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ABSTRACT

We first find all the irreducible complex characters of the general linear group

GL(2,Z/p`Z) over the ring Z/p`Z, where ` is an integer > 1 and p is an odd

prime, and determine all the character values. Our methods rely on Clifford

Theory and can be modified easily to get all the irreducible complex characters

of GL(2,Z/p`Z) when p = 2.

We deal with irreducible characters which are not inflated from GL(2,Z/p`−1Z).

These have three possible degrees. There are characters induced from a Borel

subgroup, which have degree (p + 1)p`−1; and there are two other families of

characters, of degrees (p− 1)p`−1 and (p2 − 1)p`−2.

Many results can be extended to the group G = GL(2, R) with R = S/P `

where S is the ring of integers in a local or global field and P is a maximal

ideal. If S/P has q elements, we can replace p by q in the degree and number

of each degree formulas we find. We study GL(2,Z/p`Z) in our work not only

because it can give us some general results, but also it is simpler when we deal

with character values.

We also construct irreducible characters of GL(3,Z/p2Z) and GL(3,Z/p3Z).

There are 7 kinds of irreducible characters for each group, and these 7 kinds

of irreducible characters also show up for group GL(3,Z/p`Z) for any ` > 1.

We have all the degrees and the number of characters of each degree for the



GL(3,Z/p2Z). Moreover, we find all the irreducible constituents of character

IndG
B(1) for the two groups GL(3,Z/p2Z) and GL(3,Z/p3Z), where B is the

corresponding Borel subgroup.
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Chapter 1

Introduction

In this thesis, we apply Clifford Theory to construct irreducible characters
of the groups GL(2,Z/pnZ) and GL(3,Z/pnZ). The main idea of Clifford’s
Theorem is as follows.
Let N C G be a normal subgroup of G. For any character φ of N, we can
define

φg : N → C; φg(n) = φ(gng−1),∀g ∈ G, n ∈ N.

φg is also a character of N. Let φ ∈ Irr(N), denote IG(φ) = {g ∈ G | φg = φ}.
If ψ ∈ Irr(IG(φ)), such that [ψN , φ] 6= 0, then Clifford’s Theorem tells us that
ψG is an irreducible character of G.
In Chapter 2 and 3, we determine the values of the irreducible complex char-
acters of the general linear group GL(2,Z/p`Z) over the ring Z/p`Z, where ` is
an integer > 1 and p is an odd prime. The degrees of these characters, and the
number of characters of each degree, follow from work of Nobs [1]. However
Nobs did not consider the problem of finding the character values.
Our methods can be modified easily to get all the irreducible characters when
p = 2, which are quite different than those of Nobs. Our methods of construct-
ing the irreducible characters are somewhat similar to those of Kutzko [8], who
was interested in representations of GL(2, F ) where F is a p-adic field; Kutzko
did not find character values in [8]. Indeed, one of the reasons for our interest
in this problem is that smooth, irreducible super-cuspidal representations of
GL(2, F ) are induced from those of GL(2,O) where O is the ring of integers of
F , and these in turn arise from representations of GL(2, k) where k is a finite
factor ring of O.
We deal with irreducible characters which are not inflated from GL(2,Z/p`−1Z).
These have three possible degrees. There are characters induced from a Borel
subgroup, which have degree (p + 1)p`−1; and there are two other families of
characters, of degrees (p− 1)p`−1 and (p2 − 1)p`−2.
Many results can be extended to the group G = GL(2, R) with R = S/P `

where S is the ring of integers in a local or global field and P is a maximal
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ideal. If S/P has q elements, we can replace p by q in the degree and number
of each degree formulas. We will see one example in section 3.5. We study
GL(2,Z/p`Z) in our work not only because it can give us some general results,
but also it is simpler when we deal with character values.
In Chapter 5, we construct irreducible characters of GL(3,Z/p2Z) and
GL(3,Z/p3Z). There are 7 kinds of irreducible characters for each group, and
these 7 kinds of irreducible characters also show up for group GL(3,Z/p`Z)
for any ` > 1. For GL(3,Z/p2Z), we define one-dimensional character φA on
its normal subgroup K1 = {I + pB, B ∈ M(3,Z/pZ)}, find the stabilizer T of
φA and then extend φA to ψA of T such that ψA |K1= φA. By Clifford Theory
we know χA = IndG

T (ψA) ∈ Irr(G). The process is as follows:

K1 −→ T −→ G

φA
ext−→ ψA

ind−→ χA

.

We have all the degrees and the number of characters of each degree for the
GL(3,Z/p2Z) as follows.

Degrees Number of this degree
p2(p2 + p + 1) p(p− 1)4

p3(p2 + p + 1) p(p− 1)4

p2(p2 + p + 1)(p + 1) p(p−1)4(p−1)
2

p2(p2 + p + 1)(p− 1) p2(p−1)4

2

p3(p + 1)(p2 + p + 1) p(p−1)(p−2)(p−1)3

6

p2(p + 1)(p3 − 1) p2(p− 1)3

p3(p3 − 1) p2(p−1)3(p+1)
2

p(p3 − 1)(p2 − 1) p3(p− 1)
(p3 − 1)(p + 1) p(p− 1)2

(p3 − 1)(p + 1)(p− 1) p(p2 − 1)
p(p3 − 1)(p + 1) p(p− 1)3

p3(p− 1)2(p + 1) p(p−1)(p+1)(p3−1)
3

For GL(3,Z/p3Z), we define one-dimensional characters φ on the normal sub-
group K2 = {I +p2B}, find the stabilizer T of φ, and then get ψ ∈ Irr(T ) such
that [ψ |K2 , φA] 6= 0. Eventually by Clifford Theory, we have χ = IndG

T (ψ) ∈
Irr(G). Depending on the definition of φ on K2, we have two different con-
struction processes. The first one is as follows.

(1)
K2 −→ K2(K1 ∩ S) −→ H −→ K1 −→ K1S −→ G

φA
ext−→ φ′

ext−→ φ′′
ind−→ θ

ext−→ ψ
ind−→ χ

,

where H �K1 with index p3.
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The second one is

(2)
K2 −→ N −→ T ′ −→ T −→ G

φA
ext−→ φ′A

ext−→ φ′
ind−→ ψ

ind−→ χ
,

for which we choose a normal subgroup N of T such that |N |
|K2| is as big as

possible while we can still extend φA to φ′A of N. T ′ is the stabilizer of φ′A in T.
These two construction processes will give us 7 kinds of irreducible characters
of GL(3,Z/p3Z).
In the last section of chapter 5, we find all the irreducible constituents of the
permutation character IndG

B(1) for the two groups GL(3,Z/p2Z) and
GL(3,Z/p3Z), where B is the corresponding Borel subgroup. For GL(3,Z/p2Z),
the decomposition is

IndG
B(1B) = IndG′

B′(1B′)
⊕

χ1

⊕
3χ2

⊕
χ3

⊕
χ4.

In the case of GL(3,Z/p3Z), the complete decomposition is as follows.

IndG
B(1B) = IndG′′

B′′(1B′′)
⊕

4χ1

p−2⊕
i=1

χ1i

6⊕
j=2

χj.

B′ and B′′ are the corresponding Borel subgroups of G′ and G′′. Details will
be given in section 5.3.
In Chapter 6, we generalize the parabolic induction to construct irreducible
characters of group GL(n,Z/p`Z). In the 2×2 case, let B ⊂ G = GL(2,Z/p`Z)

be the Borel subgroup

{(
a b
0 c

)}
. Let λ be an injective character of (Z/p`Z)×

and define φ by φ

(
a b
0 c

)
= λ(a). χ = IndG

B φ is irreducible.

The most general version for G = GL(n,Z/p`Z) is as follows. Let

B =








A1 ∗ ∗ · · · ∗
0 A2 ∗ · · · ∗
...

...
. . .

...
...

0 0 · · · Ak−1 ∗
0 0 0 · · · Ak








⊂ G

where each Ai is a ni × ni matrix. Let λ1, λ2, ..., λk−1 : (Z/p`Z)× −→ C× be
homomorphisms such that

{
1 + p[`/2]x

}
* ker λiλ

−1
j , i 6= j, 1 ≤ i, j ≤ k − 1.

Let
φi ∈ Irr(GL(ni,Z/p`Z)), 1 ≤ i ≤ k
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be inflated from GL(ni,Z/p`−[ `
2
]Z). Define Φ : B −→ C×,

Φ




A1 ∗ ∗ · · · ∗
0 A2 ∗ · · · ∗
...

...
. . .

...
...

0 0 · · · Ak−1 ∗
0 0 0 · · · Ak




= λ1[det(A1)]λ2[det(A2)] · · ·λk−1[det(Ak−1)]

×φ1(A1)φ2(A2) · · ·φk(Ak),

then
IndG

B(Φ) ∈ Irr(G).

4



Chapter 2

Some Preliminaries

2.1 Character Theory

Definition 2.1.1. Let V be a finite-dimensional vector space over C. A
representation ρ of a group G is a group homomorphism ρ : G → GL(V ).
dim(V ) is also called the dimension of ρ, denoted by dim(ρ).

We know that if we choose a basis of V , then GL(V ) ∼= GL(n,C), where
n = dim(V ). So it is equivalent to say that a group homomorphism ρ : G →
GL(n,C) is also a representation. In particular, a group homomorphism λ :
G → C× is a representation.

Definition 2.1.2. A subspace W of V is invariant under ρ if for each w ∈ W
and for all g ∈ G, ρ(g)(w) ∈ W. A representation ρ : G → GL(V ) is irreducible
if there is no proper nonzero invariant subspace W of V under ρ.

We usually use character theory to determine whether a representation is ir-
reducible.

Definition 2.1.3. Let ρ : G → GL(n,C) be a representation of G. The
character χ of G afforded by ρ is the function given by χ(g) = tr(ρ(g)). χ is
called irreduciblee if ρ is irreducible. The degree of χ is defined by deg(χ) =
dim(ρ) = χ(1).

From now on, let Irr(G) represent the set of all irreducible characters of the
group G.

Proposition 2.1.4. Let χ and ψ be characters of G. Define χψ on G by
setting (χψ)(g) = χ(g)ψ(g). χψ is also a character of G.

From the definitions above, it is clear that a 1 − dimensional representation
ρ is irreducible. Moreover, if χ is the character afforded by ρ, we have ρ = χ.
Namely, a 1−dimensional character is also a representation. We will use this
fact in the next two chapters very often.
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Definition 2.1.5. Let N < G be a subgroup and suppose that φ is a character
of N. We say φ is extendible to G if ∃ψ, a character of G, such that ψN = φ.
We call ψ an extension of φ to G.

Definition 2.1.6. Let φ and θ be characters of a group G.

[φ, θ] =
1

| G |
∑
g∈G

φ(g)θ(g)

is the inner product of φ and θ.

Theorem 2.1.7. Let λ and ψ be characters of G. [λ, ψ] = [ψ, λ] is a non-
negative integer. Also λ is irreducible if and only if [λ, λ] = 1.

Definition 2.1.8. Let H < G be a subgroup and let φ be a character of H.
φG, the induced character on G, is given by

φG(g) =
1

| H |
∑
x∈G

φ◦(xgx−1),

where φ◦ is defined by φ◦(h) = φ(h) if h ∈ H and φ◦(y) = 0 if y 6∈ H.

By the definition above, it is easy to calculate that

deg(φG) = deg(φ)
| G |
| H | .

Also from the definition of induced character, we have the following proposi-
tion.

Proposition 2.1.9. Let H < K < G and suppose that φ is a character of H,
then (φK)G = φG.

Lemma 2.1.10. (Frobenius Reciprocity) Let H < G and suppose that φ is
a character of H and that θ is a character on G, then

[φ, θH ] = [φG, θ].

2.2 Clifford Theory

Let H � G. If θ is a character of H and g ∈ G, we define θg : H → C by
θg(h) = θ(ghg−1). We say that θg is conjugate to θ in G.

Lemma 2.2.1. Let H �G and let φ, θ be characters of H and x, y ∈ G.
(a) φx is a character;
(b) (φx)y = φxy;
(c) [φx, θx] = [φ, θ];
(d) [χH , φx] = [χH , φ] for characters χ of G.
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The Lemma follows from direct calculation.

Definition 2.2.2. Let H �G and let θ ∈ Irr(H).

IG(θ) = {g ∈ G | θg = θ}

is the inertia group of θ in G.

We also call IG(θ) the stabilizer of θ in G and use notation StabG(θ) in later
sections. When IG(θ) = G, we say θ is stable under G, or invariant in G.

Theorem 2.2.3. (Clifford, [1]) Let H � G, θ ∈ Irr(H), and T = IG(θ).
Let

A = {ψ ∈ Irr(T ) | [ψH , θ] 6= 0}, B = {χ ∈ Irr(G) | [χH , θ] 6= 0}.

(a) If ψ ∈ A, then ψG is irreducible;
(b) The map ψ 7→ ψG is a bijection of A onto B;
(c) If ψG = χ, with ψ ∈ A, then ψ is the unique irreducible constituent of χT

which lies in A;
(d) If ψG = χ, with ψ ∈ A, then [ψH , θ] = [χH , θ].

In general, it is hard to tell whether the character of G induced from an
irreducible character of H < G is still irreducible. This Theorem tells us
when the induced character is irreducible . So we can apply this theorem to
construct some irreducible characters of G, from certain irreducible characters
of the normal subgroup H. Part (a) of this theorem is used throughout the
following two chapters.

Corollary 2.2.4. Let N � G and θ ∈ Irr(N). θG ∈ Irr(G) if and only if
IG(θ) = N .

The IG(θ) = N ⇒ θG ∈ Irr(G) direction follows immediately from (a) of last
theorem and we will use this result very often in the next two chapters.

Corollary 2.2.5. Let N � G and let χ ∈ Irr(G) and θ ∈ Irr(N) with
[χN , θ] 6= 0. The following are equivalent:
(a) χN = eθ, with e2 =| G : N |;
(b) χ vanishes on G−N and θ is invariant in G;
(c) χ is the unique irreducible constituent of θG and θ is invariant in G.

Theorem 2.2.6. (Gallagher, [1]) Let N � G,χ ∈ Irr(G) be such that χN =
θ ∈ Irr(N). The characters βχ for β ∈ Irr(G/N) are irreducible, distinct for
distinct β, and are all of the irreducible constituents of θG.
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Note that there is a projection π : G → G/N. Thus, for any group represen-
tation ρ of G/N, ρ ◦ π is a representation of G. If ρ is irreducible, ρ ◦ π is also
irreducible. As a result, we can consider the character β ∈ Irr(G/N) as an
irreducible character of G.Therefore, βχ above is well defined.
Considering the set A in Theorem 2.2.3, we have

A = {ψ ∈ Irr(T ) | [ψH , θ] 6= 0} = {ψ ∈ Irr(T ) | [ψ, θT ] 6= 0}.

In order to apply theorem 2.2.3 to construct irreducible characters of G, we
need to induce up the characters in A. Theorem 2.2.6 tells us that, if we can
actually extend θ to T, then by finding out all the irreducible characters of
T/H, we can construct all the irreducible characters in A and, as a result, we
will find more irreducible characters of G.
We will apply Theorem 2.2.6 in chapter 4.

Theorem 2.2.7. Let N �G with G/N cyclic and let θ ∈ Irr(N) be invariant
in G, then θ is extendible to G.

By applying this theorem, we will come up with some crucial results. The
following three lemmas are useful in the following two chapters to construct
certain extensions of some characters of degree one.

Lemma 2.2.8. Let G be a group, N � G,H < G and G = NH. Let φ ∈
Irr(N), ψ ∈ Irr(H) be such that deg(φ) = deg(ψ) = 1. Assume φN∩H = ψN∩H

and ∀h ∈ H, φh = φ. ∃θ ∈ Irr(G) such that deg(θ) = 1 and θN = φ.

Proof. Define

θ : G → C×; θ(nh) = φ(n)ψ(h),∀n ∈ N, h ∈ H.

Since φ and ψ are of degree one, they are also group homomorphisms. Since
φN∩H = ψN∩H , we know that θ is well-defined. In addition, ∀n1, n2 ∈ N, h1, h2 ∈
H, we have

θ(n1h1n2h2) = θ(n1h1n2h
−1
1 h1h2)

= φ(n1h1n2h
−1
1 )ψ(h1h2)

= φ(n1)φ(h1n2h
−1
1 )ψ(h1)ψ(h2)

= φ(n1)φ
h1(n2)θ(h1)θ(h2)

= φ(n1)φ(n2)θ(h1)θ(h2)

= θ(n1h1)θ(n2h2).

Thus, θ is of degree one. It is clear that θN = φ.

Lemma 2.2.9. Let G be a finite abelian group, let N �G and λ ∈ Irr(N),
then λ is extendible to G.
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Proof. Since G is a finite abelian group, it is a direct product of cyclic groups.
Thus, we can find the subgroups N1, N2, ..., Nm of G, such that N1/N, N2/N1,
..., Nm/Nm−1 and G/Nm are all cyclic. Thus, by Theorem 2.2.7, λ can be
extended to N1. Call the extension λ1. Since G is abelian, we have that any
character of any subgroup of G is stable under G. Therefore λ1 is stable under
G, so is stable under N2. Hence it is extended to N2. So λ is extended to N2.
Keeping doing this, we know that finally λ will be extended to G.

Lemma 2.2.10. Let G be a group, N �G,S < G, S is abelian, and G = NS.
Let φ ∈ Irr(N) be such that deg(φ) = 1. Assume φ is stable under G, then φ
is extendible to G.

Proof. Let ψ = φS∩N , then ψ ∈ Irr(S ∩ N). Since S is abelian, we know
S ∩N � S. By Lemma 2.2.9, ∃θ ∈ Irr(S) such that θS∩N = ψ = φS∩N . Apply
Lemma 2.2.8, we know that φ is extendible to G.

Lemma 2.2.10 will be used a lot.

2.3 Useful results

In this section, we will calculate the orders of groups GL(2,Z/pnZ), GL(3,Z/pnZ)
and some of their important subgroups.
In GL(k,Z/pnZ), define K = {I + pA | A ∈ Mk×k(Z/pn−1Z)}. | K |=|
Mk×k(Z/pn−1Z) |= pk2(n−1). Formally speaking, matrix A ∈ Mk×k(Z/pn−1Z)
doesn’t belong to Mk×k(Z/pnZ)} since Z/pn−1Z is not a subset of Z/pnZ. In
this thesis, we treat Z/piZ as a subset of Z/pjZ for i < j to simplify notations
and this does not cause confusion.

Proposition 2.3.1. | GL(k,Z/pnZ) |= pk2(n−1)
k∏

t=1

(pk − pt−1).

Proof. Recall that there is a group homomorphism

φ : Z/pnZ→ Z/pZ; φ(a) = a, ∀a ∈ Z/pnZ.

Thus, we can define

ψ : GL(k,Z/pnZ) → GL(k,Z/pZ); ψ(A) = A,

where A ∈ GL(k,Z/pnZ) and Aij = φ(Aij). It is easy to check that ψ is a
surjective group homomorphism. Moreover, ker(ψ) = K. Hence, we have

GL(k,Z/pnZ)/K ∼= GL(k,Z/pZ)

⇒| GL(k,Z/pnZ) |=| GL(k,Z/pZ) || K | .
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Since it is known that | GL(k,Z/pZ) |=
k∏

t=1

(pk − pt−1)[6], the proposition

follows.

Corollary 2.3.2. | GL(2,Z/pnZ) |= (p2− p)(p2− 1)p4n−4, | GL(3,Z/pnZ) |=
(p3 − 1)(p3 − p)(p3 − p2)p9n−9.

Next, we will calculate the orders of two important subgroups of GL(2,Z/pnZ)
and GL(3,Z/pnZ).
Let ε ∈ Z/pZ be such that

√
ε 6∈ Z/pZ, i.e. there is no a ∈ Z/pZ such that

a2 = ε.
Let

S ′ =
{

s′ =
(

x yε
y x

)
| s′ ∈ GL(2,Z/pZ)

}
.

S ′ < GL(2,Z/pZ). Moreover, we can prove that

S ′ ∼= (Z/pZ[
√

ε])×,

therefore | S ′ |= p2 − 1. The proof is exactly the same as the one in the
GL(3,Z/pnZ) case and we will talk about it later. Consider ε as an element
of Z/pnZ, e.g. 3 ∈ Z/5Z, 3 is also an element of Z/25Z.
Define

S =

{
s =

(
x yε
y x

)
| s ∈ GL(2,Z/pnZ)

}
.

Proposition 2.3.3. | S |= (p2 − 1)p2n−2.

