
Entropy as a Measure of Puzzle Difficulty

by

You Chen Eugene Chen

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

University of Alberta

© You Chen Eugene Chen, 2023

Abstract

Evaluating and ranking the difficulty and enjoyment of puzzles is important

in game design. Typically, such rankings are constructed manually for each

specific game, which can be time consuming, subject to designer bias, and

requires extensive play testing. An approach to ranking that generalizes across

multiple puzzle games is even more challenging because of their variation in

factors like rules and goals. This thesis introduces two general approaches

to compute puzzle entropy, and uses them to evaluate puzzles that players

enjoy. The resulting uncertainty score is equivalent to the number of bits of

data necessary to communicate the solution of a puzzle to a player of a given

skill level. We apply our new approaches to puzzles from the 2016 game, The

Witness. The computed entropy scores largely reproduce the order of a set

of puzzles that introduce a new mechanic in the game. The scores are also

positively correlated with the user ratings of user-created Witness puzzles,

providing evidence that our approach captures notions of puzzle difficulty and

enjoyment. Our approach is designed to exploit game-specific knowledge in a

general way and thus can extended to provide automatic rankings or curricula

in a variety of applications.

ii

Preface

This thesis is an extension of a paper we published at the AAAI conference on

Artificial Intelligence and Interactive Digital Entertainment (AIIDE). This is

a joint work with the paper co-authors Nathan Sturtevant and Adam White.

Antonie Bodley helped to edit parts of the thesis, primarily in Chapters 1 and

2.

iii

To my wife and son

For the endless patience and support they provide.

iv

The first bowl of soup puzzle was too cold easy, the second was too hot

difficult, but this one is just right.

– AI Goldilocks, AI Goldilocks and the Three Bearsillion Puzzles .

v

Acknowledgements

This thesis, and the graduate journey leading up to its creation, was made

possible with the help of many faculty members and students at the University

of Alberta. My supervisors Nathan Sturtevant and Adam White ensured that

the research and writing of the paper extended by this thesis met the standards

of excellence for its acceptance and publication at AIIDE. They introduced

me to the requirements of graduate, scientific research, and patiently provided

space and guided me to completing this thesis as I juggled full-time work and

other responsibilities outside my Masters program.

In addition, Adam helped to expand my learning in other ways. His will-

ingness to thoroughly explain concepts in my first graduate class, specifically

on Reinforcement Learning, instilled useful new concepts that were foreign to

me after a decade of software development. He guided me through an individ-

ual study course that included my interests in visualizations and explainable

AI, resulting the creation of mdp.ai [11], and provided me the opportunity to

work on the Reinforcement Learning Specialization course on Coursera [17].

Nathan’s questions and insights helped direct several research experiments

and outcomes. His background in games, puzzles, and work in making his

research more accessible by providing demos online [12] inspired me to do the

same [18]. Several pivots took place especially in the early stages of this re-

search, and without his recommendations and thoughtful discussions, I would

have likely dived deeper into unproductive rabbit holes. Students from his

Moving AI Lab provided constructive feedback at multiple venues and meet-

ings, and helped me reconsider different approaches within the research and

in their explanations. Last but not least, Nathan’s ability to clearly and suc-

cinctly explain complex concepts, including ones presented in this thesis, is

vi

something I will continue to aspire towards developing, and I appreciate his

guidance in helping me achieve it.

Levis Lelis helped lead me to this research by offering the opportunity to

work with him on the now-published research [10] that utilized puzzles from

The Witness videogame. I had not heard of The Witness until he presented

his research idea at one of Michael Bowling’s research lab meetings. Together

with other researchers, we created a user-study to test the research findings.

I am also thankful to Levi for his suggestions in navigating graduate research,

and for allowing me to audit his fascinating course on writing programs that

write their own programs.

I want to thank Vadim Bulitko for being a part of my examining committee,

and also for teaching the course that led a few of us students to explore how

evolutionary AI could affect observational learning in A-life (artificial life) [25].

Separately, Matthew Guzdial introduced me to many concepts on procedural

generation for games in his course, culminating in our published paper on

turning images into game levels [4], and he also ran intriguing workshops that

explored ideas of gaming that came from the research of workshop attendees.

Carrie Demmans Epp was incredibly gracious in imparting her wisdom on

the goals of graduate research and invalidating my incorrect beliefs about

education research through the joint work we did with Levi.

My interactions with Martha White, whether it was auditing her course

on Machine Learning or in conversations around developing the Courseara

Reinforcement Learning course, have helped me better understand complex

concepts because of her willingness to explore the thoughts I and others bring

up. Throughout my program, Richard Sutton showed a steadfast dedication

in empowering the new generation of students in both in his Reinforcement

Learning course and supporting programs for graduate students, and I bene-

fited from his willingness to share his knowledge.

Finally, for faculty, a special thanks to Denilson Barbosa, without whom I

would not have even considered pursuing a Masters program. His willingness

to help me with my early queries led me to pursue the program, and his advice

early on helped direct my studies to topics that were new and interesting for

vii

my background.

I have been helped by, and learned a lot from, many students throughout

my program. Many are co-authors of work, others from different research

labs that provided suggestions both on research and graduate life. There

are too many to list, and I thank them all sincerely here. A few specific

students left very positive impressions. Cody Rosevear spent many hours with

me debating assignment approaches, textbook definitions, and then research

content for joint work on A-life research, and I am thankful for his steady

and objective lens when we worked together. Sheila Schoepp and I helped one

another understand concepts through multiple courses, and has always been

thoughtful and considered in her responses. Arash Pourzarabi and Pouneh

Gorji were two of the kindest and smartest students I have ever met, offering

suggestions and insights for assignments, in preparing for exams together, or

in trying to organize social events for grad students. I will never forget how

patient and kind Pouneh was in spending time individually with my young

son, and then listening to him slowly read a story to her.

The staff at the Alberta Machine Institute of Intelligence (Amii) have

helped enrich the experience of graduate students in computing science, in-

cluding my own. I have benefited from their multiple offerings of classes and

opportunities to learn important material. Additionally, both Nathan and

Adam are Amii Directors, and the Amii network has helped expose me to

further opportunities outside of the University of Alberta. I am grateful for

the role Amii has and continues to play for students like me.

Part of my Masters program was done while working at Darkhorse An-

alytics, a consulting data analytics and visualization firm. Progress in the

thesis would not have been possible without their support, and I am thankful

for their willingness to let me discuss some of my learnings with the team. I

specifically want to thank Nancy Ho for her willingness to listen to what can

sometimes sound like incoherent explanations, and for her continued grace and

excitement for my progress.

As noted earlier, without the support of my wife and son, none of this

would be possible.

viii

Finally, this work was supported by the National Science and Engineering

Research Council of Canada Discovery Grant Program and the Canada CIFAR

AI Chairs Program. I thank them for supporting this work.

ix

Contents

1 Introduction 1
1.1 The Benefits of Scoring Puzzle Difficulty 1
1.2 Relating Puzzle Difficulty Scoring to Education and Skill Ac-

quisition . 4
1.3 The Challenges of Scoring Difficulty for Different Puzzle Games 5
1.4 Existing Puzzle Scoring Approaches 6
1.5 Our Entropy-based Approach 7

2 Background 8
2.1 Puzzle Representation as a Graph 8
2.2 The Witness Domain . 9
2.3 Information Entropy . 11

2.3.1 KL Divergence . 12
2.3.2 Softmin Function . 12

3 Encoding Puzzle Uncertainty as Entropy 13
3.1 Minimum Uniform Solution Entropy (MUSE) 14
3.2 Logic Puzzles and Inference Rules 17
3.3 Inference Rules for Witness Puzzles 17
3.4 MUSE with a modified action function 19

3.4.1 ReMUSE: Relative MUSE 20
3.4.2 Other Puzzle Measures 22

3.5 Logic-Driven MUSE with Straight Line Policy 22

4 Experiment Setup and Results 25
4.1 Interesting Puzzles from the Windmill 25

4.1.1 Case: Puzzles with Must-Cross Constraints At Every
Vertex . 28

4.1.2 Case: MUSE with a Straight-Line Policy 30
4.2 Patterns from Ordered Witness Puzzle Sets 30
4.3 ReMUSE Distribution across Puzzle Sizes 33
4.4 Slitherlink Puzzles and Triangle Constraints 36

4.4.1 Equivalences between Witness and Slitherlink Puzzles . 36
4.4.2 Differences between Puzzle Games 38
4.4.3 Testing Data and Outcomes 39

5 Conclusion and Future Work 41

References 43

Appendix A Inference Rules for Witness Puzzles 45
A.1 Assessing Actions . 45
A.2 L(s) Returns After Actions are Assessed 48

x

List of Tables

3.1 Entropy encountered at each state for puzzle solution reached
at states 2d and 3h using valid action function return A(s) and
logic action function return L(s). 16

4.1 Pearson Correlation Coefficients (PCC) and p-values for user
ratings with Windmill puzzles 26

xi

List of Figures

2.1 Example witness puzzle, annotations on the start and end goal
junctions, and the puzzle solutions. Early Witness puzzles, like
the one shown in a), are rectangular grids that have start junc-
tions, indicated by grey circles, and end goal junctions, indi-
cated by notches. Solving each puzzle minimally requires the
drawing of a path along the grey grid line from a start junction
to an end one. All four solutions of the puzzle in a) are shown
in c). 9

2.2 Witness puzzle states are the history of [x, y] positions taken to
reach different junctions within the grid. These junctions are
denoted in a). A sample state s shown in b) is {[0, 0], [0, 1]},
which includes the starting position at [0, 0]. A(s) returns valid
cardinal actions that can be taken to further draw the line to a
next state, and as shown in c), A(s) for that state would return
{aup, adown}. 10

2.3 Witness puzzles often contain constraints, and the puzzles shown
here include different colour square constraints. In a), two
squares of different colours reside between the gridlines, and
solutions must satisfy their constraints. Squares of different
colours must be separated by the drawn path, so only iii) and
iv) in b) are considered solutions. Two solutions for a different
puzzle are further demonstrated in c). 11

3.1 A(s) returns more actions than logic infused L(s). Inference
rules used in L(s) for the same puzzle in both a) and b) does
not include aup that A(s) does, since taking aup would not allow
the constraint to later be resolved. In c) we see how L(s) simi-
larly determines aright to be the only action to take to possibly
solve the puzzle due to the must-cross constraint. In d), L(s)
returns no actions since it is impossible to fulfill both must-cross
constraints that must be drawn to from that state, while in e),
using a 1 step lookahead from the start state at {[0, 0]} only
returns aright since the state reached in d) would result in no
further actions to solve the puzzle. 18

3.2 Witness puzzles can increase in grid size, but not necessarily
in complexity or difficulty. The puzzles shown above indicate
examples of a puzzle that is effectively solved from the state of
[0, 2], [1, 2], since there is no further complexity from that state
no matter how much larger the grid increases in size from the
x axis. MUSE scores would continue to increase in these larger
puzzles, which would not make sense. 20

xii

3.3 Non-local straight-line policies reflect the behaviour that hu-
man players can (and likely do) plan by drawing a straight line
from the current state to the end junction. Example lines are
demonstrated in a) and b), where in b) two paths are included
from that state. 23

4.1 User ratings of puzzles and their ReMUSE scores. A ReMUSE
Pearson Correlation Coefficient of 0.57 is achieved in this analysis. 26

