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Abstract

The field of molecular biology is growing quickly and research findings are being deposited into 

public databases. Swiss-Prot is a public database of protein sequences with annotations. Annota­

tions in Swiss-Prot include the subcellular localization of the protein and links to literature relevant 

to the protein. Many of the over 200,000 protein entries in Swiss-Prot (release 49.1) lack annota­

tions such as subcellular localization, but the majority have references to journal abstracts describing 

related research. These abstracts represent information that could be used to automatically generate 

annotations for proteins that have been studied, but remain un-annotated. Training text classifiers 

on abstracts is one way to generate annotations. This dissertation presents a method for generat­

ing additional text features using the knowledge represented in a biological concept hierarchy (the 

Gene Ontology). The structure of the ontology and the synonyms recorded in it are leveraged to 

significantly improve the F-measure of some subcellular localization text classifiers.
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Chapter 1

Introduction: Automatic Annotation

“I f  I  have seen further, it is by standing on the shoulders o f  giants."

-Sir Isaac Newton, letter to Robert Hooke, 1676

Biology, the study of living things, has experienced exponential growth in the last century. This 

growth has been expedited as biologists from different cultures and different countries come together 

to work on research problems. From agricultural advancement to vaccines, the field of biology has 

changed the way we live our lives. The biological research community is a collective. Biologists 

work together, and their collaboration has enabled huge advances.

This remarkable progress has ushered in new challenges, including the deluge of information 

that comes with such rapid growth. If a researcher cannot easily find recent and relevant research 

in a field, the very seeds of collaboration fail to be sown. For example, if a team of researchers is 

working on a disease that affects the mitochondria of a cell, they may wish to identify every protein 

in an organism that localizes (i.e. performs its function) in the mitochondria. A simple search for the 

term mitochondria in a biological journal database will turn up many articles, but some research will 

not be found because the articles discuss not the mitochondrion itself, but some process that takes 

place within the mitochondria. There is a need, in the midst of this research revolution, to gather 

forces and build new mechanisms for sorting information, so that it can become knowledge. The 

techniques covered in this dissertation address the need for automatic organization for a particular 

type of biological annotation called subcellular localization: where a protein performs its function 

in the biological cell.

In order to understand the complexity of this problem, and the resources that have been devel­

oped to tackle it, a brief introduction to biology and machine learning is necessary. This Chapter 

contains an introduction to molecular biology, cell biology, and a primer to a subset of topics in the 

exciting mix of biology and computing science, called bioinformatics. Chapter 2 is an introduction 

to an area of computing science called machine learning and Chapter 3 introduces an area of com­

puting science called natural language processing. My research uses techniques from each of these 

areas to address the problem of information overload in the biological domain.

1
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Figure 1.1: A drawing of the cells that can be seen in a thin slice of cork [24].

1.1 Biological Background

Robert Hooke was The Royal Society of London’s Curator of Experiments for 15 years, beginning 

in 1662 [4], During that time Hooke published “Micrographia”, a book detailing the observations 

he made using a compound microscope. This book includes a magnified view of cork which he 

described as having “pores” or “cells” shown in Figure 1.1. In 1678 Hooke was asked by the Royal 

Society to confirm claims made in a letter from Antony van Leeuwenhoek. The letter described 

“little animals” which Leeuwenhoek discovered while peering through a magnifying glass. Hooke 

noted the same microscopic creatures. Hooke was first to note that organisms visible to the naked 

eye are made up of tiny biological units, called cells, and Leeuwenhoek was the first to observe 

unicellular organisms: bacteria and protozoa. With these two discoveries the field of cell biology 

emerged. In 1839, Matthias Schleiden and Theodor Schwann formalized cell theory, which states 

that all organisms are made up of one or more cells. Schwann noted in his subsequent book [37] 

the duality of these microscopic living entities, biological cells, which can live separately and self- 

sufficiently, or come together and co-operate to create a larger living entity.

What, exactly, is a cell? A cell is the biological unit of which all life is composed [47], Every 

cell involves some sort of membrane that separates its internal workings from its surroundings. 

The specifics of what lies within the cell and what makes up the separating membrane are what 

differentiates cell types - variation abounds, even on the microscopic level. Even within the same 

organism, cells can differ greatly. From the ciliated cells of our lung tissue to the strong elongated

2
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c e l l s  o f  our m uscle ,  the cell  is am azin g ly  diverse.

Scientists have long been fascinated by both the likenesses between cells and their variances. 

What is it about an organism that causes its offspring to be so like itself? And what is it about the 

cells in specific tissue types that causes them to be different than the cells of neighbouring tissues? 

What causes these simultaneous similarities and differences in the natural world?

These observable differences in cells, called phenotypes, are the direct result of the genetic 

makeup of a cell. Scientists explored how the genes of a cell control the organism’s phenotypes 

through a series of discoveries spanning more than a century. Many have heard the story of Gregor 

Mendel and his pea plants. A monk living in a monastery in what was is now part o f the Czech 

Republic, Mendel studied the common garden pea. He noted that his pea plants had different phys­

ical characteristics, or phenotypes. Some plants were tall, some were short, some had green pea 

pods, and some had yellow. He wondered about this, and began to experiment with the plants by 

selectively breeding them and observing the dispersal of their characteristics among the offspring. 

He noted that when he crossed yellow-pod plants with green-pod plants, the offspring had only 

green pods. If Mendel allowed this second generation of green pod plants to interbreed, the next 

generation had some plants with green pods, but some of the yellow-pod plants reappeared. In the 

absence of any knowledge of what DNA (deoxyribonucleic acid) is or how it works, Mendel created 

an entire theory of genetic mixing based on what he called “factors” . He postulated that there was 

some invisible entity that was passed from parent to offspring that controlled phenotype, a concept 

that we refer to now as “gene”.

Still, scientists at the time did not know what a gene was, or how it was passed from one gen­

eration to the next. In fact, at the turn of the 20th century there was much research being done to 

uncover the biological basis of this phenomenon. Thanks to Robert Hooke and his popularization of 

the microscope, biologists were able to view chromosomes, complexes of tightly coiled DNA and 

protein as they replicated in cells. They watched with amazement as cells copied and then evenly 

dispersed their chromosomes during cell replication. This observation made them quite sure that 

these little structures somehow contained Mendel’s “factors” . But how did DNA and protein encode 

the phenotype of an organism? Even more contentious at the time, which encoded the phenotype? 

Was it DNA, protein or both? At the time, DNA seemed a very unlikely candidate. DNA is made 

up of only 4 types of molecules, called nucleotides, In contrast, proteins are composed of 20 kinds 

o f molecules, called amino acids. Basic combinatorics will tell you that, given the same amount of 

space, you can encode more information using a 20 letter alphabet than with a 4 letter one. Given 

the complexity of life, biologists were sure that proteins were the means with which cells transmit 

their genetic material.

In 1928, it was discovered by Fred Griffith that the “factors” found in chromosomes could be 

transferred between bacteria [19]. His experiment involved two strains of Pneumococcus: a deadly 

strain with smooth-looking colonies, and a harmless strain that produced rough-looking colonies.

3
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Griffith found, unsurprisingly, that heating the smooth strain, thus killing the bacterial cells, rendered 

the virus incapable of killing a mouse. However, injecting the same heat-treated smooth strain 

virus into a mouse that was also infected with the non-lethal rough strain rendered the animal dead. 

Griffith was shocked. He performed his experiment several times and each time found the same 

result. Somehow, the dead smooth strain was transferring its “factor” to the non-virulent rough 

strain, and making it lethal. This set the stage for experiments to determine which molecule it was 

that encoded the factor that allowed the virulent strain to transform the non-virulent strain.

Griffith’s team would not be the ones to discover the molecule that encoded the gene. It was 

Avery, McLeod and McCarty who extended Griffith’s work and devised a way of telling which 

molecule of the bacterial cell was responsible for the transformation of Pneumococcus [5]. The 

biological cell is composed of 5 basic molecular components: DNA, RNA, polysaccharides, proteins 

and lipids. Avery et al. introduced into the heat-treated smooth Pneumococcus a set of enzymes that 

could destroy four of the five components, but not DNA. This mixture was still able to transform 

the rough strain and make it virulent. However, mixing the heat-treated smooth Pneumococcus with 

only DNAse, an enzyme that destroys DNA, prevented the “factor” from making the rough-strain 

virulent. This experiment was the first to show that DNA was the mechanism of heredity in bacteria, 

and subsequent experiments showed the mechanism to be the same in other organisms.

This brings us to what biologists have termed the “Central Dogma” of biology. It states that DNA 

(found on chromosomes) is used to make RNA (ribonucleic acid) via a process called transcription. 

RNA is, in turn, used to make proteins via a process called translation. Proteins are ultimately 

responsible for many of the actions that we perceive as phenotypes, and which Mendel studied 

when he performed crosses with his pea plants.

Because proteins are the basic entities that control our growth and development, biologists are 

very interested in their characteristics and how they behave in our cells. If we can understand how 

our cells work on a microscopic level we can better understand the ailments that affect us on a 

macroscopic level. Biologists may devote their entire lives to studying one gene, and its protein 

product. They may wish to understand the 3-dimensional structure of the protein, determine the 

proteins molecular function or where in the cell a protein performs its function. Because this study 

deals with the subcellular localization annotations of proteins, it is necessary to understand the 

structure of biological cells.

One of the simplest living cells is that of Gram-positive bacteria, named for the strong purple 

hue it assumes when exposed to Gram-stain dye. This propensity for binding the dye is due to 

the cell’s wall, which contains a thick layer of sugar-based peptidoglycan molecules. These thick 

layers trap the molecules of the Gram stain and give the cells a characteristic purple colour after 

treatment. The cell’s wall acts as a barrier to the outside world, selectively allowing some molecules 

to enter, and barring others. Beneath the cell wall is a phospholipid bilayer. A phospholipid bilayer 

is made of two sheets of phospholipid molecules packed closely together. A phospholipid is shaped

4
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Hydrophilic
Head

Hydrophobic
Tail

Figure 1.2: A phospholipid molecule. The head of the phospholipid, represented here with a circle is 
hydrophilic, meaning it is attracted to water. The tails of the phospholipid are hydrophobic, meaning 
they repel water.

like an old-fashioned wooden clothes-pin (Figure 1.2), with a hydrophilic (water-loving) head and 

two hydrophobic (water-fearing) tails. Because half of the molecule tends to avoid water, and half 

is attracted to water, when phospholipids are immersed in water (as in biological cells) they form 

structures that expose the hydrophilic regions and hide the hydrophobic regions. One such structure 

is the bilayer (Figure 1.3), in which phospholipids assemble themselves into two sheets. The bottom 

sheet is made of phospholipids with their tails pointing upwards, and the top sheet has phospholipids 

with their tails pointing downwards. This exposes the hydrophilic heads of the phospholipids to the 

water in the surrounding environment, and the tails are tucked away, concealed from the aqueous 

exterior. Within the plasma membrane of a biological cell is a liquid called cytoplasm. Dispersed in 

the cytoplasm of a bacterial cell are ribosomes, the machinery cells use to create protein and a small 

tightly coiled mass of DNA called a nucleoid. The simplicity of the Gram-positive cell means that 

most biologists agree upon a simple three class categorization system for this cell type: cytoplasmic 

(any protein performing its function in the cell), extracellular (any protein that performs its function 

outside of the cell, as in secreted proteins) and plasma membrane proteins (any protein involved in 

the structure of the membrane) (Figure 1.4).

The cell wall of Gram-negative bacteria (Figure 1.4) contains very little peptidoglycan, so it 

does not take on a purple colour after a Gram stain. The Gram-negative cell wall is comprised of 

two phospholipid bilayers: the interior bilayer (called the plasma membrane) and the exterior layer 

(the outer membrane). The outer membrane contains lipopolysaccharides that contribute to the 

cell’s pathogenic properties by protecting it from the immune systems of the hosts that it invades. 

The space between the two lipid bilayers is called the periplasmic space. Like Gram-positive cells, 

Gram-negative bacteria have ribosomes and a nucleoid floating in the cytoplasm contained by the 

plasma membrane. The Gram-negative subcellular localization categories are: cytoplasmic (proteins 

that perform their function within the cell’s inner membrane), inner membrane (proteins that perform 

their function as part of the cell’s innermost membrane), periplasm (proteins that perform their

5
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Figure 1.3: A cross section of a phospholipid bilayer. Phospholipid molecules arrange themselves 
so that their hydrophilic heads are exposed to the surrounding environment and their hydrophobic 
tails are concealed in the interior of the bilayer.

Extracellular

O u te r  m e m b ra n e

Perip lasm  ic sp ace  
(so m e p ep tid o g ly can )

P lasm a m e m b ra n e

C ytoplasm

Extracellular

! Thick p e p tid o g ly c an  
layer

l P lasm a m e m b ra n e

C ytop lasm

(a) (b)

Figure 1.4: The membrane structure of Gram-negative and Gram-positive cells, (a) Gram-negative 
cells have two phospholipid bilayers that create a periplasmic space, (b) Gram-positive cells have a 
thick layer of peptidoglycan and a single phospholipid bilayer.
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function in between the cells double bilayer), outer membrane (proteins that perform their function 

as part of the cell’s outermost membrane) and extracellular (proteins that perform their function 

outside of the cell).

Gram-negative and Gram-positive bacteria are both prokaryotic cells, which is a class of cells 

where the DNA floats around freely in the cytoplasm. In the cells of eukaryotes, including humans, 

DNA is contained in a membrane bounded organelle called a nucleus that separates the DNA from 

the surrounding cytoplasm. Because eukaryotic cells are more complex they have more subcellular 

localizations. They have the same cytoplasmic, extracellular and plasma membrane classes as Gram- 

positive bacteria, but also include more specialized cytoplasmic organelles:

•  The mitochondrion, the powerhouse of the cell, uses energy stored in the bonds of organic 

molecules to create ATP (adenosine 5’-triphosphate) through oxidative phosphorylation. In 

simple terms, this is the process of turning food into a form of energy that cells can readily 

use.

•  Chloroplasts are specific to photosynthesizing organisms: plants and algae. Chloroplasts use 

light energy, water and carbon dioxide to create ATP and food (glucose).

•  The endoplasmic reticulum (ER) is a large system formed from a folded membrane. The ER is 

divided into two parts, the smooth and the rough ER. The rough ER (RER) is rough because 

it is sprinkled with ribosomes, the cell’s mechanism for creating protein. The RER is the 

cell’s site for manufacturing, processing and storing protein. The smooth ER (SER) creates, 

processes and stores fats, carbohydrates and other necessary cellular molecules, aside from 

protein.

•  The Golgi complex is created by the continual fusing of protein-containing membrane-bounded 

vesicles which originate from the RER. While travelling through the Golgi, proteins are pro­

cessed and modified before being sent to their final destinations.

•  Peroxisomes are often found in liver and kidney cells and contain the enzymes needed to carry 

out the waste breakdown that occurs in those organs.

•  A Vacuole is a catch-all term used to describe a class of membrane-bound pockets that store 

and transport various molecules. For example, digestive vacuoles are created by phagocytosis, 

the process by which a cell envelops and “eats” molecules surrounding it. In addition, vacuoles 

can also be used to export or secrete molecules from within the cell, or to simply hold water 

to create rigidity for the cell.

•  Lysosomes contain potent hydrolytic enzymes that can be used to break down the contents 

of digestive vacuoles, or in autophagy in which old organelles or are destroyed because they 

have reached the end of their usefulness to an organism.

7
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Eukaryotic cells differ between forms of organisms. For example, only plant cells have chloro­

plasts. Biologists create groups for organisms based on the similarity of their cells, and thus their 

possible subcellular localizations. Animal cells have proteins that localize to the mitochondrion, 

nucleus, endoplasmic reticulum, extracellular, cytoplasm, plasma membrane, golgi, lysosome and 

peroxisome. Plant cells have mitochondrion, chloroplast, nucleus, endoplasmic reticulum, extracel­

lular, cytoplasm, plasma membrane, golgi, peroxisome and vacuole localizations. Fungi cells have 

mitochondrion, nucleus, endoplasmic reticulum, extracellular, cytoplasm, plasma membrane, golgi, 

peroxisome and vacuole localizations.

With so many biologists working all over the globe, many are working on very similar problems. 

Often more than one team of biologists may be working on the same protein at the same time, or 

on similar proteins in different organisms (orthologues), and they share what they learn through 

journal publications. In the past two decades, the expansion of biological research has meant that 

most biologists cannot keep up with the publication rate even just within their particular branch of 

biology. This brought about the birth of the biological database.

1.2 Biological Databases

The biological research explosion made it clear that researchers had to organize their findings. If 

results were not easy to find in the huge amount of literature being generated then a portion of the 

community’s work would be overlooked and become lost. This new need was filled by biological 

databases of genes/proteins. Biological databases are extensive databases where each entry corre­

sponds to a gene/protein. Entries are annotated with many different facts about the matching protein, 

collected by researchers. Each protein entry may also be linked to the journal abstracts that describe 

the research pertaining to that protein. This level o f organization makes it easier for a biologist to 

find related research. They can query the databases with keywords, and search for proteins that have 

a similar amino acid sequence to the protein they study in their labs.

Databases of DNA also exist, but these databases tend to contain information pertinent to a 

stretch of DNA before it becomes a gene, such as intron and exon splice sites. I have chosen, 

in this study, to use protein databases because the annotations found in protein databases are more 

closely related to phenotype and thus are often of greater interest to biologists. In addition, Proteome 

Analyst [43], the test bed for this study, uses a biological database of proteins called Swiss-Prot.