Proof. Let
ψ : GL(2,Z/pnZ) → GL(2,Z/pZ)

be the surjective group homomorphism defined in the proof of Proposition
2.3.1 in the case k = 2. Consider the restriction of ψ to S, then it is clear that
ψ maps S onto S ′ and

ker ψ =

{
t =

(
1 + px pyε

py 1 + px

)
| t ∈ GL(2,Z/pnZ)

}
.

Clearly, | ker ψ |= p2n−2. Since S/ ker ψ ∼= S ′, we have that

| S |=| S ′ || ker ψ |= (p2 − 1)p2n−2.

Corollary 2.3.4. Suppose n > m. Let G = GL(2,Z/pnZ), Km = {I + pmA |
A ∈ M2×2(Z/pn−mZ)} and S =

{
s =

(
x yε
y x

)
| s ∈ G

}
, then | KmS |=

p4n−2m−2(p2 − 1).

10



Proof. It is clear that

Km ∩ S =

{(
1 + pma pmbε

pmb 1 + pma

)
| a, b ∈ Z/pn−mZ

}
,

so | Km ∩ S |= (pn−m)2. Since we also have | Km |= (pn−m)4 and | S |=
(p2 − 1)p2n−2, we can conclude that | KmS |= |Km||S|

|Km∩S| = p4n−2m−2(p2 − 1).

In particular, when G = GL(2,Z/p2mZ), we have | KmS |= p6m−2(p2−1); and
if G = GL(2,Z/p2m+1Z), we have | KmS |= p6m+2(p2 − 1). The subgroups S
and KmS above play an important role in Chapter 3.
In the GL(3,Z/pnZ) case, there is a similar subgroup and we will now talk
about it.
Let t3 − ct2 − bt− a be an irreducible polynomial in Z/pZ[t]. We have a field
extension of Z/pZ corresponding to the polynomial t3 − ct2 − bt− a. Call the
field extension Z/pZ[α], then α3 − cα2 − bα − a = 0. We know that Z/pZ[α]
is a 3 - dimensional linear space over Z/pZ, the basis is {1, α, α2}.
Consider

1 → α, α → α2, α2 → α3

as a linear transformation from Z/pZ[α] to Z/pZ[α]. The corresponding matrix
is

B =




0 0 a
1 0 b
0 1 c


 .

Thus,

S ′ = {s′ = xI + yB + zB2 | s′ ∈ GL(3,Z/pZ)} ∼= (Z/pZ[α])× ⇒| S ′ |= p3 − 1.

Consider B above as a matrix in GL(3,Z/pnZ), then

S = {s = xI+yB+zB2 | x, y, z ∈ Z/pnZ, s ∈ GL(3,Z/pnZ)} < GL(3,Z/pnZ).

Proposition 2.3.5. Let S be the same as above, then | S |= (p3 − 1)p3n−3.

Proof. By the same argument as in (2.3.3), we know that | S |=| S ′ || ker ψ | .
In this case, ker ψ = {s = (1 + px)I + pyB + pzB2 | s ∈ GL(3,Z/pnZ)}.
Clearly, | ker ψ |= p3(n−1), and the proposition follows.

Corollary 2.3.6. Suppose n > m. Let G = GL(3,Z/pnZ), Km = {I + pmA |
A ∈ M3×3(Z/pn−mZ)}, and S be the same as above, then | KmS |= (p3 −
1)p9n−6m−3.

11



Proof. By the same argument as in Corollary (2.3.4), note that in this case,

Km ∩ S = {s = (1 + pmx)I + pmyB + pmzB2 | x, y, z ∈ Z/pn−mZ}

⇒| Km ∩ S |= (pn−m)3.

The corollary follows.

Again from the above corollary, when G = GL(3,Z/p2mZ), | KmS |= p12m−3(p3−
1); and if G = GL(3,Z/p2m+1Z), | KmS |= p12m+6(p3 − 1). As we will see in
Chapter 4, the above two subgroups are the stabilizers of the characters of Km

in GL(3,Z/p2mZ) and Km+1 in GL(3,Z/p2m+1Z) respectively.

2.4 Conjugacy Classes

Let R be a finite commutative principal local ring of odd characteristic. This
means that there is a nilpotent element π ∈ R and a positive integer ` such
that π` = 0 and every nonzero x ∈ R can be written as

x = uπk

for some u ∈ R× and a unique k, 0 ≤ k < `. In particular, R = R×∪̇πR, so
that R/πR = Fq, where q =| R/πR | .
Let

M = M2(R) = { 2× 2 matrices over R },M0 = {A ∈ M : tr(A) = 0 },

G = GL(2, R) = M× = {A ∈ M : det(A) ∈ R×}.
Let I denote the identity matrix. Now G acts on M by conjugation, preserving
both trace and determinant. It follows that the conjugacy class of an element
g in G is equal to the orbit of the same matrix g ∈ M under this action.
Moreover, the action restricts nontrivially to M0 and trivially to {αI : α ∈ R}.
Since these two subgroups generate M+ additively (provided that R has odd
characteristic), it is sufficient to describe the orbits in M0.
We identify some invariant subgroups of M0. Let Li = πiM0, 0 ≤ i ≤ l,
the subset of matrices all of whose entries are multiples of πi. This is invariant
under the action of G because the constant πi factors through the conjugation.
We have {0} ⊆ L` ⊆ L`−1 ⊆ · · · ⊆ L0 = M0.
Let A ∈ M0 be a matrix that is not in L1. We will find a canonical repre-
sentative for the similarity class (orbit) of A. Form the 2 × 2 matrix B over
Fq = R/πR by reducing the entries of A modulo πR. B has trace 0 but is not
the zero matrix, hence it is not a multiple of the identity matrix. We there-
fore know that B is conjugate by some element of GL(2,Fq) to the matrix

12



( − det(B)
1

)
. It follows that A is conjugate by some element of G to the

matrix

A′ =
(

πα β
1 + πγ −πα

)

for some α, β, γ ∈ R, β ≡ − det(B) (mod πR). Since

(
1 πα

1 + πγ

)−1

A′
(

1 πα
1 + πγ

)
=

(
π2α2 + (1 + πγ)β

1

)
=

( − det(A′)
1

)
,

we have shown that the orbit of A contains a unique representative of the form(
β

1

)
. The set of all such matrices, with β ∈ R, contains one representative

from each orbit in M0 \ L1.
Now consider any matrix C ∈ Li \ Li+1, 0 ≤ i < `. Thus C = πiA for some
matrix A ∈ M0 \L1. We will reduce the problem of finding a representative for
the orbit of C to the special case we have already solved, but over a different
ring. Let Ri = R/π`−iR. There is an additive isomorphism θ : Ri → πiR given
by θ(x) = πix. Write θ also for the corresponding map of 2× 2 matrices, and
use bars to denote reduction modulo πl−iR. Hence, for g ∈ G,

gCg−1 = g(πiA)g−1 = πigAg−1 = θ(ḡĀḡ−1).

That is, the orbit of C = θ(Ā) under the action of GL(2, R) is θ(O) where O is
the orbit of Ā under the action of GL(2, Ri). We know the orbit representatives
for this action, because it is the special case considered before. Thus holding
i fixed, C must be in the orbit of exactly one of

(
β

πi

)

β∈πiR.

There is another special case, i = `, but it includes only the 0 matrix.
As remarked before, knowledge of the similarity classes of M0 implies knowl-
edge of the similarity classes of M and the conjugacy classes of G. The following
is a set of similarity class representatives for M : the representatives of M0,
plus arbitrary multiples of the identity.

(
α β
πi α

)

0≤i≤l,α∈R,β∈πiR.

For conjugacy class representatives of G, it suffices to discard singular matrices
from the above list. We can make a more useful list at the cost of distinguishing
a few cases. First we have the case i = `, for which the matrix is a multiple of
the identity. Otherwise, fix i < `, and let β = θ(γ), γ ∈ Ri.
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If γ is the square of a unit in Ri, say γ = δ2 ∈ R×
i , then

(
α β
πi α

)
∼

(
α + πiδ

α− πiδ

)
.

Note that δ is only defined up to sign.
Fix a nonsquare unit ε in R. If γ is a nonsquare unit in Ri, then γε̄−1 is a
square, say γ = δ2ε̄, δ ∈ R×

i . In this case,

(
α β
πi α

)
∼

(
α πiδε

πiδ α

)
.

Once again, δ is only defined up to sign.
For the remaining case when γ is not a unit, we have β = πi+1β′ and therefore

(
α β
πi α

)
=

(
α πi+1β′

πi α

)

is another class type.

Summary: Conjugacy Classes of GL(2, R), where R = Z/p`Z
For 0 ≤ i < ` and non square unit ε ∈ R, we have the following summarization:

Name of class type Parameters Representatives

Iα α ∈ R×
(

α 0
0 α

)

Biαβ α ∈ R×, β ∈ R/p`R

(
α pi+1β
pi α

)

Ciαβ α ∈ R, β ∈ R×, α2 − εβ2p2i ∈ R×
(

α piεβ
piβ α

)

Diαδ α, δ ∈ R×, α− δ ∈ piR×
(

α 0
0 δ

)

Name # of classes if i = 0 # of classes if i > 0 Size of class
Iα − (p− 1)p`−1 1

Biαβ (p− 1)p2`−2 (p− 1)p2`−i−2 (p− 1)(p + 1)p2`−2i−2

Ciαβ
1
2
(p− 1)p2`−1 1

2
(p− 1)2p2`−i−2 (p− 1)p2`−2i−1

Diαδ
1
2
(p− 1)(p− 2)p2`−2 1

2
(p− 1)2p2`−i−2 (p + 1)p2`−2i−1
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Chapter 3

Irreducible character degrees of
GL(2,Z/p`Z)

In this chapter, we first construct 3 types of irreducible characters of GL(2,Z/p`Z),
then count the number to see that we do have all of them. We will also see
how to modify the case when p = 2.

3.1 Construction of Irreducible Characters of

GL(2,Z/p`Z)

In this section, we will apply Clifford Theory to construct 3 kinds of irreducible
characters of G = GL(2,Z/p`Z). The main idea of Clifford Theory [5] is as
follows.

Let N C G be a normal subgroup of G. For any character φ of N, we can
define

φg : N → C; φg(n) = φ(gng−1),∀g ∈ G, n ∈ N.

φg, the conjugate to φ, is also a character of N . Let Irr(N) be the set of
irreducible characters of N, denote T = StabG(φ) = {g ∈ G | φg = φ}. Let
φ ∈ Irr(N), Clifford’s Theorem indicates that there exists ψ ∈ Irr(T ), such
that ψ |N is a multiple of φ, namely the inner product [ψ |N , φ] 6= 0, and then
the induced character IndG

T ψ is in Irr(G). Also, the map ψ → ψG is a bijection
of {ψ ∈ Irr(T ) | [ψ |N , φ] 6= 0} onto {χ ∈ Irr(G) | [χN , φ] 6= 0}.
Let p > 2 be prime, ` ≥ 2 be a positive integer, R = Z/p`Z,m = bl/2c, G =
GL(2,Z/p`Z), and Ki = {I + piB : B ∈ M2×2(R)} for 1 ≤ i < `. Note that
Ki�G, for all i, and that Ki is abelian if i ≥ `/2, because (I +piB)(I +piC) =
I + pi(B + C). Since

Ki =

{(
1 + pia pib

pic 1 + pid

)
: 0 ≤ a, b, c, d < p`−i

}
then |Ki| = p4(`−i).
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Characters with kernel containing K`−1 are lifted from the quotient group
G/K`−1

∼= GL(2, Z/p`−1Z); we assume that these are already known induc-
tively.
We first describe the characters of the abelian group Ki, i ≥ l/2. Assign a
fixed injective homomorphism λ : Z/p`Z → C× and let A ∈ M2×2(Z/p`Z),
then φA defined as

φA(I + piB) = λ(tr(piAB))

is clearly a character on Ki of degree 1. Notice that φA = φA+p`−iA′ , we only

need to consider those matrices A =

(
a b
c d

)
with 0 ≤ a, b, c, d < p`−i. Let

A → Ā, GL(2,Z/p`) → GL(2,Z/p`−i)

be the natural map, then φA is determined by Ā ∈ GL(2,Z/p`−i). To simplify
notations, we can consider A to be a matrix over Z/p`−iZ and then we have that
the irreducible characters φA of Ki are in correspondence with 2× 2 matrices
A over Z/p`−iZ. By the definition of Ki, we can also treat B as a matrix over
Z/p`−iZ. We can also find injective homomorphism λ′ : Z/p`−iZ → C× such
that λ(tr(piAB)) = λ′(tr(AB)). Thus, when there is no confusion, we can also
define φA this way:

φA(I + piB) = λ(tr(AB))

where λ : Z/p`−iZ → C× is an injective homomorphism. In the following
sections, we may use different versions of φA for different purposes and this
does not cause any confusion once we use the above identification.
An element g ∈ G acts on Ki by conjugation via (I + piB)g = I + pigBg−1,
and thus g also acts on the characters of Ki via

(φA)g(I + piB) = φA(I + pigBg−1)

= λ(tr(piAgBg−1))

= λ(tr(pig−1AgB))

= φAg−1 (I + piB).

The stabilizer of φA is

T = StabG(φA) = {g ∈ G : gA = Ag}.
Clifford’s theorems imply that all the characters of G can be obtained by
inducing from T to G all possible characters ψ of T that restrict to multiples
of φA on Ki.

When ` = 2m is even, the existence of the abelian normal subgroup Km (with
i = m) allows characters to be constructed easily. The process is as follows:

Km −→ T −→ G

φA
ext−→ ψ

ind−→ χ
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where φA(I+pmB) = λ(tr(pmAB)), T = StabG(φA) = KmS for some subgroup
S of G, depending on the choices of A. One nice thing in the even case is that
we can always extend φA to ψ. Moreover, we also have an explicit formula for
ψ, which helps us a lot to find values of χ later. By Clifford’s theorem, we
know χ = IndG

T ψ is irreducible.

Starting with different matrices A to define φA on Km will give us different S
for the stabilizer T , and therefore will end up giving us irreducible character
χ of G with different degrees. We have three cases and this gives us all the
degrees we need.

i) A =

(
k 0
0 0

)
, k ∈ (Z/pmZ)×. In this case, we have S =

{(
w 0
0 z

)}
. The

construction will give us irreducible characters of G with degree (p + 1)p`−1.

ii) A =

(
0 ε
1 0

)
, where ε is a non-square unit. We have S =

{(
w εy
y w

)}

and we can get irreducible characters of G with degree (p− 1)p`−1.

iii) A =

(
0 pβ
1 0

)
, β ∈ Z/pmZ. We get S =

{(
w pβy
y w

)}
and we will have

irreducible characters of G with degree (p2 − 1)p`−2.

If ` = 2m + 1 is odd, the construction is a little more complicated. Notice
that Km in this case is not abelian, we start with the normal subgroup Km+1

and define φA on Km+1 using the same formula as before. We also have T =
StabG(φA) = KmS for some subgroup S, depending the choices of A. Unlike
the even case, we cannot extend φA to T directly. Instead, we can construct
irreducible characters ψ ∈ Irr(T ), with degree p, such that [ψ |Km+1 , φA] 6= 0.
By Clifford’s theorem, we know IndG

T ψ ∈ Irr(G).

When we use A =

(
k 0
0 0

)
or A =

(
0 pβ
1 0

)
to define φA on Km+1, we will

end up with finding irreducible characters of G with degree (p + 1)p`−1 and
(p2 − 1)p`−2 respectively. The construction process is as follows.

Km+1 −→ N −→ T ′ −→ T −→ G

φA
ext−→ φ′A

ext−→ φ′
ind−→ ψ

ind−→ χ
.

T = StabG(φA). We pick a proper normal subgroup N � T so that we extend
φA to φ′A naturally. T ′ = StabT (φ′A) and we can also extend φ′A to φ′ of T ′.
By Clifford’s theorem, we know that ψ = IndT

T ′(φ
′) is irreducible and clearly

[ψ |Km+1 , φA] 6= 0. Therefore, χ = IndG
T ψ is irreducible.

If we start with A =

(
0 ε
1 0

)
to define φA, we will get irreducible characters

of G with degree (p− 1)p`−1 and here is the construction process.
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Km+1 −→ Nm+1 −→ H −→ Nm −→ T −→ G

φA
ext−→ φ′

ext−→ φ′′
ind−→ θ

ext−→ ψ
ind−→ χ

,

where

Ni = Ki(K1 ∩ S)

{(
a

a

)}
, H = Nm+1

〈(
1 + pm

1

)〉
.

The extensions φ′ and φ′′ are constructible. θ is irreducible because
StabNm(φ′′) = H. θ is extendible to ψ because θ is stable under T and T/Nm is
cyclic. Eventually, we have irreducible character χ of G with degree (p−1)p`−1.
More details of the constructions will be given in later sections when we need
to evaluate irreducible character of χ in each case.

3.2 The number of characters

In the last section, we know we can construct 3 kinds of irreducible characters
of G. Now, we want to count the number of each kind and see that we actually
have all the irreducible characters of each degree. From the constructions we
had before and the work of Nobs [1], we have the following table(*).

A S deg χ number χ of this degree(
k 0
0 0

) (
w 0
0 z

)
(p + 1)p`−1 1

2
(p− 1)3p2`−3

(
0 ε
1 0

) (
w εy
y w

)
(p− 1)p`−1 1

2
(p− 1)(p2 − 1)p2`−3

(
0 pβ
1 0

) (
w pβy
y w

)
(p2 − 1)p`−2 (p− 1)p2`−2

Recall that we constructed 3 kinds of irreducible characters using the simple
matrices A as in the above table, but one single A does not give us the complete
corresponding irreducible characters χ of each degree. Fix one injective λ :
Z/p`Z→ C×, in order to get all the irreducible characters of the above three
degrees, we start with more general matrices A′, such that the stabilizer T
stays the same in each case. This will give us more irreducible characters of G
with the same corresponding degree. Since starting with conjugate characters
φA will give us the same irreducible character χ of G and φA1 is conjugate to
φA2 if and only if A1 is conjugate to A2, counting the number of non-conjugate
matrices of A′ in each case can give us the number of the irreducible characters
of G of each degree.

Since our constructions in the even and odd cases are different, we will first
count the number in the even case and then do it similarly in the odd case.
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3.2.1 G = GL(2,Z/p2mZ), i.e. ` = 2m

Recall that in this case the general process to construct irreducible characters
of G is as follows:

Km −→ T −→ G

φA
ext−→ ψ

ind−→ χ

where φA(I + pmB) = λ(tr(pmAB)), T = StabG(φA), ψ is an extension of φA

and χ = IndG
T ψ. By Clifford theory, we know χ is irreducible and we have

three kinds of irreducible characters of G. In each case, we have

# of irreducible characters of G = # of non-conjugate φA× # of extensions ,

so we count how many non-conjugate φA we can get in each case.

In the first case where A =

(
k

)
, we can start with more general matrices

Aα,k = αI + A =

(
α + k

α

)
, where α ∈ Z/pmZ, k ∈ (Z/pmZ)×.

We can define φAα,k
on Km using the same formula as φA. Later we will see

StabG(φAα,k
) = StabG(φA) = T

and we can also extend φAα,k
to T . Therefore, we will get irreducible characters

of G with degree (p + 1)p2m−1. Notice that

(
α + k

α

)
is conjugate to

(
α

α + k

)
, hence the total number of non-conjugate Aα,k, and so of non-

conjugate φAα,k
is

1

2
pm(pm − pm−1) =

1

2
p2m−1(p− 1) =

1

2
(p− 1)p`−1.

Multiplying it by the number of extensions from Km to T , which is (p −
1)2p`−2in this case, gives us all the irreducible characters of degree (p+1)p`−1.

In the second case when A =

(
ε

1

)
, we can start with general matrices

Aα,ε = αI + A =

(
α ε
1 α

)

where α ∈ Z/pmZ and ε is a non-square unit in Z/pmZ. Notice that Aα,ε is
conjugate to Aα′,ε′ if and only if α = α′, ε = ε′. The number of non-square unit
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ε is pm−pm−1

2
, therefore we have 1

2
(pm − pm−1)pm = 1

2
(p− 1)p`−1 non conjugate

characters φAα,ε on Km, which is exactly what we need to complete this case.

The last case when A =

(
pβ

1

)
, we can use general matrices

Aα,β = αI + A =

(
α pβ
1 α

)
where α ∈ Z/pmZ and β ∈ (Z/pm−1Z)×.

By counting the number of α and β, we have pmpm−1 = p`−1 non conjugate
φα,β on Km and this is exactly what we need.

