
Algorithms in Throughput Maximization

by

Dylan Vern Phillips Hyatt-Denesik

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

University of Alberta

c© Dylan Vern Phillips Hyatt-Denesik, 2019

Abstract

Scheduling problems are problems in which jobs are assigned to machines at particular

times. A common objective of scheduling is to schedule as many jobs before their deadline

as possible, called Throughput Maximization . In this thesis, we provide algorithms for

various cases of Throughput Maximization problems, varying bounds on the number of

release times, job sizes, deadlines, and even the number of release times the release time

and deadlines of a job can span across.

In Chapter 2, we examine the case where both the number of job sizes and the number

of release times is bounded by a constant value. The result in this Chapter is progress to

closing a known open problem of Throughput Maximization with only constant sized

job sizes [20]. The algorithm described in this Chapter is a dynamic program that relies on

a framework based around what is known as the Jackson Rule or Earliest Due Date ordering

[13].

In Chapter 3, we consider the case of Throughput Maximization where the number

of release times and deadlines are bounded by a constant value on a constant number of

machines. In this Chapter we find a pseudo-polynomial time exact algorithm that we extend

to a PTAS. This algorithm exploits the fact that we can partition the schedule into intervals

between two consecutive release times or deadlines, which allows us to assign jobs to each

of these intervals in polynomial time. We also show that this case is NP -Complete by a

reduction from the Partition problem.

In Chapter 4, we present the most general result in this thesis by finding a pseudo-

polynomial time algorithm for the case of Throughput Maximization where the only

restriction is that there are a constant number of release times, which we extend to the case

where the interval between a jobs release time and deadlines has only a constant number

of release times, called the span. This algorithm makes use of similar approach to that of

Chapter 3, in that we can partition jobs to intervals between consecutive release times and

find the schedule interval by interval. The result for the constant span, we use the first

ii

algorithm of this chapter as a subroutine over the maximum span of release times.

iii

No hurdle is too high for a man who simply knows how to adjust

– Gavin Dunne

iv

Acknowledgements

I would like to thank Mohammad Salavatipour for his role as my supervisor and his guidance

in my development as a researcher. I am also grateful for his patience in reviewing this text,

helping me to revise it and to present the work in a clear and effective manner.

v

Contents

1 Introduction 1
1.1 Preliminaries . 1

1.1.1 Optimization Problems and Approximation Algorithms 1
1.1.2 Scheduling Problems . 3
1.1.3 Knapsack Problems . 6

1.2 Problems Considered . 7
1.2.1 Terms and Definitions . 8

1.3 Prior and Related Work . 9

2 Constant Number of Job Sizes and Release Times 11
2.1 Problem Overview . 11

2.1.1 Canonical Schedules . 12
2.2 Algorithm . 15
2.3 Algorithm Analysis . 17

3 Constant Number of Release Times and Deadlines 18
3.1 Problem Overview . 18
3.2 Pseudo-Polynomial Time Algorithm . 20

3.2.1 Algorithm . 21
3.2.2 Algorithm Analysis . 22

3.3 PTAS for Constant Number of Release Times and Deadlines 23
3.3.1 Algorithm . 24
3.3.2 Analysis . 24

3.4 General Case is Weakly NP-Complete . 25
3.5 Extending to a Constant Number of Machines 25

4 Constant Number of Release Times 27
4.1 Constant number of Release Times . 27

4.1.1 Canonical schedule . 29
4.1.2 Algorithm . 30
4.1.3 Analysis . 32

4.2 Constant Span . 33
4.2.1 Canonical Schedules . 34
4.2.2 Algorithm . 35
4.2.3 Algorithm Analysis . 35
4.2.4 Extending to a Constant Number of Machines 36

5 Conclusion 38

References 40

Appendix A Multiple Knapsack Problem for Uniform Profits 42

vi

List of Figures

2.1 In this example we schedule jobs {1, 2, 3, 4, 5, 6} in window [sk, sk+1], with
start times in release interval σ(k) = i. The pale colored jobs represent Yi
since they all have deadline less than sk+1. The grey jobs represent Xi since
they have deadline at least sk+1. Note that job 6 is scheduled such that it
spans 3 release times, ri+1, ri+2, and ri+3. 14

3.1 In this example the grey blocks represent allotments and the white blocks
represent the straddle jobs of a canonical schedule. 21

4.1 In this example, the dark blocks are the straddle jobs (ji, si) and (ji+1, si+1),
and the light grey blocks are the allotments. The jobs {1, 2, 3, 4} are the
jobs with deadline in this interval and are scheduled before the allotments
in increasing order of deadline and right-shifted to the starting time of the
allotments, which is denoted Li. 30

vii

Chapter 1

Introduction

1.1 Preliminaries

We first provide a summary of terms and concepts used in this thesis. The definitions here

are from [4], [22], and [23].

1.1.1 Optimization Problems and Approximation Algorithms

Decision Problems and NP-Completeness

A decision problem is a problem that has either a “yes” or a “no” as an answer. Decision

problems can be viewed as languages over the alphabet {0, 1}∗. The language corresponding

to a decision problem is the set of binary strings that encode yes instances of the problem.

NP is the class of languages such that for each language L ∈ NP there are a pair of

polynomial functions p and q, and a deterministic Turing Machine M such that for every

string x ∈ {0, 1}∗ one of the following is true.

• if x ∈ L, then there exists a string y ∈ {0, 1}∗, called a certificate, with length at most

p(|x|) such that M(x, y) accepts in at most q(|x|) many steps.

• if x /∈ L, then for any string y with length at most p(|x|), M(x, y) rejects in at most q(|x|)

many steps.

Let L1 and L2 are two languages in NP, L1 is said to reduce to L2 if there is a Turing

machine M : {0, 1}∗ → {0, 1}∗ that maps a string x to a string y ∈ L2 if and only if x ∈ L1,

that takes a polynomial in x number of steps. A language L1 is called NP-hard if for every

language L2NP, L1 reduces to L2. A language is called NP-Complete if it is both in the

class NP and NP-hard.

An NP-Complete language L is called strongly NP-Complete if every language in NP

can be polynomially reduced to L in such a way that the values of in the reduced instance are

always written in unary. If L is not strongly NP-Complete then it is weakly NP-Complete.

1

Optimization

An NP-optimization problem, Π, consists of

• A set of valid instances, DΠ, where we can recognize if an instance I ∈ DΠ in time

polynomial in |I|. We assume that numbers of the instance I are written as binary

strings, and therefore any number that is exactly specified is rational.

• Each instance I ∈ DΠ has a set of feasible solutions, SΠ(I) 6= ∅. We assume that every

solution s ∈ SΠ(I) is polynomially bounded in length in |I|, and that there is a polynomial

time algorithm that decides if s ∈ SΠ(I) given the pair (I, s).

• There is an objective function objΠ, that assigns a nonnegative rational value to each

(I, s) pair, where I is an instance of Π and s is a feasible solution of I. This function

is computable in polynomial time, and can also be referred to with more common terms

such as cost, length, weight etc.

An optimal solution of a maximization (minimization) optimization problem, Π, is a fea-

sible solution that achieves the largest (smallest) objective function value. We let OPTΠ(I)

denote the objective function value of an optimal solution to instance I, which we will denote

as OPT when it is clear from context that we mean the optimal of an instance.

For an NP-optimization problem there is an obvious decision problem that can be as-

sociated by simply finding a bound on the optimal solution. The decision version of an

NP-optimization problem Π is an instance I of Π and a rational number B, which we de-

note by the pair (I,B). If we have a maximization (minimization) problem Π, then we can

define the decision version of the problem to have a “yes” answer if and only if there is a

feasible solution to I with cost at least B (at most B). So we say that (I,B) is a “yes”

instance to the problem if the bound is satisfied, and a “no” instance otherwise.

If we can compute the optimal solution for Π in polynomial time, then we can compare

this solution to B and solve the decision version of the problem. What this means is that

if we can establish hardness for the decision problem, then the hardness is inherited by Π.

If the decision version of a problem is NP-hard then we can abuse notation to say that

the optimization version is NP-hard as a shorthand when saying that it is the optimization

version of an NP− hard problem.

Approximation Algorithms

Let Π be a maximization (minimization) problem, and let δ be a function, δ : Z+ → Q+, with

δ ≤ 1 (δ ≥ 1). An algorithm A is said to be a factor δ approximation algorithm for Π if, its

running time is bounded by a polynomial in |I|, and, for every instance of I, A gives a feasible

solution s ∈ SΠ(I) such that objΠ(I, s) ≥ δ(|I|) ·OPT(I) (objΠ(I, s) ≤ δ(|I|) ·OPT(I)). We

say that δ is the approximation ratio of A.

2

We say that an algorithm A is an approximation scheme for NP-hard optimization

problem Π if, given an instance I of Π and an approximation parameter ε > 0, it out-

puts a solution s such that objΠ(I, s) ≤ (1 + ε)ȮPT if Π is a minimization problem and,

objΠ(I, s) ≥ (1− ε)ȮPT if Π is a maximization problem. A is said to be a polynomial time

approximation scheme, or PTAS for short, if its runtime is bounded by a polynomial in |I|

for every fixed ε > 0.

The definition for a PTAS only requires that the runtime is bounded by a polynomial in

|I|, but may depend arbitrarily on ε. If we have an algorithm A that satisfies the conditions

of a PTAS, but has runtime bounded by a polynomial in both |I| and 1/ε, then we say that

A is a fully polynomial time approximation scheme.

Reductions

Let Π1 and Π2 be two decision problems. We say that there is a polynomial time reduction

from Π1 to Π2, often said that Π1 reduces to Π2 in polynomial time, if there is a polynomial-

time algorithm A that takes instance I1 of Π1 to I2 = A(I1) which is an instance of Π2,

such that I1 is a yes instance of Π1 if and only if I2 is a yes instance of Π2.

We make use of the hardness of the Partition problem later on. The Partition

problem can be written as

Definition 1.1.1 (Partition). Given n positive integers s1, . . . , sn, is there a subset J ⊆

I = {1, . . . , n} such that ∑
i∈J

si =
∑
i/∈J

si?

We will use the well known hardness result due to Karp [15] we rely on.

Theorem 1.1.1. The Partition problem is weakly NP-complete

1.1.2 Scheduling Problems

A common type of optimization problem and one that will be central to this thesis is that

of creating a schedule. There are n jobs, each with index j ∈ {1, . . . , n}, that must be

scheduled on m machines Mi(i = 1, . . . ,m). Each job j has a release time rj , which is

the first time point that it is available for processing. Each job j may be associated with a

specific subset of machines M̃ ⊆ {M1, . . . ,Mm}, where j may only be scheduled on machines

from M̃ . If M̃ is equal to the set of all machines for each job then we say that that the

machines are parallel, and dedicated machines otherwise.

Jobs possess a cost function fi(t), which measures the cost of completing job Ji at time

time t. Cost functions can be computed solely based on time, but can also account deadlines

dj and weights into their computation wj . In general, we assume that the values pj , rj , dj ,

and wj are all integer, across any range of numbers a1, . . . , an we set amax = maxi ai and

3

amin = mini ai, so we understand the meaning of terms like rmax and pmax. A schedule is

called feasible if the time allocated to separate jobs does not overlap, if two time intervals

allocated to a single job do not overlap, and if it meets any problem-specific characteristics.

Scheduling problems can be classified by the differences in machine environments, job

characteristics, and optimality criterion. These variants of scheduling problems can be

specified in a 3-field notation α|β|γ introduced by Graham et al. [10], where α is a string

describing the machine environment, β is a string describing the job characteristics, and γ

denote the optimality criterion.

Job Characteristics

The job characteristics string is often specified by up to 6 string elements β1, β2, β3, β4, β5,

and β6 as in [4].

The string element β1 indicates whether preemption is allowed, which, if allowed, means

that a job that is processing may be interrupted and resumed at a later time, even on

another machine. If preemption is allowed then β1 = pmtn, otherwise β1 does not appear

in β. Note, that a job may be interrupted and resumed several times.

The string element β2 describes precedence relations between jobs. Precedence relations

can be represented by an acyclic digraph G = (V,A) where V = {1, . . . , n} corresponds to

the jobs and there is edge (i, k) ∈ A if and only if job ji must be completed before job jk.

In this case we set β2 = prec, otherwise it does not appear in β.

The string element β3 describes the nature of release times for jobs. We let β3 = rj if

each job has its own release time, and β3 = r if all jobs share a release time r, though in

this case β3 is often omitted as it does not change the problem. If β3 is equal to #rj ∈ O(1)

then the number of unique release times is bounded by some constant value. The interval

between consecutive unique release times is called a release interval.

