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Abstract

A common problem in naturally fractured reservoirs (NFRs) is a lack of data caused by
few wells; or at least, few wells with core or borehole images. Secondary data (such as
seismic) can be used to improve predictions of fracture intensity in between the wells.
Common geostatistical techniques for incorporating secondary data rely heavily on the
correlation coefficient, which is influenced by outliers and whose uncertainty is usually
unknown or not assessed in practice. A novel method is developed for calculating a
robust correlation coefficient and propagating uncertainty in the correlation through
reservoir modelling of fracture intensity. Discrete fracture networks (DFNs) are created
to reproduce the models of fracture intensity.

Current DFN modelling techniques incorporate and honour some geological infor-
mation such as intensity and orientation data. However, most DFN modelling algo-
rithms and software do not account for similarity in the orientation of nearby fractures,
fracture network connectivity or fracture spacing in an explicit manner. This thesis
shows that some natural fracture networks are not realistically modelled by conven-
tional techniques. A new discrete fracture network simulation algorithm is developed,
which works by simulating more fractures than are required and iterating to find a sub-
set that best matches target spatial statistics. It is shown that the proposed simulation
algorithm results in fracture networks that are more geologically realistic compared
with the traditional methods. The increase in geological realism is expected to lead to

better resource predictions and economic decisions for reservoir management.
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Chapter 1

Introduction

This chapter is organized as follows. Section 1.1 motivates geological modelling of
petroleum reservoirs. Naturally fractured reservoirs are introduced as a special case of
petroleum reservoirs and their importance is noted. Section 1.2 provides background
on current methods for characterizing naturally fractured reservoirs. Section 1.3 and
1.4 describe the problem statement and summarize the contributions of this thesis.

Section 1.5 provides an outline for the rest of the thesis.

1.1 Research Motivation

The proposed research is in the field of geostatistics, which can be thought of as a
philosophical approach to spatial data in the presence of natural variability or as a
collection of mathematical and statistical techniques that can be used to analyse and
model data with spatial locations. Geostatistics was developed in the mining industry
and has been used to evaluate natural resources such as mineral or petroleum deposits
as well as environmental sites. Geostatistics is often used to make predictions about
the value of a particular property, such as porosity, mineral grade, or lithology, at
unsampled locations in space. One of the main advantages of geostatistics is that it
enables the quantification of uncertainty in our predicted values.

Geostatistical modelling of petroleum reservoirs is now commonplace in a variety
of reservoir types, as is evidenced by the wide array of books and articles available
on the subject. To name just a few, the reader is referred to Isaaks and Srivastava

(1989); Goovaerts (1997); Deutsch and Journel (1998); Deutsch (2002); Wackernagel



(2003); Chiles and Delfiner (2012) and the references contained therein. There are many
reasons for the widespread use of geostatistical techniques to build reservoir models.

Some important reasons include:

e Geologists and engineers are being faced with an increasing amount of data that
occur at a variety of scales (i.e. consider the variation in scale of core plugs,
well log data and seismic data). Geostatistical techniques provide a quantitative,
unambiguous and repeatable means for generating reservoir models that honour
and integrate various sources of data including (but not limited to) core and well

data, seismic data, trends and expert geological knowledge (Deutsch, 2002).

e In addition to providing estimates or simulated values of reservoir properties,
geostatistical models provide a means for assessing uncertainty in the modelled
resource. Kriging provides the variance of local estimates while stochastic simula-
tion enables assessment of global uncertainty in reservoir properties. For example,
the geomodeller can calculate maps or volumes of the probability of shale at each

grid cells in a model. Such a map would be useful for locating new wells.

e It is also important to provide a reliable means for calculation of resource esti-
mates. These volumetric estimates can be used to project the economic value of

reservoirs and can be used as a basis for comparing alternative resource projects.

For those interested readers, Deutsch (2002) provides additional discussion moti-
vating geostatistical reservoir modelling.

This thesis is mainly concerned with geostatistical modelling of naturally fractured
reservoirs (NFRs). A NFR is defined as “a reservoir in which naturally occurring
fractures either have, or are predicted to have, a significant effect on reservoir fluid
flow, either in the form of increased reservoir permeability and/or reserves or increased
permeability anisotropy” (Nelson, 2001). It’s important to note that fractures may not
only provide a positive effect on the flow performance of a reservoir. In the case where
fractures are in-filled with gouge, mineralization or another low permeability substance,

they may act as barriers to flow. A reservoir fracture is a “naturally occurring
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Figure 1.1: Two common fracture styles; joints and faults. The relative orientation
of the principal stresses with respect to the fracture plane is shown along with the
direction of displacement (Modified from Narr et al. (2006)). Not to scale.

macroscopic planar discontinuity in rock due to deformation or physical diagenesis”
(Nelson, 2001). There are two types of fractures that fit this definition: faults and
joints (U.S. Department of the Interior Bureau of Reclamation, 1998; Park, 2004).
Figure 1.1 shows the formation of joints and faults relative to their stress state.

Faults are created oblique to the direction of the principal stresses at the time
of faulting and show significant shear displacement. Joints, on the other hand, are
fractures with no shear displacement and small displacement normal to their surfaces.
Joints develop parallel to the maximum horizontal stress at the time of formation (Narr
et al., 2006) (See Figure 1.1).

Rock fractures are prevalent in the Earth’s upper crust. They are seen in nearly all
rock masses by observing fractures in core and most rock outcrops. Petroleum reservoir
rock is no different. It is likely that most petroleum reservoirs contain fractures (Narr
et al., 2006). In some reservoirs, the fractures do not play a significant factor in the
development and production of hydrocarbons. In others, fractures can play a key role
in production either by enhancing fluid flow (in some cases making production from an
otherwise low-quality reservoir feasible) or by acting as a barrier.

Reliable estimates on how much of the world’s petroleum reserves are known to be
in NFRs are hard to come by, but some estimates in the literature are as high as 60%
(Beydoun, 1998; Roxar, 2009; Waldren and Corrigan, 1985).

In order to optimize management and production of NFRs, detailed information on



the attributes, properties and behaviour of the fracture network must be known along
with those of the rock matrix. There are several aspects unique to NFRs that make
them more difficult to characterize, model and produce compared to other reservoirs

whose fractures have little or no effect on production.

e In NFRs there is a need to characterize the fractures in addition to the rock
matrix. Characterization of the fractures involves gathering data to define frac-
ture attributes such as size, orientation, spacing, porosity, aperture, intensity and
connectivity. Some of these attributes, such as aperture and size are difficult to

characterize (see Section 1.2).

e One of the difficulties in characterizing the reservoir fractures is simply in gath-
ering enough data. Lack of sampling is a common problem in NFRs where there
may be few vertical wells with available core or image log data from which to
draw fracture statistics. Further complicating matters is the fact that verti-
cal wells have a relatively low probability of intersecting sub-vertical fractures
(Baker and Kuppe, 2000; Narr et al., 2006; Makel, 2007). Cored horizontal wells
provide a valuable source of additional information on vertical fractures, but are

not normally available.

e There is also a need to characterize the matrix-fracture interactions. The interac-
tion between the high pore volume but low permeability rock matrix and the low
pore volume but high permeability fractures is a function of matrix architecture,
fracture geometry, stress state and the mechanisms and physical processes that
control the transfer of hydrocarbons from the matrix to the fractures (Makel,

2007).

e Directly measured fracture data only exist at well locations. Unfortunately inter-
well predictions of fracture properties is difficult due to their complexity and
high variability. Fracture porosity and fracture permeability may show shorter

correlation ranges than their matrix property counterparts (Makel, 2007).

Although developing permeability models to represent NFRs is a challenging task



due to the aforementioned reasons, the uncertainty in predictions of reservoir perfor-
mance can be reduced by integrating as much available data as possible (Reza, 2003).
As such, there is a need to integrate all available information such as: formation micro-
images (FMI), well-test data, production data, seismic surveys, well log data and data
from outcrops. This thesis proposes novel approaches to the integration of multiple

data types into geomodels of NFRs.

1.2 Characterization and Modelling of NFRs

Characterizing and modelling NFRs is challenging; however, the task can be distilled
down into a few main goals: 1) observing the fractures in the wells and determining
which (if any) are important; 2) determining reasonable fracture attributes; 3) deter-
mining how best to model the inter-well locations; and 4) translating and simplifying

fracture information for a flow simulator.
1.2.1 Data Sources for Characterization of NFRs

There are several potential sources for data that may help in the characterization
of natural fracture networks such as: core data, image logs, borehole logs, seismic
geophysics, outcrop analogues, production tests and production data. Core data is
the most useful data source, especially when oriented, and is the only way direct way
to measure fractures in a reservoir. Other sources of data have varying degrees of
usefulness. For example, seismic data may be very useful in some reservoirs and not
others. Production testing could be useful to determine the permeability of a fault,
which cannot be known from core data.

