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Abstract

In many industrial processes, critical variables cannot be easily measured on-line:

they are either obtained from hardware analyzers which are often expensive and

difficult to maintain, or carried out off-line through laboratory analysis which cannot

be used in real time control. These considerations motivate the design of inferential

sensors or so-called soft sensors to infer process quality variables in real time from

on-line process measurements. Numerous modeling techniques have been proposed

and successfully applied to soft sensors for many industrial processes. Despite the

popularity of these techniques in industry, development and implementation of soft

sensors are still challenging due to complexity of industrial processes. The main

contribution of this thesis is the development of several soft sensing methods that can

achieve and maintain satisfactory performance while handling multi-mode, nonlinear

and time-varying problems.

Real time identification of local process model, also known as Just-in-time (JIT)

modeling, is a special modeling technique for design of infinite-mode soft sensors. It

is widely used in dealing with nonlinear and multi-mode of industrial processes. The

performance of JIT model depends on parameters of the similarity function as well as

the structure and parameters of the local model. A Bayesian framework is proposed to

provide a systematic method for real time parameterization of the similarity function,

selection of the local model structure, and estimation of the corresponding model

parameters in JIT modeling methods. Another challenging issue in JIT modeling

is the selection of most relevant samples from database by considering input-output

information. Thus, a new input-output similarity function is defined and integrated

into a Bayesian framework for JIT modeling.

To cope with time-varying behaviour of processes, on-line adaptation is usually

integrated in the implementation procedure. Although there are a number of publica-
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tions dealing with adaptation of soft sensors, few of them have considered the adapta-

tion of nonlinear grey-box models which are popular in process industry. Thus, a new

adaptation mechanism for nonlinear grey-box models is proposed based on recursive

prediction error method (RPEM). Adaptive data preprocessing and cautious update

strategy are integrated to ensure robustness and effectiveness of the adaptation.

The effectiveness and practicality of the proposed methods are verified using data

from industrial processes. Some of the proposed methods have also been implemented

for industrial applications.
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Chapter 1

Introduction

1.1 Motivation

Industrial processes are usually equipped with a large number of sensors for process

monitoring and control. Some critical process variables cannot be easily measured

because of inadequacy of measurement techniques or low reliability of measuring de-

vices. These hard-to-measure variables are usually obtained from hardware analyzers

(which are often expensive and need frequent and costly maintenance) or carried

out off-line by laboratory analysis (which cannot be used for real-time application-

s). Approximately two decades ago, work was started by taking advantage of the

easy-to-measure variables to build predictive models to predict the hard-to-measure

variables. This type of predictive model can be used for development of a soft sensor.

Soft sensors can fulfill a broad range of tasks. The primary and most important

application of soft sensors is on-line prediction. Its task is to provide real-time es-

timates of quality variables on the basis of real-time process measurements. These

variables are usually used as indicators for process control and process operations,

thus having significant effect on the process output quality. Once soft sensors can

achieve stable and satisfactory performance, they can be further used to develop ad-

vanced control strategies, such as model predictive control. The other application of

soft sensors is to monitor the process state, and thus detect and diagnose process ab-

normalities. This is referred as fault detection and diagnosis. For more applications

of soft sensors, one can refer to [1], [2], [3].

The development and implementation of soft sensors in industry is challenging

due to complexity of modern processes. Although numerous modeling techniques
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have been proposed for soft sensors, there are a number of issues remaining to be

investigated. The main contribution of this thesis is the development of several soft

sensing methods to handle multi-model, nonlinear and time-varying behaviours of

processes in order to achieve and maintain satisfactory soft-sensor performance.

1.2 Thesis Outline and Contributions

Problem Existing 
Solution

Proposed 
Solution Application

Nonlinearity Multi-mode Time-varying
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Hierarchical Bayesian 
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Legend:

Figure 1.1: Overview of problems and solutions

The overview of problems and solutions are shown in Figure 1.1. The main con-

tributions of this research are presented in three chapters, which are organized as

follows:

In Chapter 2, a holistic Bayesian framework for the locally weighted partial least

squares (LW-PLS) regression is proposed. The proposed method follows a Bayesian

approach to estimate the model parameters of the LW-PLS model which makes it
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possible to incorporate available prior knowledge into the identification procedure as

well as take into account different magnitudes of measurement noise. Application of

the hierarchical Bayesian optimization framework offers a systematic and tractable

way to simultaneously obtain the optimal model structure, localization parameter-

s and model parameters at each operating point. Moreover, the Bayesian model

structure selection can automatically penalize model complexity, allowing us to avoid

over-fitting. To evaluate the effectiveness of the proposed method, two industrial case

studies are performed in which NIR spectra were used to provide real-time estimates

of reid vapor pressure (RVP) and wheat kernels.

In Chapter 3, a novel Just-in-time modeling method is proposed based on the

Bayesian framework in Chapter 2. First, a new input-output similarity function is

defined to take both input and output information into account so that the noise

in input data will have less negative impact and the information in output can be

utilized more effectively. Furthermore, this new similarity function is integrated into

a Bayesian framework which provides a systematic way to select the locally opti-

mal model structure as well as estimate the model parameters. Bayes’ theorem also

makes it possible to incorporate available prior knowledge into the identification pro-

cess. Various features of the proposed method are illustrated through a case study

in pharmaceutical industry, where near infrared (NIR) spectra were used to provide

real-time estimates of the content of active substance in tablets.

In Chapter 4, an adaptation mechanism for nonlinear grey-box model is explored

based on the recursive prediction error method. Several adaptive data pre-processing

methods are integrated to reduce the negative effects of noise in measurements as

well as detect irregular measurements. The cautious update strategy is integrated

into the adaptation mechanism to meet the need for robust adaptation, thus avoiding

over-updating issues. Finally, the effectiveness of this method is demonstrated by a

successful application in oil sands industry.

In Chapter 5, the main results of this thesis are summarized and opportunities

for future work are discussed.
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Chapter 2

A Bayesian Framework for
Real-time Identification of Locally
Weighted Partial Least Squares∗

2.1 Introduction

Process modeling is one of the most important elements in development and im-

plementation of advanced process monitoring and control techniques. The repre-

sentativeness of process models has a significant effect on the performance of these

techniques. Linear modeling techniques are commonly used to identify a model from

the process variables. Ordinary least squares (OLS) regression is one of the most

widely used classical modeling techniques due to its simplicity. The main assumption

behind the OLS regression is that the process variables are not strongly dependent

on each other. principal component regression (PCR) and partial least squares (PLS)

regression have noticeable advantages over the OLS regression in dealing with the

collinearity issue [4, 5, 6, 7]. The PCR first uses orthogonal transformation to con-

vert correlated input variables into a set of uncorrelated, lower dimensional principal

components. Next, the OLS is applied to reveal the parametric relationship between

the principal components and the output variables. The orthogonal transformation

used in the PCR only considers the relationships among input variables and fails to

take into account any information about the output variables. Therefore, it may result

in an ill-conditioned alignment [8]. The PLS regression overcomes this shortcoming

∗This chapter is a revised version of an accepted paper “M. Ma, S. Khatibisepehr and and
B. Huang, A Bayesian Framework for Real-time Identification of Locally Weighted Partial Least
Squares. AIChE Journal.”
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by taking into account both input and output variables for finding the principal com-

ponents [9]. The performance of these linear techniques will be satisfactory only if

the underlying process can be assumed to be linear. To deal with processes which

exhibit certain form of non-linear behaviour, several approaches have been proposed

to integrate non-linear features with the linear PLS framework, thus resulting in

non-linear PLS algorithms such as quadratic PLS [10], neural network PLS [11] and

fuzzy PLS [12]. These approaches retain the linear latent structure of PLS model.

In light of non-linear principal components, Malthouse [13] proposed a new approach

named non-linear PLS (NLPLS) to extract the non-linear latent structures. Howev-

er, these nonlinear PLS approaches which provide global models to describe the data

from different operation modes may not achieve satisfactory performance. Consid-

ering these issues, the LW-PLS regression can be used [14]. LW-PLS combines the

nature of locally weighted regression and PLS so that it can deal with the nonlinear-

ity, multi-mode behaviour as well as the collinearity. In the locally weighted partial

least squares (LW-PLS) method, local PLS models are built around each operating

point through local calibration samples. In order to construct a LW-PLS model, the

following aspects should be considered:

1. Selection of local calibration samples: Local calibration samples are often se-

lected or prioritized using a certain similarity function. The similarity function

takes into account the distance between a query sample and calibration ones.

The similarity function is parameterized by a set of localization parameters

which needs to be specified to control how steeply the similarity will decrease

by increasing the distance. In this way, the localization parameters would great-

ly affect the selection or priorotization of local calibration samples.

2. Selection of model structure: After choosing or prioritizing proper local calibra-

tion samples, the next step is to choose a proper model structure. This could be

equivalent to determining the dimensionality of the latent space that can best

describe the underlying behaviour of the process.

3. Estimation of model parameters: Having selected the local calibration samples

and determined the model structure, model parameters can be identified via

the LW-PLS algorithm.
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Therefore, the problem of identification of an LW-PLS model boils down to obtain-

ing the optimal combination of localization parameters, model structure and model

parameters. The common practice is to search for the globally optimal combination

of localization parameters and model structure by minimizing the root mean square

error of cross-validation (RMSECV) [15]. This approach is often computationally

inefficient for on-line identification of the LW-PLS models and may also result in

the over-fitting issue [16, 17]. Khatibisepehr et al. [18] have developed an off-line

identification method to find locally optimal localization parameters and a model

structure within a known operating space using a hierarchical Bayesian optimization

framework. The idea behind this method is to first partition the operating space

into a finite number of sub-spaces and then find the optimal combination of localiza-

tion parameters and model structure for each sub-space. The application of Bayes’

theorem makes it possible to incorporate the prior knowledge over the localization

parameters and model structures. The proposed Bayesian framework can also deal

with the model complexity control to avoid over-fitting. However, this method has

the following shortcomings: 1. It does not utilize prior knowledge of the model pa-

rameters for modeling; 2. Like all the other existing methods, uncertainties in the

parameter estimates are not taken into account in selection of the model structure

and tuning of the localization parameters; 3. Due to the multi-mode behaviour of

industrial processes, a finite number of sub-spaces may not cover the entire operating

space especially over a long period.

Therefore, it is desired to tune the localization parameters, select the model struc-

ture, and estimate the model parameters all in a real-time phase. The main con-

tribution of this chapter is to develop a novel integrated identification method to

find locally optimal combination of model parameters, localization parameters and

a model structure in a real-time manner to take full advantage of Bayesian meth-

ods. The real-time identification problem of interest is formulated under a holistic

Bayesian framework consisting of consecutive levels of optimization. The resulting

optimization problem is hierarchically decomposed and a layered optimization strat-

egy is implemented. To obtain explicit solutions, an iterative hierarchical Bayesian

approach is adopted to coordinate the solutions obtained in subsequent layers of opti-

mization. The proposed method has the following advantages over the existing ones:
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1. The developed hierarchical Bayesian framework offers a systematic way to select

the model structure, determine the localization parameters as well as estimate the

model parameters. 2. External information over the model parameters, localization

parameters, and model structure can be incorporated in the identification process.

3. Sparsity and heteroscedasticity of training samples can be effectively handled. 4.

Bayesian inference at a particular level takes into account the uncertainty in the es-

timates of the previous level. 5. Bayesian model selection can automatically penalize

model complexity to avoid the over-fitting issue [19].

The remainder of this chapter is organized as follows: the following section intro-

duces the basic formulation of the LW-PLS model and discusses the limitations of

the regular LW-PLS modeling method which lead to consideration of an integrated

Bayesian framework. Then, the motivation behind adopting a hierarchical approach

is outlined and each level of inference is explained in detail. Next, an overall pro-

cedure to implement the proposed hierarchical framework is shown. Two industrial

case studies are considered to demonstrate the effectiveness of the proposed method

based on a set of real-world near infrared spectroscopy data. Finally, the paper is

summarized by concluding remarks.

2.2 Problem Statement

Suppose we have a training (calibration) data-set with N samples denoted by:

X = [x1,x2, · · ·xN ]T (2.1)

y = [y1, y2, · · · yN ]T (2.2)

X ∈ RN×M and y ∈ RN×1 are the input and output matrices, respectively. The i-th

sample consists of a vector of inputs, xi = [xi1, xi2 · · · xiM ]T , and an output, yi. where

M is the number of input variables. The formulation of the PLS model is given by

X = TPT + EX (2.3)

y = TqT + ey (2.4)

where T ∈ RN×H denotes a matrix of latent variables, P ∈ RM×H is a matrix of

loadings and q ∈ R1×H is a vector of regression coefficients. EX ∈ RN×M and

ey ∈ RN×1 denote the matrices of input and output residuals, respectively.

7



LW-PLS is an on-line identification method which builds a local PLS model for

each query sample. Given a query sample xq, a similarity matrix is constructed to

prioritize the calibration samples:

Sq = diag(s1|q, s2|q, · · · , sN |q) (2.5)

where si|q (i = 1, 2 · · ·N) is the similarity between xq and xi.

