National Libr.
el SR

Acquisitions and

Bibliothéque nationale
du Canada

Direction des acquisitions et

Bibliographic Services Branch  des services bibliographiques

395 Wellington Street
Ottawa, Ontarno
K1A ON4 K1A ON4

NOTICE

The quality of this microform is
heavily dependent upon the
quality of the original thesis
submitted for microfilming.
Every effort has been made to
ensure the highest quality of
reproduction possible.

If pages are missing, contact the
university which granted the
degree.

Some pages may have indistinct
print especially if the original
pages were typed with a poor
typewriter ribbon or if the
university sent us an inferior
photocopy.

Reproduction in full or in part of
this microform is governed by
the Canadian Copyright Act,
R.S.C. 1970, c¢. C-30, and
subsequent amendments.

Canada

395, rue Wellington
Ottawa (Ontario)

Your file Ve 1 e

O bier NOtres 1etereng

AVIS

La qualité de cette microforme
dépend grandement de la qualité
de la thése soumise au
microfilmage. Nous avons tout
fait pour assurer une qualité
supérieure de reproduction.

S’il manque des pages, veuillez
communiquer avec [l'université
qui a conféré le grade.

La qualité d’impression de
certaines pages peut laisser a
désirer, surtout si les pages
originales ont éte
dactylographiées a laide d’un
ruban usé ou si 'université nous
a fait parvenir une photocopie de
qualité inférieure.

La reproduction, méme partielle,
de cette microforme est soumise
a la Loi canadienne sur le droit
d’auteur, SRC 1970, c. C-30, et
ses amendements subséquents.



THE UNIVERSITY OF ALBERTA

EQUILIBRIUM SOLUBILITY OF CARBON DIOXIDE IN PHYSICAL AND
MIXED SOLVENTS

by

Amr Henni @

A THESIS
SUBMITTED TO THE FACULTY OF GRADUATE STUDIES AND RESEARCH
IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE
OF MASTER OF SCIENCE

IN
CHEMICAL ENGINEERING

DEPARTMENT OF CHEMICAL ENGINEERING

EDMONTON, ALBERTA

Fall 1994



National Lib
L4 Il

Acquisitions and

Bibliothéque nationale
du Canada

Direction des acquisitions et

Bibliographic Services Branch  des services bibliographiques

395 Wellington Street
Ottawa, Oritanic
K1A ON4 K1A ON4

The autior has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada to reproduce, loan,
distribute or sell copies of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission.

395. rue Wellington
Ottawa (Ontario)

Your bie Volre eference

Our Bp Notre idference

L'auteur a accordé une licence
irréevocable et non exclusive
permettant a la Bibliotheque
nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de sa thése
de quelque maniere et sous
quelque forme que ce soit pour
mettre des exemplaires de cette
these a la disposition des
personnes intéressées.

L’auteur conserve la propriété du
droit d’auteur qui protége sa
these. Ni la thése ni des extraits
substantiels de celle-ci ne
doivent étre imprimés ou
autrement reproduits sans son
autorisation.

ISBN 0-315-95043-9

Canada



The University of Alberta

RELEASE FORM

NAME OF AUTHOR Amr Henni

TITLE OF THESIS EQUILIBRIUM SOLUBILITY OF CARBON
DIOXIDE IN PHYSICAL AND MIXED SOLVENTS

DEGREE FOR WHICH THESIS WAS PRESENTED MASTER OF SCIENCE

YEAR THIS DEGREE GRANTED Fall 1994
Permission is hereby granted to THE UNIVERSITY OF Al.LBERTA

LIBRARY to reproduce single copies of this thesis and to lend or sell
such copies for private, scholarly or scientific research purposes only.
The author reserves other publication rights, and neither the thesis
nor extensive extracts from it may be printed or otherwise reproduced without

the author’'s written permission.

NAP e
(SIGNED).... )\K\(:m_:/

PERMANENT ADDRESS:
45 B 10 BOUMERDES

35000, ALGERIA.

DATED 2.5, Aws. 1994



THE UNIVERSITY OF ALBERTA
FACULTY OF GRADUATE STUDIES AND RESEARCH

The undersigned certify that they have read, and recommend to the
Faculty of Craduate Studies ar.d Research for acceptance, a thesis entitled
EQUILIBRIUM SOLUBILITY OF CARBON DIOXIDE IN PHYSICAL AND MIXED
SOLVENTS submitted by Amr Henni in partial fulfiiment of the requirements for

the degree of MASTER OF SCIENCE in CHEMICAL ENGINEERING.

TW. Forest

Date : 5 August 1994



Abstract

The solubility of carbon dioxide has been measured in two physical solvents.
Solubility data were collected at a temperature of 40°C for methanol and at
40°C, 70°C and 100°C for triethylene glycol monomethy! ether (TEGMME]). The
experimental data collected were correlated with the Peng-Rcminson equation
of state. The solubility of carbon dioxide at 40°C has also been measured in a
mixture of 50 wt % of MDEA (methyldiethanolamine) and methanol and in
another mixture of 50 wt % of MDEA and TEGMME .

Finally data were gathered at 40°C and 100°C for the solubility of carbon
dioxide in a mixture of 40 wt % MDEA, 40 wt % methanol and 20 wt % water
and in a second mixture of 40 wt % MDEA, 40 wt % TEGMME and 20 wt %
water. The experimental data for the TEGMME system at 40°C and 100°C were

correlated 'sing the Deshmukh-Mather model.
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1.Introduction

The removal of acidic impurities like CO,, H,S and COS from gas
streams is a very important operation for the petrochemical, oil refineries,
ammonia manufacture, coal gasification and natural gas purification plants .
In general the removal requirement for H,S is very severe e.g. 4 ppm by
volume for pipeline gas at 1490 MPa and 0.1 ppm for chemical applications
such as ammonia synthesis. The CO, specification is less severe e.g. less than
1% for natural gas and 10 ppm for ammonia and 100 ppm for LNG
manufacture to prevent freezing-up in the cryogenic heat exchanger (Astarita et
al., 1983 ). Removal of mercaptans down to 100 ppm per volume has been an
accepted norm for pipeline and to a lower specification if the gas is used as a
chemical feedstock.
Acid gases are considered as poisons for a catalyst and have to be removed
from oil refineries streams, flue gas and tail gas streams in order to meet
pollution standards.

