
INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films

the text directly from the original or copy submitted. Thus, some thesis and

dissertation copies are in typewriter face, while others may be from any type of

computer printer.

The quality of this reproduction is dependent upon the quality of the

copy subm itted. Broken or indistinct print, colored or poor quality illustrations

and photographs, print bleedthrough, substandard margins, and improper

alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript

and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by

sectioning the original, beginning at the upper left-hand comer and continuing

from left to right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced

xerographicaily in this copy. Higher quality 6” x 9” black and white

photographic prints are available for any photographs or illustrations appearing

in this copy for an additional charge. Contact UMI directly to order.

ProQuest Information and Learning
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA

800-521-0600

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

U niversity o f A lb e rta

A T H E O R E T IC A L COM PARISON O F S EL E C T E D CSP SOLVING AND MODELING

T EC H N IQ U ES

by

X inguang C hen

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfill

ment of the requirements for the degree of D octor o f Philosophy.

Department of Computing Science

Edmonton, Alberta

Spring 2000

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

1*1 National Library
of Canada

Acquisitions and
Bibliographic Sen/ices
395 Wellington Street
Ottawa ON K1A0N4
Canada

Biblioth&que nationals
du Canada

Acquisitions et
services bibliographiques
395, rue Wellington
Ottawa ON K1A0N4
Canada

Your tut vom riU nnc*

Our lit N on ritirunc*

The author has granted a non
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

L’auteur a accorde une licence non
exclusive permettant a la
Bibliotheque nationale du Canada de
reproduire, preter, distribuer ou
vendre des copies de cette these sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
electronique.

L’auteur conserve la propriete du
droit d’auteur qui protege cette these.
Ni la these ni des extraits substantiels
de celle-ci ne doivent etre imprimes
ou autrement reproduits sans son
autorisation.

0-612-59941-8

Canada
R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

U niversity o f A lb erta

L ibrary R elease Form

N am e of A uthor: Xinguang Chen

T itle of Thesis: A theoretical comparison of selected CSP solving ancl modeling

techniques

Degree: Doctor of Philosophy

Y ear th is D egree G ran ted : 2000

Permission is hereby granted to the University of Alberta Library to reproduce single

copies of this thesis and to lend or sell such copies for private, scholarly or scientific

research purposes only.

The author reserves all other publication and other rights in association with the

copyright in the thesis, and except as hereinbefore provided, neither the thesis nor any

substantial portion thereof may be printed or otherwise reproduced in any material

form whatever without the author’s prior written permission.

Xinguang Chen

307-7180, Lindsay Road
Richmond, B.C.
Canada, V7C 3M6

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

U niversity of A lb e rta

Faculty of G rad u a te S tudies an d R esearch

The undersigned certify that they have read, and recommend to the Faculty of Gradu

ate Studies and Research for acceptance, a thesis entitled A th eo re tica l com parison

of selected C S P solving an d m odeling techniques submitted by Xinguang Chen

in partial fulfillment of the requirements for the degree of D o cto r of Philosophy.

% etL .

Dr. Peter van Be

Dr. Randy Goebel

r. Joe Culberson

Dr. Fraser Forbes

r. Toby Walsh

D ate: P '. ^ 4 /

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

Abstract

A constraint programming approach to problem solving usually goes through two

phases: modeling the problem as a CSP and then solving the CSP. It has been recently

recognized that both choosing the right solving algorithm and the right problem

model are crucial for efficient problem solving. In the past, much of the research

activities in the constraint community has been concentrated on developing various

improving techniques to the naive backtracking algorithm (BT). These techniques

can be classified as look-ahead schemes and look back schemes. Unfortunately, it has

been observed by different researchers that the enhancement of look-ahead techniques

is sometimes counterproductive to the effects of look-back techniques. In this thesis,

we show theoretically that the effect of the backjumping will be diminished as a

backtracking algorithm is equipped with an appropriate variable ordering heuristic or

a certain level of local consistency enforcement. We propose a new algorithm, named

GAC-CBJ. In contrast to Bessiere and Regin’s conclusion (1996) that CBJ is useless to

an algorithm maintaining arc consistency (MAC or GAC), our experiments in several

problem domains show that the use of CBJ can provide significant improvements on

the hard instances.

There also exists a variety of techniques to improve the quality of a CSP formu

lation. The dual graph transformation and hidden variable transformation are two

important modeling techniques that translate a general CSP to an equivalent binary

CSP. However, little has been known about how these transformations will influence

the effectiveness of the CSP solving techniques. Some preliminary results include:

Stergiou and Walsh (1999) study the the effectiveness of consistency techniques un

der the above transformations, and Bacchus and van Beek (1998) study how the two

transformations will affect the performance of the forward checking algorirhm (FC)

R e p ro d u c e d with p e rm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

In this thesis, we present a comprehensive theoretical comparison of these two trans

formations for BT, FC and MAC (GAC). Among other results, we show that FC

applied on the hidden problem is only bounded worse than FC applied on the dual

problem, and GAC applied on the original problem visits exactly the same nodes as

MAC applied on the hidden problem.

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

Acknowledgements

I would like to thank a great many people for making this dissertation possible. I owe

many thanks to my supervisor, Dr. Peter van Beek, who has been a great source of

advice and inspiration throughout the period of my study.

Thanks to my committee members, Dr. Randy Goebel, Dr. Joe Culberson, Dr. Toby

Walsh and Dr. Fraser Forbes for their careful reading my thesis and many valuable

comments and guidances.

Other members of the AI research group at the University of Alberta have also given

me support. Thanks to my friends, Huang Guohu, Zheng Tong, and Wang Jiankang

for the time we have been together.

Thanks to my parents, Chen Zhaohui and Liu Ming, for years of support and love.

Last and most, thanks to my beloved wife, Xu Ke, for all her love and support.

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

Contents

1 Introduction 1

1.1 Constraint Programming A pproach ... 1

1 .1 . 1 Solving Constraint Satisfaction Problem s................................... 3

1.1.2 Problem Modeling ... 5

1.2 Motivations and Contributions... 10

1.3 Overview of the D issertation.. 13

2 Background 15

2.1 D efin ition .. 15

2.2 Consistency Techniques.. IT

2.3 Search Tree and Backtracking Algorithms ... 22

2.4 Variable Ordering and Value O rd e r in g .. 25

2.5 Backtracking A lgorithm s... 26

2.5.1 Chronological Backtracking (B T) .. 27

2.5.2 Conflicts-directed Backjumping (CBJ) 27

2.5.3 Forward Checking (FC) ... 30

2.5.4 Generalized Maintaining Arc Consistency (GAC) 32

2.5.5 Forward Checking with Conflict-directed Backjumping (FC-CB.J) 35

3 Look-ahead and Backjumping 39

3.1 CBJ and Variable Ordering ... 40

3.2 Backjump Level and B J * ... 48

3.3 Maintaining Strong ^-Consistency (M C*)... 50

3.3.1 Achieving Strong fc-Consistency... 50

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

3.3.2 Induced CSP and Maintaining Strong ^-Consistency 52

3.4 Backjumping Interleaved with Consistency Enforcement..................... 59

3.5 Generalized Maintaining Arc Consistency with Conflict-directed Back-

jumping (G A C -C B J).. 63

3.5.1 Im plem entation.. 63

3.5.2 Empirical E v a lu a tio n s .. 6 6

3.6 S u m m a ry ... 81

4 Dual and Hidden Transformations with Consistencies 82

4.1 Definitions... 82

4.2 Related W o rk .. 87

4.3 Arc Consistency... 90

4.3.1 Arc Consistency C lo su re ... 91

4.3.2 Arc Consistency on the Hidden T ransfo rm ation 92

4.3.3 Arc Consistency on the Dual Transformation............................ 96

4.4 Consistencies Hierarchy.. 1 0 1

4.5 Summary ... 106

5 Dual and Hidden Transformations w ith Backtracking Algorithms 108

5.1 A Few Issues about the Com parisons.. 108

5.2 Chronological Backtracking Algorithm (B T) ... 112

5.2.1 BT-orig and B T -dual... 115

5.2.2 BT-hidden and B T -o r ig ... 118

5.2.3 BT-dual and B T -h id d en ... 121

5.3 Forward Checking Algorithm (FC) ... 129

5.3.1 FC-hidden.. 130

5.3.2 FC-orig, FC-dual and F C -h id d en ... 136

5.3.3 F C + .. 141

5.4 Maintaining Arc Consistency Algorithm (GAC or M A C) 147

5.4.1 MAC-hidden .. 148

5.4.2 GAC-orig and M A C -hidden... 152

5.4.3 GAC-orig and MAC-dual... 152

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

5.4.4 Combined Formulation.. 157

5.5 Discussion... 160

5.6 S u m m a ry ... 163

6 Future Work and Conclusion 165

6.1 Future W ork.. 165

6 . 2 Conclusion.. 168

Bibliography 169

A Glossary 180

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

List of Figures

1 . 1 The CSP representation of a graph coloring problem 2

2 . 1 AC-3.. 2 1

2.2 A fragment of the BT backtrack search tree for the CSP in Example 2.1 26

2.3 BT.. 2S

2.4 CBJ.. 29

2.5 FC.. 31

2.6 GAC... 33

2.7 FC-CBJ... 36

3.1 A CSP mixed with two pigeon-hole problems... 41

3.2 A backtrack tree generated by CBJ to solve an insoluble CSP............. 43

3.3 A backtrack tree generated by CBJ to find one solution....................... 44

3.4 An example of the variable ordering constructed for BT from the CBJ

backtrack tree.. 47

3.5 An illustration of backjump levels in a CBJ backtrack tree to solve the

CSP in Example 2.1.. 49

3.6 A three-proof-tree for {x! «— g} in the graphing coloring problem. All

leaf nodes are inconsistent in the CSP... 51

3.7 In the above graph coloring example, given a partial solution t = {xi «—

g}, there is a three-proof-tree for the empty inconsistency in the in

duced problem. Furthermore, this three-proof-tree can be converted

into a three-proof-tree for the empty inconsistency in the s-induced

problem.. 56

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

3.8 A scenario in the CBJ backtrack search tree used in the proof of Lemma

3.17..

3 . 9 A hierarchy for BJ*, MC*, and their hybrids in terms of the size of the

backtrack search tree..

3.10 GAC-CBJ...

3.11 Improved GAC-CBJ implementation...

4.1 The dual transformation of the CSP in Example 1 . 1

4.2 The hidden transformation of the CSP in Example 1.1

4.3 A crossword puzzle..

4.4 An example of translation between interval-based and point-based rep

resentation for temporal information...

4.5 An example to show the relations between an original CSP, its hidden

transformation, its arc consistency closure, the arc consistency closure

of its hidden transformation, and the hidden transformation of its arc

consistency closure..

4.6 A hierarchy about the relations between consistencies on the original

problem, its dual transformation and its hidden transformation. . . .

5.1 A two dimensional diagram showing the relations between the combi

nations of algorithms and formulations...

5.2 The correspondence between the ordering of the dual variables and the

ordering of the ordinary variables...

5.3 The correspondence between the nodes visited by BT-orig in the orig

inal search tree and the nodes visited by BT-dual in the dual search

tree..

5.4 The comparison of BT-dual and BT-orig in solving the CSP in Example

2.1 ...

5.5 The correspondence between the variables in the original problem and

the variables in the hidden problem...

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

5.6 The total number of the descendants at the levels of x t, c ,^ ,. . . , Cj,rj of

a consistent node at the level of in the hidden search tree is

bounded by 0 ((r; + 1)dM).. 121

5.7 The comparison of BT-orig and BT-hidden in solving the CSP in Ex

ample 2 . 1 ... 1 2 2

5.8 A node f* visited by BT-dual at the level of c, in the dual search tree

corresponds to a unique node visited by BT-hidden at the level of c*

in the hidden search tree.. 123

5.9 The comparison of BT-hidden and BT-dual in solving the CSP in Ex

ample 2.1... 125

5.10 The correspondence between the variables in the hidden problem and

the variables in the dual problem... 126

5.11 The comparison of BT-dual and BT-hidden in solving the CSP in Ex

ample 2.1 such that BT-hidden visits at most 0(rd) times as many

nodes as BT-dual v i s i t s . .. 128

5.12 The relations between BT-orig, BT-dual and BT-hidden....................... 129

5.13 The correspondence between the variables in the original ordering and

the variables in the new ordering for the hidden problem...........................131

5.14 A node visited by FC-hidden at the level of Xij in the new hidden

search tree corresponds to a unique node visited by FC-hidden at the

level of j/j in the original hidden search tree.. 133

5.15 The comparison of the search tree explored by FC-hidden under the

original variable ordering and new variable ordering to solve the CSP

in Example 2.1... 135

5.16 A node £tj visited by FC-hidden at the level of x tiJ in the hidden search

tree corresponds to a unique node visited by FC-dual at the level of Ci

in the dual search tree... 139

5.17 The comparison of FC-dual and FC-hidden to solve the CSP in Exam

ple 2.1.. 141

5.18 The relations between FC-orig, FC-dual, FC-hidden and FC+ 146

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

5.19 A node t,-j visited by MAC-hidden at the level of x itJ in the new hidden

search tree corresponds to a unique node visited by MAC-hidden at the

level of j/j in the original hidden search tree.. 150

5.20 A node tij visited by GAC-orig at the level of x hJ in the original search

tree corresponds to a unique node visited by MAC-dual at the level of

Ci in the dual search tree.. 156

5.21 The combined formulation of the CSP in Example 1.1........................... 15S

5.22 The relations between GAC-orig, MAC-dual, MAC-hidden and \IAC-

comb... 160

6 . 1 Use of meta values in the hidden variable representation........................ 167

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

List of Tables

3.1 Time(seconds) to solve 100 instances of (100,3,3.300,0.73) problems. 6 8

3.2 Time(seconds) to solve 100 instances of (300,5,3,300.0.25) problems. 69

3.3 Time(seconds) to solve 100 instances of (100,3.3,300,0.73) problems. 72

3.4 Time(seconds) to solve 100 instances of (300,5,3,300,0.25) problems. 72

3.5 Time (seconds) to solve logistics planning problems. The absence of

an entry indicates that the problem was not solved correctly within

the given resource limits... 74

3.6 Time (seconds) to solve blocks planning problems. The absence of an

entry indicates that the problem was not solved correctly within the

given resource limits.. 75

3.7 Time (seconds) to solve gripper planning problems. The absence of an

entry indicates that the problem was not solved correctly within the

given resource limits.................. 76

3.8 Time (seconds) to solve grid planning problems. The absence of an

entry indicates that the problem was not solved correctly within the

given resource limits.. 76

3.9 Time (seconds) to solve 5x5 crossword puzzle problems. The absence

of an entry indicates that the problem was not solved correctly within

the given resource limits... 77

3.10 Time (seconds) to solve 15x15 crossword puzzle problems. The absence

of an entry indicates that the problem was not solved correctly within

the given resource limits... 78

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

3.11 Time (seconds) to solve 19x19 crossword puzzle problems. The absence

of an entry indicates that the problem was not solved correctly within

the given resource limits... 78

3.12 Time (seconds) to solve 21x21 crossword puzzle problems. The absence

of an entry indicates that the problem was not solved correctly within

the given resource limits. .. 79

3.13 Time (seconds) to solve 23x23 crossword puzzle problems. The absence

of an entry indicates that the problem was not solved correctly within

the given resource limits... 79

4.1 Comparison of the worst case complexity of AC3 on the original prob

lem, the dual problem, and the hidden problem...................................... 98

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

Chapter 1

Introduction

Constraint programming (CP) is the study of computational systems based on con
straints. A constraint is simply a logical relation among several unknowns or variables,
each taking a value in a given domain. Constraint programming has recently emerged
as a research area that combines ideas from a number of fields, including artificial
intelligence, programming languages, symbolic computing, complexity theory, opera
tions research and computational logic [47]. The most appealing characteristic is that
constraint programming techniques can be more declarative and maintainable than
standard imperative languages, without sacrificing efficiency. It is remarkable that, in
the last ten years, constraint programming has moved from purely academic research
into commercial products, e.g., CHIP, ECLiPSe and Ilog Solver. Constraint pro
gramming has been successfully applied in numerous domains. Recent applications
include computer graphics [12], natural language processing [97], database systems
[20], scheduling and planning problems [73], and electrical circuit design [105].

In this introductory chapter, we will give a brief review of the basic elements of the
constraint programming approach in problem solving, and various ways to improve
problem solving efficiency with respect to the problem modeling and problem solving
techniques. Then, we will explain the motivations and contributions in this work,
and give an overview of the structure of the dissertation.

1.1 Constraint Programming Approach

The success of constraint programming is largely ascribed to its general applicability.
Under the same problem solving framework, problems from a wide range of domains
can be solved efficiently while the performance is competitive to those of specially
designed software packages[l, 122]. The basic theoretical foundation for constraint

1

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

r . g . b X.,

Figure 1 . 1 : The CSP representation of a graph coloring problem

programming is a generic problem solving framework called constraint satisfaction
problems, or CSPs. A constraint satisfaction problem consists of a set of variables,
each associated with a domain of values, and a set of constraints. Each of the con
straints is expressed as a relation, defined on some subset of the variables, denoting
the consistent value assignments that satisfy the constraint. A solution to a CSP is
an assignment of a value from its domain to every variable, in such a way that every
constraint is satisfied [34, 75, 77, 85].

E xam ple 1.1 3-SAT problems can be formulated as CSPs. Consider a 3-SAT prob
lem with 6 propositions, x i , . . . ,x $, and 4 clauses. x\ V x3 V x6. ->Xi V - -x3 V x t .

x.t V - 1X5 V Xfj and x3 V X4 V - 1X5 . In one CSP representation of the J-SAT problem,

there is a variable for each proposition, x i , . . . ,xs, each variable has the domain of val
ues {0 , 1 }, and there is a constraint for each clause specifying the value combinations
that will make the clause be true. For example, there is a constraint C (x[,x 3 .x6) for
the first clause. The constraint can be represented implicitly, saying “xi = 1 or x3 = 1

or x 6 = 1 , ” or it can be represented explicitly by listing all valid value combinations.
{ (0 , 0 , 1) , (0 , 1, 0), (0 , 1, 1), (1, 0 , 0), (1, 0 , 1), (1, 1, 0), (1, 1, 1)} .

E xam ple 1 . 2 Given a graph G = (K E) and k colors, the graph coloring problem
asks whether the vertices of the graph can be labelled by these colors in a way such that
each pair of adjacent vertices are labelled with different colors. The graph coloring
problem can be formulated as a CSP in which each vertex is given a variable, and each
variable has the same domain of k values, denoting the k colors. There is a constraint
for each pair of adjacent vertices such that two variables must have different values.

Figure 1.1 shows the CSP representation of a graph coloring problem on u graph with
4 vertices and 3 colors.

2

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

Since 3-SAT and graph coloring are well known NP-complete problems, in general,
to find a solution for a CSP instance is NP-complete [51, 75]. Fortunately, like most
combinatorial problems, some CSP instances are not so “hard” to solve in practice.
For large real world applications, a carefully built CSP formulation can speed up the
problem solving dramatically.

Constraint programming has become a vast field. Research interests in CSPs
include problem modeling techniques, consistency inference, systematic search algo
rithms, heuristics, stochastic search methods, structure-driven algorithms, tractable
problems, generating hard instances, over-constrained problems, and applications.

A constraint programming approach to problem solving generally goes through
two phases: modeling the problem as a CSP and then solving the CSP. The modeling
translates the problem description from a natural language to the language of CSPs.
i.e., defining variables, domains and constraints of the CSP. Having formulated the
problem as a CSP, there are plenty of constraint techniques to solve the CSP. In
the past, most of the research activities were concentrated on developing various
constraint solving algorithms or techniques and relatively less attention wits given
to modeling techniques. However, recently the importance of problem modeling has
been recognized and it is known that b o th choosing the right model and choosing
the right constraint satisfaction algorithm are crucial for efficient problem solving.

1.1.1 Solving Constraint Satisfaction Problems
Constraint satisfaction problems are usually solved by search methods, among which
the backtracking algorithm (BT) and its improvements are the most widely used. BT
incrementally attempts to extend a partial solution that instantiates consistent values
for some of the variables, towards a complete solution, by repeatedly assigning a value
for an uninstantiated variable from its domain. If that value is not consistent with
the values in the current partial solution, BT is able to identify that the subspace
given by the Cartesian product of the domains of the uninstantiated variables does
not contain a solution and thus can be pruned. The heart of the constraint satisfac
tion approach is to use constraints to prune the search space; a number of techniques
have been developed to improve the naive backtracking algorithm by more intelli
gently exploiting the constraint. Improvements to the backtracking algorithm have
focused on the two phases of the algorithm, looking backward [32, 48, 52, 57, 92] and
looking ahead [16, 60, 85, 87, 96]. An appropriate integration of these techniques can
dramatically improve the performance of the backtracking algorithm. Sometimes all

3

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

these algorithms are named as backtracking algorithms to emphasize their backtrack
ing nature, while the naive backtracking algorithm is then identified as chronological
backtracking algorithm.

The family of backtracking algorithms are capable of finding all solutions of a
CSP or reporting it is insoluble if no solutions exist, and they will halt in at most
exponential number of steps. In fact, they belong to an important class of approaches,
namely, systematic search methods. The other systematic methods include solut ion

synthesis algorithms, which aim to find all solutions of a CSP instance [42. 1 UU. ll)9j.
In contrast to the systematic methods, stochastic search methods do not always find a
solution if the solution exists and will not always terminate if there is no solution. In
the last few years, local search strategies have been reintroduced into the satisfiability
and constraint satisfaction literature [58, 89]. These algorithms incrementally alter
inconsistent value assignments to all the variables. They use a “repair” or “hill climb
ing” metaphor to move towards more and more complete solutions. To avoid getting
stuck at “local optima”, they are equipped with various heuristics for randomizing
the search. Their stochastic nature generally voids the guarantee of completeness
provided by the systematic search methods. In some problem domains, stochastic
methods are very successful in solving large and hard problems that are too hard for
backtracking algorithms [102]. However, throughout this dissertation, we will limit
our attention to the family of backtracking algorithms.

Consistency inferencing [42. 75. 78. 84. 119] is a well known operation on CSPs
which acts as a way of problem reduction that makes the constraints tighter. In
the last two decades, consistency techniques have been extensively studied in the
constraint programming community. Many consistencies have been proposed in
cluding node consistency, arc consistency, path consistency, and more generalized
k-consistency [42, 43, 75, 77]. Generally speaking, backtracking will benefit from
representations that are as explicit as possible; that is, from representations having a
high level of consistency. Some levels of consistency can be so powerful that no search
is required after a CSP is made consistent, such as strong n-consistency [42, 43] and
adaptive consistency [37].

In a backtracking algorithm, both the variable to be instantiated and the value
assigned to that variable can be determined on the fly. They are called dynamic vari
able ordering (DVO) and dynamic value ordering respectively. A “good” heuristic
can improve the search by several orders of magnitude. Examples of dynamic variable
ordering heuristics include the minimum width ordering [43] which exploits informa
tion of the graph of a CSP, and the fail first heuristic [60] which chooses the next

4

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

variable with the smallest remaining size, often used in a look-ahead backtracking
algorithm. An example of a dynamic value ordering heuristic is the minimal-conflicts
heuristic [81].

The identification of tractable classes of CSPs that can be solved in polynomial
time is important from both the theoretical and the practical point of view and has
been extensively studied over the last two decades. Such work involves identifying
either the topological properties of CSPs, or the properties of constraints in the CSPs.
or both. One of the basic topological properties that supports tractability is a tree
structure. This has been observed from different perspectives, in constraint theory,
complexity theory and database theory. The induced width [43, 44] of constraint
satisfaction problem is an important property and the complexity of solving a CSP
is known to be bounded by an exponential in its induced width. Thus a topological
structure that has a bounded induced width is tractable, e.g.. the k-tree structure
[45]. Tractable classes that are characterized by constraint properties are thoroughly
studied in [26, 62, 63, 64]. Generally speaking, a CSP is tractable if all the constraints
in the CSP are restricted to a family of constraints which are closed under some
algebraic operations.

Structure driven techniques emerged from an attempt to exploit the tractabil
ity properties. Various graph based techniques whose complexity are tied to graph
parameters were identified. These techniques include adaptive consistency [37], tree
clustering [38], and graph based learning [30], all of which are exponentially bounded
by the induced width of the constraint graph, and the cycle-cutset scheme [32], which
is exponentially bounded by the size of the constraint graph’s cycle-cutset [74]. Fur
thermore, a CSP with a tree structure can be solved in a backtrack free manner after
it is made arc consistent. A path consistent row convex CSP can also be solved in a
backtrack free manner [112, 113].

1.1.2 Problem Modeling
Problem statements are usually stated in natural languages. A very important part
of solving real-life problems using the constraint programming approach is modeling
the problem in terms of CSPs, i.e., variables, domains and constraints.

Generating a Formulation

Let us consider the well known “SEND + MORE = MONEY” puzzle used in [114],
The problem can be stated as “to give each letter (S, E, N, D, M, O . R . Y } a different

5

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

digit from { 0 ,...,9 } so that the equation SEND 4- MORE = MONEY is satisfied”.

Exam ple 1.3 The easiest way to model this problem is to give one variable for each
of the letters and set one constraint corresponding to the equation and an alldif-
ferent constraint specifying that each of the letters must take a different value from
{ 0, 9}. In such a CSP formulation, there are 8 variables, {s, e, n, d, m. o. r, y} and
each variable has the same domain of values { 0 ,.. .. 9}. Two non-binary constraints
are

103(s 4- m) 4 - 102(e 4- o) 4- 10(n + r) + d + e = 104m 4- 103o 4- 102n 4- lOe 4- y,
alldifferent(s, e, n, d, m, o, r, y) .

For BT, this model is not very efficient because with BT, all of the variables need to
be instantiated before the “large” equation constraint and the alldifferent constraint
can be tested. Thus little of the search space can be pruned to speed up the solving.
If an algorithm performing more consistency checks at each step of the backtrack
search is applied to solve the CSP, e.g., the maintaining arc consistency algorithm (see
Section 2.5.4), the search space can be more effectively pruned. However, generally it
is very expensive to enforce arc consistency on the two global constraints unless there
exists some specially designed methods to speed up the constraint propagation.

Exam ple 1.4 A more efficient model uses the carry bits to decompose the "large"
equation constraint into a collection of “small” constraints. With a little thought, we
can see that M must have the value 1 and S can only take values from { 1 9}.
Besides the variables in the first model, the new model includes three “carrier” vari
ables, Ci, C2 , C3 . The domains of variables e, n, d, 0 , r and y are { 0 9}, the domain
of s is { 1 ,...,9 } , the domain of m contains a single value {1}, and the domains of
all the carrier variables Ci,C2 ,C3 are {0,1}. With the help o f the carrier variables, the
equation constraint can be decomposed into several smaller constraints,

e + d = y4-10ci,

Ci4-n4-r = e410co,

C2 + e + o = n 4- 10c3,

C3 4- s 4- m = 10m 4- 0 .

The alldifferent constraint is unchanged, i.e., alldifferent (s, e. n, d, m, o, r. y).

6

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

The advantage of this model is that these smaller constraints can be tested earlier
in the backtrack search, and thus many inconsistent valuations can be pruned. Also,
when the maintaining arc consistency algorithm is used, it is relatively cheaper to
achieve arc consistency over these smaller constraints than over the original global
constraint.

In the above formulations, the alldifferent constraint can also be replaced by a set
of “small” constraints, e.g., s e, . . . , r ^ y, and we obtain a third and a fourth model
for the problem. However, if the maintaining arc consistency algorithm is used to solve
the CSP, we have to decide whether it is worth decomposing the alldifferent constraint
as enforcing arc consistency on alldifferent constraints can be processed very quickly
by using some specially designed methods, or propagators [94]. A propagator enables
the constraints to be checked earlier and more efficiently and sometimes it enforces
a stronger consistency than enforcing arc consistency on the decomposition of the
constraints [94]. However, it is usually more difficult and time-consuming to design a
propagator for a class of constraints than to find a decomposition scheme for them,
and the use of propagators may hardly be combined with other CSPs techniques, e.g..
the backjumping method. In contrast, a decomposition solution does not demand such
special treatment and thus it can be used with all possible CSP solving methods.

As we can see, there are often many different approaches to formulating a given
problem and these formulations result in very different problem solving performances.
For another example, Nadel [8 6] presents 9 essentially different formulations for the n-
Queens problem, which asks “to place n queens on an n x n chess board such that none
of the queens attacks the other”. In order to facilitate the expression of constraint
satisfaction problems, several languages or tools have been developed. Examples of
these range from the earliest Alice [72], to modern languages like ILOG Solver [61].
CHIP [2, 40], ECLiPSe [41], Oz [107], and Prolog III [24].

However, it is one thing to say “all one has to do is to express the problem with
constraints” . It is another to express the constraints in a manner which permits effi
cient solution. In the past, the quality of a problem formulation has largely depended
on a problem solver’s experience or on trial and error. Alternatively, some very gen
eral guidelines have been suggested to aid the problem solver to find a high quality
formulation. Examples of such guidelines, or rules of thumb, include the use of redun
dant constraints, making the constraints as tight as possible and keeping the arity of
of the constraints as low as possible. More practically, there are some methodologies
to improve a given CSP formulation with respect to a certain class of problem solving
techniques. These methodologies include adding or removing redundant constraints,

7

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

adding or removing redundant variables, exploiting symmetries, and transforming a
CSP formulation into a different but equivalent representation.

Improving the Formulations

There can be many ways of representing a problem with constraints. A constraint in
a CSP is called redundant if its removal does not change the solutions of the CSP.
Adding redundant constraints in a CSP formulation makes the implicit knowledge
of the problem explicit and by using such knowledge, or in constraint programming
words, by using these constraints, during the backtrack search, a large portion of the
search space that does not contain a solution can be pruned at an early stage of the
search. In particular, adding redundant constraints is crucial to solving real world
problems [56, 90, 111, 114]. In the second formulation of the puzzle problem (see
Example 1.4), we make use of the fact that variable m must have the value 1 explicit
which immediately prunes the search space that assigns the other values to m. Adding
redundant constraints is somehow similar to achieving a certain level of consistency in
the CSP formulation, but in a less systematic manner. Should redundant constraints
always be added into the formulation? Sometimes removing redundant constraints
can also improve the problem solving. Dechter and Dechter [29] argue that there are
cases for removing redundant constraints such that the CSP instance becomes acyclic
and thus can be solved in polynomial time.

A redundant variable or hidden variable does not participate in the solution of
a problem. Adding redundant variables may help to represent a constraint which
otherwise must be expressed as a global constraint. For example, the carrier vari
ables in Example 1.4 are redundant variables used to decompose the global equation
constraint. Removing redundant variables is also meaningful because the size of the
search space is decreased as the CSP has fewer variables. The variables in a CSP for
mulation can also be manipulated in the form of variable joining or variable grouping
[32]. That is, several variables can be condensed to one variable and thus the aritv of
constraints over those variables may be decreased.

Symmetries widely exist in non-random problems. For example, a flip of a solution
of the n-Queens problem is also a valid solution. In a graph coloring problem, a
permutation of colors in one labelling scheme will also fulfill the problem requirements.
Exploiting such symmetries by adding constraints to exclude the symmetries can
greatly reduce the search space [111]. Symmetries can also be used in the form of meta
values in variable domains. A meta value of a variable is an abstraction of a subset
of domain values which behave similarly in the constraints involving the variable.

8

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

The use of meta values can reduce the search space by several orders of magnitude.
Current methods include identifying meta values by interchange-ability properties of
the domain values [13, 46]. For example, Weigel and Faltings [121] present a method
to take advantage of interchange-abilities to represent sets of equivalent values by
meta values and thus obtain more compact representations.

A CSP formulation can be transformed into an equivalent representation in which
a different set of variables and constraints are defined. The original formulation is
equivalent to its transformation under a proper definition of equivalence [9-V. <\</..
a solution of the original formulation can be extracted from a solution of its trans
formation in a polynomial number of steps. Sometimes, it is useful to completely
change the denotation of the variables in the original formulation and thus redefine
the constraints. For example, two general transformation techniques exist to trans
late a general CSP into an equivalent binary CSP, namely the dual graph, method
[38, 95] and hidden variable method [95]. The other transformation approaches in
clude: Jegou [65] considers transforming CSP formulations based on an analysis of
what he describes as the “micro-structure” of the CSP. Weigel et al [120] describe a
method to convert a general CSP into a binary boolean form which can be used to
find different formulations of the original CSP.

The ability to generate a range of different CSP formulations can result in very
different solving performance. One significant and open question, “which is the best
formulation?” needs to be addressed. A precise answer to the above question seems
unlikely. First, it cannot be answered without tying the formulation with a spe
cific problem solving technique. For example, a backtracking algorithm will generally
benefit from adding more redundant constraints. However, the redundant constraints
should be carefully selected as they may not always contribute to the pruning of the*
search space but just result in the backtracking algorithm performing more constraint
checks at each step of the search. Second, modeling still remains an “art” in most
problem domains. The quality of the formulations has largely depended on the prob
lem solver’s experience and knowledge in the problem domain. Selman et al [101] list
10 challenges in Al research, in which the challenge for problem modeling is stated
as, “characterize the computational properties of different encodings of a real-world
problem domain, and/or give general principles that hold over a range of domains.”

9

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

1.2 Motivations and Contributions

Since constraint satisfaction problems are intractable in the general case, it is natural
to use all possible techniques to improve the efficiency. Given a problem statement,
we may ask what is the best CSP formulation for the problem, and given a CSP
formulation, we may want the best solving algorithm. Perhaps, we are more interested
in the best combination of algorithm and formulation. Nevertheless, these demand
a better understanding of the modeling techniques, the solving techniques, and the
interactions between them.

In the past, most of the research activities in the constraint programming com
munity have concentrated on the development of efficient problem solving techniques.
Among these solving techniques, the backtracking algorithm is a very important CSP
solving method. So far, a number of improvements to the naive backtracking algo
rithm have been proposed. These techniques can be conveniently classified as look
ahead schemes and look-back schemes [34]. In general look-ahead schemes involve
enforcing a certain level of consistency, using a dynamic variable ordering heuristic
and using a dynamic value ordering heuristic. The backtracking algorithms using
look-ahead schemes include the well known forward checking algorithm (FC) and the
maintaining arc consistency algorithm (MAC). Whenever the algorithm encounters
a dead-end and prepares for the backtracking step, look-back schemes are invoked
to perform the functions that decide how far to backtrack by analyzing the reasons
for the dead-end (backjumping), and record the reasons for the dead-end in the form
of new constraints so that the same conflicts will not arise again later in the search
(learning). The hybrids of the above two schemes, including the forward checking
with conflicts-directed backjumping algorithm (FC-CBJ) and maintaining arc consis
tency algorithm with conflicts-directed backjumping algorithm (MAC-CBJ). have also
been developed in the literature. Unfortunately, sometimes the look-ahead schemes
are counterproductive to the look-back schemes. For example, Prosser [91] observes
the fact that, in some cases, backjumping may become less efficient after enforcing
consistency. Bacchus and van Run [8] observe that adding CBJ to an algorithm that
already uses a dynamic variable ordering based on the minimal domain heuristic is
unlikely to yield much improvement. Previous experiments on random harder prob

lems and benchmark problems show that FC-CBJ significantly improves FC in most
cases, but MAC-CBJ hardly improves MAC in these experiments and may actually
show a degradation in performance [16]. As a result. MAC is evaluated to be the best
algorithm that is capable of solving large and hard CSP instances, and CBJ seems to

10

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

be a “costly gadget” for MAC as it rarely provides enough benefits compared to its
overhead in the backtrack search.

In this dissertation, we argue that the above observations have serious limita
tions. First, they are established purely on experiments on random binary problems
and some toy problems, and those problems are not hard to solve using today’s com
putational power. Second, there exists little theoretical justification for the above
conclusions about CBJ. We theoretically investigate the relation between some look
ahead techniques, including dynamic variable ordering and consistency enforcement,
and the backjumping technique. Our theoretical results partially explain why a back
tracking algorithm doing more in the look-ahead phase cannot benefit more from the
backjumping schemes. We propose a new algorithm, called GAC-CBJ, a hybrid of
generalized maintaining arc consistency algorithm (GAC) and conflict directed back-
jumping (CBJ) that can be applied to general CSPs. Although Bessiere and Regin
[16] conclude from their experiments on random binary CSPs that the enhancement
of CBJ to MAC (the binary version of GAC) will not pay off in the general cases,
our experiments in some real world domains show that GAC-CBJ improves GAC
by several orders of magnitude on hard and large instances and does not degrade
performance too much on relatively easier instances.

Different formulations for a given problem can be roughly evaluated by identifying
one or more characteristics or parameters of the formulations. These parameters
include the size of the search space, the density of solutions, and the “constrainedness"
of search used in “phase transition” analysis [55]. Sometimes these parameters can
provide a good “predictor” of how difficult it would be to solve the formulation. For
example, random instances are usually hard to solve when the “constrainedness” is
close to 1 . Nadel [8 6] presents an evaluation of different formulations of the n-Queens
problem by a theoretical estimate of the expected cost of search for a particular
algorithm and search ordering. Borrett extends Nadel’s work to more general cases
in [19]. However, their approach depends on a statistical model to compute the
expected cost of a given backtracking algorithm, and the assumptions made in the
analysis do not hold for real world problems. Also, their evaluations cannot be used
to provide a general principle saying under which circumstances one formulation is
better than the other.

We are more interested in a purely theoretical evaluation of modeling techniques
depending only on the basic elements of a CSP formulation, i.e., variables, domains
and constraints. To evaluate a modeling technique, we mean to fix the solving method
and apply the modeling technique to the original CSP formulation to see how such a

11

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

reformulation affects the performance of the solving method or whether the reformu
lated model can be improved with respect to the solving method. Such an evaluation
can provide a general guideline for problem modeling as to whether or not a model
ing technique should be applied. Also, it may help us to understand the interaction
between a modeling technique and a solving method and thus to design a new algo
rithm or improve an existing algorithm that may work better in a specific problem
formulation. Furthermore, such a comparison is useful to the problem solving ap
proaches based on commercial constraint programming packages, e.g., ILog Solver,
in which the solving methods are fixed to several well-known fast algorithms, such as
the forward checking algorithm and the maintaining arc consistency algorithm.

In this dissertation, we theoretically study two modeling techniques, the dual and
hidden transformations, which translate a general CSP into an equivalent binary rep
resentation. We choose the above two modeling techniques for the following reasons.
First, in the past, much research has concentrated in binary CSPs because such trans
formations exist. However, to date, few results have been given which evaluate the
performance of backtracking algorithms on the original formulation and its trans
lated representations. Our results can be used to justify whether we should apply the
transformation and solve the binary CSP or whether we should just select a back
tracking algorithm to solve the original non-binary problem directly. Second, there
exists strict definitions of the above two transformations, which enable a theoretical
analysis on the efficiency of the solving techniques. Third, although a "pure” form of
the dual or hidden transformation is rarely used in modeling a problem, the dual and
hidden transformations contribute to a wide range of modeling techniques, often in
the form of partial conversions. Thus, the results are meaningful to guide modeling
in practice.

We compare an original problem formulation, its dual transformation, and its hid
den transformation to see whether one formulation is “stronger” than or “equivalent”
to another with respect to the effectiveness of achieving arc consistency. We find that
arc consistency on the original formulation and the hidden translation are "equiva
lent” under the above meaning, but arc consistency on the dual translation is stronger
than the arc consistency on the original formulation. Moreover, if the original problem
has a special structure, arc consistency on the dual is “equivalent” to arc consistency
on the original and the hidden representations. Then we compare more extensive
consistency properties that can be applied to the dual and hidden formulations, and
establish a hierarchy of the above “strongness” relation with respect to the combi
nations of consistency and formulation. Some of these relations have been identified

12

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

by Stergiou and Walsh in [106]. For example, they compare arc consistency on the
original problem and the one on its dual and hidden transformations. However, they
only give some illustrative proofs for their results. We present here stricter proofs for
the above relations based on the formal definitions of the dual and hidden transfor
mations. Bacchus and van Beek [7] compare the performance of the forward checking
algorithm under the above three formulations. For example, they give examples to
show that FC on the original may be exponentially better or worse than FC on the
dual problem or hidden problem. In this dissertation, we extend their comparison to
include two more backtracking algorithms, the chronological backtracking algorithm
and the maintaining arc consistency algorithm, and we also present some new results
about the forward checking algorithm, e.g., the relation between its performance on
the dual transformation and the hidden transformation. As a result, we either give a
theoretical bound saying how much one formulation is better than the other under a
given algorithm, or give examples to show that such a bound does not exist. These
comparisons contribute exactly to the question which Selman et al [1 0 1] regard as a
challenge in future Al research.

1.3 Overview of the Dissertation

The rest of the dissertation is organized as follows. Chapter 2 gives the definition of
constraint satisfaction problems and a review of local consistency and backtracking
algorithms. Then we define the search tree explored by backtracking algorithms.
Also in Chapter 2, we present our specification of the arc consistency achievement
algorithm and several backtracking algorithms, which will be used in later chapters.
It is worth noting that all these algorithms can be applied to non-binary CSPs.

Chapter 3 studies the relationship between look-back and look-ahead techniques
for backtracking algorithms. First, we show by example that CBJ may be exponen
tially better than an algorithm that maintains strong ^-consistency in the backtrack
search and we show that backjumping becomes useless if an appropriate variable
ordering strategy is used in the chronological backtracking. Second, we use the con
cept of backjump level in the execution of a backjumping algorithm and show that
an algorithm maintaining strong ^-consistency always visits no more nodes than a
backjumping algorithm that is allowed to backjump no more than k levels. Third,
we present a new algorithm, GAC-CBJ, which is an extension of Prosser's MAC-CBJ
[93] to general CSPs. In our experiments, GAC-CBJ shows significant improvements
over GAC on some real world problems.

13

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

The formal definitions of the dual and hidden transformations are given in Chapter
4. We compare the “strongness” of arc consistency on three formulations of any prob
lem, an original formulation, and its dual and hidden transformations. We show that
arc consistency on the original formulation and its hidden transformation are “equiv
alent” , but arc consistency on the dual transformation is “stronger" than the one on
the original formulation. Then we compare several local consistency properties that
can be applied to the dual and hidden formulations, and establish a hierarchy for the
various combinations of consistency and formulation with respect to the “strongness”
relation.

In Chapter 5, we compare the performance of selected backtracking algorithms
on the above three formulations. Given a backtracking algorithm, we identify one
of two mutually exclusive relations between two formulations, either “one may be
exponentially worse than another” or “it is at most (polynomiallv) bounded worse
than another.” Three algorithms are used in the comparisons, including the chrono
logical backtracking algorithm, the forward checking algorithm, and the maintaining
arc consistency algorithm. In this chapter, we present a hierarchy for the various
combinations of algorithm and formulation with respect to the above relations.

Chapter 6 concludes the dissertation and discusses about possible future work.

14

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

Chapter 2

Background

In this chapter, we introduce much of the background necessary to understand the
rest of the dissertation. We give formal definitions of constraint satisfaction problems
and solutions of a CSP. Then we briefly review various local consistency techniques
and backtracking algorithms and define the search tree explored by backtracking
algorithms. At last, we present our specification of the arc consistency achievement
algorithm and several backtracking algorithms that will be used in later chapters.

2.1 Definition

D efinition 2 . 1 (C SP) An instance of a constraint satisfaction problem. P. is a
tuple {V,V,C), where 1

• V = {xi, ... ,£ „ } is a finite set o fn variables,

• V = {dom(xi) , . . . , dom{xn)} is a set of domains. Each variable x 6 V is asso
ciated with a finite domain of possible values, dom(x). The maximum domain
size maxl 6 v|dom(x)| is denoted by d,

• C = { C i , . . . ,C m} is a finite set of m constraints or relations. Each constraint
C € C is a pair (vars(C), rel(C)), where

— vars(C) = {xil?.. . ,x tr.} is an ordered subset of the variables, called the
constraint scope or scheme, the size of vars(C) is known as the arity of
the constraint. I f the arity of the constraint is equal to 2, it is called a bi
nary constraint. A non-binary constraint is a constraint with arity greater

th ro u g h o u t the dissertation, we use n, d, m , and r to denote the number of variables, the
maximum domain size, the number of constraints, and the maximum arity of the constraints in the
CSP, respectively.

15

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

than 2. The maximum arity of the constraints in C, maxcec\vars{C)\, is
denoted by r,

- rel(C) is a subset of the Cartesian product dom(xil) x • • • x dom(xlr>) that
specifies allowed combinations of values for the variables in vars(C). An
element of the Cartesian product dom (iil) x ••• x dom(xlr) is called a
tuple on vars[C). Thus, rel(C) is often regarded as a set of tuples over
vars(C).

Generally, we do not consider a variable that is not involved in any constraint. In
the following, we assume that for any variable x € V, there is at least one constraint
C 6 C such that x 6 vars(C). By definition, a tuple over a set of variables X =
{xL,...,Xfc} is an ordered list of values (ai,...,Ofc} such that a, € dom(xi), i =
1.. . . , k. A tuple over X can also be regarded as a set of variable-value pairs {xi <—
01.. . . , xjt at}. Furthermore, a tuple over X can be viewed as a function t : X —>
Ul 6 ,\:dom(x) such that for each variable x 6 X , f[x] 6 dom(x). For a subset of
variables X ' C X , we use i[AT'] to denote a tuple over X ' by restricting t over X'. We
also use vars{t) to denote the set of variables for tuple t.

An assignment to a set of variables A' is a tuple over X . We say an assignment t
to X is consistent with a constraint C if either vars(C) 2 -V or t[',nrs(C); € rtl(C).
A partial solution to a CSP is an assignment to a subset of variables. We say a partial
solution is consistent if it is consistent with each of the constraints. A solution to a
CSP is a consistent partial solution over all the variables. If no solution exists, the
CSP is said to be insoluble. The set of solutions to a CSP P is denoted by sols(P).
Given two CSP instances Pi and P2, we say Pi = P2 if they have exactly the same
set of variables, the same set of domains and the same set of constraints between the
variables; i.e., they are syntactically the same. We say PL is equivalent to P> iff they
have exactly the same set of solutions, i.e., sols(Pi) = sois(P2) 2. It is easy to verify
that, if Pi = P2, then Pi is equivalent to P2. A CSP is empty if either one of its
variables has an empty domain or one of its constraints has an empty set of tuples.
Obviously, an empty CSP is insoluble, i.e., it has an empty set of solutions.

D efinition 2.2 (p ro jection) Given a constraint C and a subset of variables S C

2Two equivalent CSPs do not always have the same domains and the same constraints, but
they do have the same variables. Equivalence is usually used in consistency techniques, as will be
discussed in the next section. However, there exists other types of equivalence between two CSPs
which do not have the same variables. For example, the dual transformation and hidden-variable
transformation of a CSP are equivalent to the original representation. In that case, a more flexible
definition should be used, as in [95].

