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Abstract

A common problem in naturally fractured reservoirs (NFRs) is a lack of data caused by

few wells; or at least, few wells with core or borehole images. Secondary data (such as

seismic) can be used to improve predictions of fracture intensity in between the wells.

Common geostatistical techniques for incorporating secondary data rely heavily on the

correlation coefficient, which is influenced by outliers and whose uncertainty is usually

unknown or not assessed in practice. A novel method is developed for calculating a

robust correlation coefficient and propagating uncertainty in the correlation through

reservoir modelling of fracture intensity. Discrete fracture networks (DFNs) are created

to reproduce the models of fracture intensity.

Current DFN modelling techniques incorporate and honour some geological infor-

mation such as intensity and orientation data. However, most DFN modelling algo-

rithms and software do not account for similarity in the orientation of nearby fractures,

fracture network connectivity or fracture spacing in an explicit manner. This thesis

shows that some natural fracture networks are not realistically modelled by conven-

tional techniques. A new discrete fracture network simulation algorithm is developed,

which works by simulating more fractures than are required and iterating to find a sub-

set that best matches target spatial statistics. It is shown that the proposed simulation

algorithm results in fracture networks that are more geologically realistic compared

with the traditional methods. The increase in geological realism is expected to lead to

better resource predictions and economic decisions for reservoir management.
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Chapter 1

Introduction

This chapter is organized as follows. Section 1.1 motivates geological modelling of

petroleum reservoirs. Naturally fractured reservoirs are introduced as a special case of

petroleum reservoirs and their importance is noted. Section 1.2 provides background

on current methods for characterizing naturally fractured reservoirs. Section 1.3 and

1.4 describe the problem statement and summarize the contributions of this thesis.

Section 1.5 provides an outline for the rest of the thesis.

1.1 Research Motivation

The proposed research is in the field of geostatistics, which can be thought of as a

philosophical approach to spatial data in the presence of natural variability or as a

collection of mathematical and statistical techniques that can be used to analyse and

model data with spatial locations. Geostatistics was developed in the mining industry

and has been used to evaluate natural resources such as mineral or petroleum deposits

as well as environmental sites. Geostatistics is often used to make predictions about

the value of a particular property, such as porosity, mineral grade, or lithology, at

unsampled locations in space. One of the main advantages of geostatistics is that it

enables the quantification of uncertainty in our predicted values.

Geostatistical modelling of petroleum reservoirs is now commonplace in a variety

of reservoir types, as is evidenced by the wide array of books and articles available

on the subject. To name just a few, the reader is referred to Isaaks and Srivastava

(1989); Goovaerts (1997); Deutsch and Journel (1998); Deutsch (2002); Wackernagel
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(2003); Chiles and Delfiner (2012) and the references contained therein. There are many

reasons for the widespread use of geostatistical techniques to build reservoir models.

Some important reasons include:

• Geologists and engineers are being faced with an increasing amount of data that

occur at a variety of scales (i.e. consider the variation in scale of core plugs,

well log data and seismic data). Geostatistical techniques provide a quantitative,

unambiguous and repeatable means for generating reservoir models that honour

and integrate various sources of data including (but not limited to) core and well

data, seismic data, trends and expert geological knowledge (Deutsch, 2002).

• In addition to providing estimates or simulated values of reservoir properties,

geostatistical models provide a means for assessing uncertainty in the modelled

resource. Kriging provides the variance of local estimates while stochastic simula-

tion enables assessment of global uncertainty in reservoir properties. For example,

the geomodeller can calculate maps or volumes of the probability of shale at each

grid cells in a model. Such a map would be useful for locating new wells.

• It is also important to provide a reliable means for calculation of resource esti-

mates. These volumetric estimates can be used to project the economic value of

reservoirs and can be used as a basis for comparing alternative resource projects.

For those interested readers, Deutsch (2002) provides additional discussion moti-

vating geostatistical reservoir modelling.

This thesis is mainly concerned with geostatistical modelling of naturally fractured

reservoirs (NFRs). A NFR is defined as “a reservoir in which naturally occurring

fractures either have, or are predicted to have, a significant effect on reservoir fluid

flow, either in the form of increased reservoir permeability and/or reserves or increased

permeability anisotropy” (Nelson, 2001). It’s important to note that fractures may not

only provide a positive effect on the flow performance of a reservoir. In the case where

fractures are in-filled with gouge, mineralization or another low permeability substance,

they may act as barriers to flow. A reservoir fracture is a “naturally occurring
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Figure 1.1: Two common fracture styles; joints and faults. The relative orientation
of the principal stresses with respect to the fracture plane is shown along with the
direction of displacement (Modified from Narr et al. (2006)). Not to scale.

macroscopic planar discontinuity in rock due to deformation or physical diagenesis”

(Nelson, 2001). There are two types of fractures that fit this definition: faults and

joints (U.S. Department of the Interior Bureau of Reclamation, 1998; Park, 2004).

Figure 1.1 shows the formation of joints and faults relative to their stress state.

Faults are created oblique to the direction of the principal stresses at the time

of faulting and show significant shear displacement. Joints, on the other hand, are

fractures with no shear displacement and small displacement normal to their surfaces.

Joints develop parallel to the maximum horizontal stress at the time of formation (Narr

et al., 2006) (See Figure 1.1).

Rock fractures are prevalent in the Earth’s upper crust. They are seen in nearly all

rock masses by observing fractures in core and most rock outcrops. Petroleum reservoir

rock is no different. It is likely that most petroleum reservoirs contain fractures (Narr

et al., 2006). In some reservoirs, the fractures do not play a significant factor in the

development and production of hydrocarbons. In others, fractures can play a key role

in production either by enhancing fluid flow (in some cases making production from an

otherwise low-quality reservoir feasible) or by acting as a barrier.

Reliable estimates on how much of the world’s petroleum reserves are known to be

in NFRs are hard to come by, but some estimates in the literature are as high as 60%

(Beydoun, 1998; Roxar, 2009; Waldren and Corrigan, 1985).

In order to optimize management and production of NFRs, detailed information on
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the attributes, properties and behaviour of the fracture network must be known along

with those of the rock matrix. There are several aspects unique to NFRs that make

them more difficult to characterize, model and produce compared to other reservoirs

whose fractures have little or no effect on production.

• In NFRs there is a need to characterize the fractures in addition to the rock

matrix. Characterization of the fractures involves gathering data to define frac-

ture attributes such as size, orientation, spacing, porosity, aperture, intensity and

connectivity. Some of these attributes, such as aperture and size are difficult to

characterize (see Section 1.2).

• One of the difficulties in characterizing the reservoir fractures is simply in gath-

ering enough data. Lack of sampling is a common problem in NFRs where there

may be few vertical wells with available core or image log data from which to

draw fracture statistics. Further complicating matters is the fact that verti-

cal wells have a relatively low probability of intersecting sub-vertical fractures

(Baker and Kuppe, 2000; Narr et al., 2006; Makel, 2007). Cored horizontal wells

provide a valuable source of additional information on vertical fractures, but are

not normally available.

• There is also a need to characterize the matrix-fracture interactions. The interac-

tion between the high pore volume but low permeability rock matrix and the low

pore volume but high permeability fractures is a function of matrix architecture,

fracture geometry, stress state and the mechanisms and physical processes that

control the transfer of hydrocarbons from the matrix to the fractures (Makel,

2007).

• Directly measured fracture data only exist at well locations. Unfortunately inter-

well predictions of fracture properties is difficult due to their complexity and

high variability. Fracture porosity and fracture permeability may show shorter

correlation ranges than their matrix property counterparts (Makel, 2007).

Although developing permeability models to represent NFRs is a challenging task
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due to the aforementioned reasons, the uncertainty in predictions of reservoir perfor-

mance can be reduced by integrating as much available data as possible (Reza, 2003).

As such, there is a need to integrate all available information such as: formation micro-

images (FMI), well-test data, production data, seismic surveys, well log data and data

from outcrops. This thesis proposes novel approaches to the integration of multiple

data types into geomodels of NFRs.

1.2 Characterization and Modelling of NFRs

Characterizing and modelling NFRs is challenging; however, the task can be distilled

down into a few main goals: 1) observing the fractures in the wells and determining

which (if any) are important; 2) determining reasonable fracture attributes; 3) deter-

mining how best to model the inter-well locations; and 4) translating and simplifying

fracture information for a flow simulator.

1.2.1 Data Sources for Characterization of NFRs

There are several potential sources for data that may help in the characterization

of natural fracture networks such as: core data, image logs, borehole logs, seismic

geophysics, outcrop analogues, production tests and production data. Core data is

the most useful data source, especially when oriented, and is the only way direct way

to measure fractures in a reservoir. Other sources of data have varying degrees of

usefulness. For example, seismic data may be very useful in some reservoirs and not

others. Production testing could be useful to determine the permeability of a fault,

which cannot be known from core data.

Sampling bias due to the orientation of the borehole in relation to the fracture

orientation is common, but can be corrected for using the Terzaghi correction (Terzaghi,

1965), which is discussed in more detail in Chapter 4. Estimates of fracture apertures

from core are highly uncertain due to removing the core from its in-situ stress state

and possible core damage due to drilling and handling. However, it may be possible

to estimate apertures by measuring the width of joint fill in the case of cemented or

partially cemented joints (Makel, 2007). Making the distinction between shear and
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tensile fractures (joints) is only possible by examining core and can be important if

the two different types of fractures have different dimension characteristics and spatial

distributions (Cacas et al., 2001; Odling et al., 1999). Fracture type can also be used

to help determine relative age of fractures and split them into sets.

Borehole image logs yield similar information compared to core data and is also

very useful. One advantage of image logs is that they provide a more complete record

compared to core since they are often taken over greater depth intervals. However,

resolution limitations may mean that some fractures with small apertures are not de-

tected. It is possible, in theory, to determine apertures from image logs; however,

accuracy is limited by borehole image resolution (Luthi and Souhaite, 1990). Even

though core and image logs provide similar information, they can be used together to

reduce uncertainty in the measured fracture attributes.

If suitable outcrops are available, they may provide both qualitative and quantita-

tive information. Outcrops can help define the fracturing style (dispersed systematic

joint sets vs. localized swarms of fractures) as well as provide information on the ori-

entation, length and spacing of fractures (Cacas et al., 2001). Outcrop data should be

used with extreme caution since they are located some distance away from the actual

reservoir and are subject to stress unloading and weathering.

Seismic geophysical surveys can be used to identify the location of large-scale faults

and fractures. Seismic amplitude attributes, such as coherency, can be analysed and

used to create fault probability maps (Bourbiaux et al., 2002). Seismic anisotropy, or

azimuthal, analysis is a relatively new development that shows promise for mapping

fracture orientation and intensity between wells (Bourbiaux et al., 2005; Angerer et al.,

2004). It works by decomposing the seismic attributes into a common geological part,

an azimuth-dependent part (which supplies the fracture information) and random noise.

Sometimes seismic AVO or shear wave attribute maps can be generated to infer small-

scale fracture orientation and density changes (Eikmans et al., 1999). Seismic data

must be corroborated with well bore information to assess the validity of using it to

predict at inter-well locations.

Drawdown or buildup tests can be conducted. In a draw-down test, the well is
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pumped for some time and then shut-in. The pressure response and fluid level in the

well is monitored over time. A plot of log-time versus log-pressure can provide an

indication of the effective fractures and fracture connectivity (Narr et al., 2006). Well

tests can also provide an indication of both a fracture dominated response and a matrix

dominated response, which is called a dual porosity system; however, many NFRs do

not exhibit the characteristic dual porosity pressure response.

Interference testing between multiple wells can provide an assessment of reservoir

flow over larger areas (Narr et al., 2006). This is done by creating a pressure pulse in one

well and measuring the response in nearby wells and can provide valuable information

about large scale flow anisotropies. Tracer tests can also be used whereby a unique

tracer is injected in one well and its presence is monitored for in nearby wells.

Historical production data can be integrated into geomodels of petroleum reservoirs

(whether or not they are considered NFRs). Numerical history matching of produc-

tion data is an inverse problem where the geological model is modified in order to

minimize the mismatch between the simulated and historical production profiles. The

model parameters that could be modified for history matching are mainly porosity and

permeability, but could also include hydrocarbon volume, compressibility, vertical to

horizontal permeability ratio and reservoir geometry. Unfortunately, numerical history

matching is a difficult and computationally expensive task. Although automatic his-

tory matching algorithms exist, much of the history matching occurring in practice is

due to manual iteration of geological models (Deutsch, 2002).

1.2.2 Fracture Data Analysis and Statistics

An important task in any reservoir analysis is to gather and analyse all available data.

For NFRs, there is the additional task of compiling information on the fracture network.

It is important to define distributions of fracture attributes such as orientation, spacing,

length, porosity, aperture and connectivity, which are a function of the reservoir rock

porosity, lithology, structural position and brittleness (Baker and Kuppe, 2000).
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Orientation

Stereonets and rose diagrams are used for visualizing and analyzing fracture orienta-

tion data. Stereonets make it easy to group fracture data into sets based on similar

orientations and/or fracture type. Splitting the data into sets may be harder in some

fields than in others. If the average fracture orientation varies with location, it may be

hard to separate the data into sets. It may be helpful to split the reservoir into separate

regions before plotting separate stereonets for each region. The joint orientations on a

stereonet can be contoured and an average orientation could be read directly from the

plot (visually) if only an approximate value is required. For additional accuracy, the

Fisher distribution is often used to characterize fracture data sets. The Fisher distri-

bution is analogous to the normal distribution on a sphere (Davis, 2002). The Fisher

distribution is parameterized by angles φ and θ, which are measured from the z and x

axes, respectively, and a concentration parameter, κ (See Equation 1.1).

f(φ′, θ′) =
κ sin θ′eκcosφ

′

2π(eκ − 1)
; 0 ≤ φ′ ≤ 2π (1.1)

The Fisher distribution is usually valid if κ > 5. When the number of fracture poles

is greater than 30, κ can be estimated as follows:

κ =
Nf

Nf − |R| (1.2)

where |R| is the magnitude of the vector sum of the unit vectors for orientation (Golder

Associates Ltd., 2010).

Figure 1.2 shows an two examples of fracture poles generated using a Fisher distri-

bution. The figure shows that as κ increases, the spread of the distribution decreases.

Uniform dispersion across the sphere can be specified by setting κ = 0.

Length and Shape

Fracture lengths in a single set may vary over several orders of magnitude. Micro

fractures down to the millimetre scale may exist along with very large fractures or

faults that are kilometres in length (Twiss and Moores, 1992).
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Figure 1.2: Fracture poles simulated using the Fisher distribution for two values of κ.
On left: κ = 20. On right: κ = 50.

Fracture shape depends on lithology and geological structure (i.e. bed thickness).

While fractures in granite may be nearly elliptical in shape, they are often more rect-

angular in bedded sandstones or shales. The reason is generally due to fracture growth

being constrained by upper and lower bedding contacts. In these cases fractures may

tend to be longer parallel to bedding than across it as their growth often terminates at

the bed boundaries (Twiss and Moores, 1992).

Aperture

Evaluation of fracture aperture data is extremely important. Parallel plate theory

indicates that flow through a fracture is related to the cube of aperture (Witherspoon

et al., 1980; Koudina et al., 1998; Hosseinian et al., 2010).

Q =
e3∆p

12µL
(1.3)

where Q is the volumetric flow rate, e is the aperture, ∆p is the pressure drop, L is the

distance between the inlet and outlet boundaries, and µ is the fluid viscosity. Thus,

some indication of aperture is extremely important for predicting fracture permeability.

The distribution of fracture apertures is generally thought to be log-normal (Hakami

and Barton, 1990; Iwano and Einstein, 1993; Johns et al., 1993; Pyrak-Nolte et al.,

1997).

As noted earlier, fracture aperture can be measured directly from core. Although
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these measurements are subject to high uncertainty, it is preferred to no measurements

(Narr et al., 2006). Where resistivity image logs are available, apertures should be

computed and compared to those from core. The aperture data from resistivity logs is

uncertain, at least in terms of absolute aperture values. However, the relative size of

the aperture sizes are often consistent with those from core and therefore can be used

as additional information to help validate the core measurements (Narr et al., 2006;

Luthi and Souhaite, 1990). If a correlation exists between apertures from core and

those from FMI, this correlation can help assess apertures in wells that only have FMI

available.

Mud loss data can be useful for evaluating fracture apertures. Mud losses that build

gradually are thought to occur as mud is lost to the permeable matrix of the borehole

wall. Mud losses to open fractures may occur abruptly. It is, therefore, possible to

estimate fracture aperture and size through highly-accurate monitoring of mud losses

(Verga et al., 2000).

Spacing, Density and Intensity

Spacing, density and intensity are interlinked fracture network attributes. Fracture

spacing is the orthogonal distance between fracture planes and can be measured as

the distance between fractures along a scan line, or down a borehole (Makel, 2007;

Twiss and Moores, 1992). Measured spacings may need to be corrected since they are

dependent upon the relative orientation between the sampling line and the fracture

orientation. The Terzaghi correction (Terzaghi, 1965) is the most common way to

correct spacing data (See Chapter 4 for more details).

Spacing

Fracture spacing data has been presented many times in the literature. It is widely

observed that joint spacing is proportional to bed thickness (Narr and Suppe, 1991; Ji

and Saruwatari, 1998; Wu and Pollard, 1995; Price, 1966), although very thick beds

may depart from this observation (Ladeira and Price, 1981; Narr and Suppe, 1991).
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Priest and Hudson (1976) and Wines and Lilly (2002) both presented data showing

that fracture spacings followed the negative exponential distribution. However, Priest

and Hudson (1976) note that the negative exponential distribution does not apply if

there is a predominance of evenly spaced fractures. Other researchers have found that

the fracture spacing distribution follows a log-normal distribution (Narr and Suppe,

1991; Bridges, 1975; Becker and Gross, 1996). Huang and Angelier (1989) present data

from the Gulf of Suez and south-eastern France where the joints followed a Gamma

distribution, which they note is similar to a log-normal distribution. Ji and Saruwatari

(1998) presented joint spacing data from three beds that was normally distributed in

two beds, indicating roughly regular spacing, and positively skewed in the third bed,

which could be described by either the log-normal or gamma distribution.

It seems that spacing distributions described by log-normal or gamma distributions

are a consequence of the stress relaxation around a joint, which prevents formation of

new joints within some distance from existing joints. The stress relaxation shadow is

proportional to the joint height and explains why there is a correlation between bed

thickness and joint spacing (Becker and Gross, 1996).

The terms fracture density, intensity and porosity are similar to each other, but

are not equivalent. The difference between the three measures is related to the di-

mension of the samples and the dimension of the measurement region (see Table 1.1).

The format for describing fracture intensity (and density and porosity) are based upon

the designation P (for persistence), followed by subscripts for the dimensions of the

measurement region and the fracture sample, respectively. Thus, a P32 fracture inten-

sity refers to the total area of fractures per volume of rock and is the most commonly

used measure when modelling fractures in three dimensions (Schlumberger, 2007). It

is usually recommended to calculate a fracture intensity measure that is related to the

dimension of the modelling area (Dershowitz and Herda, 1992).

1.2.3 Geostatistical Reservoir Modelling

Geostatistics was introduced briefly in Section 1.1 but further discussion is warranted

since geostatistical modelling of NFRs presents some unique challenges. This subsection
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Table 1.1: Measures of fracture density, intensity and porosity (modified from Der-
showitz and Herda (1992)).

Dimension of Measurement

0 1 2 3
D
im

e
n
s
io
n

o
f
S
a
m
p
le 1

P10

No of fractures
per unit length
of borehole

P11

Length of
fractures per
unit length

Linear

Measures

2

P20

No of fractures
per unit
area

P21

Length of
fractures per
unit area

P22

Area of
fractures per
unit area

Areal

Measures

3

P30

No of fractures
per unit
volume

P32

Area of
fractures per
unit volume

P33

Volume of
fractures per
unit volume

Volumetric

Measures

Density Intensity Porosity

discusses one of the more common reservoir modelling work flows using some of the

most popular and well-established geostatistical techniques.

Geostatistical Modelling of Rock Matrix Properties

The following suggested reservoir modelling work flow follows that of Deutsch (2002)

but incorporates additional details and the author’s own personal experience.

The first step in any reservoir modelling work-flow is to collect the relevant data

for preliminary data analysis and checking. Types of data that may be used in the

model are largely dependent on what is available. Generally the geomodeller should

wish to incorporate as much information as possible into the model. Typical data types

incorporated in a petroleum reservoir geomodel include: well logs, core analysis, core

photos, image logs, horizons identified from seismic surveys, well tops or picks made

by geologists, seismic attributes, well-test data and production data.

A visual inspection of the data is helpful. Viewing the well log data is often nec-

essary to identify obvious problems. Histograms and scatter plots of the variables of

interest are useful for identifying outliers. Determining statistically representative fa-

cies proportions and rock properties is critical. Declustering should be considered to

arrive at representative facies proportions and rock properties (Deutsch, 2002).
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Establishing the stratigraphic layering involves developing a conceptual model and

stratigraphic framework that define the geometry and stratigraphy of the reservoir.

Practically speaking, this involves zoning the reservoir into different stratigraphic or

geologic units or layers, which form the large-scale reservoir architecture. Each layer

corresponds to a particular time period and the surfaces (or horizons) that separate

these layers correspond to a significant geologic change (Deutsch, 2002). The idea is

to sub-divide the reservoir into large-scale geologically similar units. Most often, the

boundaries or horizons between layers are “picked” from well logs and/or by looking

directly at the core. Horizons are usually estimated at inter-well locations using one of

any number of mapping techniques such as: kriging, inverse distance, spline methods,

etc. Some horizons can be mapped from two or three-dimensional seismic surveys.

Modern day commercial reservoir geomodelling software is generally capable of

defining complex corner-point grids, called stratigraphic grids, that conform to faults

and undulating horizons. Grids could be constructed to conform to a maximum flooding

surface. The grid for each geologic layer could conform to separate horizons. It may

be desirable to construct a grid parallel to some surface that has since been eroded,

rather than present bounding surfaces. Stratigraphic grids are usually transformed to

a Cartesian grid (where cell has an i,j,k index) for easier geostatistical calculations.

Facies rock types are modelled before rock matrix properties such as porosity since

petrophysical properties are often highly correlated with geological facies. There are

any number of ways of defining facies and that discussion is outside the scope of this

thesis. In siliclastic petroleum reservoirs it is common to distinguish between sandstone

and shale while in carbonate reservoirs it is common to distinguish between limestone

and dolomite (Deutsch, 2002).

There are generally two main different approaches to rock type modelling: 1) cell-

based approaches and 2) object-based approaches.

Sequential indicator simulation (SIS) is an example of a cell-based approach and is

common (Deutsch, 2002) in petroleum reservoir geomodelling. SIS involves:

1. considering K mutually exclusive facies categories and K indicator transforms at
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each data location;

2. visiting a grid node location;

3. finding nearby data (including previously simulated grid nodes);

4. constructing a conditional distribution by indicator kriging (which amounts to

calculating the probability of each facies being present at that location); and

5. randomly drawing a simulated facies from the set of probabilities.

There are significant advantages to SIS. The facies proportions are honoured and

the sample data are reproduced. The main drawback to SIS is that the results do

not appear geologically realistic. While the facies proportions and the variogram are

honoured in SIS, higher order statistics are not. As a result, there is no way to define

or calculate realistic geologic shapes that are seen in petroleum reservoirs.

Truncated Gaussian and pluri-Gaussian simulation are alternatives to SIS. These

methods are not seen as often in practice since they require a clear ordering of the

facies, which may be difficult to define.

In truncated Gaussian simulation, realizations of a Gaussian random field (GRF)

are generated. Cutoffs are applied to the realizations to create categorical facies real-

izations. For example, in model with three rock types, Gaussian values below -1 might

be assigned to facies code 1, values between -1 and 1 might be assigned facies code 2,

and values greater than 1 might be assigned facies code 3. Since the Gaussian random

field has some spatial continuity, it would be rare to have facies 1 directly next to facies

3. Usually there would be a transition from facies 1 to 2 to 3 and vice versa.

Truncated pluri-Gaussian (PGS) simulation is a generalization of truncated Gaus-

sian simulation that uses two GRFs (Y1, Y2) instead of one. PGS requires the definition

of a facies substitution diagram. The horizontal axis represents the transform of one

GRF, while the vertical axis represents the transform of the other GRF. The diagram

shows which facies will prevail at a location given the values from the two GRFs (y1, y2).

The areas associated with the facies correspond to their proportions if Y1 and Y2 are
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independent (Chiles and Delfiner, 2012). PGS may be difficult to use, in practice, due

to the difficulty of defining an appropriate substitution diagram.

The multiple point statistics (MPS) approach was introduced as an alternative to

the classical categorical methods such as SIS or PGS. Multiple point statistics include

probabilities involving more than two locations. MPS methods use a multiple point

histogram and a training image instead of a variogram to estimate conditional proba-

bilities at simulation locations given the observed and previously simulated data. The

multiple point histogram is the probability of all combinations of a set of indicators

at many locations simultaneously (Lyster, 2009). The training image is a conceptual

model of the random process that is representative of the geology of the area of interest

(Journel and Zhang, 2006). MPS methods have the advantage of generating more geo-

logically realistic results. However, there are challenges in honouring dense well data.

There is also the issue of how to generate or select a training image (Lyster, 2009).

Object-based or process-mimicking techniques attempt to mimic idealized facies

body geometries that are interpreted from outcrops and modern analogues (Deutsch,

2002). Object-based models may look more geologically realistic in the sense that they

are visually attractive and show non-linear continuity, which cannot be modelled by

other cell-based approaches such as SIS. These approaches place geometric objects at

locations in space until well data and target facies proportions are honoured. Process-

mimicking methods attempt to model the true geologic progression by populating older

objects first followed by erosion and deposition of new objects until the model is filled.