3.2.2 G = GL(2,Z/p2m+1Z), i.e. ` = 2m + 1

Now the construction of irreducible characters of each kind is different from
the even case. We will count the number case by case.

(i) A =

(
k

)
, k ∈ (Z/pmZ)×. Starting with φA on Km+1 C G, we end

up with irreducible characters of G with degree (p + 1)p`−1. The process is as
follows:

Km+1 −→ N −→ T ′ −→ T −→ G

φA
ext−→ φ′A

ext−→ φ′
ind−→ ψ

ind−→ χ

where N =

{(
1 + pma pm+1b

pmc 1 + pmd

)}
, T ′ =

{(
a pm+1b

pmc d

)}
, and T =

{(
a pmb

pmc d

)}
. N C T and φ′A(n) = λ(tr(A(n − I))),∀n ∈ N . It is easy

to check that φ′A is a one-dimensional character and an extension of φA. We
also have StabT (φ′A) = T ′ and we can extend φ′A to φ′. By Clifford theory, we
know ψ = IndT

T ′ φ
′ ∈ Irr(T ), and therefore, χ = IndG

T ψ = IndT
T ′ φ

′ ∈ Irr(G). To
count how many irreducible characters of G we can get in this case, we need
to look at the following piece of the construction:

N −→ T ′ −→ T

φ′A
ext−→ φ′

ind−→ ψ
.

Similar to the argument in the even case, we know that non-conjugate φ′A on
T ′ can give us different ψ on T , and eventually will give us different χ ∈ Irr(G).
Therefore, we want to count how many non-conjugate φ′A we have on T ′. By
making A into more general matrices

Aα,k = αI + kA =

(
α + k

α

)
, where α ∈ Z/pm+1Z, k ∈ (Z/pm+1Z)×,
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we have 1
2
(pm+1 − pm)pm+1 = 1

2
p`(p − 1) non-conjugate φ′Aα,k

on N. Notice

that the number of extensions from N to T ′ is |T ′|
|N | = p`−3(p − 1)2, we have

1
2
p`(p− 1)p`−3(p− 1)2 = 1

2
(p− 1)3p2`−3 irreducible characters of G with degree

(p + 1)p`−1.

(ii) Now let us consider the case when A =

(
pjβ

1

)
. We can find irre-

ducible characters of G with degree (p− 1)p2`−2 and the process to construct
these characters is very similar to the above case. We have

Km+1 −→ N −→ T ′ −→ T −→ G

φA
ext−→ φ′A

ext−→ φ′
ind−→ ψ

ind−→ ψ

where

N =

{(
1 + pma pm+1b

pmc 1 + pmd

)}
, T ′ =

{(
a pjβb + pm+1c
b a + pmd

)}
,

and

T =

{(
a pjβb + pmc
b a + pmd

)}
.

By a similar argument, we only need to look at the following piece

N −→ T ′ −→ T

φ′A
ext−→ φ′

ind−→ ψ

and we can start with general matrices

Aα,β = αI + A =

(
α pβ
1 α

)

where α ∈ Z/pm+1Z and β ∈ Z/pmZ to define φAα,β
on N . The number

of such φα,β is pmpm+1 = p` and the number of extensions in this case is
|T ′|
|N | = (p− 1)p`−2. Therefore, we have (p− 1)p2`−2 irreducible characters of G

with degree (p− 1)p`−1.

(iii) Now consider the case A =

(
ε

1

)
. The process to construct irreducible

characters of G with degree (p2 − 1)p`−2 is as follows:

Km+1 −→ Nm+1 −→ H −→ Nm −→ T −→ G

φA
ext−→ φ′

ext−→ φ′′
ind−→ θ

ext−→ ψ
ind−→ IndG

T ψ

where

S =

{(
x yε
y x

)}
, Ni = Ki(K1∩S)

{(
a

a

)}
, H = Nm+1

〈(
1 + pm

1

)〉
.
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To count how many IndG
T ψ we can get, it is equivalent to count the number of ψ

on T. With this construction process, we always have the following properties:

θ |Nm+1= pφ′, θ |Nm−Nm+1= 0.

Therefore, later we only need to consider the extensions from Km+1 to Nm+1

and Nm to T .
Generalize matrix A with

Aα,ε = αI + A =

(
α ε
1 α

)

where α ∈ Z/pmZ and ε is a non-square unit in Z/pmZ, we have 1
2
(pm −

pm−1)pm = 1
2
(p − 1)p`−2 non-conjugate φAα,ε on Km+1. The number of exten-

sions from φAα,ε to φ′ is |Nm+1|
|Km+1| = (p − 1)p`−1, the number of extensions from

θ to ψ is |T |
|Nm| = p + 1. Therefore, we have total number of 1

2
(p − 1)p`−2(p −

1)p`−1(p + 1) = 1
2
(p − 1)(p2 − 1)p2`−3 irreducible characters of G with degree

(p2 − 1)p`−2.

3.3 About Character Values

Now we will show that as long as we have the values of the irreducible char-
acters constructed using the simple matrix A in the table (*), we can also
deduce the character values of the remaining ones easily. Let χA be an irre-
ducible character of G constructed using simple matrix A in the table at the
beginning of this section, and let χA′ be an irreducible character of G con-
structed using corresponding general matrix A′. We will give a formula that
relates χA′ and χA.

Let us use the notations in the case when G = GL(2,Z/p2mZ), A =

(
ε

1

)
,

and the general A′ = Aα,ε = αI + A. The construction process is as follows:

Km −→ T −→ G

φA
ext−→ ψ

ind−→ χ
.

We will prove the formula in this case and all the other cases follow exactly
the same way.
Given λ : Z/p`Z −→ C×, recall the definition of φA and φAα,ε , we have

φAα,ε(I + pmB) = λ(tr(pmAα,εB))

= λ(tr(pmαB + pmAB))

= λα(tr(pmB)λ(pmAB)

= λα(tr(pmB))φA(I + pmB)
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where λα(g) = λ(αg).

Let B =

(
a b
c d

)
, we have tr(B) = (a + d) and det(I + pmB) = 1 + pm(a + d).

Note that {1 + pmx}× ∼= {pmx}+ in Z/p`Z, we can find a character µα = µ :
(Z/p`Z)× → C× such that

λα(tr(pmB)) = µ(det(I + pmB)).

Therefore,
φAα,ε = (µ ◦ det)× φA.

Notice that µ ◦ det is a linear character of G, and hence it is stable under G,
we have StabG(φAα,ε) = StabG(φA) and (µ ◦ det) × ψ is an extension of φAα,ε

provided that ψ is an extension of φA. It is clear that

χAα,ε = IndG
T [(µ ◦ det)× ψ] = (µ ◦ det)× IndG

T ψ = (µ ◦ det)× χ.

From the above formula, we know that as long as we have the character values
of χA, we can have all the remaining character values easily. We will start to
evaluate φA in the next chapter.

3.4 When p = 2

In section 3.1, we used 3 types of matrices A to define φA and eventually got
3 types of irreducible characters of G. Now if p = 2, two types of construction
work exactly the same way as before and the only one that needs to be modified

is the case where we used A =

(
ε

1

)
. The reason we chose matrix

(
ε

1

)

before was that this matrix can generate the group

〈(
ε

1

)〉
of order p2−1

in the field case. Now if p = 2, the matrix that plays this role is

(
0 1
1 1

)

and we can use this type of matrix to define φA and eventually get all the
irreducible characters of degree (p− 1)p`−1.
In the even case when ` = 2m, we still have the same process

Km −→ T −→ G

φA
ext−→ ψ

ind−→ χ

where φA and Km are defined the say way as before and T = KmS with S

abelian. The general matrices we can use are Aα,β =

(
0 α
1 β

)
where α and

β are units in Z/pmZ, so that Aα,β is mapped to the matrix

(
0 1
1 1

)
by the
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natural map from GL(2,Z/p2mZ) to GL(2,Z/pZ). By looking at the trace
and determinant, we can see that Aα,β is conjugate to Aα′,β′ if and only if
α = α′, β = β′. Therefore, the number of such non-conjugate matrices Aα,β

are
(pm − pm−1)2 = p2m−2(p− 1)2 = 2`−2,

which is the same as 1
2
(p−1)p`−1 for p = 2. The number of extensions from φA

to ψ is | T : Km |= p`−2(p2−1), which is also the same as before. Therefore, we
can have all the (p−1)p`−1-dimensional irreducible characters of GL(2,Z/2`Z).
As in the odd case before, we will have the process

Km+1 −→ N −→ T ′ −→ T −→ G

φA
ext−→ φ′A

ext−→ φ′
ind−→ ψ

ind−→ χ

when ` = 2m+1. Just making the general matrices Aα,β =

(
0 α
1 β

)
, we have

the similar way to count the total number of irreducible characters in this case
as well.
To summarize, the formulas we found before about irreducible degrees and
number of each degree also work when p = 2.

3.5 Replacing Z/p`Z by R/P `

We have seen formulas of the irreducible degrees and number of each degree
for group GL(2,Z/p`Z). Now let R be the ring of integers of a local or global
field, and P be a prime ideal of R such that R/P is a field of q elements, q odd.
We will see that, by replacing p by q in the previous sections, the formulas
about character degrees and the number of each degree also work for group
G = GL(2, R/P `). We will look at one construction example when ` = 2 and
the other cases are similar.
Now R/P is a field of q elements, then we can get that | GL(2, R/P `) |=
q4`−4(q2 − 1)(q2 − q). In particular, | GL(2, R/P 2) |= q4(q2 − 1)(q2 − q).

Let ε be a non-square unit in R/P and let A =

(
0 ε
1 0

)
. Let K1 =

{(
1 + p1 p2

p3 1 + p4

)
, pi ∈ P/P 2

}
= {I + B, B ∈ M(2, P/P 2)}, then | K1 |=

q4.
Define φA : K1 → C×, φA(I + B) = λ(tr(AB)), that is

φA

(
1 + p1 p2

p3 1 + p4

)
= λ(εp3 + p2),
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where λ : R/P 2 → C× is a homomorphism such that P 6∈ ker(λ). The
stabilizer of φ is

T = StabG(φA) = K1S where S =

{(
x εy
y x

)}
.

By similar arguments as before, we have | S |= (q2 − 1)q2, | T |= (q2 − 1)q4.
We also have that T/K1 is cyclic, therefore we can extend φA to ψ of T and
the following construction process:

K1 −→ T −→ G

φA
ext−→ ψ

ind−→ χ
.

Now χ ∈ Irr(G) and deg(χ) = |G|
|T | = q2 − q = q(q − 1).

We can also count the number of this degree by the same method as before.
The general matrices we can use to replace A before are

Aα,ε =

(
α ε
1 α

)
, α ∈ R/P.

Since the number of non-square unit ε is q−1
2

, we have 1
2
q(q−1) non-conjugate

Aα,ε. The number of extensions from φA to ψ is equal to

| T |
| K1 | = q2 − 1.

Therefore, there are
1

2
q(q − 1)(q2 − 1)

irreducible characters of degree q(q − 1).
Notice that the corresponding formulas of this degree and number of this degree
formula in previous sections are p(p − 1) and 1

2
p(p − 1)(p2 − 1) respectively,

the only difference here is that we replace p by q.
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Chapter 4

Character Values

We will evaluate the values of irreducible characters we constructed in the last
chapter. Some proofs are skipped and can be found in [10].

4.1 Values for Characters with Degree (p +

1)p`−1

In this section, we will first find values for characters of degree (p + 1)p`−1

by parabolic induction. We will use Clifford Theory to construct irreducible
characters with the same degree and show that these two kinds of irreducible
characters are the same.

4.1.1 Character Values by Parabolic Induction

Here ` can be any positive integer. Let B ⊂ G = GL(2,Z/p`Z) be the Borel

subgroup

{(
a b
0 c

)}
. Let λ be injective character of R×, let φ be the character

of B given by φ

(
a b
0 c

)
= λ(a), and let χ = IndG

B φ.

Claim: χ is irreducible.

Proof. It suffices to show [χ, χ] = [φ, χ |B] = 1. By Mackey’s Theorem, we
have

χ |B=
∑

G=∪BgB

IndB
gBg−1∩B(φg), where φg(gXg−1) = φ(X), X ∈ B.

In order to calculate [φ, χ |B], we want to look at [φ, IndB
gBg−1∩B(φg)] =

[φ |gBg−1∩B, φg] for each double coset representative g of B. Pick the double
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coset representatives of B to be

g =

(
0 1
1 0

)
, gi =

(
1 0
pi 1

)
, 1 ≤ i ≤ `.

Let X =

(
a b
0 c

)
, we have gXg−1 =

(
c 0
b a

)
. Therefore,

gBg−1
⋂

B =

{(
a 0
0 c

)}
, φ

(
a 0
0 c

)
= λ(a), φg

(
a 0
0 c

)
= λ(c).

Since φ 6= φg and they both have degree 1, we know [φ |gBg−1∩B, φg] = 0.
Similarly we have

giBg−1
i

⋂
B =

{(
p`−ia + c b

0 pib + c

)}
, and [φ |giBg−1

i ∩B, φgi
] = 0,

when 1 ≤ i < `. It is clear that [φ |g`Bg−1
` ∩B, φg`

] = 1 and hence, [φ, χB] =

[χ, χ] = 1.

To find the character value on an arbitrary conjugacy Class C, we use the
following formula:

χ(C) =
[G : B]

| C |
∑

a∈R×
λ(a)

∣∣∣∣
{

(b, c) ∈ R2 :

(
a b
0 c

)
∈ B ∩ C

}∣∣∣∣ . (∗)

The result is as follows:

χ(Diac) = pi(λ(a) + λ(c)), χ(B(`−1)α0) = p`−1λ(a),

χ(Iα) = λ(α) deg(χ) = (p + 1)p`−1λ(α)

and χ is 0 on all other conjugacy classes.

4.1.2 Character Values by Clifford’s Theorem

Now we will use Clifford’s theorem to construct irreducible characters of
GL(2,Z/p`Z) with degree p`−1(p + 1) and we will see that they have the same
character values as χ in the last section. We first assume ` = 2m and will talk
about the odd case later.
Let λ : (Z/p2mZ)× → C× be injective. Define

φ′ : Km → C×, φ′
(

1 + pma pmb
pmc 1 + pmd

)
= λ(1 + pma),
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then we have StabG(φ′) = T =

{(
a pmb

pmc d

)}
. We also have

φ : T → C×, φ

(
a pmb

pmc d

)
= λ(a)

is an extension of φ′. By Clifford Theory, ψ = IndG
T φ ∈ Irr(G), and deg(ψ) =

p`−1(p + 1).

Next, we want to find the character values of ψ.

Lemma 4.1. If u, v ∈ R× and m ≤ k < l, then
∑

0≤t<pm

λ(u + pktv) = 0.

Proof. ∑
0≤t<pm

λ(u + pktv) =
∑

0≤t<pm

λ(u)λ(1 + pktvu−1)

= λ(u)
∑

0≤t<pm

λ(1 + pkt)

= 0.

Pick the coset representatives of T to be

Exy =

(
1 x
0 1

)(
1 0
y 1

)
, Fxz =

(
1 x
0 1

)(
pz 1
1 pz

)
, 0 ≤ x, y, pz < pm.

We first evaluate ψ(Ciαβ). Since T ∩Ciαβ = ∅ if i < m, we assume l > i ≥ m.
Notice that

Exy

(
α piεβ

piβ α

)
E−1

xy =

(
α− piεβy + piβx(1− εy2) pm∗

pm∗ ∗
)

,

Fxz

(
α piεβ

piβ α

)
F−1

xz

=

(
[α + pi+1βz(ε− 1)(1− p2z2)−1] + pixβ(ε− p2z2)(1− p2z2)−1 ∗

pm∗ ∗
)

,

ψ(Ciαβ) =
∑

0≤x,y<pm

λ[(α− piεβy) + pixβ(1− εy2)]+

∑
0≤pz,x<pm

λ{[α + pi+1βz(ε− 1)(1− p2z2)−1] + pixβ(ε− p2z2)(1− p2z2)−1}.

By lemma 4.1,

∑
0≤x<pm

λ[(α− piεβy) + pixβ(1− εy2)] = 0,
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∑
0≤x<pm

λ{[α + pi+1βz(ε− 1)(1− p2z2)−1] + pixβ(ε− p2z2)(1− p2z2)−1} = 0.

Therefore,
ψ(Ciαβ) = 0.

Using the similar method and applying lemma 4.1 throughout the calculation,
we have

ψ(B(`−1)αβ) = p`−1λ(α), ψ(Diαβ) = pi[λ(α) + λ(δ)], ψ(Iα) = λ(α) deg(ψ).

Comparing the ψ we constructed here with the χ by parabolic induction in
the last section, we notice that ψ and χ take the same non zero values. Since
deg(ψ) = deg(χ) and ψ is irreducible, we must have

[ψ, χ] = [χ, χ] = 1.

Therefore, ψ = χ. and this is another way to show that χ in the last section
is irreducible.

Now we talk about the odd case. Although the way we construct ψ is a little
different when ` = 2m + 1, we still have the same result. Suppose ` = 2m + 1
now. Let λ : (Z/p`Z)× → C× be injective. Denote

N =

{(
1 + pma pm+1b

pmc 1 + pmd

)}
, T ′ =

{(
a pm+1b

pmc d

)}
, T =

{(
a pmb

pmc d

)}
.

We will have the following construction process:

Km+1 −→ N −→ T ′ −→ T −→ G

φ
ext−→ φ′

ext−→ ψ′
ind−→ ψ

ind−→ χ
,

where

φ

(
1 + pm+1a pm+1b

pm+1c 1 + pm+1d

)
= λ(1 + pm+1a), StabG(φ) = T.

Also, N � T and φ′ on N is an extension of φ such that φ′(n) = λ(n11) for
all n ∈ N . Moreover, StabT (φ′) = T ′ and we can extend φ′ to ψ′ of T ′ with
φ(t′) = λ(t′11),∀t′ ∈ T ′. Therefore,

ψ = IndT
T ′ ψ

′ ∈ Irr(T ) and (ψKm+1 , φ) 6= 0.

By Clifford Theory,

χ = IndG
T ψ = IndG

T ′ ψ
′ ∈ Irr(G) and deg(χ) = p`−1(p + 1).

Consider χ as the induction of ψ′ from T ′, the evaluation process is the same as
in the even case and the same result follows. Namely, the irreducible characters
of degree p`−1(p+1) by Clifford’s theorem are the same as the ones constructed
by Parabolic induction and we know the character values.
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4.2 Values for (p− 1)p`−1-Degree Characters

In this section, we will construct the irreducible characters of G with degree
(p − 1)p`−1 and find the character values. We first find character values on
K`−i, 1 ≤ i ≤ `

2
, and then work on the remaining character values in two cases

depending on whether ` is even or odd.

4.2.1 Character Values of Elements in K`−i, 1 ≤ i ≤ `
2

Let S denote the subgroup of GL(2, R), R = Z/p`Z consisting of matrices of

the form

(
a bε
b a

)
, where ε is a non square unit in R.

Lemma 4.2. The group S has order (p2 − 1)p2`−2. Moreover S is the semi-
direct product S = (K1 ∩ S) 〈so〉 where s0 has order p2 − 1; sp+1

0 has the form(
c 0
0 c

)
.

Let A be the matrix

(
0 ε
1 0

)
over the ring Ri = Z/piZ, and let φA be the

corresponding character of K`−i :

φA

(
1 + p`−ia p`−ib

p`−i 1 + p`−ia

)
= λ

(
tr

((
0 ε
1 0

)(
a b
1 a

)))
= λ(b + ε).

Let Si denote the subgroup of GL(2, Ri) consisting of matrices of the form(
a bε
b a

)
, so |Si| = (p2 − 1)p2i−2

Lemma 4.3. The following set of cardinality (p−1)p2i−1 includes exactly one
representative from each right coset of Si in GL(2, Ri).

{(
1 c

d

)
: c ∈ Ri, d ∈ R×

i

}
.

Proof. It is easy to check that the above set actually forms a subgroup of
GL(2, Ri) and the only element that lies in Si is the identity. The number of
elements in this subgroup is (pi − pi−1)pi = p2i−1(p − 1). On the other hand,
from proposition 2.3.1,

|GL(2,Z/piZ)| = p4(i−1)(p2 − 1)(p2 − p),

so the index [GL(2,Z/piZ) : Si] = p2i−1(p − 1). We have a complete list of
coset representatives.
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Lemma 4.4. . Let z ∈ R×
i . The number of solutions (x, y) ∈ R2

i of the
equation x2 − εy2 = z is (p + 1)pi−1.