Sampling bias due to the orientation of the borehole in relation to the fracture
orientation is common, but can be corrected for using the Terzaghi correction (Terzaghi,
1965), which is discussed in more detail in Chapter 4. Estimates of fracture apertures
from core are highly uncertain due to removing the core from its in-situ stress state
and possible core damage due to drilling and handling. However, it may be possible
to estimate apertures by measuring the width of joint fill in the case of cemented or

partially cemented joints (Makel, 2007). Making the distinction between shear and



tensile fractures (joints) is only possible by examining core and can be important if
the two different types of fractures have different dimension characteristics and spatial
distributions (Cacas et al., 2001; Odling et al., 1999). Fracture type can also be used
to help determine relative age of fractures and split them into sets.

Borehole image logs yield similar information compared to core data and is also
very useful. One advantage of image logs is that they provide a more complete record
compared to core since they are often taken over greater depth intervals. However,
resolution limitations may mean that some fractures with small apertures are not de-
tected. It is possible, in theory, to determine apertures from image logs; however,
accuracy is limited by borehole image resolution (Luthi and Souhaite, 1990). Even
though core and image logs provide similar information, they can be used together to
reduce uncertainty in the measured fracture attributes.

If suitable outcrops are available, they may provide both qualitative and quantita-
tive information. Outcrops can help define the fracturing style (dispersed systematic
joint sets vs. localized swarms of fractures) as well as provide information on the ori-
entation, length and spacing of fractures (Cacas et al., 2001). Outcrop data should be
used with extreme caution since they are located some distance away from the actual
reservoir and are subject to stress unloading and weathering.

Seismic geophysical surveys can be used to identify the location of large-scale faults
and fractures. Seismic amplitude attributes, such as coherency, can be analysed and
used to create fault probability maps (Bourbiaux et al., 2002). Seismic anisotropy, or
azimuthal, analysis is a relatively new development that shows promise for mapping
fracture orientation and intensity between wells (Bourbiaux et al., 2005; Angerer et al.,
2004). It works by decomposing the seismic attributes into a common geological part,
an azimuth-dependent part (which supplies the fracture information) and random noise.
Sometimes seismic AVO or shear wave attribute maps can be generated to infer small-
scale fracture orientation and density changes (Eikmans et al., 1999). Seismic data
must be corroborated with well bore information to assess the validity of using it to
predict at inter-well locations.

Drawdown or buildup tests can be conducted. In a draw-down test, the well is



pumped for some time and then shut-in. The pressure response and fluid level in the
well is monitored over time. A plot of log-time versus log-pressure can provide an
indication of the effective fractures and fracture connectivity (Narr et al., 2006). Well
tests can also provide an indication of both a fracture dominated response and a matrix
dominated response, which is called a dual porosity system; however, many NFRs do
not exhibit the characteristic dual porosity pressure response.

Interference testing between multiple wells can provide an assessment of reservoir
flow over larger areas (Narr et al., 2006). This is done by creating a pressure pulse in one
well and measuring the response in nearby wells and can provide valuable information
about large scale flow anisotropies. Tracer tests can also be used whereby a unique
tracer is injected in one well and its presence is monitored for in nearby wells.

Historical production data can be integrated into geomodels of petroleum reservoirs
(whether or not they are considered NFRs). Numerical history matching of produc-
tion data is an inverse problem where the geological model is modified in order to
minimize the mismatch between the simulated and historical production profiles. The
model parameters that could be modified for history matching are mainly porosity and
permeability, but could also include hydrocarbon volume, compressibility, vertical to
horizontal permeability ratio and reservoir geometry. Unfortunately, numerical history
matching is a difficult and computationally expensive task. Although automatic his-
tory matching algorithms exist, much of the history matching occurring in practice is

due to manual iteration of geological models (Deutsch, 2002).
1.2.2 Fracture Data Analysis and Statistics

An important task in any reservoir analysis is to gather and analyse all available data.
For NFRs, there is the additional task of compiling information on the fracture network.
It is important to define distributions of fracture attributes such as orientation, spacing,
length, porosity, aperture and connectivity, which are a function of the reservoir rock

porosity, lithology, structural position and brittleness (Baker and Kuppe, 2000).



Orientation

Stereonets and rose diagrams are used for visualizing and analyzing fracture orienta-
tion data. Stereonets make it easy to group fracture data into sets based on similar
orientations and/or fracture type. Splitting the data into sets may be harder in some
fields than in others. If the average fracture orientation varies with location, it may be
hard to separate the data into sets. It may be helpful to split the reservoir into separate
regions before plotting separate stereonets for each region. The joint orientations on a
stereonet can be contoured and an average orientation could be read directly from the
plot (visually) if only an approximate value is required. For additional accuracy, the
Fisher distribution is often used to characterize fracture data sets. The Fisher distri-
bution is analogous to the normal distribution on a sphere (Davis, 2002). The Fisher
distribution is parameterized by angles ¢ and 6, which are measured from the z and x

axes, respectively, and a concentration parameter, x (See Equation 1.1).
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The Fisher distribution is usually valid if x > 5. When the number of fracture poles

is greater than 30, x can be estimated as follows:

Ny

= 7Nf YT (1.2)

K

where | R| is the magnitude of the vector sum of the unit vectors for orientation (Golder
Associates Ltd., 2010).

Figure 1.2 shows an two examples of fracture poles generated using a Fisher distri-
bution. The figure shows that as k increases, the spread of the distribution decreases.

Uniform dispersion across the sphere can be specified by setting x = 0.
Length and Shape

Fracture lengths in a single set may vary over several orders of magnitude. Micro
fractures down to the millimetre scale may exist along with very large fractures or

faults that are kilometres in length (Twiss and Moores, 1992).



Y

0
UASN,
250
O
S

-
[ 7
[7

s
750
5

2
<

T
]
i
L

W

=
o
o~

S

<>
<
.

%0
(1]

e

Figure 1.2: Fracture poles simulated using the Fisher distribution for two values of k.
On left: k =20. On right: x = 50.

Fracture shape depends on lithology and geological structure (i.e. bed thickness).
While fractures in granite may be nearly elliptical in shape, they are often more rect-
angular in bedded sandstones or shales. The reason is generally due to fracture growth
being constrained by upper and lower bedding contacts. In these cases fractures may
tend to be longer parallel to bedding than across it as their growth often terminates at

the bed boundaries (Twiss and Moores, 1992).
Aperture

Evaluation of fracture aperture data is extremely important. Parallel plate theory
indicates that flow through a fracture is related to the cube of aperture (Witherspoon

et al., 1980; Koudina et al., 1998; Hosseinian et al., 2010).

e3Ap

@= 12uL

(1.3)

where (@ is the volumetric flow rate, e is the aperture, Ap is the pressure drop, L is the
distance between the inlet and outlet boundaries, and p is the fluid viscosity. Thus,
some indication of aperture is extremely important for predicting fracture permeability.
The distribution of fracture apertures is generally thought to be log-normal (Hakami
and Barton, 1990; Iwano and Einstein, 1993; Johns et al., 1993; Pyrak-Nolte et al.,
1997).

As noted earlier, fracture aperture can be measured directly from core. Although



these measurements are subject to high uncertainty, it is preferred to no measurements
(Narr et al., 2006). Where resistivity image logs are available, apertures should be
computed and compared to those from core. The aperture data from resistivity logs is
uncertain, at least in terms of absolute aperture values. However, the relative size of
the aperture sizes are often consistent with those from core and therefore can be used
as additional information to help validate the core measurements (Narr et al., 2006;
Luthi and Souhaite, 1990). If a correlation exists between apertures from core and
those from FMI, this correlation can help assess apertures in wells that only have FMI
available.

Mud loss data can be useful for evaluating fracture apertures. Mud losses that build
gradually are thought to occur as mud is lost to the permeable matrix of the borehole
wall. Mud losses to open fractures may occur abruptly. It is, therefore, possible to
estimate fracture aperture and size through highly-accurate monitoring of mud losses

(Verga et al., 2000).
Spacing, Density and Intensity

Spacing, density and intensity are interlinked fracture network attributes. Fracture
spacing is the orthogonal distance between fracture planes and can be measured as
the distance between fractures along a scan line, or down a borehole (Makel, 2007;
Twiss and Moores, 1992). Measured spacings may need to be corrected since they are
dependent upon the relative orientation between the sampling line and the fracture
orientation. The Terzaghi correction (Terzaghi, 1965) is the most common way to

correct spacing data (See Chapter 4 for more details).
Spacing

Fracture spacing data has been presented many times in the literature. It is widely
observed that joint spacing is proportional to bed thickness (Narr and Suppe, 1991; Ji
and Saruwatari, 1998; Wu and Pollard, 1995; Price, 1966), although very thick beds

may depart from this observation (Ladeira and Price, 1981; Narr and Suppe, 1991).
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Priest and Hudson (1976) and Wines and Lilly (2002) both presented data showing
that fracture spacings followed the negative exponential distribution. However, Priest
and Hudson (1976) note that the negative exponential distribution does not apply if
there is a predominance of evenly spaced fractures. Other researchers have found that
the fracture spacing distribution follows a log-normal distribution (Narr and Suppe,
1991; Bridges, 1975; Becker and Gross, 1996). Huang and Angelier (1989) present data
from the Gulf of Suez and south-eastern France where the joints followed a Gamma
distribution, which they note is similar to a log-normal distribution. Ji and Saruwatari
(1998) presented joint spacing data from three beds that was normally distributed in
two beds, indicating roughly regular spacing, and positively skewed in the third bed,
which could be described by either the log-normal or gamma distribution.