The processes available to remove acid gas impurities have been

categorized into the following classes by Astarita et al.(1983 ):

-Physical Solvents Trade Names
-Propylene carbonate Fluor
-Polyethylene glycol Selexol

dimethyl ether

-N-methyl 2 pyrrolidone Purisol



-methanol Rectisol

-Chemical Solvents

-MEA (20-35 wt % in water)

-DEA (30 wt % in water)

-DGA (60 wt % in water) Econamine
-DIPA ADIP
-MDEA

-Promoted K,CO, Benfield, Catacarb

(25-30 % K,CO,, 5 % promoter)

-ANMP(in water)

-Hybrid Systems

(Chemical and -DiPA-sulfolane-water Sulfinol D
L J
Physical solvents) (40-40-20 wt %)
-MDEA-sulfolane-water Sulfinol M

(40-40-20 wt %)

-MEA or DEA-methanol Amisol
-DIPAM (diisopropylamine) or

DETA (diethylamine)-methanol  Improved Amisol

-AMP-sulfolane-water



-Dry bed Process

-lron oxide
-Molecular sieves (zeolites)
-Cryogenic Distillation

-Membranes

Solvent selection:

In physical solvent processes the gas to be treated is washed with
solvent under pressure. The solution is then regenerated by reduction n
pressure with as little stripping as possible.

Physical solvents are economical in the treatment of gases in which the partial
pressure of acid gases is high and where the removal to low levels is not
required.

Agueous alkanolamines (chemical solvents) are used in more than 1000
gas treating plants. This accounts for more than half of the installations
(Astarita et al., 1983). As of 1987, DEA-based solvents were used to process 47
% of the treated gas volume while MEA and MDEA were used to process 23 %
and 17 % respectively (Carey et al., 1991).

Historically DEA and MEA have dominated acid gas treating applications. A
smaller number of plants uses DGA and DIPA.

The mutual solubilities of solvents and hydrocarbons are a function of

the molecular structure of the amines and their concentrations. The larger the
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number of hydroxyl groups, the more is the water solubility and the lower is the
hydrocarbon solubility. The presence of more aliphatic groups

tends to raise hydrocarbon solubility and lower water solubility (Butwell et

al., 1982).
Number of groups
Amino(-NH) Hydroxyl(-OH) Aliphatic(-CH,)
MEA 1 1 2
DGA 1 1 4
DEA 1 2 4
DiPA 1 2 6
MDEA 1 2 5
AMP 1 1 4

Figure 1 shows the conventional process configuration for a gas treating
system using aqueous alkanolamine solution.

Acid gas loading of MEA is usually limited to 0.3 - 0.4 moles of acid per
mole of amine for carbon steel. MEA is a primary amine and thus has a high
pH which enables it to reduce H,S to a very low specification. For a 15-20 %
MEA solution the heat of reaction is very high about 1919 J/g CO, ( below 0.5
mole acid gas/mole amine). A high heat of reaction implies a need for a large
steam rate in the desorber.

The degradation products of DEA are much less corrosive than those of

MEA. As a secondary amine, DEA has a reduced affinity for CO, and H,S. The



ferows: seb pioe Joj Jesysmoy oiseg *| ainbiy

[o—e—— \\4 nfadia BN
L. 1 %uoy ysopg )
, 3
ety :Lv_ AT N
»_7/
AT Y L«
' &
[ 1 1y -
108 snog
»ddug
\ il
) uwﬂuOmnd
!
19100
Pued
scd poy vawdinba [OVOHd) = w e | rlluv.

$00) 199mg



]
heat of reaction of DEA with CO, is about 1477 J/g CO, which is 25% less than
that of MEA (Polasek et al., 1985).

DGA (40-60 wt %) tends to preferentially react with CO, over H,S. It has a
higher pH than MEA and thus also allows it to achieve a very low H,S removal
specification. Unlike MEA and DEA it is not likely to react irreversibly with COS
and methyl and ethyl mercaptans. The heat of reaction is 1977 J/g with

CO,. The advantage of DGA is that it can be operated at a concentration as
high as 60 wt % which results in lower circulation rates and reduced heat
requirements for regener: ‘on .

Despite major improvements including the addition of rate enhancers,
the use of corrosion inhibitors for higher ioadings and improved heat recovery,
MDEA and hindered amines and blends of MDEA with primary or secondary
amines are replacing DEA and MEA in existing new systems (Rochelle, 1991).
The increasing concern over air poliution and the need to process both crude
oil and natural gas that contain much higher levels of H,S has made it
necessary to boost the capacity of existing units. These demands led to the
wide acceptance of MDEA-based solutions. Because of the high cost of MDEA
relative to MEA and DEA, its use as a treating solution did not follow
immediately after it was described as such by Frazier and Konl (1950). MDEA
is mainly kinetically selective for H,S in the presence of CO,. This selectivity
arises because of the absence of any hydrogen atom on the nitrogen prevents

it from reacting directly with CO, to form a carbamate (RNHCOO). CO, reacts



first with water to form a bicarbonate which is then neutralized by the amine.
CO,+H,0+R,NCH; = HCO, + R,NHCH,"

The acid gas and amine combine to form an acid-base complex called a

salt, thus, removing the acid gas from the process stream.

The reaction with H,S is that of an instantaneous proton transfer mechanism.
H,S + R,NCH, = R,NHCH,* + HS

Unlike the absorption in primary and secondary amines, the absorption in
MDEA can reach 1 mole of CO, per mole of amine. While the high CO, loading
is very attractive, the low rates of absorption of CO, in tertiary amines may limit
their use. This disadvantage can be overcome by the addition of a small
amount (5-10 %) of primary or secondary amine to an MDEA based solution.
This blending enhances the overall reaction rate (Chakravarty 1985, Polasek et
al., 1985 ).

Ballard (1980) argues that switching from MEA or DEA to MDEA in large
amine units saves over a million dollars in energy saving per year without the
damaging corrosion.

Sterically hindered amines are said to approach the stoichiometric loading of 1
mole CO,/mole amine combined with the absorption rates characteristic of
primary and secondary amines. The high loading is obtain by destabilizing the
carbamate thanks to the presence of a bulky substituent next to the nitrogen
atom. An example of a hindered primary amino alcohol is 2-amino-2-methy!-1-

propanol (AMP). 2-Piperidine ethanol (PE) is an example of a hindered
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secondary amino alcohol. An example of a hindered diamine is 1,8-p-menthane
diamine (MDA).

In order to combine the advantages of both physical and chemical
solvents, mixed solvents have been proposed for effectively treating acid
gases.This combination allows for a higher CO, loading, a lower solution
circulation rate and regeneration energy. Since the regeneration section costs
at least 50 % of the total capital cost (Sigmund et al., 1981) and that steam
cost makes 70% of the variable costs (Astarita et al., 1983), any small
improvement in this area will translate into considerable financial savings. The
chemically reactive alkanolamine makes possible achieving very low residual
levels of H,S and CO, even at relatively low total pressure, while the physical
solvent component makes possible not only the removal of mercaptans and
other organic impurities to low levels, but also the removal of part of the H,S
and CO, with only small heat effects during absorption and regeneration.
Examples of mixed solvents are Amisol (MEA or DEA with rmethanol), the
improved Amisol (DIPAM or DETA and methanol) and Sulfinol (DIPA, sulfolane
and water or MDEA, sulfolane and water). Rivas (1978) and Astarita et al.(1983)
have discussed the advantages of using mixed solvents for gas absorption
enhancement.