Proof. We claim that the map det : Si → R×
i is surjective. This is easily seen

if i = 1. In general, the claim follows using the commutative diagram

Si −−−→ S1y
y

(Z/piZ)× −−−→ (Z/pZ)×

where the horizontal maps are “mod p” and the vertical maps are det. The

number of solutions to x2 − εy2 = z is the number of matrices

(
x εy
y x

)
in Si

whose determinant is z. This number is |Si|/|R×
i | = (p + 1)pi−1.

Lemma 4.5. If λ : R+
i → C× is injective and 0 ≤ j ≤ i then

∑
{λ(y) : y ∈ pjR×

i } =





0, if j < i− 1,
−1, if j = i− 1,
1, if j = i.

The proof uses the fact that for any y0 ∈ Ri and j < i,

∑
{λ(y) : y ≡ y0( mod pj)} = 0.

Suppose χ is any irreducible character of G whose restriction to K`−i contains
copies of φA. For any X ∈ K`−i, by Clifford’s theorem,

χ(X) = e
t∑

k=1

φk(X),

where φ1, φ2, ..., φt are the distinct conjugates of φA in G.
Choose

Ecd =

(
1 c

d

)
: c ∈ Ri, d ∈ R×

i

from lemma 4.3, we have each φk = φE−1
cd AEcd

for some c, d, which implies

t = (p − 1)p2i−1. Notice that each φi has degree 1, we have e = deg(χ)
(p−1)p2i−1 .

Therefore,

χ(X) =
deg(χ)

(p− 1)p2i−1

∑
c∈Ri

∑

d∈R×i

λ

(
tr

(
A

EcdXE−1
cd

p`−i

))
.
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Now when X = I + p`−i

(
a b
1 a

)
,

EcdXE−1
cd = 1 + p`−i

(
1

d

)(
1 c

1

)(
a b
1 a

)(
1 −c

1

)(
1

d−1

)

= 1 + p`−i

(
a + c d−1(b− cc)

d a− c

)
.

Therefore tr
(
A

EcdXE−1
cd

p`−i

)
= εd + d−1(b− c2), so that

χ(X) = p`−2i
∑
c∈Ri

∑

d∈R×i

λ(εd + d−1(b− c2)).

Define
P =

∑
c∈Ri

∑

d∈R×i

λ(εd + d−1(b− c2))

so that χ(X) = p`−2iP. We can find that [10]

P = (−p)i(λ(2u) + λ(−2u)) if u2 = εb ∈ R×
i

P = −p if i = 1 and b = 0

P = 0 otherwise .

Therefore, we have
χ(Iα) = deg(χ) = (p− 1)p`−1,

χ(Ciαβ) = (−1)ip`−i(λ(2εβ) + λ(−2εβ))

= (−1)ip`−i

(
φA

(
α piεβ

piβ α

)
+ φA

(
α −piεβ

−piβ α

))
,

χ(Biαβ) = (−p)`−1 if i = `− 1 and 0 otherwise ,

χ(Diαδ) = 0

valid when i ≥ `
2
.

4.2.2 Remaining Values when ` = 2m is even

Lemma 4.6. If i and j are positive integers and λ′ : (Z/piZ)+ → C× is an
injective homomorphism then

∑

e,f∈Z/piZ
λ′

(
εf 2 − e2

1 + pjf

)
= (−p)i.
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Proof. Change variables:

f ′ =
f√

1 + pjf
, e′ =

e√
1 + pjf

,

where the square root having remainder +1 (mod p) is taken. It can be shown
that the map

f → f√
1 + pjf

is injective. Therefore, the desired sum is equal to

∑

e′,f ′∈Z/piZ
λ′(εf ′2 − e′2).

By counting the number of solutions to the equation x2−εy2 = pkz, [10] where
k < i, z ∈ (Z/pi−kZ)×, this sum can be evaluated using lemma 4.5 of the
previous section.
Now we briefly show that the map

f → f√
1 + pjf

is injective. There exists a polynomial S(X) with coefficients in R such that

1√
1 + pjf

= 1 + pjS(f).

Indeed, the Taylor series terminates since pjf is nilpotent. If f1 and f2 map
to the same element, we deduce

0 = f1 − f2 + pj(S(f1)− S(f2)).

One can show that the coefficient of pj contains a factor f1 − f2, so

0 = (f1 − f2)(1 + pjQ(f1, f2))

for some polynomial Q(X,Y). Since j > 1, the second factor is a unit, so
f1 = f2, as required.

Let ` = 2m. We found that every character χ of G with degree (p− 1)p`−1 is
induced from a linear character ψ of the subgroup

T =

(
a εb + pmc
b a + pmd

)
⊆ G.
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The following is a list of left coset representatives of T :

Ecd =

(
1 c

d

)
, 0 ≤ c < pm, 0 < d < pm, p - d.

For X ∈ T , we have

χ(X) =

pm−1∑
c=0

∑

0<d<pm,p-d
ψ̇(EcdXE−1

cd )

where as usual, ψ̇ is the extension of the function ψ which is 0 off T . Assume
that X 6∈ Km, because we have calculated character values on Km in the
previous section. The only conjugacy class type that intersects T is Ciαβ.

Thus, let X =

(
a εpib

pib a

)
, b ∈ R×, 0 ≤ i < m. We have

EcdXE−1
cd =

(
a + pibc pibd−1(ε− c2)

pibd a− pibc

)

which is in T if and only if pm | pibc and pm | pib(d + 1)(d − 1). This is the
condition for ψ̇ 6= 0.
First consider the case i = 0. ψ̇ = 0 unless c = 0, d = 1 or c = 0, d = pm − 1,
so that

χ(X) = ψ(X) + ψ(E0(pm−1)XE−1
0(pm−1))

= ψ(X) + ψ

((
1
−1

)
X

(
1
−1

))

= ψ

(
a εb
b a

)
+ ψ

(
a −εb
−b a

)
.

The second-last equality uses the fact that ψ is a class function on T.
Henceforth assume that i > 0. The values of d such that ψ̇ 6= 0 are pm−if ± 1

for 0 ≤ f < pi. The + and − alternatives are interchanged when

(
a εpib

pib a

)

is replaced with

(
a −εpib

−pib a

)
; therefore

χ(X) =

pi−1∑

e,f=0

ψ

(
E(pm−ie)(1+pm−if)

(
a εpib

pib a

)
E−1

(pm−ie)(1+pm−i)

)

+

pi−1∑

e,f=0

ψ

(
E(pm−ie)(1+pm−if)

(
a −εpib

−pib a

)
E−1

(pm−ie)(1+pm−i)

)
.
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It suffices to compute the first sum because the second is symmetrical. The
first is equal to

pi∑

e,f=0

ψ

[(
1

1 + pm−if

)(
1 pm−ie

1

)
,

(
a εpib

pib a

)]
ψ

(
a εpib

pib a

)
,

using the convention
[x, y] = xyx−1y−1.

We find that (modulo p2m),

[Ecd, X] =

[(
1

1 + pm−if

)(
1 pm−ie

1

)
,

(
a εpib

pib a

)]

=

(
1

1

)
+

pm

a2 − εp2ib2

(
abe + piεb2f −piεb2e− b(εaf+pm−iae2)

1+pm−if

abf + pib2e −piεb2f − abe

)
.

This commutator is in Km, so we can describe its image under ψ in terms of

an appropriate matrix A =

(
α εβ
β α

)
∈ GL(2,Z/pmZ) and linear character λ

of Z/pmZ as

ψ([Ecd, X]) = λ(tr(p−mA([Ecd, X]− 1)))

= λ

(
β

a2 − εp2ib2
(−piεb2e− b(εaf + pm−iae2)

1 + pm−if
) +

εβ(abf + pib2e)

a2 − εp2ib2

)

= λ

(
βab

a2 + εp2ib2
pm−i εf 2 − e2

1 + pm−if

)

= λ′
(

εf 2 − e2

1 + pm−if

)

if we define
λ′ = λpm−iabβ/(a2−εp2ib2),

an injective linear character of Z/piZ. The lemma 4.6 now applies and we have

χ(Ciab) = (−p)i

(
ψ

(
a εpib

pib a

)
+ ψ

(
a −εpib

−pib a

))
.

4.2.3 Remaining Values when ` = 2m + 1 is odd

In this section ` = 2m + 1. Let A =

(
ε

1

)
, and let λ : Z/p2m+1Z −→ C× be

injective. Define φA on Km+1 by

φA

(
1 + pm+1a pm+1b

pm+1c 1 + pm+1d

)
= λ(pm+1b + εpm+1c).
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The stabilizer of φA is T = KmS where S =

{(
x yε
y x

)}
. We will construct

an irreducible character ψ of T such that [ψ|Km+1 , φA] 6= 0; then by Clifford’s
Theorem, χ = IndG

T ∈ Irr(G).

Denote

Ni = Ki(K1 ∩ S)

{(
a

a

)}
.

The process to construct ψ is as follows. Let H = Nm+1

〈(
1 + pm

1

)〉
. We

extend φA to a character φ′ of Nm+1, then to a character φ′′ of H, then induce
to Nm, then extend to T . Pictorially,

Km+1 −→ Nm+1 −→ H −→ Nm −→ T

φA
ext−→ φ′

ext−→ φ′′
ind−→ θ

ext−→ ψ

Since Nm/Nm+1 is abelian, any subgroup of Nm containing Nm+1 is normal.
Thus H C Nm and the index is p. Here are the details of this process:

(i) Extend φA to φ′.
Our first attempt is to define φ′ on K1 ∩ S using the same formula as we used
for φA, namely

φ′(I + p(xI + yA)) = λ(tr(p(xI + yA)A) = λ(2pyε).

However this does not preserve multiplication, since

φ′(I + p(x1I + y1A)(I + p(x2I + y2A))

= φ′(I + p(x1 + x2)I + p(x1y2 + x2y1)A + p(y1 + y2)A
2)

= λ(2p(x1y2 + x2y1)ε + 2p(y1 + y2)ε).

Note that multiplication would be preserved if either x1 and x2 are both di-
visible by p2m or y1 and y2 are both divisible by p2m. So we define φ′ on

Ka =

{(
1 + p2mx pyε

py 1 + p2mx

)}
and Kb =

{(
1 + px p2myε
p2my 1 + px

)}
using the

same formula as φA, namely,

φ′
(

1 + p2mx pyε
py 1 + p2mx

)
= λ(2pyε), φ′

(
1 + px p2myε
p2my 1 + px

)
= λ(2p2myε).

Since K1 ∩ S = KaKb and Ka ∩ Kb ⊂ K2m ⊂ Km+1, we can define the
homomorphism φ′ on K1 ∩ S by

φ′(gh) = φ′(g)φ′(h), g ∈ Ka, h ∈ Kb.

36



Note that φ′
(

1 + px
1 + px

)
= λ(0) = 1; so we can define φ′ to be trivial on

all central elements

(
a

a

)
in Nm+1, and realize that we can construct a new

extension by multiplying the above φ′ by a root of unity on a central element.
It is clear that φ′ is an extension of φA.

(ii) Extend φ′ of Nm+1 to φ′′ of H.

We only need to define φ′′ on

〈(
1 + pm

1

)〉
. This can be done by first

defining φ′′ to be trivial on

(
1 + pm

1

)
and then multiplying φ′′ by a pth

root of unity to get different extensions.

(iii) Induction from φ′′ to θ

It is easy to find an element in Nm that does not stabilize φ′′ and since the
index of H in Nm is p, we have StabNm(φ′′) = H. Clifford’s Theorem tells us
that θ = IndNm

H φ′′ is irreducible.
Let Θ denote the induced representation affording θ. The following result will
help us to find the character values of ψ on T in section 4.4.2.

Lemma 4.7. For s ∈ S ∩K1, s =

(
1 + px pyε

py 1 + px

)
then Θ(s) = λ(2pyε)I

where I is the identity matrix.

Proof. Coset representatives of H in Nm are given by

{
n(k) =

(
1 pmk
0 1

)
: 0 ≤ k < p

}
.

Suppose that s =

(
1 + px pyε

py 1 + px

)
=

(
1 + px 0

0 1 + px

)
+

(
0 pyε
py 0

)
.

n(k)−1sn(k) =

(
1 + px 0

0 1 + px

)
+

(
1 −pmk
0 1

)(
0 pyε
py 0

)(
1 pmk
0 1

)

=

(
1 + px 0

0 1 + px

)
+

(−pm+1yk pyε
py pm+1yk

)
.

This belongs to Nm+1 ⊂ H, and λ
(
n(k)−1sn(k)

)
= λ(2pyε). Θ(s) = λ(2pyε)Ip.

(iv) Extend θ to ψ.

Since θ is stable under T and T/Nm is cyclic, we know that ψ exists. Other
extensions of φ′ to a character of H have the form φ′′α where α is a character of
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H/Nm. Each φ′′α is a component of the restriction of θ to H. So θ|H =
∑

α φ′′α
where the sum is over the p irreducible characters α of H/Nm. It follows that

ψ |Nm+1= pφ′A and ψ |Nm−Nm+1= 0.

Now we will calculate the character values of χ = IndG
T ψ ∈ Irr(G). Similar

to the even case, we have the same left coset representatives Ecd and we only
need to calculate χ(X) where

X =

(
a εpib

pib a

)
, b ∈ R×, 0 ≤ i < m + 1.

We have

EcdXE−1
cd =

(
a + pibc pibd−1(ε− c2)

pibd a− pibc

)
.

This time, the condition for φ̇ 6= 0 yields that pm+1 | pibc and pm+1 | pib(d +
1)(d− 1).
For the case i = 0, we have the same argument as in the even case and we find
that

χ(X) = ψ

(
a εb
b a

)
+ ψ

(
a −εb
−b a

)
.

Assume that i > 0. We have

χ(X) =

pi−1∑

e,f=0

ψ

(
E(pm+1−ie)(1+pm+1−if)

(
a εpib

pib a

)
E−1

(pm+1−ie)(1+pm+1−if)

)

+

pi−1∑

e,f=0

ψ(E(pm+1−ie)(1+pm+1−if)

(
a −εpib

−pib a

)
E−1

(pm+1−ie)(1+pm+1−if)
).

To evaluate the first sum, notice that

E(pm+1−ie)(1+pm+1−if)

(
a εpib

pib a

)
E−1

(pm+1−ie)(1+pm+1−i)
∈ Nm+1 and ψ|Nm+1 = pψ′,

we factor out p and use the same method as in the even case, because φ′ is a
homomorphism. Finally, we will get

χ(Ciab) = (−p)i

(
ψ

(
a εpib

pib a

)
+ ψ

(
a −εpib

−pib a

))
,

which is the same formula as the even case.
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4.2.4 Character Values of ψ on T

In the last section, we have the formula for χ(Ciab) and notice that it depends
on ψ where ψ is the corresponding character on the stabilizer T. In this section,
we will consider the character values of ψ.

Even Case, i.e. ` = 2m

Denote

Km = {I + pmB}, K1 = {I + pB}, S =

{(
x εy
y x

)}
, A =

(
0 ε
1 0

)
.

Let λ : (Z/p2mZ)+ → C× be an injective homomorphism.
Define

φA : Km → C×, φA(I + pmB) = λ(tr(pmAB)).

StabG(φA) = KmS, and hence φA |Km∩S is stable under K1 ∩ S. We want to
extend φA to ψ of T = KmS and we will approach it in the following two steps.

Firstly, we extend φA to φ′A of Km(K1 ∩ S). In order to do this, we only need

to extend φA |Km∩S to φ′ of K1 ∩ S. Since |K1∩S|
|Km∩S| = p2m−2, there are p2m−2

extensions. Notice that

K1 ∩ S = (Km ∩ S)

〈(
1 + pa

1 + pa

)〉〈(
1 pε
p 1

)〉
,

we only need to define φ′ on

〈(
1 + pa

1 + pa

)〉
and

〈(
1 pε
p 1

)〉
.

Since

C =

(
1 + pa

1 + pa

)pm−1

∈ Km ∩ S,

we can define φ′ such that

φ′
(

1 + pa
1 + pa

)
= pm−1

√
φA(C).

Similarly,

D =

(
1 pε
p 1

)pm−1

∈ Km ∩ S ⇒ φ′
(

1 pε
p 1

)
= pm−1

√
φA(D).

This way, we essentially extend φA to Km(K1 ∩ S) and there are indeed
p2m−2 extensions.

Secondly, we want to extend φ′ to ψ of KmS. From Lemma 4.2,

KmS = Km(K1 ∩ S) 〈s0〉 , and Km(K1 ∩ S) ∩ 〈s0〉 = 1.

Define ψ |Km(K1∩S)= φ′ and ψ(si
0) = ζ i where ζ is a (p2−1) root of unity; then

ψ is an extension of φA and we know the values of ψ.
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Odd Case, i.e. ` = 2m + 1

Now we want consider the character values of ψ on T in the odd case. Let

h =

(
a εpib

pib a

)
in the class Ciab. If i > 0, then h ∈ Nm. Since

ψ|Nm+1 = pφ′, ψ(n) = 0 if n ∈ Nm, n /∈ Nm+1

we know the character value φ(h) if h ∈ Nm. So suppose that h /∈ Nm, that
is, i = 0.
In section 4.2.3 we constructed ψ this way:

Km+1 −→ Nm+1 −→ H −→ Nm −→ T

φA
ext−→ φ′

ext−→ φ′′
ind−→ θ

ext−→ ψ

where

Ni = Ki(K1 ∩ S)

{(
a

a

)}
, H = Nm+1

〈(
1 + pm

1

)〉
.

Note that

Nm =

{(
t + pmx + pa pmy + pbε

pb t + pa

)}
.

Coset representatives of Nm+1 in Nm are given by
{

g(x, y) =

(
1 + pmx pmy

0 1

)
: 0 ≤ x, y < p

}

and the coset g(x, y)Nm+1 is equal to
{(

t + pmx + pm+1d + pa pmy + pm+1e + pbε
pb t + pa

)}
.

It follows that an element

(
r s
u v

)
of Nm is in the coset g(x, y)Nm+1 precisely

when
(r − v)/pm ≡ x mod p and (s− εu)/pm ≡ y mod p.

Lemma 4.8. Suppose that h ∈ T and h /∈ Nm. |ψ(h)| = 1.

Since h =

(
a εb
b a

)
, then h ∈ S. We know that S = (K1 ∩ S) 〈s0〉, and that

for s ∈ K1 ∩ S we have Θ(s) = αI for some α ∈ C×. So it suffices to calculate
ψ(s) for s ∈ 〈s0〉 = S0.

Lemma 4.9. For s ∈ S0, the value of ψ(s) is a p2 − 1 root of unity.

Above all, we know that we can find an extension φ on T such that φ(s0) = ±1.
We can construct different extensions by multiplying φ above by a (p+1) root
of unity.
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4.3 Characters of degree (p2 − 1)p`−2 and the

character values

In this section, we will construct the irreducible characters of G with degree
(p2−1)p`−2 and find the character values. Similarly to the last section, we first
find character values on K`−i, 1 ≤ i ≤ `

2
. We will then work on the remaining

character values in two cases depending on whether ` is even or odd.

4.3.1 Character values of elements in K`−i, 1 ≤ i ≤ `
2

Let A be the matrix

(
pjβ

1

)
over the ring Ri = Z/piZ where β ∈ R×, 1 ≤

j ≤ i. Let φA be the corresponding character of K`−i :

φA

(
1 + p`−ia p`−ib

p`−i 1 + p`−ia

)
= λ

(
tr

(
0 pjβ
1 0

)(
a b
1 a

))
= λ(b + pjβ).

Lemma 4.10. The following list of cardinality p2i−2(p2 − 1) includes exactly

one representative from each right coset of

{(
w pjβy
y w

)}
⊂ GL(2, Ri) :

{(
1

d

)(
1 c

1

)
: c ∈ Ri, d ∈ R×

i

}
,

{(
1

d

)(
1 pc

1

)(
0 1
1 0

)
: pc ∈ Ri, d ∈ R×

i

}
.

Proof. It is easy to check that, for any two matrices B, C from the list, BC−1 6∈{(
w pjβy
y w

)}
. Since the index of

{(
w pjβy
y w

)}
in GL(2, Ri) is p2i−2(p2−1),

we know we have all the coset representatives.

Suppose χ is any irreducible character of G whose restriction to Kl−i contains

copies of φA. Similarly to section 4.2.1, let X =

(
1

1

)
+ p`−i

(
a b
1 a

)
, by

Clifford’s theorem, we have

χ(X) =
deg χ

p2i−2(p2 − 1)

∑

c∈Ri,d∈R×i

λ

(
tr

(
A

Ecd(X − I)E−1
cd

p`−i

))

+
∑

pc∈Ri,d∈R×i

λ

(
tr

(
A

Fcd(X − I)F−1
cd

p`−i

))
,
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where

Ecd =

(
1

d

)(
1 c

1

)
, Fcd =

(
1

d

)(
1 pc

1

)(
0 1
1 0

)
.