1.2.1 Swiss-Prot

Swiss-Prot [42] is a highly curated database of proteins. Curation means that a human annotates 

each entry of the database by hand. DNA data is deposited into EMBL’s (European Molecular 

Biology Laboratory) sequence repository by large-scale DNA sequencing projects. From there, it 

is translated into amino acid sequences (proteins) and placed in Trembl (discussed in Section 1.2.2) 

while it awaits thorough review and annotation by Swiss-Prot’s team of annotators. Because of this,
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the amounts of quality annotations are higher in Swiss-Prot than in any other biological database. 

However, also due to Swiss-Prot’s annotation requirements, Swiss-Prot’s growth lags behind that 

of computer annotated databases. Version 50.3 of the Swiss-Prot database (July 11, 2006) contains 

228,670 protein sequences from almost 10,000 different species. Swiss-Prot staff work to annotate 

these entries with fields such as “function”, “subcellular localization”, “tissue specificity” (if the 

protein is expressed only or to a greater extent in a particular organ or tissue type) and “interaction” 

(other proteins this protein interacts with, and the nature of that interaction).

1.2.2 TrembI

Trembl is a middle ground between DNA sequencing projects and protein annotation. It is “a 

computer-annotated supplement of Swiss-Prot that contains all the translations of EMBL nucleotide 

sequence entries not yet integrated in Swiss-Prot” [42], Thus, Trembl is much larger than Swiss-Prot, 

containing over 3,000,000 protein sequences (version 33.3, July 11, 2006), and has grown by about

600.000 sequences since January 2006. To contrast, 4% of the entries have subcellular localization 

information compared to 54% in Swiss-Prot. Although there are a huge number of Gene Ontology 

annotations (1.8 million entries annotated) in Trembl, very few of them (0.008%) have high quality 

evidence codes like TAS (traceable author statement) or IDA (inferred from direct assay). Over 30% 

of the proteins in Swiss-Prot have GO annotations, and over 50% of those GO annotations have high 

quality evidence codes.

1.3 Controlled Vocabularies

Biologists have another hurdle to conquer in the quest to organize their research. The language biol­

ogists use to describe their work is very technical and displays a high level of synonymy. Synonymy 

(having many synonyms) means that several biologists may report their findings in journal articles, 

each using different terms to describe the same concept. A researcher reading these articles may 

not even realize that the research is related, and that they are discussing the same phenomenon. A 

controlled vocabulary is needed to help biologists deal with the detailed and technical language they 

use to describe complex biological phenomena.

1.3.1 The Gene Ontology

Recognizing the problem of synonymy, a group of biologists joined to form the Gene Ontology 

Consortium. The Consortium was tasked with building a term hierarchy called the Gene Ontology 

(GO). The GO is a directed acyclic graph (DAG) that expresses the relationships between terms 

(nodes or vertexes of a graph) with connections (edges of the graph) that represent parent/child rela­

tionships (see Figure 1.5). Each arrow points to the more specific term. For example, in Figure 1.5, 

homeostasis is a child of physiological process, which means that homeostasis “is a” physiological 

process. The GO also encodes synonyms in its structure, shown with grey rectangles in Figure 1.5 -

9
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Figure 1.5: A sub-graph of the GO biological process hierarchy. GO nodes are shown as ovals, 
synonyms appear as grey rectangles.

the term “osmoregulation” has the synonym “regulation of osmotic pressure” ; if two biologists each 

use one of these two terms to describe the same phenomenon, another biologist can use the GO to 

determine that they are actually discussing the same concept.

1.3.2 Other Ontologies

Aside from the GO, there are other biological ontologies. MeSH (Medical Subject Headings) is a 

hierarchy of medical terms that are often used as keywords for abstracts in PubMed. The enzyme 

class system is a hierarchical organization of enzymes. These ontologies could be substituted for, 

or used in conjunction with, the GO hierarchy for this study. For simplicity, and to determine the 

usefulness of the GO hierarchy independent of other ontologies, for this study only the GO hierarchy 

was used.

Biologists realize the power encoded in a controlled vocabulary, and have begun to annotate 

proteins in the Swiss-Prot database with GO terms. As well, the European Bioinformatics Institute 

maintains a mapping of GO terms to Swiss-Prot and Trembl proteins. While biological databases 

bring a huge amount of knowledge into one repository, controlled vocabularies, like the GO, provide 

the language necessary to effectively search through and interpret data.

1.4 The Annotation Bottleneck

Although annotations are extremely useful to biologists, not every protein in Swiss-Prot is anno­

tated with every field. As stated previously, only 54% of proteins in Swiss-Prot version 50.3 have 

subcellular localization information and only 50% have GO annotations. However, these rates of 

annotation are slowly improving, which is a great accomplishment if one takes into account Swiss-
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Prot’s rapid growth. Swiss-Prot has added 25,000 sequences since the beginning of 2006, and has 

doubled in size in the last 4 years. Because annotations are so important, and because databases are 

growing at a brisk pace, it is imperative that annotators turn to other methods of curation to increase 

the speed of annotation. Using Machine Learning in conjunction with the annotated records in bio­

logical databases and term hierarchies can improve the accuracy of computer-generated annotations.
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Chapter 2

Introduction to Machine Learning

The advent of computer-assisted or computer-generated annotations is a promising advance in pro­

tein annotation. Swiss-Prot curators have created a huge database of proteins with annotations, and 

the information represented in the repository can be leveraged to create annotations automatically 

for unannotated proteins. This approach is based on the culmination of decades of human annotation 

building on itself. The wealth of knowledge we have gathered and the extent to which we have gone 

to organize the findings is paying off. The annotation pipeline allows human-generated annotations 

to serve as fuel for computer-generated annotation systems.

How can computers be used to generate annotations? This question is being explored by an area 

of computing science known as machine learning. Machine learning has garnered a lot of attention 

in recent years as it seeks to exploit the mathematical patterns in large amounts of data that are too 

complicated for humans to analyze. While the name sounds fantastic and worthy of a screenplay or 

tw o1 there is no magic; machine learning has a sound basis in statistics and mathematics. This is 

unfortunate for those of us who want computers to do our homework, but comforting for those who 

have nightmares about robots taking over the world.

2.1 Machine Learning

Machine learning starts with a set of data that is understood to be generated by some underlying 

process [1], Then, through a variety of statistical methods, machine learning builds a model that 

represents the process that generated the data. Machine learning techniques can be divided into 

two groups: supervised and unsupervised. Supervised learning is a situation in which we are given 

a set of data points, characteristics of those data points (features) and the category or class label 

corresponding to each point. Formally, each training instance is a pair:

X  =  x , r

1 Not to mention its ability to impress new acquaintances at dinner parties.
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where /  is the vector of features of a training point, and r  is the class label of the training point. 

Supervised Machine learning is the process of parametrizing a function f ( x )  such that:

r  =  / ( f )

In a classic example of supervised learning [34] we are given the weather conditions ( ?) on a few 

days of the month and told whether or not Joe played tennis on those days (r). Using this data, a 

machine learner devises a function, / ( f ) ,  that predicts whether Joe will play tennis on a new day, 

given the weather conditions. The function determined by a machine learning algorithm is called 

a classifier. The study presented in this dissertation relies on supervised learning, but unsupervised 

learning techniques could be used as preprocessing steps to this system.

Unsupervised learning is used when the categories (r) of the data are unknown, and sometimes 

even the number of categories is unknown. Only data points are supplied. An example of a domain 

that generates unsupervised training data is consumer spending records. Consumer spending data 

contains data points that represent customer transactions at a store and the items purchased. Un­

supervised learning will identify groups of transactions that are similar. Then experts can evaluate 

the groups and extract the commonalities that characterize the groups. For example, perhaps we 

learn from a cluster of similar transactions that people who buy apple juice often also buy diapers. 

This new knowledge can be used to refine product placement within stores, and store owners might 

choose to place a small apple juice display by the diapers. The store owners suspect that this will in­

crease the chance that a customer who has just stopped into the store to buy diapers will also decide 

to buy apple juice. With the advent of the store-specific points card, chains are now able to cluster 

not only transactions, but also people and all of their transactions over time. This can be viewed as 

an innovation that has made shopping easier, or a way to part you and your money. In any case, it is 

an example of unsupervised learning.

2.1.1 Evaluation

How can we tell if our machine learning algorithm has correctly modeled the process that generated 

our training set? For example, if we generate a set of rules that tell us whether Joe will play tennis 

on a given day, how can we tell if  the rules are right? We could apply our rules to today’s weather 

conditions, then call Joe and ask him if he is planning on swinging his racket. But then, what should 

we do if the prediction we make is wrong? How many wrong predictions are acceptable? At what 

point should we rethink our rules? If we develop two sets of rules that model Joe’s tennis playing 

habits, how can we compare them? These questions all require a standardized and fair method for 

testing classifiers and measuring their performance.

Cross-Validation

Consider a training set with two class labels, 30 positive and 70 negative training instances. If we 

train a classifier on all 100 training instances, and then test it on the same 100 training instances we
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would expect the classifier to perform very well. This is comparable to giving students an algebra 

test with answers ahead of time and allowing them to memorize it before taking a test comprised 

of the same questions, though possibly in a different order. No learning is required here, simple 

recall will yield a perfect score. Schools teach (and test) their pupils by covering example problems 

that display mathematical concepts. They test using new questions that are similar to. but not the 

same as the questions used to teach. To succeed, students must learn and extract concepts, instead of 

methodically memorizing equations and answers2. We would like to train and test a machine-learned 

classifier in a similar way.

Let us return to our 100 instance training set. If we follow the student analogy we would like 

to set aside a portion of the training set to use for testing, say 10% or 10 instances. We want to 

construct a training and testing set from the original set of instances. We would like the sets to 

be randomly selected, but pure randomness causes problems. If we split the groups randomly it 

is possible that our training set will contain only negative training instances. In that situation the 

trained classifier that we test will have seen 30 positive training instances, and 60 negative. When 

we test that classifier we will see how well it does on the negative training instances, but not on the 

positive instances. It is important to make the split in our training set random, but also stratified. 

The partitions of the training set should contain equal positive and negative proportions.

Once the training data is split into several equal and stratified partitions we withhold one par­

tition to test the data, and use the other partitions to train a classifier. After a round of testing, the 

computer’s memory can be cleared and the process repeated, withholding a different partition and 

using the other partitions to train. In “fc-fold cross validation”, this process repeated k  times, us­

ing a different partition to test each time, where k  is the number of partitions [1], Cross-validation 

accurately estimates prediction statistics of a classifier, since each instance is used as a test case at 

some point during validation. An extreme case of fc-fold cross-validation, where k  is the same as 

the number of examples in the whole training set, is called leave-one-out.

Performance Measures

When evaluating a machine learning algorithm four measurements are often taken: true positives 

(tp),  true negatives (tn),  false positives (fp) ,  and false negatives ( /n ) . The first word in the name of 

the measurement is the validity of a classifier’s call on the instance, and the second word is the class 

the classifier chooses for a particular training instance. For example a false positive is an instance 

for which the classifier made an incorrect (i.e. false) classification of an instance by predicting that a 

training instance belongs to a positive class when it was actually a negative training instance. These 

measurements are often displayed in a confusion matrix (Table 2.1) where the rows are the actual 

classes of the instances, and the columns are the predicted classes of the instances. A false positive 

will show up in the lower left hand square because it is predicted to be positive by the classifier, but

2Thank-you to Russell Greiner for this example.
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Predicted
positive negative

Actual
positive tp fn
negative fp tn

Table 2.1: The layout of a confusion matrix, which helps to visualize a classifier’s performance. 
Rows are the actual class labels of the instances and columns are the predicted class labels of the 
instances.

Predicted
positive negative

Actual
positive 120 80
negative 13 287

Table 2.2: An example confusion matrix. Recall is 0.60, precision is 0.90 and f-measure is 0.72

is actually negative. A good classifier will have high numbers along the diagonal of the matrix, and 

low numbers elsewhere.

We can combine these measurements to form precision:

=  tp 
P tp + f p

which measures the performance of a classifier’s positive predictions, and recall:

tp
r  =  ---------------- 7 ~t p +  f n

which measures how many positive instances a classifier correctly labels as positive. For example 

the confusion matrix in Table 2.2 represents a classifier which has high precision (0.90) but low 

recall (0.60). Higher precision and recall results in a more reliable classifier. However, it is difficult 

to increase one of the two measures without decreasing the other. A classifier that has low recall 

can be changed to allow more positive predictions, as shown in Table 2.3. However, allowing for 

more positive predictions will almost certainly hurt precision, since it is likely that some of the 

new positive predictions our classifier makes will turn out to be false positives. Thus, F-measure, 

the harmonic mean of precision and recall, is often used when measuring the performance of a 

classifier. F-measure is defined as:
2 * p  * r  

p +  r

Predicted
positive negative

Actual
positive 180 20
negative 120 180

Table 2.3: A second confusion matrix using the same training set as Table 2.2 but for a classifier that 
allows more positive predictions. Recall is 0.90, precision is 0.60 thus f-measure is still 0.72
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F-measure is one way of balancing precision and recall to achieve the most powerful classifier, when 

precision and recall are deemed to be of equal importance. The confusion matrices in Table 2.2 and 

Table 2.3 both have the same f-measure (0 72). During the folds of cross validation we record tp, 

tn , f p , and f n .  We can then combine the results from all folds to calculate overall precision, recall 

and F-measure.

2.1.2 Machine Learning Algorithms

The majority of machine learning for automatic annotation is done through supervised learning, be­

cause it can take advantage of the huge amount of labeled data created by annotators. The class label 

predicted by a machine learning algorithm can then be used as the protein’s annotation. Though there 

are many machine learning algorithms. I will cover only a few of the most prevalent in automatic 

annotation of protein sequences.

Linear Discriminants and Support Vector Machines

Consider again the classic supervised machine learning problem where the goal is to predict if Joe 

will play tennis on a given day based on the weather. Assume that we consider only two features, 

air temperature and wind speed, when making this prediction. We could plot each of our data points 

in 2-dimensional space, where the x-axis is temperature, the y-axis is wind speed, circles represent 

days Joe did play tennis and squares represent days Joe did not (see Figure 2.1). If we can draw a 

straight line that separates the two classes of data points into two areas of the graph the example data 

is linearly separable. Figure 2.1 is an example of data that is linearly separable.

As with all linear functions (of 2 variables) we can represent the function in the form:

f ( x , y )  =  w^x  + w 2y  + b

and the line that satisfies the equation:

f ( x , y )  =  0

Then, given a new day we can enter the temperature (as x) and wind speed (as y) into the function. 

If f ( x , y )  <  0, we predict Joe will play tennis as the point lies above the line and conversely, if 

f ( x ,  y) >  0, we predict Joe will not play tennis because the point lies below the line. The line that 

we draw is called a linear discriminant.

When data is not linearly separable it is not possible to draw a line that perfectly divides the 

space, but we may wish to find the equation of a line that best separates the data points. A Support 

Vector Machine [45,1] (SVM) with a linear kernel is a special kind of linear discriminant that draws 

a “soft” line [12], A soft line is one that separates those data points in the training set that are linearly 

separable with a line that is maximally marginal, and minimizes the number of points that are not 

linearly separable. A maximally marginal separator divides the space so that the distance between 

the separator and the closest separable points in each class is maximized. This allows for a linear
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TJ

Temperature (°C)

Figure 2.1: The classic supervised learning example of playing tennis, graphed in two dimensional 
space, the x-axis is temperature and the y-axis is wind speed. Circles indicate times Joe did play 
tennis and squares represent the times Joe did not play tennis. The dashed line represents the equa­
tion f ( x ,  y)  =  0 where x  is temperature and y  is wind speed. The function f ( x ,  y)  =  0 can be used 
to predict whether Joe will play tennis on a given day.

discriminant to be drawn even if the training data is noisy. As will be discussed in Section 3.1.1, 

SVMs are particularly suited to training data created from text, thus I use SVMs in this study.

An S VM learns a weight corresponding to each of the features for the data points in a training set, 

and an offset. For instance, in the playing tennis example the learned parameters are incorporated 

into a formula that describes the separation of the classes:

w  ■ x  +  wo >  +1 for play .tennis 
w ■ x  +  Wq < +1 for not_play_tennis

where w  is the vector of weights that is the same dimension as the feature vector x,  and wq is the 

offset of the line. This line (or plane or hyperplane in higher dimensions) is “optimally separating” 

meaning that the distance between the separable training instances and the hyperplane is made as 

large as possible, which typically reduces error on unseen training instances.

Although I have discussed only linear discriminants in this section, SYMs can be trained with 

different kernels, meaning that they are altered to find separating hyperplanes of higher degrees. 

M ost SVM packages have support for polynomial kernels of variable degrees, radial basis functions 

and sigmoid functions. These functions perform better on data that is not linearly separable, meaning 

that a flat hyperplane cannot separate the classes. However, the flexibility of these kernels means 

that they are prone to over-fitting data, as they move and adjust to fit what would be considered
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Figure 2.2: A diagram representing the transition of dice states at the “Occasionally Dishonest 
Casino”. There are two dice states: Fair and Loaded, and two dummy states: Start and End which 
represent the beginning and end of a dice game. Each round of dice rolling starts in the Start state, 
and ends in the End state. Dice can be either Fair or Loaded, and can be switched at any time during 
a round. The probability of moving between the states is shown with labeled arrows.

outliers by less flexible functions.

Hidden Markov Models

The basis of a hidden Markov model is a Markov process [1]. A Markov processes exists in one of 

a set of n  distinct states S i ,  S2, ■ ■ ■ S n at any time, and it travels through the states as time passes3. 