16

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

vars(C), the projection %sC is a constraint, where vars(irsC) = S and rel(irsC) =
{t[S\ 11 e reZ(C)}.

D efin ition 2.3 (selection) Given a constraint C and an assignment t to a subset of
variables X C vars(C), the selection atC is a constraint, where vars(atC) = vars(C)
and rel(atC) = (s | s[.Y] = t and s € reZ(C)}.

2.2 Consistency Techniques

Consistency achievement is a process of removing values from domains, removing
tuples from constraints, and adding new constraints into the set of constraints, with
out removing any solutions from a CSP. A local inconsistency or inconsistency in a
CSP formulation is a partial solution over k — 1 variables that cannot be consistently
extended to a kth variable and so cannot be part of any solution of the CSP. Some
times, an inconsistency is also called a no-good [32, 48]. The basic idea of consistency
techniques is that if we can deduce an inconsistency in the CSP formulation, then it
can be removed by means of removing a value from the domain of a variable if the
inconsistency involves only one variable, removing a tuple from a constraint if the
variables in the inconsistency are already constrained by a constraint, or adding a
new constraint if there is no such a constraint that constrains those variables in the
inconsistency. By removing inconsistencies, we reduce a CSP to an equivalent but
tighter problem.

The objective of consistency achievement is not to solve the problem, but to get
a formulation having as few inconsistencies as possible. A minimal network 3 is a
formulation that does not have any inconsistency; i.e., for each value in the domain
of a variable, there is a solution having that value assigned to the variable, and for
each tuple in a constraint, there is a solution in which the tuple appears. To compute
the minimal network of a CSP formulation is an NP-complete task [75. 84].

Although consistency achievement alone rarely generates solutions, it can help to
solve CSPs in various ways. It can be used in preprocessing, which means reducing
the problem before any other techniques are applied to find solutions. It can also be
used during a backtrack search, by pruning off search space after each step to extend
the partial solution.

Consistency techniques were first introduced for binary CSPs. Mackworth [75. 77]

3It is called a network because in early research, binary CSPs are usually identified with a
constraint graph, or constraint network.

17

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

defines three properties of binary CSPs that characterize local consistencies: node.
arc, and path consistency. A binary CSP is node consistent if for each unary constraint
C constraining a single variable x, and for each value a G dom(x), {x a} satisfies
C. The CSP is arc consistent if for each constraint C constraining a pair of variables
x and y, and for each value a G dom(x), there is a value b G dom{y) such that
{x <— a, y <— 6 } satisfies C. The CSP is path consistent if for any triple of variables
x, y and z , and any value a G dom(x) and 6 G dom(y) such that {x <— a, y <- 6}
is consistent, there is a value c G dom(z) such that { x (- a , i / f - L ? f - c} is also
consistent.

The concept of Mackworth’s arc consistency has been generalized to non-binarv
CSPs [76].

D efinition 2.4 (arc consistency) Let P = (V./D.C) be a CSP. Given a constraint
C and a variable x G vars(C), a value a G dom(x) is supported in C if there is a
tuple t G rel(C), such that t[x] = a. t is then called a support for {x <— a} in C .
C is arc consistent iff for each of the variables x G vars(C), and each of the values
a G dom(x), (x <— a} is supported in C. P is arc consistent iff each of its constraints
is arc consistent.

Freuder [42,43] generalizes Mackworth’s consistencies to a family of ̂ -consistencies.

D efin ition 2.5 (^-consistency) A CSP is k-consistent if and only if given any con
sistent partial solution over k — 1 distinct variables, there exists an instantiation of
any kth variable such that the partial solution plus that instantiation is consistent. .4
CSP is strongly k-consistent iff it is j-consistent for all 1 < j < k.

For binary CSPs, node, arc and path consistency correspond to one-, two- and
three-consistency, respectively. Moreover, the definition of ^-consistency does not
require the CSP to be binary. Note that arc consistency is not the same as two-
consistency for general CSPs. A strongly n-consistent CSP is called globally consis
tent. Globally consistent CSPs have the property that any consistent partial solution
can be successively extended to a full solution of the CSP without backtracking [35].
A globally consistent CSP formulation is always a minimal network, but in general
the converse is not true.

Mackworth [75] presents several algorithms to achieve node, arc, or path consis
tency on a binary CSP. Arc consistency is widely used in solving CSPs because it

18

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

only changes the domains of variables 4. It can be easily implemented and cheaply
achieved but has more pruning power than node consistency. The algorithms to
achieve arc consistency on binary CSPs have been extensively studied. Mackworth
presents three successively improved arc consistency achievement algorithms, named
AC-1, AC-2 and AC-3. The worst case complexity of the best among them, AC-3,
is 0 (m d 3). Mohr and Henderson propose AC-4 [82] which has an optimal worst case
complexity of 0{mcP). However, AC-4 lags behind AC-3 on average time complexity,
while AC-4 is too near to the worst case time complexity, and AC-3 runs faster than
AC-4 in practice despite its non-optimal worst case complexity [78, 118]. AC-5 [115]
is a generic framework which summarizes all previous algorithms and with which
special routines can be designed for particular constraint classes. AC-6 and AC-7
[14, 15] keep the optimal worst case complexity 0{m d2) and improve the average
time complexity significantly. Furthermore, Schiex et al proposes a “lazy" version of
AC-7, called lazy arc consistency [98]. Lazy arc consistency does not enforce full arc
consistency on a CSP instance but guarantees if a CSP passes a lazy arc consistency
test, it will also be able to pass an arc consistency test. Thus it is cheaper than
AC-7 when used in a backtrack search but has the ability to prune branches. AC-3
can be easily extended to non-binary CSPs. Mackworth proposes the algorithm CX
[76], which is a kind of generalization of AC-3 and has the worst case complexity
of 0 (m r2dr+l). Mohr and Massini propose GAC4 [83], based on AC-4 for binary
CSPs, which has the worst case complexity of O(mcT). An AC-7 version of an arc
consistency achievement algorithm for non-binary CSPs is given in [17].

Cooper [25, 108] proposes an algorithm optimal in the worst case for achieving
strong ^-consistency. The principle is that if a partial solution is found to be incon
sistent and therefore rejected, all tuples in which the partial solution is a projection
will be rejected. Enforcing arc consistency on a CSP will only remove the inconsistent
values from their domains and will not change the constraints. However, enforcing
strong A:—consistency for k > 3 will remove inconsistent tuples from the constraints
and possibly add more constraints to the CSP. Thus achieving strong ^-consistency
may dramatically change the formulation of a CSP, as the number of new constraints
could be exponential in k. Consequently, it is more expensive to maintain strong
A:—consistency for A: > 3 in a backtrack search. In fact, it is not evident yet that it is
worthwhile to maintain a stronger consistency than arc consistency. Thus maintaining
strong A;-consistency in a backtrack search is currently only of theoretical interest.

4Sometimes, a constraint may be represented implicitly by a predicate or function call, thus it is
very difficult to update the constraint.

19

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

One issue for algorithms to achieve the same consistency on a CSP instance is,
whether they all compute the same results, i.e., whether the CSP instance after ap
plying the consistency achievement algorithms has the same domain for each of the
variables, and the same set of constraints. For arc consistency, as we will show in
a later chapter, there is a unique arc consistent subdomain, called arc consistency
closure and each arc consistency achievement algorithm should compute the arc con
sistency closure. For ^-consistency achievement algorithms, in general, the results
are not unique. One reason is that new constraints can be added into the CSP so
that universal constraints, i.e., those that permit any tuples, can be arbitrarily added
or removed from the CSP formulation, and sometimes different non-universal con
straints can also be added. However, it is reasonable to assume that after achieving
strong fc-consistency, the domains of the variables are the same for different strong
^-consistency achievement algorithms.

Also, the concepts a CSP is X-consistent and a CSP can be made X-consistent
should be distinguished. We say a CSP is X-consistent if it conforms to the conditions
defined in X-consistency. Otherwise, there are some domain values and tuples in the
formulation that violate the consistency, and by removing them using a consistency
achievement algorithm we can establish X-consistency in the new CSP formulation.
We say a CSP can be made X-consistent if the resulting CSP is not empty.

A rc C onsistency A chievem ent A lgorithm (AC-3)

We achieve arc consistency by removing from the domains those values that are not
supported in some constraint. When a value is removed from its domain, some tuples
using the value in a constraint restricting that variable become invalid. The invalid
tuples are removed from the constraints implicitly. The changes in one domain are
propagated to other variables for which a new support needs to be sought in the
tightened constraints.

We present a variant of AC-3 for general CSPs in Figure 2.1. The original ver
sion of AC3 propagates the deletions of domain values via constraints, while we use
a variable propagation strategy. In experiments, the above two strategies are com
petitive to each other. S in AC-3 is a queue or stack to keep those deletions which
have not yet been propagated. Function exists in AC3 tries to find a valid support
for (t> <— solution[v]} in constraint C. A generic implementation of exists is to enu
merate and verify every possible tuple in which v receives value solution[vJ according
to the current domains of the variables. Certainly, this brute-force approach may be
very expensive if the arity of the constraint is large. It is possible to use specially

20

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

function exists(in C : constra in t; in v : variable) : boolean;
%% return true if solution[v] has a valid support in constraint C.

function revise(in C : constra in t; in v : variable) : boolean:
1 changed <— false;
2 for each a 6 dam(v) do
3 soiution[x] <— a;
4 if no t exists(C, v) th en
5 changed«— true;
6 dom(v) <— dom(v) — {a};
7 if changed th en push(v, S);
8 if \dom(v)\ = 0 th en re tu rn false else re tu rn true;

function AC3() : boolean;
1 S < -V ;
2 w hile S / 0 do
3 y <r- top(S); pop(5);
4 for each C € C and y 6 vars(C) do
5 for each v 6 vars(C) and v ^ y do
6 if no t revise(C, v) th e n re tu rn false;
7 r e tu rn true;

Figure 2.1: AC-3.

21

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

designed routines for some classes of constraints to speed up the above process as
long as completeness is guaranteed.

2.3 Search Tree and Backtracking Algorithms

The simplest algorithm to solve a CSP is the generate and test (GT) algorithm. The
GT algorithm starts from a null assignment or an empty partial solution, and recur
sively extends the partial solution to a full solution by first choosing an uninstantiated
variable and then assigning it a value from the domain. When a full assignment is
obtained, the full assignment is checked whether it is a solution of the CSP that satis
fies all the constraints. The GT algorithm terminates when each possible assignment
over all the variables has been examined or a certain number of solutions have been
found.

A generate and test search tree or search tree for short can be constructed from the
execution of the GT algorithm. Each partial solution generated in the execution of
the GT algorithm is identified by a node. There is an edge from node u to node u if u is
an immediate extension of u. The empty solution at the start is the root of the search
tree. At each node in the search tree, each variable occurring in the current partial
solution is said to be instantiated to some value from its domain. The variable being
chosen to be instantiated is called the current variable. Accordingly, the variables
having been instantiated are called past variables and the variables having not been
instantiated yet are called future variables.

In the search tree, if there is an edge from node u to node r. u is called the parent
of v and v is a child of u. If there is a path from u to tv. u is called an ancestor of
w and w is a descendant of u. A node with no children is called a leaf node. The
leaf nodes in the search tree are the full assignments which can not be extended. The
total number of leaf nodes in the search tree is fliev \dom(x)\ if all solutions are to
be found. A node u and all its descendants form a subtree of the search tree, u is
called the root of the subtree. The level of node u in a search tree is the length of
the path from the root to u. Hence, the nodes in the search tree can be classified as
first level nodes, second level nodes, and so on. The levels closer to the root are called
lower levels and the levels farther from the root are called higher levels.

The construction of a search tree is determined by several factors, including the
variable ordering and value ordering used to generate a full assignment, and the
solutions requirements. The influence of variable ordering strategy and value ordering
strategy will be discussed in the next section. The solutions requirements means

22

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

whether a single solution, a certain number of solutions, or all solutions are to be
found.

The execution of a backtracking algorithm or a backtrack search can be seen as a
search tree5 traversal to extend a current partial solution to a full solution of the CSP.
At each node in the search tree explored by a backtracking algorithm, an uninstanti
ated variable is selected and assigned a value from its domain to extend the current
partial solution. Constraints are used to check whether such an extension may lead to
a possible solution of the CSP and to prune subtrees containing no solutions based on
the current partial solution. For example, the chronological backtracking algorithm
checks whether the current partial solution is consistent with all the constraints and
rejects those inconsistent ones. A dead-end is the situation where all values of the
current variables are rejected by a backtracking algorithm when it tries to extend
a partial solution. In such a case, some instantiated variables become uninstanti
ated, i.e., they are removed from the current partial solution. This process is called
backtracking. If only the most recently instantiated variable becomes uninstantiated
then it is called chronological backtracking: otherwise, it is called backjumping. A
backtracking algorithm terminates when all possible assignments have been tested or
a certain number of solutions have been found. We say that a backtracking algo
rithm visits a node in the search tree if at some stage of the algorithm's execution
the current partial solution identifies the node. The nodes visited by a backtracking
algorithm form a subset of all the nodes belonging to the search tree. We call this
subset, together with the connecting edges, the backtrack search tree generated by a
backtracking algorithm.

Much of the work in constraint satisfaction during the last several decades has
been devoted to improving the performance of the naive backtracking algorithm.
Because the problem is known to be NP-complete [51], polynomial variants of back
tracking algorithms are unlikely. Nevertheless, the average performance of the naive
backtracking algorithm can be improved tremendously by equipping it with various
enhancements.

The techniques to improve the naive backtracking algorithm can be convenienrlv
classified as look-ahead schemes and look-back schemes, in accordance with back

5The search tree discussed here is the search tree generated by the GT algorithm. If a static
variable instantiation order and a static value instantiation order are used, we know such a search
tree exists because the entire execution of the GT algorithm is known according to the orderings.
However, if a dynamic variable ordering or a dynamic value ordering strategy is used in the backtrack
search, we may not be able to declaratively describe the execution of the GT algorithm under the
dynamic ordering. We will address this issue later in the next section.

23

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

tracking’s two main phases of going forward to extend current partial solution and
going back in case of a dead-end [36]. Look-ahead schemes can be invoked whenever
the algorithm is preparing to assign a value to the current variable. The essence of
these schemes is to reduce the search space through the use of a dynamic variable
ordering, a dynamic value ordering, and a certain amount of constraint propagation
or consistency enforcement. Enforcing a local consistency in the backtrack search
has two benefits: The dead-ends are found out earlier such that backtracking occurs
immediately and much futile search effort can be avoided, and inconsistent values
are temporarily removed from the domain of the future variables and we need not
consider these values until they are restored in backtracking. However, enforcing a
local consistency in the backtrack search brings extra costs which may outweigh its
benefits. Because the complexity of enforcing strong ^-consistency is exponential in
k , in practice, only restricted levels of consistencies are enforced. Among the back
tracking algorithms with look-ahead enhancements, forward checking algorithm (FC)
[60] and maintaining arc consistency algorithm (MAC) [96] are widely used to solve
relatively hard and large CSPs [18]. For most applications, there is no evidence yet
that enforcing a higher level consistency in the backtrack search will be better than
FC and MAC.

Look-back schemes are invoked when the algorithm is preparing the backtracking
step after encountering a dead-end. The reasons for the dead-end are analyzed.
Knowing that the same dead-end will be encountered again if the instantiations which
caused the dead-end have not been changed, the algorithm goes back directly to the
source of the failure, instead of the immediate preceding variable in the ordering, e.g..
the conflict-directed backjumping algorithm (CBJ). Look-back schemes also include
various learning algorithms which record the reasons for the dead-end in the form
of new constraints so that the same conflicts will not arise again later in the search
[30, 99].

A backtracking algorithm can be a hybrid of both a look-ahead scheme and a
look-back scheme. A successful hybrid is the forward checking with conflict-directed
backjumping algorithm (FC-CBJ) [92]. Over a long period, FC-CBJ was evaluated
empirically [60, 87, 92] as the fastest algorithm until MAC was rediscovered to be the
best in solving harder CSPs [96].

24

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

2.4 Variable Ordering and Value Ordering

It is known that a dynamic variable ordering can be a great improvement over a static
variable ordering. The improvements from value ordering heuristics may not be as
significant as those from variable ordering heuristics, especially in the case that all
solutions are searched6. Throughout this dissertation, we assume that a static value
ordering is used in the backtrack search.

We view a backtrack search as a search tree traversal in which the search tree is
as generated by the GT algorithm. If a static variable instantiation order and a static
value instantiation order are used, we know the search tree in advance because the en
tire execution of the GT algorithm is known. However, if a dynamic variable ordering
or a dynamic value ordering is used in the backtrack search, we do not know the search
tree before the execution of the backtracking algorithm. Nevertheless, such a search
tree does exist and we can figure it out after the completion of the backtrack search.
Because we know the order of instantiations made by the backtracking algorithm, the
GT algorithm can follow this ordering. The ordering information could be missed
at some node due to the pruning of an insoluble subtree. In such a case. GT algo
rithm will follow a pre-defined variable ordering, for example. x lt — x„. and choose
the first uninstantiated variable in the ordering to be the current variable. Thus the
search tree can be constructed after the execution of the backtracking algorithm.

E xam ple 2.1 Consider an integer linear program with 5 variables, x t . — x5. The
domain for each variable is restricted to contain only 3 values, {0 , 1 , 2 }. The linear
constraints are

X \ ■+■ Xo < £3

X l + £ 3 > £ 5 + 1

£ 2 — £ 4 > £5

Figure 2.2 shows a fragment of the B T backtrack search tree to solve the above CSP
instance. A (hypothetical) dynamic variable ordering is used in the backtrack search.
For example, X4 is instantiated before x$ when X3 is instantiated with 0 and 1 . and
x 4 is instantiated after X5 when X3 is instantiated with 2. An inconsistent node is
represented by a shadowed node and a solution node is marked with a sign. In the
above figure, since (x t <— 0,x 2 <— 1 ,X3 <— 0} is an inconsistent node, B T does not

8However, value ordering may affect backjumping algorithms dramatically [50].

25

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

X I + X 2 < X 3

X I + X 3 > I s + L

1 2 — X 4 > I S
X l «— 0

X3

151 5 .

V

Figure 2.2: A fragment of the BT backtrack search tree for the CSP in Example 2.1

extend this branch. The dashed part attached to this node denotes a subtree in the
generate and test search tree which is not part of the backtrack tree generated by BT.

2.5 Backtracking Algorithms

In this section, we will introduce several backtracking algorithms used in our study:
BT, CBJ, FC, GAC, and FC-CBJ. We identify an algorithm by presenting a specifi
cation that is close to an implementation. There could be many possible ways to im
plement an algorithm. It is important, however, that all implementations of the same
algorithm generate the same backtrack tree under the same variable ordering and rhe
same ordering of constraint checks '. These algorithms are implemented to stop after
finding the first solution. In order to find all solutions, a simple change to the termi
nation condition is sufficient for the algorithms doing chronological backtracking, e.g..
BT, FC, and GAC, but in the cases of CBJ and its hybrids further modifications are
necessary. For more explanations, please see [6 8]. It is also worth noting that all these
algorithms can be applied to non-binary CSPs and the C + + implementations of the
algorithms can be obtained from “ftp://ftp.cs.ualberta.ca/pub/xinguang/csp.zip."

7The order of constraint checking can affect the computation of the conflicts sets and thus the
calculation of the backjumping point from a dead-end state.

26

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

ftp://ftp.cs.ualberta.ca/pub/xinguang/csp.zip

2.5.1 Chronological Backtracking (BT)
Chronlogical backtracking (BT) is the starting point for all the more sophisticated
backtracking algorithms. The pseudo code of BT is shown in Figure 2.3. BT
uses the following data structures: current identifies the current level in the search
tree starting from level 1 ; solution[x] stores the current instantiation to variable x:
instantiated[x] marks whether x is currently instantiated and initially it is set to be
false; order[i] identifies the ith variable instantiated in the current partial solution:
and count-uninst[C\ counts the number of uninstantiated variables in the scheme of
constraint C and it is intialized to be |uars(C)|, i.e., all the variables in the scheme are
initially uninstantiated. BT starts from level 1 and terminates when it reaches level
n + 1 at which a solution is found. At level i, BT first chooses the next uninstantiated
variable to be the current variable and records it in order[i\. Then BT tentatively
instantiates the current variable with a value in its domain and checks whether the
current partial solution is consistent with all the constraints, count Mninst[C\ is used
to control whether the constraint C is checkable at this stage, where C is check
able only if all the variables in its scheme have been instantiated; i.e.. the condition
count.uninst[C} = 0 is satisfied. If the current partial solution passes the consistency
check, the instantiation of the current variable is admitted and BT goes on to the
next level. Otherwise, the next value in the domain is tried. When all values in the
domain of the current variable fail to extend the partial solution, a dead-end state is
encountered and BT backtracks one level to the most recently instantiated variable,
revokes the value assigned to that variable and continues at that stage. BT reports
the problem is insoluable if a dead-end state is encountered at level 1 .

2.5.2 Conflicts-directed Backjumping (CBJ)
An inconsistency or a no-good is a partial solution that does not appear in any
solution. If the current partial solution is found to contain a no-good, it cannot be
extended to a full solution and some variables must be chosen to be removed from
the current partial solution to invalidate the no-good. A dead-end state indicates
that the current partial solution t failed to extend to the current variable, and thus
t is found to be a no-good. The backtracking step in BT removes the most recent
variable from t and invalidates the no-good. However, if t has a no-good subtuple
not including that variable, BT will inevitably fail to extend the current branch. A
minimal no-good does not have no-good subtuples. To compute the minimal no
good from a dead-end state is computationally prohibitive. However, there are many

27

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

procedure update_constraint_counts(in x : variable);
%% As x is chosen to be instantiated next, update (decrease) the number
%% of uninstantiated variables for each of the constraints involving x.
for each C 6 C and x € vars(C) do count.uninst[C\ <— count.uninst[C] — 1 :

p rocedure restore.constraint_counts(in x : variable);
%% As a backtracking occurs at the current level, restore (increase) the number
%% of uninstantiated variables for each of the constraints involving x .

for each C g C and x € vars(C) do count.uninst[C\ <— count.unirist[C] -f 1 :

function consistent in cu rren t : integer) : boolean;
%% check whether it is possible to extend the current partial solution to
%% a full solution.

1 x <— order[current]:
2 for each C 6 C and x € vars{C) do
3 if count.uninst[C] = 0 th e n
4 if not check_constraint(C, solution) th en re tu rn false;
5 re tu rn true;

function BT(in current : in teger) r boolean;
1 if current > n th en re tu rn true ;
2 x «— get_next_var(current); order[current\ = x;
3 update_constraint_counts(x):
4 for each a € dom{x) do
5 solution[x] «— a;
6 instantiated[x] «— tru e ;
7 if consistent (current) th en
8 if BT(current + 1) th e n re tu rn true;
9 instantiated[x\ «— false;
1 0 restore.constraint_counts(x):
1 1 r e tu rn false;

Figure 2.3: BT.

28

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

function consistent (in cu rren t : integer) : boolean;
%% check whether it is possible to extend the current partial solution to
%% a full solution.

1 x 4— order[current];
2 for each C € C an d x € vars(C) do
3 if count.uninst[C\ = 0 th en
4 if no t check_constraint(C, solution) th en
5 cs[x] 4— cs[x] U (vars(C) — {x});
6 re tu rn false;
7 re tu rn true;

function CBJ(in current : in teger) : integer;
1 if current > n th e n re tu rn true;
2 x 4— get_next_var(current); order[current] = x;
3 update.constraint.counts(x);
4 for each a € dorn(x) do
5 solution[x} 4- a;
6 instantiated[x\ true;
7 if consistent current) then
8 j 4— CBJ(current);
9 if j 7̂ current then
1 0 instantiated[x\ <— false;
11 restore_constraint_counts(x);
1 2 return j;
13 instantiated[x] 4— false;
14 j 4— max{ i | 1 < i < current and order[i] 6 cs[x] };
15 cs[order\j]] 4— (cs[order\j]\ U cs[x|) — {order[j}};
16 for i 4— j + 1 to current do cs[order[i]] 4— 0;
17 restore.constraint.counts(x);
18 re tu rn j ;

Figure 2.4: CBJ.

29

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

ways to cleverly use the no-goods information discovered in the consistency checks.
Backjumping (BJ) [53, 54] computes a set of past variables, called conflicts, which
contributed to some failures in the consistency check for the current variable. Every
time the current partial solution fails to satisfy a constraint, the variables except
the current variable in the scheme of the constraint are added to the conflict set. If
all values of the current variable failed in the consistency check, BJ jumps back to
the highest variable in the conflicts set. BJ backjumps only from the special case
of dead-end states. All other backtracks are chronological. To perform a "multiple
backjumpings” from any dead-end states, conflicts-directed backjumping (CBJ) [91]
maintains for each past variable (and the current variable) its own conflicts set. We
use cs[x] to denote the set of past variables in the current conflicts set of variable
x. In a dead-end state, CBJ backjumps to the highest variable, called the culprit
variable, in the conflicts set of the current variable. At the same time, the conflicts
set of the current variable is merged into the conflicts set of the culprit variable. The
pseudo code of CBJ is shown in Figure 2.4.

2.5.3 Forward Checking (FC)
BT and CBJ perform consistency checks backward; that is, a constraint is checked
only if all the variables in its scheme have been instantiated. In constrast, the forward
checking algorithm (FC) [60] performs consistency checks forward; i.e.. a constraint
is chosen to be checked even if some of its variables have not been instantiated.
Generally, a constraint is forward checkable at the current state if all but one of its
variables was instantiated 8. The uninstantiated variable is called the forward checked
variable in the constraint. In the consistency checks of FC, for each forward checkable
constraint, the domain of the forward checked variable is filtered in the following way:
for each value in the domain, if the instantiation of the forward checked variable with
that value along with the instantiations in the current partial solution do not satisfy
the constraint, the value is temporarily removed from or marked inactive in its domain
at the current level. The consistency check fails if the domain of a forward checked
variable is found to be empty, which is called a domain wipe out (dwo). If the current
partial solution fails a consistency check or later in extending to a full solution, the
effect of forward checking is undone; i.e., all the values removed from the domains
of future variables in the forward checking at the current level are restored in their

8Following Van Hentenryck [114], we say that a k-ary constraint, k > 2, is forward checkable if
k — 1 of its variables have been instantiated and the remaining variable is uninstantiated.

30

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

procedure restore(in current : integer);
1 x order[current];
2 for each y 6 V and instantiated[y\ do
3 if checking[x][y] > 0 th en
4 cheching[x][y\ «- 0;
5 for each a € dom(y) and domains[y][a] = current do
6 domains[y][a] <— 0 ;
7 domain.count[y] <— domain.count[y] + 1;

function check-forward(in C : constrain t; in current : integer) : boolean;
1 x order[current];
2 y f— the uninstantiated variable in uars(C);
3 changed 4— false;
4 for each a 6 dom(y) and domains[y\[a] = 0 do
5 solution[y\ a;
6 if no t check.constraint(C. solution) then
7 changed«— true;
8 domains[y][a] <— current;
9 domain.count[y\ «— domam_count[y] — 1 ;
1 0 if changed th e n checking[x][y] = current;
1 1 if domain.count[y] = 0 then re tu rn false;
1 2 else re tu rn true;

function consistent (in current : in teger) : boolean;
1 x «— order[current];
2 for each C e C and x € vars(C) do
3 if count.uninst[C] = 1 th en
4 if no t check_forward(C, cu rren t) th en re tu rn false:
5 r e tu rn true ;

Figure 2.5: FC.

31

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

function FC(in current : in teger) : boolean;
1 if current > n th en re tu rn true ;
2 x «— get_next_var(current); order[current] = x;
3 update_constraint.counts(x);
4 for each a € dom(x) and domains[x\[a] = 0 do
5 solution[x] <— a;
6 instantiated[x\ <— true;
7 if consistent (current) th en
8 if FC(current + 1) th e n r e tu rn true;
9 restore(cu rren t);
1 0 instantiated[x\ <— false;
1 1 restore_constraint .counts (x);
1 2 r e tu rn false;

Figure 2.5: FC.

domains. FC backtracks chronologically in the case of dead-ends.
The pseudo code of FC is shown in Figure 2.5. FC uses three additional data

structures beside those in BT, domains, domain.count and checking. domains[x][a\
denotes whether value a is active in the domain of variable x, where domain[x][a\ = 0

indicates that a is still an active value in its domain, and domain[x][a] = i > 0

indicates that a has been removed from the domain at level i of the backtrack search.
domain.count[x] records the number of active values in the domain of variable x. For
example, if value a is marked inactive in the domain of x at level i, domain[x\[a] is
set to be i to indicate that a is inactive now and domain.count[x\ is deducted by
1 . Thus, a dwo can be found if the condition domain.count[x\ = 0 is satisfied for
some future variable x. checking[x\[y\ is set to be i if at level i the instantiation
of the current variable x makes some constraint become forward checkable and the
domain of the forward checked variable y is pruned in forward checking. W hen the

instantiation of x is revoked, checking[x\[y\ is restored to be 0 . and for each value a
in the domain of y, if condition domain[y][a] = i is true, domains[y\[a\ is restored to
be 0 and domainjcount[y\ is increased by 1 .

2.5.4 Generalized Maintaining Arc Consistency (GAC)
GAC performs at each node in the search tree, one full cycle of arc consistency. An
arc consistency achievement algorithm is applied to the problem instantiated with the
current assignments and the tentative value of the current variable being considered.

32

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

p ro ced u re restore(in current : integer);
1 x «— order [current];
2 for each y 6 V and instantiated]?/] do
3 if checking[x][y] > 0 th en
4 checking[x\[y\ <- 0;
5 for each a 6 dom(y) an d domains[y][a] = current do
6 domains[y\[a\ <— 0 ;
7 domain.connt[(/] <— domain_ccmnt[y] + 1 ;

function check-forward(in C : constra in t; in current : integer) : boolean;
1 x order[current];
2 y the uninstantiated variable in vars(C);
3 changed «— false;
4 for each a € dom(y) and domains[y] [a] = 0 do
5 soiufion[y] <— a;
6 if not check_constraint(C. solution) then
7 changed <— true;
8 domains[y][a] current;
9 domain.connt[y] <— domain-countfy] — 1;
10 if changed then
11 checking[x][y\ = 1; push(y, S);
12 if domain-count[y\ = 0 then return false;
13 else return true;

function exists(in C : constra in t; in v : variable) : boolean:
%% return ture if solution]u] has a valid support in constraint C.

function revise(in C: constra in t; in v : variable;
in current : in teger) : boolean;

1 x <— order[current\;
2 changed <— false;
3 for each a € dom(v) and domains[v][a] = 0 do
4 solution[v] «— a;
5 if n o t exists(C, v) th en
6 changed <— true ;
7 domains[v][a] current;
8 domain.count[v] <— domain.count[v\ — 1 ;
9 if changed th en
1 0 checking[x][v] = 1 ; push(v, S);
1 1 if domainjcount[v\ = 0 th e n r e tu rn false;
12 else re tu rn true;

Figure 2.6: GAC.

33

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

function consistent in current : integer) : boolean;
1 S < -0 ;
2 x order[current];
3 for each C £ C and x € vars{C) do
4 if count-uninst[C] = 1 th e n
5 if no t check-forward(C, cu rren t) th en re tu rn false:
6 push(x, S);
7 while S ^ 0 do
8 y top(S); pop(S);
9 for each C 6 C and y 6 vars{C) do
1 0 if count-uninst[C\ > 2 th en
1 1 for each v 6 vars(C) an d not instantiated[u] an d c # y do
1 2 if not revise(C, v, current) th en re tu rn false;
13 re tu rn true;

function GAC(in current : in teg er) : boolean;
1 if current > n th en re tu rn true ;
2 x <— get_next_var(current); order[current\ = x;
3 update.constraint_counts(x);
4 for each a 6 dom(x) and domains[x][a] — 0 do
5 solution[x\ <— a;
6 instantiated[x\ <— true;
7 if consistent (cu rren t) th en
8 if GAC(current + 1) th e n re tu rn true;
9 restore(current);
1 0 instantiated[x] <— false;
1 1 restore_constraint_counts(x);
1 2 r e tu rn false;

Figure 2.6: GAC.

34

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

If, as a result, one of the future domains becomes empty, the tentative value will lead
to a dead-end and it should be excluded. If none of the future domains becomes empty,
the tentative value will be selected. The pseudo code of generalized maintaining arc
consistency (GAC) is shown in Figure 2.6. As achieving arc consistency is a costly
process, the general wisdom is to perform cheap consistency checks first: that is. a
forward checking phase is performed before the full propagation. A constraint is said
to be arc consistency checkable at the current state if at least two of its variables
have not been instantiated 9. Again, count Jnst[C\ is used to determine whether a
constraint should participate in the arc consistency check at the current level.

2.5.5 Forward Checking with Conflict-directed Backjumping
(FC-CBJ)

Both look-backward and look-ahead strategies make a tradeoff, doing extra work at
one phase of the backtracking search in order to reduce the amount of work required
later. This extra work, however, frequently leads to a significantly reduced search
space. It is reasonable to conjecture that a combination of improvement techniques
will be useful on some problems. A hybrid of FC and CBJ, known as FC-CBJ [92],
outperforms its parents by several orders of magnitude on many applications.

Unlike CBJ, FC-CBJ performs consistency checks on future variables. It is con
venient to divide the conflicts information into two pieces. The no-goods found in
the forward checking phase are recorded in checking, in which checkin g[x][y\ denotes
the instantiation of variable x has caused some constraints to be forward checkable
and the domain of the forward checked variable y is pruned. However, checking
is used differently here than in FC and GAC. FC and GAC only need to restore
those inactive values in future domains which are pruned as a result of the instan
tiation of the current variable. For the current variable x and the pruned variable
y , checking[x][y] set to be the current level i is enough for such a purpose. With
forward checking enhanced with backjumping, at level i, once a future variable y is
forward checked in constraint C, for each of the instantiated variables x 6 vars(C),
if checking[x\[y] = 0, checking[x}[y\ is set to be i to record a complete no-good. Be
cause x may have multiple chances to participate in a forward checkable constraint to
forward check against y10, FC-CBJ only keeps the lowest level checking occurrence:

9 A more sophisticated control of arc consistency checkability can be determined, for example, by
the numbers of active values in the domains of uninstantiated variables.

l0For instance, the variable x i can check against r 4 twice by two constraints, C {x \ . . a n d
C(xi ,X 3 ,X4), and two forward checkings occur at different levels of the search tree.

35

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

procedure restore(in current: integer);
1 x <— order[current\;
2 for i <— current + 1 to n do
3 y <— order[i];
4 if checking[x][y] = current then
5 for each a € dom(y) and domain[y][a] = current do domain[y}[a\ <— 0;
6 for j <— 1 to current do
7 v <— order[j];
8 if c/iecArm [̂w][j/] = current th en checking[u\[y\ = 0;

p rocedure record_checking(in C: constraint; in y: variable; in current: integer)
%% bookmark the fact that the domain of y was pruned due to the propagation
%% on the constraint C.

1 for each v € vars(C) an d v ^ y do
2 if checking[v][y] = 0 th e n checking[v][y\ <— current:

function check_forward(in C : constraint; in current : integer:
o u t fa il : variable) : boolean;

1 x order[current\;
2 y <— the uninstantiated variable in vars(C);
3 changed«- false;
4 for each a 6 dom(y) an d domains[y][a] = 0 do
5 solution[y] a;
6 if no t check_constraint(C, solution) th en
7 changed <— true;
8 domains[y}[a] <— current;
9 domain.count[y] domain.count[y\ — 1 ;
1 0 H changed th e n record_checking(C, </, current);
1 1 fa il <- (/;
1 2 if dama'm_count[f/] = 0 th e n re tu rn false:
13 else re tu rn true ;

Figure 2.7: FC-CBJ.

36

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

function consistent^ in current : in teger; ou t fa il : variable) : boolean:
1 x «— arder[current];
2 for each C EC and x e uars(C) do
3 if count juninst[C] = 1 th en
4 if no t checkjfonvard(C, current, fa il) th e n re tu rn false;
5 re tu rn true ;

function FC.CBJ(in current : in teger) : boolean;
1 if current > n th e n re tu rn true;
2 x <— get_next_var(current); order[current] = x;
3 update_constraint_counts(x);
4 for each a € dom(x) and domains[x][a] = 0 do
5 solution[x\ a;
6 instantiated[x] «— true;
7 if consistent (current, fa il) th en
8 j <— FC_CBJ(current + 1);
9 if j ^ current then
1 0 restore(current);
1 1 instantiated[x\ <— false;
1 2 restore_constraint_counts(x);
13 re tu rn j;
14 else
15 cs[x] «— cs[x] U { y \ instantiated[y\ and checking[y\[f ail] / 0}:
16 restore(cu rren t);
17 instantiated[x] f - false;
18 cs[x] cs[x] U { y | instan tia ted^ and checking[y][x] # 0};
19 j <— max{ i \ 1 < i < current and order[i\ 6 cs[x] };
20 cs[order[j]\ <— (cs[order[j]] U csjx]) — [order[j]};
21 for i <— j + 1 to current do cs[(3rder[i]] <— 0;
2 2 restore_constraint_counts(x);
23 return j ;

Figure 2.7: FC-CBJ.

37

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

that is, checking[x][y] = i indicates that x first checked against y by some constraint
at level i. Thus until a backtracking occurs at level i, we know that x is still in
the conflicts set of y. The no-goods found in the backward phase, i.e., those from a
conflicts set of a high level variable in a backjumping, are still recorded in the data
structure cs. When a dead-end is encountered, these two pieces of information are
merged together to form a complete conflicts set for the current variable. The pseudo
code of FC-CBJ is shown in Figure 2.7.

38

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

Chapter 3

Look-ahead and Backjumping

The techniques for improving the naive backtracking algorithm can be conveniently
classified as look-ahead schemes and look-back schemes [34]. Look-ahead schemes
are invoked whenever the algorithm is preparing to assign a value to the current
variable or to choose the next variable to be instantiated. In general, look-ahead
schemes involve enforcing a certain level of consistency (on the subproblem consisting
of all the future variables), using a dynamic variable ordering and using a dynamic
value ordering heuristic. Look-back schemes are invoked whenever the algorithm
encounters a dead-end and prepares for the backtracking step. Look-back schemes
perform the functions that decide how far to backtrack by analyzing the reasons for
the dead-end, and record the reasons for the dead-end in the form of new constraints
so that the same conflicts will not arise again later in the search. Unfortunately,
sometimes the look-ahead schemes are counterproductive to the look-back schemes,
as it is well believed [60] th a t : “Look ahead to the future in order not to worry about
the past.” That is, the more we do in the forward phase, the less we can save in rlie

backward phase. For example, Bacchus and van Run [8] observe that adding CBJ
to an algorithm that already uses a dynamic variable ordering based on the minimal
domain heuristic is unlikely to yield much improvement. They explain that the use
of the minimal domain heuristic will tend to cluster conflicted variables together, and
hence CBJ is unlikely to generate large backjumps and its savings are likely to be
minimal. Also, in [16], Bessiere and Regin state that: “CBJ was cheap to incorporate
in BT, it was not prohibitive in FC, but it palpably slows down the search in MAC.”
Thus they conjectured that “when MAC and a good variable ordering heuristic are
used, CBJ becomes useless.”

However, all the above observations are based on experimental results, and they
have never been justified theoretically. There is a preliminary result in Kondrak

39

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

and van Beek’s work [69] saying that: “Given a binary CSP and a static variable
ordering, FC always visits fewer nodes than BJ does.” Furthermore, the previous
experimental results for CBJ have been limited to random and toy problems, which
are usually formulated as binary CSPs. For example, Bacchus and van Run [8] use
the zebra problem, n-Queens problem, and random binary problems to evaluate the
effect of the minimal domain heuristic on several backtracking algorithms. They
observe that CBJ provides hardly any savings if the minimal domain heuristic is
used in the backtracking search. Bessiere and Regin’s conclusion about MAC-CBJ is
solely based on experiments on random binary CSPs. On the other hand, it has been
observed that look-back techniques, including backjumping and learning mechanisms,
can dramatically improve problem solving on hard 3-SAT problems and real-world
planning problems [10, 11].

This chapter presents three results that deepen our understanding of the relation
ship between look-back and look-ahead schemes. First, we show by example that CBJ
may be exponentially better than an algorithm that maintains strong ^-consistency
in the backtrack search and we show that backjumping becomes useless if an appro
priate variable ordering strategy is used in the chronological backtracking algorithm.
Second, we introduce the concept of backjump level in the execution of a backjumping
algorithm and some background results for maintaining strong ^-consistency. Then
we show that an algorithm maintaining strong ^-consistency always visits no more
nodes than a backjumping algorithm that is allowed to backjump no more than k lev
els. Third, we introduce a new backjumping algorithm, named GAC-CBJ. which is
an extension of Prosser’s MAC-CBJ [93] to general CSPs. We show by experimental
results that for some real world problems, GAC-CBJ can provide a huge amount of
improvement over GAC.

3.1 CBJ and Variable Ordering

Experimental comparisons have shown that CBJ is, on average, not competitive with
look-ahead algorithms, such as FC and MAC [8, 16, 92]. For example, the experi
mental results in [8] show that CBJ usually runs twice as slow as FC (in terms of
the number of the constraint checks performed) when solving the zebra problem, n-
Queens problem, and random binary problems. However, as the next example shows.
CBJ has the potential to defeat many look-ahead algorithms.

E xam ple 3.1 Given a fixed integer k, we can construct a binary CSP with, n + k + 2

40

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

Figure 3.1: A CSP mixed with two pigeon-hole problems.

variables, x t, . . . , z„_fc+L. y i , ■.., yk+u xn-k+2 , ■ ■ ■ , Zn+i, where dorn{xt) = { 1 n}
for 1 < i < n + 1 and dom(yj) = { 1 ,.... A:} for 1 < j < k + 1 . The constraints
are: Xi ^ X j , for i ^ j , and yt ^ yj, for i / j . The problem consists of two
separate pigeon-hole subproblems, one over variables x \ , . . . ,x n+i and the other over
variables y i , . . . , yk+i, and is insoluble. As we know, the pigeon-hole problem is highly
locally consistent [110]. The first subproblem is strongly n-consistent and the second
is strongly k-consistent. Under the above static variable ordering, a backtracking algo
rithm maintaining strong k-consistency would not encounter a dead-end until x n- k+i
is instantiated. Then it would find that the subproblem of x n- k+i , . . . , x n+l is not
strongly k-consistent. Thus the algorithm will backtrack before it reaches the second
pigeon-hole subproblem. It will explore -*j nodes at level ri-k+l of the search tree and
thus take an exponential number of steps to find the problem is insoluble. CBJ does
not encounter a dead-end at the level of xn- k+i and it continues to the second pigeon
hole problem. Eventually it will find the second-pigeon hole problem is insoluble and
backjump to the root of the search tree. The total number of nodes explored is bounded
by a constant, 0 ((k + l) fc), for a fixed k. Therefore, CBJ can be exponentially better
than an algorithm maintaining strong k-consistency.

Independently, Bacchus and Grove present a similar example in [6] to show that
given a fixed k , CBJ may be exponentially better than an algorithm called MlkC.
which essentially maintains ^-consistency in the backtrack search for binary CSPs.

Theorem 3.1 For any fixed integer k, there is a CSP instance and a static vari
able ordering such that CBJ visits exponentially fewer nodes than an algorithm that
maintains strong k-consistency in the backtrack search.

Proof: It is true from the CSP in Example 3.1. |

One may argue that in the above example, if FC or MAC explores the smaller
pigeon-hole problem first, it could perform much better under the new variable order-

41

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

ing. It is true that if an appropriate variable ordering strategy is used, an algorithm
doing chronological backtracking usually backtracks to the most relevant variable to
the current dead-end such that backjumping becomes less useful. For example, it was
said in [8]: “CBJ is unlikely to generate large backjumps and its savings are likely to
be minimal if we use a good variable ordering heuristic.”

We are going to justify the above statement more precisely. That is, given a CSP
instance and a variable ordering strategy for CBJ, there is a variable ordering strategy
for the chronological backtracking algorithm (BT) such that BT visits no more nodes
than CBJ does. We first consider the case of insoluble CSPs. When CBJ is applied
to solve an insoluble CSP, it always backjumps from a dead-end state; i.e., it will not
terminate or backjump from a situation in which a solution of the CSP is found.

Lem m a 3.2 Given an insoluble CSP instance and a (possibly dynamic) variable or
dering strategy for CBJ, there is a (possibly dynamic) variable ordering strategy for
BT, such that B T visits no more nodes than CBJ to solve the CSP.

Proof: In the backtrack tree generated by CBJ under the variable ordering strategy,
let the last backjump that terminates the execution of CBJ be from variable Xj to
the root of the backtrack tree. We choose Xj to be the first variable for BT. For
each value a in the domain of xj, the next variable chosen to be instantiated after
assigning a to Xj is the variable that backjumps to x3 and causes the assignment
Xj <— a to be revoked. For example, in Figure 3.2, the first variable chosen for BT is
Xj. After assigning value a to Xj, variable xJa is instantiated next, and so on. The
entire variable ordering for BT can be worked out in a recursive manner. The only
situation where BT could possibly be unable to follow the above ordering is if, at
some stage, CBJ finds out that the current node is inconsistent so that there is no
such backjump from a higher level variable to the current variable, but because BT
instantiates fewer variables along the path from the root to the dead-end. it might not
be able to detect the inconsistency and so it has to extend the current node. We can
prove that such a situation does not exist in the ordering constructed for BT. That is.
the variables skipped in the variable ordering constructed for BT are irrelevant to the
dead-end states encountered by CBJ. Suppose at a stage we have ordered the variables
to be instantiated for BT as xJk, and for value a €. dom(xJk) we choose the
next variable Xjk+l as the variable which backjumps to the current variable x n in
the CBJ backtrack tree. We will prove by induction that the conflicts set of xJk_.
used in the backjumping is subsumed by {x j,,. . . k = I is the case of the last
backjump that terminates the execution of CBJ. The hypothesis is true because the

42

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

/ *: • 1I I
j /
\ /

\ / '
\ /

Figure 3.2: A backtrack tree generated by CBJ to solve an insoluble CSP.

conflicts set of x7l is an empty set. Suppose it is true for the case of k. Because x]k^
backjumps to Xjk, the conflicts set of xJk+l is merged in the conflicts set of x]k. From
the inductive assumption, the conflicts set of Xjk is subsumed by {xJt xJk_l}. and
thus the conflicts set of X j k+l is subsumed by {x_,t , . . . , x j k }. Therefore, the hypothesis
holds for the case of k + 1. If CBJ finds out that instantiation xjk <— a is inconsistent
with the assignments of some past variables which are added to the conflicts set of
X j k , BT is also able to find out the inconsistency because the conflicts set of xJk is
subsumed by {xJl, . . . , £ j ii;_l}. Thus it is a feasible variable ordering for BT. Under
such a variable ordering, BT visits no more nodes than CBJ does. |

43

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

/ r

root

xi

Q -r-i-l

O X n

Figure 3.3: A backtrack tree generated by CBJ to find one solution.