4.2 Set of puzzles on the Windmill with only 1 solution, but vary
in the number of actions taken to solve the puzzle and their
ReMUSE scores. The expectation that puzzles are more diffi-
cult if they have longer solutions that require more actions is
disproved with these puzzles. Puzzle b) requires the most num-
ber of actions (24) but is trivial to solve and has a ReMUSE
score of 0. The puzzle in c) shares the same number of actions
but has a higher ReMUSE score, and the puzzle in d) has fewer
actions and the highest ReMUSE score. In our experience, the
ReMUSE scores reflect the ranking of difficulty in solving for
these puzzles. 28

4.3 Sample of puzzles with must-cross constraints at each non-
starting or non-ending vertex. Taking away such puzzles from
our data results in a larger coefficient between ReMUSE and
user ratings. 29

4.4 Puzzle order of introductory constraint puzzles in The Witness
compared with ReMUSE score-driven order. They are quite
similar, with initial puzzles deemed as equivalent in puzzle or-
dering using ReMUSE scores, and only iv) and v) are flipped.
This similar ordering indicates that ReMUSE could be used
to help rank puzzles for difficulty, and can help to explain the
choice of puzzle ordering. 31

4.5 Puzzle order of equidistant puzzles compared with ReMUSE
score-driven order. The similar ordering here indicates the po-
tential for ReMUSE to be used in sorting puzzles by difficulty
for curriculum development. 32

4.6 Distribution of all 3×3 puzzles with only one solution using two-
coloured square constraints. Note the pattern in the decreasing
number of puzzles of higher ReMUSE scores, suggesting that
challenging puzzles within a given puzzle grid size will be of a
smaller proportion compared to easier puzzles. 34

4.7 Distribution of all 3 × 4 puzzles with only one solution using
two-coloured square constraints. Similar analyses can be ar-
rived at from our 3× 3 puzzles. Additionally, note that despite
the increased grid size, it is possible to find puzzles with lower
ReMUSE scores compared to their 3×3 sized counterparts, sug-
gesting that increased grid size is not a guarantee of ensuring
that more difficult puzzles are created. 34

4.8 Examples of generated 3 × 4 puzzles that have only a single
solution, but vary in their ReMUSE scores. We attached arbi-
trary levels of difficulty to these puzzles based on their ReMUSE
scores, and found the difficulty levels to be accurate in our own
experiences of solving these puzzles. 36

xiii

4.9 Slitherlink puzzle and the corresponding solution. Puzzle so-
lutions require that the number of lines drawn along the black
dots or junctions immediately surrounding the number equal
the number itself. These lines must connect in a closed grid
too. The solution in b) provides three examples of these con-
straints being fulfilled. The number 1 has one line draw to its
immediate right, the number 2 has one above and to the right,
and number 3 has lines drawn around it except to its right. . 37

4.10 Witness puzzles similar to the Slitherlink puzzle in Figure 4.9a.
These puzzles are not equivalent to the Slitherlink puzzles, but
are quite similar. Instead of using numbers, the number of
triangles in Witness puzzles are used instead to indicate the
number of lines that must be immediately drawn around it, so
the Witness puzzle in a) without start and end junctions as
shown in c) is most similar to the Slitherlink puzzle in Figure
4.9a. 38

4.11 Puzzles containing only triangle constraints on the Windmill
and their ReMUSE scores. 40

A.1 Examples of must not take actions based on rules for Witness
puzzles or from inference rules 45

A.2 Examples of must take actions based on different inference rules 46
A.3 Probable and probable must take actions 47
A.4 When an action can be determined as both a must take and

must not take action. 48

xiv

Chapter 1

Introduction

An approach to compute the difficulty of a puzzle and output a numerical

score can be very useful for puzzle game designers. For example, puzzles can

be procedurally generated and measured for difficulty, and the resulting diffi-

culty scores can help designers select suitable puzzles to incorporate at different

stages in their game. Such an approach can be faster than a designer’s man-

ual crafting of puzzles. Calculating difficulty is challenging for many reasons,

especially for a general approach that can apply to different puzzle games,

which is why existing measures to calculating difficulty are tailored to individ-

ual games. In our research, we derive two entropy-focused general measures to

computing puzzle difficulty and find our best measure, called ReMUSE, is pos-

itively correlated with user ratings on a set of puzzles based on the videogame

The Witness.

1.1 The Benefits of Scoring Puzzle Difficulty

An algorithm that computes puzzle difficulty can help designers more objec-

tively gauge the difficulty of the puzzles they craft. It can help them explore

different puzzle designs and determine which should belong to the various

stages within their games. Such choices must be made because players may

stop playing the game when faced with puzzles that are inappropriately diffi-

cult for them. For example, very difficult puzzles introduced to new players of

a puzzle game can cause them enough frustration to stop playing. A difficulty

score can help designers avoid such a situation by only picking puzzles that

1

have low difficulty scores for these beginners, and the score could be computed

while a puzzle is being designed or edited through a editor.

Puzzle difficulty scores can also help speed up game development. Puzzles

can be generated procedurally : that is, generated algorithmically instead of

being crafted manually by a game designer. When these generated puzzles are

be computed for difficulty, designers can match them to the different stages of

their games instead of designing puzzles manually for difficulty. A matching

method after procedural generation can be much faster than manual creating

puzzles for appropriate game stages, especially as puzzles can get increasingly

large and complex to design for.

The combination of procedural generation and a computable difficulty score

can help designers create challenging puzzles that they would not otherwise

have crafted. The building blocks for many puzzles can often be changed or

rearranged in many ways, resulting in astronomical variations. If the intention

is to create some of the most challenging puzzles of a given size, it is unlikely

that designers would have crafted those puzzles without procedural generation

and a difficulty scoring approach.

A difficulty score can help develop a curriculum of puzzles that require

players to gain knowledge for further progression. This refers to providing a

series of puzzles ordered by increasing difficulty, often introducing new me-

chanics or concepts players must learn. Take, for example, a game introducing

Chess to new players and starts with only a few pieces that can be found on a

chess board. As players progress through the stages of the Chess-introducing

game, more pieces are introduced to the player, as well as the mechanics of

how the pieces move and interact. The goal of such curriculum is to let players

learn and feel more comfortable with the new material through experiencing

easier puzzles early on. As player confidence and familiarity with these con-

cepts increase, more difficult puzzles are gradually introduced. The success of

a curriculum can be measured by a player’s ability to solve more challenging

puzzles after completing the curriculum, and a difficulty score can be used to

order puzzles by difficulty for forming a curriculum.

Ordering puzzles by increasing difficulty scores can also increase player en-

2

joyment of a game by helping to induce states of positive optimal experience,

or flow [6]. Flow occurs when people perform tasks that are slightly challeng-

ing compared to tasks that are too easy or too difficult, leading to boredom

or frustration. The same concept applies to games and players, where overly

challenging experiences can cause players to stop playing a game out of frus-

tration, and overly easy ones can cause boredom. To achieve a state of flow,

the ideal experience is to provide some challenge to players, but not too much.

An approach that accounts for players’ different abilities to solve puzzles

can help designers craft player-specific experiences of difficulty. For example,

a puzzle could be considered difficult by a new player who has yet to acquire

the knowledge or experience necessary to easily solve the puzzle. An experi-

enced player might consider the same puzzle trivial to solve. If puzzles can

be scored and sorted for difficulty based on the profile of a player’s skill, then

designers can pick simpler ones that are slightly challenging for the earlier

stages of a game, followed by increasingly challenging ones as players gain

more experience.

When the computation of puzzle difficulty scores can be done quickly, it

becomes possible for a game to automatically create puzzles that are tailored

to a player’s skill level if the creation is also quick. For example, an expert

player could enter a game and select an option to be presented with difficult

puzzles, and the game would dynamically generate them. Game designers

would not have to manually craft puzzles for such games. They could instead

focus on other elements of the game, like tweaking mechanics that can vary

puzzle difficulty.

Quick procedural generation and a method to quickly compute puzzle dif-

ficulty scores make it possible for a game to actively adapt to any player’s

variable ability to solve puzzles. Let us assume that the longer it takes a

player to solve a puzzle, the more difficult it is for that player. Making an-

other assumption that a game designer aims to have their players achieve a

state of flow when playing their game, the game could dynamically adjust the

difficulty of each subsequent puzzle presented to the player. If a puzzle is

solved too quickly, the next generated one will be more difficult. Conversely,

3

if a puzzle takes too long to solve, a simpler one is presented next.

Such an adaptive system can also help to determine if players have the

requisite knowledge to solve puzzles with specific mechanics. If a player always

takes longer to solve puzzles involving a specific mechanic, the system could

provide simpler variants. This would provide more opportunities for the player

to learn the mechanics through exposure to its most basic elements. Players

gain both confidence and experience by solving these simpler puzzles and can

progress to more challenging versions afterwards.

A general measure that can compute puzzle difficulty scores across different

puzzle games is beneficial in several ways. First, existing measures to scoring

difficulty are crafted for the game they have been designed for because puzzle

games vary in their rules and goals. A standard measure can derive a difficulty

score without having to craft and test game-specific methods to arrive at such a

score. This can save a substantial amount of effort. Second, a general measure

can compare puzzle difficulty across different games. Such a measure can

lead to several helpful analyses, like comparing how difficulty changes during

the various stages of different games. Finally, a standard measure to scoring

difficulty can help game designers craft and test mechanics. As designers create

their games, they design puzzles with different mechanics. These mechanics

can impact difficulty scores, and designers can decide to add, remove, or modify

these mechanics due to their impact on difficulty.

1.2 Relating Puzzle Difficulty Scoring to Ed-

ucation and Skill Acquisition

A general measure to scoring difficulty in puzzle games can potentially be

modified to work in other domains, from non-puzzle games to the teaching

of subjects like Math in schools. A puzzle game can be considered as having

a primary goal of entertaining players by providing challenging puzzles that

they can solve with their skills. These skills are obtained by learning and

experiencing new concepts and methods that are necessary to solve puzzles.

This is particularly true for games that introduce additional mechanics in their

4

puzzles as part of player progression. Thus, to entertain players with a series

of challenging puzzles, the game must find ways to teach players concepts to

address the additional mechanics meant to make the puzzles more challenging.

The introduction of these additional mechanics to keep players challenged can

induce a state of flow.

A primary goal of traditional education in school is for students to attain

the skills and knowledge taught to them. The combination of education and

entertainment is edutainment, which is meant to help students attain knowl-

edge and skills by keeping them engaged through entertainment. Many edu-

tainment video games are created to facilitate student learning, and a general

difficulty scoring measure can potentially be applied to identifying the diffi-

culty of concepts being taught. It can even determine the difficulty of certain

concepts for individual students or players that vary in how much they have

understood in such edutainment games.

Learning and entertainment exist in both edutainment and puzzle games,

with puzzle games primarily focused on entertainment and having learning be

the means to the end of achieving that entertainment. The opposite can be

considered true for edutainment games. They can be very similar, however.

The ability to help players achieve states of flow in puzzle games through

puzzle difficulty scoring can be realized for students by providing the right

level of challenge of questions or material they are presented with. The stream

of slightly challenging puzzles can keep students engaged, and offers more

opportunities for students to learn new skills and knowledge.

1.3 The Challenges of Scoring Difficulty for

Different Puzzle Games

It is hard to determine the difficulty of puzzles with a general measure that can

apply to different games. One reason is that puzzle games can vary greatly

in their rules and goals. For example, the game-specific rules for playing

Minesweeper, Sudoku, and Sokoban puzzles are unique enough that they can-

not be applied to help solve one of the other games. In Minesweeper, players

5

reveal non-bomb tiles, while in Sudoku, they fill up blank spots of a 9x9 grid

with numbers 1 through 9, ensuring that all rows, columns and the 9 non-

crossing 3× 3 sections of the larger grid contain only single instances of each

number. In Sokoban, players control an avatar to push boxes either hori-

zontally or vertically to designated box locations. While all three games are

examples of single-player, turn-based puzzles, it is challenging to provide an

approach to scoring difficulty that can work across all three games.