Object-based and process-mimicking techniques require definition of many parameters

and have difficulty honouring dense well data (Lyster, 2009).

Regardless of the method chosen for rock type modelling, all available information

should be incorporated into the model. If available, seismic data can be incorporated

(Deutsch, 2002) and can add significant information since it is areally extensive over

the reservoir. It is also common to condition the models to vertical proportion curves,

which show how facies proportions vary with depth in the reservoir (Deutsch, 2002).

Once the rock type model has been simulated, petrophysical properties are simu-

lated within each rock type. Rock matrix properties like porosity, water saturation, oil
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saturation, the volume fraction of shale and permeability are often modelled. Porosity

is measured via well logs, while permeability is measured in the lab on core samples.

Thus, there is usually far more porosity data than permeability data. For this reason,

permeability is usually modelled after porosity using the measured relationship between

porosity and permeability.

There are a number of methods that could be used to create realizations of petro-

physical properties. Sequential Gaussian simulation (SGS) (Deutsch, 1992), spectral

simulation (Chiles and Delfiner, 2012) and turning bands (Chiles and Delfiner, 2012)

are three of the most common. All three methods follow a Gaussian formalism and can

be made to honour local data, a histogram and a variogram. The modelling strategy

uses the previously defined layering and realizations of rock type to capture abrupt

discontinuities. All three Gaussian methods for property simulation require transfor-

mation of the original data to the normal distribution. A variogram must be calculated

on the normal scored data. SGS proceeds (similarly to SIS) as follows:

1. first, the nearby data are found (including previously simulated nodes);

2. the conditional distribution at that location is calculated by kriging;

3. a simulated value is drawn randomly from that conditional distribution.

The process then repeats, proceeding through a random path of all locations in the

model. Multiple realizations are created by changing the random number seed.

Seismic data, such as acoustic impedance, is sensitive to changes in matrix porosity

and can be used as an aid in petrophysical property modelling. In order to use the

seismic data for this purpose, it must first be calibrated to the well data. If it can be

assumed that the porosity and the seismic data follow a bivariate Gaussian distribution,

then the correlation coefficient is all that is required to use the seismic data as a

predictor for porosity (Deutsch, 2002).

Collocated cokriging (CCK) (Doyen, 1988) can be used to calculate property esti-

mates that consider both well and seismic data. The CCK technique works by kriging

with the primary data (i.e. porosity well data) and a single collocated seismic data.

The seismic data is weighted via the correlation coefficient (Deutsch, 2002).
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Assignment of rock matrix permeability can be made via SGS. An alternative is

to transform porosity (which is easier to model given the greater abundance of data

compared with permeability) with a calibrated porosity-permeability relationship.

Geostatistical Modelling of Fracture Properties

Analysis of core or borehole image data gives a reasonable idea as to the fracture

attributes and flow properties at the well locations. However, some idea of the frac-

ture network characteristics in the inter-well locations is also required. In particular,

fracture intensity is required at inter-well locations in order to constrain the discrete

fracture network model. Fracture orientation can also be used to further constrain the

simulation the of a fracture network. Modelling of attributes such as fracture intensity

and orientation typically use the same geo-cellular grid that is used in rock matrix

modelling.

Geostatistical methods such as kriging and SGS can be used to populate gridded

models of fracture properties (Olarewaju et al., 1997). Some practitioners have used

correlations with reservoir characteristics to improve field-wide modelling of fracture

intensity (Gauthier et al., 2002; Bourbiaux et al., 2002). For example, if rock ma-

trix porosity is correlated to fracture intensity, the previously generated model of rock

matrix porosity can be used to constrain the simulation of fracture intensity through

the measured correlation coefficient. Makel (2007) discusses the possibility of corre-

lating horizon curvature and seismic anisotropy with fracture network attributes such

as intensity and orientation. Collocated co-kriging or co-simulation is ideal in such a

situation.

Coring wells is expensive. In some NFRs, there may not be many wells with direct

measurements of fractures from core. Obtaining borehole images is less expensive, but is

still often only available in a small subset of wells. In these cases, there may not be very

many data with which to calculate a correlation between fracture intensity and some

other property or attribute. The correlation coefficient is highly sensitive to outliers

(Abdullah, 1990; Isaaks and Srivastava, 1989; Kim and Fessler, 2004; Shevlyakov, 1997)

and the uncertainty can be large when the number of data is small (Kalkomey, 1997).
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1.2.4 Discrete Fracture Network Modelling

A discrete fracture network (DFN), is a discrete object model of the fractures in a

rock mass. The main purpose of fracture network modelling is to study the inter-

connectedness and hydraulic potential of the fracture network and propagate those

properties through flow simulation to examine the effect of the fracture network on

the reservoir production (Makel, 2007; Bourbiaux et al., 2005). The measured fracture

data used to constrain the DFN are usually split into two categories: 1) large-scale (i.e.

reservoir scale) faults and fractures that show up on seismic surveys and 2) small-scale

fractures and faults that do not show up on seismic surveys. The large-scale faults and

fractures can be modelled as deterministic objects. Small-scale fractures are modelled

probabilistically from distributions of fracture attributes defined by the geological data

analysis of core, image logs and other sources. A geocellular model of fracture intensity

constrains the DFN generation for each fracture set, possibly using the rock matrix

geomodel as underlying information. For example, the fracture density of a particular

set may be controlled by geomodels of facies and reservoir curvature, while a second set

may be controlled by a different facies model and proximity to faults. Since lithology

usually plays a significant role in the development of natural fracture networks, the rock

type model developed earlier is used to further constrain the DFN modelling (Cacas

et al., 2001).

The Baecher model (Baecher et al., 1977; Baecher, 1983), was one of the first

models characterizing fracture network generation. Under the Baecher model, fractures

centroids are randomly located in space using a Poisson process and the fractures

are generated as disks with an orientation and radius. The enhanced Baecher model

(Dershowitz, 1988) extends the original Baecher model by providing a provision for

fracture terminations and more general fracture shapes. Terminations are specified as

a probability that a fracture will terminate at a pre-existing fracture, given that an

intersection is detected.

The nearest neighbour model is a non-stationary model in which the fracture in-

tensity (P32) decreases exponentially with distance from major features (faults) that
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are specified. The P32 intensity at any point in space is defined by:

P32(x) = Ce−bdx,f (1.4)

where C and b are constants and dx,f is the distance between location x and the nearest

major feature.

Some researchers have presented data from natural fracture networks that follow

fractal patterns. Thus, models to generate fractal fracture network models have been

developed. Fractal networks can be simulated by:

1. Producing fracture patterns at one scale. Then superimposing them at different

scales to produce a fractal pattern;

2. Generating fractures using non-fractal processes, then test the resulting patterns

to determine whether or not they are fractal in nature;

3. Using a process such as a Levy flight, which has been shown mathematically to

produce fractal patterns.

The Levy flight process (Mandelbrot, 1982) is a sort of random walk where the length,

L, of each step is given by the probability function:

P (L > Ls) = L−D
s (1.5)

where D is the fractal mass dimension of the point field of fracture centres and Ls

is the distance from one fracture to the next for the previous step in the generation

sequence. Although the Levy flight is a one dimensional process, it has been extended

to two and three dimensions for the generation of fractures in the Levy-Lee fractal

model (Golder Associates Ltd., 2010; Clemo, 1994). If D = 0, the distribution of step

length is uniform (there is no clustering). For larger D values there is low probability of

large steps and fractures are found in concentrated clusters. Various researchers have

reported fractal dimensions ranging from 0.8 to 2.4 for trace survey maps (Stach et al.,

2001; La Pointe, 1988; Ghosh and Daemen, 1993).
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Some research has focused on generating more geologically realistic DFNs by grow-

ing fractures from an initial seed location. Renshaw and Pollard (1994) simulated

fracture networks using geomechanical principles by propagating fracture tips when

the stress exceeds a critical threshold. Their approach was successful in yielding realis-

tic looking images of fractures but was computationally prohibitive and limited to two

dimensions. Although their work was conducted almost 20 years ago, this type of ge-

omechanical fracture modelling is still too computationally expensive for reservoir-scale

three-dimensional modelling. Work by Srivastava (2006) mimics that of Renshaw and

Pollard in that fractures are propagated at their tips, but instead of being governed by

geomechanical principles, his work is governed by statistical rules. Initial fracture lo-

cations are seeded and fracture traces are propagated in two dimensions at the surface

by using sequential Gaussian simulation (SGS), which incorporates nearby data into a

local distribution of possible azimuths for the next segment. Once the surface traces

are simulated, they are propagated to depth, again using SGS, by simulating a dip

angle from nearby data. Srivastava’s approach was successful in yielding realistic three

dimensional fracture networks; however, his work requires detailed joint mappings from

outcrops, which are not available in most petroleum reservoirs and are often affected

by weathering and stress unloading anyway.

Fracture apertures can be assigned to fractures in a number of different ways. Per-

haps the simplest method would be to assign the same aperture value to each of the

modelled fractures. A single fixed value could be assigned to all fractures in simple mod-

els or apertures could be sampled from different probability density functions (PDFs)

for different fracture sets. It is also possible to interpolate gridded fracture porosity

values over the geo-cellular grid and assign apertures proportionally to each fracture

such that the fracture porosity for the grid cell is honoured (Makel, 2007).

1.2.5 Fracture Network Upscaling

Most current approaches for flow simulation of NFRs rely on either the continuum or

the DFN approach. Under the DFN approach, flow is simulated directly on the DFN

fractures using an unstructured grid, allowing incorporation of many of the charac-
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teristics of real fracture systems. Although the DFN approach can handle complex

fracture geometry, its use has typically been limited to basic flow calculations and as-

sumes zero permeability matrix rock. The continuum approach has seen far more use

in actual practice (Makel, 2007). Under the continuum approach, the flow on a fracture

is not directly simulated. Instead, the DFN is represented by a geocellular grid and

an equivalent permeability is calculated for each grid element based on the fractures

occurring in that grid cell. The continuum approach has the advantage that it can

simulate complex recovery mechanisms such as capillary pressure and matrix-fracture

interactions (Rodriguez et al., 2006; Makel, 2007).

One of the most popular methods for calculating an equivalent permeability tensor

was developed by Oda (1985). Oda’s approach is fast because it does not require

flow simulation and it can obtain effective properties directly from the geometry and

properties of the fractures within the grid cells.

Oda’s approach lays a specified grid (the geocellular grid) on top of a DFN and

derives effective properties based on the fractures contained in each cell. The effective

permeability for the grid cell is calculated by decomposing the permeability vector into

the x, y and z-directions. The permeability tensor is:

kij =
1

12
(Pkkδij − Pij) (1.6)

where:

• δij is the Kroenecker delta;

• Pkk = P11 + P22 + P33;

• Pij =
1
V

N
∑

k=1

l2e3niknjk;

• V is the grid cell volume;

• l is the length of the fracture;

• e is the fracture aperture; and

• nik and njk are the components of a unit normal to the fracture k.
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Oda’s method is simple and quick to calculate but does not consider the intercon-

nectedness of the fracture network. This assumption is considered acceptable for well

connected fracture networks (Dershowitz et al., 2004).

An alternative to Oda’s method is flow based upscaling. This method amounts to

applying a pressure gradient in one direction (the i, j or k direction) and back calculat-

ing permeability. The process is repeated for each direction and for each grid cell. The

simulator creates a finite element, unstructured grid along fracture surfaces (Schlum-

berger, 2007). In this way, flow along the actual fractures is simulated. The advantage

of this method is that it directly accounts for the fracture geometry. The disadvantage

is that the flow calculations are far slower than Oda’s vector addition operations. The

flow based method would be impractical for upscaling large reservoirs with many frac-

tures. However, it could be used at the well bore scale, to predict local permeability.

It could also be used to validate the results of Oda’s method (Schlumberger, 2007).

The important flow properties that must be calculated from the fracture network

are the fracture porosity, the directional fracture permeabilities and the sigma factor.

The sigma factor (sometimes called the shape factor), σ, is related to the connec-

tivity between the rock matrix and the fractures and is a function of fracture spacing

(Gilman, 2003). The sigma factor is needed by flow simulators to calculate the fluid

transfer between the fracture network and the matrix. The pseudo-steady state, ana-

lytically derived expression for the shape factor in terms of the mean fracture spacing

in the grid cell, L, in the x, y and z directions is (Kazemi and Gilman, 1993):

σ = π2

(

1

L2
x

+
1

L2
y

+
1

L2
z

)

(1.7)

The numerically derived equation for the shape factor is the same except that the

π2 term is replaced with a 4 (Kazemi et al., 1976).

1.3 Problem Statement

As is noted earlier, geostatistical modelling of petroleum reservoirs, in general, and

NFRs, in particular, often relies on the correlation coefficient between a primary and a

secondary variable. However, the correlation coefficient is known to be highly sensitive
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to outliers and is uncertain when the number of data is small. A robust measure of

correlation is needed along with a methodology for quantifying its uncertainty and

propagating that uncertainty through geostatistical calculations.

Current DFN modelling techniques incorporate and honour some geological infor-

mation about the fractures. Where data is available, fracture lengths and apertures can

be honoured. DFNs can also honour fracture intensity and orientation data. Although

uncommon, it is possible to impose some control on fracture clustering (not the same

as fracture spacing) in the DFN by using a Levy-Lee model. Calibration or trial and

error would be required to honour a desired fracture spacing distribution, which would

need to be fractal in nature. In many rock masses fractures tend to be oriented simi-

larly to their nearest neighbours. The author is not aware of any fracture simulation

algorithms or models that account for similarity in the orientation of nearby fractures,

the number of intersections in the fracture network or fracture spacing (in an explicit

manner).

Thesis Statement

Geostatistical modelling of naturally fractured reservoirs will be significantly im-

proved by: 1) development of a robust correlation coefficient; 2) development of a

methodology for considering the uncertainty in the correlation and propagating its un-

certainty through geostatistical modelling; 3) development of a new DFN simulation

algorithm that honours geologically realistic spatial statistics.

1.4 Thesis Contributions

This thesis makes several important contributions. Geomodellers commonly study

multivariate problems where incorporation of different variables in the geological mod-

elling can improve predictions by considering the correlation between those variables.

Traditional measures of correlation are highly sensitive to outlier data. A new ro-

bust correlation coefficient is introduced that is shown to be resistant to the effects

of outliers. Perhaps even more importantly, a methodology to consider uncertainty in
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the measured correlation is proposed. Several important implementation details are

discussed.

Selected natural fracture networks are presented and analysed in Chapter 4. In one

of the major contributions of this chapter, it is demonstrated that these natural fracture

networks cannot be modelled using the traditional Poisson process-based simulation

techniques in a geologically realistic manner. This finding leads into the next major

contribution of this thesis, whereby a new DFN simulation algorithm is proposed. The

proposed algorithm is capable of simulating DFNs that match target histograms of

fracture spacing, deviation in local orientation of fractures, fracture length, fracture

intensity and the number of fracture intersections. Many important implementation

details are discussed and case studies on how to implement the ideas are also presented.

1.5 Thesis Outline

The rest of this thesis is organized as follows. Chapter 2 introduces a new way to cal-

culate a robust correlation and assess its uncertainty within the context of geological

modelling. Chapter 3 discusses implementation details and examples for the proposed

robust correlation coefficient and its uncertainty. Chapter 4 looks at a few selected

natural fracture networks and discusses whether or not they could be modelled by tra-

ditional DFN simulation algorithms. A new fracture simulation algorithm is proposed.

Chapter 5 discusses numerous important implementation details surrounding the pro-

posed fracture simulation algorithm. Chapter 6 presents a case study. The fracture

modelling methodologies and algorithms are applied to the Teapot Dome data set.

Chapter 7 provides further discussion of the ideas presented in this thesis along with

conclusions and limitations of this work. Areas for future research are also discussed.
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Chapter 2

On a Robust Correlation

Coefficient Considering its

Uncertainty

This chapter is organized as follows. Section 2.1 introduces the correlation coefficient.

Section 2.2 discusses Pearson’s and Spearman’s correlation coefficients and discusses

their sensitivity to outliers. A discussion on outlier data follows and three robust

estimates of correlation are reviewed. A new robust correlation coefficient is proposed

in Section 2.3. Section 2.4 discusses the uncertainty in the correlation coefficient, which

is accessed with its sampling distribution. The distribution of r requires the number of

independent data, so a methodology for calculating an effective number of independent

data from spatially dependent data is introduced.

2.1 Introduction to the Correlation Coefficient

The relationship between bivariate data, x and y, is frequently summarized by the

correlation coefficient, which indicates the level of dependence between two variables.

For example, in petroleum reservoirs there is often some correlation between porosity

and permeability of the rock matrix.

The sign of the correlation coefficient is positive if the variables are directly related

and negative if they are inversely related. The closeness to +1 or -1 measures the

closeness to a linear relationship. In some instances a few outliers significantly decrease

an otherwise high correlation. The traditional Pearson correlation coefficient is known
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to be highly affected by outlier data (Abdullah, 1990; Isaaks and Srivastava, 1989;

Kim and Fessler, 2004; Shevlyakov, 1997). The Spearman rank correlation coefficient

is considered to be more resistant to outliers although it is also adversely affected by

outlier data.

Methods for detecting outlier data have been suggested (Barnett and Lewis, 1994;

Davies and Gather, 1993; Johnson and Wichern, 2007; Penny and Jolliffe, 2001). Out-

liers could be trimmed from the data and the correlation of the remaining points can

be calculated. However, in some cases, the outlier data may be reliable data and should

not be excluded (Gideon and Hollister, 1987), especially when the sample size is small.

However, the influence of such data should not be inordinately large.

Often, correlations are estimated from a small number of observations. When the

sample size is small, the uncertainty about the value of the true correlation can be very

large, particularly when the estimated correlation is low (Kalkomey, 1997). It is useful

to quantify the uncertainty in the correlation coefficient to assess its significance and

to perform sensitivity studies.

Many statistical and geostatistical models and techniques rely on the correlation

between different data variables. This research establishes a procedure to calculate a

robust correlation and quantifies the uncertainty in the correlation coefficient through

its sampling distribution of the correlation coefficient.

The correlation coefficient is particularly important in cases with sparse primary

data and exhaustive secondary data such as offshore petroleum well data and seismic

data. In this case, there may be only five to eight wells that have been drilled for

production potential and not statistical representivity. Each of these wells is expensive

and important. The final geological models will be highly dependent on the correla-

tion coefficient established by simple spreadsheet calculations. Making this correlation

robust and understanding its uncertainty has a large practical impact.
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2.2 Measures of Correlation

2.2.1 Pearson’s Correlation Coefficient

Let (x1, y1), ..., (xn, yn) be n observations from a bivariate normal distribution with

parameters (µx, µy, σ
2
x, σ

2
y , ρ) , where µx and σ2

x are the mean and variance of x, µy and

σ2
y are the mean and variance of y, and ρ is the correlation coefficient between x and y

given by ρ = βσx/σy where β is the slope parameter of regression of y on x. The sample

correlation coefficient commonly used for estimating ρ is the Pearson’s product-moment

correlation coefficient defined by (Pearson, 1920; Rodgers and Nicewander, 1988):

rp =

n
∑

i=1
(xi − x̄)(yi − ȳ)

[

n
∑

i=1
(xi − x̄)2

n
∑

i=1
(yi − ȳ)2

]1/2
(2.1)

One problem with using Pearson’s product-moment correlation coefficient is that

the sample means for x and y are sensitive to outlier data. As a result, the correlation

estimate rp is also sensitive to outliers in either x, y, or both variables (Abdullah,

1990; Kim and Fessler, 2004). Even a few outliers can degrade the sample correlation

coefficient.

2.2.2 Spearman’s Rank Correlation Coefficient

As an alternative to Pearson’s correlation coefficient, the non-parametric Spearman’s

rank correlation coefficient, rs, can be calculated as follows:

rs = 1−
6

[

n
∑

i=1
(ryi − rxi

)2
]2

n(n2 − 1)
(2.2)

where rxi
and ryi are the ranks of xi and yi, respectively. Spearman’s correlation

coefficient does not require the assumption of a linear relationship between the variables

and is generally more resistant to outliers than Pearson’s coefficient. However, as is

shown later in this thesis, Spearman’s rank correlation coefficient is still quite sensitive

to outliers, particularly in the presence of sparse data.
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2.2.3 Outlier Data

Outliers can be loosely defined as observations which appear to deviate markedly from

the other members of the sample (Grubbs, 1969). Hawkins (1980) defines an outlier as

an observation which deviates so much from other observations as to arouse suspicions

that it was generated by a different mechanism. There is no mathematical definition

for what constitutes an outlier (Davies and Gather, 1993) and determining which data

(if any) are outliers remains subjective. Data quality control and checking should

identify erroneous data for removal. The remaining issue is multivariate observations

that influence the calculated statistics.

Outliers can occur in two main ways. They may occur due to random variability

in the data. In this case, outliers would normally be generated from a heavily-tailed

distribution. The second way for outliers to occur is when the data arise from two

different underlying distributions. The “good” data comes from one distribution and

the “bad” or “contaminated” data comes from another distribution. In this case, the

contaminated data could be due to experimental or measurement error or any number

of other ways.

If the data come from a heavily-tailed distribution, the outliers are valid and should

not be discarded. In this case those observations should be kept and used. When the

outliers occur from another distribution, one would hope to be able to identify and

discard those values or use statistical methods that are robust to outliers. Datasets

with outliers from another distribution may be caused by mixing data from different

geological structures or processes.

Outlier detection has been widely discussed in the literature. Barnett and Lewis

(1994), in particular, provide extensive reviews on this topic giving over 100 discordancy

tests for a number of distributions. Despite the number of options for detecting outliers,

there is no guarantee of finding any because there may not be a test developed for a

particular combination, or the data does not follow any standard distribution.

Outlier detection in the bivariate or multivariate case can be even more challenging

than in the univariate case. If the bivariate data set is large and highly correlated,
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detecting outliers may be relatively easy. However, if the data set is small (say less

than 20 paired data values) and the correlation is low to moderate (say less than 0.5), it

may be difficult to tell whether or not suspicious data points are outliers or an example

of lack of correlation between the two variables.

2.2.4 Robust Estimates of Correlation

The idea behind robust estimation of means or covariances (and hence correlation) is

to reduce the effect of outlier samples either by weighting or removing them altogether

(Campbell, 1980; Kim and Fessler, 2004; Rousseeuw and Zomeren, 1990; Titterington,

1978).

One of the most popular robust methods for estimating correlation (and regression

coefficients) is the least median of square (LMS) estimation (Rousseeuw, 1984). The

LMS regression coefficients minimize the median of the squared residuals. One of the

big advantages of the LMS estimators is their noted 50% break-down point, which

means that LMS regression can give reliable results up to the point where 50% of the

data are outliers. The LMS algorithm is similar to the bootstrap in that it proceeds by

repeatedly drawing subsamples of p different observations from the data set. For each

subsample, J = {i1, ..., ip}, a regression line is found for the p points. Each regression

line is viewed as a trial estimate and denoted θJ . For trial, θJ , the residuals between

the regression line and the full data set are calculated. The LMS objective function is

defined by the median of the residuals:

med
i=1,...,n

(yi − xiθJ)
2 = median{(y1 − x1θ1)

2, (y2 − x2θ2)
2, ..., (yn − xnθn)

2} (2.3)

The trial estimate which gives the minimal median of the squared residuals gives the

LMS coefficients and the correlation.

Shevlyakov (1997) introduced a robust correlation coefficient that utilizes the Ham-

pel medians of absolute deviations to get the median correlation coefficient.

rmed =
med2 |u| −med2 |v|
med2 |u|+med2 |v|

(2.4)
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ui =
xi −medx

med |xi −medx| +
yi −med y

med |yi −med y| , i = 1, ..., n

vi =
xi −medx

med |xi −medx| −
yi −med y

med |yi −med y| , i = 1, ..., n

(2.5)

Gideon and Hollister (1987) approach robust correlation from another perspective

by introducing a robust rank correlation coefficient based on the principle of maximum

deviations.

rg = (d(ε ◦ p− d(p))/[N/2] (2.6)

Where ◦ is a group operation that is a composition of mappings ε ◦ p = (N + 1−

p1, ..., N + 1− pN ), and p = p(x, y) is the permutation determined by the sample and

ε is the reverse permutation.

di(p) =
N
∑

j=1

I (r(xj) ≤ i < r(yi)) (2.7)

Where r(xj) and r(yi) are the ranks of x and y, respectively.

di(ε ◦ p) =
i

∑

j=1

I(i < N + 1− pj) (2.8)

Another method for calculating a robust correlation coefficient involves calculating

an ellipsoid and trimming any data that does not fall within the ellipsoid. This tech-

nique works best for data that follow a normal distribution and other swarms of data

that are elliptical (Titterington, 1978).

Despite these methods aimed at calculating robust correlation coefficients, there

is room for improvement. The key idea developed below is to isolate the influence of

each individual data pair (and sets of data pairs) and to ensure that the correlation

coefficient is robust, yet fairly considers all data. The performance of the proposed

correlation coefficient estimator was checked by a simulation study.

2.3 Correlation in Sparse Datasets in the Presence of Out-

liers

Figure 2.1 shows a scatter plot of the bivariate relationship between two variables, x

and y. The scatter plot shows what appears to be a strong direct correlation between
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Figure 2.1: An example dataset with one potential outlier data point. The potential
outlier appears to be negatively affecting what would otherwise be a strong correlation
between x and y. Note that, in this case, the rank correlation coefficient appears to be
more strongly affected by the outlier than Pearson’s correlation coefficient.

the two variables marred by one potential outlier data point at a location of (7, 1).