It seems that spacing distributions described by log-normal or gamma distributions
are a consequence of the stress relaxation around a joint, which prevents formation of
new joints within some distance from existing joints. The stress relaxation shadow is
proportional to the joint height and explains why there is a correlation between bed
thickness and joint spacing (Becker and Gross, 1996).

The terms fracture density, intensity and porosity are similar to each other, but
are not equivalent. The difference between the three measures is related to the di-
mension of the samples and the dimension of the measurement region (see Table 1.1).
The format for describing fracture intensity (and density and porosity) are based upon
the designation P (for persistence), followed by subscripts for the dimensions of the
measurement region and the fracture sample, respectively. Thus, a P30 fracture inten-
sity refers to the total area of fractures per volume of rock and is the most commonly
used measure when modelling fractures in three dimensions (Schlumberger, 2007). It
is usually recommended to calculate a fracture intensity measure that is related to the

dimension of the modelling area (Dershowitz and Herda, 1992).
1.2.3 Geostatistical Reservoir Modelling

Geostatistics was introduced briefly in Section 1.1 but further discussion is warranted

since geostatistical modelling of NFRs presents some unique challenges. This subsection
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Table 1.1: Measures of fracture density, intensity and porosity (modified from Der-

showitz and Herda (1992)).

Dimension of Measurement
0 1 2 3

Py Py
© No of fractures | Length of Linear
B per unit length | fractures per Measures
c% of borehole unit length
E Py Py Py
o No of fractures | Length of Area of Areal
.E per unit fractures per | fractures per Measures
a area unit area unit area
qé Py Pso P33
A No of fractures Area of Volume of Volumetric

per unit fractures per | fractures per | Measures

volume unit volume | unit volume

Density Intensity Porosity

discusses one of the more common reservoir modelling work flows using some of the

most popular and well-established geostatistical techniques.
Geostatistical Modelling of Rock Matrix Properties

The following suggested reservoir modelling work flow follows that of Deutsch (2002)
but incorporates additional details and the author’s own personal experience.

The first step in any reservoir modelling work-flow is to collect the relevant data
for preliminary data analysis and checking. Types of data that may be used in the
model are largely dependent on what is available. Generally the geomodeller should
wish to incorporate as much information as possible into the model. Typical data types
incorporated in a petroleum reservoir geomodel include: well logs, core analysis, core
photos, image logs, horizons identified from seismic surveys, well tops or picks made
by geologists, seismic attributes, well-test data and production data.

A visual inspection of the data is helpful. Viewing the well log data is often nec-
essary to identify obvious problems. Histograms and scatter plots of the variables of
interest are useful for identifying outliers. Determining statistically representative fa-
cies proportions and rock properties is critical. Declustering should be considered to

arrive at representative facies proportions and rock properties (Deutsch, 2002).
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Establishing the stratigraphic layering involves developing a conceptual model and
stratigraphic framework that define the geometry and stratigraphy of the reservoir.
Practically speaking, this involves zoning the reservoir into different stratigraphic or
geologic units or layers, which form the large-scale reservoir architecture. Fach layer
corresponds to a particular time period and the surfaces (or horizons) that separate
these layers correspond to a significant geologic change (Deutsch, 2002). The idea is
to sub-divide the reservoir into large-scale geologically similar units. Most often, the
boundaries or horizons between layers are “picked” from well logs and/or by looking
directly at the core. Horizons are usually estimated at inter-well locations using one of
any number of mapping techniques such as: kriging, inverse distance, spline methods,
etc. Some horizons can be mapped from two or three-dimensional seismic surveys.

Modern day commercial reservoir geomodelling software is generally capable of
defining complex corner-point grids, called stratigraphic grids, that conform to faults
and undulating horizons. Grids could be constructed to conform to a maximum flooding
surface. The grid for each geologic layer could conform to separate horizons. It may
be desirable to construct a grid parallel to some surface that has since been eroded,
rather than present bounding surfaces. Stratigraphic grids are usually transformed to
a Cartesian grid (where cell has an i,j,k index) for easier geostatistical calculations.

Facies rock types are modelled before rock matrix properties such as porosity since
petrophysical properties are often highly correlated with geological facies. There are
any number of ways of defining facies and that discussion is outside the scope of this
thesis. In siliclastic petroleum reservoirs it is common to distinguish between sandstone
and shale while in carbonate reservoirs it is common to distinguish between limestone
and dolomite (Deutsch, 2002).

There are generally two main different approaches to rock type modelling: 1) cell-
based approaches and 2) object-based approaches.

Sequential indicator simulation (SIS) is an example of a cell-based approach and is

common (Deutsch, 2002) in petroleum reservoir geomodelling. SIS involves:

1. considering K mutually exclusive facies categories and K indicator transforms at
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each data location;
2. visiting a grid node location;
3. finding nearby data (including previously simulated grid nodes);

4. constructing a conditional distribution by indicator kriging (which amounts to

calculating the probability of each facies being present at that location); and

5. randomly drawing a simulated facies from the set of probabilities.

There are significant advantages to SIS. The facies proportions are honoured and
the sample data are reproduced. The main drawback to SIS is that the results do
not appear geologically realistic. While the facies proportions and the variogram are
honoured in SIS, higher order statistics are not. As a result, there is no way to define
or calculate realistic geologic shapes that are seen in petroleum reservoirs.

Truncated Gaussian and pluri-Gaussian simulation are alternatives to SIS. These
methods are not seen as often in practice since they require a clear ordering of the
facies, which may be difficult to define.

In truncated Gaussian simulation, realizations of a Gaussian random field (GRF)
are generated. Cutoffs are applied to the realizations to create categorical facies real-
izations. For example, in model with three rock types, Gaussian values below -1 might
be assigned to facies code 1, values between -1 and 1 might be assigned facies code 2,
and values greater than 1 might be assigned facies code 3. Since the Gaussian random
field has some spatial continuity, it would be rare to have facies 1 directly next to facies
3. Usually there would be a transition from facies 1 to 2 to 3 and vice versa.

Truncated pluri-Gaussian (PGS) simulation is a generalization of truncated Gaus-
sian simulation that uses two GRFs (Y7, Y2) instead of one. PGS requires the definition
of a facies substitution diagram. The horizontal axis represents the transform of one
GRF, while the vertical axis represents the transform of the other GRF. The diagram
shows which facies will prevail at a location given the values from the two GRF's (y1,y2).

The areas associated with the facies correspond to their proportions if Y7 and Y5 are
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independent (Chiles and Delfiner, 2012). PGS may be difficult to use, in practice, due
to the difficulty of defining an appropriate substitution diagram.

The multiple point statistics (MPS) approach was introduced as an alternative to
the classical categorical methods such as SIS or PGS. Multiple point statistics include
probabilities involving more than two locations. MPS methods use a multiple point
histogram and a training image instead of a variogram to estimate conditional proba-
bilities at simulation locations given the observed and previously simulated data. The
multiple point histogram is the probability of all combinations of a set of indicators
at many locations simultaneously (Lyster, 2009). The training image is a conceptual
model of the random process that is representative of the geology of the area of interest
(Journel and Zhang, 2006). MPS methods have the advantage of generating more geo-
logically realistic results. However, there are challenges in honouring dense well data.
There is also the issue of how to generate or select a training image (Lyster, 2009).

Object-based or process-mimicking techniques attempt to mimic idealized facies
body geometries that are interpreted from outcrops and modern analogues (Deutsch,
2002). Object-based models may look more geologically realistic in the sense that they
are visually attractive and show non-linear continuity, which cannot be modelled by
other cell-based approaches such as SIS. These approaches place geometric objects at
locations in space until well data and target facies proportions are honoured. Process-
mimicking methods attempt to model the true geologic progression by populating older
objects first followed by erosion and deposition of new objects until the model is filled.
Object-based and process-mimicking techniques require definition of many parameters
and have difficulty honouring dense well data (Lyster, 2009).

Regardless of the method chosen for rock type modelling, all available information
should be incorporated into the model. If available, seismic data can be incorporated
(Deutsch, 2002) and can add significant information since it is areally extensive over
the reservoir. It is also common to condition the models to vertical proportion curves,
which show how facies proportions vary with depth in the reservoir (Deutsch, 2002).

Once the rock type model has been simulated, petrophysical properties are simu-

lated within each rock type. Rock matrix properties like porosity, water saturation, oil
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saturation, the volume fraction of shale and permeability are often modelled. Porosity
is measured via well logs, while permeability is measured in the lab on core samples.
Thus, there is usually far more porosity data than permeability data. For this reason,
permeability is usually modelled after porosity using the measured relationship between
porosity and permeability.

There are a number of methods that could be used to create realizations of petro-
physical properties. Sequential Gaussian simulation (SGS) (Deutsch, 1992), spectral
simulation (Chiles and Delfiner, 2012) and turning bands (Chiles and Delfiner, 2012)
are three of the most common. All three methods follow a Gaussian formalism and can
be made to honour local data, a histogram and a variogram. The modelling strategy
uses the previously defined layering and realizations of rock type to capture abrupt
discontinuities. All three Gaussian methods for property simulation require transfor-
mation of the original data to the normal distribution. A variogram must be calculated

on the normal scored data. SGS proceeds (similarly to SIS) as follows:

1. first, the nearby data are found (including previously simulated nodes);
2. the conditional distribution at that location is calculated by kriging;

3. a simulated value is drawn randomly from that conditional distribution.

