each pair of the original constraints share at most one variable.

Figure 5.22: The relations between GAC-orig, MAC-dual, MAC-hidden and MAC- 
comb.

Because MAC-comb makes a weaker instantiation at each node in the search tree 
than MAC-dual does, MAC-comb can avoid some useless instantiations that MAC- 
dual has to commit. For example, MAC-comb is exponentially better than MAC-dual 
when solving the problem in Example 5.13. |

We summarize the relations between GAC (MAC) on different formulations in 
Figure 5.22. MAC-comb is on the top in the hierarchy in terms of the size of the
search tree, but it performs more work at each node and in practice it may not have
the best run time performance.

5.5 Discussion
In the above, we have theoretically studied the relations between the original problem, 
the dual problem and the hidden problem with respect to the selected backtracking 
algorithms. The results are summarized in Figure 5.1. Furthermore, given three
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algorithm+formulation combinations A, B, and C in the figure, we can make the 
following inferences:

• The relations A  may be exponentially worse than B and A  is bounded worse 
than B. cannot hold simultaneously. For example. FC-hiclden is bounded worse 
than FC-dual, thus there is no such instance to show that FC-clual can be 
exponentially better than FC-hidden.

•  If 4̂. is polynomially bounded worse than B , and B is polynomially bounded 
worse than C, then A  is polynomially bounded worse than C. For example, 
because FC-proj and FC+ always visit the same nodes and FC+ is bounded 
worse than FC-dual, thus FC-proj is only bounded worse than FC-dual.

• If A  is bounded worse than 3, and C may be exponentially worse than B. 
then C may be exponentially worse than A . For example, MAC-hidden always 
visits fewer nodes than FC-hidden, which itself is bounded worse than FC-dual. 
Then we can conclude that MAC-hidden is only bounded worse than FC-dual. 
whereas MAC-hidden may be exponentially better than FC-dual.

However, if A  may be exponentially worse than 3, and B may be exponentially 
worse than C, we cannot conjecture that A  may be exponentially worse than C. For 
example, FC-hidden may be exponentially worse than FC-orig, and FC-orig may be 
exponentially worse than FC-dual, but FC-hidden is only bounded worse than FC- 
dual.

Although the above relations are established in terms of the number of the nodes 
visited by the algorithm, they are also valid in the case that the number of constraint 
checks performed is considered if the number of constraint checks performed by the 
algorithm at each node in the search tree can be bounded by a polynomial *. For 
example, if A  may be exponentially worse than B in terms of the number of nodes 
visited by the algorithms, it still holds that A  is exponentially worse than B in terms 
of the constraint checks, because the backtracking algorithm performs a polynomial 
number of constraint checks at each node in the search tree. Otherwise, if A  is 
bounded worse than B in term of the number of the nodes visited by the algorithms, 
the number of the constraint checks performed in A  is also bounded in a polynomial 
factor by the number of the constraints checks performed in B. Furthermore, due to 
the special properties of the dual and hidden transformations, some general methods

"However, the worst case complexity of achieving arc consistency on general CSPs is not always 
bounded by a polynomial.
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to exploit such properties axe available to speed up the constraint checking and con
straint propagation in the dual problem and the hidden problem. A measure based 
on the constraint checks performed by the algorithm can hardly reflect those efforts.

Nevertheless, the above relations are the worst case analyses and in practice they 
do not precisely reflect the actual performances. Our objective is to provide some 
general guidelines in determining whether or under which conditions the dual or 
hidden transformation should be applied on a non-binary CSP. For example, if A  
is just bounded worse than B , but it may be exponentially better than B, we are 
ensured that the performance of A  could not be much worse than the performance of 
B, but A  has the potential to provide a dramatic improvement over B. Thus, if we 
are solving a large problem, A  is preferred in the hope that A  can provide exponential 
savings over B and in the worst case, it cannot lose too much.