Generally, a measurement of similarity is defined based on a notion of distance

between xq and xi. One of the widely used similarity functions is :

si|q = exp

(
− di
σdλ

)
(2.6)

di =

√
(xi − xq)

T (xi − xq) (2.7)

where di is the Euclidean distance between xq and xi, σd is the standard deviation

of d = {d1, d2, · · · dN} and λ is the localization parameter. Given a σd, the similarity

decreases more steeply by increasing the distance for larger values of λ. So, λ can

determine the acceptable region for selecting the local calibration samples together

with σd.

LW-PLS models can be constructed by following Algorithm I in the appendix

[18]. However, this regular LW-PLS algorithm implicitly assumes that the number of

latent variables H, i.e. model structure, and localization parameter λ are given. In

reality, these parameters are often unknown and have critical effects on the estimation

accuracy. Even though proper combination of the model structure and localization

parameter can be found in advance by using RMSECV, this method cannot maintain

good estimation accuracy in a longer term. Multi-mode behaviour of processes and

non-linearity of underlying mechanisms affect not only the model parameters, but

also the model structure and similarity function. Furthermore, the available prior

knowledge cannot be incorporated in the identification process by using the regular

LW-PLS algorithm.

Considering these points, in this work, a new similarity function is defined as:

si|q(ϕ) = exp (−diϕ) (2.8)

where the localization parameter is denoted by ϕ and treated as a hyperparameter of

similarity function to be tuned for each local model. Compared with the similarity
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function in the regular LW-PLS (Eqn. 6), in the new similarity function the term 1
σdλ

has been substituted by ϕ. In this way, the acceptable region of calibration samples

can be directly controlled by tuning ϕ.

The formulation of the PLS model remains the same as given by Eqns. 3 and

4. The number of retained latent variables H is treated as an unknown variable to

be estimated. Therefore, the problem of identifying an LW-PLS model consists of

the following steps: 1. prioritizing calibration samples, that can be equally achieved

by properly tuning the localization parameter ϕ; 2. choosing the model structure

or number of retained latent variables H; and 3. estimating the model parameters

Θ = {P,T,q}, i.e. loading matrix P, latent variable matrix T, regression coefficient

vector q.

From a Bayesian perspective, the problem is converted to maximizing the joint

posterior distribution of model parameters, localization parameter, and model struc-

ture that is defined as the conditional probability distribution of these variables given

the training data-set and query sample, i.e. p(Θ, ϕ,H|X,y,xq).

2.3 Hierarchical Bayesian Optimization Framework

A Bayesian approach to identify an LW-PLS model is to maximize the posterior prob-

ability density function of the model parameters, localization parameter and model

structure, p(Θ, ϕ,H|X,y,xq). Because of the difficulties associated with the direct

maximization of p(Θ, ϕ,H|X,y,xq), the problem of interest can be formulated and

solved under an iterative hierarchical Bayesian optimization framework [20]. First,

the chain rule of probability theory is used to expand the joint posterior probability

distribution as:

p(Θ, ϕ,H|X,y,xq) = p(Θ|ϕ,H,X,y,xq)p(ϕ|H,X,y,xq)p(H|X,y,xq) (2.9)

Next, the optimization problem is decomposed hierarchically into following three

layers:

max
Θ,ϕ,H

p(Θ|ϕ,H,X,y,xq)p(ϕ|H,X,y,xq)p(H|X,y,xq)

= max
H

{
p(H|X,y,xq)

{
max
ϕ

p(ϕ|H,X,y,xq) max
Θ
{p(Θ|ϕ,H,X,y,xq)}

}}
(2.10)
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2.3.1 Inference of Model Parameters

Applying Bayes’ rule, the posterior probability density function (PDF) of model pa-

rameters can be written as:

p(Θ|ϕ,H,X,y,xq) =
p(X,y|Θ, ϕ,H,xq)p(Θ|ϕ,H,xq)

p(X,y|ϕ,H,xq)
∝ p(X,y|Θ, ϕ,H,xq)p(Θ|ϕ,H,xq)

(2.11)

where p(X,y|ϕ,H,xq) is a normalizing constant.

As prior it is reasonable to assume that the model parameters are independent of

the localization parameter and query sample. The prior can be explicitly expressed as

the conditional joint probability of the loading matrix, regression coefficient vector,

and latent variable matrix given the model structure:

p(Θ|ϕ,H,xq) = p(Θ|H)

= p(P,T,q|H)

= p(T|P,q, H)p(q|P, H)p(P|H)

(2.12)

Given the loading matrix P, it is reasonable to assume that T and q are independent,

i.e. p(T|P,q, H) = p(T|P, H). Thus, the posterior PDF of model parameters can be

explicitly written as:

p(P,T,q|ϕ,H,X,y,xq) ∝ p(X,y|P,T,q, ϕ,H,xq)p(T|P, H)p(q|P, H)p(P|H)

(2.13)

Following the approach of [21], a new Bayesian approach to solve the problem of

LW-PLS modeling is proposed in this section.

For each calibration sample, the LW-PLS formulation is given by:

xi = Pti + exi (2.14)

yi = qti + eyi (2.15)

The noise-free inputs and output are given by:

x̃i = Pti (2.16)

ỹi = qti (2.17)
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The loading matrix P has the following unit orthogonal constraint:

PTP = I (2.18)

A vector of model parameters, b ∈ RM×1 , representing the relationship between the

input and output variables, is defined as:

b = PqT (2.19)

The likelihood function relies on the nature of noise. Assume that the input and

output measurements are contaminated by mutually independent Gaussian noise, exi

and eyi, with known variance Qex and Qey [21]. The estimation of these unknown

variances will be discussed shortly. Given a query sample xq, the importance weight

assigned to the ith calibration sample is denoted by si|q. This is equivalent to saying

that:

Qexi
=

Qex

si|q
(2.20)

Qeyi =
Qey

si|q
(2.21)

Normally, a calibration sample with large weight is strongly relevant to the local

PLS model. If a calibration sample is far away from the query one, a relatively small

importance weight is assigned to it in order to reduce its contribution to the local

PLS model. This would be equivalent to resulting in a large noise term, meaning that

this point contains more information about noise or, equivalently, less information

about the model parameters. Note that if the weight is equal to zero, i.e. si|q =

0, the variance of noise will approach infinity and the corresponding point will be

completely excluded in identifying the local PLS regression model. It is assumed that

the measurement noises of the observations are independent. It is also assumed that

the measurement noises of inputs and output are mutually independent. Thus, the

likelihood can be simplified as follows:

p(X,y|P,T,q, ϕ,H,xq) = p(X|P,T, ϕ,H,xq)p(y|T,q, ϕ,H,xq) (2.22)

p(X|P,T, ϕ,H,xq) =
N∏
i=1

p(xi|P, ti, ϕ,H,xq) (2.23)
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p(y|T,q, ϕ,H,xq) =
N∏
i=1

p(yi|ti,q, ϕ,H,xq) (2.24)

xi|P, ti,q, ϕ,H,xq ∼ N (Pti,
Qex

si|q
) (2.25)

yi|P, ti,q, ϕ,H,xq ∼ N (qti,
Qey

si|q
) (2.26)

The priors over the model parameters depend on the nature of the noise-free data.

The noise-free inputs are assumed to follow a multivariate Gaussian distribution, that

is

x̃i ∼ N (µx,Qx) (2.27)

As a result, given the loading matrix P, the latent variable ti will also follow a

conditional multivariate Gaussian distribution:

ti = PT x̃i (2.28)

ti|P, H ∼ N (PTµx,P
TQxP) (2.29)

It is also assumed that the model parameters b follow a multivariate Gaussian dis-

tribution:

b ∼ N (µb,Qb) (2.30)

Given the loading matrix P, and the vector of model parameters b, the regression

coefficient vector qT also follow a conditional multivariate Gaussian distribution

qT = PTb (2.31)

qT |P, H ∼ N (PTµb,P
TQbP) (2.32)

In the absence of any external knowledge over the loading matrix P, a uniform prior

distribution can be specified over P. Based on the likelihood and prior distributions,

the posterior distribution can be determined as:

p(X,y|P,T,q, ϕ,H,xq) ∝ p(X|P,T, ϕ,H,xq)p(y|T,q, ϕ,H,xq)p(T|P, H)p(q|P, H)

(2.33)
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The maximum a posteriori probability (MAP) estimates can be obtained by solving

the following optimization problem:

{P,T,q}MAP = arg max
P,T,q
{p(X|P,T, ϕ,H,xq)p(y|T,q, ϕ,H,xq)

× p(T|P, H)p(q|P, H)}
s.t. PTP = I

(2.34)

It is intractable to solve this optimization problem directly. The overall objec-

tive function can be decomposed into the following three simultaneous parameter-

estimation and data-reconciliation optimization problem.

{P}MAP = arg max
P

p(X|P,T, ϕ,H,xq)p(y|T,q, ϕ,H,xq)

{q}MAP = arg max
q

p(y|T,q, ϕ,H,xq) p(q|P, H)

s.t.
{T}MAP = arg max

T
p(X|P,T, ϕ,H,xq)p(T|P, H)

PTP = I

(2.35)

Since likelihood and priors are all multivariate Gaussian, the MAP estimates can be

equivalently obtained by solving the following minimization problems:

{P}MAP = arg min
P
{
N∑
i=1

(xi −Pti)
T (Qex

si|q
)
−1

(xi −Pti) +
N∑
i=1

(yi − qti)
T (Qey

si|q
)
−1

(yi − qti)}

{q}MAP = arg min
q
{
N∑
i=1

(yi − qti)
T (Qey

si|q
)
−1

(yi − qti) + (qT −PTµb)
T (PTQbP)−1(qT −PTµb)}

{ti}MAP = arg min
ti

{(xi −Pti)
T (Qex

si|q
)−1(xi −Pti) + (ti −PTµx)T (PTQxP)−1(ti −PTµx)

s.t. PTP = I
(2.36)

The first optimization function is intractable to solve because of the unit orthonormal

constraint. We can first use optimization methods that have a closed form solution,

to estimate P. In this way, both of the following optimization problems can be solved

analytically.

{ti}MAP = [PT (
Qex

si|q
)−1P + (PTQxP)−1]−1[PT (

Qex

si|q
)−1xi + (PTQxP)−1PTµx]

(2.37)

{qT}MAP =
[
TTSqTQey +

(
PTQbP

)−1
]−1 [

TTSqYQey +
(
PTQbP

)−1
PTµb

]
(2.38)
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In this Bayesian modeling algorithms, Qex , Qey , µb,Qb, µx,Qx are assumed to be

known. That means the prior density was assumed to be fully specified in advance. In

the presence of limited prior knowledge of the noise variance and model parameters,

a widely used alternative is the empirical Bayesian analysis which estimates the prior

from the available data assuming data is representative [22]. In the empirical Bayesian

analysis, there are two kinds of approaches to estimate the prior from data: parametric

approach and nonparametric approach [21]. The parametric approach assuming the

structures of the prior distribution are known and it only needs to estimate the

hyperparameters of the prior density function . The nonparametric approach will

estimate the entire prior from the data which is more complex and time-consuming.

For computational convenience, the parametric approach is used to estimate the prior

in light of training data using Algorithm II in the appendix.

2.3.2 Inference of Localization Parameter

Applying Bayes’ rule, the posterior PDF of localization parameter can be expressed

as:

p(ϕ|H,X,y,xq) ∝ p(X,y|ϕ,H,xq)p(ϕ|H,xq) (2.39)

As priors, one can assume that the localization parameter ϕ is statistically inde-

pendent of the model structure H and the query sample xq :

p(ϕ|H,xq) = p(ϕ) (2.40)

In the absence of any external knowledge, a non-informative prior can be specified

in the form of a constrained uniform distribution. To incorporate the available prior

knowledge, conjugate priors are normally utilized for which the resulting posterior

distribution can be conveniently evaluated. To assure generality, a Gamma prior

distribution is specified over the localization parameter:

p(ϕ) =
ϕa−1

baΓ(a)
exp(−ϕ

b
) (2.41)

where a is the shape parameter and b is the scale parameter. The likelihood in Eqn.

39, can be evaluated by integrating out the model parameters:
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p(X,y|ϕ,H,xq) =

∫
Θ

p(X,y|Θ, ϕ,H,xq)p(Θ|H)dΘ (2.42)

Since the above problem is often intractable, the integral in Eqn. 42 can be approxi-

mated by applying Laplace’s method of approximation [23].