Let the current state of the process at time t  =  1 ,2 , . . .  be defined as qt . Then we have qt = Si 

for some i. A Markov process moves to a new state at each time point with a probability dependent 

entirely on the process’ history of states:

P{Qt+ 1 =  S j)  = P (q t + 1 =  Sj\qt = S i : qt - 1 =  S h : . . . )

A first order Markov process is one where the probability of moving to a state at time t  depends 

only on the state of the process at qt~ 1, i.e. the process has a memory of one state. This can be 

represented as:

P f a t + i  = S j )  = P(qt+1 =  Sjlqt = Si)

This means that the state at time qt+i is independent of all states at times qt- i ,  i >  1. In a second 

order Markov process the state at time qt+i depends on the last two states qt and q t- i-  Generally, 

an nth order Markov process conditions on the states at times qt , q t - i ,  ■ ■ ■, q t-n+ 1-

3Time is used in this example, but any dimension can take its place. As we will see, a Markov process can also model the 
amino acids in a protein, in which case the process will pass through the states as we progress along the protein strand. In the 
protein example, time is replaced by the location on the string o f amino acids 1 , 2 , . . .
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Probability
N um ber Rolled F air Loaded
1 0.167 0.90
2 0.167 0.02
3 0.167 0.02
4 0.167 0.02
5 0.167 0.02
6 0.167 0.02

Table 2.4: Probability of a particular number being rolled at the “Occasionally Dishonest Casino”, 
given the state of the dice. All numbers are equally likely if the fair dice are being used, but rolling 
a one is most likely if the loaded dice are used.

A hidden Markov model (HMM) is a Markov process where the current state is unknown, but in 

each state the process emits observable signals with certain probabilities. An example of a hidden 

Markov model is the “Occasionally Dishonest Casino” [14]. At the Occasionally Dishonest Casino 

people can play games with dice, and the dice have two states: fair and loaded (see Figure 2.2). The 

casino can choose to switch the dice at any moment. The probability of the Casino switching the 

dice is called the transition probability. The probability that a certain number {1..6} is rolled at any 

time is called the emission probability. Example emission probabilities are given in Table 2.4. If 

the casino is using the fair dice, each of the six numbers on the dice appear with equal probability 

(j.). But, when the casino is using the loaded dice, certain numbers show up more often than others, 

meaning that the emission probabilities of some numbers are higher than those of other numbers. 

Since the two sets of dice appear identical we cannot tell which state (loaded , fa i r )  the dice are in, 

thus the state is hidden. We can use the frequency of the numbers rolled (the emissions of the states) 

to predict the hidden state of the dice. For example, let us say we are at the Occasionally Dishonest 

Casino and we roll the following series of numbers:

1 , 2 , 3 , 4 , 5 , 6 , 1 , 1 , 1 , 1 , 1 , 1, 1

Using the transition probabilities in Figure 2.2 and the emission probabilities in Table 2.4 we can use 

a dynamic programming algorithm called the Viterbi algorithm [46] to calculate the most probable 

sequence of hidden dice states, given the observed numbers. The most probable state sequence is:

L, F, F, F, F, F, L, L, L, L, L , L, L

where L  represents a number produced by a loaded die, and F  represents a fair die roll. The proba­

bility of this path is 0.255, calculated by multiplying the transition probabilities and emission prob­

abilities for the number sequence4.

But what if we are visitors at the Occasionally Dishonest Casino, and do not know the emission 

and transition probabilities? If we observe many thousands of rolls of the dice, we can use the Baum- 

Welch algorithm [7] to estimate these probabilities. Thus, if we watched the dice long enough at the

JThank you to Dekang Lin for his Viterbi implementation, used here.
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Occasionally Dishonest Casino, we could learn the model that governs the switching of the loaded 

and fair dice. Using that model we could then predict when the dice have been changed by watching 

the numbers that are rolled5.

2.2 Machine Learning in Bioinformatics

2.2.1 Sequence-Based Prediction

Sequence-based methods of prediction use only the amino acid sequence of a protein when making 

predictions. All sequence-based methods build models of the types of amino acids and patterns of 

amino acids that are found in proteins with particular properties, but their methods for creating and 

representing these models differ. Because these algorithms use no outside information, they are the 

simplest methods for predicting protein properties.

Sequence Similarity

One of the simplest (though not the most accurate [31]) ways to annotate a new protein is to find 

the annotated protein with the most similar amino acid sequence and transfer its annotation to the 

new protein. But how do we determine if two proteins are similar? Say we have two proteins of 

lengths n i  and ri2 ; we could lay them side by side and compare them, amino acid by amino acid, and 

assign a “percent identity” score based on the total number of matches. This would take O (n i)  time 

where n j is the length of the shorter sequence. But what if the proteins have higher percent identity 

if we begin the protein comparison with the first amino acid of the shorter protein and the second 

amino acid of the longer protein? A brute force approach to cover all possible full alignments will 

make 0 ( n i ) 0 ( n 2 — n \)  comparisons. In nature, occasionally long sequences of DNA are deleted, 

resulting in deletions of entire stretches of amino acids in proteins, but no loss of function. To 

model this we have to allow for gaps in our alignment, where we skip over a few amino acids in one 

protein and pick up our amino by amino comparison after the gap. Once a gap is introduced, the 

problem really is one of optimally aligning two smaller sequences (created by splitting one protein 

with a gap) simultaneously with a longer sequence. Approaching the task, called pair-wise sequence 

alignment, in this way transforms it into a dynamic programming problem, solvable in 0 ( n i n 2) 

time.

It is important to note that the effects of amino acid substitutions are less severe to the func­

tion of a protein if the substituted amino acid has similar properties. For example, isoleucine is 

often substituted by valine in proteins without a change in the protein’s function. This substitu­

tion without phenotypic change is possible because isoleucine and valine share many of the same 

physical properties (hydrophobic and non-polar) and thus cause little change to the proteins overall 

conformation.

5 Unfortunately the Occasionally Dishonest Casino has a strict “no computers” policy.
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Because amino acids naturally substitute each other with differing frequencies, scoring matrices 

built from the observed frequencies of substitutions are often used to score alignments. A scoring 

matrix has a row and a column for each amino acid. Each cell of the matrix represents a score for 

aligning the row amino acid with the column amino acid in a sequence alignment, based on the 

similarity of those amino acids The matrices have the highest scores for identical amino acids, and 

decreasing scores as the properties of pairs of amino acids diverge. A commonly used matrix is the 

BLOSUM (Blocks Substitution Matrix).

A BLOSUM matrix is derived by clustering sequences that have a certain level of identity and 

observing the amino substitution rate in each cluster. For example, the BLOSUM62 matrix is created 

using the amino acid substitution frequency of protein cluster with 62% identity.

A number representing the frequency of substitution of the row and column amino acids fill the 

cells of the matrix. For example, in the BLOSUM62 matrix isoleucine and valine have a substi­

tution score of 3, almost as high as isoleucine aligned with itself (score of 4). In comparison the 

BLOSUM62 matrix assigns isoleucine and glycine a substitution score of -4 because the polar and 

hydrophilic molecule of glycine is unlike the non-polar hydrophilic isoleucine.

While dynamic programming allows us to more efficiently perform pair-wise sequence align­

ment, trying to find the most similar protein in all of Swiss-Prot using pair-wise sequence alignment 

takes an unreasonable amount of time. BLAST (Basic Local Alignment Search Tool) was born 

out of the need for faster sequence alignment, at the expense of sensitivity [2]. BLAST begins its 

alignment by finding “seeds” or short sequences of amino acids that appear in both the database, 

and the query protein. This is done quickly using a look up table of short sequences that is created 

beforehand. These short seeds are then lengthened by checking if the amino acids on either side 

o f the seed match. If a sequence matches many of the seeds in a sequence from the database a full 

gaped alignment is performed. Experiments have shown that a full alignment of proteins using a 

dynamic programming method takes 36 times longer than a heuristic BLAST search [3].

Blast uses e-value as a scoring metric for the alignment of sequences. Intuitively, an e-value 

represents the probability that a protein would generate the given alignment to a protein in the 

database by random chance. More formally, e-value is defined as:

E  = m n 2 ~ s

where n  is the size (in amino acids) of the database, m  is the length of the query sequence and S',  

the bit score, is defined as:
a, \ S - \ n K  

In 2

where S is the score of the alignment, calculated using a scoring matrix, and A and K  are statistical 

parameters tuned by the creators of BLAST.

Sequence alignment can also be performed on many sequences at the same time to form a mul­

tiple sequence alignment. In a multiple alignment, sequences are pairwise aligned, often using an

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CLUSTAL W (1.83) multiple sequence alignment

Trout ---------- VEWTDAEKSTISAVWGKVN— IDEIGPLALARVLIVYPWTQRYFGSFGNV 48
Rockcod ---------- VEWTDKERSIISDIFSHMD— YDDIGPKALSRCLIVYPWTQRHFSGFGNL 48
Human --------- MVHLTPEEKSAVTALWGKVN— VDEVGGEALGRLLWYPWTQRFFESFGDL 49
Human-sickle ---------- VHLTPVEKSAVTALWGKVN— VDEVGGEALGRLLWYPWTQRFFESFGDL 48
Gorilla --------- MVHLTPEEKSAVTALWGKVN— VDEVGGEALGRLLWYPWTQRFFESFGDL 49
Spider-Monkey ---------- VHLTGEEKAAVTALWGKVN— VDEVGGEALGRLLWYPWTQRFFESFGDL 48
Horse ---------- VQLSGEEKAAVLALWDKVN— EEEVGGEALGRLLWYPWTQRFFDSFGDL 48
Pig ---------- VHLSAEEKEAVLGLWGKVN— VDEVGGEALGRLLWYPWTQRFFESFGDL 48
Cow ----------- MLTAEEKAAVTAFWGKVK— VDEVGGEALGRLLWYPWTQRFFESFGDL 47
Deer ----------- MLTAEEKAAVTGFWGKVD— VDWGAQALGRLLWYPWTQRFFQHFGNL 47
Gull ---------- VHWSAEEKQLITGLWGKVN— VADCGAEALARLLIVYPWTQRFFASFGNL 48
Lamprey — PIVDTGSVAPLSAAEKTKIRSAWAPVYSTYETSGVDILVKFFTSTPAAQEFFPKFKGL 58
Sea-Cucumber XGGTLAIQAQGDLTLAQKKIVRKTWHQLMRNKTSFVTDVFIRIFAYDPSAQNKFPQMAGM 60

! ! I I I I I I !  * ! * • *  I . I

Trout STPAAIMGNPKVAAHGKWCGALDKAVKNMGN--- ILATYKSLSETHANKLFVDPDNFRV 105
Rockcod YNAEAIIGNANVAAHGIKVLHGLDRGVKNMDN----IAATYADLSTLHSEKLHVDPDNFKL 105
Human STPDAVMGNPKVKAHGKKVLGAFSDGLAHLDN--- LKGTFATLSELHCDKLHVDPENFRL 106
Human-sickle STPDAVMGNPKVKAHGKKVLGAFSDGLAHLDN--- LKGTFATLSELHCDKLHVDPENFRL 105
Gorilla STPDAVMGNPKVKAHGKKVLGAFSDGLAHLDN--- LKGTFATLSELHCDKLHVDPENFRL 106
Spider-Monkey STPDAVMSNPKVKAHGKKVLGAFSDGLAHLDN--- LKGTFAQLSELHCDKLHVDPENFRL 105
Horse SNPGAVMGNPKVKAHGKKVLHSFGEGVHHLDN--- LKGTFAALSELHCDKLHVDPENFRL 105
Pig SNADAVMGNPKVKAHGKKVLQSFSDGLKHLDN--- LKGTFAKLSELHCDQLHVDPENFRL 105
COW STADAVMNNPKVKAHGKKVLDSFSNGMKHLDD--- LKGTFAALSELHCDKLHVDPENFRL 104
Deer SSAGAVMNNPKVKAHGKRVLDAFTQGLKHLDD--- LKGAFAQLSGLHCNKLHVNPQNFRL 104
Gull SSPTAINGNPMVRAHGKKVLTSFGEAVKNLDN----IKNTFAQLSELHCDKLHVDPENFRL 105
Lamprey TTADELKKSADVRWHAERIINAVDDAVASMDDTEKMSMKLRNLSGKHAKSFQVDPEYFKV 118
Sea-Cucumber S-ASQLRSSRQMQAHAIRVSSIMSEYVEELDS— DILPELLATLARTHDLNKVGADHYNL 117

• ! ■ ! * • !  • ! • • •  I • * . » ! ! . !

Trout LADVLTIVIAAKFGASFTPEIQATWQKFMKVWAAMGSRYF 146
Rockcod LSDCITIVLAAKMGHAFTAETQGAFQKFLAVWSALGKQYH 146
Human LGNVLVCVLAHHFGKEFTPPVQAAYQKWAGVANALAHKYH 147
Human-sickle LGNVLVCVLAHHFGKEFTPFVQAAYQKWAGVANALAHKYH 146
Gorilla LGNVLVCVLAHHFGKEFTPPVQAAYQKWAGVANALAHKYH 147
Spider-Monkey LGNVLVCVLAHHFGKEFTPQLQAAYQKWAGVANALAHKYH 146
Horse LGNVLVWLARHFGKDFTPELQASYQKWAGVANALAHKYH 146
Pig LGNVIVWLARRLGHDFNPDVQAAFQKWAGVANALAHKYH 146
Cow LGNVLVWLARNFGKEFTPVLQADFQKWAGVANALAHRYH 145
Deer LGNVLALWARNFGGQFTPNVQALFQKWAGVANALAHKYH 145
Gull LGDILIIVLAAHFAKDFTPDSQAAWQKLVRWAHALARKYH 146
Lamprey LAAVIADTVAAG---------DAGFEKLMSMICILLRSAY- 149
Sea-Cucumber FAKVLMEALQAELGSDFNEKTRDAWAKAFSWQAVLLVKHG 158

•  • • • I  ! * • ! ! !

Figure 2.3: A multiple sequence alignment of the beta chain hemoglobin molecule of several organ­
isms (example courtesy of Dr. Rick Hershberger, The Bioactive Site) as performed by clustalW [20]. 
The last row of each block of the alignment is annotated with for complete consensus, for 
highly conserved amino acids, and for semi-conserved positions. A within a protein sequence 
signifies a gap in the alignment.
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Figure 2.4: A phylogenetic tree representing the alignment in Figure 2.3.

approximate alignment for speed. A multiple alignment is built by progressively aligning the pro­

teins, beginning with those deemed most similar by the pairwise alignment. The final result is an 

alignment of all the proteins. ClustalW [20] is one program that can be used to perform multiple 

alignments. Figure 2.3 shows the output of a ClustalW alignment of hemoglobin beta chain proteins 

from several organisms (example courtesy of Dr. Rick Hershberger, The Bioactive Site). The last 

row of each block of the alignment is annotated with “*” for complete consensus, for highly 

conserved amino acids, and for semi-conserved positions. A within the protein sequence 

signifies a gap in the alignment.

Alignments of multiple proteins that perform the same function will elucidate the regions that are 

conserved by selective pressure, and likely encode the function of a protein. Because they encode 

selective pressure, and because time brings increased mutations, the results of multiple sequence 

alignments can be used to make phylogenetic trees. A phylogenetic tree is a tree that encodes the 

evolution of species. The path in a phylogenetic tree will be shorter between species that are closer 

evolutionarily than those that are less similar. A phylogenetic tree constructed from a multiple 

sequence alignment assumes that those organisms with the most similar copies of a protein are also 

the closest evolutionarily, and thus should be closest on the tree. An example of such a tree, as 

created by ClustalW using beta hemoglobin proteins, is shown in Figure 2.4.

PROSITE

Sites of proteins that perform similar functions, such as catalyzing similar reactions or binding sim­

ilar molecules, often share stretches of amino acids that are identical or very similar. PROSITE [38] 

is a collection of motifs that fall into two categories: patterns and profiles. Patterns are usually 

10-20 amino acids in length and are well conserved in order to maintain the function that stretch of 

the protein serves. To create a pattern, segments of proteins known to perform a particular function 

are aligned and a pattern is constructed from the aligned amino acids. For example, the cytosol
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aminopeptidase signature (PS00631) is encoded as

[ N S \ - T - D - A - E - G -  U LV]

which uses the one-letter amino acid abbreviations to encode the amino acids of the pattern. A 

protein matching the example pattern can begin with an asparagine (N) or a serine (S) followed by 

threonine (T) - aspartic acid (D) - alanine (A) - glutamic acid (Li) - glycine (G) - arginine (R) and 

ending with a leucine (L) or a valine (V). This pattern was created by aligning all known cytosol 

ami nopeptidases, enzymes that break down old proteins in the cell so that new proteins can be made 

from their amino acids. This octapeptide is perfectly conserved across all of the known cytosol 

aminopeptidases.

PROSITE profiles [38] were developed to address the major flaw of PROSITE patterns: that 

patterns do not allow for mismatches. Profiles allow for mismatches in a pattern alignment. A 

profile is similar to a pattern in that it represents a sequence of amino acids, but each amino acid 

match position is followed by an optional insert position. Each match position has a deletion penalty 

and an associated weight for every possible amino acid associated with that position. These weights 

and penalties allow a score to be assigned to the sub-sequence of a protein that matches a profile. 

High-scoring matches to a profile indicate a good match to the underlying pattern, and can identify 

proteins that a pattern alone would have missed.

Pfam

Pfam [6] is a collection of protein families modeled by multiple sequence alignment and HMMs. 

