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ABSTRACT

We first find all the irreducible complex characters of the general linear group
GL(2,Z/p"Z) over the ring Z/p*Z, where ( is an integer > 1 and p is an odd
prime, and determine all the character values. Our methods rely on Clifford
Theory and can be modified easily to get all the irreducible complex characters
of GL(2,Z/p*Z) when p = 2.

We deal with irreducible characters which are not inflated from GL(2, Z/p*~'Z).
These have three possible degrees. There are characters induced from a Borel
subgroup, which have degree (p + 1)p*~!; and there are two other families of
characters, of degrees (p — 1)p*~! and (p? — 1)p’~2.

Many results can be extended to the group G = GL(2, R) with R = S/P*
where S is the ring of integers in a local or global field and P is a maximal
ideal. If S/P has ¢ elements, we can replace p by ¢ in the degree and number
of each degree formulas we find. We study GL(2,Z/p‘Z) in our work not only
because it can give us some general results, but also it is simpler when we deal
with character values.

We also construct irreducible characters of GL(3,Z/p?Z) and GL(3,Z/p*Z).
There are 7 kinds of irreducible characters for each group, and these 7 kinds
of irreducible characters also show up for group GL(3,Z/p‘Z) for any ¢ > 1.

We have all the degrees and the number of characters of each degree for the



GL(3,Z/p*Z). Moreover, we find all the irreducible constituents of character
Ind%(1) for the two groups GL(3,Z/p?Z) and GL(3,Z/p*Z), where B is the

corresponding Borel subgroup.
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Chapter 1

Introduction

In this thesis, we apply Clifford Theory to construct irreducible characters
of the groups GL(2,Z/p"Z) and GL(3,Z/p"Z). The main idea of Clifford’s
Theorem is as follows.
Let N < G be a normal subgroup of GG. For any character ¢ of N, we can
define

¢’ : N — C;¢%(n) = ¢(gng™'),Vg € G,n € N.

@7 is also a character of N. Let ¢ € Irr(N), denote I¢(¢) = {g € G| ¢9 = ¢}.
If ¥ € Irr(I(9)), such that [Yn, ¢] # 0, then Clifford’s Theorem tells us that
1% is an irreducible character of G.

In Chapter 2 and 3, we determine the values of the irreducible complex char-
acters of the general linear group GL(2,Z/p‘Z) over the ring Z/p‘*Z, where ¢ is
an integer > 1 and p is an odd prime. The degrees of these characters, and the
number of characters of each degree, follow from work of Nobs [1]. However
Nobs did not consider the problem of finding the character values.

Our methods can be modified easily to get all the irreducible characters when
p = 2, which are quite different than those of Nobs. Our methods of construct-
ing the irreducible characters are somewhat similar to those of Kutzko [8], who
was interested in representations of GL(2, F') where F' is a p-adic field; Kutzko
did not find character values in [8]. Indeed, one of the reasons for our interest
in this problem is that smooth, irreducible super-cuspidal representations of
GL(2, F') are induced from those of GL(2, O) where O is the ring of integers of
F| and these in turn arise from representations of GL(2, k) where k is a finite
factor ring of O.

We deal with irreducible characters which are not inflated from GL(2, Z/p*~'Z).
These have three possible degrees. There are characters induced from a Borel
subgroup, which have degree (p + 1)p°~!; and there are two other families of
characters, of degrees (p — 1)p*~! and (p? — 1)p*~2.

Many results can be extended to the group G = GL(2, R) with R = S/P*
where S is the ring of integers in a local or global field and P is a maximal



ideal. If S/P has q elements, we can replace p by ¢ in the degree and number
of each degree formulas. We will see one example in section 3.5. We study
GL(2,Z/p"Z) in our work not only because it can give us some general results,
but also it is simpler when we deal with character values.

In Chapter 5, we construct irreducible characters of GL(3,7Z/p?Z) and
GL(3,Z/p*Z). There are 7 kinds of irreducible characters for each group, and
these 7 kinds of irreducible characters also show up for group GL(3,7Z/p‘Z)
for any ¢ > 1. For GL(3,Z/p*Z), we define one-dimensional character ¢4 on
its normal subgroup Ky = {I + pB, B € M (3,Z/pZ)}, find the stabilizer T of
¢4 and then extend ¢4 to 14 of T such that 4 |, = ¢pa. By Clifford Theory
we know x4 = Ind$(14) € Irr(G). The process is as follows:

KK — T — (@
ext ind

ba — ta — Xxa

We have all the degrees and the number of characters of each degree for the
GL(3,Z/p*Z) as follows.

Degrees
PP’ +p+1)
PP’ +p+1)
PP +p+1)p+1)
PP +p+1)p—1)
PP+ +p+1)
P+ 1)@ —1)
pP(p®—1)
p(p® = 1(* - 1)
(»—-1Dp+1)

P -Dp+1)p-1)

p(p* = 1)(p+1)
pP(p—1>%p+1)

Number of this degree
pp—1)*
pp—1)*
pp—1)*(p—1)
pQ(p2—1)4
zxp—lxp§2xp—1ﬁ
plp—1)°
p2(p—1%3(p+1)
pp—1)
(p—1)?

p(p* —1)
pp—1)°
p(pfl)(p;rl)(p?’fl)

For GL(3,Z/pZ), we define one-dimensional characters ¢ on the normal sub-
group Ky = {I+p*B}, find the stabilizer T of ¢, and then get 1) € Irr(T') such
that [1) |x,, @] # 0. Eventually by Clifford Theory, we have x = Ind%(y) €
Irr(G). Depending on the definition of ¢ on K,, we have two different con-
struction processes. The first one is as follows.

— H — K

ind ext
— 0 -

—>K15—>G
v X

KQ — KQ(Kl M S)

b2 = & =g

(1)

where H <1 K, with index p?.



The second one is

Ky — N — T — T — G

2 . .
B g g, g oy
for which we choose a normal subgroup N of T such that % is as big as

possible while we can still extend ¢4 to ¢’y of N. T" is the stabilizer of ¢/, in T.
These two construction processes will give us 7 kinds of irreducible characters
of GL(3,Z/p’Z).

In the last section of chapter 5, we find all the irreducible constituents of the
permutation character Ind$(1) for the two groups GL(3,Z/p*Z) and
GL(3,Z/p3Z), where B is the corresponding Borel subgroup. For GL(3,Z/p?Z),
the decomposition is

md%(15) = Ind% (1) EB X1 @ 3X2 EB X3 EB X4-

In the case of GL(3,Z/p3Z), the complete decomposition is as follows.

p—2 6
nd%(15) = IndS, (1) EB 4x1 @ X1i @ X;-
=1 =2

B’ and B” are the corresponding Borel subgroups of G’ and G”. Details will
be given in section 5.3.

In Chapter 6, we generalize the parabolic induction to construct irreducible
characters of group GL(n, Z/p‘Z). In the 2x2 case, let B C G = GL(2,7Z/p'7Z)

be the Borel subgroup i) } . Let \ be an injective character of (Z/p*Z)*

a
0
and define ¢ by ¢ (8 i’) = Ma). y = IndS ¢ is irreducible.

The most general version for G = GL(n,Z/p'Z) is as follows. Let

([ A o« % e * )
0 Ay * .- *
B— ) . : ) ca
0 0 - Apy =
\ o o0 o0 - A )

where each A; is a n; X n; matrix. Let A\, Ay, ..., \e_1 : (Z/p'Z)* — C* be
homomorphisms such that {1 —|—pw2]x} ¢ ker )\i)\j_l,z' # 3,1 <47 < k-1
Let

¢; € Ir(GL(ny, Z/p'7)), 1<i<k



be inflated from GL(n;, Z/p'21Z). Define ® : B — C*,

A x * ce *
0 A2 * e *
S 0 e = Agdet(A)]Ao[det(A2)] - - - Mg [det(Ap-1)]
0 0 . Ak—l *
0 0 0 e Ay
X ¢1(Ar)pa(Az2) -+ - Or(Ag),
then

Ind$(®) € Trr(G).



Chapter 2

Some Preliminaries

2.1 Character Theory

Definition 2.1.1. Let V' be a finite-dimensional vector space over C. A
representation p of a group G is a group homomorphism p : G — GL(V).
dim(V) is also called the dimension of p, denoted by dim(p).

We know that if we choose a basis of V, then GL(V) = GL(n,C), where
n = dim(V). So it is equivalent to say that a group homomorphism p : G —
GL(n,C) is also a representation. In particular, a group homomorphism A :
G — C* is a representation.

Definition 2.1.2. A subspace W of V' is invariant under p if for each w € W
and for all g € G, p(g)(w) € W. A representation p : G — GL(V) is irreducible
if there is no proper nonzero invariant subspace W of V' under p.

We usually use character theory to determine whether a representation is ir-
reducible.

Definition 2.1.3. Let p : G — GL(n,C) be a representation of G. The
character x of G afforded by p is the function given by x(g) = tr(p(g)). x is
called irreduciblee if p is irreducible. The degree of x is defined by deg(x) =
dim(p) = x(1).

From now on, let Irr(G) represent the set of all irreducible characters of the
group G.

Proposition 2.1.4. Let x and ¢ be characters of GG. Define xi on G by
setting (x¥)(g) = x(9)¥(g). x¥ is also a character of G.

From the definitions above, it is clear that a 1 — dimensional representation
p is irreducible. Moreover, if x is the character afforded by p, we have p = x.
Namely, a 1 — dimensional character is also a representation. We will use this
fact in the next two chapters very often.

5



Definition 2.1.5. Let N < G be a subgroup and suppose that ¢ is a character
of N. We say ¢ is extendible to G if J¢, a character of G, such that ¥y = ¢.
We call ¢ an extension of ¢ to G.

Definition 2.1.6. Let ¢ and 6 be characters of a group G.
7 - Z Qb
gEG’
is the inner product of ¢ and 6.

Theorem 2.1.7. Let X\ and ¢ be characters of G. [\, 9] = [¢, A] is a non-
negative integer. Also A is irreducible if and only if [A, )\] =1

Definition 2.1.8. Let H < G be a subgroup and let ¢ be a character of H.
¢, the induced character on G, is given by

Zcb (wgz™),

where ¢° is defined by ¢°(h) = ¢(h) if h € H and ¢°(y) =0if y & H.
By the definition above, it is easy to calculate that

|G

deg(¢“) = deg(qﬁ)m.

Also from the definition of induced character, we have the following proposi-
tion.

Proposition 2.1.9. Let H < K < G and suppose that ¢ is a character of H,
then (¢%)¢ = ¢C.

Lemma 2.1.10. (Frobenius Reciprocity) Let H < G and suppose that ¢ is
a character of H and that 6 is a character on G, then

[¢7 QH] = [¢G7 9]

2.2 Clifford Theory

Let H < G. If 0 is a character of H and g € G, we define 9 : H — C by
09(h) = 0(ghg™"). We say that 69 is conjugate to 0 in G.

Lemma 2.2.1. Let H <G and let ¢, 6 be characters of H and =,y € G.
(a) ¢” is a character;

(b) (¢7)? = ¢™;
(c) [¢7, 0] = [0,0];
(d) [xu, 9" = [xu, ¢] for characters x of G.

6



The Lemma follows from direct calculation.

Definition 2.2.2. Let H < G and let 6 € Irr(H).
Ig(0) ={g € G |6 =0}
is the inertia group of 6 in G.

We also call I(0) the stabilizer of  in G and use notation Stabgs(6) in later
sections. When I(0) = G, we say 0 is stable under G, or invariant in G.

Theorem 2.2.3. (Clif ford, [1]) Let H <G, 0 € Irr(H), and T = I5(0).
Let

A= { € r(T) | [, 0] # 0}, B = {x € Ie(G) | [xur, 0] # O},

(a) If v € A, then ¢¢ is irreducible;

(b) The map 1 — 9 is a bijection of A onto B;

(c) If ¢ = x, with ¢ € A, then 1 is the unique irreducible constituent of
which lies in A;

(d) If & = x, with ¢ € A, then [vg, 0] = [xu, 0.

In general, it is hard to tell whether the character of G induced from an
irreducible character of H < G is still irreducible. This Theorem tells us
when the induced character is irreducible . So we can apply this theorem to
construct some irreducible characters of G, from certain irreducible characters
of the normal subgroup H. Part (a) of this theorem is used throughout the
following two chapters.

Corollary 2.2.4. Let N < G and 0 € Irr(N). 0% € Irr(G) if and only if
Is(0) = N.

The Ig(0) = N = 0% € Irr(G) direction follows immediately from (a) of last
theorem and we will use this result very often in the next two chapters.

Corollary 2.2.5. Let N <G and let x € Irr(G) and 0 € Irr(N) with
[xn, 0] # 0. The following are equivalent:

(a) xn = ef, with e =| G : N |;

(b) x vanishes on G — N and 6 is invariant in G;

(c¢) x is the unique irreducible constituent of §¢ and 6 is invariant in G.

Theorem 2.2.6. (Gallagher, [1]) Let N < G, x € Irr(G) be such that yy =
0 € Irr(N). The characters fx for 5 € Irr(G/N) are irreducible, distinct for
distinct 3, and are all of the irreducible constituents of 6.



Note that there is a projection 7 : G — G/N. Thus, for any group represen-
tation p of G/N, p o is a representation of G. If p is irreducible, p o 7 is also
irreducible. As a result, we can consider the character § € Irr(G/N) as an
irreducible character of G.Therefore, G above is well defined.

Considering the set A in Theorem 2.2.3, we have

A= {0 € Tr(T) | [Un. 6] # 0} = {4 € In(T) | [,67] # 0.

In order to apply theorem 2.2.3 to construct irreducible characters of G, we
need to induce up the characters in A. Theorem 2.2.6 tells us that, if we can
actually extend 6 to T, then by finding out all the irreducible characters of
T/H, we can construct all the irreducible characters in A and, as a result, we
will find more irreducible characters of G.
We will apply Theorem 2.2.6 in chapter 4.

Theorem 2.2.7. Let N <G with G/N cyclic and let 6 € Irr(N) be invariant
in GG, then @ is extendible to G.

By applying this theorem, we will come up with some crucial results. The
following three lemmas are useful in the following two chapters to construct
certain extensions of some characters of degree one.

Lemma 2.2.8. Let G be a group, N <G, H < G and G = NH. Let ¢ €
Irr(N), ¢ € Irr(H) be such that deg(¢) = deg(v)) = 1. Assume ¢pnng = Unan
and Vh € H,¢" = ¢. 30 € Irr(G) such that deg(f) =1 and Oy = ¢.

Proof. Define
0:G— C*;0(nh) = ¢(n)y(h),¥n e N,h € H.

Since ¢ and v are of degree one, they are also group homomorphisms. Since
ONne = Unnm, we know that 6 is well-defined. In addition, Vni,ne € N, hy, hy €

H, we have
G(nlhlnghg) 6( hlnghl hlhg)

nyhinghy 1) (hihy)
n1)@(hanghy ) (ha)i(he)
n1)¢" (na)0(ha)0(hs)
n1)¢(n2)0(hy)0(hs)
= 0(ny1h1)0(nzhs).
Thus, 0 is of degree one. It is clear that 0y = ¢. O

¢
o
¢
o

Lemma 2.2.9. Let G be a finite abelian group, let N <G and \ € Irr(N),
then A is extendible to G.



Proof. Since G is a finite abelian group, it is a direct product of cyclic groups.
Thus, we can find the subgroups Ny, Ns, ..., N,,, of G, such that Ny/N, Ny /Ny,
eety Npu /N1 and G/N,,, are all cyclic. Thus, by Theorem 2.2.7, A can be
extended to N;. Call the extension A\;. Since G is abelian, we have that any
character of any subgroup of G is stable under GG. Therefore \; is stable under
G, so is stable under N,. Hence it is extended to Ns. So A is extended to Ns.
Keeping doing this, we know that finally A will be extended to G. O

Lemma 2.2.10. Let G be a group, N <G, S < G, S is abelian, and G = NS.
Let ¢ € Irr(IV) be such that deg(¢) = 1. Assume ¢ is stable under G, then ¢
is extendible to G.

Proof. Let v = ¢gnn, then ¢ € Irr(S N N). Since S is abelian, we know
SN N <S. By Lemma 2.2.9, 30 € Irr(S) such that Ogny = 1 = ¢psnn. Apply
Lemma 2.2.8, we know that ¢ is extendible to G. O

Lemma 2.2.10 will be used a lot.

2.3 Useful results

In this section, we will calculate the orders of groups GL(2,Z/p"Z), GL(3,Z/p"Z)
and some of their important subgroups.

In GL(k,Z/p"Z), define K = {I + pA | A € My(Z/p"'Z)}. | K |=|
Myuw(Z)p" ' Z) |= p¥* (= Formally speaking, matrix A € My (Z/p" ' Z)
doesn’t belong to Myxi(Z/p"Z)} since Z/p" 'Z is not a subset of Z/p"Z. In
this thesis, we treat Z/p'Z as a subset of Z/p’Z for i < j to simplify notations
and this does not cause confusion.

k
Proposition 2.3.1. | GL(k,Z/p"Z) |= pFen [T(" —ph).
=1

Proof. Recall that there is a group homomorphism

¢:7/p"7 — Z)pZ; ¢la)=a, Na € ZL/p"L.
Thus, we can define

v« GL(k, Z/p"Z) — GL(k, Z/pZ); (A) = 4,

where A € GL(k,Z/p"Z) and A;; = ¢(A;j). It is easy to check that 1 is a
surjective group homomorphism. Moreover, ker(¢)) = K. Hence, we have

GL(k,Z/p"Z)/K = GL(k,Z/pZ)

=| GL(k, Z/p"Z) |=| GL(k, Z/pZ) || K | .