The objective of this study is to provide data on the solubility of CO, in
two physical solvents : methanol and triethylene glycol moriomethyl ether. This

will help in understanding the part played by the physical solvents in the mixed
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systems. The solubility of CO, is measured in mixtures of MDEA (50 wt %) and
methanol and MDEA (50 wt %) and triethylene glycol monomethyl ether in
order to isolate the influence of MDEA on the physical solvents. Finally the
solubility of CO, is measured in two aqueous mixed solvents at typical
absorption and regeneration temperatures and over a wide range of partial
pressures. The mixed solvents studied were composed of an amine,
N-methydiethanolamine (40 wt %), water (20 wt %) and methano! (40 wt %) as
a physical solvent in one case and triethylene glycol monomethy! ether (40 wt
%) as the physical solvent in the second case.

Background information on the solubility of acid gases in MDEA-based
mixed solvents is presented in chapter 1. A literature survey is presented in
chapter 2. Chapter 3 describes the experimental procedures used to obtain the
data. Experimental results and discussion are presented in chapter 4. The
results of the model used to correlate the data are presented in chapter 5.
Finally chapter 6 is a summary of the conclusions which can be drawn from the

results of this study.

2. General background
2.1 Thermodynamic framework of mixed solvents

The mixed solvent used in this study is composed of a chemical
solvent, MDEA, and two physical solvents : water and methanol in one case

and water and TEGMME in another case.
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At equilibrium the fugacities of a dissolved gas in a physical solvent are equal

in both phases:
fAv= fAL

with .Y =¢, y, P
oy, my H, exp f,,: (v,/ RT)aP

Where H, =Ilim f,/m,
Ma_o

When the 2 phases are considered as ideal:

b4 Y4 expfp: (v/ AT) aP = 1

Thus : pa =y, P = mH,

@ 1)
@2. 2)

. (2. 3)

(2. 4)

. (2. 5)

2. 6)

At low concentrations, the solubility of the acid gas in a pure physical solvent

can be described by Henry's law. In order to successfully correlate the

solubility at high concentrations, an equation of state valid for the solvent and

dilute solution can be used. In this study the Peng-Robinson (1976) equation of

state is used. A description of the Peng-Robinson equation of state is given in

appendix |. For mixtures of components with strong intermolecular interactions

a modification of P-R equation, the Peng-Robinson-Stryjek-Vera (1986)
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equaticn will be used. There is a very large number of equations available in
the literature for mixtures containing polar fluids such as water, ammonia and
alcohols [Peng-Robinson-Stryjek-Vera (1986), Patel-Teja (1982)...].

When water is present , CO, reacts chemically with the amine. The

chemical equilibrium can be represented by:

aA+bB = cC+dD (2.7)
The equilibrium constant is :
K=(mS my*/ m*m®). (v vo°/ va* ¥a') (2. 8)
For MDEA, a tertiary amine, which does not form carbamate (RNHCOO) a
theoretical loading of 1 mole of acid /mole of amine is possible.
The reactions taking place have the following form:
CO, + H,O = HCO, + H" (2. 9)

CO, + H,0 +R,NCH, » HCO, + R,NHCH,* (2.10)

2.2 Literature survey
2.2.1 Solubility of acid gases in tertiary amines

A generai survey of the literature dealing with the solubility of acid gases
in alkanolamines in general and mixed solvents in particular was presented by
MacGregor (1988), Roberts (1983) and Bosch (1989).
This survey will deal with the solubility of acid gases in aqueous MDEA and
tertiary amines based mixed solvents in general.

The solubility of H,S and CO, in aqueous MDEA has been studied by



12
Jou et al. (1982, 1993) and Bhairi (1984), Austgen (1989) and Chakma and
Meisen (1987).
The solubility of mixed acid gases, H,S and CO, in MDEA was measured by
Jou et al.(1993) and Ho and Eguren (1988).
Flynn et al.(1981) studied a new Sulfinol solvent (tertiary amine-sulfolane-water)
and compared the performance to that of the conventional Sulfinol (DIPA-
sulfolane-water).
Gazzi et al.(1980) reported the development of the "Selefining" process. Energy
costs reported were 46 % lower than those of aqueous MDEA or Selexol
processes performing the same task.
MacGregor (1988) reported the solubility of CO, and H,S and their mixtures in
a mixed soivent (MDEA-sulfolane-water).

From the study done by Leites et al.(1972), it appears that among all the
mixed solvents studied MEA-methanol mixtures yielded the highest capacity for
CO,. At higher pressures an enhancement of the solubility of CO, by the
physical solvent component of the aqueous mixtures of monoethylamine and
methanol was shown by Banasiak et al.(1981).

Subsequently the first mixed solvent chosen in this study was composed of
MDEA and methanol and water.

Woertz's work (1972) showed that the solubility of CO, in MEA and

water with diethylene glycol was greater than the corresponding aqueous

solutions. Sweny and Valentine (1970) reported on the successful use of the
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dimethy! ether of polyethylene giycol (Selexol process) as a physical solvent.
For all those rea-.-:n:3, the second mixed solvent in our study was chosen to be
a mixture of MDEA, TEGMME (triethylene glycol monomethyl ether) and water.
2.2.2 VLE models for acid gases absorption

In 1936, Mason and Dodge used a curve fitting approach to correlate
the solubility of CO, in aqueous ethanolamine. Van Krevelen et al.(1949 )
related pseudo-equilibrium constants to the ionic strength of the solution . He
was then able to predict the partial pressure of H,S in aqueous ammonia in the
ammonia rich region. The "apparent" equilibrium constants were related to the
component concentrations rather than to the activities. The activity coefficients
were set equal to unity. This approach was used by Danckwerts and McNeil
(1967) to predict the partial pressure of CO, over carbonated amine solutions.
Atwood et al.(1957) proposed a method to predict the equilibrium composition
of the CO,-H,S-Alkanolamine-H,O system. Activity coefficients of all ionic
species were assumed to be equal. This simple "mean" ionic activity coefficient
was correlated with the ionic strength. Their method was generalized by
Kiyamer et al.(1973).

Edwards et al.(1975) used a Guggenheim-type equation to represent the
activity coefficients. In this model, chemical equilibria was represented using
activities rather than concentrations. Molecule-molecule binary interaction
parameters were regressed from experimental data. Both long range and short

range effects were considered. The model was valid for concentrations less
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than 2 M.

One of the most popular model, because of its computationa! simplicity,
was developed by Kent and Eisenberg (1976). All activity and fugacity
coefficients were set to unity. All the equilibrium and Henry's law constants
were taken from the literature with the exception of the equilibrium constants
for the reactions involving the amines whnich were fitted to the experimental
data. The non-idealities were then lumped into these fitted constants.