∫
Θ

p(X,y|Θ, ϕ,H,xq)p(Θ|H)dΘ ≈ p(X,y|ΘMAP , ϕ,H)p(ΘMAP |H) det (
AΘ

2π
)−

1
2

(2.43)

where AΘ = −∇∇ log p(Θ|ϕ,H,X,y,xq). The inverse of Hessian matrix AΘ reflects

the posterior uncertainty in Θ. Then the MAP estimate of localization parameter

can be shown as:

{ϕ}MAP = arg max
ϕ
{p(ϕ|H,X,y,xq)}

= arg max
ϕ
{p(X,y|ΘMAP , ϕ,H,xq)p(Θ

MAP |H) det (AΘ

2π
)−

1
2p(ϕ)} (2.44)

Since both the likelihood and prior probability density functions belong to the

family of exponential PDFs, the MAP solution can be obtained by solving the fol-

lowing minimization problem:

{ϕ}MAP = arg min
ϕ



1
2

n∑
i=1

(xi − x̂i)
T (Qex

si|q
)
−1

(xi − x̂i)

+1
2

n∑
i=1

(yi − ŷi)T (
Qey

si|q
)
−1

(yi − ŷi)

+(1− a) logϕ+ 1
b
ϕ

− log[det (AΘ

2π
)−

1
2 ]− M+1

2
log

N∏
i=1

si|q


(2.45)

This optimization problem can be solved by the sampling method instead of deriving

a closed form solution which cannot be obtained directly. For instance, the contin-

uous localization parameter can be discretized into a finite set of reasonable values

{ϕ1, ϕ2, ...ϕf}. We can next draw samples from the posterior distribution using these

candidate values of the localization parameters to approximate the MAP solution.

2.3.3 Inference of Model Structure

Applying Bayes’ rule, the posterior PDF of model structure can be expressed as:

P (H|X,y,xq) ∝ p(X,y|H,xq)P (H|xq) (2.46)
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As priors, it is reasonable to assume that the model structure is statistically

independent of the query sample xq. Given a set of candidate model structures,

i.e H ∈ {H1, H2...HL}, the random variable H is a categorical variable and can be

modelled by

p(H) =
L∏
l=1

p(H = Hl)
[H=Hl] (2.47)

where [H = Hl] equals 1 if H = Hl and equals 0 otherwise. In the absence of any prior

information, a uniform distribution can be used for the candidate model structures,

i.e. p(H = H1) = p(H = H2)... = p(H = HL).

The likelihood function p(X,y|H,xq) can be obtained by integrating out the lo-

calization parameter:

p(X,y|H,xq) =

∫
ϕ

p(X,y|ϕ,H,xq)p(ϕ)dϕ (2.48)

Since it is intractable to solve the above integral directly, Laplace’s method of ap-

proximation is applied again:

∫
ϕ

p(X,y|ϕ,H,xq)p(ϕ)dϕ ≈ p(X,y|ϕMAP , H,xq)p(ϕ
MAP ) det (

Aϕ
2π

)−
1
2 (2.49)

where Aϕ = −∇∇ log p(ϕ|H,X,y,xq). The inverse of Hessian matrix Aϕ reflects the

posterior uncertainty in ϕ.

Finally, the MAP estimate of the model structure can be obtained as follows:

{H}MAP = arg max
H

(p(H|X,y,xq))

= arg max
H
{p(X,y|ϕMAP , H,xq)p(ϕ

MAP ) det (Aϕ

2π
)
− 1

2p(H)}

= arg max
H
{p(X,y|ΘMAP , ϕMAP , H,xq)p(Θ

MAP |H)p(ϕMAP ) det (AΘ

2π
)−

1
2 det (Aϕ

2π
)−

1
2p(H)}

(2.50)

Since both the likelihood and prior probability density functions belong to the family

of exponential PDFs, the MAP solution can be obtained by solving the following

16



minimization problem:

{H}MAP = arg min
H



1
2

n∑
i=1

(xi − x̂i)
T (Qex

si|q
)
−1

(xi − x̂i)

+1
2

n∑
i=1

(yi − ŷi)T (
Qey

si|q
)
−1

(yi − ŷi)

+1
2

n∑
i=1

(ti −PTµx)
T

(PTQxP)
−1

(ti −PTµx)

+1
2
(qT −PTµb)

T (PTQbP)−1(qT −PTµb)

+(1− a) logϕ+ 1
b
ϕ− log[det (AΘ

2π
)−

1
2 ]− M+1

2
log

N∏
i=1

si|q

+1
2
(1 +N)H log 2π − log[det (Aϕ

2π
)−

1
2 ]


(2.51)

2.4 Hierarchical Bayesian Optimization Procedure

1. Choose the similarity function given in Eqn. 2.8.

2. Select a proper set of candidate model structures {H1, H2...HL}. If there is

available prior information about the model structures, the candidates and their

prior probabilities p(H) can be determine based on the prior knowledge. If there

is no prior information, the candidate model structures can be selected based on

empirical method: select several candidate model structures around the globally

optimal one obtained from off-line LOOCV, and set a uniform prior distribution

over this set of candidate model structures.

3. Characterize the noise variances, Qex and Qey , and specify a prior distribution

over the model parameters, p(Θ|H), using Algorithm II.

4. Characterize the prior distribution over localization parameter, p(ϕ|H), using

Algorithm III.

5. For l = 1 : L

(1). Select Hl and choose an initial value for the localization parameter ϕl.

(2). While Pl,Tl,ql and ϕl converge

(2.1). calculate the similarity matrix, Sql , using Eqns. 2.5, 2.7, and 2.8.

(2.2). calculate the loading matrix, Pl, by applying the LW-PLS algorithm

to {X,y,xq}.
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(2.3). calculate the regression coefficient vector, ql, latent variable matrix,

Tl, using Eqns. 3.43 and 3.44;

(2.4).calculate the localization parameter ϕl using Eqn. 2.45.

(3). Calculate the posterior probability of model structure, p(H = Hl|X,y,xq),

using Eqn. 2.51.

6. Choose the model structure with the highest posterior probability as well as

corresponding loading matrix, P, and regression coefficient vector, q.

7. Calculate output as ŷ = xqPqT .

2.5 Case Studies

This section demonstrates the practical application of the Bayesian LW-PLS through

case studies. To illustrate the advantages of hierarchical Bayesian optimization, two

sets of near NIR data for real-time prediction of reid vapor pressure (RVP) of Gasoline

and wheat kernels are used. It is noteworthy that the NIR data-sets have high

dimension with strongly correlated spectra. All industrial data presented here have

been normalized in order to protect proprietary information.

2.5.1 Reid Vapor Pressure of Gasoline

The objective of this study is to estimate Reid Vapor Pressure of Gasoline from

NIR spectra data. The set of data is taken from [18]. The data-set consists of NIR

spectra for 423 gasoline samples. The diffusion reflectance spectra of samples are

measured with wavelength range of 800-1,700 nm in 1 nm intervals (Figure 2.1). The

samples are divided into 296 calibration or training data-set and 127 validation or

test samples. Standard ASTM testing methodologies have been used to obtain the

reference measurements for RVP.

In order to show the features of the proposed method more clearly, the perfor-

mance is evaluated in the following three scenarios:

Scenario I : known localization parameter and model structure, but unknown mod-

el parameters.
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Figure 2.1: Reid vapor pressure of gasoline spectra data.

The 1st layer of the proposed method, inference of model parameters, is applied to

develop real-time LW-PLS models for the prediction of RVP. The prediction perfor-

mance of the developed models is compared with that of the models identified using

regular LW-PLS regression. The similarity functions are chosen as in Eqn. 2.6 and

the localization parameter λ and the number of retained latent variables H are set as

0.5 and 30 respectively and same for both methods. The prior distributions of model

parameters are specified by using Algorithm II. The comparison results are reported

in Table 2.1 and Figure 2.2. It can be observed that the Bayesian parameter estima-

tion is more accurate than the regular LW-PLS for some of the calibration samples.

A slightly higher (1%) prediction performance has been achieved by incorporating

the prior knowledge and taking into account the different contributions of noise in

the measurements. The challenge in using this Bayesian approach for estimation ex-

ists not only in obtaining proper prior distribution but also in specifying appropriate

noise variance. Since no prior information is available, the variances of measurement

noise can only be estimated from existing sources such as the calibration data. How-

ever, the main challenge in the locally weighted methods is simultaneous estimation

of localization parameter, model structure and model parameters where the proposed

Bayesian approach shows its great advantage, as demonstrated in the following sce-

narios.
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Figure 2.2: Cross-validation using data-set from reid vapor pressure of gasoline, sce-
nario I

Bayesian LW-PLS Regular LW-PLS

Localization parameter λ = 0.5
Selected Number of Retained LVs H = 30

MSE of cross-validation 15.4347 15.6006
Correlation of cross-validation 0.9732 0.9731

Table 2.1: Comparing prediction performance of the 1st layer of Bayesian LW-PLS
and regular LW-PLS using data-set from reid vapor pressure of gasoline, scenario I

Scenario II : known model structure, but unknown localization parameter and

model parameters.

The 1st and 2nd layers of the proposed method, estimation of the model pa-

rameters, and selection of localization parameter are applied to identify the LW-PLS

models. The number of retained latent variables is set as 30. For the regular LW-PLS,

the classic similarity function (Eqn. 2.6) is used and we consider four different values

for localization parameter λ: 0.2 , 0.8, 1.5 and 2. For the proposed method, the new

similarity function (Eqn. 2.8) is used. The prior distribution of model parameters is

specified by using Algorithm II. The prior distribution over the localization param-

eters ϕ is specified by using Algorithm III within sampling range [0.1,2]. From the
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(a) λ = 0.2
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(b) λ = 0.8
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(c) λ = 1.5
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(d) λ = 2

Figure 2.3: Cross-validation using data-set from reid vapor pressure of gasoline, sce-
nario II

results shown in Table 2.2 and Figure 2.3, it can be observed that the performance of

the regular LW-PLS method depends highly on the value of the localization param-

eter. Therefore, proper tuning of the localization parameters has a significant effect

on the prediction performance of the LW-PLS models. Since the Bayesian LW-PLS

searches for the locally optimal value of the localization parameter within the devel-

oped hierarchical optimization framework, the prediction performance of the resulting

LW-PLS models is superior. Figure 2.4 shows that for different local models, different

optimal localization parameters have been obtained to achieve a better performance.
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Bayesian LW-PLS Regular LW-PLS

Selected Number of Retained LVs H = 30

Localization parameter ϕ ∈ [0.1, 2] λ = 0.2
MSE of cross-validation 9.9807 57.5943
Correlation of cross-validation 0.9833 0.8846

Localization parameter ϕ ∈ [0.1, 2] λ = 0.8
MSE of cross-validation 9.9807 10.1754
Correlation of cross-validation 0.9833 0.9816

Localization parameter ϕ ∈ [0.1, 2] λ = 1.5
MSE of cross-validation 9.9807 14.1729
Correlation of cross-validation 0.9833 0.9743

Localization parameter ϕ ∈ [0.1, 2] λ = 2
MSE of cross-validation 9.9807 15.9304
Correlation of cross-validation 0.9833 0.9713

Table 2.2: Comparing prediction performance of the 1st and 2nd layer of Bayesian
LW-PLS and regular LW-PLS using data-set from reid vapor pressure of gasoline,
scenario II

Scenario III : unknown model structure, localization parameter and model param-

eters.

The proposed method, Bayesian LW-PLS and one widespread method, RMSECV-

based LW-PLS are applied to develop the LW-PLS models for real-time prediction of

RVP. The main idea behind RMSECV is to search for the globally optimal localiza-

tion parameter and model structure by minimize the RMSE of leave-one-out cross-

validation (LOOCV) in an off-line identification phase and then apply the LW-PLS

to do on-line estimation of the model parameters. The candidate model structures

are set as [25, 30] for both methods. The result of RMSECV for optimal localization

parameters and number of retained latent variables are 2 and 30 respectively. For

Bayesian LW-PLS, first, the prior distributions over the model parameters are spec-

ified by using Algorithm II. The prior distribution over the localization parameters

ϕ is specified by using Algorithm III within sampling range [0.1,2]. In the absence

of the prior knowledge, a uniform distribution is used for the model structure. The

comparison results are reported in Table 2.3 and illustrated in Figure 2.5. According

to the results, Bayesian LW-PLS performs much better than the traditional method,
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Figure 2.4: Localization parameter ϕ of Bayesian LW-PLS

RMSECV-based LW-PLS.
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Figure 2.5: Cross-validation using data-set from reid vapor pressure of gasoline, sce-
nario III

In all of these three scenarios, the priors over main parameter are obtained from

estimation of empirical prior i.e., Algorithm II. The assumption behind this approach

is Gaussian distributed inputs. As shown in Figure 2.6, the distribution of the input

can be well approximated by Gaussian distribution.
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Figure 2.6: Distributions of selected inputs for reid vapor pressure of gasoline example
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Bayesian LW-PLS RMSECV

Selected Number of retained LVs [25,30] 30
Localization parameter ϕ ∈ [0.1, 2] λ = 2
MSE of cross-validation 9.9499 15.9304
Correlation of cross-validation 0.9835 0.9713

Table 2.3: Comparing prediction performance of Bayesian LW-PLS and RMSECV-
based LW-PLS using data-set from reid vapor pressure of gasoline, scenario III

2.5.2 Protein Content of Wheat Kernels

In this case study, the LW-PLS models are developed for on-line prediction of the

protein content of wheat kernels from NIR spectra. This data set was used by [24,

25] as a standard NIR data-set. The wheat kernels were randomly chosen from

bulk samples representing different varieties or various mixtures from two different

locations in Denmark.