9



Since it is known that | GL(k,Z/pZ) |= T](»" — p'~1)[6], the proposition
i

follows. O

Corollary 2.3.2. | GL(2,Z/p"Z) |= (p* — p)(p* — 1)p*"™*, | GL(3,Z/p"Z) |=
(r* = D@ = p)* —p")p™ "

Next, we will calculate the orders of two important subgroups of GL(2,Z/p"Z)
and GL(3,Z/p"Z).
Let ¢ € Z/pZ be such that \/e & Z/pZ,i.e. there is no a € Z/pZ such that

a’> =e.

Let

k
=1

S = {s'z ( vy ) | s € GL(Q,Z/pZ)}.

y x
S" < GL(2,Z/pZ). Moreover, we can prove that
S" = (Z/pZ|VE))™,

therefore | S’ |= p? — 1. The proof is exactly the same as the one in the
GL(3,Z/p"Z) case and we will talk about it later. Consider ¢ as an element
of Z/p"Z, e.g. 3 € Z/5Z, 3 is also an element of Z/257Z.

Define
S = {s — ( "’y” ye > |s € GL(Q,Z/p”Z)}.

X

Proposition 2.3.3. | S |= (p* — 1)p*" 2.

Proof. Let
v GL(2,Z/p"Z) — GL(2,Z/pZ)

be the surjective group homomorphism defined in the proof of Proposition
2.3.1 in the case k = 2. Consider the restriction of ¢ to .S, then it is clear that
1 maps S onto S and

), ( 1+px pye n
kemp_{t_( o 1+px)]teGL(2,Z/pZ)}.

Clearly, | ker¢) |= p*" 2. Since S/ kery = S, we have that
| S |= 5" || kery) |= (p* — 1)p™ 2.
0
Corollary 2.3.4. Suppose n > m. Let G = GL(2,Z/p"Z), K., = {I + p™A |
A € Moyo(Z/p"™"Z)} and S = {3 = (7 y; | s € G}, then | K,,S |=
P22 1),

10



Proof. 1t is clear that

_ 1+pma pTbe e
KmﬂS—{( b 14 pma |a,be Z/p" "7 ¢ ,

so | K, NS |= (p™)% Since we also have | K, |= (p"™)* and | S |=
(p? — 1)p?2, we can conclude that | K,,S |= Emldl — pan—2m—202 _ 1y

In particular, when G = GL(2,Z/p*™Z), we have | K,,S |= p*™2(p*—1); and
if G = GL(2,Z/p*""'Z), we have | K,,,S |= p®"*?(p? — 1). The subgroups S
and K,,S above play an important role in Chapter 3.

In the GL(3,Z/p"Z) case, there is a similar subgroup and we will now talk
about it.

Let t3 — ct? — bt — a be an irreducible polynomial in Z/pZ[t]. We have a field
extension of Z/pZ corresponding to the polynomial ¢3 — ct* — bt — a. Call the
field extension Z/pZ[a], then o — ca? — ba — a = 0. We know that Z/pZ|a]
is a 3 - dimensional linear space over Z/pZ, the basis is {1, «, a?}.

Consider

l—-a,a—a?a?—a?

as a linear transformation from Z/pZ[a] to Z/pZ]a]. The corresponding matrix
1s

B =

O = O
O O
o o Q

Thus,

S'={s =al+yB+:B*|s € GL(3,Z/pZ)} = (Z/pZ|a])* =| S" |=p* — 1.
Consider B above as a matrix in GL(3,Z/p"Z), then
S={s=ual+yB+zB*|z,y,2 € Z)p"Z,s € GL(3,Z/p"Z)} < GL(3,Z/p"7Z).
Proposition 2.3.5. Let S be the same as above, then | S |= (p3 — 1)p3"~3.

Proof. By the same argument as in (2.3.3), we know that | S |=| 5" || ker ) | .
In this case, keryp = {s = (1 + pz)I + pyB + pzB? | s € GL(3,Z/p"Z)}.
Clearly, | ker ¢ |= p*™=1) and the proposition follows. O

Corollary 2.3.6. Suppose n > m. Let G = GL(3,Z/p"Z), K., = {I + p™A |
A € Msy3(Z/p"~™Z)}, and S be the same as above, then | K,,S |= (p> —
1)p9n—6m—3_
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Proof. By the same argument as in Corollary (2.3.4), note that in this case,
KnNS={s=0+p )] +p"yB+p"zB*|z,y,z € L/p" "L}

=| K,NS|=(p"™)>.
The corollary follows. O]

Again from the above corollary, when G = GL(3,Z/p*"Z), | K,»S |= p*"3(p—
1); and if G = GL(3,Z/p*" "' Z),| K,,S |= p"*™¢(p* — 1). As we will see in
Chapter 4, the above two subgroups are the stabilizers of the characters of K,
in GL(3,Z/p*"Z) and K,, 41 in GL(3,Z/p*"*1Z) respectively.

2.4 Conjugacy Classes

Let R be a finite commutative principal local ring of odd characteristic. This
means that there is a nilpotent element 7 € R and a positive integer ¢ such
that 7 = 0 and every nonzero x € R can be written as

T = Uum

for some u € R* and a unique k,0 < k < ¢. In particular, R = R*UrR, so
that R/mR =TF,, where ¢ =| R/7R | .
Let

M = My(R) = {2 x 2 matrices over R}, My ={A e M :tr(A) =0},

G =GL(2,R) = M* = {A € M : det(A) € R*}.

Let I denote the identity matrix. Now G acts on M by conjugation, preserving
both trace and determinant. It follows that the conjugacy class of an element
g in G is equal to the orbit of the same matrix ¢ € M under this action.
Moreover, the action restricts nontrivially to My and trivially to {af : € R}.
Since these two subgroups generate M additively (provided that R has odd
characteristic), it is sufficient to describe the orbits in Mj.

We identify some invariant subgroups of My. Let L; = 7'My, 0 < i < I,
the subset of matrices all of whose entries are multiples of 7¢. This is invariant
under the action of G because the constant 7? factors through the conjugation.
We have {0} C L, C Ly C---C Ly = M,.

Let A € My be a matrix that is not in L;. We will find a canonical repre-
sentative for the similarity class (orbit) of A. Form the 2 x 2 matrix B over
F, = R/mR by reducing the entries of A modulo 7R. B has trace 0 but is not
the zero matrix, hence it is not a multiple of the identity matrix. We there-
fore know that B is conjugate by some element of GL(2,F,) to the matrix

12



(1 B det(B)>. It follows that A is conjugate by some element of G to the

Al — e ﬁ
1+7y —7a

for some o, 5,7 € R, f = —det(B) (mod mR). Since

(1 110;7)‘114, (1 1::0;7) _ (1 7r2a2+(1+7r’y)6) _ (1 —det(A’)>

we have shown that the orbit of A contains a unique representative of the form

matrix

(1 ﬁ) The set of all such matrices, with § € R, contains one representative

from each orbit in My \ L;.

Now consider any matrix C' € L; \ L;j11,0 < ¢ < £. Thus C = 7' A for some
matrix A € My \ L;. We will reduce the problem of finding a representative for
the orbit of C' to the special case we have already solved, but over a different
ring. Let R; = R/7*"'R. There is an additive isomorphism 6 : R; — 7'R given
by 6(x) = w'z. Write 0 also for the corresponding map of 2 x 2 matrices, and
use bars to denote reduction modulo 7~*R. Hence, for g € G,

gCg~ " = g(n'A)g™! = 'gAg™ = 0(gAg ).
That is, the orbit of C' = 0(A) under the action of GL(2, R) is #(O) where O is
the orbit of A under the action of GL(2, R;). We know the orbit representatives
for this action, because it is the special case considered before. Thus holding
1 fixed, C' must be in the orbit of exactly one of

()
s BeTIR.

There is another special case, ¢ = £, but it includes only the 0 matrix.

As remarked before, knowledge of the similarity classes of M, implies knowl-
edge of the similarity classes of M and the conjugacy classes of GG. The following
is a set of similarity class representatives for M : the representatives of My,
plus arbitrary multiples of the identity.

(a ﬁ)
7
o« 0<i<l,a€R,B€TR.

For conjugacy class representatives of G, it suffices to discard singular matrices
from the above list. We can make a more useful list at the cost of distinguishing
a few cases. First we have the case ¢ = ¢, for which the matrix is a multiple of
the identity. Otherwise, fix i < ¢, and let 8 = 0(v),v € R;.

13



If 7 is the square of a unit in R;, say v = §? € R, then

a 3 o+ 1o
S a—71)"

Note that ¢ is only defined up to sign.
Fix a nonsquare unit € in R. If v is a nonsquare unit in R;, then vé~! is a
square, say v = 6%¢,d € R. In this case,

a 3 a  Tiie
™ o) \xs o )

Once again, ¢ is only defined up to sign.
For the remaining case when + is not a unit, we have 3 = 7'*!" and therefore

a ﬁ [« 7Ti+1ﬂ,
™ o)  \1 «

Summary: Conjugacy Classes of GL(2, R), where R = Z/p‘Z
For 0 <i < ¢ and non square unit € € R, we have the following summarization:

is another class type.

Name of class type Parameters Representatives
I, a € R* a 0
0 «
i1
Biag a€ R*, 3€R/p‘R (Oi P 6)
P Q@
Cia a € R, B € R*,a®— ¢32p* € R (f‘ pzeﬁ)
5 g G°p VB a
Dius a,0 € R, a—§ € pPR <(g g)
Name  # of classes if i =0 # of classes if i > 0 Size of class
L - (p—1p! 1
Bug  (p= Dy (=P (= 1)(p+ D
Ciaﬁ %(p _ 1)p2£—1 %<p o 1)2p2£—z‘—2 <p _ 1)p2€—2z‘—1
Dma %(p _ 1)(]) _ 2)p2€—2 %(I) _ 1>2p2£—i—2 (p 4 1)p2€—2i—1
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Chapter 3

Irreducible character degrees of
GL(2,Z/p'Z)

In this chapter, we first construct 3 types of irreducible characters of GL(2, Z/p‘Z),
then count the number to see that we do have all of them. We will also see
how to modify the case when p = 2.

3.1 Construction of Irreducible Characters of
GL(2,2/ ng)

In this section, we will apply Clifford Theory to construct 3 kinds of irreducible
characters of G = GL(2,Z/p'Z). The main idea of Clifford Theory [5] is as
follows.

Let N < G be a normal subgroup of GG. For any character ¢ of N, we can
define
¢?: N — C;¢%(n) = ¢(gng™"),Yg € G,n € N.

@9, the conjugate to ¢, is also a character of N. Let Irr(N) be the set of
irreducible characters of N, denote 7" = Stabg(¢) = {g € G | ¢ = ¢}. Let
¢ € Irr(N), Clifford’s Theorem indicates that there exists ¢ € Irr(T"), such
that v |x is a multiple of ¢, namely the inner product [¢) |y, ¢] # 0, and then
the induced character Ind% 1 is in Irr(G). Also, the map ¥ — 1 is a bijection
of {p € Irr(T) | [ |n,¢] # 0} onto {x € Irr(G) | [xn, ¢] # 0}.

Let p > 2 be prime, £ > 2 be a positive integer, R = Z/p'Z,m = |1/2],G =
GL(2,Z/p'Z), and K; = {I + p'B : B € My,»(R)} for 1 < i < (. Note that
K; <G, for all i, and that K; is abelian if i > ¢/2, because (I +p'B)(I+p'C) =
I+ p'(B+C). Since

I+ Pi@ pib /—i 4(0—17)
' {( p'c 1+ p'd O<abed<p then [K;| = p
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Characters with kernel containing K, ; are lifted from the quotient group
G/Ki 1 = GL(2,Z/p*'Z); we assume that these are already known induc-
tively.
We first describe the characters of the abelian group Kj;, i > [/2. Assign a
fixed injective homomorphism A : Z/p‘Z — C* and let A € Myyo(Z/p'Z),
then ¢4 defined as

oa(I +p'B) = A(tr(p AB))

is clearly a character on K; of degree 1. Notice that ¢4 = ¢ 44 e-i4/, We only

: . b . :
need to consider those matrices A = < z d ) with 0 < a,b,c,d < p'~*. Let

A— A, GL(2,Z/p") — CL(2,Z/p"™)

be the natural map, then ¢4 is determined by A € GL(2,7Z/p"~?). To simplify
notations, we can consider A to be a matrix over Z/p’~'Z and then we have that
the irreducible characters ¢4 of K; are in correspondence with 2 x 2 matrices
A over Z/p*~"Z. By the definition of K;, we can also treat B as a matrix over
Z/p*~Z. We can also find injective homomorphism X : Z/p*~'Z — C* such
that A(tr(p’AB)) = XN (tr(AB)). Thus, when there is no confusion, we can also
define ¢4 this way:

¢a(l +p'B) = A(tr(AB))
where \ : Z/p*~"Z — C* is an injective homomorphism. In the following
sections, we may use different versions of ¢4 for different purposes and this
does not cause any confusion once we use the above identification.
An element g € G acts on K; by conjugation via (I + p'B)? = I + p'gBg™ 1,
and thus ¢ also acts on the characters of K; via

(¢4)'(I +p'B) = ¢pa(l +p'gBg™")
= A(tr(p'AgBg™"))
= Atr(p'g ™ AgB))
= ¢ 41 (I +1'B).

The stabilizer of ¢4 is
T = Stabg(¢a) = {g € G: gA = Ag}.

Clifford’s theorems imply that all the characters of G can be obtained by
inducing from 7" to G all possible characters ¢ of T that restrict to multiples
of p4 on K.

When ¢ = 2m is even, the existence of the abelian normal subgroup K, (with
i = m) allows characters to be constructed easily. The process is as follows:

K, — T — G

; ind
Y e
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where g4 (I4+p™B) = A(tr(p™AB)), T = Stabg(¢a) = K,,,S for some subgroup
S of G, depending on the choices of A. One nice thing in the even case is that
we can always extend ¢4 to 1. Moreover, we also have an explicit formula for
v, which helps us a lot to find values of x later. By Clifford’s theorem, we
know y = Ind$ 1 is irreducible.

Starting with different matrices A to define ¢4 on K,, will give us different S
for the stabilizer T', and therefore will end up giving us irreducible character
x of G with different degrees. We have three cases and this gives us all the
degrees we need.

i) A= ( g 8 ) k€ (Z/p™Z)*. In this case, we have S = {(1(()} 2)} The

construction will give us irreducible characters of G with degree (p + 1)p*~L.

i) A = 0 ¢ , Where € is a non-square unit. We have S = vy
10 Yy oow

and we can get irreducible characters of G with degree (p — 1)p*~?.

iii)Az(? p(?),ﬁeZ/me. WegetS:{(Z] pf)y)}andwewillhave

irreducible characters of G with degree (p? — 1)p*~2.

If ¢ = 2m + 1 is odd, the construction is a little more complicated. Notice
that K, in this case is not abelian, we start with the normal subgroup K,
and define ¢4 on K,, 1 using the same formula as before. We also have T' =
Stabg(¢pa) = K,,S for some subgroup S, depending the choices of A. Unlike
the even case, we cannot extend ¢4 to 1" directly. Instead, we can construct
irreducible characters ¢ € Irr(T"), with degree p, such that [¢ |k, ,, ¢a] # 0.
By Clifford’s theorem, we know Ind% v € Irr(G).

When we use A = ( /({): 8 ) or A= ( (1) poﬁ ) to define ¢4 on K11, we will
end up with finding irreducible characters of G with degree (p + 1)p*~! and
(p? — 1)p*=2 respectively. The construction process is as follows.

Knga2 — N — T — T — G

b T d TH TS S

i ¢
T = Stabg(¢4). We pick a proper normal subgroup N <17 so that we extend
¢4 to ¢y naturally. T" = Staby(¢/y) and we can also extend ¢y to ¢ of T.
By Clifford’s theorem, we know that ¢ = Indr(¢') is irreducible and clearly
[V |k, 1> $a] # 0. Therefore, y = Ind¥ ¢ is irreducible.
If we start with A = ? to define ¢4, we will get irreducible characters

€
0
of G with degree (p — 1)p*~! and here is the construction process.
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Km—&—l—)m—&—l—)H—)Nm—)T—)G

b TH T S

Ni:Ki(KlmS){(a a)},H:Nm+1<<1+pm 1)>

The extensions ¢’ and ¢” are constructible. 6 is irreducible because

Staby,, (¢") = H. 6 is extendible to 1) because 6 is stable under 7" and T'/N,,, is
cyclic. Eventually, we have irreducible character x of G with degree (p—1)p*~!.
More details of the constructions will be given in later sections when we need
to evaluate irreducible character of x in each case.

6 = ISy

where

3.2 The number of characters

In the last section, we know we can construct 3 kinds of irreducible characters
of G. Now, we want to count the number of each kind and see that we actually
have all the irreducible characters of each degree. From the constructions we
had before and the work of Nobs [1], we have the following table(*).

A S deg x number y of this degree
k0 w 0 -1 1 3,,20-3

! S) <Z ii/) (p=1p"" 3= - )P
((1) poﬁ) (ZJ pgy) (" = 1 (p— 1)p*?

Recall that we constructed 3 kinds of irreducible characters using the simple
matrices A as in the above table, but one single A does not give us the complete
corresponding irreducible characters x of each degree. Fix one injective A :
Z./p‘Z — C*, in order to get all the irreducible characters of the above three
degrees, we start with more general matrices A’, such that the stabilizer T'
stays the same in each case. This will give us more irreducible characters of G
with the same corresponding degree. Since starting with conjugate characters
¢4 will give us the same irreducible character x of G and ¢4, is conjugate to
¢4, if and only if A; is conjugate to As, counting the number of non-conjugate
matrices of A’ in each case can give us the number of the irreducible characters
of GG of each degree.