By calculation, we have

tr

(
A

(
Ecd(X − I)E−1

cd

p`−i

))
= pjβd + d−1(b− c2),

tr

(
A

Fcd(X − I)F−1
cd

p`−i

)
= pjβbd + d−1(1− p2c2b).

Therefore

χ(X) = p`−2i[
∑

c∈Ri,d∈R×i

λ(pjβd+d−1(b−c2))+
∑

pc∈Ri,d∈R×i

λ(pjβbd+d−1(1−p2c2b)].

We want to evaluate the above two sums. For the second one, we have

∀b,
∑

pc∈Ri,d∈R×i

λ(pjβbd + d−1(1− p2c2b)) =

{
0, if i > j,

−pi−1, if i = j.

For the first sum, denote P =
∑

c∈Ri,d∈R×i

λ(pjβd + d−1(b− c2)) and x = pjβd +

d−1(b − c2), to evaluate P , we need to consider the values that x can take.
From Lemma 4.5, we know that only care about the cases when pi−1 | x or
x = 0, because the rest λ(x) will sum to 0. We will deal with the case when
i = j first. The case when j < i is similar but more complicated. When
i = j, x = d−1(b− c2). We have the following cases.
(i) If b is non square unit, then b − c2 is always a unit and therefore x =
d−1(b− c2) can only take units. By lemma 4.5, we have

P =

{
0, if i > 1,
−pi, if i = 1.

(ii) b = u2, for some unit u. In this case,

pi−1 | x ⇔ pi−1 | u2 − c2 ⇔ c = ±u + pi−1v.

There are 2p such c. For b − c2, it equals 0 twice (when c = ±u); and equals
pi−1 ∗ unit 2(p− 1) times. From lemma 4.5 again, we have

P =

{
2(p− 1)(pi−1 − 1), if i > 1,

p, if i = 1.
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(iii) b = pi−1u, u ∈ R×
i . The implicit condition for this case is i > 1, otherwise

it is done already. Now pi−1 | b − c2 ⇔ pi−1 | c2 and we have the following
cases.
(a) u is non square and i − 1 = 2k for some k. In this case, pi−1 | c2 → c =
pkv, v ∈ Ri, and b−c2 = p2k(u−v2) where u−v2 is always a unit. The number

of v is pi−k. By Lemma 4.5, P = −pi−k = −p
i+1
2 .

(b) u = w2, i− 1 = 2k. Like in (a), c = pkv in order for pi−1 | x. Now b− c2 =
p2k(w2−v2) where w2−v2 is not always a unit. When v = ±w+p∗, p | w2−v2

and p2k(w2 − v2) = 0. There are 2pi−k−1 such v. For remaining v, the number
of which is pi−k− 2pi−k−1 = pi−k−1(p− 2), w2− v2 is a unit. Applying Lemma
4.5, we have

P = 2pi−k−1(pi − pi−1)− pi−k−1(p− 2).

(c) i− 1 = 2k + 1. Now pi−1 | b − c2 ⇔ c2 = 0 ⇒ c = pk+1 ∗ . The number of
such c is pi−k−1 and we have

P = −pi−k−1.

(iv) b = ptu, 1 ≤ t < i− 1. This case can be dealt with similarly to case (iii).
The results can be summarized as follows.
(a) t is odd, then there is no c making pi−1 | x, hence, P = 0.
(b) t is even and u is non square unit, P = 0.
(c) t is even and u = v2, P = 2p

t
2
+1(pi − pi−1 − p

t
2 + 1).

(v) b = 0. Now x = −d−1c2 and P =
∑

c∈Ri,d∈R×i

λ(−d−1c2) = (pi−pi−1)
∑

c∈Ri

λ(c2).

We have the evaluation of the above sum in 4.3.2, so this case is done as well.
When j < i, the sum can be discussed case by case like before. There are
cases where we have to consider the possible values for β as well, making the
discussion more complicated. Some cases are very simple and similar to what
we just did. For example, when b is a non square unit, x can only take units
and therefore P = 0.
From the above results, we can figure out the character values of χ on each
kind of conjugacy classes.

4.3.2 Remaining Values for Characters of Degree (p2 −
1)p`−2

In this section, we want to evaluate the remaining character values. We will
first work on the even case, then the odd case will follow similarly.
Denote

G = GL(2,Z/p2mZ), Km = {I + pmB},
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A =

(
pjβ

1

)
, 1 ≤ j ≤ m,β ∈ R×, R = Z/p2mZ.

Now let λ : Z/p2mZ→ C×, injective; B =

(
a b
c d

)
.

Define

φA : Km → C×, φA(I + pmB) = λ(tr(pmAB)) = λ(pmb + pm+jcβ).

StabG(φA) = T =

{(
a pjβb + pmc
b a + pmd

)}
.

We can extend φA to ψ of T then we know χ = IndG
T ψ ∈ Irr(G). We can first

define ψ satisfying

ψ

(
1 + pma pmb
pm−jc 1 + pmd

)
= λ(pmb + pmcβ)

and get different extensions by multiplying by roots of unity.

Pick coset representatives of T in G to be

Ecd =

(
1

d

)(
1 c

1

)
, 0 ≤ c, d < pm, d ∈ R×,

and

Fcd =

(
1

d

)(
1 pc

1

)(
1

1

)
, 0 ≤ pc, d < pm, d ∈ R×.

Notice that the only conjugacy class type that intersects T is Biαβ, so we only

need to evaluate the character values of χ on X =

(
a pi+jβ
pi a

)
, 0 ≤ i < m.

By calculation, we have
FcdXF−1

cd 6∈ T, ∀c, d,

and

EcdXE−1
cd =

(
a + pic pid−1(pjβ − c2)

pid a− pic

)
.

First, we assume m > i + j. In order for EcdXE−1
cd ∈ T, we must have

c = pm−ie, d = pm−i−jf ± 1, 0 ≤ e < pi, 0 ≤ f < pi+j.

Since

Y = E(pm−ie)(1+pm−i−jf)XE−1
(pm−ie)(1+pm−i−jf)

(
a −pi+jβ
−pi a

)

= (a2 − p2i+1β)

(
1 + pm∗ d−1w

pm−jfa−1 + pm+iea−2 1 + pm∗
)

,

,
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where w = (−p2m−ia−1e2 − pm+i+jβea−2 − pmβ−1f), we have

ψ(Y ) = ψ

(
a2 − p2i+1β

a2 − p2i+1β

)
λ[p2m−i−ja−1(1+pm−i−jf)−1(βf 2−pje2)].

Notice that

ψ(X)ψ

(
a −pi+jβ
−pi a

)
= ψ

(
a2 − p2i+1β

a2 − p2i+1β

)
,

we know
ψ(E(pm−ie)(1+pm−i−jf)XE−1

(pm−ie)(1+pm−i−jf)
)

= ψ

(
a pi+jβ
pi a

)
λ[p2m−i−ja−1(1 + pm−i−jf)−1(βf 2 − pje2)].

Similarly,
ψ(E(pm−ie)(pm−i−jf−1)XE−1

(pm−ie)(pm−i−jf−1)
)

= ψ

(
a −pi+jβ
−pi a

)
λ[p2m−i−ja−1(pm−i−jf − 1)−1(βf 2 − pje2)].

Note that 1 + pm−i−jf and 1 − pm−i−jf are two square units, we can make a
substitution,

f ′ =
f√

1 + pm−i−jf
, e′ =

e√
1 + pm−i−jf

,

to get

χ

(
a pi+jβ
pi a

)
=

pi−1∑
e=0

pi+j−1∑

f=0

{
ψ

(
a pi+jβ
pi a

)
λ[p2m−i−ja−1(βf 2 − pje2)]

}

+

pi−1∑
e=0

pi+j−1∑

f=0

{
ψ

(
a −pi+jβ
−pi a

)
λ[p2m−i−ja−1(pje2 − βf 2)]

}
.

The above two summations can be calculated because

pi−1∑
e=0

pi+j−1∑

f=0

λ[p2m−i−ja−1(βf 2 − pje2)]

=

pi−1∑
e=0

λ(−p2m−ia−1e2)

pi+j−1∑

f=0

λ(p2m−i−ja−1βf 2)

=

pi−1∑
e=0

λ1(e
2)

pi+j−1∑

f=0

λ2(f
2),
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for some injective homomorphisms

λ1 : Z/piZ −→ C×, λ2 : Z/pi+jZ −→ C×.

Since we have the results that

p2k−1∑
e=0

λ(e2) = pk,

p2k+1−1∑
e=0

λ(e2) = pkG(λ),

where

G(λ) =

p−1∑
r=0

λ(r2)

is the quadratic Gauss sum [2] which has a formula depending on λ and p, we

can evaluate the summations in the formula of χ

(
a pi+jβ
pi a

)
.

Now if i + j ≥ m, we have EcdXE−1
cd ∈ T ⇒ c = pm−ie, d ∈ R×. Therefore,

ψ(EcdXE−1
cd ) = ψ

(
a

a

)
λ[a−1(pi+jβd + pi+jβd−1 − p2m−ie2d−1)],

and we have

χ(X) = ψ

(
a

a

) ∑

0≤e<pi,d∈(Z/pmZ)×
λ[a−1(pi+jβd + pi+jβd−1 − p2m−ie2d−1)].

Denote P =
∑

0≤e<pi,d∈(Z/pmZ)×
λ[a−1(pi+jβd + pi+jβd−1 − p2m−ie2d−1)], in order

to evaluate P we have the following 3 cases.

(i) i + j > 2m− i.

In this case, we can find λ′ : Z/piZ −→ C× such that

P =
∑

e∈Z/piZ,d∈(Z/pmZ)×
λ′[p2i+j−mβ(d + d−1)− e2d−1]

= pm−i
∑

e∈Z/piZ,d∈(Z/piZ)×
λ′[p2i+j−mβd + d−1(p2i+j−mβ − e2)].

Now P can be evaluated because the above summation has been done in 4.3.1.

(ii) i + j = 2m− i.

In this case

P = pm−i
∑

e∈Z/piZ,d∈(Z/piZ)×
λ′[βd + d−1(β − e2)].
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Compare the above summation with the one in 4.3.1, we know it can be eval-
uated using the same argument.

(iii) i + j < 2m− i.

Now we can find injective λ1 : Z/p2m−i−jZ −→ C×, λ2 : Z/piZ −→ C× to
simplify P such that

P =
∑

d∈(Z/pmZ)×
λ1(d + d−1)

∑

e∈Z/piZ
λ2(e

2d−1)

= pi+j−m
∑

d∈(Z/p2m−i−jZ)×
λ1(d + d−1)

∑

e∈Z/piZ
λ2(e

2d−1)
.

Note that the second summation above is the quadratic Gauss sum and we
have ∑

e∈Z/p2kZ
λ(e2) = pk

for any injective λ : Z/p2k −→ C×, thus when i is even, we have

P = p
i
2 pi+j−m

∑

d∈(Z/p2m−i−jZ)×
λ1(d + d−1)

which involves an unknown summation and we will stop here.

Odd Case

Now denote

G = GL(2,Z/p2m+1Z), Km = {I + pmB}, Km+1 = {I + pm+1B},

A =

(
pjβ

1

)
, 1 ≤ j ≤ m,β ∈ R×.

Let λ : Z/p2m+1Z→ C×, injective; B =

(
a b
c d

)
. Define

φA : Km+1 → C×, φA(I + pm+1B) = λ(tr(pm+1AB)) = λ(pm+1b + pm+j+1cβ).

T = StabG(φA) =

{(
a pjβb + pmc
b a + pmd

)}
= KmS, where S =

{(
w pjβy
y w

)}
.

Recall that we have the following picture

Km+1 −→ N −→ T ′ −→ T −→ G

φA
ext−→ φ′A

ext−→ φ′
ind−→ ψ

ind−→ χ
,
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where N =

{(
1 + pma pm+1b
pm+1−jc 1 + pmd

)}
, and we can extend φA to φ′A of N such

that

φ′A

(
1 + pma pm+1b
pm+1−jc 1 + pmd

)
= λ(pm+1b + pm+1cβ).

Similarly to the even case, we can get different extensions φ′A by multiplying
by roots of unity.

Let T ′ =
{(

a pjβb + pm+1c
b a + pmd

)}
= NS, then N�T ′ and φ′A is stable under T ′.

Thus, we can extend φ′A of N to φ′ of T ′ such that φ′ is trivial on the center of
G. Since T ′�T, and StabT (φ′) = T ′, we have ψ = IndT

T ′ φ
′ ∈ Irr(T ). Therefore,

χ = IndG
T ψ = IndG

T ′ φ
′ ∈ Irr(G). In order to evaluate the character values of

χ, we can consider χ as induced from φ′ of T ′. The coset representatives of T ′

are

Ecd =

(
1

d

)(
1 c

1

)
, 0 ≤ d < pm, d ∈ R×, 0 ≤ c < pm+1

and

Fcd =

(
1

d

)(
1 pc

1

)(
1

1

)
, 0 ≤ c, d < pm, d ∈ R×.

Let X =

(
a pi+jβ
pi a

)
, 0 ≤ i ≤ m, then

FcdXF−1
cd 6∈ T ′,∀c, d, and EcdXE−1

cd =

(
a + pic pid−1(pjβ − c2)

pid a− pic

)
.

We first assume that m + 1 > i + j, then in order for EcdXE−1
cd ∈ T ′, we must

have
c = pm−ie, d = pm+1−i−jf ± 1, 0 ≤ e < pi+1, 0 ≤ f < pi+j−1.

By the same method as in the even case, we first calculate

Y = E(pm−ie)(1+pm+1−i−jf)XE−1
(pm−ie)(1+pm+1−i−jf)

(
a −pi+jβ
−pi a

)

and deduce that

φ′(Y ) = φ′
(

a2 − p2i+1β
a2 − p2i+1β

)

×λ[p`−i−ja−1(1 + pm+1−i−jf)−1(pjβf 2 − e2)].

Denote φ′
(

a pi+jβ
pi a

)
= P+, φ′

(
a −pi+jβ
−pi a

)
= P−, we have

φ′(E(pm−ie)(1+pm+1−i−jf)XE−1
(pm−ie)(1+pm+1−i−jf)

)

48



= P+ ∗ λ[p`−i−ja−1(1 + pm+1−i−jf)−1(pjβf 2 − e2)].

Similarly,
φ′(E(pm−ie)(pm+1−i−jf−1)XE−1

(pm−ie)(pm+1−i−jf−1)
)

= P− ∗ λ[p`−i−ja−1(pm+1−i−jf − 1)−1(pjβf 2 − e2)].

Making a substitution gives us

χ

(
a pi+jβ
pi a

)
=

pi+1−1∑
e=0

pi+j−1∑

f=0

{
P+ ∗ λ[p`−i−ja−1(pjβf 2 − e2)]

}

+

pi+1−1∑
e=0

pi+j−1∑

f=0

{
P− ∗ λ[p`−i−ja−1(e2 − pjβf 2)]

}
.

Once again, the above summations can be written as a product of two Gauss
sums, hence can be calculated.

Like the even case, if i + j ≥ m + 1, we have

χ(X) = φ

(
a

a

) ∑

0≤e<pi+1,d∈(Z/pmZ)×
λ[a−1(pi+jβd + pi+jβd−1 − p2m−ie2d−1)].

Similarly, the above summation can be discussed in the same way as the even
case.
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Chapter 5

Irreducible Characters of
GL(3,Z/p`Z)

In this section, we first work on G = GL(3,Z/p2Z) and find all the irreducible
characters of it and the number of characters of each degree. See also [9]. We
move on to find irreducible characters of GL(3,Z/p3Z). There are 7 kinds of
conjugacy classes for the group GL(3,Z/pZ) and each conjugacy class gives
us one kind of irreducible characters of G. Since these 7 kinds of conjugacy
classes show up for the group GL(3,Z/p`Z) for any `, the 7 kinds of irreducible
characters also show up for any group GL(3,Z/p`Z).

5.1 The Irreducible Characters of GL(3,Z/p2Z)

Denote G = GL(3,Z/p2Z), K1 = {I + pB, B ∈ M(3,Z/pZ)}. It’s easy to see
that K1 is abelian and K1 � G. Fix an injective λ : Z/p2Z → C×, we first
define one-dimensional character φA on K1 using the formula

φA(I + pB) = λ(tr(pAB))

for some A ∈ M3(Z/pZ), the set of 3 × 3 matrices over Z/pZ. Here we use
A ∈ M3(Z/pZ) because (A + pC)(pB) = pAB; but we treat A as a matrix in
GL(3,Z/p2Z), so the matrix multiplication pAB makes sense.
Like in the 2× 2 case before, we have

(φA)g(I + pB) = φg−1Ag(I + pB)

and the stabilizer of φA is

T = StabG(φA) = {g ∈ G : pgA = pAg}.
As it turns out, StabG(φA) = T = K1S,where S is a subgroup of G and
depends on the choice of A. Next, we extend φA to ψA of T such that ψA |K1=
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φA. By Clifford Theory we know χA = IndG
T (ψA) ∈ Irr(G). The process is as

follows:
K1 −→ T −→ G

φA
ext−→ ψA

ind−→ χA

Since χA = χA′ if A is conjugate to A′, we want to use non-conjugate matrices
A and have 7 cases. The 7 cases will give us 7 kinds of irreducible characters.
Clifford theory tells us that IndG

T (ψAβ) ∈ Irr(G) for any β ∈ Irr(T/K1) and
we know

deg(IndG
T (ψAβ)) = deg(β) deg(IndG

T (ψA)).

If T/K1 is abelian, then deg(β) = 1 and we have deg(IndG
T (ψAβ)) = deg(χA).

For other cases, T/K1 is not abelian, we can get new irreducible characters of
G with different degrees by finding all the irreducible characters of T/K1.
Denote Aα = αI + A. For the same λ : Z/p2Z −→ C×, we can define φAα on
K1 in the same way as defining φA. Let λα(g) = λ(αg), then we have

φAα(I + pB) = λα(tr(pB))φA(I + pB).

Let B =




a b c
d e f
g h i


 , we have tr(B) = (a + e + i) and det(I + pB) = 1 +

p(a + e + i). Note that {1 + px}× ∼= {px}+ in Z/p2Z, we can find a character
µα = µ : (Z/p2Z)× → C× such that λ(αpg) = µ(1 + pg).

λα(tr(pB)) = µ(det(I + pB)).

Therefore,
φAα = (µ ◦ det)× φA.

Since µ ◦ det is a linear character of G, it is stable under G. We also have
StabG(φAα) = StabG(φA) and (µ ◦ det) × ψA is an extension of φAα provided
that ψA is an extension of φA. It is clear that

χAα = IndG
T [(µ ◦ det)× ψA] = (µ ◦ det)× IndG

T ψA = (µ ◦ det)× χ,

therefore
deg(χA) = deg(χAα).

In order to show that we have all the irreducible characters for G, we need to
count how many irreducible characters of each degree. In each of the 7 cases,
we can get the same construction process if we replace A by αI+A, because the
stabilizer does not change and we can always find the corresponding extension
ψA of φA. The way to count how many irreducible characters of each degree
is similar to the 2× 2 case before, that is,

# of each degree = # of nonconjugate αI + A
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×# of irreducible characters of T/K1.

In the end, we will verify that the orthogonality relation holds. Like in the
2×2 case, we give details for a specific choice of A and then the argument can
be generalized for matrices αI + A.
Since (I + pA)(I + pB) = I + p(A + B), in some cases it is more convenient
to use a multiplicative λ′ : (Z/p2Z)× → C× to define φA such that

φA(I + pB) = λ′[tr((I + pB)A)].

We will specify the choice of multiplicative λ′ when we use it later, otherwise
we use the additive one as before.

5.1.1 Irreducible Characters of Degree p2(p2 + p + 1)

We pick Ak =




k 0 0
0 0 0
0 0 0


 , k ∈ (Z/pZ)×. Let λ′ : (Z/p2Z)× −→ C× be such

that
λ(kpx) = λ′(1 + px).

We can define φA as

φA




1 + pa11 p∗ p∗
p∗ 1 + p∗ p∗
p∗ p∗ 1 + p∗


 = λ′(1 + pa11).

The stabilizer is StabG(φA) = T =








a p∗ p∗
p∗ x y
p∗ z w






 . We can extend φA

to ψA by defining

ψA




a p∗ p∗
p∗ x y
p∗ z w


 = λ′(a).