Difficulty is also different for players of different knowledge and skill levels,

further complicating measurement. However, such a measure can be very

useful. It can be used to predict whether puzzles will be interesting to players

of different skill levels, identify specific skills that render puzzles as easy or

challenging, and help explain or generate the ordering of puzzles within puzzle

games.

1.4 Existing Puzzle Scoring Approaches

Specific algorithms have been proposed to measure puzzle difficulty for some

games. Sudoku puzzles have been measured for difficulty by mapping them

into sets of constraint satisfaction problems [7]. In Sokoban difficulty has been

measured by the minimum number of steps needed to decompose a puzzle into

subproblems [8]. These algorithms are tied to the puzzle domains they are

created to measure. We aim to design general algorithms that apply across

multiple puzzle games.

Generative approaches need a way to select intriguing puzzles, and our work

is related to evaluating puzzles for some desired property, such as difficulty.

Grammatical evolution can be used to create levels for a clone of a puzzle

game Cut the Rope, measuring generated levels for playability and variety

[19]. Incremental Exhaustive Content Generation (EPCG) [23] can be used to

produce minor variations in the design of Snakebird game levels to significantly

increase the length of the shortest possible solution [24]. In The Witness,

neural-guided tree search has been used to determine a set of ordered puzzles

[10] that compares favourably with ordered puzzles from the game in teaching

6

players to solve additional test puzzles. In each of these works, problem-specific

scores are designed to measure and select the most interesting content.

Difficulty in puzzles has been measured using different approaches. Search

and strategic depth scores have been suggested as reasonable indicators of

puzzle difficulty [15]. Others have proposed constraint satisfaction solvers as

part of a deductive search approach to measure difficulty [2].

Finally, a number of simpler puzzle measures can be generally extracted

and used as proxies for difficulty. For example, the number of solutions to a

puzzle provides a natural measure of difficulty because more solutions implies

easier puzzles. Shorter solution lengths also relate to difficulty for similar

reasons. However, these measures are not sufficient for capturing difficulty in

puzzles, as we will later show.

1.5 Our Entropy-based Approach

In this thesis, we contribute a new measure of puzzle difficulty based on en-

tropy. Applied to single-player, turned-based puzzles, our entropy measure

quantifies the communication that would be needed to describe a puzzle’s so-

lution, given player knowledge of the puzzle domain. Entropy is calculated

from the number of choices a player faces at each step in the solution path.

Using these notions, we derive two information entropy measures and then

evaluate them on several puzzle test sets

Empirically, we find that our best approach, ReMUSE, is able to measure

puzzle difficulty effectively, according to two experiment outcomes. First, in

The Witness, it orders a set of mechanic-introducing puzzles very similarly to

the original puzzle designers. Second, we find a positive correlation between

the ReMUSE scores and user ratings for a series of online puzzles frequented

by puzzle enthusiasts, indicating a relation to puzzle enjoyment and separately

by difficulty. The correlation with user ratings for ReMUSE are higher than

the correlation with other puzzle measures such as average solution length and

a puzzle’s number of solutions.

7

Chapter 2

Background

We design two algorithms, MUSE and ReMUSE, which take as input a single-

player, turn-based puzzle and return a scalar score for the entropy of a puzzle.

In the upcoming subsections, we describe how we represent puzzles as graphs,

utilizing simple puzzles from the game The Witness to illustrate essential

concepts. We then describe information entropy, KL divergence, and softmin

algorithms, which are utilized in MUSE and ReMUSE.

2.1 Puzzle Representation as a Graph

A single-player, turn-based puzzle can be defined as a directed graph G =

(V,E). V is a set of k vertices, also interchangeably called states s, where

V = {s1, ..., sk}, and states can be reached through edges E = {e1, e2, ...}.

Each directed edge can be represented as a pair of states originating from

state si to sj, or em = {si, sj}. Beginning with the action of picking an initial

starting state sstart from a set of starting states Sstart, a solution to a puzzle

is an edge-connected path from a start state to a goal state.

Edges E of the puzzle are not explicitly enumerated: instead, they are

calculated with an action function A(s) that returns a set of edges, inter-

changeable with actions a, for a given state s. A puzzle also needs a goal test

function Γ(s) that returns 1 if state s is a goal state and 0 if not.

Considered together, a puzzle can be defined by a graph, a set of start

states, an action function, and a goal test function. This is represented as

puzzle = {G,Sstart, A,Γ}. This representation is used as the input to compute

8

our MUSE and ReMUSE scores.

2.2 The Witness Domain

(a) Puzzle (b) Start & Goal (c) Solutions, i-iv

Figure 2.1: Example witness puzzle, annotations on the start and end goal
junctions, and the puzzle solutions. Early Witness puzzles, like the one shown
in a), are rectangular grids that have start junctions, indicated by grey circles,
and end goal junctions, indicated by notches. Solving each puzzle minimally
requires the drawing of a path along the grey grid line from a start junction
to an end one. All four solutions of the puzzle in a) are shown in c).

The Witness is a 2016 single-player video game where players can explore

an island filled with different biomes of themed, solvable puzzles. Early puzzles

are presented as [w×h] sized rectangular grids, such as the [1×2] sized puzzle

in Figure 2.1a. Solving any Witness puzzle will, at minimum, require a non-

crossing path to be drawn along the light-grey grid from special start junctions,

indicated by round circles, to any goal junctions, indicated by notches. The

start and goal junctions for our puzzle are displayed in Figure 2.1b, and all

four solutions for the puzzle are shown in Figure 2.1c. Note that when a non-

crossing path is drawn and reaches the end goal junction, the notch indicating

the end goal junction is automatically filled as part of the drawn path.

Formally, the state of a Witness puzzle is the path drawn during play,

which can be represented as a sequence of junction positions. For example,

junction positions for the Witness puzzle shown throughout Figure 2.1 and 2.2

are listed in Figure 2.2a. State s from Figure 2.2b is {[0, 0], [0, 1]}, starting with

9

(a) Junctions and their positions (b) Sample state
s

(c) Actions from
A(s)

Figure 2.2: Witness puzzle states are the history of [x, y] positions taken to
reach different junctions within the grid. These junctions are denoted in a). A
sample state s shown in b) is {[0, 0], [0, 1]}, which includes the starting position
at [0, 0]. A(s) returns valid cardinal actions that can be taken to further draw
the line to a next state, and as shown in c), A(s) for that state would return
{aup, adown}.

the only start junction in this puzzle, with Sstart = {[0, 0]}. Graph edges or

actions in Witness puzzles represent cardinal (up, down, left, right) directions

used to draw a path to a next state, so action edge-detection function A(s)

returns {aup, aright} for state s, as shown in Figure 2.2c. The next state will

return {[0, 0], [0, 1], [0, 2]} if aup is taken at s, or {[0, 0], [0, 1], [1, 1]} if aright is

taken instead. Goal test function Γ(s) returns 0 for state s in Figure 2.2b, and

1 for each state shown in Figure 2.1c.

Unlike the puzzle in Figure 2.1a, most Witness puzzles also contain con-

straints that must be fulfilled when a non-crossing path is drawn from a start

to goal junction. The puzzle in Figure 2.3a contains such a constraint: dif-

ferent coloured squares within the grid are associated with constraints that

require that squares of only one colour exist within the regions separated by

a start-to-goal non-crossing path. As a result Γ(s) returns 1 only for states

shown in iii) and iv) in Figure 2.3b since the different coloured squares are

separated into two regions with the path. Γ(s) returns 0 for states shown in

i) and ii) of Figure 2.3b. Both states depicted in Figure 2.3c return 1 through

Γ(s). For i) in Figure 2.3c, the path separates two regions of coloured squares

(3 black squares left, 2 blue squares right), while three regions (containing 1

10

(a) Puzzle w
constraints

(b) Solutions, iii &
iv

(c) 3x2 puzzle &
solutions

Figure 2.3: Witness puzzles often contain constraints, and the puzzles shown
here include different colour square constraints. In a), two squares of differ-
ent colours reside between the gridlines, and solutions must satisfy their con-
straints. Squares of different colours must be separated by the drawn path, so
only iii) and iv) in b) are considered solutions. Two solutions for a different
puzzle are further demonstrated in c).

black, 2 black, and 2 blue squares) also separate squares of different colours in

ii).

2.3 Information Entropy

In information theory, entropy is a measure of the uncertainty of a random

variable Z, where Z has k possible outcomes {z1,, zk} [20]. If the probability

of an outcome z is given by a probability function P (z), the information

entropy is defined as:

H(Z)
.
=

k∑︂
n=1

P (zn) log2
1

P (zn)
(2.1)

For example, for an unfair double-sided coin that always turns up heads

there is no uncertainty in the outcome. Mathematically, given the random vari-

able Zunfair = {zheads, ztails}, the probability q = P (zheads) = 1 and P (ztails) = 0,

and so its entropy is H(Zunfair) = 1 log2
1
1
+ 0 log2

1
0
= 0 bits.

With a fair coin, where there is an equal chance that heads or tails is the

outcome of the flipped coin, the probabilities P (zheads) = 0.5 and P (ztails) =

0.5 result in the entropy of the outcomes being H(Zfair) = 0.5 log2
1
0.5

+

11

0.5 log2
1
0.5

= 1 bit. In other words, it would take 1 bit of information to

communicate the outcomes of a flipped, fair coin.

2.3.1 KL Divergence

Kullback–Leibler (KL) Divergence [9], often used in machine learning models

to calculate loss [16, 21], is a measure that calculates the difference between two

probability distributions. We use the relative entropy interpretation of KL

divergence, or the resulting uncertainty from using a probability distribution

Q to represent a true probability distribution P :

DKL(P ||Q)
.
=

∑︂
x∈X

P (x)log2
P (x)

Q(x)
(2.2)

Keeping with our example of a fair coin where the P (Zfair) = {P (zheads),

P (ztails)} = {0.5, 0.5}, the KL divergence from using a probability distribu-

tion Q that estimates heads turning up 90% of the time is DKL(P ||Q) =

0.5 log2
0.5
0.9

+ 0.5 log2
0.5
0.1

= 0.74. If Q had the same probability distribution as

P , then the KL divergence would work out to be 0, reflecting no uncertainty

from using Q to represent P .

2.3.2 Softmin Function

The softmax function [1] is widely used to normalize vectors of real numbers

into a probability distribution on outcomes. It is, for instance, often used as

the last activation function of a neural network to turn network outputs into

a probability distribution for a set of output classes, and is defined as:

Softmax(zi)
.
=

ezi∑︁K
j=1 e

zj
for i = 1, 2, . . . , K (2.3)

In our work we want the highest value in the incoming distribution to have

the lowest probability, so we use the similar softmin function, which uses −zi
in place of zi in the calculation.

12

Chapter 3

Encoding Puzzle Uncertainty as
Entropy

MUSE and ReMUSE measure the uncertainty of a puzzle, specifically encoding

the uncertainty encountered in solving a puzzle. This can also be viewed as

the amount of information that an oracle, who knows the solution to a puzzle,

needs to communicate to a player so that they can make the correct decision

at each step when solving a puzzle.

We utilize information entropy to encode the uncertainty encountered at

each state, similar to how uncertainty is encoded for the outcomes of coins or

dice. We use the number of legal actions of a puzzle at a given state s, |A(s)|,

to determine the entropy encountered at that state.