Since our constructions in the even and odd cases are different, we will first
count the number in the even case and then do it similarly in the odd case.

18



3.2.1 G =GL(2,Z/p*7Z), i.e. {=2m

Recall that in this case the general process to construct irreducible characters

of G is as follows:

K, — T — G

o1 TH b TS X
where ¢pA(I +p"B) = A(tr(p™AB)), T = Stabg(¢a), ¢ is an extension of ¢4
and y = IndS+. By Clifford theory, we know x is irreducible and we have
three kinds of irreducible characters of GG. In each case, we have

# of irreducible characters of G = # of non-conjugate ¢4 x # of extensions ,
so we count how many non-conjugate ¢, we can get in each case.

k . .
In the first case where A = ( ) , we can start with more general matrices

a+k

Agp=al + A= ( N ) , where a € Z/p™Z,k € (Z/p"Z)".

We can define ¢4, , on K, using the same formula as ¢4. Later we will see

Stab(;(quayk) = Stabg(gbA) =T

and we can also extend ¢4, , to T'. Therefore, we will get irreducible characters

a+k

of G with degree (p + 1)p*™~!. Notice that ( N ) is conjugate to

( @ otk ), hence the total number of non-conjugate A, x, and so of non-
conjugate ¢4, is

1
5P

1 1
m mf):
2

—p"(p" —p

1
2m—1 — 1) == -1 Z*l‘
5 (p=1)=5b-1p

Multiplying it by the number of extensions from K, to T, which is (p —
1)?p*~2in this case, gives us all the irreducible characters of degree (p+1)p‘~t.

In the second case when A = ( 6) , we can start with general matrices

1

Aa,ezaHA:(O‘ E)

1 «

where o € Z/p™Z and ¢ is a non-square unit in Z/p™Z. Notice that A, . is
conjugate to A, ¢ if and only if o = o/, € = ¢/. The number of non-square unit
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. m__ . m—1 m m— m - 1
e is =—=2— therefore we have (p™ —p™ ')p™ = 4(p — 1)p*~* non conjugate

characters ¢4, on K,,, which is exactly what we need to complete this case.

The last case when A = (1 p ﬂ) , we can use general matrices

Asp=0al + A= ( (f paﬁ ) where o € Z/p™7Z and 3 € (Z/p" ' Z)*.

By counting the number of a and 3, we have pmp™~! = p~!

®ap on K, and this is exactly what we need.

non conjugate

3.2.2 G =GL(2,Z/p*"7Z), i.e. {=2m+1

Now the construction of irreducible characters of each kind is different from
the even case. We will count the number case by case.

(i) A = < ki ) Jk € (Z/p™Z)*. Starting with ¢4 on K,,.1 < G, we end

up with irreducible characters of G with degree (p + 1)p*~!. The process is as
follows:
Knoa2 — N — T — T — G

ba TH gy Th S

v — X

B 1+ p™a pm—i-lb , a pm—i-lb B
WhereN—{( v 1+ pid " = e d ,and T =

{( pﬁc p’;b )} N < T and ¢/4(n) = A(tr(A(n —1))),Vn € N. It is easy

to check that ¢4 is a one-dimensional character and an extension of ¢4. We
also have Stabr(¢/,) = 7" and we can extend ¢4 to ¢'. By Clifford theory, we
know ¢ = Ind, ¢’ € Trr(T'), and therefore, x = Ind$ ¢ = Ind7, ¢ € Irr(G). To
count how many irreducible characters of G we can get in this case, we need
to look at the following piece of the construction:

N — T — T
O TH TS

Similar to the argument in the even case, we know that non-conjugate ¢/, on
T’ can give us different 1 on T', and eventually will give us different y € Irr(G).
Therefore, we want to count how many non-conjugate ¢’y we have on T". By
making A into more general matrices

a+k

Apr=al + kA= ( N ) , where o € Z/p™ "' Z, k € (Z/p™ ' 7)*,
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3(p
that the number of extensions from N to 1" is ‘%\;'I = p3(p — 1)%, we have

%pg(p —1)p3(p—1)% = L(p—1)*p*~2 irreducible characters of G with degree

2
(p+1)p™t

m—+1 m—+1

we have —p™)p = %pg(p — 1) non-conjugate ¢/, ~on N. Notice

(ii) Now let us consider the case when A = P . We can find irre-

1
ducible characters of G with degree (p — 1)p and the process to construct
these characters is very similar to the above case. We have

20—2

Ky, — N — T — T — G

b4 TH gy TH S Sy
where
N:{<1+pma p™ )} T’:{(a pjﬁb+pm+1c)}
p"e 14+ p™d ’ b a+pmd ’
and

T a p'Bb+pmc
- b a+p"d '
By a similar argument, we only need to look at the following piece

N — T — T

Oy T TS

and we can start with general matrices

Aaﬁ:aHA:(o‘ pﬁ)

1 «

where o € Z/p™'Z and § € Z/p™Z to define ¢4, , on N. The number
of such ¢,p5 is p"p™™ = p’ and the number of extensions in this case is

% = (p — 1)p*~2 Therefore, we have (p — 1)p*~2 irreducible characters of G

with degree (p — 1)p*~L.

(iii) Now consider the case A = . The process to construct irreducible

1
characters of G with degree (p? — 1)p*~? is as follows:

Kmyn — Ny — H — N, — T — G
ext ext ind ext ind
oa = ¢ S ¢ S0 5 ¢ IS Indfy

(5 e () )
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To count how many Indg 1 we can get, it is equivalent to count the number of ¢
on T. With this construction process, we always have the following properties:

0 |Nm+1: pgb,; 0 |Nm—Nm+1: 0.

Therefore, later we only need to consider the extensions from K, 1 to Np,11
and N, to T.
Generalize matrix A with

Aaezal—i—A:(a €>
’ 1 «

where a € Z/p™Z and € is a non-square unit in Z/p™Z, we have %(p

pm—1>pm = %(p — 1)p€—2 nOn_Conjugate ¢Aa,e on Km+1. The number of exten-
: rig INmaal
sions froméﬁlAa’e to ¢ is Kmi1]

0 to 1 is wg =P+l Therefore, we have total number of %(p —1)p2(p —

Dp~tp+1) = 3(p— 1)(p* — 1)p* 3 irreducible characters of G with degree
(p* — 1)p*?

m_

(p — 1)p*~%, the number of extensions from

3.3 About Character Values

Now we will show that as long as we have the values of the irreducible char-
acters constructed using the simple matrix A in the table (*), we can also
deduce the character values of the remaining ones easily. Let x4 be an irre-
ducible character of G constructed using simple matrix A in the table at the
beginning of this section, and let x4 be an irreducible character of G con-
structed using corresponding general matrix A’. We will give a formula that
relates y 4 and ya.

€
1 Y
and the general A’ = A, = ol + A. The construction process is as follows:

Let us use the notations in the case when G = GL(2,Z/p*™Z), A = (

K, — T — G
ba TH o TS

We will prove the formula in this case and all the other cases follow exactly
the same way.
Given X : Z/p‘Z — C*, recall the definition of ¢4 and ¢4, , we have

.. (I +p"B) = Ntr(p™AncB))
= Atr(p"aB + p"AB))
= A%(tr(p" B)A(p™ AB)
= (" B))oa(l + " B)
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where \*(g) = A(ag).
Let B = (z Z) , we have tr(B) = (a+d) and det(I +p™B) = 14+ p™(a+d).
Note that {1 + p™a}* = {p™z}* in Z/p'Z, we can find a character p, = i :

(Z/p*Z)* — C* such that
A (™ B)) = pu(det(T + p B)).

Therefore,
Pa,. = (podet) x 4.

Notice that p o det is a linear character of G, and hence it is stable under G,
we have Stabg(¢a,.) = Stabg(¢a) and (p o det) x 1) is an extension of ¢4,
provided that 1 is an extension of ¢4. It is clear that

XA, = Ind$[(1 0 det) x ¢] = (o det) x Ind¥ ¢ = (po det) x x.

From the above formula, we know that as long as we have the character values
of x4, we can have all the remaining character values easily. We will start to
evaluate ¢4 in the next chapter.

3.4 When p=2

In section 3.1, we used 3 types of matrices A to define ¢4 and eventually got
3 types of irreducible characters of G. Now if p = 2, two types of construction
work exactly the same way as before and the only one that needs to be modified

) € )
is the case where we used A = ) . The reason we chose matrix (

1 1

before was that this matrix can generate the group < ( 1 ¢ > > of order p?—1

01
11
and we can use this type of matrix to define ¢4 and eventually get all the
irreducible characters of degree (p — 1)p*~!.

In the even case when ¢ = 2m, we still have the same process

in the field case. Now if p = 2, the matrix that plays this role is

K, — T — G
b1 =By IS X
where ¢4 and K, are defined the say way as before and T' = K,,,S with S

0 «
13 ) where o and

[ are units in Z/p™Z, so that A, g is mapped to the matrix 01 by the
B 1 1

abelian. The general matrices we can use are A, g = (
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natural map from GL(2,Z/p*"Z) to GL(2,Z/pZ). By looking at the trace
and determinant, we can see that A, s is conjugate to A, s if and only if
a = o, = (. Therefore, the number of such non-conjugate matrices A, g
are

<pm . pm—1)2 — p2m—2(p . 1)2 — 2@—2’
which is the same as 5(p—1)p*~! for p = 2. The number of extensions from ¢4
tois | T : K,, |= p"~2(p?—1), which is also the same as before. Therefore, we

can have all the (p—1)p*~!-dimensional irreducible characters of GL(2, Z/2Z).
As in the odd case before, we will have the process

Kng,2 — N — T — T — G

A e
: . 0 «
when ¢ = 2m+1. Just making the general matrices A, 3 = 13 ) we have

the similar way to count the total number of irreducible characters in this case
as well.

To summarize, the formulas we found before about irreducible degrees and
number of each degree also work when p = 2.

3.5 Replacing Z/p'Z by R/P*

We have seen formulas of the irreducible degrees and number of each degree
for group GL(2,Z/p‘Z). Now let R be the ring of integers of a local or global
field, and P be a prime ideal of R such that R/P is a field of ¢ elements, g odd.
We will see that, by replacing p by ¢ in the previous sections, the formulas
about character degrees and the number of each degree also work for group
G = GL(2, R/P*). We will look at one construction example when ¢ = 2 and
the other cases are similar.

Now R/P is a field of ¢ elements, then we can get that | GL(2, R/P") |=
¢*“H¢* = 1)(¢* — ¢). In particular, | GL(2, R/P?) |= ¢*(¢*> — 1)(¢* — q).

Let € be a non-square unit in R/P and let A = ? 8 Let Ky =
btpe 2 ) e prpr\Z (14 BB € M(2,P/P?)}, then | K, |=
P31+ pa

1
q*.
Define ¢4 : K1 — C*,¢a(I + B) = A(tr(AB)), that is

I+p D2
= A(eps + p2),
¢A( D3 14 p, (p3 ]92)
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where A\ : R/P? — C* is a homomorphism such that P ¢ ker(\). The
stabilizer of ¢ is

T = Stabg(da) = K18 where S = {( z ii/ )}

By similar arguments as before, we have | S |= (¢* — 1)¢* | T |= (¢* — 1)¢*.
We also have that T'/K; is cyclic, therefore we can extend ¢4 to ¥ of T and
the following construction process:

K1—>T—>G
ind .

b =5 o 2S5y

Now x € Irr(G) and deg(x) = % =¢ —q=qlqg—1).

We can also count the number of this degree by the same method as before.
The general matrices we can use to replace A before are

a €
Aaﬁ:(l a),aER/P.

Since the number of non-square unit € is %, we have %q(q — 1) non-conjugate

A, .. The number of extensions from ¢4 to ¢ is equal to

7| _

2
qg — 1.
| Ky |

Therefore, there are
1

§Q(CI - 1)((12 -1)

irreducible characters of degree q(q — 1).

Notice that the corresponding formulas of this degree and number of this degree
formula in previous sections are p(p — 1) and 3p(p — 1)(p? — 1) respectively,
the only difference here is that we replace p by ¢.
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Chapter 4

Character Values

We will evaluate the values of irreducible characters we constructed in the last
chapter. Some proofs are skipped and can be found in [10].

4.1 Values for Characters with Degree (p +
1)p€—1

In this section, we will first find values for characters of degree (p + 1)p*~!
by parabolic induction. We will use Clifford Theory to construct irreducible
characters with the same degree and show that these two kinds of irreducible
characters are the same.

4.1.1 Character Values by Parabolic Induction
Here / can be any positive integer. Let B C G = GL(2,%Z/p"Z) be the Borel
subgroup { (8 IC)) } . Let X be injective character of R*, let ¢ be the character

of B given by ¢ (g lc)) = Aa), and let y = Ind§ ¢.
Claim: y is irreducible.

Proof. Tt suffices to show [x,x] = [¢,x |s8] = 1. By Mackey’s Theorem, we
have

X |B= Z IndegflmB(%),where 0y(9Xg™") = ¢(X), X € B.

G=UBgB

In order to calculate [¢, x |g], we want to look at [gb,IndegflmB(ng)] =
(& |4Bg-1nB, @4 for each double coset representative g of B. Pick the double
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coset representatives of B to be

0 1 1 0 .
= . — . <1 <
g <1 O)agz (pz ),1_2_5.

0
a

—_

[ a b [ c
LetX—(O c>,wehaveng _(b

= {(3 2} (5 1) s (5 2) 0

Since ¢ # ¢, and they both have degree 1, we know [¢ |,55-1n5,Pg] = 0.
Similarly we have

_ g+ c b
gZBgz 1ﬂB = {( p 0 pzb+c )}’ and [¢ |giBgflﬂB7¢gi] - 07

when 1 < i < £ It is clear that [¢ |, 5115, @] = 1 and hence, [¢, x5] =
D6 x] = 1.

) . Therefore,

]

To find the character value on an arbitrary conjugacy Class C, we use the

following formula:
(C) = % 3 @) {(b,c) cR: (g i) eBﬂC}'. (%)

a€ERX

The result is as follows:
X(Diac> = pz()\(a) + )\(C)>7 X(B(Zfl)a()) = pz_l/\<a)7

X(1a) = Ma) deg(x) = (p + 1)p " Na)

and  is 0 on all other conjugacy classes.

4.1.2 Character Values by Clifford’s Theorem

Now we will use Clifford’s theorem to construct irreducible characters of
GL(2,Z/p'Z) with degree p*~(p+ 1) and we will see that they have the same
character values as x in the last section. We first assume ¢ = 2m and will talk
about the odd case later.

Let \: (Z/p*™Z)* — C* be injective. Define

1+p"a  p"b

/. X / o m
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then we have Stabg(¢') =T = { (p’(i pdb) } . We also have
y a b
$:T—C ,¢<me L ) = \a)

is an extension of ¢/. By Clifford Theory, 1) = Ind% ¢ € Irr(G), and deg(¢)) =
P+ ).

Next, we want to find the character values of .

Lemma 4.1. [fu,v € R* and m <k <1, then Y. M u+ p*tv) =0.

0<t<p™
Proof.
Z Mu + pFtv) = Z M)A (1 + pFtou™)
0<t<p™ 0<t<p™
> AL +pft)
0<t<p™
=0.

Pick the coset representatives of T" to be

1 =« 1 0 1 pz 1
pu— — < m
Ea:y (0 1) (y 1) ,Fa:z (0 1) ( 1 pz) ,O S ZT,Y,pzr < p.

We first evaluate ¢(Cjag). Since TN Cinp = @ if ¢ < m, we assume [ > i > m.
Notice that

E

Ty

o pef\ g _ (a—pefy +pPr(l—ey?) pT
plﬁ « Ty P * ?

a peB\ o1
_ ([O& +p 1 Bz(e — 1)(1 — p?2%) 7 + plaBe — p?2?) (1 — p?2?) ! *)
%]

= e

Y(Ciap) = Y Aa—pleBy) +pzp(l — ey®)]+

0<z,y<p™

> Mla+p T Bz(e— D)1 = p2?) 7N + plaple — p?2?) (1 - p*2*) '

0<pz,x<p™

By lemma 4.1,

> M —pleBy) + p'zB(l — ey?)] =0,

o<z<pm
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> Mla+p ' Bz(e = 1)(1 = p*2°) '] + pafle — p*27)(1 - p*2*) '} = 0.
0<z<p™
Therefore,
Y(Ciap) = 0.
Using the similar method and applying lemma 4.1 throughout the calculation,
we have

U(Be-1yas) = 07 N@), ¥ (Diag) = p'[Aa) + A(0)], ¥(1a) = Aa) deg(4)).

Comparing the 1 we constructed here with the y by parabolic induction in
the last section, we notice that ¢ and x take the same non zero values. Since
deg(v)) = deg(x) and v is irreducible, we must have

[, x] =D x] =1

Therefore, 1) = x. and this is another way to show that x in the last section
is irreducible.

Now we talk about the odd case. Although the way we construct 1 is a little
different when ¢ = 2m + 1, we still have the same result. Suppose ¢ = 2m + 1
now. Let A : (Z/p*Z)* — C* be injective. Denote

B 1 +pma pm+1b , a pm+1b B a pmb
N_{( p"e 1+ p™d I = p"c d T = p"c d '

We will have the following construction process:
Knga2 — N — T — T — G
6 g oy S g Sy

where

1 + m—l—la m—i—lb "
¢ ( prf—s—lc 1 _ipipm‘f'ld = /\(1 +p +16L)7 Stabg((,b) - T

Also, N < T and ¢’ on N is an extension of ¢ such that ¢'(n) = A(ny;) for
all n € N. Moreover, Stabr(¢') = T" and we can extend ¢’ to ¢’ of 7" with
o(t") = A\(t),),Vt' € T'. Therefore,

¢ =Indy ¢’ € Ire(T) and (¥, ,, ) # 0.
By Clifford Theory,
X = Ind§ ¢ = Ind$, ¢ € Irr(G) and deg(x) = p" *(p+1).