The Pearson and Spearman correlation coefficients for the data shown in Figure 2.1 are

0.291 and 0.214, respectively. Note that, while the Spearman correlation coefficient is

usually more resistant to the effects of outliers, in this case it is more strongly affected

by the potential outlier data point.

Of course when a dataset such as the one shown in Figure 2.1 is observed, it would

be natural to think that the point at (7,1) is an outlier. It may be a sample that belongs

to another statistical population or perhaps there was an error in measurement.

If one could be reasonably sure that the point at (7, 1) is an outlier, it could simply

be removed from the dataset. In this case, the Pearson and Spearman correlations

would increase to 0.910 and 0.943, respectively. However, suppose the data has been

carefully examined and there is no reason to believe that the point at (7,1) belongs

to another statistical population. In this case, the data should be considered in the

calculations, but its importance should not be unreasonably large.
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Table 2.1: Resulting correlations from a leave-one-out test (actual correlation is 0.29)

Coordinates of left out point (x,y) Resulting correlation Weight (wi)

(1.00, 1.98) 0.081 0.085
(2.00, 3.20) 0.235 0.010
(3.00, 3.53) 0.269 0.002
(4.00, 7.25) 0.318 0.003
(5.00, 5.44) 0.272 0.002
(6.00, 9.31) 0.002 0.140
(7.00, 1.00) 0.910 0.468

Updated correlation from leave-one-out test = 0.615

2.3.1 A Weighted Average Correlation From a Leave-One-Out-Test

In order to arrive at a more robust correlation coefficient, first consider a “leave-one-out

test” (LOOT), whereby a data point is removed from the dataset and the correlation is

recalculated. This procedure can be repeated n times for a dataset with n points, leav-

ing a different data point out each time. The result is n calculated Pearson correlation

coefficients. A LOOT was conducted for the data shown in Figure 2.1 and the results

are shown in Table 2.1. For the first six leave-one-out tests, the resulting correlations

are very low and unrepresentative of the obvious correlation in the data. However, the

last test results in a correlation of 0.910.

The proposed robust correlation coefficient is based upon the idea of a weighted av-

erage of the correlations calculated in the LOOT. The idea is to weight the correlations

according to their difference from the actual correlation as follows:

wi = |rActual − ri,LOOT |α (2.9)

where:

• wi is the resulting weight assigned to each correlation calculated in the leave one

out test;

• rActual is the Pearson’s correlation coefficient calculated using all of the original

data;

• ri,LOOT is the ith Pearson’s correlation coefficient calculated from leaving out the

ith data point in the leave-one-out test;
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• α is a weighting exponent and is a function of the number of data (α = 1+n/12).

α is restricted to a maximum of 15 due to computational limitations and the

observation that beyond a certain point, a larger exponent is unnecessary.

The weighting exponent, α, is directly related to the sample size. As the sample

size increases, the outlier data point effectively gains more influence on the calculated

correlations in the LOOT since there are more combinations that use the outlier and

only a few that do not. Thus, a larger exponent gives a larger weight (relative to the

other weights) to the correlation that does not use the outlier data point.

In the above example the weights from the LOOT are shown in 2.1. The correlation

obtained from removing the point at (7, 1) is the most different from the actual corre-

lation of 0.291 and thus receives the most weight. This makes sense since it is desirable

to somehow minimize the impact of this suspicious data point. Then, the more robust

correlation coefficient calculated from the LOOT for sparse datasets is defined as:

rRobust,LOOT =

n
∑

i=1
wiri,LOOT

n
∑

i=1
wi

(2.10)

The updated correlation coefficient is essentially a weighted average of the corre-

lations calculated in the LOOT, where the weights are defined in Equation 2.9. The

weighting scheme in Equation 2.9 assigns the greatest weights to the correlations that

are the most different from the actual Pearson’s correlation coefficient. The idea is

that the data points that have the biggest impact on the correlation are the ones that

are most likely to be outliers. For the data shown in Figure 2.1, the LOOT correlation

weights and updated correlation coefficient are as follows in Table 2.1. As is shown

in the table, the updated correlation coefficient from the LOOT is 0.615, which seems

reasonable given that it is undesirable to exclude the potential outlier.

2.3.2 A Weighted Average Correlation From a Leave-X-Out Test

The LOOT and weighted average correlation is effective for the case where there is

one potential outlier data point. Of course, the idea can be extended to account for

multiple potential outlier data points by considering a “Leave-X-Out Test” (LXOT)
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where X varies from 1 to n − 3 (correlations cannot be calculated with 1 data and

correlations calculated using 2 data have little value). This yields n − 3 weighted

average correlations from each of the LXOTs. Then, each of the weighted average

correlations can be weighted again in a similar manner as follows:

wX,LXOT = |rActual − rX,LXOT |α (2.11)

Where:

• rActual is the original data correlation;

• rX,LXOT is the updated correlation calculated in each “leave-X-out-test”;

• wX,LXOT are the weights calculated for each updated correlation from the leave

“x-data” out test;

• α is the same weighting exponent as in Equation 2.9 (i.e. α = 1 + n/12).

The weighting exponent in Equation 2.11 works similarly to that of Equation 2.9.

We wish to access the correlation from the LXOTs that are the most different from the

original Pearson correlation. A larger exponent for larger sample sizes effectively gives

more weight to the correlations from the LXOTs that are the most different from the

original Pearson correlation.

Then a single robust correlation is calculated as follows:

rrobust−proposed =

φ
∑

X=1

wX,LXOT rX,LXOT

φ
∑

X=1
wX,LXOT

(2.12)

where:

φ = 0.8n − 3 (2.13)

φ is rounded up to the nearest integer. Equation 2.13 allows for a reasonable maximum

number of data to leave out.

As the number of data left-out increases the updated correlations calculated using

only small amounts of data tend to be unreliable. For example, say there are 30 data

and a L27OT is conducted (where varying combinations of 27 data are left out and the
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remaining 3 data are used). The resulting correlations from the L27OT would likely be

very erratic depending on which data are selected. Even for highly positively correlated

data there would be some subsets of 3 data that would form a strong negative correla-

tion. Since the correlations are weighted by their difference to the actual correlation,

those subsets would receive a lot of weight. Thus, it is suggested that constraining

X from 1 to φ, as in Equation 2.13. Thus, in a case with 100 data points, the pro-

posed correlation considers LXOTs where X ranges from 1 to 77. There is no need to

consider leaving out very large subsets of data anyway. If there are 100 data points,

leaving out a maximum of 77 (a L77OT) will already consider subsets with no outliers

since there are normally far less than 77/100 outliers in the data. If there were 77 data

that appeared to be from one distribution and 33 from another, one would normally

call the 33 data outliers.

2.4 The Distribution of r

It is also necessary to examine the uncertainty in the correlation coefficient. Since

datasets usually have limited sample information, the true underlying correlation is

rarely known. When the sample size is small, the uncertainty in the correlation coeffi-

cient can be very large, particularly when the measured correlation is low (Kalkomey,

1997).

The distribution of r (the sample correlation coefficient) as given in Johnson et al.

(1995) is as follows:

pR(r) =
(1− ρ2)(n−1)/2(1− r2)(n−4)/2

√
πΓ(12(n − 1))Γ(12n− 1)

×
∞
∑

j=0

[Γ(12 (n− 1 + j))]2

j!
(2ρr)j (2.14)

where −1 ≤ r ≤ 1. In the equation, ρ is the estimated correlation, n is the number of

independent data points and Γ is the gamma function. Note that Equation 2.14 also

assumes that (Xi, Yi) and (Xj , Yj) are mutually independent if i 6= j.

2.4.1 Calculating the Number of Independent Data

Equation 2.14 requires the number of independent data points. However, earth sciences

data are rarely independent and are often spatially related. We can, however, calculate
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an effective number of independent data.

Consider a number of observations Xi, where i = 1, . . . , n. The variance of the

mean is given by:

V ar{x̄} =
1

n2

n
∑

i=1

n
∑

j=1

Cij (2.15)

where Cij is the data covariance. The covariance of the data can be calculated from

the variogram and the data variance:

Cij = σ2
data − γij (2.16)

But, the variance of the mean can also be calculated by (Edwards, 2006):

V ar{x̄} =
σ2
data

Nindependent
(2.17)

Where Nindependent is the number of independent data. Therefore:

Nindependent =
σ2
data

V ar{x̄} =
σ2
data

1
n2

n
∑

i=1

n
∑

j=1
Cij

=
σ2
data

1
n2

n
∑

i=1

n
∑

j=1

(

σ2
data − γij

)

(2.18)

Simplifying, we have:

Nindependent =
n2σ2

data
n
∑

i=1

n
∑

j=1

(

σ2
data − γij

)

(2.19)

Thus, the effective number of independent data can be calculated using only the num-

ber of data and the variogram. When the correlation between two variables is being

considered, the variogram with the longest range should be used since it will yield a

lower effective number of independent data, which results in a larger uncertainty in ρ.

2.5 Remarks

The relationship between multiple variables in geostatistics is frequently estimated

using the correlation coefficient. Reliable incorporation of secondary data relies on

obtaining a robust measure of correlation between primary and secondary variables.

However, where there are a small number of samples, the uncertainty in the correlation

coefficient can be very large (even when a robust correlation coefficient is calculated),

and should be considered in successive geostatistical calculations.
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If a scatter plot of the data indicates the possibility for outlier data, the first step

is to examine the data for any potential errors or inaccuracies. If no errors in the data

are found and the sample is small, the engineer or geologist may not wish to eliminate

the suspicious data points from the dataset.

This chapter has introduced a methodology for estimating a robust correlation

coefficient (Equation 2.12) and estimating its uncertainty (Equation 2.14) using the

sampling distribution of the correlation coefficient. The number of independent data is

required for the sampling distribution. Although most geological datasets are spatially

correlated, the number of independent data can be calculated with Equation 2.19. The

next chapter discusses several important implementation aspects and compares the

proposed robust correlation coefficient with others.
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Chapter 3

Practical Aspects of Calculating

a Robust Correlation and

Calculating its Uncertainty

The previous chapter proposed a new way to calculate a robust correlation coefficient

and its uncertainty. This chapter presents the implementation and practical calculation

details of the proposed robust correlation coefficient and its uncertainty. FORTRAN

computer programs are introduced to perform the correlation calculations. Finally,

the proposed robust correlation coefficient is compared to other robust correlation

coefficients.

3.1 Computer Codes

A suite of three computer programs were created to estimate a robust correlation

coefficient and its associated uncertainty.

A FORTRAN program called ROBUSTCORRCO automatically calculates the correlation

coefficients for each LXOT as well as an overall robust correlation coefficient, as in

Equation 2.12. In cases where there are more than approximately 20 data points,

the time to calculate the number of combinations of data in the LXOT becomes pro-

hibitively large. As a result, a specified number (say 10,000) of data combinations

are randomly sampled rather than calculating the correlation for every possible data

combination. ROBUSTCORRCO also calculates the two traditional correlation coefficients

as well as Shevlyakov’s rmed, Gideon and Hollister’s rg, and Rousseeuw’s rLMS for
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comparison purposes.

A FORTRAN program called NIND automatically calculates the effective number of

independent data based on Equation 2.19 and the input variogram model.

A FORTRAN program called, SAMP_DIST_CORR, calculates the sampling distribution

for the correlation coefficient. The program uses Equation 2.14 with the measured data

correlation and the effective number of independent data as inputs.

3.1.1 Practical Considerations

Although the summation in Equation 2.14 is to infinity, it tends to converge rapidly

except where the measured correlation is quite high (i.e. ρ > 0.9). Thus, an upper sum-

mation limit and a tolerance parameter are specified inputs into the SAMP_DIST_CORR

program. The program calculates the percentage of instances where the summation

parameter does not converge to a value smaller than the specified tolerance parameter.

If the percentage of values not converging is too high, the summation parameter can

be increased (or the tolerance can be increased).

3.2 Breakdown Properties of the Proposed Robust Cor-

relation Coefficient

A simulation study, similar to the one presented in Abdullah (1990), illustrates the

breakdown properties of the proposed robust correlation coefficient 2.12 compared to

the traditional Pearson and Spearman correlation coefficients, as well as the three

robust correlation coefficients, rmed, rg and rLMS , proposed by Shevlyakov (1997),

Gideon and Hollister (1987) and Rousseeuw (1984), respectively.

First, 100 “good” observations are generated according to the linear relation yi =

2 + xi + ui where xi is drawn randomly from a normal distribution with a mean of

5.0 and a variance of 1.0. ui is drawn from a normal distribution with a mean of

0 and a standard deviation of 0.2. The results were as follows: rPearson = 0.974,

rSpearman = 0.969 and rrobust−proposed = 0.906. Note that the proposed correlation

(rrobust−proposed) is slightly lower than the Pearson and Spearman coefficients. The

original Pearson correlation is quite high (0.974), so when the proposed algorithm
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leaves out data near the tips of the bivariate distribution, a slightly lower correlation is

measured in the remaining data, which has the biggest impact on the proposed robust

correlation. However, if the measured Pearson correlation was lower (say 0.5), this

effect would be less pronounced.

Next, the data was slowly contaminated. In increments of 10 data points, the

“good” data was replaced with “bad” data points. The contaminated data points were

generated according to the linear relation where xi is uniformly distributed on [5, 10]

and yi is drawn from a normal distribution with a mean of 2 and a standard deviation

of 0.2.

This was repeated until only 50 “good” observations remained. Figure 3.1 shows

the comparison of the proposed robust correlation coefficient against the traditional

Pearson and Spearman correlation coefficients as well as three other robust correlation

coefficients and serves to highlight the point at which the correlation coefficients begin

to breakdown. In this study, Pearson’s correlation coefficient breaks down with less than

10% contamination. Spearman’s is more robust, as expected, but is still significantly

affected by just 10% contamination. Gideon and Hollister’s rg fares only slightly better

than Spearman’s correlation coefficient and its measured correlation with no contami-

nation is much lower than the others. Shevlyakov’s rmed exhibits reasonable resistance

to data contamination until about 20% contamination, but by 30% contamination the

correlation drops substantially. Rousseeuw’s least median of square correlation, rLMS ,

is known to have a 50% breakdown point, as is shown in the figure. This is one of the

main advantages of LMS regression. The proposed robust correlation is significantly

better than all except Rousseeuw’s LMS coefficient.

3.3 Examples

Figure 3.2 shows a porosity versus log permeability dataset with twelve paired points.

Each point is labeled with an arbitrary number for reference purposes. Figure 3.3

shows the location maps for the porosity and log permeability values. The left side

of the circles indicate porosity (in %) and the right side of the circles indicates Log10

permeability (in mD). The Pearson and Spearman correlation coefficients between the
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Figure 3.1: Simulation study comparing the effect of contaminated data on the Pear-
son, Spearman and proposed robust correlation coefficients and three other robust
correlation coefficients.

Figure 3.2: A sparse synthetic dataset.

41



Figure 3.3: Location map of twelve samples. The left scale and left side of the circles
indicate porosity (in %). The right scale and right side of the circles represent Log10
permeability (in mD).

porosity and log permeability data are 0.545 and 0.776, respectively. Since Pearson’s

correlation is lower than Spearman’s rank correlation coefficient, Pearson’s correlation

may be affected by outlier data. Visual inspection of the scatter plot in Figure 3.2 con-

firms that data point number one, in particular, and to a lesser extent two, appear to

be “suspicious” or outliers. In this example, there are no known errors in the measure-

ments. The program ROBUSTCORRCO calculates a robust correlation coefficient of 0.739,

which agrees with the Spearman rank coefficient. The program also calculates three

other robust correlations, which are also noted on Figure 3.2. In this case Shevlyakov’s

rmed and Gideon and Hollister’s rg are slightly lower than the proposed robust correla-

tion and Spearman’s rank correlation. However, here the LMS correlation coefficient is

0.957, which seems too high based on visual inspection of the data and is much higher

than any of the other correlation coefficients.

With knowledge of the estimated and proposed robust correlation coefficients, the

uncertainty in the correlation coefficient can be calculated using the sampling distri-

bution for the correlation coefficient. First, however, the number of independent data

points must be calculated. The program NIND can be used to calculate the effective

number of independent data points. The data file and a variogram model are the only

two inputs into the NIND program. In this case, a single-structure spherical variogram
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Figure 3.4: The sampling distribution for the correlation coefficient for the synthetic
core data shown in 3.2.

with a range of 4000 units in the horizontal plane and 10 units in the vertical direc-

tion was assumed since there is not enough data to calculate a reliable experimental

variogram. Based on the data configuration, the number of data and the assumed

variogram, the effective number of independent data calculated by NIND is 11.

The program SAMP_DIST_CORR is used to calculate the sampling distribution for the

correlation coefficient. The robust correlation (0.739) and the number of independent

data (Nind = 11) are input into the program. The output is a probability density

sampling distribution for the correlation coefficient, which is shown in Figure 3.4. Note

that the P50 for this distribution is approximately 0.76, which is different than the mean

due to the asymmetric nature of the sampling distribution. The 10th and 90th percentile

(the P10 and P90) correlation values are approximately 0.11 and 0.90, respectively.

Note that if the measured correlation was lower, or if there were fewer data, the

sampling distribution for the correlation coefficient would be even wider. For example,

Figure 3.5 shows the sampling distribution for the correlation coefficient for a measured

correlation of 0.3 and 8 independent data points. The uncertainty in the correlation

is much wider in this case and the P10 and P90 correlation values are -0.34 and 0.78,

respectively.

For one final example, consider the data from an offshore reservoir shown in Figure

3.6. The figure shows six paired points on a scatter plot between a seismic attribute
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Figure 3.5: The sampling distribution for the correlation coefficient for a measured
correlation of 0.3 and six independent data points.

and porosity. The data points have been labelled with arbitrary numbers for reference

purposes. Pearson’s correlation is -0.471 and Spearman’s rank correlation is -0.771.

Upon examination, data points one and six appear to be outliers, or at least suspicious.

Here, the program ROBUSTCORRCO calculates a robust correlation coefficient of -0.533,

which is in good agreement with the traditional Pearson correlation coefficient. This

makes sense when the results are examined in more detail. When point number one

is left out of the calculation in a LOOT, the correlation between points two to six is

-0.087. However, when point number six is left out of the calculation, the correlation

of the remaining points is -0.927. Elimination of any of the other points makes little

difference to the resulting correlation. Thus, the effect of point one and six roughly

offset each other.

The three robust correlations are also indicated on Figure 3.6. As is shown, the

robust correlation coefficients are rmed = -0.351, rg = -0.667 and rLMS = -0.972. Just as

in the last example the LMS correlation tends toward the extreme end of the correlation

spectrum.

Figure 3.7 shows the sampling distribution for the robust correlation coefficient for

the offshore reservoir data. In this case, there are no spatial locations for the data so

it is assumed that the data are independent of each other. The sampling distribution

shows P10/P50/P90 correlation values of approximately -0.89/-0.60/0.00, respectively.
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Figure 3.6: A seismic attribute versus porosity from an offshore reservoir. Although
only five points are visible, there are actually six points since there are two points very
close together near (3, 0.31).

Thus, according to its distribution, there is a 10% chance that the correlation is greater

than zero, based upon the number of data and the calculated robust correlation.

Simulation Study

In an effort to compare the proposed robust correlation coefficient to the other robust

correlation coefficients and to help explain the extreme rLMS values, a few small simu-

lation studies were performed. In the first simulation study, 100 realizations of 10 data

points (x, y) are generated by drawing x and y values randomly and independently

from a uniform distribution between 0 and 10. Correlation coefficients are calculated

for each realization of 10 data. Since the x and y values are drawn randomly and

independently from uniform distributions, the average correlation is expected to be

0.0. The results of the study are shown in Table 3.1. For each correlation coefficient,

the average was very close to 0.0, as expected. More interesting is the standard de-

viation of correlation of the 100 realizations. The σPearson = σSpearman = 0.34 while

σrobust−proposed = 0.29 and is similar to σg = 0.25. The lower standard deviation for

σrobust−proposed and σg makes sense since they should be less affected by outliers that

give spurious correlation to Pearson and Spearman’s coefficients for some realizations.
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Figure 3.7: The sampling distribution for the correlation coefficient for the data in
Figure 3.6.

Interestingly, σLMS = 0.711, which is much larger than for any other correlation coeffi-

cient. Figure 3.8 provides additional insight showing the relative frequency histograms

of rpearson, rrobust−proposed and rLMS . The histograms of rPearson and rrobust−proposed

are roughly symmetric and centered around 0.0, as expected. However, the histogram

for rLMS shows a distinct tendency towards values near -1 and 1. Figure 3.9 shows

similar relative frequency histograms except that the number of data points per re-

alization was increased from 10 to 50. When the number of data per realization is

increased, the standard deviation of the correlations decreases the chance of generating

a data set with spurious correlation. However, even with 50 data points generated from

two independent uniform distributions, the range of correlation calculated by the LMS

algorithm remains very wide. The standard deviation for rLMS = 0.509 with minimum

and maximum correlations of -0.98 and 0.99.

For another simulation study, 100 realizations of 10 data points are generated. This

time the x-values were drawn from a normal distribution with mx = 15 and σx = 4.

The y-values are drawn from a normal distribution with a mean conditional to x (my|x),

conditional variance (σ2
y|x ) and a target correlation of 0.6 where:

my|x = my + ρσy
(x−mx)

σx
(3.1)

and
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Table 3.1: Simulation study results for 100 realizations of 10 data points drawn from
independent uniform distributions.

Correlation coefficient
Pearson Spearman Proposed Shevlyakov Gideon & Rousseeuw
(rp) (rs) robust (rmed) Holister (rLMS)

(rrobust−proposed) (rg)

Average r -0.040 -0.035 -0.039 -0.026 -0.044 -0.035
St. Dev. (σ) 0.340 0.340 0.289 0.444 0.247 0.711
Minimum r -0.852 -0.952 -0.792 -0.907 -0.600 -0.991
Maximum r 0.711 0.842 0.666 0.873 0.400 0.989

Figure 3.8: Relative frequency histograms of correlation for 100 realizations of 10 data
points measured by three correlation coefficients, rPearson|, rrobust−proposed and rLMS .

Figure 3.9: Relative frequency histograms of correlation for 100 realizations of 50 data
points measured by three correlation coefficients, rPearson|, rrobust−proposed and rLMS .
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Figure 3.10: Relative frequency histograms of correlation for 100 realizations of 10 data
points (with expected correlation = 0.60) measured by three correlation coefficients,
rPearson|, rrobust−proposed and rLMS .

σ2
y|x = σ2

y(1− ρ2) (3.2)

Pearson’s, the LMS and the proposed robust correlation coefficients are calculated

for each of the 100 realizations. The average Pearson correlation is 0.634. The average

proposed robust correlation is 0.524 and is lower than the target of 0.6. The average

LMS correlation is 0.797, which is considerably higher than the target. The relative

frequency histograms are shown in Figure 3.10. The histograms for Pearson’s and the

proposed robust correlation coefficients are similar although the proposed correlation

tends to be slightly lower than Pearson’s. However, similar to the previous examples,

the LMS correlation has a strong tendency towards the extreme end of the correlation

spectrum. In fact, the LMS estimator calculates a correlation greater than 0.9 in 37 of

100 realizations.

3.4 Discussion

Given that there is no formal mathematical definition for an outlier and that the

practitioner may or may not wish to exclude outliers depending on their origin and

the number of data, it should be no surprise that there are a many ways to calculate
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a robust correlation coefficient. It appears that no correlation coefficient is perfect

in every situation. The traditional correlation coefficients are particularly sensitive to

outliers and two of the three robust coefficients (rmed and rg) are slightly more robust,

but still sensitive to outliers as shown by the breakdown test. The test also showed

the proposed correlation coefficient is quite resistant to outliers, though not as much

as the LMS correlation coefficient. However, in examples with lower correlation and

fewer data points, the LMS correlation coefficient tends toward the extreme ends of the

correlation spectrum. Moreover, for any particular underlying data distribution, the

LMS estimator may calculate a correlation anywhere along the spectrum depending on

the particular data configuration.

It seems to be a good idea to calculate and compare several correlation coefficients

for any particular dataset. If some of the coefficients agree with each other, it may be

easier to trust one of those calculated values. On the other hand, visual inspection of a

scatter plot of the data should not be overlooked. If the calculated correlation appears

to disagree with visual inspection of the scatter plot, perhaps one of the other robust

or traditional correlation coefficients makes more sense in that situation.

One example of application of this research is in collocated co-simulation. In col-

located co-simulation a Markov-type assumption is made where collocated secondary

information is assumed to screen further away data of the same type. This means that

the available primary data and a single secondary datum at the estimation location

are used in the calculation (Deutsch, 2002). The collocated co-simulation relies on the

measured correlation between the primary and secondary data. In some cases such as

in off shore oil and gas reservoirs, there may be few wells or samples upon which a cor-

relation may be calculated. In these cases, the uncertainty in the correlation coefficient

may be quite large.

It is useful and valuable to use the proposed robust correlation coefficient (encoded

in the program ROBUSTCORRCO) to obtain a more robust correlation coefficient. Then the

effective number of independent data (encoded in the program NIND) can be calculated.

Finally the program SAMP_DIST_CORR can be used to obtain the sampling distribution

for the correlation coefficient.
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The aim is to arrive at a more robust correlation coefficient which minimizes the

effect of outliers and is hopefully more reflective of the true correlation coefficient,

which will never be known. By using a more robust correlation as input into the

collocated cosimulation, the influence of secondary data can be more correctly scaled

in the estimation and simulation of the variable of interest.