Restrictions on processing times are denoted by β4. If all jobs have identical processing

time then β4 is written as pj = p, and is pj = 1 to denote the specific case of unit processing

times. The number of unique processing times is denoted by #pj , so if the number of unique

processing times is bounded by a constant then β4 is equal to #pj ∈ O(1). The value of β4

could be written in another way if the characteristic implied is obvious such as pj ∈ {1, 2},

which states that processing times are either 1 or 2.

Job deadlines are described by string element β5, which is equal to dj if each job j has

a deadline, and it’s equal to #dj ∈ O(1) if the number of unique deadlines is bounded

by a constant. One can also use β5 to describe the relation between release times and

deadlines, we use spanj to denote the number of release times between job j’s release time

and deadline.

If jobs must be grouped into batches and scheduled together then the string β6 is used.

4

A batch in this case is a group of jobs that are scheduled on a single machine concurrently,

with the completion time of the batch being equal to the completion time of the longest job.

Machine Environment

The machine environment is characterized by a string α = α1α2, where α1 describes the

type of machines, and α2 is an integer describing the number of machines. The string α1

can be from the set {◦, P,Q,R} where ◦ is the empty symbol. The case that α1 = ◦ means

each job must be scheduled on a specified machine. The value for α2 can be an integer

value or ◦, with ◦ indicating that the number of machines is not specified by the scheduling

problem. A machine environment that we care about in this work is α1 = circ and α2 = 1,

which denotes that all jobs may be scheduled on the same machines

The machine α1 strings environments {P,Q,R} are some of the most common machines

environments, denoting different types of parallel machines. That is, each job can be pro-

cessed on any one of the available machines M1, . . . ,Mm. If α1 = P then we say that the

machines are identical and parallels, so the processing time of job j is pj on each ma-

chine. If α1 = Q, then the machines are uniform and parallel. That is, each job j has

processing time pj/si on machine Mi, where si is the speed of a machine. If α1 = R, the

speed of machine is independent and parallel to all other machines. That is, job j has

processing time pj/si,j on machine Mi, where si,j is the speed of job j on machine Mi.

Optimality Criterion

The finishing time of job j is denoted by Cj , and the associated cost function fj(Cj).

There are two common types of overall schedule cost functions

fmax(C) := max{fj(Cj)|j = 1, . . . , n}

and ∑
fj(C) :=

n∑
j=1

fj(Cj)

which are referred to sometimes as bottleneck objectives and sum objectives respectively.

The problem is thus to find a schedule that maximizes or minimizes the total cost function.

The most common objective function considered is the makespan max{Cj |j = 1, . . . , n}

problem, with the goal of minimizing this value.

Other objective functions can depend on the deadlines associated to each job. Some

objectives include for each job j are: lateness, Lj := Cj − d − j; tardiness, Tj :=

max{0, Cj − dj}; and throughput, Uj := 1 if Cj ≤ dj or 0 otherwise. If the objective

function is
∑
j Uj or

∑
j wjUj then the objective is often called throughput maximization,

and it is common to ignore the string dj in the job characteristic portion of the Graham

representation of the problem since the problem would be trivial without job deadlines.

5

Schedule Ordering In a Single Machine Instance

The single machine case of scheduling has been the subject of research since early work due

to Jackson [13]. It is interesting to note that for single machines problems, in the case that

rj = 0 for each job and the objective function is monotone with respect to job finishing

times, then only schedules without preemption and without idle time need to be considered.

This fact follows since the optimal objective function does not increase if preemption is

introduced.

Consider a schedule where job j is scheduled preemptively in the two intervals [t1, t2)

and [t3, t4), where t1 < t2 < t3 < t4. We can reschedule the part of j that is in [t1, t2) to be

between [t3 − (t2 − t1), t3), with anything originally scheduled in [t3 − (t2 − t1), t3) getting

pushed back t2 − t1 units of time. Due to the monotonicity of the objective function, if we

repeat this argument for every instance of preemption we can eliminate preemption with no

loss to the objective function.

Another useful property of the single machine environment with shared release time job

characteristic is the following due to Jackson [13]:

Theorem 1.1.2 (Jackson Rule). In the case of all jobs sharing a release time, re-scheduling

any feasible schedule in non-decreasing order of deadline results in a feasible schedule with

the same throughput.

Another common name for this result is the Earliest Due Dates rule or EDD rule. We say

that jobs are scheduled according to the Jackson rule if they are scheduled in non-decreasing

order of deadline.

An early application of the Jackson Rule was in Moore’s Algorithm [19], which says that

given n jobs and a single machine, rj = 0 for all j there is a polynomial time algorithm

for maximum throughput. The algorithm is to sort the jobs in non-decreasing order of

processing time, and schedule them in that order until a job is late, or every job has been

considered. If job j is late, then reschedule the jobs scheduled and j according to the Jackson

Rule, if a job is still late when rescheduled then we do not schedule j, and let the other jobs

be scheduled in non-decreasing order of processing time. If every job has been considered,

then reschedule the jobs according to the Jackson Rule.

1.1.3 Knapsack Problems

In an instance of the typical Knapsack Problem, we are given a set of items N =

{1, . . . , n}, each item j ∈ N has a profit pj and a weight wj , and a knapsack which has a

capacity c. The most typical objective of this problem is to pick out a subset Ñ ⊆ N such

that the sum of item weights in Ñ does not exceed the capacity c, but the sum of item

profits in Ñ is maximized.

6

We are interested in the generalization to the Knapsack Problem known as the Mul-

tiple Knapsack Problem (MKP) where we assume that there are multiple knapsacks

Mi, i = 1, . . . ,m, where each knapsack Mi has positive capacity ci. The goal in this case is

to find m disjoint subsets Ñi ⊆ N , i = 1, . . . ,m, where the items of each Ñi are assigned to

knapsack Mi, such that the sum of item weights does not exceed ci, with the objective of

maximizing the sum of item weights from all Ñi subsets.

The MKP is known to be strongly NP -hard and thus does not admit a pseudo-polynomial

time algorithm. However, if we assume that items have uniform profit, then the problem

has a very simple pseudo-polynomial algorithm that we show in Appendix A. If the items

are not assumed to possess a uniform profit then Chekuri et al. [6] showed that this problem

admits a PTAS.

1.2 Problems Considered

All problems in this thesis are considered with the throughput maximization optimality

criterion, the jobs must be scheduled non-preemptively, each has a release time and deadline,

with uniform weight.

Constant Number of Job Sizes and Release Times

In this problem, we assume that there are a constant number of processing times or job sizes,

and a constant number of release times. This problem is written using Graham notation as

1|#pj ∈ O(1),#rj ∈ O(1)|
∑
j Uj . We explore this problem in Chapter 2, where we make

use of the constant number of processing times to classify jobs to find an exact solution

in polynomial time. We will let P denote the number of unique processing times and R

denotes the number of unique release times.

Our first result is a step towards closing a known open problem [20] that says it is

unknown if there is a polynomial time solution to 1|rj , pj < C|
∑
j Uj by relaxing the

restriction on processing times but increasing restrictions on release times.

Theorem 1.2.1. There is a dynamic program that finds an exact solution to 1|#rj ∈

O(1),#pj ∈ O(1)|
∑
j Uj that is polynomial in n.

Constant Number of Release Times and Deadlines

In Chapter 3 we examine the case of Throughput Maximization where we assume there

are a constant number of unique release times and deadlines, which we write using the 3-

field notation as Pm
∣∣#rj ∈ O(1),#dj ∈ O(1)

∣∣∑
j Uj . We let R represent the number of

unique release times and D represents the number of unique deadlines. In this Chapter we

will demonstrate the algorithm on a single machine, and show that the algorithm can easily

be extended to a constant number of machines. The methods we develop in Chapter 3 to

7

solve this problem will serve as groundwork for the methods in Chapter 4 where make fewer

assumptions about the number of release times and deadlines.

Theorem 1.2.2. There is an algorithm that finds an exact solution to Pm|#rj ∈ O(1),#dj ∈

O(1)|
∑
j Uj that is polynomial in both the number of jobs and pmax

Furthermore, this case admits a PTAS.

Constant Number of Release Times

In Chapter 4 we examine the case where there are only a constant number of unique release

times and a constant number of parallel machines, which can be written using the 3-field

notation as Pm|#rj ∈ O(1)|
∑
j Uj . The algorithm presented in this Chapter generalises

the one found in Chapter 3, taking extra care to handle the fact that the number of job

deadlines is not constant.

Theorem 1.2.3. There is an algorithm that gives an exact solution to Pm|#rj ∈ O(1)|
∑
j Uj

and runs in time polynomial in n and pmax.

This is done with techniques similar to basic knapsack packing algorithms and is where

the running times dependence on pmax comes from. This leaves the problem of finding a

PTAS open.

Constant Span

The last and most general case of Throughput Maximization we examine in this Thesis

is the case where the maximum span of job release times and deadlines is bounded by a

constant, which we write in the 3-field notation as Pm|spanj ∈ O(1)|
∑
j Uj . The algorithm

for this problem uses the algorithm for Pm|#rj ∈ O(1)|
∑
j Uj as a subroutine over the

maximum span of any job. This gives the following Theorem.

Theorem 1.2.4. There is an algorithm that finds an solution to Pm|spanj ∈ O(1)|
∑
j Uj

and runs in time polynomial in n and pmax.

1.2.1 Terms and Definitions

A schedule in the preceding problems is said to be feasible if, in addition to the usual

requirements for feasibility, all jobs scheduled with completion time after their deadlines

are scheduled after all jobs scheduled with completion time at most their deadlines. This is

because we are optimizing the throughput of the schedule, so any job that is not scheduled

on time can be ignored for the purposes of future scheduling as it no longer affects the

throughput. We thus say that a job whose completion time exceeds its deadline is “not

scheduled”. Furthermore, we can say that jobs are available at a time point t if they are

not scheduled by time t, t is less than their deadline.

8

For a fixed schedule S, we say that a point p is straddled in this schedule if there is a job

whose scheduled start time and finish time are less than and greater than p, respectively.

A schedule is called left-shifted if every job starts either at their release time or at the

completion time of another job. We say that we are “left-shifting” a schedule if the order

of jobs in the schedule is preserved but the jobs are rescheduled to possibly earlier times so

that the schedule becomes left-shifted.

In general, we will enumerate unique release times and deadlines in increasing order,

r1 < r2 < · · · < rmax and d1 < d2 < · · · < dmax respectively. Note that this allows us to call

the interval between ri and ri+1 release interval i. When it is clear from context if we have

a job j then we may say that it releases at time rj and has deadline dj and size pj .

1.3 Prior and Related Work

One of the oldest studied versions of throughput maximization is a single machine with

uniform job profits, 1||
∑
j Uj . Jackson [13] showed that if all jobs can be scheduled before

their deadlines then a schedule for 1||
∑
j Uj can be found by applying what is now known

as the Jackson Rule. This problem was also considered by Held and Karp [11] who found

a general dynamic program for scheduling problems with cost function equal to the sum of

costs dependent on each job completion time. However, this algorithm was exponential in

the number of jobs, since the table was indexed by all possible subsets of jobs. An exact

O(n2) time solution to this was later found by Moore [19], who made repeated use of the

Jackson Rule to get an exact solution. This algorithm by Moore will be used in Chapter 2.

The problem 1||
∑
j wjUj is known to be weakly NP-complete [15][18], and recieved a

pseudo-polynomial time algorithm from Lawler et al. [17], which was extended to a PTAS

by Karger [14]. If the weights and release times are oppositely ordered in the sense that if

r1 ≤ · · · ≤ rn then w1 ≥ · · · ≥ wn, then Lawler [16] finds an exact solution in polynomial

time.

With the addition of release times the problem, 1|rj |
∑
j Uj , becomes Strongly NP-hard

[9]. However, Kise et al. provide a polynomial time solution to a special case of this problem

if the release times and deadlines are agreeable in the sense that r1 ≤ · · · ≤ rn implies

d1 ≤ · · · ≤ dn. A simple greedy algorithm by Spieksma [21] has been shown to give a 1/2-

approximation to this problem. Bar-Noy et al. [3] give a 1/2-approximation to 1|rj |
∑
j wjUj

by using time indexed linear programming relaxations of fractional schedules, as well as a

1− 1
(1+1/m)m -approximation to P |rj |

∑
j wjUj where m is the number of machines. Chuzoy

et al. [7] improve this result for the restricted case P |rj |
∑
j wjUj to 1 − 1/e. The current

best result is a 0.644-approximation algorithm to Pm|rj |
∑
j Uj due to Sungjin et al. [12],

who also give a 1−O(
√

log(m)/m)-approximation to P |rj |
∑
j Uj which also holds for the

weighted case if the largest deadline deadline is bounded by a polynomial.