Consider y as the induction of ¢’ from T”, the evaluation process is the same as
in the even case and the same result follows. Namely, the irreducible characters
of degree p*~!(p+1) by Clifford’s theorem are the same as the ones constructed
by Parabolic induction and we know the character values.
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4.2 Values for (p — 1)p'~!-Degree Characters

In this section, we will construct the irreducible characters of G with degree
(p — 1)p*~! and find the character values. We first find character values on
K ;,1<:i< %, and then work on the remaining character values in two cases
depending on whether ¢ is even or odd.

4.2.1 Character Values of Elements in K, ;,1 <i <

NG

Let S denote the subgroup of GL(2, R), R = Z/p‘Z consisting of matrices of

the form (Z

, where € is a non square unit in R.

Lemma 4.2. The group S has order (p*> — 1)p**=2. Moreover S is the semi-

direct product S = (K1 N S) (s,) where so has order p* —1; SSH has the form
c 0
b

Let A be the matrix ([1) 8) over the ring R; = Z/p'Z, and let ¢4 be the

corresponding character of K,_; :

{—1i {—i
() () () oo

Let S; denote the subgroup of GL(2, R;) consisting of matrices of the form
a be 0 (2 2i—2
(5 %) so 11 = 67 =1

Lemma 4.3. The following set of cardinality (p—1)p*~!

representative from each right coset of S; in GL(2, R;).

{(1 CCZ) :ceRi,deRf}.

Proof. 1t is easy to check that the above set actually forms a subgroup of
GL(2, R;) and the only element that lies in S; is the identity. The number of
elements in this subgroup is (p' — p*~1)p’ = p*~!(p — 1). On the other hand,
from proposition 2.3.1,

|GL(2,Z/p'Z)| = p*" D (p* — 1)(p* — p),

so the index [GL(2,Z/p'Z) : S;] = p**(p — 1). We have a complete list of
coset representatives. ]

includes exactly one
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Lemma 4.4. . Let 2 € RX. The number of solutions (x,y) € R? of the
equation x* — ey? = z is (p+ 1)p'~!

Proof. We claim that the map det : S; — R is surjective. This is easily seen
if 2 = 1. In general, the claim follows using the commutative diagram

Si - S1
(Z/p'Z)* —— (Z/pZ)"
where the horizontal maps are “mod p” and the vertical maps are det. The
number of solutions to 22 — ey? = z is the number of matrices <9yc ? in .S;
whose determinant is z. This number is |S;|/|R}| = (p + 1)p"~*. O

Lemma 4.5. If A : R — C* is injective and 0 < j < i then

| 0, ifj<i—1,
S yer Ry =4 ~1, ifj=i-1,
1,  ifj=i.

The proof uses the fact that for any yy € R; and j < 1,
> {A®) :y = yo( mod p/)} =

Suppose x is any irreducible character of G whose restriction to K,_; contains
copies of ¢p4. For any X € K,_;, by Clifford’s theorem,

X)=e) (X

where ¢1, ¢, ..., ¢; are the distinct conjugates of ¢4 in G.
Choose

Ecd:<1 2) ICERi,dGRiX

from lemma 4.3, we have each ¢, = ngc_dl AR, for some ¢, d, which implies

t = (p — 1)p*~1. Notice that each ¢; has degree 1, we have ¢ = @fﬁ%
Therefore,

W) = BN Y S (4 pXE))

ceER; deRX
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1 a

st ()6 ()0 o)

—1 _aC
_1+p4_i<a+c d=(b c)>

Now when X = I + p*~* <a b) ,

d a—-c

Therefore tr (A%) =ed+d (b — c?), so that

XX)=p ) > Med+d ' (b— ).

c€Ri deR}

Define

P=Y > Ned+d'(b-c")

c€R; deR)

so that y(X) = p*~%P. We can find that [10]
P = (—p)'(A(2u) + M(—2u)) if u® = eb € R
P=—pifi=1land b=0

P = 0 otherwise .

Therefore, we have
X(Io) = deg(x) = (p — 1)p" ",
X(Ciag) = (=1)'p" " (A(2¢5) + A(—2¢83))

_ i, f—i a plep o —p'ef
_(_1)p€ (QbA (pzﬁ o ) +¢A (_pz‘ﬁ a ))7

X(Biag) = (—p)é_1 if i = /¢ — 1 and 0 otherwise ,
X(Diaé) =0

valid when 7 > g.

4.2.2 Remaining Values when / = 2m is even

Lemma 4.6. If i and j are positive integers and N : (Z/p'Z)* — C* is an
injective homomorphism then

> ()=

e,fE€EL/P'ZL
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Proof. Change variables:
!/ f / €

Vitpif Vitpf
where the square root having remainder +1 (mod p) is taken. It can be shown
that the map
f

V1i+pif

is injective. Therefore, the desired sum is equal to

Z X(Ele _€/2>‘

elhflez/pZZ

—

By counting the number of solutions to the equation 2% —ey? = p*z, [10] where
k < i,z € (Z/p*Z)*, this sum can be evaluated using lemma 4.5 of the
previous section.

Now we briefly show that the map

f
V1+pif

is injective. There exists a polynomial S(X) with coefficients in R such that

—

1 )
\/Twzl‘i‘]ﬂs(f)-

Indeed, the Taylor series terminates since p’ f is nilpotent. If f; and f> map
to the same element, we deduce

0=fi— fo+ 1 (S(f1) — S(f2)).

One can show that the coefficient of p’ contains a factor f; — fa, so

0=(fi— f)L+PQ(f1, f2))

for some polynomial Q(X,Y). Since j > 1, the second factor is a unit, so
f1 = fa, as required.

O

Let ¢ = 2m. We found that every character x of G with degree (p — 1)p*~! is
induced from a linear character 1 of the subgroup

_(a eb+pTc
T‘(ba+ﬂw>ga
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The following is a list of left coset representatives of T :

Ecd: (1 ;>’0§C<pm)0<d<pm’p)(d

For X € T, we have

-
Z Y. U(EaXEY)

c=0 0<d<p™,ptd

where as usual, 1/} is the extension of the function ¢ which is 0 off T". Assume
that X & K,,, because we have calculated character values on K,, in the
previous section. The only conjugacy class type that intersects 1" is Cjqp.

Thus, let X = (p?b e];b) ,be R*,0 <i < m. We have

1 [a+pbe pbdt(e—?)
EeaXEoy = ( pibd a — pibe

which is in 7" if and only if p™ | p'bc and p™ | p’b(d 4 1)(d — 1). This is the
condition for ¢ # 0. .
First consider the case 1 = 0. ¢ =0 unless c=0,d=1or ¢ =0,d =p™ — 1,

so that B
X(X) = (X)) + (Bom-1)X Egm_y))

_¢<X>+w((1 _1)X<1 —1>)
(5 Dre(s ).

The second-last equality uses the fact that ¢ is a class function on 7.

Henceforth assume that i > 0. The values of d such that 1) # 0 are p™ i f +1
for 0 < f < p'. The + and — alternatives are interchanged when (p?b 6]; b)

a

is replaced with (—pi b _Ef b); therefore

a e\ .4
Z (& < pmte)(1+p™ f) (p ‘b a ) E(pmie)(lﬂomi))

e, f=0

a —ep'b\ 4
+ Z (G < pmte)(14+pm=if) ( p'b a ) E(pm"'e)(lerm"')) ’

e, f=0
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It suffices to compute the first sum because the second is symmetrical. The
first is equal to

pi 1 1 pmie a b o b
E;Ow [( 1+Pm_if) ( 1 )’(pib a )] ¥ (pib a )’

using the convention
[z, y] = wya ™y~
We find that (modulo p*™),

[Eea, X] = [(1 1+pmif> <1 pmlie) ’ (P?b 65’9)}

m 7 7 €a m—ige2
_ (1 ) L abe + p §b2f —p eb2e'— % '
1 a? — ep?b? \ abf + p'be —pleb® f — abe

This commutator is in K,,, so we can describe its image under v in terms of
an appropriate matrix A = (g f ) € GL(2,Z/p™"Z) and linear character A
of Z/p™Z as

U([Eea, X]) = Atr(p™ " A([Eeq; X] — 1))

3 o bleaf +p"ae®)  eB(abf + p'bPe)
M (—pieb?e — , ‘
(a2 ( peve 1 +pm—zf ) + (12 _ €p21b2

if we define ‘ ,
)\/ _ Apmflabﬂ/(a2_€p2lb2)7

an injective linear character of Z/p'Z. The lemma 4.6 now applies and we have

X(Ciar) = (=)’ (w (p?b 61?) 9 (—;"b _Efib)) '

4.2.3 Remaining Values when ¢ = 2m + 1 is odd

In this section £ = 2m + 1. Let A = (1 E>, and let \ : Z/p*™ 17 — C* be

injective. Define ¢4 on K, by

1_'_ m—l—la m+1b " m
¢A( prnp—i—lc 1_{pm+1d :)\(p +lb+€p HC)‘
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The stabilizer of ¢4 is T = K,,S where S = g gf

an irreducible character ¢ of T such that [¢|k,,,,, ¢a] # 0; then by Clifford’s
Theorem, x = Ind% € Irr(G).

Ni_Ki(KlﬂS){(a a)}

The process to construct 1 is as follows. Let H = N,,,14

. We will construct

Denote

14 p™ We
] .

extend ¢4 to a character ¢’ of N,,,1, then to a character ¢” of H, then induce
to N,,, then extend to T'. Pictorially,

Kerl—) m+1%H—>Nm—>T

o4 TH ¢ T TS Ty

Since N, /Ny, is abelian, any subgroup of N,, containing N, is normal.
Thus H <1 N,,, and the index is p. Here are the details of this process:

(i) Extend ¢4 to ¢'.
Our first attempt is to define ¢’ on K; NS using the same formula as we used
for ¢ 4, namely

&' (I + p(xl +yA)) = Mtr(p(zl +yA)A) = A(2pye).
However this does not preserve multiplication, since

' (I 4 p(ai] + 51 A) (I + p(aol + 2 A))
= ¢'(I + p(a1 + x2)I + p(x1Yy2 + T2y1)A + p(y1 + y2)A2)
= A(2p(x1y2 + T2y )e + 2p(y1 + y2)e).

Note that multiplication would be preserved if either x; and x5 are both di-
visible by p*™ or y; and y, are both divisible by p*™. So we define ¢' on

- 1+ p?ma pYeE - 1+pxr p*™ye .
K, = {( . 1+ pPmy and K, = T I using the

same formula as ¢4, namely,

,(1+p*x pye _ ,(1+pz p*Mye) om

Since K1 NS = K,K, and K, N K, C Ky, C K,,11, we can define the
homomorphism ¢’ on Ky NS by

¢'(gh) = &' (9)¢'(h), g€ Ky h € K,
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Note that ¢’ (1 tpr - pm) = A(0) = 1; so we can define ¢ to be trivial on

a : .
all central elements Q) Np.41, and realize that we can construct a new

extension by multiplying the above ¢’ by a root of unity on a central element.
It is clear that ¢’ is an extension of ¢ 4.

(ii) Extend ¢ of Np,41 to ¢” of H.
We only need to define ¢” on <(1 T 1)> This can be done by first

1+pm
1
root of unity to get different extensions.

(iii) Induction from ¢” to 0

defining ¢” to be trivial on ) and then multiplying ¢” by a pth

It is easy to find an element in N,, that does not stabilize ¢” and since the
index of H in N,, is p, we have Staby, (¢”) = H. Clifford’s Theorem tells us
that § = Indiy™ ¢ is irreducible.

Let © denote the induced representation affording 6. The following result will
help us to find the character values of 1) on T in section 4.4.2.

1+pxr pye

Lemma 4.7. For s € SN K;, s =
pY 14 px

) then O(s) = A\(2pye)l

where I 1s the identity matriz.

Proof. Coset representatives of H in N, are given by

{n(k)z(é p?):ogmp}.

_(1+px  pye 1+ px 0 0 pye
Suppose that s = ( - 1 —I—px) ( |+ pa + w0 )
-1 l+px 0O 0 pye\ (1 p™k
n(k) sn(k) = ( 1+pm> + ( ) <py 0 01
1+ px 0 N pm Tty pye
- 1 +p$ pm+1yk .
This belongs to N,,,11 C H, and A(n(k)*sn(k)) = A(2pye). O(s) = A(2pye)1,.

]

(iv) Extend 6 to 1.

Since @ is stable under T' and T'/N,, is cyclic, we know that ¢ exists. Other
extensions of ¢’ to a character of H have the form ¢”« where « is a character of
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H/N,,. Each ¢"a is a component of the restriction of 6 to H. So 8|y = ¢"«
where the sum is over the p irreducible characters « of H/N,,. It follows that

Y | Npsr= PPy and ¥ |n,, N, = 0.

Now we will calculate the character values of y = Ind$ ¢ € Irr(G). Similar
to the even case, we have the same left coset representatives F.; and we only
need to calculate x(X) where

X:(Cj 6pb>,beRX,0§z’<m+1.
p'b a
We have

1 [a+pbc pbd(e—c?)
EeaX Eey = ( p'bd a — p'be '

This time, the condition for ¢ # 0 yields that p™*! | pibe and p™*+! | p'b(d +
1)(d—-1).
For the case i = 0, we have the same argument as in the even case and we find

that b )
a € a —e€
wo=v(y Dre(s ).
Assume that 7 > 0. We have

p—1

a ep'b\ 4
X(X) = Z 77/) (E(pM+1—ie)(1+pm+l—if) (pr a ) E(pm+1—ie)(l+pm+1—if))
e, f=0

1 )
a —ep'b\ 1
+ Z lp(E(perlfie)(l—f—perlfif) (—pib a > E(pm+1*ie)(1+pm+1*if))'
e, f=0

To evaluate the first sum, notice that

a ep'b\
E(pm+1—ie)(1+pm+l—if) (pzb a ) E(p71’”+1_ie)(l+pm+1_i) S Nm+1 and 77Z)|Nm+1 = p¢/7

we factor out p and use the same method as in the even case, because ¢’ is a
homomorphism. Finally, we will get

X(Cia) = (=p)' (w (p?b qu> + 1 (_Zib _Efib)) :

which is the same formula as the even case.

38



4.2.4 Character Values of v on T

In the last section, we have the formula for x(Cj.) and notice that it depends
on 1) where v is the corresponding character on the stabilizer 7. In this section,
we will consider the character values of .

Even Case, i.e. { =2m

Denote

Km:{1+me},K1={1+pB},sz{(‘; 6y)},A: (g S)

T

Let \: (Z/p*™Z)* — C* be an injective homomorphism.
Define

ba: Ky — C* 0a(I +p™B) = A(tr(p" AB)).
Stabg(¢pa) = K,,S, and hence ¢4 |k, s is stable under K7 N S. We want to
extend ¢4 to ¢ of T'= K,,,S and we will approach it in the following two steps.
Firstly, we extend ¢4 to ¢y of K,,(K;NS). In order to do this, we only need
to extend ¢4 |k,,ns to ¢ of K1 NS. Since ||§;%SS“ m=2
extensions. Notice that

T G
we only need to define ¢/ on<(1+pa 1+pa)> and<<11) pf)>

Since

= p?>™=2 there are p

m—1

_ (l+pa P
C—< 1+pa> e K,NS,

we can define ¢ such that
(14 pa _
¢ < 1+pa)

Similarly,

m—1

_1p€p (1 pe\  mer
b (0 2) " ckansma (1 7)< e

This way, we essentially extend ¢4 to K,,(K; N S) and there are indeed

p?" =2 extensions.

Secondly, we want to extend ¢’ to ¢ of K,,S. From Lemma 4.2,
K,,S = K,,,(KiNS) (so), and K,,,(K; N S) N (so) = 1.
Define ¢ |, (x1ns)= ¢’ and ¢ (s}) = ¢* where ( is a (p*> — 1) root of unity; then

1 is an extension of ¢4 and we know the values of .
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Odd Case, i.e. / =2m +1
Now we want consider the character values of ¢ on T in the odd case. Let

h = <p?b 5]2 b) in the class Cjp. If i > 0, then h € N,,. Since

VN =p¢',  (n) =0ifn € Npw,n ¢ Nyn

we know the character value ¢(h) if h € N,,,. So suppose that h ¢ N,,, that
is, 1 = 0.
In section 4.2.3 we constructed v this way:

Kerl—) m+1HH—>NmHT

A
where
Ni:Ki(KlﬂS){(a a)}»H:Nm+1<<1+p 1)>
Note that

N _{(t+pmx+pa pmy+pbe>}
"o pb t + pa '

Coset representatives of N, 1 in NV, are given by

{g(fﬂ,y)z( o ply):oéfc,y<p}
and the coset g(x,y)N,,+1 is equal to

t+pmx +p"Hd +pa pmy + p™tle + pbe
pb t+ pa '

It follows that an element (2 i) of Ny, is in the coset g(x,y)N,,41 precisely
when

(r—wv)/p" =2 mod pand (s —eu)/p™ =y mod p.
Lemma 4.8. Suppose that h € T and h ¢ N,,. |¢(h)| = 1.