The calibration and test data-sets collected in this study consist of 100 and 105

samples with reference value ranges from 46.1 to 103.4 and 47.8 to 93.7, respectively.

As stated by [24, 25], the test samples were acquired with the calibration samples,

but stored for about 2 additional months before measurement in order to provide a

check for temporal drift in the samples and instrumentation.

The Bayesian LW-PLS and RMSECV-based LW-PLS are applied to develop the

calibration models for protein content. The candidate model structures are set as

[8, 12] for both methods. The optimal localization parameter, λ, and number of re-

tained latent variables, H, obtained via RMSECV, are 0.2 and 9 respectively. For

the Bayesian LW-PLS, the prior distribution of model parameters are specified by

following the procedure in Algorithm II. A Gamma prior distribution over the local-

ization parameter ϕ is extracted from calibration data by using Algorithm III and the

corresponding sampling range is chosen as [0.1, 2]. From comparison results reported

in Table 2.4 and illustrated in Figure 2.7, it can, again, be observed that the Bayesian

LW-PLS significantly outperforms the RMSECV-based LW-PLS.

In order to further evaluate the effectiveness of the proposed method, a case of

extrapolation is performed on the same NIR data-set. The calibration samples which

have output value in the range of 82.3 to 103.4 are selected to form the new calibration
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Figure 2.7: Cross-validation using data-set from protein content of wheat kernels

Bayesian LW-PLS RMSECV

Selected Number of retained LVs [8,12] 9
Localization parameter ϕ ∈ [0.1, 2] λ = 0.2
MSE of cross-validation 20.8174 48.3352
Correlation of cross-validation 0.9365 0.8517

Table 2.4: Comparing prediction performance of the Bayesian LW-PLS and
RMSECV-based LW-PLS using data-set from wheat kernels

data-set. The validation or test data sets remain unchanged which have output value

between 47.8 to 93.6 so that the calibration data-set does not overlap with all the

operation region of test ones. It means some of the prediction can only be carried out

by extrapolation. This situation can happen in real-world application if a process is

shifted to a new operation mode.

From Table 2.5 and Figure 2.8, we can see that the performances of the proposed

methods are again much better than the RMSECV-based LW-PLS. Especially in the

extrapolated part where outputs range from 47.8 to 82.3, the predictions of RMSECV-

based LW-PLS obviously deviate from the reference value, while the predictions of

Bayesian one can still follow the reference.

In this case study, the priors over model parameters are also obtained from Algo-

rithm II. As shown in Figure 2.9, even though the distribution of the input does not

exactly follow Gaussian distribution, the proposed method can still outperform the

compared one.
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Figure 2.8: Cross-validation using data-set from protein content of wheat kernels,
extrapolation case

Bayesian LW-PLS RMSECV

Selected Number of retained LVs [8,12] 9
Localization parameter ϕ ∈ [0.1, 2] λ = 0.2
MSE of cross-validation 94.9904 380.0755
Correlation of cross-validation 0.8207 0.8163

Table 2.5: Comparing prediction performance of the Bayesian LW-PLS and
RMSECV-based LW-PLS using data-set from wheat kernels, extrapolation case

Revisit the optimization problem in Equation 2.34 which is equivalent to the

following minimization problem:

{P,q,T}MAP = arg min
P,q,T



N∑
i=1

(xi −Pti)
T (Qex

si|q
)
−1

(xi −Pti)

+
N∑
i=1

(yi − qti)
T (Qey

si|q
)
−1

(yi − qti)

+(qT −PTµb)
T (PTQbP)−1(qT −PTµb)

+
N∑
i=1

(ti −PTµx)
T

(PTQxP)
−1

(ti −PTµx)


s.t. PTP = I

(2.52)

The first two quadratic terms represent the information from historical data, last two

quadratic terms contain the information from available prior knowledge over model

parameters. If informative priors are obtained beforehand, the last two terms will

make a contribution to a more accurate estimation. If the prior contains little helpful

information (situation in this case), a fairly good estimation of model parameters can
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Figure 2.9: Distributions of selected inputs for protein content of wheat kernels ex-
ample
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be achieved by taking advantage of information contained in data. Moreover, the

next two layers of Bayesian framework, i.e. inference of localization parameter and

model structure can further improve the performance.

2.6 Conclusion

This chapter proposed a holistic Bayesian framework for the LW-PLS regression. The

proposed method has the following advantages over the regular LW-PLS regression: 1.

By following a Bayesian approach to estimate the model parameters of the LW-PLS

model, available prior knowledge can be incorporated into the identification process.

2. Different contributions of measurement noise can be taken into account. 3. Ap-

plication of the hierarchical Bayesian optimization framework offers a systematic and

tractable way to get the optimal combination of the model structure, localization

parameters as well as model parameters for each operating point. 4. Bayesian model

structure selection can automatically deals with the model complexity problem to

avoid the over-fitting issue. The attractive features of the proposed framework were

illustrated through two industrial case studies in which NIR spectra were used to

provide real-time estimates of RVP and wheat kernels using the LW-PLS models. In

the first case study, different scenarios were investigated not only to illustrate the

advantages of each layer of the proposed Bayesian formulation of the LW-PLS regres-

sion problem, but also to clearly demonstrate the integration mechanism adopted in

the developed hierarchial Bayesian optimization framework.
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Chapter 3

Bayesian Just-in-time Modeling
with the Input-output Similarity
Function

3.1 Introduction

Soft sensors have proved to be useful for the task of on-line prediction, process mon-

itoring and fault detection. In many industrial processes, critical variables cannot be

easily measured on-line [1, 26, 27]. They have to be obtained from hardware analyz-

ers which are often expensive and difficult to maintain, or through off-line laboratory

analysis which cannot be used in real time control. Soft sensors are the key technol-

ogy for estimating these hard-to-measure process and quality variables in real time.

There are two types of modeling methods for soft sensor design, namely, model-driven

and data-driven methods. The model-driven method takes advantage of mechanism

of underlying processes which are usually difficult to acquire and/or intractable for

modeling. In the absence of process knowledge, data-driven may be applied to devel-

oping the model. These models are trained on collected data by means of statistic

modeling techniques. The most popular data-driven techniques are principal compo-

nent regression (PCR) and partial least squares (PLS). They have been successfully

applied to the development of soft sensors for industrial processes[28, 29, 30, 31].

Although these techniques have gained popularity in industry, development and

maintenance of soft sensors are laborious[32]. Most data-driven techniques build on-

ly a single global model based on historical data to deal with process in different

operating conditions. Even if a good soft sensor is obtained at the beginning, the
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performance will deteriorate due to the multi-mode and time-varying behaviours.

In order to maintain the performance, soft sensors need to be regularly updated

off-line which is a time-consuming effort. To deal with the problem, recursive ver-

sions of these methods are developed to update the soft sensor on-line and automat-

ically, such as recursive PCR, recursive PLS and recursive prediction error method

(PEM)[33, 34, 35, 36]. However, these recursive methods are meant to deal with slow

drifts in parameters but not abrupt changes (which often accompany operating condi-

tion changes in non-linear systems). Due to these considerations, Just-in-time (JIT)

modeling was proposed to deal with both multi-mode and nonlinear behaviour of the

process[37, 38, 39]. Instead of building a global model, the JIT modeling method

builds a localized model (using the most relevant data) whenever new query samples

become available. In this way, the JIT local models create a piece-wise approximation

of the non-linear model which can also deal with multi-mode process behaviour

However, the performance of traditional JIT models is not always satisfactory.

It is determined by following aspects: local calibration sample, model structure and

model parameters. In traditional JIT modeling framework, such as locally weighted

PLS (LW-PLS), the local calibration samples are selected only based on the distance in

input space. Even though the local calibration samples are close to the query sample

with respect to the input space, they may not be close to the query with respect to the

output space. The local calibration samples should be determined by taking account

the information in both input and output spaces. Second, the model structure of each

local model is assumed to be known beforehand and is kept fixed. Third, traditional

approaches, such as OLS, PCR, PLS to estimate local model parameters, do not fully

utilize available information. For such applications, information within the historical

data and prior process knowledge cannot be fully incorporated into the parameter

estimation. Chen [40] proposed an Orthogonal Signal Correction (OSC) based LW-

PLS method . The main idea of OSC-LW-PLS is to filter input space by removing the

information uncorrelated to the output space (using OSC); after that, the similarity

is calculated based on filtered data. However, this method leaves the second and

third problems unaddressed. Several optimization methods are applied to obtain a

globally optimal model structure resulting in the lowest root mean square error of

cross validation (RMSECV)[15]. But, it is possible that the optimal model structures
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Modeling Handle Handle Accounts Automatically Incoporate prior
technique Collinearity non-linearity for input-output select model knowledge over

and time-varying in Similarity structure for model structure
behaviour each local model and parameters

OLS No No N/A N/A No
PCR Yes No N/A No No
PLS Yes No N/A No No

LW-PLS Yes Yes No No No
OSC-LW-PLS Yes Yes Yes No No
Bayesian JIT Yes Yes Yes Yes Yes

Table 3.1: Features of different data-driven modeling methods

of local models are different from each other and from the global one. It is desired

to find the optimal model structure for each local model in a real time identification

phase.

The features of these modeling techniques are summarized in Table 3.1. None of

the techniques mentioned above can address all the problems simultaneously. Espe-

cially, none of the techniques can provide a way to search for a proper model structure

and incorporate prior knowledge into estimation. To cope with these challenges, a

new JIT modeling method is proposed in this work. In the proposed method, lo-

cal calibration samples are specified by a new similarity function which can extract

hidden information in the inputs and outputs. As a result, noise in input will have

less negative impact and information in output can be utilized in identification more

effectively. Next, the problem of searching for the optimal model structure for each

local model and estimating the corresponding model parameters is formulated under

an iterative hierarchical Bayesian optimization framework. This Bayesian framework

offers a systematic way to search for the optimal model structure as well as estimate

the model parameters. Bayes’ theorem also makes it possible to incorporate statisti-

cal information from historical data and prior process knowledge which can further

enhance the accuracy of prediction.

3.2 Problem Statement

Suppose we have a training (calibration) data-set with N samples denoted by:

X = [x1,x2, · · ·xN ]T (3.1)

y = [y1, y2, · · · yN ]T (3.2)
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X ∈ RN×M and y ∈ RN×1 are the input and output matrices, respectively. The i-th

sample consists of inputs, xi = [xi1, xi2 · · · xiM ]T , and an output, yi. where M is the

number of input variables. The model takes the form of the PLS model structure,

given by:

X = TPT + EX (3.3)

y = TqT + ey (3.4)

where T ∈ RN×H denotes a matrix of latent variables, and H denotes the number

of latent variables. P ∈ RM×H is a matrix of loadings and q ∈ R1×H is a vector of

regression coefficients. EX ∈ RN×M and ey ∈ RN×1 denote the matrices of input and

output residuals, respectively.

JIT modeling is an on-line identification method under which data-driven model-

ing techniques can be applied in a local modeling perspective. When a query sample

xq becomes available, the solution of on-line identification of a local model consists

of the following main steps:

1. Selection of local calibration samples: Search for the most relevant samples

in historical data-set using a pre-defined similarity function. The similarity

function should account for the information in both input and output spaces.

2. Selection of model structure: after specifying the local calibration samples, the

next key step is to determine a proper model structure to capture the underlying

behaviour of the process. In order to select a proper model structure for PLS

model, the number of latent variables H needs to be selected. The number of

latent variables selected affects the model complexity.

3. Estimation of model parameters: Once the model structure is determined,

data-driven modeling techniques are applied to estimate the model parameter,

Θ = {P,T,q}, i.e. loading matrix P, latent variable matrix T and regression

coefficient vector q.
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3.3 Bayesian JIT Modeling with Input-output Sim-

ilarity

3.3.1 Similarity Function

The similarity function plays a key role in JIT modeling. It determines the method

to select local calibration samples. A proper similarity function can choose represen-

tative calibration samples for modeling, thus improving the accuracy of prediction.

Given a query sample xq, a similarity matrix is constructed to prioritize the cali-

bration samples:

Sq = diag(s1|q, s2|q, · · · , sN |q) (3.5)

where si|q (i = 1, 2 · · ·N) is the similarity between xq and xi.

Generally, a measurement of similarity is defined based on a notion of distance

between xq and xi. One of the widely used similarity functions is :

si|q = exp

(
− di
σdλ

)
(3.6)

di =

√
(xi − xq)

T (xi − xq) (3.7)

where di is the Euclidean distance between xq and xi, σd is the standard deviation of

d = {d1, d2, · · · dN} and λ is the localization parameter. By tuning the localization

parameter, we can control how quick the similarity will decrease with increasing dis-

tance, which controls the degree at which local samples are prioritized. Furthermore,

in order to balance the weight of each input, Mahalanobis distance is applied. The

Mahalanobis distance between xq and xi is calculated using the following equation:

di =

√
(xi − xq)

TQ−1(xi − xq) (3.8)

where Q is the covariance matrix of input X. The drawback of this method is that it

only applies information from the input space to measure similarity. If the informa-

tion in output space can be incorporated into similarity measurement, the represen-

tativeness of local calibration sample and accuracy of prediction may be improved.

