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Abstract

Building Information Modeling (BIM) has become an integral part of the de-

sign process, as all building data is accessible in a digital representation and

can be viewed in a 3D environment prior to construction. This supports the

capability of evaluating or checking a model against building codes or design

rules, imposed from construction codes to cultural preferences to the owners’

styles and aesthetics, a procedure necessary to ensure a building meets the

functional and safety requirements for occupants. However, as building reg-

ulations are typically represented in natural language, to date they have not

been created with regard to the digital BIM design process. Therefore, check-

ing a model against these design rules is still a time consuming and error-prone

task involving knowledgeable individuals reading rule documents and manu-

ally assessing a building design. Furthermore, design rules are subject to

interpretation rather than structured for machine interpretation allowing for

rule assessments to differ among individuals.

To automate the design evaluation of a building model, this thesis describes

a simple, yet extendable, domain-specific language for computationally repre-

senting building rules. We describe how implicit information is extracted from

the BIM model, as necessary for the rule evaluation on the building model.

Previous approaches to model-checking generally require experienced coding

knowledge and have been tailored to meet specific building regulations with

minimal support for rule creation.

The model evaluation also provides opportunity for automatically gener-
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ating multiple valid alternative solutions, compliant to the design rules. Due

to time constraints, designers typically only explore a few options; computers

can efficiently create a potentially much larger number of alternatives, which

users can then compare to select the design that best suits their individual

preferences, depending on cost, environmental impact, and aesthetics. There-

fore, unlike the previous methods of rule-based model checking and automated

layout designs, this thesis bridges the concepts of automated model checking

and design using a single unified rule language.

The research is evaluated on two particular instances of the general gener-

ative design problem. The first is the task of generating 3D kitchen layouts,

based on a BIM model of the kitchen space, a product catalog of 3D models of

kitchen furnishings, and a set of design rules. The generative-design method

starts with an empty kitchen and implements a heuristic search of the solution

space by incrementally selecting and placing a required item and checking the

degree to which the resulting model complies with the given kitchen design

rules. We have demonstrated the effectiveness of our method by comparing

the designs it produces against a set of real-world kitchen examples, obtained

from architecture diagrams available online.

The second task is to generate a living room, using rules interpreted from

previous literature on layout design that were not written in a language-based

evaluation method. Using the same method, we create living rooms that meet

the design requirements from the previous literature.
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Chapter 1

Introduction

One of the benefits of Building Information Modeling (BIM) is the ability to

create 3D building models that capture the imagination and creativity of the

architect, which has led to captivating building designs and layouts. However,

although visually appealing, a building and its features must still meet their

functional requirements in order to be considered practical. Building design

guidelines and regulations exist to assist designers in the process of creating

compliant models, as these rules are made to ensure the safety and well-being

of the build occupants [9].

These guidelines are typically written in the form of natural language text

documents which can be ambiguous to the reader [11]. Since they are often

not written in a computer interpretable form or embedded in the BIM model

editor, checking a building model for design flaws is a separate task that must

be performed once the final design is complete. Even with the building in-

formation available in a BIM model, rules can require information implicitly

defined based on the geometry of one or more model components. Given the

potential size of the model, and the complexity of the rules, this task can be

tedious, time-consuming, and error-prone [18]. Some efforts exist to automate

the model-check of a BIM model, however, they typically hard-code a set of

rules, a task that requires programming experience and knowledge of the inter-

nal structure of the BIM model. A better solution is a rule language that can

describe a wide range of building regulations simply and efficiently, thereby

reducing the total time needed to create rules and check for them against a
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building for design flaws.

Should an error be found, making design corrections can be difficult, as

it may require the shifting and modification of multiple model items followed

by rechecking the modified model. Furthermore, the designer’s initial design

decisions may cause them to be focused on a sub-optimal solution when other

potentially better design alternatives exist. Designers may also be unaware of

other design alternatives because of design tendencies due to prior experience.

Having computer-readable rules and guidelines, that can be used to as-

sess designs and provide model compliance evaluations, would help the users

decision process. In addition, they could be further used to automate the

placements of items in accordance with the design rules and guidelines.

Domain Specific Languages (DSLs) have been proposed which allow for

the creation and execution of computer readable rules. Of these, the most

prominent are the Building Environment Rule and Analysis language (BERA)

[22], [23], KBim [21], [31], BIM Rule Language (BIMRL) [44], and Visual Code

Checking Language (VCCL) [34]–[36]. Each of these methods has been built

to accommodate a certain regulation ruleset, and therefore, it is impossible

to compare them and none of them can be broadly adopted. Other previous

attempts at code compliance checking center around general purpose languages

built as either add-ons to existing BIM software tools, such as Autodesk Revit

[3], or as standalone applications. Solibiri [40] has been at the forefront of

the Industry Foundation Classes (IFC) based rule checking industry, however,

the rules are typically hard coded in software procedures and it is difficult to

evolve them. To our knowledge, none of these methods have been placed in

the context of generative or automated design.

State of the art automated layout design for interior spaces outlined in pre-

vious literature rely on mathematical formulations of rules which consequently

depend on general programming languages. The baseline for automated in-

terior layout based on design guidelines is in the work of [29] who used an

empirically weighted summation of each mathematically expressed guideline.

Each rule is implemented in a software procedure and a number of user inputs

are required for defining object relations and properties. Other methods for
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interior layout generation, such as [46], have centered around learning relations

based on existing interior layouts, however, this cannot be used to validate a

model, as it is only an approximation based on previous layouts, nor can new

user specific input constraints be easily added.