An improved Kent-Eisenberg model was proposed by Chakma and Meisen
(1990). As stated by Jou et al. (1982) and Chakma and Meisen (1987), the
equilibrium constants governing the main amine reaction must not be only a
function of the temperature (Kent-Eisenberg) but also depend on the gas
partial pressure, solution loading and amine concentration (Hu and Chakma
1990a, 1990b).

Austgen et al.(1989) mentioned two drawbacks to the use of "apparent"
equilibrium constants. First, the method cannot confidently be extended to
composition outside the range over which the constants were adjusted.
Second, the method cannot be used to accurately represent the true
compositions of all liquid-phase species, ionic and molecular.

Edwards et al.(1978) extended his previous model in order to predict
the solubility in much more concentrated solutions (above 10 molal). The work
of Pitzer (1973) and Pitzer and Kim (1974) was used to determine the solute

activity coefficients instead of the Debye-Hlckel equation .
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Beutier and Renon (1978) extended the use of Pitzer's equation and Edward'’s

work to include ternary interactions between liquid phase species. Chen and
Evans (1979) extended Pitzer's equation to model activity coefficients of strong
electrolytes.

Austgen (1989) developed a model based on a generalized excess
Gibbs energy. The vapour phase fugacity coefficients were calculated using the
Redlich-Kwong Soave equation of state (1972). The electrolyte-NRTL
equation [Chen and Evans(1986)] was used to represent the liquid phase
activities. The model was later extended to describe CO, solubility in blends of
amines.

Deshmukh and Mather (1981) proposed a rigorous thermodynamic
model based on the extended Debye-Hlckel equation. It is the model used in

this study. In the liquid phase the chemical reactions are as follows :

MDEAH* = MDEA + H* (2.11)
H,O + CO, = H'+ HCO, (2.12)
HCO, = H* + CO,~ (2.13)
H,0 = H* + OH (2.14)

The equilibrium constants for reactions (1) to (4) are :

K, =(H") (MDEA) v,," Yupes / (MDEAH") Yyoean” (2.19)
K, =(H") (HCO; } Y4" Yucos /(CO,) Yeo. @, (2.16)
Ky =(H") ( CO,~ )Y Yeos [/ (HCOy') Yhcos (2.17)

K, =(H") (OH) v,," Yon /@ w (2.18)
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The vapour-liquid equilibria for CO, and water are:

Pco2 Peoz = Heoz Meoz Yoz (2.19)
bw YwP = Pw Xy (2.20)
The mass balance equations are :

m, = (MDEA) + (MDEAH") (2.21)
m, Qo = (CO,) + (HCO,) + (CO,7) (2.22)
The equation of electroneutrality is :

(H") +(MDEAH™) = (HCO,) + 2(CO,”) + (OH) (2.23)

There are eight species : H,0, H*, OH", CO, , HCO, , CO,~ , MDEA,
MDEAH".

The number of unknowns is then fifteen : the activity coefficients and the
concentrations of all species except water plus the water mole fraction. The
independent equations are : three chemical equilibria equations (15-17),

two vapour-liquid equations (19-20), two mass balance equations (21-22), one
electroneutrality equation (23) and seven equations for the activity coefficients
of the seven species for a total of fifteen equations.

The way to obtain the protonation constant of the amine, the dissociation
constant of CO, and HCO;,, the interaction parameters of the extended
Debye-Huckel equation and Henry's constant for the mixed solvent will be
discussed in detail in the chapter 5. The physical solvent has an effect on the
ionic strength of the solution and on the chemical equilibrium constants and is

taken into account in the vapour-liquid equilibrium.
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The method of Brown (1973) was used to solve the above system of
non linear algebraic equations. It is based on a partial pivoting technique
similar to Gaussian elimination in linear systems.

This model was used by Chakravarty (1985) to model the solubility of acid
gases in amine blends. Roberts (1983) and Teng and Mather (1991) have also
used the model to predict H,S and CO, solubility in aqueous AMP and in
mixed solvents of AMF, water and suifolane.

MacGregor (1988) used it to correlate the solubility of CO, and H,S and their
mixtures in a solution of MDEA, sulfolane and water. Bosch (1989) utilised it to
predict the solubility of H,S and CO, in aqueous MDEA, DIPA, TEA, and MDEA
solutions. More recently Weiland et al.(1993) used the model to fit all available
phase equilibrium data for CO, and H,S in aqueous solutions of MEA, DEA,
DGA and MDEA.

3. Experimental section

The experimental apparatus is similar to that outlined by Jou et
al.(1982). The experimental apparatus is shown in Figure 2. The liquid and
vapour phases were brought to equilibrium in a windowed Jerguson cell. A 250
cm® cylindrical reservoir was attached to the top of the cell to increase the
volume of the vapour phase. The vapour from the reservoir was circulated
through the solvent by a magnetically driven pump similar to that devised by
Ruska et al.(1970).

The cell and pump were enclosed in a 0.4 m® air bath maintained at +0.1°C
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of the set point. The output of a calibrated iron-constantan thermocouple
extended through the cell was measured by a Hewilett-Packard multimeter
(3468A). The fluid pressure in the cell was measured with a calibrated Heise
gauge which had an accuracy of +0.1% of the scale span. A gas sample line
extended from the reservoir to the sample loop of the gas chromatograph. The
liquid sample line led from the bottom of the cell to a needle valve located
outside the air bath.

Prior to the introduction of the fluid the apparatus was brought to the desired
temperature and purged with nitrogen to remove traces of oxygen (when
necessary the cell was first heated to 120°C to remove any water present). The
solvent was fed by gravity to the equilibrium cell and carbon dioxide was then
added. At low pressures of CO,, nitrogen was added to keep the total pressure
above atmospheric pressure. To ensure that equilibrium was reached, the
vapour was bubbled through the liquid for at least 8 hours. The vapour and
liquid were then sampled. The vapour was analyzed in a gas chromatograph
(Hewlett-Packard 18714A) using a 3 m long, 6.35 mm O. D. column packed
with Porapak QS and an oven operated at 120°C in the case of CO,-methanol.
In the case where MDEA or TEGMME were presenta 3 m, .35 mm O. D.
Chromosorb 104 packed column was used. The oven temperature was
programmed to go from 120°C to 250°C, after the appearance of the water
peak . When nitrogen was present in the gas phase, a Porapak S column was