For example, consider a crossword puzzle problem. We know that there exists 
three possible formulations for the problem, an original formulation in which each 
letter is represented by a variable and each word is represented by a non-binary 
constraint, the dual formulation in which each word is represented by a variable and 
the binary constraints specify that two words agree on their intersecting letter, and 
the hidden formulation which represents both the letters and the words by variables. 
There are few constraints in the original formulation, i.e., the CSP is sparse, and each 
of the constraints is very tight compared to all possible combinations of 26 letters. If 
we apply FC to solve the problem, intuitively, the original formulation would not be 
a good choice because a non-binary constraint can be forward checked only if all but 
one of its variables has been instantiated. From Theorem 5.21, we know that FC- 
hidden is only bounded worse than FC-dual, thus the hidden formulation is at least 
comparable to the dual formulation. If MAC is applied to solve the problem, from 
Theorem 5.32, we know that GAC-orig visits the same nodes as MAC-hidden does 
if they use the same static variable ordering. Because each pair of constraints in the 
original formulation share at most one variable, from Theorem 5.36. we know that 
GAC-orig is only bounded worse than MAC-dual. Thus, the original formulation 
and the hidden formulation are the winner in the case of MAC. Furthermore, the 
efficiency of constraint propagation in all the three formulations can be improved 
by the use of some propagators. For example, in the original formulation, to find 
a support (for a revised value) in a non-binary constraint, the generic method is to 
list all possible combinations {e.g., 2610) of the values in the current domains of the 
variables in the constraint. Because the constraint is very tight, it is rare to encounter 
a valid support in the list. However, we can simply go through the dictionary and
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check each word whether it is a valid support for that value. Since arc consistency on 
the dual formulation does not have more priming power than the one on the original 
formulation and the hidden formulation, it is not worthwhile to combine the dual and 
hidden together and apply MAC on the combined formulation.

5.6 Summary

In this chapter, we examined theoretically how well some backtracking algorithms 
perform on a non-binary CSP and its dual and hidden transformations. Given two 
algorithm+formulation combinations A  and B, we identify one of two mutually ex
clusive relations between A  and B, either A  may be exponentially worse than B, or 
A  can always be (polynomially) bounded worse than B. We mean that A  may be 
exponentially worse than B if there is a CSP instance and a variable ordering for 
B such that the performance of the algorithm on A  is exponentially worse than its 
performance on B no matter what variable ordering is used in A  and we mean A  is 
bounded worse than B if for any CSP instance and for any variable ordering in B. we 
can figure out a variable ordering for A  such that the performance of the algorithm 
on A  is bounded by a polynomial factor from its performance on B.

For the chronological backtracking algorithm, BT-orig may be exponentially worse 
than BT-dual and BT-hidden, and BT-dual and BT-hidden may be exponentially 
worse than BT-orig. However, BT-dual will always visit no more nodes than BT- 
hidden does, and BT-hidden can visit at most 0{rd)  times as many nodes as BT-dual 
does. Moreover, if the maximum arity of the constraints in the original problem is 
bounded by a constant r, BT-orig visits at most 0(cT+l) as many nodes as BT-dual 
or BT-hidden does, and if the maximum number of the tuples in the constraints of 
the original problem is bounded by a constant M,  BT-dual or BT-hidden can visit 
at most 0(mdM)  times as many nodes as BT-orig does.

For the forward checking algorithm, FC-dual may be exponentially worse than 
FC-orig and FC-hidden, and FC-orig may be exponentially worse than FC-dual and 
FC-hidden. However, FC-hidden can visit at most 0(rd)  times as many nodes as FC- 
dual does. Both FC-orig and FC-hidden can be improved by doing more constraint 
checks at each node in the search tree. For example, Bacchus and van Beek introduce 
an algorithm called FC+ as an improvement to FC-orig and FC-hidden [7]. FC+ 
never visits more nodes than FC-orig or FC-hidden does, and FC+ can visit at most 
O(r) times as many nodes as FC-dual (if the original problem is arc consistent). 
Furthermore, the original formulation can be improved by adding all the projections
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of the non-binary constraints. FC applied on the new formulation is called FC-proj, 
and we have shown that FC-proj and FC+ visit exactly the same nodes. That means, 
improving the algorithm and improving the formulation may have the same effect.

For the maintaining arc consistency algorithm, GAC-orig and MAC-hidden visit 
exactly the same nodes, while MAC-dual may be exponentially worse than GAC- 
orig and MAC-hidden because MAC-dual makes more instantiations at each node 
of the search tree, and GAC-orig and MAC-hidden may be exponentially worse than 
MAC-dual because MAC-dual enforces a stronger consistency in the backtrack search 
than GAC-orig or MAC-hidden does. If any pair of the constraints in the original 
problem have at most one common variable, we know that arc consistency on the 
dual is equivalent to arc consistency on the original and the hidden problem. In that 
case, we can show that GAC-orig and MAC-hidden visit at most 0(r)  times as many 
nodes as MAC-dual does. The dual and hidden problem can be combined into a new 
binary formulation and we denote MAC applied on the new problem as MAC-comb. 
MAC-comb never visits more nodes than GAC-orig or MAC-hidden does, and it visits 
at most O(r) times as many nodes as MAC-dual does.