Pfam HMMs predict whether or not a stretch of amino acid sequence does or does not serve the 

function of, or have a property belonging to, a specific protein family. The statistical nature of the 

HMM gives them more flexibility than the regular expressions seen in PROSITE. Pfam creates two 

HMM models for each family. The first is a seed alignment built from a set of proteins that an expert 

identifies as belonging to a family. This seed alignment is used to search Swiss-Prot and Trembl for 

other similar proteins. The group of proteins found using the seed HMM are realigned and checked 

by an expert. If the final alignment passes expert scrutiny it is used to create a final, more general 

HMM. Version 18 of Pfam has 7973 families, organized into clans that represent the evolutionary 

origin of the protein families [16],

TMHMM

TMHMM [40] is an HMM model that predicts transmembrane helices in amino acid sequences. 

Transmembrane helices are parts of proteins that pass through the phospholipid bilayers of cells. 

TMHMM is used to predict which part of the protein passes through the bilayer, and also the topol­

ogy of the protein, i.e. which parts of the protein are on the external side of the membrane, and 

which parts are internal. The hidden states of the HMM and the possible transitions between the 

states were chosen in a way that reflects the biological system that governs transmembrane helices.
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An example of these biological restrictions is that transmembrane regions must have between 5 and 

25 amino acids. TMHMM is so widely accepted as an accurate transmembrane predictor that it was 

used to automatically annotate the transmembrane regions of every entry in the Swiss-Prot database.

MuItiLoc

MultiLoc is a system that combines the output of several SVMs trained on the protein sequences 

themselves to make predictions about the subcellular localization of proteins [23]. There are 4 sub- 

classifiers trained to predict specific properties of the protein:

•  SVMTarget makes a localization prediction based on the amino acids at the N-terminal of the 

protein sequence. These amino acids are often used to target the protein to a particular area of 

the cell and thus are good predictors of localization.

•  SVMaac uses the amino acid composition of the whole protein to predict localization

•  SVMSA was devised to detect signal anchors (SA) that often indicate that a particular protein 

is part of a membrane.

•  Motif Search searches for motifs in the protein sequence. The motif patterns come from the 

PROSITE and NLSdb databases.

MultiLoc uses a super-classifier, and SVM, which combines the output of all of the sub-classifiers 

to make one final prediction. The overall accuracy of the system is about 75%, a big improvement 

over its predecessor, PSORT, which yielded accuracy around 59%.

2.2.2 Homology-Based Prediction

A different approach to protein annotation is to use protein similarity, or homology, to find annotated 

proteins that are similar to an unannotated protein. The amino acid sequence of a protein is the 

basis of its function, thus proteins with very similar sequences are likely to have the same function. 

BLAST is often used to find proteins that share a high level of sequence similarity. This approach 

works well for orthologues: proteins with sequences that are identical or very close to identical, but 

appear in different organisms. However, occasionally two proteins that have very similar amino acid 

sequences have diverged enough that the two serve different functions in the cell. Thus, it is not 

always enough to label a new protein with the annotations of the most similar protein in Swiss-Prot, 

and more intelligent methods have been devised to deal with this issue.

Proteome Analyst

Proteome Analyst (PA) [43] is a web-based tool which uses BLAST and Swiss-Prot together to 

predict a protein’s subcellular localization and molecular function. PA uses BLAST to compare 

a protein to the Swiss-Prot database. PA identifies the top 3 BLAST hits (with a score above a
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predefined threshold) and extracts tokens from their annotations. PA uses these annotations and 

SVM technology to choose the best class label for the query protein. The feature vector x  contains 

the keywords extracted from the 3 closest BLAST hits, and the class label is whether or not a 

protein has a particular function or a particular localization. This is not as simple as transferring the 

annotations of the most similar protein, a process called 1 -nearest-neighbour. 1-nearest-neighbour 

has been shown to produce results poorer than PA’s SVM mixture of annotations when applied to the 

subcellular localization classification task [31], The machine learning SVM step can be viewed as a 

mixing of annotations to create an output annotation, and the nature of that mixing is based on real 

world examples. PA has been used to automatically annotate all known proteins in 47 organisms, 

totaling over 330,000 sequences.

2.2.3 Combinations of Homology and Sequence

Both homology- and sequence-based prediction methods have their flaws. Homology-based models 

work only when there is at least one good annotated match to a new protein. Sequence-based meth­

ods do not always return a correct prediction, even if the protein is very similar to other proteins in a 

family. Some methods use both homology and sequence-based predictions so that the shortcomings 

of one approach are compensated by the other.

PSORTb

PSORTb (version 2.0) is a web-based application that predicts subcellular localization for bacterial 

proteins. PSORTb works by mixing the predictions of several sub-classifiers into one final predic­

tion. The first sub-classifier works using BLAST and a custom database of proteins with known 

subcellular localization. This sub-classifier selects proteins returned by BLAST that have an e-value 

less than 10~10 and length within 20% of the query protein. This first sub-classifier simply returns 

the subcellular localization of the top hit (1-nearest-neighbour), and if the top hit is 100% identi­

cal to a protein in the database, that localization is returned and none of the other sub-classifiers are 

used. The second sub-classifier is an SVM. The feature vector for this SVM contains the presence or 

absence of frequently occurring subsequences in the protein. The classifier returns a yes/no answer 

for each possible localization. PSORTb also uses the output of PROSITE motif finders that have 

been shown to return 0% false positive rate. The remaining classifiers identify stretches of amino 

acids that strongly indicate one of three localizations:

•  A classifier that identifies beta barrels that indicate a protein is likely part of the outer mem­

brane.

•  A classifier that recognizes alpha helices, which are strong indicators that a protein is active 

in the inner membrane.
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•  A  c lassifier  that iden tifies signal peptides, w h ich  strongly  su g g est that a protein is destined  for 

a location  o u tsid e  o f  the ce ll (i.e . to be secreted  by the ce ll) .

T h e  results o f  these  c la ssifiers are com b in ed  to create a score for  each  p o ss ib le  lo ca liza tion . 1’his 

m eth od  is very p recise , but m isse s  a lot o f  proteins that sh ou ld  be lab eled  w ith  certain loca liza tio n s  

(has low  recall).

2.3 Conclusion

The advent of computer-generated annotations for proteins has lessened the load on human annota­

tors, and some bioinformatics tools are trusted enough by the biological community that their an­

notations have been entered into high-quality databases such as Swiss-Prot. Still, a large portion of 

biological databases remains unannotated, and many tools’ annotations are still not accurate enough 

to be accepted by biologists. However, many of the proteins that remain unannotated in Swiss-Prot 

have been the subject of biological research. Swiss-Prot entries contain links to the abstracts of 

journal articles that discuss relevant research. While many computational methods use words con­

tained in the annotations of the Swiss-Prot records, few follow links to journal abstracts and attempt 

to incorporate that knowledge. This represents a huge untapped resource, which could increase the 

coverage of annotations in databases like Swiss-Prot, and could also improve prediction methods 

like PA, which currently only use the information stored directly in Swiss-Prot entries. However, 

the language of biological journal abstracts represents a real challenge. Unlike many annotation 

fields, abstracts are free-form text and so they display a high degree of linguistic variation. Despite 

the difficulties of the task, it is imperative to effectively utilize every piece of information recorded 

about a protein in order to provide the best computer-generated annotations to the biological com­

munity. The following chapter discusses computational techniques that can be used to gather the 

knowledge present in biological journal abstracts to improve automatic annotation of proteins.
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Chapter 3

Introduction: Natural Language 
Processing

Computer-human interfaces have taken many forms since the computer’s inception - from punch 

cards to keyboards to video game controllers and beyond. Interacting with a computer is becom­

ing more intuitive every day. The ultimate in human computer interaction will be the day that we 

communicate with our computers like we would with another human, using natural language.

Natural Language Processing (NLP) is a mixture of linguistics and computing science, especially 

machine learning. Research in NLP enables us to gain a deeper understanding of the way humans 

use language. This deeper understanding can be used to help computers understand language and to 

further areas of theoretical and applied linguistics. This chapter focuses on the former application, 

the way in which a deeper understanding of language improves a computer’s ability to understand 

language.

3.1 Areas of text processing

NLP comes in many different flavours. Some researchers are interested in the structure of sentences 

and the roles of the words in sentences. Some are interested in the similarities in word usage. Some 

study the similarities of languages themselves. I discuss here the two sub-topics of NLP that are 

most readily applied to the task of using the text in journal abstracts to aid in automatic protein 

annotation.

3.1.1 Document classification

Document classification is a supervised learning problem that assigns a set of predefined class labels 

to a text document. A familiar example of this task appears in the context of the average newspaper, 

where text documents (newspaper articles) are divided into sections of the paper (sports, world news, 

financial news). Specifically, my task is to assign a subcellular localization category (e.g. nuclear) to 

a biological journal abstract. In this study, once a document or set of documents has been classified, 

the assigned class label can be used as an annotation for the associated protein.
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In document classification, documents are treated as "bags of words”. This means that the 

document is broken down into words, using a process like white-space tokenization. These words 

are collected together to create the feature vector f  containing words as features, and the counts 

of these words as the feature values. This method does not encode any of the spatial relationships 

of the words, and so some of the semantic content could be lost. For example, a “bag of words” 

does not encode if two words appear next to each other in the text, or if even appear in the same 

sentence. Despite this, the “bag of words” method is very popular and has proven successful for the 

classification of biological literature [41, 22],

To improve text classification systems, some preprocessing steps are often performed on the 

words produced by tokenization. Often, to decrease the feature space (i.e. dimension of x)  and 

to more closely capture the meaning of words, a process called stemming is applied to text docu­

ments. Stemming removes suffixes from words using a set of language-specific rules. The Porter 

Stemmer [33] uses a set of rules that removes suffixes like “ed”, “ing” and “s” from English words. 

For example, the Porter Stemmer will derive the stem connect from any of the words connects, 

connected, connection, connecting. Thus, if an author is using any of a set of words that have the 

same stem, stemming will encode them all as the same concept. Stemming is a process that does 

not take into account properties of the root of the word when stripping the suffix, and considers only 

the standard ways in which English appends suffixes to words. This simplicity allows stemmers to 

handle scientific words that may not appear in standard dictionaries. However, Stemmers are not 

perfect. Some cases, like “flew” the past tense of “fly” will not be reduced to its base form because 

it is an irregular verb, and is unrecognizable to the stemmer.

Once the word boundaries in a sentence have been identified and words have been reduced to 

their stems, word counts are collected. It is at this point that we must answer an interesting and 

important question in document classification: how should text be represented as a feature vector? 

Is the raw count of the words enough, or should they be manipulated in some way to represent 

the word’s distribution within the collection? Leopold and Kindermann performed a very thorough 

survey of this area in which they tested two categories of frequency transformations: raw frequencies 

and logarithmic frequencies [29]. The raw frequency is the count of the times a word appeared in the 

text and the logarithmic frequency is log(l +  raw  frequency) .  Logarithmic frequencies compress 

the range of numbers seen as values in the feature vector. The difference between not seeing a word 

in a document and seeing it once in a document is much more important than the difference between 

seeing a word 200 times in a document and seeing it 201 times in a document [21], A logarithmic 

transformation reflects this change in importance by compressing the range of feature values for 

very high word counts.

Frequency representations are often combined with importance weight measures to represent a 

word’s significance. For example, if a word appears five times in every document, that word is not a 

good indicator of the document’s class label. However, if the word appears five times, but only in a
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few documents, that word may be a better indicator of a document's class label. Importance weight 

measures help to represent the probability that a word can help a classifier distinguish between class 

labels. Two importance weights are explored in [29]: inverse document frequency and redundancy. 

Inverse document frequency (idf) is a weight that puts more importance on a word if it is found 

rarely in the set of all documents. Formally, idf is:

id f  =  log
dfk

where N  is the number of documents in a collection and df*. is the number of documents in the 

collection that contain word w^. Inverse document frequency was first proposed by Salton and 

Buckley (1998) and has been used extensively in various forms for text categorization [27, 41]. If 

a word is seen several times in a protein’s abstract and it is seen many times in the set of all other 

documents, the word’s weight will be smaller. Conversely if the word is seen several times in a 

document and rarely in any other documents, its weight will be larger. In this way, TFIDF down- 

weights common words, and gives more weight to less common words. The drawback of using 

idf is that it takes into account only the ratio of documents that contain a certain word, and not the 

frequency of that word in the documents. Thus Leopold and Kindermann explore an importance 

weight measure called redundancy which represents how much the distribution of a given word 

across the documents in a set deviates from a uniform distribution [29]. Formally, redundancy is

where f ( w k , d i ) is the number of times word k appears in document i, f {w k )  is the number of times 

word k appears in all documents and N  is the number of documents. If a word appears the same 

number of times in all documents the redundancy weight for that word will have a value of zero, thus 

cancelling out the frequency of the word when combined in the feature vector. If a word appears

the word’s distribution among the documents, the lower the redundancy weight. The more skewed 

the word’s distribution, meaning it appears much more frequently in some documents than others, 

the higher the redundancy weight. Redundancy is related to entropy, which is used in information 

theory.

Different types of normalization are explored in Leopold and Kindermann’s study. They use L \  

and L ‘2 normalization, as well as no normalization at all (raw TFIDF and redundancy values). L \  

normalization involves dividing each feature value by the sum of all feature values. L 2 normalization 

involves dividing each feature value by the sum of all feature values, which creates a unit length 

feature vector.

Leopold and Kindermann go on to explore 30 combinations of these text representations. They 

are made by combining each of:

•  raw frequency, with L \  and L 2 normalization

in only one document its redundancy weight will evaluate to log N .  In general, the more uniform
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•  log frequency, with L\  and L 2  normalization

•  raw frequency with redundancy along with with L \  and L 2 normalization

•  log frequency with redundancy along with with L \  and L 2 normalization

•  raw frequency with idf along with L \  and L 2 normalization

with one of three SVM kernels (linear, 2nd order polynomial and Gaussian radial basis function). 

They tested each of these combinations on two newspaper article corpora, one English (Reuters- 

21578) and one German (Frankfurter Rundschau). They noted that while idf and L 2 normalization 

is often used for document classification, it actually performs worse than the combination of redun­

dancy and L 2 normalization. They also observed that L \  normalization tended to work better for 

longer text collections. As a general observation, it did not appear that the SVM kernel had a strong 

effect on the performance of the resulting text classifiers. It should be noted, however, that the id­

iosyncrasies of the language style used in a specific corpus will affect the suitability of a particular 

combination. Often, several combinations should be tested; there is no one optimal combination for 

all corpora.

There is another important question to consider when embarking on a document classification 

task. What machine learning algorithm will perform the best with respect to precision, recall and 

f-measure? Textual data often creates training input with many features (i.e. the dimension of x  is 

large), and the features are sparse (i.e. many of the entries of x  are zero and there are many relevant 

features) [27]. For example, the data created for this dissertation using the PA data set has close 

to 60,000 unique features (words) and each training instance has, on average, 156 positive features. 

That means that most training instances will have feature vectors made up of 99.7% zeros. This 

data profile does not suit every kind of machine learning algorithm, as the running times of many 

algorithms are dependent on the dimensionality of the feature vector. Dumais et al. [13] explored 

the application of several machine learning algorithms to document classification, including SVMs, 

naive Bayes and Bayes nets1. SVMs were found to be the most computationally efficient and to have 

the highest precision/recall break-even point (BEP, the point where precision equals recall). Thus, 

since the algorithm is most suited to the data profile and tends to perform very well, SVMs are used 

extensively in text categorization.

Document classifiers accurately produce subcellular localization annotations, sometimes yield­

ing recall as high as 89% and precision as high as 91% for classes of the MultiLoc data set (men­

tioned in Section 2.2.1 [22]). These classifiers have even better performance when supplied with 

additional information about the actual protein sequence. These same experiments showed im­

provements of as much as 32% for recall and 25% for precision when sequence information, such 

as amino acid motifs, was incorporated. Stapley et al. showed that incorporating the amino acid

1 For an explanation o f  these machine learning algorithms, see [1]
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com p o sitio n  o f  a protein (the percent am ount o f  each  am ino  acid  in the protein seq u en ce) raised the 

F -m easure o f  a text based c lassifier  by as m uch as 5%  [41].

3.1.2 Named Entity Recognition

When people read text, they have no problem identifying the words in a sentence that refer to en­

tities: people, places or things. Even when a sentence refers to a person with an unfamiliar name 

we can still identify that it as a name. We do this by using clues present in the structure of the sen­

tence and the words around the name. Named Entity Recognition (NER) tries to perform this task 

automatically2. In the past, researchers have devised lists of rules that can be applied to sentences to 

extract named entities. Unfortunately these lists are often difficult to maintain and are training-data 

specific, so they often do not perform well on new data. New approaches in NER involve build­

ing statistical models allowing computers to automatically pick out entities in text [8, 32]. Newly 

identified entities can be used in document classification as additional features. Because named en­

tities often span word boundaries, an NER system creates new features for document classifiers that 

would have otherwise been lost due to white space tokenization.

NER is particularly useful for biomedical term identification, including the identification of gene 

names. Lists of gene names, and gene name synonyms have been compiled, but there is a gap 

between the time a gene is named and the time it is incorporated into gene name lists. Thus some 

computer scientists employ HMMs to model the structure of the words that appear in a sentence 

before a named entity. In Bikel et al.’s [8] work using HMMs for NER the hidden classes consisted 

of seven types of entities (person, organization, etc.) and one non-entity state. There are 14 features 

for each word that encode things like whether the word has numeric characters, is all capital letters, 

or begins with a capital letter. Thus the problem becomes one of finding the most probable sequence 

of entity states given the words of a sentence and their characteristics.