used and the oven temperature was set at 70°C and programmed to rise to
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120°C if methano! and water were present.
The liquid phase was analyzed by withdrawing a sample of about 2 grams of
solution into at least 10 grams of 50 wt % aqueous DEA (DGA when MDEA is
present). Care was taken to make sure that the amount of DEA (or DGA)
present was enough to absorb all the CO, present in the 40 cm® sampling
container.
When the pressure was less than 100 kPa the liquid was sampled without
dilution into aqueous DEA or DGA.
When a mixture of CO, and methanol in the vapour phase was present the
response factor was found to be equal to 1.03. For the liquid phase,
standardized solutions (20 x|, 100 x 1, 200 x|, 300 w1, 500 w1, 600 x|, 1000 u 1
of CO,, 1 ulof 8, 20, 40, 55 wt % of aqueous MDEA or 1 4l of 1, 5, 10, 15,
52 wt % of aqueous methanol or 1 . | of 10, 15 wt % of aqueous TEGMME)
were used depending on the system studied and the area count of the sample.
In the case of MDEA and methanol the concentration was checked by titration
using 0.1 N hydrochloric acid with methyl red as an indicator.
Each sample was analyzed five times for each equilibrium point. The average
of each individual composition is reported as the equilibrium composition. For
the binary systems, the repeatability of the vapor and liquid mole fraction was
generally within + 0.001 and = 0.002, respectively. The vapor and liquid mole
fractions for the ternary systems were reproducible to within+ 0.002 and

+0.003, respecrively. The amine loadings in the quaternary systems were



20
reproducibie to within =10 %.

Materials

The MDEA (99 % pure) was purchased from Aldrich Chemical Co.
(Milwakee, WI). TEGMME (95 % pure), DEA (99 % pure), methanol (99.9 %
pure) and anhydrous methanol ( 99+% pure , water < 0.005 %) were bought
from Aldrich Chemical Co. Carbon dioxide (99.9 % pure) was purchased from
Linde (Edmonton, Alberta). DGA was purchased from Pfaltz & Bauer Inc.

(Waterbury, CT). Water was distilled in our laboratory.

4. Experimental resuits and discussion
4.1 Preliminary resuits

4.1.1 Pure methanol results

The equilibrium solubility of CO, in methanol was measured at 40°C to
provide a comparison with the values measured by Suzuki et al.(1990 ). The
data are necessary to obtain the interaction parameter é,, for CO, and
methanol in the Peng-Robinson equation of state. The data are shown in Table
1 and plotted in Figure 3. The results are in very good agreement with those
published by Suzuki et al.(1990). The solubility was correlated by PR equation.
The objective function used to optimize the interaction parameter was of the
type : O F =X( | Pexp-Pcaic| / Pexp) / N (4.1)

N: Number of points



Table 1. Vapor-liquid equilibria at 40°C of CO,(1)-methanol (2) system

P ( kPa) X, Y,
685 0.035 0.981
1125 0.052 0.983
2145 0.112 0.984
2896 0.164 0.986
4910 0.284 0.984
6954 0.467 0.977
7400 0.599 0.965
7713 0.674 0.948
8210t 0.965 0.965

t Critical point

21
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Data published by Leu et al.(1931) (Figure 4) were used to obtain the

values of the interaction parameters for other temperatures. The results of the
optimization and the objective functions are presented Table 2.
The critical point experimentally found is plotted with those found in the

literature in Figure 5.

Table 2. Peng-Robinson interaction parameters and objective functions

for the CO,(1)-methanol(2) sy .tem

T,K 5, OF(%)
313.2 0.0685 3.82
323.2 0.073 2.70
352.6 0.085 4.22
394.6 0.110 5.49
477.6 0.184 1.92

4.1.2 Pure TEGMME results

The equilibrium solubility of CO, in TEGMME was also measured at 40
°C, 70°C and 100°C and the data are presented in Figure 6. The purpose of
these measurements is to use the data to get the interaction parameter é,,
(CO,-TEGMME) for the Peng-Robinson equation. The data are shown in

Table 3. The critical pressures and temperatures of MDEA and TEGMME were
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estimated using Lydersen'’s correlation (Reid et al., 1987). The constants of the
Antoine equation for TEGMME were reported by Troch et al.(1991). The
acentric factors were obtained from Lee-Kesler correlation (Reid et al., 1987).
The results are presented in Table 4. The interaction parameters and the
objective functions are presented in Table 5.

Figure 7, 8 and 9 show the partial pressure of CO, versus the CO, mole
fraction in the three physical solvents [sulfolane (Jou et al., 1990), TEGMME
and methanol] at 40°C, 70°C and 100°C.

The objective functions for sulfolane and the interaction parameters are
presented in Table 6. No TEGMME could be detected in the vapour phase. The
vapour pressures of TEGMME at 40°C, 70°C and 100°C were estimated using
the equation published by Troch et al.(1991) and found to equal to 2.9 Pa, 40.5

Pa and 315 Pa respectively.
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Table 3. Solubility of CO,(1) in TEGMME(2).

40°C 70°C 100°C

P( kPa) X, P ( kPa) X, P ( kPa) X,

783 0.100 443 0.051 300 0.025
1460 0.162 800 0.091 450 0.037
2108 0.228 1155 0.128 748 0.066
2782 0.278 2152 0.219 1392 0.100
3430 0.388 2682 0.274 2691 0.194
4097 0.482 3202 0.318 3083 0.225
5076 0.588 4143 0.385 3732 0.268
6209 0.662 4953 0.441 4518 0.298
7877 0.739 5734 0.507 5166 0.340
8794 0.817 7004 0.531 6063 0.375

7282 0.422
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Table 4. Pure component parametars for Peng-Robinson equation of state

Comp. T.( K) P. ( kPa) (A
MDEA 680.7 4053 1.125
TEGMME 682.4 3002 1.119

Table 5. Peng-Robinson interaction parameters and objective functions

for the CO,(1)-TEGMME(2) system

T,K s, OF(%)
313.2 -0.011 4.64
343.2 -0.053 2.21
373.2 -0.055 3.71

Table 6. Peng-Robinson interaction parameters and objective functions for

the CO, (1)-sulfolane(2) system

T7,K [ OF(%)
313.2 0.0272 2.90
343.2 0.0920 5.41

373.2 -0.0100 3.71
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4.2 Experimental resuits
4.2.1 Methano!-MDEA mixture

The equilibrium solubility of CO, was measured in a mixture of 50 wt %
of methanol and MDEA. Great care was taken in the cell to make the mixture
water-free in order to avoid any chemical reaction between the CO, and the
MDEA. The solvent was analyzed by chromatography and was found to be
water-free.
The data are presented in Table 7 and in Figure 11. The data couid not be well

correlated by the Peng-Robinson equation.
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Table 7. Solubility of carbon dioxide (1) in a mixture of MDEA (50 wt%) and

methanol (2) (50 wt %) at 40°C

Pcoa(kP8) X, X,
313 0.059 0.757
565 0.075 0.787

1161 0.118 0.744

1911 0.151 0.706

2596 0.1721 0.694

3496 0.195 0.657

4417 0.221 0.651

5813 0.246 0.613

7392 0.275 0.577

4.2.2 TEGMME-MDEA mixture

The equilibrium solubility of CO, was measured in a mixture of 50 wt %

TEGMME and MDEA. Here also care was taken to insure that the mixture was

water-free. The data are presented in Table 8 and in Figure 12.
The data could not be very well correlated by the PR equation and no

improvement was found by using the PRSV equation of state. The objective

functions for the two mixtures and the interaction parameters are presented in

Table 9.
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The failure to correlate the MDEA-methanol and MDEA-TEGMME
mixtures could be explained by the formation of complexes. Sada et al. (1985,
1989) and Takeshita and Kitamoto (1988) claim that amines can react with
CO, in a non-aqueous medium (polar or non-polar solvents). Sada et al.(1989)
studied specifically the case of TEA with methanol and maintain that a

chemical reaction occurs. This statement is in contrast with the finding of

Versteeg and van Swaaij (1988).
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Table 8. Solubility of carbon dioxide (1) in a mixture of MDEA (S0 wt %)(2)

and TEGMME (50 wt %) at 40°C.