9

A special case of throughput maximization that has received a great deal of study is for

equal length jobs. This was first considered by Baptiste [1], who closed an open problem

by finding a polynomial time solution to 1|rj , pj = p|
∑
j wjUj by a dynamic program.

Baptiste [1] also introduced the notion of left-shifting which is used extensively throughout

this thesis. Baptiste then extends the methods use in this result in [2] to find an exact

dynamic programming solution to Pm|rj , pj = p|
∑
j wjUj by applying a clever resource

profile vector that bounds the range per machine that jobs considered can be both released

in and scheduled in. The problem where the number of parallel machines is given as part of

the input is first examined by Brucker et al. in [5] where a simple polynomial time algorithm

is given for P |pj = p|
∑
j wjUj by greedily scheduling jobs based on deadline, swapping late

jobs with earlier on time jobs of less profit. The more general problem including deadlines

is shown to be solvable in polynomial time by Brucker in [4] with a network flow algorithm,

a faster algorithm was given by Dourado et al. [8].

10

Chapter 2

Constant Number of Job Sizes
and Release Times

In this Chapter we examine the problem of Throughput Maximization with a constant

number of unique release times and job sizes on a single machine, which is written in the

Graham notation as 1|#rj ∈ O(1),#pj ∈ O(1)|
∑
j Uj . The number of unique job sizes is

P and the number of unique release times is R. We will provide a dynamic programming

algorithm in this Chapter to get the following theorem.

Theorem 2.0.1. There is a dynamic programing algorithm that finds an exact solution to

1|#rj ∈ O(1),#pj ∈ O(1)|
∑
j Uj that is polynomial in n.

2.1 Problem Overview

Recall that for a fixed schedule S, a point p is straddled if there is a job whose scheduled

start time and completion time are less than and greater than p respectively. A key point

of the algorithm will be to schedule sets of jobs with start time between two release times

so that at most one job straddles a release time.

To provide intuition for the algorithm presented in this chapter, we simplify the expla-

nation by assuming that release times are not straddle by any jobs. With this assumption,

the jobs with start time in release interval i, are scheduled entirely in release interval i.

That is, every job will start at no sooner than ri, and will end no later than ri+1. This

assumption is useful because even in the case that there are straddled release times, the

intuition still holds, there is just some extra checking required to schedule jobs between

them, the difficulty lies in scheduling jobs between them.

We can thus apply Theorem 1.1.2 to any such schedule to feasibly re-schedule the jobs

in release interval i in non-decreasing order of deadline. This new ordering of jobs partitions

them into the jobs with deadline less than ri+1, which we call Yi, and the jobs with deadline

greater than or equal to ri+1, which we call Xi. Note that every job in Yi is scheduled before

11

every job in Xi. For any feasible schedule we can repeat this argument for every release

interval. Our algorithm is to find the Xi and Yi for every release interval i for an optimal

schedule.

We build the schedule one release interval at a time, starting from release interval number

one. This is so that when a job is scheduled in an earlier release interval it isn’t considered

for later ones. To find a schedule for release interval i, we assume that there is a schedule

in release intervals 1 to i− 1. We start by guessing the jobs in an optimal Xi and schedule

them in order of deadline right-shifted to ri+1.

To find Yi we consider every job with deadline in the interval (ri, ri+1) that is not already

scheduled. We consider these jobs to all have been released at time ri and have deadline

no later than the start time of jobs in Xi and apply Moore’s algorithm [19]. Assuming we

correctly guessed the optimal Xi, then this gives an optimal schedule in release interval i.

To make a guess for the optimal Xi we will guess an integer vector {xit}t∈P , where xit is

the number of jobs in Xi of size t. We will pick the first xit jobs of size t with release time

at most ri, and deadline at least ri+1 in order of deadline. That is, we will pick the jobs

available for Xi with the earliest deadline, and we say that a job picked in this way is “in”

Xi.

The remaining difficulty is to deal with jobs that straddle release times. We will deal

with this by guessing some amount of slack, s for the last job in Xi to straddle ri+1. Once

we guess this slack time, we can find jobs for Xi from those with deadline at least this slack

time instead of from those with deadline at least ri+1. Since the release time ri might also

be straddled to some time s′ we can view these jobs as being scheduled in the window [s, s′].

We will view the schedule as a sequence of these windows. We see will an example of these

windows in Figure 2.1.

2.1.1 Canonical Schedules

Our approach is to find a schedule for release intervals in increasing order, starting from the

earliest release time r1, to the last release time rmax. To see how to find these schedules, we

will take some optimal schedule and reschedule the jobs of it to adhere to a certain structure.

This structure will define so-called canonical schedules, allowing us to enumerate across all

possible canonical schedules in order to find an optimal solution.

The schedules that we will consider from here on are left-shifted unless otherwise spec-

ified, in particular we assume canonical schedules are left-shifted. By the definition of a

left-shifted schedule, the start time of every job is either the end time of another job or a

release time. Therefore, we can partition the jobs into continuous intervals of jobs whose

leftmost points are release times. We call the set of possible rightmost points of these

intervals slack times.

12

Definition 2.1.1 (Slack times). Let slack times T be the set of points t such that there is

a release time ri ∈ R, and a subset of jobs I ⊆ J , such that t = ri +
∑
j∈I pj

We begin by taking an optimal schedule O. As we have seen, since O is left-shifted it is

a series of intervals with jobs continually scheduled starting from release times and ending

at slack times. This observation will be useful for describing windows that we will schedule

jobs in.

Consider release interval i in O, the left-most starting time of a job in this interval is a

slack point we call s. The right-most end time of a job that starts in this interval is also

a slack time, which we call s′. Because O is assumed left-shifted, if s 6= ri then s is the

endpoint of a job straddling ri, otherwise it is clear that s = ri. Similarly, either s′ = ri+1

or s′ is the end time of a job straddling ri+1 since we require that it is the end time of a job

starting in the interval.

Definition 2.1.2. Given slack times s and s′, the window for release interval i is [s, t] if s

is at least ri, and t is the maximum of ri+1 and s′.

An important note is that while we say that the window is defined for a particular

release interval, it may span many release intervals, this reflects the fact that a job may

start in a release interval and straddle many release times. We define windows in this way

so that a schedule can be viewed as a series of windows scheduled with no idle time between

them. To enumerate the windows of a schedule, we number them left to right in order as

{[sk, sk+1]}kmax−1
k=1 , where s1 is always equal to r1, and kmax is the index of the last window.

For a sequence of windows we can find the release interval a window [sk, sk+1] is defined for

with the function σ : Z→ Z, which maps k to the index of the most recent release time less

than sk. So window [sk, sk+1] is the window for release interval σ(k).

For O, in increasing order of release interval we sort and reschedule the jobs starting in

the interval according to deadline by the Jackson Rule 1.1.2. Note that this may cause some

jobs to start after the release interval, which is why we perform this sorting in increasing

order of release intervals. For window [sk, sk+1], we let Xσ(k) denote the scheduled jobs with

deadline greater than or equal to sk+1, and Yσ(k) denote the scheduled jobs with deadline

less than sk+1. An example of the jobs scheduled in a window is given in the Figure 2.1.

We want to show that in window [sk, sk+1] for O, given a schedule for windows 1 to

k − 1, the jobs in Xσ(k) can be represented by an integer vector {xσ(k)
t }t∈P , where x

σ(k)
t

is the number of jobs of size t in Xσ(k). To show this we will first need the following

lemma, which shows we can swap jobs of equal size but different deadlines with no loss to

throughput.

Lemma 2.1.1. Suppose we have a feasible schedule and job j is scheduled at time t, j′ is

another job of same size as j that is also available at time t, and that t + pj ≤ dj′ ≤ dj.

13

Figure 2.1: In this example we schedule jobs {1, 2, 3, 4, 5, 6} in window [sk, sk+1], with start
times in release interval σ(k) = i. The pale colored jobs represent Yi since they all have
deadline less than sk+1. The grey jobs represent Xi since they have deadline at least sk+1.
Note that job 6 is scheduled such that it spans 3 release times, ri+1, ri+2, and ri+3.

Then if j′ is scheduled after j, or not scheduled at all, then we can swap where the two jobs

are scheduled with no loss of throughput.

Proof. We know that dj′ ≥ t + pj , so we can schedule j′ at time t on time since t + pj′ =

t + pj ≤ dj′ since we assume pj = pj′ . We consider the cases of whether j′ is initially

scheduled or not.

Suppose j′ is not scheduled, then to swap j′ and j we schedule simply j′ at time t and

don’t schedule j, giving a schedule with equal throughput.

Suppose instead that j′ is scheduled after j at time r > t. Since pj = pj′ , we know

r + pj ≤ dj′ < dj , which means we can feasibly schedule j at time r with no loss of

throughput.

Assuming that there is already assigned schedules for windows 1 to k − 1, then from

among the jobs available at time sk that have deadline at least sk+1 we take the x
σ(k)
t jobs

of type t with earliest deadline, we say that jobs picked this way are picked greedily. We can

use Lemma 2.1.1 to swap jobs found greedily with the jobs of type t originally in Xσ(k) in

O. This swapping is done in increasing order of deadline for both the jobs greedily picked

and the jobs originally in Xσ(k), so the first job scheduled in Xσ(k) is swapped with the

greedily picked job with earliest deadline, and so on. We can use this procedure to show

the following Lemma, which will give us a key structure to use in our algorithm.

Lemma 2.1.2. There is an optimal schedule where in each window [sk, sk+1], the jobs

in Xi(k) are picked greedily. Moreover, the jobs scheduled in the window are scheduled in

non-decreasing order of deadline.

Proof. We will take an optimal schedule O and prove the claim by induction on the index

of the window [sk, sk+1]. To simplify notation, we let σ(k) = i, the release interval the jobs

in window k will be scheduled to start in. We first denote the number of each job type in

Xi by the integer vector {xit}t∈P , the number of jobs of each type t. If we assume that the

claim holds for each window before window k, then we can swap the jobs initially in Xi

with those found greedily according to deadline as above. Every time we swap jobs we use

14

a sorting procedure that sorts the jobs in the window in order of deadline, then shrink the

window to not include jobs that start outside of the window.

We first swap the jobs originally in Xi with the jobs greedily picked from those with

deadline at least sk+1, and call these jobs Xi.

The sorting procedure is always applied after a swap procedure. We reschedule the jobs

of Xi and Yi in non-decreasing order of deadline by the Jackson Rule 1.1.2. If, as a result

of this sorting, some jobs are scheduled with start time at least ri+1, we remove these jobs

from Xi and Yi, and we reduce the size of the window to reflect this loss of jobs. So we

change sk+1 to be the end time of the last job now with start time less than ri+1. Since

we have shortened the size of the window, the jobs in Yi may now have deadline at greater

than or equal to sk+1, so we move these jobs from Yi to Xi.

We can then repeatedly perform these procedures until the window size does not change,

since we will have the jobs scheduled in order of deadline and Xi picked greedily. We know

this will terminate since the window can shrink only a finite number of times.

With this lemma we know that there is an optimal schedule O that is a left-shifted

sequence of windows {[sk, sk+1]}kmax

k=1 , where in each window the jobs are scheduled in non-

decreasing order of deadline and all jobs start in the release interval [ri(k), ri(k)+1]. These

jobs are partitioned into the jobs with deadline less than sk+1, namely Yi(k), and the jobs

with deadline at least sk+1, namely Xi(k). Finally, we know Xi(k) can be represented by an

integer vector and the jobs can be selected greedily as in Lemma 2.1.1. We say that any

schedule that satisfies these conditions is a canonical schedule.

2.2 Algorithm

Our algorithm is a dynamic program that finds an optimal canonical schedule by searching

across schedules that have the same properties as a canonical schedule. This will be done by

constructing the schedule one window at time in a left to right manner, by guessing both the

size of optimal windows and guessing the optimal choice of Xi’s for each of these windows.

Given the previous windows for the schedule, {[sk, sk+1]}K−1
k=1 , and their corresponding

vectors {Xσ(k)}K−1
k=1 , we need to know exactly what jobs are available at time sK . To find

these jobs, starting from [s1, s2] in increasing order of windows, we find the jobs correspond-

ing to Xσ(k) by applying Lemma 2.1.1, removing the picked jobs from the jobs available in

the next window until we find the jobs available at time sK . With the jobs available at time

sk, we can guess the optimal size of the next window by picking the slack time sK+1 from

all slack times that are greater or equal to release time rσ(K)+1.