In the Witness there are at most four cardinal actions a per state s and

thus the amount of uniform entropy is simply:

H(ZA(s)) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0, if |A(s)| = 1

1, if |A(s)| = 2

1.6, if |A(s)| = 3

2, if |A(s)| = 4

∞, if |A(s)| = 0

(3.1)

There are two important special cases to consider. If only one legal action

is possible, then there is no uncertainty regarding which action must be taken,

so entropy is 0. If, however, there are no possible actions, or |A(s)| = 0, then

no amount of bits can encode for the solution path from state s since there

are no future outcomes or successor states, and we assign ∞ for the entropy

13

of such states.

3.1 Minimum Uniform Solution Entropy

(MUSE)

Our first measure, called Minimum Uniform Solution Entropy (MUSE),

computes a score for a single-player, turn-based puzzle that reflects the uncer-

tainty encountered when the puzzle is solved. More specifically, it computes

the entropy of the solution with the smallest entropy. It achieves this through

a simple recursive function depicted in lines ??-21 of Algorithm 1. The entropy

of any state s is the sum of the local entropy resulting from the number of

actions |A(s)| and the entropy belonging to the child state with the smallest

entropy. The algorithm returns the entropy of the solution with the smallest

entropy, which is particularly relevant if there is more than one start state, or

|Sstart| > 1.

Computed recursively, the base cases (lines 12-13) handle if the goal is

reached (returning 0 entropy) or if no actions are available (returning ∞ en-

tropy). The general case recursively computes the entropy of each child (lines

14-18) and then returns the local entropy of the current state plus the mini-

mum entropy of the children (line 20). Note that we will later generalize the

action function passed in, so σ is the action function in this pseudo-code.

Table 3.1 provides a concrete example of applying Algorithm 1 to a puz-

zle from the Witness. State 1 from the table is also the puzzle’s start state

sstart = {[0, 0]}, which has actions aup and aright returned by the action func-

tion A(s). These lead to States 2a and 3a, or {[0, 0], [0, 1]} and {[0, 0], [1, 0]}

respectively, since states in Witness puzzles are the non-crossing paths that

can be represented by a series of junction positions.

MUSE computes the sum of the local entropy encountered at State 1 plus

the minimum sum of entropy from the next state with the lowest entropy. This

would be H(Z|A(s)|) = 1 bit of entropy for the |A(s)| = 2 actions at State 1

plus the lower of the two entropies from State 2a and 3a, which themselves

would need to be similarly calculated in a recursive fashion.

14

Algorithm 1 MUSE: Minimum Uniform Solution Entropy

1: // Note: σ is either A or L, depending on approach.
2: // If L, then all σ(s) are replaced with L(s).
3: // Additionally, if an n-step lookahead is used, L(s, n) and Γ(s, n) applies

instead of L(s) and Γ(s).

4: function MUSE(Sstart, σ, n)
5: uses← []
6: for each sstart ∈ Sstart do ▷ For every start state
7: Append MinPathEnt(sstart, σ, n) to uses
8: end for
9: return min(uses)
10: end function

11: function MinPathEnt(s, σ, n)
12: if Γ(s) = 1 then return 0 ▷ Solved
13: if |σ(s)| = 0 then return ∞ ▷ Unsolvable
14: childEnts← []
15: for each a ∈ σ(s) do ▷ For every action
16: s′ ← Apply a to s
17: Append MinPathEnt(s′, σ, n) to childEnts
18: end for
19: localEnt← H(Z|σ(s)|)
20: return min(childEnts) +localEnt
21: end function

We can easily calculate the entropy at State 2a and 3a through three ob-

servations. Only two solutions exist for the puzzle, and as a result all other

states not shown at Table 3.1 will have an entropy of ∞, since all other states

eventually end up at a terminal, non-goal state where |A(s)| = 0. Only goal

states of 2d and 3h would return 0 entropy to parent states, and because the

minimum child entropy is picked at each state, all other child entropy resulting

in∞ would be ignored. Because States 2a and 3a do not branch into multiple

solutions, we sum child entropy together. Thus the entropy at State 2a is its

local entropy plus the entropy of its descendant states, or 1+1.6+1 = 3.6 bits

of entropy. Similarly, the entropy at State 3a is 1 + 0 + 1 + 1 + 0 + 0 + 0 = 3

bits of entropy.

Together, the MUSE for the puzzle is 1 + min(3.6, 3) = 4 bits of entropy,

from reaching the goal state at 3h, or sgoal = {[0, 0], [1, 0], ..., [1, 2], [2, 2]}.

15

Table 3.1: Entropy encountered at each state for puzzle solution reached at
states 2d and 3h using valid action function return A(s) and logic action
function return L(s).

MUSE is a measure that computes a score for a single-player, turn-based

game that reflects the uncertainty encountered while a puzzle is solved. The

uncertainty is encountered by human players, but so far we have treated any

action returned by A(s) as a source of uncertainty, when players with skill,

knowledge, and experience might not see all actions as equally valid in achiev-

ing a solution. We can improve our approach by incorporating player knowl-

16

edge and skills within MUSE, and to do that, we introduce logic-driven infer-

ence rules.

3.2 Logic Puzzles and Inference Rules

In logic puzzle games, players often deduce sets of rules that can simplify or

solve a puzzle. For example, with typical rectangular jigsaw puzzles, play-

ers can intuit that puzzle pieces containing two straight edges are its corners

pieces, and those corner pieces must be adjacently connected with other pieces

that have a straight edge. Accurate deductions can be translated into infer-

ence rules, or a set of rules that should be followed for the puzzle to remain

solvable.

Inference rules have been extensively created to explain and teach methods

of solving puzzles in logic games like Sudoku, with further research used to

rank the difficulty in self-learning and applying these rules for puzzle-solving

[5]. While these rules can be created automatically [14, 22], in this work we

manually created sets of inference rules for Witness puzzles to generate specific

entropy-related scores based on the uncertainty found in solving a puzzle.

3.3 Inference Rules for Witness Puzzles

Inference rules exist for different constraints found in Witness puzzles. For

instance, while it is possible to extend the path either up or right for the next

part of the path for the puzzle in Figure 3.1a, we can apply an inference rule

that eliminates aup as a potential action to take. The rule applies as follows:

at a junction adjacent to two different colour squares, the action extending the

path to immediately divide these squares must be taken. Not doing so would

result in the puzzle not being solvable since the pieces have to be in separate

regions, and if we do not separate them immediately, there will be no way to

do so later.

This inference rule can be formalized as follows. We introduce a logic

function L(s) that incorporates the inference rule for immediately separating

17

(a) A(s) actions (b) L(s) action (c) L(s) action (d) L(s) actions (e) L(s,n) with
n=1

Figure 3.1: A(s) returns more actions than logic infused L(s). Inference rules
used in L(s) for the same puzzle in both a) and b) does not include aup that
A(s) does, since taking aup would not allow the constraint to later be resolved.
In c) we see how L(s) similarly determines aright to be the only action to
take to possibly solve the puzzle due to the must-cross constraint. In d), L(s)
returns no actions since it is impossible to fulfill both must-cross constraints
that must be drawn to from that state, while in e), using a 1 step lookahead
from the start state at {[0, 0]} only returns aright since the state reached in d)
would result in no further actions to solve the puzzle.

different colour squares. Consider the puzzle shown in Figure 3.1a with A(s) =

{aup, aright}. In state s = {[0, 0], [0, 1]} at Figure 3.1b, L(s) would return aright

as the only action that could lead to the goal state, or Γ(s) = 1 for a future

state s.

Another inference rule can be written for must-cross constraints. These

constraints are black hexagons (which look like black dots in our smaller dia-

grams) along the grid lines of Witness puzzles: an example is shown in Figure

3.1c. When must-cross constraints are present, they must be crossed over by a

path for the constraints to be fulfilled. The inference rule for must-cross con-

straints is simple: at a junction where a must-cross constraint lies between two

junctions, the action extending the path to cross that must-cross constraint

must be immediately taken. As a result, L(s) returns only aright for the puzzle

state shown in Figure 3.1c.

L(s) can return no actions if a combination of inference rules suggest no

future states beyond s can lead to a goal state, even though A(s) would return

a set of actions. This is the case of the puzzle in Figure 3.1d, where inference

rules require both aup and aright to reach a possible goal state. Since that is

18

not possible from s, L(s) returns no actions.

Additional inference rules for Witness puzzles were developed to identify

the actions that would be returned for our logic function L(s) at a given state

s. We have included all inference rules in Appendix A for reference, since our

work is supported by these puzzle-specific rules..

Modeling player lookahead

Uncertainty can be further reduced if we account for a player’s ability to

consider the consequences of actions a few steps ahead in turn-based games,

as good chess players typically do [3]. In our case, we extend L(s) to L(s, n) to

return a set of logic-driven actions at s that check if the puzzle is still solvable

after a n-step depth first search (DFS), or is solved in the DFS, suggesting

0 entropy. Having already established that the puzzle state from Figure 3.1d

cannot result in reaching future goal states, L(s, 1) for the start state shown

in Figure 3.1e will only return aright.

3.4 MUSE with a modified action function

We augment MUSE with inference rules by simply replacing valid action func-

tion A with logic action function L for σ as shown in Algorithm 1. In some

cases A(s) and L(s) are exactly the same: in the example puzzle shown in

Table 3.1 on page 16, no local inference rules apply to L at State 1, so

|A(s)| = |L(s)| = 1. However, in many other states like State 2a or 2b,

the inference rule pertaining to coloured squares makes aright the only logical

action that can be taken, L(s) = {aright}, and the local entropy at that state,

not accounting for child entropies, is 0.

As a result, the uncertainty encountered in solving the puzzle, or the puzzle

MUSE score, is reduced. This can be seen for the solutions reached at States

2d and 3h in Table 3.1 on page 16. Similar to the earlier derivation of the

MUSE score, we can first sum up their local and descendant entropies: for

State 2a this is 0 + 0 + 0 = 0 and for State 3a it is 1 + 0 + 0 + 0 + 0 = 1.

Therefore, the puzzle’s MUSE score is the local entropy at State 1 plus its

19

Figure 3.2: Witness puzzles can increase in grid size, but not necessarily in
complexity or difficulty. The puzzles shown above indicate examples of a puzzle
that is effectively solved from the state of [0, 2], [1, 2], since there is no further
complexity from that state no matter how much larger the grid increases in
size from the x axis. MUSE scores would continue to increase in these larger
puzzles, which would not make sense.

smallest child entropy, or MUSE = 1 + min(0, 1) = 1, which is smaller than

the entropy of 4 computed using only the valid action function A.

3.4.1 ReMUSE: Relative MUSE

MUSE with a modified logical action function, which we will simply refer

to as our general MUSE algorithm from here, is an improvement by more

accurately encoding the perceived uncertainty of a puzzle by a human player.

This uncertainty is measured locally and uniformly at each state, but it likely

does not reflect the uncertainty that would be experienced from future states.

To account for this, we introduce our ReMUSE approach.

Several cases need to be accounted for in the design of our ReMUSE al-

gorithm. Consider a state s where three actions |L(s)| = 3 exist, but the

eventual outcome of all three actions is that the puzzle will be solved. MUSE

returns a local entropy score of 1.6 for state s despite the intuition that in

such a state, no further information needs to be encoded or communicated to

the player to solve the puzzle. The entropy should be 0 in such a state. A

similar situation occurs if all children have the same entropy: the choice again

does not matter, and no information needs to be communicated to describe

the solution. Finally, consider if the three actions have only an ϵ difference in

entropy: even if a player takes the wrong action, the entropy of the rest of the

20

puzzle is essentially unchanged.