For soluble CSPs, we further distinguish the problem between finding one solution
and finding all solutions. When just one solution is required, CBJ will stop once it
has found the first solution, {xi 4— tq , . . . , xn 4— an}, as shown in Figure 3.3.

Lem m a 3.3 Given a CSP instance and a variable ordering for CBJ to find the first
solution, there is a variable ordering strategy for B T such that B T will visit no more
nodes than CBJ to find the first solution.

Proof: A variable ordering for BT can be constructed in the following way: The first
variable chosen for BT is xt as it is the first variable in the path from the root to
the solution in the CBJ backtrack tree. Because we assume a static value ordering
in the backtrack search, all values in the domain of xi that precede value cq must
be rejected by CBJ and BT before value cq is used to instantiate Furthermore,
because {xi 4 - a t, . . . , x n 4— an} is the first solution encountered by CBJ under
the above variable ordering and value ordering, the instantiation of x t with a value
preceding at leads to an insoluble subproblem and eventually CBJ will backjump
from a higher level variable to Xi to revoke that assignment. Note that x L cannot be
skipped by a backjump from a higher level variable because x t is on the first level of
the search tree and there is a solution for the CSP. We can arrange the instantiation
order for BT in the insoluble subproblem, after assigning xi with each of the values
that precede a\ in its domain. Whenever X* is instantiated with value a*, x^+l is
chosen to be the next variable, as it follows x* in the path from the root to the
solution in the CBJ backtrack tree. Again, all values in the domain of x*+l that
precede ak+i in the value ordering must be rejected by CBJ and BT before ajt+i is
assigned to Xk+i- The instantiation of xjt+i with each of these values will lead to an

44

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

insoluble subproblem and eventually CBJ will backjump from a higher level variable
to Xk+i. Similarly, x*+l cannot be skipped by a backjump from a higher level variable
because otherwise at least one of the assignments to x l t . . . ,x* must be changed so
that {xi «— a l?. . . , x„ <— an} is not the first solution encountered by CBJ. We can
arrange the instantiation order for BT in these insoluble subproblems. Finally, x n is
instantiated with an and BT finds the solution. Under the above ordering, BT will
visit no more nodes than CBJ does. |

When CBJ is used to find all solutions, special steps must be taken to handle
the conflicts sets. The problem here is that the conflict sets of CBJ are meant to
indicate which instantiations are responsible for some previously discovered inconsis
tency. However, after a solution is found, conflict sets cannot always be interpreted
in this way. It is the search for other solutions, rather than an inconsistency, that
causes the algorithm to backtrack. We need to differentiate between two causes of
CBJ backtracks: (1) detecting an inconsistency, and (2) searching for other solutions.
In the latter case, the backtrack must be always chronological; that is, to the imme
diately preceding variable. A simple solution is to remember the number of solutions
found so far when a variable is chosen to be instantiated, and later when a dead-end
state is encountered at this level, we compare the recorded number with the current
number of solutions. A difference indicates that some solutions have been found in
this interval of search, and forces the algorithm to backtrack chronologically. Other
wise the algorithm performs a normal backjumping by analyzing the conflicts set of
the current variable.

Lemma 3.4 Given a CSP instance and a variable ordering for CBJ to find all so
lutions, there is a variable ordering strategy for B T such that B T will visit no more
nodes than CBJ to find all solutions.

Proof: Let the first solution found by CBJ be {x! <— a L, . . . ,x n <— a„} in the order
of x l t . . . ,x„. We first construct the variable ordering for BT as it is applied to find
the first solution. However, because BT follows a strict chronological backtracking,
it will inevitably visit all the nodes {xt <— a t , . . . , x7_t <— a; _ t,x ; <— a'}, where
1 < j < n and a, precedes a!j in the domain of Xj. If CBJ skips any of these
nodes, for example, from a higher level variable x/, to Xj_i, while the instantiations of
X i,. . . , Xj have not been changed, BT will possibly visit more nodes than CBJ does.
We will show this cannot happen by induction on the distance between the current
level j and the highest level n. After CBJ has found the solution at level n. it will

45

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

try other values for x„ and eventually backtrack to xn_i. So the nodes at level n
cannot be skipped. Suppose it is true for the case of level j + 1 and now we consider
the case of level j . Because Xj <— aj was not skipped in the backjumping, if a3 is the
last value in its domain, CBJ will backtrack to Xj_i because the number of solutions
has been changed. So it is true for the case of j . Otherwise CBJ will change the
instantiation of Xj to the next value in its domain. Let the current partial solution
be t = {xi <— a i,...,X j_ i «— aj_i,x_, «— a'}. If the subtree rooted by t contains
solutions, from the inductive hypothesis. CBJ will not skip this node because it is on
level j . If the subtree rooted by t contains no solution, there exists a backjump from
a higher level variable x* to escape this subtree. Could it jump beyond Xj such that
t is skipped? In that case, the conflicts set of X/, is subsumed in {xt -fj-i}- From
the definition of conflicts set, we know that the current instantiations of the variables
in the conflicts set cannot lead to a solution. However the current instantiations of
{xt , . . . ,Xj_i} do lead to a solution, {xt <— a t , . . . ,x„ <— a„}. That is a contradiction.
So the conflicts set of x* must contain Xj and thus the node t at level j cannot
be skipped. After all the values in the domain of x; have been tried. CBJ will
chronologically backtrack to x_,_i because the number of solutions has changed. Thus
Xj_i aj-L will not be skipped. The hypothesis is true for the case of any level j.
Then we construct the variable ordering for BT in the following way: If the current
partial solution t = {xt <— ai,...,x_ j_ i <— aj_i,Xj <— a'} cannot be extended to a
solution, we construct a variable ordering for the insoluble subproblem. If t can be
extended to a solution, we construct a variable ordering for BT as the case of finding
the first solution in this subproblem, and recursively apply the above steps until a
backjump to level Xj changes the instantiation Xj r - a '. Under the above variable
ordering, BT will visit no more nodes than CBJ does. |

T heorem 3.5 Given a CSP instance and a variable ordering for CBJ, there is a
variable ordering strategy for B T such that B T will visit no more nodes than CBJ to
solve the CSP.

P roof: It is straightforward from Lemma 3.2, Lemma 3.3, and Lemma 3.4. |

E xam ple 3.2 Figure 3-4 shows the B T backtrack tree based on the variable ordering
constructed from the execution of CBJ to solve the CSP in Example 2.1 under a
(hypothetical) dynamic variable ordering. The first solution found by CBJ is {xi <—
0,x 2 <r- 0, x3 <— 2,xs f - 0 ,x 4 <— 0}. Thus B T first instantiates x L and x 2 to 0. The

46

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

*1 + * 2 < XJ

-i-*3 > xs -r I

r 2 - *4 > ^5

*1 i s € {0, 1 * 2 }

xi <— 0
CBJ backtrack tree

X 3

* 5

:: • x-» A i X5 / VV \ X* \ X5 j \ \ « /
' 1 /► I / \ \ \ /
; 1 / : I /

____/s i I l . - A h -------------Z -
1*5 / \ \ 1*4

> ~ 0
✓

I 1 4

>/ V

J 4

X4

V N/ V

B T backtrack tree

1 5

Figure 3.4: An example of the variable ordering constructed for BT from the CBJ
backtrack tree.

47

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

node {xi <— 0 ,x 2 0 ,X3 <— 0} and {xi <- 0,x 2 <— 0, x2 «- 1} in the CBJ backtrack
tree lead to two insoluble subproblems. The variable ordering for B T at each of these
nodes is constructed as in the case of insoluble CSPs. For example, in the CBJ
backtrack tree, the last backjump to revoke the node {xt <— 0,x2 0. x:i <— 0} is
from X5 to X3 , so the next variable instantiated in B T at this node is X5 . Under such
an ordering, B T avoids instantiating X4 and visits fewer nodes than CBJ. Then B T
instantiates X3 to 2, X5 to 0 , and X4 to 0 , and finds the first solution. As we can see in
the above figure, after CBJ finds the first solution, denoted by {x'L 4— a i , . . . ,x'n <— ari},
none of the nodes {x;t a t, . . . , x '_ L aj_l:x' <— a'} , where j < n and a3 precedes
a'j in the domain of x ', is skipped by CBJ. Thus, both B T and CBJ will visit these
nodes and the variable ordering for B T at each of these nodes is constructed in the
same way as in the case for the insoluble subproblems or the case of finding the first
solution in the subproblem.

Therefore, the effect of backjumping may be degraded by the use of an appropriate
variable ordering. Of course, the above ‘‘perfect” variable ordering strategy for BT
will, in general, not be known until the completion of CBJ. So we have used too much
magic to make BT perform better than CBJ. Also, in practice, it is not our primary
goal to devise a variable ordering that enables a chronological backtracking algorithm
to simulate the execution of the CBJ, but to find a variable ordering that can greatly
improve the backtrack search. There are many efficient heuristics for solving CSPs.

For example, the fail first heuristic selects the next variable to be instantiated with
the minimal remaining domain size. As a result, variables that have conflicts with
past instantiations are likely to be instantiated sooner, and thus the conflict variables
tend to be clustered together in the backtrack search. Hence, CBJ is unlikely to
generate large backjumps [8]. However, the fail first heuristic is not always consistent
with the above “perfect” variable ordering. Hypothetically, because we do not have
the “perfect” variable ordering a priori, or we do not want to use it in the backtrack
search even if we could find one, CBJ still has the chance to improve the search
and sometimes it can be dramatically better than an algorithm doing chronological
backtracking.

3.2 Backjump Level and BJ^

From Theorem 3.1, we know that under a static variable ordering. CBJ can per
form much better than a look-ahead algorithm that maintains strong ^-consistency

48

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

+■ *2 < x3
x i x j > X 5 - r I

2 - x > *5

X 3

X5

d = d =

Figure 3.5: An illustration of backjump levels in a CBJ backtrack tree to solve the
CSP in Example 2 .1 .

in the backtrack search. The use of consistency in a backtrack search will reduce the
“chances” for backjumping. To analyze the influence of the level of consistency on
the backjumping, we need the notion of backjump level. Informally, the level of a
backjump is the distance, measured in backjumps, from the backjump destination to
the “farthest” dead-end [6 8].

D efinition 3.1 (backjum p level) The definition of backjump level is recursive:
1. A backjump from variable £j to variable x/, is of level 1 if it is performed directly
from a dead-end state in which all values of Xj fail in the consistency check.
2. A backjump from variable x, to variable x/, is of level d > 2 , if all backjumps
performed to variable x, are of level less than d, and at least one of them is of level
d — 1.

Figure 3.5 shows the backjump levels in the CBJ backtrack tree to solve the CSP
in Example 2.1. There is a one-level backjump from x 5 to X3 because all values in the
domain of x5 fail in consistency checks. Then CBJ finds two solutions for the problem
and thus it chronologically backtracks from x 4 to x5, and later to x3. The backjumps
are of level one and two respectively. At last there is a three-level backjump from .r:i
to x2.

By classifying the backjumps performed by a backjumping algorithm into different
levels, we can now weaken CBJ into a series of backjumping algorithms which perform
limited levels of backjumps. BJ* is a backjumping algorithm which is allowed to

49

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

perform at most /c-level backjumps and it chronologically backtracks when a j-level
backjump for j > k is encountered l . BJn is equivalent to CBJ, which performs
unlimited backjumps, and BJt is equivalent to Gaschnig’s BJ [53], which only does
the first level backjumps.

One may immediately conclude that BJfc+i is always better than BJjt because it
does one more level of backjumps. However, to be more precise, we need to justify
that a situation where BJ* may skip a node visited by BJt+ 1 does not exist. Similar
to the proof of Theorem 9 in Kondrak’s work [6 8], we can show that:

Theorem 3.6 BJk visits all the nodes that BJk+1 visits.

3.3 Maintaining Strong A;-Consistency (MC*.)

Many people in the CSP community have talked about the possibility of applying a
higher level of consistency in a backtrack search. However, a backtracking algorithm
maintaining strong ^-consistency (MC*) has never been fully addressed in the litera
ture. In order to study the relation between BJ* and MC*, we need some background
on strong ^-consistency and MC*.

3.3.1 Achieving Strong fc-Consistency
Strong ^-consistency achievement is a “rough” concept because two algorithms both
achieving strong ^-consistency may not always compute the same resulting CSP 2. One
reason is that some redundant constraints or universal constraints can be arbitrarily
added into and removed from the CSP, without affecting its consistency. For example,
given a CSP with three constraints aq ^ xo, £i ^ £ 3 , and £ 2 7 ̂ ^ 3 * the constraint.
alldifferent{xuX2 ,xz) is redundant and it can be added into or removed from the CSP
without affecting its consistency.

After a CSP instance is made strongly ^-consistent, for any partial solution
over less than k variables, t = {xit <— an x l} <— aij} where j < k. t is ei
ther inconsistent in the resulting CSP, or it can be consistently extended to any
(j + l) t/l variable. The execution of a strong ^-consistency achievement algorithm
can be viewed as a proving process. That is, an algorithm enforcing strong k-
consistency on a CSP instance should detect and remove all those inconsistencies

lBJ/t is only o f theoretical interest since in practice one would use CBJ rather than artificially
prevent backjumping; i.e., one has to actually add code to prevent backjumping.

2Also an algorithm enforcing strong (Ar+l)-consistency can be used to achieve strong k-
consistency.

50

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

Figure 3.6: A three-proof-tree for {xt <— g} in the graphing coloring problem. All
leaf nodes are inconsistent in the CSP.

t = {x^ «— ait, . . . , *r- aij} where j < k and t is consistent but cannot be consis
tently extended to some (j + l)th variable xlj+l. To remove an inconsistency, we make
it inconsistent in the resulting CSP by means of removing values from the domains,
removing the inconsistent tuples from the existing constraints, and adding new con
straints to the CSP. Usually, we are more interested in the domains of the variables
after achieving strong ^-consistency. We assume that for each variable x . if there is a
unary constraint C over x in the resulting CSP. then for each value a in the domain
of x, a is removed from the domain if {x a} does not satisfy C.

We use the concept of fc-proof-tree to characterize the strong ^-consistency achieve
ment algorithms.

D efinition 3.2 (fc-proof-tree) A k-proof-tree for a partial solution t over no more
than k variables in a CSP is a tree in which each node is associated with a partial
solution over at most k variables in the CSP, where (1) the root of the k-proof-tree
is associated with t, and (2) each leaf node of the k-proof-tree is inconsistent in the

51

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

CSP, and (3) each intermediate node s of the k-proof-tree is consistent in the CSP,
and the children of s at the next level are nodes s' U (x ax s' U {x <— a;} such
that s ' C s , i ^ uars(s), and dom[x) = {ai , . . . , a/}.

Figure 3.6 shows a three-proof-tree (more than one is possible) for {./ [<— <j) in
the given graphing coloring problem. For example, in the above figure, the root of the
three-proof-tree is {xL <— g} and all the leaf nodes are inconsistent in the original CSP.
Because node {xi <— g} is consistent in the original CSP, it is not a leaf node. In this
three-proof-tree, its children at the next level are {xi g,x* <— r}, {xi <— g..r> g)
and {xt g ,x2 b}.

After a CSP is made strong ^-consistent, if a partial solution t over no more than k
variables is inconsistent in the resulting CSP, we can construct a fc-proof-tree for t from
the execution of the strong ^-consistency achievement algorithm. If t is inconsistent in
the original CSP, the A>proof-tree contains a single node t. Otherwise, there must exist
a point in the execution of the algorithm at which t or a subtuple t' of t failed to be
extended to one additional variable x. That is, at this point, all the partial solutions
t' U {x <— a ^ , . . . , f ' u {x aj}, where dom(x) = (a i , . . . , a/}, are inconsistent in the
resulting CSP. Then we can construct the A:-proof-tree recursively for each of those
inconsistencies. On the other hand, given a A:-proof-tree for an inconsistency in a
CSP, any algorithm achieving strong fc-consistencv is able to deduce and remove the
inconsistency. After applying a strong fc-consistency achievement algorithm on the
CSP, if all the children of a node in the A:-proof-tree are inconsistent in the resulting
CSP, that node is also inconsistent in the resulting CSP because one of its subtuples
cannot be consistently extended to one additional variable. Because all the leaf nodes
in the A:-proof-tree are inconsistent in the original CSP and thus in a bottom-up
manner, the inconsistency on the root of the tree can be deduced and removed from
the resulting CSP.

3.3.2 Induced CSP and Maintaining Strong fc-Consistency
A generic scheme to maintain a level of local consistency in a backtrack search is to
perform at each node in the search tree, one full cycle of consistency achievement.
A consistency achievement algorithm is applied to the problem instantiated with the
current partial solution. This problem is called an induced CSP of the original CSP. If.
as a result, the induced CSP becomes empty after applying the consistency algorithm,
the instantiation of the current variable will lead to a dead-end and it should be
excluded. If the resulting CSP is not empty, the instantiation of the current variable

52

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

is accepted and the search continues to the next level.
The simplest form of an induced CSP, as used in GAC, is to restrict the domains

of the instantiated variables to have only one value and leave the set of constraints
unchanged. This idea can be traced back to Gaschnig’s implementation of MAC.
referred to as DEEB [54], i.e., Domain Element Elimination with Backtracking. In
DEEB, when a variable x is instantiated with a value a, the domain of the current vari
able is set momentarily to a single value, i.e., dom(x) <— {a}, and the uninstantiated
variables are then made arc consistent. An identical approach was taken by Burke
when designing the constraint maintenance system for the Distributed Asynchronous
Scheduler. A scheduling decision is viewed as the addition of a unary constraint [23].

D efinition 3.3 (induced C SP) Given a partial solution t of a CSP P, the CSP
induced by t, denoted by P\t, is exactly the same as the original CSP except that the
domain of each variable x € vars(t) contains only one value f[x], which has been
assigned to x by t.

For example, GAC at each node of the search tree performs generalized arc consistency
achievement on the CSP induced by the current partial solution 3. GAC continues
to extend the current partial solution if none of the future domains becomes empty
after achieving arc consistency on the induced CSP.

However, MC* cannot be simply defined as applying strong fc-consistencv achieve
ment on the induced CSP at each node in the backtrack search. Such an implemen
tation is problematic. For example, if a CSP contains only (Ar-Pl)-ary constraints, its
induced CSPs are always strong ^-consistent because no constraint can be checked
for a tuple with no more than k variables. Intuitively, the arity of a constraint should
be lowered if some of its variables have been instantiated. That is, the subproblem
used to achieve strong ^-consistency should include the selections and projections of
the constraints with respect to the current partial solution. For example, if there is a
constraint C (x i ,x 2 ,x 3) and Xi has been instantiated in the current partial solution t.
the constraint 7r{X2]l3 }(T{I l^ f[II]}C(xi,X2 ,X3) should be included in the induced CSP.
In order to establish a relation between BJ* and MC*, we need a more restricted
definition of the induced CSP, called s-induced CSP, where "s" denotes selections of
the constraints.

3In our implementation of GAC, the arc consistency achievement algorithm is applied to a more
restricted problem than the induced CSP, in which the domains of future variables are also pruned
according to the result of the arc consistency achievement at an earlier stage. Nevertheless, these
domain prunings would be redone in the case that the arc consistency algorithm was applied to the
induced CSP.

53

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

D efinition 3.4 (s-induced C SP) Given a partial solution t of a CSP P, the CSP
s-induced by t, denoted by P |j , is constructed as the following: P|* has all the variables
in P except those having been instantiated by t. The domains of the variables are the
same as those in P . For each of the constraints C in P where vars(C) % vars(t), a
new constraint C' is added to P\st , where vars(C') = vars{C) — vars(t) and rel(C) =
{s[-yars(C) — uars(t)] | s E rel(C) and s[uars(C) Duars(f)] = t[cars{C)r\ curs{t)\}.

E xam ple 3.3 Consider the graph coloring problem in Figure 3.6. The original CSP
has 4 variables, x i , . . . , x 4, where x i ,x 2 , x 3 6 {r,g,b} and x4 E {r}. There are 5
binary constraints, x t ^ x2, x L ^ x3, x> ^ x3, x2 ^ x4 and x3 x4. Given a partial
solution, t = {xi •e- g}, the induced subproblem P\t has 4 variables, x i , . . . , x 4,
where the domains of x i , . . . , x 4 are {<?}, {r,g,b}, {r,g,b} and {r}, respectively. The
constraints in P\t are the same as those in the original CSP. The CSP s-induced by
t, P \st , has 3 variables, x2j x3 and x4. The constraints in P*t are, C '(x2) = {(r), (6)},
C'{xf) = {(r), (6)}, x2 7 ̂x3) x2 ^ x4 and x3 # x4.

We may notice the difference between the induced CSP and the s-induced CSP.
The induced CSP has all the variables and the constraints in the original CSP, but
restricts the domains of the instantiated variable (in the partial solution) to have only-
one value. The s-induced CSP has only the uninstantiated variables (with respect to
the partial solution) in the original CSP. The constraints in the s-induced CSP are
the selections (and projections) of the constraints in the original CSP.

The maintaining strong ^-consistency algorithm (MC*) at each node in the back
track search tree applies a strong ^-consistency achievement algorithm to the CSP
s-induced by the current partial solution. Under such an architecture. FC can be
viewed as maintaining one-consistency, and for binary CSPs, MAC can be viewed as
maintaining strong two-consistency 4.

The following lemmas (Lemma 3.7 to Lemma 3.12) reveals some basic properties
about the induced (s-induced) CSPs and the strong ^-consistency enforcement on
the induced (s-induced) CSPs, which will be used in the proofs of Theorem 3.14 and
Theorem 3.18.

L em m a 3.7 Given a CSP P and two partial solutions t and t' o f P, if t C t '. then
P\t' — (-PltJIt'-t ond P\se = (P|?)|?*_£.

P roof: It is easy to verify that P\t> = (P |t)|t'-t. Note that P|f/ and (P|f)[(<_£ have
the same set of variables and the same set of domains. For each constraint C in P.

4However, for general CSPs, arc consistency is not equivalent to strong two-consistency.

54

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

because vruarj(C)—vars{t']Gt'C — ftvaTs(C)—vars(t')&t'—t(jtvars(C)—uars(t)&tC)% the constraint
C makes the same selection and projection in P\3t, and (P |£)|£<_£- Therefore. P |(\ and
(P|?)|£_t have the same set of constraints. That is, P\f, = (P |f)|f/_£. |

L em m a 3.8 Given a CSP P, i f P is not empty after achieving strong k-consistency,
it is not empty either after achieving strong j-consistency, for j < A.

P roof: Suppose P is empty after enforcing strong j-consistency. Thus there is a
j-proof-tree for the empty inconsistency in P. Because a j-proof-tree is also a A-
proof-tree for j < k, P is empty after achieving strong ^-consistency. That is a
contradiction. |

Intuitively, the s-induced CSP is more restrictive than the induced CSP. Given
a CSP P and a consistent partial solution t, if P\t is empty after enforcing strong
A-consistency, there is a A-proof-tree for the empty inconsistency in P |(. We can
convert the A-proof-tree of P |t into a A-proof-tree for the empty incousistencv in P j .
The transformation is done in two steps:
(1) Each node t' in the original A-proof-tree is replaced by t'[vars{t') - cars(t)]. N'ote
that tr[vars{tf) — i/ars(£)] is a valid partial solution in P\3 (because P*t does not
have the variables in uars(t)). Furthermore, if t' is not a leaf node in the original
A-proof-tree, i.e., t‘ is consistent in P |t, it is easy to verify that t'[vars(t') - cars(f)]
is consistent in P |f , i.e., t^va rs^) — uars(f)] is a valid intermediate node in the A-
proof-tree (from the definition of A-proof-tree, an intermediate node in a A-proof-tree
must be consistent in the CSP). If t1 is a leaf node in the original A-proof-tree, then
vars(tf) — vars(t) 0. Otherwise, we have t1 C t. Because t is consistent in P
and thus t is consistent in P |t (note that P |t has exactly the same set of constraints
as P and t is a valid partial solution in P\t), thus t1 is consistent in P |£. That is a
contradiction. Because t1 is inconsistent in P |£, there is a constraint C in P |£ such that
f does not satisfy C, and thus f/[uars(£/) — uars(£)] does not satisfy the selection of C
in P |j. Therefore £/[uars(£') — i/ars(£)] is inconsistent in P |f. i.e.. t'lvarsit1) - rrzr*(M’
is a valid leaf node in the A-proof-tree.
(2) For each node tf in the original A-proof-tree. if a subtuple t" C t' is used to be
extended to a variable x instantiated in f, because the domain of x has only one value
£[x] in P |£, f has only one descendant t" U {x <— £[x]} at the next level. After t'
is replaced by tf[vars(t1) — uars(f)] and t" U {x f[x]} is replaced by t"[vars(t") —
uars(t)], we notice that t"[vars(t") — uars(£)] is subsumed in t'[uars{t') — vars(t)].
We further drop the node £"[uars(£") — uars(£)] and make all its descendants to be

55

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

12

* 1 X4

*1 € {3 J. X 2 . X J e (r , s , 6 } , x 4 € { r>
C (x i . x j) ■ *1 * * 3
C (x 1 , x j) : *1 * *3
C (i i . x j) : * 2 * *3
C (x j , x 4) : * 2 * *4
C (x j , x 4) : * 3 * **

* 2 . * 3 € { r . 3 . 6) . x 4 € (r)
C (r -) : {(r) . (6)>
C (x j) : { (r t . t&)>
C l x j . x j)
C (x j , x 4)
C (x j . x 4)

*1 ♦— 9 , ^ ri 9 •
r 2 ** p / -^ £ 2 b

~ * 3 — .7 ’
^ X2 — b

* 2 — b ' P r j * • 6 r 4 — r \ J r 3 • - r • r , ~ fc
* 3 - 9 X3 * * 6

xj
X4

Figure 3.7: In the above graph coloring example, given a partial solution t = {xi <—
<7 }, there is a three-proof-tree for the empty inconsistency in the induced problem.
Furthermore, this three-proof-tree can be converted into a three-proof-tree for the
empty inconsistency in the s-induced problem.

•56

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

the descendants of t'[vars(t') — uars(t)]. This operation is necessary because x is not
a variable in P\st and from the definition of A-proof-tree, a node in a A.--pro of-tree can
only be extended to a variable of the CSP.

E xam ple 3.4 Consider the graph coloring example again. Given a partial solution
t = {xi <— g}, we can construct a three-proof-tree for the empty inconsistency in
the induced subproblem. Furthermore, the three-proof-tree can be converted into a
three-proof-tree for the empty inconsistency in the s-induced subproblem, as shown
in Figure 3.7. For example, in the above figure, the node {xt <— g ,x2 «— g} in the
original three-proof-tree is replaced by the node {x2 <— g}, while {xi <— g. x2 <— g} is
inconsistent in the induced subproblem and {x2 g} is inconsistent in the s-induced
subproblem. /Is we can see, the root of the original three-proof-tree is extended to
variable x t , which is instantiated in t. The root has only one descendant {xt <— g)
at the level of x i. In the three-proof-tree for the s-induced subproblem, the above two
nodes are merged into one node e.

After the above operations, we have made a A-proof-tree for the empty inconsis
tency in P\st . Hence, we have the following result.

Lem m a 3.9 Given a CSP P and a consistent partial solution t, if P\\ is not empty
after achieving strong k-consistency, P\t is not empty either after achieving strong
k-consistency.

Lem m a 3.10 Given a CSP P and a partial solution t of P, if P\t is not empty
after achieving strong k-consistency, P is not empty either after achieving strong k-
consistency. Furthermore, for each variable x € vars(t), value t[x] m il not be removed
from the domain of x when achieving strong k-consistency on P.

Proof: Suppose P is empty after achieving strong ^-consistency. Thus there is a
A-proof-tree for the empty inconsistency in P. By removing all the nodes (and their
descendents) in the A-proof-tree that are invalid in P\t, i.e., the tuple has instantiated
a variable with a value not in its domain in P\t, we can construct a A-proof-tree for
the empty inconsistency in P\t. Therefore, P\t is empty after achieving strong A-
consistency. That leads to a contradiction. For each variable x E vars{t), suppose
value t[x] is removed from the the domain of x when achieving strong ^-consistency
on the original CSP, there is a A-proof-tree for (x <— t[x]} in P. Similarly, we can
construct a A-proof-tree for {x <— f[x]} in P\t by removing all the invalid nodes of
the original A-proof-tree. Therefore, the only value t[x] in the domain of x in the P |t

57

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

must be removed when achieving strong ^-consistency and thus P\t is empty after
achieving strong ^-consistency. That is a contradiction. |

C orollary 3.11 Given a CSP P and a consistent partial solution t of P, if P|* is
not empty after achieving strong k-consistency, P is not empty after achieving strong
k-consistency. Furthermore, for each variable x 6 vars(t), value t[x] will not be
removed from the domain of x when achieving strong k-consistency on P.

Proof: It is straightforward from Lemma 3.9 and Lemma 3.10. |

Lem m a 3.12 Given a CSP P, i f P is not empty after achieving strong k-consisttncy
and a value a € dom(x) is not removed from the domain of variable x in the re
sulting CSP, the s-induced CSP P|{x<_a} is not empty after achieving strong (k-IJ-
consistency.

Proof: Suppose P | |x<_a} is empty after achieving strong (fc-l)-consistency. Thus
there is a (Ar-l)-proof-tree for the empty inconsistency in P | |x+_a}. We now convert
the (fc-l)-proof-tree to a fc-proof-tree for {x <— a} in P. For each node t in the
original (A;-l)-proof-tree, t is replaced by t U {x <— a}. Thus the root of the tree
becomes {x «— a}. Furthermore, if t is not a leaf node in the original (fc-l)-proof-tree:
i.e., t is consistent in P | |x«_a}, it is easy to verify that t\ j{ x «— a} is consistent in P. If
t is a leaf node in the original (fc-l)-proof-tree; i.e., t is inconsistent in P|{x_„}. there
is a constraint C' in P | |x<_a} such that t does not satisfy C'. Let C' be the selection
and projection of the constraint C in P. Thus, t does not satisfy the constraint C
in P. Therefore, t U {x «- a} is inconsistent in P. Hence, we have constructed a
A:-proof-tree for (x a} in P and thus a will be removed from the domain of x when
achieving strong fc-consistency on P . That is a contradiction. |

MC* will extend the current node if the s-induced CSP by the current partial
solution is not empty after achieving strong ^-consistency. The node is thus called a
k-consistent node.

D efinition 3.5 (^-consistent node) A node t in the search tree is a ^-consistent
node i f the CSP s-induced by t is not empty after enforcing strong k-consistency.

Lem m a 3.13 I f node t is k-consistent, its ancestors are also k-consistent.

58

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

Proof: Let tf be one of t ’s ancestors. Because if C t, from Lemma 3.7, P*t =
Thus P\3t is an s-induced subproblem of P|£,. From Corollary 3.11. if

P\3t is not empty after achieving strong ^-consistency, P\st, is not empty either after
achieving strong ^-consistency. Thus t' is ^-consistent. |

The following theorem applies to the case of finding all solutions.

T heorem 3.14 MCk visits a node only if its parent is k-consistent. MCk visits a
node i f it is k-consistent.

Proof: The first part is true because MC* will not branch on this node if its parent
was found not strong fc-consistent. We prove the second part by induction on the
depth of the search tree. The hypothesis is trivial for j — 1. Suppose it is true for j
and we have a ^-consistent node t at level j + 1. Let the current variable be x. From
Lemma 3.13, t's parent t' at level j is ^-consistent. Thus MC* will visit t'. From
Lemma 3.7, P|* = (Pl?/)!!*^*]}- Because is not empty after achieving
strong ^-consistency, from Corollary 3.11. value f[x] will not be removed from the
domain of x when achieving strong ^-consistency in P\f,. As a consequence. MCfc will
visit t. |

A sufficient and necessary condition for MC* to visit a node t is: t's parent is
^-consistent and the value assigned to current variable by t has not been removed
from its domain when enforcing strong ^-consistency on t's parent.

T heorem 3.15 Given a CSP instance and a variable ordering strategy, MCk visits
all the nodes that MCk+i visits.

Proof: It is true from Theorem 3.14 and Lemma 3.10. |

3.4 Backjumping Interleaved w ith Consistency En
forcement

In this section, we first study the relation between MCk and BJ*. Kondrak and van
Beek [69] have shown that for binary CSPs, BJ (BJx) visits all the nodes that FC’
(MCj) visits. We can extend their result to the case of general CSPs.

L em m a 3.16 I f CBJ performs a one-level backjump from a higher level variable x t
to a low level variable Xh, the node t^ at the level of Xh is not one-consistent.

59

R e p ro d u c e d with p e rm iss ion o f th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

i fc-Ievel backjumping

/ conflicts set S,
- 0- - e

V
' l-level backjumping, i < k

_ _ ' conflicts set S.----------------------- -Q .------- . 0 ------------------------x;

Figure 3.8: A scenario in the CBJ backtrack search tree used in the proof of Lemma
3.17.

Proof: Let S* be the conflicts set of Xj used in the backjumping in which X/, is the
highest level variable. We will show that X* will experience a domain wipe out when
enforcing one-consistency on the s-induced CSP Pl^s,]- Each node tt at the level of
Xi is a leaf node; i.e., f* is inconsistent in P. Suppose f* does not satisfy constraint
C where X* 6 vars(C) and vars{C) C Si U {xj}. The selection of C in P\lk[s,\- which
constrains only one variable {xj}, should prohibit value fj[xj] of £i. Thus x, will
experience a domain wipe out when enforcing one-consistency on Pl^s,]- ^ ote that
P\sth is an s-induced subproblem of Plf^s,]- From Corollary 3.11, P\sth is empty after
enforcing one-consistency. Thus t/, at the level of x/, is not one-consistent. |

Lem m a 3.17 If CBJ performs a k-level backjump from a higher level uaiiable x, to
a low level variable x^, the current node th at the level of Xh is not k-consistent.

Proof: Let S,- be the current conflicts set of xt in which x^ is the highest level variable.
We will show that if there is a A:-level backjump from x, to x/,, then P|?h[stj is empty
after enforcing strong ^-consistency and thus t/, is not fc-consistent. We perform an
induction on k in the above statement, k = 1 is true from Lemma 3.16. Suppose
the hypothesis is true for the case of k — 1 but it is not true for the case of k. That
is, there is a Ar-level backjump from x* to x/,, but the s-induced CSP P\th{s,] is not
empty after enforcing strong fc-consistency. So there is at least one value a left in
the domain of xt after enforcing strong ^-consistency on We know that the
node ti at the level of Xj instantiating x, with a is either incompatible with f/,; i.e..
it is a leaf node, or /-level backjumped from some higher level variable Xj, for some

60

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

1 < I < k. ti cannot be a leaf node otherwise a will be removed from the domain of
Xi when enforcing strong ^-consistency. Let Sj be the conflict set of xr From the
hypothesis, the s-induced CSP j Is empty after achieving strong /-consistency.
Because the s-induced CSP P \ is not empty after achieving strong ^-consistency
and value a is not removed from the resulting CSP, from Lemma 3.12, the s-induced
CSP P ^ ^ u fn -a } *s not empty after achieving strong (Ar-l)-consistencv. Because
U [S j] C U {x <— a}, the s-induced CSP is not empty after achieving
strong (A:-Inconsistency. That leads to a contradiction. Thus P |th[Si] is empty after
achieving strong ^-consistency and th at the level of x h is not ^-consistent. |

T heo rem 3.18 Given a CSP instance and a variable ordering strategy, BJk visits
all the nodes that MCk visits.

Proof: We prove it by performing induction on the level of the search tree. If MC*
visits a node at level j in the search tree, BJ* will visit the same node, j = 1 is
trivial. Suppose that it is true for the case of j and we have a node t visited by MC*
at level j + 1. We know both MC* and BJ* will visit f:s parent at level j . The only
chance that t may be skipped by BJ* is that BJ* backjumps from some higher level
variable x* at level i to a low level variable xh at level h, such that h < j -i- 1 < i.
Thus the node at level h is not ^-consistent. Since the node at level h is an ancestor
of t and we know t’s parent is fc-consistent from Lemma 3.13. the node at level h is
fc-consistent. That is the contradiction. Therefore, BJ* will visit t at level k+ 1. |

We have proved that MC* always visits no more nodes than BJ*. When k = n.
because MCn, i.e., maintaining strong n-consistency in the search, can solve the
problem without backtracking [39], it always visits fewer nodes than CBJ. Thus the
more we check forward, the less we jump backward. Certainly, in most cases. MC*
will visit dramatically fewer nodes than CBJ does, but there are instances such that
it is exponentially worse than BJ*:+i. For instance, in Example 3.1, BJ*+l can be
exponentially better than MC*.

Presumably, MC* may be combined with backjumping, namely MQt-CBJ. pro
vided the conflicts sets are computed correctly after achieving strong ^-consistency
on the s-induced CSPs.

T h eo rem 3.19 Given a CSP instance and a variable ordering strategy, MCk visits
all the nodes that MCk-CBJ visits.

61

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

Figure 3.9: A hierarchy for BJ*, MCfc, and their hybrids in terras of the size of the
backtrack search tree.

P roof: Because MCfc-CBJ behaves exactly the same as MC* in the forward phase of
a backtrack search, it is easy to verify that MCfc-CBJ visits a node t only if t's parent is
^-consistent and the value assigned to the current variable by t was not removed from
its domain when achieving strong Ar-consistency on t ’s parent. Therefore. MCfc-CBJ
always visits no more nodes than MC* does. |

Consider Example 3.1 again. At each level of the backtrack tree, the instantiation
of each of the past variables removes one distinct value from the domain of the current
variable (because of the binary difference constraints), thus the conflicts set of the
current variable should include all the past variables. Therefore, there are no chances
for MCfc-CBJ to backjump in the specially constructed CSP so that MCfc-CBJ and
MCfc visit exactly the same nodes. Consequently, BJfc+i can be exponentially better
than MCfc-CBJ. Furthermore, because MCfc_i-CBJ can reach the second pigeon-hole

62

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

problem without encountering a dead-end, it can finally retreat from the second
pigeon-hole problem to the root of the backtrack search tree by backjumps. Thus.
MCfc_i-CBJ may be exponentially better than MCfc-CBJ.

In Figure 3.9, we present a hierarchy in term of the size of the backtrack search
tree, for BJfc, MC* and MCfc-CBJ. If there is a path from algorithm A to algorithm
B in the figure, we know that A always visits no more nodes than B does. Otherwise,
there are instances to show A may be exponentially better than B, and vice versa.

Although the benefits from backjumping are offset by the efforts of look-ahead.
FC-CBJ is a good trade-off between FC and CBJ and it may improve FC and CBJ by
orders of magnitude. Could the combination of CBJ with an algorithm maintaining a
stronger consistency still provide improvement? In the following, we will discuss the
combination of CBJ with MAC or GAC, which enforces a stronger consistency than
FC does.

3.5 Generalized Maintaining Arc Consistency with
Conflict-directed Backjumping (GAC-CBJ)

Maintaining arc consistency with conflict-directed backjumping for binary CSPs.
called MAC-CBJ, was proposed by Prosser [93]. Prosser's implementation of MAC-
CBJ is based on the AC3 algorithm for binary CSPs [75]. We present a generalized
version of MAC-CBJ, called GAC-CBJ.

3.5.1 Implementation
The pseudo code of GAC-CBJ is shown in Figure 3.10. GAC-CBJ can be viewed as
an integration of GAC in Figure 2.6 and FC-CBJ in Figure 2.7 with careful handling
of conflicts information in constraint propagation. Whenever value a of a future
variable y fails to find a valid support in a constraint and thus is removed from its
domain, GAC-CBJ needs to compute a no-good accountable for such a removal. To
ensure completeness, Prosser suggests that the conflicts sets be propagated along with
constraint propagation. The failure of y <— a to find a valid support in a constraint
C may be due to: (1) an instantiation of a past variable does not support y *— a in
C and thus the past variable should be added to the current conflicts set of variable
y, (2) a value of an uninstantiated variable x, which could be used to form a support
for a in C, is removed from its domain. Thus the current conflicts set of x. which
is accountable for current removings in the domain of x, should be merged in the

63

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

procedure restore(in current: integer);
1 x <— order[current];
2 for i current + 1 to n do
3 y <— order [i];
4 if c/iecfciny[x][y] = current th en
5 for each a £ dom(y) and domain[y][a\ = current do domain[y}[a\ <— 0;
6 for j <— 1 to current do
7 v order[/]; if c/iecA:my[t/][y] = current th e n checfciny[u][y] = 0;

procedure record_checking(in C : constrain t; in y: variable; in current: integer):
1 for each v £ vars(C) an d v £ y do
2 if instantiated[v\ th en
3 if checking[v][y] = 0 th en checking[v\[y\ <— current:
4 else
5 for i +- 1 to current do
6 x <— order[i];
7 if checking[x\[v\ ^ 0 and checking[x\[y] = 0 th e n checking[x\[y\ <— current:

function check_fonvard(in C: constra in t; in current: integer;
o u t fail: variable) : boolean;

1 y the uninstantiated variable in the scheme of constraint C; changed <— false:
2 for each a £ dom(y) surd domains[y\[a\ = 0 do
3 solution[y\ <— a;
4 if no t check_constraint(C. solution) th en
5 changed <— true; domains[y][a] <— current;
6 domain-countfy] domam_counf[y] — 1;
7 if changed th en
8 record.checking(C, y, current); push(y, S); fa il y;
9 if domainjcount[y\ = 0 th en re tu rn false else re tu rn true ;

function revise(in C: constra in t: in u: variable;
in current : integer; ou t fa il : variable) : boolean:

1 changed <— false;
2 for each a € dom(v) an d domains[v][a\ = 0 do
3 solution[v] <— a;
4 if n o t exists(C, v) th en
5 changed <— true ; domains[v][a] <— current;
6 domainjcount[v\ <— domain.count[v\ — 1;

7 if changed th en
8 record_checking(C, v, current); push(v, S); fa il <— v:
9 if domain jcount[v\ = 0 th e n re tu rn false else r e tu rn true ;

Figure 3.10: GAC-CBJ.

64

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

function consistent(in current : integer; ou t fa il : variable) : boolean:
1 S f— 0;
2 x <— order[current];
3 for each C E C and x 6 vars(C) do
4 if count juninst[C] = 1 then
5 if check_forward(C, current, fa il) then return false;
6 push(x, S);
7 while S 7̂ 0 do
8 y <- top(S); pop(S);
9 for each C E C and y E vars(C) do
10 if count-uninst[C] > 2 then
11 for each v E vars(C) and not instantiated.^] and v ± y do
12 if not revise(C, v, current, fa il) then return false;
13 return true;

function GAC-CBJ(in current : in teger): boolean;
1 if current > n th e n re tu rn true ;
2 x <r- get_next_var(cu rren t); order[current] = x:
3 update_constraint.counts(x);
4 for each a E dom(x) and domains[x\[a\ = 0 do
5 solution[x] <— a;
6 in sta n tia ted ^ <— true;
7 if consistent(current, fa il) th en
8 j «— GAC_CBJ(current + 1);
9 if j ^ current th en
10 restore(current);
11 instantiated[x] <— false;
12 restore_constraint_counts(x);
13 r e tu rn j\
14 else
15 cs[x] cs[x] U { y | instantiated[y] and checking[y][fail] # 0};
16 restore(cu rren t);
17 instantiated[x\ <— false;
18 cs[x] <r- cs[x] U { y | instantiated[y\ and checking[y][x] ^ 0};
19 j <— max{ i \ 1 < i < current and order[i] E cs[xj };
20 cs[order[j]] (cs[order[j]] U cs[x|) — {order [j]};
21 for i <— j + 1 to current do cs[order\i]] <— 0;
22 restore_constraint.counts(x);
23 re tu rn j;

Figure 3.10: GAC-CBJ.

65

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

current conflicts set of y. Procedure record-checking in GAC-CBJ records all the
above conflicts information in the checking data structure for y. Of course, the
conflicts set built in such a way is far from minimal. However, to compute a smaller
conflicts set in constraint propagation is not straightforward.

Bessiere and Regin show in experiments on random binary CSPs that MAC-CBJ
does not provide noticeable improvement over MAC [16]. Moreover, the run time
performance of MAC-CBJ is usually worse than the performance of MAC. Thus they
conclude that CBJ becomes useless to MAC except for some sparse CSPs. What may
affect the performance of the backjumping? We know that a “good” dynamic variable
ordering may degrade the improvement of the backjumps. Besides the influence of
the heuristics, in random CSPs, the conflicts sets used to backjump in MAC-CBJ
are more likely to be saturated with all the past variables because the conflicts sets
are propagated along with constraint propagation, so that MAC-CBJ most of the
time performs a chronological backtracking. Grant and Smith [59] have studied the
phase transition behavior of MAC and MAC-CBJ on several classes of random binary
problems. They observe in experiments that the behavior of MAC and MAC-CBJ are
very similar at the median and higher percentile levels apart from the maximum, for
all random problem classes. This suggests that CBJ’s biggest effect be on the most
difficult problems, and that its performance be otherwise similar to chronological
backtracking when a dynamic variable ordering is used. They observe that MAC-
CBJ does significantly reduce the difficulty of the exceptionally hard problems (ehps)
[103] that MAC finds in the populations of the random problems in the experiments.
A sparse random CSP is more likely to be an instance of ehps and it has been observed
that CBJ is a useful technique to decrease the abnormal behaviors in ehps [10].

3.5.2 Empirical Evaluations
In the following, we evaluate GAC-CBJ over several domains of problems, besides the
random CSPs. Bessiere and Regin’s conclusion for MAC-CBJ is based on empirical
evaluations on random binary CSPs. However, the random problems used in their
experiments are out-dated. For example, they compare the performance of MAC-
CBJ and MAC on the problems used by Frost and Dechter in 1994 [49], while these
problems can be solved in less than 0.01 seconds in a 400 MHz Pentinum II computer.
Thus, such a comparison is less meaningful given today’s computational power. Note
that MAC was once evaluated to be worse than FC-CBJ on some instances which
were hard in the past and can be easily solved today. So, could it be possible that

66

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

GAC-CBJ can produce noticeable improvements over GAC on harder problems? In
this section, we compare the performance of GAC and GAC-CBJ on two sets of "real”
hard non-binary random problems. Our experimental results show that GAC-CBJ
is usually 10% slower than GAC on the dense problems, but GAC-CBJ can provide
noticeable improvements over GAC on the sparse problems.