With sK+1 we can guess the optimal choice for Xσ(K) = {xσ(K)
t }t∈P from all possible

15

combinations of jobs with release time at least sK+1 and available at time sK . First, the

jobs picked greedily for Xσ(K) are scheduled in increasing order of deadline right-shifted up

to the slack time sK+1, which can be done since every job has deadline at least sK+1. We

reject the choice for Xσ(K) if there are jobs that start before sK when scheduled in this

way. Next, from the available jobs with deadline less than sK+1 we can assume they have

release time sK and deadline at most the start time of the jobs in Xσ(K) and apply Moore’s

Algorithm [19] to them to get Yσ(K). We re-schedule these jobs to be in non-decreasing

order of deadline by the Jackson Rule, so the jobs correspond to a canonical schedule.

It is left to check that our choice of jobs for Xσ(K) and Yσ(K) are consistent with a

canonical schedule. First, we check that every job in Xσ(K) has start time in the half open

interval [rσ(K), rσ(K)+1) when scheduled in increasing order of deadline, breaking ties by

scheduling in increasing order of job size, rejecting the current guess of sK+1 and Xσ(K) if

this does not hold. We also check that there is no idle time between Yσ(K) and Xσ(K), and

reject the current guess of sK+1 and Xσ(K) if this does not hold. We reject in this case

because we could left-shift Xσ(K) and use an earlier slack time with no loss.

The dynamic program is indexed by collections of windows {[sk, sk+1]}Kk=1 and the corre-

sponding Xσ(k) = {xσ(k)
t }t∈P choices, where K is the window to schedule in. For simplicity,

we denote the pair of windows and jobs with a vector X (K) =
{

([sK , sK+1], Xσ(k))
}K
k=1

.

The algorithm computes a solution for the table A[X (K)], which represents the maximum

throughput in windows {[sk, sk+1]}Kk=1 given the corresponding Xσ(k) = {xσ(k)
t }t∈P choices.

To check that a choice for X(K) is feasible, we ensure that the choices have the properties

of a canonical schedule. In increasing order of k, we find the jobs for Xσ(k) greedily from

the jobs with deadline at least sk+1, and schedule them in non-decreasing order of deadline,

breaking ties by scheduling in increasing order of job size, right-shifted to sk+1. We check

that every job schedule this way start in the interval [rσ(k), rσ(k)+1), all jobs are wholly in

the interval [sk, sk+1]. We also check that there are enough jobs for each Xσ(k) guess, by

ensuring that there are x
σ(k)
t for each job type t.

We use these procedures to fill the table A[X (K)] using the following recursive formula

A[X (K)] = max
sK+1,Xσ(K)

[A[X (K) + ([sK , sK+1], Xσ(K))] + |Xσ(K)|+ |Yσ(K)|]

Where sK+1 is picked from slack times T between rσ(K)+1 and rσ(K)+1 + pmax. The

jobs in Xσ(K) is an integer vector {xσ(K)
t }t∈P , and the jobs for it are picked greedily from

the jobs available at time sK with deadline greater than or equal to sK+1. Finally, Yσ(K)

are the jobs found by Moore’s Algorithm [19].

16

2.3 Algorithm Analysis

Claim 2.3.1. For any canonical schedule we can assume that the jobs Yσ(K) for each window

[sK , sK+1], can be chosen based on Moore’s Algorithm

Proof. For the jobs available at time sK with deadline less than sK+1 we can view them as

having their deadline as being no greater than the start time of the earliest job in Xσ(K),

since they cannot be feasibly scheduled with end time past this point. We can similarly

view the start time of these jobs as sK . Thus we have an instance of 1|rj = 0|
∑
j Uj , which

can be solved by Moore’s Algorithm [19]. Call the jobs chosen by Moore’s Algorithm M .

Obviously, |Yσ(K)| ≤ |M | since M is the optimal solution for this subproblem. Similarly,

since Yσ(K) is part of the optimal solution for the whole problem we have we have |Yσ(K)| ≥

|M |. If instead we had |Yσ(K)| < |M |, then we could replace Yσ(K) with M , and increase the

value of the solution, which is a contradiction since we assumed Yσ(K) is optimal. Therefore,

we can replace Yσ(K) with M and still have an optimal solution.

Lemma 2.3.2. We can fill the table A in polynomial time.

Proof. The table A is indexed by windows and corresponding choices for Xi. Each window

is a pair of slack times, which are defined as sums of job sizes with a release time. Therefore,

there are no more than O(n|P |) many slack times for a fixed release time, and so there are

O(|R|n|P |) many slack times. Each choice of Xi is an integer vector {xit}t∈P , where each xit

is in the range [0, P]. Therefore, there are O(n|P |) possible choices for each Xi. Since there

are |R| many windows, there are O(|R|n|P ||R|) many choices for the vector X (K). Since |P |

and |R| are assumed to be constant in size this value is polynomial in n.

To find the value of a table entry, we need to find the jobs for Xi, schedule those jobs,

and then find the jobs for Yi. Finding the jobs for Xi greedily is just taking the jobs in

order of deadline which is clearly polynomial time. To schedule the jobs for Xi first sort

them by deadline, then schedule them right shifted to the end of the window. Checking

if these jobs satisfy the conditions of a canonical schedule is just checking that each job

starts in the release interval and all jobs can be scheduled wholly within the window, which

takes polynomial time.To find the schedule for Yi we use Moore’s algorithm, which takes

polynomial time [19].

The above give the following theorem.

Theorem 2.3.3. The dynamic programming algorithm finds an exact solution to 1|P ∈

O(1), R ∈ O(1)|
∑
j Uj in polynomial time.

17

Chapter 3

Constant Number of Release
Times and Deadlines

In this Chapter we give algorithms for the case of Throughput Maximization where we

assume there are a constant number of unique release times and deadlines, and a constant

number of parallel machines. This case is written in the Graham notation as Pm|#rj ∈

O(1),#dj ∈ O(1)|
∑
j Uj . We first give an exact pseudo-polynomial time for this case with

runtime that is polynomial in both n and pmax, which we extend to find a PTAS. This gives

the following

Theorem 3.0.1. There is an algorithm that finds an exact solution to Pm|#rj ∈ O(1),#dj ∈

O(1)|
∑
j Uj that is polynomial in both the number of jobs and pmax

Furthermore, if pmax is not bounded by a polynomial in the number of jobs, then this

case admits a PTAS.

We will define the algorithm for the single machine case, and provide a simple extension

to a constant number of machines at the end of the Chapter.

3.1 Problem Overview

Our approach will be to find windows where we can schedule jobs in much like in Chapter

2, but we restrict the number of deadlines instead of the number of job sizes so we make

decisions for job types differently. We also change the definition of job types to make use of

the constant number of release times and deadlines.

Definition 3.1.1 (Types). We say a job j ∈ J is of type t = (u, v) if u is the release time

of job j, rj, and if v is the deadline of job j, dj. We let T denote the set of all job types.

And for type t, we let Jt denote the set of jobs belonging to type t.

Since we assume the number of release times and deadlines is constant, we see that

|T | ∈ O(1). With these classifications, before scheduling individual jobs, we first guess how

18

much processing time each type t has in an optimal solution and use this guess as a budget

for job processing times and maximize the number of jobs of type t scheduled given this

budget.

We call the union of release times R and deadlines D straddle points, which we denote

as S. We enumerate the points in S so that si ∈ S is the ith point in increasing order. We

will explicitly guess which jobs are straddling each straddle point in an optimal solution,

and schedule the remaining jobs in the unused intervals between straddle points. We can

represent the choice of such a job, called a straddle job, by the triple (j, si, sk) ∈ (J+⊥)×S2,

where j is the job in question that straddles only the points {si+1, . . . , sk}, and si < sk.

The symbol ⊥ denotes that there is no job straddling the points in question, and may only

be in the triple (⊥, si, si+1), meaning no job straddles the point si+1, we still refer to this

case as being a straddle job. The choice of straddle jobs is represented with the vector ~S.

Definition 3.1.2. We say that a choice of straddle jobs is regular if; (1) each job is in ~S

at most once, (2) for (j, si, sk) ∈ ~S, if j 6= ⊥ then rj ≤ si and sk ≤ dj, and pj ≥ |si − sk|,

(3) every straddle point is straddled by exactly one straddle job, except s1 and smax which

are not straddled.

If ~S is regular then we can define windows, which will denote the intervals where we

schedule non-straddle jobs. Given straddle jobs (j, si, sk) and (j′, sk, sk′), window k is the

interval between jobs j and j′. Also window 1 is between s1 and (j, s1, sk), and window

max−1 is between (j, sk, smax−1) and smax. Note that we do not have the exact size of the

windows since we do not specify the start times of straddle jobs. We define windows in this

way so that we can use the set of windows, denoted W to index the next definition.

To find window size we also need to know how much processing time is used by jobs in

the window. For window i ∈ W , the total processing time of jobs of type t scheduled in this

window is the allotment of that job type, and is denoted ai,t. We denote the allotments

of the jobs in the window by ~ai = {ai,t}t∈T , and the allotments for the whole schedule by

~a = {~ai}i∈W . The size of window i is therefore at least as large as the sum of allotments in

~ai, but it could be larger in that case the there is idle time between straddle jobs.

To provide intuition for our algorithm we will assume for the moment that there are

no straddle jobs, that is ~S = {⊥, si, si+1}max−2
i=2 , therefore there is a window for every

consecutive pair of straddle points. Suppose this case has optimal solution O. In a left to

right manner, for each window i, we guess the allotment of O, ~ai, assuming that the sum of

the allotments does not exceed the space between the two straddle points. Since the jobs in a

window can be reordered and scheduled in any order we can say that the jobs of a fixed type

would be scheduled in a contiguous block. Therefore, we can treat allotments as contiguous

blocks where we schedule jobs of a fixed type. Given these allotments, we schedule the jobs

of each type independently using Multiple Knapsack methods described in appendix A.

19

3.2 Pseudo-Polynomial Time Algorithm

To find an pseudo-polynomial time exact solution to the problem we will find a schedule by

guessing the straddle jobs and allotments in an optimal solution and then scheduling jobs

into their allotments by focusing on jobs of a fixed type. This approach is only pseudo-

polynomial since its runtime is polynomial in the maximum job size, pmax, as well as n. To

see that this approach finds an optimal schedule, we will take an optimal schedule O, and

reschedule its jobs to nicely adhere to the definitions of straddle jobs and allotments. This

will then define canonical schedules that we can enumerate over in our algorithm to find an

optimal solution.

First left-shift O and denote the jobs straddling the straddle points by ~S∗, a vector of

triples (j, si, sk) ∈ (J + ⊥) × S2. For every pair of triples (j, si′ , si) and (j′, si, sk) in ~S∗,

between consecutive straddle jobs, there is a window between jobs j and j′. The set of

windows induced by the the straddle jobs ~S∗ is denoted W∗.

For window every i in W∗, since the schedule is left shifted, the jobs between two

consecutive straddle jobs start at the end time of a straddle job and are entirely between

two straddle points. Therefore, we can feasibly schedule these jobs in any order, in particular

we can schedule them in groups according to type, left-shifted to the nearest straddle job.

The size of these groups are the allotments, which we denote as ~a∗i for window i, and

~a∗ = {~a∗i }i∈W is the vector of all allotments.

Observation 3.2.1. Every job in O is either a straddle job or scheduled in an allotment.

This observation follows from the definition of ~S∗ and ~a∗, since either a job is a straddle

job, or is used to define an allotment.

Observation 3.2.2. For every straddle job j in ~S∗, the start time of j is either; the end

point of an allotment, or the end point of a straddle job.

Similarly, for every allotment in ~a∗, if it is the first allotment scheduled in a window,

then its start point is the endpoint of a straddle job, otherwise its start point is the end point

of another allotment.

This observation follows by the way we define straddle jobs in ~S∗, where if no job

straddles a point si then we say that there is a straddle job (⊥, si, si+1). Combined with

left-shifted property of O, since left-shifting moves jobs left up to either their release time

or the end time of another job, we will left-shift jobs to the endpoint of a straddle job.

Observation 3.2.3. ~S∗ is a regular choice of straddle jobs.

We say that schedules that are organized into straddle jobs and allotments are canonical

schedules, and we provide an example in Figure 3.1.