Expanding slightly on the first motivation, where the eventual outcome of

actions of a state result in a solved puzzle, our example in Figure 3.2 shows

variations of a puzzle at such a state. The puzzles can increase in horizontal

size to the right, and MUSE would suggest an ever-increasing complexity of

the puzzle as the grid expands. This is despite the fact that the expansions

do not contain any constraints and thus no increase in difficulty to the puzzle,

and all future actions will result in solving the puzzle. This assumes inference

rules that players would use to not draw paths that loop themselves into dead

ends where all actions would lead to previously visited junctions. An algorithm

that encodes difficulty should model the human intuition that the increases in

empty grid space of Witness puzzles where the constraints are already solved

would result in no or little additional difficulty. MUSE would instead output

an exponential growth of entropy.

ReMUSE utilizes KL Divergence to account for the relative entropy be-

tween two probability distributions when computing the local entropy of a

given state. The first distribution is a uniform probability distribution based

on the number of actions. The second distribution is the softmin of the en-

tropy from the immediate children. The larger the KL divergence measure,

the larger the divergence from the assumption of uniform probability. 1

This approach only differs from the MUSE algorithm shown in Algorithm

1 by a single line (line 19), highlighted in Algorithm 2. Instead of setting a

state’s local entropy as the uniform information entropy of the state, we replace

it with a KL divergence comparison between the softmin of the entropy of the

children and the uniform distribution.

Algorithm 2 ReMUSE: Relative MUSE
...

19: immedEnt←
KL(softmin(childEnts), (Z|L(s)|))

...

1We use a uniform prior distribution to model the probability of player actions. If a
player has a different prior distribution or policy, we can use that instead.

21

3.4.2 Other Puzzle Measures

Single player, turn-based puzzles from different puzzle games share a set of

general measures with which we can compare our entropy-related scores from

MUSE and ReMUSE. The number of solutions and the average length of

solutions provide reasonable measures of puzzle difficulty. The number of

solutions can be determined by the number of states that return Γ(s, 0) = 1

after a brute-force traversal of every path. The average length of solutions

takes the average number of actions needed to arrive at a solution for the

puzzle. We expect that for puzzles of a given [w × h] size, the more difficult

puzzles are ones with fewer number of solutions and larger average length of

solutions.

3.5 Logic-Driven MUSE with Straight Line Pol-

icy

The inference rules used in our logic function L(s) consist of local constraint

checks, whereas human players often create their own non-local (global) in-

ference rules that can greatly reduce the uncertainty experienced in a puzzle.

As we will discuss later in the section on the limitations of our approach, cre-

ating code-equivalents of global inference rules that human players naturally

and easily adopt can be difficult. Some of these inference rules may be sim-

ple enough to implement, which is what we do by augmenting MUSE with a

straight line policy.

The intuition for the straight line policy arises from the quick visual check

players can perform in solving Witness puzzles: if a straight-line path from

the current state is drawn to the end vertex, is the puzzle solved? This check

can be performed quickly and with no regard to existing constraints from the

puzzle, unless the constraints block such a path from being drawn. This quick

check is akin to a low effort short-cut: if a straight line appears to solve the

puzzle, there is no further need to consider other constraints within the puzzle,

and no further search is needed. In practice, the approach can make puzzle

solving much simpler, and is straightforward to implement.

22

(a) Straight-line global
lookahead in green

(b) Two straight-line global
lookaheads: green and blue

Figure 3.3: Non-local straight-line policies reflect the behaviour that human
players can (and likely do) plan by drawing a straight line from the current
state to the end junction. Example lines are demonstrated in a) and b), where
in b) two paths are included from that state.

Implementing a straight line policy check requires three key considerations

to our MUSE algorithm. First, instead of local iterative searches for next

actions as implemented in lines 15-18 in Algorithm 1 (page 15, this check

effectively generates paths, or chains of directional actions from a given state,

to an end vertex, and then checks if such paths solve the puzzle. This results

in a global lookahead in the direction of the end vertex. Second, we have to

determine what a straight line looks like in the context of drawing paths for

Witness puzzles. As shown by the examples in Figure 3.3, there are different

ways of drawing one or more paths of what can be considered a straight line

from an existing state to the end vertex. We could explain the approach of

deducing these lines algorithmically, but referring back to our earlier claim

that certain global inference rules are intuitive for humans to grasp and can

be challenging to reproduce and explain, we hope that the visual examples in

the figure provide the intuition of these generated lines.

Algorithm 3 MUSE with Straight Line Policy
...

12: if Γ(s) = 1 or π(s) = 1 then return 0 ▷ Solved
...

Most critically, even though the approach of utilizing policies to model

23

global inference rules should apply to other puzzle games, we acknowledge

that this straight line policy is dependent on the rules of Witness puzzles.

This general approach can be applied to the MUSE algorithm by replacing

a single line, highlighted by line 12 in Algorithm 3, where we introduce a

general function π(s) that checks one or more policies to see if the puzzle can

be solved. If so, like in the case where the puzzle is solved at the current state

with Γ(s) = 1, no entropy is determined to exist at the current state, and

no further iterative searches from the actions of the current state need to be

done. In the case of our implementation with respect to Witness puzzles, only

a straight line policy is implemented and checked.

For further consideration, both puzzles shown in Figure 3.3 would have

resulted in a MUSE score of 0 with the straight line policy implemented by

changing line 12 noted in Algorithm 3 for MUSE. This means that the inference

rule would be checked from the start junction at [0, 0]. In the case of the puzzle

in Figure 3.3a, a similar staircase-shaped line shown by the two straight line

paths in Figure 3.3b, except drawn from the starting bottom left vertex to the

top right, instead of drawing towards the top left corner. The path beginning

with moving up and right, then repeating until the end vertex is reach, would

separate the two different colour squares on the bottom left corner, resulting

in fulfilling their constraints and leading to a solved puzzle. For the puzzle in

Figure 3.3b, a straight vertical line from the bottom left to the top left corner

of the puzzle would be drawn, solving the puzzle.

24

Chapter 4

Experiment Setup and Results

We setup our experiments to answer a number of questions. First, can our

proposed puzzle scores predict puzzle difficulty on user-submitted puzzles from

a site frequented by puzzle enthusiasts? How do MUSE and ReMUSE compare

with measures like solution length in capturing puzzle difficulty? We also

compare our ReMUSE-based orderings of puzzles to those found within the

Witness game, as well as the neural-ordered equidistant puzzles from prior

work on puzzle ordering [10].

4.1 Interesting Puzzles from the Windmill

We downloaded every single puzzle from the Windmill up to November 29th,

2022, and then filtered puzzles by a number of criteria. First, we only com-

puted puzzle scores for puzzles containing one or a combination of must-cross,

different colour squares, and cannot-cross (briefly described in the final para-

graph of this section) constraints, since these were the constraints our puzzle

solver could account for, and ones we had inference rules written into our code.

We also filtered specifically for puzzles with a 4 × 4 size. This was done for

a number of reasons: a fixed grid size allows for a consistent assessment and

evaluation of puzzles that have similar number of states, thereby removing the

element of variable scoring due to different puzzle sizes. This grid size also

limits a puzzle’s maximum entropy, as we believe that players do not enjoy

puzzles with entropy that is too high. We also removed exact copies of puzzles

that appear in the game. Finally, we removed five outlier puzzles with user

25

Figure 4.1: User ratings of puzzles and their ReMUSE scores. A ReMUSE
Pearson Correlation Coefficient of 0.57 is achieved in this analysis.

ratings of above 40: these were created and voted upon early on when the

Windmill was launched.

After filtering, 104 puzzles fit our criteria for testing with an average of 6.4

upvotes. We also adjusted user ratings to reflect the smaller number of players

participating on the Windmill site over time by identifying the correlation

between user ratings and time, creating a temporally adjusted user rating for

each puzzle.

Approach Correlation (PCC) p-value
MUSE, no lookahead 0.41 1.1× 10−5

MUSE, n=1 step lookahead 0.40 2.4× 10−5

MUSE, n=2 step lookahead 0.40 2.4× 10−5

MUSE, n=2, w/ Straight Line Policy 0.50 3.7× 10−8

ReMUSE, no lookahead 0.57 1.5× 10−10

ReMUSE, n=1 step lookahead 0.56 4.9× 10−10

ReMUSE, n=2 step lookahead 0.56 4.2× 10−10

Number of Solutions 0.32 9.7× 10−4

Average Solution Length 0.47 3.9× 10−7

Table 4.1: Pearson Correlation Coefficients (PCC) and p-values for user ratings
with Windmill puzzles

26

The scores obtained from applying different approaches to user-generated

puzzles from the Windmill provide a number of interesting insights. As seen

on Table 4.1, MUSE scores on puzzles correlate moderately with the puzzle’s

user ratings, with ReMUSE scores leaning towards a strong correlation at

0.57. MUSE scores with the straight line policy also has a positive correlation

with user ratings at 0.50. ReMUSE scores for every puzzle are visualized in

Figure 4.1. Unintuitively, it seems that performing n-step lookaheads with

either MUSE or ReMUSE approaches lowers the entropy scores’ correlation

with user ratings. Looking at other measures, the number of solutions for

puzzles had a low correlation to user rating. We expect that puzzles with

fewer solutions would be more strongly correlated to higher user ratings since

fewer solutions imply more difficult puzzles.

These results suggest that the uncertainty-based MUSE and ReMUSE ap-

proaches can be used to predict puzzle enjoyment, and by extension we argue

that it can predict puzzle difficulty. When we see a positive correlation with

user ratings, we are likely seeing a proxy of encountered difficulty since players

from the Windmill are experienced and likely derive more enjoyment from chal-

lenging puzzles, suggesting that our approaches can be used to assess puzzle

difficulty.

We do not expect that the positive correlation between our entropy-based

scores and user ratings would continue as puzzle grid size increases. Our results

are based on 4 × 4 puzzles, which are not large enough to create extremely

complex puzzles that might frustrate the experience players from theWindmill.

For example, difficult 500× 500 puzzles could exist, but may prove to be too

difficult for human players to solve, and we would expect user ratings for such

puzzles to be low even as MUSE and ReMUSE scores increase.

Comparing the ReMUSE measure to the measures of the number or the

length of solutions yields two additional findings. Our approaches compare

well, if not notably better, in correlating with user ratings. Given that these

other measures are often associated with predictors of difficulty, this is a good

result. Perhaps more meaningful, however, is the discovery that our puzzle

scores can vary greatly even when those other measures are held constant.

27

(a) 14 actions,
ReMUSE: 1

(b) 24 actions:
ReMUSE: 0

(c) 24 actions:
ReMUSE: 6

(d) 20 actions:
ReMUSE: 11

Figure 4.2: Set of puzzles on the Windmill with only 1 solution, but vary in
the number of actions taken to solve the puzzle and their ReMUSE scores.
The expectation that puzzles are more difficult if they have longer solutions
that require more actions is disproved with these puzzles. Puzzle b) requires
the most number of actions (24) but is trivial to solve and has a ReMUSE
score of 0. The puzzle in c) shares the same number of actions but has a
higher ReMUSE score, and the puzzle in d) has fewer actions and the highest
ReMUSE score. In our experience, the ReMUSE scores reflect the ranking of
difficulty in solving for these puzzles.