Furthermore, real world problems are very different to random binary CSPs. Real
world problems are often more naturally represented as non-binary CSPs. Their
CSP formulations tend to be structured; i.e., some variables are more likely to be
constrained with each other, and the constraints rendered in the CSP are not ran
domly generated either. These problems are hard to solve because of the extremely
huge search space to be explored. For example, in a CSP formulation for a logistics
problem, there are hundreds of variables, and each variable may take tens of values.
On the other hand, there are few constraints compared to the number of variables.
There could be many solutions to the logistics problem because of the symmetries
and parallelism among the planning actions. Thus the CSP is not in the "phase
transition region” of the random CSPs. The question is: how can we quickly find one
solution? So it is critical for any backtrack algorithm to efficiently prune the search
space and avoid the thrashing searches. Intuitively, there are opportunities for an
algorithm that performs more checks and uses a backjumping technique to improve
the search. In fact, the improvement of look-back techniques to planning problems
has been observed by Bayardo and Schrag [11]. They first model a planning problem
as a SAT problem, then solve the SAT problem by the well-known Davis-Putnam
[27] algorithm, the SAT version of maintaining arc consistency, along with advanced
general heuristics for SAT problems. Most importantly, they use backjumping and
learning mechanisms in the backtrack search. These enhancements have been shown
to significantly improve the problem solving. So it is still too early to say that CBJ is
useless to GAC. One reason that Bessiere and Regin did not test MAC-CBJ on real
world problems may be due to an implementation of MAC-CBJ for general CSPs was
not available. The generalization of MAC-CBJ to GAC-CBJ enables us to test several
real world problems, the planning problems and the crossword puzzle problems. Our
experimental results lead us to differ with their conclusion for GAC-CBJ. Although
GAC-CBJ does not improve GAC on relatively easy instances, the overhead is al
most negligible. However, we do observe that GAC-CBJ can provide several orders
of magnitude improvement over GAC on some harder instances.

67

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

Table 3.1: Time(seconds) to solve 100 instances of (100,3,3,300.0.73) problems.

dom+deg dom/deg
GAC GAC-CBJ GAC GAC-CBJ

1 25.53 32.04 16.87 21.28
2 6.32 7.87 0.12 0.18
3 0.02 0.02 0.12 0.14
4 10.80 13.63 10.36 12.75
5 6.68 8.45 5.42 6.98
6 18.74 23.67 8.25 10.56
7 1.71 2.31 1.43 1.84
8 0.22 0.31 0.60 0.80
9 0.45 0.62 1.77 2.20
10 15.82 19.78 4.93 6.32

Average 13.55 17.32 7.00 8.90

R andom C SPs

Both Bessiere and Regin’s evaluation of MAC-CBJ, and Grant and Smith’s study
of the phase transition behavior of MAC-CBJ use binary random CSPs. because
MAC-CBJ is only applicable to binary CSPs. As we may expect. GAC-CBJ will
not provide much improvement over GAC on non-binary random CSPs. As the
constraints become non-binary, the “saturation” problem of the conflicts sets is even
worse because the conflicts sets of more uninstantiated variables are propagated along
with the constraint propagation.

Table 3.1 and Table 3.2 show the run time performance of GAC and GAC-CBJ
on two sets of randomly generated non-binary CSPs. Each set contains 100 random
instances. The tables show the run time performance of the algorithms on the first 10
instances from each set and the average on all instances. A set of random problems
is defined by a 5-tuple (n ,d ,r,m ,q), where n is the number of the variables, d is the
uniform domain size, r is the uniform arity of the constraints, m is the number of
randomly generated constraints, and q is the uniform tightness of the constraints. The
constraint tightness q is chosen to make about half of the instances in the population
to be insoluble, i.e., q is in the phase transition region. Two dynamic orderings are
used to solve the problems. One is the popular dom+deg heuristic which chooses the
next variable with the minimal domain size and breaks ties by choosing the variable
with the maximum static degree, i.e., the number of the constraints that constrain

68

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

Table 3.2: Time(seconds) to solve 100 instances of (300,5,3,300,0.25) problems.

dom+deg dom/deg
GAC GAC-CBJ GAC GAC-CBJ

1 87.99 102.10 3.25 4.88
2 437.10 559.40 101.30 144.10
3 546.90 573.70 9.37 13.24
4 392.00 524.50 12.94 19.22
5 1277.00 600.60 1.91 2.10
6 0.33 0.27 0.11 0.15
7 11980.50 2522.00 22.89 34.70
8 27015.32 2713.00 0.73 1.01
9 787.40 577.40 31.64 44.12
10 11.32 11.98 0.76 0.97

Average 2617.59 1112.87 29.67 43.18

that variable. The other is the dom/deg heuristic proposed in [16] which chooses the
next variable with the minimal value of the domain size divided by its degree. The
experiments were run on 400 MHZ Pentinum II’s with 256 Megabytes of memory.
The problems in (100,3,3,300,0.73) are relatively dense, in which GAC-CBJ is not
expected to perform better than GAC. As we can see from the above tables. GAC-
CBJ in general is about 30% slower than GAC in solving the problems, under both
dynamic variable orderings. In contrast, the problems in (300.5.3.300.0.25) an* in
general very sparse. As Bessiere and Regin suggest in [16], GAC-CBJ is more likely
to provide improvements over GAC on these problems. For example, under dom+deg
heuristic, GAC-CBJ ran an order of magnitude faster than GAC to solve instances
7 and 8. Under dom/deg, both algorithms can solve the problems very quickly, and
GAC-CBJ is generally about 40% slower than GAC.

Although GAC-CBJ could provide remarkable improvements on some sparse CSPs.
in our experiments, it is usually 30% to 40% slower than GAC, thus it is question
able whether in practice we should pay the 40% overhead of CBJ enhancement to
GAC and hope that it will sometimes produce significant savings. Nevertheless, the
first implementation of GAC-CBJ can be improved. In the original version of GAC-
CBJ, procedure record-checking takes 0(rn) steps to record the conflicts information
generated in the constraint propagation, and procedure restore takes 0 (n 2 + nd)
steps to restore the domains and conflicts information in a backtracking step. As the

69

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

procedure restore(in current: integer);
1 x «— order[current\;
2 for i <— curren t + 1 to n do
3 y i— order[i];
4 if checking[x][y] = cu rren t then
5 for each a € do m (y) and domain[y][a] = curren t do domain[y][a] «— 0;
6 top <— c/iecA:m(/Jop[(/];
7 while top > 0 and checking[checking.set[y\[top\\[y\ = curren t do
8 checking[checking-set[y][checking.top[y]}}[y\ «— 0:
9 checking.top[y\ checkingJtop[y\ — 1;
10 top «— checking.top[y\;

procedure record_checking(in C : constraint; in y: variable; in current: integer)
1 for each v 6 va rs(C) and v ^ y do
2 if in s tan tia ted [v] then
3 if checking[v][y] = 0 then
4 checking[v][y] current;
5 checkingJop[y] <— checkingJop[y\ + 1;
6 top i— checking.top[y}; checking.set[y][top\ v;
7 else
8 for i <— 1 to checking Jop[v\ do
9 if checking[checkingset[v][i]][y\ = 0 then
10 checking[checkingset[v][i\}[y] <- current:
11 checkingJop[y] •<— checkingJtop[y\ + 1;
12 top <— checkingJop[y}; checking[y][top] checking.set[v][i\:

Figure 3.11: Improved GAC-CBJ implementation.

70

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

above two procedures are called very frequently in the backtrack search, the original
implementation will cause noticeable overhead in the overall performance. For ex
ample, when we profile the execution of GAC-CBJ to solve the first instance of the
(300,5,3,300,0.25) problems under dom+deg heuristic, the profiling result shows that
the overhead on recordjchecking and restore procedures accounts for about 40% of
the total run time. However, it is not necessary that it be so expensive to maintain the
conflicts and domains information if the sizes of the conflicts sets found in the back
track search are much smaller than the number of the variables n. As shown in Figure
3.11, the overhead in the above two procedures can be reduced by using two auxiliary
data-structures, checking.set and checkingJop. Remember that the data-structure
checking implements a table representation of the conflicts information founded in
the forward phase of the backtrack search; i.e., checking[x][y] = 1 indicates that the
instantiation of the past variable x has caused some of the values in the domain of the
future variable y to be pruned, while checking s e t and checkingJop implement a list
representation of the above conflicts information, in which checking.top[y] denotes the
number of the past variables x such that checking[x\[y\ = 1 and checking.set[y\[\\, —
and checking.set[y][checking.top[y]\ record each of these variables. Again, we profile
the execution of the new implementation of GAC-CBJ on the same instance men
tioned above. The profiling result shows that the overhead on recordjchecking and
restore has been reduced to 13.6% of the overall run time.

We use the improved implementation of GAC-CBJ to solve the same set of prob
lems in the above. The results are shown in Table 3.3 and Table 3.4. On the dense
(100,3,3,300,0.73) problems, GAC-CBJ is still slower than GAC. but the difference
in their performance is reduced to less than 10%. As we can see in Table 3.3. the
performance of the improved GAC-CBJ is generally better than the one of the origi
nal GAC-CBJ. On the sparse (300,5,3,300,0.25) problems, the improved GAC-CBJ
ran faster than GAC on the first 1 0 instances under dom+deg heuristic, and under
dom/deg heuristic, the difference between GAC and GAC-CBJ is reduced to less than
1 0 %.

Planning Problem s

The constraint programming approach to planning problems is a relatively new but
promising field of study. It is not surprising that a constraint planner can do much
better in the planning domains, as the SAT methods have been successfully applied
to solve some real world planning problems [6 6 , 67]. In the constraint programming
methodology we formulate a planning problem as a CSP in terms of variables, do-

71

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

Table 3.3: Time(seconds) to solve 100 instances of (100,3,3,300,0.73) problems.

dom+deg dom/deg
GAC GAC-CBJ GAC-CBJ GAC GAC-CBJ GAC-CBJ

original improved original improved
1 25.53 32.04 27.62 16.87 21.28 18.58
2 6.32 7.87 6.77 0 . 1 2 0.18 0.15
3 0 . 0 2 0 . 0 2 0 . 0 2 0 . 1 2 0.14 0.13
4 10.80 13.63 1 1 . 8 8 10.36 12.75 11.18
5 6 . 6 8 8.45 7.28 5.42 6.98 6 . 0 2

6 18.74 23.67 2 0 . 2 0 8.25 10.56 9.14
7 1.71 2.31 1.96 1.43 1.84 1.59
8 0 . 2 2 0.31 0.25 0.60 0.80 0.67
9 0.45 0.62 0.52 1.77 2 . 2 0 1.90

1 0 15.82 19.78 17.07 4.93 6.32 5.51

Average 13.55 17.32 14.92 7.00 8.90 7.73

Table 3.4: Time(seconds) to solve 100 instances of (300,5,3,300,0.25) problems.

dom+deg dom/deg
GAC GAC-CBJ

original
GAC-CBJ
improved

GAC GAC-CBJ
original

GAC-CBJ
improved

1 87.99 1 0 2 . 1 0 70.83 3.25 4.88 3.61
2 437.10 559.40 385.00 101.30 144.10 101.80
3 546.90 573.70 414.10 9.37 13.24 1 0 . 1 2

4 392.00 524.50 357.80 12.94 19.22 13.95
5 1277.00 600.60 452.60 1.91 2 . 1 0 1.75
6 0.33 0.27 0 . 2 2 0 . 1 1 0.15 0 . 1 2

7 11980.50 2522.00 1799.00 22.89 34.70 25.22
8 27015.32 2713.00 1900.00 0.73 1 . 0 1 0.79
9 787.40 577.40 409.40 31.64 44.12 33.66

1 0 11.32 11.98 9.24 0.76 0.97 o.so

Average 2617.59 1112.87 823.52 29.67 43.18 32.23

72

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

mains, and constraints. The choice of the variables and domains defines the search
space and the choice of the constraints defines how the search space can be reduced in
a backtrack search. A state space formulation is to model each state by a collection
of variables. For example, in the logistics problem, we define the following variables
for each state St: packageu, truckJit, and plane^t, where i, j, k range over the number
of packages, trucks and planes, respectively and t ranges over the number of steps
in the plan. The domain of a package variable includes all possible locations for the
package, trucks and planes that may be used to deliver the package. Assigning a
package variable a location means the package is at that location in that state and
assigning a package variable a truck means the package is in that truck in that state.
The basic constraints enforce the assignments of variables to represent a consistent
state or a valid transition between states. The essence in the constraint planner is
to use domain knowledge, in terms of redundant constraints, to improve the back
track search. Most of the constraints are non-binary and represented intensionally as
functions which return true or false, given a set of assignments to the variables in the
scheme of the constraint. The compact representation of constraints is one advantage
of the constraint planner to the SAT planner, which needs to convert each tuple in
a constraint into clauses and thus demands a large amount of space to store those
clauses.

Given a CSP formulation of the planning problem, we then need to determine
which algorithm should be used to solve the CSP. Table 3.5 shows the comparison
between GAC and GAC-CBJ in solving 35 instances of logistics problems. Each
instance was tried to be solved within 20 hours of CPU time. Two heuristics are tested
in the experiments, dom+deg and dom/deg. On about one third of the instances.
GAC-CBJ has sh o w improvement over GAC. The improvement is even significant
on the hard instances. For example, on instance 18,20 and 27, GAC-CBJ ran several
orders of magnitude faster than GAC, and on instance 15, GAC ran out the 2 0

hours limit but GAC-CBJ can find a solution within 3 minutes. GAC-CBJ and GAC
perform similarly on easier instances and sometimes GAC-CBJ is about 10% slower
than GAC.

The improvement of GAC-CBJ may be partly ascribed to the variable ordering
used in the backtrack search. A wrong decision at an early stage in the backtrack
search will lead GAC to exhaustively explore an insoluble subproblem. GAC-CBJ
has the ability to identify the source of inconsistencies and escape the insoluble sub
problem more quickly. However, in our experiments, both heuristics gave similar
results. One reason is that adding redundant constraints has dramatically changed

73

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

Table 3.5: Time (seconds) to solve logistics planning problems. The absence of an
entry indicates that the problem was not solved correctly within the given resource
limits.

dom+deg dom/deg
GAC GAC-CBJ GAC GAC-CBJ

1 0.03 0.03 0.03 0.03
2 0.03 0.05 0.03 0.06
3 10.91 0 . 8 6 9.63 0.81
4 0.16 0.17 0.14 0.18
5 1.51 1.54 1.54 1.57
6 36.49 16.86 35.77 16.76
7 0.08 0.08 0.08 0.09
8 0.15 0.15 0.14 0.16
9 0.30 0.33 0.32 0.33

1 0 .

1 1 0.04 0.05 0.05 0.05
1 2 0 . 1 1 0.13 0 . 1 1 0 . 1 1

13 0.54 0.57 0.54 0.56
14 0.63 0.64 0.64 0 . 6 8

15 ♦ 182.51 • 8540.58
16 12.49 0.42 12.32 0.41
17 264.46 0.32 261.33 0.32
18 15382.82 1165.54 15157.71 1184.67
19 1.29 1.37 1.33 1.31
2 0 6268.16 27.66 6125.87 28.55
2 1 0 . 6 6 0.70 0 . 6 8 0.74
2 2

23 . .

24 0.08 0.09 0.08 0.09
25 34.03 13.03 11.58 1 2 . 1 0

26
27 12239.26 47.06 12105.62 47.76
28 * ,

29 * .

30 * - • -

74

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

Table 3.6: Time (seconds) to solve blocks planning problems. The absence of an entry
indicates that the problem was not solved correctly within the given resource limits.

dom+deg do m/ deg
GAC G AC-CBJ GAC GAC-CBJ

1 0.11 0.11 0.12 0.12
2 1.28 1.46 1.17 1.35
3 105.44 86.96 126.98 127.41
4 11712.28 11116.15 21534.81 21199.86

the structure of the CSP formulation. For example, we can increase the degree of a
variable by adding more redundant constraints on that variable. Thus the heuristics
depending on the degree of a variable may not work properly under our formulation
of the problem. Unless there is a more precise and domain dependent heuristic, the
general heuristics cannot help GAC to step away from a wrong decision at an early
stage. GAC-CBJ is relatively robust to the heuristics as it can rescue a bad decision
using backjumpings. This may be an advantage in problems where we do not have
much domain knowledge a priori.

We ran the same experiments on the blocks world planning problems. The results
are shown in Table 3.6. It worth noting that the run time performance of the original
implementation of GAC-CBJ on these problems was about twice that of GAC. while
the improved GAC-CBJ ran faster than GAC on the hard instances. In this domain.
GAC-CBJ does not produce huge savings. A deep analysis shows that there are
some large jumps during the execution of GAC-CBJ. but the skipped variables were

usually instantiated with the last value in their domains. Thus the savings are not
large. One explanation for the difference of GAC-CBJ’s behavior between the logistics
problems and the blocks world problems is that the variables in the formulations of
the blocks world problems have smaller domains, usually 4 values, than those in
the logistics problems which may take 30 values. In fact, the logistics problems are
very different from the blocks world problems. In a logistics problem, the whole
planning task can be easily decomposed into several relatively independent sub-tasks.
For example, the packages within different cities are competing for different trucks.
These relatively independent sub-tasks provide many chances for CBJ to backjump
and produce savings. In the blocks world problem, all the blocks are competing for one
robotic arm. Thus it is not obvious that the whole planning task can be decomposed
into several smaller sub-tasks.

75

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

Table 3.7: Time (seconds) to solve gripper planning problems. The absence of an
entry indicates that the problem was not solved correctly within the given resource
limits.

dom+deg dom/deg
GAC GAC-CBJ GAC GAC-CBJ

1 0 . 0 1 0 . 0 1 0 . 0 0 0 . 0 0

2 0.03 0.03 0.03 0.03
3 0.08 0.07 0.06 0.08
4 0.15 0.16 0.13 0.14
5 0.27 0.29 0.23 0.27
6 0.43 0.48 0.39 0.42
7 0 . 6 8 0.76 0.59 0 . 6 6

8 1 . 0 2 1.13 0.87 0.96
9 1.45 1.62 1 . 2 1 1.36

1 0 2 . 0 2 2.25 1 . 6 6 1.90
1 1 2.74 3.06 2 . 2 2 2.53
1 2 3.62 4.04 2.90 3.33
13 4.71 5.26 3.72 4.28
14 6 . 0 0 6.70 4.73 5.44
15 7.55 8.43 5.87 6.75
16 9.37 10.47 7.22 8.36
17 11.51 12.87 8.79 10.17
18 13.97 15.65 10.63 12.33
19 16.81 18.86 12.67 14.73
2 0 20.09 22.52 15.04 17.62

Table 3.8: Time (seconds) to solve grid planning problems. The absence of an entry
indicates that the problem was not solved correctly within the given resource limits.

dom+deg dom/deg
GAC GAC-CBJ GAC GAC-CBJ

1 0 . 6 6 0 . 6 8 1.58 0 . 8 6

2 762.47 33.33 3965.10 321.17
3 .

4 • 1753.13 .

5 * • * *

76

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

Table 3.9: Time (seconds) to solve 5x5 crossword puzzle problems. The absence of an
entry indicates that the problem was not solved correctly within the given resource
limits.

dom+deg dom /d eg
UK Linux UK Linux

GAC G A C -C BJ GAC G A C -C BJ GAC G A C -C B J GAC GAC-CBJ
1 1.40 1.45 1.24 1.21 1.37 1.45 1.21 1.21
2 1.05 1.10 0.28 0.29 1.03 1.05 0.29 0.29
3 0.93 0.91 0.30 0.30 0.88 0.91 0.29 0.29
4 0.85 0.84 0.19 0.19 0.81 0.82 0.20 0.20
5 0.74 0.71 0.17 0.18 0.73 0.73 0.17 0.17
6 0.94 0.95 0.38 0.39 0.95 0.95 0.37 0.39
7 0.94 0.93 0.35 0.36 0.93 0.96 0.34 O.L'4
8 0.88 0.92 0.31 0.32 0.89 0.89 0.32 0.32
9 0.77 0.78 0.21 0.20 0.80 0.78 0.20 0.19
10 0.70 0.75 0.17 0.17 0.71 0.73 0.18 0.16

We tested the other two planning problems, the gripper problems and the grid
problems. The gripper problems are easy to solve due to the use of domain knowledge
in the formulation. Generally GAC-CBJ is about 10% slower than GAC. as shown in
Table 3.7. The grid problems are much harder. As we can see in Table 3.8. two out
of five instances cannot be solved by both algorithms in 20 hours. GAC-CBJ shows
improvement on the grid problems. For example, it can solve problem 4 in about half
an hour, but GAC failed to find a solution in 2 0 hours.

Crossword Puzzle Problem

The crossword puzzle problem is different from the planning problems we tested above.
An instance of a crossword puzzle problem is shown in Example 4.3. As we know, there
are at least 3 practical ways to formulate the problem, to give each letter a variable and
set a non-binary constraint for each word in the puzzle to enforce the letters forming
a legal word, or to transform the above formulation to the dual representation or
hidden representation. In its original formulation, the domain of a variable consists
of 26 letters, from a to z. The arity of a constraint reflects the length of the word
that the constraint represents. For example, a word of 10 letters will result in a
10-ary constraint over those letter variables. The tuples in the non-binary constraint
represent the words that are of the same length as the arity of the constraint in a pre
defined dictionary. The number of tuples ranges from 5000 to 30000 according to the

77

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

Table 3.10: Time (seconds) to solve 15x15 crossword puzzle problems. The absence of
an entry indicates that the problem was not solved correctly within the given resource
limits.

dom+deg dom/deg
UK Linux UK Linux

GAC GAC-CBJ GAC GAC-CBJ GAC GAC-CBJ GAC GAC-CBJ
1 18.79 19.13 112.70 114.80 25.71 25.73 12.06 11.72
2 30.30 30.54 345.00 339.20 35.30 35.58 129.10 126.58
3 26.30 27.90 9.50 9.40 29.13 29.59 13.72 13.29
4 16.95 17.26 3261.20 2082.80 18.42 18.74 .

5 19.11 19.76 7.50 7.60 31.34 31.42 8 . 2 0 8 . 1 0

6 41.58 42.27 10021.50 8910.70 74.93 75.10 9963.14 9593.49
7 123.17 124.15 14319.40 13170.80 33.22 33.68 29051.51 2422.66
8 18.55 18.77 9.10 9.30 19.00 19.58 7.60 7.79
9 22.82 23.28 8.30 8.60 21.79 22.27 8.56 8.67

1 0 39.93 41.05 • 36.62 37.64 12110.76 1239.8.72

Table 3.11: Time (seconds) to solve 19x19 crossword puzzle problems. The absence of
an entry indicates that the problem was not solved correctly within the given resource
limits.

dom+deg dom/deg
UK Linux UK Linux

GAC GAC-CBJ GAC GAC-CBJ GAC GAC-CBJ GAC GAC-CBJ
1 59.06 60.72 24.54 24.92 59.90 61.96 21.81 22.41
2 46.72 47.82 . . 59.35 60.29 *

3 70.87 72.58 . 76.64 77.24 .

4 30.89 31.82 . * 32.58 33.22
5 26.87 27.76 . 27.48 28.08 • 547.92
6 46.23 47.41 15.35 15.60 41.03 41.78 15.08 15.30
7 40.43 41.04 14.08 14.55 44.03 44.58 51.46 22.53
8 44.54 45.44 • 35.40 50.37 51.02 • 42.00
9 29.54 30.14 9.04 9.41 36.07 36.28 • 37.46

1 0 30.90 31.58 9.02 9.30 42.36 42.09 7.95 8.15

78

R e p ro d u c e d with p e rm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

Table 3.12: Time (seconds) to solve 21x21 crossword puzzle problems. The absence of
an entry indicates that the problem was not solved correctly within the given resource
limits.

dom+deg dom/deg
UK Linux UK Linux

GAC GAC-CBJ GAC GAC-CBJ GAC GAC-CBJ GAC GAC-CBJ
1 86.36 88.67 * . 12963.30 238.00
2 109.29 108.69 * . 94.87 97.40
3 92.33 87.75 69.20 70.81 85.10 8 6 . 0 1 98.97 99.70
4 202.54 206.07 . 8779.56 2122.34
5 127.76 128.41 . 109.89 110.93
6 86.77 87.65 • 77.36 97.08 98.00
7 93.26 95.89 98.05 89.23 94.81 96.89 43.54 41.37
8 76.33 78.84 30.65 31.13 92.88 95.21 37.73 37.43
9 114.79 119.22 77.14 55.62 101.07 100.26 52.97 53.08

1 0 2093.13 950.52 • • 23367.88 586.87 • •

Table 3.13: Time (seconds) to solve 23x23 crossword puzzle problems. The absence of
an entry indicates that the problem was not solved correctly within the given resource
limits.

dom+deg dom/deg
UK Linux UK Linux

GAC GAC-CBJ GAC GAC-CBJ GAC GAC-CBJ GAC GAC-CBJ
1 • 158.05 0.14 0.16 59.27 60.13 0.14 0.16
2 97.65 101.87 40.25 41.47 100.34 100.71 59.54 59.80
3 142.65 149.98 * 167.95 168.75
4 181.62 190.01 324.40 325.81
5 128.57 133.92 70.73 74.07 220.34 224.20 69.9 72.31
6 • 24642.63 609.70 607.88 .

7 112.85 117.80 * 183.11 175.09 . .

8 496.64 511.62 . . • 293.30
9 289.43 291.44 . 534.76 541.41 .

1 0 • • • • 2855.66 2921.58 - *

79

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

dictionaries we used in the experiments. These constraints are very tight compared
to all possible combinations of 26 letters. In the dual representation, each word in
the puzzle is represented by a dual variable and thus the domain of a dual variable
may have 5000 to 30000 values. A dual constraint enforces the instantiations of a pair
of dual variables agreeing on their intersecting letter. In the hidden representation,
each of the letters and each of the words in the puzzle are given a variable. A
hidden constraint enforces an assignment of a letter variable to be compatible with
an assignment of a word variable.

The original formulation, however, cannot be used to test GAC and GAC-CBJ,
because of the large arity of the non-binary constraints. For example, a generic ap
proach to seek a valid support for a value in the constraint propagation is to enumerate
all possible value combinations and return the first support in the list. To revise a
non-binary constraint over 1 0 letter variables, the number of value combinations is
2610, and because the non-binary constraint is very tight, it is rare to encounter a
valid support in the list. The number of potential enumerations is too large to be
accepted.

Therefore, all experiments were run on the dual representation of the puzzle prob
lem. Both GAC and GAC-CBJ use some specialized routines to take advantage of the
dual constraints and thus speed up the constraint propagation. We use two dictionar
ies to solve the problem: the UK dictionary, which collects about 2 2 0 . 0 0 0 words and
in which the largest domain for a word variable contains about 30,000 values, and the
Linux dictionary, which collects 45,000 words and in which the largest domain for a
word variable has about 5,000 values. Although use of a larger dictionary increases
the size of search space, the number of solutions also increases. Generally the use
of a larger dictionary makes the problem easier to solve. We tested 5 sets of puzzle
instances, ranging from the easiest 5x5 puzzles, to the hardest 23x23 puzzles. Two
heuristics, dom+deg and dom/deg, were used in the experiments.

The experimental results are shown in Table 3.9 to Table 3.13, each presenting
the results for a set of instances. There are no noticeable difference between the
performance of GAC and GAC-CBJ on smaller and easier puzzle problems, such as
5x5 ones. For 15x15 puzzles, GAC-CBJ runs an order of magnitude faster than GAC
on instance 8 under dom/deg heuristic with the Linux dictionary. For other instances,
the two algorithms perform similarly. The noticeable difference shows up on 19x19
puzzles. Those problems become hard for the Linux dictionary, as there are several
absences in Table 3.11 for the Linux dictionary under both heuristics. With dom+deg
heuristic, GAC-CBJ found a solution in less than one minute for instance 8 while

80

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

GAC failed to solve the problem in 2 0 hours CPU time. With dom/deg heuristic,
the difference is even more dramatic, GAC-CBJ found a solution very quickly for
instance 5, 8 and 9, while GAC ran out of the time limit on these instances. 19x19
puzzles formulated with the UK dictionary are not hard as both algorithms can solve
them very quickly under both variable ordering heuristics. The 21x21 and 23x23
puzzles are too hard for the Linux dictionary. Both algorithms time out in solving
these instances. The difference in behaviors between GAC and GAC-CBJ shows up
for the UK dictionary. We observed orders of magnitude improvement by GAC-
CBJ on instance 1 , 4, and 10 under dom/deg heuristic for those 21x21 puzzles. On
23x23 puzzles, GAC was more likely to time out but GAC-CBJ still could solve all
the instances under dom/deg heuristic within 20 hours time limit. The cases that
GAC-CBJ improves GAC are not rare, especially for hard problems. For example.
GAC-CBJ can solve three out of ten 19x19 puzzles within 10 minutes with the Linux
dictionary under dom/deg heuristic, which cannot be solved by GAC within the time
limit.

3.6 Summary

We have given some theoretical evidence to show that look ahead techniques are
counterproductive to backjumping. In general, there is a close relation between an
algorithm maintaining strong ^-consistency and a backjumping algorithm doing a
limited level of backjumps. Then we presented our implementation of GAC-CBJ. a
generalized version of MAC-CBJ on general CSPs. Experimental results show that
GAC-CBJ can significantly improve the backtrack search on large, hard real world
problems, and the overhead of CBJ on those easy instances is negligible.

81

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

Chapter 4

Dual and Hidden Transformations
w ith Consistencies

The dual and hidden transformations are two general methods to convert a non-binarv
CSP into an equivalent binary CSP. The dual graph representation was introduced
to the CSP community by Dechter and Pearl in the tree clustering method [38], and
the basic idea comes from research in relational databases [79]. The hidden vari
able transformation has an even longer history. Peirce formally proved, in the field
of philosophic logic, that binary and non-binary relations have the same expressive
power [8 8], and Peirce’s method for representing a non-binary relation with a collec
tion of binary relations forms the foundation of the hidden variable method. Recently.
Rossi et al showed that that a non-binary CSP is equivalent to its dual and hidden
transformations under various definitions of equivalence in [95]. In the past, because
such conversions exist between a non-binary CSP and its equivalent binary CSP rep
resentation, most solving techniques for CSPs have been restricted to binary CSPs.
Moreover, the dual and hidden transformation methods are widely used in modeling
practice and problem solving. For example, Freuder had used an incremental version
of the dual method in a solution synthesis method [42]. Dechter shows how to repre
sent any non-binary relation with binary relations using hidden variables that have
bounded domain sizes [33].

4.1 Definitions

In the dual transformation, the constraints of the original problem become variables
in the new representation. VVe refer to these variables, which represent the original
constraints, as dual variables, and the variables in the the original CSP a.s onluuin/

82

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

C l

Figure 4.1: The dual transformation of the CSP in Example 1 . 1

variables. The domain of each dual variable is exactly the set of tuples that satisfy
the original constraint and there is a binary constraint between two dual variables iff
two original constraints share some variables. We refer to the binary constraints as
dual constraints. A dual constraint prohibits pairs of tuples which do not agree on
the shared variables.

Definition 4.1 (dual transformation) Given a CSP instance P = [V.V.C). its
dual transformation dual(P) = (y dualip)̂ X>duâ p\C dual(p)) is defined as:

• Vdual{P) = (c i , . . . , Cm} and they are called dual variables. Each dual variable c,
corresponds to a unique constraint Ci £ C. In the following discussion, we may
use vars(ci) and rel(Ci) to denote their correspondences vars(Ci) and rel(Ci)
respectively if there are no ambiguities,

• 'Ddual(p) — [dom(ci) , . . . ,dom(Cm)} is the set of domains for the dual variables.
For each dual variable Ci, dom(ci) = rel(Ci), i.e.. each value for Ci is a tuple
over vars(Ci),

• Cdual(p) is a set 0f binary constraints over y Juai(p) and they are called dual
constraints. There is a dual constraint between dual variables Ci and Cj if
vars(ci) fl vars(cj) / 0 such that a tuple a € dom(ci) is compatible with a
tuple b 6 dom{cj) iff a[uars(cj) fl yars(cj)] = 6 [uars(cj) n vars(cj)]. he., they
have the same values over the common variables, vars{ci) fl vars(cj).

Example 4.1 In the dual graph transformation of the CSP in Example 1.1, there are
4 dual variables, c i , . . . , C4 , one for each 3-ary constraint in the original problem as
shown in Figure 4-1- For example, the dual variable c\ corresponds to the non-binary

83

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

Figure 4.2: The hidden transformation of the CSP in Example 1.1

constraint C (xi,X 3 ,x$) and the domain ofci contains the tuples (0 .0 .1) .__ (1 . 1 . 1).
The dual constraints enforce that the ordinary variables appearing in more than one
dual variable have the same value. For example, in the dual constraint between c\
and Co, {ci <— (0 , 0 , 1)} is compatible with {co <— (0 , 0 , 0)}, but {ci <— (0 . 0 . 1)} is not
compatible with {co <— (0 , 1 , 0)}.

In the hidden-variable transformation, the set of variables includes all the ordinary
variables in the original problem with their original domains, plus a new set of hidden
variables. For each constraint in the original problem, we add a hidden variable.
The domain of the hidden variable is the same as the domain of the dual variable,
consisting of the set of tuples that satisfy the original constraint. There is a binary
constraint between a hidden variable and an ordinary variable, if in the original
problem the constraint represented by the hidden variable constrains that ordinary
variable. The binary constraint is called a hidden constraint. A hidden constraint
enforces that a value of the ordinary variable must be the same as the value assigned
to that ordinary variable in a tuple of the hidden variable.

D efinition 4.2 (hidden-variable transform ation) Given a CSP instance P =
(V ,V,C), its hidden variable transformation, or hidden transformation in short, hidden(P)
_ ^yh idden(P) j) h id d e n (P) Q hiddcn(P)} i s d e f i n e d OS:

• y AuWen(p) = {xl , . . . , x n}U { c i , . . . , ^ } , where x i , x n are called ordinary
variables and C\,. . . ,cm are called hidden variables. Similar to dual variables,
each hidden variable Ci corresponds to a unique constraint C, € C,

84

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

• 'Dhldden(p) = {dom(xi) , . . . , dom(xn)} U {dom (ci),. . . , dom(cm)}. For each hid-
den variable c*, dom(ci) = rel(Ci),

• Chtdden̂ is a set of binary constraints over \?hldden(p) and they are called hidden
constraints. For each hidden variable c, there is a hidden constraint between c
and each of the ordinary variables x G vars(c) such that a tuple t G dom{c)
is compatible with a value a G dom(x) if f[x] = a. Thus each of the tuples
t G dom(c) corresponds to a unique value t[x] G dom(x).

The hidden transformation has some special properties. For example, the con
straint graph of the hidden transformation is a bipartite graph, i.e.. the ordinary
variables are only constrained with the hidden variables, and vice versa, and the hid
den constraints are one-way functional constraints, in which a tuple in the domain
of the hidden variable is compatible with at most one value in the domain of the
ordinary variable.

Example 4.2 In the hidden variable transformation of the CSP in Example 1.1.
there are 1 0 variables, including 6 ordinary variables from the original problem, and
4 hidden variables, one for each of the original constraints, as shown in Figure 4-2-
For example, the constraint C(xi, X3 , xg) corresponds to hidden variable c\, whose
domain is the set of tuples {(0,0,1) , (1 ,1,1)}. The hidden constraints enforce
a value of the ordinary variable to agree with a tuple of the hidden variable. For
example, in the hidden constraint between C\ and x \, {ct <— (0 , 0 , 1)} is compatible
with {xl <— 0 }, but {ct t— (0 , 0 , 1)} is not compatible with {xt <— 1 }.

A dual or hidden representation does not always arise as a transformation of the
original CSP formulation. Sometimes, it is very natural to model the problem as a
dual or hidden representation (of an “original” formulation).

Exam ple 4.3 Crossword puzzle generation can be formulated as a CSP. Figure 4-3
shows a crossword puzzle with 5 by 5 grid. One such formulation consists of 19 vari
ables (x i , . . . , X1 9 }, and each variable takes values from an alphabet set {a r}.
There are 3 unknown words with length 3 and 5 unknown words with length 5 in the
puzzle, resulting in 8 non-binary constraints in the CSP. The tuples of the constraints
are the words with 3 or 5 letters in a pre-defined dictionary. In its dual representation,
each of the unknown words is represented by a dual variable which takes values from
the dictionary. A pair of dual variables are constrained such that they have the same
letter in the crossing grid. Thus, there are 8 dual variables and 15 dual constraints

85

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

Figure 4.3: A crossword puzzle.

in the dual representation. Its hidden representation has 19 ordinary variables, and
8 hidden variables corresponding to the 8 non-binary constraints in the original prob
lem. Each of the hidden variables is constrained with 3 or 5 ordinary variables in its
scheme. Thus, the hidden representation has 34 hidden constraints.

In this chapter, given the original formulation of a problem, and its dual and hid
den transformations, we are going to compare various local consistency properties on
the above three formulations. Similar to Debruyne and Bessiere's approach to com
paring some selected local consistency properties on binary CSPs in [28], we identify
a “strongness” relation between two pairs of consistency property and formulation.

D efin ition 4.3 Given two local consistency properties CC / and EC2 , and two CSP
formulations for a problem A and B, We say EC t on formulation A is stronger than
EC2 on formulation B iff given any problem, if EC / can be achieved on A without
an empty resulting problem, then EC2 can also be achieved on B without an empty
resulting problem, and ECi on A is strictly stronger than EC2 on B iff furthermore
there is a CSP instance on which EC2 can be achieved on B without an empty resulting
problem but A will experience a domain being wiped out when enforcing EC / on it.
We say ECi on A is equivalent to CC2 on B if EC/ on A is stronger than CC2 on B,
and vice versa.

86

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

In the following, we call a CSP instance the original problem with respect to its
dual transformation and hidden transformation. Because we usually deal with more
than one CSP formulation in a context, to our convenience, given a CSP formulation
P, we use the notations Vp , V p and Cp to denote the set of variables, the set of
domains and the set of constraints in P respectively. Also, we use domp (x) to denote
the domain of variable x in P . The notations, V, V , C, and dom(x) are still used if
there are no ambiguities in the context.

4.2 Related Work

The dual and hidden transformations are two fundamental methods in modeling prac
tice. They completely change the original formulation such that all the variables and
constraints have to be rewritten. A serious drawback of these transformations is that
if the non-binary constraints are represented implicitly, the above transformations
could take exponential time and demand exponential space with respect to the size of
the original problem. Sometimes it may require that the original problem be solved.
For example, if an n-ary constraint over x i , . . . , x n is represented by a function or
predicate / (x l t . . . ,xn), which returns true if the assignments to the variables satisfy
the constraint, in the dual (hidden) transformation, each legal tuple in a constraint
becomes a value in the domain of the corresponding dual (hidden) variable. Thus, it
may take exponential steps to find all these tuples and use exponential space to store
these tuples in the domain of the dual (hidden) variable. In the CSP formulation of
the “Send+More=Money” puzzle in Example 1.3, if we try to represent two global
constraints, the “equation" constraint and “alldifferent” constraint by two dual (hid
den) variables, we can then solve the problem by looking up the domains of two dual
(hidden) variables and picking up common tuples in the two domains. In practice,
often, a partial conversion is used to improve the formulation. That is. a subset of
the constraints become dual variables, or a subset of the variables in a constraint
are aggregated into a hidden variable and thus the arity of the constraint is lowered.
Furthermore, with the help of identifying meta values in dual or hidden variables, the
domains of the dual or hidden variables may be condensed to an acceptable degree.

In temporal reasoning, there are two approaches to representing temporal informa
tion. In the point-based representation [116, 117], each event A is identified by a pair
of end points, .4“ and A +, denoting the starting time and finishing time of the event.
The temporal relations among events are represented by a set of inequalities, equali
ties and disequalities between any of two end points. For example, the relation that .4

87

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

A meets B A . B

A overlaps B |__ |

{meets, overlaps}

(a)

(b)

Figure 4.4: An example of translation between interval-based and point-based repre
sentation for temporal information.

must finish before B starts can be represented by {.4~ < .4+,.4+ < B~ . B~ < B +}.
In the interval-based representation [3, 4], each event .4 is identified by an interval.
A temporal relation between two events is represented by a conjunction of basic re
lations. Allen [3] has identified a set of thirteen basic relations between two intervals
and the relation between two events can be any subset of the set of basic relations.
For example, as shown in Figure 4.4(a). one basic relation between interval .4 and
B says .4 meets B, which means that B starts at the same time as .4 finishes. The
basic relation .4 overlaps B denotes the scenario in which .4 starts before B srarr».
.4 finishes after B starts, and .4 finishes before B finishes. For a fuller description of
the basic relations, see Allen’s paper [3].

Both the point-based representation and the interval-based representation can be
formalized as CSPs. The domain of an end point is a set of time points allowed for the
event under consideration. The domain of an interval contains all possible ordered
pair of time points. The definitions of the constraints are straightforward from the
temporal relations between two end points or two intervals respectively. The interval-
based CSP can be regarded as a partial dual conversion of the point-based CSP l .
For example, as shown in Figure 4.4(b) the interval relation {meet, overlaps} between
event .4 and B can be represented as,

(.4- < .4+) A (B~ < B +) A (.4- < B +) A (A+ > B~) A (A+ < B~)
*In general, such a conversion may not exist due to the restricted types of the relations adopted

in the two representation schemes [70, 117].

88

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

In such a conversion, some of the constraints, .4" < .4+ and B~ < B +, become dual
variables and the other constraints are transformed into constraints over the dual
variables. Also, when actually finding a consistent scenario for these networks, we
solve the dual representation, which can often be processed very quickly [71].

The concept of a dual is also reflected in problem solving techniques. In a
constraint scheduling problem, an activity A is represented by a pair of variables,
start(A) and end(A), denoting the starting and release time of A respectively. The
domains of the variables contain all possible time points for the activity. There are
two main classes of constraints, precedence constraints to specify sequencing require
ments among activities; for example, activity .4 must be scheduled to start at least 5
steps after activity B is released, start(A) > end(B) + 5, and resource constraints to
specify that several tasks may compete for a resource with a certain capacity. Dis
junctive constraints are widely used to ensure that the time intervals over which two
activities require the same resource do not overlap in time [73. 104]. For example,
the constraint (end(A) < start(B)) V (start(A) > end(B)) ensures that the time
intervals over two activities do not overlap in time when both .4 and B demand a
unique resource. The time bounds of activities, i.e., the domains of variables, can be
improved by a series of propagation techniques, known as edge-finding rules [5. 9].
To prove optimality of schedules, a branch and bound search is used. It is a general
wisdom to not branch on variables, as a traditional backtracking algorithm does, but
branch on constraints, especially the disjunctive constraints. For example, given a
disjunctive constraint (end(A) < start(B)) V (start(A) > end(B)), we may choose
ena(A) < start(B) or start(A) > end(B) as a choice point. The effect of branching
on disjunctive constraints essentially establishes an order of activities which compete
for a resource. New bounds can then be deduced after branching on the constraints
and used to prove optimality. For example, in the job shop scheduling problem, the
operation of branching on constraints is known as edge directing [2 1 , 2 2], where the
job-shop problem is represented in a disjunctive graph, in which all precedence con
straints are represented by directed edges and all resource constraints are represented
by undirected edges. Thus establishing an order is essential to giving a preference
to all the undirected edges. Branching on constraints coincides with the idea of the
dual, that is, treating constraints as variables. In the domain of scheduling problems,
such techniques may bring significant improvements.

The dual and hidden variable techniques also help in the representation of large
complex constraints. To model a problem as a CSP and solve the CSP using a back
tracking algorithm, a central problem is how to represent a constraint in an economic

89

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

and efficient manner. A general guideline is to limit the number of the variables in
each of the constraints. However, real world constraints are usually non-binary and
the redundant constraints are more likely non-binary. The question turns out to be
how to decompose a large constraint into several small constraints. An intuitive ap
proach is to project the constraint onto a set of pairs of variables and the projections
are binary constraints. Unfortunately, such projections may lose information stored
in the original constraint [31]. Another approach is to add projections for each of the
subsets of the variables in the original constraint. This approach is dangerous as a
possible exponential number of constraints would be added.

A general approach is to add extra hidden variables. The hidden variable trans
formation uses a star-decomposition scheme by adding one hidden variable. A draw
back of the star-decomposition is that the domain size of the hidden variable cannot
be bounded to an acceptable degree. In fact, there could be many possible ways
to decompose a constraint by adding more than one hidden variable. Example 1.4
showed how to decompose the large “equation” constraint into 3 smaller constraints
by adding some “carrier” (hidden) variables. Dechter [33] proposes a tree-structured
decomposition scheme by adding multiple hidden variables with bounded domain
sizes. Unfortunately, the number of the hidden variables is not bounded and there
are cases that an exponential number of hidden variables are required.

4.3 Arc Consistency

Arc consistency (see Definition 2.4) is an important concept in constraint program
ming. Because achieving arc consistency on a CSP only changes the domains of the
variables, it is moderately cheaper than achieving strong ^-consistency, for k > 2 .
which may dramatically change the CSP formulation, as the number of new con
straints could be exponential in k. In this section, we are going to compare arc
consistency on the original CSP with arc consistency on its dual and hidden trans
formations. The comparison is based on the justification that if one formulation is
not empty after achieving arc consistency, the other formulation is not empty either
after achieving arc consistency. (Thus arc consistency on the first formulation is at
least as strong as arc consistency on the second formulation.) The relations between
arc consistency on the original problem and the one on its dual and hidden trans
formations have been studied by Stergiou and Walsh [106]. However, they only give
some illustrative proofs for their results. We present here stricter proofs for the above
relations based on the formal definitions of the dual and hidden transformations.

90

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

4.3.1 Arc Consistency Closure
As we discussed in Chapter 3, two strong ^-consistency achievement algorithms may
not always compute the same results when achieving strong ^-consistency on a CSP.
For arc consistency, as we are going to show in the following, the resulting arc con
sistent CSP is unique. We achieve arc consistency on a CSP by repeatlv removing
from the domains those values that are not supported in a constraint. When a value
is removed from its domain, some tuples using the value in a constraint involving
that variable become invalid. The invalid tuples are removed from the constraint
implicitly. The changes in one domain are propagated to other variables for which a
new support needs to be sought in the tightened constraints.

D efinition 4.4 (subdom ain) A subdomain V of a CSP P is a set of domains.
{domv>(x \) , . .. ,domv'{xn)}, where domv '(xi) C domp (xi), for each of the variables
Xi € V. In the following, we use the notation domv '(x) to denote the domain of
variable x in a subdomain V . We say a subdomain is empty if it contains one
empty domain for a variable. We say a subdomain V is arc consistent iff for tack
of the constraints C € C, each of the variables x 6 vars(C) and each of the values
a € domP'(x), {x <— a} has at least one support t in C. where t[x] = a. arid for
each of the variables y € vars(C), f[y] € domP' [y). Given two subdomains of P .'D t
and T>2 , we use T>, C V 2 to denote the fact that for each of the variables x € V.

domPl {x) C domVl(x).

