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Abstract 

The relationship between increasing forest density and increasing wildfire behaviour is well established. 

However, in the unique case of initial attack wildfire operations, traditional data collection methods to 

measure forest density are both impractical and unsafe. As an alternative approach, aerial ocular 

assessment to rapidly determine forest density and its impacts on wildfire behaviour is examined. 

Wildfire assessment photography, taken during the initial action phase of wildfire suppression in pure 

boreal spruce (Picea mariana) forests, served as an excellent opportunistic dataset to develop a series of 

ordinal wildfire behaviour and forest density metrics for testing. This approach explored two scenarios: 

1) the effects of forest density on containment escapes, where suppression efforts failed to contain a 

wildfire to less than 2 hectares before being classified as “being held,” and 2) the effects of forest 

density on wildfire containment challenges, where crews arrived at an incident where the wildfire had 

already exceeded 0.5 hectares before suppression began. The ocularly assessed metrics were merged 

with recorded weather and Fire Weather Index System values from nearby fire weather stations 

(altogether totaling 33 variables) and analyzed using logistic regression in the form of bi-directional 

generalized linear models. A parallel study, using LiDAR classification of forest structure in lieu of forest 

density assessed in wildfire photographs, was also performed. 

Results of this study indicate that in three of the four tested scenarios (ocularly assessed density and fire 

escapes, LiDAR classified forest structure and fire escapes, and LiDAR classified forest structure and 

containment challenges), forest structure and increasing density were found to be significant with 

respect to an increase in wildfire behaviour. Further results also highlight the significance of wildfire 

smoke column attributes in scenario outcomes. The selected models all performed well with C-statistics 

>0.75, however lacked predictive capability.   
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Chapter 1: Introduction 

1.1 Fire in Canada’s Boreal Forest 

Extending across the width of the country and measuring over 3 million square kilometers, Canada’s 

Boreal Forest is regularly altered by natural disturbances (Natural Resources Canada, 2005). Through 

time, the Boreal Forest has evolved diverse adaptations to these disturbances to maintain their diversity 

and resilience, and in the case of wildland fire, incorporate them into their natural succession (Rowe, 

1970). Wildland fire is a rapid exothermic chemical reaction that consumes plant material and is a 

natural process in the terrestrial carbon cycle (Falkowski et al., 2000). Fires in the Boreal Forest 

ecoregion fragment the landscape into smaller, diverse stands of varying age, composition, and 

ecological function, often resembling a huge patchwork quilt. The properties of these patches can inhibit 

fire growth; cycle grazing habitats for foraging animals, and by extension their predators; remove 

congestion and woody debris on the forest floor to create room for new growth successions; and 

promote diversity of plant species of different ages, improving a forest’s resistances to other 

disturbances such as insect attacks and disease (Wright and Heinselman, 2014). 

Alberta’s Forest Protection Area (FPA) covers roughly 39 million hectares, the majority of which lies 

within the Boreal Forest ecoregion. Between 2006 and 2018, inclusive, 19 844 fires within the FPA have 

been documented in a published database that is available to the public (Alberta Wildfire, 2020). Within 

this period, approximately 2.71 million hectares have been burned, equivalent to 0.5% or 208 000 ha of 

the FPA annually (Figure 1). Wildland fire ignition in Alberta can be effectively divided into two 

categories: lightning-caused and human-caused. Within the FPA, between 2006 and 2018, lightning was 

attributed as the cause for 36% of fires, but nearly 52% of total area burnt. By contrast, 64% of fires 

were human caused and accounted for 48% of total area burnt.  
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Figure 1 Total hectares burnt each year within Alberta's Forest 

Protection Area, from 2006-2018, inclusive, sorted by ignition 

cause. 

The Boreal Forest is comprised of a mix of conifer and deciduous trees, and around the edges of 

Alberta’s abundant bogs, tamarack can also be found (Kelsall et al., 1977). Conifers in this region include 

white spruce (Picea glauca) and jack pine (Pinus banksiana) in the drier, upland regions of the forest; 

and black spruce (Picea mariana) dominating the wetter lowlands. Deciduous trees are a mix of balsam 

poplar (Populus balsamifera), aspen poplar (Populus tremuloides) and paper birch (Betula papyrifera) 

which are commonly found in, but not exclusive to, the drier uplands (Kelsall et al., 1977). Pure forest 

stands tend to return to their pre-disturbance composition following wildfire, such that deciduous 

stands remain deciduous and coniferous remain coniferous; however, mixed stands aggressively 

regenerate deciduous trees first, followed by the slower growing, more shade-tolerant conifers (Rowe, 

1970). 

1.2 A Brief Summary of Wildfire Management in Alberta  

Wildfire management began in Alberta with Indigenous groups applying fire to the landscape before 

European settlement. Alberta’s landscape is a challenging environment to inhabit, with relentless insects 
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in the snow-free months and cold, harsh winters. The advantage of choosing when fire is applied to the 

landscape, versus the stochastic process of lightning ignition, is that wildfire outcomes can be tailored to 

match the needs of the applicants (Pyne and Wynn, 2008).  In a review of Indigenous land management 

practices, Christianson (2022) notes that fire served a wide variety of objectives, from insect 

management, landscape modification, protection around communities, agricultural use, religious, 

cultural, and aesthetic purposes. Westward expansion of productive forestry operations and economic 

development imposed constraints on cultural burning practices, which were considered destructive to 

valuable resources. Eventually, cultural burning was officially banned in Alberta in 1910 (Pyne and 

Wynn, 2008), although discreet and open flaunting of the law continued in the following decades. 

Throughout the evolution of Alberta’s wildfire management program, major changes to both law and 

policy often followed in the wake major wildfire seasons. Following the intense wildfire season of 1950, 

a law was introduced in 1952 effectively mandating suppression of all ignitions (Tymstra et al., 2016). 

Expansion of the wildfire management program was recommended in 1954 for both capability and legal 

reach, and in 1956 forest protection was designated its own branch in the Alberta Government.  

1.3 The Canadian Forest Fire Danger Rating System 

As populations grew, wildfire management groups across Canada had to develop a greater 

understanding of wildfire behaviour and occurrence. Wildfire science in Canada began in the mid-1920s 

with J. G. Wright’s development of a research program to study the influence of weather and fuel 

moisture on wildfire behaviour (Forestry Canada Fire Danger Group, 1992). In the late 1960s, a working 

group of researchers from the Canadian Forest Service developed the first iteration of the Canadian 

Forest Fire Danger Rating System (CFFDRS) (Stocks et al., 1989). The CFFDRS is a collection of modules 

designed to report fire hazard in the wildlands and was initialized in the late 1980’s. The CFFDRS 

received some updates in 2009 and is still in use today (Wotton et al., 2009).  
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The Canadian Forest Fire Weather Index (FWI) System is one of two major components of the CFFDRS 

and is used to interpret the short- and long-term effects of weather on fuels, the ease of ignition, fire 

sustainability, and containment challenges (Van Wagner, 1974). The FWI System takes inputs of 

temperature, relative humidity, wind speed, and rain accumulation over the previous 24 hours from 

weather measurements taken at noon, local standard time (Lawson and Armitage, 2008); in Alberta, 

these inputs are gathered by a network of dedicated fire weather stations deployed across Alberta 

(Government of Alberta, 2024). Outputs produced by the FWI System are for the peak burning period of 

each day, approximately 1700 h LDT, where temperature is the highest and relative humidity is lowest. 

The FWI System also serves as a bookkeeping system of fuel moisture levels, as previous FWI System 

outputs affect subsequent forecasts. When used in conjunction with local knowledge and by 

experienced wildfire managers, the FWI System is employed to inform placement of suppression 

resources across the landscape to maximize coverage in response to the ever-evolving wildfire hazard.  

The Canadian Forest Fire Behaviour Prediction (FBP) System is the second major module of the CFFDRS 

and is designed to output predictions of fuel-specific fire behaviour (Forestry Canada Fire Danger Group, 

1992). The FBP System has 16 original benchmark fuel types, and has received some revisions and 

updates which were published in 2009 (Wotton et al., 2009). For each fuel type, the FBP outputs fire 

behaviour predictions based on inputs that include the outputs of the FWI System, wind speed and 

direction, topographic attributes, and foliar moisture content. Predicted fire behaviour includes the 

fire’s rate of spread, intensity of energy released, fuel consumption, amount of crown involvement, 

direction of growth, and fire size. Fuel inputs in Alberta are derived from a 100 x 100 m resolution raster 

map of the province that tracks fuel types in annually released updates that document disturbances 

such as wildfire, harvesting, and changes along the boundaries of communities in the wildland urban 

interface (“Fire Behavior Prediction (FBP) Fuel Types,” 2023). The FBP System follows a series of 

assumptions, including the uniformity and lateral continuity of fuel types, and a representative fuel type 
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selected during initial assessment by suppression personnel (Forestry Canada Fire Danger Group, 1992). 

This presents a drawback of the System in its current form, because the fuel inputs of the FBP System 

are fixed, and do not account for the effect of different structure and density changes that occur in a 

stand, which can dramatically alter a fire’s behaviour. 

1.4 Effects of Forest Density on Fire Behaviour 

The energy output per unit length of fireline is directly proportional to the quantity of fuel consumed 

and a fire’s rate of spread (Byram, 1959). The quantity and arrangement of fuel in a stand affect how a 

fire grows and behaves. Stand density, expressed as stems per hectare, defines the concentration of 

trees in a forested area. Density plays a crucial role in wildfire behaviour, where a higher forest density 

has more fuel available for combustion both on the forest floor and in the canopy in the form of 

increased needle litter production, dead and down woody debris on the forest floor, and live twigs and 

foliage in the canopy (Van Wagner, 1977a). Wildfires first ignite on the forest floor and begin to release 

energy in the form of radiative, convective, and conductive heat and light as they grow. If a surface fire 

releases enough energy to ignite the lowest branches of the canopy, defined as the critical surface 

intensity, the fire becomes engaged in the overstory (Van Wagner, 1977a). The crowns in black spruce 

stands are standardized to 1.5 m in the FBP System, but may reach the forest floor, which makes the 

critical surface intensity lower than most other conifer fuels, and therefore rather volatile (Forestry 

Canada Fire Danger Group, 1992). Overstory fuel load is expressed by a stand’s crown bulk density in 

kilograms per cubic meter, which the amount of burnable fuel in the canopy (Van Wagner, 1977a). 

Crown bulk density can be averaged across a stand or expressed in different layers to reflect the 

heterogeneity and structural changes within a stand itself. Should fire that has climbed into the canopy 

have sufficient radiant energy to contribute to the preheating of adjacent crown and surface fuels in 

advance of the flaming front, active crowning is achieved, resulting in an exponential increase in energy 

output.  
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1.5 A Brief Overview of Initial Attack Wildfire Fighting in Alberta 

Wildfires detected within Alberta’s Forest Protection Area (FPA) are aggressively fought by suppression 

personnel with explicit emphasis on firefighter safety (Government of Alberta, 2016). The Alberta 

Wildfire Management Branch within the Ministry of Forestry and Parks is responsible for wildfire 

management in the province and engages wildfire on the landscape with two primary objectives: 1) 

initiate suppression prior to the wildfire exceeding 2 hectares (ha); and 2) successfully contain the 

perimeter by 1000 h the following morning (Government of Alberta, 2024). Wildfire response is 

coordinated by 10 regional wildfire centres distributed within the FPA in conjunction with the provincial 

Alberta Wildfire Coordination Centre (AWCC). Regional wildfire centres preposition initial attack (IA) 

crews based on wildfire hazard levels using a combination of computer-generated maps and local 

knowledge to minimize crew response times when new wildfires are reported (MNP LLP, 2020).  

A typical IA crew consists of three wildfire crew members and a crew leader, who collectively form a 

Helitack (HAC) crew. HAC crews use trucks and rotary wing aircraft to travel to, and assess, the 

suppression needs of new wildfires, prioritizing incidents in the event of multiple starts in proximity to 

each other or values at risk (VARs), requesting additional resources if needed, and suppressing the fire. 

New wildfires are assessed prior to suppression and situational details are reported directly to the 

regional fire centre via radio transmission (Government of Alberta, 2016). Assessment details include 

the date and time of assessment and start of suppression, location of the fire in dominion land survey 

coordinates or latitude and longitude, wildfire type defined as ground, surface, or crown, overhead 

weather conditions, namely clear, cloudy, rainshowers, dry cumulonimbus, and wet cumulonimbus, 

values at risk such as homes, cabins, and infrastructure, and assigning an FBP System fuel type that best 

represents the burning fuel complex. In addition to textual information, a visual record of the incident is 

documented with photographs taken by the crew. In the case of airborne assessment, photographs 



 

 7  

capture landscape-level contextual information on observed wildfire behaviour and associated fuel type 

(Figure 2 and Figure 3). Once documentation is complete, the HAC crew moves in to begin suppression. 

  

Figure 2 Example oblique aerial photo showcasing diversity of 

Alberta’s forests, observed wildfire behaviour, and IA 

photography. Photo Courtesy of Alberta Wildfire. 
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Figure 3 Example oblique aerial photo showcasing diversity of 

Alberta’s forests, observed wildfire behaviour, and IA 

photography. Photo Courtesy of Alberta Wildfire. 

1.6 Thesis Overview 

New technology has enabled expansion of CFFDRS capability in response to a growing need for more 

advanced fire intelligence (Canadian Forest Service Fire Danger Group, 2021). Fuel stand characteristics 

affect how fires grow, behave, and propagate into forest crowns (Beverly et al., 2020; Cruz et al., 2005). 

Technology capable of analyzing forest structure, such as light detection and ranging (LiDAR), can 

characterize forest structure and identify specific structures where wildfire is a dominant environmental 

disturbance (Cameron, 2020; Guo et al., 2017). White (2016) established that aerial ocular estimates, 

also known as ocular assessment, ocular inspection, or ocular examination, is a method of data 

collection that uses the expertise of a trained analyst to coarsely estimate features of interest in a forest 
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without the use of specific measurement equipment; the method is inexpensive, very fast, and 

appropriate for when high statistical precision is not necessary for an analysis. 

Given that aerial ocular assessment for coarse statistical analysis of forest structure and the 

understanding that forest structure has an effect on wildfire behaviour (Government of Alberta, 2016; 

Phelps et al., 2022), aerial ocular assessments performed by trained assessors may provide a valuable 

source of data for understanding and modeling fire behaviour. Therefore, can aerial ocular assessment 

of forest density sufficiently determine if a wildfire is more or less likely to exceed pre-established 

boundaries? Aerial ocular assessment of forest structure, in lieu of more intensive measurement 

techniques, is appealing because it accommodates the rapid decision making and time pressures 

associated with IA operations. As such, the overarching objective of this thesis is to investigate the 

potential link between ocularly-assessed forest structure wildfire behaviour. 

Data collection by researchers during an active wildfire scenario is constrained by potential threats to 

safety and the incompatibility of having a civilian presence potentially interfering with emergency 

response operations. However, oblique aerial imagery obtained during response operations by wildfire 

assessors provides a data source that documents contextual wildfire behaviour, forest density, and 

other potential information. This opportunistic dataset documents wildfire behaviour across a broad 

spectrum of conditions and alleviates the need for on-site data collection. I chose to investigate the 

relationship between ocularly assessed fuel structure and fire behaviour in black spruce forests in 

Alberta, identified by the FBP System as the benchmark fuel type C-2. To perform my analysis, I created 

a database of potential predictors of wildfire behaviour using FWI System data, Alberta fire weather 

station data, publicly available wildfire incident data, and wildfire behaviour observed and catalogued 

from oblique aerial photos taken during the assessment phase of wildfire suppression. To analyze the 

effects of ocularly assessed forest density on fire behaviour, I defined and investigated two scenarios: 1) 
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The likelihood of a fire escaping a pre-established containment size of 2 ha, and 2) the likelihood of a 

wildfire suppression crew experiencing difficulty containing the fire based on the work by Beverly 

(2017). I also performed a parallel assessment of the two scenarios using a LiDAR forest structure 

classification of Alberta, in lieu of using ocularly assessed wildfire photography, which was provided by 

the Nicholas Coops Lab from the University of British Columbia (Guo et al., 2017).  