The use of the sampling distribution for the correlation coefficient allows one to

examine the impact of the secondary data on our estimates. In this example, the

geostatistician could calculate three scenarios of collocated co-simulation with the P10,

P50 and P90 correlation coefficients to observe the impact of the uncertainty in the

correlation on the measured reserves. Or, a Monte Carlo simulation approach could

be used to randomly sample the distribution of r as an input into the collocated co-

simulation. Given the demonstrated uncertainty in the correlation coefficient, it is not

difficult to imagine different scenarios having a major impact on estimated reserves.

3.5 Remarks

The sensitivity of Pearson’s correlation coefficient to outliers is well known. An em-

pirical study of the breakdown properties of the traditional and robust correlation

coefficients indicates that Spearman’s, Shevlyakov’s and Gideon and Hollister’s cor-

relation coefficients are also significantly affected by outliers although they are more

robust than Pearson’s coefficient.

A new robust correlation coefficient was proposed, which showed a higher break-

down point than the traditional correlation coefficient and two other robust correlation

coefficients. The LMS correlation coefficient has a breakdown point of 50%, which

is the maximum possible. However, it was shown that the LMS correlation coefficient

may exhibit a tendency towards calculating extreme correlation values. Moreover, even

when realizations are drawn from some underlying distribution with a strong positive

correlation, the LMS estimator may calculate low or negative correlations.

Care and judgment should be used in selecting a correlation coefficient to represent

a dataset. It is fairly easy and quick to use ROBUSTCORRCO to calculate each of the

robust correlation coefficients in addition to the traditional ones. Then the calculated
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values can be compared to each other and a scatter plot of the data to arrive at a

reasonable value.

Regardless of the calculated value or choice of correlation between two variables, if

the dataset is small, the uncertainty in the correlation can be very large. The sampling

distribution for the correlation coefficient can be used to quantify its uncertainty based

upon the measured correlation value and the number of independent data.

Finally, the calculated uncertainty in the correlation coefficient should be propa-

gated through geological modeling (or any further statistical or geostatistical analysis)

to determine its impact on the resulting models. This can be easily achieved by run-

ning scenarios with different percentiles of the correlation coefficient or a Monte-Carlo

simulation approach.
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Chapter 4

Improvements to Fracture

Modelling

This chapter begins by describing how current DFN simulation software generates frac-

ture locations using a Poisson process (essentially the Baecher model, as was introduced

in Section 1.2.4). The Poisson process is explained here in detail. Next, two natural

fracture networks are examined and it is demonstrated that those fracture patterns

can not be replicated using the current DFN simulation software. As a result, a new

algorithm for simulating DFNs is proposed.

Generating DFNs as models of fractures in a reservoir is becoming more common,

as is evidenced by increasing number of articles in the literature on the topic (Basquet

et al., 2004; Casciano et al., 2004; Dershowitz et al., 2004; Guaiquirian et al., 2007; Kim

and Schechter, 2007; Makel, 2007; Tran et al., 2006; Xu and Dowd, 2010). Currently,

there are only a handful of commercially available computer programs capable of sim-

ulating DFNs in the context of a petroleum reservoir including (but not necessarily

limited to): FracMan (Golder Associates Ltd., 2010), Roxar’s RMS (Emerson Process

Management (Roxar), 2011), NAPSAC (Hartley, 1998), Prism’s REFRACT (Prism

Seismic Inc., 2012) and Schlumberger’s Petrel (Schlumberger, 2009). Note that, Petrel

directly incorporates Golder’s FracMan code in their program.

FracMan, RMS, NAPSAC and Petrel all use a Poisson process (the Baecher or

enhanced Baecher model) to randomly generate fracture centroid locations. Fracture

orientations are drawn independently of location. Fracture density can vary locally,

but there is no control on spacing and local orientation of fractures. No information
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on REFRACT’s fracture simulation algorithm was found in the literature, nor on their

website. The nearest neighbour and Levy-Lee models (see Section 1.2.4) are also avail-

able in FracMan and Petrel. This chapter mainly examines the modelling of fracture

networks using the Poisson process-based Baecher model, rather than the Levy-Lee or

the nearest neighbour models since: 1) the nearest neighbour model is generally used

for a special case of DFN modelling where fracture intensity is expected to vary in

relation to proximity of a fault, 2) the Levy-Lee model may give some control over

spacing via the fractal dimension and spacing parameters; however, no consideration is

given to intersections or local orientation variations, and 3) the Poisson process-based

approaches seem to find far more use in practice and in the literature.

4.1 Poisson Processes

In its simplest form, a Poisson Process is a stochastic counting process that describes

the number of events in a given time interval. For example, physicists use Poisson

processes to describe the emission of radioactive particles. The process is described by

a counter N(t) that tells us the number of events in the interval (0, t).

The Poisson process has the following properties:

1. N(0) = 0;

2. The number of events in disjoint (not overlapping) intervals are independent;

3. The number of events in a given interval depends only on the length of that

interval and not on its particular position in time;

4. No events are simultaneous; and,

5. P (N(t) = n) = e−λt(λt)n

n! , n = 0, 1, 2, ... The number of events in any interval

is Poisson distributed with mean λt. λ is called the rate parameter and is the

expected number of events occurring per unit of time.

The process is called a non-homogeneous Poisson process if the rate parameter

may change with time. Here, the rate function is generalized to λ(t). Therefore, the

expected number of events between time a and b is:
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λa,b =

b
∫

a

λ(t)dt (4.1)

A variation on the Poisson process is the spatial Poisson process. In one-

dimensional space, the theory is the same except that the index variable is one-

dimensional space instead of time. In higher dimensional spaces, the spatial Poisson

process is defined by having a number of points N(A) in a region, A ∈ V , given by the

Poisson distribution:

P (N(A) = k) =
e−λ|A|(λ|A|)k

k!
, n = 0, 1, 2, ... (4.2)

If (Ai, i ∈ I) is a finite family of pairwise disjoint elements of V, then the random

variables (N(Ai), i ∈ I) are mutually independent. In the spatial case of the Poisson

process, the mean value is the number of points within A, which is equal to λ|A| and λ is

the number of points per unit volume. In the spatial Poisson process, the rate function

becomes the intensity function. For more information on the spatial Poisson process,

the reader is referred to Lantuejoul (2002).

Since Poisson process events (fracture centroids in this case) are independent, cen-

troids may occur very close together (i.e. infinitesimally close together). Using a Pois-

son process to generate fracture locations leads to negative exponential fracture spacing

distributions and fails to account for the clustering of joints (Belfield, 1998). However,

some research has indicated that fracture spacing has a log-normally distribution (Narr

et al., 2006; Bridges, 1975; Becker and Gross, 1996), indicating that fractures are not

distributed independently of each other. Nevertheless, the use of Poisson models to

generate fracture locations persists as is evidenced by the state of the commercial DFN

simulation software.

4.2 Measuring Fracture Spacing

Geologists and engineers often use scan lines to measure fracture spacing in outcrops.

A scan line could also be considered as the centre line through core obtained from

diamond drilling. However, the relative orientation of the sampling line or borehole
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Figure 4.1: Relationship between true and apparent fracture spacing.

compared to the orientation of the fractures introduces a bias in the fracture spacing

measurements. The actual fracture spacing is less than the apparent spacing. The

bias in fracture spacing is demonstrated in Figure 4.1 and can be corrected using a

correction proposed by Terzaghi (1965):

S = Sasinθ (4.3)

In Equation 4.3, S is the true spacing between discontinuities, Sa is the apparent

spacing measured on the scan line (or borehole) and θ is the angle between the sampling

line and the orientation of the fractures.

A common problem is for a vertical borehole to intersect relatively few sub-vertical

fractures. The Terzaghi correction in Equation 4.4 can be applied to calculate an

appropriate adjusted number of fractures that accounts for the relative orientation

between the rock face and the strike of the fracture:

N =
Na

sinθ
(4.4)

where Na is the apparent number of fractures measured along the scan line and N

is essentially a weighted number of fractures that accounts for the biased sampling.
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Figure 4.2: On the left: A map of lineaments from Northern Alberta (Pana et al.,
2001). On the right: The southwest-northeast set is digitized.

4.3 Modelling Natural Fracture Networks with DFNs

4.3.1 A Map of Lineaments from Northern Alberta

Figure 4.2 shows a map of two lineament sets occurring in an area of Northern Alberta.

A lineament is a linear topographic feature, which is an expression of an underlying

geological structure such as a fault. Fracture and shear zones can also give rise to

lineaments. The lineaments on Figure 4.2 were inferred from satellite imagery and

digital elevation models (Pana et al., 2001).

In total, there are 425 lineaments from the SW-NE set that were digitized and

shown on the right side of Figure 4.2. It is common practice to group fractures into

sets of similar orientation and simulate separate DFNs for each fracture set (Clemo,

1994; Cooper, 2000; Narr et al., 2006; Makel, 2007). A rose diagram of the lineament

orientations suggests that they are from a single set (Figure 4.3), which suggests that

a single DFN may adequately model the lineaments.

Without any other available information, the lineaments are assumed to be sub-

vertical and represent underlying faults or fractures. This seems reasonable because

most NFR studies are concerned with sub-vertical fractures since horizontal fractures
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Figure 4.3: Rose diagram for the fractures shown in Figure 4.2.

would normally be closed due to the weight of the overburden. The digitized lineaments

can be used to represent “the truth” and DFNs can be simulated as models of those

lineaments. Then the spatial statistics of the digitized lineaments and the simulated

DFNs can be compared.

4.3.2 Calculating the Spacing of a Natural Fracture Network

The spacing of the digitized lineaments can be calculated along imaginary scan lines

projected through the network of lineaments. The scan lines are drawn perpendicular

to the average orientation of the lineaments. The distance along the scan lines between

intersections with lineaments are individual measurements of spacing (Figure 4.4). The

Terzaghi correction can be applied as in Equation 4.3. One hundred scan lines seeded
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Figure 4.4: Measuring fracture spacing along a scan line that is perpendicular to the
average fracture orientation.

from random locations within the map area are used to build a relative histogram of

lineament spacing for the digitized map. The relative histogram is shown in Figure 4.5.

The histogram shows that most lineaments have spacings between 3 and 30 kms.

4.3.3 Calculating Deviation in Local Orientation of Fractures in a

Natural Fracture Network

The orientation of fractures in a network governs the direction of increased or de-

creased flow (depending on whether the fractures act as conduits or barriers to flow,

respectively). An assessment of how similarly lineaments are oriented is required. Each

lineament is visited and its nearest neighbour is identified in the direction that is per-

pendicular to the lineament (parallel to the lineament normal vector). The deviation

in local lineament orientation is defined as the angle between the normal vectors

of a lineament and its nearest neighbour:

θ = arccos

(

a·b
|a||b|

)

(4.5)

a and b are the normal vectors of two fractures. A relative histogram of the deviation

in local lineament orientation is shown, for the digitized fractures, in Figure 4.6. the

histogram shows that most lineaments are oriented within 12 degrees from their nearest
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Figure 4.5: Relative histogram of lineament spacing for the digitized map (Figure 4.2).

Figure 4.6: Relative histogram of deviation in orientation between nearby lineaments
in the digitized map (Figure 4.2).

neighbour.

4.3.4 Modelling the Natural Fracture Network with DFNs

The next step is to simulate multiple realizations of DFNs as models for the digitized

lineaments and assess how well their spatial statistics match. The DFNs were modelled

with the Poisson process based approach, discussed at the start of the chapter, where

fracture centroids are generated with a Poisson process and orientations are drawn

independently of location. For simplicity, in this thesis, DFNs generated in this manner

are referred to as random DFNs.
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Figure 4.7: Relative histograms of spacing for the digitized lineaments Figure 4.2()
compared to 100 realizations of random DFNs.

The algorithm for generating the random DFN realizations involves re-sampling the

lineament orientations and centroid locations of the digitized lineaments:

1. visit a lineament randomly

2. re-sample its centroid x and y location from within the area of interest, defined

by the limits of the lineament map

3. re-sample the lineament orientation (strike) from the PDF of lineament strike

4. go to 1, visiting a new lineament each time until every lineament has been visited

5. once all lineaments have been visited, the resulting DFN is one realization

Figure 4.7 shows a histogram of lineament spacing for 30 DFN realizations (red

line with squares), compared to the histogram for the digitized lineaments (blue line

with diamonds). The digitized lineaments have an average spacing of 17.7 km with

a standard deviation of 17.4 km. The random DFN fractures have a larger average

spacing of 24.1 km and a larger standard deviation of 23.4 km. Moreover, the spacing

histogram for the digitized lineaments is narrower and less skewed than for the 30

realizations. The spacing bin with the highest frequency for the digitized lineaments

is 13 km. By comparison, the most frequent spacing bin for the 30 DFN realizations
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Figure 4.8: Relative histograms of the deviation in orientation between nearest neigh-
bours, compared to 100 realizations of random DFNs.

is the 3 km bin. This result makes sense when you consider that the distribution of

intervals between Poisson distributed events (centroids) is exponential (Belfield, 1998;

Mitrani, 1982). Thus, Poisson distributed fractures should not normally be expected

to reproduce a non-exponential distribution of fracture spacing.

With 425 lineaments per realization and 1000 random sampling lines per realization,

the histogram of spacing converges quickly with increasing realizations. Using more

than 30 realizations does not appreciably change the results.

Figure 4.8 shows the histograms of deviation in local orientation between lineaments

for the random DFNs (red line with squares) and the digitized lineaments (blue line

with diamonds). The histogram shows that almost all of the digitized lineaments are

oriented within 12 degrees of their nearest neighbour. However, for the random DFNs,

the histogram is much wider. For the random DFNs, most fractures are oriented within

approximately 22 degrees of their nearest neighbour. The random DFNs show less of a

tendency for fractures to be oriented similarly to their nearest neighbours than is shown

by the digitized lineaments. Normally, a wider distribution of fracture orientations will

lead to greater fracture connectivity created by more intersections between fractures.

Fracture network permeability is tied, in part, to the amount of connectivity be-

tween fractures. That is, all else being equal, well-connected fracture networks with

many intersections are more permeable than discontinuous fracture networks with few
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Figure 4.9: Histogram of number of intersections per realization.

intersections. Thus, it is important for a DFN to have a similar connectedness (defined

here by the number of fracture intersections) compared to the natural fracture network

it is designed to represent.

There are 20 intersections in the map of digitized lineaments. The number of frac-

ture intersections was also calculated for each of the 30 random DFN realizations. The

average number of fracture intersections per realization is 89.4 with a standard devia-

tion of 8.4 intersections. The number of fracture intersections in the digitized fracture

network is 7.5 standard deviations less than the mean for the 30 DFN realizations.

The DFN with the fewest number of intersections still has 75 intersections. Figure 4.9

shows a histogram of the number of intersections per realization.

Based on this analysis, the spatial statistics of the digitized lineaments shown in

Figure 4.2 cannot be realistically modelled with the typical random DFN. The DFNs

do not honour the histograms of lineament spacing and deviation in local orientation.

Moreover, the random DFNs showed far more intersections than were measured on the

digitized map.

4.3.5 Rock Outcrop from Vernazza, Italy

Figure 4.10 shows a picture of an exposed rock face along a walking trail near Vernazza,

Italy. There are two fracture sets in the rock face. The main fracture set shows three
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Figure 4.10: Above: An exposed rock face in Vernazza, Italy showing two fracture sets.
Below: One of the fracture sets is digitized.

very large fractures that are very noticeable and dip towards the lower left corner of the

photo. The secondary fracture set has many more fractures that are less well defined

and dip towards the lower right corner of the photograph. The traces from the second

fracture set were digitized and are also shown in Figure 4.10. In total, 48 fractures

were digitized.

The actual orientations of the fractures were not measured and recorded. Thus, this

example is assumed to be two-dimensional and the vertical direction (up) corresponds to

North. The average fracture strike is 162 degrees (measured clockwise from the upwards

on the image of the digitized fractures), with a standard deviation of 7.1 degrees. Based

on visual inspection, the histogram of fracture orientation is approximately normal as

is shown in Figure 4.11.
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Figure 4.11: The fracture orientation (pole trend) data is approximately normally
distributed.

Figure 4.12: Histograms of fracture spacing for the digitized fractures (Figure 4.10)
and the 100 random DFNs. The spacing is measured in units of pixels as there is no
accurate scale for the photograph.

Figure 4.13: Histograms of deviation in local orientation for the digitized fractures
(Figure 4.10) and the 100 random DFNs.
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Figure 4.12 shows a relative histogram of fracture spacing for the digitized fractures

(blue line with diamonds). As there is no accurate distance scale for the photograph,

distance is measured in pixels. The figure also shows the relative histogram for 100

realizations of random DFNs created by the same re-sampling algorithm detailed in

Section 4.3.4. The histogram for the digitized fractures shows a greater frequency of

shorter fracture spacings (i.e. below 400 pixels). The random DFNs have a wider

histogram of fracture spacing.

Figure 4.13 shows relative histograms of deviation in local orientation for the digi-

tized fractures (blue line with diamonds) and for the 100 realizations of random DFNs

(red line with squares). The histogram for the digitized fractures shows a higher in-

cidence of low angles between nearby fractures compared with the histogram for the

random DFNs. This means that the digitized fractures are oriented more similarly

to their nearest neighbours than they would be if their orientation and location were

independent.

The digitized fractures show zero fracture intersections. However, in the 100 random

DFN realizations, fracture intersections are quite common. A histogram of the number

of fracture intersections is shown in Figure 4.14. In 100 realizations of the random

DFNs, there is an average of 3.9 intersections per realization with a standard deviation

of 2.1 intersections per realizations. Out of 100 realizations, only two had no fracture

intersections and one realization had as many as 14 intersections.

Taken together, the fracture spacing, deviation in local fracture orientation and

fracture intersection data indicate that the fractures digitized from the rock face in

Italy could not be modelled by DFNs that draw centroid locations with a Poisson

process and independently of each other and their orientations.

4.4 A New Approach to DFN Simulation

Some natural fracture networks cannot be modelled with random DFNs while still re-

specting certain spatial statistics (noted earlier). This section introduces a new method-

ology for simulating DFNs and reviews alternative methodologies that were considered

and rejected.
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Figure 4.14: Histogram of the number of fracture intersections per realization for 100
realizations of random DFNs

4.4.1 Overview of Proposed Methodology

The proposed methodology works by simulating more fractures than are required and

iterating to find a subset that closely match target spatial statistics.

The pool of all fractures is divided into two subsets; those that are part of the DFN

and those that are not part of the DFN. Different subsets of fractures are tested by

moving fractures into and out of the DFN (one at a time) and evaluating the effect of

the change on the spatial statistics of the DFN.

The target spatial statistics are histograms of deviation in local orientation, fracture

length and a measure of fracture spacing. Other target spatial statistics are a target

number of fracture intersections and fracture intensity. An objective function, based on

the squared difference between the target and actual fracture network spatial statistics,

measures the impact of changes to the DFN. A greedy optimization algorithm was

implemented to accept all positive changes to the DFN and reject all others. The

choice of optimization method is explained in detail in Section 5.3.1 while rejected

alternatives are discussed in Section 5.3.2.

The new methodology results in DFNs that are more geologically realistic since

target spatial statistics are honoured.

The algorithm for the proposed algorithm is presented below:
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Figure 4.15: A 2D illustration of the pool of fractures, which consists of activated and
deactivated fractures. There are 20 fractures in the pool. 10 fractures are activated
and are the DFN at any time during the optimization process. 10 fractures remain
deactivated and are not considered part of the DFN.

1. A pool of fractures is simulated using the traditional Poisson-based methods (i.e.

random DFNs as discussed in Section 4.3.4). A central idea is to generate more

fractures than are required. The ratio of the pool intensity to the target intensity

is called the fracture multiplication factor (FMF).

2. Not all fractures are assigned to the DFN (see Figure 4.15). Some fractures are

assigned to the DFN and are termed activated while fractures that are not part

of the DFN are termed deactivated. This terminology will be explained as the

rest of the methodology is presented.

3. An initial DFN is created by randomly visiting fractures in the pool and activating

them to be part of the DFN. This process stops when the desired fracture intensity

is achieved. Thus, the initial DFN closely matches the target fracture intensity

before optimization begins.

4. A search strategy is implemented to discover the location of all fracture centroids

with respect to all other fractures. The goal is to identify the fractures that

are close to each other and calculate the distance between them as a measure of
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fracture spacing. The angles between nearby fractures are also calculated; this is

called the deviation in local fracture orientation as was described earlier.

5. Intersections between the fractures in the pool are calculated and saved in mem-

ory. If an intersection exists between two fractures that are activated, that is also

noted in memory.

6. Relative histograms of local fracture spacing, deviation in local fracture orienta-

tion and fracture length are calculated.

7. An objective function is calculated for the initial DFN. The objective function

measures the difference between actual and target histograms of local fracture

spacing, deviation in local fracture orientation, fracture length, fracture intensity

and the actual and target number of fracture intersections. This is discussed in

more detail in Section 5.3.

8. A random path to visit each fracture in the pool is determined.

9. The initial DFN is iterated upon by visiting a fracture on the random path and

switching its activation. If the fracture is activated (currently part of the DFN),

then it is deactivated and removed from the DFN. If the fracture is deactivated

(not currently part of the DFN), it is activated and inserted into the DFN.

10. The objective function is re-calculated for the modified DFN.

11. A greedy optimization algorithm (see Section 5.3.1 for details) was used where

the change to the DFN is accepted if the objective function decreases and rejected

otherwise.

12. The process repeats, visiting a new fracture each time (i.e. return to step 9) until

all fractures in the pool are visited once.

13. Additional improvement in the optimization is made by looping over each fracture

a number of times (i.e. return to step 8), with a new random path each time.
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The methodology is not entirely statistical and the result is a meta-heuristic al-

gorithm to generate DFNs that are not entirely random in nature, by reproducing

information that is calibrated from available measurements and analogue sites that are

deemed representative. There are no geomechanical principles directly employed in the

generation of the fracture networks. Note that the algorithm is general enough to work

in two or three dimensions.

4.4.2 Alternatives to the Proposed Methodology

This chapter has demonstrated the need for a new algorithm capable of generating

more geologically realistic DFNs. The algorithm proposed in the previous subsection

is one of many possibilities. In fact, several other approaches to DFN simulation were

considered. This subsection briefly discusses those alternative approaches and whey

they were not pursued further.

Fracture Network Perturbation

An alternative methodology would be to simulate the correct fracture intensity (i.e. no

extra fractures) and perturb the fracture network by visiting a fracture at random and

re-simulating its centroid location, fracture orientation and size. Then the change in

the objective function could be observed. If the objective function decreases as a result

of the change, the change would be accepted.

This approach would produce similar results compared to the methodology proposed

in this thesis. Perturbing a fracture is comparable to removing a fracture from the DFN

and inserting a new fracture into the DFN.

One major disadvantage of the perturbation approach is that it will produce DFNs

that must match the target fracture intensity. Alternatively, the algorithm proposed

in this thesis allows the fracture intensity to depart from the target if it results in an

improvement to the DFN in other ways (i.e. if the changes result in better matches for

fracture spacing or intersections).

The perturbation approach is also less computationally efficient than the method-

ology proposed in this thesis. Consider the following example. Under the proposed

69



approach, if the target intensity is 250 fractures and the FMF is two, then there are

500 fractures in the pool. If the number of iteration loops is two, then 1000 changes

to the DFN are considered with only 500 data searches. If the perturbation approach

is considered, only 250 fractures are generated. To achieve 1000 changes to the DFN,

1000 data searches are required.

Direct Statistical Approach

It would be impossible to directly simulate the locations and attributes of potentially

millions of fractures because there is no evident way of constructing a multivariate

distribution that could be sampled in a traditional way. One would somehow need

to define a multivariate distribution of fracture locations, relative orientations, length,

intersections and size in order to obtain a fracture network that honoured those distri-

butions.

One might be able to imagine a method for sequentially simulating fracture locations

given previously simulated fractures. If a probability distribution of fracture spacing

can be defined, it might be possible to draw fracture spacings rather than fracture

locations. Then, the newly simulated fracture could be located at that spacing from

other fractures in the vicinity. For example, if it is assumed that one fracture has

already been simulated, then one could randomly draw from a distribution of spacing

and locate the new fracture at a position corresponding to the drawn spacing relative

to the first fracture. However, it is not clear what side of the first fracture the second

fracture should be placed. Also, it is not clear where the second fracture should be

located in three-dimensional space. The spacing only addresses the distance between

the fractures in the perpendicular direction. The centroid of the second fracture is

“free to move” in the plane that is parallel to the first fracture. Things get even more

complicated when a third fracture is simulated. If it is placed in between the first and

the second fractures, then the originally drawn spacing is compromised.
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Direct Geomechanical Approach

Direct geomechanical techniques use the estimated current or inferred past stress state

in the reservoir rock mass to determine the orientation and density of fractures with

respect to a defined fault framework. Displacement or stress state boundary conditions

are applied to the model, resulting in a strain tensor which indicates fracture orienta-

tion and density. Such geomechanical approaches have been tried in the past (Bourne

et al., 2000; Renshaw and Pollard, 1994; Heffer et al., 1999) and are computationally

expensive, even in two dimensions. Fracture network simulation by geomechanical prin-

ciples has not been successfully extended to three dimensions, especially for reservoir

scale models (Srivastava, 2006). An additional complication is that the stress state and

rock strength parameters are very imporant to the results yet are poorly constrained

(Makel, 2007).