Note that a subdomain is a set of domains, each associated with a variable in the
CSP. Under the above C relation, the maximum subdomain is the set of the original
domains in the CSP, and the minimal subdomain is the set of empty domains: i.e..
each variable has an empty domain. It is easy to verify that the minimal subdomain
is arc consistent.

T heorem 4.1 Given two arc consistent subdomains T>, and T>2 of a CSP P, the
union o fV i and V 2, V , where domv'(x) = dormPl [x) U domVs(x) for each variable
x in P , is an arc consistent subdomain of P.

Proof: Because for each of the values a 6 domv’(x), either a 6 domD,{x) or a €
dcrmV t(x), it is easy to verify that for each constraint C in P. each of the variables
x € vars(C), and for each value a 6 dcmp1 (x), {x «— a} has at least one support in

C. I

91

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

Since the union of two arc consistent subdomains is still arc consistent and there
are a finite number of subdomains in a CSP P , the union of all the arc consistent
subdomains is arc consistent. Furthermore, the set of arc consistent subdomains of
P is not empty because it always includes the minimal subdomain in which each
variable has an empty domain. Thus, there is a unique maximum arc consistent
subdomain of P and each arc consistency achievement algorithm should compute the
maximum arc consistent subdomain. We denote the resulting CSP by ac(P), called
the arc consistency closure of P . Thus the maximum arc consistent subdomain of
the original CSP, i.e., the set of domains in ac(P), is Z?ac(P).

Corollary 4.2 Given a CSP P and an arc consistent subdomain V of P, V C
p o c(P)

From the above corollary, an arc consistency subdomain of a CSP P is also an arc
consistent subdomain of ac(P).

4.3.2 Arc Consistency on the Hidden Transformation
Consider a CSP P with 4 variables, x i , . . . ,x4. The domain for each variable has 3
values 0,1, and 2. There are 3 linear constraints between these variables, Xi + x2 < x3,
x t + x 3 < x4 and x2 + x3 < x4. Figure 4.5 shows the relations between the original
CSP P , its arc consistency closure ac(P), its hidden transformation hidden(P). and
the arc consistency closure of its hidden transformation ac(hidden(P)) which is also
the hidden transformation of its arc consistency closure hidden(ac{P)). As we can
see from the above figure, an ordinary variable has the same domain in ac(P) and
ac(hidden(P)). The domain of a hidden variable in ac(hidden(P)) is the same as
the set of tuples in the corresponding constraint, which have not been (implicitly)
removed from the constraint when achieving arc consistency on the original problem.
We are going to show in the following that the above relations are generally true.

T heorem 4.3 Given a CSP instance P, (1) P is arc consistent if and only if hidden(P)
is arc consistent, (2) ac(P) is not empty if and only i f ac(hidden{P)) is not empty;
and (3) hidden(ac(P)) = ac(hidden(P)).

Proof: (1) Suppose the original problem P is not arc consistent. There is a value
a in the domain of an ordinary variable x and a constraint C such that x *— a does
not have a support in C. Thus, in hidden(P), x <— a does not have a support in the

92

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

p h i d d e n (P)

Hidden Transformation

Achieving /Ire Consistency Achieving .-Ire Consistency

ac {P) ac {h id den{P)) = h idde n(a c(P))

Hidden Transformation

X l , X 2 , 1 3 , 1 4

C i : x i + X 2 < 1 3
C s : 1 1 + X 3 < 1 4

C3 : x t + 1 3 < x 4

X l , X 2 , X 3 , X 4

Cl : X I + I J < 1 3

Ct : n + 1 3 < X 4

C 3 : X 2 + X 3 < X 4

yac{h idden(P)).
X l , X 2 , X 3 , X 4 , ci ,c t, C3

-pac(hidden(P)).
d o m *c (h , d d 'n l p)) (x = {0 }
d o m a c (f c id d < r n (P)) (x 2) _ {0 }

d o m a c i h x d d e M P)) ^ x 3) = { J }

domac<‘l" ud' nl p '>'l(x 4) = {2}
domaelkiMenip ,){ci) = {(0 . 0 . 1)}
domac<-klddcn(p »{ct) = {(0,1,2)}
<fomac<'‘“w' n(P»(c 3) = {(0,1.2)}

Qac(hidden(P)).

yh id d en (P) .
X l , X 2 , X 3 , X 4 , C l , C 2 , C 3

qjhidden(P) .
d o m /.u M < n < P)(I l) _ { 0 , 1, 2 }

domK'ddcn^p \ x t) = {0,1,2}
domh,ddcn<p '(x3) = {0,1,2}
domkidd‘n(pHz 1) = {0 , 1, 2}
domh,ddcn(p {̂ci) =

{ (0 , 0 , 1) , (1, 0 , 2) , (0 , 1, 2)}

domh,ddcn,P){c2) =
{ (0 , 0 , 1), (1, 0 , 2), (0 , 1, 2)}

domk,ddcn<-p) (C 3) =
{ (0 , 0 , 1) , (1, 0 , 2) , (0 , 1, 2)}

Figure 4.5: An example to show the relations between an original CSP. its hidden
transformation, its arc consistency closure, the arc consistency closure of its hidden
transformation, and the hidden transformation of its arc consistency closure.

93

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

hidden constraint between the ordinary variable x and the corresponding hidden vari
able c. Thus, hidden(P) is not arc consistent. On the contrast, suppose hidden(P)
is not arc consistent. From the definition of the hidden transformation, a tuple in
the domain of a hidden variable always has a support in a hidden constraint between
the hidden variable and an ordinary variable. (Note that a tuple in a constraint is an
element of the Cartesian product of the domains of the variables in the constraint.)
Thus, in hidden(P), there is a value a of an ordinary variable x and a hidden variable
c such that {x <— a} does not have a support in the hidden constraint between x and
c. Thus {x <- a} does not have a support in the corresponding original constraint
C in the original problem. Therefore, P is not arc consistent. That is. P is arc-
consistent if and only if hidden{P) is arc consistent.
(2) Suppose ac(P) is not empty. Thus its hidden transformation hidden(ac(P)) is

arc consistent and not empty. Because the set of the domains of hidden(ac(P)) is

an arc consistent subdomain of hidden(P), from Corollary 4.2. for each ordinary
variable x, domhldden('aĉ p^ (x) C domaĉ hldden̂ p^ (x), and for each hidden variable c.
domhldden(-ac(-p^(c) C domac(-fl'dden(-p^ (c). Therefore, ac(hidden(P)) is not empty. On
the other hand, suppose ac(hidden(P)) is not empty, then the set of the domains of
all the ordinary variables in ac(hidden(P)) is an arc consistent subdomain of P. That
is, for each ordinary variable x, domac(/u<Wen(p))(x) C domac(P\x) . Thus ac(P) is not
empty.
(3) The hidden transformation of ac(P), hidden(ac{P)), has the same variables as
those in ac(hidden(P)), including ordinary variables and hidden variables. For an
ordinary variable x in hidden(ac{P)), we know the facts that domh,dden('ac<'P^{x) =
domac('P\x) , domhlddtn[ac{P]]{x) C doma<hidden(P»{x) and damac{h,dden{P)){x) C

domaĉ p^(x), thus domhtdden(’ac(‘P^ (x) = domac(-fl,dden̂ p^{x). Now we consider the hid
den variables. For each hidden variable c in ac(hidden(P)) and for each tuple t
in the domain of c, because £[x] € dom“c(/l“Wen(P))(x) and thus t[x] € domac[P](x)
for each of the ordinary variables x 6 uars{c). t will not be (implicitly) removed
from the constraint C when achieving arc consistency on the original problem. Thus
t is a tuple in the domain of the hidden variable c in hidden(ac{P)). We have
domac('hidden(‘P^ (c) C domhtdden(ac(-pV(c). On the other hand, for each constraint C in
ac(P) and for each tuple t in reZ(C), because t is not (implicitly) removed from rel{C)
when achieving arc consistency on the original problem, that is, f[x] 6 dom“c(P)(x)
and thus f[x] 6 domac('hldden('P^ (x) for each of the ordinary variables x € vars(C). the
tuple t is not removed from the domain of the hidden variable c when achieving arc
consistency on hidden(P) (otherwise, add t to the domain of c and the hidden problem

94

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

is still arc consistent). We have domhxdden(-ac(-p^ (c) C damac('hldden̂ \ c) . Therefore,
for each of the hidden variables c, domhxdden̂ p^ (c) = dorrcac(/luWen(P),(c). The hidden
constraints in a hidden transformation are set automatically having specified the or
dinary variables, the hidden variables, and their domains. Thus, hidden(ac(P)) and
ac(hidden(P)) have exactly the same set of variables, the same set of domains, and
the same set of hidden constraints; that is, they are syntactically the same. Therefore.
hidden(ac(P)) = ac(hidden(P)). |

Theorem 4.3 was obtained independently by Stergiou and Walsh in [106].

C orollary 4.4 Given a CSP P , domac(-p'> (x) = domact'hlddent'P^ (x), for each of the
ordinary variables x in P.

Although achieving arc consistency on the original problem is "equivalent" to
achieving arc consistency on its hidden transformation, their performance could be
quite different. The worst case complexity of achieving arc consistency on the original
problem by AC3 is 0 (m r2dT+l) [76]. In its hidden transformation, there are n ordi
nary variables and m hidden variables. The maximum domain size of the ordinary
variables is d and the maximum domain size of the hidden variables is bounded by
cT. Thus it takes 0 (t f +l) steps to revise a hidden constraint. During the execution
of AC3, each time a value is removed from the domain of a variable x. all the con
straints involving x need to be revised. Let deg(x) denote the degree of x. The total
number of the steps in the execution of AC3 on the hidden problem is bounded by
0{Y.xevk'ddtn(-p'> deg(x)d?T+l). Note that the term £ x6V*>,■/*„</>) deg{x) can be replaced
by mr, which is a bound on the number of the constraints in hidden(P). Thus the
worst case complexity of achieving arc consistency on the hidden problem by AC3 is
0(mrd?T+l). Achieving arc consistency on the hidden problem is more expensive than
on the original problem unless the constraints are very tight. In that case. let M de
note the maximum domain size of the hidden variables, and the worst case complexity
of AC3 on the hidden problem is rewritten as 0(m rdM 2). As discussed in Chapter 3.
in the original formulation of the crossword puzzle problems, the constraints are very
tight. For instance, there are about 30000 tuples among 102 6 possible value combina
tions in a non-binary constraint which represents an unknown word of 10 letters. It
is less expensive to achieve arc consistency on the hidden representation than on the
original non-binary problem. In contrast, if the constraints in the original problem
are very loose, AC3 on the original problem can perform much better than the worst
case complexity because it is easy to find a support in a constraint. Furthermore.

95

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

AC3 on the original problem can use some specialized methods or propagators to
speed up constraint propagation for some classes of constraints, e.g., an alldifferent
constraint can be revised in 0 (d r15) worst case time [94]. Constraint propagation in
the hidden problem can also be improved by exploiting the special properties (the
bipartite graph topology and the one-way functionality of the hidden constraints) of
the hidden transformation. For example, when a tuple t in the domain of a hidden
variable needs to find a support in a hidden constraint, we need not go through the
whole domain of the constrained ordinary variable x, but just check whether t[x\ is
in the domain of x at a constant cost.

4.3.3 Arc Consistency on the Dual Transformation
We have identified the equivalence relation that the original problem is arc consistent
if and only if its hidden transformation is arc consistent. However, such an equivalence
does not hold in the case of the dual transformation.

E xam ple 4.4 Consider a CSP P with 4 Boolean variables, x l ; x4, and three
constraints

C{xl,x 2,x 3) = {(0,0,0), (1,1,1)},

C{x 2,x 3 ,x4) = {(0 , 0 , 0), (1 , 1 , 1)},

C (:n ,x 3 ,x4) = {(0 , 0 , 1), (1 . 1 , 0)}.

The original problem P is arc consistent. In its dual transformation, let the dual vari
ables ci,c2, and C3 correspond to the above constraints, respectively. Because neither
of the tuples (0 , 0 , 0) and (1 , 1 , 1) in the domain c2 has a support in the dual constraint
between c2 and c3, the domain of c2 is wiped out after achieving arc consistency on the
dual transformation. Thus dual(P) is not arc consistent and ac(dual[P)) is empty.

E xam ple 4.5 Consider a CSP P with three Boolean variables, x t . x2 and x3. and
three constraints

C(x u x2) = {(1,1)},

C(x2,x 3) = {(1,1)},

C (x i,x3) = {(1,1)}.

The dual transformation dual(P) is arc consistent. However, the original problem is
not arc consistent, because value 0 for each of the variables m il be removed from the
domain when achieving arc consistency.

96

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

In Example 4.5, although the original problem is not initially arc consistent, it
can be made arc consistent without a domain being wiped out. We will show that
if the dual problem is not empty after achieving arc consistency, then the original
problem is not empty either after achieving arc consistency.

Lem m a 4.5 Given a subdomain V of the dual problem dual(P). V is arc consistmt
if and only if for each pair of dual variables Cj and Cj in dual(P). where cars(c,) n
vars(Cj) 7 ̂ 0, and for each subset of the ordinary variables S C vars(ci) D uars(Cj),
KsdomP' (cj) = ■KSdomv ' {c-j).

Proof: The i f part: In the dual problem, there is a dual constraint between a pair of
dual variables c, and Cj if vars(ci) Dvars(cj) ^ 0. Because 7Tvars(C.)nvars(Cj)domD‘(c,)
— ^vars(ci)nvar3{cj)dornD'(cj), for each of the tuples £, € dcrmP'(c,), there exists a tuple
tj in domv'(cj) such that U and tj agree on the part vars(ci) n vars(cj). So {c, <— £,}
has a valid support in the dual constraint. Thus V is arc consistent. The only if
part: For each of the tuples t e irsdomP' (ci), there is a tuple U 6 domv'(ct) such
that ti[S\ = t. Because V is arc consistent, there is a tuple tj 6 domv'(cj) such
that £j[i/ars(cj) fl vars(cj)] = tj[vars(ci) fl uars(cj)]. Thus t = £,[5] = tj[S\. Because
tj[S] € 7VsdcrmP'(cj), we have irsdom ^(c,) C ttsdomD'{c}). Similarly, we can show
that TTsdoni0'(cj) C xs domD'(ct). Therefore. - sdomv'[ct) = r sdomD'(ij). |

T heorem 4.6 dual(P) is arc consistent if and only if for each pair of dual uanables
Ci and Cj, where vars(ci) C\vars(cj) ^ 0 , and for each subset of the ordinary variables
S C vars(ci) C\vars(cj), ‘Ksdomdual̂ p\c i) = ■Ksdomdual̂ p\c j) .

Proof: The theorem is true by considering the set of the original domains in dual(P)
in Lemma 4.5 | .

From the arc consistency closure of dual{P)), i.e., ac(dual{P)), we can construct
a subdomain for the original problem P, denoted by X>dualaĉ p\ in which for each
ordinary variable x in P, we choose a dual variable c such that x € vars(c)2, and
set domx>‘Wac(P) (x) to be TT[x}domaĉ duâ p^(c). From Lemma 4.5, for any two dual vari
ables a, and Cj such that xGc ; and x € Cj, 7r{Iydomac(duâ P)) (c,) = (c,)

2This is always possible because we have assumed that each variable should be constrained by at
least one constraint in a CSP.

97

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

Table 4.1: Comparison of the worst case complexity of AC3 on the original problem,
the dual problem, and the hidden problem.

AC3 worst case complexity
original 0 (m r2<F+l).
hidden 0(m rd2r+l) or 0 (m rdM 2).
dual 0 (m idir) (in the general case).

0{m 2d2r) or 0{m 2M 2) (if a propagator is used).

because ac(dual(P)) is arc consistent 3. So the domain of x in £>duo/ac(p) is irrelevant
to whichever dual variable we choose to make the projection.

Note that J)dualac<~p) is a set of domains for the ordinary variables in P. and it
is constructed from the set of domains for the dual variables in uc(duul(P)). Fur

example, the dual problem of the CSP in Example 4.5 is arc consistent and let
dual variables ct, c2 and C3 correspond to three original constraints, thus 'Dac(dual[P))
is {dom(cL) = {(1, l)},dom(c2) = {(1,1)}, dom(cf) = {(1,1)}}, and X)tiuaiac(P) is
{dom{x 1) = {l},dom(x2) = {l},dom(x3) = {1 }}.

T heorem 4.7 I f ac(dual{P)) is not empty, ac(P) is not empty either.

Proof: Because the domain of each dual variable in ac(dual(P)) is not empty, its
projection over an ordinary variable cannot be empty either. So there is no empty
domain in 'Ddualac(p). In the original problem, for each ordinary variable x. for each
of the values a 6 domX)‘w ‘‘c<P) (x), and for each constraint C. where x 6 vars(C),
suppose a is the projection of the tuple t of the corresponding dual variable c. then
for each of the variables y € vars(C), t[y] € domD‘Wac<P>(</). Thus t is a valid support
for {x a} in constraint C. Therefore, ■p<fua/ac(p) is a non-empty arc consistent
subdomain of P and thus ac{P) is not empty. |

From Theorem 4.3 and Theorem 4.7, we have the following comparison between
arc consistency on the dual problem and the one on the hidden problem.

C oro llary 4.8 I f ac(dual(P)) is not empty, ac(hidden(P)) is not empty either.

3In a strict sense, Lemma 4.5 only applies to the dual transformation. However, ac{dual{P)) can
be viewed as the dual transformation of a CSP, which has the same variables and domains as the
original problem P , and in which the constraints in the original problem are tightened according to
the domains of the corresponding dual variables in ac{dual(P)).

98

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

In the dual transformation, there are m dual variables. The maximum domain
size is bounded by (F. The number of the dual constraints is bounded by m2, i.e..
each pair of dual variables constrain each other. Thus the worst case complexity of
achieving arc consistency on the dual problem by AC3 is 0 {m 2dir). In the worst case,
among arc consistency on the original problem, its hidden transformation and its dual
transformation, the one on the dual is the most powerful and yet the most expensive.
Constraint propagation in the dual problem can be speeded up by exploiting the
special structure of the dual constraints. For example, given a dual constraint between
two dual variables, C{ and cv each time we want to find supports for the values in the
domain of Cj, we allocate a table of size rfl«'°ri(c-)ni'ars(cj)l) and for each of the tuples
tj 6 domdual(-p)(cj), we record the projection t j [vars(ci)r\vars{cj)} in the table. Then
we go through the domain of Cj and for each tuple £j € domdual{P]{ci), we check
whether the projection £j[uars(cj) fl vars(cj)] has been recorded in the table. If not.
ti is removed from the domain of c,. By two passes of the domains, we can revise the
dual constraint. Therefore, the worst case complexity of AC3 on the dual problem
is lowered to 0 (m 2d2r), which is competitive to the one on the hidden problem.
Achieving arc consistency on the dual problem is worth doing only in the case that
the original constraints are very tight. Let M denote the maximum domain size of the
dual variables, the worst case complexity of AC3 on the dual problem can be rewritten
as 0 (m 2M 2). For example, in Chapter 3, we have used the dual representation of the
crossword puzzle problems to compare GAC and GAC-CBJ. in which arc consistency
is enforced (on the induced problem) at each node in the backtrack search tree. Table
4.1 summarizes the results about the worst case complexity of AC3 on the original
problem, the dual problem, and the hidden problem.

We have shown that in general, arc consistency on the dual problem is stronger
than arc consistency on the original problem and the hidden problem. However, for
some CSPs with a special structure, achieving arc consistency on the dual is equivalent
to achieving arc consistency on the original problem.

T heorem 4.9 Given a CSP P, if for any two constraints Ci and C} of P. vars{Ci)r\
vars(Cj) contains at most one ordinary variable. (1) ac{dual(P)) is not empty if
and only if ac(P) is not empty; (2) D duaiac(p) = X>ac(p); and (3) dual{ac(P)) =
ac(dual{P)).

Proof: (1) From Theorem 4.7, if ac(dual(P)) is not empty, ac(P) is not empty. On
the converse, suppose ac(P) is not empty, we have the dual transformation of ac(P)
as dual(ac(P)). Note that X)‘<uo'(oc(P^, the set of the domains in dual{ac{P)). is a

99

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

subdomain of dual(P) and j)dual(ac(.p)) is not empty. Given any two dual variables c,
and Cj in dual(P), where vars(ci)Civars(cj) 0, let x be the only ordinary variable in
vars(ci) dvars(Cj) . We will prove that -k[x}domdual('ac(‘P^(Ci) = ir{x}domdua/(ac(P))(c,)
=domac(-p\ x) . From the definition of the dual transformation, because each tuple
in the domain of a dual variable must be a valid tuple in the corresponding orig
inal constraint, we have -ir{x}domdual(-aĉ p^ (c*) C domaĉ p\x) . Because each value
a € domaĉ (x) has at least one valid support in the constraint Ci in ac(P), we have
domac(p)(x) C 7T(x}domdual(ac(pV(ci). Therefore, 7T{x}domduâ ac(P̂ (ci) = domac(P\ x) .
For the same reason, w{I}domduai{ac(P))(c;) = domac(-p^(x). Thus. iT{x)domdual(-aĉ p^(cl)
= 7r{I }do7 7i<iuai(ac(p^(cJ). From Lemma 4.5, D ‘iuai(“c(p)) is an arc consistent subdomain
of dual(P). Therefore, Ddualiac(p)) c ■p°ridua/(p)) and ac(dual(P)) is not empty.
(2) From the construction of D dualac(p\ domvi'MtttC('P) (x), the domain of an ordi
nary variable x in 'Pdualac<.p). is set to be i-^ d o m ac{dual(P)){c) for some dual vari
able c. Because domaĉ (x) = TT^domdual(-act'P^ (c) and D duatiacip)) is a subdo
main of ac(dual(P)), that means, domaĉ (x) C 7T{I jdom“c(,<"oi(P,)(c). and thus.
d o m “d p)(x) C domDdualacl'P) (x). Therefore D ac(P) = J)duatac(p) ,
(3) Because £)dua,ac(P) is an arc consistent subdomain of ac(P). for any dual variable c

in ac(dual(P)), and for each of the tuples t 6 domac(dua,(P))(c), £[x] € domac(P){x) for
each of the ordinary variables x € uars(c). Thus t is not removed from the correspond
ing original constraint C in ac(P). Therefore, dom'Dac(d'iailP)) {c) C domDdaaUac[D>) {c).
We have ,Dac(dual(p)) — j)duai(ac(D)) Because ac{duat{P)) and dual(ac{P)) have the
same set of variables, the same set of domains and the same set of dual constraints.
ac(dual(P)) = dual(ac(P)). |

In a crossword puzzle problem, there is no overlap between two horizontal un
known words or two vertical unknown words, and a horizontal word overlaps with
a vertical word on at most one letter. Thus, in its original formulation, every two
non-binary constraints overlap on at most one ordinary variable. From the above
theorem, we know that achieving arc consistency on the dual representation is equiv
alent to achieving arc consistency on the original representation. Given a CSP. if two
original constraints overlap on more than one variable, arc consistency on the dual
problem may be strictly stronger than arc consistency on the original problem. An
example is the problem in Example 4.4.

For a binary CSP, we assume that there is at most one binary constraint between
two variables. Thus, if the original problem is a binary CSP, each pair of the orig
inal constraints overlap on at most one ordinary variable. From Theorem 4.9. arc

100

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

consistency on its dual is equivalent to arc consistency on the original.

Corollary 4.10 Given a binary CSP P, (1) ac(P) is not empty if and only if
ac(dual(P)) is not empty; (2) V aĉ = 'Ddttalac(p); and (3) dual(ac{P)) = ac(dual{P)).

Because the dual representation is a binary CSP, Corollary 4.10 prevents the
attempt to take the dual transformation of a dual problem in order to achieve a higher
level consistency by enforcing arc consistency on the “double-dual” transformation.

4.4 Consistencies Hierarchy

Because both the dual problem and the hidden problem are binary CSPs. The kinds
of consistency that only apply to binary CSPs can be used and compared on the dual
problem and the hidden problem. Debruyne and Bessiere have studied and compared
some selected local consistencies on binary CSPs in [28]. Following their definitions,
a binary CSP is (z,.^-consistent iff it is not empty and any consistent partial solution
over i variables can be extended to a consistent partial solution involving j additional
variables. A problem is arc consistent (AC) if it is (l.l)-consistent. A problem is path
consistent (PC) if it is (2,l)-consistent. A problem is strongly path consistent (ACPC)
if it is (z, Inconsistent for each 1 < i < 2. A problem is path inverse consistent (PIC)
if it is (l,2)-consistent. A problem is neighborhood inverse consistent (NIC) iff a m

instantiation of a single variable x can be extended to a consistent partial solution over
all the variables that are constrained with x, called the neighborhood of x. A problem
is restricted path consistent (RPC) iff it is arc consistent and if an instantiation of
a variable is consistent with just a single value of an adjoining variable, then for any
other variable there exists a value compatible with these instantiations. A problem
is singleton arc consistent (SAC) iff it is not empty, and the CSP induced by any
instantiation of a single variable is not empty after achieving arc consistency.

Debruyne and Bessiere compare these consistencies in a way similar to our ap
proach in the above sections. They call a consistency property CC t is stronger than
CC2 (CC,>CC2) iff in any problem in which CCt holds, then CC2 holds, and CCt
is strictly stronger than CC2 (CCt >CC2) if CC{ is stronger than CC2 and there is
at least one instance such that CC2 holds but CCt does not. They have shown that.
ACPC > SAC > PIC > RPC > AC, and NIC > PIC. Note that our definition of
the “strongness” is slightly different than theirs. We mean CC; on formulation A is
stronger than CC2 on formulation B if for any problem, if CC; can be achieved on

101

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

A without an empty resulting problem, CC2 can also be achieved on B without an
empty resulting problem 4. Nevertheless, we can justify that the above hierarchy still
holds under our definition. Suppose in the above hierarchy, a local consistency prop
erty CCi is stronger than a local consistency property CC2. Given any CSP instance
P, if CC i can be achieved without an empty resulting problem, there is a non-empty
subproblem of P in which CC / holds and thus CC2 also holds. Therefore CC2 can be
achieved on P without an empty resulting problem. As we can see, arc consistency
lies at the bottom in the above hierarchy. Furthermore, it has been observed by Ster-
giou and Walsh [106] that, due to the special topology of the hidden transformation,
certain consistency techniques fail to achieve any additional pruning than AC.

T heorem 4.11 [106] Given a CSP instance P, hidden(P) is not empty after enforc
ing NIC if and only if it is not empty after enforcing AC.

Proof: Since NIC is stronger than AC, we only need to consider the if part in the
above. Suppose ac{hidden(P)) is not empty. For a hidden variable c. its neighborhood
is vars(c) in ac{hidden{P)). Thus an instantiation of c with a tuple t from its domain
in ac(hidden(P)) can be extended to a consistent partial solution including its neigh
borhood, where for each of the ordinary variables x € vars{c), x is instantiated with
f [x] (t[x] must be in the domain of x because it is the only support for t in the hidden
constraint between x and c). For an ordinary variable x, x only constrains with hid
den variables. An instantiation of x with a value a from its domain in ac{hidden(P))
can be extended to a consistent partial solution including all its neighborhood, where
for each of the hidden variables c in its neighborhood, c is instantiated with a tuple
t such that t[x] = a (also, such a tuple must exist because {x ■<— a} has at least one
support in the hidden constraint between x and c). Therefore, the hidden problem is
not empty after enforcing NIC. |

Because on the hidden problem NIC collapses down onto AC, those consisten
cies that are weaker than NIC but stronger than AC, e.g., PIC and RPC. are also
equivalent to AC. However, for the dual problem, NIC is still strictly stronger than
AC.

Exam ple 4.6 Consider a binary CSP with 3 Boolean variables. The constraints are

_______________________ C (xi,x2) = {(0 , 0), (1 , 1)},
4 Because in the comparison of arc consistency on the original problem and arc consistency on the

dual problem, Debruyne and Bessiere’s definition of “strongness” cannot be applied. (See Example
4.4 and Example 4.5.)

102

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

C(x2,x 3) = {(0,0), (1,1)},

C (xu x3) = {(0,1),(1,0)}.

The original problem, is AC but not NIC. Also, its dual transformation is AC but not
NIC. The dual transformation is neither PIC nor RPC.

Although on the hidden problem NIC and PIC do not provide any more pruning
than AC, Stergiou and Walsh have shown by example that on the hidden problem.
ACPC is strictly stronger than SAC, which itself is strictly stronger than AC [106].

T heorem 4.12 SAC on the dual problem is stronger than SAC on the hidden prob
lem.

Proof: If the dual problem is not empty after enforcing SAC, let sac{dual(P)) de
note the resulting CSP. We will show that the hidden problem is not empty either
after enforcing SAC. From sac(dual(P)), we can construct a subdomain X>liua'sac(p)
for the hidden problem, in which each hidden variable has the same domain as the
corresponding dual variable in sac(dual(P)), and the domain of an ordinary variable
x is set to be iX{x)dom3aĉdual(P̂ {c) for some dual variable c such that x € cars{c).
Because sac(dual(P)) is arc consistent, from Lemma 4.5, the domain of x is irrele
vant to whichever dual variable we choose to make the projection. For each hidden
variable c and for each of the tuples t € domvd“aU“ciP)(c), hidden(P)|{c«-t} is arc con
sistent if and only if P\t is arc consistent. P\t is arc consistent because dual(P)|{c- £}
is arc consistent. For each ordinary variable x in hidden(P) and for each of the
values a € domt>d'“'u'“:lP) (x), there is a hidden variable c and a tuple 1 of c such
that x € vars(c) and t[x] = a. Thus hidden{P) |{n_a} is arc consistent because
hidden{P)\[Ci- t} is arc consistent. |

In the hidden problem, for each pair of hidden variables c* and Cj. where cars(c,)n
vars(cj) # 0 , enforcing strong path consistency will add a constraint between c, and
Cj, which restricts a tuple from c* to agree with a tuple from c, on the shared ordinary
variables. The constraint is essentially the same as the dual constraint between ct and
Cj in the dual transformation. Thus, enforcing strong path consistency on the hidden
problem actually results in a subproblem, which is identical to the dual problem.
Therefore, strong path consistency on the hidden problem is at least as strong as the
one on the dual.

T heorem 4.13 Achieving strong path consistency on the hidden problem is equiva
lent to achieving strong path consistency on the dual problem.

103

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

Proof: If the dual problem is not empty after enforcing strong path consistency, we
will show that the hidden problem is not empty either after enforcing strong path
consistency. Let pc(dual(P)) denote the resulting binary CSP after enforcing strong
path consistency on the dual problem, and for each pair of dual variables c, and
Cj, if there is one constraint between Ci and Cj in pc(dual(P)), let DC{ci,Cj) denote
that constraint, otherwise, DC{ci,Cj) denotes the universal constraint between c, and
Cj. Suppose pc{dual[P)) is not empty, we can make the hidden problem strongly
path consistent without an empty resulting CSP. In the hidden problem, we do the
following operations.

• For each hidden variable c, its domain is restricted to be the domain of the
dual variable c in pc(dual{P)). For each ordinary variable x. we choose a dual
variable c in pc(dual{P)) such that x € vars(c), and restrict the domain of x
to be Z[x)dompê dual̂ p^(c). Because pc{dual{P)) is arc consistent, from Lemma
4.5, the domain of x is irrelevant to whichever dual variable we choose tu make
the projection.

• Given two hidden variables c* and cv we add a new constraint HC{c,.(j) be
tween Ci and Cj, which is the same as the constraint DC(ct,Cj) in pc(dunl(P)).

• Given an ordinary variable x and a hidden variable c. If x is included in vars(c).
there is an original hidden constraint H C(x.c) between x and c and we tighten
this constraint according to the new domains. Otherwise x is not included in
vars(c). We choose another dual variable d such that x 6 vars(c) U vars(d)
(this is possible because x involves at least one constraint). Then we add a new
constraint HC(x, c) between x and c in the hidden problem, which specifies a
value a of x to be compatible with a tuple t of c if there is a tuple t' in the domain
of d, such that { c 4— t, d 4— £'} satisfies the constraint DC{c,d) and t'[x\ = a.
The new constraint is irrelevant to whichever dual variable we choose. Suppose
there is a dual variable d' such that x € vars(c) U vars(d'). If (c 4— t. d 4— £'}
satisfies D(c, d), because pc(dual(P)) is strongly path consistent, there is a tuple
t" of c", such that {d 4— t' ,d ' 4— £"} satisfies D C {d.d') and {c 4- t.c" 4— f"}
satisfies DC(c,d'). Note that x 6 uars(d) fl vars(d'). so t'[.r\ = t"[.r] = a. Thus
a is also compatible with t in the case that c" is considered.

• Given two ordinary variables x and y, we add a new constraint HC(x. y) between
x and y in the hidden problem. If there is a dual variable c such that x €
vars(c) and y 6 vars(c), H C (x,y) is set to be ir{x^d o m pc(dual(P̂ {c). The

104

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

new constraint is irrelevant to whichever dual vaxiable we choose to make the
projection, because from Lemma 4.5, the domains of two dual variables will
make the same projection over {x,y}. If there is no such a dual variable c
that x and y are contained in the scheme of c simultaneously, we choose two
dual variables, Cj and c3, such that x G vars(ci) and y G vars(cj). H C(x.y)
specifies that value a of x is compatible with value b of y if there is a tuple f,
of Cj and a tuple tj of c3, such that {cj <— t^Cj <— tj} satisfies £>(c,,Cj). while
ti[x] = a and tj[y\ = b. Also, the new constraint is irrelevant to whichever dual
variables we choose. Suppose there are two dual variables o', and d} such that
x 6 uars(di) and y G vars(d3). Because pc(dual(P)) is strongly path consistent,
there is a tuple t} of o', such that {cj £j,Cj «— £'} satisfies the constraint
DC(cj,Cj) and {ĉ «— t\,Cj <— tj} satisfies the constraint DC{di,cJ). Note that
x € vars(ci) nuars(Cj), so £'j[x] = £j[x] = a. Furthermore, there is a tuple £'
of dj such that {Cj <— t\,dj <— £'} satisfies the constraint DC{di,dj) and {cj <—
tj, dj <— tj} satisfies the constraint DC(cj, dj). Because y G vars(cj) n vars{dj).
we have £'[?/] = tj\y\ = 6 . Thus a is also compatible with b in the case dL and d}
are considered.

Let pc(hidden(P)) denote the resulting CSP. pc{hidden(P)) is not empty because
none of the above projections is empty. Then we need to verify that pc{hidden(P))
is strongly path consistent. To verify that it is arc consistent, we need to consider
three possibilities: a constraint between two hidden variables, a constraint between
two ordinary variables and a constraint between an ordinary variable and a hid
den variable. The case of two hidden variables can be released because the do
mains of the hidden variables and the constraints between the hidden variables are
the same as those in pc(dual(P)). To save space, we only discuss the case of two
ordinary variables here. Given two ordinary variables x and y. If the constraint
H C {x,y) was constructed from a single dual variable c, i.e., x G uars(c) and y G
vars(c), note that dompdhtdden(~p^(x) = ~^xjdompĉ dual(-p^ (c) and dompc{'h'dden(P̂ {y) =
7T{j,}dompc(-dual(-p^ (c), then for each value a of x, there is a tuple t in dompc(duoi(P))(c)
such that t[x] = o. Thus the value t[y\ in the domain of y is compatible with a in
H C (x,y). If H C (x,y) was constructed from two dual variables Cj and Cj. For each
value a of x, there is a tuple ti of Cj such that £j[x] = a. Because pc{dual{P)) is
arc consistent, there is a tuple tj of Cj such that {cj ti,Cj <— tj} is consistent in
DC[ci,Cj). Thus a is compatible with value tj[y\ in the domain of y. In either case,
each value in the domain of x can find a support in the domain of y. Thus, HC{x, y)

105

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

is arc consistent. Therefore, pc(hidden(P)) is arc consistent.
To verify pc(hidden(P)) is path consistent, we need to consider six possibilities,

given any ordinary variables x, y and z, and hidden variables c,, cj and c/t, a consistent
partial solution over x and y to be extended to a consistent partial solution over x.
y and z, denoted by (1) (x,y) ->• z; (2) (x,y) -» c*; (3) (x,Cj) -* y; (4) (x,Cj) -* Cj\
(5) (c,-,Cj) —> x; and (6) (c,-, c,) -» c*. The case of (c,-,Cj) —> c* can be released
because pc(dual(P)) is path consistent. To save space, we only discuss the case of
(x, C{) —► Cj here. Suppose {x <— a,Ci <— £*} satisfies the constraint HC(x.Ci). If
x 6 uars(ci) and x G uars(cj), because pc(dual(P)) is arc consistent, there is a tuple
tj of Cj such that {c, <— ti,Cj tj} satisfies the constraint HC(ci,Cj). Also, we have
tj[x] = a and tj[x] = a. That is, {x <— a,Cj tj} satisfies the constraint HC{x.Cj).
If x G vars(ci) but x £ vars(cj), then £j[x] = a. The constraint HC(x.Cj) could
be constructed from DC(cj,Ci). Because there is a tuple tj of Cj to be compatible
with ti of Cj in the constraint H C (ti,tj), {x a,c} <— tj} satisfies the constraint
H C {x,tj). If x G uars(cj) but x £ uars(ci), the constraint H C (x.ct) could be
constructed from DC{ci,Cj). Because {x <— a,c, <— £,} satisfies H C (x.t\). there is
a tuple tj of Cj such that {c* <— ti.Cj tj} satisfies HC(ct.Cj) and tj[x\ = a. Thus
{x <— a ,Cj <— tj} satisfies the constraint HC{x,Cj). If x g uars(ct) and x g rars(tj).
there is a dual variable c such that HC{x,Ci) was constructed from DC{ci,c), and
HC(x,Cj) was constructed from DC(cj,c). Thus, there is a tuple t of c. such that
{c <— £, Ci £*} satisfies the constraint HC{c,Ci) and £[x] = a. Because pc(dual(P))
is path consistent, there is a tuple tj of Cj, such that {c t,Cj «— £_,} satisfies
HC(c, Cj) and {c, f - £i(Cj <— £_,} satisfies HC{Ci,Cj). We have {x <— a,Cj £_,}
satisfies the constraint HC{x,Cj). Therefore, the case of (x, c,) —> Cj is verified after
we have considered all the possibilities. |

We summarize the above results in a hierarchy graph, as shown in Figure 4.6.
In the above figure, an appendix to a consistency denotes on which problem the
consistency is applied. For example, NIC-dual denotes the case of NIC on the dual
transformation. If there is a path between consistent properties A and B in the figure,
it means A is stronger than B. If there is also a path from B to A , then A is equivalent
to B.

4.5 Summary

In this chapter, we formally defined the dual transformation and the hidden variable
transformation of an original CSP. We studied the arc consistency property on the

106

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

Figure 4.6: A hierarchy about the relations between consistencies on the original
problem, its dual transformation and its hidden transformation.

original problem, and its dual and hidden transformations. We show that arc consis
tency on the dual problem is stronger than arc consistency on the original problem,
which itself is equivalent to arc consistency on the hidden problem. We identified a
special structure of non-binary CSPs, in which arc consistency on the dual is equiv
alent to one on the original problem. We enriched the consistencies hierarchy by
considering some other local consistencies that only apply to binary CSPs. For exam
ple, we show that path consistency on the hidden problem is equivalent to one on the
dual, and singleton arc consistency on the dual is stronger than one on the hidden.

107

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

Chapter 5

Dual and Hidden Transformations
with Backtracking Algorithms

In Chapter 4, we formally defined the dual and hidden transformations and gave
some theoretical comparisons of the consistency properties on the original problem
and its dual and hidden transformations. One may be more interested in how these
transformations affect the problem solving. That is, given three formulations of a
problem, the original formulation, its dual transformation and hidden transformation,
how will they affect the backtracking algorithms when solving the problem. Bacchus
and van Beek have presented some preliminary results based on the forward checking
algorithm(FC)[7]. For example, they give examples to show that FC on the original
may be exponentially better or worse than FC on the dual problem or hidden problem.
Also, they present a new algorithm, known as FC+, as an enhancement to FC on the
hidden problem, which is shown to be the best among those "algorithm+formulation"
couples. We will present in this chapter more theoretical comparisons about the
performance of the above three formulations in selected backtracking algorithms,
including the chronological backtracking algorithm, the forward checking algorithm,
and the maintaining arc consistency algorithm.

5.1 A Few Issues about the Comparisons

Given a CSP formulation of a problem, we can always transform the original for
mulation into the dual problem or the hidden problem. Note that our purpose is ro
theoretically evaluate the modeling techniques (the dual and hidden transformationi
by means of comparing the performance of the selected backtracking algorithms on the
above formulations, which is different from the approach of evaluating (all possible)

108

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

CSP formulations for a specific problem as Nadel [8 6] did for the n-Queens problem. A
general methodology in algorithms evaluation is to compare their performance empir
ically or theoretically on the same CSP instance, i.e., to fix the problem formulation
and evaluate the algorithm. Intuitively, the formulations evaluation should work in
the reverse direction. That is, to fix the algorithm and compare the performance of
the algorithm on each of the formulations. In practice, this approach is reasonable
because there are only a few best algorithms that are widely studied in the literature
and used in commercial systems, such as Ilog Solver [61], e.g., the forward checking
algorithm and the maintaining arc consistency algorithm. Hence, in this chapter, we
will focus on three main-stream backtracking algorithms, the chronological backtrack
ing algorithm, the forward checking algorithm and the maintaining arc consistency
algorithm. However, given a backtracking algorithm and a CSP formulation, we are
still unable to precisely describe the execution of the algorithm without knowing the
instantiation order of the variables. As a matter of fact, different variable orderings
may result in tremendous differences in the performance of the algorithm.

Exam ple 5.1 Consider a CSP over the set of Boolean variables, {xt, . . . ,x„}. The
constraints are

C{xu x2,x n) = {(0 , 0 , 1) ,(1 , 1 , 0)},

C (xlfxn) = {(0,0),(1 , 1)},

C (x „ _ t ,x „) = { (0 . 0) , (1 , 1) } .

Under the static variable ordering X i,. . . , xn, FC applied to the original problem is able
to detect that every node at the level of x-> is a dead-end, because the domain of xn will
be wiped out due to the instantiations to X[and x<i. In the hidden problem, if the vari
ables are instantiated in the order, x i , . . . ,x n,c (x i,x 2 ,x n) ,c (x i,x n). — c(x„_i.xn).
FC applied on the hidden problem is unable to detect a dead-end until the variable x n
has been instantiated. Thus, under the above variable orderings, FC applied on the
hidden is exponentially worse than FC on the original problem. However, if the vari
ables in the hidden problem are instantiated in the order, Xi,X2 , c(xi. xo, x„), c(xi.xn) . .
FC applied on the hidden is able to detect that every node at the level o /c (x i,x n) is
inconsistent with x„. Therefore, under the new variable ordering, the performance of
FC on the hidden problem is comparable to the one on the original.

The issue about variable ordering may not be a serious problem when we are
comparing two algorithms on the same problem formulation, because the same static

109

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

variable ordering or the same dynamic variable heuristic (if applicable) can be used
for both algorithms [69]. However, because all three formulations that we an* going
to evaluate have different sets of variables, inherently, we have to use a different vari
able ordering for each formulation. The question is. how can we select the variable
orderings to ensure a fair and meaningful comparison? One simple solution is to
assign each formulation a default static variable ordering. For example, the default
variable ordering for the original problem is to instantiate the variables in a static
order in which they are presented in the problem, usually in the lexicographic order
as, £ i , . . . , x n. The default variable ordering for the dual problem is to instantiate
the dual variables in the order in which their corresponding constraints are presented
in the original problem, e.g., Ci,.. .,Cm. Such an arrangement is meaningful, because
in the dual transformation, the first dual variable is usually given to the first original
constraint and so on. If both the original problem and the dual problem are solved in
a static variable ordering, it is very natural to instantiate the variables in the order in
which they are presented in the formulation. Similarly, we can set the default variable
ordering for the hidden problem as x t , . . . , x„, c i , . . . , Cm. By assigning each problem
formulation a default variable ordering, we can show the worst case differences be
tween the performance of the formulations. For instance, in the above example, under
the default variable orderings, FC applied on the hidden is exponentially worse than
FC applied on the original problem.

Generally, given a backtracking algorithm, it is possible to find one instance to
show that one formulation may be exponentially better than the other, and mean
while there is an instance in which the converse holds. Unlike the results of the
algorithms evaluation (for example, it is known that CBJ is never worse than BT in
terms of nodes visited and constraint checks performed) there is usually no constant
relation between two formulations under the same algorithm, saying that one is al
ways better than the other. Although the above bounds are valid in the worst case
or in the instances we constructed, they are not very interesting because too little
information is provided to guide us to determine whether or not the dual or hidden
transformation should be applied on the original problem. The problem here is that
the restriction of the algorithm to the default variable orderings gives us too much
freedom in contriving a CSP instance that maximally shows off the drawbacks of one
formulation but relatively hides those from the other formulation.

In this chapter, given two formulations A and B of a problem, we are going to
identify one of two relations between A and B with respect to a fixed backtracking
algorithm; namely, A may be exponentially worse than B, or A is only bounded worse

110

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

than B.

D efin ition 5.1 Given a backtracking algorithm and two formulations A and B of a
problem, we say A may be exponentially worse than B if there exists a CSP instance
and a variable ordering for B such that the performance of the algorithm applied on A
is exponentially worse than its performance on B no matter what variable ordering is
used in A , and we say A is only bounded worse than B if for any CSP instance and any
variable ordering for B, there is a variable ordering for A such that the performance
of the algorithm applied on A is bounded by a polynomial from its performance on B.

Note the above two relations are mutually exclusive. To be fair ancl meaningful,
we have to restrict the variable orderings that can be constructed and used for A
when proving that A is only bounded worse than B. As we have learned from Theo
rem 3.5 about BT and CBJ, BT can always perform as well as CBJ if an appropriate
variable ordering is used for BT to simulate the execution of CBJ, whereas CBJ is
known to be never worse than BT. Note that the variable ordering constructed for
BT entirely depends on the execution of the CBJ to solve the problem, i.e.. it cannot
be known before the completion of the CBJ. Generally, a comparison conducted in
such a way between two algorithms or two formulations is not fair and it does not
reflect their actual performance in solving the problem. In the following, to prove the
bounded worse relation between A and B , we will use static variable orderings for
both of them. That is, given any CSP instance and a static variable ordering for B,
we can always construct a static variable ordering for A from the the one of B. such
that the performance of A is bounded by a polynomial factor from the performance
of B. Under certain circumstances, we can relax the static variable orderings to dy
namic ones. For example, since the hidden problem has all the information (domains,
degrees, etc.) in the original problem, given a dynamic variable ordering heuristic
for the original problem, e.g., FF+Deg, it is possible to construct a dynamic variable
ordering for the hidden problem without knowing the execution of the algorithm on
the original problem.