Chapter two of this thesis documents the study methods. It includes a description of the study area and 

the role of fire as a disturbance, descriptive summaries of wildfires in the study area, steps taken to 

process and clean the photography archive to select appropriate wildfire imagery for analysis, how 

generalized linear models (GLM) were used to determine significance of forest density and other 

examined variables on fire behaviour, as well definitions of observed wildfire behaviour derived from 

the oblique aerial photography. The descriptive attributes of wildfire behaviour derived from the 

oblique aerial imagery, as well as the rationale for including each attribute, are explored in depth. 

Documented photo attributes include forest density, surface fire intensity, crown fire involvement, 

smoke angle, smoke colour, and smoke continuity. The descriptive attributes selected for this study 

were inspired by existing wildfire definitions, some of which are formalized in the literature and 

expanded upon, and other terms which are commonly used by agency personnel during response and 

suppression operations. Visual examples of each descriptive attribute are provided along with abridged 

and extended definitions. 

Chapter three presents the results of the statistical analysis. General findings are noted and GLMs 

selected from the analysis are presented with their discriminate accuracy scores, significance of the 

respective model parameters, and predictive capability using leave-one-out cross validation.  
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In the final chapter, chapter four, the implications of the results are discussed. Limitations of the data, 

approach, and results are disseminated, the implications of this research for wildfire management, and 

recommendations for future research are introduced.   
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Chapter 2: Methods 

2.1 Study Area 

2.1.1 The Boreal Forest and Foothills Natural Regions 

A comprehensive description of Alberta’s natural regions and natural subregions is made available by 

the Natural Regions Committee (2006). The study area for this thesis, and the wildfires therein are found 

in the Boreal Forest and Foothills natural regions. Together, their combined area totals 447 482 km2, 

accounting for 68% of Alberta’s land coverage. These two natural regions occupy most of Alberta’s 

northern half but also extend well into the southern end of the province to approximately 260 km from 

the Canada-US border (Figure 4). 

  

Figure 4 The geographical extent of the Boreal Forest and Foothills 

Natural Regions across Alberta and locations of the fires used in 

the escape fire and the challenging fire oblique photo analysis. 

Note that some fires were used for in both analyses.  
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The Boreal Forest natural region ranges from approximately 150 m elevation in the north to 1100 m 

near the British Columbia border in the west. The regional geomorphology of the Boreal Forest features 

rolling hills, plains, plateaus, and river valleys, but is mostly comprised of wetlands and bog or fen 

environments. Within wetland environments, subtle topographic changes often delineate the difference 

between saturated soils, submerged soils, and well-drained soils; this effect is made further apparent 

during heavy rainfall periods where the lowlands are prone to flooding.  

Elevation in the Foothills region ranges from 700-1700 m, with the lowest elevations in the north, and 

the most elevated in the south. Foothills topographical features are much more varied than the Boreal 

Forest region, with the upper western elevations exposing bedrock ridges adjacent to the mountains, 

transitioning into rolling hills to the northeast, and isolated bog or fen environments in topographical 

lows (Natural Regions Committee, 2006).  

2.1.2 Climate 

Climate in the Boreal Forest region is generally characterized by long, cold winters with average 

temperatures of -19°C, and short summers averaging 15°C (Natural Regions Committee, 2006). Isolated 

and sporadic permafrost is found in the north of the natural region, dissipating to the south (Helbig et 

al., 2016). Moving northward, mean annual temperature decreases to 10°C, with annual precipitation 

decreasing in a similar trend. Average precipitation across the Boreal Forest is 469 mm per year with 

peak accumulation between April and August. 

Precipitation across the Foothills region averages 603 mm but has an overall higher proportion during its 

short growing season. Mean annual temperatures in the Foothills are milder than the Boreal Forest, 

with a mean high temperature of 14°C and mean winter temperature of -12°C, with an overall average 

of 1.7°C. 
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2.1.3 Vegetation Composition 

Within the Boreal Forest, vegetation composition varies by latitude and drainage conditions. The far 

north is host to poorly drained bogs and fens with overstories composed of black spruce (Picea 

mariana), and an understory of mosses with thick organic layers (Natural Regions Committee, 2006). 

Well-drained fens include tamarack (Larix laricina). Moderately dry biomes are still dominated by black 

spruce, but well-elevated sites with good drainage are home to uncommon balsam poplar (Populus 

balsamifera) and aspen poplar (Populus tremuloides), jack pine (Pinus banksiana), and white spruce 

(Picea glauca) stands with understories of feathermosses, low shrubs, and lichen communities. In the 

south, the Boreal Forest features patchworks of deciduous, mixedwood, and coniferous stands. Uplands 

are composed of white spruce, balsam poplar, and aspen poplars with understories of low bushes, 

lichens, shrubs, and mosses. Jack pine and lodgepole pine (Pinus contorta) can be found throughout the 

subregions, in both pure and hybridized forests, giving way to black spruce in lowland bogs and fens.  

Transition zones between the Boreal Forest and Foothills natural regions are marked by the presence of 

lodgepole pine forests (Natural Regions Committee, 2006). In drier areas, the Lower Foothills subregion 

is typified by deciduous and mixedwood forests containing white (paper) birch (Betula papyrifera), 

lodgepole pine, and white and black spruce. Wetland environments contain short black spruce and 

tamarack. The Upper Foothills are coniferous-dominated and indicated by even-aged, closed-stand pine 

forests with black spruce understories. Presence of mixedwood and deciduous forests is limited to 

southern and western aspects. Rich and poor fens of the Upper Foothills contain black spruce and 

tamarack, and the driest areas of the natural region which are comprised of shrubby grasslands.  
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2.2 Fire Regime 

Alberta’s publicly available wildfire records document 19 844 fires from 2006 to 2018, of which 16 647 

(84 %) occurred in the study area (Alberta Agriculture and Forestry, 2020). Fires that occurred within the 

study area account for 2 512 322 ha (93%) of total area burned across the province. Lightning-caused 

wildfires (n=6689) account for 40.18% of wildfires in the study area and are responsible for 1 223 227 ha 

(49%) of area burned (Figure 5). 

 

Figure 5 Distribution of wildfire ignition sources in the study area 

and their cumulative areas burnt from 2006-2018.  

Table 1 Tabular distribution of wildfire ignition sources in the study area and their cumulative areas 
burnt from 2006-2018. 

Cause Count Count Percent 
Total Burn  
Area (ha) 

Percent Total 
Area Burned  

Human 9958 59.82% 1289094.52 51.31% 
Lightning 6689 40.18% 1223227.69 48.69% 

Total 16647 100.00% 2512322.21 100.00% 

Fire size distribution is graphed in Figure 6 and tabulated in Table 1. Most fires in the study area tend to 

be small, with 93% of fires (class A, B, and C) burning less than 40 ha. The remaining 7% of fires (class D 
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and E), however, account for over 99% of total area burnt, and are overwhelmingly caused by lightning 

(5.28% lightning-caused, vs 1.59% of all fires). 

 

 

Figure 6 Distribution of wildfires and their respective size 

classifications within the study area between 2006 and 2018, 

inclusive. 1 

Table 2 wildfires and their respective size classifications within the study area between 2006 and 
2018, inclusive. The percentage in brackets indicates the percent attribution of ignition cause and size 
class with respect to total fires. 

Size Class Size Range Human Lightning 

A 0 ha to 0.1 ha 6784 (68.13 %) 3734 (55.82%) 

B >0.1 ha to 4.0 ha 2623 (26.34 %) 2128 (31.81%) 

C >4.0 ha to 40.0 ha 392 (3.94 %) 474 (7.09%) 

D >40 ha to 200 ha 96 (0.96 %) 156 (2.33%) 

E >200 ha 63 (0.63 %) 197 (2.95%) 

Fire passage invokes changes to the landscape, which fall under two major classifications: first- and 

second-order fire effects (Higuera, 2019). First-order fire effects occur during, or immediately, following 
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fire passage. First-order fire effects include fuel consumption, smoke production, spontaneous plant 

death, soil heating, chemical and nutrient cycling in soils, and seed release in serotinous (jack pine, 

lodgepole pine) and semi-serotinous (black-spruce) trees (Reinhardt et al., 2001; Wright and 

Heinselman, 2014). Second-order fire effects are latent downstream effects that follow first-order 

effects and therefore are inextricably linked (Reinhardt et al., 2001). Second order effects include 

delayed tree mortality, vegetation succession and biome cycling, and increased susceptibility to further 

disturbance from weather and insects (Reinhardt et al., 2001; Wright and Heinselman, 2014).  

High intensity fires consume the live foliage suspended in the forest canopy, often leaving the larger 

stem and branchwood intact. This process opens the forest floor to insolation and new growth, 

restarting successional growth stages; this creates a mosaic of stand ages and forest successions that 

accomplishes multiple roles, including creating natural fire barriers, promoting vegetation diversity, 

limiting the spread of insect and fungal outbreaks, and creating new foraging grounds for herbivores 

who are pursued by their associated predators, maintaining population balances for both (Wright and 

Heinselman, 2014).  

The Boreal Spruce fuel type, FBP System fuel type C-2, is composed of pure black spruce in both lowland 

and upland sites (Natural Regions Committee, 2006). This benchmark fuel type is moderately well 

stocked, with branches that extend near-to, or all the way to the forest floor. The forest floor is often 

dominated by Labrador tea (Ledum groenlandicum Oeder) and feather mosses but can also include 

sphagnum mosses (Sphagnum sp.), lichens, grasses, and horsetails (Equisetum sp.), and deep duff layers 

that often exceed 30 cm in depth. The C-2 fuel type is a volatile fuel type and prone to burning: Ample 

ladder fuels in the form of live branches, dead branches with bearded lichens (Usnea sp.), and flaky bark 

found on the stem of black spruce trees facilitate a wildfire’s climb into the crown. Intermittent 

crowning occurs easily in this fuel type, and begins when the Buildup Index as low as 81 and an Initial 
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Spread Index of 2, with greater than 50% crown consumption occurring as the Initial Spread Index 

increases to 3 (Taylor and Alexander, 2018). The Buildup Index and Initial Spread Index are further 

covered in section 2.4.  

Black spruce is a fire-adapted species and incorporates periodic wildfire into parts of its regeneration 

and succession (Viereck, 1983). Black spruce cones are semi-serotinous, and open from the heat of 

passing wildfire. In nutrient-poor environments, where black spruce is commonly found, nutrient 

recycling is slow. Fire passage consumes biomass from the forest floor and forest canopy and converts 

them into nutrients. The consumption of the forest floor removes insulation for the underlying 

permafrost and exposes it to sunlight from the removed canopy. The exposure spurs permafrost melt, 

increasing the active layer depth by up to 2-3 times its original depth for the next 10-15 years before it 

begins rebounding to its original state over the next 50 years (Viereck, 1983). Freshly deposited spruce 

seedlings, herbs, and shrubs, take advantage of the increased active layer and elevated nutrient pool to 

establish the next growth succession. 

2.3 Historical Fire Database 

Wildfire records for this study were obtained from a public database published by the Alberta Wildfire 

Management Branch. These records contain the details and timing of operational activities, as well as 

fire characteristics observed directly by fire management staff on arrival to the fire location and at 

subsequent operational milestones. Fire size (ha) was reported by ocular estiamte at the time of the 

initial assessment of the fire, and the onset of firefighting. Fire size at formal stages of control, namely 

being held, under control and extinguished, was reported by ocular assessment if small, and GPS 

measurements or satellite mapping if large. Accuracy of ocularly assessed fire sizes becomes more 

difficult as fire size increases, and is influenced by many factors such as nearby reference points such as 

oil lease sites, which are standardized to one hectare; weather conditions; visibility of the forest floor; 
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experience of the assessor; and visibility of the burn, which may be obfuscated by smoke and canopy 

cover. Additional variables reported for each fire included the date and time of departure of fire 

suppression resources and information relayed by agency personnel upon arrival to the fire, such as the 

fire’s latitude and longitude in decimal degrees and associated fire environment. Fire behaviour 

conditions including the assigned Canadian Forest Fire Behaviour Prediction (FBP) System fuel type, the 

type of fire, namely ground, surface, or crown, and overhead weather conditions defined as clear; CB 

wet (wet thunderstorm); CB dry (dry thunderstorm); cloudy; and rain showers. Following the incident, 

additional information such as the fire cause is documented. 

Agency records were used to derive additional variables for analysis including dispatch delay, which was 

calculated as the time between the initial fire report and dispatch of suppression resources, and travel 

time delay, which was calculated as the time between resource dispatch and the start of fire 

suppression action. Finally, dispatch time delay and travel time delay were combined to create a single 

variable defined as total time.  

2.4 Fire Weather Database 

Alberta Wildfire uses a network of weather stations deployed across the provincial wildfire management 

area to record local weather, which is then used to predict daily wildfire behaviour. The procedure, 

outlined in the Development and Structure of the Canadian Forest Fire Behaviour Prediction (FBP) 

System (Forestry Canada Fire Danger Group, 1992), uses the previous day’s fine fuel moisture code 

(FFMC), duff moisture code (DMC), draught code (DC), and the present day’s noon local standard time 

(LST) inputs to predict anticipated fire behaviour for peak burning that day. The noon LST inputs are 

temperature, relative humidity, wind speed, and the cumulative precipitation over the previous 24 

hours (Figure 7) (Van Wagner, 1987). The outputs generated by the FWI System are unitless indicators 

that express relative fuel moisture and general wildfire behaviour. The values for each FWI moisture 
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code and behaviour code are independently binned into hazard ratings of low, moderate, high, very 

high, and extreme, which are described in Figure 8. When combined with an FBP System fuel type, fuel-

specific outputs predicting rates of fire spread, fuel consumption, crown consumption, and energy 

output are produced. 

  

Figure 7 The Fire Weather Index (FWI) System inputs and outputs 

used to forecast fire behaviour. Diagram adapted from Natural 

Resources Canada (Van Wagner, 1987). 
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Figure 8 FWI System ranking adapted from Alberta Wildfire 

(Alberta Wildfire, 2023). 
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Each wildfire used in this study was assigned weather data from the closest active fire weather station 

matched to the ministry record for the date of ignition. Data attributed to each fire from the FWX 

system included temperature, wind speed and direction, relative humidity, the previous 24 hours of 

accumulated precipitation, and the 6 FWI System outputs: Fine Fuel Moisture Code (FFMC), Duff 

Moisture Code (DMC), Drought Code (DC), Initial Spread Index (ISI), Buildup Index (BUI), and Fire 

Weather Index (FWI). The Daily Severity Rating (DSR), a measure of anticipated effort required to control 

wildfires, was also included. 

2.5 Research Questions 

While flying to a fire and during initial assessment, Helitack crews are instructed to verbally describe and 

document fire behaviour and the fire environment, values at risk (VARs), and request needed resources 

in terms of personnel and equipment over the radio to the district fire centre. The information provided 

by the verbal description assists the Duty Officer in developing appropriate suppression strategies and 

allocating resource deployment, especially in the case of a multi-start fires. Operational documentation 

of wildfires collects textual and photographic information about the fire environment and observed fire 

behaviour. In this thesis, I use variables extracted from these operational archives to model fire 

containment outcomes. My working theory is that wildfire observations documented in operational 

reports and photographs can be used to model fire behaviour for augmented operational decision 

support, while also providing new insights about the relationship between fuel structure and fire 

behaviour in the C-2 FBP System fuel type. I investigated the following research questions: 

1) Does estimated stand density significantly influence the probability of a fire escaping initial attack and 

exceeding two hectares?  
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2) Does estimated stand density influence the potential of “challenge” fires, where fires exceed 0.5 ha 

prior to suppression resource arrival on scene, indicating agency resources may have difficulty 

containing the fire?  

The above questions were explored 1) using the visually estimated stand density classification assigned 

by IA firefighters, and 2) in an independent, larger dataset using forest structure data obtained through 

LiDAR surveys, in lieu of oblique aerial photos.  