20

Figure 3.1: In this example the grey blocks represent allotments and the white blocks
represent the straddle jobs of a canonical schedule.

Lastly, we have the following observation that will be important for finding optimal

canonical schedules.

Observation 3.2.4. Given the allotments ~a∗ and straddle jobs ~S∗ for O, the problem of

scheduling jobs of type t is independent of every other job type.

This last observation is important as it allows our algorithm to deal with each job type

independently. This is clearly true since each job type has a specified allotment that jobs of

that type can be scheduled in, and the allotments of two job types do not overlap.

3.2.1 Algorithm

The algorithm here is a sweep across all canonical schedules by iterating straddle jobs and

allotments, combined with a Multiple Knapsack dynamic program to schedule jobs of each

type in their corresponding allotments.

Our algorithm begins by iterating across all vectors of straddle jobs ~S, with entries

(j, si, sk), requiring that ~S are regular straddle jobs. Given a regular choice of straddle jobs,

between each consecutive pair of straddle jobs in increasing order, we will guess an optimal

choice of allotments, ~a, where ai,t ∈ [0, npmax]. We check that this choice of allotments

corresponds to a canonical schedule by checking if the allotments can be scheduled feasibly

as if they were jobs. This allotment placement will simultaneously define the windows of

the schedule and will be used when scheduling the jobs. We let window 1 begin from point

s1 and check that the point s1 +
∑T
t=1 a1,t is at most the next straddle point s2, if not then

the check fails as the allotments are too large to fit in the window. If this check succeeds,

then take straddle job (j, s1, sk) and if j 6= ⊥ then schedule it left-shifted to the allotments,

checking that it still ends after sk, if not then the endpoint for j should have been in an

earlier interval, so we reject the allotment guess. We then repeat this process from the

endpoint of job j, finding a schedule for the allotments and straddle jobs. We also check

that for any ai,t 6= 0, that the release time of type t is at most si, and the deadline of type

t is at least si+1, this ensures that when the jobs are scheduled in their allotments they are

scheduled feasibly.

21

With a choice of straddle jobs and allotments that correspond to a canonical schedule,

we place the allotments and straddle jobs as described in the check for allotments. With this

placement, we apply Observation 3.2.4 to reduce the problem to solving an instance of the

Multiple Knapsack problem for each job type. For the problem corresponding to jobs of

type t, say there is a knapsack mi corresponding to every window i, of size ai,t, and for each

job j of type t there is a corresponding item, xj in the Multiple Knapsack problem, with

weight equal to pj and profit of 1. We know by Appendix A that instances of the Multiple

Knapsack problem with O(1) many knapsacks can be solved exactly in pseudo-polynomial

time. To revert a solution of the Multiple Knapsack problem corresponding to jobs of

type t to a schedule, we look at each knapsack mi and the items packed in it. If xj is packed

into knapsack mi, then schedule job j in allotment ai,t.

3.2.2 Algorithm Analysis

Claim 3.2.1. This algorithm runs in pseudo-polynomial time

Proof. We first check that the number of possible straddle jobs that we guess is bounded by

a polynomial in n. Since there are n jobs, and O(R+D) = O(1) many straddle points there

are O(nR+D) = nO(1) many possible ways to assign jobs. Each straddle job is also assigned

a pair of intervals that it must start and end in, so for a particular job j the number of pairs

assigned to j is upper bounded by O((R+D)2). If we fix a job choice for each straddle point,

since there are O(R+D) many straddle points the number of possible choices of ~S is upper

bounded by O((R+D)(R+D)2), which is a constant value since both R and D are constant.

Therefore, the number of choices for ~S is bounded by nO(1) ·O((R+D)(R+D)2) = nO(1).

Next we show that the number of choices for allotments is pseudo-polynomial. For each

job type, we guess at most O(R+D) many allotments, each with a size in [0, npmax]. There

are R ·D ∈ O(1) many types so there are O(npmax) many choices for allotments. Placing

these allotments to create the windows takes a polynomial time since it is simply scheduling

the allotments as if they were jobs and left shifting them.

The reduction to the Multiple Knapsack problem is clearly polynomial since we

create one item for each job with weight equal to the job size and profit one, and we create

knapsack for each allotment. Similarly, reverting the solution to the Multiple Knapsack

problem takes polynomial time.

Lastly, we know by appendix A that the Multiple Knapsack problem with uniform

profits can be solved in pseudo-polynomial time.

Claim 3.2.2. This algorithm gives an exact solution to Throughput Maximization with

a constant number of release times and deadlines.

Proof. We know we accept canonical choices of straddle jobs and allotments, and thus we

22

will pick ~S∗ and ~a∗ of the optimal schedule O. When we check that these choices are

optimal we also schedule them in a left-shifted manner as in the canonical schedule O, so

by Observation 3.2.4 which says we can schedule each job type independent of the others

given ~S∗ and ~a∗, we need to see that we find an optimal schedule for each job type. From

appendix A we know that the Multiple Knapsack problem can be solved optimally via

dynamic programming.

Theorem 3.2.3. There is an algorithm that finds an exact solution to 1|R ∈ O(1), D ∈

O(1)|
∑
j Uj that is polynomial time in the number of jobs.

3.3 PTAS for Constant Number of Release Times and
Deadlines

If job sizes are not assumed to be bounded by a polynomial in n then the runtime of our

algorithm has two problems. The first, is that we make O(npmax) many guesses for each

allotment. Second, we exactly solve the Multiple Knapsack problem using an algorithm

with runtime that is polynomial with respect to both n and pmax. In both cases, the

dependence of the runtime on a polynomial in pmax keeps the algorithm from having a

runtime that is polynomial in the input size. To deal with the second problem, we use the

PTAS from [6] to find a schedule.

Given an optimal canonical schedule O, for each allotment ai,t, if the allotment has at

least d1/ε2e jobs then we reduce the size of the allotment to the nearest power of (1+ ε) and

and drop jobs in order from largest to smallest until the remaining jobs can be scheduled

entirely in this reduced allotment.

Lemma 3.3.1. Given optimal canonical schedule O, if we apply the above rounding proce-

dure then the throughput of this new schedule is a (1− 2ε)-approximation of the throughput

of O.

Proof. Take an optimal canonical schedule O, for a fixed window, if an allotment has at

least B = d1/ε2e jobs then we round down the size of the allotment to the nearest power

of (1 + ε). We drop jobs in order of largest to smallest until the remaining jobs fit in the

allotment.

We want to show that the fraction of jobs remaining after this rounding is at least 1
1+ε .

The worst case for this fraction is when the jobs in this allotment is exactly B many jobs.

Rounding the allotment size down to the nearest (1 + ε) power means that there will be at

least b B
1+εc jobs. If we let B = 1

ε2 , the fraction of jobs remaining will be

b B
1+εc
B

≥
B

1+ε − 1

B
=

1

1 + ε
− 1

B
=

1

1 + ε
− ε2 =

1− ε2 − ε3

1 + ε

23

Rearranging terms of 1−ε2−ε3
1+ε we see the following

1− ε2 − ε3

1 + ε
= 1− (1− 1− ε2 − ε3

1 + ε
) = 1− ε1 + ε+ ε2

1 + ε
≥ 1− 2ε

Where the last inequality follows from the fact that 1+ε+ε2

1+ε = 1 + ε2

1+ε ≤ 1 + ε

⇒
b B

1+εc
B

≥ 1− ε′ ≥ 1− 2ε

3.3.1 Algorithm

The algorithm we use will be similar to the exact algorithm. We will sweep across straddle

jobs as before, checking that they correspond to canonical schedules. To sweep across

allotments, we will guess from both allotment sizes that are powers of (1 + ε) and that are

equal to combinations of up to d1/ε2e many job sizes. The reduction to the Multiple

Knapsack problem is the same but instead of the pseudo-polynomial time solution, we use

the PTAS due to [6].

3.3.2 Analysis

Claim 3.3.2. This algorithm runs in polynomial time.

Proof. By restricting the number of guesses for allotments to powers of (1 + ε), we bring

the number of guesses for allotments from polynomial in the pmax to being polynomial in

the size of the input. The size of jobs does not affect the choice of straddle jobs since

we schedule them by greedily filling the timeline with allotments and straddle jobs in a

left shifted manner. Thus the number of guesses for straddle jobs remains bounded by

nR+D = nO(1).

Our reduction to the Multiple Knapsack problem maps jobs to items, and allotments

to knapsacks. We use the PTAS due to [6] to find a (1 − O(ε)-approximate solution to

the Multiple Knapsack problem, which has runtime that is polynomial in the number

of items, n, and the number of knapsacks, a constant. This solution to the Multiple

Knapsack problem is then transformed back to a schedule for the original problem by

mapping each item in a knapsack to the corresponding job and allotment.

Theorem 3.3.3. This algorithm is a PTAS for the Throughput Maximization problem

with a constant number of release times and deadlines.

Proof. We know that we restrict our choice of allotments in such a way that there is optimal

schedule is within (1− 2ε) of the original optimal. Given this choice of allotments, we need

to find a solution to a constant number of Multiple Knapsack problems with identically

24

weighted jobs of arbitrary size which we can solve using a PTAS due to [6]. Therefore, we

find a solution that is at least a (1−2ε)(1−ε) = 1−O(ε) factor of the optimal solution.

3.4 General Case is Weakly NP-Complete

Theorem 3.4.1. The Throughput Maximization problem with a constant number of

release times and deadlines is Weakly NP-Complete

Proof. First, we show the problem is in NP . We are given an instance T of Throughput

Maximization with a constant number of release times and deadlines, a goal k for the

number of jobs throughput. For a witness schedule S, a simple verifier algorithm for S is to

take each of the n jobs, and schedule them starting at the time specified in S, then check

that the processing time of job is disjoint from every other job, which can be done in O(n2)

time. Lastly, the algorithm returns Yes if at least k jobs are scheduled entirely within their

release time and deadline, which takes O(n) time. Thus the problem is in the class NP .

Next, we show that the Partition problem can be reduced to the Throughput Max-

imization problem, thus completing the proof.

Take an instance of the Partition problem P = {p1, . . . , pn}. Our reduction is as

follows; for each elements pi we create a job ji of processing time pi with release time r1 = 0

and deadline d1 =
∑n
i=1 pi + 1. We also add job j′ with release time r2 = 1

2

∑n
i=1 pi of size

1 with deadline d2 = r2 + 1.

We claim that there is a schedule with throughput n+ 1 if and only if we can solve the

Partition problem.

If we can find a scheduled with throughput n+ 1, then we can find a partition by letting

S1 ⊂ P be the elements corresponding to the jobs scheduled in the interval (r1, r2), and

S2 ⊂ P be the elements corresponding to the jobs scheduled in the interval (d2, d1). Since

the throughput is n+ 1, the jobs j′ is scheduled at r2, and thus partitions the timeline into

(r1, r2), and (d2, d1). By definition we have |r1 − r2| = |d1 − d2| = |P |
2 , so because all jobs

are scheduled the entire interval is tightly packed since the job sizes sum up to |P |+ 1 = d1.

Therefore, the jobs in the interval (r1, r2) have total processing time |P |2 so when we pick the

elements S1 for the partition problem the elements sum to |P |2 . A similar argument applies

to S2 for the Partition problem, and so |S1| = |S2|.

Suppose we can find a solution to the Partition instance, S1 ∩ S2 = P . This is then a

solution with throughput n+ 1 for the scheduling problem.

3.5 Extending to a Constant Number of Machines

In this Section we describe how to extend the results of this Chapter to a constant number

of machines to get an exact pseudo-polynomial time solution to Pm|#rj ∈ O(1),#dj ∈

25

O(1)|
∑
j Uj . The intuition of this extension is clear, as before we guess optimal straddle

jobs for each straddle point and guess optimal allotments between straddle jobs, except we

guess one optimal straddle job for each machine at each straddle point, and guess optimal

allotments for each machine. Straddle jobs are tuples (i, j, sk, sl) ∈ {1, . . . ,m}×(J +⊥)×S2

where i is the machine the job is scheduled in, j is the job in question, straddling only the

points {si+1, . . . , sk}, regular straddle jobs are defined in much the same way except point

(3) says that each straddle point for each machine is straddled exactly once. Windows

are defined similar to the single machine case, on a machine by machine basis, look at the

straddle jobs and define the windows for that machine. Similarly, the allotments are defined

on a machine by machine basis given the windows.

Since there are now O(m(R + D)) many possible straddle points we need to consider

when picking ~S, the number of possible choices for ~S is upper bounded by nO(1) ·O((m(R+

D)m(R+D)2 = nO(1). Similarly, the number of windows increases by at most a factor of m

so the number of possible allotment guesses is bounded by O(mnpmax) = O(npmax).