A biomedical entity recognition workshop was organized at the Conference on Computational 

Linguistics (COLING) 2004 [28]. The workshop organizers used GENIA 3.02 which is a corpus 

of 2,000 biological journal abstracts annotated for named entity recognition [11], The submitted 

programs’ precision and recall were tested on 440 new, unseen abstracts. The baseline for the 

experiment was a simple method that simply searched in the 440 new abstracts for any named entity 

that also existed in the training set, comparable to looking for a protein name in a list of known 

protein names. The baseline method yielded 52.6% F-measure for correctly identifying the left 

boundary of entities, 47.7% for the right boundary, and 43.6% F-measure for correctly determining 

the exact boundaries (both the left and right boundaries) of a named entity. The best NER method 

for this task was submitted by Zhou and Su [48] and it yeilded 76.0%, 72.6% and 69.4% for left 

boundary, right boundary and exact boundary F-measure respectively.

Zhou and Su’s algorithm for detecting named entities uses HMMs and SVMs. When HMMs

2An NER challenge was held at the Conference on Computational Natural Language Learning held in 2003. For an 
overview of the task, and a variety o f  approaches see [35]
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are employed in practical applications, often there is not enough data to properly estimate all the 

probabilities of a given event, considering the states before it. Zhou and Su use an SVM to fill in 

this missing information. The distance of a training instance to the hyperplane is converted to a 

probability measure using a Sigmoid model. An SVM is trained for every entity class plus the non­

entity class, and the converted probabilities of all SVM predictions are normalized. The normalized 

probabilities are used as input to the HMM when data to estimate the probability is unavailable.

3.2 Conclusion

The techniques discussed in this chapter represent a sampling of the most recent and effective ap­

plications of NLP to the problem of automatic annotation. While the field has made advances in the 

last decade, there is still room for improvement. Scientific language is complex and technical. It 

contains many synonyms and can be difficult for people to understand, let alone computers. In these 

situations it is best to use computers for what they are best at - finding patterns and processing large 

amounts of data. If we combine the pattern finding and data processing capabilities of computers 

with the extensive organization efforts biologists have invested in their research collections, perhaps 

we can build stronger automatic annotation systems.
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Chapter 4

Methods

Biologists have gone to great lengths to organize and categorize not only their research results, but 

also the terminology they use to describe their research. They have amassed a large repository of 

proteins and associated text describing research on these proteins. In addition, biologists created 

the Gene Ontology (GO) that describes scientific language in a sophisticated directed acyclic graph 

(DAG) structure. This chapter outlines experiments whose aim is to test whether the structure of 

the GO can be utilized to extract more information from the huge text resources biologists have 

created. The workflow used to test this hypothesis is outlined in Figure 4.1. Process a in Figure 4.1 

is described in Section 4.2 and Section 4.3 discusses Process b. Two of the data sets shown in 

Figure 4.1 (Data Sets 2 and 3) use the GO hierarchy to improve text classification.

4.1 Gathering Data

The first step in evaluating the usefulness of GO as a knowledge source for enhancing automatic 

subcellular localization annotation is to create a data set. This process begins with collecting a 

group of proteins for which subcellular localization is known (represented by the “Set of Proteins” 

in Figure 4.1). The Proteome Analyst (PA) group has created such data sets and, as mentioned in 

Chapter 2.1, used them to create very accurate subcellular classifiers using the keyword fields of 

Swiss-Prot entries for homologous proteins.

Proteome Analyst creates its data sets by searching for any of a set of phrases in the subcellu­

lar localization annotations of proteins in the Swiss-Prot database. They have built a mapping of 

commonly occurring phrases to localizations. For example the phrase “nucleolar” maps to the lo­

calization “nucleus”. All the phrases that map to the “nucleus” class label for animals are given in 

Table 4.1. Some proteins have more than one localization. For example MOD5 [9] is a gene that 

encodes 3 isozymes that localize to the mitochondrion, cytoplasm and nucleus. PA’s data sets allow 

a protein to have more than one class label. In some cases it may appear that a protein should have 

more than one class label, when in fact it has only one. For example Swiss-Prot version 48 has the 

following subcellular localization annotation for protein with accession number 003376: “subcel-
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Set of 
Proteins

Set of 
Abstracts

Data Set 1 Data Set 2 Data Set 3

Figure 4.1: The workflow used to create data sets used in this paper. Abstracts are gathered for 
proteins with known localizations (process a). Three treatments are applied to abstracts to create 
three Data Sets (process b). The f-measures of SVM classifiers trained using these data sets are 
recorded and compared.

lular location: mitochondrial, possibly in the inner surface of the inner mitochondrial membrane”. 

This annotation will match membrane phrases and mitochondrial phrases. For this reason a special 

class, MP, is used to denote an annotation that indicates the protein is involved in a membrane struc­

ture. If the protein has only the MP mapping, then it is called a plasma membrane protein. However, 

if the protein has an MP mapping and also a mapping to another localization class that involves 

a membrane, it is not mapped to the plasma membrane. The example above will not be mapped 

to the plasma membrane because the mitochondrion has a membrane. When incorporated into the 

training data, protein 003376 will be given only the mitochondrion class label. Thus, proteins can 

only be mapped to the plasma membrane class if they are not mapped to any other localization that 

incorporates a membrane.

In this study, PA’s method of selecting proteins is used on Swiss-Prot (version 48.3) with one 

further constraint: the subcellular localization annotation may not be longer than four words. This 

constraint is introduced to avoid including proteins where the localization category was incorrectly 

extracted from a long sentence describing several aspects of localization. For example, consider the 

subcellular annotation “attached to the plasma membrane by a lipid anchor”. In an animal cell, this 

could mean that the protein’s functional components are either cytoplasmic or extracellular, depend­

ing on which side of the plasma membrane the protein is anchored. PA’s simple parsing scheme 

could mistake this description as meaning that the protein performs its function in the plasma mem­

brane. Enforcing a length constraint reduces the chances of including mislabeled training instances
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Localization Phrase Localization Category
nucleolar nucleus
nucleoli nucleus
nuclear matrix associated nucleus
nucleus nucleus
nuclear nucleus
nuclear membrane nucleus
nuclear inner membrane nucleus
nuclear pore nucleus

Table 4.1: A mapping of phrases to subcellular localizations for the nucleus localization label. The 
“subcellular localization” annotations of Swiss-Prot entries are searched for matches to any of these 
phrases. If a match is found the corresponding localization label is assigned to the protein.

in the final training data.

Subcellular localization categories are organism specific. For example, a bacterial cell does not 

have a nucleus, and an animal cell does not have a periplasmic space. To deal with this difference 

PA created a custom set of localizations for 5 different categories of biological cells: animal, green 

plant, fungi, gram negative bacteria and gram positive bacteria. This allows the classifiers trained on 

each organism to take advantage of the different properties that distinguish between the classes in 

different organisms. This also allows classifiers to make localization predictions that are as specific 

as possible, when specific localizations exist within a cell type. For example, if a protein localizes 

to the chloroplast, which exist only in green plants, we can call it a chloroplast protein using the 

green plant classifier. If we were to use a general subcellular localization classifier for all organisms 

we would have to generalize the chloroplast to the cytoplasmic class label (since the chloroplast is a 

cytoplasmic organelle). While calling a chloroplast protein cytoplasmic is not completely incorrect, 

it is not as correct as the class label chloroplast. For this dissertation, I chose to start with the animal 

data set because it is PA’s largest, and because it has a diverse set of possible localizations.

PA’s data sets have a separate “binary” training file for each class, resulting in a separate binary 

classifier for each class. Each query protein will be used as input for n  separate classifiers, where n  

is the number of possible localizations. This determines whether the protein is or is not a member 

of each of the n  classes. Each training instance appears once in every training file, but its class label 

changes between files. For example, in the nuclear data set a nuclear protein will appear with a 

positive label (“+ 1 ”), and non-nuclear proteins appear with a negative label (“—1”). The resulting 

classifier will return “+ 1 ” if it determines that a query protein is most likely nuclear, and “—1” 

otherwise. The PA training data includes 317 proteins that localize to more than one location. The 

binary schema of this data set allows proteins to appear with a positive label in more than one file. 

For example, a protein that is both cytoplasmic and peroxisomal will appear with the label “+ 1 ” in 

both the peroxisomal and cytoplasmic sets, and with the label “—1” in all other sets. Our data set has 

7652 proteins across 9 classes (Table 4.2). To take advantage of the information in the abstracts of

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Class N um ber of N um ber
Name Proteins of A bstracts
cytoplasm 1664 4078
endoplasmic
reticulum 310 666
extracellular 2704 5655
golgi 41 71
lysosome 129 599
mitochondrion 559 1228
nucleus 2445 5589
peroxisome 108 221
plasma
membrane ° 15 38
Total 7652 17175

"The plasma membrane class is very small, and performed poorly during experimentation.
For this reason it has been removed from the results section.

Table 4.2: Summary of the PA Data Set. Totals are less than the sum of the rows because proteins 
may belong to more than one localization class.

proteins with multiple localizations, I use a one-against-all classification model, rather than a ’’single 

most confident class” approach.

4.2 Abstract Retrieval and Preprocessing

Now that a set of proteins with known localizations has been created, I gather each protein’s abstracts 

and abstract titles (Figure 4.1, process a). I do not include full text because it can be difficult to obtain 

automatically and because previous research has shown that using full text does not improve F- 

measure [39]. Abstracts for each protein are retrieved using the PubMed IDs recorded in the Swiss- 

Prot database. PubMed ( h t t p : /  / www. p u b m e d . go v ) is a database of life science articles. It 

should be noted that more than one protein in Swiss-Prot may point to the same abstract in PubMed. 

Because the performance of the classifiers trained for this study is estimated using cross-validation 

(discussed in Section 4.4) it is important that the same abstract does not appear in both testing and 

training sets during any stage of cross-validation. To address this problem, all abstracts that appear 

more than once in the complete set of abstracts are removed. The distribution of the remaining 

abstracts among the 9 subcellular localization classes is shown in Table 4.2. For simplicity, the fact 

that an abstract may actually be discussing more than one protein is ignored. However, because I 

remove duplicate abstracts, many abstracts that discuss more than one protein tire eliminated.

In Table 4.2 there are more abstracts than proteins because each protein may have more than one 

associated abstract. Because the plasma membrane class has so few proteins its performance is very 

poor (baseline F-measure of 0.000). For this reason I dropped the plasma membrane class from my 

experiments, though the plasma training instances remain as negative training data for the other 8
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classes.

It is likely that not every abstract associated with a protein will discuss subcellular localization 

However, because the Swiss-Prot entries for proteins in this data set all have subcellular annotations, 

some research must have been performed to ascertain localization. Thus it should be reported in at 

least one abstract. If the topics of the other abstracts are truly unrelated to localization, then then 

distribution of words may be the same for all localization classes. However, even if an abstract 

does not discuss localization directly, it may discuss some other property that is correlated with 

localization (e.g. function). In this case, the classifier will find terms that differentiate between the 

localization classes.

4.2.1 Preprocessing Text

In order to present the abstracts in a way that a classifier can understand, text must be broken down 

into individual words. I take a very simplistic approach to tokenization, where word boundaries are 

considered to be any form of white space, and all leading and trailing punctuation marks are stripped 

from the resulting words. In addition, because of the prevalence of hyphenated terms, words are also 

split on internal hyphens. Words are then stemmed using Porter’s stemming algorithm [33] which 

strips the suffixes from words.

4.3 Leveraging the Gene Ontology

Three different data sets are made by processing the retrieved abstracts (Figure 4.1, process b). An 

example illustrating the three processing techniques is shown in Figure 4.3.

4.3.1 Baseline

In Data Set 1, words from all abstracts for a single protein are amalgamated into one “bag of words” 

that becomes the training instance representing the protein. The bag of words is transformed into 

a vector of (word,value) pairs. For this study I use two values for the feature vector: TFIDF and 

redundancy (Section 3.1.1). To review, TFIDF is defined as:

where f ( w i ) is the number of times word Wi appears in documents associated with a protein, n  is 

the total number of training documents and D (w i)  is the number of documents in the whole training 

set that contain the word w^. Redundancy is defined as:

71
T F I D F ( Wi) = f ( Wi) * I D F  =  f ( Wi) * log(— - )D(wi)

redundancy (wi) =  f ( w i )  * r(wi)

where r{u>i) is:
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Im portance W eight 
M easure Table

W ord IDF
w, 0.794
w 2 1.034
w 3 0.908
w„ 2.200
w, 0.693

:

Protein 1, localization: g o lg i 
A bstract text: w , w 2 w 2 w 3 w 3 w .

Protein 2, localization: n u cleu s  
A bstract text: w , w 3 w 5 w 3 w 5 ...

Training Instances

Class w , W; w 3 W. w s ...
g o lg i 0*0.794 3*1.034 2*0.908 1*2.200 0*0.693
n u cleu s 1*0.794 0*1.034 1*0.908 0*2.200 3*0.693

: :

Figure 4.2: An example illustrating the creation of training instances using TFIDF. A table of impor­
tance weight measure values is created by counting the occurrences of words in the whole training 
set and using the counts in the IDF formula. A protein’s abstracts is transformed into a training 
instance (feature vector) by multiplying the frequency of a given word in the abstract by its IDF 
value in the importance weight measure table

We studied the
effect of pl23 on 
the regulation of 
osmotic pressure.

"studi":1, "studi":1,
"effect":1, "effect":1,
"pl23"t1, "pl23":1,
"regul":1, "regul":1,
"osmot":1, "osmot":1,
"pressur":1 "pressur":1, 

"osmoregulation":1

"studi"si,
"effect":1,
"pl23":l,
"regul":1,
"osmot":1,
"pressur"s1,
H osmoregulation":1, 
"GO_homeostasis":1, 
"GO_physiological 

process":1,
"GO biological process”:1

Figure 4.3: A sentence illustrating the three methods of abstract processing. Data Set 1 is the base­
line, Data Set 2 incorporates synonym resolution and Data Set 3 incorporates synonym resolution 
and term generalization. Word counts are shown here for simplicity, though experiments use TFIDF 
and redundancy.

where f{w i ,  dj)  is the number of times word i appears in document j, /(?«,,) is the number of times 

word i appears in all documents and N  is the number of documents.

Figure 4.2 shows how TFIDF is used to create training instances. First a table of IDF values 

is created in which each row corresponds to a word. A protein’s abstracts are transformed into a 

training instance (feature vector) by multiplying the frequency of a given word in the abstract by 

its IDF value in the importance weight measure table. The same process is used to create training 

instance using the redundancy feature value, except that the importance weight measure table would 

contain r{wi)  for each word Wi, instead of IDF.
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biological
p ro c e s s

physiological
p r o c ess

growth

metabolic
process

h o m e o s ta s is m etabolism

th erm o­
regulation

regulation of 
osmotic pressure

o s m o ­
regulation

Figure 4.4: A sub-graph of the GO biological process hierarchy. GO nodes are shown as ovals, 
synonyms appear as grey rectangles. Arrows of the edges point to the more specific terms.

4.3.2 Synonym Resolution

The GO hierarchy can act as a thesaurus for biological both words and phrases. For example the GO 

encodes the fact that “metabolic process” is a synonym for “metabolism”(see Figure 4.4). Data Set 

2 uses GO’s “exact-synonym” field for synonym resolution and adds extra features to the vector of 

words from Data Set 1. I searched stemmed versions of the abstracts for matches to stemmed GO 

node names or synonyms. If a match is found, the GO node name (deemed the canonical represen­

tative for its set of synonyms) is associated with the abstract. In Figure 4.3 the phrase “regulation 

of osmotic pressure” appears in the text. A look-up in the GO hierarchy will indicate that this is 

an exact synonym of the GO node “osmoregulation”. Therefore the term “osmoregulation” will 

be associated with the training instance. This approach combines the weight of several synonyms 

into one representative, allowing the SVM to more accurately model the author’s intent, and iden­

tifies multi-word phrases that are otherwise lost during tokenization. Table 4.3 shows the increase 

in average number of positive features per training instance as a result of our synonym resolution 

technique.

4.3.3 Term Generalization

In order to express the relationships between terms, the GO hierarchy is organized in a directed 

acyclic graph (DAG). For example, “thermoregulation” is a type of “homeostasis”, which is a “phys­

iological process”. This “is a” relationship is expressed as a series of parent-child relationships (see 

Figure 4.4). In Data Set 3, I use the GO for synonym resolution (as in Data Set 2) and I also use 

its hierarchical structure to generalize specific terms into broader concepts. For Data Set 3, if a GO 

node name (or synonym) is found in an abstract, all the names of ancestors of the matched term are
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Class Data 
Set 1

Data 
Set 2

Data 
Set 3

cytoplasm 166 177 203
endoplasmic
reticulum 162 171 192
extracellular 148 155 171
golgi 131 143 172
lysosome 244 255 285
mitochondrion 155 163 186
nucleus 147 158 183
peroxisome 147 156 182

Overall Average 167 176 200

Table 4.3: The average number of features per training instance for 7 subcellular localization cate­
gories in animals. Data Set 1 is the baseline, Data Set 2 incorporates synonym resolution and Data 
Set 3 uses synonym resolution and term generalization.

included in the training instance along with word vectors from Data Set 2 (see Data Set 3 in Fig­

ure 4.3). These additional node names are prefixed with the string “GO_”, which allows the SVM 

to differentiate between the case where a GO node name appears exactly in text and the case where 

a GO node name’s child appeared in the text and the ancestor was added by generalization. Term 

generalization increases the average number of features per training instance (Table 4.3).

Term generalization gives the SVM algorithm the opportunity to learn correlations that exist 

between general terms and subcellular localization even if the general term itself never appears in 

an abstract and only the names of its more specific children occur. Without term generalization 

the SVM has no concept o f the relationship between child and parent terms, nor between sibling 

terms. For some localization categories more general terms may be the most informative and in 

other cases specific terms may be best. Because my technique adds features to training instances 

and never removes any, the SVM can assign lower weights to the generalized terms in cases where 

the localization category is not well characterized by more general terms.