Although all the above relations are based on the number of the nodes visited by 
a backtracking algorithm, they are still valid if the number of the constraint checks 
is considered. Our study can provide some general guidelines to determine whether 
or under which conditions the dual or hidden transformation can be applied on a 
non-binary CSP.
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Chapter 6 

Future Work and Conclusion

6.1 Future Work

In Chapter 3, we present two seemingly contradictory scenarios, one is that an algo
rithm doing more looking ahead cannot benefit more from a look-back enhancement, 
and the other is that GAC can still be (significantly) improved by the use of CBJ. 
The first one is of theoretical interest as we have shown that the use of a dynamic 
variable ordering or maintaining strong fc-consistency will weaken the effects of the 
backjumping technique. The second one has practical value as our experiments show 
that GAC-CBJ outperforms GAC by orders of magnitude on some real world prob
lems. A missed part in the picture is the linkage between the theoretical justifications 
and the empirical observations; i.e., from a practical point of view, we are more inter
ested in using these theoretical results to explain and predict whether or under which 
condition a look-ahead algorithm will be improved from a backjumping enhancement. 
For example, FC-CBJ is known to be better than FC on a wide range of problem 
domains, but the improvement of GAC-CBJ over GAC can only be observed in sparse 
random CSPs and some real world problems. The theoretical results say that if a 
CSP is highly consistent, CBJ can hardly generate effective backjumps. One possible 
approach is to find a way to characterize the degree of consistency in a CSP, similar 
to the “constrainedness” property used in phase transition study [55]. For example, 
because a dense CSP usually has a higher level of consistency than a sparse CSP. 
GAC-CBJ shows improvement on sparse problems. Adding redundant constraints 
to a CSP has the effect of achieving some degree of consistency and thus increases 
the consistency level of the formulation. Therefore, the benefit of CBJ will be di
minished by the use of redundant constraints. One solution is to find a parameter 
indicating the consistency level of a CSP, and tie each of the look-ahead algorithms

165

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r th e r  reproduction  prohibited without perm iss ion .



with a threshold point of the parameter, where to solve a CSP with a consistency 
level above the point, the CBJ enhancement is more likely useless to the look-ahead 
algorithm, and it will bring improvement on instances with consistency level below 
the threshold point.

Our work in the comparison of the dual and hidden transformations can be ex
tended in several directions. To study the consistency properties of non-binary CSPs, 
the dual transformation provides a good starting point. As we know, strong k- 
consistency is not so useful for non-binary CSPs. One obvious paradox is that if all 
the constraints in a CSP have arity greater than k , the CSP is strongly ^-consistent. 
Dechter and van Beek have proposed the concept of relational k-consistency as the 
generalization of ^-consistency for non-binary CSPs [39]. However, relational con
sistency has some serious drawbacks to be used in practice l . As we know, arc 
consistency on the dual problem is stronger than arc consistency on the original 
problem, and in fact it is even stronger than relational arc consistency. Therefore, 
arc consistency on the dual transformation will induce a new consistency propertv 
on the original non-binary problem. For example, we can call it dual arc consistency. 
Subsequently, we can define more consistency properties, such as dual k-consistency, 
dual (i,j)-consistency, dual neighborhood inverse consistency, and so on, to enrich the 
family of consistencies for general CSPs.

In Chapter 5, we have thoroughly compared the performance of several backtrack
ing algorithms on the three possible formulations for any problem. However, a "pure" 
form of the dual or hidden transformation is rarely used in modeling a problem. In
stead, they are often used in the form of partial conversions, and combined with other 
modeling techniques, such as exploiting meta values.

One drawback of the dual and hidden transformations is that they are only ap
plicable to sparse CSPs. For a dense CSP, if every constraint is transformed into a 
dual variable or a hidden variable, the transformation will have too many variables 
to be solved by backtracking algorithms. A partial conversion means a subset of the 
constraints in an original formulation become dual variables, or a subset of the vari
ables in a constraint are aggregated into a hidden variable. For example, in temporal 
reasoning, an interval-based representation of temporal information can sometimes 
be viewed as a partial (dual) conversion of a point-base representation (see Figure 
4.4), which can often be processed very quickly. One extension of our theoretical 
results is to formalize various partial conversions and evaluate how they will affect

l For example, even the complexity of achieving relational arc consistency in a non-binarv CSP 
may be exponential if the maximum arity of the constraints is not bounded.
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Without meta values With the use of meta values

Figure 6.1: Use of meta values in the hidden variable representation.