The process then repeats, proceeding through a random path of all locations in the
model. Multiple realizations are created by changing the random number seed.

Seismic data, such as acoustic impedance, is sensitive to changes in matrix porosity
and can be used as an aid in petrophysical property modelling. In order to use the
seismic data for this purpose, it must first be calibrated to the well data. If it can be
assumed that the porosity and the seismic data follow a bivariate Gaussian distribution,
then the correlation coefficient is all that is required to use the seismic data as a
predictor for porosity (Deutsch, 2002).

Collocated cokriging (CCK) (Doyen, 1988) can be used to calculate property esti-
mates that consider both well and seismic data. The CCK technique works by kriging
with the primary data (i.e. porosity well data) and a single collocated seismic data.

The seismic data is weighted via the correlation coefficient (Deutsch, 2002).
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Assignment of rock matrix permeability can be made via SGS. An alternative is
to transform porosity (which is easier to model given the greater abundance of data

compared with permeability) with a calibrated porosity-permeability relationship.
Geostatistical Modelling of Fracture Properties

Analysis of core or borehole image data gives a reasonable idea as to the fracture
attributes and flow properties at the well locations. However, some idea of the frac-
ture network characteristics in the inter-well locations is also required. In particular,
fracture intensity is required at inter-well locations in order to constrain the discrete
fracture network model. Fracture orientation can also be used to further constrain the
simulation the of a fracture network. Modelling of attributes such as fracture intensity
and orientation typically use the same geo-cellular grid that is used in rock matrix
modelling.

Geostatistical methods such as kriging and SGS can be used to populate gridded
models of fracture properties (Olarewaju et al., 1997). Some practitioners have used
correlations with reservoir characteristics to improve field-wide modelling of fracture
intensity (Gauthier et al., 2002; Bourbiaux et al., 2002). For example, if rock ma-
trix porosity is correlated to fracture intensity, the previously generated model of rock
matrix porosity can be used to constrain the simulation of fracture intensity through
the measured correlation coefficient. Makel (2007) discusses the possibility of corre-
lating horizon curvature and seismic anisotropy with fracture network attributes such
as intensity and orientation. Collocated co-kriging or co-simulation is ideal in such a
situation.

Coring wells is expensive. In some NFRs, there may not be many wells with direct
measurements of fractures from core. Obtaining borehole images is less expensive, but is
still often only available in a small subset of wells. In these cases, there may not be very
many data with which to calculate a correlation between fracture intensity and some
other property or attribute. The correlation coefficient is highly sensitive to outliers
(Abdullah, 1990; Isaaks and Srivastava, 1989; Kim and Fessler, 2004; Shevlyakov, 1997)

and the uncertainty can be large when the number of data is small (Kalkomey, 1997).
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1.2.4 Discrete Fracture Network Modelling

A discrete fracture network (DFN), is a discrete object model of the fractures in a
rock mass. The main purpose of fracture network modelling is to study the inter-
connectedness and hydraulic potential of the fracture network and propagate those
properties through flow simulation to examine the effect of the fracture network on
the reservoir production (Makel, 2007; Bourbiaux et al., 2005). The measured fracture
data used to constrain the DFN are usually split into two categories: 1) large-scale (i.e.
reservoir scale) faults and fractures that show up on seismic surveys and 2) small-scale
fractures and faults that do not show up on seismic surveys. The large-scale faults and
fractures can be modelled as deterministic objects. Small-scale fractures are modelled
probabilistically from distributions of fracture attributes defined by the geological data
analysis of core, image logs and other sources. A geocellular model of fracture intensity
constrains the DFN generation for each fracture set, possibly using the rock matrix
geomodel as underlying information. For example, the fracture density of a particular
set may be controlled by geomodels of facies and reservoir curvature, while a second set
may be controlled by a different facies model and proximity to faults. Since lithology
usually plays a significant role in the development of natural fracture networks, the rock
type model developed earlier is used to further constrain the DFN modelling (Cacas
et al., 2001).

The Baecher model (Baecher et al., 1977; Baecher, 1983), was one of the first
models characterizing fracture network generation. Under the Baecher model, fractures
centroids are randomly located in space using a Poisson process and the fractures
are generated as disks with an orientation and radius. The enhanced Baecher model
(Dershowitz, 1988) extends the original Baecher model by providing a provision for
fracture terminations and more general fracture shapes. Terminations are specified as
a probability that a fracture will terminate at a pre-existing fracture, given that an
intersection is detected.

The nearest neighbour model is a non-stationary model in which the fracture in-

tensity (Psz) decreases exponentially with distance from major features (faults) that
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are specified. The P39 intensity at any point in space is defined by:

P32(l‘) = Ce_bdz’f (1.4)

where C' and b are constants and d,, ; is the distance between location = and the nearest
major feature.

Some researchers have presented data from natural fracture networks that follow
fractal patterns. Thus, models to generate fractal fracture network models have been

developed. Fractal networks can be simulated by:

1. Producing fracture patterns at one scale. Then superimposing them at different

scales to produce a fractal pattern;

2. Generating fractures using non-fractal processes, then test the resulting patterns

to determine whether or not they are fractal in nature;

3. Using a process such as a Levy flight, which has been shown mathematically to

produce fractal patterns.

The Levy flight process (Mandelbrot, 1982) is a sort of random walk where the length,
L, of each step is given by the probability function:

P(L>1L,)=L;" (1.5)

S

where D is the fractal mass dimension of the point field of fracture centres and L
is the distance from one fracture to the next for the previous step in the generation
sequence. Although the Levy flight is a one dimensional process, it has been extended
to two and three dimensions for the generation of fractures in the Levy-Lee fractal
model (Golder Associates Ltd., 2010; Clemo, 1994). If D = 0, the distribution of step
length is uniform (there is no clustering). For larger D values there is low probability of
large steps and fractures are found in concentrated clusters. Various researchers have
reported fractal dimensions ranging from 0.8 to 2.4 for trace survey maps (Stach et al.,

2001; La Pointe, 1988; Ghosh and Daemen, 1993).
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Some research has focused on generating more geologically realistic DFNs by grow-
ing fractures from an initial seed location. Renshaw and Pollard (1994) simulated
fracture networks using geomechanical principles by propagating fracture tips when
the stress exceeds a critical threshold. Their approach was successful in yielding realis-
tic looking images of fractures but was computationally prohibitive and limited to two
dimensions. Although their work was conducted almost 20 years ago, this type of ge-
omechanical fracture modelling is still too computationally expensive for reservoir-scale
three-dimensional modelling. Work by Srivastava (2006) mimics that of Renshaw and
Pollard in that fractures are propagated at their tips, but instead of being governed by
geomechanical principles, his work is governed by statistical rules. Initial fracture lo-
cations are seeded and fracture traces are propagated in two dimensions at the surface
by using sequential Gaussian simulation (SGS), which incorporates nearby data into a
local distribution of possible azimuths for the next segment. Once the surface traces
are simulated, they are propagated to depth, again using SGS, by simulating a dip
angle from nearby data. Srivastava’s approach was successful in yielding realistic three
dimensional fracture networks; however, his work requires detailed joint mappings from
outcrops, which are not available in most petroleum reservoirs and are often affected
by weathering and stress unloading anyway.

Fracture apertures can be assigned to fractures in a number of different ways. Per-
haps the simplest method would be to assign the same aperture value to each of the
modelled fractures. A single fixed value could be assigned to all fractures in simple mod-
els or apertures could be sampled from different probability density functions (PDFs)
for different fracture sets. It is also possible to interpolate gridded fracture porosity
values over the geo-cellular grid and assign apertures proportionally to each fracture

such that the fracture porosity for the grid cell is honoured (Makel, 2007).
1.2.5 Fracture Network Upscaling

Most current approaches for flow simulation of NFRs rely on either the continuum or
the DFN approach. Under the DFN approach, flow is simulated directly on the DFN

fractures using an unstructured grid, allowing incorporation of many of the charac-
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teristics of real fracture systems. Although the DFN approach can handle complex
fracture geometry, its use has typically been limited to basic flow calculations and as-
sumes zero permeability matrix rock. The continuum approach has seen far more use
in actual practice (Makel, 2007). Under the continuum approach, the flow on a fracture
is not directly simulated. Instead, the DFN is represented by a geocellular grid and
an equivalent permeability is calculated for each grid element based on the fractures
occurring in that grid cell. The continuum approach has the advantage that it can
simulate complex recovery mechanisms such as capillary pressure and matrix-fracture
interactions (Rodriguez et al., 2006; Makel, 2007).

One of the most popular methods for calculating an equivalent permeability tensor
was developed by Oda (1985). Oda’s approach is fast because it does not require
flow simulation and it can obtain effective properties directly from the geometry and
properties of the fractures within the grid cells.