Wang [41] proposed a new similarity measurement which takes both input and output

information into account. The similarity is calculated as:

si|q = ωdi,x + (1− ω)di,y (3.9)
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di,y =
|yi − ŷq|
N∑
i=1

|yi − ŷq|
(3.10)

where di,x is the Euclidean distance in the input space and ŷq is the estimated output

of the query sample obtained by an initial global PLS model. ω is a hyperparameter

to tune the weight of input and output distance. In this way, the information of out-

put can be incorporated into similarity calculation. However, the existing similarity

cannot control the degree at which local samples are prioritized. Considering these

points, in this work, a new similarity function is developed by synthesizing these two

similarity functions. It is defined as:

si|q = exp

(
− di
σdλ

)
(3.11)

di = ωdi,x + (1− ω)di,y (3.12)

di,x =
d̃i,x
N∑
i=1

d̃i,x

(3.13)

di,y =
|yi − ŷq|
N∑
i=1

|yi − ŷq|
(3.14)

where d̃i,x is the Euclidean distance in the input space and ŷq is the estimated output

of the query sample obtained by an initial global PLS model. In this similarity

function, there are two hyperparameters ω, λ which make the similarity more flexible

to specific cases. The parameter ω can be tuned to balance the information in input

and output space. The localization parameter λ can control the prioritization of

calibration samples.

3.3.2 Bayesian JIT Modeling

Hierarchical Bayesian Optimization Framework

Under the Bayesian framework, the problem is converted to maximizing the joint pos-

terior probability function of model parameters and model structure, i.e. p(Θ, H|X,y,xq).

Because it is intractable to maximize p(Θ, H|X,y,xq) directly. The problem can be

formulated and solved under an iterative Hierarchical Bayesian Optimization frame-

work. Based on the chain rule of probability theory, the joint posterior probability
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function is expanded as:

p(Θ, H|X,y,xq) = p(Θ|H,X,y,xq)p(H|X,y,xq) (3.15)

Now, the maximization of the posterior probability function can be transformed as a

hierarchical optimization problem:

max
Θ,H

[p(Θ|H,X,y,xq)p(H|X,y,xq)]

= max
H

{
p(H|X,y,xq)

[
max

Θ
p(Θ|H,X,y,xq)

]} (3.16)

Inference of Model Parameters

Applying Bayes’ rule, the posterior PDF of model parameters can be written as:

p(Θ|H,X,y,xq) ∝ p(X,y|H,Θ,xq)p(Θ|H,xq) (3.17)

By expanding Θ, we have

p(P,T,q|X,y,xq, H) ∝ p(X,y|P,T,q,xq, H)p(T|P, H)p(q|P, H)p(P|H) (3.18)

Following the approach of Bayesian Latent Variable regression [21], a new Bayeisan

approach to solve the problem of JIT modeling is derived next.

For each calibration sample, the LW-PLS formulation is given by:

xi = Pti + exi (3.19)

yi = qti + eyi (3.20)

The noise-free inputs and output are given by:

x̃i = Pti (3.21)

ỹi = qti (3.22)

The loading matrix P has the following constraint:

PTP = I (3.23)

A vector of model parameters, b ∈ RM×1 , representing the relationship between the

input and output variables, is defined as:

b = PqT (3.24)
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The likelihood function relies on the nature of noise. Assume that the input and

output measurements are contaminated by mutually independent Gaussian noise, exi

and eyi, with known variance Qex and Qey . The estimation of these variances will be

discussed shortly. Given a query sample xq, the importance weight assigned to the

ith calibration sample is denoted by si|q. This is equivalent to saying that:

Qexi
=

Qex

si|q
(3.25)

Qeyi =
Qey

si|q
(3.26)

where si|q can be calculated using the new similarity function (Eqns. 3.11, 3.12, 3.13

and 3.14). Since both the output and input information is integrated in Eqn.3.12,

the input and output will both participate to determine the similarity. A calibration

sample having small distances in both input and output dimensions will yield large

similarity. This will result in a small noise variance, meaning that the point contains

less information for noise, equivalently more information for identification. Note that

if a sample point has a small distance from query sample in the input dimension, but

a large distance in the output dimension, this will result in large noise variance under

this formulation of the similarity function so that this data point will be discounted

in the subsequent identification process.

It is assumed that the measurement noises in the observations are independent

in the time sequence and the measurement noises in inputs and output are mutually

independent. Thus, the likelihood can be simplified as follows:

p(X,y|P,T,q,xq, H) = p(X|P,T,xq, H)p(y|T,q,xq, H) (3.27)

p(X|P,T,xq, H) =
N∏
i=1

p(xi|P, ti,xq, H) (3.28)

p(y|T,q,xq, H) =
N∏
i=1

p(yi|ti,q,xq, H) (3.29)

xi|P, ti,q,xq, H ∼ N (Pti,
Qex

si|q
) (3.30)

yi|P, ti,q,xq, H ∼ N (qti,
Qey

si|q
) (3.31)

The priors over the model parameters depend on the distribution of noise-free data.

The noise-free inputs are assumed to follow a multivariate Gaussian distribution, that
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is

x̃i ∼ N (µx,Qx) (3.32)

As a result, given the loading matrix P, the latent variable ti will also follow a

multivariate Gaussian distribution:

ti = PT x̃i (3.33)

ti|P, H ∼ N (PTµx,P
TQxP) (3.34)

Let the regression parameters b follow a multivariate Gaussian distribution:

b ∼ N (µb,Qb) (3.35)

Given the loading matrix P, and the vector of model parameters b, the regression

coefficient vector qT will also follow a multivariate Gaussian distribution

qT = PTb (3.36)

qT |P, H ∼ N (PTµb,P
TQbP) (3.37)

In the absence of any priori knowledge over the loading matrix P, a uniform prior

distribution can be specified.

The maximum a posteriori probability (MAP) estimates can then be obtained by

solving the following optimization problem:

{P,T,q}MAP = arg max
P,T,q

{p(X|P,T,xq, H)p(y|T,q,xq, H)p(T|P, H)p(q|P, H)}
s.t. PTP = I

(3.38)

The solution can be obtained by solving the following three simultaneous parameter-

estimation and data-reconciliation optimization problems, where outer optimization

accounts for estimation of the model parameters and inner optimization accounts for

estimation of the latent variables.

{P}MAP = arg max
P

p(X|P,T, H,xq)p(y|T,q, H,xq)

{q}MAP = arg max
q

p(y|T,q, H,xq) p(q|P, H)

s.t.
{T}MAP = arg max

T
p(X|P,T, H,xq)p(T|P, H)

PTP = I

(3.39)
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All posteriors follow multivariate Gaussian distribution and thus, the MAP estimates

can be equivalently obtained by solving the following minimization problems:

{P}MAP = arg min
P
{
N∑
i=1

(xi −Pti)
T (Qex

si|q
)
−1

(xi −Pti) +
N∑
i=1

(yi − qti)
T (Qey

si|q
)
−1

(yi − qti)}

{q}MAP = arg min
P
{
N∑
i=1

(yi − qti)
T (Qey

si|q
)
−1

(yi − qti) + (qT −PTµb)
T (PTQbP)−1(qT −PTµb)}

{ti}MAP = arg min
ti

{(xi −Pti)
T (Qex

si|q
)−1(xi −Pti) + (ti −PTµx)T (PTQxP)−1(ti −PTµx)

s.t. PTP = I
(3.40)

The first optimization problem is intractable because of the unit orthonormal con-

straint. We can first use a closed form optimization solution, to estimate P. Both of

the following optimization problems can be solved analytically.

{ti}MAP = [PT (
Qex

si|q
)−1P + (PTQxP)−1]−1[PT (

Qex

si|q
)−1xi + (PTQxP)−1PTµx]

(3.41)

{q}MAP = (TTT + PTQbPSqQey
−1)(TTY + PTQbPSqQey

−1PTµb) (3.42)

In the above derivations, Qex , Qey , µb,Qb, µx,Qx are assumed to be known. This

requirement means that the prior density must be fully specified in advance. In the

presence of limited prior knowledge over the noise variance and model parameters,

a commonly used alternative is the empirical Bayesian analysis which estimates the

prior from the available data. Again, the parametric approach is used to estimate the

prior. The approach is presented as Algorithm II in the appendix.

Inference of Model Structure

Applying Bayes rule, the posterior PDF of hyperparameter can be expressed as:

p(H|X,y,xq) ∝ p(X,y|H,xq)p(H|xq) (3.43)

When considering the prior of the model structure, it is reasonable to assume

that it is statistically independent of the query sample xq. If a set of candidate

model structures are given, i.e H ∈ {H1, H2...HL}, then the random variable H is a
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categorical variable and can be modelled by

p(H) =
L∏
l=1

p(H = Hl)
[H=Hl] (3.44)

where [H = Hl] equals 1 if H = Hl and equals 0 otherwise. Without any prior

information, a uniform distribution, i.e. p(H = Hl) = ... = p(H = HL) is adopted.

The likelihood function p(X,y|H,xq) can be obtained by integrating over the

model parameter:

p(X,y|H,xq) =

∫
Θ

p(X,y|Θ, H,xq)p(Θ)dΘ (3.45)

Since it is intractable to solve this equation directly, Laplace’s method of approx-

imation is applied here:

∫
Θ

p(X,y|Θ, H,xq)p(Θ)dΘ ≈ p(X,y|ΘMAP , H,xq)p(Θ
MAP ) det (

AΘ

2π
)−

1
2 (3.46)

where AΘ = − ∂2

∂Θ2 log p(Θ|X,y,xq, H). Then the MAP estimate of model structure

can be derived as:

{H}MAP = arg max
H

p(H|X,y,xq)

= arg max
H

{
p(X,y|ΘMAP , H,xq)p(Θ

MAP |H) det (
AΘ

2π
)
− 1

2

p(H)

}
(3.47)

{H}MAP = arg min
H



1
2

n∑
i=1

(xi −Pti)
T (Qex

si|q
)
−1

(xi −Pti)

+1
2

n∑
i=1

(yi − qti)
T (

Qey

si|q
)
−1

(yi − qti)

+1
2

n∑
i=1

(ti −PTµx)
T

(PTQxP)
−1

(ti −PTµx)

+1
2
(qT −PTµb)

T (PTQbP)−1(qT −PTµb)

+ log[det (AΘ

2π
)−

1
2 ] + log

N∏
i=1

si|q

+1
2
(1 +N)H log 2π


(3.48)

40



3.4 Implementation Procedure

1. Choose Eqn 3.11-3.14 as similarity function.

2. Select a proper set of candidate model structures {H1, H2...HL}.

3. Characterize the localization parameter λ and balance parameter ω by Leave

One Out Cross Validation (LOOCV).

4. Characterize the noise variances Qex , Qey and prior distribution of model pa-

rameters, p(Θ|H) by using Algorithm II.

5. Characterize the prior distribution of model structure, p(H), based on prior

knowledge. If there is no prior information over model structure, a uniform

distribution can be used to describe the prior.

6. For l = 0 : L

(1). Set H = Hl.

(2). While Pl,Tl,ql converge

(2.2). Calculate loading matrix Pl by applying LW-PLS algorithm to

(X,y,xq).

(2.3). Calculate regression coefficient vector ql and latent variable matrix

Tl by using Eqn 3.41 and Eqn 3.42;

(3). Calculate objective function of model structure Hl by using Eqn 48.

7. Choose the model structure H with the lowest value of objective function as

well as corresponding loading matrix P, regression coefficient vector q.

8. Calculate model output as ŷ = xqPqT .

3.5 Case Study

To illustrate the advantages of Bayesian JIT modeling, a set of Pharmacy NIR data

of Escitalopram tablets is used. The objective is to develop a reliable model for pre-

dicting the active substance content in Pharmaceutical tablets from the NIR spectra
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of samples. This NIR data set is a public benchmark for multivariate data analysis

which has high dimension with strongly correlated spectra. The data has been used

by [40, 42]. This data-set consists of NIR spectra for 310 tablet samples. As stated

by [42], the tablet samples have four different dosage values (5, 10, 15 and 20 mg

tablets) and samples in each type come from three different scales of batch processes

(full scale, pilot scale and laboratory scale). The variety of samples will result in

nonlinear behaviour of the data set. The JIT method is considered to provide an

effective solution to this case.

The spectra of 310 tablet samples are divided into 124 calibration samples and

184 validation or test samples. The calibration and test data set consists of samples

with reference value ranging from 4.84% to 9.79% and 4.61% to 9.38%, respectively.