Given the binary outcomes of escaped fires, challenge fires, and the non-normal distribution of their 

covariates, I chose to use logistic regression in the form of generalized linear models (GLM) to 

characterize escaped fire and challenge fire probability. The general GLM formula is expressed by 

Equation 1 and includes the non-linear interactions between predictive variables and their binary 

outcomes:  

𝐸(𝑌) = 𝑔−1(𝑋𝛽)𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ + 𝛽𝑚𝑥𝑚     Equation 1 

Where E(Y) describes the probability of escape, g represents a link function, and Bnxn are regression 

coefficients. 

2.6 Oblique Aerial Photo Screening 

From an initial dataset of 1327 wildfires with imagery provided by Alberta Wildfire, a subset of 216 fires 
qualified for testing their probability of escaping containment (hereafter referred to as the “escaped fire 

analysis”), and 264 fires were suitable for the “challenge fire” analysis. Valid photographs for the 
escaped fire analysis required suppression resources to take clear oblique aerial photographs during 
assessment phase of firefighting and initiate suppressive action before fires exceeded 2.0 hectares in 

size (  

Figure 9). The 2.0 ha threshold conforms with Alberta Wildfire’s published standard (Government of 

Alberta, 2024) as well as Beverly’s (2017) definition of escaped fire. Challenge fires were defined as fires 

that exceeded 0.5 hectares prior to assessment, regardless of containment outcomes. The challenge fire 
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threshold of 0.5 ha was selected as it was the crossover point in this study’s dataset where more fires 

escaped containment than were contained.  

  

Figure 9 An example arrival photo taken by suppression crews 

during initial assessment, prior to the wildfire exceeding 2.0 ha. 

Photo courtesy of Alberta Wildfire. 

Drawing on my experience as a wildland firefighter, I used the operational photo archive to identify fires 

burning in black spruce forests, with characteristics aligning with the C-1 (Spruce-lichen woodland) and 

C-2 (Boreal spruce) fuel types of the Canadian Forest Fire Behaviour Prediction (FBP) System (Forestry 

Canada Fire Danger Group 1992). Fires burning in other conifer fuel types such as mature or immature 

pine, deciduous or mixedwood stands, or other land cover types were excluded from analysis. If 

available, supplementary documentation and in-stand photos captured by crews on the ground were 

used to corroborate the timing of aerial photos and the assigned fuel type. Location data from the 

provincial records were verified using geolocation metadata attached to fire photos and landscape 

features verified with Google Earth satellite imagery. Additionally, I compared my assigned fuel types 

with two supplementary sources to corroborate my fuel type assessment:  



 

 25  

1) On-site assignment of fuel type by agency staff at the time of assessment; and 

2) remotely sensed fuel type determined from the Alberta FBP System fuel grid. 

The provincial fuel grid is a province-wide raster dataset with a 100 m x 100 m spatial resolution 

populated with fuel types derived from multiple sources such as the Alberta Vegetation Inventory (AVI), 

Alberta Ground Cover Classification (AGCC), and disturbance inventories compiled by the provincial 

government (“Fire Behavior Prediction (FBP) Fuel Types,” 2023). The provincial fuel grid is released 

annually; therefore, the year’s preceding fuel grid was referenced for fuel type comparison with the year 

of each respective fire. Comparing my fuel type assignments to wildfire assessor fuel typing, we agreed 

approximately 80% of the time with fuel type calls. In contrast, both myself and the wildfire assessors 

agreed with the provincial fuel grid only 50% of the time. 

2.7 Fire and Fire Environment Attributes Derived From Oblique Aerial Imagery 

The presence of researchers and data collection instrumentation during wildland firefighting is generally 

prohibited. It is possible to utilize firefighting personnel for data collection, however, such demands are 

typically secondary to suppression priorities; there are calls for improved data collection during wildfire 

operations (Filkov et al., 2018). Photos were assessed with respect to smoke column, flame (including 

smouldering combustion), and fuel density characteristics. Attributes were assigned to each fire using 

ordered categories. Some attributes and categories were custom developed for the analysis while 

others draw on existing definitions. For example, the Canadian Forest Fire Behaviour Prediction (FBP) 

System defines three categories of fires based on the amount of crown fuel involvement: surface fire (0-

10% crown involvement), intermittent crown fire (11-89%), and continuous crown fire (90%+) (Hirsch, 

1996); in this study, the original three categories are expanded to five categories of crown involvement. 
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2.7.1 Stand Density 

Density was ocularly estimated with inspiration from the degree of canopy gaps and visible forest floor 

seen in the oblique wildfire photos. Density was estimated independently of tree height, however 

shorter stands and more vertical photography can be expected to increase the detection of forest floor 

gaps. Sikkink et al. (2009) defines a forested area as having greater than 10% tree coverage, which 

provides considerable latitude when establishing the lower end of the density spectrum. The picture 

archive contained oblique photos with varied viewing angles of the fire location, typically ranging from 

10 to 30 degrees below horizontal. Fires used in this study were predominantly found on flat terrain. As 

such, density definitions do not account for any slope affects affecting apparent density.  

Each fire was assigned a label of sparse, moderate, or dense, collectively referred to as DENSE1. 

Simplified two-category groupings were also defined for modeling purposes using combinations of the 

three base categories: DENSE2 merges sparse and moderate density stands into one category, and 

DENSE3 merges moderate and dense stands into one category. Breakdowns of DENSE1, DENSE2, and 

DENSE3 are described in detail in Table 3.  
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Table 3 Stand density categories, descriptions, and contextual information. 

Classification Description Notes 

Base Density Categories 

DENSE1 

Sparse  Isolated individual trees or 
small clumps of about 3-5 
trees. Limited to rare 
contact between tree 
crowns. 

Commonly found in C-2 bog/fen environments 
and C-1 fuel types. Easy to mentally remove 
trees and describe the underlying topography 
and surface characteristics. The upper limit for 
forest density in this category is approximately 
400-500 mature trees per hectare, possibly 
higher in bog/fen environments. 

Moderate  Regular crown contact 
intermixed with canopy 
gaps showing visible forest 
floor.  

Canopy gaps are easy to identify even at low 
altitude and low camera angles. 
Approximately 400-900 mature trees per 
hectare, with canopy gaps typically covering 
<50% of the forest. 

Dense  Canopy gaps are rare to 
nonexistent. >90% tree 
crowns are touching. 

Gaps are seldom larger than a few tree 
canopies across, if any, even in near-nadir 
(vertical) camera orientation. Stands are often 
fully mature and tall. 

Grouped Density Categories 

DENSE2 

Density2 Open  
(Sparse + Moderate) 

sparse + moderate 
combined 

Merging sparse and moderate stand densities.  

Density2 Closed  
(Dense) 

Canopy gaps are rare to 
nonexistent. Nearly all 
tree crowns are touching. 

 

DENSE3 

Density3 Open 
(Sparse) 

Isolated individual trees or 
small clumps of about 3-5 
trees. Limited to rare 
contact between tree 
crowns. 

 

Density3 Closed 
(Moderate + Dense) 

Moderate + dense 
combined 

Merges moderate and dense stand densities. 
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Figure 10 Visual examples of forest density: Sparse (A), moderate (B), and dense (C). Photos Courtesy 

of Alberta Wildfire.

(A) 

(B) 

(C) 
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2.7.2 Perimeter Surface Flame 

Flame is direct visual confirmation of energy released by a fire (Rossa et al., 2024). Byram’s equation for 

fireline intensity (1959) calculates the total energy output per meter length of fireline from the product 

of a constant heat of combustion and two inputs: rate of spread and fuel consumption. Flame length has 

been used to estimate fire intensity when measurements of rate of spread and fuel consumption are not 

available (Alexander and Cruz, 2012). It was not possible to measure the dimensions of flames visible in 

the photo archive. Instead, an ordinal descriptor of flame arrangement was created (Table 4). Should 

the head fire be obscured by smoke, flanking fire can be used as a proxy for head fire intensity by 

increasing the observed flank fire to the next level. Four categories were used to classify perimeter 

surface flame: Smouldering, sprites, isolated flame fronts, and continuous flame fronts.  

Table 4 Flame categories observed at the fire edge, description and contextual information. 

Classification Description Notes 

Smouldering Observed during a low 
intensity surface or ground 
fire. Flames may not be 
visible. 

Flames may not be visible; however, smoke can be 
created from smouldering combustion.  

Sprites Small visible flames ranging 
from single burning branches 
to small campfire equivalents. 

Flame is localized and possibly intermittent, without 
continuous linear extent. Does not convey a direction 
of spread.  

Isolated flame 
fronts 

Continuous, flaming linear 
features no more than 5 m 
long. 

Not limited to one location and may occur in different 
sections of the perimeter. May have large gaps 
between isolated fronts and is not limited to the head 
fire. 

Continuous 
flame fronts 

Extensive, flaming linear 
features. 

Longer than isolated fronts, may occur around the 
flanks and back of the fire in addition to the head. 
Associated with high-intensity, vigorous surface and 
crown fires. Can easily be seen through the canopy. 
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Figure 11 Visual examples of perimeter surface flame: Smouldering (A), sprites (B), isolated (C), and 

continuous flame (D). Photos courtesy of Alberta Wildfire. 

(A) (B) 

(C) (D) 
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2.7.3 Crown Involvement 

Van Wagner (1977a) describes three classes of crown fire: passive, where surface fire drives movement 

of the flame front; active, where crown fire and surface fire link to form a single unit but are 

interdependent for canopy and surface pre-heating; and independent fire, where (rarely) the crown can 

self-ignite and propagate independent of surface fuels. The Canadian Forest Fire Behaviour Prediction 

(FBP) System defines three fire types based on the amount of crown fuel involved in combustion: 

surface fires (0-9%), intermittent crown fires (10-89%), and continuous crown fires (≥90% crown 

consumption) (Forestry Canada Fire Danger Group, 1992). In this study, the original three terms were 

expanded, and fires were assigned one of five ordinal categories of crown involvement (Table 5) based 

on visible flame characteristics observed in the: none, light candling, heavy torching, intermittent 

crowning, and continuous crowning. In cases where the advancing flame front was not visible in the 

photograph, the presence and amount of crown fraction burned was used to assign a crown 

involvement category. 
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Table 5 Crown fire involvement categories, descriptions, and contextual information.  

Classification Description Notes 

None No evidence of crown 
involvement. 

No visible flame in the canopy, no partial or completely 
burned crowns visible.  

Light candling Individual trees rarely 
being partially or 
completely consumed by 
fire. 

Conforms to the surface fire definition of the FBP with 
<10% of canopy involvement in the fire (Hirsch, 1996). 
No more than one tree candling at a time. Ample 
spacing between candles. Typical of low-intensity 
surface fire. Does not include single tree lightning fires. 

Heavy torching Candling but more than 
one tree simultaneously, 
or clumps of tree crowns 
burning. 10-65% CFB 

Some fire connectivity between canopies if trees are 
close enough. Dependent on surface fire for 
propagation, <65% crown consumption. 

Intermittent 
crowning 

Discontinuous crowning 
up to several meters 
wide. CFB 65-89% 

Multiple trees torching in proximity but still dependent 
on vigorous surface fire for preheating. Consumes 65-
89% of the canopy. Canopy fire is several tree widths 
across but laterally discontinuous.  

Continuous 
crowning 

Flame front and canopy 
fire advances as a 
singular unit ≥ 90% CFB 
 

Extreme fire activity in which the crown fire is 
advancing through the canopy in a continuous, 
connected fire front. Flame heights can extend well 
above two times tree height, with >90% canopy 
consumption. 
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Figure 12 Example photographs associated with crown involvement categories: (A) light candling; (B) 

heavy torching; (C) intermittent crowning; and (D) continuous crowning. Photos Courtesy of Alberta 

Wildfire. 

(A) (B) 

(C) (D) 
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2.7.4 Smoke Colour 

Smoke is a product of incomplete combustion. Wildfire smoke can be used to visually identify wildfire 

activity from more than 40 km away and is a key feature in wildfire detection. As fire intensity increases, 

carbon-based particulate matter ejected into the atmosphere becomes denser and larger, blocking 

sunlight from passing through the column. The scattering of light through the convective column, an 

optical property referred to as Mie scattering, progressively darkens the fire’s convective column from 

grey, to brown, to black as a result (Patterson and McMahon, 1984). Smoke colour has long been used in 

operational fire response as an indicator of fire intensity and the potential for fire suppression 

challenges: The Alberta Wildfire Crew Leader Training Manual advises crew leaders to report smoke 

column activity as soon as it is visible, noting smoke colour and lean (angle) (Government of Alberta, 

2016). According to the manual, dense white smoke signifies very moist fuels and low fire behaviour; 

grey smoke indicates moist fuel and low to moderate behaviour; black smoke represents dry or 

manufactured fuels and high fire behaviour; and copper-bronze indicates very dry fuels with high to 

extreme fire behaviour, or manufactured fuels. In this study, the darkest smoke colour visible in the 

photograph archive was used to assign each fire one of three possible smoke colour categories based: 

light grey, brown grey, and black grey (Table 6). The copper-bronze smoke colour is seen in extreme 

wildfire behaviour and that occurs beyond the scope of initial attack as defined in this thesis, so it was 

not included.   
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 Table 6 Smoke column categories, description and associated contextual information. 

Classification Description Notes 

Light grey White to light grey. Associated with low-intensity fires. 

Brown grey Light beige to yellow 
brown. 

Commonly observed along the fireline with higher 
intensity fire, notably once the canopy becomes 
involved with candling and torching. Colour darkens 
with increasing fire intensity and may be found within 
a predominantly light grey column. 

Black grey Dark grey to black, also 
includes the 
bronze/copper extreme 
fire behaviour condition. 

Associated with significant canopy involvement and 
intense wildfire behaviour. Indicative of incomplete 
combustion and live vegetation contributing a 
significant component of burning material (Patterson 
and McMahon, 1984). 
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Figure 13 Example photos associated with smoke colour categories: (A) Light grey, (B) brown grey, and 

(C) black grey. Photos courtesy of Alberta Wildfire. 

(A) (B) (C) 
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2.7.5 Smoke Continuity 

A rating of smoke continuity was used to document the overall length and opaqueness of the smoke 

column. The upper extent of the column was defined as the location where the column begins to break 

up and disperse. Smoke plume size is positively correlated to wildfire intensity (Williamson et al., 2013). 

Three categories were used to document smoke continuity: puffer, continuous, and heavy (Table 7). 

Table 7 Smoke continuity and their relationships to fire behaviour. 

Class Definition Notes 

Puffer Light, wispy, lacks 
continuity. 

Will be affected by local weather conditions, 
may be contained within the canopy by winds 
aloft. Upon leaving the canopy, the column will 
quickly disperse. 

Continuous Smoke rises equal to 
at least double 
average tree height 
before dispersing. 

Column may be several trees wide but can still 
be seen through. Column is contiguous beyond 
several tree heights above the canopy.  

Heavy Column is opaque 
regardless of width 

Dense column that cannot be seen through. Not 
limited by colour of smoke.  
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Figure 14 Visual examples of smoke continuity: Puffer (A), continuous (B), and heavy (B). 

(A) (B) (C) 
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2.7.6 Smoke Angle 

Smoke angle is the result of interactions between the convective gasses in the smoke column and the 

lower atmosphere. Column angle was determined by the approximate midline of the main column 

where smoke is most dense, typically in the region of the head fire. After accounting for parallax from 

the photos to estimate true smoke angle, four categories were identified: vertical, light, moderate, and 

steep (Table 8).  

Table 8 Smoke angle descriptions. 

Classification Description Notes 

Vertical Smoke column rises 
straight up 

 

Light Non-vertical to 
approximately 60° above 
the horizon 

 

Moderate Mean angle of 45° Angle may range between 20°- 60° 

Steep Below 20° In many circumstances, the column maintains contact 
with the top of the forest canopies. 
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Figure 15 Visual examples of column angle: Vertical (A), light (B), moderate (C), and steep (D). Photos 

Courtesy of Alberta Wildfire.