Since h = (Z eab)’ then h € S. We know that S = (K; N S) (so), and that
for s € K1 NS we have O(s) = al for some o € C*. So it suffices to calculate

P(s) for s € (s9) = Sp.
Lemma 4.9. For s € Sy, the value of (s) is a p* — 1 root of unity.

Above all, we know that we can find an extension ¢ on 7" such that ¢(so) = £1.
We can construct different extensions by multiplying ¢ above by a (p+ 1) root
of unity.
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4.3 Characters of degree (p> — 1)p~2 and the
character values

In this section, we will construct the irreducible characters of G with degree
(p? —1)p*~? and find the character values. Similarly to the last section, we first
find character values on K,_;,1 <1 < g We will then work on the remaining
character values in two cases depending on whether ¢ is even or odd.

4.3.1 Character values of elements in K, ;,1 <1 <

ol
1
7 <. Let ¢4 be the corresponding character of K,_; :

1+p~a p~b \ 0 pB3\ (a b\ _ :
¢A ( pé—z‘ 1+p€—ia =A(tr 1 0 1 a _/\(b—i_p]ﬁ)
Lemma 4.10. The following list of cardinality p*~2(p? — 1) includes ezactly

one representative from each right coset of { (;U f’y)} C GL(2, R;) :

{(1 d) (1 T):ceRi,deRf},
()0 ) Yremacs)

Proof. Tt is easy to check that, for any two matrices B, C' from the list, BC “1g
{ (w pjﬂy) } Since the index of { (ZJ pjfy) } in GL(2, R;) is p*2(p*—1),
O

NGl N

Let A be the matrix over the ring R; = Z/p'Z where 3 € R*,1 <

Yy w
we know we have all the coset representatives.

Suppose x is any irreducible character of G whose restriction to K;_; contains

copies of ¢4. Similarly to section 4.2.1, let X = ( 1 . ) 4t (Cll Z) by

Clifford’s theorem, we have

) = % 3 )\(tr (AEcd(Xpe__iI)Ecdl))

cER;,dER]

+ ) )\(tr <AFGd(XpZ__i])FCEI)>,

pcGRi,(iGRi><

41



where

()0 )00

By calculation, we have

tr (A (Ecd(Xp;ZI)Eal1>) :pjﬁd—i—d*l(b—CQ),

— -1 .
tr (AFCd(X e_.])FCd ) = p/Bbd + d" (1 — p*c?b).
p 7

Therefore

XX) =p™2 > AW Bd+dT =)+ Y AW Bbd+d T (1-p*c?b)).

cER;,dER] pcER;,dER]
We want to evaluate the above two sums. For the second one, we have
' ~1 2 2 0, if i > j,
Vo, > A@Bbd+d7M(1—pPc’h)) = 7 .

—p', ifi=7.
chRi,dERi><

For the first sum, denote P = Y. Ap/Bd +d ' (b—¢c?)) and x = p'3d +
CER;,dER]

d=1(b — ¢?), to evaluate P, we need to consider the values that x can take.
From Lemma 4.5, we know that only care about the cases when p'~! | z or
x = 0, because the rest A(z) will sum to 0. We will deal with the case when
1 = j first. The case when j < ¢ is similar but more complicated. When
i=j,x=d'(b—c*). We have the following cases.

(i) If b is non square unit, then b — ¢* is always a unit and therefore z =
d=1(b — ¢*) can only take units. By lemma 4.5, we have

0, ifi>1,
P_{ —pt, ifi=1.

(ii) b = u?, for some unit u. In this case,
pllrep - sc=tutp o

There are 2p such c. For b — ¢, it equals 0 twice (when ¢ = +u); and equals
p b xunit 2(p — 1) times. From lemma 4.5 again, we have

{ 2p -1 =), ifi>1,
P = o
D, if1=1.
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(iii) b = p"'u,u € R. The implicit condition for this case is i > 1, otherwise
it is done already. Now p'™! | b — ¢? & p~! | ¢* and we have the following
cases.
(a) w is non square and i — 1 = 2k for some k. In this case, p'™! | ¢ — ¢ =
pPv,v € Ry, and b—c? = p?*(u—?) where u—v? is always a unit. The number
of v is p~*. By Lemma 4.5, P = —p'~%F = —p%.
(b) u = w?,i— 1= 2k. Like in (a), ¢ = pFv in order for p*~! | x. Now b — ¢? =
p?*(w? —v?) where w? —v? is not always a unit. When v = w +px, p | w? —v?
and p*(w? — v?) = 0. There are 2p'~*~1 such v. For remaining v, the number
of which is p*=* — 2p"=*~1 = pi=F=1(p — 2), w? — v? is a unit. Applying Lemma
4.5, we have

P=2p"p —p ) —p T (p-2).
(c)i—1=2k+1. Nowp ! |b—c? < 2 =0= c=p"! x. The number of
such ¢ is p"*~! and we have

P = _pifkfl'

(iv) b = p'u,1 <t < i — 1. This case can be dealt with similarly to case (iii).

The results can be summarized as follows.

a) t is odd, then there is no ¢ making p"~! | z, hence, P = 0.

b) t is even and u is non square unit, P = 0.

¢) tis even and u = v%, P = 2p2ti(pt — pi=t — p2 4 1).

v)b=0.Nowz = —d '?and P= Y. A—=d7'¢®) = ({p'—p!) 3 \?).
c€R;,dER ceR;

We have the evaluation of the above sum in 4.3.2, so this case is done as well.

When j < 4, the sum can be discussed case by case like before. There are

cases where we have to consider the possible values for § as well, making the

discussion more complicated. Some cases are very simple and similar to what

we just did. For example, when b is a non square unit,  can only take units

and therefore P = 0.

From the above results, we can figure out the character values of x on each

kind of conjugacy classes.

(
(
(
(

4.3.2 Remaining Values for Characters of Degree (p* —

1)p£—2

In this section, we want to evaluate the remaining character values. We will
first work on the even case, then the odd case will follow similarly.
Denote

G = GL(2,Z/p*"7Z), K,, = {I + p™ B},
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A= (1 p]ﬁ),lgjgm,ﬁeRX,R:Z/meZ.

Now let A : Z/p*™Z — C*, injective; B = (Z 2)
Define

ba: Ky — C ol +p™B) = MNtr(p™AB)) = A(p™b + p™ ).

-
Stabg(pa) =T = {(Z p7f+j;£d C) }

We can extend ¢4 to 1 of T" then we know x = Indg Y € Irr(G). We can first
define 1) satistying

L+p™a p™ \ _ y(mp om
w(pm—jc 1_'_pmd _/\(p b+p Cﬁ)

and get different extensions by multiplying by roots of unity.

Pick coset representatives of T in G to be

Fot = (1 d) (1 j) 0<ed<pmde R,

(1 1 pc 1 m %
ch_( d)< 1)<1 ),ngc,d<p ,de R™.

Notice that the only conjugacy class type that intersects 7" is B;,g3, so we only
i+J
need to evaluate the character values of y on X = (;)LZ p a b ) 0 <1 < m.

By calculation, we have
FaXF,' ¢ T Ve, d,

i ig-1(eda 2
EchEC—;:(“ﬁgc P, C)).
p a—pc

and

First, we assume m > i + j. In order for E4XE;' € T, we must have
c=p" e, d=p" "I f£1,0<e<p0< f<pt

Since

it
1 a p'TI3
Y = E(pm—ie)(1+pm—i—jf)XE(pm—ie)(1+pm_i_jf) ( p’L a >

, 14 p™x d'w ’
_ 2 2i+1 ) )
- (a p ﬁ) (pm—jfa—l +pm+z€a—2 1 +pm* )
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where w = (—p*™la"te? — p" Tt Bea™2 — p™ B f), we have

) N L ) )
Notice that

a —ptip B a? — p?tip
weou (4 ) o i g

we know
-1
@/)(E(pm—ie)(upm—i—ff)XE(pm—ie)(Hpm—i—ff))
a ptip 2m—i—j —1 m—i—j py—1 2 i 2
= (5 7)) - )
Similarly,
77D(Ej(Pmﬂ‘e)(Pmﬂ.*jf_l))(Ej(;)}"*ie)(pm*”“'*jf—l))
o —piti P B .
=w(—pi g ﬁ) Np? a7 (" f = 1) (B2 = ple?))

Note that 1 +p™ "7 f and 1 — p™ *J f are two square units, we can make a
substitution,
’ / / €

- - Y e - - )
Viep=f i

to get
a ptp SN a ptp om—i—j —1 2 j 2
(B ) (8 ) s e
b a p a
e=0 f=0
pi—1pti—1 w
a  —piti IR
v S o (T awe - sr).
e=0 f=0 p
The above two summations can be calculated because
p'—1piti—1
SO AT aT (B - ple?)]
e=0 f=0
p'-1 Pt -1
— Z}\(_me—ia—1€2) Z )\(pZm—i—ja—lﬁfQ)
e=0 f=0
pi—1 piti—1
=Y () D (),
e=0 f=0
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for some injective homomorphisms
AN Zp'Tl — C* Ny T T — CF.

Since we have the results that

p2k_1 p2htl_q
DA =" D M) =G,
e=0 e=0
where
p—1
G(N) =D A0
r=0

is the quadratic Gauss sum [2] which has a formula depending on A and p, we
i+j
p B)

can evaluate the summations in the formula of x (al a

Now if i + 7 > m, we have ECdXE;i1 €T = c=pm"e,dc R*. Therefore,
V(EaXEgy) =4 (“ &) Aa™ ' (p"78d + p"™7 pd ™" — ™ ed ™),
and we have

Wo=u(* ) X A )

0<e<p',de(Z/p™Z)*

Denote P = > Ma Y (p™ipd + p 3d~t — p*™~te?d~1)], in order
0<e<p?,de(Z/p™Z)*
to evaluate P we have the following 3 cases.

(i)i+j>2m—i.
In this case, we can find X : Z/p'Z — C* such that
P= > Np*™H=mB(d+d ") — e*d ]
€Z/piT,de(Z/p" L)%
=p" > N[p* =" Bd + d~H (p* 7B — e?)].
e€Z/piT,de(Z/piT)
Now P can be evaluated because the above summation has been done in 4.3.1.
(i) i +j = 2m — i,
In this case

pP=pm > N[Bd+d (5 — ).

e€Z/p*Z,de(Z)p*Z)*
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Compare the above summation with the one in 4.3.1, we know it can be eval-
uated using the same argument.

(iif) i + j < 2m — .
Now we can find injective \; : Z/p*" "7 — C* Ny : Z/p'Z — C* to
simplify P such that

P= ) Nd+d) Y M(ed

de(L/pm2)> c€Z/piL

=p YT N +dT) Y A(ePd

de(Z/p?m—i—iZ)* e€EL/D'L

Note that the second summation above is the quadratic Gauss sum and we

have
Z Ae?) =

e€Z/p?k7

for any injective \ : Z/p?* — C*, thus when i is even, we have

P = prpiti—m Z M(d+d™h)

de(Z/p?m—i=iZ)x

which involves an unknown summation and we will stop here.

Odd Case

Now denote

G = GL(2,Z/p"" L), K = {I +p" B}, Kinya = {I +p" ' B},

a b

Let A : Z/p*™ T Z — C*, injective; B = <c d>' Define

6t Kt — C,64(I + p™ ' B) = Atx(p™ AB)) = A(p" b+ p™+e),

T = Stabg(¢a) = {(z p]fi—;ng;c)} = K,,S, where S = {<§j Wgy) } :

Recall that we have the following picture

Km+1—>N—>T,—>T—>G

ba TH o TH TS g By
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B 1+pma pmtib ,
where N = { <pm+1jc 14+ pmd) [ and we can extend ¢4 to ¢4 of N such
that

pm—l—l—jc 1+pmd

Similarly to the even case, we can get different extensions ¢’y by multiplying
by roots of unity.

1_|_ m m+1b " "
¢’A( e 1 )=A<p o4 p o).

j m—+1
Let T" = { (Z pjib_’—_i_pl;d C) } = NS, then N <7" and ¢/, is stable under 7".

Thus, we can extend ¢’y of N to ¢’ of 7" such that ¢’ is trivial on the center of
G. Since T'<T, and Staby(¢') = T', we have 1 = Ind, ¢’ € Irr(T'). Therefore,
x = Ind$ v = Ind$, ¢ € Trr(G). In order to evaluate the character values of
X, we can consider y as induced from ¢ of T". The coset representatives of 7"
are

Eﬂz(ld)(lf)ﬂ§d<pﬂd€Rﬁ0§c<ﬂ“1

(1 1 pc 1 m %
ch_< d)( 1)(1 ),0§c,d<p,deR.

i+
Let X = (}?’ pa6>,0§i§m,then

-1 / 1 (a+pc pdt(pB—P)

We first assume that m + 1 > i + j, then in order for F.4X Ec_d1 e T, we must
c=p" e, d=p" T+ 1,0<e<ptt o< f<ptiT

By the same method as in the even case, we first calculate

it
4 a —p™p
Y = E(pm—ie)(1+pm+1—i—jf)XE(pm_ie)(l+pm+1_i_jf) (—pi a >

and deduce that

o) =o (V70

a2 — p2i+1ﬁ>
XA T T aT (14 pm T )T B — €2
Denote ¢ (;l piﬂﬂ) = Pt ¢ ( @ _piﬂﬂ> = P~, we have

a —p' a
-1
¢/(E(pm*ie)(1+pm+1*i*ff)XE(pmfie)(1+pm+17i—jf))
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= PR () B - )
Similarly,
¢/(E(pm"'f:)(pm“‘i‘jf—l)XE(;}n—ie)(pM+1—i—jf—1))
=P Ap ™ o T F - )TN B — ).
Making a substitution gives us

'L+1 1 pz+j 1

x(“ Wﬁ) >3 Pt - )

P

pitl_1 piti—1

+ S AP Ap o (e - 1))}
=0 f=0

e

Once again, the above summations can be written as a product of two Gauss
sums, hence can be calculated.

Like the even case, if i + 7 > m + 1, we have

wo=o(",) X st e

0<e<pitl.de(Z/p™Z)*

Similarly, the above summation can be discussed in the same way as the even
case.
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Chapter 5

Irreducible Characters of
GL(3,Z/p'7Z)

In this section, we first work on G = GL(3,Z/p*Z) and find all the irreducible
characters of it and the number of characters of each degree. See also [9]. We
move on to find irreducible characters of GL(3,Z/p*Z). There are 7 kinds of
conjugacy classes for the group GL(3,Z/pZ) and each conjugacy class gives
us one kind of irreducible characters of G. Since these 7 kinds of conjugacy
classes show up for the group GL(3,Z/p‘Z) for any ¢, the 7 kinds of irreducible
characters also show up for any group GL(3,Z/p‘Z).

5.1 The Irreducible Characters of GL(3,7Z/p°Z)

Denote G = GL(3,Z/p*Z), K1 = {I + pB,B € M(3,Z/pZ)}. It’s easy to see
that K, is abelian and K; < G. Fix an injective \ : Z/p*Z — C*, we first
define one-dimensional character ¢4 on K7 using the formula

oAl +pB) = Atr(pAB))

for some A € M;(Z/pZ), the set of 3 x 3 matrices over Z/pZ. Here we use
A € M5(Z/pZ) because (A + pC)(pB) = pAB; but we treat A as a matrix in
GL(3,Z/p*Z), so the matrix multiplication pAB makes sense.

Like in the 2 x 2 case before, we have

(¢A)g<l +pB) - ¢g*1Ag(I +pB)
and the stabilizer of ¢4 is
T = Stabg(¢a) = {g € G : pgA = pAg}.

As it turns out, Stabg(¢a) = T = K;S,where S is a subgroup of G and
depends on the choice of A. Next, we extend ¢4 to 14 of T such that ¥4 |g,=
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$4. By Clifford Theory we know y4 = Ind%(¢4) € Irr(G). The process is as
follows:

K1 — T — G

ex ind

b4 =5 Ya =5 xa
Since x4 = xa if A is conjugate to A’, we want to use non-conjugate matrices
A and have 7 cases. The 7 cases will give us 7 kinds of irreducible characters.
Clifford theory tells us that Ind$(y40) € Irr(G) for any 3 € Irr(T/K,) and

we know
deg(Indf(143)) = deg(3) deg(Ind5 (¥4)).

If T/K; is abelian, then deg(3) = 1 and we have deg(Ind$(143)) = deg(xa).
For other cases, T'/ K is not abelian, we can get new irreducible characters of
G with different degrees by finding all the irreducible characters of 7'/ Kj.
Denote A, = ol + A. For the same ) : Z/p*Z — C*, we can define ¢4, on
K in the same way as defining ¢ 4. Let A*(g) = A(ag), then we have

¢a,(I +pB) = \*(tr(pB))da(l + pB).

a b c
Let B=[d e f|, wehavetr(B) = (a+e+1i)and det(I +pB) =1+
g h 1

pla+ e +1). Note that {1 + pz}* = {px}* in Z/p?Z, we can find a character
fo = 12 (Z/p*Z)* — C* such that A(apg) = u(1 + pg).

A%(tr(pB)) = p(det(l + pB)).

Therefore,
$a, = (podet) x 4.

Since p o det is a linear character of G, it is stable under G. We also have
Stabg(¢a,) = Stabg(¢a) and (p o det) x 14 is an extension of ¢4, provided
that 14 is an extension of ¢4. It is clear that

X4, = IndS[(pn o det) x 4] = (o det) x Ind% ¢4 = (o det) x ¥,

therefore
deg(xa) = deg(xa,)-

In order to show that we have all the irreducible characters for G, we need to
count how many irreducible characters of each degree. In each of the 7 cases,
we can get the same construction process if we replace A by al+ A, because the
stabilizer does not change and we can always find the corresponding extension
Y of 4. The way to count how many irreducible characters of each degree
is similar to the 2 x 2 case before, that is,

# of each degree = # of nonconjugate ol + A
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x# of irreducible characters of T'/ K.