4.4 Evaluation

Each of the classifiers trained with the data sets described in this section are tested using 10-fold 

cross-validation. Each partition of the data is stratified so that it contains an approximately equal 

number of positive and negative training instances. The results of all 10 folds are combined and 

three composite measures of performance are calculated: precision, recall and F-measure.
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Chapter 5

Results

This section covers the results of experiments outlined in Chapter 4. I explore the effects o f using 

the GO hierarchy for synonym resolution and term generalization on PA’s data set (described in 

Section 4.1) and on a data set created by the MultiLoc team [23] and used for text classification 

in their previous work [22]. Using 10-fold cross-validation, I calculated precision, recall and F- 

measure. T-tests (p=0.05) are used to test the statistical significance of the results using each of the 

10 folds as a sample.

5.1 The PA Data Set

The first tests of the usefulness of term generalization and synonym resolution were performed using 

the PA data set. This set of experiments also served to compare two methods of importance weight 

measures outlined in Section 3.1.1: TFIDF and redundancy. I experimented with both un-normalized 

and L 2 normalized TFIDF and redundancy, but found that un-normalized representations obtained 

higher F-measures. Normalized results appear in Table 5.2 and Table 5.4. This section analyses only 

the un-normalized results that appear in Table 5.1 and Table 5.3.

The plasma membrane class, with only 15 training instances, produced very poor baseline clas­

sifiers. The plasma membrane baseline has F-measures of 0.000 for un-normalized redundancy, 

normalized TFIDF and normalized redundancy, and an F-measure of 0.095 for the un-normalized 

TFIDF classifier. Although techniques using the GO did yield improvements of as much as 0.095, 

the resulting classifiers were still of poor quality. Including improvements seen in the plasma mem­

brane class inflates the average improvement for each technique. Since no technique can diminish 

a baseline of 0.000, and because our techniques failed to elevate the F-measure of the plasma mem­

brane class above 0.100, the class was removed.

5.1.1 TFIDF

This section covers the results of using the TFIDF importance weight measure and compares the 

baseline classifier (Data Set 1) with classifiers trained on synonym resolution (Data Set 2) and the
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com bination  o f  both syn onym  reso lu tion  and term  genera lization  (D ata  Set 3). O verall, syn onym  

reso lu tion  im proves the F -m easure by 0 .0 1 5  to 0 .7 8 9 . In on e  c la ss (g o lg i)  the F -m easure is decreased  

but the change is not statistica lly  sign ifican t. U s in g  the G O  for syn onym  resolu tion  sign ifican tly  

im proves the F -m easure for 6  o f  the 8 c la sse s  (se e  Table 5 .1 ). T he g o lg i c la ss  has less than 100  

abstracts and less  than 5 0  proteins, has a b a selin e  F -m easu re o f  0 .5 0 0 . L ikely  there is not enough  

data for syn onym  reso lu tion  to be o f  any u se  in th is c la ss , e sp ec ia lly  w h en  the positive  instances are 

sp lit into groups for training and testin g  during cross va lid ation . H ow ever, the perox isom e class, 

w h ich  is s ligh tly  larger (221 abstracts and 108 p rotein s), ga in s 0 .0 3 3  in F -m easure to 0 .8 2 3 . T he  

ly so so m e  c la ss, w ith 129 proteins and ju st under 6 0 0  abstracts y ie ld s  a 0 .0 4 0  im provem ent in F- 

m easure (to  0 .7 8 7 )  w ith  sy n o n y m  reso lu tion . I conjecture that there is a point betw een  the size  

o f  the g o lg i c la ss  and the s ize  o f  the p ero x iso m e  and ly so so m e  c la s se s  w here sy n on ym  resolu tion  

b eco m es usefu l.

Using the GO for both synonym resolution and term generalization brings further improvements 

to the classification of journal abstracts. Data Set 3 significantly improves the F-measure for 5 

classes over the baseline. The average F-measure of Data Set 3 is 0.803, which is a significant 

improvement of 0.029 over the baseline. In 2 classes the F-measure for term generalization and 

synonym resolution is significantly better than that of synonym resolution alone, and in no case is 

it significantly worse. On average, the combination of term generalization and synonym resolution 

together is significantly better than synonym resolution alone. Based on these results it appears that 

using generalization and synonym resolution together is the best approach as it is never significantly 

worse, and sometimes is significantly better.

5.1.2 Redundancy

Redundancy, combined with synonym resolution, significantly increases the average F-measure of 

the 8 localization classifiers to 0.787, an improvement of 0.022 over baseline. The F-measure of 

the golgi class increases significantly. Two classes (nucleus and extracellular) have significantly 

decreased F-measure. Redundancy with term generalization and synonym resolution significantly 

increases the F-measure of 3 classes and significantly reduces the F-measure of two classes. The 

average F-measure of Data Set 3 is 0.801, a significant improvement of 0.038 over baseline. The 

same two classes (nucleus and extracellular) have significantly reduced F-measure compared to the 

baseline. However, on average, the F-measure of Data Sets 2 and 3 increase significantly over the 

baseline Data Set, and Data Set 3 significantly outperforms Data Set 2.

The two classes that perform significantly better without using the GO as a source of external 

information are also the largest in the PA training set, by far. Extracellular has 2704 proteins and 

nucleus has 2445 proteins (see Table 4.2). Because these classes are so large, there is a higher 

probability that the abstracts associated with the proteins contain most of the synonyms and specific 

terms that are generated in Data Sets 2 and 3. As synonym resolution and term generalization are
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applied, the distribution of the added terms will be down-weighted by the redundancy importance 

weight measure as the distribution of the new terms is more uniform. Thus, the F-measures of the 

resulting classifiers do not improve (and actually decrease) when the GO is used as an information 

source.

Is it really just the size of the classes, and thus the already strong sampling of synonyms and 

specific terms, that makes Data Set 2 and 3 unsuccessful when paired with redundancy? To test this 

I created two new data sets: one that contains 25% of the nuclear training instances and the same 

negative training set, and one that contains 25% of the extracellular training instances. This brings 

the number of positive training instances for nuclear and extracellular to 611 and 676 respectively. 

The results of the 3 classifiers trained on this data appears in Table 5.5. As is expected, the classifiers 

do not perform as well as those trained with the entire data set. However, this exercise shows that 

synonym resolution and term generalization are once again useful techniques. The set of synonyms 

and specific terms has been reduced so the GO can be leveraged to compensate for the smaller 

sampling of synonyms and specific terms in the reduced training set.
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L/l

Data Set 1: Baseline Data Set 2: Synonym Resolution Data Set 3: Term Generalization
Class Precision Recall F-measure Precision Recall F-Measure A Precision Recall F-Measure A
cytoplasm 0.802 0.688 0.740 (±0.049) 0.817 0.706 0.758 (±0.042) +0.017 0.818 0.712 0.761 ( •0.042) +0.021
endoplasmic
reticulum 0.871 0.674 0.760 (±0.055) 0.869 0.706 0.779 (±0.068) +0.019 0.871 0.716 0.786 (j _0.072) +0.026
extracellular 0.942 0.920 0.931 (±0.009) 0.944 0.927 0.935 (±0.009) +0.004 0.944 0.926 0.935 ( : 0.010) +0 004
golgi 0.581 0.439 0.500 (±0.153) 0.563 0.439 0.493 (±0.143) -0.007 0.621 0.439 0.514 (±0.140) +0.014
lysosome 0.822 0.682 0.746 (±0.107) 0.855 0.729 0.787 (±0.100) +0.041 0.870 0.775 0.820* (±0.089) +0.074
mitochondrion 0.903 0.785 0.840 (±0.041) 0.903 0.800 0.848 (±0.038) +0.008 0.909 0.801 0.852 (±0.039) +0.012
nucleus 0.887 0.882 0.885 (±0.014) 0.889 0.881 0.885 (±0.016) +0.001 0.890 0.885 0.887 (±0.019) +0.003
peroxisome 0.835 0.750 0.790 (±0.054) 0.851 0.796 0.823 (±0.042) +0.033 0.918 0.824 0.868* (±0.046) +0.078

Average 0.830 0.728 0.774 (±0.022) 0.836 0.748 0.789 (±0.019) +0.015 0.855 0.760 0.803* (±0.019) +0.029

Table 5.1: Precision, Recall and F-measures for stratified 10 fold cross-validation on three Data Sets created using the PA training set. The importance weight
measure is un-normalized TFIDF. Results deemed significantly improved (p=0.05) over the baseline appear in bold, and those with an asterisk (*) are significantly
better than both other data sets. Change in F-measure compared to baseline is shown for Data Sets 2 and 3. Standard deviation is shown in parentheses.
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Class
Data Set 1: Baseline Data Set 2: Synonym Resolution Data Set 3: Term Generalization
Precision Recall F-measure Precision Recall F-Measure A Precision Recall F-Measure A

cytoplasm 0.885 0.632 0.737 (±0.040) 0.894 0.651 0.753 (±0.036) +0.016 0.893 0.655 0.756 (±0.038) +0.019
endoplasmic
reticulum 0.961 0.642 0.770 (±0.040) 0.963 0.665 0.786 (±0.041) +0.016 0.958 0.665 0.785 (±0.037) +0.015
extracellular 0.967 0.939 0.953 (±0.008) 0.967 0.940 0.954 (±0.009) +0.001 0.966 0.936 0.951 (±0.010) -0.002
golgi 0.875 0.171 0.286 (±0.237) 0.875 0.171 0.286 (±0.237) 0.000 1.000 0.171 0.292 (±0.281) +0.006
lysosome 0.944 0.659 0.776 (±0.103) 0.956 0.674 0.791 (±0.099) +0.015 0.958 0.705 0.813 (±0.083) +0.036
mitochondrion 0.981 0.723 0.832 (±0.046) 0.979 0.733 0.838 (±0.049) +0.006 0.976 0.721 0.829 (±0.051) -0.003
nucleus 0.924 0.881 0.902 (±0.014) 0.927 0.884 0.905 (±0.012) +0.003 0.926 0.879 0.902 (±0.014) 0.000
peroxisome 0.964 0.750 0.844 (±0.125) 0.965 0.769 0.856 (±0.114) +0.012 0.988 0.741 0.847 (±0.087) +0.003

Average 0.938 0.674 0.762 (±0.025) 0.941 0.686 0.771 (±0.024) +0.009 0.958 0.684 0.772 (±0.036) +0.009

Table 5.2: Precision, Recall and F-measures for stratified 10 fold cross-validation on three Data Sets made with the PA training set. The importance weight measure
is L2 normalized TFIDF. Results deemed significantly improved (p=0.05) over the baseline appear in bold, and those with an asterisk (*) are significantly better
than both other data sets. Change in F-measure compared to baseline is shown for Data Sets 2 and 3. Standard deviation is shown in parentheses.
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Class
Data Set 1: Baseline Data Set 2: Synonym Resolution Data Set 3: Term Generalization
Precision Recall F-measure Precision Recall F-Measure A Precision Recall F-Measure A

cytoplasm 0.887 0.635 0.740 (±0.038) 0.815 0.697 0.752 (±0.044) +0.011 0.818 0.710 0.760 (±0.040) +0.020
endoplasmic
reticulum 0.961 0.642 0.770 (±0.041) 0.865 0.700 0.774 (±0.068) +0.004 0.886 0.726 0.798 (±0.069) +0.028
extracellular 0.970 0.939 0.954* (±0.008) 0.942 0.928 0.935 (±0.007) -0.019 0.944 0.930 0.937 (±0.009) -0.017
golgi 0.875 0.171 0.286 (±0.237) 0.563 0.439 0.493 (±0.143) +0.207 0.600 0.439 0.507 (±0.147) +0.221
lysosome 0.944 0.651 0.771 (±0.103) 0.826 0.736 0.779 (±0.107) +0.008 0.847 0.775 0.810 (±0.090) +0.039
mitochondrion 0.983 0.733 0.840 (±0.052) 0.901 0.801 0.848 (±0.043) +0.008 0.903 0.800 0.848 (±0.038) +0.008
nucleus 0.925 0.881 0.903* (±0.015) 0.894 0.885 0.889 (±0.015) -0.013 0.894 0.885 0.889 (±0.019) -0.013
peroxisome 0.964 0.750 0.844 (±0.121) 0.860 0.796 0.827 (±0.037) -0.017 0.907 0.815 0.859 (±0.048) +0.015

Average 0.939 0.675 0.763 (±0.024) 0.833 0.748 0.787 (±0.022) +0.024 0.850 0.760 0.801* (±0.020) +0.038

Table 5.3: Precision, Recall and F-measures for stratified 10 fold cross-validation on three Data Sets created using PA’s training data. The importance weight
measure is un-normalized redundancy. Results deemed significantly improved (p=0.05) over the baseline appear in bold, and those with an asterisk (*) are
significantly better than both other data sets. Change in F-measure compared to baseline is shown for Data Sets 2 and 3. Standard deviation is shown in parentheses.
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Class
Data Set 1: Baseline Data Set 2: Synonym Resolution Data Set 3: Term Generalization
Precision Recall F-measure Precision Recall F-Measure A Precision Recall F-Measure A

cytoplasm 0.887 0.635 0.740 (±0.038) 0.892 0.650 0.752 (±0.039) +0.012 0.895 0.658 0.759 (±0.042) +0.018
endoplasmic
reticulum 0.961 0.642 0.770 (±0.041) 0.963 0.665 0.786 (±0.041) +0.016 0.958 0.665 0.785 (±0.037) +0.015
extracellular 0.970 0.939 0.954 (±0.008) 0.969 0.939 0.954 (±0.008) 0.000 0.965 0.939 0.952 (±0.009) -0.002
golgi 0.875 0.171 0.286 (±0.237) 0.875 0.171 0.286 (±0.237) 0.000 1.000 0.171 0.292 (±0.281) +0.006
lysosome 0.944 0.651 0.771 (±0.103) 0.957 0.682 0.796 (±0.092) +0.026 0.958 0.705 0.813 (±0.83) +0.042
mitochondrion 0.983 0.733 0.840 (±0.052) 0.979 0.737 0.841 (±0.052) +0.001 0.976 0.728 0.834 (±0.053) -0.006
nucleus 0.925 0.881 0.903 (±0.015) 0.925 0.883 0.903 (±0.014) 0.000 0.927 0.879 0.902 (±0.015) 0.000
peroxisome 0.964 0.750 0.844 (±0.121) 0.965 0.769 0.856 (±0.110) +0.012 0.988 0.741 0.847 (±0.087) +0.003

Average 0.939 0.675 0.763 (±0.024) 0.940 0.687 0.772 (±0.025) +0.008 0.958 0.686 0.773 (±0.036) +0.009

Table 5.4: Precision, Recall and F-measures for stratified 10 fold cross-validation three Data Sets created using PA’s training data. The importance weight measure
is L2 normalized redundancy. Results deemed significantly improved (p=0.05) over the baseline appear in bold, and those with an asterisk (*) are significantly
better than both other data sets. Change in F-measure compared to baseline is shown for Data Sets 2 and 3. Standard deviation is shown in parentheses.
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Class
Data Set 1: Baseline Data Set 2: Synonym Resolution Data Set 3: Term Generalization
Precision Recall F-measure Precision Recall F-Measure A Precision Recall F-Measure A

extracellular 0.896 0.785 0.836 (±0.031) 0.910 0.792 0.847 (±0.034) +0.011 0.918 0.796 0.853 (±0.029) +0.017
nucleus 0.869 0.740 0.799 (±0.042) 0.883 0.755 0.814 (±0.039) +0.014 0.879 0.764 0.818 (±0.033) +0.019

VO

Table 5.5: Precision, Recall and F-measures for stratified 10 fold cross-validation of three Data Sets created using the two largest classes of PA’s training set. The 
importance weight measure is un-normalized redundancy. Data sets were altered to contain only one quarter of the positive training instances and the same number 
of negative training instances. Results are shown for the two largest classes in the PA training set. Results deemed significantly improved (p=0.05) over the baseline 
appear in bold, and those with an asterisk (*) are significantly better than both other data sets. Change in F-measure compared to baseline is shown for Data Sets 2 
and 3. Standard deviation is shown in parentheses.



Class
Name

Best Technique 
TFID F F-M easure

Best Technique 
Redundancy F-M easure

cytoplasm Data Set 3* 0.761 Data Set 3+ 0.760
endoplasmic
reticulum Data Set 3* 0.786 Data Set 3+ 0.798
extracellular Data Set 2* 0.935 Data Set 1** 0.954
golgi Data Set 3 0.514 Data Set 3* 0.507
lysosome Data Set 3** 0.820 Data Set 3 0.810
mitochondrion Data Set 2+ 0.848 Data Set 3 0.848
nucleus Data Set 3 0.887 Data Set 1** 0.903
peroxisome Data Set 3** 0.868 Data Set 3 0.859

Table 5.6: Comparison of TFIDF and redundancy as importance weight measures for subcellular 
classification of the PA Set. Data Sets followed by one asterisk (*) or one plus (+) signify that Data 
Set was significantly better than one other Data Set in the corresponding experiment (Tables 5.1 
and 5.3), two asterisks (**) signify that the Data Set was significantly better than both other Data 
Sets in the corresponding experiment. F-measures for the techniques where TFIDF or redundancy 
is significantly better are shown in bold.

5.1.3 TFIDF vs. Redundancy

The average F-measures of the classifiers trained on the PA data set that use TFIDF as the importance 

weight measure are very close to those that use redundancy as the importance weight measure. 