With multiple machines we can define canonical schedules in a similar way as the single

machine case. Take a left-shifted optimal solution O, and fix the jobs straddling the strad-

dle points, creating straddle job (i,⊥, sk, sk+1) if there is no job straddling point sk+1 on

machine i. For each machine, between two consecutive straddle jobs we can sort the jobs by

job type, and make Observations equivalent to Observations 3.2.1, 3.2.2, and 3.2.3 for each

machine. We can also make an observation equivalent to Observation 3.2.4, which say that

jobs of each type can be scheduled in their allotments independently of all other job types.

The algorithm is a straightforward extension of the algorithm for single machines. We

guess the optimal choice of straddle jobs ~S and allotments ~a. To check these choices cor-

respond to a canonical schedule, we perform the check described in Subsection 3.2.1 on a

machine by machine basis. To find the schedule given these allotments, we perform the same

reduction to Multiple Knapsack problems and use the algorithm described in Appendix

A. Since the number of knapsacks increases by a factor of at most m, the algorithm still

runs in time polynomial in n and pmax.

We also have that Lemma 3.3.1 holds for this problem since it argues on a per allotment

basis. So we can get a PTAS for for this problem by guessing optimal straddle jobs as

before, and picking allotments that are either powers or (1+ ε) or are equal to combinations

of up to e1/ε2d many job sizes. We reduce to the Multiple Knapsack problem as before

and again apply the PTAS due to [6], noting that since the number of allotments increase

by a factor of at most m, the algorithm of [6] still runs in polynomial time.

26

Chapter 4

Constant Number of Release
Times

In this Chapter, our main result is an exact pseudo-polynomial time algorithm for the case

of Throughput Maximization where the number of release times between the release

time and deadline of any job is at most a constant, on a constant number of machines.

This case can be written in Graham notation as Pm|#sizej ∈ O(1)|
∑
j Uj . This gives the

following theorem

Theorem 4.0.1. There is an algorithm that finds an solution to Pm|spanj ∈ O(1)|
∑
j Uj

and runs in time polynomial in n and pmax.

To create this algorithm, we will use as a sub-routine an algorithm for the more restricted

case of Throughput Maximization where there are at most a constant number of unique

release times which we find in Section 4.1. In both cases, the algorithms will be defined in

the single machine case and extended to a constant number of machines at the end of the

Chatper.

4.1 Constant number of Release Times

In this section we examine Throughput Maximization where there are at most a constant

number of release times, which is written as 1|#rj ∈ O(1)|
∑
j Uj in the Graham notation.

We will prove the following theorem by providing an exact solution to this problem.

Theorem 4.1.1. There is an algorithm that finds an exact solution to 1|#rj ∈ O(1)|
∑
j Uj

that runs in pseudo-polynomial time.

This result generalizes the results of Chapter 3 by relaxing the restriction on the number

of unique deadlines. Our algorithm for Theorem 4.1.1 follows a similar approach to the

algorithm in Chapter 3, in that we will guess straddle jobs and allotments for job types

and use these guesses to schedule jobs based on type. However, since we do not assume

27

a constant number of deadlines we do not have a constant number of job types and so we

can’t efficiently run the algorithm of Chapter 3. To account for this, we will change the

definitions from the previous sections slightly to be more amenable to the approach we will

use here.

First we change the definition of job type to be a release time and release interval pair,

where the deadline of the job is in the release interval.

Definition 4.1.1 (Job Type). We say a job j ∈ J is of type t = (s, [ri, ri+1)) if rj = s

and dj ∈ [ri, ri+1). We call the interval [ri, ri+1) the deadline interval for the type. We let

T denote the set of all job types.

We also change the definition of straddle points to only refer to unique release times,

since the number of deadlines is not bounded. So for a given schedule, a window is an

interval between jobs straddling two consecutive straddle points, and therefore may contain

deadlines. We use a similar definition of straddle jobs, a vector that describes the job

scheduling over each release time. However, since the runtime of our algorithm is polynomial

in pmax, we can explicitly decide where straddle jobs end in a schedule by defining straddle

jobs as a vector ~S ∈ ((J +⊥)× [0, pmax − 1])
R

, a vector of job/integer pairs (j, s), where

the ith entry of ~S is (ji, si) and ji straddles ri, scheduled with completion time ri + si. We

have si = 0 if and only if ji = ⊥, which represents no straddle job, and thus it ends at time

ri. Given straddle jobs ~S we can define windows as the interval between two consecutive

straddle jobs, so if the job straddle (ji, si) has completion time ri + si in release interval i,

then the window i is the interval between the completion time of ji and the start time ji+1

from (ji+1, si+1).

For this problem the definition of allotments is mostly the same as in Chapter 3, in that

it describes intervals where jobs of fixed types will be scheduled. An allotment is an integer

matrix ~a = {~ai}Ri=1, where ~ai = {ai,t}t∈T . We understand ai,t as the total processing time

for jobs of type t in window i except when window i is the deadline window for jobs of type

t, in which case ai,t = 0. For clarity, we say a job is scheduled “in an allotment” if it is one

of the jobs that make up the size of the allotment. This is because jobs cannot be scheduled

in arbitrary order in their deadline window like when they are scheduled in allotments so

we do not have an allotment there. This means that jobs are not necessarily scheduled in

their allotments and will be scheduled in a particular manner in their deadline window.

The intuition for our algorithm is similar to the algorithm for Chapter 3, but in this case

since jobs might not be scheduled in one of their allotments there is added complexity. For

ease of exposition, we explain the algorithm assuming that there are no straddle jobs, as

adding them only changes the window sizes and not how we create job schedules.

Given a guess for allotments, for every release interval we schedule the allotments for

the window in contiguous blocks as if they were jobs in increasing order of deadline interval

28

in a right-shifted manner up to the end point of the interval. For each release interval i, we

will find a schedule for all job types with deadline interval i, denoted Ji with a dynamic

program. We sort the jobs in Ji in non-decreasing order of deadline and enumerate them

as Ji = {j1, . . . , j|Ji|}.

The algorithm is a dynamic program that schedules a subset of Ji by considering every

job in order of least deadline to greatest one at a time, and deciding where the job currently

considered should be scheduled. If jq is the job and is scheduled in an allotment, then the

current allotment vector has a single value decremented by pjq , assuming the resulting value

is non-negative and is an allotment for the same job type as jq. If jq is not scheduled at all,

then simply ignore it and schedule jq+1. Finally, there is the case if jq is scheduled in its

deadline window, where jq is scheduled right-shifted in the deadline interval up to at most

the allotments, assuming it starts no sooner than ri. So jq will end at either the start time

of the allotments, another jobs start time, or its own deadline djq ,

This procedure is repeated for every release interval to generate the whole schedule.

The algorithm then finds the best schedule by iterating across all choices of allotments that

are reasonably similar to an optimal schedule that we will define in subsection 4.1.1. We

will deal with straddle jobs in a similar manner as Chapter 3, by iterating over reasonable

choices of straddle job vectors in order to find a choice that is in an optimal schedule.

4.1.1 Canonical schedule

We will show that there exists an optimal schedule that possesses a useful structure that we

call a canonical schedule, which we do by taking an optimal schedule O and rescheduling

the jobs in it to be in this canonical form.

First, we fix the jobs straddling the straddle points in place and let them be represented

by the vector ~S∗. For every release time ri if job j is straddling ri with completion time

ri + si then (j, si) is added to ~S∗, adding (⊥, 0) if there is no job straddling ri. With ~S∗, we

can define the windows as the intervals between two consecutive straddle jobs, enumerated

by the release interval they are contained in.

For each window in O, we apply the Jackson Rule to reschedule the jobs in increasing

order of deadline. For window i, jobs with release time earlier than ri and deadline interval

later than release interval i can obviously be rescheduled in any order within the window.

Therefore, for each deadline interval we can sort jobs that share this deadline interval by

type, scheduling the jobs of each type in increasing order of deadline. This gives us the

following observation, which is demonstrated in Figure 4.1.

Observation 4.1.1. For each window i in schedule O, the jobs can be right-shifted, and

those jobs with deadline after window i can be scheduled in groups according to job type after

jobs with deadline interval i.

29

For each job type t, the allotment for jobs of type t is exactly the sum of the processing

time of this type, which we denote ~a∗i,t. The vector of all allotments in a window is ~a∗i , and

the vector for all allotments is then ~a∗. We note that the jobs scheduled in each allotment

are scheduled in increasing order of deadline.

Figure 4.1: In this example, the dark blocks are the straddle jobs (ji, si) and (ji+1, si+1),
and the light grey blocks are the allotments. The jobs {1, 2, 3, 4} are the jobs with deadline
in this interval and are scheduled before the allotments in increasing order of deadline and
right-shifted to the starting time of the allotments, which is denoted Li.

We say that any schedule satisfying Observation 4.1.1 is a canonical schedule. Given

straddle jobs ~S∗ and allotments ~a∗, the schedule for jobs with deadline interval i can be

found independently of all other jobs. This follows since jobs with deadline interval i are

either scheduled in allotments or in the first part of the deadline interval that is dedicated

to jobs with deadline interval i.

4.1.2 Algorithm

We first guess a vector of optimal straddle jobs, ~S ∈ ((J +⊥)× [0, pmax − 1])
R

. We ensure

that ~S corresponds to some canonical schedule by checking that for every pair (ji, si) ∈ ~S,

ji can be scheduled with completion time ri + si while straddling release time ri, and that

ri+si ≤ dji . We also check that if a job is part of multiple pairs in ~S, that the end time given

in each pair is the same. We lastly check that when straddle jobs are scheduled following

these rules, that no straddle jobs are processing at the same time.

We next guess allotments ~a = {~ai}Ri=1 in an optimal schedule, where ai,t ∈ [0, npmax].

For type t = (rk, [rk′ , rk′+1]) we also require that ai,t = 0 for all i less than k, and at least

k′. That is, we require that non-zero allotments only come after the release time and before

the deadline window of the job type. With a guess for ~S that corresponds to a canonical

schedule, we check that the allotments also correspond to a canonical schedule. For each

window i, we check if the sum of allotments for this window
∑
t∈T ai,t, is less than the length

of the interval [ri+ si, ri+1 + si+1−pji+1
], which is the interval between the two consecutive

straddle jobs.

We denote the set of jobs with deadline in release interval i by Ji, and the jobs of Ji
not picked to be straddle jobs are denoted by Ji(~S). With a guess for straddle jobs and

allotments corresponding to a canonical schedule, we define dynamic program to find an

30

optimal schedule for Ji(~S). We first sort and enumerate the jobs in Ji(~S) in increasing

order of deadline and enumerate them so Ji(~S) = {j1, . . . , j|Ji(~S)|}.

The recursive formula for our algorithm iterates through the jobs of Ji(~S) in order of

smallest deadline to largest to decide how they are scheduled. The job with latest deadline

will either be scheduled in an allotment right-shifted, or in its deadline window right-shifted

to at most the allotments, or the job is not scheduled at all.

Given a choice of straddle jobs and allotments, once they have been scheduled for each

window i, there is an interval between the end time of the straddle job and the start time of

the allotments, which we call Li. This interval is where we will schedule jobs with deadline

interval i, and we will track the size of this interval in our dynamic program. To keep the size

of this interval from being larger than npmax, the largest amount of processing time for all

jobs, we assume that this interval is instead between ri+si and L := min{ri+si+npmax, Li}.

For a guess for optimal straddle jobs, ~S, and allotments, ~a, our algorithm computes the

table Ai[~a, j|Ji(~S)|, L], which is the maximum throughput of the jobs in Ji(~S), which are

scheduled in both the allotments of types with deadline in release interval i, and between

the completion time of the straddle job of ri and the time L.

To compute Ai[~b, jq, l] with q > 1, jq is the job with least deadline that has not been

examined, we must decide how to schedule it in a canonical schedule. The jobs will be

scheduled in either ~b, the current allotment sizes, or in [ri + si, l], the remaining unused

space in the deadline interval. If jq is not in the optimal schedule, then the optimal schedule

is composed of jobs {j1, . . . , jq−1}, so we know that

Ai

[
~b, jq, l

]
= Ai

[
~b, jq−1, l

]
If jq is in the optimal schedule, then it is either scheduled in an allotment, or in its

deadline interval. If it is scheduled in release interval i, the deadline interval of Ji(~S), in the

optimal schedule, then we schedule it right-shifted to at most l, but no further than djq . So

the space for jobs in the deadline interval decreases to min{djq , l − pjq}. This means that

Ai

[
~b, jq, l

]
= Ai

[
~b, jq−1,min{djq , l − pjq}

]
+ 1

If jq is instead scheduled in some allotment bk,t in an optimal schedule, where t is the

job type of jq, then we can can schedule it right-shifted in the allotment bk,t. This means

we reduce the size of bk,t by pjq to get ~b′, where ~b′ is equal to ~b except the allotment job jq

is scheduled in, which is bk,t − pjq instead of bk,t, ensuring that bk,t − pjq is non-negative.