The Bayesian JIT model is applied to develop the calibration models for active

substance. The advantages of the proposed method is demonstrated by comparing

results with other popular methods, i.e.,PLS, LW-PLS, OSC-LW-PLS. Furthermore,

to illustrate the features of Bayesian JIT model, each layer of Bayesian JIT is applied

individually to show its necessity and advantage:

The following methods are applied and compared to build NIR spectroscopic mod-

el.

1. PLS: Global PLS approach.

2. LW-PLS: locally weighted PLS; the similarity is calculated based on distance

in input space only.

3. OSC-LW-PLS: OSC based locally weighted PLS proposed by [40];

4. JIT-I: JIT approach using the new similarity function (Eqn. 3.11 3.12 3.13 and

3.14) and then using LW-PLS to calculate the model parameters Θ with fixed

model structure H;

5. JIT-II: JIT approach using the new similarity function (Eqn. 3.11 3.12 3.13

and 3.14) to calculate similarity and then using Bayesian approach to calculate

model parameters with fixed model structure H.
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6. Bayesian-JIT: Bayesian Just-in-time approach proposed in this work; the simi-

larity is calculated by a new function and integrated in a hierarchical Bayesian

Optimization framework which can automatically search for the optimal model

structure H for each local model and estimate the model parameters Θ.

Before applying these methods, the number of LVs and some hyper parameters

need to be specified. In this study, the optimal hyper parameters for the last five

methods and the number of latent variables for the first five methods shown in the

table are determined by Leave One Out Cross-Validation (LOOCV).

Methods H λ ω OSC factors RMSEP R
PLS 7 - - - 0.5188 0.9334

LW-PLS 5 0.85 - - 0.4095 0.9537
OSC-LW-PLS 4 1.1 - 3 0.3499 0.9635

JIT-1 4 0.1 0.6 - 0.3591 0.9619
JIT-2 4 0.18 0.55 - 0.3300 0.9668

Bayesian JIT 2-5 0.18 0.55 - 0.3199 0.9708

Table 3.2: Comparing prediction performance of different methods using pharmacy
tablets data-set

According to Table 3.2 and Figure 3.1, all the JIT methods outperform the global

PLS, meaning that JIT methods are more effective when dealing with non-linearity in

data. JIT-OSC, JIT-1, JIT-2 and Bayesian JIT, which take advantage of both input

and output information when calculating the similarity, have superior performance

to the traditional LW-PLS. Among all the tested methods, Bayesian JIT has the

best performance with lowest RMSE and highest R. It is interesting to see that

JIT-1, JIT-2 and Bayesian JIT perform better consistently which shows that the

improvement of each step in JIT modeling, i.e., selection of local calibration samples,

selection of model structures and estimation of model parameters, results in significant

improvement in predictive ability of the model.

In order to further investigate the generalization of this method, a different case

study was performed on the same 310 tablet samples. In this case study, the 124

samples(which are set as calibration samples) are transferred to the set of test samples.

The remaining 184 samples are used for calibration. Bayesian JIT and other popular

data-driven methods are applied to develop calibration models for active substances
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Figure 3.1: Cross-validation using data-set from pharmaceutical tablets, case I
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in pharmaceutical tablets. Again, the hyper parameters for the last five methods and

the number of LVs for the first five methods are specified by LOOCV.

Methods H λ ω OSC factors RMSEP R
PLS 9 - - - 0.3817 0.9652

LW-PLS 7 0.4 - - 0.3313 0.9693
OSC-LW-PLS 4 0.2 - 3 0.3332 0.9679

JIT-1 5 0.2 0.5 - 0.2945 0.9749
JIT-2 5 0.2 0.5 - 0.2841 0.9762

Bayesian JIT 2-5 0.2 0.4 - 0.2825 0.9762

Table 3.3: Comparing prediction performance of different methods using pharmacy
tablets data-set
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Figure 3.2: Cross-validation using data-set from pharmaceutical tablets, case II

From Table 3.3 and Figure 3.2 we can see that the performance of JIT methods are

again much better than the global PLS method. This proves the effectiveness of JIT

method in this case. Moreover, the JIT methods which used both input and output

information in similarity calculations outperform others. Among them, Bayesian JIT

achieves the best performance with lowest RMSEP and highest R. The result also

shows that JIT-1, JIT-2 and Bayesian JIT perform consistently better which again

proves that improvement of each step of JIT modeling can lead to improvement in

the predictive ability of the model.
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3.6 Conclusion

In this work, a new Just-in-time (JIT) modeling approach is proposed to achieve

higher accuracy of prediction. The proposed method has the following advantages

over regular JIT method: 1. It takes both input and output information into account

when calculating similarities. 2. A Bayesian optimization framework is proposed for

real-time selection of local model structure and estimation of corresponding model

parameters. This optimization framework offers a systematic way to search for the

optimal model structure for each local model. 3. Using the Bayesian method also

makes it possible to incorporate the statistical information in historical data and prior

process knowledge into the estimation procedure, which further enhances the accuracy

of prediction. The advantages of the proposed approach were illustrated through a

case study based on real-world NIR data from pharmaceutical industry. Multiple

modeling approaches, i.e, PLS, LW-PLS, JIT-OSC along with the proposed Bayesian

JIT method were applied to estimate the content of active substance in tablet from

spectra data. Compared with traditional PLS, regular JIT (LW-PLS) methods and

the improved JIT method (OSC-LW-PLS), the proposed approach achieved the best

performance in both case studies.
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Chapter 4

Recursive Prediction Error
Method and Its Application in
Adaptive Soft Sensors Design

4.1 Introduction

Soft sensors have proved to be an effective alternative to traditional approach for

the acquisition of critical process variables[43, 44, 45, 46, 47]. There are generally

two kinds of soft sensors, namely model-driven and data-driven soft sensor [48]. The

model-driven soft sensors take advantage of first principles which describe the physical

and chemical phenomena of the process, such as mass balance, thermal balance and

reaction kinetics. One drawback of the first-principles technique is that this method

requires a lot of expert knowledge about the process, and is often intractable. Thus,

as an effective alternative, data-driven soft sensors have gained increasing popularity

in industry [1]. Since it is based on the historical data from operating plants, a data-

driven model can be developed more quickly. However, data-driven soft sensors are

less reliable, because the data themselves cannot fully explain the underlying mech-

anism of the process. Grey-box soft sensors make use of first-principles knowledge,

and black-box techniques to fill the knowledge gap [49]. It is developed based on

the knowledge describing the chemical and physical principles underlying the process

as well as the statistical information from the data. A typical example using this

modeling technique is a model-driven soft sensor making use of the data-driven ap-

proach to identify the unknown portions which cannot be modelled easily in terms

of available process knowledge. These unknown portions are usually treated as the
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black-box model which will be identified by using historical data. Since the complex

underlying mechanism of process usually results in a nonlinear model structure, some

data-driven modeling techniques such as ordinary least squares (OLS), principle com-

ponent regression (PCR), and partial least squares (PLS) cannot be directly applied

for identification. A widely used approach for grey-box modeling is prediction error

method (PEM). The main idea underlying the PEM is to minimize the prediction

errors so that it can be applied to complex model parameterizations [50].

To develop grey-box soft sensors, the collected on-line measurements, i.e. histor-

ical data, can be exploited by PEM for off-line model identification. However, even

if a good model is identified initially, the accuracy of a soft sensor is guaranteed for

only a specific operating region in which the model has been identified and so the

performance of the model will deteriorate over time. This is because, in most cas-

es, historical data cannot contain all the possible future conditions of the process.

Furthermore, the process may exhibit a certain form of time-variant behaviour due

to fouling and/or abrasion in the process equipment, variation in catalyst activity,

changes in weather and so on, which are difficult to take into account during the

modeling phase [51].

To deal with these issues, an on-line adaptation is often integrated in the imple-

mentation procedure. The procedure for adaptive soft sensor is shown in Figure 1.

At first, off-line modeling techniques are used to build initial models based on the

historical data. Expert knowledge about the process helps to search for a proper

model structure and identify the influential variables as well as time delays. During

the operational phase, the real-time predictions of the target properties are generated

by the soft sensor based on fast-rate on-line inputs. The reference for target proper-

ties is obtained by lab analysis. Together with the corresponding on-line inputs and

predictions, they provide sources for on-line adaptation. The effectiveness of on-line

adaptation is significantly affected by the following aspects:

1. Adaptive data pre-processing: In on-line application, in order to achieve more

accurate estimation of quality variables and effective model updates, both on-

line input and lab data need to be preprocessed in an on-line manner. This

consists of several operations, such as abnormal point detection, data de-noising
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Figure 4.1: Recursive adaptation flowchat

and data scaling.

2. Performance feedback: The need for adaptation should be triggered by monitor-

ing the performance of the soft sensor. There are different criteria to evaluate

the performance and determine when to apply adaptation to the soft sensor.

3. Adaptation algorithm: Once the data are available, and there is a need for

adaptation, the adaptation algorithm can be applied to adjust the soft sensor.

Despite the increasing number of publications dealing with adaptation of soft

sensors, several issues remain open. Most of the existing methods for adaptation are

moving window methods or methods involving recursive updating of OLS, PCA and

PLS which are designed for adaptation of linear models[52, 35, 53]. They cannot

be applied directly to nonlinear models. Moreover, in practice, the second aspect,

i.e., performance feedback is often ignored. Instead, the adaptation is performed at

a certain frequency or once new lab analysis output is available. This may result in

over-updating issues.

Considering these challenges, the recursive prediction error method (RPEM) is

adopted in this chapter as an adaptation algorithm for grey-box models which can
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calibrate all the model parameters on-line. Based on RPEM, an integrated framework

of on-line adaptation for grey-box model is proposed. Several adaptive data pre-

processing methods are applied to reduce the negative effects of measurement noise,

as well as detect irregular measurements. The cautious update strategy is integrated

into the adaptation mechanism to trigger the need for adaptation, thus avoiding over-

updating issues. Then, this adaptive framework is applied for adaptive soft sensors

designs in oil sands process. The developed soft sensors can cope with the time-

varying behaviour of the process as well as process nonlinearity, thereby reducing the

burden of model maintenance.

4.2 Theoretical Background

4.2.1 Prediction Error Method

Prediction Error Methods are a broad family of parameter estimation methods. The

main idea underlying the PEM is to minimize the one-step-ahead prediction errors:

min
Θ

JN(Θ) = 1
N

N∑
t=1

(
yLabt −

∧
yt

)2

= 1
N

N∑
t=1

ε(t,Θ)2
(4.1)

where JN(Θ) is the objective function to be minimized. yLabt is the reference value

conducted by lab analysis at time “t”.
∧
yt is the value of predicted variable and N is

the number of calibration samples. The scheme of prediction error method is basically

a recursive algorithm with a gradient-type iteration:

Θ(i+1) = Θ(i) − µi
(
RN

(
Θ(i)

))−1
J ′N

(
Θ(i)

)
(4.2)

φ (t,Θ) =
[

∂
∧
yt
∂θ1

∂
∧
yt
∂θ2

· · · ∂
∧
yt

∂θn

]T
(4.3)

RN(Θ) :=
1

N

N∑
t=1

φ (t,Θ)φT (t,Θ) + λI (4.4)

J ′N(Θ) = − 1

N

N∑
t=1

φ (t,Θ) ε (t,Θ) (4.5)

where Θ(i) is the parameter estimate at the ith iteration, µi is the step size parameter

to accelerate the algorithm and J ′N
(
Θ(i)

)
is the gradient of the objective function.
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4.2.2 Recursive Prediction Error Method

The recursive prediction error method was proposed by [36] based on the off-line

prediction error method. The algorithm is introduced as follows.

First the following term is obtained to represent the initial state.

P(0) = (
1

N

N∑
k=1

ψ(k,Θ[0])ψT (k,Θ[0]) + λI)−1 (4.6)

where,

ψ(t,Θ) =
∂ŷk(Θ)

∂Θ
(4.7)

N is the number of identification data points, λ is a tuning parameter adjusted to

prevent numerical issues , and Θ[0] is the initial parameter. Let us also introduce the

following expressions:

S(t) = 1 + ψ(t,Θ[t−1])P(t− 1)ψT (t,Θ[t−1]) (4.8)

P(t) = P(t− 1)− P(t− 1)ψT (t,Θ[t−1])S(t)−1ψ(t,Θ[t−1])P(t− 1) (4.9)

The RPEM algorithm starts with the initial value of parameters Θ[0] and iterates

through the following three steps when new lab data is available:

1. When new lab data yt is available, given the existing estimate of parameters

Θ[t−1], calculate S(t) from Equation 4.8, and the prediction error ε(k,Θ).

2. Update parameters Θ[t] as follows:

Θ[t] = Θ[t−1] − βP(t− 1)ψT (t,Θ[t−1])S(t)−1ε(t,Θ[t−1]) (4.10)

3. Calculate P(t) from Equation 4.9 for the next iteration.

4.2.3 Evaluation Criteria

RMSE

Root mean squares error of prediction (RMSEP) is a measure of the extent of

agreement between a predicted variable and the reference value. Smaller RMSE

values imply higher accuracy. They are a consequence of high precision and low bias.