P (kPa) X, X,
294 0.053 0.613
583 0.129 0.571

1093 0.244 0.471

2875 0.324 0.451

4295 0.376 0.385

5245 0.399 0.374

6622 0.428 0.354

8403 0.506 0.304

10043 0.492 0.334
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Table 9. Interaction parameters for the Peng-Robinson equation of state
and objective functions for CO,-MDFA-MeOH and CO,-MDEA-TEGMME

mixtures at 40°C.

CO,(1)/MEOH(2)/MDEA(3) CO,(1)/ MDEA(2)/TEGMME(3)
8., -0.25 -0.011
S, -0.05 -0.023
s, 0.0685 -0.14
OF 43.14% 39.78%

4.2.3 Methanol-MDEA-water mixed solvent resuits

The first mixed solvent studied consisted of 40 wt % MDEA, 40 wt %
methanol and 20 wt % water. The data at 40°C and 100°C are displayed in
Figure 14 and Table 10. The loading (a) is expressed in terms of moles of acid
per mole of amine. Two experimental data were obtained at 120°C to check the
fact that at high partial pressures of CO,, the data obtained at 100°C almost

cross those at 40°C.



Table 10. Solubility of CO, in mixture of MDEA (40 wt %) - methanol

(40 wt %) - H,O (20 wt %) at 40°C and 100°C.

42

Pcoz a Pcoz a
(kPa) (mole CO,/moie MDEA) (kPa) (mole CO,/mole MDEA)
40°C 100°C
3 0.040 48 0.010
12 0.029 78.6 0.014
33 0.128 110.6 0.019
47.3 0.203 123.8 0.021
110.4 0.259 552.8 0.368
157 0.421 1641.2 0.567
305 0.732 1973 0.776
438 0.920 2313.7 1.057
537 0.991 3866 1.458
726 1.205 5367 1.734
1012 1.240 7044 1.752
2046 1.310
3052 1.565
4618 1.630
5447 2.078



4.2.4 TEGMME-MDEA-water mixed solvent results

The second mixed solvent studied was composed of 40 wt % TEGMME,
40 wt % MDEA and 20 wt % water. The solvent had the same weight
composition as the previous mixed solvent, only the physical solvent,
methanol, was replaced by TEGMME. Data have been obtained at 40°C and
100°C. The results are presented in Table 11 and in Figures 13 and 14. At
100°C, the experiment was carried to the highest pressure possible for the cell

without reaching a value of unity for the amine loading.

5. Correlation of experimental data
5.1 Henry’s constants evaluation
5.1.1 Pure solvents Henry’s constants

The Henry 's constant can be extracted from experimental VLE data .
The fugacity versus the pressure could be well correlated by the Krichevsky -
Kasarnovsky equation (1935). The form of the equation is given in appendix |.
The fugacity was calculated using the Peng-Robinson equation of state. Plots
of In (f,/x,) versus ( P - P,°) at 40°C, 70°C and 100°C are shown in Figure 15.

The results of the regression are displayed in Table 12.



Table 11. Solubility of CO, in mixture of MDEA (40 wt %) - TEGMME
(40 wt%) - H,0 (20 wt %) at 40°C and 100°C.

Pco: a Pcos a
(kPa) ( mole CO,/mole MDEA) ( kPa) (mole CO,/mole MDEA)
40°C 100°C
3.4 0.013 25.6 0.0C5
7.7 0.021 27.3 0.067
27.3 0.068 79.4 0.007
48.8 0.109 178 0.012
124 0.183 219 0.017
133 0.218 273 0.019
159 0.238 482 0.044
165 0.259 882 0.079
196 0.355 1323 0.104
234 0.411 1929 0.147
619 0.493 3446 0.249
749 0.627 4128 0.273
1048 0.715 5432 0.285
1408 0.884 5956 0.305
2239 0.942 8091 0.619
14370 0.980 10765 0.724
15270 1.000 12626 0.738
16330 1.126
17725 1.148

19980 1.211 Hwo liquid phases observed
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Table 12. Henry's constants for CO,(2) in TEGMME(1).

Temperature ( K) H,,(MPa)
313.2 7.50
343.2 8.39
373.2 11.84

5.1.2 Mixed solvents Henry’'s constants

Mixed solvent Henry's constants for the TEGMME system were
regressed from the experimental data at 40°C and 100°C. Only data for a
loading greater than unity were used (physical solubility is dominant and no
chemical reaction is taking place). Fugacity from PR equation is regressed
versus the molality. The results of the regression are presented in Table 13 .
Note that at 100°C, no experimental data could be obtained at a greater than
unity. In order to obtain those data, an extrapolation was performed using the
last three experimental points of highest loading.

Table 13. Henry’s constants for CO, in MDEA-TEGMME-water system.

Temperature (K) Henry’s constant (MPa-kg/mol)

313.2 7.40

373.2 5.97
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§.2 Evaluation of dielectric constants

The dielectric constants of the solvent are used in the constants A and B of the
Debye-Htckel equation :

Iny, =(Az21°°/1+b,BI°) +3 % B,;m, (5.1)
A=-42x10°(1/eT)*?

B=503x10°(1/eT"?

b, :size of hydrated ions (Butler, 1964)

2, electric charge

B, : interaction parameters

m, : molality, mol / kg

The dielectric constants for the mixture of methano! and water were correlated
as a function of the weight composition . The raw data were published by
Bates and Robinson (1966).

The dielectric constants of the mixture of ethylene glycol and water as reported
by Franks (1973) were used in substitution to those of TEGMME and water.

The results of the regression are presented in Table 14,
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Table 14 . Regression of the dielectric constants for the mixtures MeOH(1)-

water(2) and ethylene glycol(1)-water(2).