When proving the above relations between formulations .4 and B, we actually
use the number of the nodes visited by the backtracking algorithm as the measure
of its performance. Because the backtracking algorithm only performs a polynomial
number of constraint checks at each node in the search tree, these relations are also
valid if the number of the constraint checks performed by the algorithm is considered.

I l l

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

The last issue is which of the parameters related to the size of a CSP formulation
should be used to establish an exponential or a polynomial bound. Those parameters
include the number of the variables, n, the maximum domain size. d. the maximum
arity of the constraints, r, the number of constraints, m, and the maximum number
of the tuples in the constraints, M l. We assume that the parameters d. r. and m
are all bounded by a polynomial with respect to the number of variables n and M is
bounded by 0(cT) unless otherwise stated. Therefore, the exponential or polynomial
bound can be expressed in terms of n, or a combination of n, d, r and m.

Figure 5.1 summarizes the results that we are going to present in this chapter.
In the above figure, we refer to a backtracking algorithm X applied on a problem
formulation Y as X-Y. For example, GAC-orig denotes the case in which GAC is
applied on the original formulation of a problem. We will show that GAC-orig always
visits that same nodes as MAC-hidden if MAC-hidden instantiates all the ordinary
variables first in the backtrack search, and GAC-orig is only bounded worse than
MAC-dual if in the original formulation every pair of constraints share at most one
variable. The above relations related to the chronological backtracking algorithm
are identified in Section 5.2, the relations about the forward checking algorithm are
identified in Section 5.3, and those about the maintaining arc consistency algorithm
are given in Section 5.4.

Given a CSP instance and the variable orderings for the original problem, the dual
problem, and the hidden problem, because a backtracking algorithm explores distinct
search trees over the above three formulations, in the following, we refer to the search
tree explored by the backtracking algorithm in the original problem as the original
search tree, the one explored in the dual problem as the dual search tree, and the
one explored in the hidden problem as the hidden search tree. We prove the bounded
worse relation for a given backtracking algorithm and two formulations A and B by
establishing a correspondence between (some) nodes in the search tree explored in
A and (some) nodes in the search tree explored in B. In the following, we will use
notations orig-dual, hidden-orig, dual-hidden, hidden-dual, hidden, allhidden, dual
and alldual to denote such correspondences, which will be defined in the context.

5.2 Chronological Backtracking Algorithm (BT)

The properties of the nodes in the BT backtrack tree have been characterized by
Kondrak and van Beek [69].

1 Also, M is the maximum domain size of the dual (hidden) variables in the dual (hidden) problem.

112

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

A - 8
A is never w orse chan B

Algorithms
is b o u n d ed by 0 (/ (n)) from 8

m ay b e ex p o n e n tia lly worse chan 8

O (r)

M A C -hidden 'exp

F C +

exp

expexp

0 ((m + l)d.Vf
O i r d

0 ((m +• l) d A /) Formulations

(1) In the case that all the ordinary variables in the hidden problem are instantiated Brst.

(2) In the case that each pair o f the original constraints share at most one variable.

Figure 5.1: A two dimensional diagram showing the relations between the combina
tions of algorithms and formulations.

113

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

T heorem 5.1 [69] B T visits a node if it is consistent. B T visits a node only if its
parent is consistent 2.

In the following discussion, we denote BT applied on the original problem as BT-
orig, BT applied on the dual problem as BT-dual, and BT applied on the hidden
problem as BT-hidden.

E xam ple 5.2 Consider a CSP over the set of Boolean variables, {x l 5 . . . ,x„}. The
only constraint in the problem is an n-ary constraint over all the variables, C (x1, . . . , x„)
= { (0 ,..., 0), (1 ,. . . , 1)}. The dual problem has only one variable and its domain has
only two values. So BT-dual visits two nodes, each identifying a solution of the prob
lem. In the hidden problem, if the only hidden variable is instantiated first, each of
the ordinary variables has only one value in the domain to be compatible with the
instantiation of the hidden variable. Thus BT-hidden visits 2 n + 2 nodes. However,
by any variable ordering, BT-orig is unable to check the constraint until all the vari
ables have been instantiated, then it m il recursively test every possible instantiations
to x i , . . . ,x „ . Thus, BT-dual and BT-hidden are exponentially better than BT-orig
in the above example.

T heorem 5.2 There is a CSP instance in which BT-dual and BT-hidden are always
exponentially better than BT-orig no matter what variable ordering is used in the
original problem.

Proof: It is true from the CSP in Example 5.2. |

Exam ple 5.3 Consider a non-binary CSP with n Boolean variables. x t xn and
n constraints given by (xi), (~>Xi V X2), (-,Xi V - ’Xo V X3) , . . . , and (->X[V ->x> • • -xn).
BT-orig would visit 2n nodes, whereas, because the maximum domain size of the dual
(hidden) variables is 2” — 1, by any variable ordering strategy, BT-dual or BT-hidden
has to visit at least 0 (2 ") nodes.

T heorem 5.3 There is a CSP instance in which BT-orig is always exponentially
better than BT-dual and BT-hidden no matter what variable orderings are used in
them.

P roof: It is true from the CSP in Example 5.3. |

2Their original result only applies to binary CSPs. However, it is also valid on non-binary CSPs
from their proof.

114

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

Figure 5.2: The correspondence between the ordering of the dual variables and the
ordering of the ordinary variables.

5.2.1 BT-orig and BT-dual
In the worst case, BT-orig is exponentially worse than BT-dual and BT-hidden. As
we can see from Example 5.2, the exponent comes from the arity of the non-binary
constraint. We show next that: If the maximum arity of the constraints in the original
problem is bounded by a constant r, BT-orig is only bounded worse than BT-dual.
That is, given a variable ordering in the dual problem, we can construct a variable
ordering in the original problem, such that the number of nodes visited by BT-orig in
the original search tree is bounded by a polynomial from the number of nodes visited
by BT-dual in the dual search tree.

Given an ordering of the dual variables, c t , . . . , ^ , because an instantiation of
a dual variable is equivalent to the instantiations of several ordinary variables, we
can arrange the ordinary variables in the original problem in the order that they are
instantiated. For example, as shown in Figure 5.2, given the static ordering of the
dual variables, c(xi,x 2 ,x3), c(x2 ,X4 ,x 5), and c(xi,x 3 ,x 5), the ordinary variables can
be ordered as x t , x2, x3, x4, and x5. For convenience, we denote the ordinary variables,
which are “instantiated” as the dual variable c* is instantiated, as x ^ ,x i>r>, i.e..
Xij € vars(ci) and xtJ £ U]t=li vars(ck). Therefore, under the above orderings, each
ordinary variable in the original problem corresponds to a unique dual variable c,
in the dual problem. However, not all the dual variables have some correspondence
in the ordinary variables, such as the dual variable c3 in the above figure, which does

115

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

not make any new instantiations to the ordinary variables. Therefore, in the original
problem, Xjir, may not always be followed by Xj+1(i (because x,+lii may not exist).

Although BT-orig and BT-dual explore different search trees, as we show next,
there exists a correspondence between (some) nodes at the level of x,-.ri in the original
search tree and (some) nodes at the level of c, in the dual search tree. We then show
that the total number of the nodes visited by BT-orig (in the original search tree)
is bounded by a polynomial factor from the total number of the nodes visited by
BT-dual (in the dual search tree).

Observation 5.1 Under the above orderings, if a node t at the level of x tSi in
the original search tree is consistent with constraints CL, — Ct, i.e., t[t’ars(Cj)] €
rel(Cj), j = 1 ,• • • ,! , t corresponds to a unique node at the level of Ci in the dual
search tree, given by orig-dual(t) = (ci *- f[uars(ci)],. . . , c\ <- £[uars(ci)]}.

The condition that t is consistent with the constraints cannot be re
laxed. Otherwise, suppose t does not satisfy a constraint C}, for 1 < j < i. i.e..
t[vars(cj)] £ rel(Cj), then t[vars{cj)] is not a valid tuple in the domain of the dual
variable Cj and thus orig-dual(t) is not a legal node in the dual search tree.

Lemma 5.4 I f a node t at the level o fx^Tl in the original search tree is consistent, its
corresponding node at the level of c, in the dual search tree, orig-dual(t). is consistent
in the dual problem.

Proof: Suppose orig-dual{t) does not satisfy a dual constraint between two dual
variables c3 and c*, where 1 < j, k < i. Thus orig-dual(t)[cj] does not agree with
orig-dual{t)[ck\ on the part vars{cj) fl vars{ck). Because orig-dual{t)[cj] is set to be
£[uars(cj)] and orig-dual(t)[ck\ is set to be £[uars(cfc)], they must agree on the shared
ordinary variables. That is a contradiction. |

We have established the correspondence between (some of) the nodes at the level
of Xiji in the original search tree and (some of) the nodes at the level of c, in the dual
search tree. We now show that there is a correspondence between the nodes visited
by BT-orig in the original search tree and (some of) the nodes visited by BT-dual in
the dual search tree.

Theorem 5.5 Given any CSP instance, there is a variable ordering such that BT-
orig visits at most 0(<f+l) times as many nodes as BT-dual does.

116

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

Ck

C k + l

C i - l

Ci

Figure 5.3: The correspondence between the nodes visited by BT-orig in the original
search tree and the nodes visited by BT-dual in the dual search tree.

Proof: From Lemma 5.4 and Theorem 5.1, if a node t at the level of x,.r, in the
original search tree is consistent, its correspondence orig-dual{t) at the level of r, in
the dual search tree is consistent and thus BT-dual will visit orig-dual(t). If BT-orig
visits a node tyj at the level of Xij in the original search tree, let x k,rk be the variable
immediately followed by xitl, from Theorem 5.1, t^ /s ancestor tk<rk at the level of
xk,rk is consistent. The total number of the descendants of tkyTk from the level of xtil
to the level of x i>Ti is bounded by 0 (d r+l), as shown in Figure 5.3. Thus the total
number of the nodes visited by BT-orig is at most 0 (d r+l) times as many as the total
number of the consistent nodes in the dual search tree, which is bounded by the total
number of the nodes visited by BT-dual. |

The above bound is tight as we can verify it in Example 5.2. Thus, BT-orig may
be exponentially worse than BT-dual, but if the maximum arity of the non-binary
constraints in the original problem is bounded by a constant, BT-orig is only bounded
worse than BT-dual.

Exam ple 5.4 We apply BT-dual and BT-orig to solve the CSP in Example J.l. as
shown in Figure 5.4■ Because the node (x t <— 0 ,x> <— 0 ,x 3 <— 2 } is consistent in
the original problem, it has a correspondence at the level of Cy in the dual search tree.
(c(xi,x 2 ,x 3) <— (0,0,2)}. From Lemma 5-4, its correspondence is consistent in the
dual problem. Therefore, BT-orig will visit {(xt, x2, x3) <— (0,0,2)}, and BT-dual will
trisit (c(x i,x 2 ,x 3) <— (0,0,2)}. Also, as we can see in the above figure, the consistent
node {(xi,x 2 ,x 3 ,x 4 ,x 5) <— (0 , 0 , 2 , 0 , 0)} at the level o /x 2 t 2 in the original search tree

117

•o-

-0 —-0 — -#

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

c (X (, I 2 , 1 3) 6 {(0, 0, 0) . (0 . 0 , I) , (0 ,0 . 2), (0 , I , I) ,
(0, 1 , 2) , (0 , 2 . 2) , (1 ,0 , I), (1 .0 , 2), (1, l , 2) , (2 , 0 , 2) >

C(X2 , 1 4 , 1 5) £ { (0 ,0 ,0) , (1 ,0 ,0) , (1 ,0 , I) , (I , 1 .0).
(2 ,0 .0), (2,0 , 1), (2 ,0 , 2), (2 , 1, 0). (2 . I, I), (2, 2,0)}

c(x 1 , X 3 , I 5) 6 {(0, 2, 0), (I, 1, 0), (I, 2,0), (I, 2, I),
(2, 0 , 0) , (2 , 1 .0) , (2, 1. 1), (2, 2 .0) , (2 , 2, I) , (2, 2, 2)}

r i + Xo < X 3

X I + X3 > X5 + I

X 2 ~ x * > x s

X l € { 0 ,1 ,2 }

AAA
O a consistent node

9 an inconsistent node

Figure 5.4: The comparison of BT-dual and BT-orig in solving the CSP in Example
2 . 1 .

corresponds to the consistent node {(c(il ,X2 ,X3))c(x2 ,X4 ,X5) <— ((0 , 0 , 2), (0 . 0 . 0))}
at the level of c2 in the dual search tree. The node {(xL, x>, x3) <— (0,0,2)} has 12
(bounded by 3*) descendents from the level of x2,t to the level of x2,> A the original
search tree, and the total number of the nodes visited by BT-orig is at most 3 ‘ times
as many as the total number of the nodes visited by BT-dual.

5.2.2 BT-hidden and BT-orig

Note in Example 5.3, BT-hidden has to visit an exponential number of nodes because
the maximum domain size of the hidden variables is exponential in n. However, if the
maximum domain size of the hidden variables is bounded by a constant M, we can
arrange a variable ordering for BT-hidden such that it is only bounded worse than
BT-orig.

Given a variable ordering for BT-orig in the original problem, x l t . . . ,x„, we can
construct an ordering for BT-hidden on the hidden problem. The ordinary variables
in the hidden problem are instantiated in the same order as they are in the original
problem. Furthermore, at each node in the original search tree, if the instantiation of
the current variable X* makes some constraints Ciyi , . . . , Chrt checkable, in the variable
ordering for the hidden problem, we instantiate the hidden variables c,.!, c,.ri cor
responding to those newly checkable constraints (breaking ties arbitrarily). Thus the

118

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

Cl.oXI

C3.0

•■•(■Cl. * 2 . * 3) J C3.1

c (x i , r 3 . X 5)) C j . i

c U 2 . * * . * s)) C 5 . 2X5

Figure 5.5: The correspondence between the variables in the original problem and
the variables in the hidden problem.

119

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

variable ordering for the hidden problem is clto,. . . , Ci<n, . . . , c^o,. . . , C n , n r , where Cij0
denotes the ordinary variable x, and c, j for j > 1 denotes a hidden variable such that
Xi € vars(cij) and vars(cij) C {x i,. . . , X j } , i.e., the constraints CtJ becomes check
able at the level of x, in the original search tree. Note that the number r, is bounded
by the total number of the constraints in the original problem, m. For example, sup
pose in the original problem the ordinary variables are ordered as x t , . . . , x5, and there
are three constraints C (xl; x2, x3), C(x2, x4, x5) and C(xl , x3, x5). The variable order
ing constructed for the hidden problem is x l ,x 2 ,x 3 ,c(xl,x 2 ,x 3),x 4 .x 5 ,c(x 2 .x.l.x 5).
c(xi,x 3 ,x5), as shown in Figure 5.5. Under the above orderings, a node t ar rhe level
of C i s , in the hidden search tree, corresponds to a node hidden-orig(f) at the level of
Xi in the original search tree, where hidden-orig(t)[xj] = t[xj] for 1 < j < i.

Lem m a 5.6 I f a node t at the level of chJ.t in the hidden search tree is consistent, its
correspondence hidden-orig(t) is a consistent node at the level of x, in the original
search tree.

Proof: Suppose hidden-orig(t) does not satisfy the constraint C, i.e..
hidden-orig(t)[vars{C)\ £ rel(C). That means, in the hidden problem, the instan
tiation of the hidden variable c, £[c] is incompatible with the instantiations to the
ordinary variables in the scheme of c. Thus t is not consistent. That is a contradic
tion. |

Therefore, the total number of the consistent nodes at the level of ct.r, in the
hidden search tree is bounded by the total number of the consistent nodes at the
level of Xi in the original search tree.

T heorem 5.7 Given any CSP instance, there is a variable ordering such that BT-
hidden visits at most 0 ((m + l)dM) times as many nodes as BT-orig does.

Proof: If BT-hidden visits a node tij at the level of Cij in the hidden search tree, we
know that t j j ’s ancestor at the level of is consistent. Now we estimate
the total number of the descendants of at the levels of x,, Cj>t, . . . , cl>r,. ti-i.r,.!
has at most d children at the level of x t for each value in the domain of x,. Once the
ordinary variable x; is instantiated, there is at most one tuple left in the domain of
each of the hidden variables c*ti , . . . , c,,r, to be compatible with previous instantiations,
as shown in Figure 5.6. The total number of the descendants of tt_i.ri_l at the levels
of Xi, Cifi , . . . , Cirn is bounded by 0((ri + 1)dM). Note that r, is bounded by the
number of the constraints that involve x,-. Thus the total number of the nodes visited

120

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

ht<Aien-ortg(ti-1,
X i - 1

c,.0 (x.)

~e—~e~~~0-

Figure 5.6: The total number of the descendants at the levels of x ,,c ,,i,. . . ,ci-n of
a consistent node at the level of in the hidden search tree is bounded by
0 ((n + 1)dM).

by BT-hidden is bounded by a factor 0((m + l)dM) from the total number of the
consistent nodes in the original search tree, which is bounded by the total number of
the nodes visited by BT-orig. |

Exam ple 5.5 We apply BT-orig and BT-hidden to solve the CSP in Example 2.1.
as shown in Figure 5.7. For example, in the hidden search tree, the node t =
{(xi,X2 ,a:3 ,c(xi,a;2 ,X3),X4) <— (0 , 0 , 2 , (0 , 0 , 2), 0)} at the level of c.i,o is consistent,
thus it has a correspondence hidden-orig(t) = {(xt,X2 ,X3 ,X4) «— (0 . 0 . 2 , 0)} at the
level of x 4 in the original search tree. From Lemma 5.6, its correspondence is con
sistent in the original problem. Therefore, BT-hidden will visit t. and BT-orig will
visit hidden-orig(t). As we can see, t has 3 children at the level of C5 .0 , and each of
these nodes has at most one consistent descendant at the level 0 /C 5 4 and the level of
0 5 ,2 - Thus the total number of the descendants o f t at the levels c5>0, C5 4 and c5 ,2 are
bounded by ((m + 1)dM).

5.2.3 BT-dual and BT-hidden
Given a variable ordering for the hidden problem, we can construct an ordering of the
dual variables for BT-dual, in which the dual variables are ordered exactly the same
as they are in the ordering of the hidden problem. For example, if variables in the

121

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

r i , . . . , x5 € {0 , 1 , 2 }
H,...,is € {0 , 1,2 }
c (l l , I 2 . l 3) € { (0 , 0 . 0) , (0 . 0 , I) . i O. O. 21. (0 . I . I

(0, 1 ,2) , (0 , 2, 2) , (1 ,0 , 1), (1 ,0, 2), (1, I, 2). (2. 0 .2))

C (I 2 , H , I 5) 6 { (0 , 0 , 0) , (1. 0 , 0) . (1, 0 , I) , (I . 1, 0),

(2 , 0 , 0) . (2 . 0 , I) , (2 , 0 . 2) . (2 . 1 , 0) , (2 . 1, I) . (2 , 2 . 0) {

c (l 1 ,13 ,1$) € {(0, 2,0), (I, 1,0). (I, 2,0), (1.2. 1).
(2 . 0 , 0) . (2. 1 .0) , (2, 1. I) , (2. 2 .0) . (2, 2. I) . (2. 2. 2))

{ (* l . * 2 . * S . e (* l . * 2 . * s)) - (0 . 0 , 2 . (0 . 0 , 2)) >{(*l.*2 .*3) *- (0 .0 .2U

~ Q -- ~0 _

o a consistent node

9 an inconsistent node

Figure 5.7: The comparison of BT-orig and BT-hidden in solving the CSP in Example
2 .1.

122

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

d u a l - h i d d e n ^ t , _ ,) r . - i
C .-1

 C,

‘i-l.r;., U (Ci •“ ‘.[Cil> ti

Figure 5.8: A node ti visited by BT-dual at the level of c, in the dual search tree
corresponds to a unique node visited by BT-hidden at the level of c* in the hidden
search tree.

hidden problem are ordered as x l,x 2 ,c (x i,x 2 ,x 3) ,x 3 ,x i ,c (x l.x 3 , x 5),x5,c{x2 ,x i ,x 5),
the ordering for the dual problem is c(xi, X2 , xs),c(xi, X3 , x$), c fa , x±, x$).

O bservation 5.2 I f a node t at the level of Ci in the dual search tree is consistent, t
corresponds to a unique node dual-hidden(t) at the level ofc , in the hidden .search tree,

where for each hidden variable c. dual-hidden(t)[c\ is set to be /[rj. and f o r each ord i

nary variable x, if there is an instantiated dual variable c in t such tha t x € c a r s (c).

dual-hidden{t)[x\ is set to be the projection, (f[c])[x]. Otherwise, dual-hidden{t)[x\ is
set to be the first value in the domain of x. Because t is consistent, dual-hidden{t)[x\
is irrelevant to whichever dual variable we choose to make the projection.

L em m a 5.8 I f a node t at the level of Ci in the dual search tree is consistent, its
correspondence dual-hidden(t) is a consistent node at the level of c, in the hidden
search tree.

P roof: Suppose dual-hidden{t) does not satisfy the hidden constraint between the
hidden variable c and the ordinary variable x, where c 6 vars(t) and x € vars{c).
Because dual-hidden(t)[x] is set to be (i[c])[x] and dual-hidden(t)[c] is set to be t[c\.
the instantiation of c is compatible with the instantiation of x in dual-hidden(t).
That is a contradiction. |

Because BT-dual visits a node only if its parent is consistent, we can immediately
conclude that BT-dual visits at most O(M) times as many nodes as BT-hidden does.
Moreover, we can prove BT-dual will never visit more nodes than BT-hidden does.

T h eo rem 5.9 Given a CSP instance and a variable ordering for BT-hidden. there is
a variable ordering such that BT-dual never visits more nodes than BT-hidden does.

123

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

Proof: Suppose BT-dual visits a node U at the level of c, in the dual search tree, we
will prove that U corresponds to a unique node visited by BT-hidden at the level of
Ci in the hidden search tree. From Theorem 5.1, t f s parent £,_i at the level of c,_L
in the dual search tree is consistent. Thus, dual-hidden{ti-\) is a consistent node
at the level of c*_i in the hidden search tree. Suppose in the variable ordering for
the hidden problem, the ordinary variables £ i_i,i,. . . , are instantiated after
Ci_i but before c*. We will show that dual-hidden(t{-i) has a consistent descendant
ii-L.iw at the level of in the hidden search tree. For each of the ordinary
variables Xi_ij, if Xi-i,j G U lk2 ivaTSi.ck), i.e., £,_i.j has been "instantiated" by the
instantiation to a hidden variable c, then f t- i^ .Jx .- i.j] is set to be (f[q)L£t_lv/j.
Because the node U-i is consistent in the dual problem, is irrelevant to
whichever hidden variable we choose to make the projection. Otherwise, if £,_[.; has
not been “instantiated” from the instantiations of the hidden variables,
is set to be the first value in the domain of Xi_i,j. is consistent because for
each of the ordinary variables £ j_ ij, if x,_tiJ is constrained with an instantiated
hidden variable c, should satisfy the constraint. Therefore. BT-hidden will
visit ti— and extend it to the level of q . For each tuple t in the domain of c,, the
node ti— U {q f— f} is visited by BT-hidden. Let the node ti corresponds to the
node, tj i,r,_t U {q «— fi[ci]}, visited by BT-hidden at the level of q in the hidden
search tree, as shown in Figure 5.8. Therefore, the total number of the nodes visited
by BT-dual is bounded by the total number of the nodes visited by BT-hidden. |

Exam ple 5.6 We apply BT-hidden and BT-dual to solve the CSP in E xam pl e 2.1, as

shownin Figure 5.9. For example, BT-dual visits a node t-> = {(c(x1 .x».x:i).c(.r1 . .r t. ./-,))
<— (0 , 0 , 2) , (1 , 1 , 0) } at the level of Co in the dual search tree. Thus t >'s parent

t\ = { c (X [,X 2 , £ 3) «— (0 , 0 , 2)} at the level of Ct is consistent in the dual problem.

From Lemma 5.8, t i ’s correspondence hidden-dual{t\) = {(xt,X2 ,c(xt,X 2 ,X3))
<— (0,0, (0,0,2))} at the level of q in the hidden search tree is consistent. Further
more, hidden-dual(ti) has a consistent descendant t i . 2 = {(xi,X2 ,c(xi,X 2 ,X3),X3 .X4) <—
(0 , 0 , (0 , 0 , 2), 2 , 0) at the level o /x l> 2 in the hidden search tree, and t2 corresponds to
one of tip 's children {(xl ,x 2 ,c (x l,x 2 ,x 3),a:3 ,x 4 ,c (x i,x 3 ,x 5)) «— (0 , 0 , (0 , 0 . 2). 2 , 0 ,
(1,1,0)) visited by BT-hidden at the level c2 in the hidden search tree. Note that x4

is not in the scheme of the hidden variables Ci and c-i, thus the instantiation of £ 4

in tip is set to be the first value in its domain. As we can see, BT-dual visits fewer
nodes than BT-hidden does in the above example.

124

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

X I 1 5 6 { 0 , 1 , 2 }

c (x i ,X 2 ,X 3) £ { (0 ,0 ,0). (0 .0 . I) , (0 ,0 , 2), (0, I, I),
(0. 1,2), (0 ,2 .2) , (1 . 0 , 1), (1 ,0 . 2), (I . 1,2). (2 ,0 .2))

c (l l , X 3 , X 5) 6 { (0 , 2 , 0) , (I , 1 . 0) , (I . 2 , 0) , (I , 2 , I) ,

(2 . 0 , 0) , (2 , 1 , 0) , (2 , I , t) , (2 , 2 , 0) , (2 , 2 . I) , (2 , 2 , 2))

C (I 2 , X 4 , I 5) £ { (0 , 0 . 0) , (l . 0 . 0) , (l . 0 . I) . (I . 1, 0) ,

(2, 0 . 0) , (2 ,0 , 1), (2 , 0 , 2) , (2, 1 ,0) , (2, I. I) , (2. 2 ,0))

O a c o n s is te n t n o d e

® a n in c o n s is te n t n o d e

Figure 5.9: The comparison of BT-hidden and BT-dual in solving the CSP in Example
2 .1.

125

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

Figure 5.10: The correspondence between the variables in the hidden problem and
the variables in the dual problem.

From Theorem 5.7 and Theorem 5.9, given a CSP instance and a variable ordering
for BT-orig, we can construct a variable ordering for BT-hidden such that BT-hidden
visits at most 0{m dM) as many nodes as BT-orig does. Then we can construct a
variable ordering for BT-dual such that BT-dual will never visit more nodes than
BT-hidden does. Therefore, BT-dual will visit at most 0({m + l)dM) as many nodes
as BT-orig does.

C orollary 5.10 Given a CSP instance and a variable ordering for BT-orig. there is
a variable ordering such that BT-dual visits at most 0 {(m + l)d.\I) times as many
nodes as BT-orig does.

We may conclude from the above results that BT-hidden visits at most 0 ((m +
1)dr+2M) times as many nodes as BT-dual does. Moreover, we can construct a
variable ordering for BT-hidden such that the above bound is even tight. Given a
variable ordering in the dual problem, C i , . . . , ^ , we choose the hidden variable c\
to be the first in the ordering for the hidden problem. Then we instantiate each of
the ordinary v a r i a b l e s . . . , x^.. in vars(ci) (if the ordinary variable has not been
instantiated yet and breaking ties arbitrarily). After ci and its ordinary variables
have been instantiated, we go on to C2 , and so on. Thus, the variable ordering for

126

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

the hidden problem is 2 :1 ,0 , 2 :1 , 1 , • • •, x i<Tl, • • •, £mi0, xmtl, • ••, *m,rm, where x ifi denote
the hidden variable c* and x ,j is an ordinary variable such that € vars(ci) and
Xij g Ufc=li vars(ck). For example, as shown in Figure 5.10, if the dual variables are
ordered as c(xi,x 2 ,X3) ,c (x i,x 3 ,X5) and c(x2 ,x 4 ,x 5), then the variable ordering in the
hidden problem is c(xl ,x 2 ,x 3) ,x l ,x 2 ,x 3 ,c(xl ,x 3 ,x 5),x 5 ,c(x 2 .x 4 ,x 5).x 4 . Under the
above orderings, for each of the nodes £ at the level of Xj,o in the hidden search tree, £
corresponds to a unique node hidden-dual(t) at the level of c* in the dual search tree,
where for each of the instantiated dual variables c, hidden-dual (t)[c] is set to be £[c|.

Lem m a 5.11 I f the node t at the level of x , i0 in the hidden search tree is consistent,
its correspondence hidden-dual (t) is a consistent node at the level of ct in the dual
search tree.

Proof: Suppose hidden-dual(t) does not satisfy the dual constraint between Cj and
Cfc,for 1 < j, k < i. That is, (£[cj])[uars(cj)fTi;ars(c/fc)l does not agree with (t[cfc])[t;ars(cJ)
ni/ars(cjfc)]. Thus, there is an ordinary variable x € uars(cj) D vars(ck) such that
(£[Cj])[x] 7 ̂ (t[ck})[x\. Because in the hidden problem x was constrained with hidden
variables, Cj and c*, x must have been instantiated in £, either before the instantiation
of Cj or the instantiation of Cfc, or both. Note that t is consistent in the hidden search
tree. So that t[cj] and £[c*] must have the same value over x. That is a contradiction.

I

Thus the total number of the consistent nodes at the level of x , , 0 in the hidden
search tree is bounded by the total number of the consistent nodes at the level of r,
in the dual search tree.

T heorem 5.12 Given a CSP instance and a variable ordering for BT-dual. there is
a variable ordering such that BT-hidden visits at most 0(rd) times as many nodes as
BT-dual does.

Proof: For each of the consistent nodes £* ,0 at the level of x,.o in the hidden search
tree, £ * ,0 has exactly one consistent descendant at each of the levels. x ld x,.r,.
because the ordinary variables Xjti , . . . ,Xj,ri only constrain with Xi,0 (c,) in the con
text, and each of them has only one value in the domain to be compatible with the
instantiation of x;,o. Thus, the total number of the consistent nodes in the hidden
search tree is bounded by a factor O(r) of the total number of the consistent nodes in
the dual search tree. Therefore, the total number of the nodes visited by BT-hidden
is at most 0(rd) as many as the nodes visited by BT-dual in the dual search tree.

I

127

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

c {0,1,2}
c (x t , X 2 , X 3) € {(0,0,0), (0.0. I), (0, 0. 2). (0, I, I),

(0 ,1 ,2) , (0 ,2 , 2), (1 ,0 ,1), (1 ,0 ,2), (I , I, 2), (2 ,0 ,2)}

c (l l , U , I s) e {(0,2,0), (I, 1,0), (1,2,0), (I, 2 .1),
(2,0.0). (2, 1,0). (2, 1,1), (2. 2,0), (2. 2, I). (2, 2, 2)}

c (X 2 , 2 4 , X s) € { (0 , 0 , 0) , (1 , 0 . 0) , (1 , 0 , I) . (1 . 1 . 0) ,

(2 ,0 .0) , (2 ,0 , 1), (2 ,0 , 2), (2, 1 ,0), (2, I. I), (2 .2 .0)}

o a consistent node

® an inconsistent node

Figure 5.11: The comparison of BT-dual and BT-hidden in solving the CSP in Ex
ample 2.1 such that BT-hidden visits at most 0(rd) times as many nodes as BT-duai
visits.

E xam ple 5.7 Again, we use BT-dual and BT-hidden to solve the CSP m Example
2.1, but under different variable orderings, as shown in Figure 5.11. For example,
in the hidden search tree, the node (c(xi,X 2 ,X3) <— (0 , 0 , 2)} at the level of x i,0 is
consistent, thus it corresponds to a unique node {c(xi,X2 ,X3) (0 , 0 , 2)} at the level
of ci in the dual search tree. From Lemma 5.11, its correspondence is consistent in
the dual problem. Furthermore, in the hidden search tree, {c(xl ,x 2 ,x 3) <— (0.0.2)}
has at most one consistent descendant at each of the levels o f x^i, X[9 and X1.3 .
Therefore, the total number of the nodes 'visited by BT-hidden is bounded by O(rd)
from the total number of the nodes visited by BT-dual.

128

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

A ---------------------- J3
A is never worse than S

A — 0 (f (n)) -----J3

A is b o u n d e d bv Of f i n " fm m &

A — exp JS

A may be exponentially worse than S

Figure 5.12: The relations between BT-orig, BT-dual and BT-hidden.

We summarize the above results in Figure 5.12. As we can see. BT-dual and
BT-hidden are always comparable to each other. BT-dual is never worse than BT-
hidden whereas BT-hidden is at most O(n) times worse than BT-dual. BT-dual and
BT-hidden are superior to BT-orig if the domains of the dual (hidden) variables are
small, i.e., the constraints are tight. On the other hand. BT-orig is better when the
maximum arity of the constraints is bounded.

5.3 Forward Checking Algorithm (FC)

In this section, We compare the performance of the forward checking algorithm (FC)
[60, 80] on the three formulations. Following Van Hentenryck [114], we say that a
k-ary constraint, A: > 2, is forward checkable if k — 1 of its variables have been instan
tiated and the remaining variable is uninstantiated. In that case, the uninstantiated
variable is called the forward checked variable. At each node in the search tree, the
instantiation of the current variable causes some (possibly empty) set of constraints
to become forward checkable. For each newly forward checkable constraint. FC for
ward checks the remaining uninstantiated variable, i.e., the forward checked variable
in the constraint. For each remaining value in the domain of the forward checked
variable, FC checks whether or not the instantiation of the forward checked variable
writh that value along with the instantiations in the current partial solution satisfies
the constraint, and the inconsistent values are temporarily removed from the domain

129

expBT-Orig

0((m + l)d<

O(rcf)
exp

BT-hidden

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

of the forward checked variable. The consistency check fails if a domain wipe out is
encountered and the instantiation to the current variable is retracted.

Following Kondrak and van Beek [69], given a CSP and a partial solution t, we
say t is consistent with a variable if t can be extended to a consistent partial solution
including that variable, and we say t is consistent with all the variables if t is consistent
with each of the variables. It is easy to see that if a partial solution t is consistent with
all the variables, a subtuple t' C t is also consistent with all the variables. Kondrak
and van Beek have shown that:

Theorem . 5.13 [69] For binary CSPs, FC visits a node if only if it is consistent and
its parent is consistent with all the variables.

In the following discussion, we denote FC applied on the original problem as FC-
orig, FC applied on the dual problem as FC-dual, and FC applied on the hidden
problem as FC-hidden.

5.3.1 FC-hidden
For a hidden problem, FC-hidden does not have to instantiate all the variables in order
to find a solution. Once FC-hidden encounters a state in which for each of the hidden
constraints, at least one of its variables has been instantiated, due to the forward
checking, each of the uninstantiated variables has only one value remaining in the
domain and a solution of the problem can be assembled in a backtrack free manner.
For example, a partial solution over all the ordinary variables that is consistent with
all the hidden variables, can be extend to a unique solution of the problem, since there
is only one remaining tuple in the domain of each hidden variable. On the other hand,
once all the hidden variables have been instantiated and there is no domain wipe-out.
the domain of each ordinary variable has been reduced to exactly one value.

We will show in the sequel that a variable ordering for FC-hidden that instanti
ates all the ordinary variables is only bounded worse than any other variable' orderum
strategy. Given a variable ordering in the hidden problem, yL, iji- in which y,
may be an ordinary variable or a hidden variable. We can construct a new order
ing for the ordinary variables only in the hidden problem. If y* is a hidden vari
able, since the instantiation of a hidden variable is equivalent to the instantiations
of several ordinary variables, in the new ordering, all the uninstantiated ordinary
variables x,-ti , . . . , x iirj in the scheme of y* are chosen to be instantiated (breaking
ties arbitrarily). If yi is an ordinary variable and in the new ordering yt has not

130

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

yt

ya

ys (

yt

ys f ci-ct.x3.x5)

Figure 5.13: The correspondence between the variables in the original ordering and
the variables in the new ordering for the hidden problem.

131

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

been instantiated, i/j is instantiated in the new ordering and we denote it as x,.i-
For example, suppose the variables in the hidden problem are originally ordered as
x 1 ,c(x l,x 2 ,x 3),x 2 ,x 3 ,c(x 2 1 x4 ,x 5),x 4 ,x 5 ,c(x l ,x 3 ,x 5), the new variable ordering for
the hidden problem is x l ,X2 ,X3 ,x 4 and X5 , as shown in Figure 5.13. Under the above
orderings, each of the variables x, j in the new ordering corresponds to a unique hid
den or ordinary variable y* in the original ordering. Note that, in the new ordering,
Xj,ri may not always be followed immediately by x,+lil, because xi+l,i may not exist.
To distinguish between the search trees generated under the above two orderings,
we denote the search tree explored by FC-hidden under the original ordering as the
original hidden tree, and the search tree explored under the new ordering as the new
hidden search tree.

O bservation 5.3 I f a partial solution t over some ordinary variables of the hidden
problem is consistent with all the variables, t can be extended to a unique partial so
lution allhidden(t) including all the hidden variables c such that vars(c) C cars(t).
I f all the ordinary variables in the scheme of the hidden variable c have been instan
tiated in t, there is only one tuple t[vars(c)] in the domain of c that is compatible
with t, and thus allhidden(t)[c] is set to be f[uars(c)]. Furthermore, if a node t at
the level of x^ri in the new hidden search tree is consistent with all the variables, t
corresponds to a unique node hidden(t) at the level of y, in the original search tree,
where hidden(t) = allhidden{t)[{y 1 , . . . , y j] 3.

Note that allhidden(t) is an extension of t (which is a partial solution on ordinary
variables) to include all the hidden variables that are “instantiated” by t. hidden{t)
is also a subtuple of allhidden{t), and only includes the instantiations of the variables
y i , . . . ,V i . For example, in Figure 5.13, given a partial solution t = {(xi,x 2 ,x 3)
(0,0,2)}, allhidden(t) is {(x1 ,x 2 ,X3 ,c(xi,X 2 ,X3) <— (0,0,2, (0,0,2))} and hidden(t)
is {(xl ,c(xl,x 2 ,x 3)) <- (0 , (0 , 0 , 2))}.

Lem m a 5.14 I f a node t at the level of x lXt in the new hidden search tree is consistent
with all the variables, then allhidden(t) is consistent with all the variables. Further
more, its correspondence node hidden(t) at the level of y, in the original hidden search
tree is consistent with all the variables.

Proof: Suppose allhidden{t) is not consistent with a future variable y. If y is an ordi
nary variable, there exists two hidden variables c and d such that (allhidden(t)[c\)[y\ ±

3From the construction o f the new variable ordering, y i , . . . , y i must have been instantiated in
allhidden{t).

132

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

Vk
yk+1

V i - l

»>

t
h id d e n (t^ r i t)

©~
U .ru

4 - ^
(i)

~ e ‘.-l u {»• — *} (2)

* k . r k

(') ‘ i - l = a l l h i< i< fe n (tk , rit) [{ y i V. —t >])-
(2) w here r € d o m (y i) a n d { [u a r j i t , ^) n u a r j (y ,)] = [v a r j l t ^ , J n v a r s i y , ,

Figure 5.14: A node £;j visited by FC-hidden at the level of x^j in the new hidden
search tree corresponds to a unique node visited by FC-hidden at the level of y* in
the original hidden search tree.

(allhidden{t){d\)[y\ (otherwise, all the hidden variables instantiated in allhidden(t)
have the same value over y, thus y is consistent with allhidden(t)). Because allhidden{t)[c]
is set to be f[t/ars(c)] and allhidden{t)[d] is set to be ffuarstc')], they must have the
same value over y. That is a contradiction. If y is a hidden variable, because all the
ordinary variables instantiated in allhidden(t) are instantiated with the same values
in t. that means t is inconsistent with the hidden variable y. This is also a contradic
tion. Because hidden(t) is a subtuple of allhidden(t). hidden(t) is consistent with all
the variables. |

Thus the total number of the nodes at the level of Xj>rt that are consistent with
all the variables in the new hidden search tree is bounded by the total number of
the nodes at the level of y,- in the original search tree that are consistent with all the
variables .

Lem m a 5.15 I f a node tij at the level of x ^ , 1 < j < r,, in the new hidden search
tree is consistent with all the variables, U,j corresponds to a node visited by FC-hidden
at the level of yi in the original hidden search tree. Furthermore, for two distinct nodes
at the level of x^j in the new hidden search tree, their correspondences in the original
hidden search tree are different.

Proof: If yi is an ordinary variable, then j is equal to 1 and xUJ is equal to yt.
From Lemma 5.14, hidden(tij) at the level of y* in the original hidden search tree is

133

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

consistent with all the variables, and thus it is visited by FC-hidden. Now suppose i/j
is a hidden variable. Because t ij is consistent with all the variables, let tk<rk denote
Uj's ancestor at the level of xk,n , where immediately follows xk,r*4- We know that
tk<rk is also consistent with all the variables. From Lemma 5.14, tk,rk's correspondence
hidden(tk<rk) at the level of yk in the original hidden search tree is consistent with all
the variables. Thus FC-hidden will visit hidden(tk,rk) and extend it to the variables
Vk+i, • ■ ■ iVi-i and yt. From the construction of the new ordering, for each of the
variables yk+1 , . . . , y»-i, if it is an ordinary variable, it must have been instantiated in
tk,rk, and if it is a hidden variable, all the ordinary variables in its scheme must have
been instantiated in tk,rk- Thus the node fj_i = allhidden(tk,rk)[{yi,. . . ,y,_i}] at the
level of 2/i_l in the original hidden search tree is consistent with all the variables. Thus
FC-hidden will visit £;_L and extend it to the level of yj. Because tij is consistent with
all the hidden variables, there is a tuple t in the domain of y* to be consistent with
tij, that is, t[vars(tij) fl vars(yi)] = tij[vars{tij) fi vars{yi)}. Because for each of the
ordinary variables x instantiated at the node tj_lt x has the same instantiation in
and tij, thus {yj <— t} is consistent with fj_t . Therefore. FC-hidden visits the node

U {yi «— t} at the level of yj in the original hidden search tree. Let tUJ corresponds
to the node U {yi <— t } . Given two distinct nodes at the level of x tJ in the new
hidden search tree, they have different values over the part vars(tij) f l vars(yl). and
thus they must be compatible with different tuples in the domain of y^ Thus, their
correspondences at the level of yi in the original hidden search tree are different. |

T heo rem 5.16 Given a CSP instance and a variable ordering for the hidden prob
lem, we can construct a variable ordering for the ordinary variables in the hidden
problem, such that FC-hidden under the new variable ordering visits at most 0 (rd)
times as many nodes as it visits under the original variable ordering.

Proof: Because the total number of the nodes that are consistent with all the vari
ables at the level of Xij in the new hidden search tree is bounded by the total number
of the nodes at the level of yj in the original search tree, the total number of the
nodes that are consistent with all the variables in the new hidden search tree is at
most 0 (r) times as many as the total number of the nodes that are consistent with
all the variables in the original hidden search tree. Note that FC-hidden visits a node
only if its parent is consistent with all the variables, and each node may have at most
d children. Thus the total number of the nodes visited by FC-hidden in the new

■•Because in the construction of the new ordering, Xj,rj may not always be followed by i t+ i.i ■

134

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

i i , . . . , x s 6 { 0 , 1 , 2 }

c (x i , 1 2 , X 3) € { (0 . 0 . 0) . (0 . 0 , l) , (0 ,0 , 2) , (0 , I , I) .
(0 , I , 2) . (0 , 2 ,2) , (1 ,0 , 1), (1 ,0 , 2), (I . 1. 2) . (2 .0 , 2)}

C (I 2 , I 4 , X 5) 6 { (0 , 0 , 0) . (I . 0 , 0) , (1 , 0 , 1) , (I , 1 , 0) ,

(2, 0,0), (2.0.1) , (2, 0, 2), (2,1, 0), (2, 1, 1) , (2, 2, 0)}
C (H , I 3 , I 5) 6 { (0 . 2 , 0) , (I , 1 . 0) , (1 , 2 , 0) , (1 , 2 , 1) ,

(2, 0,0), (2, 1,0), (2, 1,1), (2, 2,0), (2, 2, 1), (2, 2, 2)>

0 a node that is consistent with
all the variables

% a node visited by FC but is inconsistent
with at least one future variable

a node skipped by FC

{(I,.c(ri,r3,i3)) (0.(0.0.2))) { (i , , x 3 , X 3) (0 . 0 . 2))

y s

ya

Figure 5.15: The comparison of the search tree explored by FC-hidden under the
original variable ordering and new variable ordering to solve the CSP in Example 2.1.

hidden search tree is at most O(rd) times as many as the total number of the nodes
visited in the original hidden search tree. |

E xam ple 5.8 We use FC-hidden to solve the CSP in Example 2.1, under the above
two variable orderings, as shown in Figure 5.15. For example, in the new hidden
search tree, the node t5 = {(xl ,x 2 ,X3 ,X4) (0 , 0 , 2 , 0)} at the level of x 5 ,1 is con
sistent with all the variables, thus its parent f2 (2 = {(zi,x2,£ 3) <— (0 . 0 . 2)} at the
level of x 2 > 2 is also consistent with all the variables. From Lemma 5.14, ha corre
sponds to the node hidden(t2j2) — {(xi,c(xi,x 2 ,X3)) <— (0 , (0 , 0 , 2))} at the level of
y2 in the original hidden search tree. Furthermore, hidden(t2r2) has a descendant

135

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

* 4 = {(xi,c(xi,x 2 ,x 3) ,x 2 ,X3) «- (0, (0,0,2), 0,2)} which is consistent with all the
variables at the level of y± in the original hidden search tree, and t5A corresponds to
one o /U ’s children, {xi,c(xi,x 2 ,x 3),x 2 ,x 3 ,c(x 2 ,x 4 ,x 5)) <— (0 , (0 , 0 , 2) . 0 , 2 . (0 . 0 . 0))}
visited by FC-hidden at the level of y5 in the original hidden search tree.

As a special case, when only all the hidden variables are instantiated by FC-
hidden, we can show that FC-hidden is equivalent to BT-dual. Because FC-hidden
and BT-dual explore the same search tree, i.e., the search tree consists of the partial
solutions on the dual or hidden variables, we assume that they use the same variable
ordering.

Theorem 5.17 I f all the hidden variables are instantiated first in the hidden problem.
FC-hidden visits exactly the same nodes as BT-dual.