In the end, we will verify that the orthogonality relation holds. Like in the
2 x 2 case, we give details for a specific choice of A and then the argument can
be generalized for matrices al + A.

Since (I + pA)(I +pB) = I + p(A + B), in some cases it is more convenient
to use a multiplicative X : (Z/p*Z)* — C* to define ¢4 such that

da(I +pB) = N[tr((I + pB)A)].

We will specify the choice of multiplicative A’ when we use it later, otherwise
we use the additive one as before.

5.1.1 Irreducible Characters of Degree p?(p*> +p + 1)

We pick A, = k€ (Z/pZ)*. Let X : (Z/p*Z)* — C* be such

0 00
0 00
that

Akpz) = N (1 + px).

We can define ¢4 as

1+ pan p* px

Pa px l+4px px = N'(1+pan).
D px 1 4 px
a px px
The stabilizer is Stabg(¢a) =T = px Ty . We can extend ¢4
px oz w
to ¥4 by defining
a pk px
val px z oy | =N(a).
px oz w
We have
G
xa = IndS(¢4) € Irr(G) and deg(xa) = % =p*(p* +p+1).
Notice that T/K, = (Z/pZ)* x GL(2,Z/pZ) and the degrees of irreducible

characters of (Z/pZ)* x GL(2,7Z/pZ) are

]-7p7p+17p_1 (*)
with numbers

(p—13p—2) plp—1)° ()
2 T

(p=17° (p—1)
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respectively, we can get more irreducible characters of G with degrees

PO +p+ 1,00 +p+ 1), 00 +p+ D)+ 1),0° 0 +p+1)(p—1).
A general choice of A is

kE+ o
Apo = A +al = a ke (Z/pZ)*,a € Z/pZ.
o}

Since Ay, is conjugate to Ay o if and only if k£ = k', = o/, the number
of non-conjugate such Ay, is p(p — 1). To count the number of irreducible
characters with degrees in (), we only need to multiply the numbers in (xx)
by p(p — 1). All the degrees and corresponding number of each degree are
summarized in the following table.

Degrees Number of this degree
P +p+1) plp —1)*
P(p*+p+1) plp — 1)
PP +p+1)(p+1) pp—1(p-1)
P*+p+1)(p-1) e

5.1.2 Irreducible Characters of Degree p3(p+1)(p*+p+1)
0 0

Let A = 0 |,a,b€Z/pZ,a+#b,a+#0,b#0. Let
0

o O

b
0
A, Ag ¢ (Z)p*Z)* — C
be such that
AL(1 4 px) = Aa(1 + p#)], Aa(1 + px) = A[b(1 + px)],

then ¢4 can be defined as

1+ pan p* p*
ba P 1+ paxp  p* = M (14 pain)Az(1 + pags).
D px 1 4 px
a px  px
The stabilizer is T' = px Y px and one extension ¥4 on 1" can be
px px z
defined as
a px px
va | pxoy px | = M(a)ha(y).
px Pk z
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Since

z
is abelian, the only degree we get in this case is

|G|

= m =p*(p+1)(p*+p+1).

deg(xa)

The number of different extensions 14 is
| T/Ky |= (p—1)°.
The general matrix A we can use is

a+a 0 0
Ao =al+ A= 0 b+a 0 |,acZ/pZ.
0 0

Since we get conjugate matrices if we permutate the diagonal entries of A,,

the number of non-conjugate such matrices is w. To summarize, we
have
Degrees Number of this degree
_ _ —_1)3
P+ +p+1) p(p 1)(p62)(p 0]

5.1.3 Irreducible Characters of Degree p*(p — 1)?(p + 1)

0 0 a
NowA=| 1 0 b | suchthat the polynomial t3 — ct? — bt — a is irreducible

01 ¢
in Z/pZ[t]. By subtracting the number of reducible polynomials from the total
number of polynomials over Z/pZ, we can get that the number of irreducible
polynomials, and so is the number of matrices A, is w. Define ¢4 on
K as

0a(I + pB) = A(tr(pAB)).

The stabilizer in this case is
T =K,S,S = {al + yA+ zA?} < GL(3,Z/p*Z).

Since S is abelian,we do not need to find an explicit formula for ¥4. The
existence of ¥4 on T is guaranteed by Lemma 2.2.10 and the number of such
hais

| KiS|

3
=p° -1
| Ky |
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Since K15/ K is abelian, the only degree we get in this case is

G
dogla) = [ =10 = D+ )
We do not need to count
a 0 a
A, = 1 o b
0 1 a+c
0 0 d
in this case because A, is actually conjugateto A= | 1 0 b | for certain
01 ¢

a', b, . Therefore the number of non-conjugate A is

Degrees

P*(p—

1)%(p+1)

plp=(p+1) 1(p+1 . We have

Number of this degree

p(p—1)(p+1)(p®—1)
3

5.1.4 Irreducible Characters of Degree (p* — 1)(p + 1)

0 01
Nowlet A=| 0 0 0O |, then
000
1+ px P P
a| px Ll4px  px = A(pas)
pxazp  px 14 p*
a w Y
and the stabilizer is T' = px T z . One extension ¥4 can be
px  pk a -+ px
defined as
a w Yy
val px w z = AMpasa™?).
pasi px a -+ px

We can get the degree of x4 as

deg(xa) =

right away by inducing up ¥4 to

T/K, =

o O 2

Q

~

o8 & Q

. However, since

=@’ -Dp+1)

y
2 | } c GL(3,Z/pZ)
a
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is not abelian and all the irreducible characters of have

oo e
o8 &
2w w

degrees
17 p,p— 1

with number
(p - 1>27p2 - 1a (p - 1)3
respectively, we can also have new irreducible x € Irr(G) with degrees

P -Dep+DE-1),¢ -p+1p.

The general matrix we can use to replace A is

A, = with « € Z/pZ

o O 9
o Q0 O
O O+

and we have p such matrices. Clearly they are not conjugate to each other.
To summarize, we get

Degrees Number of this degree
(»* —1)(p+1) p(p—1)°
@ -Dp+1E-1) p(p® —1)
p(p* = 1)(p+1) p(p—1)°
We can see some details of constructing irreducible characters of the group
a w vy
0 =z =z in a later section.
0 0 a

5.1.5 Irreducible Characters of Degree p(p> — 1)(p* — 1)

Pick A = , then

S O O
o O =
O = O

1+ px P P
da| pas 1+px  px = A(paz1 + pasz)
D pasy 1+ px

and we have the stabilizer

a b c a b c
T= px a+ px b+ px = K1 S where § = 0 a b
p* p* a + p* 0 0 a
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Therefore ¥l
deg(xa) = 7] =p(p’ - 1)(p* - 1).

The existence of 14 is guaranteed by Lemma 2.2.10 again, but here we give
some details because we will use it in later sections. Notice that

b4 |kins=1,

we can define 14 on T this way:

Va lky= ¢a,Va |s=1,0a(k1s) = ¢pa(k1),Vk1 € Ky, € S.

14 is well-defined and clearly an extension of ¢4. To get more extensions, we
can multiply ¢4 by any irreducible character of T'/K;. Since T/ K; is abelian,
the total number of extensions is

7| _

2
—1).
e pi(p—1)

and we have p

o Q9
S~ O

o
The more general matrix to start with is A, = | 0
0

non-conjugate ones. The degree and number of this degree we get is as follows.

Degrees Number of this degree
p(p’ = 1(p* = 1) P’p—1)

5.1.6 Irreducible Characters of Degree p*(p® — 1)

k 0 0
We will use A = 0 01 in this case, where € is a non-square unit in
0 € 0
Z/pZ. Let A\ : (Z/p*Z)* — C* be injective such that A(kpx) = A\ (1 + pz).
An explicit formula for ¢4 on K is

1+ pan p* p*
ba D* 1+px  pags = A1 (1 + payi)A(pasz + epass).
D pazy 1+ px*

The stabilizer is

a D P a 0 O
T= P b c = K1 S where S = 0 b ¢
px ce+px b+ px 0 ce b
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Since S is abelian, the existence of extension ¢4 is guaranteed by Lemma
2.2.10 and the number of extensions here is

|7 | 2
el = =10+ 1)
z 0 0 z 0 0
The general matrix we can useis A,y = | 0 vy 1 |. Since [ 0 y 1 | is
0 €y 0 € vy
Z 0 0 1
conjugateto | 0 ¢ 1 | ifandonlyifz = 2" and ( Y ) is conjugate to
0 ¢ y/ S

€ vy 2
summarizes this case.

/
( y, 1, ), the number of non-conjugate A, , is Pe-1)  The following table

Degrees  Number of this degree

2(0n_1)\3
p3(p3 . 1) p2(p 1; (p+1)

5.1.7 TIrreducible Characters of Degree p*(p + 1)(p® — 1)

E 0 0
The last casewelet A= | 0 0 1 |,k € (Z/pZ)* and let A\, : (Z/p*Z)* —
000
C* be injective such that A(kpz) = A (1 + px). ¢4 on K; can be defined as

1+ paqy* px* px*
ba P 14 px  pass = M (1 4 pai1)Aa(pass).
D px 1+ px

This will give us the stabilizer

a px  px a 0 0
T= px b c = K1 S where § = 0 b c
px px b+ px 0 0 D

S being abelian guarantees the existence of extension ¥4 and the number of

such extensions is
L -1y
| Ky |

Also the degree of x4 we get in this case is

deg(xa) = el plp+ 1)’ —1).
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More general choices of matrix A are

0

Since A, , is conjugate to A, if and only if x = 2/, y = ¢/, we have p(p — 1)
non-conjugate ones.We will have

z 0 0
Ay=1 0y 1 |,z#0.
0y

Degrees Number of this degree
P+’ - 1) p’(p—1)°

5.1.8 All the irreducible characters of GL(3,Z/p*Z)

We can summarize all the irreducible characters found in the previous 7 sec-
tions in the following table

Degrees Number of this degree
Pp*+p+1) p(p—1)*
P(p*+p+1) p(p—1)*

P +p+ Dp+1) o e=l)
PP’ +p+1)(p—1) Pt
P+ 1)@ +p+1) p(Pfl)(ng)(pfl)d
P*p+1)(p* - 1) p*p—1)°
p3(p3 —1) P2(p—1%3(p+1)
p(p* = 1)(p* - 1) pp—1)
P -1DE+1) (p—1)°
@ -De+1)p-1) p(p* — 1)
p(* = 1(p+1) p(p—1)°
p3(p . 1)2(19 +1) p(Pfl)(p;rl)(le)

To verify that we have all the irreducible characters of G, we first find the sum
of square of the degrees. We have

Znumber of degree x deg® = p*(p® — 1)(p* — 1)(p — 1)(p* — 1).
Notice that we also have
(i) > deg(x)’ = p” | GL(3,Z/pZ) |= p' (0*~1) (P~ 1) (p—1).
X from Irr(GL(3,Z/pZ))
By the second orthogonality relationship, we know that
Z deg(M\)? =| G |, for any finite group G .
Xx€lrr(G)

Since (i) + (i1) =| GL(3,Z/p*Z) |, we do have all the irreducible characters of
G.
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5.2 Irreducible Characters of GL(3,Z/p’Z)

Now let G = GL(3,Z/p*Z), Ky = {I + pB}, Ky = {I + p?B}. To construct
irreducible characters of G, we start with one-dimensional character ¢4 of
K5, where ¢4 is defined similarly to the even case. That is, fix an injective
A\ :Z/p*Z — C* and define

da(I +p*B) = Ntr(p*AB)),

for some A € GL(3,Z/pZ). We pick A € GL(3,Z/pZ) and treat it as a matrix
in GL(3,Z/pZ) for the same reason as in the even case. For some cases, it is
more convenient to pick an injective multiplicative X' : (Z/p*Z)* — C* and
use it to define ¢ 4. We will specify in those cases, otherwise ¢4 is defined by
the above formula.

Next we calculate the stabilizer of ¢4 and will see T = Stabg(¢a) = K1 S
for some subgroup S < G which depends on A. Unlike the even case, we
can not extend ¢4 to T. Instead, we will try to find ¢ € Irr(7T") such that
[t |k, &a] # 0. From Clifford Theory, we have y = Ind%(¢) € Irr(G).

We have two different construction processes. The first one is

K2—>KQ(K1QS>—>H—>K1—>K15—>G
pa B¢ S S0 Sy BS x

(1)

where H < K; with index p?. When using the above process, S is abelian
in each case. Therefore, the existence of ¢’ on Ky(K; N S) is guaranteed by
Lemma 2.2.10 because K; N S is abelian. We can define ¢” depending the
choice of H and have the stabilizer Stabg, (¢"”) = H. By Clifford Theory, we
have 6 € Irr(H). Moreover,

0 ‘K2(K1HS): p3¢/7 0 |K1—K2(K105): 0.

So 6 is invariant under K;S and K;S/K; is cyclic, we can extend 6 to .
Notice that deg(¢)) = p?, so

|G|

de = .
g(x)=p K5

This construction process can give us irreducible characters of one degree only.
We can also have the number of each degree when using this process. As in the
even case before, we can replace A by ol + A to get more irreducible characters
of G. We also want to count how many extensions we can get in each case. As
we can see from the construction process and the property of 6 in the picture,
0 only depends on ¢'. Therefore, we only need to count the number extensions
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Ka(K1NS .
%, and the number of extensions from

. To summarize, we have

from ¢ to ¢', which is equal to

K, to K1S which is equal to ||f§(115|'\

|Ka(KinS) || KaS |
| K> | | Ky |

# of each degree = # of nonconjugate (al + A) x

The degrees and numbers are both p? times the corresponding ones in the even
case. There are 4 kinds of irreducible characters constructed using the above
picture and we will give details of each construction.

5.2.1 Irreducible Characters of Degree p°(p — 1)*(p + 1)

0 0 a

Let A= 1 0 b | such that the polynomial t3 — ct? — bt — a is irreducible
01 ¢

in GL(3,Z/pZ). The stabilizer of ¢4 is

T = K, S where S = {x] + yA + zA*} < GL(3,Z/p’Z).

Choose
14 px p2* p2>|<
H= px 14+ px  p*x Ky (K1 NS),
pPx p?x 14 pPx

then H is a normal subgroup of K; with index p3. Since
1+px  p* PPk

Dx 14 px p2>|< ﬂ(KQ(KlﬂS)) C Ko,
p2x p?x 1+ p*x

1+ px p2>x< p2>l<
we can define ¢” of H on px 14 pr pPx this way:
p2x p?x 14 pPx

1+px  plap pPx px  plajpy PPk
¢’ p* 1+px  plass =A|tr|A D px  plags ;
plaz  pPazy 1+ plass plagi pPasy plass

and on Ky(K;NS) as

" | kokins)= @' |Ka(i1n8) -

¢//(h1h2) — ¢/I(h1)¢ll(h2)
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for
14 px pz* p2>x<
hl S p* ]_—I—p* p2>l< and hQ EKQ(KlmS)
p2x p*x 14 p*x

¢" is a well defined extension of ¢/. Since | T' |= p*®(p® — 1), we have

G
deg(x) = p3% =p'(p—1)*(p+1).
Notice that the number of non-conjugate matrices al + A is M, exten-

sions from ¢4 to ¢ is p® and from 6 to ¢ is p* — 1, multiplying the above 3
will give us the number of irreducible characters in this case. To summarize,

Degrees Number of this degree

6 2 4 (p—1) (p+1) (p>—1)
P’lp—1)>*(p+1) PP mip

5.2.2 Irreducible Characters of Degree p*(p® — 1)(p* — 1)

, then the explicit formula for ¢4 is

0
Now pick A= 1| 0
0

OO =
O = O

1+ p?*  p** PPx
A plas  1+p* p*x = )\(p2@21 +P2a32).
P’ plagy 1+p?

The stabilizer is

a b c a b c
T=KS = px a+ px b+ px where S = 0 a b
Pk px a + px 0 0 a

¢ on K5(K;NS) can be defined as

¢/ |K2: ¢A7¢/ ’KlﬂS: 1,¢/(]€28) = ¢A(k2) Vk’g € KQ,S € S.
¢’ is clearly an extension of ¢ 4. Choose

1+px  px D
H= P 1+px px ,
pPx p?x 1+ px

then ¢” on H can be defined as

1+ px j 23 D
¢" plag 1+ px px = )\(P2a21 + p2a32).
P’ plazga 1+ px
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| T |= p®(p — 1) implies that

_ sl Gl

deg(x) =p T i’ -1 - 1).

The above argument works similarly if we replace A by A, = ol + A. There
are p non-conjugate such matrices. We can also get

| Ko(KainS) | | KiS | 5

total extensions. Therefore, the total number of irreducible characters of this
degree can be summarized as follows:

Degrees Number of this degree
'’ = 1)p* - 1) p’(p—1)

5.2.3 Irreducible Characters of Degree p°(p® — 1)

100
Let A= 0 0 1 | with € to be a non-square unit in Z/pZ. The stabilizer
0 €O
is of ¢4 in this case is
a p* p* a 0 O
T = px b c = K15, where S = 0 b c
px €+ px b+ px 0 ce b
We can choose
1 px px
H = H'Ky(K, N S) where H = 0 1+px O
0 0 1

¢" on H can be defined as

" | kying)y= @', ¢" =1

and

d"(h's) = ¢"(h')¢"(s) for B € H and s € Ky(K;NS).
Since | T |= p"¥(p — 1)*(p + 1), we have

G
deg(x) = pS% =p°(p® - 1).
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The general matrices we can use to replace A are

Ay = with x,y € Z/pZ and € a non-square unit in Z/pZ,

oSO8
A O
<L = O

pi(p—1)
2

the total number of such non-conjugate A, , is . Also, the number of

Y's is
| Ko(KinsS) | | KiS | 3 9
X = -1 +1).