We have

χA = IndG
T (ψA) ∈ Irr(G) and deg(χA) =

| G |
| T | = p2(p2 + p + 1).

Notice that T/K1
∼= (Z/pZ)× × GL(2,Z/pZ) and the degrees of irreducible

characters of (Z/pZ)× ×GL(2,Z/pZ) are

1, p, p + 1, p− 1 (∗)
with numbers

(p− 1)3, (p− 1)3,
(p− 1)3(p− 2)

2
,
p(p− 1)3

2
(∗∗)
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respectively, we can get more irreducible characters of G with degrees

p2(p2 + p + 1), p3(p2 + p + 1), p2(p2 + p + 1)(p + 1), p2(p2 + p + 1)(p− 1).

A general choice of A is

Ak,α = Ak + αI =




k + α
α

α


 , k ∈ (Z/pZ)×, α ∈ Z/pZ.

Since Ak,α is conjugate to Ak′,α′ if and only if k = k′, α = α′, the number
of non-conjugate such Ak,α is p(p − 1). To count the number of irreducible
characters with degrees in (∗), we only need to multiply the numbers in (∗∗)
by p(p − 1). All the degrees and corresponding number of each degree are
summarized in the following table.

Degrees Number of this degree
p2(p2 + p + 1) p(p− 1)4

p3(p2 + p + 1) p(p− 1)4

p2(p2 + p + 1)(p + 1) p(p−1)4(p−1)
2

p2(p2 + p + 1)(p− 1) p2(p−1)4

2

5.1.2 Irreducible Characters of Degree p3(p+1)(p2+p+1)

Let A =




a 0 0
0 b 0
0 0 0


 , a, b ∈ Z/pZ, a 6= b, a 6= 0, b 6= 0. Let

λ1, λ2 : (Z/p2Z)× −→ C×

be such that

λ1(1 + p∗) = λ[a(1 + p∗)], λ2(1 + p∗) = λ[b(1 + p∗)],
then φA can be defined as

φA




1 + pa11 p∗ p∗
p∗ 1 + pa22 p∗
p∗ p∗ 1 + p∗


 = λ1(1 + pa11)λ2(1 + pa22).

The stabilizer is T =








a p∗ p∗
p∗ y p∗
p∗ p∗ z






 and one extension ψA on T can be

defined as

ψA




a p∗ p∗
p∗ y p∗
p∗ p∗ z


 = λ1(a)λ2(y).
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Since

T/K1
∼=








a
y

z








is abelian, the only degree we get in this case is

deg(χA) =
| G |
| T | = p3(p + 1)(p2 + p + 1).

The number of different extensions ψA is

| T/K1 |= (p− 1)3.

The general matrix A we can use is

Aα = αI + A =




a + α 0 0
0 b + α 0
0 0 α


 , α ∈ Z/pZ.

Since we get conjugate matrices if we permutate the diagonal entries of Aα,
the number of non-conjugate such matrices is p(p−1)(p−2)

6
. To summarize, we

have

Degrees Number of this degree

p3(p + 1)(p2 + p + 1) p(p−1)(p−2)(p−1)3

6

5.1.3 Irreducible Characters of Degree p3(p− 1)2(p + 1)

Now A =




0 0 a
1 0 b
0 1 c


 such that the polynomial t3−ct2−bt−a is irreducible

in Z/pZ[t]. By subtracting the number of reducible polynomials from the total
number of polynomials over Z/pZ, we can get that the number of irreducible

polynomials, and so is the number of matrices A, is p(p−1)(p+1)
3

. Define φA on
K1 as

φA(I + pB) = λ(tr(pAB)).

The stabilizer in this case is

T = K1S, S = {xI + yA + zA2} < GL(3,Z/p2Z).

Since S is abelian,we do not need to find an explicit formula for ψA. The
existence of ψA on T is guaranteed by Lemma 2.2.10 and the number of such
ψA is

| K1S |
| K1 | = p3 − 1.
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Since K1S/K1 is abelian, the only degree we get in this case is

deg(χA) =
| G |
| T | = p3(p− 1)2(p + 1).

We do not need to count

Aα =




α 0 a
1 α b
0 1 α + c




in this case because Aα is actually conjugate to A =




0 0 a′

1 0 b′

0 1 c′


 for certain

a′, b′, c′. Therefore the number of non-conjugate A is p(p−1)(p+1)
3

. We have

Degrees Number of this degree

p3(p− 1)2(p + 1) p(p−1)(p+1)(p3−1)
3

5.1.4 Irreducible Characters of Degree (p3 − 1)(p + 1)

Now let A =




0 0 1
0 0 0
0 0 0


, then

φA




1 + p∗ p∗ p∗
p∗ 1 + p∗ p∗

p ∗ a31 p∗ 1 + p∗


 = λ(pa31)

and the stabilizer is T =








a w y
p∗ x z
p∗ p∗ a + p∗






 . One extension ψA can be

defined as

ψA




a w y
p∗ x z

pa31 p∗ a + p∗


 = λ(pa31a

−1).

We can get the degree of χA as

deg(χA) =
| G |
| T | = (p3 − 1)(p + 1)

right away by inducing up ψA to G. However, since

T/K1
∼=








a w y
0 x z
0 0 a






 ⊂ GL(3,Z/pZ)
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is not abelian and all the irreducible characters of








a w y
0 x z
0 0 a






 have

degrees
1, p, p− 1

with number
(p− 1)2, p2 − 1, (p− 1)3

respectively, we can also have new irreducible χ ∈ Irr(G) with degrees

(p3 − 1)(p + 1)(p− 1), (p3 − 1)(p + 1)p.

The general matrix we can use to replace A is

Aα =




α 0 1
0 α 0
0 0 α


 with α ∈ Z/pZ

and we have p such matrices. Clearly they are not conjugate to each other.
To summarize, we get

Degrees Number of this degree
(p3 − 1)(p + 1) p(p− 1)2

(p3 − 1)(p + 1)(p− 1) p(p2 − 1)
p(p3 − 1)(p + 1) p(p− 1)3

We can see some details of constructing irreducible characters of the group






a w y
0 x z
0 0 a






 in a later section.

5.1.5 Irreducible Characters of Degree p(p3 − 1)(p2 − 1)

Pick A =




0 1 0
0 0 1
0 0 0


, then

φA




1 + p∗ p∗ p∗
pa21 1 + p∗ p∗
p∗ pa32 1 + p∗


 = λ(pa21 + pa32)

and we have the stabilizer

T =








a b c
p∗ a + p∗ b + p∗
p∗ p∗ a + p∗






 = K1S where S =








a b c
0 a b
0 0 a






 .
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Therefore

deg(χA) =
| G |
| T | = p(p3 − 1)(p2 − 1).

The existence of ψA is guaranteed by Lemma 2.2.10 again, but here we give
some details because we will use it in later sections. Notice that

φA |K1∩S= 1,

we can define ψA on T this way:

ψA |K1= φA, ψA |S= 1, ψA(k1s) = φA(k1),∀k1 ∈ K1, s ∈ S.

ψA is well-defined and clearly an extension of φA. To get more extensions, we
can multiply ψA by any irreducible character of T/K1. Since T/K1 is abelian,
the total number of extensions is

| T |
| K1 | = p2(p− 1).

The more general matrix to start with is Aα =




α 1 0
0 α 1
0 0 α


 and we have p

non-conjugate ones. The degree and number of this degree we get is as follows.

Degrees Number of this degree
p(p3 − 1)(p2 − 1) p3(p− 1)

5.1.6 Irreducible Characters of Degree p3(p3 − 1)

We will use A =




k 0 0
0 0 1
0 ε 0


 in this case, where ε is a non-square unit in

Z/pZ. Let λ1 : (Z/p2Z)× → C× be injective such that λ(kpx) = λ1(1 + px).
An explicit formula for φA on K1 is

φA




1 + pa11 p∗ p∗
p∗ 1 + p∗ pa23

p∗ pa32 1 + p∗


 = λ1(1 + pa11)λ(pa32 + εpa23).

The stabilizer is

T =








a p∗ p∗
p∗ b c
p∗ cε + p∗ b + p∗






 = K1S where S =








a 0 0
0 b c
0 cε b






 .
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Since S is abelian, the existence of extension ψA is guaranteed by Lemma
2.2.10 and the number of extensions here is

| T |
| K1 | = (p− 1)2(p + 1).

The general matrix we can use is Ax,y =




x 0 0
0 y 1
0 ε y


. Since




x 0 0
0 y 1
0 ε y


 is

conjugate to




x′ 0 0
0 y′ 1
0 ε′ y′


 if and only if x = x′ and

(
y 1
ε y

)
is conjugate to

(
y′ 1
ε′ y′

)
, the number of non-conjugate Ax,y is p2(p−1)

2
. The following table

summarizes this case.

Degrees Number of this degree

p3(p3 − 1) p2(p−1)3(p+1)
2

5.1.7 Irreducible Characters of Degree p2(p + 1)(p3 − 1)

The last case we let A =




k 0 0
0 0 1
0 0 0


 , k ∈ (Z/pZ)× and let λ1 : (Z/p2Z)× →

C× be injective such that λ(kpx) = λ1(1 + px). φA on K1 can be defined as

φA




1 + pa11∗ p∗ p∗
p∗ 1 + p∗ pa23

p∗ p∗ 1 + p∗


 = λ1(1 + pa11)λ2(pa23).

This will give us the stabilizer

T =








a p∗ p∗
p∗ b c
p∗ p∗ b + p∗






 = K1S where S =








a 0 0
0 b c
0 0 b






 .

S being abelian guarantees the existence of extension ψA and the number of
such extensions is | T |

| K1 | = p(p− 1)2.

Also the degree of χA we get in this case is

deg(χA) =
| G |
| T | = p2(p + 1)(p3 − 1).
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More general choices of matrix A are

Ax,y =




x 0 0
0 y 1
0 0 y


 , x 6= 0.

Since Ax,y is conjugate to Ax′,y′ if and only if x = x′, y = y′, we have p(p− 1)
non-conjugate ones.We will have

Degrees Number of this degree
p2(p + 1)(p3 − 1) p2(p− 1)3

5.1.8 All the irreducible characters of GL(3,Z/p2Z)

We can summarize all the irreducible characters found in the previous 7 sec-
tions in the following table

Degrees Number of this degree
p2(p2 + p + 1) p(p− 1)4

p3(p2 + p + 1) p(p− 1)4

p2(p2 + p + 1)(p + 1) p(p−1)4(p−1)
2

p2(p2 + p + 1)(p− 1) p2(p−1)4

2

p3(p + 1)(p2 + p + 1) p(p−1)(p−2)(p−1)3

6

p2(p + 1)(p3 − 1) p2(p− 1)3

p3(p3 − 1) p2(p−1)3(p+1)
2

p(p3 − 1)(p2 − 1) p3(p− 1)
(p3 − 1)(p + 1) p(p− 1)2

(p3 − 1)(p + 1)(p− 1) p(p2 − 1)
p(p3 − 1)(p + 1) p(p− 1)3

p3(p− 1)2(p + 1) p(p−1)(p+1)(p3−1)
3

To verify that we have all the irreducible characters of G, we first find the sum
of square of the degrees. We have

(i)
∑

number of degree× deg2 = p4(p3 − 1)(p2 − 1)(p− 1)(p8 − 1).

Notice that we also have

(ii)
∑

χ from Irr(GL(3,Z/pZ))

deg(χ)2 = p3 | GL(3,Z/pZ) |= p4(p3−1)(p2−1)(p−1).

By the second orthogonality relationship, we know that
∑

χ∈Irr(G)

deg(λ)2 =| G |, for any finite group G .

Since (i) + (ii) =| GL(3,Z/p2Z) |, we do have all the irreducible characters of
G.
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5.2 Irreducible Characters of GL(3,Z/p3Z)

Now let G = GL(3,Z/p3Z), K1 = {I + pB}, K2 = {I + p2B}. To construct
irreducible characters of G, we start with one-dimensional character φA of
K2, where φA is defined similarly to the even case. That is, fix an injective
λ : Z/p3Z→ C× and define

φA(I + p2B) = λ(tr(p2AB)),

for some A ∈ GL(3,Z/pZ). We pick A ∈ GL(3,Z/pZ) and treat it as a matrix
in GL(3,Z/p3Z) for the same reason as in the even case. For some cases, it is
more convenient to pick an injective multiplicative λ′ : (Z/p3Z)× → C× and
use it to define φA. We will specify in those cases, otherwise φA is defined by
the above formula.
Next we calculate the stabilizer of φA and will see T = StabG(φA) = K1S
for some subgroup S < G which depends on A. Unlike the even case, we
can not extend φA to T. Instead, we will try to find ψ ∈ Irr(T ) such that
[ψ |K2 , φA] 6= 0. From Clifford Theory, we have χ = IndG

T (ψ) ∈ Irr(G).
We have two different construction processes. The first one is

(1)
K2 −→ K2(K1 ∩ S) −→ H −→ K1 −→ K1S −→ G

φA
ext−→ φ′

ext−→ φ′′
ind−→ θ

ext−→ ψ
ind−→ χ

,

where H � K1 with index p3. When using the above process, S is abelian
in each case. Therefore, the existence of φ′ on K2(K1 ∩ S) is guaranteed by
Lemma 2.2.10 because K1 ∩ S is abelian. We can define φ′′ depending the
choice of H and have the stabilizer StabK1(φ

′′) = H. By Clifford Theory, we
have θ ∈ Irr(H). Moreover,

θ |K2(K1∩S)= p3φ′, θ |K1−K2(K1∩S)= 0.

So θ is invariant under K1S and K1S/K1 is cyclic, we can extend θ to ψ.
Notice that deg(ψ) = p3, so

deg(χ) = p3 | G |
| K1S | .

This construction process can give us irreducible characters of one degree only.
We can also have the number of each degree when using this process. As in the
even case before, we can replace A by αI+A to get more irreducible characters
of G. We also want to count how many extensions we can get in each case. As
we can see from the construction process and the property of θ in the picture,
θ only depends on φ′. Therefore, we only need to count the number extensions

60



from φA to φ′, which is equal to |K2(K1∩S)|
|K2| , and the number of extensions from

K1 to K1S which is equal to |K1S|
|K1| . To summarize, we have

# of each degree = # of nonconjugate (αI + A) × | K2(K1 ∩ S) |
| K2 | × | K1S |

| K1 | .

The degrees and numbers are both p3 times the corresponding ones in the even
case. There are 4 kinds of irreducible characters constructed using the above
picture and we will give details of each construction.

5.2.1 Irreducible Characters of Degree p6(p− 1)2(p + 1)

Let A =




0 0 a
1 0 b
0 1 c


 such that the polynomial t3− ct2− bt− a is irreducible

in GL(3,Z/pZ). The stabilizer of φA is

T = K1S where S = {xI + yA + zA2} < GL(3,Z/p3Z).

Choose

H =








1 + p∗ p2∗ p2∗
p∗ 1 + p∗ p2∗
p2∗ p2∗ 1 + p2∗






 K2(K1 ∩ S),

then H is a normal subgroup of K1 with index p3. Since








1 + p∗ p2∗ p2∗
p∗ 1 + p∗ p2∗
p2∗ p2∗ 1 + p2∗






 ∩ (K2(K1 ∩ S)) ⊂ K2,

we can define φ′′ of H on








1 + p∗ p2∗ p2∗
p∗ 1 + p∗ p2∗
p2∗ p2∗ 1 + p2∗






 this way:

φ′′




1 + p∗ p2a12 p2∗
p∗ 1 + p∗ p2a23

p2a31 p2a32 1 + p2a33


 = λ


tr


A




p∗ p2a12 p2∗
p∗ p∗ p2a23

p2a31 p2a32 p2a33








 ,

and on K2(K1 ∩ S) as

φ′′ |K2(K1∩S)= φ′ |K2(K1∩S) .

φ′′(h1h2) = φ′′(h1)φ
′′(h2)
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for

h1 ∈







1 + p∗ p2∗ p2∗
p∗ 1 + p∗ p2∗
p2∗ p2∗ 1 + p2∗






 and h2 ∈ K2(K1 ∩ S).

φ′′ is a well defined extension of φ′. Since | T |= p18(p3 − 1), we have

deg(χ) = p3 | G |
| T | = p6(p− 1)2(p + 1).

Notice that the number of non-conjugate matrices αI +A is p(p−1)(p+1)
3

, exten-
sions from φA to φ′ is p3 and from θ to ψ is p3 − 1, multiplying the above 3
will give us the number of irreducible characters in this case. To summarize,

Degrees Number of this degree

p6(p− 1)2(p + 1) p4(p−1)(p+1)(p3−1)
3

5.2.2 Irreducible Characters of Degree p4(p3 − 1)(p2 − 1)

Now pick A =




0 1 0
0 0 1
0 0 0


, then the explicit formula for φA is

φA




1 + p2∗ p2∗ p2∗
p2a21 1 + p2∗ p2∗
p2∗ p2a32 1 + p2


 = λ(p2a21 + p2a32).

The stabilizer is

T = K1S =








a b c
p∗ a + p∗ b + p∗
p∗ p∗ a + p∗






 where S =








a b c
0 a b
0 0 a






 .

φ′ on K2(K1 ∩ S) can be defined as

φ′ |K2= φA, φ′ |K1∩S= 1, φ′(k2s) = φA(k2) ∀k2 ∈ K2, s ∈ S.

φ′ is clearly an extension of φA. Choose

H =








1 + p∗ p∗ p∗
p2∗ 1 + p∗ p∗
p2∗ p2∗ 1 + p∗






 ,

then φ′′ on H can be defined as

φ′′




1 + p∗ p∗ p∗
p2a21 1 + p∗ p∗
p2∗ p2a32 1 + p∗


 = λ(p2a21 + p2a32).
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| T |= p20(p− 1) implies that

deg(χ) = p3 | G |
| T | = p4(p3 − 1)(p2 − 1).

The above argument works similarly if we replace A by Aα = αI + A. There
are p non-conjugate such matrices. We can also get

| K2(K1 ∩ S) |
| K2 | × | K1S |

| K1 | = p5(p− 1)

total extensions. Therefore, the total number of irreducible characters of this
degree can be summarized as follows:

Degrees Number of this degree
p4(p3 − 1)(p2 − 1) p6(p− 1)

5.2.3 Irreducible Characters of Degree p6(p3 − 1)

Let A =




1 0 0
0 0 1
0 ε 0


 with ε to be a non-square unit in Z/pZ. The stabilizer

is of φA in this case is

T =








a p∗ p∗
p∗ b c
p∗ ε + p∗ b + p∗






 = K1S, where S =








a 0 0
0 b c
0 cε b






 .

We can choose

H = H ′K2(K1 ∩ S) where H ′ =








1 p∗ p∗
0 1 + p∗ 0
0 0 1






 .

φ′′ on H can be defined as

φ′′ |K2(K1∩S)= φ′, φ′′ |H′= 1

and
φ′′(h′s) = φ′′(h′)φ′′(s) for h′ ∈ H ′ and s ∈ K2(K1 ∩ S).

Since | T |= p18(p− 1)2(p + 1), we have

deg(χ) = p3 | G |
| T | = p6(p3 − 1).
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The general matrices we can use to replace A are

Ax,y =




x 0 0
0 y 1
0 ε y


 with x, y ∈ Z/pZ and ε a non-square unit in Z/pZ,

the total number of such non-conjugate Ax,y is p2(p−1)
2

. Also, the number of
ψ′s is

| K2(K1 ∩ S) |
| K2 | × | K1S |

| K1 | = p3(p− 1)2(p + 1).

The following table summarizes this case.

Degrees Number of this degree

p6(p3 − 1) p5(p−1)3(p+1)
2

5.2.4 Irreducible Characters of Degree p5(p + 1)(p3 − 1)

Let A =




1 0 0
0 0 1
0 0 0


 and λ1 : (Z/p3Z)× −→ C× be injective, then an explicit

formula of φA can be

φA




1 + pa11 p∗ p∗
p2∗ 1 + p∗ p∗
p2∗ p2a32 1 + p∗


 = λ1(1 + p2a11)λ(p2a32).

This will give us the stabilizer

T =








a p∗ p∗
p∗ b c
p∗ p∗ b + p∗






 = K1S, where S =








a 0 0
0 b c
0 0 b






 .

φ′ on K2(K1 ∩ S) can be defined as

φ′ |K2= φA, φ′




a 0 0
0 b c
0 0 b


 = λ1(a)

and
φ′(k2s) = φ′(k2)φ

′(s) for k2 ∈ K2 and s ∈ K1 ∩ S.