 

(A) (B) 

(C) (D) 
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2.8 Data analysis: Probability of Escaped Fire and Challenge Fire  

In total, 33 variables were analyzed in the escaped fire and challenge fire analysis. To decrease 

multidimensionality of the analysis and alleviate multicollinearity errors, the 33 variables were grouped 

into 6 categories as seen in Table 9, where for each test only one subset of terms within each group was 

selected. For example, a given test could not include numerical moisture values + categorical moisture 

values, such as an FFMC of 90 and a categorical FFMC of “Very High”, numerical moisture values and 

numerical fire behaviour values such as Duff Moisture Code and Build-Up Index, and categorical fire 

behaviour values and categorical fire behaviour index, such as Initial Spread Index and Fire Weather 

Index. Combining numerical fuel moisture values, ocularly assessed fire behaviour, and ocularly assessed 

forest density, for example, would produce a valid test. Containment milestones that report fire size, 

specifically being held, under control, and extinguished, were excluded from the analysis as they were 

directly linked to the response variables. Following the criteria stated above, 512 independent tests 

containing up to 13 terms were created for evaluation of both escaped fire and for challenge fire GLMs, 

respectively. An additional 28 combinations were created for the parallel LiDAR data analysis. 
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Table 9 Evaluated variables for the escaped and challenge fire analyses. Ranked values refer to the 
qualitative “low,” “moderate,” “high,” “very high,” and “extreme” FWI System output groupings as 
defined by Alberta Wildfire. 

Group Variables 

FWI System Values 

Numerical fuel moisture values FFMC, DMC, DC 

Numerical fire behaviour values ISI, BUI 

Numerical FWI value FWI 

Ranked fuel moisture values FFMC (ranked), DMC (ranked), DC (ranked) 

Ranked fire behaviour values ISI (ranked), BUI (ranked) 

Ranked FWI value FWI (ranked) 
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Ocularly assessed fire behaviour 

Ocularly assessed fire behaviour Perimeter flame, crown fire involvement, 

smoke colour, smoke plume angle, and smoke 

continuity 

Suppression crew observations 

Suppression crew observations Crew fire type, and observed overhead 

weather 

Dispatch time variables 

Independent time variables Crew departure, travel time 

Merged time variables Crew departure + travel time 

Weather variables 

Weather variables Temperature, relative humidity, wind speed, 

wind direction, 24-hour precipitation 

C-1 and C-2 fuel density variants 

Standard Sparse, moderate, dense 

Density2 (sparse + moderate) and dense 

Density3 Sparse and (moderate + dense) 

2.8.1 Simplifying Test GLMs  

Simplification of the GLM input parameters was achieved using a bidirectional stepwise regression with 

statistical modeling software “R,” version 4.0.2 (R Core Team, 2017). A bidirectional GLM test works as 

follows: For each test, a starter term is added to the GLM, which was then evaluated for its Akaike 

Information Criterion (AIC) against a baseline formula. AIC employs the parsimonious concept of optimal 

model fitting by penalizing increasing model complexity, selecting the best-fitting model using the least 
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number of parameters (Burnham and Anderson, 2002). In practice, between two GLM tests, if test two 

has a lower AIC score than test 1 (the baseline formula), that means the second test is better. Terms 

were added and evaluated until the AIC no longer decreased relative to the baseline formula, signifying 

the completion of the test, and the final output was recorded.  

2.8.2 Model Building 

The results of the GLM tests were ordered by decreasing C-statistic. The C-Statistic is a measure of 

model fit, called the receiver operating characteristic (ROC) curve, and quantifies the predictive accuracy 

of a given GLM (Westreich et al., 2011). The value of an ROC curve ranges from 0 to 1, with a higher ROC 

curve value indicating higher predictive accuracy; an ROC curve below 0.5 indicates poor accuracy, 

where a value of 0.9 or higher indicates strong predictive accuracy. Model accuracy and predictive 

capability for selected models were then evaluated using leave-one-out cross validation (Celisse, 2014). 

Identifying if a variable was significant in a model output was achieved by analyzing the logit ratios of a 

model’s terms. By comparing the logit ratios of each model’s terms using a Chi-Square statistic, a 

variable’s statistical significance is established if the p-value is p <0.05 (Westreich et al., 2011). To 

facilitate understanding of the impact of each variable relative to the model intercept, taking the 

logarithm of the model’s logit terms converts the model from a probability-based model to a likelihood-

based model. This changes the term coefficient to an easier-to-understand decimal value indicating how 

much more or less likely a fire is to escape containment or present suppression challenges referred to 

the log odds. Models were then visualized using the sjplot package (Lüdecke, 2020). 

2.8.3 Comparing Photograph Density Estimations Against LIDAR-Derived Forest Structure  

LIDAR (LIght Detection and Ranging) is an active remote sensing technique that uses precisely-timed 

laser pulses emitted from a scanner to determine the distances of objects (Wehr and Lohr, 1999). When 

combined with high-accuracy GPS and mounted to a moving platform such as an airplane, researchers 
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can create highly-detailed point clouds that provide both vertical and lateral structural information of a 

forest (Lim et al., 2003). This distance data can be used to generate intricate and highly detailed 3D 

maps of forested areas.  

The parallel LiDAR-based forest structure data was provided by the Coops Lab at the University of British 

Columbia. The data was originally developed for comparing forest structure and ecological diversity in 

Alberta’s Boreal Forest (Guo et al., 2017), but was repurposed to cross-examine the effects of forest 

structure on wildfire. The dataset consisted of a province-wide, 30 m spatial resolution raster layer 

acquired between 2003 and 2014 that were classified into eight distinct structural arrangements.  

Fires that were classified as lightning ignitions in C-2 fuels by wildfire assessors in provincial records, and 

classified by Guo et al. (2017) at least one year prior to ignition, were considered valid for testing. The 

LiDAR structure classification measures were applied to the escaped fire and challenge fire tests using 

two approaches: 

1) The location of the individual 30m structure classification pixel and fire location coordinates.  

2) The highest count of structure classification pixels within a 100 m radius around each ignition 

location.  

Scenarios were modeled and graphed the same way as the escaped and challenge fire tests, but in this 

case, forest density and wildfire behaviour derived from the oblique photo dataset were replaced by 

LiDAR-assessed forest structure and wildfire assessor-documented overhead weather (clear, dryCB, 

wetCB, overcast, and rainshowers) and observed fire type (ground, surface, crown). 
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Chapter 3: Results 

3.1 Modeling the Probability of Fire Escape with Ocularly Assessed Forest Density 

3.1.1 Comparing Attributes of Contained and Escaped Fire Groups 

Of the 216 fires that satisfied the conditions for analysis, sixteen exceeded 2 hectares and were 

classified as escaped. Seventy-six percent of wildfires occurred within 30 km of the nearest active fire 

weather (FWX) station, increasing to 95% within 40 km. Table 10 shows counts and proportions for both 

escaped and contained fires arranged by their FWI System hazard level. In general, the proportion of fire 

escapes increased as FWI System values increased. A Chi-square test of proportions between contained 

and escaped fire FWI System hazard ranks showed no significant difference between groups.  

Table 10 Fire counts grouped by FWI System hazard level and containment outcome. Proportions as a 
function of column totals are shown in brackets.  

 FFMC  DMC  DC 
Rank Contained Escaped  Contained Escaped  Contained Escaped 

Low 40 (0.20) 3 (0.19)  88 (0.44) 3 (0.19)  6 (0.03) 1 (0.06) 
Moderate 43 (0.22) 3 (0.19)  21 (0.11) 3 (0.19)  39 (0.20) 4 (0.25) 
High 76 (0.38) 5 (0.31)  42 (0.21) 4 (0.25)  73 (0.37) 3 (0.19) 
Very High 38 (0.19) 5 (0.31)  30 (0.15) 4 (0.25)  59 (0.30) 4 (0.25) 
Extreme 3 (0.02)  0 (0.00)  19 (0.10) 2 (0.13)  23 (0.12) 4 (0.25) 
 

 ISI  BUI  FWI 
 Rank Contained Escaped  Contained Escaped  Contained Escaped 

Low 3 (0.26)  (0.25)  52 (0.26) 2 (0.13)  55 (0.28) 4 (0.25) 
Moderate 61 (0.38) 6 (0.31)  51 (0.26) 3 (0.19)  54 (0.27) 4 (0.25) 
High 51 (0.31) 4 (0.38)  78 (0.26) 9 (0.38)  61 (0.31) 3 (0.19) 
Very High 75 (0.05) 5 (0.06)  9 (0.18) 0 (0.19)  26 (0.13) 5 (0.31) 
Extreme 10 (0.02) 1 (0.00)  10 (0.05) 2 (0.13)  4 (0.02) 0 (0.00) 

Mean, median, standard deviation, and range values of quantitative fire attributes are shown in Table 11 

for both contained and escaped fire groups. FWI System values were not included in this table, as single 

digit increases or decreases in FWI System values are not linear and are more impactful as hazard 

increases. Attributes that reflect fire size were intuitively significantly different between the two groups, 

which is expected given that successful containment was determined by fire size; all fire size variables 
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were excluded from the analysis for this reason. Temperature and 24-hour precipitation were found to 

be significant between contained and escaped fire groups, however in both cases mean and median 

values for escaped fires had more rain and lower temperatures than contained fires. Mean response 

times were not significantly different between contained and escaped fire groups.
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Table 11 Summary statistics of select escaped fire variables. General variable significance was evaluated with a chi square test where 
significant differences are highlighted in bold. 

 Mean Median Standard Dev. Range  
Contained = 200 
Escaped = 16 Contained Escaped Contained Escaped Contained Escaped Contained Escaped 

Chi Square 
Score 

Wind Speed (km/h) 9.66 9.81 9.00 8.50 5.56 5.66 0.0 - 32.0 0.0 - 20.0 0.91 
Assessment Hectares (ha) 0.29 0.82 0.10 1.00 0.42 0.42 0.0 - 1.8 0.1 - 1.5 0.0014** 
Departure Time 0.57 0.87 0.08 0.11 2.56 2.54 0.0 - 22.4 0.0 - 10.2 0.184 
Crew Travel Time 1.05 0.77 0.53 0.61 2.31 0.60 -0.1 - 17.2 0.1 - 2.1 0.16 
Departure Time +  
Crew Travel Time 1.62 1.63 0.71 0.75 3.39 2.72 0.0 - 22.6 0.2 - 11.1 

0.199 

Firefighting Start size (ha) 0.27 1.14 0.10 1.00 0.40 0.55 0.0 - 2.0 0.1 - 2.0 <0.0001*** 
Fire Being Held Size (ha) 0.33 21.98 0.10 4.50 0.46 37.03 0.0 - 2.0 2.5 - 120.7 <0.0001*** 
Fire Under Control Size (ha) 1.90 21.53 0.10 5.39 20.00 36.86 0.0 - 281.0 2.1 - 120.7 <0.0001*** 
Fire Extinguished Size (ha) 1.49 19.89 0.10 5.66 14.40 34.31 0.0 - 200.7 1.2 - 120.1 <0.0001*** 
Temperature (C)  22.01 21.38 22.00 20.25 3.48 4.51 10.4 - 32.0 14.0 - 29.5 0.0092** 
Relative Humidity (%) 52.07 46.75 51.00 44.75 13.32 16.48 17.7 - 100.0 27.6 - 79.2 0.685 
24-Hour Precipitation (mm) 1.20 2.23 0.00 0.25 3.88 4.45 0.0 - 28.2 0.0 - 17.2 0.0004*** 
Significance codes: p<0.001=*** (v. strong sig.) p<0.01=**(strong sig.) p<0.05=*(significant) p<0.10 =. (weak sig.) 
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3.1.2 Logistic Regression Analysis 

The escaped fire analysis produced 30 unique models with C-statistics ranging from 0.607 to 0.911, 

containing up to 5 predictor variables, and as few as 1. The top 10 models in decreasing order of C-

Statistic are shown in Table 12. In tests 73 and 33, Density3 played a significant role in predicting 

containment outcome with Chi-square p-values of 0.04029 and 0.04838, respectively. In tests 53 and 13, 

DENSE1 was weakly significant (p= 0.07119, p= 0.08222). DENSE2 was retained in two of the models, 

contributing to overall model performance, but was not statistically significant in either.  

Table 12 The top ten escaped fire GLMs ordered by decreasing C-statistic. Calls with significant density 
variable Chi-square scores for the density variable are in displayed in bold.  

Test  Winning call  
(Terms ordered by reduction in overall model AIC) 

C-stat AIC  
Reduction 

Density 
Sig. 
(Chi-sq.) 

Test 43  
Smoke Colour + BUI + Smoke Continuity + 
 Precipitation + RH 0.9108 21.7903 NA 

Test 3  
Smoke Colour + DMC + Precipitation +  
Smoke Continuity + RH 0.9073 21.6736 NA 

Test 73  
(E-FIRE1) 

Smoke Colour + BUI + Smoke Continuity +  
Precipitation + DENSE3 0.9020 23.7396 0.04029* 

Test 53  
Smoke Colour + BUI + Smoke Continuity +  
Precipitation + Density 0.9009 22.8189 0.07119. 

Test 33 
  

Smoke Colour + DMC + Precipitation +  
Smoke Continuity + DENSE3 0.8984 23.1485 0.04838* 

Test 13  
Smoke Colour + DMC + Precipitation +  
Smoke Continuity + Density 0.8961 22.2486 0.08222. 

Test 63  
Smoke Colour + BUI + DENSE2 +  
Smoke Continuity + Precipitation 0.8919 22.7980 0.12482 

Test 71  
Smoke Colour + BUI +  
Smoke Continuity + DENSE3 0.8898 20.5762 0.11873 

Test 31  
Smoke Colour + DMC + Smoke Continuity + 
 DENSE3 0.8878 20.1424 0.1313 

Test 23  

Smoke Colour + DENSE2 + DMC + Smoke Continuity 
+  
Precipitation 0.8848 22.4334 0.10072 

Significance codes: p<0.001=*** (v. strong sig.), p<0.01=**(strong sig.), p<0.05=*(significant),  
p<0.10 =. (weak sig.)  
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3.1.3 Contribution of Stand Density Attributes to the Probability of a Fire Escaping Containment 

Test 73 and test 33 were identified as the two best-performing models that included a density input. 

Both models reported accuracy scores of 0.93 and kappa statistics of 0.1. Smoke continuity as a term in 

both models reported high standard error where removal of the term resulting in test 33 losing density 

as significant predictor variable, and test 73’s (hereafter E-FIRE1) density term to only report weak 

significance (p = 0.08). Model terms are ordered by their decreasing influence on the model’s AIC score 

relative to a general intercept formula of y = 1. Model E-fire1 is as follows: 

E-FIRE1 y=
1

1+𝑒−(−6.4330+𝛼+0.0225𝐵𝑈𝐼+0.1195𝑃𝑅𝐸𝐶𝐼𝑃+𝛾
     Equation 2, 

Where 𝛼 is a smoke colour term with values of 0 for light grey smoke, 1.8395 for brown grey smoke, and 

3.6384 for black grey smoke; BUI is the reported FWI system value; PRECIP is the number of millimeters 

of rain in the previous 24 hours; and 𝛾 describes DENSE3 where open is 0 and closed canopy is 1.3389.  

Of all the attributes derived from ocular assessments of wildfire photographs, smoke colour was the 

most influential variable with respect to the probability of a wildfire exceeding 2 ha, with a general 

variable p-value of 3.987e-06. Log odds for E-FIRE1 shows that a wildfire with grey-black smoke is 38 

times more likely to escape containment than a wildfire with a light grey smoke column. Stand density 

was weakly significant (p = 0.082). Fires burning in stands with closed canopies, as defined by DENSE3, 

are over three times more likely to escape containment than fires burning in stands with open canopies.  

The Buildup Index had weak significance in E-FIRE1 (p=0.086). The expanded statistics for E-FIRE1 are 

shown in Table 26 in the appendix and is graphically illustrated in Figure 16 .  
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Figure 16 E-FIRE1 showing the likelihood of a wildfire escaping 

containment as a function of by smoke colour and Buildup index 

with shading representing the model’s 95% confidence intervals 

for smoke colour. The early termination of the confidence interval 

for black grey smoke reflects the highest recorded BUI value in the 

dataset for that smoke colour. 