The following table summarizes this case.

Degrees ~ Number of this degree
5(m_1)3
PS(p® — 1) p’(p 1; (p+1)

5.2.4 Irreducible Characters of Degree p’(p + 1)(p® — 1)

1 00
Let A= | 0 0 1 | and \;: (Z/p’Z)* — C* be injective, then an explicit
0 00
formula of ¢4 can be
L+pa;n  px D*
Pa P L+px  px = M (14 p*an)\(pas).

pPx plazy 1+ px

This will give us the stabilizer

a pkx  px a 0 0
T = px b c = K|S, where S = 0 b c
px px b+ px 00 b

¢ on Ky(K;NS) can be defined as

Qy |K2: ¢A7 ¢, )\1(@)

coe
o - o
>0 o
|

and
@' (kos) = ¢'(ka)@'(s) for ko € Ky and s € K3 N S.

We can choose
1+ px D Dk
H = p?*  14px  px
P2k p?x 14 px
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and have ¢” on H as

1+ pan p* p*
¢" PP l4px  px = A1 (1 + paii) A(pPas).
pPx piazy 1+ px

| T |= p"(p — 1)? in this case, so we have

_alGl_ s

deg(x) =p 7 =7 (p+1)(p°—1).

We can use more general matrices

z 0 0
Ay=10 vy 1 | 2, y€Z/pZ,x#0
0 0 vy

to replace A and we can get the same degree by similar argument. The number
of such non-conjugate A, , is p(p — 1). Also, the total number of ¥'s in this
case is

| Ko(KaNS) | KW |

X = —1)2
A 7] P (p—1)
Therefore, we will have
Degrees Number of this degree
P+’ -1) p(p—1)°

Now we will work on the second construction process:

Ky — N — T — T — G
(2) ext ’ ext ’ ind ind .
pa — Yy — ¢ — Y — X
Again, we fix an injective \ : Z/p*Z — C* and define ¢4 as

¢a(I +p*B) = Atr(p*AB)).
We choose a normal subgroup N of T such that % is as big as possible while
we can still extend ¢4 to ¢y of N. T" is the stabilizer of ¢/, in 7" From Clifford
theory we know that

Y € Irr(T') and [ |k,, ¢a] # 0,

which implies that
x € Irr(G).

Since

x = Ind(¢) = Ind7(Indz, (¢')) = Indf.(¢),
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we have

|G|

deg(x) = T

Look at the
N — T — T

Gy @IS Y

piece of the construction process, we know that non-conjugate ¢, on N will
give us different 1) on T, and hence different x € Irr(G). Therefore, in order
to count how many irreducible characters we can get using the second con-
struction process, we need to count how many non-conjugate ¢/, we have on
N. One natural way to define ¢/, is to use the same formula as ¢4, that is,

&'y (I + pB) = A(tr(pAB)), for I +pB € N.

But we can easily get more extension by using A + pC' to extend ¢4, which
gives us

¢f4+pC(I + pB) = A(tr[(A + pC)pB)), for I + pB € N.
Notice that
Gaspe(I +p*B) = Atr[p®(A + pC)B]) = A(tr(p°AB)) = ¢pa(I + p°B),

80 ¢'4,,c is indeed another extension of ¢4. Using non-conjugate matrices

A+pCin T to define ¢y, will give us different stabilizers 7" with different

indexes, therefore we can have irreducible characters with different degrees. To

get the number in each case, we first need to find all types of non-conjugate

matrices A+ pC, then like the cases before, to count how many non-conjugate

matrices ol + A+ pC in T. We also need the number of extensions from ¢',
17"

to ¢', which is Sk The following 3 kinds of irreducible characters use this

construction process.

5.2.5 TIrreducible Characters of Degree p°(p+1)(p*+p+1)

0 0

Let A = 0 |,a,b€Z/pZ,a #b,a+# 0,b+#0. Let
0

o O Q

b
0

)\1,)\2 : (Z/pSZ)X — C*
be such that

A (1 + pPr) = Ma(1 + p*2)], Ao (1 + p*x) = A[b(1 + p*z)],
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then ¢4 on K5 can be defined as

1+ p?an pPx PP
CbA pz* 1 —i—pa%Q pQ* = )\1(1 +p2a11))\2(1 +p2a22).
p2>k p2>x< 1+ p2>|<
The stabilizer is
T px  px
T = px Y px
px Pk Z

1+px  p? PPk
N = px  14px  p*x
px Dk 1+ px

then N < T. For this N, one explicit formula for ¢/, could be

1+ pan PP PP
¢{A p* 1 +pa22 p2* = )\1(1 + pan))\g(l + pagg).
D px 1 4 px

The stabilizer of ¢’y under T is
r pPx p
Staby (T) =T = px oy Pk
Pk px 2

and we can define ¢’ on T” as
x pPx pPx

O px oy P | = M(x)Xa(y).
px Pk oz

The degree of xy we get in this case is

G
deg(x) = |‘ = ‘| =p’(p+1)(P*+p+1).

As discussed before, we can use A + pC' to define an extension of ¢4 this way:
O po(I +pB) = Atr[(A+ pC)pB]), where I +pB € N.
It turns out that all non-conjugate matrices al + A + pC' are in the form of

a
Aupe = b , with a,b,c € Z/p*Z and pfa —b,a —c,b—c
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A(p—1)(p—2 . .
% non-conjugate ones. The number of extensions from

and we have
N to T is 7

Since T /N is abelian, we don’t have new degrees of 1, therefore no new degrees
of x. To summarize, we have

Degrees Number of this degree
4 _ _1)3
P+ 1)@ +p+1)  Eee2e-n

5.2.6 Irreducible Characters of Degree p*(p> +p+ 1)
0 0

0
0
N(1+pr) = Ap*

Let A= pick some \ : (Z/p3Z)* — C* be injective such that

o O =
o O

8

). An explicit formula of ¢4 ca be

1+pPan  p** p*

da P 14px px | = N1+ plan).
PPk px 14 pPx
a px px
The stabilizer T' = px Ty . We can pick
Pk oz w

1+px  p?* PPx
N = D 1+px  px
px D 1+ px

then N is a normal subgroup of 7. Now we want to use A + pC' to define
an extension of ¢4 on N. As discussed before, we only want to consider the
non-conjugate ones under 7" and we have the following 4 cases.

(i) C' = 0. In this case, we can define ¢/, on N by

1+pa;;  p*x PP
o px L4px px = XN(1 + pan).
D px 1+ px
a p*s p*x
Stabr(¢y) =T = px Ty
px oz w
Define ¢’ on T" as

a p*x pix
Ol px oz oy = N(a),

px oz w
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which is clearly an extension of ¢/,. By inducing ¢’ of 7" to G, we have y €
Irr(G) and

deg(x) = =p'(P*+p+1).

7"

Like in the even case,
T'/N = (Z/pZ)* x GL(2,Z/pZ)

and we already know the irreducible characters of (Z/pZ)* x GL(2, Z/pZ) have
degrees
17p7p+ 17 (p - 1)

with numbers

(p—13p—2) plp—1)°
2 T

(p=17° (p—1)%

respectively. Also, non-conjugate matrices ol + kA + pC' in this case are in

the form of
T

y ,x,y EL/p°L,ptx
y

and we have p?(p — 1) non-conjugate ones. To summarize this case, we have

Degrees Number of this degree

p'p* +p+1) p(p—1)*
P(p* +p+1) p(p—1)*

PO pE ) e

PP +p+1)p—1) vl U
0 0O 1 00

(i) Lete C = 0 0 0 | then A+pC = | 0 0 0 | and the explicit

010 0 p 0

formula for ¢y, - is

L+pay  p*x  p*x
¢/A+pc p* L+px  px =N(1+ PCL11))\(PQG32).
px p*age 14 px

The stabilizer of ¢y, ,~ under T is
a p°x Pk
T = pxx Yy
px px X+ px

69



We can define ¢’ on T” as

a p*x  p*x

¢ | px oy = N(@)A(p*zz™"),
px pz T+ px

then ¢' is an extension of ¢/y, . that satisfies the conditions in our second
construction process. Since | T |= p'"(p —1)?, the degree of x € Irr(G) in this
case 1s

|G|

deg(x) = T =plp+1)(p° - 1).

Non-conjugate matrices al + kA + pC' are all in the form of

X
y ,x,y EL/p°L,ptx
Py

and the number is p*(p — 1). Notice that T"/N is abelian in this case, we can
only get one degree of ¢’ and therefore only one degree of x € Irr(G). Also,

the number of extensions from ¢/, to ¢’ is % = p(p —1)?, so we can get total

p*(p — 1)3 irreducible characters of G in this case. To summarize, we have

Degrees Number of this degree
pip+ 1P —1) p(p—1)°
0 00 1 0 0
(iii) Now C = 0 8 0 | B € Z/pZ, then A+pC = | 0 pB 0 | and
0 00 0 0 0
the explicit formula for ¢y, - is
1 + pan PP PP
¢,A+pC p* 1 + pagg* p* = /\/(1 + pall))\”(angg)
px D 1+ px

where N’ : (Z/p*Z)* — C* satisfies \'(1 + p?z) = A\(p?Bz). The stabilizer of
¢y pc under T'is
r p*x pPx
T'=q | px vy p
Pk px 2
We can define ¢’ on T" as

r p*x pPx
O px oy px | =N (y),
p* p* 4
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then ¢ is an extension of ¢, - that satisfies the conditions in our second
construction process. Since | T" |= p'%(p — 1)3, the degree of x € Irr(G) in this
case 1s

|G|

deg(x) = T = Pp+1)(P +p+1).

Now non-conjugate matrices al + kA 4+ pC' are all in the form of

x
y+pp 2,y € L/p°L,pt
Y
and the number is w. Since T"/N is abelian, we can have only one degree
of x € Irr(G). The following table summarizes this case.

Degrees Number of this degree

3 —1 5
1) p (P2 )

0 0
0 € where € is a non-square unit in
10

10
Z7/pZ,then A+pC =1 0 0
01

1+pay  p?* po*
i po px 1+px pass | = N(1+ pay)\(piags + pPeazs).
p* pasy 14 px

The stabilizer of ¢y, ,~ under T is

x P P
T = P y w
px €W+ px Y+ px
Notice that we actually have a 2 x 2 block here which is one of the 2 x 2 cases

before. Therefore, the existence of extension ¢ on 1" is guaranteed. Since
| T" |=p'®(p — 1)%(p + 1), the degree of x € Irr(G) in this case is

G
deg(x) = " T, ’| =p°(p® - 1).

Look at af + kA + pC' and we have that non-conjugate ones are in the form

T
y pe |,x,y €Z/p*Z,pfx and € is a non-square unit in Z/pZ .
py
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The number is ’@. Since T"/N is abelian, we can have only one degree of
X € Irr(G). The following table summarizes this case.

Degrees ~ Number of this degree

3. 1\5
p5(p3 _ 1) p (p2 1)

5.2.7 Irreducible Characters of Degree p*(p* — 1)(p + 1)

0 01
Nowlet A=| 0 0 0O |, then
000
1+ p *  pPE pPx
p 1 +p P | = AMpPas).
Plazi  pPx 1+ pPx
Y
The stabilizer is T' = px T z . We can choose a normal sub-

px  px a -+ px
group of T as
1 4 px P Pk
N = P 1+px  px
PPk PPk 14 px

and define ¢4 on N by
14 px P D

o p* 1+px  px* = )\(p2a31).
paz  pPx 1+ px

The stabilizer of ¢/, is

a w Y
Stabr(¢'y) =T = Pk x 2
pQ* pz* a + p*

Define ¢’ on T" as

a w Y
¢ px T z = )\(p2a31a*1),
pPasix  p*x a+ px

then ¢’ is clearly an extension of ¢/, and the degree we can get by inducing up

¢ of T is
K&l

7] =’ - Dp+1).

deg(x) =
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Since

T/K; =

oo
o8 8
2 nw

and we already know that all the irreducible characters of

oo
o8 8
Qv w

have degrees
17 b,p— 17

therefore we can have more irreducible characters of G with degrees

p*(p* = 1)(p+1)(p— 1) and p*(p* — 1)(p + 1).

As discussed before, we can still define ¢y,  using A + pC. However, every
matrix of the following from

1
D ,a,b,c € Z/pZ
pa pb pc

are not conjugate to each other for different a, b, ¢, which is quite complicated
to deal with and we don’t have every case.

We will see a new way of defining ¢’y on N in a later section and see that we
indeed have different irreducible character degrees of G.

5.3 Decomposition of Ind%(13)

Let B be the Borel subgroup of G = GL(n,Z/pZ), to determine irreducible
constituents of Ind%(1z), we study Endeg(IndG(15)) which has basis ¢y,
where w's are double coset representatives of B such that G = |J BwB.

weG
In the field case, that is, when G = GL(n,Z/pZ), w corresponds to elements

of S, and dim(Endcg(Ind%(15))) = n! which does not depend on p. As we will
see in the next section when ¢ > 1, the number of double cosets depends on

n,p and £. In sections 5.3.2 and 5.3.3, we will see the complete decompositions
of Ind%(15) when G = GL(3,Z/p*Z) and G = GL(3,Z/p*Z).

5.3.1 Double Cosets of the Borel subgroup
Let S be a subgroup of G, then we have

G = LOJSgS

welG
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where S¢S are disjoint double cosets of S and ¢'s are called double coset
representatives.

In this section, we want to see how many double cosets of the Borel subgroup
B of groups GL(2,Z/p'Z) and GL(3,7Z/p"Z) there are. It is known that in the
field case, that is G = GL(n, Z/pZ), one choice of double coset representatives
for the Borel subgroup of GL(n,Z/pZ) are the permutation matrices, so the
number of double cosets is n!, which does not depend on p or /.

For GL(2,Z/p"Z), one choice for the double coset representatives of the Borel
subgroup are the following matrices:

1 1
(pk 1),1§k§€,and(l )

Therefore, the number of double cosets in this case is ¢ + 1.
Next, let us look at an idea to find double coset representatives for the Borel
subgroup B of G = GL(3,Z/p*Z). We want to write G as disjoint unions

a k c
of BgB, therefore for any matrix A= | d e f | € G, it must be in one
g h i

double coset BgB for some w; so we must have g 'bAb € B for some matrices
bt € B.

Notice that B contains upper triangular elementary matrices, multiplying A
by those matrices on the left and right is equivalent to performing the cor-
responding elementary row and column operations on A. Thus, in order to
make g 1bAbV € B, we can think of applying some elementary row and col-
umn operations on A first, and then at certain stage, we will need to multiply
the resulting matrix by w™! to get an upper triangular matrix. We discuss
all the possible forms of matrix A and each form can give us a double coset
representative g, thus we will have all the double coset representatives.

a k c
For example, let G = GL(3,Z/p?Z) and A= | d e [ | € G be such that
g h 1
a k c
pld, g, h and g # 0. To simplify notation, write A= | pd e f | with g be-
pg ph i
1 1 —hg!
ing a unit in Z/p*Z. Let b = 1 —dg™' | and ¥/ = 1 ,
gt 1

then bAY = . To reduce the above matrix into B, we will pick

N O ¥
o % ¥
* % %
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1
=10 so that ¢g7'bAb € B and we have one double coset repre-
p

1
0
sentative (

By similar arguments to run all the possible forms of matrix A € G, we have
the following double coset representatives for B < GL(3,Z/p*Z):

1

1 1 1 1 1
1 |1 ; 1 ; L],]1 ;
1 1 1 1 1
1 1 1 1 1
L], 1 ; 1 A p 1 A p 1 ;
1 P 1 p 1 1 1
1 1 1 1
1 1 11 1 ,
1 p 1 1 P 1
1 1 1 1
1 1 , 1 p 1 ,
1 p p 1 1 P 1
1 1 1 1
1 p 1 , 1 1 ,
1 1 1 D 1
1 1 1 1
1 p 1 , 1 1
1 1 1 p 1

The number of double cosets in this case is 18.
We can also find a choice of double coset representatives for the Borel subgroup

of GL(3,Z/p3Z) as follows:

1 1 1 1
1 11 , 1 , 11,
1 1 1 1
1 1 1 1
1 , 11, 1 , 1 ,
1 1 P 1 p? 1
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1 1
p 1 , 1 ,
¥ 1 P p 1
1
p 1 with ¢ being units in Z/p*Z, the number of distinct p®g is p—1,
2
pig p 1
1 1 1
pto1 1 1 1 ,
P o1 1 pop 1
1 1
1 pto1 ,1 <4i,7 <3, not both 3
1 Yoo
1 1 1 1
1 o1 , 1 1 1<k<2
1 1 1 o1

The number of double cosets in this case is p + 37.
We will use some of the double cosets in the following two sections. From
Mackey’s Theorem, we have

[Ind%(15),Ind%(15)] = number of double cosets of B,

after we find all the irreducible constituents of Ind4(15) in the next two sec-
tions, we will verify that the number of double cosets we found for GL(3, Z/p*Z)
and GL(3,Z/p*Z) are indeed correct.
a x %
Let B = 0 b C G be the Borel subgroup of G and let 1p
0 0 ¢
be the identity character on B. We know Ind%(1p) is not irreducible. We
want to see the decomposition of Ind%(1g) when G = GL(3,Z/p*Z) and
G = GL(3,Z/p°Z).