Pseudo-Geomechanical Approach

One could consider some type of pseudo-geomechanical approach, similar to that pre-

sented by Srivastava (2006). A pseudo-geomechanical approach might attempt to mimic

the direct geomechanical approach of Renshaw and Pollard (1994) without directly ap-

plying geomechanical modelling. Srivastava’s approach replaces geomechanical princi-

ples for fracture propagation with geostatistical rules, which are able to produce some

of the geological realism with less computational effort. The main difficulty would be in

defining the rules for propagation of the fractures. Srivastava’s work requires detailed

joint mappings from outcrops, whereas the proposed methodology does not require

outcrops. Srivastava’s work also randomly seeds fracture locations.

Sequential Rejection Sampling

It might be possible to simulate fracture networks by rejecting fractures sequentially

as they are simulated. For example, a newly simulated fracture might be rejected if a

new fracture:

• is simulated too close to an existing one;

• has an orientation that is too dissimilar to its nearest neighbour;
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• intersects an existing one at a very low angle.

If a probability distribution function (PDF) for fracture spacing can be defined, then

a simulated annealing-like approach might be considered where a new fracture with a

particular spacing to an existing fracture could be rejected with a certain probability

depending on its location under the PDF.

The main challenge with this methodology is that it would be difficult to control

the resulting fracture spacing and orientation distributions. For example, imagine two

fractures, A and B, that have already been simulated. Now imagine that a third

fracture, C, is inserted into the DFN in between fracture A and B. Fracture C might

be accepted based on its spacing to fracture A, but now the spacing between A and B

is irrelevant even though B was accepted based on its distance to fracture A.

Similarly, it would also be near impossible to control the number of intersections.

Early in the simulation, the DFN has less than the target amount of intersections and

no newly added fractures would be rejected based on its intersections with existing frac-

tures. However, when the number of intersections equals the target number, all new

fractures intersecting existing fractures would be rejected. One could consider employ-

ing a probabilistic approach to rejection where new fractures that intersect others are

rarely rejected in the early stages. Then as the number of intersections approaches the

target number, rejections become more common. However, this might leave artefacts

in the fracture networks since most intersecting fractures would be developed early in

the DFN simulation process.

4.5 Remarks

The purpose of this chapter was to introduce the typical DFN modelling algorithm

(i.e. “the random DFN”) and assess how well it works at generating models for ex-

isting natural fracture networks. Fracture intensity, local fracture spacing, deviation

in local fracture orientation and the number of fracture intersections are introduced as

key fracture network spatial statistics that should be honoured in DFNs. Two real-life

examples of natural fracture networks were presented and it was shown that the DFNs
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generated by the typical random DFN algorithm do not honour the spatial statistics

of the natural fracture networks they attempt to model. A new method for simulat-

ing DFNs was proposed that is designed to honour certain target spatial statistics.

The DFN simulation algorithm was codified in a FORTRAN program called DFNSIM for

discrete fracture network simulation, which is discussed in greater detail in the next

chapter. While this chapter introduced the proposed DFN simulation algorithm, the

next chapter discusses several key implementation considerations.
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Chapter 5

Implementing the Proposed DFN

Simulation Algorithm

Chapter 4 showed that DFNs generated using traditional methods (i.e. the “random

DFN”) may be unsuitable for developing models of some natural fracture networks.

A new algorithm was proposed for simulating DFNs that match input target spatial

statistics.

This chapter discusses several key aspects of implementing the algorithm including:

1) how the pool of fractures is generated, 2) calculating the spatial statistics of a

simulated DFN, 3) the objective function, 4) the data search strategy, 5) issues of

convergence 6) measures of fracture spacing and 7) other parameters and the DFNSIM

parameter file.

5.1 Generating a Pool of Fractures and an Initial DFN

Generating a large pool of fractures, that exceeds the target fracture intensity, permits

an optimization to find a suitable subset that comes close to matching target fracture

network spatial statistics. The choice of pool size is subjective but testing has shown

that a pool intensity that is two to three times the target intensity is usually sufficient.

The pool of fractures can be generated using the traditional random DFN approach:

1. A fracture centroid location (x, y, z) is generated with a Poisson process. For

DFNs where the target intensity varies little over the modelling area, a homoge-

neous underlying intensity function is appropriate. If the target fracture intensity
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varies greatly over the modelling area, a non-homogeneous underlying intensity

function may be used.

2. A fracture orientation is drawn independently of the centroid location. The orien-

tation is drawn from an input distribution derived from available data (orientation

measurements from core, FMI, outcrops, areal photos, etc.).

3. Fracture length, height and aperture are drawn independently from separate input

distributions. These distributions are also derived from data (where possible) or

analogues.

4. Every fracture in the pool (Figure 4.15) starts in the deactivated state (i.e. not

part of the DFN). An initial DFN is created by randomly visiting fractures in

the pool and activating them, which assigns them to the DFN. The initial DFN

is complete when its intensity closely matches the target fracture intensity. If a

P30 intensity (fracture count per volume) is used, the initial DFN will have the

exact right intensity, since it is just a matter of activating the correct number of

fractures. If the P32 intensity (fracture area per volume) is used, fractures are

activated until the DFN intensity just exceeds the target intensity.

This approach results in an initial DFN that would be similar to those created by

commercial software using the Baecher model.

5.2 Calculating the Spatial Statistics of the DFN

After the pool of fractures is generated and a random subset has been assigned to the

initial DFN, an objective function is calculated to measure the “goodness of fit” between

the target input histograms and statistics and those of the initial DFN. The objective

function is based, in part, on histograms of local fracture spacing and deviation in local

fracture orientation.

A geologist or engineer might measure fracture spacing using scan lines (Figure

4.4). However, when generating and optimizing large fracture networks this approach

was found to be too computationally expensive. One could imagine a fracture net-
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Figure 5.1: Calculating the perpendicular distance to the nearest fracture.

work with millions of fractures and thousands (or more) imaginary scan lines through

which fracture spacing is calculated. Each time a fracture is removed or added over

potentially millions of iterations, the true spacing would need to be re-calculated or

updated somehow. Early attempts at implementing such a procedure proved too com-

putationally expensive, limiting the practical size of DFNs to the order of thousands

of fractures. Thus, an alternative measure of fracture spacing was required.

The average perpendicular distance between a fracture and its nearest neighbour

is proposed as a measure of local fracture spacing. This agrees with the definition of

fracture spacing by Makel (2007) as the orthogonal distance between fracture planes.

Figure 5.1 shows the calculation of the perpendicular distance between a fracture and

its nearest neighbour. Each fracture is visited and its nearest neighbour is identified.

Fracture spacing is usually measured normal to the plane of the fracture. Thus, the

perpendicular distance between fractures is used. The perpendicular distances (dp1

and dp2) between each fracture’s centroid and the other fracture are calculated. The

average of dp1 and dp2 is taken to be the local fracture spacing since dp1 and dp2 are

usually not equal. If the ray from one centroid does not intersect the other fracture,

the intersection is taken where it would have been if the fracture was infinite in extents

(see Figure 5.1).

In addition to local fracture spacing, the similarity in orientation between nearby
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fractures is computed. The deviation in local fracture orientation is calculated by

finding the angle between the poles of two nearby fractures and is calculated from the

dot product of the two normal vectors as in Equation 4.5.

All fractures are visited and local fracture spacing and deviation in local fracture

orientation are calculated. Histograms of both variables are constructed.

5.3 The Objective Function

Now the objective function can be calculated. The objective function measures the

squared difference between the bins of target histograms and those calculated from the

DFN. The objective function is:

O =
5

∑

c=1

CcOc

= Cspac

sbins
∑

i=1

(

Starget
i − SDFN

i

)2
+Cor

orbins
∑

j=1

(

Ortargetj −OrDFN
j

)2

+Clen

lbins
∑

k=1

(

Ltarget
k − LDFN

k

)2
+ Cinter

(

Intertarget − InterDFN
)2

+Cint

ibins
∑

l=1

(

Itargetl − IDFN
l

)2
(5.1)

where:

• Starget
i and SDFN

i are the target and DFN histograms of local fracture spacing,

respectively. sbins is the number of histogram bins.

• Ortargeti and OrDFN
i are the target and DFN histograms of deviation in local

fracture orientation, respectively. orbins is the number of histogram bins.

• Ltarget
i and LDFN

i are the target and DFN histograms of fracture length, respec-

tively. lbins is the number of histogram bins.

• Intertargeti and InterDFN
i are the target and DFN number of fracture intersec-

tions, respectively.
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• Itargeti and IDFN
i are the target and DFN histograms of fracture intensity, respec-

tively. ibins is the number of histogram bins.

• Cspac, Cor, Clen, Cinter, and Cint are coefficients, which allow each component

to play an equally important role in the objective function and serve to make it

unit-less in order to compare components with different original units.

The coefficients are calculated automatically so that, on average, each component

contributes equally to changes in the objective function. This can be achieved if each

of the coefficients are inversely proportional to the average change of that component

objective function (Deutsch, 1992).

The change in the objective function due to a fracture activation or deactivation is:

∆O = Onew −Oold =

5
∑

c=1

Cc∆Oc (5.2)

where c represents the five different components of the objective function. Then the

coefficients are:

Cc =
Fc,Scaling

|∆Oc|
, c = 1, ..., 5 (5.3)

where Fc,Scaling are scaling constants. The scaling constants allow the user to emphasize

or de-emphasize the importance of certain components of the objective function as

necessary.

The average change in each component of the objective function, ∆Oc, can be

approximated by evaluating the average change of N changes (say N = 1000) to the

DFN. The procedure is: 1) visit a fracture randomly, 2) change its activation state, 3)

observe the effect of the change on the objective function, 4) reverse the change to the

DFN, and 5) repeat, visiting a new fracture each time until N changes are made. The

average change for each component is:

|∆Oc| =
1

N

N
∑

i=1

[

Obase
c −Oi

c

]

, c = 1, ..., 5 (5.4)
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where |∆Oc| is the average change for component c, Obase
c is the objective function

for the initial DFN (i.e. the base case) and Oi
c is the objective function for the per-

turbed DFN. The base objective function, Obase
c , is calculated with the five coefficients

equalling 1.

Once the coefficients, Cc, are determined, the proposed fracture simulation algo-

rithm proceeds to steps 6 and 7 (Section 4.4), where the initial DFN is iterated upon

and changes to the DFN are accepted or rejected depending on whether or not the

change results in a decrease in the objective function. The objective function is flexible

and can optimize the fracture network on any or all of its five components. For exam-

ple, information on fracture length is difficult to obtain in a petroleum reservoir setting

where fractures are sampled by core. If there is great uncertainty in the fracture length

histogram, the fracture modeller could choose not to optimize on fracture length.

5.3.1 The Greedy Optimization Process

A greedy optimization is implemented in DFNSIM. That is, changes to the DFN are

always accepted if they result in a decrease in the objective function result.

The greedy optimization was chosen because it is simple both conceptually, practi-

cally (it was easy to encode into DFNSIM) and since it performed well. The reason the

greedy algorithm works well is that convergence is generally easy, insofar as excellent

results were obtained for examples shown in this thesis (specific convergence results are

discussed in Section 5.6.2).

It is possible that the greedy algorithm might not be suitable for all cases. Two

circumstances that might result in poor results with the greedy algorithm are: 1) If

additional variables are added to the objective function, and 2) if the target spatial

statistics are jointly unrealistic.

Future work may modify the proposed DFN simulation algorithm by adding addi-

tional components to the objective function such as the type and proportion of intersec-

tion truncations (i.e. fractures terminating at their intersection with another fracture).

Adding more components to the objective function is likely to make the optimization

more difficult.
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Target spatial statistics (i.e. histograms of local fracture spacing, deviation in local

fracture orientation and fracture length along with the number of fracture intersections

and fracture intensity) must be defined prior to using DFNSIM. With limited data on the

underlying natural fracture network, it is possible to define incompatible target spatial

statistics. For example, it seems reasonable to say that there is a relationship between

the fracture intensity, the fracture length distribution, the orientation distribution and

the resulting number of fracture intersections. As fracture lengths increase, the number

of fracture intersections will increase (assuming all other fracture size and orientation

parameters remain constant). Similarly, as the fracture intensity increases, the number

of fracture intersections will also increase (again, with all other size and orientation

parameters remaining constant). Thus, one can imagine a situation in which the tar-

get fracture intensity, fracture length distribution and fracture orientation distribution

could be defined in a way that makes it impossible to achieve a certain number of

fracture intersections.

In other cases, it might be that the greedy algorithm may reach a local minima

before an acceptable convergence is achieved. In cases where convergence to an ac-

ceptable solution is difficult, it may make sense to consider an alternate optimization

algorithm.

5.3.2 Other Optimization Algorithms

One classic way of optimization would be to derive the gradient of the function to be

optimized and employ a gradient descent or quasi-Newton method. However, in this

case, the function is not known a priori making these methods intractable.

Meta-heuristic methods, such as the one proposed in this thesis, seem well suited for

this type of combinatorial optimization problem as they are often efficient for solving

large and complex problems (Talbi, 2009).

The simplest algorithm to consider is the brute force algorithm, whereby all possi-

ble combinations of subsets of fractures are evaluated and the subset with the lowest

objective function result is the solution. The brute force algorithm will always pro-

duce the best result (the global minimum objective function), but is intractable for
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any practical scenario. If there are N fractures in the pool, then there are 2N ! − 1

(the case where the DFN has zero fractures is excluded) possible combinations. Infea-

sible scenarios could be excluded outright. For example, if the target fracture intensity

is Ntarget fractures, any scenarios outside the interval of Ntarget ± Ttolerance could be

discarded, where TTolerance is a tolerable deviation from the target fracture intensity.

Even though this would greatly reduce the number of combinations to try, the problem

is still intractable for all realistic reservoir scale fracture networks.

A simulated annealing (Kirkpatrick et al., 1983) optimization algorithm could be

used instead of the greedy algorithm. If a change to the DFN results in an improve-

ment to the objective function, the change would be accepted. Changes to the DFN

that do not result in improvement to the objective function would also be accepted a

certain percentage of the time. The simulated annealing approach avoids the problem

of “getting stuck” in a local minimum.

Genetic algorithms (GA’s) are another family of meta-heuristic algorithms that

could have been considered for this optimization problem. GA’s are search heuristics

that mimic the process of evolution for the purposes of generating solutions to opti-

mization and search problems. It may be possible to use a GA to optimize fracture

networks in the context of the proposed algorithm, although this is more complicated

than the greedy method implemented.

5.4 Data Search Strategy

Once the initial DFN is created, a search is required to locate all fracture centroids,

calculate the distance between nearby fractures and identify which fractures are closest

to each other. Specifically, the perpendicular distances between fractures are needed

as a measure of fracture spacing. Once the perpendicular distances are known, its

histogram can be calculated.

The simplest search strategy is to systematically calculate all perpendicular dis-

tances between all n fracture centroids. Unfortunately, the perpendicular distance

calculation is much less efficient than a straight-line Euclidean distance. A more effi-

cient approach is to use a search algorithm like the super block search (Deutsch and
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Journel, 1998) to calculate distances between nearby centroids with a Euclidean dis-

tance first. Then some number (nclose) of fracture centroids that fall within a certain

radius are subject to the perpendicular distance calculation (See Figure 5.2).

The data search procedure is as follows:

1. Set up and initialize the super block search.

2. Visit a fracture fi (i = 1, ..., n)

3. The superblock search is used to identify the nearest nclose fractures to centroid

fi and how far they are away (by Euclidean distance). A radius is specified so

that nclose < n.

4. The perpendicular distances between centroid fi and the other nclose centroids

are calculated and sorted. The fracture indices for the nearest keepn centroids

are stored in memory a with their associated perpendicular distances.

DFNSIM is designed so that the search runs once after the creation of the initial DFN.

Since all required nearby fracture indices and their perpendicular distances are stored,

there is no need to recalculate any distances as fractures are activated and deactivated

when the DFN optimization is under way.

5.4.1 Perpendicular Distance Calculation

The super block search calculates distances between centroids using a Euclidean dis-

tance. However, a perpendicular distance between fractures is more reflective of true

fracture spacing. This section reviews the calculation of the perpendicular distance.

Calculating the perpendicular distance between two fractures is akin to calculating

the shortest distance between a point (i.e. a fracture centroid) and an infinite plane

(i.e. another fracture) (See Figure 5.3). Fractures are not infinite in extents, but for

the calculation it is convenient to make that assumption.

Fracture A in Figure 5.3 is given by:

ax+ by + cz + d = 0 (5.5)
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Figure 5.2: The relationship between the superblock search and the perpendicular
search. The program is currently at location 1 and is searching for other fractures
nearby. The super block search identifies all five fracture centroids within the search
radius. However, the perpendicular distance is only calculated for the first four cen-
troids due to the choice of band width and perpendicular distance to search. Note that
fracture 3 is the closest to fracture 1 using Euclidean distance, but when perpendicular
distance is used fracture 2 is closer to 1 than 3. A bandwidth is used to trim fractures
that are far away in the direction of fracture strike.

Figure 5.3: Illustration of the point to plane distance calculation. Figure is not to scale.
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where a, b and c are the components of the normal vector to the plane, −→n . Since

a, b and c are known along with the centroids coordinates, xc, yc and zc, d can be

calculated:

d = −axc − byc − czc (5.6)

The point (x0, y0, z0), is the centroid of another fracture (Fracture B). Thus the

perpendicular distance from fracture A to fracture B is the minimum distance between

(x0, y0, z0) and fracture A.

The vector, −→w, from the some unknown point on the plane, (x, y, z), to the fracture

B centroid is given by:

−→
w = −





x− x0
y − y0
z − z0



 (5.7)

If −→w is projected onto −→
n , we have the distance between fracture A and the centroids

of B as:

Da−b =
|−→n · −→w|
|−→n | (5.8)

=
|a(x− x0) + b(y − y0) + c(z − z0)|√

a2 + b2 + c2
(5.9)

=
|ax+ by + cz − ax0 − by0 − cz0|√

a2 + b2 + c2
(5.10)

By substituting in Equation 5.5, the perpendicular distance from between fracture

A and B is:

Da−b =
|ax0 + by0 + cz0 + d|√

a2 + b2 + c2
(5.11)

The distance is calculated two ways: 1) from fracture A to the fracture B’s centroid,

and 2) from fracture B to the fracture A’s centroid. Note that Da−b is usually not equal

to Db−a (See Figure 5.4). The two distances are averaged to determine the average

perpendicular distance between fracture A and B.
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Figure 5.4: Da−b is normally not equal to Db−a. The fracture centroids are indicated
by stars. Figure is not to scale.

Figure 5.5: The perpendicular distance (indicated by arrows) between E and C is
smaller than the perpendicular distance between D and C, even though D is much
closer by Euclidean distance. Figure is not to scale.

DAB,ave =
Da−b +Db−a

2
(5.12)

As noted, the fractures are not infinite planes in reality. This leads to an important

consideration as shown in Figure 5.5. The figure shows the perpendicular distance from

D to C and from E to C. The perpendicular distance from E to C is less than that

of C to D. It seems reasonable that the fracture spacing between D and C should be

calculated. However, as the C-E in-plane distance increases, a fracture spacing between

E and C makes less and less sense.

This becomes a problem if perpendicular distances are calculated for all fractures

in the field. Fractures will be identified as very close (by small perpendicular distances)

even if they are actually very far apart in the in-plane direction. The solution is to

impose a bandwidth around fracture C (See Figure 5.6). and only consider fractures

that occur within the bandwidth. In the example, the perpendicular distance is not
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Figure 5.6: A bandwidth and maximum distance to search restricts fractures considered
in the perpendicular distance calculation. Figure is not to scale.

calculated between fracture E and C because it is beyond the specified bandwidth from

fracture C.

Similarly, a maximum distance to search is also imposed (See Figure 5.6). Beyond

some distance, it is not relevant to consider the spacing between fractures. The DFNSIM

user specifies a target histogram of local fracture spacing for which there is a maximum

spacing bin. It is suggested that the maximum distance to search could be set to be

just greater than the largest bin of the local fracture spacing histogram. After all, any

fractures identified at further distances will not show up in the histogram.

One disadvantage to using the average perpendicular distance between fractures

as a measure of fracture spacing is that the user-specified bandwidth and, to a lesser

extent, the maximum perpendicular distance to search are parameters that must be

determined. If the bandwidth is too large, DFNSIM may identify the nearest fracture as

having a very short perpendicular distance even though it is far away in the direction

of the fracture strike (Figure 5.5 and Figure 5.6). If the bandwidth is too small, some

fractures may be ignored when they should not be. Additionally, if too few fractures
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fall within the bandwidth, they may not adequately describe a local fracture spacing

histogram. It may be difficult to define what appropriate values for these parameters

might be.

Figure 5.7 illustrates the problem. The figure shows a two-dimensional DFN with

10 fractures, which are numbered from 1 to 10. The fractures are shown in 2D as

black lines with centroids locations indicated by filled circles. The red arrows point

from one centroid to another, indicating which fracture is nearest to another fracture

(measured by perpendicular distance). The fracture at the arrowhead represents the

nearest fracture to the fracture at the arrow tail. For example, fracture 7 is the nearest

to fracture 6 as is indicated by the arrow pointing from fracture 6 to fracture 7. To

calculate the nearest fractures, a bandwidth larger than the field size was used. The

problem is that very small perpendicular distances are calculated for centroids that

are fairly far apart by euclidean distance. Note, that the arrows don’t indicate the

magnitude of perpendicular distance, only which fracture is the closest to another

fractures. As is illustrated by the figure, if the bandwidth is too wide, the nearest

fractures and their associated perpendicular distances do not make sense as a measure

of fracture spacing. For example, fracture 3 and 4 are “nearest” to each other when

a large bandwidth is used, even though the fractures are far apart along their strike

direction. Measuring fracture spacing between fractures 3 and 4 makes little sense.

Figure 5.8 shows the same 10 fractures. However in this case, the nearest fractures

are calculated with a bandwidth that is equal to the average fracture length (6 m).

In this case, the nearest fractures make more sense when qualitatively compared with

the notion of perpendicular distance as an alternative measure of fracture spacing. In

this example, it seems to make more sense that fracture 5 is the closest to fracture 4,

compared with fracture 3 in the previous example. Likewise, it also makes more sense

that fracture 2 is the nearest fracture to fracture 3, rather than fracture 4 as in the

previous example.
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Figure 5.7: 10 two-dimensional fractures with nearest fractures indicated by the arrows.
Bandwidth is set as larger than the field size. The red arrows point from a fracture to
its nearest neighbour.

Figure 5.8: The same 10 fractures as in Figure 5.7, but now the bandwidth is reduced
to 6 m.
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Figure 5.9: DFN with 1000 fractures. All fractures are 30 m long.

5.4.2 Using the Perpendicular Distance for Fracture Spacing

Figure 5.9 shows a DFN with 1000 fractures. The model size is 1000 x 1000 m and all

fractures have the same orientation and are the same size (30 m in length). A relative

histogram of the fracture spacing (using the scan line methodology) was calculated and

is shown in Figure 5.10. The mean fracture spacing is 32 m.

For the same fracture network, the average perpendicular distance to the nearest

fracture can be calculated as described above. The average perpendicular distance

to the nearest fracture depends upon the bandwidth that is chosen. There is an in-

verse relationship between average perpendicular distance and bandwidth. As the

bandwidth increases, the average perpendicular distance decreases. The relationship

between bandwidth and mean perpendicular distance to the nearest fracture is shown

in Figure 5.11 (for the simulated DFN shown in Figure 5.9). The histogram of average

perpendicular distance for the DFN with 1000 fractures, calculated using a bandwidth

of 30 m, is shown in Figure 5.12. The mean perpendicular distance to the nearest
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Figure 5.10: Relative histogram of fracture spacing for a DFN with 1000 fractures.

Figure 5.11: The inverse relationship between bandwidth and mean perpendicular
distance to the nearest fracture for a DFN with 1000 fractures.
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fracture is 8.1 m. Note, the mean perpendicular distance to the nearest fracture will

always be less than the mean fracture spacing.

In the next test, the fracture intensity is varied to see if there is a correlation between

the mean fracture spacing for the DFNs and the mean perpendicular distance for the

same DFN. Six DFNs were generated with fracture intensities of 500, 600, 700, 800, 900

and 1000 fractures. Fracture size was, again, kept constant at 30 m and all fractures

are oriented striking in the east-west direction, as before. Using a bandwidth of 30 m

(equal to the fracture length), the correlation between the mean fracture spacing and

the mean perpendicular distance to the nearest fracture is 0.9988. This shows that

as fracture intensity increases, the average fracture spacing and average perpendicular

distance decrease proportionally.

The bandwidth was also varied in an attempt to observe how the correlation be-

tween fracture spacing and perpendicular distance varies. Figure 5.13 shows how the

correlation between mean fracture spacing and mean perpendicular distance changes

with increasing bandwidth. The figure shows that, given a particular fracture intensity,

fracture length and orientation, there is a near-perfect direct relationship between mean

fracture spacing and mean perpendicular distance for any bandwidth that is chosen.

However, it is not clear from the figure if there is an optimal choice for bandwidth,

based on the correlation between fracture spacing and perpendicular distance. This

shows that for a particular fracture intensity, average spacing and average perpendic-

ular distance vary proportionally regardless of the bandwidth chosen.

5.4.3 Another Alternate Measure of Fracture Spacing: Anisotropic

Distance

Another problem with the perpendicular distance and bandwidth concept occurs near

corners of a rectangular model. If the bandwidth is too narrow, only a few nearby

fractures may be identified. Thus, there is a practical lower limit to the choice of

bandwidth.

The use of an anisotropic distance in place of the perpendicular distance was inves-

tigated in hopes of overcoming the limitations of the perpendicular distance (i.e. the
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Figure 5.12: Relative histogram of perpendicular distance to the nearest fracture for a
DFN with 1000 fractures, using a bandwidth of 30 m.