Proof: Suppose that FC-hidden visits a node t. From Theorem 5.13. t's parent
p(t) is consistent with all the ordinary variables. Thus, for any ordinary variable
x, and for any two hidden variables Ci and e,, where c,.c, 6 cars{p(t)) and .r €
vars(ci) n vars(cj) , (p(£)[c,])[x] = (p(£)[cj])[x]. Thus {p(t)[ct])[cars(ct) r curs[rl! =
(p(£)[cj])[xars(cj) fl vars(Cj)\. That means, p(t) is a consistent node in the dual
search tree. From Theorem 5.1, BT-dual will visit t. Suppose that BT-dual visits
a node t. Thus, t ’s parent p(£) is consistent in the dual problem. For any ordinary
variable x, and for any two hidden variables Ci and c,, where c,.Cj 6 cars(p{t))
and x € vars(ci) fl vars(cj) , p(£)[ci] and p{t)[cj] should have the same value on x.
That means, in the hidden problem, p(£) is consistent with all the ordinary variables.
Therefore, FC-hidden will visit t. |

So in general the variable ordering for FC-hidden that instantiates all the ordinary
variables is only bounded worse them any other variable ordering strategy for FC-
hidden. From now on, we assume that FC-hidden will only instantiate the ordinary
variables. Therefore, FC-hidden and FC-orig explore the same search tree consisting
of all the ordinary variables.

5.3.2 FC-orig, FC-dual and FC-hidden
Exam ple 5.9 Consider a non-binary CSP with only one constraint over n Boolean
variables, C (xl t . . . ,x n) = {(0, . .. ,0) ,(1 , ...1)} . FC applied on this problem will
explore 0(2") nodes and perform 0(n2") constraint checks to find all solutions. There
are only two nodes in the dual search tree, representing two solutions of the problem.

136

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

FC-hidden(instantiating all the ordinary variables first) will visit 0 (n) nodes and
perform 0 (n) checks.

T heorem 5.18 [7] There is a CSP instance in which FC-dual and FC-hidden are
always exponentially better than FC-orig no matter what variable ordering is used in
the original problem.

Proof: It is true from the CSP in Example 5.9. |

Exam ple 5.10 Consider a CSP o /2 n + 1 variables, X[. x2n~i and each variable
has n values. I , . . . , n. There are n constraints,

C (X i , X 2 , X n + i) {̂ -l -̂ 2 }

C (X o , X3, X n +o) = { ^ 2 = ^ 3 }

C (x n _ t (X n , X 2 n) ~ {^-n—I = }

C’(xl ,X„,X2 „+i) — {-J-l 7^-^n}

This problem is insoluble because it enforces X\ to be equal to x2, . . . , and x„ and it
also prohibits xi andxn to have the same value. Note in each of the above constraints,
variable xn+i does not enforce anything but increase the arity and the number of tuples
of the constraint. Given a static variable ordering, x i , . . . ,X2 „+i, FC-orig and FC-
hidden go along n paths, {(xt «— 0 , . . . , x n 0 }, . . . , and {xt «— n ,x „ <— n}.
At each stage, there is only one value consistent with all the future variables in the
domain of the current variable. Thus FC-orig and FC-hidden visit 0(n) nodes to

conclude that the problem is insoluble. However, by any variable ordering st rategy .

FC-dual has to instantiate at least log(n) — I dual variables to reach a dead-end. .4/
each stage of FC-dual, it additionally instantiates one variable from xn_lr .. .x->n-i.
which has no influence on the failure. The best variable ordering strategy for FC-dual
is to break the problem into two subproblems at each step in the backtrack search,
where one of the two subproblems in insoluble. For example, FC-dual first branches
on the dual variable corresponding to the constraint C (x a ,x a+i,x n+a). For each of
the n2 values in the domain of the dual variable, the current instantiation will result
in one of the two subproblems to be insoluble, one consisting of the dual variables
for the constraints C (x i,X2 ,x n+i) , . . . ,C (x a _ i,x a ,in+ i- i) . and the other consisting
of the dual variables for the constraints C (x i+i , x i +2 , i I1+i +[) ,. . . ,C(x1, x71, x2„+l).
Then the backtrack search will focus on the insoluble subproblem. So FC-dual has to
explore at least 0 (nl°9̂ ~ l) nodes.

137

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

T heorem 5.19 [7] There is a CSP instance in which FC-orig and FC-hidden are
always exponentially better than FC-dual no matter what variable ordering is used in
the dual problem.

Can FC-dual also be exponentially better than FC-hidden? In Example 5.9, we
notice that FC-hidden visits 0(2n) times as many nodes as FC-dual does. This bound
is generally true as we will show in the sequel. Given a variable ordering for FC-dual,
Ci,. . . ,Cm, we can arrange the ordinary variables in the hidden problem in the same
way as we have done in the case of BT-dual and BT-orig. That is, the instantiation
of the dual variable c* is equivalent to the instantiations of the ordinary variables
Xi,i, ■. ■ where x id 6 vars(Ci) and x tj £ Ufc=\ vars(ck). An example of such
a variable ordering arrangement is shown in Figure 5.2. Under the above variable
orderings, each ordinary variable Xij in the hidden problem corresponds to a unique
dual variable c* in the dual problem. However, not all the dual variables have some
correspondence in the ordinary variables. Therefore, in the hidden problem. x lXl may
not always be followed by Xj+lil (because Xj+i,i may not exist).

O bservation 5.4 I f a partial solution t over some ordinary variables in the hidden
problem is consistent with all the hidden variables, t corresponds to a unique partial
solution in the dual problem, alldual(t), including all the dual variables c such that
uars(c) C vars(t). Because all the ordinary variables in the scheme of the hidden
variable c have been instantiated, there is only one tuple f[i/ars(c)] in the domain of
c to be compatible with t, and thus alldual(t)[c\ is set to £[uars(c)|. Furthermore, if a
node t at the level of xitTi in the hidden search tree is consistent with all the variables,
t corresponds to a unique node dual(t) at the level of Ci in the dual search tree, where
dual(t) = alldual(t)[{ci,. . . , Ci}]5.

For example, under the variable orderings shown in Figure 5.2, given a partial
solution t = {(xi,x 2 ,x 3) <— (0 , 0 , 2)}, alldual(t) is {c(xL,x 2 ,x 3) <— (0 , 0 , 2)} and
dual(t) is also (c(xi,x 2 ,x 3) <— (0,0,2)}. The condition that t is consistent with all
the hidden variables cannot be relaxed. Otherwise, suppose £ is not consistent with
a hidden variable Cj for < j < i, i.e., £[wars(c,)] £ dom(cj), then £[uars(cJ)J is not a
valid tuple in the domain of the dual variable Cj and thus dual(t) is not a valid node
in the dual search tree.

L em m a 5.20 Under the above orderings, if a node t at the level of x l Tt in the hidden
5From the construction of the variable ordering, ci , . . . ,Cj must have been instantiated in

alldual{t).

138

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

C* -
c*+1-

duaHtk.r̂)
x k tr h

Ci-i - -A ---
(i)

x ,.i

- 6 - - - x-.j

- e -
(U l . - l = a l l d u a H t k . r k) [{ c i...........c . - l > !
(2) w here t € </om(Cj) an d t [u a r j (t l>J) n c a r j (c ,)] = Ct [p a r j (t , } j n t a r j i >]

Figure 5.16: A node £ ,-,j visited by FC-hidden at the level of x trJ in the hidden search
tree corresponds to a unique node visited by FC-dual at the level of c* in the dual
search tree.

search tree is consistent with all the variables, then in the dual problem, alldual(t) is
consistent with all the dual variables. Furthermore, its correspondence dual{t) at the
level of Ci in the dual search tree is consistent with all the dual variables.

Proof: First, we prove that alldual{t) is consistent in the dual problem. Suppose
alldual(t) does not satisfy the dual constraint between two dual variables c and d, then
f[uars(c)| is not compatible with t[vars{d)]. That is, there is an ordinary’ variable
x € vars(c) fl vars(d) such that (t[uars(c)])[x] / (t[uars(c/)])[x]. This could not
happen because both (£[t/ars(c)])[x] and (£[t;ars(c')])[x] are equal to £[x]. That is
a contradiction. Thus, alldual{t) is consistent. Now we prove that alldual(t) is
consistent with all the dual variables. Because in the hidden problem t is consistent
with all the hidden variables, for any hidden variable c. there must exist a tuple t,
in the domain of c such that f[uars(£) fl uars(c)] = tc[vars(t) fl vars{c)\. For each
of the dual variables d instantiated in alldual(t), because vars{c') C uars(t), thus
t[vars(d) fl vars(c)] = tc[vars{d) fl uars(c)]. Note that alldual{t)[d] is set to be
£[uars(£/)], that is, {c <— tc} is compatible with alldual(t)^] . Therefore. alldual{t) is
consistent with the dual variable c and thus it is consistent with all the dual variables.
Because dual(t) is a subtuple of alldual(t), thus dual(t) is also consistent with all the
dual variables. |

Thus the total number of the nodes at the level of xt Fi in the hidden search tree
that are consistent with all the hidden variables is bounded by the total number of

139

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

the nodes at the level of q in the dual search tree that are consistent with all the
dual variables.

T heorem 5.21 Given a CSP and a variable ordering for the dual problem, there is
a variable ordering on the hidden problem such that FC-hidden visits at most O(rd)
times nodes as many as FC-dual does.

Proof: Now we consider a node Uj at the level x*j for 1 < 7 < r, in the hidden
search tree that is consistent with all the hidden variables, tij's ancestor tk,rk at the
level of Xk,rk is consistent with all the variables, where x k,rk is immediately followed
by xitl. From Lemma 5.20, x ^ ’s correspondence dual(xk,ric) at the level of c* in
the dual search tree is consistent with all the dual variables. Thus FC-dual will
visit dual(xk,rk) and extend it to the levels of qt+l, . . . , q_i and q . Furthermore,
because alldual(ffc,rJ is consistent with all the dual variables, and for each of the
dual variables c i , . . . ,q _ lt it must have been instantiated in alldual(tk,rk). the node
£i-i = alldual(tk,rk)[{ci,. . . , Ci-i}} at the level of q_i in the dual search tree must
be consistent with all the dual variables. Thus FC-dual will visit f,_t and extend
it to the level of q . Because Uj is consistent with all the hidden variables, there
is a tuple t in the domain of q such that £tJ [uars(£l,J) fl car.s(q)] =) "
uars(q)]. For each of the dual variables q where 1 < I < i - 1 . note that £,_i[q] =
alldual(tk,rk)[ci] = £r,rfcb a 7*s(q)] = fjj[t/ars(q)]. That means, in the dual problem,
{q <— £} is compatible with each of the instantiations {q <— £,_i[q]}. for 1 < / < i — I.
Thus FC-dual will visit node £j_i U {q «— t}. Therefore ttJ corresponds a node
visited by FC-dual at the level of q in the dual search tree, as shown in Figure 5.16.
Furthermore, given two distinct nodes at the level of x^j in the hidden search tree,
because they have different values on the part vars(tirj) fl vars(ci), they must be
compatible with different tuples in the domain of q . Thus their correspondences in
the dual search tree are different. Therefore, the total number of the nodes in the
hidden search tree that are consistent with all the hidden variables is at most 0 (r)
times as many as the total number of the nodes visited by FC-dual in the dual search
tree. From Theorem 5.13, FC-hidden visits a node only if its parent is consistent with
all the variables, and each node may have at most d children. The total number of
the nodes visited by FC-hidden in the hidden search tree is at most O(rd) times as
many as the total number of the nodes visited by FC-dual in the dual search tree.

I

In Example 5.9, FC-hidden visits O(rd) times nodes as many as FC-dual does.

140

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

e {o, 1,2}

c (x i , Xi ,Xi) e {(0.0,0), (0.0, I), (0,0, 2), (0, 1,1),
(0, 1,2). (0,2, 2), (1,0, I), (1,0, 2), (I, I, 2), (2,0, 2)}

c (x j ,x 4 ,r 5) 6 {(0,0,0), (1.0.0), (1.0, i) .(i . 1,0),
(2,0,0), (2,0, I). (2, 0, 2), (2, I. 0). (2, I, 1). (2, 2,0)>

C (X I , X 3 , X 5) 6 { (0 , 2 , 0) , (I , 1 , 0) , (1 , 2 , 0) , (I , 2 , I) ,

(2, 0, 0), (2, 1,0), (2, I, I), (2, 2, 0), (2,2, I), (2, 2. 2)}

0 a node that is consistent with
all the variables

a node visited by FC but is inconsistent
with at least one future variable

a node skipped by FC

(c (* | , < 2 , z ,) (0 , 0 , 2)) { (* 1 . * 2 . * 3) - (0 . 0 , 2))

C l

c, c(x2'x-».xs)

Figure 5.17: The comparison of FC-dual and FC-hidden to solve the CSP in Example
2 .1.

Thus the above bound is tight. Thus, FC-hidden may be exponentially better than
FC-dual and it can be only bounded worse than FC-dual.

E xam ple 5.11 We use FC-dual and FC-hidden to solve the CSP in Example 2.1.
as shown in Figure 5.17. For example, in the hidden search tree, the node t-j,i =
{(xi,X2 , x3 ,X4) «— (0 , 0 , 2 , 0)} at the level of x2,\ is consistent with all the variables
in the hidden problem, its parent f l) 3 = {(xi,X2 ,x 3) <— (0 , 0 , 2)} at the level of x l:i
is also consistent with all the variables. From Lemma 5.20, 1 1>3 corresponds to node
dual(titz) = (c(xi,X 2 , i 3) <— (0 , 0 , 2)} at the level of ci in the dual search tree, which
is consistent with all the variables in the dual problem, and thus tiA corresponds to
node {(c(xl,X2 ,x 3),c(x 2 ,X4 ,x 3)) (0,0,2), (0,0,0)} visited by FC-dual at the level
of ci in the dual search tree.

5.3.3 FC+
E xam ple 5.12 Consider a non-binary CSP with n variables, x i , . . .x „ and all the
variables have the same domain, {0,1,2}. There are n + 1 constraints,

C (xl ,x 2) = {(0 , 0), (1 , 1), (2 , 2)};

C (x2 ,x 3) = {(0 , 0), (1 , 1), (2 , 2)};

141

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

C(xt-,xi+l) = {(0,0), (0 , 1), (1,0), (1 , 1), (2 , 2)}, i = 3 • • • n — 1 ;

C (xu x 2 ,x n) = {(0,0,0),(1 , 1 , 1),(2,2,2)};

C(x2,x 3 ,x„) = {(0 , 0 , 1) ,(1 , 1 , 0) ,(2 , 2 , 2)}.

The only solution to this problem is {x[= 2 , . . . ,x „ = 2}. FC-orig is able to detect

that every node instantiating xt,x2, x3 with value 0 or 1 is incompatible with x n and
it will explore 0 (n) nodes to find the solution. However, under the default variable
ordering, FC-dual and FC-hidden are unable to detect such dead-end and have to
explore 0 (2 ”) nodes.

In the above example, if FC-hidden instantiates xn right after the instantiations of
x i,x 2, and x3, FC-hidden can detect a dead-end because neither of the values in the
domain ofx„ is consistent with the hidden variables for C(xl5x2,xn) and C(x2,x3,x„)
simultaneously. Generally, given the execution of FC-orig, we can arrange the instan
tiation order for FC-hidden in the following way. If a node t in the hidden search tree
is consistent with all the hidden variables, and t in the original search tree (note that
FC-hidden only instantiates ordinary variables) is consistent with all the variables6,
FC-hidden extends t with the same variable that FC-orig used to extend t in its ex
ecution. Otherwise, if t in the hidden search tree is consistent with all the hidden
variables, but t in the original search tree is not consistent with one future variable r.
i.e., for each of the values a (E dom(x), £U{x <— a} violates a constraint C. FC-hidden
extends t to variable x. Then FC-hidden will detect none of the values in the domain
of x is consistent with the corresponding hidden variable c. By such an arrangement.
FC-hidden will visit at most 0(d) times as many nodes as FC-orig does. However,
the above variable ordering for FC-hidden cannot be obtained without knowing the
complete execution of FC-orig, because FC-hidden should know which of the future
variables causes the dead-end in FC-orig. Without such an oracle, FC-hidden has to
examine (instantiate) the forward checked variable in each of the forward checkable
constraints. Thus FC-hidden has to instantiate more variables than FC-orig does
at an early stage in the backtrack search, and because each of the forward checked
variables may have more than one value in its domain, these extra instantiations by
FC-hidden may cause exponential overhead over FC-orig.

However, there is a way to improve FC-hidden by doing more constraint propa
gation besides the forward checking. Following Bacchus and van Beek in [7]. after
forward checking prunes the domain of any hidden variable, we additionally prune

6 Neither of the above two conditions implies the other.

142

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

the domains of any uninstantiated ordinary variables constrained by that hidden vari
able so as to remove values whose support has been lost. As usual we backtrack if
there is a domain wipe out of any future variable. From another point of view, in
Example 5.9, FC-orig does not forward check the domain of any future variable until
n — 1 variables have been instantiated. An extension to FC-orig is to make constraint
checks as early as possible. Each time a variable has been instantiated, for each of
the constraints involving this variable and for each of the uninstantiated variables
involving this constraint, to remove all the values from its domain, which do not have
a valid support in the constraint with respect to the current partial solution. In fact,
these two approaches do the same work such as they explore exactly the same nodes.
Bacchus and van Beek denote the new algorithm as F C + [7].

Because FC+ performs more checking than FC and FC-hidden. intuitively. FCt
should always visit no more nodes than FC-hidden and FC-orig.

T heorem 5.22 Given a CSP and a variable ordering, F C + always visits fewer nodes

than FC-hidden and FC-orig.

P roof: It is straightforward that FC-hidden and FC-orig visit all the nodes that FC+
visits. |

By Theorem 5.21, given a CSP instance P and any variable ordering for its dual
problem, there is a variable ordering on the hidden problem such that FC+ visits
at most O (rd) times as many nodes as FC-dual does. This bound can be further
improved if P is arc consistent.

Lem m a 5.23 If a non-binary CSP is arc consistent, F C + applied on its hidden

problem visits a node t only i f t is consistent with all the variables.

P roof: Suppose FC-F visits a node t and t is inconsistent with a hidden variable
c. Let the current variable instantiated by t be x and p{t) denote t's parent in
the search tree. There must exist a hidden constraint between x and c. i.e.. x 6
uars(c), otherwise p(t) is not consistent with c either and thus FC-t- will not visit
t. If p(t) is the root of the search tree, then t instantiates only one variable x.
Because the original CSP is arc consistent, from Theorem 4.3, the hidden problem
is also arc consistent. Therefore, {x f[x]} has a support in the hidden constraint
between x and c and thus t can be extended to a consistent partial solution including
c. That is a contradiction. Suppose p (t) is not the root of the seaxch tree, i.e..

v a rs(p (t)) 0. Because t is not consistent with c, for each of the tuples tc € dom{c).

143

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

t c[vars(c) Pi vars(t)] / t [vars(c) fl vars(t)] . Thus, for each of the tuples tc € dom(c)

such that t c[vars(p(t)) fluars(t)] = t [va rs (p (t)) n uars(t)], that is, t c remains in the
domain of c at the node p(t), we have ic[x] t[x]. Therefore {x <— f[x]} does not have
a valid support in the domain of c at the node p(t) . t[x] will be removed from the
domain of x in the second phase of the consistency checks in FC+ (from the hidden
variables to the ordinary variables) at the node p(t) and FC+ will not visit t. That
is a contradiction. |

T heorem 5.24 Given an arc consistent CSP instance and any variable ordering for

its dual problem, there is a variable ordering on the hidden problem such that FC+

visits at most O (r) times as m any nodes as FC-dual does.

Proof: From Lemma 5.20, the number of the nodes visited by FC+ at each level of
the hidden search tree is bounded by a factor O(r) from the number of the nodes
visited by FC-dual in the dual search tree. |

FC+ is an enhancement to FC-orig and FC-hidden to provide a tradeoff between
a possibly exponential saving and a bounded more constraint checks. On the other
hand, we can improve the original formulation by adding some redundant constraints
to achieve the same effect. When FC-I- visits a node t and let the current variable be ,r.
For each constraint C involving x and for each uninstantiated variable x' involving C.

FC+ will remove all the values from the domain of x! that do not have valid supports
in C with respect to the current partial solution t. Let S = {vars(t)C \vars{C)) U (x '|.
The same pruning effect can be achieved by FC-orig if we add a redundant constraint
7rsC , because ttsC is forward checkable at the current node t and a valid support in
7TsC for a value in the domain of the forward checked variable x' can be extended to
a valid support in C for that value. Thus, by adding some redundant constraints in
the original problem, FC-orig can achieve the same improvement. Given a non-binarv
CSP P, for each constraint C. we add a redundant constraint ~sC for each subset
of the variables S C v a rs(C) . Let p r o j (P) denote the resulting CSP and FC-proj

denote FC applied on p r o j(P) .

T heorem 5.25 Given a CSP P and any variable ordering. F C + visits exactly the

same nodes as FC-proj.

P roof: Because we had added all possible projections of a constraint in p r o j (P) . FC-
proj should perform more consistency checks than FC+ and visits no more nodes than
FC-K Suppose both FC+ and FC-proj visit a node t and let the current variable be

144

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

x. We will show that if value a is not removed from the domain of an uninstantiated
variable x' by FC+, the value cannot be removed from the domain by FC-proj either.
Because a is not removed by FC+, for any constraint C involving both the current
variable x and the uninstantiated variable x', there is a tuple t! in rel(C) such that
t'[x'] = a and t'[vars{C) fl vars(t)] = t[vars(C) C\ uars(t)}. Thus, in proj(P), for each
subset of variables S C vars(C), where x' 6 S and vars(S) C vars(t) U {x'}, (that is,
7vsC is forward checkable at the current node and x' is the forward checked variable
in 7rsC), value a cannot be removed from the domain of x' when FC forward checks
the constraint 7rsC, because KsC allows the tuple t'[S], where (t'[S])[x'] = a. Thus
FC-proj makes no more domain prunings than FC+. Therefore, they visit exactly
the same nodes in the backtrack search. |

As we can see in the above proof, not all the projections contribute to the do
main prunings. If a dynamic variable ordering is used, we have to add all possible
projections for each constraint to establish the above equivalence. For each of the
constraints C, there are in total 2|uara(C)| - 1 possible projections over C. Thus adding
all the projections is not practical for a problem having some high arity constraints.
When a static variable ordering is used to solve the problem, suppose the variable
are instantiated in the order x l t . . . , x n, and for a constraint C(xil, . . . , x tr). where
the order x it, x lr conforms the above static variable ordering, we only need to
add the projections of C over the sets of variables, {x^}, {x^x*,}, — {xj„x,r}.
{xil ,x;2,Xt3}, . . . , {xi,,Xj,,Xjr}, . . . , and {x*,,. . . ,x ir}. Thus given as ta tic variable
ordering, for each of the constraints C, the number of the projections is reduced to
0 (|uars(C)|2).

Now we can present a hierarchy of the above relations in Figure 5.18. In the above
figure, we identify three relations between two identities (formulation-t-algorithm) A
and B. (1) A is never worse than B. For example, FC-t- is never worse than FC-orig
and FC-hidden. Furthermore, A is equivalent to B if A is never worse than B. and vice
versa. For example, BT-dual is equivalent to FC-hidden if FC-hidden instantiates all
the hidden variables first. Actually, BT-dual and FC-hidden under the above variable
ordering visit exactly the same nodes. (2) A is bounded worse than B. For example,
FC-hidden visits at most 0[rd) times as many nodes as BT-dual does. (3) A may be
exponentially worse than B. This relation is usually established from a CSP instance
in which there is a variable ordering for B such that A is exponentially worse than B
no matter what variable ordering is used in A.

145

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

A is never worse than BFC-proj

A — 0 (/ { n)) J3

A is bounded by 0 (/ (n)) from B

FC+

FC-orig

A may be exponentially worse than Bexp

exp 0(r)
0{ rd)

0 (r d)
0 { r d)

FC-dual

FC-hidden1"

(1) In case that FC-hidden instantiates all the ordinary variables first

(2) In case that FC-hidden instantiates all the hidden variables firstBT-dual

Figure 5.18: The relations between FC-orig, FC-dual, FC-hidden and FC-r .

146

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

5.4 Maintaining Arc Consistency Algorithm (GAC
or MAC)

The maintaining arc consistency algorithm is called MAC in the CSP community. For
general CSPs, we refer to the algorithm as GAC, namely, generalized maintaining arc
consistency algorithm. At each node in the search tree, GAC achieves arc consistency
on the subproblem induced by the current partial solution (see Definition 3.3). If,
as a result, one of the uninstantiated variables experiences a domain wipe out. the
instantiation of the current variables will lead to an insoluble subproblem and thus
it should be retracted. If the induced subproblem is not empty after enforcing arc
consistency, the instantiation to the current variable is accepted and GAC extends
the current node to a future variable.

To recapitulate, the induced problem has exactly the same set of variables and the
same set of constraints as the original problem, where the domain of each instantiated
variable is restricted to contain one value.

D efinition 5.2 A partial solution t is arc consistent i f the CSP induced by t is not

em pty after enforcing arc consistency.

If the induced subproblem at the current node is not empty after enforcing arc
consistency, the node is called an arc consistent node.

Lem m a 5.26 Given two partial solutions t and t' of a CSP P , where t' C t. if t is

arc consistent, then t' is arc consistent.

Proof: Because P \ t has more restrictive domains than P \ t>, an arc consistent sub-
domain of P \ t is also an arc consistent subdomain of P \ t>, and because P \ t is not
empty after achieving arc consistency, P \ t> is not empty either after achieving arc
consistency. Therefore tl is also arc consistent. |

T heo rem 5.27 G A C (M A C) visits a node t only if t ’s parent is arc consistent: GAC

(M A C) visits a node t i f t is arc consistent.

Proof: Because GAC will not continue to node t if the CSP induced by t's parent is
empty after achieving arc consistency, GAC visits t only if t ’s parent is arc consistent.
We prove the second part by induction on the depth of the search tree. The hypothesis
is trivial for the case of 1. Suppose it is true for the case of k, and suppose there
is an arc consistent node t at level k + 1. From Lemma 5.26, t ’s parent at level k

147

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

is axe consistent. Thus GAC visits its parent. Because t is arc consistent, the value
assigned to the current variable by t cannot be removed from its domain when GAC
enforces arc consistency on Vs parent. As a consequence, GAC will visit t. |

A sufficient and necessary condition for GAC visiting a node t is: Vs parent is
arc consistent and the value assigned to the current variable by t has not been re
moved from its domain when enforcing arc consistency on Vs parent. In the following
discussion, we denote GAC applied on the original problem as GAC-orig. MAC ap
plied on the dual problem as MAC-dual, and MAC applied on the hidden problem as
MAC-hidden.

5.4.1 MAC-hidden
Similar to the case of FC-hidden, MAC-hidden does not need to instantiate all the
variables in order to find a solution. Once MAC-hidden encounters a state in which
for each of the hidden constraints, at least one of its variables has been instantiated,
each of the uninstantiated variables has at most one value remaining in the domain
and a solution can be assembled in a backtrack free manner. We will show in the
sequel that a variable ordering for MAC-hidden that instantiates all the ordinary
variables first is only bounded worse than any other variable ordering strategy.

Given a variable ordering in the hidden problem, yi . — yi, where yi may be an
ordinary variable or a hidden variable, in the same way as we have done in the
case of FC-hidden, we can construct a new variable ordering that instantiates all the
ordinary variables first. That is, if y, is a hidden variable, in the new ordering, all the
uninstantiated ordinary variables xitl, . . . ,x iiri in the scheme of xji are chosen to be
instantiated, otherwise if yi is an ordinary variable and it has not been instantiated
in the new ordering, yi is chosen to be instantiated and we denote it as xtil. Xote
that in the new ordering, Xi,n may not always be immediately followed by x i+[.i. We
call the search tree explored by MAC-hidden under the original variable ordering as
the original hidden search tree, and the search tree explored under the new variable
ordering as the new hidden search tree.

If a partial solution t over some ordinary variables is consistent with all the vari
ables, t can be extended to a partial solution allhidden(t) which additionally instan
tiates all the hidden variables c where vars(c) C vars(t). Furthermore, if a node t at
the level of xt- r . in the new hidden search tree is consistent with all the variables, t
corresponds to a unique node hidden(t) at the level of yi in the original hidden search
tree, where hidden(t) = allhidden(t)[{yi, -. -, yi}]-

148

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

Lem m a 5.28 Given a CSP P and the above variable orderings, i f a node t at the

level o f XiyTi in the new hidden search tree is arc consistent, then allhidden(t) is arc

consistent and the node hidden{t) at the level o fy i in the original hidden search tree

is also arc consistent. Furthermore, ac(h idden(P)\t) = ac(h idden(P)\auhidden(.t)) =
ac(hidden(P)\hidden{t))-

Proof: Because t is arc consistent, for each hidden variable c, there is a tuple tc

in the domain of c such that tc[vars(c) fl uars(£)] = t[vars{c) fl uars(t)] (other
wise, all the tuples in the domain of c will be removed when enforcing arc con
sistency on hidden(P)\t). That is, t is consistent with c. Therefore t is consis
tent with all the variables, and thus allhidden(t) and hiddenit) do exist. Note
that h idden (P)\ t and hidden(P)\aiihidden(t) have the same domains over the ordinary
variables, whereas in hidden(P)\auhidden(t)y for each of the hidden variables c such
that vars(c) C vars(t) , the domain of c is set to have only one tuple t[vurs(c)}.

When enforcing arc consistency on h id d e n (P) |f, for each of the hidden variables <■
such that vars(c) C uars(t), and for each of the tuples tc in the domain of e. if
tc i=- i[t/ars(c)], t c will be removed from the domain. Thus ac(h idden{P) |t) has
the same domains as ac(h idden(P)\auhidden{t)) ■ Since h id d e n (P)|t is not empty af
ter achieving arc consistency, hidden{P)\auhidden(t) is not empty either after achieving
arc consistency and thus allhidden(t) is arc consistent. Because hidden{P)\auhidden{t)

has more restrictive domains than hidden(P)\hidden(t), o.c(hidden(P)\htdden{t)) is not
empty either. Therefore, hidden(t) is also arc consistent. For each of the ordi
nary variables x instantiated in t, either there is an ordinary variable t/, instantiated
in hidden{t) such that y, is equal to x and (/; is instantiated with the value f[x]
in hidden(t), or there is a hidden variable iji instantiated in hidden(t), such that
x 6 vars(y i) and (hidden(t)[yi\)[x\ = f[x|. In either case, when achieving arc con
sistency on hidden(P)\hidden(t), the domain of x contains only one value f[x]. On
the other hand, for each of the hidden variables c instantiated in hidden(t). be
cause vars(c) C vars(t) , when enforcing arc consistency on h idden (P)|f. all the
tuples tc in the domain of c where tc ^ f[rars(c)| will be removed from its domain.
Therefore ac(hidden(P)\hidden{t)) has the same domains as ac(h idden(P)\t). We have.
ac(h idden(P)\t) —ac[hidden[P} \aiihidden(t)) —ac[hidden(P^ \kidden(t)) ■ |

Lem m a 5.29 Given three partial solutions t i , t 2 and f3 of a CSP P . where £t C t> C

t3, i f a c { P \ t l) = ac(P|t3), then ac(P \h) = ac{P \h) = ac {P \t3).

Proof: Because it C t2 C i3, an arc consistent subdomain of P |t3 is also an arc
consistent subdomain of P |tj, and an arc consistent subdomain of P |t2 is also an arc

149

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

fci<Men(tk,r)
y k --------------------------Q . ----------------------k—

yjt+i -------

3K -1

yi

1 .

u-i

‘i-i u (yi *- ‘i.iki.j!}

(1) 1 , - 1 = a / l / i i < M e n (t k . r k) [{ y i . --------y i - l }] -

(1)

* * , r k

■.1 I1,

yk
yik+i

yi-i

y.

i
/ l l c M e i » (l k . r k)

‘ . - 1 u { y . < - < > 121

0 ~ xy.rk

■c.,1

(1) t i _ t = o«h ic i< fen(tfctrfc) [{ y i . V i- tH) -
(2) w here t € <fom(yl) an d J [v a r j (t j , j) H w a r j(y ,) j = et>J [u o r j (f , ;) ft u a r j (y t)|

a n d t is n o t rem oved from th e d o m a in o f y« w hen M ACNhidden enforces a rc consistency
on t t j ’s p a ren t.

(2)

Figure 5.19: A node Uj visited by MAC-hidden at the level of x UJ in the new hidden
search tree corresponds to a unique node visited by MAC-hidden at the level of y, in
the original hidden search tree.

consistent subdomain of P |tl. Because ac(P |tl) and ac(P |t3) have the same domains,
we have ac(P |tl) = ac(P |tJ = ac(P |f3). |

T h eo rem 5.30 Given a CSP and a variable ordering for the hidden problem, we can
construct a variable ordering for the ordinary variables in the hidden problem, such
that MAC-hidden under the new variable ordering visits at most 0 (r) times as many
nodes as it does under the original variable ordering.

P roof: Suppose MAC-hidden visits a node tij at the level of x tJ in the new hidden
search tree. Let Xk,rk be immediately followed by in the new variable ordering

150

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

and let tk,rk denote Uj's ancestor at the level of x*,rk.
(1) If yi is an ordinary variable, then j is equal to 1 and x ,j is equal to yt. From Theo
rem 5.27, tk,rie is arc consistent and its correspondence hidden(tk rk) at the level of yk in
the original hidden search tree is also arc consistent. Furthermore, in the original hid
den search tree, each of the variables j/jt+i,. . . , yi- 1 is instantiated in allhidden{tk,rk)-
let U-i denote the node allhidden(tk,rk)[{yi, • • • ,1/t-i}], which is an extension of
hidden(tk,rk)- From Lemma 5.29, a c (h i d d e n (P) and ac(hidden(P)\hldden(tk,rk))
have the same domains and thus a c (h i d d e n (P) and ac(hidden(P)|t) have the
same domains. Thus, fj_i at the level of yj_i in the original hidden search tree is arc
consistent, and MAC-hidden will visit tj_i and extend it to the level of </,. Because
the value £jj[xij] is not removed from the domain of x tJ (i.e.. yi) when enforcing arc
consistency on the node tk<rk, Uj[x «.j] cannot be removed from the domain of y, when
enforcing arc consistency on the node £i_L. Therefore, in the original hidden search
tree, MAC-hidden will visit the node £j_i U {yt <— £,j[xij]} at the level of y,. Let tUJ
correspond to the node £;_! U {yi <— £»j[xij]}, as shown in part (1) in Figure 5.19.
Two distinct nodes at the level of x ifJ in the new hidden search tree have different
values over Xij, and thus they correspond to different nodes at the level of y, in the
original hidden search tree.
(2) Otherwise yi is a hidden variable. The node ti-i is introduced in the same way
as the above. Because the value is not removed from the domain of x tJ when
MAC-hidden enforces arc consistency on f j j ’s parent, there is an unpruned tuple t in
the domain of yj such that t[vars(tij) fl vars(yj)] = tij[vars(tij) fl uars(yi)}. Thus,
t cannot be removed from its domain when MAC-hidden enforces arc consistency on
the node at the level of Xk,rk in the new hidden search tree (because tk,ric is an
ancestor of tij) , and it cannot be pruned either when MAC-hidden enforces arc consis
tency on the node fj_t in the original hidden search tree (because ac(hidden(P)It,,,)
and ac(hidden(P)\tk) have the same domains). Therefore, MAC-hidden will visit
the node U-i U {yj <— f} at the level of yi in the original hidden search tree. Let
t i j correspond to tj_i U {yi £}, as shown in part (2) in Figure 5.19. Because
two distinct nodes at the level of Xjj have different supports from iji. which do not
agree on the part vars(tij) fl vars(yi), their correspondences at the level of y, in the
original hidden search tree are different. Thus the total number of the nodes visited
by MAC-hidden in the new hidden search tree is bounded by a factor O(r) from the
total number of the nodes visited by MAC-hidden in the original hidden search tree.

I

151

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

5.4.2 GAC-orig and MAC-hidden
We know from Theorem 4.3, arc consistency on the hidden problem is equivalent to
arc consistency on the original problem. Because GAC-orig and MAC-hidden explore
the same search tree, intuitively, they should visit exactly the same nodes.

Lem m a 5.31 Given a partial solution t of a CSP P, ac(P |t) is not empty if and
only if ac(hidden(P)\t) is not empty. Furthermore, for each ordinary variable .r. .r
has the same domain in ac(P |£) and ac(hidden(P)\t).

Proof: From Theorem 4.3, ac(P |£) is not empty if and only if ac{hidden{P\t)) is
not empty and for each ordinary variable x, x has the same domain in ac(P |£)
and ac(hidden(P\t)). Note that hidden{P)\t and hidden(P\t) have the same do
mains for the ordinary variables. For each hidden variable c. the domain of c in
hidden(P)\t contains all the tuples tc in the corresponding constraint C, whereas
its domain in hidden(P\t) contains only the tuples tc in C such that tc[vars(t) n
uars(c)] = t[vars(t) fl uars(c)]. However, for each of the tuples tc in the domain of
c in hidden(P)\t, if tc[vars(t) fl uars(c)] ^ t[vars(t) fl uars(c)], tc does not have a
support from at least one of the ordinary variables x € vars{c). and thus tc will be
removed from the domain when achieving arc consistency on hidden(P)|£. Therefore.
ac{hidden(P)\t) and ac(hidden{P\t)) have the same set of domains. Thus. ac(P |£)
is not empty if and only if ac(hidden(P)\t) is not empty and they have the same
domains for the ordinary variables. |

T heorem 5.32 Given a CSP and any variable ordering, GAC-orig visits exactly the
same nodes as MAC-hidden does.

Proof: If a node t is arc consistent in the original problem, t is also arc consistent
in the hidden problem. From Theorem 5.27, GAC visits a node t if and only if t's
parent is arc consistent and the value assigned to the current variable by t has not be
removed from its domain when enforcing arc consistency on t's parent. From Lemma
5.31, GAC-orig and MAC-hidden visit exactly the same nodes. |

5.4.3 GAC-orig and MAC-dual
The following examples show that GAC-orig (and MAC-hidden) may be exponentially
better or worse than MAC-dual.

152

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

Exam ple 5.13 Consider a CSP of n(n + l)/2 variables, x \ , . . . , x n, xi.2— .X[.n.
. . . ,ar„_i(n, and each variable has n — 1 values, 1 , n — 1. There are n{n — l)/2
constraints,

C {xu x 2 ,x i t 2) = { i l ^ x 2}t

C(xl, x3, x1i3) = {art # ar3},

C(x,t_ i, xnt xn_iin) = {xrt_i 7 ̂xn.}

It is essentially a pigeon-hole problem, except that we pad an extra variable x tJ in
each constraint. The pigeon-hole problem is insoluble but highly consistentfllO]. By
any variable ordering, GAC-orig has to instantiate n — 2 variables to encounter a
dead-end and it visits 0 (n logri) nodes to conclude the problem is insoluble. Because
any two constraints overlap at most one ordinary variable, from Theorem 4-9, arc
consistency on the dual representation is equivalent to arc consistency on the original
problem. However, at each node of the dual search tree, MAC-dual has to additionally
instantiate a variable x , j , which has no influence on the failure. So M A C - d u a l has

to explore 0{nn) nodes. Thus MAC-dual is exponentially worse than GAC-orig.

In the above example, MAC-dual has the same pruning power as GAC-orig be
cause each pair of the original constraints share at most one variable. However.
MAC-dual has to do one useless instantiation at each node in the search tree. As
a result, these extra instantiations cause MAC-dual to be exponentially worse than
GAC-orig. The following example shows the converse: if two original constraints
share more than one variable, arc consistency on the dual is stronger than arc con
sistency on the original problem, and MAC-dual may be exponentially better than
GAC-orig.

Exam ple 5.14 Consider a CSP of An+ 2 variables, xt, . . . ,x4n+2 and each variable
has n values, 1 , . . . , n. There are 2n A- 1 constraints,

C{xi,x2,X3 ,x4) = {(xt ■+■ x2 mod 2) (x3 -bx4 mod 2)}

C(x3,x 4,x5,x6) = {(x3 + x 4 mod 2) / (x5 -I-x6 mod 2)}

C(x4n_ i,x 4„, x4n+i,x 4n+2) — {(x4n—1 ■+* x4„ mod 2) ^ (x4n+i + x 4 nj. 2 mod 2)}

C'(x4n+l, x4n+2,x lf x2) = {(x4n+1 + x4n+2 mod 2) ^ (xt + x2 mod 2)}

153

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

Because (xi + £2 mod 2) = 0 implies (x3 + x4 mod 2) = 1, (x5 + x6 mod 2) = 0 , . . . ,
and (x4n+i + ^4n+ 2 mod 2) = 0 and then (xt + x 2 mod 2) = 1. Thus the problem is
insoluble. When enforcing arc consistency at a node in the original search tree, none
will be removed from the domain of an ordinary variable unless the variable is the
last uninstantiated variable in a constraint. The best variable ordering strategy in the
original problem is to divide the problem in half by first branching on the variables
Xi,Xo,X2n+i and :r2n+2 . Then we can branch on an insoluble subproblem consisting of
x$,. . . , x-i n, or £271+3 , • • • > x4 n+2 - By this divide-and-conquer approach, the maximum
depth of the original search tree is about 0(log(n)) and the total number of the nodes
explored by GAC-orig is 0 (n l°9̂) . In the dual problem, the dual constraints form a
cycle in the constraint graph. Once a dual variable is instantiated, the cycle is broken
so that the induced subproblem is empty after enforcing arc consistency. Thus MA C-
dual only needs to instantiate one variable to conclude the problem is insoluble and it
visits 0 (n 4) nodes. Therefore, MAC-dual is exponentially better than GAC-orig.

T heorem 5.33 There is a CSP instance in which GAC-orig and MAC-hidden are
always exponentially better than MAC-dual no matter what variable ordering is used
in the dual problem.

Proof: It is true from the CSP in Example 5.13. |

T heorem 5.34 There is a CSP instance in which MAC-dual is always exponentially
better than GAC-orig and MAC-hidden no matter what variable ordering strategies
are used for them.

Proof: It is true from the CSP in Example 5.14. |

From Theorem 4.9, we know that given a CSP where any two original constraints
overlap on at most one ordinary variable, achieving arc consistency on the dual is
equivalent to achieving arc consistency on the original problem. We will show that
GAC-orig is only bounded worse than MAC-dual in such an instance. Given an or
dering of the dual variables, ci,...,C m , we can arrange the ordinary variables in the
original problem in the same way as we have done in the case of BT-orig and BT-dual.
That is, the instantiation to the dual variable c, is equivalent to the instantiations of
the ordinary variables . . . ,x ijFi, where x tj € vars(ci) and x tJ & (Jfc=\ vars(ck).
An example of such a variable ordering arrangement is shown in Figure 5.2. Un
der the above variable orderings, each ordinary variable x iyj in the original problem
corresponds to a unique dual variable c* in the dual problem. However, not all the

154

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

dual variables have some correspondences in the ordinary variables. Therefore, in the
original problem, xiyTt may not be followed by rri+i,i (since £i+i,i may not exist).

O bservation 5.5 I f a partial solution t in the original problem is cons is tent , t cor

responds to a unique partial solution alldual{t) in the dual problem including all the
dual variables c such that vars(c) C uars(t). Because t is consistent, for each dual
variable c where vars(c) C vars(t), the tuple t[uars(c)] is included in the domain o f

c, and thus alldual(t)[c] is set to be t[vars(c)}. Furthermore, if a node t at the level
o fx itfi in the original search tree is consistent, t corresponds to a unique node dual(t)
at the level of Cj in the dual search tree, where dual(t) = alldual(t)[{ci,. . . ,Cj}|.

Note that in the comparison of FC-hidden and FC-dual, we have used the notations
alldual(t) and dual(t), we still use these notations in comparing MAC-orig and MAC-
dual because they are exactly the same under the two situations.

L em m a 5.35 Given a CSP P in which for any two constraints C and C' of P.
vars(C)D vars(C ') contains at most one ordinary variable, and given the above vari
able orderings, if a node t at the level of x,.ri in the original search tree is arc consis
tent, then alldual{t) and dual(t) are also arc consistent. Furthermore, f o r each or ig

inal constraint C, if a tuple tc is not (implicitly) removed from the constraint C when
enforcing arc consistency on P\t, the tuple tc cannot be removed from the domain o f

the corresponding dual variable c when enforcing arc consistency on dual(P)\anciuaiw

and dual(P)\duai{t)-

P roof: In the original problem, for each of the constraints C where vars{C) C
vars(t), and for each of the variables x € vars(C), the domain of x in P |£ contains
only one value £[x]. Because ac(P |£) is not empty, thus f[i/ars(C)] 6 rel(C). So t is
consistent in the original problem. Thus alldual(t) and dual(t) do exist. Because
ac(P |£) is not empty, from Theorem 4.7, ac(dual(P\t)) is not empty. Note that
dual(P\t) and dual(P)\auduâ t) have the same domain for each dual variable c, where
vars(c) C vars(t) (the domain of c contains only one tuple f[uars(c)]), or vars(c) fl
vars(t) = 0 (the domain of c contains all the tuples in the corresponding constraint).
For each dual variable c, where vars(c) fl vars(t) ^ 0 and vars(c) £ vars(t). that
means, c is not instantiated in alldual(t), but it is constrained with at least one
of the dual variables instantiated in alldual(t). The domain of c in dual(P)\aiiduiti{t)
contains all the tuples in the corresponding constraint, whereas its domain is dual(P\t)
only contains those tuples tc in the corresponding constraint such that tc[vars{c) n
vars(f)] = £[t/ars(c) fl uars(£)]. However, for each of the tuples tc in the domain of

155

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

Ck -
C f c + i -

d u a l (t k . r ^)
* k . r k

C i - 1 -
(I)

x>.l

‘.-I U{ci - 1) 1

(1) t , _ t = a l ld u a / (e 4 r i i) [{ c i C j- iH -
(2) w here t 6 re i(C \) a n d t [v a r 4 (t i (j} n v a r a (C \)J ss (o « r j(et>J) n v a r j (C ,)J

a n d t ie no t rem oved from th e c o n s tra in t C , w hen G A C -orig enforces
arc consis tency on t* . ’s p a ren t.

Figure 5.20: A node tij visited by GAC-orig at the level of x ,j in the original search
tree corresponds to a unique node visited by MAC-dual at the level of c, in the dual
search tree.

c in dual(P)\auduai(t) such that tc[vars(c) fl uars(f)] ^ t[vars(c) fl uars{t)\, because
vars(t) = Ufc=ivars(ck) and {ci,...,C j} C alldual(t), there is one dual variable c}
for 1 < j < i, such that {c tc} is not compatible with {cj <— t [t fa r .s (C j)]} . Because
£[uar.s(cj)] is the only tuple in the domain of Cj in dual(P)\auduaHt), tc will be removed
from its domain when enforcing arc consistency on the dual constraint between c
and Cj. Thus ac(dual(P\t)) and ac(dua/(P)|aH4/ua/(£)) have exactly the same domains
for the dual variables. Because ac(P |£) is not empty, ac(dua/(P)|a£/(/ua£(£)) is not
empty either. Therefore, alldual(t) is arc consistent. Furthermore, from Theorem 4.9.
dual(ac{P\t)) = ac{dual(P)\auduant)). That is, if a tuple tc is not (implicitly) removed
from an original constraint C in ac(P |£). tc cannot be removed from the domain of the
corresponding dual variable c in ac(dual(P)\attliuai ^) . Because dual{t) is a subtuple of
alldual(t), thus an arc consistent subdomain of dual{P)\aiiduait is also an arc consistent
subdomain of dual{P)\duai{t)- Therefore, dual(t) is arc consistent and if a tuple tc is
not implicitly removed from an original constraint C in ac(P |£), tc cannot be removed
from the domain of the corresponding dual variable c in ac(dual(P)\dUai{t))■ I

Thus the total number of the arc consistent nodes at the level of Xj,r, in the original
search tree is bounded by the total number of the arc consistent nodes at the level of
Ci in the dual search tree.