3.2 Modeling the Probability of Fire Escape with forest LiDAR Structure Classification 

3.2.1 Comparing Contained and Escaped Fire Groups 

All fires used in the LiDAR structure analysis were classified as C-2 during assessment by wildfire crews at 

the scene of the fire. Credence was given to the fuel type assigned by the wildfire assessors over the 

LiDAR structural classification as fuel typing was done based on the physical presence of Boreal spruce, 

whereas the LiDAR structural classification is an association with a particular forest type and not species 

specific. When compared to the LiDAR forest structure classification developed by Guo et al. (2017), 52% 

of wildfires were classified as short, open canopy black spruce stands (Table 13); these stands also had 
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the highest proportion of escaped fires of the 8 structural classifications, with 8% of fires exceeding the 

2 ha threshold. From the analysis, 10 unique GLMs were produced, all of which had significant forest 

structure variables with C-statistics ranging from 0.771 to 0.674 (Table 16).  

Table 13 Count of contained and escaped fires by LiDAR-derived forest structure class as defined Guo 
et al. (2017). Structure 5 did not overlap with any wildfires and was omitted. 

  Count (proportion of structure class) 
Structure Description Contained Escaped Total 

1 Short, medium canopy cover stand (Aw) 126 (0.95) 6 (0.05) 132 (1.00) 
2 Short, open canopy stand (Sb) 704 (0.92) 61 (0.08) 765 (1.00) 
3 Very short, dense canopy cover stand (Sb) 110 (0.97) 3 (0.03) 113 (1.00) 
4 Very tall, complex stand (Sb) 83 (1.00) 0 (0.00) 83 (1.00) 
5 N/A N/A N/A N/A 
6 Tall, dense canopy cover stand (Aw) 242 (0.96) 10 (0.04) 252 (1.00) 
7 Short, closed canopy stand (Aw+Sb) 99 (0.95) 5 (0.05) 104 (1.00) 
8 Very tall, closed canopy stand (Aw) 11 (1.00) 0 (0.00) 11 (1.00) 
 Total 1375 (0.94) 85 (0.06) 1460 (1.00) 

FWI System values for escaped and contained fires are noted in Table 14. Overall, very high and extreme 

FWI System classes are associated with higher proportions of escaped fires than those associated with 

low and moderate fire weather conditions (Table 14). Chi-squared analysis of FWI System values showed 

no significant differences between probability of escaped and contained fires for either FWI System 

components or FWI System behaviour codes.  
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Table 14 Distribution of contained and escaped fire FWI values as both raw counts and proportions of 
their respective escaped and contained FWI classes, shown in brackets.  

 FFMC  DMC  DC 
Rank Contained Escaped  Contained Escaped  Contained Escaped 

Low 236 (0.17) 6 (0.07)  520 (0.38) 28 (0.33)  54 (0.04) 1 (0.01) 
Moderate 260 (0.19) 14 (0.16)  188 (0.14) 6 (0.07)  240 (0.17) 15 (0.18) 
High 439 (0.32) 33 (0.39)  353 (0.26) 19 (0.22)  474 (0.34) 23 (0.27) 
Very High 359 (0.26) 27 (0.32)  225 (0.16) 21 (0.25)  387 (0.28) 28 (0.33) 
Extreme 81 (0.06) 5 (0.06)  89 (0.06) 11 (0.13)  220 (0.16) 18 (0.21) 
         

 ISI  BUI  FWI 
Rank Contained Escaped  Contained Escaped  Contained Escaped 

Low 314 (0.23) 10 (0.12)  239 (0.17) 11 (0.13)  313 (0.23) 11 (0.13) 
Moderate 439 (0.32) 22 (0.26)  411 (0.30) 25 (0.29)  339 (0.25) 22 (0.26) 
High 451 (0.33) 39 (0.46)  411 (0.30) 16 (0.19)  417 (0.30) 27 (0.32) 
Very High 155 (0.11) 14 (0.16)  237 (0.17) 24 (0.28)  247 (0.18) 21 (0.25) 
Extreme 16 (0.01) 0 (0.00)  77 (0.06) 9 (0.11)  59 (0.04) 4 (0.05) 

 

Consistent with results reported in Section 4.1, size-based fire attributes were significant with respect to 

fire escape, as well as temperature (Table 15). Contained fires had a median suppression start size of 0.2 

ha, whereas escaped fires had a median suppression start size of 0.89 ha. In summary, compared with 

contained fires, escaped fires were larger by the time suppression crews began actioning the fire, and 

were associated with weather conditions that tended to be hotter, drier, and windier.
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Table 15 General summary statistics of fire attributes sorted by contained and escaped fires. General variable significance was evaluated with 
a chi square test where significant differences are highlighted in bold. 

 Mean Median Standard Dev. Range  

Contained = 1375 
Escaped = 85 Contained Escaped Contained Escaped Contained Escaped Contained Escaped 

Chi Square 
p-value 

Wind Speed 9.72 10.32 9.00 10.00 5.60 4.48 0.00 - 42.00 4.00 - 26.00 0.1191 
Assessment Size 0.22 0.88 0.10 0.70 0.41 0.90 0.01 - 6.00 0.01 - 5.00 <0.0001 *** 
Crew Departure Time 1.19 0.73 0.07 0.10 9.31 2.77 0.00 - 263.25 0.00 - 17.93 0.5522 
Crew Travel Time 2.58 0.99 0.58 0.52 7.99 2.26 0.00 - 116.68 0.00 - 17.05 0.9952 
Crew Departure Time 
+Crew Travel time 

3.77 1.72 0.75 0.70 12.50 3.61 0.00 - 263.78 0.07 - 19.55 
0.8729 

Fire Fighting Start size 0.20 0.87 0.10 1.00 0.32 0.48 0.01 - 1.80 0.04 - 1.80 <0.0001 *** 
Being Held Size 0.23 430.11 0.10 3.80 0.40 2600.72 0.01 - 3.40 0.10 - 18620.40 <0.0001 *** 
Under Control size 0.23 604.30 0.10 4.60 0.39 3027.84 0.01 - 3.40 1.00 - 19280.00 <0.0001 *** 
Extinguished Size 0.22 580.24 0.10 5.40 0.34 2933.70 0.01 - 2.00 2.08 - 19280.00 <0.0001 *** 
Temperature 21.29 22.44 22.00 23.00 4.77 4.68 0.50 - 32.50 -4.60 – 29.50 0.007276** 
RH 50.49 44.92 48.02 45.00 14.33 12.24 17.00 - 100.00 19.00 – 72.00 0.965 
Precip 1.19 0.54 0.00 0.00 4.49 1.40 0.00 - 77.40 0.00 - 8.12 0.9319 
Significance codes: p<0.001=*** (v. strong sig.), p<0.01=**(strong sig.), p<0.05=*(significant), p<0.10 =. (weak sig.) 
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3.2.2 Logistic Regression Analysis 

The analysis produced 10 unique models with C-statistics ranging from 0.67 – 0.79. The number of terms 

in the models ranged from two to five, with the 100 m structural LiDAR term having strong significance 

on the successful containment or containment failure for all models (Table 16). Significance of the 100 m 

density term in the 10 GLMs ranged from 0.0008 – 0.002 and relative AIC reductions of 20.26 - 56.1 

relative to a baseline equation of y = 1. 

Table 16 The escaped fire GLMs ordered by decreasing C-statistic. Winning calls with significant Chi-
square scores for the 100 m buffered LiDAR structure variable are highlighted in bold.  

Test   Winning call  
(Terms ordered by reduction in overall model AIC) 

C-Stat AIC  
Reduc. 

Density Sig. 
(Chi-sq.) 

Test 6 
(EL-FIRE1) 

Fire Type + Weather Overhead + 
LiDAR 100m Structure + RH + BUI Rank 

0.791 56.118 0.001974** 

Test 5 Fire Type + Weather Overhead + 
LiDAR 100m Structure + RH + DMC Rank 

0.786 54.492 0.001974** 

Test 1 Fire Type + Weather Overhead + 
LiDAR 100m Structure + RH + DMC 

0.782 56.748 0.001974** 

Test 2 Fire Type + Weather Overhead + 
LiDAR 100m Structure + RH + BUI 

0.780 56.059 0.001974** 

Test 3 Fire Type + Weather Overhead + 
LiDAR 100m Structure + RH 

0.777 54.408 0.001974** 

Test 12 RH + LiDAR 100m Structure + DMC Rank + 
FFMC Rank 

0.717 21.285 0.0008413*** 

Test 13 RH + LiDAR 100m Structure + BUI Rank 0.709 22.363 0.0008413*** 
Test 8 RH + LiDAR 100m Structure + DMC 0.687 21.589 0.0008413*** 

Test 9  RH + LiDAR 100m Structure + BUI 0.685 21.293 0.0008413*** 

Test 10  RH + LiDAR 100m Structure 0.674 20.261 0.0008413*** 
Significance codes: p<0.001=*** (v. strong sig.), p<0.01=**(strong sig.), p<0.05=*(significant),  
p<0.10 =. (weak sig.) 

3.2.3 Contribution of Stand Structure to the Probability of a Fire Exceeding 2.0 Hectares 

Test 6 (hereafter EL-FIRE1) reported the highest C-statistic of 0.79, an accuracy score of 0.94, and a 

kappa statistic of -0.004, is expressed by Equation 3, below:  

EL-FIRE1 y=
1

1+𝑒−(0.2+𝛼+𝛽+𝛾−0.02693𝑅𝐻 + 𝜀)
      Equation 3 
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Where 𝛼 is a term for fire type, with values of 0 for crown fire, ground fire is -1.434, and surface fire is -

1.378; 𝛽 is a term for weather observed over the fire, where CBDry is 0, CBWet is -1.575, clear skies is 

0.1079, cloudy is -0.6479, and raining is -1.021; 𝛾 represents LiDAR forest classification, where structure 

1 is 0, structure 2 is 0.6479, structure 3 is -0.5207, structure 4 is -15.39, structure 6 is -0.2197, structure 

7 is 0.2861, and structure 8 is -15.27; RH is the percent relative humidity expressed as a decimal; and 𝜀 

denotes Buildup index hazard level, with values where extreme BUI is 0, very high BUI is 0.01179, high 

BUI is -0.9751, moderate BUI is -0.5193, and low BUI is -0.5455. 

Fire type had a significant influence on the probability of a fire exceeding 2 ha. When a fire was classified 

as a crown fire, it increased the probability of a fire escaping compared with a surface fire classification 

by a factor of 4 (Table 27). Coefficients are expressed relatively to the factor chosen by the calculation as 

the intercept; for example, if Dry CB (dry cumulonimbus, alternatively, dry lightning) is the overhead 

weather factor chosen as the default, a fire experiencing rain showers would be less likely to exceed the 

2 ha threshold by a factor of 2.4. Forest structure had a significant influence on the probability of a fire 

escaping (p= 0.003). Relative to Structure 1 (medium canopy aspen stand), Structure 2 (open canopy 

black spruce stand) is 1.9 times as likely to escape containment given otherwise equivalent conditions. 

When the LiDAR analysis was rerun with just spruce-based classes (3, 4, and 7), forest structure 

remained significant.  

The model containing stand structure, overhead weather, and RH predictors is shown graphically in 

Figure 17. Fires burning in stands classified as Structure 2 have the greatest likelihood of escaping 

containment. The relative effects of overhead weather, noted in the expanded statistics below, show 

that fire escapes are more likely under clear conditions than overcast conditions; and fire escapes are 

more likely under overcast conditions than wet conditions. Fire will also be more likely to escape 

containment as fire crew-assigned crown involvement increases. 
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Figure 17 Probability of a wildfire escaping containment according 

to its LiDAR structure class as a function of relative humidity and 

Buildup index. Sb represents black spruce, and Aw represents 

trembling aspen. Note that very tall, complex aspen stands are not 

shown due to the lack of fire escapes. 

3.3 Probability of a Crew Arriving to a Challenge Fire Using Ocularly Assessed Forest 

Density 

3.3.1 Comparison of Attributes Between Challenge and No-Challenge Fire Groups 

From the oblique aerial image dataset, 264 fires qualified for analysis. Of these 264 fires, 189 were 

assessed before they surpassed the 0.5 ha “challenge fire” threshold, and 75 fires had exceeded 0.5 ha 

prior to suppression resource arrival. When suppression began prior to a fire exceeding 0.5 ha, 98% of 

fires were contained before they exceeded 2 ha. In contrast, 44 of the 75 (59%) fires that exceeded 0.5 

ha prior to the start of suppression also eventually exceeded 2 ha. (Table 17).  
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Table 17 Distribution of wildfires with challenge and no-challenge status, that also were successfully 
contained or exceeded 2 hectares.  

 Count of fires (proportion) 

  No Challenge Challenge Total 

Contained 186 (0.98) 31 (0.41) 217 (0.82) 

Escaped 3 (0.02) 44 (0.59) 47 (0.18) 

Total 189 (0.72) 75 (0.28) 264 (1.00) 

Differences in FWI System values between no challenge and challenge fires were minimal, within 3-5%, 

but as high as 9% for respective FWI System moisture codes and behaviour codes (Table 18). Challenge 

fires begin to overtake no-challenge fires at a very high and extreme danger levels, however, Chi-square 

testing of FWI System components suggested differences were not significant.  

Table 18 Counts of fires by challenge status and FWI System rank. Proportions of FWI moisture code 
and behaviour code for total respective “no challenge,” and “challenging” status are represented in 
brackets. 

 FFMC  DMC  DC 

Rank 
No 

Challenge Challenge  

No 
Challenge Challenge  

No 
Challenge Challenge 

Low 35 (0.19) 13 (0.17)  82 (0.43) 33 (0.44)  5 (0.03) 2 (0.03) 

Moderate 39 (0.21) 14 (0.19)  19 (0.10) 8 (0.11)  35 (0.19) 13 (0.17) 

High 72 (0.38) 27 (0.36)  40 (0.21) 12 (0.16)  70 (0.37) 29 (0.39) 

Very High 40 (0.21) 16 (0.21)  28 (0.15) 18 (0.24)  56 (0.30) 20 (0.27) 

Extreme 3 (0.02) 5 (0.07)  20 (0.11) 4 (0.05)  23 (0.12) 11 (0.15) 

         

 ISI  BUI  FWI 

Rank 
No 

Challenge Challenge  

No 
Challenge Challenge  

No 
Challenge Challenge 

Low 44 (0.23) 19 (0.25)  48 (0.06) 16 (0.18)  18 (0.21) 49 (0.25) 

Moderate 73 (0.39) 21 (0.28)  47 (0.09) 23 (0.18)  18 (0.31) 50 (0.25) 

High 57 (0.30) 25 (0.33)  76 (0.11) 29 (0.29)  21 (0.17) 59 (0.26) 

Very High 12 (0.06) 7 (0.09)  8 (0.02) 4 (0.03)  13 (0.27) 26 (0.19) 

Extreme 3 (0.02) 3 (0.04)  10 (0.01) 3 (0.04)  5 (0.04) 5 (0.05) 

Chi-square testing of mean wildfire size at assessment and containment milestones, temperature, and 

24-hour rainfall were significant between the two groups (i.e., challenge and no challenge). Total time 

between wildfire detection and crew travel time to an incident, in contrast to the escaped fire analysis, 

are higher for challenge fires than fires where crews would likely face no containment challenges by 
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approximately 3 minutes. Rainfall over the previous 24 hours was also, on average, counter-intuitively 

higher for a crew facing containment challenges by over a 1.1 mm, which is sufficient to begin lowering 

the FFMC in circumstances where the is no canopy interception to reduce precipitation hitting the 

ground (Table 19); this is further explored in the discussion section.
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Table 19 General statistics for the numerical variables in the containment challenge fire model using optically assessed fire behaviour and 
density. General variable significance was evaluated with a chi square test where significant differences are highlighted in bold. 