€.= ao+at*w,' +a2 *(w,)’ +a3*(w,)

40°C ao al a2 ad
MeOH-water 73.168 -41.987 -1.2143
TEGMME-water 73.168 -26.624 -1.3977 -10.19
100°C ao a1l

MeOH-water 51.907 -33.930

TEGMME-water 55.674 -29.118

5.3 Interaction parameters evaluation

The interaction parameters for MDEA-water-CO, (Table 15) are the

same as those reported by Chakravarty (1985) and MacGregor (1988). The

parameters were fitted to the solubility of CO, in aqueous MDEA reported by

Jou et al.(1982). The Debye-Hlckel constants were obtained from Butler

(1964).

' mass fraction



Table 15. interaction parameters for the extended Debye-Huckel equation

Species pairs Chakravarty (1985)
CO,-MDEAH"* -0.08868
HCO,-MDEA -0.01379
HCO,-MDEAH* -0.01406

5.4 Equilibrium constants evaluation for mixed solvent data

The equilibrium constant for the MDEA protonation was taken to be
equal to the value optimized by MacGregor (1988) at 40°C and 100°C . The
mixed solvent used in that work was a mixture of MDEA (30 wt %), suifolane
(20 wt %) and water (50 wt %). The MDEA protonation equilibrium constant
could have been used as extra fitting parameter if another set of data was
available with the present mixed solvent (MDEA, TEGMME and water). This
would have certainly improved the correlation of the data by the model. The
experimental data for the mixed solvents were used to obtain the optimized
values for the dissociation constants of CO, and HCO,". The objective function
used in this case was:
OF =X | (In Pgye In Pgy) | (5.2)
The least squares problem was solved with the use of two complementary

IMSL subroutines (one variable minimization DUVMIF and a multivariate
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function DUMINF) .The regressed parameters are listed in Table 16.

The prediction of the partial pressure was more sensitive to the constant for
CO, dissociation than that for HCO, dissociation. it was also noticed that the

regression was very sensitive to the value of the dielectric constants.

Table 18. Equilibrium constants for the TEGMME mixed solvent system.

parameter 40°C 100°C

K ( MDEA prot. ) 1.387x10° 1.520x10°®
K ( CO,diss.) 4.22x10°® 4.443x10°
K ( HCO, diss.) 1.14x10™ 1.093x10"2

OF 6.57 1.69



6. Conclusions
6.1 Physical solvent
The solubility of CO, in TEGMME at <0°C, 70°C and 100°C was higher

than in methano! and sulfolane. TEGMME appears to be a promising physical
solvent as it has a very low vapour pressure even at high temperature.

The CO,-TEGMME system was very well correlated by the PR equation of
state.

6.2 Non-aqueous mixed solvents

The non-aqueous systems of TEGMME-MDEA and methanol-MDEA
could not be well correlated by the PR equation. The addition of MDEA to the
physical solvents (TEGMME and methanol) in a 50 wt % proportion seems to
enhance the solubility of CO, at low pressure only.

An addition of MDEA in a lower proportion (1-15 wt %) is proposed in order to
enhance CO, solubility over all the pressure range. At very high partial
pressures of CO,, the solubility in the non aqueous mixed MDEA was equal if
not greater than both the mixed and the aqueous MDEA solutions.

6.3 Aqueous mixed solvents

Pure TEGMME is a better solvent for CO, than pure methanol, used in a
mixture with MDEA and water it has a tendency of absorbing less CO, (Figures
13 and 14) than the aqueous MDEA-methanol mixture. The advantage over the
methano! system is that TEGMME losses to the vapor phase are negligible.

The addition of water to the TEGMME-MDEA and MeOH-MDEA systems
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enhances the solubility of CO,. This enhancement disappears, as expected, at
a loading of one for the TEGMME system (Figure 13) but continues above one
for the methanol system (Figure 16). At high solution loadings(>1mole/mole
MDEA) and for both 40°C and 100°C, CO, is more soluble in the MeOH-MDEA-
water solution than in the aqueous amine soiution (Figures 14 and 16). This
can be explained by the greater power of absorption of methano! compared to
water. At both 40°C and 100°C, the solubility of CO, in the aqueous MDEA is
greater than in the TEGMME-MDEA-water system at any partial pressure
(Figures 13 and 14). This behavior was unexpected.

The predictions of the Deshmukh-Mather model were in acceptable
agreement with the experimental solubility of CO, in the MDEA-TEGMME-water
system at 100°C (Figure 18). The mode! correlates less accurately the
experimental data at 40°C (Figure 17). This was also the trend noticed by
MacGregor (1988).

The measurement of the actual dielectric constants for the TEGMME-
water mixture and the solubility of CO, at values of a above one at 100°C
would certainly improve the prediction. The prediction of the mode! could also
be improved if the protonation constants for MDEA were regressed from the

experimental data.
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Appendix |: Description of the Peng-Robinson equation of state and the Krichevsky-
Kasarnovsky equation

The Peng-Robinson Equation of state is of the form:

__RT a(r)
(v-&) (v(v+b) b(v-0b))

The fugacity coefficient of component i can be calculated from the following equation:

2y v, a; by n{ Z 124148

b (204148

g, () (Z-1) -In(Z- 8) () (D (
- 207

where

A =aP/RT?, B=bP/RT, Z=PVv/RT,a=Xyya, b=Xypb,

and

a;=(1-6;) (aa)°®

a(T) = a(Te) a(Tr, )

b(T) = b(Tc)

a(Tc) = 0.45724 R? (Te)® / Pc
b(Tc) = 0.07780 R Tc / Pc

a (T, ® )=1 + x [1- (Tn®F]

k = 0.37464 + 1.54226 w - 0.26922 w ?

The Krichevsky-Kasarnovsky equation is of the form:

VP - Povend
1, sohvent AT

5
X~
I
3
X
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Appendix Il : Sample calculations for laboratory data

1. Methanol - CO, system
a. CO, content in liquid sample:

data : P=685 kPa (total)
T=40°C
area count CO, : 1041
area count MeOH : 17338
area count CO, standard (0.1ml): 56889
area count MeOH (1.35 mg, 1.05 wt %): 3926

1041 x 701 x 0.1
mole CO, = = 6.9495887 E-8
56889 x 82.05 x 296 x 760

17730 x 1.05 x 1.30t
mole MeOH = = 2.8534061 E-6
3926 x 100 x 1000 x 32.04
6.9495887 E-8

mole fraction of CO, =
6.9495887 E-6 + 2.8534061 E-6

b. CO, content in vapour sample:

data : P=685 kPa (total)
area count CO, : 98.04 %
area count MeOH : 1.96 %
1.96
mole fraction of MeOH = = 0.019
1.86 + 98.04 x 1.03t

mole fraction of CO, : Yoo, = 1 - Yjeon= 0.981

partial pressure of CO, : pco, = P (total) y.o,= 685 x 0.981 = 672 kPa

T response factor

= 0.0348



2. TEGMME - CO, system :
a. CO, content in liquid sample :

data : P = 683 kPa (total)
P atm = 700 mm Hg
T= 40 °C
Mw (TEGMME) : 164.2
area count CO, : 2168
area count CO, std. (0.1ml) : 47283
area count TEGMME : 88007
area count TEGMME std. ( 1.7 mg,14.96 wt %) : 86902