Figure 5.13: The correlation between mean fracture spacing and mean perpendicular
distance with increasing bandwidths.
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Figure 5.14: Illustration of anisotropic distance. The other component h2,in−plane, is
directed out of the page.

hard boundary imposed by the bandwidth). To implement the anisotropic distance,

first each fracture is discretized into four points at the corners of the fracture and its

centroid. One of the five points is chosen on each of the fractures for the distance cal-

culation. A vector h is calculated between the two points. The vector is then resolved

into three components. One component is perpendicular to the fracture (hperpendicular),

one is horizontal in the plane of the fracture (hhoriz, in-plane) and the other is vertical in

the plane of the fracture (hvertical, in-plane) (See Figure 5.14).

Next, the three-dimensional anisotropic distance is calculated as an effective dis-

tance as follows:

hanisotropic =

√

(

hhoriz, in-plane
ahoriz, in-plane

)2

+

(

hvert, in-plane
avert, in-plane

)2

+

(

hperpendicular
aperpendicular

)2

(5.13)

where the anisotropy constants, avert, in-plane, avert, in-plane and ahoriz, perpendicular, must

be specified by the user. Note that the anisotropy constants have units of length, mak-

ing hanisotropic a unit-less effective distance. For a two-dimensional fracture network,

the anisotropic distance does not consider the vertical, in-plane distance:
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Figure 5.15: Nearest fractures calculated using an anisotropic distance. In this case,
aperpendicular/ain-plane = 1. All fractures are 2 m in length.

hanisotropic =

√

(

hin-plane
ain-plane

)2

+

(

hperpendicular
aperpendicular

)2

(5.14)

Figure 5.15 shows a two-dimensional fracture network with 14 fractures. The red

arrows connect each fracture to their nearest neighbour. In this case, ain-plane =

aperpendicular

= 1. The ratio aperpendicular/ain-plane = 1. Notice that there are several cases of nearest

neighbours being identified in a direction that is sub-parallel to the fracture strike. For

example, fractures 8 and 9 are identified as nearest to each other, as well as fractures

12 and 13. However, as noted earlier, one would hope to identify nearest fractures

in the direction perpendicular to fracture strike and use that distance as a proxy for

fracture spacing. In this case, the ratio aperpendicular/ain-plane = 1 does a poor job of

identifying nearest neighbours in the direction perpendicular to the fracture strike since

the anisotropic distance is the same as the Euclidean distance between points.

It is possible to give additional weight to fractures in the direction perpendicular to

the fracture strike by increasing the aperpendicular/ain-plane ratio. Consider Figure 5.16.

In this case, aperpendicular is increased to 2 so that the ratio aperpendicular/ain-plane = 2.

There are several differences between the nearest fractures identified in Figure 5.15

and Figure 5.16. The increase in the anisotropy ratio makes it more likely to identify

a nearest neighbour in the direction perpendicular to the fracture strike. When the
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Figure 5.16: Nearest fractures calculated using an anisotropic distance. In this case,
aperpendicular/ain-plane = 2. All fractures are 2 m in length.

Figure 5.17: Nearest fractures calculated using an anisotropic distance. In this case,
aperpendicular/ain-plane = 3. All fractures are 2 m in length.

ratio was 1, fracture 8 was the closest to fracture 7. When the ratio increases to 2,

fracture 10 becomes the new closest fracture to fracture 7. There are several other

similar changes to the fracture network. However, there are still some questionable

nearest fracture selections with 3 being the nearest to 5 and 9 being the nearest to 8.

There is no change to the result if the aperpendicular/ain-plane ratio is further increased

to 3. However, if the ratio is increased to 4 the result is Figure 5.17. The figure shows

two instances of the algorithm “skipping over” a closer fracture to identify a “nearest”

neighbour that is further away. For example, in the figure, fracture 13 is identified

as the nearest to fracture 8, ignoring fracture 11, which is positioned between them.

Similarly, fracture 10 is identified as the nearest to fracture 6, ignoring fracture 7, which
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Figure 5.18: Nearest fractures calculated using an anisotropic distance. In this case,
aperpendicular/ain-plane = 20. All fractures are 2 m in length.

is positioned between them.

If the aperpendicular/ain-plane ratio is further increased to 20 (see Figure 5.18), the

problem of skipping over fractures to identify further away fractures as being the nearest

is taken to the extreme. This problem could be minimized by further discretizing

the edges of the fractures into more points at the cost of computation speed. The

computation time for the anisotropic distance increases with n2, where n is the number

of discretized points on each of the fractures.

If the perpendicular distance calculation is used to calculate the nearest neighbours

for the same fracture network, the result is shown in Figure 5.19. For this example, the

bandwidth is 2 m, which is equal to the fracture length. The result appears reasonable

given that there are no instances of skipping over a fracture to select a nearest fracture

that is further away than some other fracture. Moreover, there are no situations where

nearest neighbours are selected based on a small in-plane distance.

5.4.4 The Choice Between Perpendicular and Anisotropic Distance

There are merits to both methods of calculating nearest neighbours. The main draw-

back of the perpendicular distance method is that if the bandwidth is too wide, small

perpendicular distances can be calculated for fractures that are far apart in the in-plane

direction (along the fracture strike). However, if the bandwidth is too narrow, there

may not be enough fractures within the chosen bandwidth. This effect occurs most
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Figure 5.19: Nearest fractures calculated using a perpendicular distance and a 2 m
bandwidth. All fractures are 2 m in length.

Figure 5.20: When the in-plane distance between centroids is greater than the frac-
ture length, there ceases to be any overlap between the fractures in the perpendicular
direction.

often along the edges or near corners of the DFN models. In this way, the anisotropic

distance calculation is more robust than the perpendicular distance. The lack of a

hard bandwidth boundary removes the problem of finding enough fractures near cor-

ners and edges. However, the anisotropy ratio, in the context of fracture spacing, has

little physical meaning. It is not clear what an appropriate ratio might be, except

through judgement and trial and error.

On the other hand, the choice of bandwidth in the perpendicular distance method is

somewhat clearer. One could choose a bandwidth that is related to the average fracture

size. For example, a bandwidth that is approximately equal to the mean fracture length

seems a sensible choice since, on average, that defines the limit at which fractures cease

to overlap in the perpendicular direction (See Figure 5.20).
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Figure 5.21: Histograms of local fracture spacing with increasing bandwidth. A band-
width of “Large” means larger than the field size (all fractures are considered).

The perpendicular distance, as currently implemented in DFNSIM, is faster than the

anisotropic distance calculation. In the anisotropic distance method each fracture is

discretized into five points resulting in 25 distance calculations for each pair of fractures

versus two in the perpendicular distance method.

It is the author’s opinion that the perpendicular distance is also a more intuitive

measure of fracture spacing than the anisotropic distance. The perpendicular distance

directly measures distance perpendicular to the fracture rather than calculating an off-

perpendicular effective distance. The perpendicular distance is also a physical distance

(with units) where the anisotropic distance is a unit-less effective distance.

One important consideration in the choice between the perpendicular distance and

the anisotropic distance is the sensitivity of the results to the parameter choice (band-

width for the perpendicular distance vs. anisotropy constants for the anisotropic dis-

tance).

A DFN with 850 fractures was created with the intention of observing the impact

of varying the bandwidth for the perpendicular distance calculation. The horizontal

extents of the DFN are 1000 m in the x-direction and 1050 m in the y-direction. The

fractures in the DFN have lengths that follow a normal distribution with a mean of 76

m and a standard deviation of 51 m. Figure 5.21 shows the histograms of perpendicular

98



Figure 5.22: Histograms of Euclidean distance to the nearest fracture, where the nearest
fracture was determined with anisotropic distance. This chart shows the effect of
increasing the anisotropy ratio on the histogram shape.

distance to the nearest neighbour for varying bandwidths. The figure shows that as the

bandwidth increases from 70 to 140 and even up to 200 m, there is little change in the

histogram of perpendicular distance to the nearest neighbour. When the bandwidth

is increased to 600 m (which is larger than half the field size), the histogram changes

significantly. In this example, the average fracture size is 76 m, so it seems that as

long as the bandwidth is between one and three times the average fracture size, there

is little change to the histogram of perpendicular distance to the nearest neighbour.

Ideally, one would also construct histograms of anisotropic distance for changing

values of the anisotropy ratio (aperpendicular/ain-plane), however this comparison is mean-

ingless since the anisotropic distances are scaled by the constants aperpendicular and

ain-plane. This means that the effective anisotropic distances to the nearest neighbour

get smaller with increasing aperpendicular, even if the same fractures are chosen as the

nearest neighbours. Thus, Figure 5.22 shows relative histograms of Euclidean distance

to the nearest fracture, where the nearest fractures are determined by the anisotropic

distance. Four relative histograms are shown for four different anisotropy ratios.

Figure 5.22 shows that as the anisotropic ratio aperpendicular/ain-plane, increases,

there’s a big increase in the width of the histograms. This means that the distances
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to the nearest neighbours increases as the ratio increases. Although the histograms

in Figures 5.21 and 5.22 are not directly comparable, based on visual inspection,

it appears that the anisotropic distance measure is more sensitive to its parameter

(aperpendicular/ain-plane ratio) than the perpendicular distance is to its parameter (band-

width).

5.5 How to Build Input Histograms

In addition to using DFNSIM to simulate DFNs, it can also be used to build the target

histograms of local fracture spacing and orientation. If a natural fracture network can

be digitized (say from a photo of an outcrop), those fractures can be read in by DFNSIM

and the program will build the histograms of local fracture spacing, local fracture

orientation, and fracture length and can also calculate the number of intersections. The

steps that the program takes to calculate the histograms have already been described

(See Section 4.4). Recall the first few steps of the DFNSIM algorithm:

1. Randomly simulate a pool of fractures

2. Assign fractures to the activated DFN

3. Calculate histograms of local fracture spacing, local fracture orientation and frac-

ture length. Also calculate the number of fracture intersections and fracture

intensity of the activated DFN.

Target histograms can be constructed by simply reading in digitized fractures in place

of the simulated pool and assigning all of them to the activated DFN before calculating

the DFN spatial statistics as in Step three.

5.6 An Example Application of DFNSIM

In order to further explain a few key DFNSIM parameters, a short example is presented.

Section 4.3.1 introduces a map of lineaments from Northern Alberta inferred from

satellite imagery and digital elevation models (also see Figure 4.2). The Southwest-

Northeast lineament set was digitized. In total, 425 lineaments were digitized.
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The lineaments have an average pole trend of 146.5 degrees, clockwise from North

with a standard deviation of 11.8 degrees. Although the rose diagrams indicate that

the lineaments are from a single set (Figure 4.3), from a qualitative standpoint there

appears to be some pattern to the lineament locations and orientations. Namely, there

are relatively few (20) lineament intersections and lineaments generally appear to be

oriented similarly to their nearest neighbours. While there is variation in the orientation

of the lineaments when looking at an area wide scale, locally lineaments appear to be

oriented similarly to their nearest neighbours.

DFNSIM was used to simulate a model of the lineaments. Then the spatial statistics

of the simulated lineament model were compared to the original digitized lineaments.

DFNSIM was used to calculate target input histograms for local lineament spacing (per-

pendicular distance to the nearest neighbour), deviation in local lineament orientation

and lineament length. There are 425 lineaments with 20 intersections on the map of

lineaments, which are the target intensity and number of intersections, respectively.

Figure 5.23, shows the target histograms of local lineament spacing (i.e. perpendicular

distance to the nearest lineament), deviation in local lineament orientation and linea-

ment length that were calculated from the digitized lineaments shown in Figure 4.2.

The goal was to generate a DFN that matches these target histograms as well as the

target intensity and number of lineament intersections.

The FMF (the fracture multiplication factor) was set at 2. This means that 850

lineaments were generated for the pool and half were assigned to the initial DFN. Thus,

there were 425 lineaments in the initial DFN since the proposed algorithm activates

the target intensity to begin with. The initial DFN is shown on the left side of Figure

5.24. Visual inspection of the initial DFN shows many instances of lineaments that are

extremely close together compared to the map of digitized lineaments. There are 86

lineament intersections in the initial DFN, which is more than four times as many as

the target of 20. Figure 5.25 shows the target, initial DFN and final DFN histograms of

local lineament spacing, deviation in local lineament orientation and lineament length.

Note that the initial DFN histograms of perpendicular distance to the nearest lineament

and deviation in local lineament orientation are poor matches for the target histograms.
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Figure 5.23: Target relative histograms of perpendicular distance to the nearest linea-
ment, deviation in local lineament orientation and lineament length.

Figure 5.24: On the left: An initial DFN generated to represent the lineaments on the
map of lineaments. On the right: The optimized DFN after 3400 iterations (visiting
each of the 850 lineaments 4 times). 1 cm on the figure represents 8.2 km.
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Figure 5.25: Target, initial DFN and Final (optimized) DFN relative histograms of per-
pendicular distance to the nearest lineament, deviation in local lineament orientation
and lineament length.

This was expected given the conclusions reached in Chapter 4. However, the initial

DFN is a good match in terms of lineament length. Lineament length was drawn from a

log-normal distribution with a mean and standard deviation matching the input data.

As it turns out, the histogram of lineament length closely matched the log-normal

distribution.

The DFN was optimized using four iteration loops, which means that each of the

850 lineaments were visited four times. This means that there the DFN was subject to

3400 changes (iterations). The objective function result for the initial DFN was 1.6 x

106 while the objective function result for the final DFN is 3.1.

Visual inspection of the optimized DFN (right side of Figure 5.24) shows that the

lineaments are oriented more similarly to their nearest neighbours and have a more

regular spacing, as is evidenced by the fewer bare spots (areas without lineaments),

compared to the initial DFN.
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Figure 5.25 also shows the final (optimized) DFN histograms of local lineament

spacing, deviation in local lineament orientation and lineament length. All three his-

tograms for the optimized DFN are a very good match to the target histograms. The

final optimized DFN had 413 lineaments (a 2.8% margin of error) and 20 intersections,

which exactly matched the target number of intersections.

This example has shown 1) how to generate target fracture network statistics and

2) how the proposed DFN simulation algorithm can be used to generate DFNs that

honour the target spatial statistics.

5.6.1 Choice of FMF

In the DFN simulation example from the previous section, the FMF was set to 2,

which means the pool of lineaments is twice as large as the target intensity. It is

difficult to recommend a precise number for the FMF. However, as the FMF increases,

the objective function result decreases, meaning the match between the target statistics

and the DFN’s statistics improves.

Figure 5.26 shows how changing the FMF affects the objective function result for

the example problem. Increasing the FMF from two to three results in a substantial

improvement in the objective function result. For this case, the spatial statistics of the

final DFN match the targets even better than before. Figure 5.27 shows the target,

initial DFN and final DFN histograms for the case where the FMF equals three. There

is a noticeable improvement in the match between the target and final DFN histograms

compared to the case when the FMF was two (see Figure 5.25). The number of lin-

eaments has increased to 427, which decreases its error from the target from 2.8% to

0.5%.

Figure 5.26 shows that, in this case, increasing the FMF beyond three does not

improve the result, in terms of the objective function result. While testing DFNSIM, the

author has never found a case where the FMF needed to be greater than three in order

to obtain an acceptable optimization. Thus, it is recommended to use a FMF of three.

If the convergence results are unacceptable, the FMF or the number of iteration loops

can be increased.
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Figure 5.26: The affect of FMF on the objective function result. Note, when the FMF
is one, the objective function equals 284 and there is no optimization since all fractures
must be part of the DFN.

Figure 5.27: Target, initial DFN and final (optimized) DFN relative histograms of per-
pendicular distance to the nearest lineament, deviation in local lineament orientation
and lineament length. In this case, the FMF is 3.
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Figure 5.28: The objective function result as a function of iteration number. The result
of every objective function calculation is shown in the thin grey line. The current lowest
objective function result is shown in the thick black line. In this case, the FMF is four
and the number of iteration loops is five.

5.6.2 Convergence

Figure 5.28 shows the progress of the objective function over the course of the opti-

mization. The figure shows that the objective function decreases fastest in its first

2000 iterations. After iteration number 3000, very little improvement is made. In this

example, the FMF is four, so there are 1700 lineaments in the pool (recall that the

target number is 425). 3400 iterations means that each lineament in the pool is visited

twice during the optimization. Thus, in this case, almost all of the improvement to the

DFN is made in the first two iteration loops. In fact, while testing DFNSIM, the author

has not come across any examples where more than three iteration loops were required.

5.6.3 Stopping Criteria

A stopping criteria determines when an optimization process ends. The proposed

algorithm uses one of the most popular stopping criterions, which is simply to stop the

optimization process after a certain number of objective function evaluations (Zielinski

and Laur, 2005). The advantage of this stopping criteria is that it is extremely simple

to implement. The disadvantage is that an appropriate number of evaluations is hard

to define. The appropriate number of objective function evaluations is dependent on

the optimization problem and is subject to fluctuations due to the randomness of the

106



algorithm and is usually determined by trial and error (Zielinski and Laur, 2005).

Alternative stopping criterion could have been considered. One could stop the

optimization when the objective function reaches a desired result; however, defining an

appropriate target result is difficult since the objective function is unit-less and mixes

multiple components. One could use a stopping criteria based on computation time;

however, the computation time in this case depends largely on the size of the fracture

network and is analogous to stopping after a certain number of iterations. A good idea

might be to stop the optimization if objective function improvements slow down. That

is, the optimization could stop if an improvement has not been seen in a certain number

of iterations, or if the objective function gradient decreases below a certain tolerance.

5.7 Reproducing the True Fracture Spacing Histogram

For reasons stated earlier, the proposed fracture simulation algorithm uses the perpen-

dicular distance to the nearest fracture as an alternative measure of fracture spacing.

Figure 5.25 shows the good match between the target and final DFN histograms of per-

pendicular distance to the nearest fracture. However, it is also of interest to compare

the fracture spacing histograms (using the scan line method) of the final optimized

DFN and the digitized fractures. Figure 5.29 shows the histogram of fracture spacing

for the digitized lineaments, the initial DFN and the final optimized DFN. The figure

shows that the initial DFN is a poor match for the digitized fractures in terms of the

true fracture spacing histogram. The final DFN shows only a slight improvement and

is generally still a very poor match for the spacing of the digitized fractures.

5.7.1 Using the Perpendicular Distance as an Alternative Measure of

Fracture Spacing

An investigation was undertaken to try to discern a reason for the poor match between

the target and optimized DFN fracture spacing histograms, despite obtaining very good

matches for the perpendicular distance histograms.
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Figure 5.29: True fracture spacing of the digitized fractures, the initial DFN and the
final optimized DFN.

Figure 5.30: Relative histogram of fracture spacing for a DFN with 1000 fractures.

Correlation Between Fracture Spacing and Perpendicular Distance in a

DFN

First, a DFN with 1000 fractures was simulated in an area of interest that is 1000 x

1000 m. The DFN was two-dimensional and was simulated using the standard Baecher

model for simplicity. All fractures have the same orientation and are 30 m in length.

Fracture spacing was calculated along scan lines that are perpendicular to the fracture

orientation and a relative histogram of fracture spacing was constructed and is shown

in Figure 5.30. The mean fracture spacing is 32 m.

For the same fracture network, the average perpendicular distance to the nearest
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Figure 5.31: The inverse relationship between bandwidth and mean perpendicular
distance to the nearest fracture for a DFN with 1000 fractures.

Figure 5.32: Relative histogram of perpendicular distance to the nearest fracture for a
DFN with 1000 fractures, using a bandwidth of 30 m.

fracture was calculated. An additional challenge is that the perpendicular distance to

the nearest fracture depends upon the choice of bandwidth. There is an inverse rela-

tionship between perpendicular distance to the nearest neighbour and bandwidth. As

the bandwidth increases, the average perpendicular distance decreases. The relation-

ship between bandwidth and mean perpendicular distance to the nearest fracture for

the simulated DFN is shown in Figure 5.31. An example of the histogram of perpen-

dicular distance to the nearest fracture, using a bandwidth of 30 m, is shown in Figure

5.32. The mean perpendicular distance to the nearest fracture is 8.1 m.

Next, one hundred DFN realizations were simulated by using the same settings

while varying only the random number seed. For each realization, the average fracture

spacing and average perpendicular distance to the nearest neighbour were calculated.
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Figure 5.33: The mean fracture spacing versus the mean perpendicular distance for
each of 100 DFN realizations.

Figure 5.33 shows a scatter plot of the average fracture spacing versus the average per-

pendicular distance for each one of the 100 DFN realizations. The scatter plot shows

no correlation between the average true fracture spacing and the average perpendic-

ular distance per realization. The effect of increasing and decreasing bandwidth was

investigated but was found to make no difference to the results.

5.7.2 Reducing the Problem to One Dimension

Figure 5.34 shows a depiction of fractures perpendicular to a one-dimensional line at

coordinate locations xi where i = 1, ..., n. The intersections between the fractures and

the line, which could be seen as a scan line, defines the fracture spacings:

si = xi − xi−1, i = 2, ..., n. (5.15)

The perpendicular distances, pi between fractures are calculated as the minimum

of: 1) the distance to the previous fracture, or 2) the distance to the next fracture.

Mathematically that is:

pi = min(xi − xi−1, xi+1 − xi) (5.16)

Note that the perpendicular distance pi is always less than or equal to si.
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Figure 5.34: 11 one-dimensional fractures, simulated along a line.

For this example, 10,000 fractures were simulated randomly along a one-dimensional

line, and then were sorted by x-coordinate location. The sorted fracture centroid loca-

tions allow calculation of spacing between them as in Equation 5.15. The perpendic-

ular distances between each fracture and its nearest neighbour are also calculated as

in Equation 5.16. This process was repeated 20 times, resulting in 20 realizations of

fractures. The mean spacing and mean perpendicular distance to the nearest neighbour

were calculated for each realization. Figure 5.35 shows the relationship between the

mean values of true spacing and perpendicular distance for each of the 20 realizations.

There is zero correlation between the average true fracture spacing per realization and

the average perpendicular distance to the nearest neighbour.

Next, the individual distances and spacings, rather than the average spacing and

perpendicular distances, were examined. Figure 5.36 shows the relationship between

individual values of perpendicular distance to the nearest fracture and fracture spacing

for one of the 20 realizations (this is a scatter plot of pi vs. si where i = 2, ..., n). The

correlation between pi and si is 0.5. While a correlation of 0.5 is significant, this case

only considers one dimension (fractures on a line). The relationship shown in Figure

5.36 would have a lower correlation in two or three dimensions.

Perpendicular Distance to Nearest Fractures in Opposite Directions

It was thought that there might be an improvement in the correlation of fracture

spacings and perpendicular distances by considering an alternative measure of perpen-
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Figure 5.35: Relationship between mean spacing and mean perpendicular distance per
realization.

Figure 5.36: Relationship between individual values of perpendicular distance and
spacing.
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Figure 5.37: New method for calculating the perpendicular distance to the nearest
neighbours. The perpendicular distance is the average of the two distances in opposite
directions.

dicular distance. For this next study, the average of two perpendicular distances in

opposite directions was considered. Figure 5.37 shows the calculation of the modified

perpendicular distance that considers opposite directions. If the fractures occur along

a one-dimensional line, this amounts to:

Di = average(xi − xi−1, xi+1 − xi) =
[xi − xi−1] + [xi+1 − xi]

2
, i = 1, ..., 1000 (5.17)

A simulation study was conducted where 1000 fractures, fi, are simulated along a

one-dimensional line (fi where i = 1, ..., 1000). Fracture locations and orientations are

generated according the following rules:

• x1 = 0.5

• a new fracture location, xi, is generated by adding the previous value (xi−1) to a

value randomly selected from a normal distribution with mean = 1 and standard

deviation = 0.5.

• all fractures are oriented perpendicular to the line

The idea in this study is to simulate fractures on a one-dimensional line that have

113



Figure 5.38: Relative histogram of true fracture spacing.

semi-regular spacing. That is, the average spacing should be 1 m. This is indicated on

the histogram of fracture spacing, which is shown in Figure 5.38. Next, the perpendic-

ular distances that consider both directions (Equation 5.17) are calculated. Figure 5.39

shows the scatter plot of fracture spacings versus the modified perpendicular distances

considering opposite directions. The correlation coefficient is 0.71, which indicates an

improvement over the case where the perpendicular distance only considers one direc-

tion.

The 1000 pseudo-random fractures are used as the “Truth” and a modified version

DFNSIM is used to model those fractures. The target histogram of average perpendicular

distribution in opposite directions is built by the modified version of DFNSIM. 1000

fractures are simulated with the target histogram of average perpendicular distance

in opposite directions. The target, initial DFN and final DFN relative histograms of

average perpendicular distance in opposite directions are shown in Figure 5.40. Note

the excellent match between the target and final DFNs.

Figure 5.41 shows the correlation between fracture spacing and average perpendic-

ular distance considering opposite directions for the initial DFN (r = 0.707). Figure

5.42 shows the correlation for the final optimized DFN (r = 0.57). The process of

optimizing fracture locations to match the target histogram of perpendicular distance

results in a lower correlation to the fracture spacings.
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Figure 5.39: Correlation between true fracture spacing and average perpendicular dis-
tance in opposite directions.

Figure 5.40: Target, initial DFN and final DFN histograms of average perpendicular
distance in opposite directions. Note that the target and final data nearly overlay each
other.
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Figure 5.41: True fracture spacing versus average perpendicular distance in opposite
directions for the initial DFN.

Figure 5.42: True fracture spacing versus average perpendicular distance in opposite
directions for the final DFN.
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Figure 5.43: True fracture spacing for the original fractures (i.e. the truth), the initial
DFN and the final DFN.