  Mean Median Standard Dev. Range 
Chi Square 

p-value 
No Challenge = 189 
Challenging = 75 

No 
Challenge Challenge 

No 
Challenge Challenge 

No 
Challenge Challenge 

No 
Challenge Challenge 

Wind Speed (km/h) 9.66 9.81 9 8.5 5.56 5.66 0.0 - 32.0 0.0 - 20.0 0.91 
Assessment Hectares (ha) 0.29 0.82 0.1 1 0.42 0.42 0.0 - 1.8 0.1 - 1.5 0.0014** 
Departure Time (hrs) 0.57 0.87 0.08 0.11 2.56 2.54 0.0 - 22.4 0.0 - 10.2 0.184 
Crew Travel Time (hrs) 1.05 0.77 0.53 0.61 2.31 0.6 -17.3 0.1 - 2.1 0.16 
Departure Time +  
Crew Travel Time (hrs) 

1.62 1.63 0.71 0.75 3.39 2.72 0.0 - 22.6 0.2 - 11.1 0.199 

Firefighting Start size (ha) 0.27 1.14 0.1 1 0.4 0.55 0.0 - 2.0 0.1 - 2.0 <0.0001*** 
Fire Being Held Size (ha) 0.33 21.98 0.1 4.5 0.46 37.03 0.0 - 2.0 2.5 - 120.7 <0.0001*** 
Fire Under Control Size (ha) 1.9 21.53 0.1 5.39 20 36.86 0.0 - 281.0 2.1 - 120.7 <0.0001*** 
Fire Extinguished Size (ha) 1.49 19.89 0.1 5.66 14.4 34.31 0.0 - 200.7 1.2 - 120.1 <0.0001*** 
Temperature (C)  22.01 21.38 22 20.25 3.48 4.51 10.4 - 32.0 14.0 - 29.5 0.0092 
Relative Humidity (%) 52.07 46.75 51 44.75 13.32 16.48 17.7 - 100.0 27.6 - 79.2 0.685 
24 Hour Precipitation (mm)  1.2 2.23 0 0.25 3.88 4.45 0.0 - 28.2 0.0 - 17.2 0.0004*** 
Significance codes: p<0.001=*** (v. strong sig.), p<0.01=**(strong sig.), p<0.05=*(significant), p<0.10 =. (weak sig.) 
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3.3.2 Logistic Regression Analysis 

 From the analysis, 9 unique models were produced using 1 to 5 predictors and reported discriminate C-

statistics ranging from 0.91 to 0.62. Smoke colour was not a significant predictor; however, smoke 

continuity and smoke angle were significant in multiple models. FWI System moisture codes (FFMC, 

DMC, and DC) and fire behaviour indices (ISI, BUI, or FWI) were not significant in any models. Windspeed 

was significant in five of the nine models and relative humidity was significant in one model.  

Table 20 Unique GLMs produced by the escaped fire analysis. No density variables were identified in 
any of the resulting equations. 

Test  
 

Winning call  
(Terms ordered by reduction in overall model AIC) 

C-Stat AIC 
Reduc. 

Test 5 Crown Involvement + Smoke Continuity +  
Crew Fire Type + Wind Speed + Smoke Angle 

0.909488536 117.9298292 

Test 1  Crown Involvement + Smoke Continuity +  
Crew Fire Type + Smoke Angle 

0.904797178 116.7384886 

Test 3  
(C-FIRE1) 

Crown Involvement + Smoke Continuity +  
Wind Speed 

0.885855379 110.754311 

Test 2  Crown Involvement + Smoke Continuity 0.878624339 108.5032399 
Test 10  Crew Fire Type + Wind Speed + Action Time +  

Departure Time 
0.740458554 44.1555885 

Test 8  Crew Fire Type + Wind Speed 0.72659612 40.99811319 
Test 7  Crew Fire Type + Action Time + Departure Time 0.682962963 40.79999414 
Test 127  Crew Fire Type 0.682786596 38.14635238 
Test 9  Wind Speed + RH 0.615978836 1.54793462 
 

3.3.3 Contribution of Stand Structure to the Probability of Containment Challenge 

From the analysis, no test reported forest density as an input parameter. Test 5 had the overall highest 

performance with a C-statistic of 0.91 and an AIC reduction of 117.9, calling for crown involvement, 

smoke continuity, crew fire type, wind speed, and smoke angle. However, Test 3 (hereafter C-FIRE1) 

produced similar results (C-statistic 0.89, AIC of 110.6) with two fewer terms than Test 5 by omitting the 

assessor-assigned fire type and smoke continuity variables. C-FIRE1 reported an accuracy score of 0.86 

and a kappa statistic of 0.64. The omission of the assessor fire type as a variable in C-FIRE1 also removes 
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potential multicollinearity conflicts with the Crown Involvement Variable. C-FIRE 1 is expressed in its 

general form as: 

C-FIRE1 y=
1

1+𝑒−(−3.79+𝛼+𝛽+0.07𝑊𝐼𝑁𝐷)
       Equation 4 

Where 𝛼 is an interchangeable variable for crown involvement with surface fire as 0, light candling is -

0.6, heavy torching is 1.29, intermittent crowning is 1.72, and continuous crowning is 2.80; 𝛽 is an 

interchangeable variable for smoke continuity, with puffer smoke as 0, continuous smoke as 0.67, and 

heavy smoke as 2.37; and WIND is the wind speed in km/h. 

Each variable in the C-FIRE1 equation is significant in predicting containment challenges for suppression 

crews. Crown involvement is the most significant variable, with continuous crowning indicating a 16-fold 

increase in the likelihood of a crew arriving to a fire posing containment challenges relative to a surface 

fire with no crown involvement. Smoke continuity also plays a significant role, with heavy smoke 

indicating a 10-fold increase in the likelihood a crew will arrive on scene to a wildfire that is over 0.5 ha 

and actively growing, than a fire with puffer smoke. Further breakdown of the C-FIRE1 model is 

presented in Table 28, and graphically represented in Figure 18. A notable takeaway from the graphical 

representation of C-FIRE1 is the apparent reversal of fires experiencing no crown involvement and fires 

with light candling; this is interpreted in the discussion section.  



 

64  

 

Figure 18 C-FIRE1: Probability of a suppression crew arriving to a 

fire that has already exceeded 0.5 ha prior to beginning 

suppression. Fires are grouped by smoke continuity and crown 

involvement and drawn to the 0.95 confidence interval for crown 

involvement.  

3.4 Probability of a Crew Arriving to a Challenge Fire Using LiDAR-Based Forest 

Structure 

3.4.1 Comparing Challenging and Non-Challenging Fire Groups 

From the expanded wildfire dataset, 1317 fires were classified as not posing a containment challenge 

(no challenge), and 382 as challenge fires at the time of assessment. Fires designated as a challenge 

exceeded the 2 ha containment threshold in 63% of cases; in contrast, when crews began suppression 

prior to the fire reaching a 0.5 ha size threshold, 95% were successfully contained below 2 ha (Table 22). 
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Fires classified as short, open canopy black spruce stands accounted for 55% of fires in this analysis, as 

well as the highest proportion of challenge fires across all structure classifications.  

Table 21 Distribution of fires among the 8 structural classes and their respective number of 
challenging, and non-challenging fire distributions. Bracketed numbers indicate proportion of row 
totals. 

Structure Description No Challenge Challenge Total 

1 Short, medium canopy cover stand (Aw) 124 (0.86) 20 (0.14) 144 (1.00) 

2 Short, open canopy stand (Sb) 664 (0.71) 268 (0.29) 932 (1.00) 

3 Very short, dense canopy cover stand (Sb) 103 (0.78) 29 (0.22) 132 (1.00) 

4 Very tall, complex stand (Sb) 82 (0.94) 5 (0.06) 87 (1.00) 

6 Tall, dense canopy cover stand (Aw) 239 (0.86) 38 (0.14) 277 (1.00) 

7 Short, closed canopy stand (Aw+Sb) 95 (0.83) 20 (0.17) 115 (1.00) 

8 Very tall, closed canopy stand (Aw) 10 (0.83) 2 (0.17) 12 (1.00) 

 Total 1317 (0.78) 382 (0.22) 1699 (1.00) 

Table 22 Matrix of fires that were identified as posing containment challenges versus and if they 
exceeded 2 ha. 

Escape Status  No Challenge Challenge Grand Total 

Contained 1254 (0.95) 142 (0.37) 1396 (0.82) 

Escaped 63 (0.05) 240 (0.63) 303 (0.18) 

Grand Total 1317 (1.00) 382 (1.00) 1699 (1.00) 

Challenge fires were associated with high and extreme fire weather conditions (Table 23). When FWI 

System components were low, moderate, or high, fire size tended to be under the 0.5 ha threshold. A 

Chi-square analysis of challenge status and FWI System rankings was not independently significant for 

FFMC but did show significance for DMC (p=0.01), DC (p=0.04), ISI (p= 0.0001), BUI (p= 0.0009), and FWI 

(p=0.002). 
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Table 23 Fire counts grouped by FWI System hazard level and challenge classification. Proportions as a 
function of column totals are shown in brackets.  

FWI 
System 
Rank 

FFMC  DMC  DC 
Challenge  Challenge  Challenge 

No Yes  No Yes  No Yes 

Low 239 (0.17) 44 (0.15)  525 (0.38) 97 (0.32)  55 (0.04) 3 (0.01) 
Moderate 264 (0.19) 53 (0.17)  192 (0.14) 25 (0.08)  241 (0.17) 32 (0.11) 
High 443 (0.32) 92 (0.30)  362 (0.26) 78 (0.26)  488 (0.35) 89 (0.29) 
Very High 369 (0.26) 82 (0.27)  228 (0.16) 68 (0.22)  389 (0.28) 101 (0.33) 
Extreme 81 (0.06) 32 (0.11)  89 (0.06) 35 (0.12)  223 (0.16) 78 (0.26) 

 ISI  BUI  FWI 
FWI 
System 
Rank 

Challenge  Challenge  Challenge 

No Yes  No Yes  No Yes 

Low 319 (0.23) 59 (0.19)  242 (0.17) 32 (0.11)  317 (0.23) 50 (0.17) 
Moderate 445 (0.32) 74 (0.24)  415 (0.30) 87 (0.29)  345 (0.25) 72 (0.24) 
High 458 (0.33) 109 (0.36)  423 (0.30) 69 (0.23)  423 (0.30) 78 (0.26) 
Very High 158 (0.11) 58 (0.19)  238 (0.17) 79 (0.26)  252 (0.18) 77 (0.25) 
Extreme 16 (0.01) 3 (0.01)  78 (0.06) 36 (0.12)  59 (0.04) 26 (0.09) 

Wildfire size assessment and containment milestones were intuitively significant with respect to a crew 

arriving to a fire above or below the 0.5 ha threshold. Wind speed, elapsed time between fire discovery 

and time taken to dispatch suppression resources, and temperature were also found to be significant, as 

seen in Table 24. 
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Table 24 General numerical variable statistics for the expanded challenge fire analysis. General variable significance was evaluated with a chi 
square test where significant differences are highlighted in bold.  

Mean Median Std. Dev Range 
 

No Challenge = 1317 
Challenge = 382 

No 
Challenge 

Challenge No 
Challenge 

Challenge No 
Challenge 

Challenge No 
Challenge 

Challenge Chi Square 
p-Value 

Wind speed 9.70 11.04 9.00 10.00 5.53 6.07 0 – 42.00 0 – 40.00 0.0448* 
Assessment Size 0.12 12.51 0.08 2.00 0.15 112.79 0 – 0.50 1 - 

2056.00 
<0.0001*** 

Crew Departure Time 
(hrs) 

1.21 1.34 0.08 0.10 9.49 10.05 0 – 263.25 0 – 168.07 
0.0302* 

Crew Travel Time 
(hrs) 

2.77 2.59 0.57 0.68 8.68 10.74 0 – 116.68 0 – 182.98 
0.1196 

Crew Departure Time 
+ Crew Travel time 
(hrs) 

3.98 3.93 0.75 0.85 13.09 15.36 0 – 263.78 0 – 193.93 
0.1494 

Fire Fighting Start 
size 

1.03 23.57 0.10 2.00 20.59 165.41 0 – 677.18 0 – 
2385.00 

<0.0001*** 

Being Held Size 23.50 564.62 0.10 3.50 552.04 4016.78 0 – 
15376.00 

0 – 680.00 <0.0001*** 

Under Control size 23.87 742.36 0.10 3.60 552.12 4627.05 0 – 
15376.00 

0 – 680.00 <0.0001*** 

Extinguished Size 23.82 736.79 0.10 3.82 552.09 4601.66 0 – 
15375.60 

0 – 680.00 <0.0001*** 

Temperature 21.31 22.61 22.00 23.00 4.77 4.50 001 – 
32.50 

-005 – 
32.00 

0.0135* 

RH 50.39 47.63 48.00 46.09 14.38 13.49 017 – 
100.00 

017 – 
100.00 

0.0275* 

Precip 1.21 0.83 0.00 0.00 4.56 2.37 0 – 77.40 0 – 22.90 0.8685 
Significance codes: p<0.001=*** (v. strong sig.), p<0.01=**(strong sig.), p<0.05=*(significant), p<0.10 =. (weak sig.) 
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3.4.2 Logistic Regression Analysis 

From the analysis, 14 unique GLMs were produced with C-statistics ranging from 0.66 to 0.78 and calling 

for four to six input variables. For all GLMs, 100 m structural classification was strongly significant. A 

drop in C-statistic from 0.77 to 0.67 is noted when a GLM did not include observed overhead weather or 

reported fire type as a predictor variable (Table 25). 

Table 25 The 14 challenge fire GLMs ordered by decreasing C-statistic. Winning calls with significant 
Chi-square scores for the structure classification variable are in displayed in bold.  

Test   Winning call  
(Terms ordered by reduction in overall model AIC) 

C-Stat AIC  
Reduc. 

Density 
Sig. 
(Chi-sq.) 

Test 6  
Fire Type + 100 m Structure Class + 
Weather overhead + BUI Rank + Wind Speed + Temp 0.78 297.40 

<0.0001 
*** 

Test 5  
Fire Type + 100 m Structure Class + 
Weather overhead + BUI + Wind Speed + Temp + ISI 0.78 296.39 

<0.0001 
*** 

Test 1  
Fire Type + 100 m Structure Class + Weather overhead 
+ DMC + Wind Speed + Temp + FFMC + Precip 0.78 297.09 

<0.0001 
*** 

Test 2  
Fire Type + 100 m Structure Class + Weather overhead 
+ DMC Rank + Wind Speed + Temp 0.78 294.29 

<0.0001 
*** 

Test 3  
Fire Type + 100 m Structure Class + Weather overhead 
+ FWI Rank + Wind Speed + Temp + Precip 0.78 289.91 

<0.0001 
*** 

Test 4  
Fire Type + 100 m Structure Class + Weather overhead 
+ DSR + Wind Speed + Temp 0.77 286.90 

<0.0001 
*** 

Test 7  
Fire Type + 100 m Structure Class + Weather overhead 
+ Wind Speed + Temp 0.77 285.98 

<0.0001 
*** 

Test 12  
100 m Structure Class + BUI + Wind Speed + 
Temp + ISI + RH 0.67 93.08 

<0.0001 
*** 

Test 13  
100 m Structure Class + BUI Rank + Wind Speed + 
Temp 0.67 90.68 

<0.0001 
*** 

Test 8  
100 m Structure Class + Temp + Wind Speed + 
DMC Rank 0.67 86.57 

<0.0001 
*** 

Test 9  
100 m Structure Class + FWI Rank + Temp + 
Wind Speed + Precip 0.66 81.32 

<0.0001 
*** 

Test 10  
100 m Structure Class + Temp + Wind Speed + 
DC + DMC 0.66 88.38 

<0.0001 
*** 

Test 11  100 m Structure Class + Temp + Wind Speed + RH 0.66 80.45 
<0.0001 
*** 

Test 14  100 m Structure Class + DSR + Temp + Wind Speed 0.66 80.88 
<0.0001 
*** 

Significance codes: p<0.001=*** (v. strong sig.), p<0.01=**(strong sig.), p<0.05=*(significant),  
p<0.10 =. (weak sig.) 
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3.4.3 Contribution of LiDAR Structure Attributes to Predictive Models  

Test 6 (Hereafter CL-FIRE1) reported the highest C-statistic (0.78) and relative AIC reduction of the 

models produced by the analysis. CL-FIRE1 had an accuracy score of 0.81 and a kappa statistic of 0.34. 