For example, puzzles from Figure 4.2 have only one single solution but vary

in the number of actions necessary to solve them, as well as their ReMUSE

scores. Puzzles a) and b) are solved, noting that for b) the gaps/breaks in the

grid mean that no path can be drawn across the gap: these are also known as

must-not cross constraints. Puzzle a) is simple, but b) is comparatively trivial

to solve despite requiring more actions to solve it. Like Puzzle b), Puzzle

c) also requires 24 actions to reach the only solution for the puzzle, but is

more challenging than b) and has a ReMUSE score of 6. Puzzle d) has fewer

actions necessary than b) or c), but has the highest ReMUSE score of the four

puzzles, suggesting a higher level of difficulty. For reference, puzzles a) to d)

have respective user rating scores of -6, -15, 15, and 28.

4.1.1 Case: Puzzles with Must-Cross Constraints At
Every Vertex

Through further analyses, we found a specific set of puzzles that had higher

entropy scores and low user ratings. These puzzles had must-cross constraints

at every vertex except the start and end vertices, a few of which are shown in

Figure 4.3. Placed in this manner, the must-have constraints did not trigger

28

Figure 4.3: Sample of puzzles with must-cross constraints at each non-starting
or non-ending vertex. Taking away such puzzles from our data results in a
larger coefficient between ReMUSE and user ratings.

our inference rules in reducing the set of possible actions to a smaller set of

logical ones. Entropy remained high as a result. Playing the puzzles ourselves,

we noted that it was not until only a few final states remained that we could

see if we could solve the puzzle. Specifically, early moves in each attempt had

a major impact in allowing each must-cross constraint to be fulfilled in a path

drawn from the beginning to the end vertex. The impact of these early moves

cannot be determined until the player was almost done drawing a path for the

rest of the puzzle.

We propose an explanation for the high entropy and low user ratings for

this class of puzzles. Puzzles with these specific constraints and placement

greatly reduces the effect that logic has for puzzle solving through the solving

process. Inference rules can still apply to all other constraints, but no matter

how logical a player is in trying to solve the puzzle, we don’t have an inference

rule that helps identify initial moves that help to draw a path that crosses all

vertices. This forces the puzzle to be similar to the experience of solving a

large maze: players can get very close to reaching the end of the maze but only

realize they cannot solve it until close to the end. Unless a proper inference

rule, assuming it exists, is learned by the player, these puzzles will be more

frustrating to solve.

When these puzzles are filtered out our our Windmill dataset, we find 14 of

them and end up with a smaller subset of 92 puzzles in our analysis. The Pear-

son Correlation Coefficient for no-lookahead ReMUSE is increased to 0.67,

with a p-value of 4.04E-15, indicating statistical significance. These results are

29

promising, since the avoidance of puzzles with particular characteristics can

help with crafting enjoyable puzzles.

4.1.2 Case: MUSE with a Straight-Line Policy

Extending our MUSE algorithm with policies that implement global inference

rules, specifically using a straight line policy for Witness puzzles, we found that

using MUSE with an n = 2 lookhead plus the straight line policy resulted in

a Pearson Correlation Coefficient of 0.50 and a p-value of 4.64E-08 with user

ratings. This is a notable increase from the best MUSE correlation coeffi-

cient of 0.41 and suggests that building in additional policies to reflect global

inference rules can help to further predict puzzle difficult and enjoyability.

4.2 Patterns from Ordered Witness Puzzle

Sets

We consider puzzles from two sets of Witness puzzles, with the first being the

starting slate of puzzles within The Witness that introduce constraints to the

player. We start by computing ReMUSE scores for these puzzles. Sorting

puzzles by the ReMUSE scores, we can look for patterns that can help to

explain the ordering of puzzles with the game.

We also evaluate Witness puzzles and compare their ordering with the

set of equidistant puzzles from work on learning curriculum [10]. Given that

the equidistant curriculum was generated and shown as effective in helping

players learn to solve later puzzles, a similar ordering of the puzzles can provide

a possible relationship between of the perceived entropy of a puzzle and its

difficulty as modeled through their approach.

Comparing the order of the introductory constraint puzzles from the Wit-

ness game with the ordering from ReMUSE provides a number of insights.

First, as seen in Figure 4.4, the overall order is very similar. ReMUSE scores

the first three puzzles as trivial and equivalent in uncertainty, while puzzles

vi-ix have the exact same order that the ReMUSE scores for. Only one change

in order occurs as a swap for puzzle iv and v. Both have the same MUSE score

30

Figure 4.4: Puzzle order of introductory constraint puzzles in The Witness
compared with ReMUSE score-driven order. They are quite similar, with
initial puzzles deemed as equivalent in puzzle ordering using ReMUSE scores,
and only iv) and v) are flipped. This similar ordering indicates that ReMUSE
could be used to help rank puzzles for difficulty, and can help to explain the
choice of puzzle ordering.

of 1 bit of entropy that occurs at state sstart = {[0, 0]}, but the KL divergence

of the softmin in the ReMUSE measure accounts for the two possible solutions

(by first taking either aup or aright), so even if the shorter solution is missed

by taking aup the player can still solve the puzzle, resulting in lower overall

entropy at sstart with ReMUSE. Note that we assume the player knows the

constraints, but they do not when these puzzles are first introduced to them.

This may account for the difference in the ordering of earlier puzzles.

The similar ordering is a promising result, as it suggests that ReMUSE can

be used to create sets of increasingly challenging puzzles to teach concepts.

This is what happens in The Witness : the game designer creates a variety

of puzzles and an ordering of the puzzles to allow players to learn inference

rules about the game. This ordering of increasingly challenging puzzles should

not deter the player from continued play, either because the puzzles are too

simple or too difficult. As demonstrated here, the ReMUSE approach is able

to credibly rank puzzles for difficulty.

The ordering of puzzles through our ReMUSE measure can also help to

31

Figure 4.5: Puzzle order of equidistant puzzles compared with ReMUSE score-
driven order. The similar ordering here indicates the potential for ReMUSE
to be used in sorting puzzles by difficulty for curriculum development.

explain the choice of puzzle ordering by a game designer. Puzzles iv and vi

in Figure 4.4, as well as vii through ix, are similar to one another: in all

five puzzles, four black square constraints sit beside the start junction of the

puzzle. What mostly changes is the position of the exit junction, and it is done

to force the player to evaluate another, more uncertain path to solve the puzzle.

For example, instead of taking path of least uncertainty to a solution by first

taking aup at sstart for puzzle v, puzzle vi removes the option for taking that

path, requiring the player to encounter uncertainty for the first three states

by taking the solution path starting with aright.

The similar ordering for the equidistant curriculum puzzles in Figure 4.5

further reinforces the validity of using ReMUSE as a measure of difficulty and

for ordering puzzles for learning. A neural-guided tree search modeled the

difficulty of a set of generated puzzles, and 9 were selected for their equally

increasing gaps in difficulty. They were successfully tested as possible replace-

ment puzzles for the introductory constraint puzzles in the Witness game, and

implies that ReMUSE would have done well at ordering another set of puzzles

to teach concepts and logic to players.

These puzzles also suggest insights about entropy in different size puzzles,

32

work that we explore further by exhaustively generating Witness puzzles of

different grid sizes and comparing their ReMUSE score distributions. First,

ReMUSE scores vary across different size puzzles, and as shown in both sets of

ordered Witness puzzles, smaller puzzles can have larger ReMUSE scores than

their larger counterparts. This is promising as it suggests that ReMUSE can

identify more challenging puzzles that have a smaller size rather than relying

on grid size to determine difficulty. Additionally, 0-entropy puzzles exist on

any puzzle size, and the larger the puzzle the longer the maximum path, and

the greater the maximum entropy.

4.3 ReMUSE Distribution across Puzzle Sizes

We exhaustively generated every single-solution puzzle that contain at least

two differently coloured square constraints, of two colours, for 3× 3 and 3× 4

sized grids where the starting vertex is at the bottom left and the ending

vertex is at the top right. This was done to answer three questions. Keeping

constant the number of solutions per puzzle, 1 in this case, are there patterns

in the distribution of such puzzles relating to their ReMUSE score? Secondly,

are there noticeable patterns and insights from the groupings of puzzles sorted

by their ReMUSE scores? Finally, can the insights derived from the groups

of puzzles provide intuitions for the use of ReMUSE in puzzle generation, the

effectiveness of ReMUSE scores, and the potential for its adoption in puzzle

co-creation and exhaustive puzzle generation, or Exhaustive PCG (Procedural

Content Generation)?

The distributions of 3 × 3 sized Witness puzzles with at least two square

constraints of having two different colours and having only one solution is

shown in Figure 4.6, with the 3×4 sized puzzles shown in Figure 4.7. 1,056 such

puzzles were generated for the 3× 3 grids, with 16,636 such puzzles generated

for the 3 × 4 grids. Both distributions show that the proportion of puzzles

with increasingly large ReMUSE scores will decrease relative to the earlier

puzzles, noting the increasing rarity of such single-solution puzzles. Puzzles

with ReMUSE scores landing on single integer scores are proportionally higher

33

Figure 4.6: Distribution of all 3× 3 puzzles with only one solution using two-
coloured square constraints. Note the pattern in the decreasing number of
puzzles of higher ReMUSE scores, suggesting that challenging puzzles within
a given puzzle grid size will be of a smaller proportion compared to easier
puzzles.

Figure 4.7: Distribution of all 3 × 4 puzzles with only one solution using
two-coloured square constraints. Similar analyses can be arrived at from our
3 × 3 puzzles. Additionally, note that despite the increased grid size, it is
possible to find puzzles with lower ReMUSE scores compared to their 3 × 3
sized counterparts, suggesting that increased grid size is not a guarantee of
ensuring that more difficult puzzles are created.

34

than their non-integer counterparts, and it was not clear they were marginally

more challenging than their closest integer counterparts.

Several insights were drawn from assessing the puzzles grouped by Re-

MUSE scores. Puzzles with the lowest ReMUSE scores were, in our opinion as

researches who have already solved many Witness puzzles, trivial to solve in-

tuitively. This appeared to be true for every puzzle with low ReMUSE scores,

and the puzzles appeared more difficult to solve as we assessed puzzles with

higher ReMUSE scores. With these groupings, we considered ways to further

categorize the scores by some order of difficulty to demonstrate these differ-

ences, and we came up with groupings of Easy, Medium, and Hard based on

the ReMUSE scores of the puzzles. We provide examples of these puzzles,

specifically 3 × 4 sized puzzles, in Figure 4.8. 3 × 4 sized puzzles are fairly

small and simple to solve, and we suggest that you attempt to solve them to

assess their implied difficulty. It is important to note that although every puz-

zle we visited with low ReMUSE scores were trivial to solve, puzzles with high

ReMUSE scores did not guarantee an increase in puzzle challenge. The overall

proportion of puzzles that reflected their level of difficulty decreased from their

specific groupings of ReMUSE scores, but you were much more likely to find

challenging puzzles from looking at puzzles with higher ReMUSE scores than

finding them from lower ones.

These insights and the distributions spurred further realizations. For one,

most generated puzzles would result in having lower ReMUSE scores, sug-

gesting that challenging puzzles are going to be a smaller proportion of all

generated puzzles. Not surprisingly, the increase in size of the grid for Wit-

ness puzzles, or an increase in the state space of particular puzzles generally in

games, can result in an exponential increase in the number of puzzles to gener-

ate and assess, lending further credibility to the use of automated approaches

to measure difficulty. Our findings also suggest that if finding challenging

puzzles is a primary goal of a puzzle designer, our approach can effectively

filter out trivial puzzles by identifying them as ones with low ReMUSE scores.