Finally, consider Figure 5.43, which shows the fracture spacing histogram of the

DFN that is considered the “truth”. The histograms of fracture spacing for DFN

intended to model those fractures are also shown for the initial DFN and the optimized

DFN. The fracture spacing histogram for the optimized DFN is an improvement over

that of the initial DFN; however, the histogram of fracture spacing for the optimized

DFN is a poor match for the histogram of spacing for the truth DFN.

Remarks on Spacing Validation Studies

The proposed fracture simulation algorithm uses perpendicular distance to the nearest

fracture as an alternative measure of fracture spacing. An alternative measure of

fracture spacing was implemented because the traditional way to measure fracture

spacing proved too computationally expensive when iterating through large DFNs with

millions of fractures. Results presented in this thesis show that it is possible to optimize

DFNs to honour a target histogram of perpendicular distance to the nearest fracture.

Unfortunately, the connection between fracture spacing and perpendicular distance is

weak, even in one dimension. The result is that the optimized DFNs will not honour a

desired distribution of fracture spacing in the traditional sense, even if a good match is

obtained for perpendicular distance to the nearest fracture. The perpendicular distance
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considering opposite directions was considered; but the improvement it provided was

minimal.

In the future, it is recommended that the fracture simulation algorithm be re-worked

to optimize on the more traditional fracture spacing, rather than the perpendicular

distance to the nearest fracture. Although this proved computationally expensive, there

may be some means of optimizing the calculations to improve speed to an acceptable

level. This is discussed in more detail in the final chapter (See Section 7.3: Future

Areas of Research).

5.8 DFNSIM Parameter File

Table 5.1 shows the DFNSIM parameter file. Line numbers are provided for reference

purposes. Some parameters are self explanatory and some require more explanation,

which is provided below.

Table 5.1: The DFNSIM Parameter File.
1 Parameters for DFNSIM
2 *********************
3

4 START OF PARAMETERS:
5 1 5 10 -nx,xmn,xsiz
6 1 5 5 -ny,ymn,ysiz
7 1 0.05 0.1 -nz,zmn,zsiz
8 6939 -random number seed
9 inputdata.dat -input fracture data (honoured in final models)

10 ----------------------------------------------------------------------
11 ***DATA SEARCH PARAMETERS***
12 20000 20000 1000 -maximum search radii
13 -1 -number of nearest data to perp. search, <0 for all
14 2 -Band width for perpendicular fracture search
15 40000 -Perpendicular distance to search
16 ----------------------------------------------------------------------
17 ***OUTPUT FRACTURE FILES***
18 fracdata.out -Output GSLIB-style fracture data
19 fracdata.fab -Output FracMan fracture data
20 fracdata_optimized.out -Optimized output GSLIB-style fracture data
21 fracdata_optimized.fab -Optimized output FracMan fracture data
22 ----------------------------------------------------------------------
23 ***INPUT FRACTURE DISTRIBUTIONS***
24 spacingdist.out -Target Fracture Spacing Distribution
25 angledist.out -Target Inter-Fracture Angle Distribution
26 lengthdist.out -Target Fracture Length Distribution
27 intensity.out -Target Fracture Intensity Input File
28 1 1 -Int. real. to use, # of realizations in file
29 1 -1 = Fracture Count, 2 = P32 (frac area/volume)
30 ----------------------------------------------------------------------
31 ***FRACTURE SET PARAMETERS***
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32 1 -Load initial DFN from file? (1=yes, 0=no)
33 initialDFN.out -File with Initial DFN
34 0 -Use locally varying Fracture orientation (1=yes,0=no)
35 lvo.out -If "Yes", specify file
36 1 -Fracture orientation distribution (see below)
37 0.0 0.0 -Avg. pole trend and plunge
38 2 0.01 -St. dev. of pole trend and plunge / dispersion
39 1 -Fracture length and height dist. (see below)
40 1.5 0.01 1.5 -Fracture length mean, st. dev., minimum value
41 1 -Fracture height distribution (see below)
42 0.01 0.02 0.02 -Fracture height mean, st. dev., minimum value
43 2 -Fracture aperture distribution (see below)
44 7.2 0.77 0.01 -Fracture aperture mean, st. dev., minimum value
45 0 -Random z location for fractures? (1=yes,0=no)
46 2 -Fracture Intensity Multiplication Factor
47 ----------------------------------------------------------------------
48 ***OPTIMIZATION PARAMETERS***
49 0 -Optimize? 1=yes,0=no just output initial dfn.
50 4 -Number of iteration loops
51 1 1 1 1 1 -Optimize on spacing, orientation, length,
52 intensity, intersections?
53 1 1 1 .1 0.1 -Scaling Constants for components of obj. fn.
54 20 -Target Number of Intersections
55 ----------------------------------------------------------------------
56 ***OTHER PARAMETERS***
57 1 -output objective function progress? (1=yes, 0=no)
58 iterations.out -File for iteration objective function progress
59 results.out -File for spacing and interangle results
60 ---------------------------------------------------------
61 Distributions to draw from (these lines are not read in):
62 1 = Normal (specify mean and st dev)
63 2 = Lognormal (specify mean and st dev)
64 3 = Fisher (specify dispersion)
65 4 = Parametric Distribution (specify file with file for parametric
66 distribution on next line instead of distribution parameters)

5.8.1 Fracture Set Parameters

Line 35 in the DFNSIM parameter file specifies the fracture orientation distribution type.

There are two valid choices: 1) the normal distribution, and 2) the Fisher distribution.

For both options, line 36 specifies the average fracture pole trend and plunge. If the

normal distribution is chosen, line 37 must specify the standard deviation of the pole

trend and plunge. If the Fisher distribution is chosen, the dispersion constant, κ, must

be specified on line 37.

Lines 38 to 43 specify distributions for fracture length, height and aperture. Normal,

log-normal and parametric distributions may be specified on lines 38, 40 and 42. Lines

39, 41 and 43 specify the mean, standard deviation and minimum allowed value (i.e.

the distribution can be truncated on the low end).
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Line 44 specifies whether or not the fractures are assigned to a random z-location. If

0 (no) is specified, all fractures within a grid cell are assigned to the middle z-coordinate

of that cell. This allows for fractures that fully and exactly penetrate horizontally lying

strata, by setting disabling the “random z-location” and making the fracture height

equal to the bed height.

5.8.2 Other Important DFNSIM Parameters

Line 45 of the parameter file specifies the FMF. This is the parameter that defines

how many extra fractures are generated. For example, if the target fracture intensity

is 1000 fractures and the FMF is 3, then 3000 fractures will be generated for the pool

and 1000 are randomly assigned to the initial DFN to begin.

Lines 48 to 53 specify several parameters related to the DFN optimization. Line 48

defines whether or not to optimize the DFN at all. In some instances, the user may want

to simulate a DFN with the Poisson process approach (Baecher model). The number

of iteration loops on line 49 is another important parameter. This number specifies

how many times each fracture is visited during the optimization to have its activation

changed. The choice of the number of iteration loops was discussed previously in

Section 5.6.

The DFNSIM user is able to optimize the DFN on any combination of the five objec-

tive function components, as specified on line 50. For example, often fracture length

data is unavailable or unreliable. In this case, the user could choose not to optimize the

DFN based on fracture length. Line 52 defines scaling constants, which were discussed

in Section 5.3 and are used to stress the relative importance of certain spatial statistics

for the DFN to honour. For example, experience has shown that it is easy to optimize

fracture intensity (since all DFNs start out with the target intensity) and harder to

optimize spacing. One could increase the scaling constant for spacing and/or reduce

the constant for intersections.
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5.9 Remarks

An algorithm for generating DFNs was proposed, which shows promise in that it allows

for simulation of DFNs that match target input statistics on an alternative measure of

fracture spacing, relative orientation of fractures, length, intensity and the number of

intersections. The algorithm works by simulating more fractures than are required and

iterating to find a subset that best matches the target input histograms. An objective

function is minimized to find the best quality fit between the target statistics and those

from the DFN.

The algorithm is flexible and can be used in two or three dimensions. Experience

in applying the algorithm has shown that tens of millions of fractures can be simulated

and optimized in a reasonable computation time (less than a day on a Dell Studio XPS

9100 with a Intel Core i7 CPU).

One shortcoming of this approach is that it requires the user to define the target

histograms and the number of fracture intersections. This may not be possible in cases

where limited information on the fractures is available. However, if fracture information

is available from core or borehole images in at least a few wells, or two dimensional

aerial images of the fractures are available, the target histograms can be calculated.

Validation of reservoir and fracture models is important. Reservoir models are often

validated by a technique known as cross-validation, where a sample is left out and a

value for that location is calculated using nearby data. This is repeated for each data

set. Then the correlation between the actual data and the predicted values at those

locations can be calculated. Higher correlations indicate better models. This would not

work for DFN models since the goal is not to predict actual fracture locations. The goal

here, is to get the spatial distribution of fractures and their orientations correct on a

larger scale. An additional challenge is presented by the often short correlation ranges

of fracture properties (Makel, 2007), which makes comparing fracture models to newly

drilled wells difficult. The challenge of model validation is not considered a shortcoming

of the proposed DFN simulation algorithm since it also applies to the traditional DFN

simulation techniques. In part, validation of fracture models (and reservoir models
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in general) is accomplished through history matching and comparison of actual and

predicted performance. This is somewhat unsatisfying since history matching is non-

unique.
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Chapter 6

Case Study: Tensleep Formation

at Teapot Dome

The purpose of this chapter is to present a case study that demonstrates how the

proposed DFN simulation algorithm can be used to create geologically realistic fracture

networks within the context of the geomodelling work flow for a naturally fractured

reservoir. The publicly available Teapot Dome data set was used for this case study.

Log, core and FMI data were examined in detail. The procedure for establishing

relationships between core porosity and permeability are presented herein. FMI data

was used to establish distributions of fracture properties such as intensity, aperture,

size, local orientation and spacing. Available well picks were used to map horizons.

Variograms were modelled and sequential Gaussian simulation was used to simulate

rock matrix properties. Small-scale DFNs were simulated to model fractures at the

well-bore scale. The DFNs were shown to match target histograms of local fracture

spacing and orientation as well as honouring the measured fracture intensity and num-

ber of intersections. The DFNs were upscaled to an equivalent permeability tensor and

fracture porosity. The upscaled equivalent fracture permeability and porosity were used

as data to inform area-wide sequential Gaussian simulation of fracture permeability and

porosity.

6.1 Background on Teapot Dome

Teapot Dome is located in Natrona County, Wyoming, about 30 miles north of Casper

(See Figure 6.1). Full-scale development of the field began in 1976 and production
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Figure 6.1: Location of the Teapot Dome Oil Field, formerly Naval Petroleum Reserve
#3 (NPR-3) (RMOTC, 2009).

peaked in 1981. In 1992, the US Department of Energy created the Rocky Mountain

Oilfield Testing Center (RMOTC) to manage the Teapot Dome field and converted it

into a working laboratory. The RMOTC has collected a large amount of reservoir data

and made it available to the public as non-proprietary data. The data was provided in

imperial units and has not been changed for this research for ease of comparison with

other published works (Schwartz, 2006; Smith, 2008). The results are intended to be

illustrative.

Hydrocarbons were produced from nine zones at Teapot Dome. The geologic col-

umn provided by the RMOTC is shown in Figure 6.2. The Tensleep Formation consists

of four units, which are (in order of increasing depth): 1) the A Sandstone, 2) the B

Dolomite, 3) the B Sandstone and 4) the C1 Dolomite. Production in the Tensleep is

from the A and B Sandstone units. The Tensleep sandstone has a porosity of approxi-

mately 7% and is comprised of eolian dunes.

Three types of data were used in this study: core, geophysical logs and FMIs. The

area of interest shown is 9000 feet wide by 12500 feet long (2.7 by 3.8 km) and is

suitable since it includes three of five wells with FMI data but is a reasonable size for
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modelling (See Figure 6.3). There are 29 wells with geophysical data and horizon picks

located in the study area.
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Figure 6.2: Teapot Dome geological column (RMOTC, 2009).
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Figure 6.3: Modelling area of interest within the bounds of the Teapot Dome Oil Field.
The small dots within the modelling area indicate all wells. The dots surrounded by
a larger cyan outline are wells with formation picks. The wells indicated by purple
squares have fracture data.
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Figure 6.4: Histograms of porosity, water saturation and oil saturation for the A Sandstone, B Dolomite and B Sandstone units. Porosity,
water saturation an oil saturation are measured as fractions by volume.
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6.1.1 Exploratory Data Analysis

The geophysical log data was processed and extracted within each stratigraphic unit.

Figure 6.4 shows histograms for porosity, water saturation and oil saturation in each

of the three stratigraphic units. The average porosity increases from 5% in the A

Sandstone to 6% in the B Dolomite to 9% in the B Sandstone.

Permeability sample data was only available from one well bore. Porosity data,

on the other hand, is available throughout the full well bores since it is calculated

from geophysical logs. Thus, if a relationship between porosity and permeability can

be established, then the more densely sampled porosity data can be used to make

better predictions of permeability. In this case, the available core data was used to

calculate the bivariate relationships between porosity and horizontal permeability (kh)

and between porosity and vertical permeability (kv) (see Figure 6.5) using the GSLIB

program, BIMODEL (Deutsch and Dose, 2005). The conditional cumulative distribution

functions (CCDFs) are colour coded from low (blue) to high (red) using the standard

GSLIB colour scale between the limits of 0 and 1. Values less than 0.01 or greater

than 0.99 are not shown. The conditional mean values are connected by a solid black

line, the 0.25 and 0.75 quantiles are shown by dashed black lines and the 0.05 and

0.95 quantiles are shown by the shorter dashed lines. The conditional mean line would

normally fall in the middle, but the permeability CCDFs are skewed.

These relationships between porosity and permeability were used later, along with

simulations of porosity, to generate rock matrix models of horizontal and vertical per-

meability using a cloud transform (Deutsch and Dose, 2005).

As noted earlier, FMI logs were available for five wells. The logs were interpreted by

Randy Koepsell from Schlumberger. Koepsell compiled and interpreted the FMI data

to provide estimates of fracture orientation and effective hydraulic fracture aperture in

addition to classifying fractures as open, partially healed and induced (Koepsell, 2001,

2002a,b,c, 2004).

Figure 6.6 shows a stereonet with all available fracture poles from within the

Tensleep Formation. The contoured stereonet is also shown in the figure. The mean
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Figure 6.5: Calculated bivariate relationships between porosity and horizontal and
vertical permeability. Porosity is measured as a fraction (volume/volume), KH and
KV are in units of mD. Colours are indicative of the conditional cumulative distribution
where red equals 1 and blue equals zero, as is indicated by the legend.

pole trend and plunge are 7 degrees clockwise from north and 10 degrees from the

horizontal plane, respectively. Based on visual inspection of the contoured stereonet,

the fractures were modelled as a single joint set. Studies by Cooper Cooper (2000);

Cooper et al. (2006) show three joint sets oriented parallel, perpendicular and oblique

to the anticline fold hinge. However, they mainly focus on the Mesaverde Formation,

which is near surface whereas the Tensleep Formation is over 5500 ft below surface.

The data collected from the Tensleep formation and presented in 6.6 mainly spans the

range of parallel to the fold hinge with some measurements that would be classified

as oblique to the fold hinge. However, there is such a concentration of poles in the

parallel direction (North 10 degrees East) that, here, the fractures are modelled as

one set and the variation in hinge parallel and oblique fractures are accounted for by

the dispersion from the mean pole vector. The hinge-perpendicular fractures from the

Mesaverde Formation are not sampled at all in the Tensleep wells.

Effective hydraulic aperture data was also available from the FMI logs. Figure 6.7

shows the average fracture aperture by geological unit. Apertures are the lowest in

the tight B Dolomite and are highest in the Lower B Sandstone. Figure 6.8 shows

relative frequency histograms of the natural logarithm of aperture. Also plotted on the

charts are the normal distribution calculated using the mean and standard deviation

of the Ln(aperture) data. The fit between the histograms and the normal distributions
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Figure 6.6: Stereonet of fracture pole orientation and contoured pole orientation.
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Figure 6.7: Average fracture aperture by unit.

of Ln(aperture) appears reasonable, based on visual inspection, indicating that the

aperture data is distributed approximately log-normally.

Fracture intensity is defined by the dimension of the measurement region and the

dimension of the fracture (Dershowitz and Herda, 1992). Common measures of fracture

intensity were discussed in Section 1.2.2.

The P10 fracture intensity was provided in the original data set; however, the P32

fracture intensity is most commonly used to simulate three-dimensional DFNs (Schlum-

berger, 2007). The FMI data was loaded into FracMan (Golder Associates Ltd., 2010)

(a commercial software package for analysis and modelling of fractured rock masses) in

order to calculate the P10 fracture intensity. FracMan also calculates an equivalent P32

fracture intensity from the P10 intensity through Monte Carlo simulation. This func-

tionality is based on the work by Wang (2005) on stereological relationships between

fracture orientation and fracture intensity. Table 6.1 shows the number of fractures

per unit and borehole as well as the P10 and P32 fracture intensities. As is shown in

the table, the middle B Dolomite unit shows the highest fracture intensity. This makes

sense since dolomite is more brittle than sandstone.

The Teapot Dome dataset includes data on trace length measured from the FMIs.

It is possible to estimate the fracture size distribution from the trace length distribution

(Ozkaya, 2003). This is made possible when not all fractures are imaged all the way

around the borehole. This means that some fracture traces are partial sinusoids rather

than full ones. The trace length ratio is defined as the ratio between the length of the
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Figure 6.8: Relative frequency histograms of Ln(aperture) (red line with squares) com-
pared with normal distributions using the mean and standard deviation of Ln(aperture)
in units of Ln(inches).
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Table 6.1: Fracture intensity data for Tensleep Formation fractures.

Well: 25-1-X-14 48-X-28 61-2-X-15 67-1-X-10 71-1-X-4 Average

# of Fractures

Upper Sand 5 5 2 0 7 4
Dolomite 12 8 1 7 0 6

Lower Sand 4 5 3 9 2 5

Total 21 18 6 16 9 14

P10 (ft−1)

Upper Sand 0.178 0.185 0.141 0.000 0.258 0.152
Dolomite 0.628 0.400 0.048 0.355 0.000 0.286

Lower Sand 0.067 0.082 0.049 0.150 0.039 0.078

Average 0.291 0.222 0.080 0.168 0.099 0.172

P32 (ft−1)

Upper Sand 1.994 4.418 0.147 0.000 5.183 2.348
Dolomite 8.564 31.063 0.296 10.369 0.000 10.058

Lower Sand 4.859 3.551 0.192 1.955 0.742 2.260

Average 5.139 13.011 0.212 4.108 1.975 4.889

partial fracture trace and the full sinusoid. The trace length ratio is a function of the

fracture orientation distribution, well geometry (borehole diameter and orientation)

and the fracture size distribution. The distribution of fracture length can be estimated

through simulation with different size distributions. The estimate of the fracture size

distribution is non-unique, but often narrowly bounded (Golder Associates Ltd., 2010).

FracMan (Golder Associates Ltd., 2010) automates the calculation of the fracture

size distribution from trace length data. There are some assumptions that must be

made in order to estimate the size distribution:

• All discontinuities are planar. This assumption is common in practice, as is evi-

denced by the commercial fracture simulation software which all simulate planar

fractures. At any rate, fracture curvature is often negligible (Warburton, 1980).

• Fractures are elliptical in shape and all fractures have the same aspect ratio, k.

• The fracture centroids are distributed randomly and independently in space (i.e.
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by a Poisson distribution).

• The fracture size is independent of their spatial location.

Zhang et al. (2002) provide a lengthy discussion on each of these assumptions and

they are deemed reasonable in most cases. FracMan calculates the mean and standard

deviation of the trace length distribution and converts them to the mean (µa) and

standard deviation ((σa)
2) of fracture radius distribution depending on an assumption

of distribution shape (see Table 6.2). In the table, the parameter, M is calculated as:

M =

√

tan2 β + 1
√

k2 tan2 β + 1
, (6.1)

where k is the aspect ratio of the fracture (the ratio of the major to minor axes) and

β is the angle between the discontinuity major axis and the line parallel to the trace.

For the Tensleep trace length data, the log-normal distribution is a better fit than

the power law distribution or any of the other distributions. The mean and standard

deviation of the log-normal fracture radius distribution are 19.4 and 12.9 inches, re-

spectively. It was assumed that the Tensleep fractures would have the same mean

and standard deviation. Making this assumption in order to calculate fracture size is

considered reasonable given that other fracture attributes are much more important

to fracture permeability than lateral fracture size (particularly aperture since flow is

related to the cube of aperture). In addition, there was no other data available (i.e. out-

crops) and it was thought that some estimate of fracture size, despite the uncertainties,

is better than none.

In addition to using DFNSIM to create DFNs, it can also be used to build the target

histograms of local fracture spacing and orientation. The fractures that are indicated

on the FMIs can be input into DFNSIM and the program will build the histograms of

local fracture spacing and orientation (see Section 5.5 for more information on how

these distributions are calculated). These two histograms are calculated for each of

the five wells and are used as target distributions when simulating the DFNs in a later

step.
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Table 6.2: Expressions for determining µa and σa from µl and σl after Zhang et al.
(2002)

Distribution of g(a) µa (σa)
2

Log-normal
128µ3

l

3π3M(µ2

l
+σ2

l )
1536π2(µ2

l
+σ2

l )µ
4

l
−1282µ6

l

9π6M2(µ2

l
+σ2

l )
2

Negative exponential 2µl

πM

[

2µl

πM

]2

Gamma
64µ2

l
−3π2(µ2

l
+σ2

l )
8πMµl

[64µ2

l
−3π2(µ2

l
+σ2

l )][3π
2(µ2

l
+σ2

l )−32µ2

l ]
64π2M2µ2

l

Evaluating the number of fracture intersections between fractures measured in di-

rectly in core might be possible. Fracture extents (length and height) could be simulated

from the previously estimated log-normal size distribution. The simulated fracture ex-

tents can be applied to measured fractures in place of real fracture size data. One

could make the assumption that the fracture centroids lie along the borehole. That

is, the x,y fracture centroid locations are at the same coordinates as the x,y location

of the borehole. Or, one could randomize the fracture centroid locations such that

the simulated fractures still honour the measured fractures from core (i.e. move the

location of the simulated fracture along the plane of the measured fracture). One set

of simulated fracture extents results in one realization of a DFN that honours the well

data and has a certain number of intersections, which can easily be calculated. Multiple

realizations can be generated by re-simulating the extents of each measured fracture.

In this way, the average number of fracture intersections could be calculated for the

fractures measured in core.

Applying the simulated number of fracture intersections to some volume of the

model seems difficult. The core samples a certain volume rock, which measures a

certain number of fractures. While it may be possible to simulate a number of fracture

intersections for the fractures measured in the core volume, those intersections will

mostly occur outside the volume of the core within some larger, but unknown, volume

of rock. Thus, extrapolating the number of intersections inferred by a core volume to

some larger volume seems problematic. If the volume of core was increased by some
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amount, new fractures might be measured, which might intersect some of the fractures

measured by the original core volume.

6.1.2 Horizon Mapping

Horizon picks were available in 29 wells in the area of interest. Directional experimental

variograms were calculated from the surface elevation data. Figure 6.9 shows the

experimental variograms and their corresponding models. The red dots correspond

to a direction of 160 degrees, clockwise from North. The black dots correspond to

a direction of 70 degrees clockwise from North. The models are Gaussian structures

with zero nugget effect and ranges of 4500 and 3000 feet in the 160 degree and 70

degree directions, respectively. The models provide a reasonable fit to the experimental

variograms.

The horizons were mapped using the well picks as data. Simple global kriging

(Neufeld and Wilde, 2005) was used to create maps of the horizon elevations. The

advantage of simple global kriging is that it does not produce any artefacts related to

the search since no search is used. All data values are used in the calculation of each

estimate. The calculated horizons are shown in Figure 6.10.

Between each of the four mapped horizons, isopachs are calculated (see Figure 6.11).

The average thickness of the A Sandstone, B Dolomite and B Sandstone units are 25

feet, 22 feet and 60 feet, respectively.

6.2 Stratigraphic Coordinates

Reservoir units are defined to provide a large-scale subdivision of the reservoir into

geologically homogeneous units. Each unit is defined by a top and base surface grid.

Differential compaction, structural deformation, erosion or subsequent deposition filling

existing topography results in deformed geologic units and surfaces (Deutsch, 2002).

As a result, the continuity of the facies and reservoir properties may not follow a grid

model that corresponds to existing surfaces.

One solution is to model the facies and reservoir properties in a transformed co-

ordinate space with stratigraphic coordinates. A full discussion of reservoir gridding
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Figure 6.9: Modelled directional experimental variograms for each of the four horizons.
The experimental variograms are dotted and the models are the solid lines.
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Figure 6.10: The four kriged stratigraphic surfaces (elevation in feet above sea level).
Well locations with stratigraphic markers are indicated by the circles.
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Figure 6.11: The three isopachs of the geological unit thickness (in feet)
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and stratigraphic coordinate calculation is outside the scope of this example; interested

readers are referred to Deutsch (2002). In this case, there was no available geological

data indicating whether the surfaces are subject to erosion or filling phenomenon. Since

this case study is mainly illustrative in nature, it was assumed that the strata conform

to the existing top and base surfaces. Thus, vertical proportional coordinates were

calculated to replace depth or elevation data. Vertical proportional coordinates are

the relative distance between a correlation top surface and base and are calculated as

follows:

zrel =
z − zcb
zct − zcb

T (6.2)

where:

• zrel is zero at the stratigraphic base surface and T at the stratigraphic top;

• T is the thickness constant equal to the average thickness of the unit;

• zcb is the correlation base and zct is the correlation top.