We can choose

H =








1 + p∗ p∗ p∗
p2∗ 1 + p∗ p∗
p2∗ p2∗ 1 + p∗
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and have φ′′ on H as

φ′′




1 + pa11 p∗ p∗
p2∗ 1 + p∗ p∗
p2∗ p2a32 1 + p∗


 = λ1(1 + pa11)λ(p2a32).

| T |= p19(p− 1)2 in this case, so we have

deg(χ) = p3 | G |
| T | = p5(p + 1)(p3 − 1).

We can use more general matrices

Ax,y =




x 0 0
0 y 1
0 0 y


 , x, y ∈ Z/pZ, x 6= 0

to replace A and we can get the same degree by similar argument. The number
of such non-conjugate Ax,y is p(p − 1). Also, the total number of ψ′s in this
case is | K2(K1 ∩ S) |

| K2 | × | K1S |
| K1 | = p4(p− 1)2.

Therefore, we will have

Degrees Number of this degree
p5(p + 1)(p3 − 1) p5(p− 1)3

Now we will work on the second construction process:

(2)
K2 −→ N −→ T ′ −→ T −→ G

φA
ext−→ φ′A

ext−→ φ′
ind−→ ψ

ind−→ χ
.

Again, we fix an injective λ : Z/p3Z→ C× and define φA as

φA(I + p2B) = λ(tr(p2AB)).

We choose a normal subgroup N of T such that |N |
|K2| is as big as possible while

we can still extend φA to φ′A of N. T ′ is the stabilizer of φ′A in T. From Clifford
theory we know that

ψ ∈ Irr(T ) and [ψ |K2 , φA] 6= 0,

which implies that
χ ∈ Irr(G).

Since
χ = IndG

T (ψ) = IndG
T (IndT

T ′(φ
′)) = IndG

T ′(φ
′),
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we have

deg(χ) =
| G |
| T ′ | .

Look at the
N −→ T ′ −→ T

φ′A
ext−→ φ′

ind−→ ψ

piece of the construction process, we know that non-conjugate φ′A on N will
give us different ψ on T , and hence different χ ∈ Irr(G). Therefore, in order
to count how many irreducible characters we can get using the second con-
struction process, we need to count how many non-conjugate φ′A we have on
N. One natural way to define φ′A is to use the same formula as φA, that is,

φ′A(I + pB) = λ(tr(pAB)), for I + pB ∈ N.

But we can easily get more extension by using A + pC to extend φA, which
gives us

φ′A+pC(I + pB) = λ(tr[(A + pC)pB]), for I + pB ∈ N.

Notice that

φA+pC(I + p2B) = λ(tr[p2(A + pC)B]) = λ(tr(p2AB)) = φA(I + p2B),

so φ′A+pC is indeed another extension of φA. Using non-conjugate matrices
A + pC in T to define φ′A+pC will give us different stabilizers T ′ with different
indexes, therefore we can have irreducible characters with different degrees. To
get the number in each case, we first need to find all types of non-conjugate
matrices A+ pC, then like the cases before, to count how many non-conjugate
matrices αI + A + pC in T. We also need the number of extensions from φ′A
to φ′, which is |T ′|

|N | . The following 3 kinds of irreducible characters use this
construction process.

5.2.5 Irreducible Characters of Degree p6(p+1)(p2+p+1)

Let A =




a 0 0
0 b 0
0 0 0


 , a, b ∈ Z/pZ, a 6= b, a 6= 0, b 6= 0. Let

λ1, λ2 : (Z/p3Z)× −→ C×

be such that

λ1(1 + p2x) = λ[a(1 + p2x)], λ2(1 + p2x) = λ[b(1 + p2x)],
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then φA on K2 can be defined as

φA




1 + p2a11 p2∗ p2∗
p2∗ 1 + pa2

22 p2∗
p2∗ p2∗ 1 + p2∗


 = λ1(1 + p2a11)λ2(1 + p2a22).

The stabilizer is

T =








x p∗ p∗
p∗ y p∗
p∗ p∗ z






 .

Let

N =








1 + p∗ p2∗ p2∗
p∗ 1 + p∗ p2∗
p∗ p∗ 1 + p∗








then N � T . For this N , one explicit formula for φ′A could be

φ′A




1 + pa11 p2∗ p2∗
p∗ 1 + pa22 p2∗
p∗ p∗ 1 + p∗


 = λ1(1 + pa11)λ2(1 + pa22).

The stabilizer of φ′A under T is

Stabφ′A(T ) = T ′ =








x p2∗ p2∗
p∗ y p2∗
p∗ p∗ z








and we can define φ′ on T ′ as

φ′




x p2∗ p2∗
p∗ y p2∗
p∗ p∗ z


 = λ1(x)λ2(y).

The degree of χ we get in this case is

deg(χ) =
| G |
| T ′ | = p6(p + 1)(p2 + p + 1).

As discussed before, we can use A + pC to define an extension of φA this way:

φ′A+pC(I + pB) = λ(tr[(A + pC)pB]), where I + pB ∈ N.

It turns out that all non-conjugate matrices αI + A + pC are in the form of

Aa,b,c =




a
b

c


 , with a, b, c ∈ Z/p2Z and p - a− b, a− c, b− c
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and we have p4(p−1)(p−2)
6

non-conjugate ones. The number of extensions from
N to T ′ is | T ′ |

| N | = (p− 1)3.

Since T ′/N is abelian, we don’t have new degrees of ψ, therefore no new degrees
of χ. To summarize, we have

Degrees Number of this degree

p6(p + 1)(p2 + p + 1) p4(p−1)(p−2)(p−1)3

6

5.2.6 Irreducible Characters of Degree p4(p2 + p + 1)

Let A =




1 0 0
0 0 0
0 0 0


 pick some λ′ : (Z/p3Z)× −→ C× be injective such that

λ′(1 + p2x) = λ(p2x). An explicit formula of φA ca be

φA




1 + p2a11 p2∗ p2∗
p2∗ 1 + p2∗ p2∗
p2∗ p2∗ 1 + p2∗


 = λ′(1 + p2a11).

The stabilizer T =








a p∗ p∗
p∗ x y
p∗ z w






 . We can pick

N =








1 + p∗ p2∗ p2∗
p∗ 1 + p∗ p∗
p∗ p∗ 1 + p∗








then N is a normal subgroup of T. Now we want to use A + pC to define
an extension of φA on N. As discussed before, we only want to consider the
non-conjugate ones under T and we have the following 4 cases.
(i) C = 0. In this case, we can define φ′A on N by

φ′A




1 + pa11 p2∗ p2∗
p∗ 1 + p∗ p∗
p∗ p∗ 1 + p∗


 = λ′(1 + pa11).

StabT (φ′A) = T ′ =








a p2∗ p2∗
p∗ x y
p∗ z w






 .

Define φ′ on T ′ as

φ′




a p2∗ p2∗
p∗ x y
p∗ z w


 = λ′(a),

68



which is clearly an extension of φ′A. By inducing φ′ of T ′ to G, we have χ ∈
Irr(G) and

deg(χ) =
| G |
| T ′ | = p4(p2 + p + 1).

Like in the even case,

T ′/N ∼= (Z/pZ)× ×GL(2,Z/pZ)

and we already know the irreducible characters of (Z/pZ)××GL(2,Z/pZ) have
degrees

1, p, p + 1, (p− 1)

with numbers

(p− 1)3, (p− 1)3,
(p− 1)3(p− 2)

2
,
p(p− 1)3

2

respectively. Also, non-conjugate matrices αI + kA + pC in this case are in
the form of 


x

y
y


 , x, y ∈ Z/p2Z, p - x

and we have p3(p− 1) non-conjugate ones. To summarize this case, we have

Degrees Number of this degree
p4(p2 + p + 1) p3(p− 1)4

p5(p2 + p + 1) p3(p− 1)4

p4(p2 + p + 1)(p + 1) p3(p−1)4(p−1)
2

p4(p2 + p + 1)(p− 1) p4(p−1)4

2

(ii) Let C =




0 0 0
0 0 0
0 1 0


 then A + pC =




1 0 0
0 0 0
0 p 0


 and the explicit

formula for φ′A+pC is

φ′A+pC




1 + pa11 p2∗ p2∗
p∗ 1 + p∗ p∗
p∗ p ∗ a32 1 + p∗


 = λ′(1 + pa11)λ(p2a32).

The stabilizer of φ′A+pC under T is

T ′ =








a p2∗ p2∗
p∗ x y
p∗ p∗ x + p∗






 .
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We can define φ′ on T ′ as

φ′




a p2∗ p2∗
p∗ x y
p∗ pz x + p∗


 = λ′(a)λ(p2zx−1),

then φ′ is an extension of φ′A+pC that satisfies the conditions in our second
construction process. Since | T ′ |= p17(p−1)2, the degree of χ ∈ Irr(G) in this
case is

deg(χ) =
| G |
| T ′ | = p4(p + 1)(p3 − 1).

Non-conjugate matrices αI + kA + pC are all in the form of




x
y
p y


 , x, y ∈ Z/p2Z, p - x

and the number is p3(p− 1). Notice that T ′/N is abelian in this case, we can
only get one degree of φ′ and therefore only one degree of χ ∈ Irr(G). Also,

the number of extensions from φ′A to φ′ is |T ′|
|N | = p(p− 1)2, so we can get total

p4(p− 1)3 irreducible characters of G in this case. To summarize, we have

Degrees Number of this degree
p4(p + 1)(p3 − 1) p4(p− 1)3

(iii) Now C =




0 0 0
0 β 0
0 0 0


 β ∈ Z/pZ, then A + pC =




1 0 0
0 pβ 0
0 0 0


 and

the explicit formula for φ′A+pC is

φ′A+pC




1 + pa11 p2∗ p2∗
p∗ 1 + pa22∗ p∗
p∗ p∗ 1 + p∗


 = λ′(1 + pa11)λ

′′(p2a32)

where λ′′ : (Z/p3Z)× → C× satisfies λ′′(1 + p2x) = λ(p2βx). The stabilizer of
φ′A+pC under T is

T ′ =








x p2∗ p2∗
p∗ y p∗
p∗ p∗ z






 .

We can define φ′ on T ′ as

φ′




x p2∗ p2∗
p∗ y p∗
p∗ p∗ z


 = λ′(a)λ′′(y),
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then φ′ is an extension of φ′A+pC that satisfies the conditions in our second
construction process. Since | T ′ |= p16(p−1)3, the degree of χ ∈ Irr(G) in this
case is

deg(χ) =
| G |
| T ′ | = p5(p + 1)(p2 + p + 1).

Now non-conjugate matrices αI + kA + pC are all in the form of



x
y + pβ

y


 , x, y ∈ Z/p2Z, p - x

and the number is p3(p−1)
2

. Since T ′/N is abelian, we can have only one degree
of χ ∈ Irr(G). The following table summarizes this case.

Degrees Number of this degree

p5(p + 1)(p2 + p + 1) p3(p−1)5

2

(iv) The last case we let C =




0 0 0
0 0 ε
0 1 0


 where ε is a non-square unit in

Z/pZ, then A + pC =




1 0 0
0 0 pε
0 1 0


 and the explicit formula for φ′A+pC is

φ′A+pC




1 + pa11 p2∗ p2∗
p∗ 1 + p∗ pa23

p∗ pa32 1 + p∗


 = λ′(1 + pa11)λ(p2a23 + p2εa32).

The stabilizer of φ′A+pC under T is

T ′ =








x p2∗ p2∗
p∗ y w
p∗ εw + p∗ y + p∗






 .

Notice that we actually have a 2× 2 block here which is one of the 2× 2 cases
before. Therefore, the existence of extension φ′ on T ′ is guaranteed. Since
| T ′ |= p16(p− 1)2(p + 1), the degree of χ ∈ Irr(G) in this case is

deg(χ) =
| G |
| T ′ | = p5(p3 − 1).

Look at αI + kA + pC and we have that non-conjugate ones are in the form



x
y pε
py


 , x, y ∈ Z/p2Z, p - x and ε is a non-square unit in Z/pZ .
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The number is p3(p−1)
2

. Since T ′/N is abelian, we can have only one degree of
χ ∈ Irr(G). The following table summarizes this case.

Degrees Number of this degree

p5(p3 − 1) p3(p−1)5

2

5.2.7 Irreducible Characters of Degree p2(p3 − 1)(p + 1)

Now let A =




0 0 1
0 0 0
0 0 0


, then

φA




1 + p2∗ p2∗ p2∗
p2∗ 1 + p2∗ p2∗

p2a31 p2∗ 1 + p2∗


 = λ(p2a31).

The stabilizer is T =








a w y
p∗ x z
p∗ p∗ a + p∗






 . We can choose a normal sub-

group of T as

N =








1 + p∗ p∗ p∗
p∗ 1 + p∗ p∗
p2∗ p2∗ 1 + p∗








and define φA′ on N by

φ′A




1 + p∗ p∗ p∗
p∗ 1 + p∗ p∗

p2a31 p2∗ 1 + p∗


 = λ(p2a31).

The stabilizer of φ′A is

StabT (φ′A) = T ′ =








a w y
p∗ x z
p2∗ p2∗ a + p∗






 .

Define φ′ on T ′ as

φ′




a w y
p∗ x z

p2a31∗ p2∗ a + p∗


 = λ(p2a31a

−1),

then φ′ is clearly an extension of φ′A and the degree we can get by inducing up
φ′ of T ′ is

deg(χ) =
| G |
| T ′ | = p2(p3 − 1)(p + 1).
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Since

T/K1
∼=








a w y
0 x z
0 0 a








and we already know that all the irreducible characters of








a w y
0 x z
0 0 a








have degrees
1, p, p− 1,

therefore we can have more irreducible characters of G with degrees

p2(p3 − 1)(p + 1)(p− 1) and p3(p3 − 1)(p + 1).

As discussed before, we can still define φ′A+pC using A + pC. However, every
matrix of the following from




1
p
pa pb pc


 , a, b, c ∈ Z/pZ

are not conjugate to each other for different a, b, c, which is quite complicated
to deal with and we don’t have every case.
We will see a new way of defining φ′A on N in a later section and see that we
indeed have different irreducible character degrees of G.

5.3 Decomposition of IndG
B(1B)

Let B be the Borel subgroup of G = GL(n,Z/pZ), to determine irreducible
constituents of IndG

B(1B), we study EndCG(IndG
B(1B)) which has basis φw,

where w′s are double coset representatives of B such that G =
◦⋃

w∈G

BwB.

In the field case, that is, when G = GL(n,Z/pZ), w corresponds to elements
of Sn and dim(EndCG(IndG

B(1B))) = n! which does not depend on p. As we will
see in the next section when ` > 1, the number of double cosets depends on
n, p and `. In sections 5.3.2 and 5.3.3, we will see the complete decompositions
of IndG

B(1B) when G = GL(3,Z/p2Z) and G = GL(3,Z/p3Z).

5.3.1 Double Cosets of the Borel subgroup

Let S be a subgroup of G, then we have

G =
◦⋃

w∈G

SgS
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where SgS are disjoint double cosets of S and g′s are called double coset
representatives.
In this section, we want to see how many double cosets of the Borel subgroup
B of groups GL(2,Z/p`Z) and GL(3,Z/p`Z) there are. It is known that in the
field case, that is G = GL(n,Z/pZ), one choice of double coset representatives
for the Borel subgroup of GL(n,Z/pZ) are the permutation matrices, so the
number of double cosets is n!, which does not depend on p or `.
For GL(2,Z/p`Z), one choice for the double coset representatives of the Borel
subgroup are the following matrices:

(
1
pk 1

)
, 1 ≤ k ≤ `, and

(
1

1

)
.

Therefore, the number of double cosets in this case is ` + 1.
Next, let us look at an idea to find double coset representatives for the Borel
subgroup B of G = GL(3,Z/p2Z). We want to write G as disjoint unions

of BgB, therefore for any matrix A =




a k c
d e f
g h i


 ∈ G, it must be in one

double coset BgB for some w; so we must have g−1bAb′ ∈ B for some matrices
b, b′ ∈ B.
Notice that B contains upper triangular elementary matrices, multiplying A
by those matrices on the left and right is equivalent to performing the cor-
responding elementary row and column operations on A. Thus, in order to
make g−1bAb′ ∈ B, we can think of applying some elementary row and col-
umn operations on A first, and then at certain stage, we will need to multiply
the resulting matrix by w−1 to get an upper triangular matrix. We discuss
all the possible forms of matrix A and each form can give us a double coset
representative g, thus we will have all the double coset representatives.

For example, let G = GL(3,Z/p2Z) and A =




a k c
d e f
g h i


 ∈ G be such that

p|d, g, h and g 6= 0. To simplify notation, write A =




a k c
pd e f
pg ph i


 with g be-

ing a unit in Z/p2Z. Let b =




1
1 −dg−1

g−1


 and b′ =




1 −hg−1

1
1


,

then bAb′ =



∗ ∗ ∗
0 ∗ ∗
p 0 ∗


. To reduce the above matrix into B, we will pick
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g =




1
0 1
p 0 1


 so that g−1bAb′ ∈ B and we have one double coset repre-

sentative




1
1

p 1


.

By similar arguments to run all the possible forms of matrix A ∈ G, we have
the following double coset representatives for B < GL(3,Z/p2Z):




1
1

1


 ,




1
1

1


 ,




1
1

1


 ,




1
1

1


 ,




1
1

1


 ,




1
1

1


 ,




1
1

p 1


 ,




1
1
p 1


 ,




1
p 1

1


 ,




1
p 1

p 1


 ,




1
1

1







1
1
p 1


 ,




1
1

1







1
1

p 1


 ,




1
1

1







1
1

p p 1


 ,




1
1

1







1
p 1
p 1


 ,




1
1

1







1
p 1

1


 ,




1
1

1







1
1

p 1


 ,




1
1

1







1
p 1

1


 ,




1
1

1







1
1
p 1


 .

The number of double cosets in this case is 18.
We can also find a choice of double coset representatives for the Borel subgroup
of GL(3,Z/p3Z) as follows:




1
1

1


 ,




1
1

1


 ,




1
1

1


 ,




1
1

1


 ,




1
1

1


 ,




1
1

1


 ,




1
1

p 1


 ,




1
1

p2 1


 ,
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1
p 1
p2 1


 ,




1
1

p2 p 1


 ,




1
p 1

p2g p 1


 with g being units in Z/p3Z, the number of distinct p2g is p−1,




1
pi 1

pj 1


 ,




1
1

1







1
1

pi pj 1


 ,




1
1

1







1
pi 1
pj 1


 , 1 ≤ i, j ≤ 3, not both 3




1
1

1







1
pk 1

1


 ,




1
1

1







1
1
pk 1


 , 1 ≤ k ≤ 2.

The number of double cosets in this case is p + 37.
We will use some of the double cosets in the following two sections. From
Mackey’s Theorem, we have

[IndG
B(1B), IndG

B(1B)] = number of double cosets of B,

after we find all the irreducible constituents of IndG
B(1B) in the next two sec-

tions, we will verify that the number of double cosets we found for GL(3,Z/p2Z)
and GL(3,Z/p3Z) are indeed correct.

Let B =








a ∗ ∗
0 b ∗
0 0 c






 ⊂ G be the Borel subgroup of G and let 1B

be the identity character on B. We know IndG
B(1B) is not irreducible. We

want to see the decomposition of IndG
B(1B) when G = GL(3,Z/p2Z) and

G = GL(3,Z/p3Z).

5.3.2 G = GL(3,Z/p2Z)

In section 5.1, we have seen all the irreducible characters of G. Now we want
to see how to decompose IndG

B(1B). It’s easy to see that | B |= p9(p− 1)3 so

deg(IndG
B(1B)) =

| G |
| B | = p3(p + 1)(p2 + p + 1).

We will give the construction of each irreducible constituent, show that it is
indeed an irreducible constituent and also give the multiplicity.
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(1) Let χ1 be the irreducible constructed in 5.1.5. That is, χ1 = IndG
T1

(ψ1)
where

T1 =








a b c
p∗ a + p∗ b + p∗
p∗ p∗ a + p∗






 = K1S, S =








a b c
0 a b
0 0 a






 .

Recall that ψ1 on T1 is defined as

ψ1




1 + p∗ p∗ p∗
pa21 1 + p∗ p∗
p∗ pa32 1 + p


 = λ(pa21 + pa32),

ψ1 |S= 1, ψ1(k1s) = ψ1(k1)∀k1 ∈ K1, s ∈ S.

By Mackey’s Theorem, we have

IndG
B(1B) |T1=

∑
G=∪T1gB

IndB
gBg−1∩T (1).