To fairly compare the two importance weight measures I compared the results on a class-by-class 

basis. In order to compare importance weight measures I chose the best classifier across the three 

abstract processing techniques for each class and for each importance weight measure (TFIDF and 

redundancy). Best was defined for each class as follows:

•  If a technique was significantly better than all other techniques it was chosen (denoted ** in 

Table 5.6 and Table 5.14).

•  If technique A and technique B are both significantly better than technique C, but there is no 

significant difference between A and B the technique with the higher F-measure was chosen. If 

F-measures were the same, the technique with a lower standard deviation was chosen (denoted 

* in Table 5.6 and Table 5.14).

•  If a technique A was significantly better than technique B and there was no significant differ­

ence between any other pair of techniques, technique A was chosen (denoted + in Table 5.6 

and Table 5.14).

•  If no techniques are significantly better I chose the technique with the highest F-measure. 

If F-measures were the same, the technique with a lower standard deviation was chosen (no 

marks in Table 5.6 and Table 5.14).

The cross-validation results of the best classifiers are then compared using a t-test. Results are 

appear in Table 5.6.
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The two largest classes in the PA data set. nucleus and extracellular, create a baseline redun 

dancy classifier that significantly outperforms every other combination of technique and importance 

weight measure. In one other case, endoplasmic reticulum, redundancy is the best importance weight 

measure, when combined with Data Set 3 For the lysosome class TFIDF and Data Set 3 is signifi 

cantly better than every other combination of technique and importance weight measure. In all other 

classes (cytoplasm, golgi, mitochondrion, peroxisome) the difference between the best classifiers is 

not significant.

ANOVA tests

Performing significance tests several times reduces the reliability of their predictions. Because it is 

necessary to perform several pairwise significance tests to compare all techniques, the power of the 

tests has degraded. For this reason I perform ANOVA (Analysis of Variance) [36] for the 6 classifiers 

trained for each class (TFIDF with Data Sets 1, 2 and 3 and redundancy with Data Sets 1, 2 and 3). 

This results of ANOVA for the classifiers trained with the PA Data Set shows that redundancy and 

baseline is best for the extracellular class. Although there was no significant difference in t-test 

between the 3 techniques using TFIDF, ANOVA shows that Data Set 3 and TFIDF is significantly 

better than all other techniques and importance weight measures. Overall, ANOVA shows that the 

average performance of classifiers using Data Set 3 and TFIDF is significantly better than all other 

combinations.

5.2 Case Study

Experiments thus far have shown that when using TFIDF, synonym resolution and term general­

ization together give significant gains. However, when using redundancy, the GO can actually hurt 

a classifier’s performance. What, exactly, is happening to the weights of features within the SVM 

classifier? Let us look at two examples: one where Data Set 3 significantly outperforms Data Set 

1 when using TFIDF, and one where Data Set 1 significantly outperforms Data Set 3 when using 

redundancy as the importance weight measure.

5.2.1 Example: TFIDF and a protein from the lysosome

Let us start with a case where Data Set 3 is significantly better than Data Set 1. Consider the fol­

lowing lysosomal protein (accession number PI 1117) from the Swiss-Prot database. In Swiss-Prot 

this protein is given the following subcellular localization annotation: “Lysosome”. The abstract 

for PI 1117 ([18]) appears below. The most heavily weighted words appear in bold in the following 

abstract text. Words that are underlined generate GO terms that are in the top 5 highest weighted 

words for the classifier trained on Data Set 3.

Swiss-Prot accession number PI 1117
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Word weight
lysosom 0.078937
phosphatas 0.024493
acid 0.010438
human 0.007127
structur 0.000623

Table 5.7: The top five most heavily weighted words from the abstract related to protein PI 1117. 
Weights are determined by an SVM trained on Data Set 1 (baseline) with TFIDF. These words are 
shown in bold in the abstract of PI 1117.

Word weight
lysosom 0.033768
goJysosom 0.031121
goJyt vacuol 0.030902
go_vacuol 0.030858
phosphatas 0.014357

Table 5.8: The top five most heavily weighted words and GO terms from the abstract related to 
protein PI 1117. Weights are determined by an SVM trained on Data Set 3 (synonym resolution and 
term generalization) with TFIDF. Words or phrases that generate GO terms that appear in this table 
are shown underlined in PI 1117’s abstract. Words in this table that are not generated using the GO 
are shown in bold in the abstract of PI 1117.

Title 1: Structure o f  the hum an lysosomal acid phosphatase gene.

Abstract Body 1: We have isolated a 12-kb genomic clone, which encodes human 

lysosomal acid phosphatase (LAP), a lysosomal membrane glycoprotein. The hu­

man LAP gene has a size of about 9 kb and contains 11 exons (83-947 bp in size). The 

signal sequence and the first eight amino acids of the LAP protein are encoded by exon 

1, the remaining luminal domain by exons 2-10 and the transmembrane and cytoplasmic 

domains, as well as the 3’-untranslated region, by exon 11. The sequence of the LAP 

gene confirmed the sequence deduced from the cDNA clone except for nucleotide 1917 

in the 3’-untranslated region, where T is changed to C. The 5 ’-flanking sequence shows 

promoter activity, as analysed by coupling to bacterial chloramphenicol acetyltrans- 

ferase. Sl-nuclease-protection and primer-extension analysis demonstrate transcription 

initiation at multiple sites clustering within 23 bp upstream of the translation-initiation 

codon. Sequences characteristic for promoter regions like TATA-box and CAAT-box 

sequences could not be identified at typical positions. The absence of these sequences, 

the high GC content (63.5%), two GC boxes and a region complying with the properties 

of a CpG island, indicate that LAP is a housekeeping gene.

The training instance created from PI 1117 was misclassified during cross-validation for the 

baseline classifier, but was correctly classified during cross-validation for Data Set 3. When this
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abstract is used as input for the SVM trained on all of Data Set I using TFIDF, the five stemmed 

words in Table 5.7 have the highest weight. The hist three words are intuitive; “lysosom” is the 

stemmed version of lysosome and lysosomal, and both phosphatase (stemmed to “phosphatas”) and 

acids are found in lysosomes. Flowever, during cross-validation, this protein is classified incorrectly 

as “not lysosomal” because there was not enough evidence to call it a lysosomal protein. Part of 

the problem is that two words, “human” and “structur” (stemmed version of structure), end up in 

the top 5 words even though they have low weights and have little to do with the lysosome. This is 

indicative of the fact that there are not enough positive features for the SVM to predict the lysosome 

class. In order to turn this not lysosome prediction into a lysosome prediction we have to increase 

the weight of the positive words relative to the negative words, or we have to generate words that 

have positive weight.

When a lysosome classifier trained on Data Set 3 makes a prediction on the abstract of protein 

PI 1117 the classifier returns a positive prediction. The five features with the highest weight are 

shown in Table 5.8. In this example, 3 terms created using the GO hierarchy appear in the top 5 

terms: “lysosome” (parent of lysosomal membrane which appears in the abstract), “lytic vacuole” 

(parent of lysosome) and “vacoule” (parent of lytic vacuole). Now that we have generated additional 

features with positive weights there is enough evidence for this protein to be correctly classified as 

lysosomal during cross validation.

5.2.2 Example: Redundancy and a protein from the nucleus

Let us turn now to a case where Data Set 1 is significantly better than Data Set 3. Consider the 

following nuclear protein with Swiss-Prot accession number 095707. This protein is annotated 

with Subcellular location: “Nucleus; nucleolus”, and has two associated abstracts ([26, 44]). The 

most heavily weighted words appear in bold in the following abstract text. Words that are underlined 

generate GO terms that are in the top 5 highest weighted words for the classifier trained on Data Set 

3.

Swiss-Prot accession number 095707

Title 1: RppM  and Rpp29, two protein subunits o f  human ribonuclease P.

Abstract Body 1: In HeLa cells, the tRNA processing enzyme ribonuclease P (RNase 

P) consists of an RNA molecule associated with at least eight protein subunits, hPopl, 

Rppl4, Rpp20, Rpp25, Rpp29, Rpp30, Rpp38, and Rpp40. Five of these proteins 

(hPoplp, Rpp20, Rpp30, Rpp38, and Rpp40) have been partially characterized. Here 

we report on the cDNA cloning and immunobiochemical analysis of RppM  and Rpp29. 

Polyclonal rabbit antibodies raised against recombinant RppM and Rpp29 recognize 

their corresponding antigens in HeLa cells and precipitate catalytically active RNase 

P. Rpp29 shows 23% identity with Pop4p, a subunit of yeast nuclear RNase P and the
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ribosomal RNA processing enzyme RNase MRR Rppl4. by contrast, exhibits no sig­

nificant homology to any known yeast gene. Thus, human RNase P differs in the details 

of its protein composition, and perhaps in the functions of some of these proteins, from 

the yeast enzyme.

Title 2: hPop4: a new protein subunit o f  the human RNase MRP and RNase P ribonu- 

cleoprotein complexes.

Abstract Body 2: RNase MRP is a ribonucleoprotein particle involved in the processing 

of pre-rRNA. The RNase MRP particle is structurally highly related to the RNase P 

particle, which is involved in pre-tRNA processing. Their RNA components fold into 

a similar secondary structure and they share several protein subunits. We have identi­

fied and characterised human and mouse cDNAs that encode proteins homologous to 

yPop4p, a protein subunit of both the yeast RNase MRP and RNase P complexes. The 

human Pop4 cDNA encodes a highly basic protein of 220 amino acids. Transfection 

experiments with epitope-tagged hPop4 protein indicated that hPop4 is localised in the 

nucleus and accumulates in the nucleolus. Immunoprecipitation assays using extracts 

from transfected cells expressing epitope-tagged hPop4 revealed that this protein is as­

sociated with both the human RNase MRP and RNase P particles. Polyclonal rabbit 

antibodies raised against recombinant hPop4 recognised a 30 kDa protein total H eLa 

cell extracts and specifically co-immunoprecipitated the RNA components of the RNase 

MRP and RNase P complexes. Finally we showed that anti-hPop4 immunoprecipitates 

possess RNase P enzymatic activity. Taken together, these data show that we have 

identified a protein that represents the human counterpart of the yeast Pop4p protein.

The top five highest-weighted words from the abstracts associated with 095707 for the baseline 

classifier using redundancy are shown in Table 5.9. In this case, the baseline classifier gives very 

high weight to the word “nuclear”, which is the adjective form of the class name nucleus. Nuclear 

is understandably a very good indicator that the protein’s localization in in the nucleus. RNA and 

HeLa are also intuitive indicators of the nucleus class. RNA is manufactured and processed in the 

nucleus. HeLa is a type of cell often used in cancer research, and much of cancer research involves 

processes that occur in the nucleus.

Table 5.10 shows the top five words with the highest weight for the SVM classifier trained on 

Data Set 3 using redundancy. Nuclear, yeast and HeLa appear again in the top 5 words. RNA has 

fallen out o f the top 5 and been replaced with the GO term “organelle” which has nucleus, nucleolus 

and ribosome as descendants. Unfortunately, in the GO, nucleus has siblings mitochondrion and 

golgi apparatus. These two sibling terms will also expand and produce the GO term “organelle” 

during generalization. Thus, organelle is a bad word to weight heavily during classification since 

it differentiates between cytoplasm and not cytoplasm classes, but not between cytoplasmic classes
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W ord weight
nuclear 5.682055
yeast 1.643581
ma 1.571278
complex 1.407400
hela 1.020248

Table 5.9: The top five most heavily weighted words from abstracts related to protein 095707. 
Weights are determined by an SVM trained on Data Set 1 (baseline) with TFIDF. These words are 
shown in bold in the abstract of 095707.

W ord weight
nuclear 0.059546
yeast 0.029832
go_organel 0.022970
complex 0.019493
hela 0.016555

Table 5.10: The top five most heavily weighted words and GO terms from abstracts related to protein 
095707. Weights are determined by an SVM trained on Data Set 3 (synonym resolution and term 
generalization) with TFIDF. Words or phrases that generate GO terms that appear in this table are 
shown underlined in O95707’s abstract. Words in this table that are not generated using the GO are 
shown in bold in the abstract of 095707.

(nuclear, mitochondrion, golgi, etc.).

The word RNA, which ranked highly in the baseline classifier, has fallen to 12th place, with a 

weight of 0.010837. In 11th place, ranking higher than RNA, is the GO term “cellular process”, 

which is actually the root of a tree in the GO hierarchy, meaning that it will be associated with 

any abstract that mentions any term in the cellular process hierarchy. “Cellular process” is likely a 

horrible indicator of any class, and appears with abundance in abstracts from all classes (it will be 

produced 5 times when term generalization is applied to the abstracts associated with the nuclear 

protein 095707 and 6 times for the abstracts of the lysosome protein in Example 1). For this study, 

I had decided to leave the root nodes in the training set, assuming the SVM would learn their utility, 

or lack thereof. Future work will explore leaving out the root nodes. More generally, a learning 

task should be developed to discover the level of generalization that is optimal for each localization 

class. In addition, feature selection (the process of identifying before learning which features are 

likely good indicators of class) could be used to remove GO nodes names and other words which 

are poor predictors of class.

The redundancy feature weight measure may actually be working against the features generated 

by synonym resolution and term generalization. Note that the terms generated by synonym reso­

lution and term generalization will be at least as uniformly distributed as the synonyms or specific 

terms in the abstracts that generate them. Because redundancy down-weights uniformly distributed 

terms, the generated terms will have less weight in the training instances. These additional features 

create noise in the training instances from which the SVM cannot recover.
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Class Number of Proteins with Number
Name Proteins Abstracts of Abstracts
cy top lasm ic 1411 1344 4 9 6 2

ER 198 187 6 1 7

extracellu lar 843 825 337 3

G olg i 150 150 4 5 6

lyso so m a l 103 102 745

m itochondrial 5 1 0 4 9 6 1888
nuclear 837 7 8 8 2 5 6 4
p erox isom al 157 147 4 3 7
plasm a
m em brane 1238 1198 4661

Total 5447 5237 19703

Table 5.11: Summary of distribution of proteins and abstracts in the MultiLoc Data Set. Proteins 
without abstracts were not used to train or test text classifiers.

5.3 MultiLoc Data Set

The MultiLoc data set has been used to test text classification as input to a larger subcellular lo­

calization classifier [22] . The MultiLoc data set was created by searching for key phrases in the 

Subcellular localization and Feature fields of the Swiss-Prot database. This resulted in a data set of 

9,761 proteins, which was reduced by removing sequences until no pair of sequences shared >  80% 

sequence similarity. The final MultiLoc data set has 5,447 proteins, 5,237 with abstracts. Although 

the first step in the creation process for the MultiLoc data set is very similar to the process for creat­

ing the PA data set, the distribution of proteins amongst the classes is very different (see Table 5.11). 

For example, the plasma membrane class in the MultiLoc data set is the second largest class and 

contains 23% of all proteins in the data set. The plasma membrane class in the PA data set is the 

smallest class and makes up less than 0.2% of the data set. For some localizations, removing similar 

proteins contributes to the difference in size and distribution of the classes.

5.3.1 TFIDF

Results for 10-fold cross validation of the MultiLoc data set using TFIDF as the importance weight 

measure appear in Table 5.12. Using TFIDF gives an average baseline F-measure of 0.749. When 

synonym resolution is applied, this average rises significantly to 0.755. Three of the nine classes 

improve significantly with this measure: cytoplasm, mitochondrial and plasma membrane. The 

extracellular class loses 0.001 in F-measure, but this is not significant.

Using term generalization and synonym resolution the average F-measure improves significantly 

over the baseline to 0.757 but is not significantly better than the average of synonym resolution 

alone. The cytoplasm and plasma membrane classes have significantly improved F-measure over 

the baseline. Synonym resolution and term generalization used together is significantly better than
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synonym resolution and the baseline for the plasma membrane class.

5.3.2 Redundancy

Results for experiments using the MultiLoc data set and redundancy as the importance weight 

measure appear in Table 5.13. The baseline average F-measure using redundancy as the feature 

value is 0.742. Using synonym resolution significantly increases the average F-measure to 0.749. 

Four classes (cytoplasm, lysosomal, nuclear and plasma membrane) achieve significantly higher 

F-measures using synonym resolution.

Term generalization and synonym resolution together significantly increases the F-measure of 

four classes over the baseline (cytoplasm, extracellular, nuclear and plasma membrane). The average 

F-measure for this technique is 0.751, which is significantly higher than baseline. The F-measure 

for the golgi class drops, but the change is not significant.