5.3.2 G = GL(3,Z/p*Z)

In section 5.1, we have seen all the irreducible characters of G. Now we want
to see how to decompose Ind$(15). It’s easy to see that | B |= p°(p — 1)° so

deg(md(15)) = L1 o+ 12 +p 4 1),

We will give the construction of each irreducible constituent, show that it is
indeed an irreducible constituent and also give the multiplicity.

76



(1) Let x; be the irreducible constructed in 5.1.5. That is, x1 = Indg (1)
where

a b c a b c
T = px a+ px b+ px = K55 = 0 a b
Pk px a+ px 0 0 a

Recall that 1, on T} is defined as

1+ px D D
(23 pazr  1+px  px = A(pag + pasz),
¥ pazz  1+p
Y1 |s= 1,91(k1s) = Y1 (k1)VEy € Ky, 5 € 8.
By Mackey’s Theorem, we have
Ind§(1p) [n=»_  IndJg, 1 (D).

G:UTl gB

Notice that ¢ |7np= 1, we have

[Ind% (1), Ind, (¢1)] = [¢1, IndF(15) |7]
= Z [¢1, IndegflmT(l)]

G=UT1¢gB

= Z [wl |ng*1f7T1> 1 |ng’1ﬂT1] > 1.

G=UT1gB

Therefore, x; is an irreducible constituent of Ind%(15).
(2) Let xo = Ind%, (15) denote the irreducible character constructed in 5.1.4
where

a w Y
T = Pk T z
px px a -+ p*
and
a w Y
g px X z = Mpasia™?).
pasi* px a -+ px
010 1 00
Letgr=11 0 0 |, g=10 01 |, then
0 01 010
b 0 f a c b
By = ¢1Bg; ' = d a e , By=gBg;" = 0 f 0
0 0 c 0 e d



are two different conjugates of B. From the definition of 1, it is clear that

Vo |Bam= Y2 |Bynry= V2 |Brm,= 1.

Therefore,

[XQ,IHdg(].B)] = Z [w2 ’ng*lﬂTza 1 |ng*1ﬁT2] 2 37
G=UT»gB

which shows that s is an irreducible constituent of Ind% (1) with multiplicity
at least 3.

(3) Using characters and groups from case (2), we want to construct an ir-
reducible character y; € Iir(G) such that x3 = Indg (¢23;) where 35 €
Irr(T2/Ky). Since

o o
or 8
ST NN

we work on group P to construct g5 € Irr(P). Let N =

o O =

o = &£

RS
N

GL(3,Z/pZ), then N < P. Define a3 on N to be

a3

O O =

) = p(w) where p: (Z/pZ)" — C*.

a w y

0 a =z and we can have an extension of asz by
0 0 «a

w
1
0
Stabp(az) = M = (

defining o on M by
a w y
Al 0 a z | =p(wa?).
0 0 a

Let 35 = Ind}, (%), then B3 € Trr(P). Notice that M < P and pick

100
0t 0 |.te(z/pz)
00 1

to be coset representatives of M in P, we have

a w Yy a w y
Bsl O a 2 | = Z pwta™), B 0 2 2z | =0if 2 #a.
0 0 a te(Z/pZ)* 0 0 a

78



Notice that

a w y a w Yy
ValBs | px oz 2 = AMpazia™)Bs [ 0 a z |,
pasi p* a-+ p* 00 a
we have
p, ifxr=a,
Va3 |1ynB, = { 0, ifz+#a.
Therefore,

WJZﬁS |B1ﬂT27 1] = 1a

showing that ys is an irreducible constituent of Ind$(1z).
(4) Here we want to construct x4 = Ind% (126;) where 8; € Irr(P) and is
constructed similarly to 33 above. Just define oy on M as

ay = p(z) where p: (Z/pZ)* — C*,

OO =

w
1
0

— N

we can have a corresponding 3, and we can show that

[%54 ’BgﬂTg: 1] = 17

hence y4 is also an irreducible constituent of Ind%(1z).
Let G' = GL(3,Z/pZ) and B’ be the corresponding Borel subgroup of G’; then

deg(Ind% (1)) = (p+ 1)(p* + p +1).
Since
deg(Indf(15)) = deg(IndF (1)) + deg(x1) + 3 deg(x2) + deg(xs) + deg(xa),
we have the complete decomposition
md$(15) = nd$ (1) + x1 + 3x2 + X3 + Xa.
We also have
[Ind$(15), Ind$(15)] = 6 4+ 12 + 32 + 12+ 1% = 18,

which is equal to the number of double cosets for the Borel subgroup B of
GL(3,Z/p*Z).
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5.3.3 G = GL(3,Z/p’Z)

Although we did not have all the irreducible characters of GG in this case, we
can still completely decompose Indg(l B)- The following gives the construction
of each constituent.

(1) Let x1 = Ind¥, (#1) be the irreducible character constructed in 5.2.7, where
where

a w Y
T = Pk x z
p*x PPk a -+ px
and
a w Y
o px T z = )\(]72@31@_1).
plagix PPk a+ px
010 1 00 1 00
Let g1 = 1 00 s g = 0 0 1 , g3 = 010 s then Tlng
0 01 010 0 p 1
are three different double cosets and
b 0 f a c b
B, =g Bg;' = d a e , By=gsBg;' = 0 f 0
0 0 ¢ 0 e d
a d — pe e
and By = g3Bg; ' = 0  b—pf f
0 plb—c)—p' c+pf

From the definition of ¢y, it is clear that

gbl |B1ﬁT1: 1/)1 |B20T1: ¢1 |B;;ﬁT1: Cbz |BﬂT1: 1

Therefore,

[Xl,Indg(lB)] = Z [¢1 |ng*1ﬂT17 1 |ngflﬂT1] > 47

G:UTl gB

which shows that x; is an irreducible constituent of Ind$ (1) with multiplicity

at least 4.
14 px P D
(2) Recall that in section 5.2.7, N = px  14+px  px and
P2k p*x 14 px
we have Ind% (¢18) € Irr(G) for any B € Iir(Ty/N) where T}/N = P =
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. Let ¢1i = ¢1Q where

o oo
ox &
SRS

a w y
Gl 0 o 2z ) =plax™), p: (Z/pL)* — C*,p; # 1.
0 0 a
a w y
1, p* x z = MpPasia Hus(az™t).

plagix PPk a -+ px
Notice that
a * *
Bg N Tl C 0 a+ p* * s
0 p2>|< a + px

50 ¢1; |pyrmy = 1. Denote x1; = Ind%, (¢1;), then [x1;,Ind%(15)] > 1, showing
that each x1; above is an irreducible constituent of Ind%(1z). Since there are
p — 2 such p;, we have p — 2 (; and xy;.

(3) Letfs and 4 be the two irreducible characters of P constructed in 5.3.1.
Let x2 = Ind% (¢18s), xs = Ind (¢164), then xo,xs € Irr(G) by Clifford
Theory and deg(x2) = deg(xs) = p*(p? — 1)(p® — 1). By the same argument
as in 5.3.1. (3), we can show that

[(blﬁ?) ‘BlﬁTp 1] = 17 [(blﬁél ‘BgﬁTm 1] = 17

where By and By are in (1). Therefore, we know that y, and ys are also
irreducible constituent of Ind%(1p).
(4) In 5.2.7 when we use the construction process

Ky — N — T — T — G
ext ext ind ind )
pa — Py — ¢ — ¥ — X
we mentioned that if we define ¢, on N differently, we may have a different
stabilizer 7" and eventually a different y € Irr(G) with a new degree. We will
see a new construction here. Define ¢, on N as
L+px  paip D

o D* L+px  px = \(p®az + p’arz),
p2a31 p2>l< 1+ p*

a pb c
then T, = Stabp(¢}) = p¥  a+ px f . Define ¢y on Ty by
p2>x< p2>|< a + px
a pb c
Go | px a+px f = Mp*(b+d)a™t),

p’d  p*x  a+ px
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then ¢, is an extension of ¢ and we have x; = Ind%, (¢2) € Irr(G) with

deg(xa) = p*(p* — 1) (p* - 1).

MOreOVer, we cal see
(b? |T2032: 17

therefore y4 is an irreducible constituent of Ind$(15).
Similarly, we can define ¢4 on N by

14 px px px , ,
o p* I+ px  pass = A(p“as1 + p~ags)
pPaz  p’x 1+ px

and get the stabilizer T3 and define ¢3 on T3. We have x5 = Indg, (¢3) € Irr(G)
with deg(xs) = p(p? —1)(p® — 1). We can also see that ¢3 |p,nr,= 1, implying
X5 is an irreducible constituent of Ind§(15) as well.

(5) Let x¢ = Indg, (¢6) be the irreducible constructed in 5.2.2 where Ty = K; 9

a b ¢

with S = b | . We used the following construction process
a

0 a
0 0
K2 — KQ(KlﬂS) — H — Kl — Kls — G

oa TH ¢ Th g TS 8T gy T

14 px P Dk
and chose H = p’x 14 px  px . We already had
p2x p?* 1+ px

¢ o= b4,0 |rins= 1 and 0 | sy (rin8)= P°&, 0 | 1y > (s105)= 0.

We choose 1 be the extension such that g |s= p3. We can get

V6 | k518 Ka5nB= 0, Vs | kans= D>

This will give us
(V6 | k1508, 1] = 1,

showing that yg is an irreducible constituent of Ind$(15).
Let G” = GL(3,Z/p*Z) and B” be the Borel subgroup of G”, we have

p—2 6
deg(Ind§(15)) = deg(Ind%, (15/)) + 4 deg(x1) + Z deg(x1:) + Z deg(x;)-
=1 =2
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Therefore, the complete decomposition in this case is

p—2 6
IDdg(lB) = IHng(lB//) + 4X1 + Z X1 + Z Xj-
=1 j=2

We can see now
[nd%(15),Ind%(15)] = 18 + 42 + (p — 2) + 5= p + 37,

which is the number of double cosets for the Borel subgroup of

GL(3,Z/p*Z).
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Chapter 6

Parabolic Induction of
GL(n,Z/ pKZ)

In Chapter 4, we had Parabolic Induction for the 2 x 2 case, now we want to
generalize that result.

([ap x x .- )
0 ay * .
Let G = GL(n,Z/p‘Z) and B = - : C G. Let
0 O Ap_1 *
0O 0 0 - a, )

Ay Agy ooy At 2 (Z)p'2)* — C*

be homomorphisms. Define

ay * * *
0 a9 * *

¢p:B—C*0p| + + .. S = Alan) Xe(az) - Ap—1(@n—)-
0 0 -+ ap1 =
0o 0 0 - a,

In the field case when ¢ = 1, it is known that Ind%(¢) € Irr(G) if and only if
\i # \j for i # j. In our case, we want to prove that y = Ind§(¢) € Trr(G)
when {1 —|—pw2]x} Z ker )\iA;l,i #4,1<1,7 <n—1. One implicit condition
here is that ¢ is large enough so that we do have those \'s. More generally, if
all the a; are block matrices, we can still have a similar result.
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6.1 G=GL(n,Z/p""7Z)

We deal with the even case first. Denote K,, = {/+p™C}. Let A =
ags 0 0 - 0

0 aa 0O ~--- 0
¢ .. ¢ ¢ | with a; and @; — a; € (Z/p"Z)* for i # j. Let
0O 0 - ap-1 O
o 0o o0 - 0

A (Z/p*™Z)" — C* be a homomorphism such that A
Define

¢a s Ky — C*,0a(1 +p"C) = Altr(p™ AC)),

a  pTx pT P\ )
Pk ag  pTx Pk
then Stabg(¢a) = T = : : : : : . Notice that
prEopTE e Apy PR
Pk Pk pTx - ay J

\
{14 pma}* = {p™x}", we can find i, Ny, ..., Ay : (Z/p*"Z)* — C* such
that A\;(1 4+ p™x) = A(a;p™x). Define

a;  pTx pTx px

: T — C* 9 : : : : = Ai(a1) - An—1(@n-1),
P Pk An_1 P
Pk pTx o pMx - an,

then 1) is an extension of ¢4, that is, ¥ |k, = ¢4. By Clifford Theory, we have
P© e Trr(G).

Next we want to show that ¢ = ¢. Since | B |=| T' | and we already know
¢ € Irr(G), it suffices to show that [% ¢ = [, ¢“ |r] = 1. By Mackey’s
Theorem, we have

6% lr= P dls, 1nr(dy), where ¢4(9Xg™") = ¢(X), X € B.

G=UTgyB
Therefore
W,(bG ’T] = Z [walndeg—lﬂT(¢g)] = Z W ’ng‘lﬂT>¢g ’ng—lﬂT]'
G=UTgB G=UTgB

It is clear that ¢ |pnr= ¢ |par, thus the above sum must be 1, showing that

Y@ = ¢% € Irr(G).
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6.2 G=GL(n,Z/p""7)

Now let us work on the odd case. Similar to the even case, we want to construct
¥ on T such that ¥¢ € Irr(G) and | T" |=| B | and then we will show ¢ = ¢%.
We will use the following construction process:

Kyyw — N — T — T — G

ba T dy TS TS TS )
aq 0 0 -+ 0
0 ao 0O --- 0
Here K,,, .1 = {[ +p™™'C}, A= O T with a; and a; —
0 0 -+ ap1 O
o o o - 0

aj € (Z/p™Z)*. Pick X : Z/p*" 1 Z — C* to be a homomorphism such that
A |gpm+14 18 injective. We can find Ay, Ao, ..., Ayy 1 (Z/p*™H1Z)* — C* such
that \;(1 + p™*x) = M a;p™"'z). We can define ¢4 on K, using the same
formula as in the even case, that is,

pa(l +p™tCO) = MNtr(p™ T CA)).

The stabilizer is

a;  pTx pTx Pk
Pk ag Pk Pk
T = S S
prk pTE e apog Pk
L\ P P pTx e an )
( 1+ p™s pm-ﬁ—1>‘< pm-ﬁ—1>‘< . pm-i-1>1< )
pm* 1+ pm>|< pm+1* .. perl*
Let N = : : ) : : , then
{ Pk P Pk ce 14 p™x )
N T and we can define ¢/y on N by
1+ pma1 pm—|—1>’< pm-|—1>|< . pm+1*
pm>1< 1+ meLQ pm-i-1>'< .. pm-i-1>'<
Pl : . : :
px prx e 14 pTan P
P P P o L+p™ay,

= )\1(]. —I—pma1) s )\n—l(]- —i—pman_l)
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and we can get

( a pm-l—l* pm+1>l< pm+1* )
pm* as pm* pm—H)‘<
Stab% (T) = T = : :
pPrE P e apg P
\ Pk pMx Pk . an )

By the same argument as in the even case, we can define ¢) on T”, an extension
of ¢/, with

a, pm+1* pm—|—1>l< . pm—i-l>l<
pm>'< as pm>'< . pm—i—l*
(G : : : : = Ai(ar)Aa(ag) -+ - Ap—1(an—1),
P pTx e g P
prEopTE o P e Ay

then ¢ € Irr(G). Notice that | T” |=| B |, to show that 9% = ¢% is exactly
the same as in the even case—just replace T by T".

6.3 More general result

([ A o+ % .. * )
0 Ay *
Now let B = : ot : : > C (G where each A; is a n; xn;
0 0 -+ Ap_q =x*
(N0 0 0 - Ay )
matrix. Let A, Ao, ..., \e_1 : (Z/p*Z)* — C* be homomorphisms such that

{1+pl2z} € ker MM i # 5,1 <i,j <k —1. Let

¢; € Irr(GL(ny, Z/p*7)),1 < i < k be inflated from GL(n;, Z/pg_[é]Z).

Define & : B — C*,

A * ... *
O A2 * oo ES

ol - : = Ai[det(Ap)]Az[det(Ag)] - -
0 o -.- Ak;—l *

Ai—1]det(Ag_1)]d1(A1)P2(A2) - - - 1 (Ag).
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Ind%(®) € Irr(G).
To prove this result, we still need to discuss even and odd cases separately,
but the arguments are similar to the cases we had before. I will sketch the
proof for the even case and the odd case will follow similarly.
Suppose now ¢ = 2m. Let K,, be the same as before. Let

arly, 0 0 0
0 asl,, 0 0
A= : : : : with a; and a; — a; € (Z/p™7Z)*.
0 0 ak_llk_l 0
0 0 0 0

Let \ : (Z/p*™Z)" — C* be a homomorphism such that A
Define

{pm+} 18 Injective.

Dy K,y — C*, P41+ p™"C) —)\tr(pmAC’)]

([ A pmx Pt o P
pm* A2 pm* P pm
then Stabg(¢pa) =T = : : > . Let
prE pTk e Apg
L\ p7x P T

N i (Z)p*™Z)* — C*
be such that A\;(1 + p™z) = A(a;p™x), then

A pTx o pMx Pk

Pk Ay pMxk Pk
v .7 — (CX, o’

pE opME e Apg P

Pk pTE pTx Ay,

= Al[det(Al)] s )\k_l[det(Ak_l)]
is an extension of ®4 and Ind% (V') € Irr(G).
Let ¢; € Irr(GL(n;, Z/p"7Z)),1 <i < k and let ¥ = W' ¢1¢9 - - - ¢p. Since
T/Ky, = GL(ny,Z/p"Z) x GL(ng, Z/p™Z) x - -- x GL(ng, Z/p™Z),

by Clifford Theory, we still have Ind$(¥) € Irr(G).
To show that Ind%(¥) = Ind%(®), we can apply the same method by showing
that [Ind$(¥),Ind%(®)] = 1 because deg(Ind%(¥)) = deg(Ind$(®)). Notice
that

Id7 (V) |rnp= Ind7(®) |rns,

the statement follows just as we had before.
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