Oda’s approach lays a specified grid (the geocellular grid) on top of a DFN and
derives effective properties based on the fractures contained in each cell. The effective
permeability for the grid cell is calculated by decomposing the permeability vector into

the x, y and z-directions. The permeability tensor is:

1

ki = 13

(Perdij — Pij) (1.6)

where:

e 0;; is the Kroenecker delta;

Py = P11+ Pog + Fs3;

N
1 2.3 .
e Pi=7v kgll e NiENjk;

V' is the grid cell volume;

[ is the length of the fracture;

e is the fracture aperture; and

n;, and njj are the components of a unit normal to the fracture k.
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Oda’s method is simple and quick to calculate but does not consider the intercon-
nectedness of the fracture network. This assumption is considered acceptable for well
connected fracture networks (Dershowitz et al., 2004).

An alternative to Oda’s method is flow based upscaling. This method amounts to
applying a pressure gradient in one direction (the i, j or k direction) and back calculat-
ing permeability. The process is repeated for each direction and for each grid cell. The
simulator creates a finite element, unstructured grid along fracture surfaces (Schlum-
berger, 2007). In this way, flow along the actual fractures is simulated. The advantage
of this method is that it directly accounts for the fracture geometry. The disadvantage
is that the flow calculations are far slower than Oda’s vector addition operations. The
flow based method would be impractical for upscaling large reservoirs with many frac-
tures. However, it could be used at the well bore scale, to predict local permeability.
It could also be used to validate the results of Oda’s method (Schlumberger, 2007).

The important flow properties that must be calculated from the fracture network
are the fracture porosity, the directional fracture permeabilities and the sigma factor.

The sigma factor (sometimes called the shape factor), o, is related to the connec-
tivity between the rock matrix and the fractures and is a function of fracture spacing
(Gilman, 2003). The sigma factor is needed by flow simulators to calculate the fluid
transfer between the fracture network and the matrix. The pseudo-steady state, ana-
lytically derived expression for the shape factor in terms of the mean fracture spacing

in the grid cell, L, in the x, y and z directions is (Kazemi and Gilman, 1993):

1 1 1 >
2
o=7" | =+ =5+ (1.7)
(L% Ly L2
The numerically derived equation for the shape factor is the same except that the

72 term is replaced with a 4 (Kazemi et al., 1976).
1.3 Problem Statement

As is noted earlier, geostatistical modelling of petroleum reservoirs, in general, and
NFRs, in particular, often relies on the correlation coefficient between a primary and a

secondary variable. However, the correlation coefficient is known to be highly sensitive

22



to outliers and is uncertain when the number of data is small. A robust measure of
correlation is needed along with a methodology for quantifying its uncertainty and
propagating that uncertainty through geostatistical calculations.

Current DFN modelling techniques incorporate and honour some geological infor-
mation about the fractures. Where data is available, fracture lengths and apertures can
be honoured. DFNs can also honour fracture intensity and orientation data. Although
uncommon, it is possible to impose some control on fracture clustering (not the same
as fracture spacing) in the DFN by using a Levy-Lee model. Calibration or trial and
error would be required to honour a desired fracture spacing distribution, which would
need to be fractal in nature. In many rock masses fractures tend to be oriented simi-
larly to their nearest neighbours. The author is not aware of any fracture simulation
algorithms or models that account for similarity in the orientation of nearby fractures,
the number of intersections in the fracture network or fracture spacing (in an explicit

manner).

Thesis Statement

Geostatistical modelling of naturally fractured reservoirs will be significantly im-
proved by: 1) development of a robust correlation coefficient; 2) development of a
methodology for considering the uncertainty in the correlation and propagating its un-
certainty through geostatistical modelling; 3) development of a new DFN simulation

algorithm that honours geologically realistic spatial statistics.

1.4 Thesis Contributions

This thesis makes several important contributions. Geomodellers commonly study
multivariate problems where incorporation of different variables in the geological mod-
elling can improve predictions by considering the correlation between those variables.
Traditional measures of correlation are highly sensitive to outlier data. A new ro-
bust correlation coefficient is introduced that is shown to be resistant to the effects

of outliers. Perhaps even more importantly, a methodology to consider uncertainty in
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the measured correlation is proposed. Several important implementation details are
discussed.

Selected natural fracture networks are presented and analysed in Chapter 4. In one
of the major contributions of this chapter, it is demonstrated that these natural fracture
networks cannot be modelled using the traditional Poisson process-based simulation
techniques in a geologically realistic manner. This finding leads into the next major
contribution of this thesis, whereby a new DFN simulation algorithm is proposed. The
proposed algorithm is capable of simulating DFNs that match target histograms of
fracture spacing, deviation in local orientation of fractures, fracture length, fracture
intensity and the number of fracture intersections. Many important implementation

details are discussed and case studies on how to implement the ideas are also presented.

1.5 Thesis Outline

The rest of this thesis is organized as follows. Chapter 2 introduces a new way to cal-
culate a robust correlation and assess its uncertainty within the context of geological
modelling. Chapter 3 discusses implementation details and examples for the proposed
robust correlation coefficient and its uncertainty. Chapter 4 looks at a few selected
natural fracture networks and discusses whether or not they could be modelled by tra-
ditional DFN simulation algorithms. A new fracture simulation algorithm is proposed.
Chapter 5 discusses numerous important implementation details surrounding the pro-
posed fracture simulation algorithm. Chapter 6 presents a case study. The fracture
modelling methodologies and algorithms are applied to the Teapot Dome data set.
Chapter 7 provides further discussion of the ideas presented in this thesis along with

conclusions and limitations of this work. Areas for future research are also discussed.
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Chapter 2

On a Robust Correlation
Coefficient Considering its
Uncertainty

This chapter is organized as follows. Section 2.1 introduces the correlation coefficient.
Section 2.2 discusses Pearson’s and Spearman’s correlation coefficients and discusses
their sensitivity to outliers. A discussion on outlier data follows and three robust
estimates of correlation are reviewed. A new robust correlation coefficient is proposed
in Section 2.3. Section 2.4 discusses the uncertainty in the correlation coefficient, which
is accessed with its sampling distribution. The distribution of 7 requires the number of
independent data, so a methodology for calculating an effective number of independent

data from spatially dependent data is introduced.

2.1 Introduction to the Correlation Coefficient

The relationship between bivariate data, x and y, is frequently summarized by the
correlation coefficient, which indicates the level of dependence between two variables.
For example, in petroleum reservoirs there is often some correlation between porosity
and permeability of the rock matrix.

The sign of the correlation coefficient is positive if the variables are directly related
and negative if they are inversely related. The closeness to +1 or -1 measures the
closeness to a linear relationship. In some instances a few outliers significantly decrease

an otherwise high correlation. The traditional Pearson correlation coefficient is known
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to be highly affected by outlier data (Abdullah, 1990; Isaaks and Srivastava, 1989;
Kim and Fessler, 2004; Shevlyakov, 1997). The Spearman rank correlation coefficient
is considered to be more resistant to outliers although it is also adversely affected by
outlier data.

Methods for detecting outlier data have been suggested (Barnett and Lewis, 1994;
Davies and Gather, 1993; Johnson and Wichern, 2007; Penny and Jolliffe, 2001). Out-
liers could be trimmed from the data and the correlation of the remaining points can
be calculated. However, in some cases, the outlier data may be reliable data and should
not be excluded (Gideon and Hollister, 1987), especially when the sample size is small.
However, the influence of such data should not be inordinately large.

Often, correlations are estimated from a small number of observations. When the
sample size is small, the uncertainty about the value of the true correlation can be very
large, particularly when the estimated correlation is low (Kalkomey, 1997). It is useful
to quantify the uncertainty in the correlation coefficient to assess its significance and
to perform sensitivity studies.

Many statistical and geostatistical models and techniques rely on the correlation
between different data variables. This research establishes a procedure to calculate a
robust correlation and quantifies the uncertainty in the correlation coefficient through
its sampling distribution of the correlation coefficient.