Significant losses were seen in PA Data Sets 2 and 3 when redundancy was used as the impor­

tance weight measure for large classes. We do not see the same decreases in performance using 

redundancy on the largest classes (cytoplasmic and plasma membrane) of the MultiLoc data. The 

large classes both produce significantly better classifiers than baseline using Data Set 2 and 3. Al­

though the largest classes are large, they are still only about half the size of the two largest classes 

in the PA data, probably due to the removal of similar sequences in the MultiLoc data. Because the 

classes are large, but not too large, techniques which use the GO hierarchy are still of use.
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Class
Data Set 1: Baseline Data Set 2: Synonym Resolution Data Set 3: Term Generalization
Precision Recall F-measure Precision Recall F-Measure A Precision Recall F-Measure A

cytoplasm 0.759 0.711 0.734 (±0.027) 0.762 0.722 0.742 (±0.024) +0.008 0.766 0.727 0.746 (±0.020) +0.012
ER 0.572 0.594 0.583 (±0.084) 0.575 0.594 0.584 (±0.093) +0.002 0.568 0.604 0.585 (±0.089) +0.003
extracellular 0.897 0.819 0.856 (±0.031) 0.897 0.817 0.855 (±0.030) -0.001 0.903 0.825 0.863 (±0.029) +0.006
golgi 0.881 0.740 0.804 (±0.062) 0.883 0.753 0.813 (±0.069) +0.009 0.864 0.760 0.809 (±0.068) +0.004
lysosomal 0.887 0.618 0.728 (±0.115) 0.878 0.637 0.739 (±0.110) +0.010 0.857 0,647 0.737 ( +0.100) +0.009
mitochondrial 0.685 0.696 0.690 (±0.049) 0.697 0.700 0.698 (±0.047) +0.008 0.699 0.692 0.695 (±0.050) +0.005
nuclear 0.791 0.778 0.784 (±0.037) 0.797 0.783 0.790 (±0.034) +0.006 0.791 0.786 0.788 (±0.037) +0.004
peroxisomal 0.769 0.680 0.722 (±0.072) 0.779 0.694 0.734 (±0.070) +0.012 0.776 0.707 0.740 (+0.081) +0.018
plasma membrane 0.828 0.842 0.835 (±0.025) 0.837 0.846 0.841 (±0.024) +0.006 0.845 0.855 0.850* (±0.029) +0.015
Average 0.785 0.720 0.749 (±0.020) 0.790 0.727 0.755 (±0.019) +0.007 0.785 0.734 0.757 (±0.021) +0.008

Table 5.12: Precision, Recall and F-measures for stratified 10 fold cross-validation o f  three Data Sets using un-normalized TFIDF and the MultiLoc data set. Results
deemed significantly improved (p=0.05) over the baseline appear in bold, and those with an asterisk (*) are significantly better than both other data sets. Change in
F-measure compared to baseline is shown for Data Sets 2 and 3. Standard deviation is shown in parentheses.
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Class
Data Set 1: Baseline Data Set 2: Synonym Resolution Data Set 3: Term Generalization
Precision Recall F-measure Precision Recall F-Measure A Precision Recall F-Measure A

cytoplasm 0.746 0.700 0.722 (±0.026) 0.752 0.710 0.730 (±0.025) +0.008 0.755 0.719 0.737 (±0.019) +0.015
ER 0.562 0.604 0.582 (±0.090) 0.562 0.610 0.585 (±0.094) +0.002 0.569 0.620 0.593 (±0.093) +0.011
extracellular 0.896 0.802 0.847 (±0.035) 0.897 0.804 0.848 (±0.035) +0.001 0.900 0.816 0.856 (±0.030) +0.009
golgi 0.874 0.740 0.801 (±0.063) 0.874 0.740 0.801 (±0.063) 0.000 0.867 0.740 0.799 (±0.066) -0.003
lysosomal 0.855 0.637 0.730 (±0.117) 0.870 0.657 0.749 (±0.127) +0.018 0.848 0.657 0.740 (±0.115) +0.010
mitochondrial 0.677 0.702 0.689 (±0.051) 0.678 0.696 0.687 (±0.056) -0.003 0.690 0.690 0.690 (±0.051) +0.000
nuclear 0.766 0.765 0.766 (±0.040) 0.780 0.770 0.775 (±0.036) +0.010 0.779 0.778 0.778 (±0.032) +0.013
peroxisomal 0.739 0.694 0.716 (±0.072) 0.746 0.701 0.723 (±0.076) +0.007 0.738 0.707 0.722 (±0.084) +0.006
plasma membrane 0.816 0.837 0.827 (±0.031) 0.830 0.848 0.839 (±0.032) +0.012 0.833 0.857 0.845 (±0.030) +0.018

Average 0.770 0.720 0.742 (±0.021) 0.777 0.726 0.749 (±0.021) +0.006 0.775 0.732 0.751 (±0.023) +0.009

Table 5.13: Precision, Recall and F-measures for stratified 10 fold cross-validation o f three Data Sets using un-normalized redundancy and the MultiLoc data set.
Results deemed significantly improved (p=0.05) over the baseline appear in bold, and those with an asterisk (*) are significantly better than both other data sets.
Change in F-measure compared to baseline is shown for Data Sets 2 and 3. Standard deviation is shown in parentheses



Class
Name

Best Technique 
TFID F F-M easure

Best Technique 
Redundancy F-M easure

cytoplasm Data Set 3* 0.746 Data Set 3* 0.737
ER Data Set 3 0.585 Data Set 3 0.593
extracellular Data Set 3 0.863 Data Set 3+ 0.856
Golgi Data Set 2 0.813 Data Set 2 0.801
lysosomal Data Set 2 0.739 Data Set 2+ 0.749
mitochondrial Data Set 2+ 0.698 Data Set 3 0.690
nuclear Data Set 2 0.790 Data Set 3* 0.778
peroxisomal Data Set 3 0.740 Data Set 2 0.723
plasma
membrane Data Set 3** 0.850 Data Set 3* 0.845

Table 5.14: Comparison of TFIDF and redundancy as importance weight measures for subcellular 
classification of the MultiLoc Set. Data Sets followed by one asterisk (*) or one plus (+) signify that 
Data Set was significantly better than one other Data Set in the corresponding experiment (Tables 
5.1 and 5.3), two asterisks (**) signify that the Data Set was significantly better than both other Data 
Sets in the corresponding experiment. F-measures for the techniques where TFIDF or redundancy 
is significantly better are shown in bold.

5.3.3 TFIDF vs. Redundancy

On average, the classifiers trained on the MultiLoc data set that use TFIDF as the importance weight 

measure out-perform classifiers that use redundancy. Averages can be misleading, so again I ex­

plored the classifiers on a class-by-class basis. To compare TFIDF and redundancy, I compared 

the cross validation results for the best classifier for each of the classes and each of TFIDF and 

redundancy. Again, the best classifier is chosen as outlined in Section 5.1.3.

Table 5.14 shows that the best results for TFIDF are significantly better than the best results for 

redundancy for the classes cytoplasm, mitochondrial, nuclear, peroxisomal and plasma membrane. 

Three out of these five TFIDF classifiers use Data Set 3 and the other two use Data Set 2. For three 

of these classes (cytoplasm, mitochondrial and plasma membrane) the selected Data Set was better 

than baseline, and in the plasma membrane class the selected data set, Data Set 3, was better than 

Data Set 1 and 2. This makes a strong case for using TFIDF as the importance weight measure over 

redundancy.

ANOVA tests

Again, because so many pairwise tests were performed, ANOVA tests are needed. ANOVA tests 

show no significant difference between any importance weight measure and technique for the Mulit- 

Loc Data Set.

5.3.4 Comparison to MultiLoc’s classifiers

A comparison of the results of my best text classification technique (Opt-Text) and MultiLoc’s text 

classification and combined techniques is shown in Table 5.15. MultiLoc’s text classifier uses an
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Class
Name

MultiLoc 
Text only

MultiLoc
Combined Opt-Text

Opt-Text minus 
MultiLoc

cytop lasm 0 .6 1 4 0 .8 6 8 0 .7 4 6 + 0 .1 3 2

ER 0 .5 8 2 0 .7 3 7 0 .5 9 3 +0.01 1

extracellu lar 0 .7 7 0 0 .8 8 0 0 .8 6 3 + 0 .0 4 3

G olg i 0 .5 4 6 0 .7 4 4 0 .8 1 3 + 0 .2 6 7

ly sosom al 0 .4 4 9 0 .6 7 1 0 .7 4 9 + 0 .3 0 0

m itochondrial 0 .7 9 5 0 .9 2 0 0 .6 9 8 -0 .0 9 7

nuclear 0 .7 7 0 0 .8 5 9 0 .7 9 0 + 0 .0 2 0

peroxisom al 0 .7 2 9 0 .771 0 .7 4 0 +0.01 1

p lasm a
m em brane 0 .851 0 .8 9 7 0 .8 5 0 -0.001

Table 5.15: Comparison of MulitLoc’s techniques and the techniques presented in this dissertation 
(Opt-Text) on the MultiLoc Data Set. The rightmost column is calculated by subtracting the F- 
measure of the MultiLoc text only classifier from the F-measure of the Opt-Text classifier.

SVM. A Z-score is used to determine the most statistically significant words, which are then used 

to represent the text of the abstracts. The non-standard importance weight measure of each distin­

guishing term is the number of times a distinguishing term occurs in a protein’s abstracts, divided 

by the number of times any distinguishing term appears in the protein’s abstracts. As discussed in 

Section 2.2.1, MultiLoc’s larger system is a set of classifiers which produce output based on the pro­

tein’s amino acid sequence. These sub-classifiers are combined with the classification of MultiLoc’s 

text-classifier using one super SVM which makes a final subcellular localization prediction. Multi­

Loc’s combined results (Table 5.15) are the results using these sequence based classifiers as well as 

their text-based classifier in the final larger system of classifiers. MultiLoc used Swiss-Prot release 

42.0 to produce their results and I used Swiss-Prot 50.0 to retrieve abstracts for my experiments.

My system never out-performs the MultiLoc combined classifier because MultiLoc’s combined 

classifier has so much more information available to it. Based on F-measure, Opt-Text outperforms 

the MultiLoc text classifier in 7 of the 9 classes, sometimes by as much as 0.300. The average 

improvement of Opt-Text is 0.082. This improvement in F-measure may be due to the change in 

Swiss-Prot, as later releases have more textual data. The MultiLoc classifier that incorporates the 

MultiLoc text classifier saw significant improvements when they incorporated their text classifiers. 

One would assume the improvement of the combined classifier would be even greater if the underly­

ing text classifier was improved. There is no reason why the techniques presented in this dissertation 

could not be incorporated into MultiLoc’s text classifier and then used as part of MultiLoc’s com­

bined classifier.
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5.4 Discussion

Using the GO hierarchy for synonym resolution and term generalization results in a significant gain 

when TFIDF is used as the importance weight measure, especially for smaller classes. However, 

for very large classes, Data Sets that use redundancy as the importance weight measure and do not 

make use of the GO hierarchy outperform techniques that incorporate the GO hierarchy. These large 

classes already contain a good sample of the synonymic terms used to describe the localization, thus 

using the GO hierarchy does not improve F-measure. In this case extra terms depreciate the value of 

important terms and creates a poorer quality classifier. I have shown that for each localization class, 

it is best to consider several ways of representing the text. Large classes will probably perform well 

with redundancy and no extra processing, whereas smaller classes should use TFIDF and can benefit 

from the information encoded in the GO hierarchy.
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Chapter 6

Conclusion

6.1 Discussion of Results

The field of molecular biology has been moving at an astounding pace. The ability to sequence 

entire genomes has gone from a pipe-dream to a reality and is now being undertaken in many labs 

across the globe. In 1995, the first genome was sequenced, that of Haemophilus influenzae [17]. As 

of November 2006 there are 456 complete genomes published and over 1700 ongoing sequencing 

projects for the genomes of other organisms [30], Each one of these genomes represents thousands 

of proteins waiting to be identified and characterized.

Protein characterization is also becoming more streamlined. Assays have been developed in the 

last 15 years that allow scientists to more quickly identify a protein’s localization within a cell [10]. 

These techniques have been used in large scale efforts to determine the localization of every protein 

in a proteome [25], This sort of high-throughput science was considered science fiction even two 

decades ago.

When an area of study begins to move quickly, there is a danger that important discoveries may 

become lost. Finding relevant research can be as difficult as conducting new research. The tech­

niques covered in this dissertation address the classic case of a needle in an ever-growing haystack. 

It is necessary to develop a way to organize the haystack so that one only has to search through 

some small subset of the straw in order to find related research. When information is easy to find 

and access, the seeds of collaboration are sown. Great minds can come together, leverage the power 

of each other’s work and possibly produce results more effectively.

This study combines two areas of Computing Science (machine learning and natural language 

processing) with a term hierarchy created by biologists. In fact, this thesis is a collaboration of sci­

entific areas in and of itself. Without proper organization of data, this type of scientific fusion would 

be impossible. To the benefit of this research, the Internet has brought together a vast amount of in­

formation. Search engines have assisted in making the information on the Internet more accessible. 

Ease of retrieval allows for self-education and enhances the ability of experts to collaborate more 

readily. Text classification for biological journal abstracts is an attempt to reduce the amount of
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information one needs to search through in order to find relevant research results. Text classification 

summarizes an abstract in terms of its strongly indicative words and also allows biologists to filter 

abstracts based on their classification.

My work has shown that, in certain cases where textual data is limited, the GO hierarchy’s ability 

to aid in synonym resolution and term generalization improves text classification. These techniques 

can improve predictions of subcellular localization for the proteins discussed in biological journal 

abstracts. In cases where text is abundant, the GO is not effective. This loss of effectiveness is due 

to the fact that the journal abstracts already contain many occurrences of synonyms and specific 

terms. Thus, the necessary terms are prevalent enough in these large bodies of text that a classifier 

can learn the utility of these words, without the assistance of the GO. I also extended the work of 

Leopold and Kindermann [29] to the biological domain and showed that the redundancy importance 

weight measure is often better than TFIDF in text classification of biological journal abstracts when 

the set of positive data is large.

6.2 Future Work

6.2.1 Incorporating Text Classification into PA’s classifiers

Just as MultiLoc combines the predictions of their text classifier with several other classifiers to 

predict the localization of a protein, PA could use the advancements in text classification presented 

here to improve its predictors. The predictions of a text classifier could become another feature for 

PA’s SVM, or a super-classifier could be built to mix the predictions of PA and the NLP predictor. 

The super-classifier could be as simple as a voting mechanism, breaking ties on some measure of 

confidence in the prediction. Alternatively, the super-classifier itself could use an SVM or some 

other machine learning algorithm, where the feature vector (x) contains a representation of the 

predictions of each of the sub-classifiers. In addition, there is an entire area of machine learning 

research devoted to combining classifiers, and any of the techniques presented in that body of work 

might be applied.

6.2.2 Including Other Term Hierarchies

As mentioned in Section 1.3.2, other biological term hierarchies exist (MeSH, enzyme class sys­

tem), aside from the GO. The utility of each of these hierarchies could be tested, and the usefulness 

of using several hierarchies together assessed. I have demonstrated that using a term hierarchy can 

benefit text classification for a technical language like that used in biological journal abstracts, but 

the research presented here is not restricted to biological writing. Any area that has a lexical resource 

comparable to the GO could benefit from synonym resolution and term generalization. It would be 

interesting to see if the techniques developed here generalize to non-technical text classification. For 

example, WordNet [15] is a lexical database of common English words. WordNet is like the GO
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hierarchy, in that it encodes some of the properties that the GO encodes (synonyms, term generaliza­

tion). The techniques presented here could use WordNet to aid in the classification of non-technical 

writing, like news articles. Alternatively, WordNet could be leveraged in the biological domain to 

test if the information encoded in it compliments the technical words in biological term hierarchies.

6.2.3 Using an NER system

The usefulness of a term hierarchy is limited by how up to date it is. Because it is maintained 

by humans, it is natural that the GO hierarchy’s contents will lag slightly behind the evolution of 

scientific language. An accurate Named Entity Recognition (NER) system could augment the term 

hierarchy and pick out additional multi-word phrases that are otherwise lost during white-space 

tokenization. For example, in the case study in Section 5.2.1 contains the phrase “lysosomal acid 

phosphatase”, which is the name of a particular kind of protein known to exist in many eukaryotes 

including humans, rats and mice. The GO hierarchy will match each of the words in the phrase 

“lysosomal acid phosphatase”, but will fail to identify that the three words together have special 

meaning. An NER system can pick out phrases like “lysosomal acid phosphatase” which can be 

used as additional features by a text classifier. While an NER system could not perform synonym 

resolution or term generalization, the additional features that an NER system identifies might benefit 

text classification for biological journal abstracts.

6.2.4 Investigating Other Classifications

My research only tested text classification in one specialized area: subcellular localization of animal 

proteins. An obvious extension is to test the techniques outlined here on subcellular localizations of 

other organisms. One could also apply these techniques to other classification problems, like protein 

function or a protein’s relation to disease states.

6.3 Summary

Scientific advancements in many areas of research build on each other and expedite the pace of 

discovery. This dissertation has shown another way in which scientific advancements from different 

areas (natural language processing, machine learning, biology) can be combined to improve text 

classification for biological journal abstracts. I used the GO hierarchy in two ways to improve 

text classification. One, the GO can be used as a thesaurus to perform synonym resolution. Two, 

the hierarchy’s DAG structure can be used to resolve specific terms to broad concepts, as in term 

generalization. I explored two importance weight measures, TFIDF and redundancy. In general, I 

have shown that each of TFIDF and redundancy can be used with the information contained in the 

GO to create more accurate text classifiers. In special cases, where the size of the positive data set is 

large, I found that it is best to use the redundancy importance weight measure and to forgo adding 

additional features created using the GO.
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In most cases, synonym resolution provides some benefit over baseline. Similarly synonym res­

olution and term generalization together show an improvement over baseline. Occasionally, term 

generalization and synonym resolution together show a significant improvement over synonym res­

olution alone. However, except in the case of very large classes, the F-measure is never significantly 

worse for classifiers trained on Data Sets that incorporate both synonym resolution and term gen­

eralization. Because occasionally the F-measure is significantly better, and never is it significantly 

worse, it is advantageous to use both synonym resolution and term generalization in practice.

Although this research developed techniques exclusively for biological text, the concepts pre­

sented here extend to other areas of text where term hierarchies exist and to other natural language 

processing applications that might benefit from synonym resolution and term generalization. For 

example, resources (like WordNet) that exist for non-specialized English words could be used with 

the techniques presented here to improve general text classification. Successful science is borne of 

creativity and resourcefulness. This work illustrates how several different resources - Swiss-Prot, 

biological journal abstracts, the Gene Ontology - can be used to address problems above and beyond 

those for which they were developed.
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