Our approach can also help identify groupings of puzzles with potential higher

difficulty, and we suspect that it can become more accurate at predicting puz-

35

(a) Easy,
ReMUSE: 1

(b) Easy,
ReMUSE: 1

(c) Medium,
ReMUSE: 4.5

(d) Medium,
ReMUSE: 4.5

(e) Hard,
ReMUSE: 9.5

(f) Hard,
ReMUSE: 9.5

Figure 4.8: Examples of generated 3×4 puzzles that have only a single solution,
but vary in their ReMUSE scores. We attached arbitrary levels of difficulty to
these puzzles based on their ReMUSE scores, and found the difficulty levels
to be accurate in our own experiences of solving these puzzles.

zle difficulty by implementing more inference rules that more accurately reflect

what a human player can apply to simplify the action space they would have to

otherwise navigate. Finally, deriving ReMUSE scores extensively across thou-

sands of puzzles provides us confidence in building our algorithm into puzzle

co-creation tools since the approach is simple, deterministic, and relatively

quick to return a score.

4.4 Slitherlink Puzzles and Triangle Con-

straints

We pick a separate test set of puzzles from the Windmill to continue to

validate the effectiveness of our approach on other games. Specifically, we

considered a specific set of constraints from the Witness puzzles that have

not been used in our experiments thus far, and together with the rules with

Witness puzzles these specific constraints provide a close analogue to another

puzzle game called Slitherlink.

4.4.1 Equivalences between Witness and Slitherlink
Puzzles

Slitherlink, also known as Fences or Takegaki, is a puzzle game where are

dots arranged in a grid-like fashion and numbers 0-3 can appear in the center

of four dots. An example of a Slitherlink puzzle is shown in Figure 4.9a.

36

Solving these puzzles requires players to draw a single, closed loop of vertical

or horizontal lines between these dots while ensuring that the number of lines

connecting to the dots around a number are equivalent to the number itself.

Comparing these to Witness puzzles, instead of grid junctions the vertices are

visualized as dots, and the number of edges immediately surrounding a number

must be equivalent to the number itself.

(a) Slitherlink
puzzle

(b) Solution for
puzzle

Figure 4.9: Slitherlink puzzle and the corresponding solution. Puzzle solutions
require that the number of lines drawn along the black dots or junctions im-
mediately surrounding the number equal the number itself. These lines must
connect in a closed grid too. The solution in b) provides three examples of
these constraints being fulfilled. The number 1 has one line draw to its imme-
diate right, the number 2 has one above and to the right, and number 3 has
lines drawn around it except to its right.

A solution to the sample Slitherlink puzzle in Figure 4.9a is shown in

Figure 4.9b. A single loop comprising of edges connecting dots appears, and

each number at the center of any four dots has exactly the same number of

edges immediately surrounding it. The number 1 has one edge to its right, the

number 2 has immediate edges on the top and right, while the number 3 has

edges around it except for the one the right.

Witness puzzles can contain triangle constraints that have similar require-

ments to the numbers found within Slitherlink puzzles. Instead of numbers,

Witness puzzles can include the number of triangles that must have the same

number of surrounding edges for that triangle constraint to be fulfilled. If we

replace the requirement that solutions to Witness puzzles must include a path

drawn from a start junction to an end one with drawing a closed-loop path,

we can turn the Slitherlink puzzle in Figure 4.9a into a Witness puzzle shown

in Figure 4.10a. Similarly, the solution to the Slitherlink puzzle in Figure 4.9b

37

applies the same way to the modified Witness puzzle in Figure 4.10b.

(a) Close equivalence
to Slitherlink puzzle

in Figure 4.9a

(b) Solution to a
closed-loop puzzle in

Figure 4.10a

(c) A Witness puzzle
modeled after Figure

4.9a

(d) Solution to puzzle
in Figure 4.10c

Figure 4.10: Witness puzzles similar to the Slitherlink puzzle in Figure 4.9a.
These puzzles are not equivalent to the Slitherlink puzzles, but are quite sim-
ilar. Instead of using numbers, the number of triangles in Witness puzzles
are used instead to indicate the number of lines that must be immediately
drawn around it, so the Witness puzzle in a) without start and end junctions
as shown in c) is most similar to the Slitherlink puzzle in Figure 4.9a.

4.4.2 Differences between Puzzle Games

Slitherlink and Witness puzzles containing only triangle constraints differ in a

few ways. As already discussed earlier, Witness puzzles are solved by drawing

a path from a start vertex to a goal vertex instead of drawing a closed loop.

There are ways to make these more similar, such as the example Witness puzzle

in Figure 4.10c and a consequent solution in Figure 4.10d, where the start and

goal vertices are immediately adjacent either horizontally or vertically to one

another. This effectively requires a closed loop to be drawn, making the puzzle

games similar to one another, although this does require the closed loop path

to pass through those vertices. Additionally, there are no triangle constraints

that reflect a Slitherlink’s use of the number 0 as a constraint at the center of

four dots. In those puzzles, no edges must connect between any of the four

dots, and Witness puzzles do not have a special visual representation of that

constraint using triangles.

Players can also solve Slitherlink puzzles from any dot or vertex, whereas

Witness puzzles are solved by drawing a path from a starting vertex. Slither-

link puzzles can also be analyzed and solved in separate component sections

38

that make up the entire puzzle. For example, the puzzle from Figure 4.9a could

have been solved by drawing edges around each of the numbers first, and then

connecting those edges to form a closed loop. In Witness puzzles edges can

only be drawn from a junction that was last connected to by the latest edge,

and solving the puzzle in parts is not similarly possible to Slitherlink puzzles.

When Witness puzzles are being solved by human players on paper, however,

they can be deconstructed and solved in parts.

We feel that there is value in testing the ReMUSE approach on Witness

puzzles with triangle constraints as an analogue to a different non-Witness

game despite the stated differences between the games. Puzzles from both

games can be solved by connecting vertices with edges and the specific number

or triangle constraints are equivalent in both games. Witness puzzles with

only triangle constraints can be separated from other puzzles, providing us a

separate testing dataset, and such puzzles found on the Windmill site allows us

to compare the ReMUSE approach’s effectiveness at predicting positive user

ratings.

4.4.3 Testing Data and Outcomes

Similar to our original dataset, we retrieved Witness puzzles from the Wind-

mill that are of a 4x4 size, and found 268 such puzzles that contain triangle

constraints. We filtered the puzzles further to exclude ones containing non-

triangle constraints, resulting in similar-to-Slitherlink puzzles, and further fil-

tered ones from a specific user that had submitted dozens of such puzzles to

the Windmill within two days when the average of such puzzle submissions is

less than once a week. That user’s puzzles, all titled as “Practice” by the user,

had unusually low user ratings, likely a result of negative player feedback from

having the user’s puzzles spammed on the site.

The finalized dataset included 152 4x4 Witness puzzles that contained

only triangle constraints, with examples of such puzzles shown in Figure 4.11.

Testing on these 152 puzzles resulted in ReMUSE scores that had a Pearson

Correlation Coefficient of 0.40 with user ratings and a p-value of 3.92E-07.

This indicates a lower correlation to user ratings as compared to our results

39

of puzzles containing one or a combination of constraints, specifically coloured

squares, must-cross, and cannot-cross constraints.

(a) ReMUSE: 2.0 (b) ReMUSE: 2.05 (c) ReMUSE: 8.17 (d) ReMUSE: 9.91

Figure 4.11: Puzzles containing only triangle constraints on the Windmill and
their ReMUSE scores.

Several factors could have resulted in these Slitherlink-like puzzles in having

a lower correlation to user ratings. For one, we acknowledge that several

inference rules that can be used to represent player knowledge in our algorithms

were not included due to the complexity of implementing them in code. In

practice, we also found that the puzzles seemed easier to solve because the

appearance of triangle constraints limited paths that could be drawn for all four

edges surrounding a given constraint. Looking later at generated Slitherlink

puzzles from puzzle game sites online, it was clear that the smallest puzzles

started at a 5x5 grid size for simpler puzzles as opposed to our test puzzles

of 4x4 grid size. This suggests that 4x4 Witness puzzles with only triangle

constraints might be easier to solve, resulting in the lower user ratings found

in our analysis.

Perhaps more interesting, the correlation between the average solution

length for our test puzzles to user ratings is 0.02 with a p-value of 0.76, which

is significantly smaller from the correlation of 0.47 found in our triangle con-

straint exclusive set of puzzles. It suggests that while average solution length

could be correlated with challenge and user ratings for certain puzzle games, it

could be ineffective for puzzle games or puzzle types with specific properties.

This is the case for our test puzzles, for which our ReMUSE approach still

indicated a positive, if weaker, correlation in our current implementation.

40

Chapter 5

Conclusion and Future Work

In this thesis we introduced MUSE and ReMUSE as measures of puzzle dif-

ficulty based on entropy. We imbued our algorithms with logical inference

rules to model human players solving puzzles. We evaluated our approach on

Witness puzzles, comparing our entropy scores with user ratings from a large

online database. Our results suggest that our ReMUSE measure produces

scores that correlate well with user ratings and better than the correlations

from alternative measures like solution length and the number of solutions.

Our approach produced similar orderings for puzzles in two sets of puzzle cur-

ricula, and we identified further learnings from the distribution of puzzles by

ReMUSE scores across single-solution puzzles of different sizes. Finally, we

had a positive correlation to user ratings for Witness puzzles that are a close

equivalence to a different puzzle game.

On future work, inference rules are hard to write. A potential solution to

this problem is to use inductive logic programming [13] to automatically create

sets of inference rules by learning from databases of puzzles and their solutions

[22]. These automatically generated inference rules could then be applied to

our entropy algorithms.

People also vary in knowledge and skill, so different players may find cer-

tain puzzles difficult when the puzzles may seem easy for other players. Our

experiments model the strong player that does not make mistakes based on the

inference rules we know, which works well for trying to predict the difficulty

of a puzzle for experienced players. A natural next step is to create models

41

of players with different skillsets and knowledge: they may not know all the

inference rules and get stuck at a puzzle unless that gap in their knowledge is

filled. Exploring further non-local policies like our straight line policy would

also be helpful. These can be identified by finding puzzles that are hard for

existing policies to solve. The additional policies can be further tested and

may better model players.

Applying our measures to other games would be a natural extension. Logic

puzzle games with a small number of actions that can be taken at any state

would be a natural fit, since this reflects Witness puzzles. Sokoban and Snake-

bird are examples of such games. Our measures can likely apply to games with

larger state spaces like Sudoku and Minesweeper too. While the number of

actions that can be taken in such games can be quite large at every turn, in-

ference rules can also help to greatly reduce the number of actions that should

be considered or taken. As mentioned above, sets of inference rules can also

be varied to model player experience and ability for these games to compute

their difficulty for the player.

It would make sense to test ReMUSE on broader ranges of puzzles in future

work, as well as performing user studies to empirically verify whether our

approaches can be used to generate enjoyable puzzles of varying uncertainty.

Utilizing this research for puzzle co-creation would also be useful, allowing

game designers to create, or even automatically generate, puzzles that are

tailored to a player’s knowledge and skill.

Finally, the approach to evaluating uncertainty can be extended to non-

game settings. Injecting measurable uncertainty into educational settings

could help learners better absorb lessons by providing skill-appropriate ques-

tions that are not too challenging or simple.

42

References

[1] John S Bridle. “Probabilistic interpretation of feedforward classifica-
tion network outputs, with relationships to statistical pattern recogni-
tion.” In: Neurocomputing: Algorithms, architectures and applications.
Springer. 1990, pp. 227–236.