The correlation coefficient is particularly important in cases with sparse primary
data and exhaustive secondary data such as offshore petroleum well data and seismic
data. In this case, there may be only five to eight wells that have been drilled for
production potential and not statistical representivity. Each of these wells is expensive
and important. The final geological models will be highly dependent on the correla-
tion coefficient established by simple spreadsheet calculations. Making this correlation

robust and understanding its uncertainty has a large practical impact.
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2.2 Measures of Correlation

2.2.1 Pearson’s Correlation Coefficient

Let (z1,91),..., (Tn,yn) be n observations from a bivariate normal distribution with

parameters (i, iy, 02, 027 p) , where p, and o2 are the mean and variance of z, u, and

02 are the mean and variance of y, and p is the correlation coefficient between = and y

given by p = o, /0, where 3 is the slope parameter of regression of y on 2. The sample
correlation coefficient commonly used for estimating p is the Pearson’s product-moment
correlation coefficient defined by (Pearson, 1920; Rodgers and Nicewander, 1988):

z<x — )5 —7)

=T - 7 (2.1)

One problem with using Pearson’s product-moment correlation coefficient is that
the sample means for z and y are sensitive to outlier data. As a result, the correlation
estimate r, is also sensitive to outliers in either z, y, or both variables (Abdullah,
1990; Kim and Fessler, 2004). Even a few outliers can degrade the sample correlation

coeflicient.
2.2.2 Spearman’s Rank Correlation Coefficient

As an alternative to Pearson’s correlation coefficient, the non-parametric Spearman’s

rank correlation coefficient, r5, can be calculated as follows:

6 [il (rys — m?] 2

n(n? —1)

(2.2)

re=1-—

where 7., and r,, are the ranks of z; and y;, respectively. Spearman’s correlation
coefficient does not require the assumption of a linear relationship between the variables
and is generally more resistant to outliers than Pearson’s coefficient. However, as is
shown later in this thesis, Spearman’s rank correlation coefficient is still quite sensitive

to outliers, particularly in the presence of sparse data.
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2.2.3 Outlier Data

Outliers can be loosely defined as observations which appear to deviate markedly from
the other members of the sample (Grubbs, 1969). Hawkins (1980) defines an outlier as
an observation which deviates so much from other observations as to arouse suspicions
that it was generated by a different mechanism. There is no mathematical definition
for what constitutes an outlier (Davies and Gather, 1993) and determining which data
(if any) are outliers remains subjective. Data quality control and checking should
identify erroneous data for removal. The remaining issue is multivariate observations
that influence the calculated statistics.

Outliers can occur in two main ways. They may occur due to random variability
in the data. In this case, outliers would normally be generated from a heavily-tailed
distribution. The second way for outliers to occur is when the data arise from two
different underlying distributions. The “good” data comes from one distribution and
the “bad” or “contaminated” data comes from another distribution. In this case, the
contaminated data could be due to experimental or measurement error or any number
of other ways.

If the data come from a heavily-tailed distribution, the outliers are valid and should
not be discarded. In this case those observations should be kept and used. When the
outliers occur from another distribution, one would hope to be able to identify and
discard those values or use statistical methods that are robust to outliers. Datasets
with outliers from another distribution may be caused by mixing data from different
geological structures or processes.

Outlier detection has been widely discussed in the literature. Barnett and Lewis
(1994), in particular, provide extensive reviews on this topic giving over 100 discordancy
tests for a number of distributions. Despite the number of options for detecting outliers,
there is no guarantee of finding any because there may not be a test developed for a
particular combination, or the data does not follow any standard distribution.

Outlier detection in the bivariate or multivariate case can be even more challenging

than in the univariate case. If the bivariate data set is large and highly correlated,
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detecting outliers may be relatively easy. However, if the data set is small (say less
than 20 paired data values) and the correlation is low to moderate (say less than 0.5), it
may be difficult to tell whether or not suspicious data points are outliers or an example

of lack of correlation between the two variables.
2.2.4 Robust Estimates of Correlation

The idea behind robust estimation of means or covariances (and hence correlation) is
to reduce the effect of outlier samples either by weighting or removing them altogether
(Campbell, 1980; Kim and Fessler, 2004; Rousseeuw and Zomeren, 1990; Titterington,
1978).

One of the most popular robust methods for estimating correlation (and regression
coefficients) is the least median of square (LMS) estimation (Rousseeuw, 1984). The
LMS regression coefficients minimize the median of the squared residuals. One of the
big advantages of the LMS estimators is their noted 50% break-down point, which
means that LMS regression can give reliable results up to the point where 50% of the
data are outliers. The LMS algorithm is similar to the bootstrap in that it proceeds by
repeatedly drawing subsamples of p different observations from the data set. For each
subsample, J = {i1,...,4,}, a regression line is found for the p points. Each regression
line is viewed as a trial estimate and denoted 6. For trial, 87, the residuals between
the regression line and the full data set are calculated. The LMS objective function is

defined by the median of the residuals:

med  (y; — x;607)? = median{(y; — x101)%, (y2 — x262)?, ..., (yn — xub)?}  (2.3)

i=1,....n

The trial estimate which gives the minimal median of the squared residuals gives the
LMS coefficients and the correlation.

Shevlyakov (1997) introduced a robust correlation coefficient that utilizes the Ham-
pel medians of absolute deviations to get the median correlation coefficient.

med? |u| — med? |v|

med? |u| + med? |v)|

(2.4)

Tmed =

29



r; —medx y; — med y )
U; = + , 1=1,...,n
med |z; —medz|  med |y; — med y|

2.
r; —medx y; —med y 1 (25)
Vi = - , 1=1..,n

med |x; —medx| med|y; — medy|

Gideon and Hollister (1987) approach robust correlation from another perspective
by introducing a robust rank correlation coefficient based on the principle of maximum

deviations.

rg = (d(e op —d(p))/[N/2] (2.6)

Where o is a group operation that is a composition of mappings eop = (N +1 —
p1,-.w N +1—py), and p = p(x,y) is the permutation determined by the sample and
€ is the reverse permutation.

N

Ai(p) = 31 (r(w;) < < r(y:)) (2.7

J=1

Where 7(z;) and r(y;) are the ranks of x and y, respectively.

di(Eop):ZI(i<N+1—pj) (2.8)
j=1

Another method for calculating a robust correlation coefficient involves calculating
an ellipsoid and trimming any data that does not fall within the ellipsoid. This tech-
nique works best for data that follow a normal distribution and other swarms of data
that are elliptical (Titterington, 1978).

Despite these methods aimed at calculating robust correlation coefficients, there
is room for improvement. The key idea developed below is to isolate the influence of
each individual data pair (and sets of data pairs) and to ensure that the correlation
coefficient is robust, yet fairly considers all data. The performance of the proposed

correlation coefficient estimator was checked by a simulation study.

2.3 Correlation in Sparse Datasets in the Presence of Out-
liers

Figure 2.1 shows a scatter plot of the bivariate relationship between two variables, x

and y. The scatter plot shows what appears to be a strong direct correlation between
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Figure 2.1: An example dataset with one potential outlier data point. The potential
outlier appears to be negatively affecting what would otherwise be a strong correlation
between x and y. Note that, in this case, the rank correlation coefficient appears to be
more strongly affected by the outlier than Pearson’s correlation coefficient.

the two variables marred by one potential outlier data point at a location of (7, 1).
The Pearson and Spearman correlation coefficients for the data shown in Figure 2.1 are
0.291 and 0.214, respectively. Note that, while the Spearman correlation coefficient is
usually more resistant to the effects of outliers, in this case it is more strongly affected
by the potential outlier data point.

Of course when a dataset such as the one shown in Figure 2.1 is observed, it would
be natural to think that the point at (7,1) is an outlier. It may be a sample that belongs
to another statistical population or perhaps there was an error in measurement.

If one could be reasonably sure that the point at (7, 1) is an outlier, it could simply
be removed from the dataset. In this case, the Pearson and Spearman correlations
would increase to 0.910 and 0.943, respectively. However, suppose the data has been
carefully examined and there is no reason to believe that the point at (7,1) belongs
to another statistical population. In this case, the data should be considered in the

calculations, but its importance should not be unreasonably large.
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Table 2.1: Resulting correlations from a leave-one-out test (actual correlation is 0.29)

Coordinates of left out point (x,y) Resulting correlation Weight (w;)

(1.00, 1.98) 0.081 0.085
(2.00, 3.20) 0.235 0.010
(3.00, 3.53) 0.269 0.002
(4.00, 7.25) 0.318 0.003
(5.00, 5.44) 0.272 0.002
(6.00, 9.31) 0.002 0.140
(7.00, 1.00) 0.910 0.468

Updated correlation from leave-one-out test = 0.615

2.3.1 A Weighted Average Correlation From a Leave-One-Out-Test

In order to arrive at a more robust correlation coefficient, first consider a “leave-one-out
test” (LOOT), whereby a data point is removed from the dataset and the correlation is
recalculated. This procedure can be repeated n times for a dataset with n points, leav-
ing a different data point out each time. The result is n calculated Pearson correlation
coefficients. A LOOT was conducted for the data shown in Figure 2.1 and the results
are shown in Table 2.1. For the first six leave-one-out tests, the resulting correlations
are very low and unrepresentative of the obvious correlation in the data. However, the
last test results in a correlation of 0.910.

The proposed robust correlation coefficient is based upon the idea of a weighted av-
erage of the correlations calculated in the LOOT. The idea is to weight the correlations

according to their difference from the actual correlation as follows:

Wi = T Actual — Ti,L00T|" (2.9)
where:

e w; is the resulting weight assigned to each correlation calculated in the leave one
out test;

® 7 Aqual 18 the Pearson’s correlation coefficient calculated using all of the original
data;

e 7; o007 is the ith Pearson’s correlation coefficient calculated from leaving out the

ith data point in the leave-one-out test;
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e « is a weighting exponent and is a function of the number of data (o = 1+n/12).
« is restricted to a maximum of 15 due to computational limitations and the

observation that beyond a certain point, a larger exponent is unnecessary.

The weighting exponent, «, is directly related to the sample size. As the sample
size increases, the outlier data point effectively gains more influence on the calculated
correlations in the LOOT since there are more combinations that use the outlier and
only a few that do not. Thus, a larger exponent gives a larger weight (relative to the
other weights) to the correlation that does not use the outlier data point.