Notice that ψ1 |T∩B= 1, we have

[IndG
B(1B), IndG

T1
(ψ1)] = [ψ1, IndG

B(1B) |T ]

=
∑

G=∪T1gB

[ψ1, IndB
gBg−1∩T (1)]

=
∑

G=∪T1gB

[ψ1 |gBg−1∩T1
, 1 |gBg−1∩T1

] ≥ 1.

Therefore, χ1 is an irreducible constituent of IndG
B(1B).

(2) Let χ2 = IndG
T2

(ψ2) denote the irreducible character constructed in 5.1.4
where

T2 =








a w y
p∗ x z
p∗ p∗ a + p∗








and

ψ2




a w y
p∗ x z

pa31∗ p∗ a + p∗


 = λ(pa31a

−1).

Let g1 =




0 1 0
1 0 0
0 0 1


 , g2 =




1 0 0
0 0 1
0 1 0


, then

B1 = g1Bg−1
1 =








b 0 f
d a e
0 0 c






 , B2 = g2Bg−1

2 =








a c b
0 f 0
0 e d
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are two different conjugates of B. From the definition of ψ2, it is clear that

ψ2 |B1∩T2= ψ2 |B2∩T2= ψ2 |B∩T2= 1.

Therefore,

[χ2, IndG
B(1B)] =

∑
G=∪T2gB

[ψ2 |gBg−1∩T2
, 1 |gBg−1∩T2

] ≥ 3,

which shows that χ2 is an irreducible constituent of IndG
B(1B) with multiplicity

at least 3.
(3) Using characters and groups from case (2), we want to construct an ir-
reducible character χ3 ∈ Irr(G) such that χ3 = IndG

T2
(ψ2β3) where β3 ∈

Irr(T2/K1). Since

T2/K1
∼= P =








a w y
0 x z
0 0 a






 ⊂ GL(3,Z/pZ),

we work on group P to construct β3 ∈ Irr(P ). Let N =








1 w y
0 1 z
0 0 1






 ⊂

GL(3,Z/pZ), then N � P. Define α3 on N to be

α3




1 w y
0 1 z
0 0 1


 = µ(w) where µ : (Z/pZ)+ −→ C×.

StabP (α3) = M =








a w y
0 a z
0 0 a






 and we can have an extension of α3 by

defining α′3 on M by

α′3




a w y
0 a z
0 0 a


 = µ(wa−1).

Let β3 = IndP
M(α′3), then β3 ∈ Irr(P ). Notice that M � P and pick




1 0 0
0 t 0
0 0 1


 , t ∈ (Z/pZ)×

to be coset representatives of M in P , we have

β3




a w y
0 a z
0 0 a


 =

∑

t∈(Z/pZ)×
µ(wt−1a−1), β3




a w y
0 x z
0 0 a


 = 0 if x 6= a.
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Notice that

ψ2β3




a w y
p∗ x z

pa31 p∗ a + p∗


 = λ(pa31a

−1)β3




ā w̄ ȳ
0 ā z̄
0 0 ā


 ,

we have

ψ2β3 |T2∩B1=

{
p, if x = a,
0, if x 6= a.

Therefore,
[ψ2β3 |B1∩T2 , 1] = 1,

showing that χ3 is an irreducible constituent of IndG
B(1B).

(4) Here we want to construct χ4 = IndG
T2

(ψ2β4) where β4 ∈ Irr(P ) and is
constructed similarly to β3 above. Just define α4 on M as

α4




1 w y
0 1 z
0 0 1


 = µ(z) where µ : (Z/pZ)+ −→ C×,

we can have a corresponding β4 and we can show that

[ψ2β4 |B2∩T2 , 1] = 1,

hence χ4 is also an irreducible constituent of IndG
B(1B).

Let G′ = GL(3,Z/pZ) and B′ be the corresponding Borel subgroup of G′, then

deg(IndG′
B′(1B′)) = (p + 1)(p2 + p + 1).

Since

deg(IndG
B(1B)) = deg(IndG′

B′(1B′)) + deg(χ1) + 3 deg(χ2) + deg(χ3) + deg(χ4),

we have the complete decomposition

IndG
B(1B) = IndG′

B′(1B′) + χ1 + 3χ2 + χ3 + χ4.

We also have

[IndG
B(1B), IndG

B(1B)] = 6 + 12 + 32 + 12 + 12 = 18,

which is equal to the number of double cosets for the Borel subgroup B of
GL(3,Z/p2Z).
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5.3.3 G = GL(3,Z/p3Z)

Although we did not have all the irreducible characters of G in this case, we
can still completely decompose IndG

B(1B). The following gives the construction
of each constituent.
(1) Let χ1 = IndG

T1
(φ1) be the irreducible character constructed in 5.2.7, where

where

T1 =








a w y
p∗ x z
p2∗ p2∗ a + p∗








and

φ1




a w y
p∗ x z

p2a31∗ p2∗ a + p∗


 = λ(p2a31a

−1).

Let g1 =




0 1 0
1 0 0
0 0 1


 , g2 =




1 0 0
0 0 1
0 1 0


 , g3 =




1 0 0
0 1 0
0 p 1


, then T1giB

are three different double cosets and

B1 = g1Bg−1
1 =








b 0 f
d a e
0 0 c






 , B2 = g2Bg−1

2 =








a c b
0 f 0
0 e d








and B3 = g3Bg−1
3 =








a d− pe e
0 b− pf f
0 p(b− c)− pf c + pf






 .

From the definition of φ1, it is clear that

φ1 |B1∩T1= ψ1 |B2∩T1= φ1 |B3∩T1= φ2 |B∩T1= 1.

Therefore,

[χ1, IndG
B(1B)] =

∑
G=∪T1gB

[φ1 |gBg−1∩T1
, 1 |gBg−1∩T1

] ≥ 4,

which shows that χ1 is an irreducible constituent of IndG
B(1B) with multiplicity

at least 4.

(2) Recall that in section 5.2.7, N =








1 + p∗ p∗ p∗
p∗ 1 + p∗ p∗
p2∗ p2∗ 1 + p∗






 and

we have IndG
T1

(φ1β) ∈ Irr(G) for any β ∈ Irr(T1/N) where T1/N ∼= P =
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a w y
0 x z
0 0 a






 . Let φ1i = φ1ζi where

ζi




a w y
0 x z
0 0 a


 = µi(ax−1), µi : (Z/pZ)× −→ C×, µi 6= 1.

φ1i




a w y
p∗ x z

p2a31∗ p2∗ a + p∗


 = λ(p2a31a

−1)µi(āx̄−1).

Notice that

B3 ∩ T1 ⊂







a ∗ ∗
0 a + p∗ ∗
0 p2∗ a + p∗






 ,

so φ1i |B3∩T1= 1. Denote χ1i = IndG
T1

(φ1i), then [χ1i, IndG
B(1B)] ≥ 1, showing

that each χ1i above is an irreducible constituent of IndG
B(1B). Since there are

p− 2 such µi, we have p− 2 ζi and χ1i.
(3) Letβ3 and β4 be the two irreducible characters of P constructed in 5.3.1.
Let χ2 = IndG

T1
(φ1β3), χ3 = IndG

T1
(φ1β4), then χ2, χ3 ∈ Irr(G) by Clifford

Theory and deg(χ2) = deg(χ3) = p2(p2 − 1)(p3 − 1). By the same argument
as in 5.3.1. (3), we can show that

[φ1β3 |B1∩T1 , 1] = 1, [φ1β4 |B2∩T1 , 1] = 1,

where B1 and B2 are in (1). Therefore, we know that χ2 and χ3 are also
irreducible constituent of IndG

B(1B).
(4) In 5.2.7 when we use the construction process

K2 −→ N −→ T ′ −→ T −→ G

φA
ext−→ φ′A

ext−→ φ′
ind−→ ψ

ind−→ χ
,

we mentioned that if we define φ′A on N differently, we may have a different
stabilizer T ′ and eventually a different χ ∈ Irr(G) with a new degree. We will
see a new construction here. Define φ′2 on N as

φ′2




1 + p∗ pa12 p∗
p∗ 1 + p∗ p∗

p2a31 p2∗ 1 + p∗


 = λ(p2a31 + p2a12),

then T2 = StabT (φ′2) =








a pb c
p∗ a + p∗ f
p2∗ p2∗ a + p∗






 . Define φ2 on T2 by

φ2




a pb c
p∗ a + p∗ f
p2d p2∗ a + p∗


 = λ(p2(b + d)a−1),
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then φ2 is an extension of φ′2 and we have χ4 = IndG
T2

(φ2) ∈ Irr(G) with

deg(χ4) = p3(p2 − 1)(p3 − 1).

Moreover, we can see
φ2 |T2∩B2= 1,

therefore χ4 is an irreducible constituent of IndG
B(1B).

Similarly, we can define φ′3 on N by

φ′3




1 + p∗ p∗ p∗
p∗ 1 + p∗ pa23

p2a31 p2∗ 1 + p∗


 = λ(p2a31 + p2a23)

and get the stabilizer T3 and define φ3 on T3. We have χ5 = IndG
T3

(φ3) ∈ Irr(G)
with deg(χ5) = p3(p2−1)(p3−1). We can also see that φ3 |B3∩T3= 1, implying
χ5 is an irreducible constituent of IndG

B(1B) as well.
(5) Let χ6 = IndG

T6
(ψ6) be the irreducible constructed in 5.2.2 where T6 = K1S

with S =




a b c
0 a b
0 0 a


 . We used the following construction process

K2 −→ K2(K1 ∩ S) −→ H −→ K1 −→ K1S −→ G

φA
ext−→ φ′

ext−→ φ′′
ind−→ θ

ext−→ ψ6
ind−→ χ

and chose H =








1 + p∗ p∗ p∗
p2∗ 1 + p∗ p∗
p2∗ p2∗ 1 + p∗






 . We already had

φ′ |K2= φA, φ′ |K1∩S= 1 and θ |K2(K1∩S)= p3φ′, θ |K1−K2(K1∩S)= 0.

We choose ψ6 be the extension such that ψ6 |S= p3. We can get

ψ6 |K1S∩B−K2S∩B= 0, ψ6 |K2∩S= p3.

This will give us
[ψ6 |K1S∩B, 1] = 1,

showing that χ6 is an irreducible constituent of IndG
B(1B).

Let G′′ = GL(3,Z/p2Z) and B′′ be the Borel subgroup of G′′, we have

deg(IndG
B(1B)) = deg(IndG′′

B′′(1B′′)) + 4 deg(χ1) +

p−2∑
i=1

deg(χ1i) +
6∑

j=2

deg(χj).
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Therefore, the complete decomposition in this case is

IndG
B(1B) = IndG′′

B′′(1B′′) + 4χ1 +

p−2∑
i=1

χ1i +
6∑

j=2

χj.

We can see now

[IndG
B(1B), IndG

B(1B)] = 18 + 42 + (p− 2) + 5 = p + 37,

which is the number of double cosets for the Borel subgroup of
GL(3,Z/p3Z).
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Chapter 6

Parabolic Induction of
GL(n,Z/p`Z)

In Chapter 4, we had Parabolic Induction for the 2× 2 case, now we want to
generalize that result.

Let G = GL(n,Z/p`Z) and B =








a1 ∗ ∗ · · · ∗
0 a2 ∗ · · · ∗
...

...
. . .

...
...

0 0 · · · an−1 ∗
0 0 0 · · · an








⊂ G. Let

λ1, λ2, ..., λn−1 : (Z/p`Z)× −→ C×

be homomorphisms. Define

φ : B −→ C×, φ




a1 ∗ ∗ · · · ∗
0 a2 ∗ · · · ∗
...

...
. . .

...
...

0 0 · · · an−1 ∗
0 0 0 · · · an




= λ1(a1)λ2(a2) · · ·λn−1(an−1).

In the field case when ` = 1, it is known that IndG
B(φ) ∈ Irr(G) if and only if

λi 6= λj for i 6= j. In our case, we want to prove that χ = IndG
B(φ) ∈ Irr(G)

when
{
1 + p[`/2]x

}
* ker λiλ

−1
j , i 6= j, 1 ≤ i, j ≤ n− 1. One implicit condition

here is that ` is large enough so that we do have those λ′s. More generally, if
all the ai are block matrices, we can still have a similar result.
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6.1 G = GL(n,Z/p2mZ)

We deal with the even case first. Denote Km = {I + pmC}. Let A =


a1 0 0 · · · 0
0 a2 0 · · · 0
...

...
. . .

...
...

0 0 · · · an−1 0
0 0 0 · · · 0




with ai and ai − aj ∈ (Z/pmZ)× for i 6= j. Let

λ : (Z/p2mZ)+ −→ C× be a homomorphism such that λ |{pm∗} is injective.
Define

φA : Km −→ C×, φA(I + pmC) = λ[tr(pmAC)],

then StabG(φA) = T =








a1 pm∗ pm∗ · · · pm∗
pm∗ a2 pm∗ · · · pm∗

...
...

. . .
...

...
pm∗ pm∗ · · · an−1 pm∗
pm∗ pm∗ pm∗ · · · an








. Notice that

{1 + pmx}× ∼= {pmx}+, we can find λ1, λ2, ..., λn−1 : (Z/p2mZ)× −→ C× such
that λi(1 + pmx) = λ(aip

mx). Define

ψ : T −→ C×, ψ




a1 pm∗ pm∗ · · · pm∗
pm∗ a2 pm∗ · · · pm∗

...
...

. . .
...

...
pm∗ pm∗ · · · an−1 pm∗
pm∗ pm∗ pm∗ · · · an




= λ1(a1) · · ·λn−1(an−1),

then ψ is an extension of φA, that is, ψ |Km= φA. By Clifford Theory, we have
ψG ∈ Irr(G).
Next we want to show that ψG = φG. Since | B |=| T | and we already know
ψG ∈ Irr(G), it suffices to show that [ψG, φG] = [ψ, φG |T ] = 1. By Mackey’s
Theorem, we have

φG |T =
⊕

G=∪TgB

IndB
gBg−1∩T (φg), where φg(gXg−1) = φ(X), X ∈ B.

Therefore

[ψ, φG |T ] =
∑

G=∪TgB

[ψ, IndB
gBg−1∩T (φg)] =

∑
G=∪TgB

[ψ |gBg−1∩T , φg |gBg−1∩T ].

It is clear that ψ |B∩T = φ |B∩T , thus the above sum must be 1, showing that
ψG = φG ∈ Irr(G).
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6.2 G = GL(n,Z/p2m+1Z)

Now let us work on the odd case. Similar to the even case, we want to construct
ψ on T ′ such that ψG ∈ Irr(G) and | T ′ |=| B | and then we will show ψG = φG.
We will use the following construction process:

Km+1 −→ N −→ T ′ −→ T −→ G

φA
ext−→ φ′A

ext−→ ψ
ind−→ ψ′

ind−→ χ
.

Here Km+1 = {I + pm+1C} , A =




a1 0 0 · · · 0
0 a2 0 · · · 0
...

...
. . .

...
...

0 0 · · · an−1 0
0 0 0 · · · 0




with ai and ai−

aj ∈ (Z/pmZ)×. Pick λ : Z/p2m+1Z −→ C× to be a homomorphism such that
λ |{pm+1∗} is injective. We can find λ1, λ2, ..., λn−1 : (Z/p2m+1Z)× −→ C× such
that λi(1 + pm+1x) = λ(aip

m+1x). We can define φA on Km+1 using the same
formula as in the even case, that is,

φA(I + pm+1C) = λ(tr(pm+1CA)).

The stabilizer is

T =








a1 pm∗ pm∗ · · · pm∗
pm∗ a2 pm∗ · · · pm∗

...
...

. . .
...

...
pm∗ pm∗ · · · an−1 pm∗
pm∗ pm∗ pm∗ · · · an








.

Let N =








1 + pm∗ pm+1∗ pm+1∗ · · · pm+1∗
pm∗ 1 + pm∗ pm+1∗ · · · pm+1∗

...
...

. . .
...

...
pm∗ pm∗ · · · 1 + pm pm+1∗
pm∗ pm∗ pm∗ · · · 1 + pm∗








, then

N � T and we can define φ′A on N by

φ′A




1 + pma1 pm+1∗ pm+1∗ · · · pm+1∗
pm∗ 1 + pma2 pm+1∗ · · · pm+1∗

...
...

. . .
...

...
pm∗ pm∗ · · · 1 + pman−1 pm+1∗
pm∗ pm∗ pm∗ · · · 1 + pman




= λ1(1 + pma1) · · ·λn−1(1 + pman−1)
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and we can get

Stabφ′A(T ) = T ′ =








a1 pm+1∗ pm+1∗ · · · pm+1∗
pm∗ a2 pm∗ · · · pm+1∗

...
...

. . .
...

...
pm∗ pm∗ · · · an−1 pm+1∗
pm∗ pm∗ pm∗ · · · an








.

By the same argument as in the even case, we can define ψ on T ′, an extension
of φ′A with

ψ




a1 pm+1∗ pm+1∗ · · · pm+1∗
pm∗ a2 pm∗ · · · pm+1∗

...
...

. . .
...

...
pm∗ pm∗ · · · an−1 pm+1∗
pm∗ pm∗ pm∗ · · · an




= λ1(a1)λ2(a2) · · ·λn−1(an−1),

then ψG ∈ Irr(G). Notice that | T ′ |=| B |, to show that ψG = φG is exactly
the same as in the even case—–just replace T by T ′.

6.3 More general result

Now let B =








A1 ∗ ∗ · · · ∗
0 A2 ∗ · · · ∗
...

...
. . .

...
...

0 0 · · · Ak−1 ∗
0 0 0 · · · Ak








⊂ G where each Ai is a ni×ni

matrix. Let λ1, λ2, ..., λk−1 : (Z/p`Z)× −→ C× be homomorphisms such that{
1 + p[`/2]x

}
* ker λiλ

−1
j , i 6= j, 1 ≤ i, j ≤ k − 1. Let

φi ∈ Irr(GL(ni,Z/p`Z)), 1 ≤ i ≤ k be inflated from GL(ni,Z/p`−[ `
2
]Z).

Define Φ : B −→ C×,

Φ




A1 ∗ ∗ · · · ∗
0 A2 ∗ · · · ∗
...

...
. . .

...
...

0 0 · · · Ak−1 ∗
0 0 0 · · · Ak




= λ1[det(A1)]λ2[det(A2)] · · ·

λk−1[det(Ak−1)]φ1(A1)φ2(A2) · · ·φk(Ak).
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IndG
B(Φ) ∈ Irr(G).

To prove this result, we still need to discuss even and odd cases separately,
but the arguments are similar to the cases we had before. I will sketch the
proof for the even case and the odd case will follow similarly.
Suppose now ` = 2m. Let Km be the same as before. Let

A =




a1In1 0 0 · · · 0
0 a2In2 0 · · · 0
...

...
. . .

...
...

0 0 · · · ak−1Ik−1 0
0 0 0 · · · 0




with ai and ai − aj ∈ (Z/pmZ)×.

Let λ : (Z/p2mZ)+ −→ C× be a homomorphism such that λ |{pm∗} is injective.
Define

ΦA : Km −→ C×, ΦA(I + pmC) = λ[tr(pmAC)],

then StabG(φA) = T =








A1 pm∗ pm∗ · · · pm∗
pm∗ A2 pm∗ · · · pm∗

...
...

. . .
...

...
pm∗ pm∗ · · · Ak−1 pm∗
pm∗ pm∗ pm∗ · · · Ak








. Let

λi : (Z/p2mZ)× −→ C×

be such that λi(1 + pmx) = λ(aip
mx), then

Ψ′ : T −→ C×, Ψ′




A1 pm∗ pm∗ · · · pm∗
pm∗ A2 pm∗ · · · pm∗

...
...

. . .
...

...
pm∗ pm∗ · · · Ak−1 pm∗
pm∗ pm∗ pm∗ · · · Ak




= λ1[det(A1)] · · ·λk−1[det(Ak−1)]

is an extension of ΦA and IndG
T (Ψ′) ∈ Irr(G).

Let φi ∈ Irr(GL(ni,Z/pmZ)), 1 ≤ i ≤ k and let Ψ = Ψ′φ1φ2 · · ·φk. Since

T/Km
∼= GL(n1,Z/pmZ)×GL(n2,Z/pmZ)× · · · ×GL(nk,Z/pmZ),

by Clifford Theory, we still have IndG
T (Ψ) ∈ Irr(G).

To show that IndG
T (Ψ) = IndG

T (Φ), we can apply the same method by showing
that [IndG

T (Ψ), IndG
T (Φ)] = 1 because deg(IndG

T (Ψ)) = deg(IndG
T (Φ)). Notice

that
IndG

T (Ψ) |T∩B= IndG
T (Φ) |T∩B,

the statement follows just as we had before.
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