Assessor-assigned fire type, 100 m LiDAR structure classification, reported overhead weather, BUI rank, 

wind speed, and temperature were all significant predictors (p<0.05) with respect to the probability of 

encountering a challenge fire. CL-FIRE1 in its general form is expressed as:  

CL-FIRE1 y=
1

1+𝑒−(−0.49122+𝛼+𝛽+𝛾+ 𝜀 + 0.04273𝑊𝐼𝑁𝐷 + 0.039𝑇𝐸𝑀𝑃 )
   Equation 5, 

Where 𝛼 represents observed fire type where crown fire is 0, ground fire is -2.08368, and surface fire is -

2.00677; 𝛽 is 100 m LiDAR structure classification where Structure 1 is 0, structure 2 is 0.87195, 

structure 3 is 0.35822, Structure 4 is -0.88582, structure 5 was omitted, structure 6 is -0.17426, 

structure 7 is 0.22632, and structure 8 is -0.06568; 𝛾 represents observed overhead weather at the time 

of assessment, where CB (cumulonimbus/thunderstorm) dry is 0, CB wet is -0.80395, clear skies is 

0.19876, cloudy is -0.37289, and raining is -0.69486; 𝜀 represents BUI Rank, where extreme BUI is 0, high 

is -0.75027, low is -0.81188, moderate is -1.0899, and very high is -0.55478; and wind speed is expressed 

in km/h and temperature is expressed in degrees C. 

Fires burning in stands classified as Structure 2 (short, open canopy black spruce) were twice as likely to 

result in a challenging fire, relative to the intercept (Structure 1). With respect to temperature and wind 

speed, a unit increase in either variable resulted in a 1.04-fold increase in the likelihood of crews arriving 

to a challenge fire. Clear skies and Dry CB (thunderstorms) both increased the likelihood of encountering 

a challenge fire, with overcast skies and wet weather decreasing the likelihood. Further breakdown of 

the input variables can be found in Table 29 in the appendix. When the LiDAR analysis was rerun with 

just spruce-based classes (3, 4, and 7), forest structure remained significant. 
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Figure 19 illustrates the relationship between 100 m structure classification and likelihood of crews 

arriving to a challenge fire. A short, open canopy black spruce stand has the greatest likelihood of crews 

arriving to a challenge fire scenario. A positive relationship can be seen with increasing temperature, BUI 

rank, and crown involvement and the probability of arriving at a challenge fire. 
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Figure 19 Likelihood of a wildfire exceeding 0.5 ha prior to 

suppression crew arrival as a function of temperature, BUI hazard 

rank, and assessor-assigned fire type. 
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Chapter 4: Discussion 

This study demonstrates that forest structure significantly affects fire behaviour when density is 

evaluated using aerial ocular assessments. Selected models from the analysis performed well (C-Statistic 

> 0.75) but had poor to moderate predictive power. Similar studies have been done on forest density 

and fire behaviour interactions; however, using aerial ocular assessment is a novel approach. The effects 

of forest density on fire behaviour are well known: In similar work, Butler et al. (2013) identified that 

biomass reduction and thinning in the Boreal forest results in lower rates of spread, decreased fire 

intensity, and decreased burn severity relative to control plots using data collected from intensive in-

stand measurements. Cameron (2020) successfully identified key forest characteristics that influence 

wildfire behaviour using a dedicated plane-mounted LiDAR platform. White (2016) concluded that aerial 

ocular estimates of stand regeneration, which are popular in stand restocking surveys, are agreeable to 

in-stand measurements in pure conifer stands when afforded a +/-20% buffer, but advocated for 

improved auditing of tree count estimates and standardization of the methodology across the industry.  

4.1 Oblique Imagery Model Performance 

Model accuracy was greatly improved when visual indicators of fire behaviour and overhead weather 

were incorporated in the GLM parameters. Fire behaviour variables include crown fire involvement, 

smoke colour, smoke continuity, and weather conditions observed over the fire. Visually assessed 

parameters raised the C-statistic by over 0.1 between E-FIRE1 and EL-FIRE1, and C-FIRE1 and CL-FIRE1, 

respectively. The most significant indicator of a wildfire exceeding the 2 hectare containment threshold 

was the presence of black grey smoke, increasing odds of escape by up to a factor of 38 relative to light 

grey smoke. Smoke colour is easy to assess from the air, and can be seen over 40km kilometers back 

from the ignition site, which compliments Alberta Wildfire’s instructions to crew leaders to report 
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smoke characteristics (size, colour, height, lean) when performing a wildfire assessment (Government of 

Alberta, 2016).  

Model C-FIRE1 did not include a density variable, and instead uses crown fire involvement, smoke 

continuity, and wind speed as input parameters. Wildfire is primarily driven by its surface fuels and must 

surpass a critical surface intensity before crown fuels become involved (Van Wagner, 1977a). While the 

fuel strata gap in C-2 fuels is effectively nonexistent as spruce crowns extend to the forest floor, the log 

odds for C-FIRE2 show a jump from light candling (0.55) to heavy torching (3.62), suggesting a jump in a 

fire’s forward rate of spread once crown involvement exceeds 10%. This threshold could explain the 

inversion between no crown involvement and light candling, which in turn suggests light candling does 

not contribute to elevated pre-heating of fuels that would otherwise result in a faster rate of spread, 

such as crown to crown spread as noted by Cruz and Alexander (2017).  

4.2 LiDAR Classification Model Performance 

The parallel analyses used LiDAR-classified forest structure in lieu of wildfire photograph interpretation. 

From the LiDAR analysis, the conifer-dominated forest structures which demonstrated the highest 

likelihood of fire escape was Structure 2 (short, open canopy spruce), followed by Structure 7 (short, 

closed canopy mixedwood), and Structure 3 (very short, dense canopy spruce). The results of the LiDAR 

structural assessments appear to contradict the results of the oblique aerial study by suggesting the 

denser forest structure classes are less likely to challenge suppression objectives, but this comes down 

to a mismatch in definitions, where the closed canopy defined by Density3 has approximately the same 

number of stems as Structure Class 2 from the LiDAR classification, and Structure Class 3 has even higher 

density than defined by the ocular assessment study. In simpler terms, Structure Class 2 is roughly 

equivalent to Density 3 Closed, and Structure Class 3 could be considered Density3 Closed+. Visual 

inspection of wildfires with the conifer-dominated LiDAR structural classes that also had matching 
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oblique aerial photography suggests there is considerable overlap between them, however the 

increased density of Structure 3 relative to Structure 2 may be so excessive that it baffles air from 

entering the stand and inhibiting fire growth. Structure 7 typically appears to be found in older and drier 

upland spruce stands whereas structures 2 and 3 are both shorter in composition and in wetter lowlands 

(Figure 20 and Figure 21).  

 

Figure 20 Example photo of structure class 7, optically assessed as 

Density3 Closed, successfully contained, no challenge. 
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Figure 21 Example comparison between (A) structure class 2 (short, open canopy black spruce, optical 

assessment Density3 Closed, successfully contained, no challenge), and (B) structure class 3 (optical 

assessment Density3 Closed, successfully contained, challenging fire).

(A) (B) 
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The FBP System fuel types assigned to each fire used in the parallel study were assigned by wildfire 

suppression personnel who were physically present at each ignition location. Assessors are instructed to 

identify the best fitting fuel type that matches the observed fire behaviour. In cases, for example, where 

the overstory structure may be a tall aspen stand, but the sub-dominant or understory is black spruce 

that is responsible for fire propagation, assessors are recommended to assign an FBP System fuel type C-

2 rather than D-2 (leafed aspen).  

The LiDAR classifications created by Guo et al. (2017) were generated using an unsupervised 

classification algorithm, which were then associated to different stand types by referencing three 

information sources: the first was a GIS layer of Alberta’s historical wildfires, the second a polygonal 

anthropogenic disturbance layer created from interpretation of 1:50 000 scale Landsat imagery, and the 

third was a large biodiversity survey conducted by the Alberta Biodiversity Monitoring Institute that 

included permanent photo sample plots and detailed vegetation inventory. Guo et al. also notes that 

canopy density and height class between 20 and 30 m were the greatest discriminates between 

structure classes, which structures 2, 3, and 7 are almost entirely absent from as their height profiles fell 

below the 20 m height bin. 

LiDAR stand structure classification varied from dense and juvenile spruce to pure, mature aspen. 

Disagreement between crew fuel calls and the LiDAR classifications could be due to several reasons: 

resolution of LiDAR-derived structure data, inaccurate fire location coordinates, inexperienced 

firefighting personnel classifying the fuels, typographical or data-input errors, failure of the LiDAR 

classification algorithm, and the fuel driving the fire may not match the LiDAR classification. Despite the 

aforementioned reasons, a wildfire assessor, would have been present at each incident to assign the FBP 

System fuel type and ultimately entered the stand itself to being suppression action. Therefore, the 



 

78  

likelihood of mistyping the FBP System fuel type, relative to Guo et al.’s structure association, would 

overall be less; it is for these reasons that the assessor-assigned FBP fuel type considered as correct.  

4.3 Model Challenges and Data Limitations 

The very nature of fire science is complicated, interconnected, and in a constant state of flux. Even in 

controlled burns, “identical” fuel complexes can be drastically different, making repeat experiments 

difficult to reproduce at the best of times. Several factors may have contributed to the results of the 

escaped fire analysis and the model’s poor kappa statistic: Firstly, insufficient number of escaped fires: 

93% of fires were successfully contained, which means one could theoretically predict all fires will be 

successfully contained and be correct 93% of the time. This bias was reflected in the confusion matrices 

for each experiment where successful containment was heavily favoured in all tests. Second, while the 

signal produced by the data is significant with respect to density and a fire escaping containment, the 

error from the analyses resulted in extensive overlap between factored variables such as smoke colour. 

This suggests that, while including visual attributes in the models increased overall accuracy, factored 

variables could use further refining and larger datasets to improve precision, which is evidenced by the 

strength of the structure classification in the LiDAR-based models. Additional consultation with other 

industry experts could further refine ocular definitions and their selection criteria. Lastly, other variables 

omitted from the analysis, whether intentionally or otherwise, may have helped further stratify model 

results. Smoke continuity also should be examined, as it served as a significant contributor to wildfire 

containment challenges but had to be dropped in the escaped fire analysis due to its excessive standard 

error.  

4.3.1 Input Weather 

Overhead weather had a significant impact on the likelihood of crews experiencing containment 

challenges, with clear skies having the most impactful influence. Dry lightning also represented elevated 
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risk, as lighting can strike outside the rain shadow of passing storm cells, and cloud cover and 

precipitation decreased the likelihood of wildfire crews experiencing containment challenges. These 

observations add credence to the understanding that direct insolation increases wildfire behaviour, but 

scientific literature suggests a greater understanding is needed on the effects of insolation and fire 

behaviour (Potter, 2012).  

The weather data used in the analysis was recorded at noon local standard time, on average 20 km away 

but up to 60 km from the ignition location of fires; this is more than sufficient for weather to vary 

drastically between sites both spatially and temporally (Filkov et al., 2018), and is likely why 

precipitation had a positive correlation with the likelihood of fire escaping containment in the testing 

despite the relationship being the inverse. For example, thunderstorms may be as small as several 

kilometres across but dramatically change wind speed and direction, temperature, relative humidity, 

and precipitation over a wildfire. Effects of this are further compounded by coarse, single measurements 

taken once a day. In-situ weather measurement by crew leaders at the time of the wildfire assessment 

would have improved temperature, relative humidity, and wind speed variables for modeling purposes 

but such data were not available for this study. The matter of how to better account for rainfall in a 

specific location, however, still needs to be addressed in future work.  

4.3.2 Photograph Quality 

Photographs capture a moment in time, whereas wildfires are dynamic; conditions can change rapidly 

due to changes in fuel structure and composition, weather, and topography that may not be captured in 

a single photo. Videos, or a series of photos taken at regular time intervals would better capture this 

variability. Wildfire imagery taken during assessment is rarely used outside of forensic investigation for 

ignitions of suspicious origin and bespoke wildfire behaviour case studies, so altitude, distance from 

fires, and photo angle are not standardized. In White’s (2016) recommendations for aerial optical 
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assessment in forest regeneration surveys, they advocate for standardization of ocular assessment 

techniques and protocols, as well as regular auditing of results to ensure consistency across time and 

assessors. In a wildfire context, standardization of helicopter altitude during wildfire assessment, 

distance from ignition, progress shots of suppression operations at regular intervals, and regular review 

of ocular assessments would provide more accuracy in the GLM results should this methodology be 

considered for further development. In a study by Hart et al. (2021), time-stepped oblique aerial 

imagery was used to successfully calculate rates of spread of five fires. From their study, they 

recommended that oblique aerial imagery be acquired from 650 to 2500m away, from an elevation of 

350 to 1050 m using high definition cameras with georeferencing capability. Additionally, they 

advocated for mounting cameras with colour and infrared sensors to aircraft, so imagery could be 

collected in a more systematic fashion. While Heart et al.’s study used fixed-wing aircraft orbiting high 

above wildfire incidents and suppression crews arrive at a relatively low altitude in rotary wing aircraft, 

these recommendations are certainly a step in the right direction. 

In many cases, photos taken by firefighting personnel traveling in a helicopter were not suitable for 

review due to poor quality, often disqualifying fires from the analysis. Various factors contribute to loss 

of photo quality including the altitude of the helicopter, the distance and angle of the camera in relation 

to the fire, poor focus, camera quality, weather (heavy rain or smoke), lighting conditions, and time of 

day. Further complications are introduced within the confined space of the aircraft such as the aircraft 

itself causing window glare and reflections (Figure 22). One solution to mitigate glare and reflections is 

to open the window port in the side of the helicopter door, but this has the potential to result in abrupt 

defenestration of the smartphone.  
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Figure 22 An arrival photo with an internal cockpit reflection. The 

helicopter porthole is in view and a reflection of a crew member in 

the front passenger seat can be seen.  

4.4 Implications for Wildfire Management 

This study reinforces the value of documenting smoke, forest density, and other properties during the 

assessment process. While the predictive capabilities of the models require more refinement, the link 

between smoke colour and fire intensity can still inform decision making at the incident level (Patterson 

and McMahon, 1984). While not currently standardized, it would be prudent for wildfire agencies to 

develop a protocol for wildfire assessors to document fire and fuel structure during assessment, when 

safe to do so. This, in turn, would reduce error in future models, as well as models for other FBP System 

fuel types, should wildfire agencies continue to develop this methodology. In addition, compiling 

standardized oblique aerial photography into a compendium organized by fuel complex would serve as 

an excellent resource for training new wildfire assessors, refreshing veteran firefighter knowledge, and 

an excellent starter database for AI-based image analysis.  
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Absent fire, aerial ocular assessment of fuel complexes can be used to help prioritize fuel treatment 

areas around communities when establishing landscape level tactical plans (British Columbia), wildfire 

preparedness guides (Alberta), and other wildfire risk mitigation programs. Beverly and Forbes (2023) 

developed a method to define fuel pathways into communities using 100 x 100 m FBP System raster fuel 

maps. The current FBP System uses fixed values for its parameters (Forestry Canada Fire Danger Group, 

1992), therefore in conjunction with assessment by oblique aerial imagery, those fuel pathways could be 

further sub-divided into high and low priority zones for mitigation treatments responding to changing 

forest density. Large forest areas can be rapidly assessed by inexpensive micro drones to validate 

ground-based sample plots and satellite imagery. For example, a 50 000 hectare area of interest can be 

completed as quickly as a week to ten days. Aerial wildfire photography could also help verify the 

validity of the provincial fuel grid and reduce classification errors. For example, in 2 cases fires in the 

oblique photo analysis were classified as water by the provincial fuel grid (Figure 23 and Figure 24), 

which could be easily corrected to a more appropriate fuel type with photo evidence. 
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Figure 23 Wildfire with fuel classified as water by the provincial 

fuel grid. Photo courtesy of Alberta Wildfire. 