In the above example the weights from the LOOT are shown in 2.1. The correlation
obtained from removing the point at (7, 1) is the most different from the actual corre-
lation of 0.291 and thus receives the most weight. This makes sense since it is desirable
to somehow minimize the impact of this suspicious data point. Then, the more robust

correlation coefficient calculated from the LOOT for sparse datasets is defined as:

n
> WiTi LOOT
2
T Robust, LOOT = —————— (2.10)

n
> wi
i=1
The updated correlation coefficient is essentially a weighted average of the corre-
lations calculated in the LOOT, where the weights are defined in Equation 2.9. The
weighting scheme in Equation 2.9 assigns the greatest weights to the correlations that
are the most different from the actual Pearson’s correlation coefficient. The idea is
that the data points that have the biggest impact on the correlation are the ones that
are most likely to be outliers. For the data shown in Figure 2.1, the LOOT correlation
weights and updated correlation coefficient are as follows in Table 2.1. As is shown
in the table, the updated correlation coefficient from the LOOT is 0.615, which seems

reasonable given that it is undesirable to exclude the potential outlier.
2.3.2 A Weighted Average Correlation From a Leave-X-Out Test

The LOOT and weighted average correlation is effective for the case where there is
one potential outlier data point. Of course, the idea can be extended to account for

multiple potential outlier data points by considering a “Leave-X-Out Test” (LXOT)
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where X varies from 1 to n — 3 (correlations cannot be calculated with 1 data and
correlations calculated using 2 data have little value). This yields n — 3 weighted
average correlations from each of the LXOTs. Then, each of the weighted average

correlations can be weighted again in a similar manner as follows:

ot
WX, LXOT = |TActual — "X, LXOT (2'11)

Where:

® 7 Aqual is the original data correlation;

e rx rxor is the updated correlation calculated in each “leave-X-out-test”;

e wx xor are the weights calculated for each updated correlation from the leave
“x-data” out test;

e « is the same weighting exponent as in Equation 2.9 (i.e. a« =1+ n/12).

The weighting exponent in Equation 2.11 works similarly to that of Equation 2.9.
We wish to access the correlation from the LXOTs that are the most different from the
original Pearson correlation. A larger exponent for larger sample sizes effectively gives
more weight to the correlations from the LXOTs that are the most different from the
original Pearson correlation.

Then a single robust correlation is calculated as follows:

¢
Z WX, LXOTTX,LXOT
X=1
T'robust—proposed = b (2 12)

Y WX, LXOT
X=1

where:

¢=038n—3 (2.13)

¢ is rounded up to the nearest integer. Equation 2.13 allows for a reasonable maximum
number of data to leave out.

As the number of data left-out increases the updated correlations calculated using
only small amounts of data tend to be unreliable. For example, say there are 30 data

and a L270T is conducted (where varying combinations of 27 data are left out and the
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remaining 3 data are used). The resulting correlations from the L270T would likely be
very erratic depending on which data are selected. Even for highly positively correlated
data there would be some subsets of 3 data that would form a strong negative correla-
tion. Since the correlations are weighted by their difference to the actual correlation,
those subsets would receive a lot of weight. Thus, it is suggested that constraining
X from 1 to ¢, as in Equation 2.13. Thus, in a case with 100 data points, the pro-
posed correlation considers LXOTs where X ranges from 1 to 77. There is no need to
consider leaving out very large subsets of data anyway. If there are 100 data points,
leaving out a maximum of 77 (a L770T) will already consider subsets with no outliers
since there are normally far less than 77/100 outliers in the data. If there were 77 data
that appeared to be from one distribution and 33 from another, one would normally

call the 33 data outliers.

2.4 The Distribution of r

It is also necessary to examine the uncertainty in the correlation coefficient. Since
datasets usually have limited sample information, the true underlying correlation is
rarely known. When the sample size is small, the uncertainty in the correlation coeffi-
cient can be very large, particularly when the measured correlation is low (Kalkomey,
1997).

The distribution of  (the sample correlation coefficient) as given in Johnson et al.
(1995) is as follows:

(1 _pQ)(n—l)/Q(l )(n 4)/
Val(3(n —1))L(zn

o0 ln— '
pa(r) = xZ S1 ”")” QoY (214)

where —1 < r < 1. In the equation, p is the estimated correlation, n is the number of
independent data points and I' is the gamma function. Note that Equation 2.14 also

assumes that (X;,Y;) and (X;,Y;) are mutually independent if i # j.
2.4.1 Calculating the Number of Independent Data

Equation 2.14 requires the number of independent data points. However, earth sciences

data are rarely independent and are often spatially related. We can, however, calculate
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an effective number of independent data.
Consider a number of observations X;, where ¢ = 1, . . . ,n. The variance of the
mean is given by:

Var{z} = % P Ner (2.15)

i=1 j=1

where Cj; is the data covariance. The covariance of the data can be calculated from

the variogram and the data variance:
Cij = U?iata — iy (2.16)
But, the variance of the mean can also be calculated by (Edwards, 2006):

2
Var{z} = —data (2.17)
Nindependent

Where Nipdependent is the number of independent data. Therefore:

2 2 2
N _ Y%data 9 data _ Odata 2.18
independent — -~ n - n n ( . )
Var{z} 1 O 1 2 g
n2 Z i nZ Z (Udata - 71])
i=1j=1 i=1j=1
Simplifying, we have:
2. 2
n-o
dat
Nindependent = e (219>

M=

1

n
Z (O—Zata - Pyij)
1j5=1

Thus, the effective number of independent data can be calculated using only the num-
ber of data and the variogram. When the correlation between two variables is being
considered, the variogram with the longest range should be used since it will yield a

lower effective number of independent data, which results in a larger uncertainty in p.

2.5 Remarks

The relationship between multiple variables in geostatistics is frequently estimated
using the correlation coefficient. Reliable incorporation of secondary data relies on
obtaining a robust measure of correlation between primary and secondary variables.
However, where there are a small number of samples, the uncertainty in the correlation
coefficient can be very large (even when a robust correlation coefficient is calculated),

and should be considered in successive geostatistical calculations.
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If a scatter plot of the data indicates the possibility for outlier data, the first step
is to examine the data for any potential errors or inaccuracies. If no errors in the data
are found and the sample is small, the engineer or geologist may not wish to eliminate
the suspicious data points from the dataset.

This chapter has introduced a methodology for estimating a robust correlation
coefficient (Equation 2.12) and estimating its uncertainty (Equation 2.14) using the
sampling distribution of the correlation coefficient. The number of independent data is
required for the sampling distribution. Although most geological datasets are spatially
correlated, the number of independent data can be calculated with Equation 2.19. The
next chapter discusses several important implementation aspects and compares the

proposed robust correlation coefficient with others.
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Chapter 3

Practical Aspects of Calculating
a Robust Correlation and
Calculating its Uncertainty

The previous chapter proposed a new way to calculate a robust correlation coefficient
and its uncertainty. This chapter presents the implementation and practical calculation
details of the proposed robust correlation coefficient and its uncertainty. FORTRAN
computer programs are introduced to perform the correlation calculations. Finally,
the proposed robust correlation coefficient is compared to other robust correlation

coefficients.

3.1 Computer Codes

A suite of three computer programs were created to estimate a robust correlation
coefficient and its associated uncertainty.

A FORTRAN program called ROBUSTCORRCO automatically calculates the correlation
coefficients for each LXOT as well as an overall robust correlation coefficient, as in
Equation 2.12. In cases where there are more than approximately 20 data points,
the time to calculate the number of combinations of data in the LXOT becomes pro-
hibitively large. As a result, a specified number (say 10,000) of data combinations
are randomly sampled rather than calculating the correlation for every possible data
combination. ROBUSTCORRCO also calculates the two traditional correlation coefficients

as well as Shevlyakov’s 7,4, Gideon and Hollister’s r,, and Rousseeuw’s rpars for

38



comparison purposes.

A FORTRAN program called NIND automatically calculates the effective number of
independent data based on Equation 2.19 and the input variogram model.

A FORTRAN program called, SAMP_DIST_CORR, calculates the sampling distribution
for the correlation coefficient. The program uses Equation 2.14 with the measured data

correlation and the effective number of independent data as inputs.
3.1.1 Practical Considerations

Although the summation in Equation 2.14 is to infinity, it tends to converge rapidly
except where the measured correlation is quite high (i.e. p > 0.9). Thus, an upper sum-
mation limit and a tolerance parameter are specified inputs into the SAMP_DIST_CORR
program. The program calculates the percentage of instances where the summation
parameter does not converge to a value smaller than the specified tolerance parameter.
If the percentage of values not converging is too high, the summation parameter can

be increased (or the tolerance can be increased).

3.2 Breakdown Properties of the Proposed Robust Cor-
relation Coefficient

A simulation study, similar to the one presented in Abdullah (1990), illustrates the
breakdown properties of the proposed robust correlation coefficient 2.12 compared to
the traditional Pearson and Spearman correlation coefficients, as well as the three
robust correlation coeflicients, 7peq, rg and rrag, proposed by Shevlyakov (1997),
Gideon and Hollister (1987) and Rousseeuw (1984), respectively.