RMSE =

√√√√ 1

n

n∑
t=1

(
yLabt −

∧
yt

)2

(4.11)
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where n is the number of validation samples. Ideally, the root mean of prediction

error distributions is equal to zero.

Correlation coefficient

Correlation coefficient is used to describe how correlated the predictions are with

reference value (lab data). It can be calculated as:

R =
cov(Y Lab, Ŷ )√

var(Y Lab)var(Ŷ )
(4.12)

where cov (.) and var(.) indicate the covariance and variance, respectively. R can

vary between -1 and 1. Values close to 1 or -1 show strong correlation between the

two variables. In fact, good predictions should have an R close to 1.

Graphical Techniques

The graphical techniques used in analysis of residuals are listed below:

1. Scatter plot of predicted values versus target values: The ideal case would be

for all the data points to lie on the 45 degree line, indicating perfect agreement

between the measured/predicted values and target values.

2. Run-sequence plot of predicted and target values: The time trend of the mea-

sured/predicted values and target values are plotted together to visually assess

the accuracy and reliability of the inferential model.

4.3 Adaptation Mechanism

This section first outlines the methods which are used to design the scheme of adap-

tation. Next, a overall framework for on-line adaptation is proposed based on these

methods.

4.3.1 Adaptive Data Preprocessing

Real-world data which is collected from process operation is inevitably corrupted

by different disturbances in process, malfunctions and errors in sensors and data

transmissions. Data corruption will introduce undesired changes to the original da-

ta, and thus have a negative effect on modeling and prediction. In off-line model
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identification, data preprocessing is introduced to clean the raw data. For on-line im-

plementation, to achieve good estimation of the quality variable and effective model

adaptation, it is desired to preprocess the data in an on-line manner. This consists

of abnormal point detection and data de-noising.

On-line Abnormal Point Detection

Abnormal points are generated from the process when it behaves in some new operat-

ing modes those are not recorded in history. The grey-box models which are identified

based on historical data may not provide accurate estimations in those abnormal sit-

uations. Instead of providing unreliable estimations, the grey-box models will give

”bad-value” alarms in those situations. A widely used method for off-line abnormal

points detection is the 3-σ rule which assumes that the process variable follows a

Gaussian distribution with mean value µ and standard deviation σ. A data point xi

is labeled as abnormal point if |xi − µ| > 3σ. During on-line implementation, the

abnormal point detection and replacement can be implemented in a moving window.

The criteria to label an abnormal point are:

|xi − µ| > 3δ

µ = 1
Nw

i−1∑
t=i−Nw

xt

δ =

√
1
Nw

i−1∑
t=i−Nw

(xt − µ)

(4.13)

where Nw is the window size. Once an abnormal point is detected, it will be replaced

by some appropriate value. In a continuous process, the abnormal point is replaced

by the previous data point, i.e. xi = xi−1.

On-line data de-noising

Measurement noise causes errors in model estimation and therefore has to be dealt

with by increasing the Signal to Noise Ratio (SNR) of the data. The easiest way to

achieve this goal is to smooth the data using a linear filter. A process variable is

smoothed by using a weighted sum of previous measurements.

xdi = αxi + (α− 1)xi−1 (4.14)
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where α is an adjustable smoothing parameter with values between 0 and 1, and

xdi is the de-noised sample. This is called Exponentially Weighted Moving Average

(EWMA) filter.

4.3.2 Reliability of Lab Measurements

Although lab measurements are considered to be target values, their reliability and

accuracy could be affected by several factors:

1. Sampling Error: Lab samples are manually taken from the process. The exact

sampling time may not be recorded.

2. Human Error: Inaccurate or even wrong lab analysis may be carried out due to

human error. This possible factor can have significant effect on the quality of

lab measurements.

3. Device inaccuracy: Lab devices need to be calibrated regularly. Even when

proper calibrations are applied to lab devices, there may still exist certain in-

accuracies.

So it is desired to evaluate the reliability of lab data before using them for adapta-

tion. As shown in Figure 4.2, the lab data are fitted by Gaussian distribution. The

reliability of lab data can be evaluated based on 3-σ rule:

µY =
1

N

N∑
t=1

yt (4.15)

δY =

√√√√ 1

N

N∑
t=1

(yt − µY ) (4.16)

d =
∣∣yLab − µY ∣∣ (4.17)

d < 3σ → Reliable (4.18)

d > 3σ → Unreliable (4.19)
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Figure 4.2: Reliability of lab data

4.3.3 Cautious Update

Having preprocessed the on-line measurements and ensured the reliability of lab mea-

surements, recursive prediction error method is applied to implement adaptation. But

the adaptation should not be immediately performed, once new lab data is available.

As stated in introduction, the need for adaptation should be triggered by monitoring

the performance of the soft sensor. So the following criterion is proposed to evaluate

the need for adaptation.

Judgement Execute

|Θ[t]′ −Θ[t−1]| > δa T = T + 1,Θ[t] = Θ[t−1]

δb < |Θ[t]′ −Θ[t−1]| < δa and 0 ≤ T ≤ 3 T = T + 1,Θ[t] = Θ[t−1]

δb < |Θ[t]′ −Θ[t−1]| < δa and T > 3 T = T + 1,Θ[t] = Θ[t]′

|Θ[t]′ −Θ[t−1]| ≤ δb T = 0,Θ[t] = Θ[t]′

Table 4.1: Cautious criterion

Each time we get updated Θ[t]′ from previous Θ[t−1] by recursive PEM, calculate

the difference between them, which is called update step size, and compare it with a
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certain threshold δa, δb. T is the frequency count of large errors; a large count would

indicate that a large parameter change is needed. Θ[t] is the new parameter. The

underlying rule behind this criterion is that a small update step size, which means a

little variation in process, is tolerable. This indicates that no adaptation is needed. A

single large update step size is treated as the result of abnormal measurements which

should be ignored. Several persistent large update sizes indicate there has been an

abrupt change in process behaviour and proper adaptation needs to be applied. As a

result, an overall framework for on-line adaptation is summarized in Figure 4.3.

57



Initialization

0 , (0)P

New Lab data & Input
,Lab

t ty u

Calculate one-step ahead prediction output
ˆty

Calculate Gradient Vector

 
1 2

,

T

t t t

n

y y yt
  

   
    
   
 

  
  
 
  t ty y y y y y 
 
 y y y y y y y y y y y yy y y  y y y y y y  y y y 
  
 
 
 
  
 y y y y y y  y y y y y y y y y y y y  y y y y y y
      
 
 
 
            

Calculate                                  and                      

 

   

   

[ 1]

[ 1] [ 1]

[ 1] 1 [ 1]

,

( ) 1 , ( 1) ,

( ) ( 1) ( 1) , ( ) , ( 1)

t Lab
t t

t T t

T t t

t y y

S t t P t t

P t P t P t t S t t P t



 

 




 

  

  

    

       

Update the parameters

   [ ] [ 1] [ 1] 1 [ 1]( 1) , ( ) ,t t T t tP t t S t t           

1 ?t t 
  

T 2

( ) ( )
T 0

t t

P t P t
  





( ) ( )
T 0

t t

P t P t
  





1

T T 1
t t  

 

Wait until next new 
lab data

START

Yes
No

Yes

No

 [ 1], tt  ( )S t ( )P t

Adaptive input data preprocess

Evaluate the reliability of Lab data

Reliable

Robust 
Layers

Recursive 
PEM

Cautious 
Update

Figure 4.3: Recursive adaptation mechanism
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4.4 Adaptive Soft Sensor for Naphtha:Bitumen Ra-

tio in Inclined Plate Settler

4.4.1 Process Description

The main objective for the oil sands industry is the separation of bitumen from other

components in oil sands, such as water and minerals. First, the oil sand is mixed

with hot water and fed into the Primary Separation Vessel (PSV). Under the force

of gravity, the resulting mixture is separated into three layers in the PSV, namely

bitumen froth, middling and sand. The lightest layer, i.e. bitumen froth, floats to the

top of PSV and then is sent to the froth treatment plant to remove residual water and

fine solids. Bitumen froth is first diluted by mixing with process aids, i.e., naphtha so

that the density differences between bitumen, water and solids are increased. Then,

the diluted froth is fed into the Inclined Plate Settler (IPS) which is used to separate

mixture of naphtha, bitumen and water from minerals.

The Naphtha to Bitumen(N:B) ratio in the product stream of IPS indicates the

quality of bitumen froth, thus serving as an important quality variable. In order to

achieve an effective separation at affordable cost, the N:B ratio needs to be maintained

at a certain level. However, the N:B measurements are not available on demand. As

shown in Figure 4.5, the on-line hardware analyzers cannot provide accurate and

reliable measurement of N:B. They are also expensive and difficult to maintain. Ac-

curate N:B measurement available through off-line laboratory analysis cannot be used

in real-time monitoring or control. Therefore, there is a need to develop a reliable

soft sensor to provide more accurate estimate of N:B in product streams.
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Figure 4.4: Schematic diagram of the inclined plates settler (IPS)
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Figure 4.5: N:B ratio measured from the lab analysis and on-line analyzer
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Process Variable Symbol
Fn Naphtha flow-rate
Ff IPS feed flow-rate
ρf IPS feed density
Fu IPS underflow flow-rate
V Accumulated volume of the mixture
ρv Density of the accumulated volume

Table 4.2: A summary of the influential process variables, N:B soft sensor

4.4.2 Soft Sensor Design

Based on process knowledge, process variables identified to be influential in soft sensor

design, are listed in Table 4.2. Sampling interval for the on-line measurements is 1

min, while the laboratory analysis of N:B is recorded every 2 hours. The identification

dataset consists of the records of on-line measurements collected from May 1st 2012-

Jan 1st 2013.

In order to estimate N:B ratio in the product stream, the mass balance of the pro-

cess was analysed. Obviously, applying a first principle model requires the density and

composition measurements. In the absence of these measurements, a grey-box model

of the process was considered where available knowledge of the process was applied to

determine an appropriate model structure. After the structure was defined, historical

data collected from the operating process was used to reveal the parametric relation-

ship between N:B ratio and other on-line measurements. Based on first-principle and

data analysis, a grey-box model for N:B prediction was constructed.

NBproduct =

Fn

θ1Ff−θ5Fn
(1 + d(V ρv)/dt

Ffρf
) + θ2 + θ3Fu

Ff

1 + d(V ρv)/dt
Ffρf

+ θ4
Fu

Ff

+ θ6 (4.20)

61



4.4.3 Off-line Evalutaion

Auto-validation

The performance of developed soft sensor was first verified on the identification

dataset collected from January 1, 2013 to June 1, 2013. The scatter plots for product

N:B predictions vs. lab measurements are shown in Figure 4.6.a and Figure 4.7.a.

For proprietary reasons, all units and magnitudes of the plots are removed. The ideal

case would be for all the data points to lie exactly along the diagonal line, indicating

that the real-time predictions and the lab data are exactly the same. It can be ob-

served that N:B predictions from the soft sensor without adaptation can fit the lab

data well in the identification data-set. Also, Figure 4.6.b and Figure 4.7.b display

the run-sequence plots of the predicted and target values.

Cross-validation

Next, the prediction performances of the designed soft sensors are evaluated on the

validation data collected from April 01, 2013 to July 1, 2012. The scatter plots for

N:B predictions obtained from the developed soft sensors vs. lab measurements are

shown in Figure 4.8.a and 4.9.a. Moreover, the time trends of different N:B predictions

are presented in Figure 4.8.b and 4.9.b. It is observed that the scatter plot of the

adaptive soft sensor is closer to the lab data line when compared with the soft sensor

without adaptation. In terms of time trends of predictions, it is observed that even

when a good model is identified (shown in Figure 4.6 and 4.7), without adaptation,

predictions of soft sensors can match the lab data well at the beginning, (first 200

points) but afterwards (200-1000 points) the performance gradually deteriorates. By

contrast, the adaptive soft sensor can better match the trend of lab data and has

smaller bias for a longer time period, which illustrates that on-line adaptation can

significantly enhance the performance of the soft sensor

Methods RMSEP R
Soft Sensor A 0.0403 0.2462
Soft Sensor A with RPEM update 0.0221 0.5753
Soft Sensor B 0.0410 0.2456
Soft Sensor B with RPEM update 0.0215 0.5894

Table 4.3: Cross-validation results of N:B soft sensors
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Figure 4.6: Auto-validation IPSA (Jan-Apr 2013)
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Figure 4.7: Auto-validation IPSB (Jan-Apr 2013)
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Figure 4.8: Cross-validation IPSA (Apr-Jul 2013)

4.4.4 On-line Evaluation

Off-line evaluation showed that the performance of the adaptive soft sensors was

satisfactory. Thus, there were further tests performed in IPS units of extraction

process. To implement the soft sensor, an Object linking and embedding for Process

Control (OPC) platform was built in MATLAB to communicate with various devices

in control systems. As shown in Figure 4.10, in Distributed Control System (DCS)

different tags were created for the on-line measurements, such as valves, transmitters,

analyzers and so on. Through Local Control Network (LCN), OPC servers had access

to communicate with DCS to get on-line measurements. As a result, the OPC object
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Figure 4.9: Cross-validation IPSB (Apr-Jul 2013)
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in MATLAB could retrieve data in OPC servers through Process Control Network

(PCN). In this way, all the necessary process variables for computation of predictions

were available and the soft sensor predictions were sent back to DCS for control

applications. To implement on-line adaptation, lab data was collected from Process

Information (PI) Datalink System through a Local Area Network (LAN) and PCN,

then adaptation was performed in MATLAB.