The set of allotments that satisfy this condition is B(q, t)′ = {b′|∃k, bk,t − pjq ≥ 0}. This

means

Ai

[
~b, jq, l

]
= max

~b′∈B(q,t)

{
Ai

[
~b′, jq−1, l

]
+ 1
}

31

Therefore, if we have computed the values of Ai with jq−1, we know the optimal schedule

can be found by the following recursive formula.

Ai

[
~b, jq, l

]
= max

Ai

[
~b, jq−1, l

]
Ai

[
~b, jq−1,min{djq , l} − pq

]
+ 1

max~b′∈B(q,t)

{
Ai

[
~b′, jq−1, l

]
+ 1
}

If q = 1, then obviously the optimal schedule is if j1 can be scheduled anywhere. There-

fore, by induction the following Lemma holds

Lemma 4.1.2. Suppose we have guessed the straddle jobs ~S∗ and allotments ~a∗ of an opti-

mal canonical solution O. Then, the dynamic program finds an optimal canonical schedule

for each table Ai.

Given an initial guess for straddle jobs and allotments, we compute tables Ai for each

window i. We finally check that this schedule is a feasible one by ensuring that every job

j that is scheduled in the range [rj , dj]. Our algorithm returns the maximum sum of these

tables across all accepted straddle jobs and allotments.

4.1.3 Analysis

Lemma 4.1.3. The algorithm finds an optimal canonical schedule.

Proof. By Lemma 4.1.2 we know that if we guess the straddle jobs and allotments from a

canonical schedule, our algorithm finds an optimal canonical schedule for each table Ai, and

therefore, when run for each release interval finds an optimal canonical schedule. Recall

from Subsection 4.1.1 that there is an optimal canonical schedule O with vectors of straddle

jobs ~S∗ and allotments ~a∗. To see that the algorithm finds an optimal canonical schedule,

we want to see that we eventually choose both ~S∗ and ~a∗.

To see that ~S∗ is eventually chosen, we just need to see that it does not fail the checks

we impose on it. The first check is that every pair (ji, si) ∈ ~S∗ can be feasibly scheduled

with completion time ri+si, and that ri+si ≤ dji . We know this holds since O is a feasible

schedule so ji is scheduled with completion time at most its deadline, and ri + si is defined

by the completion time of ji when we ~S∗ is defined in subsection 4.1.1. We lastly check that

straddle jobs will not be processing at the same time, which obviously holds for ~S∗ since it

is defined from a feasible schedule.

To see that ~a∗ is chosen by our algorithm, we need to see that it passes the checks given

that we have chosen ~S∗. The first check is simply that a∗i,t = 0 if the release interval i is

earlier than the release time or at least the deadline interval of type t. This check clearly

passes since each ai,t is defined whether jobs of type t are scheduled in the release interval i

and release interval i is no the deadline interval. We next check if the sum of allotments for

32

each release interval i are at most the size of the window they are assigned to. This clearly

holds since we define the size of each ai,t as the processing time spent on jobs of type t in

window i, which must all be entirely between the jobs straddling ri and ri+1.

Lemma 4.1.4. The runtime of the algorithm is bounded by a polynomial in both n and

pmax.

Proof. For fixed choice of straddle jobs ~S, we first bound the size of the table Ai. The

number of job types is bounded by O(R2), so the vector ~ai is bounded by O(R2) since it is

indexed by the number of job types. Therefore, the size of ~a is bounded by O(R3) since it

is O(R) many vectors ~ai. So the index ~a in the table Ai, is bounded by O(R3). For a fixed

choice of straddle job (ji, si), the number of indices l in Ai[~b, jq, l] is bounded by O(npmax)

since we force l to be no more than npmax larger than ri+si. Lastly, the index jq is bounded

by a polynomial in n since there are at most n jobs. So the size of the table is bounded by

a polynomial in n and pmax.

We next need to see that the number of straddle jobs and allotments we iterate over

is bounded by a polynomial in n and pmax. Each allotment ai,t has npmax + 1 possible

sizes to choose from, and we know there are O(R3) many indices of ~a, therefore, there are

O((npmax)R
3

) many choices for ~a. The vector ~S has at most R many entries, where each

entry picks from O(n) many jobs, and each entry has O(pmax) many choices for completion

time. Therefore, there are O((npmax)R) many choices for ~S.

Next, we see that we can compute the value of a table entry in polynomial time since

we attempt to schedule jq in at most O(R2) places. Finally, we check that the schedule

is feasible in polynomial time, since we check that all O(n) scheduled jobs are scheduled

feasibly.

Theorem 4.1.5. This algorithm gives an exact solution for Throughput Maximiza-

tion with a constant number of release times.

4.2 Constant Span

The last and most general case of Throughput Maximization we consider is for any job

j, the number of release times between the release time and deadline of that job is bounded

by a constant value. We call the number of such release times the span of a job, and let

spanj be the variable we will use to describe this in the Graham notation. We prove the

following Theorem

Theorem 4.2.1. There is an algorithm that finds an solution to 1|spanj ∈ O(1)|
∑
j Uj

and runs in time polynomial in n and pmax.

33

This generalizes the results from Section 4.1 since we do not restrict the number of

release times, just the span of jobs. The definitions of job types, windows, straddle jobs,

and allotments from Section 4.1 are kept the same. To build our algorithm, given a fixed

choice of straddle jobs and allotments, we will apply insight from Section 4.1 that we can

independently find a schedule for jobs that share a deadline window. Letting α be the

maximum span of release times, our algorithm will use this insight by guessing the optimal

straddle jobs and allotments for the fixed range of straddle points {ri−α, . . . , ri, ri+1}, and

apply the algorithm from Section 4.1 to find Ai.

It is clear that the algorithm of Section 4.1 finds an exact solution to this case. However,

this would run in time Ω(nR), since R is not assumed to be constant for this case this

algorithm is not even pseudopolynomial time. This is because the number of straddle jobs

and allotments that algorithm iterates over is at least Ω(nR), however the time to compute

Ai is unaffected since we assume a constant sized span, therefore, there are only a constant

number of job types with deadline interval i.

Therefore, our algorithm is a sweep over windows from left to right, at each step keeping

a memory of the last α straddle jobs and allotments. The stored straddle jobs and allotments

can be used to compute the value for Ai, since the jobs with deadline in this window would

have been released in the last α windows, and so have well defined allotments to schedule

in. To push the window forward, we simply guess an optimal straddle job and allotments

for the next release time and add this guess to our memorized set of straddle jobs and

allotments, forgetting the straddle job and allotments for the earliest release window if we

have memorized more than α windows.

4.2.1 Canonical Schedules

Given optimal schedule O, we can sort it in the same way a canonical optimal schedule

from subsection 4.1.1, in that the schedule is broken into straddle jobs and allotments, and

the jobs in their deadline interval are scheduled in increasing order of deadline right-shifted

to the start time of the allotments. As in 4.1.1 we can denote the straddle jobs of O with

~S∗ and the allotments of job types not in their deadline window as ~a∗, where jobs that are

scheduled in allotments are grouped according to type.

As in subsection 4.1.1 we know we can compute Ai independently of all jobs with deadline

window not equal to [ri, ri+1] given a fixed choice of straddle jobs and allotments since we

only need the straddle jobs and allotments for straddle points {ri−α, . . . , ri+1} to find a

schedule. This gives us a more useful observation

Observation 4.2.1. Job types with deadline window [ri, ri+1] can be scheduled indepen-

dently of all other job types given a choice of straddle jobs and allotments for straddle points

{ri−α, . . . , ri, ri+1}.

34

This observation is key for our dynamic program, where we guess the optimal straddle

jobs and allotments for just these α windows to compute Ai using the algorithm of Section

4.1.

4.2.2 Algorithm

The algorithm here is a dynamic program that is a “sliding window” across release times

where we guess the optimal straddle jobs and allotments, and then run the dynamic program

from Section 4.1 to find an optimal schedule for these choices of straddle jobs and allotments.

Specifically, for each release time ri in increasing order, we guess the optimal choice of jobs

straddling release times {ri−α, . . . , ri, ri+1}, which we denote ~Si ∈ (J + ⊥)α+1 × [0, pmax],

and guess the optimal allotments for the resulting windows, namely ~ai. We check that these

choices correspond to canonical schedules in the same way as in Section 4.1, ensuring that

straddle jobs are scheduled feasibly and that there is enough interval between straddle jobs

for the size of allotments.

For each choice of ~Si and ~ai, compute the table Ai using the algorithm from Section 4.1.

We then call on the previously computed schedule for jobs with earlier deadline interval by

guessing an optimal choice for ~Si−1 and ~ai−1, where the last α− 1 entries of ~Si−1 equal the

first α−1 entries of ~Si, that is, they are equal at every release time except ri−α−1 and ri+1.

Similarly, we assume that the last α− 1 entries of ~ai−1 are equal to the first α− 1 entries of

~ai, that is, except for the windows in [ri−α−1, ri−α] and [ri, ri+1] the allotments are equal

for each window.

Our algorithm computes the table B[~ai, ~Si], which stores the optimal solution up to

release interval i, given stored straddle jobs and allotments ~Si and ~ai.

For a release interval i, Ji denotes the jobs with deadline in interval i, and Ji(S) denotes

the jobs from Ji not scheduled after scheduling straddling jobs ~Si. We sort the jobs in

Ji(S) by deadline and enumerate them as Ji(S) = {ji1, . . . , ji|Ji(S)|}. As in Section 4.1 we

let L = min{Li, ri + si + npmax} denote the smaller of the start time of the allotments in

window i, or npmax past the straddle job, so we can bound runtime. We then use this to

compute the table Ai

[
~a, ji|Ji(S)|, L

]
. Thus the recursive formula for this algorithm will be

B[~ai, ~Si] = max
~Si−1,~ai−1

[
B[~ai−1, ~Si−1]

]
+Ai

[
~ai, ji|Ji(S)|, L

]
4.2.3 Algorithm Analysis

Claim 4.2.2. The algorithm finds an optimal solution.

Proof. This claim is shown by induction on i. For i = 1, we only need to schedule A1 which

we can do optimally with the schedule from Section 4.1, so B[~a1, ~S1] is optimal.

35

If we have computed Bi−1, then we just to need to see that we find the optimal Ai and

call on the optimal Bi−1 to get the solution for Bi. This holds since we iterate across all

choices of ~ai and ~Si, and so we find the optimal Ai. We can then iterate across all choices

of ~ai−1 and ~Si−1 that are equal to ~ai and ~Si for α − 1 straddle points. With these we can

recursively call on values for Bi−1, which we know are optimal by assumption.

Claim 4.2.3. The runtime of the algorithm is polynomial in n and pmax.

Proof. For fixed release interval i, we know by the proof of Lemma 4.1.4 that the number of

choices for both ~Si and ~ai is bounded by a polynomial in n and pmax since they are defined

over a constant number of release times. This also shows that there are a polynomial

number of choices for ~Si−1 and ~ai−1. Lastly, we know that we can compute the table Ai in

polynomial time since we are only computing for a constant number of job types.

Theorem 4.2.4. This algorithm gives an exact solution for Throughput Maximiza-

tion with job release times and deadlines spanning a constant number of release times.

4.2.4 Extending to a Constant Number of Machines

Here we describe how to extend the results of this chapter to a constant number of ma-

chines to get a pseudo-polynomial time algorithm for both Pm|#rj ∈ O(1)|
∑
j Uj and

Pm|#sizej ∈ O(1)|
∑
j Uj . The extension is very similar to the extension from Chapter 3

in that we will give a natural definition for straddle jobs and allotments on multiple parallel

machines, and provide a natural extension to the algorithm already provided. Straddle jobs

are tuples (i, j, sk) ∈ {1, . . . ,m}× {J +⊥}× [0, pmax − 1], where i denotes the machine the

job j is scheduled on, and j has completion time rk+sk, where the release time rk is inferred

by the index of the straddle job as before. Given the straddle jobs, for a fixed machine we

can define allotments in the same way as before, so we have an allotment vector ~ai for each

machine and an allotment vector ~a for the whole schedule.