 



 

84  

 

Figure 24 Wildfire fuel type classified as water by the provincial 

fuel grid. Photo courtesy of Alberta Wildfire. 

4.5 Areas for future research 

The oblique aerial photographs used in this study were graciously provided by Alberta Wildfire and 

made for an excellent opportunistic dataset. Standardization of how assessment photos are taken could 

further improve fire behaviour predictions in scenarios where more precise technology, such as LiDAR 

and boots-on-the-ground data collection, are not available to assess forest structure due to not having 

the equipment present, nor the time for post-processing. Advancements in object-based image 

recognition and artificial intelligence could potentially be applied to wildfire applications with sufficient 

training data (on the order of 100’s of gigabytes) (Challa, 2023; LABED et al., 2023). Startup companies 

using AI image analysis are developing automated smoke research detection algorithms, although they 

currently do not exceed the abilities of a qualified watchtower person (Hsieh, 2023). Additional fuel 

types can be compiled so long as there are sufficient training data for both escaped and contained fires. 
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Using a data analytics approach, such as the k-means cluster analysis used in the Guo et al. (2017) study, 

may also produce novel fuel types or add novel structural elements to existing fuel types. The next 

generation of Canadian Forest Fire Danger Rating System (CFFDRS) is projected to have 16 inputs in its 

new fuel type raster layer (Canadian Forest Service Fire Danger Group, 2021) and a form of image 

analysis could aid in the data collection and verification of these inputs.  

Fires used in this study were on flat terrain and therefore did not contain any significant topographic 

changes. Further research could include topographic influences on density thresholds or develop an 

appropriate modifier like slope and aspect adjusted FFMC (Taylor and Alexander, 2018). Assumptions 

made in this study included all fuels within the 2 ha escape threshold were homogenous and continuous 

in the direction of fire growth. Interactions between fuel type and attribute boundaries such as density 

could be further explored, such as wind penetration into a given stand. This study applied the FWI 

values for peak burning regardless of the time suppression crews arrived at a fire. Future applications of 

this work could apply either diurnally adjusted FWI values (Lawson et al., 1996; Van Wagner, 1977b), or 

more stand-specific modifiers such as the approach by Wotton and Beverly (2007). 

Delving into some world building and theory crafting, the idealized vision of this research is eventual 

development of a tool that could be used by wildfire assessors to rapidly assess wildfire escape 

probability. Eventually, this tool could evolve into a fully automated data product that can take video 

recorded by assessors and have it analyzed in real time to be livestreamed back to a Duty Room via a 

satellite internet feed. Various telemetry could be broadcast with the live feed advising of changing 

weather conditions, dry bulb temperature, wind speed and direction, barometric pressure and so on. 

Other data could include automatically calculated escape probabilities, forward rate of spread, and 

highlight potential values at risk with the calculated time to intercept by expanding on Hart’s 

monoplotting technique (2021). To take the concept one step further, an unmanned aerial system, such 
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as a fixed wing drone, could be released to maintain a high orbit above the fire and tanker operations, 

taking full advantage of restricted airspace provisions during suppression for data collection.  

4.6 Conclusion  

The opportunistic data created from oblique aerial photography taken by wildfire suppression personnel 

presented the opportunity to explore ocularly assessed density and its connection to wildfire behaviour. 

Ocularly-assessed density attributes of black spruce fuel types were shown to be significant in 

determining the likelihood of a wildfire escaping containment during assessment but were not 

significant in determining the likelihood of suppression crews arriving to challenge fire scenarios. 

Ocularly assessed attributes used as input variables were superior when comparing GLM discriminate 

scores to those without. LiDAR-derived attributes of forest structure tested on an expanded dataset of 

wildfires in Alberta were found to have also have significant impact for containment and suppression 

challenge thresholds and performed best when including assessor-documented incident overhead 

weather and fire type. 

During this study, wildfire smoke plume attributes, most notably smoke colour, were found to have the 

greatest impact in determining the likelihood of a wildfire escaping containment, further reinforcing 

current training practices for wildfire assessment personnel. Smoke observation serves as a good proxy 

for wildfire behaviour, even when observed some distance away from a wildfire. While the results of this 

study identified a moderately significant signal on the impacts of optically assessed forest density on fire 

escape, the poor predictability scores mandate further refinement before this tool can potentially 

integrated into suppression operations. However, with the foundational groundwork laid out in this 

thesis, it represents a key milestone as proof-of-concept for future iterations of this work that can be 

applied in both the wildfire suppression and wildfire risk mitigation space. 
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Figure 25 Andrew Stack on the banks of the Athabasca River, 

Horse River Fire 2016. Photo Credit: Leighton Lindsay.  
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Appendix 

Table 26 Extended statistics for the E-FIRE1 GLM model. Logit variables are probability coefficients 
relative to the intercept variable, log odds are the exponent of the logit variable and represent odds 
relative to the intercept variable. Statistical significance of model parameters and their levels were 
tested using chi square tests. 

Model: E-FIRE1 

Call: Smoke Colour + BUI + Precipitation + Smoke Continuity + DENSE3 

C-Statistic:  0.90203125 AIC Reduction:  23.73958326  
Accuracy: 0.930556 Kappa: 0.1916168  
General Variable 
Significance (ANOVA) Deg Freedom Deviance Resid. Deviance Pr(>Chi) 

Smoke colour 2 24.865 114.070 <0.0001 *** 

BUI 1 2.9395 89.205 0.08644 . 

Precipitation 1 2.3281 86.266 0.12706 

DENSE3 1 3.0173 80.921 0.08238 . 

     
Logit Breakdown    
Variable Estimate Std. Error Z-Value Pr(>|z|) 

(Intercept) -6.433 1.2694 -5.07 <0.0001 *** 

Brown-grey smoke 1.8395 0.7883 2.33 0.0196 * 

Black-grey smoke 3.6384 0.7989 4.55 <0.0001 *** 

BUI 0.0225 0.0109 2.07 0.0384 * 

Precipitation 0.1195 0.0576 2.07 0.038 * 

DENSE3 closed 1.3389 0.8555 1.57 0.1176 

     

Log Odds Breakdown    
Variable Estimate Std. Error Z-Value  

(Intercept) 0.001607604 3.55861 0.006295776 - 

Brown-grey smoke 6.293222444 2.199557 10.31500236 - 

Black-grey smoke 38.02910814 2.222992 95.05583588 - 

BUI 1.022791191 1.010943 7.929798288 - 

Precipitation 1.12689879 1.059279 7.960794759 - 

DENSE3 closed 3.814980904 2.352519 4.783227588 - 

Significance codes: p<0.001=*** (v. strong sig.), p<0.01=**(strong sig.), p<0.05=*(significant),  
p<0.10 =. (weak sig.) 
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Table 27 Expanded statistics for EL-FIRE1 and associated parameters. Logit variables are probability 
coefficients relative to the intercept variable, log odds variables are odds relative to the intercept 
variable. Statistical significance of model parameters and their levels were tested using chi square 
tests. 

Model: EL-FIRE1 

Call: Crew Fire call + Weather Overhead + 100 m Structure Class + RH + BUI Rank  

C-Statistic:  0.790613904 AIC Reduction: 56.11787199 
 

Accuracy: 0.94 Kappa: -0.004 
 

General Variable  
Significance (ANOVA) 

Deg Freedom Deviance resid. Resid. Deviance Pr(>Chi) 

Crew Fire type 2 25.2898 623.06 <0.0001 *** 

Weather Overhead 4 26.1302 596.93 <0.0001 *** 

LiDAR 100 m Structure Class 6 20.8224 576.11 0.001974 ** 

RH 1 10.1653 565.95 0.001431 ** 

BUI Rank 4 9.7103 556.24 0.045601 *      

Logit Breakdown 
   

Variable Estimate Std. Error Z-Value Pr(>|z|) 

(Intercept) 0.2492 0.8 0.3 0.749533 

Ground Fire -1.434 0.4 -3.8 0.000155 *** 

Surface fire -1.378 0.3 -4.8 <0.0001 *** 

CB Wet -1.575 0.5 -3.3 0.000814 *** 

Clear skies 0.1079 0.3 0.3 0.736979 

Cloudy -0.6479 0.4 -1.8 0.073174 . 

Raining -1.021 0.6 -1.7 0.084725 . 

Structure2 0.6479 0.5 1.4 0.156479 

Structure 3 -0.5207 0.7 -0.7 0.482219 

Structure 4 -15.39 681.2 0.0 0.981977 

Structure 6 -0.2197 0.5 -0.4 0.68745 

Structure 7 0.2861 0.6 0.4 0.656027 

Structure 8 -15.27 1923.0 0.0 0.993663 

RH -0.02693 0.0 -2.8 0.005855 ** 

High BUI -0.9751 0.5 -2.1 0.033712 * 

Low BUI -0.5455 0.5 -1.1 0.278258 

Moderate BUI -0.5193 0.4 -1.2 0.235989 

Very High BUI 0.01179 0.4 0.0 0.978566      

Log Odds Breakdown 

Variable Estimate Std. Error Z-Value  

(Intercept) 1.28 2.18 1.38 - 

Ground Fire 0.24 1.46 0.02 - 

Surface fire 0.25 1.33 0.01 - 

CB Wet 0.21 1.60 0.04 - 
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Clear skies 1.11 1.38 1.40 - 

Cloudy 0.52 1.44 0.17 - 

Raining 0.36 1.81 0.18 - 

Structure2 1.91 1.58 4.12 - 

Structure 3 0.59 2.10 0.50 - 

Structure 4 0.00 Inf 0.98 - 

Structure 6 0.80 1.73 0.67 - 

Structure 7 1.33 1.90 1.56 - 

Structure 8 0.00 Inf 0.99 - 

RH 0.97 1.01 0.06 - 

High BUI 0.38 1.58 0.12 - 

Low BUI 0.58 1.65 0.34 - 

Moderate BUI 0.59 1.55 0.31 - 

Very High BUI 1.01 1.55 1.03 - 

Significance codes: p<0.001=*** (v. strong sig.), p<0.01=**(strong sig.), p<0.05=*(significant), p<0.10 
=. (weak sig.) 
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Table 28 Expanded statistics for the C-FIRE1 generalized linear model. Logit variables are probability 
coefficients relative to the intercept variable, log odds variables are odds relative to the intercept 
variable. Statistical significance of model parameters and their levels were tested using chi square 
tests.  

C-FIRE1     
Call: Crown Involvement + Smoke Continuity + Wind Speed 

C-Statistic: 0.885855379 AIC Reduction: 110.754311  
Accuracy: 0.86 Kappa: 0.64  
General Variable  
Significance (ANOVA) Deg. Freedom Deviance resid. Resid. Deviance Pr(>Chi) 

NULL   315.1  
Crown Involvement 4 107.849 207.25 <0.0001 *** 

Smoke Continuity 2 14.654 192.59 0.0006575 *** 

Wind Speed 1 4.251 188.34 0.0392256 * 

     
Logit Breakdown     
Variable Estimate Std. Error Z-Value Pr(>|z|) 

(Intercept) -3.79 0.71 -5.37 <0.0001 *** 

Light Candling -0.60 0.64 -0.94 0.35 

Heavy Torching 1.29 0.60 2.16 0.030924 * 

Intermittent Crowning 1.72 0.82 2.11 0.035023 * 

Continuous Crowning 2.80 0.76 3.70 0.000218 *** 

Continuous Smoke 0.67 0.77 0.88 0.38 

Heavy Smoke 2.37 0.81 2.93 0.003412 ** 

Wind Speed 0.07 0.03 2.06 0.039173 * 

     
Log Odds Breakdown     
Variable Estimate Std. Error Z-Value  

(Intercept) 0.02 2.02 0.00 - 

Light Candling 0.55 1.90 0.39 - 

Heavy Torching 3.62 1.81 8.65 - 

Intermittent Crowning 5.58 2.26 8.23 - 

Continuous Crowning 16.52 2.13 40.35 - 

Continuous Smoke 1.96 2.15 2.40 - 

Heavy Smoke 10.70 2.25 18.69 - 

Wind Speed 1.07 1.03 7.86 - 
Significance codes: p<0.001=*** (v. strong sig.), p<0.01=**(strong sig.), p<0.05=*(significant), p<0.10 
=. (weak sig.) 
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Table 29 Expanded statistics for CL-FIRE1. Logit variables are probability coefficients relative to the 
intercept variable, log odds variables are odds relative to the intercept variable. Statistical significance 
of model parameters and their levels were tested using chi square tests.  

Model: CL-FIRE1     
Call: Fire Type + 100 m Structure Class + Weather overhead + BUI Rank + Wind Speed + Temp 
C-Statistic: 0.781244658 AIC Reduction 297.3959887  
Accuracy: 0.81 Kappa: 0.34  
General Variable significance    
Variable Deg Freedom Deviance resid. Resid. Deviance Pr(>Chi) 
Fire Type 2 204.242 1606.8 <0.0001 *** 
100 m Structure Class 6 48.691 1558.1 <0.0001 *** 
Weather Overhead 4 39.549 1518.5 <0.0001 *** 
BUI Rank 4 23.947 1494.6 <0.0001 *** 
Wind Speed 1 12.495 1482.1 0.000408 *** 
Temp 1 6.471 1475.6 0.010963 * 
     
Logit Breakdown    
Variable Estimate Std. Error Z-Value Pr(>|z|) 
(Intercept) -0.49122 0.56152 -0.875 0.381683 
Ground Fire -2.08368 0.21499 -9.692 <0.0001 *** 
Surface Fire -2.00677 0.1605 -12.503 <0.0001 *** 
Structure 2 0.87195 0.27975 3.117 0.001828 ** 
Structure 3 0.35822 0.35806 1 0.31709 
Structure 4 -0.88582 0.55088 -1.608 0.107835 
Structure 6 -0.17426 0.32708 -0.533 0.594178 
Structure 7 0.22632 0.38383 0.59 0.555432 
Structure 8 -0.06568 0.91527 -0.072 0.942793 
CB Wet -0.80395 0.23018 -3.493 0.000478 *** 
Clear Skies 0.19876 0.19655 1.011 0.311887 
Cloudy -0.37289 0.20919 -1.783 0.074651 . 
Raining -0.69483 0.33418 -2.079 0.037597 * 
BUI High -0.75027 0.25396 -2.954 0.003133 ** 
BUI Low -0.81188 0.28795 -2.82 0.004809 ** 
BUI Moderate -1.0899 0.25977 -4.196 <0.0001 *** 
BUI Very High -0.55479 0.26479 -2.095 0.036150 * 
Wind Speed 0.04273 0.01125 3.797 0.000146 *** 
Temp 0.039 0.01559 2.502 0.012353 * 
     
Log Odds Breakdown    
Variable Estimate Std. Error Z-Value  

(Intercept) 0.6118807 1.753336 4.17E-01 - 
Ground Fire 0.1244717 1.239856 6.18E-05 - 
Surface Fire 0.1344224 1.174103 3.72E-06 - 
Structure 2 2.3915741 1.322801 2.26E+01 - 
Structure 3 1.4307781 1.430545 2.72E+00 - 
Structure 4 0.4123751 1.734786 2.00E-01 - 
Structure 6 0.8400744 1.386911 5.87E-01 - 
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Structure 7 1.2539779 1.467894 1.80E+00 - 
Structure 8 0.9364302 2.497451 9.31E-01 - 
CB Wet 0.4475561 1.258833 3.04E-02 - 
Clear Skies 1.2198932 1.217194 2.75E+00 - 
Cloudy 0.6887384 1.232673 1.68E-01 - 
Raining 0.499159 1.396793 1.25E-01 - 
BUI High 0.4722379 1.289114 5.21E-02 - 
BUI Low 0.4440231 1.333687 5.96E-02 - 
BUI Moderate 0.3362511 1.296638 1.51E-02 - 
BUI Very High 0.5741911 1.303154 1.23E-01 - 
Wind Speed 1.0436554 1.011317 4.46E+01 - 
Temp 1.0397715 1.015711 1.22E+01 - 
Significance codes: p<0.001=*** (v. strong sig.), p<0.01=**(strong sig.), p<0.05=*(significant),  
p<0.10 =. (weak sig.) 

 

 