156

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

T heorem 5.36 Let P be a CSP instance such that for any two constraints C and C'
of P, vars(C) fl vars(C') contains at most one ordinary variable. Given any variable
ordering for its dual representation, there is a variable ordering on the original prob
lem such that GAC-orig visits at most 0 (r) times as many nodes as MAC-dual does.

Proof: Suppose GAC-orig visits a node t i j at the level of Xij in the original search
tree, let tk,Tk denote Uj's ancestor at the level of xk<rk, where x k,rk is followed by x lA
in the variable ordering for the original problem. We know that tk,rk is arc consistent.
From Lemma 5.35, its correspondence dual(tk<rk) is an arc consistent node at the level
of ck in the dual search tree. Thus MAC-dual will visit dual(tk rk) and extend it to the
levels of cjt+i,...,Ci_i and q . Furthermore, because alldual(tk<rk) is arc consistent,
and each of the variables q , . . . , q _ i must have been instantiated in alldual(tkj.k).
the node £j_t = alldual(tkfrk)[{ci,.. . ,q_i}] is an arc consistent node at the level of

in the dual search tree. Thus MAC-dual will visit and extend it to the level
of q . Because the value tij[xij] was not removed from the domain of xltJ when GAC-
orig enforces arc consistency on tij s parent in the original problem, there is a tuple
t 6 rel{Ci) such that t[uars(tij) fl car.s(Ct)] = t^ luars^^j) f l cars(C,)] and t is not
(implicitly) removed the constraint C, when enforcing arc consistency on f,./s parent.
i.e., t is a valid support for {x,,j «— <»j[a:»j]}. Thus t will not be (implicitly) removed
from the constraint Cj when GAC-orig enforces arc consistency on the node tktkr
(because tk<rk is an ancestor of tij). From Lemma 5.35, t cannot be removed from the
domain of the dual variable q in ac(dual{P)\auduai(tkrk))- Because £j_t is a subtuple
of alldual(tkiJ.k), thus t cannot be removed from the domain of q in ac(dna£(P)|£i_1).
Therefore, MAC-dual will visit the node £j_t U {q f— £} at the level of q in the dual
search tree. Let tij correspond to £,•_i U {q «— £}, as shown in Figure 5.20. Given
two distinct nodes visited by GAC-orig at the level of Xij in the original search tree,
because they have the different instantiations on the part uars(ftJ) fl vars(Ci), their
correspondences at the level of q in the dual search tree are different. Therefore, the
total number of the nodes visited by GAC-orig in the original search tree is bounded
by a factor O(r) from the total number of the nodes visited by MAC-dual in the dual
search tree. |

5.4.4 Combined Formulation
MAC-dual may be exponentially better because it enforces a stronger consistency
on the dual representation and MAC-hidden may be exponentially better because

157

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

Figure 5.21: The combined formulation of the CSP in Example 1.1.

it makes less instantiations at each stage during the backtrack search. We observe
that the advantages of the dual representation and the hidden representation can be
combined into a new problem formulation.

D efinition 5.3 (com bined rep resen ta tion) Given a CSP instance P = (V. V.C).
its combined representation comb(P) = (yco,n6(p) r[)cornb(P) Qcomb{P)̂ ls defined as:

• y comb(p) = yhidden(P)' • e ̂ £/je sei 0f variables consists of the ordinary vari
ables from the original problem and the hidden variables corresponding to the
constraints in the original problem,

• "Dcom6(p) = ■D/"d<ien(p), i.e., the domain of an ordinary variable is the same as it
in the original problem and the domain of a hidden variable consists of all the
tuples in its corresponding constraint,

• Ccom6(p) =■ Qhidden(P) y Qduai(P) j ’/ie set of constraints includes all the hidden
constraints in the hidden representation and all the dual constraints in the dual
representation.

The combined representation of the the CSP in Example 1.1 is shown in Figure
5.21, which is essentially the combination of the hidden representation as shown in
Figure 4.2 and the dual representation as shown in Figure 4.1. Note that the combined
representation is a binary CSP, in which an ordinary variable only constrains with the

158

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

hidden variables, whereas a hidden variable may have constraints with the ordinary
variables and other hidden variables.

In the following, we denote MAC applied on the combined representation as MAC-
comb. Similar to the case of MAC-hidden, we assume that all the ordinary variables
are instantiated first in the combined representation. Thus. MAC-coinb explores rhe
same search tree as GAC-orig does.

T heorem 5.37 Given a CSP P, ac(comb(P)) is not empty if and only ifac{dual(P))
is not empty. Furthermore, a hidden variable has the same domain in ac(comb(P))
and ac(dual(P)).

Proof: Given a CSP P , because the dual problem is a subproblem in the combined
representation, if ac{dual{P)) is empty, then ac(comb(P)) is empty too. On the
other hand, if ac(dual(P)) is not empty, from ac{dual(P)), we can construct an arc-
consistent subdomain for the original problem, ‘D<iuaiae(P) (see page 97). It is easy to
verify that £)dua,ac(F) u 'pac(duaH.P)) js an arc consistent subdomain for camb[P). |

T heorem 5.38 Given a CSP and a variable ordering for the original problem, there
is a variable ordering for the combined representation such that MAC-comb always
visits no more nodes than GAC-orig does. On the other hand, there exists a C S l }

instance in which MAC-comb is exponentially better than GAC-ong no matter what
variable ordering is used in the original problem.

Proof: Because MAC-comb and GAC-orig explore the same search tree and at each
node in the search tree, MAC-comb enforces a stronger consistency than GAC-orig
does, GAC-orig visits all the nodes that MAC-comb visits. Since MAC-comb enforces
a more powerful consistency, sometimes this will be paid off. For example. GAC-orig
is exponentially worse than MAC-comb when solving the CSP in Example 5.14.

T heorem 5.39 Given a CSP and a variable ordering for the dual problem, there is a
variable ordering for the combined representation such that MAC-comb visits at most
0(r) times as many nodes as MAC-dual visits. On the other hand, there exists a CSP
instance in which MAC-dual is exponentially worse than MAC-comb no matter what
variable ordering is used in the dual problem.

Proof: Since arc consistency on the combined representation is equivalent to arc
consistency on the dual problem, in the same way as we have done in proving The
orem 5.36, we can show that MAC-comb is only bounded worse than MAC-dual.

159

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

A -----------------------J3
A is never worse than B

A — 0 (/(r a)) -----J3

A is bounded by 0 (/(n)) from S

A — exp J3

A may be exponentially worse than B

(1) In the case that MAC-hidden instantiated all the ordinary variables first.

(2) In the case that each pair of the original constraints share at most one variable.

Figure 5.22: The relations between GAC-orig, MAC-dual, MAC-hidden and MAC-
comb.

Because MAC-comb makes a weaker instantiation at each node in the search tree
than MAC-dual does, MAC-comb can avoid some useless instantiations that MAC-
dual has to commit. For example, MAC-comb is exponentially better than MAC-dual
when solving the problem in Example 5.13. |

We summarize the relations between GAC (MAC) on different formulations in
Figure 5.22. MAC-comb is on the top in the hierarchy in terms of the size of the
search tree, but it performs more work at each node and in practice it may not have
the best run time performance.

5.5 Discussion
In the above, we have theoretically studied the relations between the original problem,
the dual problem and the hidden problem with respect to the selected backtracking
algorithms. The results are summarized in Figure 5.1. Furthermore, given three

160

MAC-comb

MAC-dual

MAC-hidden*l)MAC-hidden

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

algorithm+formulation combinations A, B, and C in the figure, we can make the
following inferences:

• The relations A may be exponentially worse than B and A is bounded worse
than B. cannot hold simultaneously. For example. FC-hiclden is bounded worse
than FC-dual, thus there is no such instance to show that FC-clual can be
exponentially better than FC-hidden.

• If 4̂. is polynomially bounded worse than B , and B is polynomially bounded
worse than C, then A is polynomially bounded worse than C. For example,
because FC-proj and FC+ always visit the same nodes and FC+ is bounded
worse than FC-dual, thus FC-proj is only bounded worse than FC-dual.

• If A is bounded worse than 3, and C may be exponentially worse than B.
then C may be exponentially worse than A . For example, MAC-hidden always
visits fewer nodes than FC-hidden, which itself is bounded worse than FC-dual.
Then we can conclude that MAC-hidden is only bounded worse than FC-dual.
whereas MAC-hidden may be exponentially better than FC-dual.

However, if A may be exponentially worse than 3, and B may be exponentially
worse than C, we cannot conjecture that A may be exponentially worse than C. For
example, FC-hidden may be exponentially worse than FC-orig, and FC-orig may be
exponentially worse than FC-dual, but FC-hidden is only bounded worse than FC-
dual.

Although the above relations are established in terms of the number of the nodes
visited by the algorithm, they are also valid in the case that the number of constraint
checks performed is considered if the number of constraint checks performed by the
algorithm at each node in the search tree can be bounded by a polynomial *. For
example, if A may be exponentially worse than B in terms of the number of nodes
visited by the algorithms, it still holds that A is exponentially worse than B in terms
of the constraint checks, because the backtracking algorithm performs a polynomial
number of constraint checks at each node in the search tree. Otherwise, if A is
bounded worse than B in term of the number of the nodes visited by the algorithms,
the number of the constraint checks performed in A is also bounded in a polynomial
factor by the number of the constraints checks performed in B. Furthermore, due to
the special properties of the dual and hidden transformations, some general methods

"However, the worst case complexity of achieving arc consistency on general CSPs is not always
bounded by a polynomial.

161

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

to exploit such properties axe available to speed up the constraint checking and con
straint propagation in the dual problem and the hidden problem. A measure based
on the constraint checks performed by the algorithm can hardly reflect those efforts.

Nevertheless, the above relations are the worst case analyses and in practice they
do not precisely reflect the actual performances. Our objective is to provide some
general guidelines in determining whether or under which conditions the dual or
hidden transformation should be applied on a non-binary CSP. For example, if A
is just bounded worse than B , but it may be exponentially better than B, we are
ensured that the performance of A could not be much worse than the performance of
B, but A has the potential to provide a dramatic improvement over B. Thus, if we
are solving a large problem, A is preferred in the hope that A can provide exponential
savings over B and in the worst case, it cannot lose too much.

For example, consider a crossword puzzle problem. We know that there exists
three possible formulations for the problem, an original formulation in which each
letter is represented by a variable and each word is represented by a non-binary
constraint, the dual formulation in which each word is represented by a variable and
the binary constraints specify that two words agree on their intersecting letter, and
the hidden formulation which represents both the letters and the words by variables.
There are few constraints in the original formulation, i.e., the CSP is sparse, and each
of the constraints is very tight compared to all possible combinations of 26 letters. If
we apply FC to solve the problem, intuitively, the original formulation would not be
a good choice because a non-binary constraint can be forward checked only if all but
one of its variables has been instantiated. From Theorem 5.21, we know that FC-
hidden is only bounded worse than FC-dual, thus the hidden formulation is at least
comparable to the dual formulation. If MAC is applied to solve the problem, from
Theorem 5.32, we know that GAC-orig visits the same nodes as MAC-hidden does
if they use the same static variable ordering. Because each pair of constraints in the
original formulation share at most one variable, from Theorem 5.36. we know that
GAC-orig is only bounded worse than MAC-dual. Thus, the original formulation
and the hidden formulation are the winner in the case of MAC. Furthermore, the
efficiency of constraint propagation in all the three formulations can be improved
by the use of some propagators. For example, in the original formulation, to find
a support (for a revised value) in a non-binary constraint, the generic method is to
list all possible combinations {e.g., 2610) of the values in the current domains of the
variables in the constraint. Because the constraint is very tight, it is rare to encounter
a valid support in the list. However, we can simply go through the dictionary and

162

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

check each word whether it is a valid support for that value. Since arc consistency on
the dual formulation does not have more priming power than the one on the original
formulation and the hidden formulation, it is not worthwhile to combine the dual and
hidden together and apply MAC on the combined formulation.

5.6 Summary

In this chapter, we examined theoretically how well some backtracking algorithms
perform on a non-binary CSP and its dual and hidden transformations. Given two
algorithm+formulation combinations A and B, we identify one of two mutually ex
clusive relations between A and B, either A may be exponentially worse than B, or
A can always be (polynomially) bounded worse than B. We mean that A may be
exponentially worse than B if there is a CSP instance and a variable ordering for
B such that the performance of the algorithm on A is exponentially worse than its
performance on B no matter what variable ordering is used in A and we mean A is
bounded worse than B if for any CSP instance and for any variable ordering in B. we
can figure out a variable ordering for A such that the performance of the algorithm
on A is bounded by a polynomial factor from its performance on B.

For the chronological backtracking algorithm, BT-orig may be exponentially worse
than BT-dual and BT-hidden, and BT-dual and BT-hidden may be exponentially
worse than BT-orig. However, BT-dual will always visit no more nodes than BT-
hidden does, and BT-hidden can visit at most 0{rd) times as many nodes as BT-dual
does. Moreover, if the maximum arity of the constraints in the original problem is
bounded by a constant r, BT-orig visits at most 0(cT+l) as many nodes as BT-dual
or BT-hidden does, and if the maximum number of the tuples in the constraints of
the original problem is bounded by a constant M, BT-dual or BT-hidden can visit
at most 0(mdM) times as many nodes as BT-orig does.

For the forward checking algorithm, FC-dual may be exponentially worse than
FC-orig and FC-hidden, and FC-orig may be exponentially worse than FC-dual and
FC-hidden. However, FC-hidden can visit at most 0(rd) times as many nodes as FC-
dual does. Both FC-orig and FC-hidden can be improved by doing more constraint
checks at each node in the search tree. For example, Bacchus and van Beek introduce
an algorithm called FC+ as an improvement to FC-orig and FC-hidden [7]. FC+
never visits more nodes than FC-orig or FC-hidden does, and FC+ can visit at most
O(r) times as many nodes as FC-dual (if the original problem is arc consistent).
Furthermore, the original formulation can be improved by adding all the projections

163

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

of the non-binary constraints. FC applied on the new formulation is called FC-proj,
and we have shown that FC-proj and FC+ visit exactly the same nodes. That means,
improving the algorithm and improving the formulation may have the same effect.

For the maintaining arc consistency algorithm, GAC-orig and MAC-hidden visit
exactly the same nodes, while MAC-dual may be exponentially worse than GAC-
orig and MAC-hidden because MAC-dual makes more instantiations at each node
of the search tree, and GAC-orig and MAC-hidden may be exponentially worse than
MAC-dual because MAC-dual enforces a stronger consistency in the backtrack search
than GAC-orig or MAC-hidden does. If any pair of the constraints in the original
problem have at most one common variable, we know that arc consistency on the
dual is equivalent to arc consistency on the original and the hidden problem. In that
case, we can show that GAC-orig and MAC-hidden visit at most 0(r) times as many
nodes as MAC-dual does. The dual and hidden problem can be combined into a new
binary formulation and we denote MAC applied on the new problem as MAC-comb.
MAC-comb never visits more nodes than GAC-orig or MAC-hidden does, and it visits
at most O(r) times as many nodes as MAC-dual does.

Although all the above relations are based on the number of the nodes visited by
a backtracking algorithm, they are still valid if the number of the constraint checks
is considered. Our study can provide some general guidelines to determine whether
or under which conditions the dual or hidden transformation can be applied on a
non-binary CSP.

164

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

Chapter 6

Future Work and Conclusion

6.1 Future Work

In Chapter 3, we present two seemingly contradictory scenarios, one is that an algo
rithm doing more looking ahead cannot benefit more from a look-back enhancement,
and the other is that GAC can still be (significantly) improved by the use of CBJ.
The first one is of theoretical interest as we have shown that the use of a dynamic
variable ordering or maintaining strong fc-consistency will weaken the effects of the
backjumping technique. The second one has practical value as our experiments show
that GAC-CBJ outperforms GAC by orders of magnitude on some real world prob
lems. A missed part in the picture is the linkage between the theoretical justifications
and the empirical observations; i.e., from a practical point of view, we are more inter
ested in using these theoretical results to explain and predict whether or under which
condition a look-ahead algorithm will be improved from a backjumping enhancement.
For example, FC-CBJ is known to be better than FC on a wide range of problem
domains, but the improvement of GAC-CBJ over GAC can only be observed in sparse
random CSPs and some real world problems. The theoretical results say that if a
CSP is highly consistent, CBJ can hardly generate effective backjumps. One possible
approach is to find a way to characterize the degree of consistency in a CSP, similar
to the “constrainedness” property used in phase transition study [55]. For example,
because a dense CSP usually has a higher level of consistency than a sparse CSP.
GAC-CBJ shows improvement on sparse problems. Adding redundant constraints
to a CSP has the effect of achieving some degree of consistency and thus increases
the consistency level of the formulation. Therefore, the benefit of CBJ will be di
minished by the use of redundant constraints. One solution is to find a parameter
indicating the consistency level of a CSP, and tie each of the look-ahead algorithms

165

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

with a threshold point of the parameter, where to solve a CSP with a consistency
level above the point, the CBJ enhancement is more likely useless to the look-ahead
algorithm, and it will bring improvement on instances with consistency level below
the threshold point.

Our work in the comparison of the dual and hidden transformations can be ex
tended in several directions. To study the consistency properties of non-binary CSPs,
the dual transformation provides a good starting point. As we know, strong k-
consistency is not so useful for non-binary CSPs. One obvious paradox is that if all
the constraints in a CSP have arity greater than k , the CSP is strongly ^-consistent.
Dechter and van Beek have proposed the concept of relational k-consistency as the
generalization of ^-consistency for non-binary CSPs [39]. However, relational con
sistency has some serious drawbacks to be used in practice l . As we know, arc
consistency on the dual problem is stronger than arc consistency on the original
problem, and in fact it is even stronger than relational arc consistency. Therefore,
arc consistency on the dual transformation will induce a new consistency propertv
on the original non-binary problem. For example, we can call it dual arc consistency.
Subsequently, we can define more consistency properties, such as dual k-consistency,
dual (i,j)-consistency, dual neighborhood inverse consistency, and so on, to enrich the
family of consistencies for general CSPs.

In Chapter 5, we have thoroughly compared the performance of several backtrack
ing algorithms on the three possible formulations for any problem. However, a "pure"
form of the dual or hidden transformation is rarely used in modeling a problem. In
stead, they are often used in the form of partial conversions, and combined with other
modeling techniques, such as exploiting meta values.

One drawback of the dual and hidden transformations is that they are only ap
plicable to sparse CSPs. For a dense CSP, if every constraint is transformed into a
dual variable or a hidden variable, the transformation will have too many variables
to be solved by backtracking algorithms. A partial conversion means a subset of the
constraints in an original formulation become dual variables, or a subset of the vari
ables in a constraint are aggregated into a hidden variable. For example, in temporal
reasoning, an interval-based representation of temporal information can sometimes
be viewed as a partial (dual) conversion of a point-base representation (see Figure
4.4), which can often be processed very quickly. One extension of our theoretical
results is to formalize various partial conversions and evaluate how they will affect

l For example, even the complexity of achieving relational arc consistency in a non-binarv CSP
may be exponential if the maximum arity of the constraints is not bounded.

166

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

Without meta values With the use of meta values

Figure 6.1: Use of meta values in the hidden variable representation.

the effectiveness of consistencies and the performance of backtracking algorithms.
The dual and hidden transformations use a very restricted representation for non

binary constraints in which each tuple in a non-binarv constraint is represented by
a value in the domain of the dual or hidden variable. This usually results in some
exponentially large domains. In practice, there often exists more flexible representa
tions for some classes of non-binary constraints. For instance, in Example 1.4. three
hidden variables are used to represent the global equation constraint, and each of the
hidden variables has only two values. Furthermore, with the help of identifying meta
values of the dual or hidden variables, their domains may be dramatically condensed.
For example, consider a constraint over n Boolean variables, x t V • • • V x„. If it is rep
resented by a “pure” hidden variable, the domain of the hidden variable will contain
2" — 1 tuples, which is usually too large to be used in practice. However, the domain
of the hidden variable can be condensed by the use of meta values. One scheme is to
represent the constraint with one hidden variable c whose domain contains n values.
{ 1 ,.. . , n}, and add one constraint between c and each of the ordinary variables x, to
specify the following relation, c = i — > x, = 1, as shown in Figure 6.1. Note that the
constraints in the second representation are not hidden constraints anymore because
they are not one-way functional constraints. Further work should include identifying
meta values and more flexible representation schemes for some classes of constraints
and evaluating their effects on the effectiveness of consistencies and the performance
of backtracking algorithms.

167

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

6.2 Conclusion
Our work aims at improving the efficiency of solving constraint satisfaction problems
with respect to improving the backtracking algorithms and improving the formula
tions. We studied the relations between look-ahead algorithms and the backjumping
technique and evaluated the dual and hidden transformation techniques. Throughout
the dissertation, we did not restrict ourself to binary CSPs.

The theoretical contributions in this dissertation include the following. We par
tially explained why look-ahead algorithms will benefit less from backjumping en
hancement. We introduced the concept of backjump level to characterize the execu
tion of backjumping algorithms, the concept of Ar-proof-tree to characterize the strong
fc-consistency achievement algorithms, and the concept of induced CSP to charac
terize the maintaining strong ^-consistency algorithm. We evaluated two modeling
techniques, the dual transformation and the hidden transformation, with respect to
the effectiveness of various consistency properties and the performance of some back
tracking algorithms. To our knowledge, this is the first comprehensive approach to
evaluating modeling techniques in a purely theoretical wav.

The practical contributions in this dissertation include the following. We proposed
a new algorithm, GAC-CBJ, and our experiments show that GAC-CBJ significantly
improves GAC on some harder real world problems, and it is only 10% slower than
GAC on relatively easy problems. The theoretical results in the comparison of the
dual and hidden transformations also have practical interests. For example, we know
that GAC applied on an original formulation always visits the same nodes as MAC
applied on its hidden transformation, and MAC applied on the dual transformation
may be significantly better than GAC applied on the original problem only if there
are two constraints in the original problem that share more than one variable. These
results can be used by practitioners to more effectively find an efficient model for
real-world problems.

168

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

Bibliography

[1] J. Aerts. A survey of optimization algorithms for job shop scheduling. Technical
Report COSOR 97-19, Eindhoven University of Technology, 1997.

[2] A. Aggoun and N. Beldiceanu. Extending CHIP in order to solve complex
scheduling and placement problems. Mathl. Comput. Modelling, 17:57-73. 1993.

[3] J. F. Allen. Maintaining knowledge about temporal intervals. Comm. ACM.
26:832-843, 1983.

[4] J. F. Allen. Towards a general theory of action and time. Artificial Intelligence,
23:123-154, 1984.

[5] D. Applegate and W. Cook. A computational study of the job-shop scheduling
problem. ORSA Journal on Computing, 3(2):149-156. 1991.

[6] F. Bacchus and A. Grove. Looking forward in constraint satisfaction algorithms.
1999. Available from: http://logos.uwaterloo.ca/fbacchus/on-line.html.

[7] F. Bacchus and P. van Beek. On the conversion between non-binary and bi
nary constraint satisfaction problems. In Proceedings of the Fifteenth National
Conference on Artificial Intelligence. Madison. WI. 1998.

[8] F. Bacchus and P. van Run. Dynamic variable ordering in CSPs. In Proceedings
of the First International Conference on Principles and Practice of Constraint
Programming, pages 258-275, Cassis, France, 1995. Available as: Springer
Lecture Notes in Computer Science 976.

[9] P. Baptiste and C. Le Pape. A theoretical and experimental comparison of
constraint propagation techniques for disjunctive scheduling. In Proceedings of
the Fourteenth International Joint Conference on Artificial Intelligence, pages
600-606, Montreal, Quebec, 1995.

169

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

http://logos.uwaterloo.ca/fbacchus/on-line.html

[10] R. J. Bayardo Jr. and R. Schrag. Using CSP look-back techniques to solve
exceptionally hard SAT instances. In Proceedings of the Second International
Conference on Principles and Practice of Constraint Programming, pages 46
60, Cambridge, Mass., 1996.

[11] R. J. Bayardo Jr. and R. Schrag. Using CSP look-back techniques to solve real-
world SAT instances. In Proceedings of the Fourteenth National Conference on
Artificial Intelligence, pages 202-208, Providence, Rhode Island. 1997.

[12] C. A. Baykan and M. S. Fox. An investigation of opportunistic constraint
satisfaction in space planning. In Proceedings of the Tenth International Joint
Conference on Artificial Intelligence, pages 1035-1038, Milan, Italy, 1987.

[13] B. W. Benson Jr. and E. C. Freuder. Interchangeability preprocessing can im
prove forward checking search. In Proceedings of the 10th European Conference
on Artificial Intelligence, pages 28-30, Vienna, 1992.

[14] C. Bessiere. Arc-consistency and arc-consistency again. Artificial Intelligence.
65:179-190. 1994.

[15] C. Bessiere, E. C. Freuder, and J.-C. Regin. Using inference to reduce arc-
consistency computation. In Proceedings of the Fourteenth International Joint
Conference on Artificial Intelligence, pages 592-598, Montreal. Quebec. 1995.

[16] C. Bessiere and J.-C. Regin. MAC and combined heuristics: Two reasons to
forsake FC (and CBJ?) on hard problems. In Proceedings of the Second In
ternational Conference on Principles and Practice of Constraint Programming.
pages 61-75, Cambridge, Mass., 1996.

[17] C. Bessiere and J.-C. Regin. Arc consistency for general constraint networks:
Preliminary results. In Proceedings of the Fifteenth International Joint Confer
ence on Artificial Intelligence, pages 398-404, Nagoya, Japan. 1997.

[18] J. R. Bitner and E. M. Reingold. Backtrack programming techniques. Comm.
ACM, 18:651-656, 1975.

[19] J. E. Borrett. Formulation Selection for Constraint Satisfaction Problems: .4
Heuristic Approach. PhD thesis, University of Essex. United Kingdom. 1998.

170

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

[20] S. Bressan. Database query optimization and evaluation as constraint satisfac
tion problem solving. In Proceedings of the Post-ILPS’94 Workshop on Con
straints and Databases, Ithaca, NY, 1994. Available on the World Wide Web at
URL: http://wvvw.research.att.com/~sudarsha/ILPS94-CDBWorkshop.html.

[21] P. Brucker, B. Jurisch, and A. Kramer. The job-shop problem and immediate
selection. Annals of Operations Research, 50:73-114, 1994.

[22] P. Brucker, B. Jurisch, and B. Sievers. A branch and bound algorithm for the
job-shop scheduling problem. Discrete Applied Mathematics. 49:107-127. 1994.

[23] P. Burke and P. Prosser. The distributed asynchronous scheduler. In M. Zweben
and M. S. Fox, editors, Intelligent Scheduling, pages 309-339. Morgan Kaur-
mann Publishers, 1994.

[24] A. Colmerauer. An introduction to Prolog III. Comm. ACM, 33:69-90. 1990.

[25] M. C. Cooper. An optimal k-consistency algorithm. Artificial Intelligence.
41:89-95, 1989.

[26] M. C. Cooper, D. A. Cohen, and P. G. Jeavons. Characterising tractable con
straints. Artificial Intelligence, 65:347-361, 1994.

[27] M. Davis and H. Putnam. A computing procedure for quantification theory. J.
ACM, 7:201-215, 1960.

[28] R. Debruyne and C. Bessiere. Some practicable filtering techniques for the
constraint satisfaction problem. In Proceedings of the Fifteenth International
Joint Conference on Artificial Intelligence, pages 412-417. Nagoya. Japan. 1997.

[29] A. Dechter and R. Dechter. Removing redundancies in constraint networks. In
Proceedings of the Sixth National Conference on Artificial Intelligence, pages
105-109, Seattle, Wash., 1987.

[30] R. Dechter. Learning while searching in constraint-satisfaction problems. In
Proceedings of the Fifth National Conference on Artificial Intelligence, pages
178-183, Philadelphia, Pennsylvania, 1986.

[31] R. Dechter. Decomposing a relation into a tree of binary relations. J. of Com
puter and System Sciences, 41, 1990.

171

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

http://wvvw.research.att.com/~sudarsha/ILPS94-CDBWorkshop.html

[32] R. Dechter. Enhancement schemes for constraint processing: Backjumping,
learning, and cutset decomposition. Artificial Intelligence, 41:273-312. 1990.

[33] R. Dechter. On the expressiveness of networks with hidden variables. In Proceed

ings of the Eighth National Conference on Artificial Intelligence, pages 556-562.
Boston, Mass., 1990.

[34] R. Dechter. Constraint networks. In S. C. Shapiro, editor, Encyclopedia of
Artificial Intelligence, 2nd Edition, pages 276-285. John Wiley Sons, 1992.

[35] R. Dechter. From local to global consistency. Artificial Intelligence, 55:87-107.
1992.

[36] R. Dechter and D. Frost. Backtracking algorithms for constraint satisfaction
problems - a tutorial survey. Department of Information and Computer Sci
ence Technical Report R56, University of California, Irvine. 1998. Available at
ftp://ftp.ics.uci.edu/pub/CSP-repository/papers/R56.ps.

[37] R. Dechter and J. Pearl. Network-based heuristics for constraint satisfaction
problems. Artificial Intelligence. 34:1-38. 1988.

[38] R. Dechter and J. Pearl. Tree clustering for constraint networks. Artificial
Intelligence, 38:353-366, 1989.

[39] R. Dechter and P. van Beek. Local and global relational consistency. Theoretical
Computer Science, 173:283-308, 1997.

[40] M. Dincbas, P. van Hentenryck, P. Simonis, A. Aggoun, T. Graf, and
F. Berthier. The constraint logic programming language CHIP. In Proceed
ings fo the International Conference on Fifth Generation Computer Systems.
pages 693-702, 1988.

[41] ECRC. Eclipse user manual, 1999. Avaliable from
http://www.ecrc.de/eclipse/eclipse.html.

[42] E. C. Freuder. Synthesizing constraint expressions. Comm. ACM. 21:958-966.
1978.

[43] E. C. Freuder. A sufficient condition for backtrack-free search. J. ACM. 29:24
32, 1982.

172

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

ftp://ftp.ics.uci.edu/pub/CSP-repository/papers/R56.ps
http://www.ecrc.de/eclipse/eclipse.html

[44] E. C. Freuder. A sufficient condition for backtrack-bounded search. J. ACM,
32:755-761, 1985.

[45] E. C. Freuder. Complexity of k-tree structured constraint satisfaction prob
lems. In Proceedings of the Eighth National Conference on Artificial Intelligence,
pages 4-9, Boston, Mass., 1990.

[46] E. C. Freuder. Eliminating interchangeable values in constraint satisfaction
problems. In Proceedings of the Ninth National Conference on Artificial Intel
ligence, pages 227-233, Anaheim, Calif., 1991.

[47] E. C. Freuder. Constraint programming position paper for ACM work
shop on strategic directions in computing research. ACM Computing Sur
veys, 28A(4), December, 1996. Available on the World Wide Web at URL:
http://www.es. unh.edu/ccc/grail.html.

[48] D. Frost and R. Dechter. Dead-end driven learning. In Proceedings of the
Twelfth National Conference on Artificial Intelligence, pages 301-306, Seattle.
Wash., 1994.

[49] D. Frost and R. Dechter. In search of the best search: An empirical evaluation.
In Proceedings of the Twelfth National Conference on Artificial Intelligence.
pages 294-300, Seattle. Wash., 1994.

[50] D. Frost and R. Dechter. Look-ahead value ordering for constraint satisfaction
problems. In Proceedings of the Fourteenth International Joint Conference on
Artificial Intelligence, pages 572-578, Montreal, Quebec, 1995.

[51] M. R. Garey and D. S. Johnson. Computers and Intractability: .4 Guide to the

Theory of NP-Completeness. W. H. Freeman. 1979.

[52] J. Gaschnig. A general backtracking algorithm that eliminates most redundant
tests. In Proceedings of the Fifth International Joint Conference on Artificial
Intelligence, page 457, Cambridge, Mass., 1977.

[53] J. Gaschnig. Experimental case studies of backtrack vs. Waltz-type vs. new
algorithms for satisficing assignment problems. In Proceedings of the Second
Canadian Conference on Artificial Intelligence, pages 268-277, Toronto, Ont-
1978.

173

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

http://www.es

[54] J. Gaschnig. Performance measurement and analysis of search algorithms. Tech
nical Report CMU-CS-79-124, Carnegie Mellon University, 1979.

[55] I. P. Gent, E. MacIntyre, P. Prosser, and T. Walsh. The constrainedness of
search. In Proceedings of the Thirteenth National Conference on Artificial In
telligence, pages 246-252, Portland, Oregon, 1996.

[56] L. Getoor, G. Ottosson, M. Fromherz, and B. Carlson. Effective redundant
constraints for online scheduling. In Proceedings of the Fourteenth National
Conference on Artificial Intelligence, pages 302-307, Providence. Rhode Island.
1997.

[57] M. L. Ginsberg. Dynamic backtracking. J. of Artificial Intelligence Research.
1:25-46, 1993.

[58] M. L. Ginsberg and D. A. McAllester. GSAT and dynamic backtracking. In
Proceedings of the Second Workshop on Principles and Practice of Constraint
Programming, pages 243-265, Rosario, Orcas Island. Washington. 1994.

[59] S. A. Grant and B. M. Smith. The phase transition behaviour of maintaining arc
consistency. Technical Report 95.25, University of Leeds. School of Computer
Studies, 1995.

[60] R. M. Haralick and G. L. Elliott. Increasing tree search efficiency for constraint
satisfaction problems. Artificial Intelligence, 14:263-313, 1980.

[61] ILOG. Ilog optimization suite: White paper, 1998. Avaliable from
http://www.ilog.com.

[62] P. Jeavons, D. Cohen, and M. Gyssens. Closure properties of constraints. Tech
nical Report CSD-TR-96-15, Computer Science Department, University of Lon
don,, 1996.

[63] P. Jeavons, D. Cohen, and M. Gyssens. A test for tractability. In Proceedings of
the Second International Conference on Principles and Practice of Constraint
Programming, pages 267-281, Cambridge, Mass., 1996. Available as: Springer
Lecture Notes in Computer Science 1118.

[64] P. G. Jeavons and M. C. Cooper. Tractable constraints on ordered domains.
Artificial Intelligence, 79:327-339, 1995.

174

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

http://www.ilog.com

[65] P. Jegou. Decomposition of domains based on the micro-structure of finite
constraint satisfaction problems. In Proceedings of the Eleventh National Con
ference on Artificial Intelligence, pages 731-736, Washington, DC, 1993.

[66] H. Kautz, D. McAllester, and B. Selman. Encoding plans in propositional logic.
In KR-96, pages 374-384, 1996.

[67] H. Kautz and B. Selman. Pushing the envelope: Planning, propositional logic,
and stochastic search. In Proceedings of the Thirteenth National Conference on
Artificial Intelligence, pages 1194-1201, Portland, Oregon, 1996.

[68] G. Kondrak. A theoretical evaluation of selected backtracking algorithms. Tech
nical Report TR94-10, University of Alberta. 1994.

[69] G. Kondrak and P. van Beek. A theoretical evaluation of selected backtracking
algorithms. Artificial Intelligence, 89:365-387, 1997.

[70] P. B. Ladkin and R. D. Maddux. On binary constraint problems. J. ACM.
41:435-469, 1994.

[71] P. B. Ladkin and A. Reinefeld. Effective solution of qualitati%-e interval con
straint problems. Artificial Intelligence, 57:105-124, 1992.

[72] J.-L. Lauriere. A language and a program for stating and solving combinatorial
problems. Artificial Intelligence, 10:29-127, 1978.

[73] C. Le Pape. Constraint propagation in planning and scheduling. CIPE technical
report, Stanford University, 1991.

[74] H. Levy. A contraction algorithm for finding small cycle cutsets. ./. of Algo
rithms, 9:470-493, 1988.

[75] A. K. Mackworth. Consistency in networks of relations. Artificial Intelligence.
8:99-118, 1977.

[76] A. K. Mackworth. On reading sketch maps. In Proceedings of the Fifth Inter
national Joint Conference on Artificial Intelligence, pages 598-606, Cambridge.
Mass., 1977.

[77] A. K. Mackworth. Constraint satisfaction. In S. C. Shapiro, editor, Encyclopedia
of Artificial Intelligence, 2nd Edition, pages 285-293. John Wiley & Sons, 1992.

175

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

[78] A. K. Mackworth and E. C. Freuder. The complexity of some polynomial
network consistency algorithms for constraint satisfaction problems. Artificial
Intelligence, 25:65-74, 1985.

[79] D. Maier. The Theory of Relational Databases. Computer Science Press. 1983.

[80] J. J. McGregor. Relational consistency algorithms and their application in
finding subgraph and graph isomorphisms. Inform. Sci., 19:229-250. 1979.

[81] S. Minton, M. D. Johnston, A. B. Philips, and P. Laird. Minimizing conflicts:
A heuristic repair method for constraint satisfaction and scheduling problems.
Artificial Intelligence, 58:161-206, 1992.

[82] R. Mohr and T. C. Henderson. Arc and path consistency revisited. Artificial
Intelligence, 28:225-233, 1986.

[83] R. Mohr and G. Masini. Good old discrete relaxation. In Proceedings of the 8th
European Conference on Artificial Intelligence, pages 651-656, Munchen. FRG.
1988.

[84] U. Montanari. Networks of constraints: Fundamental properties and applica
tions to picture processing. Inform. Sci., 7:95-132. 1974.

[85] B. A. Nadel. Constraint satisfaction algorithms. Computational Intelligence.
5:188-224, 1989.

[86] B. A. Nadel. Representation selection for constraint satisfaction: A case study
using n-queens. IEEE Expert, 5:16-23, 1990.

[87] B. Nudel. Consistent-labeling problems and their algorithms: Expected-
complexities and theory-based heuristics. Artificial Intelligence. 21:135-178.
1983.

[88] C. S. Peirce. In C. Hartshome and P. Weiss, editors, Collected Papers, Vol. III.
Harvard University Press, 1933. Cited in: F. Rossi, C. Petrie, and V. Dhar.
1989.

[89] G. Pesant and M. Gendreau. A view of local search in constraint program
ming. In Proceedings of the Second International Conference on Principles and
Practice of Constraint Programming, pages 353-366. Cambridge. Mass.. 1996.

176

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

[90] L. Proll and B. M. Smith. ILP and constraint programming approaches to a
template design problem. Technical Report 97-16, School of Computer Studies,
University of Leeds, 1997.

[91] P. Prosser. Domain filtering can degrade intelligent backtrackng search. In
Proceedings of the Thirteenth International Joint Conference on Artificial In
telligence, pages 262-267, 1993.

[92] P. Prosser. Hybrid algorithms for the constraint satisfaction problem. Compu
tational Intelligence, 9:268-299, 1993.

[93] P. Prosser. MAC-CBJ: Maintaining arc consistency with conflict-directed back-
jumping. Technical Report Research Report 177, University of Strathclyde.
1995.

[94] J.-C. Regin. A filtering algorithm for constraints of difference in CSP. In
Proceedings of the Twelfth National Conference on Artificial Intelligence, pages
362-367, Seattle, Wash., 1994.

[95] F. Rossi, C. Petrie, and V. Dhar. On the equivalence of constraint satisfaction
problems. In Proceedings of the 9th European Conference on Artificial Intelli
gence, pages 550-556, Stockholm, Sweden, 1990.

[96] D. Sabin and E. C. Freuder. Contradicting conventional wisdom in constraint
satisfaction. In Proceedings of the 11th European Conference on Artificial In
telligence, pages 125-129, Amsterdam, 1994.

[97] P. Saint-Dizier. Logic programming for language processing. In International
Conference on Logic Programming, Paris, France, 1991.

[98] T. Schiex, J.-C. Regin, C. Gaspin, and G. Verfaillie. Lazy arc consistency.
In Proceedings of the Thirteenth National Conference on Artificial Intelligence.
pages 216-221, Portland, Oregon, 1996.

[99] T. Schiex and G. Verfaillie. Nogood recording for static and dynamic constraint
satisfaction problems. International Journal on Artificial Intelligence Tools.
3:1-15, 1994.

[100] R. Seidel. A new method for solving constraint satisfaction problems. In Pro
ceedings of the Seventh International Joint Conference on Artificial Intelligence.
pages 338-342, Vancouver, B.C., 1981.

177

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

[101] B. Selman, H. A. Kautz, and D. A. McAllester. Ten challenges in propositional
reasoning and search. In Proceedings of the Fifteenth International Joint Con
ference on Artificial Intelligence, pages 50-54, Nagoya, Japan, 1997. Avaiable
from http://www.research.att.com/"selman/challenge.

[102] B. Selman, H. Levesque, and D. Mitchell. A new method for solving hard
satisfiability problems. In Proceedings of the Tenth National Conference on
Artificial Intelligence, pages 440-446, San Jose, Calif., 1992.

[103] B. M. Smith and S. A. Grant. Sparse constraint graphs and exceptionally hard
problems. In Proceedings of the Fourteenth International Joint Conference on
Artificial Intelligence, pages 646-651, Montreal, 1995.

[104] S. F. Smith and C. Cheng. Slack-based heuristics for constraint satisfaction
scheduling. In Proceedings of the Eleventh National Conference on Artificial
Intelligence, pages 139-144, Washington, D.C., 1993.

[105] R. M. Stallman and G. J. Sussman. Forward reasoning and dependency-directed
backtracking in a system for computer-aided circuit analysis. Artificial Intelli
gence, 9:135-196, 1977.

[106] K. Stergiou and T. Walsh. Encodings of non-binary constraint satisfaction
problems. In Proceedings of the Sixteenth National Conference on Artificial
Intelligence, pages 163-168, Orlando, Florida. 1999.

[107] Mozart Programming System. Tutorial of Oz. Available from
http://www.mozart-oz.org/documentation/.

[108] E. Tsang. Foundations of Constraint Satisfaction. Academic Press, 1993.

[109] E. P. K. Tsang and N. Foster. Solution synthesis in the constraint satisfac
tion problem. Technical Report CSM-142, Departmant of Computer Science.
University of Essex, 1990.

[110] P. van Beek. On the inherent level of local consistency in constraint networks. In
Proceedings of the Twelfth National Conference on Artificial Intelligence, pages
368-373, Seattle, Wash., 1994.

[111] P. van Beek and X. Chen. CPlan: A constraint programming approach to
planning. In Proceedings of the Sixteenth National Conference on Artificial
Intelligence, pages 585-590, Orlando, Florida, 1999.

178

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

http://www.research.att.com/%22selman/challenge
http://www.mozart-oz.org/documentation/

[112] P. van Beek and R. Dechter. Constraint tightness versus global consistency. In
Proceedings of the Fourth International Conference on Principles of Knowledge
Representation and Reasoning, pages 572-582, Bonn, Germany, 1994.

[113] P. van Beek and R. Dechter. On the minimality and global consistency of
row-convex constraint networks. J. ACM, 42(3):543-561, 1995.

[114] P. Van Hentenryck. Constraint Satisfaction in Logic Programming. MIT Press.
1989.

[115] P. Van Hentenryck, Y. Deville, and C.-M. Teng. A generic arc consistency
algorithm and its specializations. Artificial Intelligence, 57:291-321, 1992.

[116] M. Vilain. A system for reasoning about time. In Proceedings of the Second
National Conference on Artificial Intelligence, pages 197-201. Pittsburgh. Pa..
1982.

[117] M. Vilain and H. Kautz. Constraint propagation algorithms for temporal rea
soning. In Proceedings of the Fifth National Conference on Artificial Intelli
gence, pages 377-382, Philadelphia, Pa., 1986.

[118] R. J. Wallace. Why AC-3 is almost always better than AC-4 for establishing
arc consistent in CSPs. In Proceedings of the Thirteenth International Joint
Conference on Artificial Intelligence, pages 239-245, Chambery. France. 1993.

[119] D. Waltz. Understanding line drawings of scenes with shadows. In P. H. Win
ston, editor, The Psychology of Computer Vision, pages 19-91. McGraw-Hill.
1975.

[120] R. Weigel, C. Bliek, and B. Faltings. On reformulation of constraint satisfac
tion problems. In Proceedings of the 13th European Conference on Artificial
Intelligence, Brighton, United Kingdom, 1998.

[121] R. Weigel and B. Faltings. Structuring techniques for constraint satisfaction
problems. In Proceedings of the Fifteenth International Joint Conference on
Artificial Intelligence, pages 418-423, Nagoya, Japan, 1997.

[122] J. Zhou. A constraint program for solving the job-shop problem. In Proceedings
of the Second International Conference on Principles and Practice of Constraint
Programming, pages 510-524, Cambridge, Mass., 1996.

179

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

Appendix A

Glossary

A may be exponentially worse than B , or A is polynomi- 111
ally bounded worse than B
alldual(t), dual(t) 138
allhidden(t), hidden(t) 132
arc consistency (AC) 18
arc consistency closure, ac{P) 92
arc consistent node 147
backjump level 49
backtrack search tree, search tree 22
EM* 50
BT, chronological backtracking algorithm 27
BT-orig, BT-dual, BT-hidden 114
CBJ, conflicts-directed backjumping 30
combined representation, comb(P) 158
constraint satisfaction problem (CSP) 16
dual transformation, dual(P) 83
dual-hidden(t) 123
FC+ 143
FC, forward checking algorithm 32
FC-CBJ 38
FC-orig, FC-dual, FC-hidden 130
FC-proj 144
GAC-CBJ 66
GAC-orig, MAC-dual, MAC-hidden 148
hidden transformation, hidden(P) 85
hidden-dual (t) 127
hidden-orig(t) 120
induced CSP, P\t 53

180

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

^-consistency, strong ^-consistency I S
^-consistent node 58
fc-proof-tree 52
MAC, GAC, maintaining arc consistency algorithm 35
MAC-comb 159
MCfc, maintaining strong ^-consistency algorithm 54
MCfc-CBJ 61
neighborhood inverse consistency (NIC) 101
orig-dual(t) 116
partial solution, solution 16
path inverse consistency (PIC) 101
projection, irsC 17
restricted path consistency (RPC) 101
selection, atC 17
s-induced CSP, P\st 54
singleton arc consistency (SAC) 101
strong path consistency (ACPC) 101
strongness and equivalence of consistency properties on 36
two CSP formulations of a problem
subdomain 91
tuple 16

181

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