Two developed soft sensors have been tested on-line since September 10, 2013.

Figure 4.11 and 4.12 show snapshots of the scatter plots and run sequence plots for

N:B measurements versus laboratory measurements for IPSA and IPSB, respectively.

It can be observed again that the adaptive soft sensor can provide accurate N:B

predictions and outperform the soft sensor without adaptation. According to Table

4.4, the adaptive soft sensor can achieve better performance with smaller RMSE and

higher correlation coefficient R.

Methods RMSEP R
Soft Sensor A 0.0456 0.3205
Soft Sensor A with RPEM update 0.0260 0.5746
Soft Sensor B 0.0490 0.2997
Soft Sensor B with RPEM update 0.0259 0.5985

Table 4.4: On-line evaluation results for N:B soft sensors
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Figure 4.11: On-line evaluation IPSA (Sep-Dec 2013)
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Figure 4.12: On-line evaluation IPSB (Sep-Dec 2013)
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4.5 Conclusion

Grey-box soft sensors which are developed based on first principles of processes are

widely used in industry due to their higher reliability and practicability. They can

provide timely and crucial information that can help real-time process control. De-

spite the usefulness of the fundamental statistical modeling method - PEM, the on-

line implementation in industry still remains a challenge because of the time-varying

behaviour of processes. Industrial processes often vary due to changes in the envi-

ronment and materials, variation in catalyst activity, fouling and/or abrasion in the

process equipment. Due to these time-varying factors, it is difficult for data-driven

methods to sustain long-term performance. Thus, it is desirable to integrate on-line

adaptation in the implementation procedure. In this chapter, a recursive prediction

error method (RPEM) based adaptation mechanism is adopted. Adaptive data pre-

processing and cautious update strategy are integrated to ensure the robustness and

effectiveness of the adaptation. This adaptation mechanism was applied to the design

of adaptive soft sensors for oil sands industry. Based on off-line evaluations, these

adaptive soft sensors can perform more accurate prediction of target variables, IPS

product N:B ratio. Moreover, the adaptive soft sensors have already been implement-

ed on-line and demonstrated superior prediction performance.
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Chapter 5

Conclusions

5.1 Summary of Thesis

This thesis focuses on some key challenges to the development and implementation

of soft sensors. Despite increasing number of publications concerning these fields,

development and maintenance of successful soft sensors applications is still laborious.

In the development phase of a soft sensor, traditional methods, such as data-driven

methods (OLS, PCR, PLS) as well as some model-driven methods, may not achieve

satisfactory performance. Thus, the locally weighted modeling method (also called

Just-in-time (JIT) modeling) was proposed to deal with this issue. JIT methods can

deal with multiple operating modes issues as well as nonlinearity. The performance of

JIT method is affected by following three aspects: selection of local calibration sam-

ples, selection of model structure and estimation of model parameters. Considering

these points, a Bayesian framework for just-in-time modeling was proposed to offer

a systematic way to search for the optimal combination of model structures, local

calibration samples as well as model parameters for each operating point. Bayesian

model structure selection can automatically penalize model complexity, thus avoid-

ing over-fitting. The Bayesian approach also makes it possible to incorporate prior

knowledge into estimation of the main parameter which can enhance the accuracy of

estimation. To further improve the Bayesian JIT method, a new similarity function

was proposed and integrated into the developed Bayesian framework. This new input-

output similarity function takes both input and output information into account in

order to ensure the representativeness of local calibration samples.

Even if a good soft sensor is developed initially, after implementing for a certain
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period of time, the performance can deteriorate due to time-varying behaviours of

processes. To deal with this issue, during the implementation phase of a soft sensor

project, on-line adaptation is often integrated. In this thesis, an adaptation mecha-

nism for nonlinear grey-box models was proposed based on recursive prediction error

method. Adaptive data preprocessing was applied to deal with the negative effect

of noise and abnormal values in the measurement. A cautious update strategy was

integrated to ensure the reliability of lab data and recognize the need for adapta-

tion in order to guarantee the robustness and effectiveness of the adaptation. This

proposed framework was successfully applied to adaptive soft sensors designs within

the oil sands industry: naphtha : bitumen ratio soft sensors. To develop the Naph-

tha to Bitumen soft sensor, mass balance equations were used to determine a proper

model structure. In the absence of density and composition measurements, again, a

nonlinear grey-box model was built and prediction error method was used to identify

the unknown parameters. Due to abrasion in the process equipment and changes in

operating region, the process exhibited a form of time-varying behaviour. Thus, to

deal with this issue, on-line adaptation was applied to develop adaptive soft sensors.

Based on these results, these adaptive soft sensors can produce accurate predictions

for target variables for a long period of time.
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5.2 Future Work

In this thesis, the proposed Bayesian framework was developed to solve Just-in-time

modeling problems. To further improve the performance and efficiency, one can con-

sider following aspects in future work:

1. In Chapter 2, the proposed Bayesian framework is developed under assumption

that the noise-free input follows a Gaussian distribution. Such assumptions are

commonly made in Bayesian methods, such as Kalman filtering. Even when this

assumption is not satisfied the results can still be better than those obtained by

other methods. However, in order to improve the accuracy of assumption and

to further improve the performance, one can assume Student’s T distribution

which will make this method more robust to outliers.

2. In Chapter 2, Bayesian framework offers a way to take into account the different

contribution of noise in measurements, based on variance. Although there is

an empirical estimation method for these variances, a more systematic way to

estimate the variances can be considered.

3. In Chapter 3, a new input-output similarity function was proposed to specify the

local calibration samples. In order to calculate the distance in output space,

query outputs were estimated by the global PLS model using corresponding

query inputs. This method is effective when behaviour of the process tends

to be linear, or it cannot provide fairly accurate estimates of query outputs.

However, the JIT methods are mainly used to deal with nonlinearity. The

situation may contradict with the assumption behind the alternative which is

used to get estimated query outputs. Instead of using the global PLS model,

one may consider other nonlinear modeling methods, such as Kernel PCA, PLS,

Supported Vector Machine (SVM) and etc. to build the model for estimation

of query outputs.

4. In Chapter 3, the balance parameter ω and localization parameter λ were deter-

mined by LOOCV and kept fixed for each different operating points. However,

it is possible that at each operating point, the optimal balance parameter and
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localization parameter may be different, so one can consider it as a hyperpa-

rameter in hierarchical Bayesian framework which will be specified for each

operating point during real-time operation.

5. Although the proposed Bayesian framework can be used for real-time identifi-

cation, the large computational burden is still a problem.

6. The abnormal point detection criteria in adaptation mechanism assumes that

process variables follows Gaussian distributions. Although this assumption is

usually true for some cases, in order to strength generalizability of the method,

one may consider other different distributions of process variables, thus to de-

velop a robust recursive PEM which can deal with the abnormal points auto-

matically and more systematically .
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Algorithm I:Regular Locally Weighted Partial Least Square

1. Determine the number of latent variables H, localization parameters λ

2. When query sample xq arrives, calculate the similarity matrix Sq using Eqns.

2.5, 2.6 and 2.7 .

3. Calculate the weight matrix, loading matrix and regression coefficient vector

by:

W = [w1,w2 · · ·wH ] (1)

P = [p1,p2 · · ·pH ] (2)

q = [q1, q2 · · · qH ] (3)

wh =

(X−
l−1∑
j=1

tjpj
T )

T

Sq(X−
h−1∑
j=1

tjpj
T )∥∥∥∥∥(X−

h−1∑
j=1

tjpjT )
T

Sq(X−
h−1∑
j=1

tjpjT )

∥∥∥∥∥
(4)

ph =

(X−
h−1∑
j=1

tjpj
T )

T

Sqth

th
TSqth

(5)

qh =

(y −
h−1∑
j=1

tjqj
T )

T

Sqth

th
TSqth

(6)

where the columns of W ∈ RM×H are orthonormal weight vectors and th denotes

the hth column of T which is calculated by:

th = (X−
h−1∑
j=1

tjpj
T )wh (7)

4. Calculate output of the local PLS model by:

ŷ = xqW(PTW)−1qT (8)
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Algorithm II: Estimation of Empirical Prior Over Main Pa-
rameters

1. For industry data, it is rational to assume in a short period of time (i.e. one

sampling interval), the input and output are kept constant. The incremental

input output measurements are resulted from the measurement noise. So the

noise variance Qex , Qey is calculated by the variances of the distribution of

incremental input and output measurements:

Jx = [x1 − x2,x2 − x3, · · ·xN−1 − xN ]T (9)

jy = [y1 − y2, y2 − y3, · · · yN−1 − yN ]T (10)

Qex =
1

2
var(Jx) (11)

Qey =
1

2
var(jy) (12)

2. Solve the Bayesian LW-PLS modeling problem with a uniform priori for all the

main parameters.

3. Estimate the set of hyperparameters µb,Qb, µx,Qx as follows:

µb = E[PqT ] (13)

Qb = c(X̂
T
SqX̂)−1 (14)

µx = E[X̂] (15)

Qx = Cov[X̂] (16)

4. Solve the Bayesian LW-PLS modeling problem using the empirically estimate

priori.
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Algorithm III: Estimation of Empirical Prior Over Localiza-
tion Parameter

1. Determine proper model structure H.

2. Choose the similarity function given in Eqn. 6 and determine a proper set of

localization parameters [λ1, λ2, · · ·λf ].

3. For f = 1 : F

(1). Choose λf as localization parameter.

(2). For n = 1 : N

Let {X−n,y−n} denote calibration samples except {xn, yn}. Choose {X−n,y−n}

as calibaration samples and xn as query sample, and apply the regular LW-PLS

algorithm (Algorithm I ) to {X−n,y−n,xn} get the output prediction ŷn.

(3). Calculate the prediction error

Ef =
1

N

N∑
n=1

(ŷn − yn)2 (17)

4. Choose the localization parameter that results in the lowest prediction error,

denote it as λk and record the value for each point in similarity function as

ϕi =
1

λkσdi
(i = 1, 2 · · ·N) (18)

5. Determine a Gamma prior distribution over ϕ based on {ϕ1, ϕ2 · · ·ϕN}.
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Figure 4.1: Recursive adaptation flowchat

and data scaling.

2. Performance feedback: The need for adaptation should be triggered by monitor-

ing the performance of the soft sensor. There are different criteria to evaluate

the performance and determine when to apply adaptation to the soft sensor.

3. Adaptation algorithm: Once the data are available, and there is a need for

adaptation, the adaptation algorithm can be applied to adjust the soft sensor.

Despite the increasing number of publications dealing with adaptation of soft

sensors, several issues remain open. Most of the existing methods for adaptation are

moving window methods or methods involving recursive updating of OLS, PCA and

PLS which are designed for adaptation of linear models[52, 35, 53]. They cannot

be applied directly to nonlinear models. Moreover, in practice, the second aspect,

i.e., performance feedback is often ignored. Instead, the adaptation is performed at

a certain frequency or once new lab analysis output is available. This may result in

over-updating issues.

Considering these challenges, the recursive prediction error method (RPEM) is

adopted in this chapter as an adaptation algorithm for grey-box models which can

50



Initialization

0 , (0)P

New Lab data & Input
,Lab

t ty u

Calculate one-step ahead prediction output
ˆty

Calculate Gradient Vector

 
1 2

,

T

t t t

n

y y yt
  

   
    
   
 

  
  
 
  t ty y y y y y 
 
 y y y y y y y y y y y yy y y  y y y y y y  y y y 
  
 
 
 
  
 y y y y y y  y y y y y y y y y y y y  y y y y y y
      
 
 
 
            

Calculate                                  and                      

 

   

   

[ 1]

[ 1] [ 1]

[ 1] 1 [ 1]

,

( ) 1 , ( 1) ,

( ) ( 1) ( 1) , ( ) , ( 1)

t Lab
t t

t T t

T t t

t y y

S t t P t t

P t P t P t t S t t P t



 

 




 

  

  

    

       

Update the parameters

   [ ] [ 1] [ 1] 1 [ 1]( 1) , ( ) ,t t T t tP t t S t t           

1 ?t t 
  

T 2

( ) ( )
T 0

t t

P t P t
  





( ) ( )
T 0

t t

P t P t
  





1

T T 1
t t  

 

Wait until next new 
lab data

START

Yes
No

Yes

No

 [ 1], tt  ( )S t ( )P t

Adaptive input data preprocess

Evaluate the reliability of Lab data

Reliable

Robust 
Layers

Recursive 
PEM

Cautious 
Update

Figure 4.3: Recursive adaptation mechanism
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