[2] Cameron Browne. “Deductive search for logic puzzles.” In: 2013 IEEE
Conference on Computational Inteligence in Games (CIG). 2013, pp. 1–
8. doi: 10.1109/CIG.2013.6633649.

[3] Guillermo Campitelli and Fernand Gobet. “Adaptive expert decision
making: Skilled chess players search more and deeper.” In: ICGA Journal
27.4 (2004), pp. 209–216.

[4] Eugene Chen et al. “Image-to-level: Generation and repair.” In: Proceed-
ings of the AAAI Conference on Artificial Intelligence and Interactive
Digital Entertainment. Vol. 16. 1. 2020, pp. 189–195.

[5] José Coelho. A scale to measure the difficulty of sudoku puzzles. Unpub-
lished. 2007.

[6] Mihaly Csikszentmihalyi. Flow: The Psychology of Optimal Experience.
Harper & Row, 1990. isbn: 0060162538.

[7] Mária Ercsey-Ravasz and Zoltán Toroczkai. “The chaos within Sudoku.”
In: Scientific reports 2.1 (2012), p. 725.

[8] Petr Jarušek and Radek Pelánek. “Difficulty rating of sokoban puzzle.”
In: Proceedings of STAIRS 2010. IOS Press, 2010, pp. 140–150.

[9] Solomon Kullback and Richard A Leibler. “On information and suffi-
ciency.” In: The annals of mathematical statistics 22.1 (1951), pp. 79–
86.

[10] Levi HS Lelis et al. “Learning Curricula for Humans: An Empirical Study
with Puzzles from The Witness.” In: (2022).

[11] mdp.ai, Generates visualized Markov decision processes. https://mdp.
ai/. Accessed: 2023-09-08.

[12] Moving AI lab website. https://www.movingai.com/. Accessed: 2023-
09-08.

[13] Stephen Muggleton and Luc De Raedt. Inductive logic programming:
Theory and methods. 1994.

43

https://doi.org/10.1109/CIG.2013.6633649
https://mdp.ai/
https://mdp.ai/
https://www.movingai.com/

[14] Tomofumi Nakano et al. “Inducing shogi heuristics using inductive logic
programming.” In: Inductive Logic Programming. Ed. by David Page.
Berlin, Heidelberg: Springer Berlin Heidelberg, 1998, pp. 155–164. isbn:
978-3-540-69059-7.

[15] Magy Seif El-Nasr, Anders Drachen, and Alessandro Canossa. Game
Analytics: Maximizing the Value of Player Data. Springer Publishing
Company, Incorporated, 2013. isbn: 1447147685.

[16] Xue Bin Peng et al. “Variational discriminator bottleneck: Improving
imitation learning, inverse rl, and gans by constraining information flow.”
In: arXiv preprint arXiv:1810.00821 (2018).

[17] Reinforcement Learning Specialization course on Coursera. https://
www.coursera.org/specializations/reinforcement-learning. Ac-
cessed: 2023-09-08.

[18] ReMUSE interactive site. https://ideaowl.com/remuse/. Accessed:
2023-09-08.

[19] Mohammad Shaker et al. “Automatic generation and analysis of physics-
based puzzle games.” In: Proceedings of 2013 IEEE Conference on Com-
putational Inteligence in Games (CIG). 2013, pp. 1–8. doi: 10.1109/
CIG.2013.6633633.

[20] C. E. Shannon. “A mathematical theory of communication.” In: The
Bell System Technical Journal 27.3 (1948), pp. 379–423. doi: 10.1002/
j.1538-7305.1948.tb01338.x.

[21] Kihyuk Sohn, Honglak Lee, and Xinchen Yan. “Learning structured out-
put representation using deep conditional generative models.” In: Ad-
vances in neural information processing systems 28 (2015).

[22] Justin Stevens, Vadim Bulitko, and David Thue. “Solving Witness-type
Triangle Puzzles Faster with an Automatically Learned Human-Explainable
Predicate.” In: arXiv preprint arXiv:2308.02666 (2023).

[23] Nathan Sturtevant and Matheus Ota. “Exhaustive and semi-exhaustive
procedural content generation.” In: Proceedings of the AAAI Conference
on Artificial Intelligence and Interactive Digital Entertainment. Vol. 14.
1. 2018, pp. 109–115.

[24] Nathan Sturtevant et al. “The Unexpected Consequence of Incremental
Design Changes.” In: Proceedings of the AAAI Conference on Artifi-
cial Intelligence and Interactive Digital Entertainment 16.1 (Oct. 2020),
pp. 130–136. doi: 10.1609/aiide.v16i1.7421. url: https://ojs.
aaai.org/index.php/AIIDE/article/view/7421.

[25] The Effect and Evolvability of Observational Learning in A-Life. https:
//slides.com/ideaowl/ola-life. Accessed: 2023-09-08.

44

https://www.coursera.org/specializations/reinforcement-learning
https://www.coursera.org/specializations/reinforcement-learning
https://ideaowl.com/remuse/
https://doi.org/10.1109/CIG.2013.6633633
https://doi.org/10.1109/CIG.2013.6633633
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1609/aiide.v16i1.7421
https://ojs.aaai.org/index.php/AIIDE/article/view/7421
https://ojs.aaai.org/index.php/AIIDE/article/view/7421
https://slides.com/ideaowl/ola-life
https://slides.com/ideaowl/ola-life

Appendix A

Inference Rules for Witness
Puzzles

Note that the working code for MUSE and ReMUSe, which utilize L(s), is

available at https://ideaowl.com/remuse.

A.1 Assessing Actions

To determine logical actions from L(s) for a given state s, each of the four

cardinal actions (up, down, left, right) that can be taken is first assessed as

being one of four types of actions. Each must be amust not take,must take,

probable, or probable must take action, with each assessment indicating

how taking the action affects the possibility of solving the puzzle.

Must not take actions, with examples highlighted in Figure A.1 cannot be

returned by L(s), since taking any of these actions will either violate puzzle

(a) Path outside
the puzzle grid

(b) Crosses
previously
visited path

(c) Cannot
draw across

gap

(d) Boxes path in
with no path to
end junction

(e) Triangle
constraint no

longer satisfiable

Figure A.1: Examples of must not take actions based on rules for Witness
puzzles or from inference rules

45

https://ideaowl.com/remuse

(a) Different colour
squares adjacent to the

state must be
immediately separated

(b) Must cross
constraints
between
junctions

(c) Triangle constraint
satisfaction requires this

action

Figure A.2: Examples of must take actions based on different inference rules

rules or make the puzzle unsolvable. For example, paths cannot be drawn

outside of the puzzle grid, so aleft in Figure A.1a is considered a must not

take action. Paths must be non-crossing, which renders all four actions in

Figure A.1b as ones that must not be taken too, as is the case for actions

that draw a path across gaps, as demonstrated in Figure A.1c. Any state

that has previously visited a wall of the puzzle grid, specifically edges that

form the perimeter of the puzzle, and immediately arrives at another wall

perpendicularly, as is the case for the state in Figure A.1d, will result in

having an action that will draw the path within a closed-off box that will not

allow any future path to reach the end junction. These actions are considered

must not take actions too. Finally, if the number of non-visited junctions

of a triangle constraint is fewer than the remaining number of edges that a

path needs to cross for the constraint to be satisfiable, any action that would

otherwise draw the path along the edge of the triangle constraint is considered

a must not take action. This is shown in Figure A.1e: three junctions have

already been visited by the current path, and while taking adown can help to

fulfill the triangle constraint of requiring two of its edges to be part of the

solution path, it needs two edges to satisfy the requirement and there are not

enough non-crossing junctions to do so.

Must take actions suggest that they must be taken for the puzzle to remain

solvable. As previously demonstrated in the thesis, the existence of different

46

(a) Actions that
are not must

take or must not
take

(b) Special case of
probable must take actions

Figure A.3: Probable and probable must take actions

colour squares adjacent to the state requires that they are immediately sep-

arated, as is the case in taking aright in Figure A.2a. Similarly, must cross

constraints that are in between junctions adjacent to the current state must

also be fulfilled by taking the action that draws the path to cross them, as

shown in Figure A.2b. Triangle constraints that have the number of remaining

unvisited junctions equal to the number of remaining edges to fill will require

that the action that draws a path along the triangle constraint must be taken.

Figure A.2c shows such a triangle constraint and state: with only 2 unvisited

junctions and 2 remaining edges to fill, aup is assessed as a must take action.

There is one exception to this assessment, which is the special case of the

triangle constraint with three triangles, which we expand on soon.

Probable actions are ones where no inference rules exist to suggest that the

action must or must not be taken, so these actions could result in solving the

puzzle. The black colored arrows in Figure A.3a indicate the probable actions

for that puzzle’s state.

Probable must actions are slightly different from probable actions. Like

probable actions, taking one of these actions could satisfy constraints to make

the puzzle solvable from the puzzle state. Unlike them, however, one of these

probable actions must be taken to satisfy puzzle constraints, and so any other

probable actions are considered must not take actions. The puzzle state in

Figure A.3b shows such a scenario. When a path is drawn to the first junction

47

Figure A.4: When an action can be determined as both a must take and must
not take action.

adjacent to a triangle constraint of 3 triangles, then 1 of the 2 actions that

would draw a path along the edge of the constraint must be taken. These

are considered probable must take actions. Either of the 2 actions must im-

mediately be taken for the triangle constraint to be satisfied, otherwise the

constraint cannot be satisfied later. As a result, what would originally be con-

sidered a probable action for aright is now considered a must not take action,

since taking it would make it impossible to solve the puzzle in any descendant

state.

Note that it is possible for an action to be simultaneously determined as a

must take and must not take action. Figure A.4 shows such a case, where aright

is assessed as a must take action since it fulfills the must cross constraint on

the right, but taking aright violates the rule of crossing over previously taken

paths. In such cases where an action is considered both must take and must

not take, the action is deemed as a must not take action.

A.2 L(s) Returns After Actions are Assessed

If only a single must take action exists at state s, L(s) returns only that specific

action. If more than one must take action exists at state s, L(s) returns no

actions. This is because more than one action needs to be taken at state s for

the puzzle to remain solvable, and since it is impossible to take both actions at

the same time, no solution is possible from state s. L(s) returns all probable

actions otherwise.

48

	Introduction
	The Benefits of Scoring Puzzle Difficulty
	Relating Puzzle Difficulty Scoring to Education and Skill Acquisition
	The Challenges of Scoring Difficulty for Different Puzzle Games
	Existing Puzzle Scoring Approaches
	Our Entropy-based Approach

	Background
	Puzzle Representation as a Graph
	The Witness Domain
	Information Entropy
	KL Divergence
	Softmin Function

	Encoding Puzzle Uncertainty as Entropy
	Minimum Uniform Solution Entropy (MUSE)
	Logic Puzzles and Inference Rules
	Inference Rules for Witness Puzzles
	MUSE with a modified action function
	ReMUSE: Relative MUSE
	Other Puzzle Measures

	Logic-Driven MUSE with Straight Line Policy

	Experiment Setup and Results
	Interesting Puzzles from the Windmill
	Case: Puzzles with Must-Cross Constraints At Every Vertex
	Case: MUSE with a Straight-Line Policy

	Patterns from Ordered Witness Puzzle Sets
	ReMUSE Distribution across Puzzle Sizes
	Slitherlink Puzzles and Triangle Constraints
	Equivalences between Witness and Slitherlink Puzzles
	Differences between Puzzle Games
	Testing Data and Outcomes

	Conclusion and Future Work
	References
	Appendix Inference Rules for Witness Puzzles
	Assessing Actions
	L(s) Returns After Actions are Assessed