Converting all depth measurements to proportional coordinates allows modelling

of each reservoir layer in regular Cartesian coordinates. For this study, a vertical

proportional coordinate was calculated for each geophysical log data within each of the

three reservoir units.

6.3 Rock Matrix Modelling

All subsequent analysis and rock matrix modelling took place in the depositional space

defined by the proportional stratigraphic coordinates.

Many reservoirs are not evenly sampled. Usually boreholes are drilled preferentially

in areas with good reservoir quality. As a result, the well log data often not represen-

tative of the entire reservoir. In these cases the data must first be “declustered”. That

is, weights are calculated for each data and a weighted histogram is calculated for the

variable of interest. A full discussion on declustering is outside the scope of this thesis,

but Deutsch (2002) provides plenty of detail on the subject for interested readers. For
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the well data collected in the study area, cell declustering of the data was investigated

and found to make no significant difference. That is, the weighted (declustered) mean

values were nearly identical to the unweighted (raw) mean values for each variable.

Cell declustering was used since it is popular, simple and reliable (Deutsch, 2002).

Next, the data was transformed to Gaussian space, which is required for all Gaus-

sian based geostatistical techniques such as sequential Gaussian simulation, spectral

simulation and turning bands.

Variograms were calculated on the Gaussian porosity, water saturation and oil satu-

ration data within each of the three reservoir units. Figure 6.12 shows the experimental

variograms (red dots) and their fitted models (black lines) for the A Sandstone. The

variograms for the B Dolomite and B Sandstone are shown in Appendix A. Spherical

models were used since they appeared to provide the best fit for the experimental var-

iograms. No nugget effect was modelled since the vertical variograms show no nugget.

Directional variograms were calculated to detect any obvious anisotropy, but none was

found.

The rock properties were simulated using sequential Gaussian simulation (SGS)

(Deutsch, 1992). SGS is one of the most popular simulation methods for continuous

variables. It is used in a number of popular geomodelling software packages, such as

Petrel. Spectral simulation (used in Roxar’s RMS geomodelling software) or turning

bands (used in the Isatis geostatistics software) could also have been used with little

practical difference to the results.

In order to avoid data from one geological unit unfairly influencing simulated values

in another unit, the geological units are simulated separately. The rock properties were

simulated on a grid that has 30 x 50 x 25 cells in the x, y and z directions, respectively.

The grid cells were 300 feet in the x and y directions and 1 foot in the z (vertical)

direction. The grid specifications are chosen as a balance between computation time

and resolution. More cells may be better but take longer to simulate.

After simulation, the modelled variables were back-transformed to the original unit

space. Figure 6.13 shows two cross sections through each the simulated models for A

Sandstone porosity, water saturation and oil saturation. The realizations of porosity,
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water saturation and oil saturation for the B Dolomite and B Sandstone are shown in

Appendix A in Figures A.3 and A.4.

Very limited data is available on the matrix rock permeability. In fact, the Teapot

Dome data set includes permeability data from only one well. However, porosity data

(derived from gamma ray geophysical measurements) are available in 29 wells. If a

relationship between porosity and permeability can be established where data for both

properties exist, then porosity can be used as a predictor for permeability in wells where

no permeability data is available.

One could model a fitted relationship (such as a best fit line) between permeability

and porosity. Then for every unique value of porosity, there would be a unique value

of permeability. However, the correlation between porosity and permeability is far

from perfect (see Figure 6.5) and this technique ignores this uncertainty. The cloud

transform (Deutsch and Dose, 2005) was used instead. The cloud transform randomly

draws from the conditional distribution of permeability given a simulated porosity

value. The conditional distributions of matrix permeability given porosity are shown

in Figure 6.5. Figure 6.14 shows cross sections through a realization of horizontal and

vertical permeability in the A Sandstone. The realizations of permeability are less

continuous than the porosity realizations due to the cloud transform technique. The

realizations of permeability for the B Dolomite and B Sandstone are shown in Appendix

A in Figures A.5 and A.6.

6.4 Fracture Modelling with Non-Random DFNs

The area of interest is 9,000 feet by 12,500 feet (2.7 km by 3.8 km). The average

P32 fracture intensity in the 22 ft thick middle B Dolomite unit is 10.1 m2/m3. The

grid volume is 2.5x109 ft3 (6.8x107 m3). If the average fracture is a square with the

dimensions 20 by 20 feet, this means that the P32 intensity of one fracture is 1.6x10−7

m2/m3. If the target intensity is 10.1 m2/m3, this means that 62 million fractures are

needed to achieve the desired target intensity over the entire area of interest. It would

take a number of days to calculate and optimize a DFN of this size. Thus, instead

of simulating a full-field DFN, well-bore scale DFNs were calculated at the location
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Figure 6.12: Horizontal and vertical normal score semi-variograms for the A Sandstone
Unit (top row = porosity, middle row = water saturation, bottom row = oil saturation).
Distance is measured in feet.
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Figure 6.13: Cross sections of one realization of porosity, water saturation and oil
saturation through the A Sandstone Unit.
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Figure 6.14: Cross sections of one realization of horizontal and vertical permeability in
the A Sandstone Unit.
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Figure 6.15: Target, Initial DFN and Final DFN histograms of local fracture spacing
(left) and deviation in local fracture orientation (right) for well 25-1-X-14 in the A
Sandstone unit.

of the five wells with FMI data. Note, the P32 was used for these calculations (and

the DFN modelling) because it is the most common measure of intensity for modelling

fractures in three dimensions (Schlumberger, 2007). This is discussed in more detail in

the introductory chapter.

DFNSIM was used to calculate the optimized well bore scale DFNs. The DFNs were

simulated in a region that is one geocellular grid cell in size in the x and y-directions (300

x 300 ft) and the thickness of the unit in the z-direction. Fractures were simulated using

the input distributions of orientation, size and aperture identified by the exploratory

data analysis. The DFNs were optimized so that the final DFNs closely match the

target distributions of local fracture spacing and orientation and intensity. In this

case the DFNs are not optimized on the number of fracture intersections since no

information on that parameter is available, as is discussed earlier. Figure 6.15 shows

the target, initial DFN and final DFN histograms of local fracture spacing and local

fracture orientation for well 25-1-X-14 in the A Sandstone unit. The target and final

histograms are near perfect matches. Moreover, the final P32 fracture intensity matches

the target by within 2.2%. Figure 6.16 shows an example of a DFN for well 25-1-X-14

in the A Sandstone. The target, initial DFN and final DFN histograms for the other

wells in the A Sandstone unit, along with those of the wells in the B Dolomite and B

Sandstone units are shown in Appendix A.
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Figure 6.16: An example DFN for well 25-1-X-14 within the A Sandstone unit. The
extents of the grid cell is 300 ft in the x and y-directions and 30 ft in the z-direction.
The P32 fracture intensity is 2.0 ft2/ft3.

6.5 DFN Upscaling

DFN upscaling methods are discussed in some detail in Section 1.2.2. Oda’s method

was used for this case study because it is simple and quick to calculate. It does not

consider the interconnectedness of the fracture network, but this assumption is consid-

ered acceptable for well connected fracture networks (Dershowitz et al., 2004), as in

the case of Teapot Dome, which is shown visually in Figure 6.16.

Equivalent fracture permeability tensors (Kxx, Kyy and Kzz) and fracture poros-

ity were calculated for the well bore scale DFNs. These well bore scale equivalent

permeability tensors were used as data in the next step to inform field-wide fracture

permeability and porosity simulations.

The DFNs were simulated in original coordinate space because the transform to pro-

portional coordinate space would require an awkward transform of the fracture orien-

tation distribution. The upscaled equivalent fracture porosity and permeability tensor

was then easily transformed to proportional coordinates using the same methodology

described earlier. Thus, fracture property modelling took place in the same propor-
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tional coordinate space as the rock matrix properties. This means that both models

were simulated on the same geocellular grid, allowing them to feed into a flow simulator.

6.6 Field-Wide Fracture Permeability and Porosity Sim-

ulation

The equivalent fracture permeability and fracture porosity well-bore scale data were

transformed to Gaussian space (as noted earlier, this is required for subsequent geo-

statistical simulation). Variograms were calculated in the vertical direction using the

Gaussian data. The vertical variograms for Kxx, Kyy and Kzz and fracture porosity are

shown in Figure 6.17 for the A Sandstone. Here, the vertical variograms indicate the

presence of a nugget effect, which was included in the models. The variograms for the

other two units are similar and are shown in Appendix A. The horizontal variograms

are inaccessible since there are only five wells with fracture information. Thus, a hori-

zontal to vertical anisotropy ratio of 100:1 was assumed. Deutsch (2002) indicates that

ratios between 50:1 and 250:1 are reasonable.

Separate equivalent property models of fracture porosity and permeability were

simulated for each of the three geological units. For the same reasons as in the rock

matrix property modelling, SGS was also used for this modelling of the four fracture

parameters. Each simulation variable used their respective modelled variograms. The

Gaussian simulated data was then back transformed to original unit space. One real-

ization of each of the four fracture variables for the A Sandstone is shown in Figure

16. Realizations of permeability and porosity in the other units are shown in Appendix

A. Fracture porosity is quite small since the fractures themselves have very small

apertures.

6.7 Remarks

The case study example in this chapter is mainly illustrative in nature. In theory, it

would be ideal to show a comparison between reservoir scale DFNs built using the more

traditional Poisson based approaches and the proposed fracture simulation algorithm.

Computational requirements associated with simulating and optimizing so many frac-
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Figure 6.17: Vertical semi-variograms for Kxx (top left), Kyy (top right), Kzz (bottom
left) and fracture porosity (bottom right) in the A Sandstone unit. The red dots are
the experimental variograms. Distance is measured in feet.
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Figure 6.18: One realization of the simulatedKxx, Kyy, Kzz and fracture porosity in the
A Sandstone unit. The realizations of fracture permeability have units of millidarcies
(mD) while fracture porosity is a volume fraction.
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tures make that impractical. DFNs were simulated at the scale of the well bore. The

inter-well region was simulated with sequential Gaussian simulation. Unfortunately,

the inter-well simulation of fracture properties removes nearly all of the influence of

the target fracture network spatial statistics. The histograms of perpendicular dis-

tance to the nearest fracture and deviation in local orientation of fractures are not

honoured in the inter-well locations, making a comparison to traditional DFNs unsat-

isfying. Therefore, this case study is included in order to demonstrate the application

of the proposed methodology for simulating DFNs and its associated DFNSIM computer

code to modelling a real-world naturally fractured reservoir. This case study shows

that the proposed methodology can be used to generate geologically realistic models of

reservoir fractures at the well-bore scale. Along with the rock matrix property models,

the simulated models of fracture porosity and permeability can be used as input into

a dual-porosity flow simulator for further analysis.
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Chapter 7

Concluding Remarks

This thesis addressed selected topics related to the geostatistical modelling of naturally

fractured reservoirs. The goal is to obtain geologically realistic geomodels that integrate

all data and quantify uncertainty. This is important because more accurate reservoir

models permit improved reservoir management and development decisions, which can

have significant economic consequences for oil companies.

7.1 Summary of Contributions

A novel robust correlation coefficient was proposed along with a methodology for cal-

culating its uncertainty. It was shown that some natural fracture networks show a

pattern of fracture spacing and deviation in local fracture orientation that cannot be

reproduced in DFNs created using with industry standard Poisson-based DFN mod-

elling algorithms. A new DFN simulation algorithm was proposed that generates DFNs

that honour histograms of local fracture spacing, deviation in local fracture orienta-

tion, the number of fracture intersections, fracture length, and fracture intensity. The

contributions of this thesis are expounded upon below.

7.1.1 On the Proposed Robust Correlation Coefficient

Relationships between bivariate data are frequently quantified using the correlation

coefficient. Traditional means of calculating experimental correlation coefficients are

known to be adversely affected by outlier data. A new method for calculating a robust

correlation coefficient was proposed based on a weighted average correlation calculated
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from different combinations, or subsets, of the original data. The proposed robust cor-

relation coefficient was shown to have a higher breakdown point than either Pearson’s or

Spearman’s correlation coefficients as well as two other robust correlation coefficients.

When the sample size is small, the uncertainty in the measured correlation can be

very large, especially when the measured correlation is low. A methodology to cal-

culate the uncertainty in the correlation coefficient was proposed using its sampling

distribution. The sampling distribution for the correlation coefficient requires the mea-

sured correlation and the number of independent data. Earth sciences data is often

spatially dependent, which means that often the data are not truly independent. Thus,

a methodology for calculating an effective number of independent data using the vari-

ogram was proposed.

7.1.2 On the Randomness of Natural Fracture Networks

This thesis also considered the randomness of natural fracture networks. Typical DFN

simulation software considers fracture centroids as a Poisson process (either homoge-

neous or non-homogeneous). Two natural fracture networks were digitized and DFNs

were simulated as models of those fractures. The fracture centroids in the simulated

DFNs were generated using a Poisson process, as is typical in industry and the litera-

ture. This thesis compared the natural fracture networks to the simulated DFNs and

showed that the simulated DFNs were substantially different from the natural fracture

networks. The simulated DFNs showed substantially different histograms of fracture

spacing and deviation in local fracture orientation compared to the natural fracture

networks. As well, the simulated DFNs showed far more fracture intersections than

the natural fracture networks. One of the goals of modelling fracture networks with

DFNs is to simulate geologically realistic fracture networks and this work shows that

this may not be possible using the typical Poisson process-based simulation algorithms.

7.1.3 On the Simulation of DFNs Conditional Subject to Constraints

This thesis proposes a new algorithm for DFN simulation. The goal of the proposed

DFN simulation algorithm is to generate DFNs that honour certain fracture network
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spatial statistics such as:

• the histogram of perpendicular distance to the nearest fracture;

• the histogram of deviation in local fracture orientation;

• the histogram of fracture length;

• the number of fracture intersections in the DFN; and,

• the target fracture intensity.

The algorithm works by generating more fractures than are required and retaining

a subset that minimizes the difference between the target fracture network spatial

statistics and those of the DFN.

The proposed algorithm is flexible and can be used in two or three dimensions. Tens

of millions of fractures can be simulated and optimized in a reasonable computation

time (less than a day on modern computers).

7.2 Limitations

There are some limitations to implementing the ideas put forth in this thesis.

In calculating the proposed robust correlation coefficient, the number of subsets for

which correlation coefficients must be calculated grows exponentially with the number

of data. For cases where the number of data exceed approximately 20, the calculation

time becomes prohibitively large. As a result, it was proposed to randomly sample a

certain number of data combinations instead of calculating correlations for all possible

data combinations. However, if the number of data is much larger than 20, this may re-

sult in only sampling a small fraction of the total number of data combinations. Thus,

the proposed robust correlation coefficient may be more appropriate for smaller data

sets for which correlations for all possible combinations of data can be calculated. On

the other hand, the code for the ROBUSTCORRCO program automatically calculates the

proposed robust correlation coefficient along with three other robust correlation coef-

ficients. It is recommended that the user compare the results of the different methods

to arrive at a reasonable value.
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This thesis showed that some natural fracture networks are not well modelled by

typical DFN simulation algorithms. However, the natural fracture networks considered

were two dimensional only (lineaments or fracture traces). This was largely unavoidable

since the three-dimensional spatial distribution of fractures in a rock mass are not

known. Although the Teapot Dome dataset is three-dimensional, there are only five

wells with fracture information and the true natural fracture network remains largely

unknown. Regardless, this is not considered to be a major source of error. As long as

the geomodeller can calculate reliable three-dimensional spatial statistics for the natural

fracture network, the proposed fracture simulation algorithm is capable of honouring

that information in an optimized DFN.

The use of an alternative measure of fracture spacing (the perpendicular distance

to the nearest fracture) as opposed to more conventional measures of fracture spacing

is considered to be a limitation of the DFN simulation algorithm. The proposed DFN

simulation algorithm is able to generate DFNs that honour histograms of perpendicular

distance to the nearest fracture; however, these DFNs do not necessarily honour the

histograms of other fracture spacing measures.

The two-dimensional fracture networks presented in this thesis were fully known.

As a result, it was easy to generate target spatial statistics for the fracture networks

(i.e. histograms, the number of intersections and fracture intensity). In the context

of petroleum reservoir modelling, three-dimensional fracture networks must be consid-

ered. The Teapot Dome case study presented in Chapter 7 showed that generating

the target spatial statistics is generally possible, but with some difficulties. For one,

it becomes difficult, if not impossible, to determine an appropriate target number of

fracture intersections for a three-dimensional DFN when intersections are only mea-

sured along a one-dimensional line (the well-bore). It might be possible to determine

the number of fracture intersections between fractures that are measured at the well-

bore by drawing fracture lengths from their distribution and assigning them to those

known fractures and measuring the number of intersections between those fractures.

However, determining the number or probability of fracture intersections beyond the

area very close to the well-bore may not be possible. It is possible that analogue data
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or some form of geomechanical model based on first principles would aid in predicting

the number of fracture intersections.

This work also does not consider the type of fracture intersections between sets. For

example, when a new fracture grows and reaches an old fracture it may terminate at

the old fracture plane (a Y-node) or propagate through the old fracture (an X-node).

Typically some proportion of fracture intersections will be X, Y and I-nodes (fractures

that do not intersect any others). The main reason that fracture terminations were not

considered is that it was well investigated by Dershowitz (1985) and implemented in

the enhanced Baecher model for fracture simulation.

Although experience with DFNSIM has shown that it is possible to generate fracture

networks with tens of millions of fractures in less than a day on modern computers,

some field-scale NFRs will have more fractures. This may restrict the use of the pro-

posed algorithm either to well-bore scale DFNs or only considering fractures within a

certain size range. This is a limitation of other fracture simulation techniques as well.

Even though computation time using other fracture simulation algorithms is lower than

for the algorithm proposed in this thesis, some reservoirs have fracture sizes ranging

from kilometre scale down to sub-millimetre scale. Representing the smaller fractures

becomes impractical and is usually not needed. Nevertheless, it is a limitation that

the computational expense of the optimization in the proposed algorithm restricts the

number of fractures that may be simulated more than for simpler approaches.

7.3 Future Areas of Research

The presented approach to geostatistical modelling of NFRs could benefit from further

research. In particular, the choice of using an alternative measure of fracture spacing

in the proposed DFN simulation algorithm could be re-visited. The reasons in favour

of an alternative measure of fracture spacing are discussed in Section 5.2 and were

mainly related to computational speed. However, it may be possible to speed up

the re-calculation of true fracture spacing by considering a constant set of imaginary

sampling lines, rather than calculating new random scan lines each time a fracture is

added or removed from the DFN. Perhaps the fracture spacings can be calculated for
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Figure 7.1: A constant scan line propagating through fractures that are part of the
DFN and the remaining fractures in the pool.

the entire pool of fractures with one realization of sampling lines. This means that for

any subset of fractures, the spacings between the fractures along the sampling lines

would already be known as a combination of the smaller spacings between the pool

fractures. Figure 7.1 illustrates this concept. Each time a fracture is activated from

the pool, the true spacings can be locally updated since their component distances are

already known and stored. The resulting DFNs would honour the true fracture spacing

histograms, rather than needing to rely on an alternative measure of fracture spacing.

The relative number of the different types of fracture intersections (I, X and Y-

nodes) was not considered (see Figure 7.2). This issue could be further explored and

implemented within the framework of the proposed algorithm. Instead of considering

the overall number of intersections, the objective function could consider the number

of each type of fracture intersection separately. Or perhaps, the objective function

could consider the “distance” on a ternary diagram between the target proportions of

fracture intersection types and the actual proportion of fracture intersection types.

7.4 Final Remarks

Oil companies want to make optimal decisions regarding reservoir development, pro-

duction and management. Failure to do so can have significant economic consequences.
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Figure 7.2: Fracture intersection types. Nodal proportions are captured in a ternary
diagram (modified from Makel (2007)).

The list of ways in which poor decisions cause economic loss is long. A few examples

include: drilling too many wells or not enough wells or drilling wells in the wrong loca-

tions, making poor predictions of reservoir performance, not correctly predicting water

breakthrough, etc.

The basis for making good decisions in a petroleum reservoir context starts with a

fundamental understanding of geology. Even if geological knowledge and understand-

ing is high, there is still significant uncertainty in reservoir rock types and properties

in inter-well locations. After all, only a tiny amount of the reservoir rock is actu-

ally sampled by core. Predictions at inter-well locations are made using geostatistical

techniques. Those predictions and geomodels must be 1) as accurate as possible, in-

corporating all available information, and 2) they must capture the uncertainty in

those predictions caused by incomplete knowledge of the geology and rock properties.

Accurate geomodels that capture uncertainty help support correct reservoir decision

making.

This thesis makes contributions to the field of geostatistical modelling of NFRs that

result in more geologically realistic and accurate geomodels with a better representation

of the true uncertainty.

Secondary data (such as seismic) is often incorporated in geomodels using methods

that rely heavily on the correlation coefficient. Using a robust correlation coefficient
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that is less sensitive to the effects of outlier data results in more accurate geomodels.

Furthermore, considering the uncertainty in the correlation coefficient and propagating

that through geostatistical modelling helps geologists and engineers better understand

the uncertainty in their reservoirs.

Traditional means of simulating DFNs account for fracture size, intensity and ori-

entation data but do not explicitly account for fracture spacing data, the relative ori-

entation of nearby fractures and the number of intersections. Thus, DFNs created to

model NFRs may show a greater degree of connectedness than is supported by data.

This thesis proposed a new methodology for DFN simulation that honours additional

spatial statistics that are not captured by traditional methods. This has major impli-

cations for flow simulation and may help account for discrepancies between NFR flow

predictions and actual performance. When reservoir data supports the interpretation

of non-random distributions of fracture locations and orientations, it is essential to ac-

count for those distributions in order to arrive at the most accurate DFNs and reservoir

models possible. More accurate reservoir models lead to better reservoir decisions and

increased profits.

It should be noted that the techniques and methodologies proposed in this thesis are

not only be applicable to NFRs. The robust correlation coefficient and its uncertainty

can be applied to nearly any situation where Pearson’s correlation’s coefficient is ap-

plied. Considering the uncertainty in correlation coefficients will also be useful in many

cases using any sort of data sets. The proposed fracture simulation algorithm could

also be useful in other situations where realistic fracture models are required. Fractures

are a major concern in both underground and surface mining. If the data show certain

spacing and local orientation distributions, any models not honouring those spatial

statistics will show unrealistic intact block sizes. In the case where fracture spacing

is approximately log-normal (fractures have a tendency to not form extremely close

together) and they are oriented similarly to their nearest neighbours, current fracture

simulation techniques may generate smaller block sizes than are realistic. This could

result in either 1) unsafe mining conditions caused by recommendations stemming from

geotechnical models that do not honour all available data, or 2) costly remediation of
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slopes or underground passageways that may not have been needed.
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Appendix A

Additional Material from the

Teapot Dome Case Study
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Figure A.1: Horizontal and vertical normal score semi-variograms for the B Dolomite
Unit (top row = porosity, middle row = water saturation, bottom row = oil saturation).
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Figure A.2: Horizontal and vertical normal score semi-variograms for the B Sand Unit
(top row = porosity, middle row = water saturation, bottom row = oil saturation).
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Figure A.3: Cross sections of one realization of porosity, water saturation and oil
saturation through the B Dolomite Unit.
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Figure A.4: Cross sections of one realization of porosity, water saturation and oil
saturation through the B Sandstone Unit.
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Figure A.5: Cross sections of one realization of horizontal and vertical permeability in
the B Dolomite Unit.
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Figure A.6: Cross sections of one realization of horizontal and vertical permeability in
the B Sand Unit.

Figure A.7: Target, initial DFN and final DFN histograms for well 48-X-28 in the A
Sandstone unit.
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Figure A.8: Target, initial DFN and final DFN histograms for well 61-2-X-15 in the A
Sandstone unit.

Figure A.9: Target, initial DFN and final DFN histograms for well 67-1-X-10 in the A
Sandstone unit.

Figure A.10: Target, initial DFN and final DFN histograms for well 71-1-X-4 in the A
Sandstone unit.
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Figure A.11: Target, initial DFN and final DFN histograms for well 25-1-X-14 in the
B Dolomite unit.

Figure A.12: Target, initial DFN and final DFN histograms for well 48-X-28 in the B
Dolomite unit.

Figure A.13: Target, initial DFN and final DFN histograms for well 61-2-X-15 in the
B Dolomite unit.

177



Figure A.14: Target, initial DFN and final DFN histograms for well 67-1-X-10 in the
B Dolomite unit.

Figure A.15: Target, initial DFN and final DFN histograms for well 71-1-X-4 in the B
Dolomite unit.

Figure A.16: Target, initial DFN and final DFN histograms for well 25-1-X-14 in the
B Sandstone unit.
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Figure A.17: Target, initial DFN and final DFN histograms for well 48-X-28 in the B
Sandstone unit.

Figure A.18: Target, initial DFN and final DFN histograms for well 61-2-X-15 in the
B Sandstone unit.

Figure A.19: Target, initial DFN and final DFN histograms for well 67-1-X-10 in the
B Sandstone unit.
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Figure A.20: Target, initial DFN and final DFN histograms for well 71-1-X-4 in the B
Sandstone unit.

Figure A.21: Vertical semi-variograms for Kxx (top left), Kyy (top right) and Kzz

(bottom left) and fracture porosity (bottom right) in the B Sandstone unit.
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Figure A.22: Vertical semi-variograms for Kxx (top left), Kyy (top right) and Kzz

(bottom left) and fracture porosity (bottom right) in the B Sandstone unit.
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Figure A.23: One realization of the simulated Kxx, Kyy, Kzz and fracture porosity in
the B Dolomite unit.
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Figure A.24: One realization of the simulated Kxx, Kyy, Kzz and fracture porosity in
the B Sandstone unit.
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