We can define canonical schedules in basically the same way as for single machines in that

we consider an optimal schedule O and for each machine we do the rescheduling specified in

Subsection 4.1.1 so that the jobs on each machine are written as straddle jobs, allotments,

and jobs in their deadline window. Our algorithm will be almost identical to the single

machine version, given guesses for allotments and straddle jobs, for each deadline window

sort the jobs by deadline and schedule them in the same order and manner as in the single

machine case, except that when scheduling a job we also guess which of the m machines it

will be scheduled on. When making guesses for optimal straddle jobs and allotments, we

check that the choices for each machine correspond to a canonical schedule for that machine.

When scheduling a job we make a factor of m ∈ O(1) more guesses for where a job

should be scheduled since we just over every machine. Since we find allotments across m

36

machines the size of ~a is bounded by O(mR3) = O(1), so the number of choices for ~a is still

bounded by (npmax)O(1). The vector of straddle jobs ~S has no more than mR entries, and

each entry picks from O(n) jobs with O(pmax) choices for completion time, therefore there

is O((npmax)mR) many possible choices for ~S. Lastly, scheduling a job still takes O(1) time

since we just try to place it in one of O(mR2) = O(1) many places.

Since we have a pseudo-polynomial time algorithm for Pm|#rj ∈ O(1)|
∑
j Uj we can

use this as a subroutine to find a pseudo-polynomial time algorithm for Pm|spanj ∈

O(1)|
∑
j Uj . As in the single machine case if we have a choice of straddle jobs and al-

lotments for straddle points {ri−α, . . . , ri+1} we can find an optimal schedule for the jobs

with deadline interval i. So our algorithm will be much the same as in the single machine

case, we perform a left to right sweep keeping a memory of the last α straddle points, use

the algorithm for Pm|#rj ∈ O(1)|
∑
j Uj to schedule the jobs in the latest deadline interval,

then iterate across straddle jobs and allotments for the first release interval not memorized.

37

Chapter 5

Conclusion

In this thesis we presented several algorithms for various cases of Throughput Maximiza-

tion .

We presented an exact polynomial time algorithm for 1|#rj ∈ O(1),#pj ∈ O(1)|
∑
j Uj

in Chapter 2, which made extensive use of the Jackson rule to find a schedule between release

times. This algorithm was an attempt at closing a generalization of a problem identified as

open by Sgall [20].

In Chapter 3 we found both an exact pseudo-polynomial time algorithm and a PTAS for

Pm|#rj ∈ O(1),#dj ∈ O(1)|
∑
j Uj by developing the idea of jobs either straddling release

times and deadlines or scheduled between these points. We also showed this problem is

NP -Complete by a reduction to the Partition problem. The algorithms found in this

Chapter rely on a simple algorithm for the Multiple Knapsack problem that is written

out in Appendix A.

This straddle job and allotment paradigm was of use in finding an exact pseudo-polynomial

time algorithm for both Pm|#rj ∈ O(1)|
∑
j Uj and Pm|#sizej ∈ O(1)|

∑
j Uj , which is

the most general result of this work.

Some future direction of research in this area involves

• An obvious potential direction of research is in extending 1|#rj ∈ O(1),#pj ∈

O(1)|
∑
j Uj to either more machines, or relaxing the requirements on the number

of release times. The requirement that there are a constant number of unique release

times is useful in the algorithm we presented to allow us to efficiently find the jobs

that are available at a release interval.

• The case of 1|rj , pj ≤ O(1)|
∑
j Uj was in fact pursued during the course of this

research. The intended approach was to break the maximum timeline into a constant

number of segments and rounding the release time and deadline span of jobs with

large spans to exactly correspond to these segment and then try to guess how many

of these jobs are scheduled in each segment, and then recurse to each segment. This

38

direction was complicated by the fact that if a jobs release time and deadline spanned

only a few of these segments then this rounding does not appear to work out.

• Another obvious research direction is pursuing a PTAS for both Pm|#rj ∈ O(1)|
∑
j Uj

and Pm|#sizej ∈ O(1)|
∑
j Uj , possibly by extending the pseudo-polynomial time al-

gorithm given. This direction was considered for a single machine, even for O(log n/ log log n),

but a major sticking point was in scheduling jobs in their deadline interval which has

size polynomial in job sizes; since jobs cannot be rescheduled in arbitrary order like in

the proof for 3.3.1, we cannot easily round the size of guesses for deadline interval.

39

References

[1] P. Baptiste, “Polynomial time algorithms for minimizing the weighted number of late
jobs on a single machine with equal processing times,” Journal of Scheduling, vol. 2,
no. 6, pp. 245–252, 1999. 10

[2] P. Baptiste, P. Brucker, S. Knust, and V. G. Timkovsky, “Ten notes on equal-processing-
time scheduling,” Quarterly Journal of the Belgian, French and Italian Operations
Research Societies, vol. 2, no. 2, pp. 111–127, 2004. 10

[3] A. Bar-Noy, S. Guha, J. Naor, and B. Schieber, “Approximating the throughput of
multiple machines in real-time scheduling,” SIAM Journal on Computing, vol. 31,
no. 2, pp. 331–352, 2001. 9

[4] P. Brucker, Scheduling algorithms. Springer, 2007, vol. 3. 1, 4, 10

[5] P. Brucker and S. A. Kravchenko, “Scheduling equal processing time jobs to minimize
the weighted number of late jobs,” Journal of Mathematical Modelling and Algorithms,
vol. 5, no. 2, pp. 143–165, 2006. 10

[6] C. Chekuri and S. Khanna, “A polynomial time approximation scheme for the multiple
knapsack problem,” SIAM Journal on Computing, vol. 35, no. 3, pp. 713–728, 2005.
doi: 10.1137/S0097539700382820. [Online]. Available: https://doi.org/10.1137/
S0097539700382820. 7, 23–26

[7] J. Chuzhoy, R. Ostrovsky, and Y. Rabani, “Approximation algorithms for the job in-
terval selection problem and related scheduling problems,” Mathematics of Operations
Research, vol. 31, no. 4, pp. 730–738, 2006. 9

[8] M. C. Dourado, R. de Freitas Rodrigues, and J. L. Szwarcfiter, “Scheduling unit time
jobs with integer release dates to minimize the weighted number of tardy jobs,” Annals
of Operations Research, vol. 169, no. 1, pp. 81–91, 2009. 10

[9] M. R. Garey and D. S. Johnson, “Two-processor scheduling with start-times and
deadlines,” SIAM Journal on Computing, vol. 6, no. 3, pp. 416–426, 1977. 9

[10] R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. R. Kan, “Optimization and approx-
imation in deterministic sequencing and scheduling: A survey,” in Annals of discrete
mathematics, vol. 5, Elsevier, 1979, pp. 287–326. 4

[11] M. Held and R. M. Karp, “A dynamic programming approach to sequencing prob-
lems,” Journal of the Society for Industrial and Applied Mathematics, vol. 10, no. 1,
pp. 196–210, 1962. 9

[12] S. Im, S. Li, and B. Moseley, “Breaking 1-1/e barrier for non-preemptive throughput
maximization,” in International Conference on Integer Programming and Combinato-
rial Optimization, Springer, 2017, pp. 292–304. 9

[13] J. Jackson, Scheduling a production line to minimize maximum tardiness, ser. Re-
search report. Office of Technical Services, 1955. [Online]. Available: https://books.
google.ca/books?id=4jnPJgAACAAJ. ii, 6, 9

[14] D. Karger, C. Stein, and J. Wein, “Scheduling algorithms,” in Algorithms and theory
of computation handbook, Chapman & Hall/CRC, 2010, pp. 20–20. 9

40

https://doi.org/10.1137/S0097539700382820
https://doi.org/10.1137/S0097539700382820
https://doi.org/10.1137/S0097539700382820
https://books.google.ca/books?id=4jnPJgAACAAJ
https://books.google.ca/books?id=4jnPJgAACAAJ

[15] R. M. Karp, “Reducibility among combinatorial problems,” in Complexity of computer
computations, Springer, 1972, pp. 85–103. 3, 9

[16] E. L. Lawler, “Sequencing to minimize the weighted number of late jobs,” RAIRO
Rech. Oper., vol. 10, pp. 27–33, 1976. 9

[17] E. L. Lawler and J. M. Moore, “A functional equation and its application to resource
allocation and sequencing problems,” Management Science, vol. 16, no. 1, pp. 77–84,
1969. 9

[18] J. K. Lenstra, A. R. Kan, and P. Brucker, “Complexity of machine scheduling prob-
lems,” in Annals of discrete mathematics, vol. 1, Elsevier, 1977, pp. 343–362. 9

[19] J. M. Moore, “An n job, one machine sequencing algorithm for minimizing the number
of late jobs,” Management Science, vol. 15, no. 1, pp. 102–109, 1968. 6, 9, 12, 16, 17

[20] J. Sgall, “Open problems in throughput scheduling,” in European Symposium on Al-
gorithms, Springer, 2012, pp. 2–11. ii, 7, 38

[21] F. C. Spieksma, “On the approximability of an interval scheduling problem,” Journal
of Scheduling, vol. 2, no. 5, pp. 215–227, 1999. 9

[22] V. V. Vazirani, Approximation algorithms. Springer Science & Business Media, 2013. 1

[23] D. Williamson and D. Shmoys, The Design of Approximation Algorithms. Cambridge
University Press, 2011, isbn: 9781139498173. [Online]. Available: https://books.
google.ca/books?id=Cc%5C_Fdqf3bBgC. 1

41

https://books.google.ca/books?id=Cc%5C_Fdqf3bBgC
https://books.google.ca/books?id=Cc%5C_Fdqf3bBgC

Appendix A

Multiple Knapsack Problem for
Uniform Profits

Here we give a pseudo polynomial time algorithm for Multiple Knapsack Problem with

Uniform Profits.

Suppose there n items j1, . . . , jn of uniform profit, pi = 1 for all ji, and item ji has

weight wi. Further, say there are m ∈ O(1) knapsacks with sizes k1, . . . , km ∈ [0, nwmax].

We let the table A[k1, . . . , km, jn] be the maximum way to place items j = 1, . . . , n in all

the knapsacks.

The algorithm to pack the items is a straightforward dynamic program, where we take

the item, and consider packing it in any of the knapsacks or not at all. That is, if we

have computed the table for all placements of items {j1, . . . , jq−1} and for all knapsack

capacities k′′i ≤ k′i, then we will compute the table A[k′1, . . . , k
′
m, jq]. If jq is not part

of the optimal solution, then the optimal solution is composed of the jobs {j1, . . . , jq−1},

so we have A[k′1, . . . , k
′
m, jq] = A[k′1, . . . , k

′
m, jq−1]. If jq is part of the optimal solution,

then it is packed in some knapsack k′i, and we reduce the capacity of knapsack i by wjq

so A[k′1, . . . , k
′
m, jq] = A[k′1, . . . , k

′
i − wjq , k′m, jq−1]. If q = 1, then the optimal packing is

placing j1 in any knapsack where it would fit. This gives the following lemma

Lemma. This algorithm finds an optimal solution.

Lemma. This algorithm runs in time polynomial in n and wmax.

Proof. The largest size of a knapsack is nwmax, so there are (nwmax)m many indices for

knapsacks in the table. There are exactly n items to consider, therefore, the table has

n(nwmax)m = (nwmax)0(1) many indices. Placing an item takes O(1) time since we only

consider whether it can fit in one of the O(1) knapsacks.

42

	Introduction
	Preliminaries
	Optimization Problems and Approximation Algorithms
	Scheduling Problems
	Knapsack Problems

	Problems Considered
	Terms and Definitions

	Prior and Related Work

	Constant Number of Job Sizes and Release Times
	Problem Overview
	Canonical Schedules

	Algorithm
	Algorithm Analysis

	Constant Number of Release Times and Deadlines
	Problem Overview
	Pseudo-Polynomial Time Algorithm
	Algorithm
	Algorithm Analysis

	PTAS for Constant Number of Release Times and Deadlines
	Algorithm
	Analysis

	General Case is Weakly NP-Complete
	Extending to a Constant Number of Machines

	Constant Number of Release Times
	Constant number of Release Times
	Canonical schedule
	Algorithm
	Analysis

	Constant Span
	Canonical Schedules
	Algorithm
	Algorithm Analysis
	Extending to a Constant Number of Machines

	Conclusion
	References
	Appendix Multiple Knapsack Problem for Uniform Profits