First, 100 “good” observations are generated according to the linear relation y; =
2 + x; + u; where x; is drawn randomly from a normal distribution with a mean of
5.0 and a variance of 1.0. wu; is drawn from a normal distribution with a mean of
0 and a standard deviation of 0.2. The results were as follows: 7Tpegrson = 0.974,
TSpearman = 0.969 and 7ropust—proposed = 0.906. Note that the proposed correlation
(Trobust—proposed) 1 slightly lower than the Pearson and Spearman coefficients. The

original Pearson correlation is quite high (0.974), so when the proposed algorithm
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leaves out data near the tips of the bivariate distribution, a slightly lower correlation is
measured in the remaining data, which has the biggest impact on the proposed robust
correlation. However, if the measured Pearson correlation was lower (say 0.5), this
effect would be less pronounced.

Next, the data was slowly contaminated. In increments of 10 data points, the
“good” data was replaced with “bad” data points. The contaminated data points were
generated according to the linear relation where z; is uniformly distributed on [5, 10]
and y; is drawn from a normal distribution with a mean of 2 and a standard deviation
of 0.2.

This was repeated until only 50 “good” observations remained. Figure 3.1 shows
the comparison of the proposed robust correlation coefficient against the traditional
Pearson and Spearman correlation coefficients as well as three other robust correlation
coefficients and serves to highlight the point at which the correlation coefficients begin
to breakdown. In this study, Pearson’s correlation coefficient breaks down with less than
10% contamination. Spearman’s is more robust, as expected, but is still significantly
affected by just 10% contamination. Gideon and Hollister’s r, fares only slightly better
than Spearman’s correlation coefficient and its measured correlation with no contami-
nation is much lower than the others. Shevlyakov’s r,,.q exhibits reasonable resistance
to data contamination until about 20% contamination, but by 30% contamination the
correlation drops substantially. Rousseeuw’s least median of square correlation, rr /g,
is known to have a 50% breakdown point, as is shown in the figure. This is one of the
main advantages of LMS regression. The proposed robust correlation is significantly

better than all except Rousseeuw’s LMS coefficient.

3.3 Examples

Figure 3.2 shows a porosity versus log permeability dataset with twelve paired points.
Each point is labeled with an arbitrary number for reference purposes. Figure 3.3
shows the location maps for the porosity and log permeability values. The left side
of the circles indicate porosity (in %) and the right side of the circles indicates Logig

permeability (in mD). The Pearson and Spearman correlation coefficients between the
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Figure 3.1: Simulation study comparing the effect of contaminated data on the Pear-
son, Spearman and proposed robust correlation coefficients and three other robust
correlation coefficients.
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Figure 3.2: A sparse synthetic dataset.
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Figure 3.3: Location map of twelve samples. The left scale and left side of the circles
indicate porosity (in %). The right scale and right side of the circles represent Log
permeability (in mD).

porosity and log permeability data are 0.545 and 0.776, respectively. Since Pearson’s
correlation is lower than Spearman’s rank correlation coefficient, Pearson’s correlation
may be affected by outlier data. Visual inspection of the scatter plot in Figure 3.2 con-
firms that data point number one, in particular, and to a lesser extent two, appear to
be “suspicious” or outliers. In this example, there are no known errors in the measure-
ments. The program ROBUSTCORRCO calculates a robust correlation coefficient of 0.739,
which agrees with the Spearman rank coefficient. The program also calculates three
other robust correlations, which are also noted on Figure 3.2. In this case Shevlyakov’s
Tmed and Gideon and Hollister’s r, are slightly lower than the proposed robust correla-
tion and Spearman’s rank correlation. However, here the LMS correlation coefficient is
0.957, which seems too high based on visual inspection of the data and is much higher
than any of the other correlation coefficients.

With knowledge of the estimated and proposed robust correlation coefficients, the
uncertainty in the correlation coefficient can be calculated using the sampling distri-
bution for the correlation coefficient. First, however, the number of independent data
points must be calculated. The program NIND can be used to calculate the effective
number of independent data points. The data file and a variogram model are the only

two inputs into the NIND program. In this case, a single-structure spherical variogram
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Figure 3.4: The sampling distribution for the correlation coefficient for the synthetic
core data shown in 3.2.

with a range of 4000 units in the horizontal plane and 10 units in the vertical direc-
tion was assumed since there is not enough data to calculate a reliable experimental
variogram. Based on the data configuration, the number of data and the assumed
variogram, the effective number of independent data calculated by NIND is 11.

The program SAMP_DIST_CORR is used to calculate the sampling distribution for the
correlation coefficient. The robust correlation (0.739) and the number of independent
data (N;g = 11) are input into the program. The output is a probability density
sampling distribution for the correlation coefficient, which is shown in Figure 3.4. Note
that the P50 for this distribution is approximately 0.76, which is different than the mean
due to the asymmetric nature of the sampling distribution. The 10" and 90 percentile
(the P10 and P90) correlation values are approximately 0.11 and 0.90, respectively.

Note that if the measured correlation was lower, or if there were fewer data, the
sampling distribution for the correlation coefficient would be even wider. For example,
Figure 3.5 shows the sampling distribution for the correlation coefficient for a measured
correlation of 0.3 and 8 independent data points. The uncertainty in the correlation
is much wider in this case and the P10 and P90 correlation values are -0.34 and 0.78,
respectively.

For one final example, consider the data from an offshore reservoir shown in Figure

3.6. The figure shows six paired points on a scatter plot between a seismic attribute
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Figure 3.5: The sampling distribution for the correlation coefficient for a measured
correlation of 0.3 and six independent data points.

and porosity. The data points have been labelled with arbitrary numbers for reference
purposes. Pearson’s correlation is -0.471 and Spearman’s rank correlation is -0.771.
Upon examination, data points one and six appear to be outliers, or at least suspicious.
Here, the program ROBUSTCORRCO calculates a robust correlation coefficient of -0.533,
which is in good agreement with the traditional Pearson correlation coefficient. This
makes sense when the results are examined in more detail. When point number one
is left out of the calculation in a LOOT, the correlation between points two to six is
-0.087. However, when point number six is left out of the calculation, the correlation
of the remaining points is -0.927. Elimination of any of the other points makes little
difference to the resulting correlation. Thus, the effect of point one and six roughly
offset each other.

The three robust correlations are also indicated on Figure 3.6. As is shown, the
robust correlation coefficients are r,,.q = -0.351, ry = -0.667 and 77,75 = -0.972. Just as
in the last example the LMS correlation tends toward the extreme end of the correlation
spectrum.

Figure 3.7 shows the sampling distribution for the robust correlation coefficient for
the offshore reservoir data. In this case, there are no spatial locations for the data so
it is assumed that the data are independent of each other. The sampling distribution

shows P10/P50/P90 correlation values of approximately -0.89/-0.60/0.00, respectively.
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Figure 3.6: A seismic attribute versus porosity from an offshore reservoir. Although
only five points are visible, there are actually six points since there are two points very
close together near (3, 0.31).

Thus, according to its distribution, there is a 10% chance that the correlation is greater

than zero, based upon the number of data and the calculated robust correlation.
Simulation Study

In an effort to compare the proposed robust correlation coefficient to the other robust
correlation coefficients and to help explain the extreme rp ;5 values, a few small simu-
lation studies were performed. In the first simulation study, 100 realizations of 10 data
points (x,y) are generated by drawing z and y values randomly and independently
from a uniform distribution between 0 and 10. Correlation coefficients are calculated
for each realization of 10 data. Since the x and y values are drawn randomly and
independently from uniform distributions, the average correlation is expected to be
0.0. The results of the study are shown in Table 3.1. For each correlation coefficient,
the average was very close to 0.0, as expected. More interesting is the standard de-
viation of correlation of the 100 realizations. The o pearson = TSpearman = 0.34 while
Orobust—proposed = 0.29 and is similar to o, = 0.25. The lower standard deviation for
Trobust—proposed and o4 makes sense since they should be less affected by outliers that

give spurious correlation to Pearson and Spearman’s coefficients for some realizations.
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Figure 3.7: The sampling distribution for the correlation coefficient for the data in
Figure 3.6.

Interestingly, orasrs = 0.711, which is much larger than for any other correlation coeffi-
cient. Figure 3.8 provides additional insight showing the relative frequency histograms
of Tpearsons Trobust—proposed and rrars. The histograms of 7pearson and T'robust—proposed
are roughly symmetric and centered around 0.0, as expected. However, the histogram
for rrasrs shows a distinct tendency towards values near -1 and 1. Figure 3.9 shows
similar relative frequency histograms except that the number of data points per re-
alization was increased from 10 to 50. When the number of data per realization is
increased, the standard deviation of the correlations decreases the chance of generating
a data set with spurious correlation. However, even with 50 data points generated from
two independent uniform distributions, the range of correlation calculated by the LMS
algorithm remains very wide. The standard deviation for rp g = 0.509 with minimum
and maximum correlations of -0.98 and 0.99.

For another simulation study, 100 realizations of 10 data points are generated. This
time the x-values were drawn from a normal distribution with m, = 15 and o, = 4.
The y-values are drawn from a normal distribution with a mean conditional to x (my,),

conditional variance (Uzlx ) and a target corre