2168 x 702 x 0.1

1.7438433 E-7

mole of CO, =
47283 x 760 x 82.05 x 296

88007 x 14.96 x 1.7
mole of TEGMME = = 1.56837 E-6
86902 x 100 x 1000 x 164.2

1.7438422 E-7
mole fraction of CO, = = 0.10005
1.7438422 E-7 + 1.56837 E-6

b. CO, content in vapour phase:

No traces of TEGMME were found in the vapour phase.
partial pressure of CO, : p.o, = P = 689 kPa

3. MDEA - MeOH - CO, system :

a. CO, content in liquid sample:

data : P = 363.5 kPa (kPa)
P atm. = 701 mm Hg
area count CO, : 73278
area count CO, std. (0.1 mi) : 5525
area count MeOH: 41425
area count MeOH(1.5 mg, 9.74 wt %) : 61898
liquid sample +(DGA+water) : 12.471 g
liquid sample in syringe : 1.6 E-3 g
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5525 x 0.1 x 701 x 44
g Co, = = 1.2699272 E-5

73278 x 760 x 82.05 x 296

46960 x 1.6 x 9.74
g MeOH = = 1.1823074 E-4

61898 x 1000 x 100

Total =1.2699272 E-5 + 1.1823074 E-5 =1.3083001 E-4 g

12.471
mass of MDEA = 1.8512 - 1.3083001E-4 ————— = 0.831461818 g
1.6 E-3
1.2599272 E-5 x 12.471
mass of CO, in liquid sample = = 0.09820345 g
1.6 E-3
12.471
mass of MeOH in liquid sample =1.1823074 E-4 ————— = 0.921534724 g
1.6 E-3
0.08820345/44

mole fraction of CO, =

0.0882C345/44 +0.921534724/32.04+0.831461818/119.16
= 0.0588

0.921534724/32.04

mole fraction of MeOH=
0.921534724/32.04+0.09820345/44+0.831461818/119.16

= 0.7575
mole fraction of MDEA= 1 - ( 0.0588 + 0.7575) = 0.1837

b. CO, content in vapour phase :

data : water partial pressure= water vapour pressure x water mole fraction
=7.38 kPa x 0.4120 = 3.04 kPa
area count CO, : 832456
area count CO, std. (0.1 ml) : 86798
area count MeOH : 67714
area count MeOH std.(1.6 , 9.74 wt % ): 59618



832 x 0.1 x 701
mole CO,= = 3.64193988 E-5
86798 x 760 x 82.06 x 296

67714 x 1.6 x 9.74
mole MeOH = = 85.5244303 E-6
59618 x 1000 x 100

3.64193988 E-5
mole fraction of CO, = = 0.8683
3.64193988 E-5 + 5.5244303 E-6

partial pressure of CO, : py, = (363.46 - 3.04) 0.8683 = 313 kpa
4. MDEA - TEGMME - CO, system:
a. CO, content in liquid sample :

data :P = 294 kPa (total)
P atm. = 706 mm Hg
area cocunt CO, : 902
area count CO, std. (0.1 ml) : 46926
area count TEGMME : 30892
area count TEGMME std. (1.4 mg, 1C.13 wt %) :
area count MDEA : 20257
area count MDEA std. ( 1.7 mg, 8 wt %) : 30610

802 x 0.1 x 706
mole of CO, = = 7.3521407 E-8
46926 x 760 x 82.05 x 296

30892 x 1.4 x 10.13
mole of TEGMME = = 4.669351yL E-7
57327 x 1000 x 100 x 164.2

22958 x 1.7 x 8
mole of MDEA = = 8.5601057 E-7
30610x 1000 x 100 x 119.16




7.352107 E -8

mole fraction of CO, =
7.352107 E -8 + 4.6693314 E-7 + 7.5530345 E-7

=0.0526

4.6693315 E-7

mole fraction of TEGMME = -
4.6693315 E-7 + 7.352107 E-8 + 7.5530345 E-7

= 0.3343

mole fraction of MDEA = 1 - (0.0526 + 0.3343 ) = 0.6129

5. MDEA - MeOH - CO, - water system :
a. CO, content in liquid phase :

data : P = 205 kPa (total)
P atm. = 710 mm Hg
area count CO, : 3507
area count CO, std. (20 ul) : 19469
area count MDEA : 189745
area count MDEA std. (1.8, 40.81 wt %) : 245094

3507 x 20 x 710
mole fraction of CO, = = 1.3857872 £-7
19469 x 1000 x 296 x 760 x 82.05

189745 x 40.81 x 1.8

mole fraction of MDEA = = 4.7725034 E-6
245094 x 100 x 1000 x 119.16

1.3857872 E-7
amine loading a = = 0.029 mole CO, / mole amine
4.7725034 E-6
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b. CO, content in vapour phase ( low pressure )

data : area count CO, : 40578
area count CO, std. (60 ul) : 116010
area count N, :1580835
area count N, std. (700 u!) :1202267
area count MeOH : 181564
area count MeOH std. (1.7 mg, 9.74 wt %): 96295

40578 x 60 x 710
moie of CO, = = 8.0727391 E-7
11601 x 1000 x 296 x 760 x 82.05

1580835 x 700 x 710
mole of N, = = 3.56404359 E-6
1202267 x 1000 x 296 x 760 x 82.05

181564 x 9.74 x 1.7
mole of MeOH= = 9.7440919 E-6
96295 x 100 x 1000 x 32.04

8.0727391 E-7

mole fraction of CO, =
8.0727391E-7 + 3.5404359 E-6 + 9.7440919 E-6

= 0.0573

partail pressure of CO, : peo, = (205 - 3.04) 0.0573 = 11.57 kPa

c.CO, content in vapour phase :

data : P = 193.7 kPa ( total)
P atm. = 700 mm Hg
area count CO, = 474832
area count CO, std. (700ul) = 429465
area count MeOH = 53942
area count MeOH std. (1.7mg, 9.74 wt %) : 44852



474832 x 700 x 698
mole of CO, = = 2.926724 E-5
44852 x 100 x 32.04 x 1000

53942 x 9.74 x 1.7
mole of MeOH= = 6.2152786 E-6
44852 x 100 x 32.04 x 1000

2.926724 E-5
mole fraction of CO, = = 0.8248
2.926724 E-5 + 6.2152786 E-6

partial pressure of CO, : pco, = (193.7 - 3.04 ) 0.8248 = 157.2 kFa

[a)
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Figure 15, Fit of the fugacity of CO, in TEGMME to K—K equation