the effectiveness of consistencies and the performance of backtracking algorithms.
The dual and hidden transformations use a very restricted representation for non

binary constraints in which each tuple in a non-binarv constraint is represented by 
a value in the domain of the dual or hidden variable. This usually results in some 
exponentially large domains. In practice, there often exists more flexible representa
tions for some classes of non-binary constraints. For instance, in Example 1.4. three 
hidden variables are used to represent the global equation constraint, and each of the 
hidden variables has only two values. Furthermore, with the help of identifying meta 
values of the dual or hidden variables, their domains may be dramatically condensed. 
For example, consider a constraint over n Boolean variables, x t V • • • V x„. If it is rep
resented by a “pure” hidden variable, the domain of the hidden variable will contain 
2" — 1 tuples, which is usually too large to be used in practice. However, the domain 
of the hidden variable can be condensed by the use of meta values. One scheme is to 
represent the constraint with one hidden variable c whose domain contains n values. 
{ 1 ,.. . ,  n}, and add one constraint between c and each of the ordinary variables x, to 
specify the following relation, c = i — > x, =  1, as shown in Figure 6.1. Note that the 
constraints in the second representation are not hidden constraints anymore because 
they are not one-way functional constraints. Further work should include identifying 
meta values and more flexible representation schemes for some classes of constraints 
and evaluating their effects on the effectiveness of consistencies and the performance 
of backtracking algorithms.
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6.2 Conclusion
Our work aims at improving the efficiency of solving constraint satisfaction problems 
with respect to improving the backtracking algorithms and improving the formula
tions. We studied the relations between look-ahead algorithms and the backjumping 
technique and evaluated the dual and hidden transformation techniques. Throughout 
the dissertation, we did not restrict ourself to binary CSPs.

The theoretical contributions in this dissertation include the following. We par
tially explained why look-ahead algorithms will benefit less from backjumping en
hancement. We introduced the concept of backjump level to characterize the execu
tion of backjumping algorithms, the concept of Ar-proof-tree to characterize the strong 
fc-consistency achievement algorithms, and the concept of induced CSP to charac
terize the maintaining strong ^-consistency algorithm. We evaluated two modeling 
techniques, the dual transformation and the hidden transformation, with respect to 
the effectiveness of various consistency properties and the performance of some back
tracking algorithms. To our knowledge, this is the first comprehensive approach to 
evaluating modeling techniques in a purely theoretical wav.

The practical contributions in this dissertation include the following. We proposed 
a new algorithm, GAC-CBJ, and our experiments show that GAC-CBJ significantly 
improves GAC on some harder real world problems, and it is only 10% slower than 
GAC on relatively easy problems. The theoretical results in the comparison of the 
dual and hidden transformations also have practical interests. For example, we know 
that GAC applied on an original formulation always visits the same nodes as MAC 
applied on its hidden transformation, and MAC applied on the dual transformation 
may be significantly better than GAC applied on the original problem only if there 
are two constraints in the original problem that share more than one variable. These 
results can be used by practitioners to more effectively find an efficient model for 
real-world problems.
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Appendix A 

Glossary

A  may be exponentially worse than B , or A  is polynomi- 111
ally bounded worse than B
alldual(t), dual(t) 138
allhidden(t), hidden(t) 132
arc consistency (AC) 18
arc consistency closure, ac{P) 92
arc consistent node 147
backjump level 49
backtrack search tree, search tree 22
EM* 50
BT, chronological backtracking algorithm 27
BT-orig, BT-dual, BT-hidden 114
CBJ, conflicts-directed backjumping 30
combined representation, comb(P) 158
constraint satisfaction problem (CSP) 16
dual transformation, dual(P) 83
dual-hidden(t) 123
FC+ 143
FC, forward checking algorithm 32
FC-CBJ 38
FC-orig, FC-dual, FC-hidden 130
FC-proj 144
GAC-CBJ 66
GAC-orig, MAC-dual, MAC-hidden 148
hidden transformation, hidden(P) 85
hidden-dual (t) 127
hidden-orig(t) 120
induced CSP, P\t 53
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^-consistency, strong ^-consistency I S
^-consistent node 58
fc-proof-tree 52
MAC, GAC, maintaining arc consistency algorithm 35
MAC-comb 159
MCfc, maintaining strong ^-consistency algorithm 54
MCfc-CBJ 61
neighborhood inverse consistency (NIC) 101
orig-dual(t) 116
partial solution, solution 16
path inverse consistency (PIC) 101
projection, irsC 17
restricted path consistency (RPC) 101
selection, atC  17
s-induced CSP, P\st 54
singleton arc consistency (SAC) 101
strong path consistency (ACPC) 101
strongness and equivalence of consistency properties on 36
two CSP formulations of a problem
subdomain 91
tuple 16
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