Therefore, the question we wish to address is: How can we computationally
formulate design rules such that they are easily implemented for the purpose
of validating a design and automatically generating new compliant designs?

This thesis proposes a Domain Specific Language (DSL) for building model-

checking which can be further utilized for automated interior design. The lan-

guage is expressive in terms of its domain of interior layouts, making use of

computational logical to formulate complex rules. It uses an additional infor-

mation layer that makes it extendable to new types, properties, and relations

of objects. These explicitly defined, machine-interpretable rules are used for

compliance checking of the model thus expediting the evaluation process for

the building designer. As this evaluation can be performed rapidly relative

to manual checking, this thesis further utilizes the rules for the purpose of

generative layout design, through which a number of code compliant designs

can be generated.

The contributions of this thesis are:

• An expressive Rule Language for representing design rules for the lay-

out of elements in interior spaces;

• AModel-Checking Algorithm for evaluating the compliance of a BIM

model against a set of design rules;

• A Generative Design Algorithm for automating the placement of

elements in interior spaces, relying on design rules;

• A service-oriented implementation of the above in a Software Toolkit

that can be invoked by external client applications.

Chapter 2 provides a review of related research and an environmental scan

of existing software. Background to Building Information Modeling (BIM) and
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related concepts are explained in Chapter 3. The rule language is introduced

and outlined in Chapter 4, followed by the model-checking outline in Chapter

5. Chapter 6 with give an overview and evaluation of the Generative Design

approach. Finally, Chapter 7 provides a summary and concluding remarks.
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Chapter 2

Related Work

In this chapter we look at previous methods for developing rule languages and

their respective model-checking approaches to support the languages. Rule

Languages and Model Checking go hand in hand as rule languages have been

developed exclusively for checking models, therefore, they are assessed in a

single section. Following this is an overview of automated and generative

design for interiors and building components. Generative design is a broad

field in the CAD domain and thus we only select those related works directly

relevant to our own method. For a more comprehensive review of design-

optimization algorithms, the reader should review [45] and [43].

2.1 Tools

Standalone Software

When researching compliance-checking tools, Solibri Model Checker (SMC)

[40] is frequently mentioned as it is one of the few tools specifically built for

the purpose of checking BIM models. SMC takes as input a building model in

the form of the BIM industry standard of IFC. While the available rulesets,

initially from the Norwegian Statsbygg handbook [42], can be modified by

the end user by combining rule sets and deleting rules, support for editing

individual rules is limited to changing the parameters or the provided rules.

Additionally, there are a few rule templates for creating new rules, however,

full customization of rules can only be done through the SMC Application

Program Interface (API), which is not publicly available. There are a number
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of research papers that report how different checks might be implemented

using the available rule templates [19], [24], and [13]; however, these are black-

box approaches and it is impossible to comment on their accuracy, efficiency,

generality, and expressiveness.

Model-checking tools have been implemented for the purpose of evaluating

requirements of governing bodies, with differing levels of success. Singapore’s

CORENET ePlanCheck [15] has been noted as the most successful imple-

mentation, since, at one point, it was mandatory as part of the government’s

building requirement legislation [11], [18]. In Australia, DesignCheck [10] was

built on the Express Data Manager (EDM) Model Server but, to the best of

the authors’ knowledge has since lost support. The General Services Admin-

istration (GSA) in the United States mandates that their project models be

checked with rules implemented within SMC [11].

BIM API

While not specifically model-checking tools, BIM editors, such as Autodesk

Revit [3] and Graphisoft ArchiCAD [14], provide APIs for add-on development,

allowing access to the model’s internal structure and object database and

therefore, can, in principle, be used for model checking. This requires a high

level of programming knowledge, even for the simplest checks. To address this

challenge, some tools have been developed to perform the same functionality

in a visual environment. These include tools such as Autodesk Dynamo [2],

which works on the Revit platform, and Rhino Grasshopper [8]. These two

tools are both graph-based visual editors that have some scripting available -

Dynamo’s Python scripting rather than C# as the Revit API. BIMServer [4],

an open source IFC model repository platform, has a model-checking plugin,

however, it requires direct coding in JavaScript. The scripts are then linked to

the model for execution. This also requires programmatic coding knowledge

and a strong understanding of the IFC vocabulary and syntax.

6
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2.2 Rule Languages and Model Checking

Query Languages and Semantic Web Ontologies

As model-checking is, in theory, a query on a BIM model, and given the

emergence of semantic-web technologies, there have been a number of methods

using semantic web languages as the basis for the checks. Specifically, methods

have worked with extendable IFC based ontologies of the BIM model to query

for design flaws. In [32] the authors perform acoustic regulation compliance

checking for BIM models using Resource Description Framework (RDF) graphs

of the building model. The process requires a model to be passed through and

IFC-to-RDF converter which can then be queried by a rule described in the

Notation-3 (N3) syntax. A more general overview of these types of methods

can be found in [33]. While this technology can be useful in extending the

data schema, the query languages require a steeper learning curve and a data

converter from IFC to RDF data models which is not a straightforward task.

BIM Query Language (BIMQL) [27] is another query language, built on

the BIMServer platform. The language uses a syntax very similar to SQL

that reads an IFC model, the goal being an easier transition for users more

familiar with query languages as opposed to learning a programming language.

BIMQL has the capability to check the existence of model elements and some

minor model manipulation. Therefore, while query languages can perform the

task of model-checking, they focus on the exiting data using complex query

languages and are likely better suited for Quantity Take-off (QTO), that is to

count the number of item instances in a model, than model-checking.

Rule-Checking Languages

The Building Environment Rule and Analysis Language (BERA) [22] was de-

veloped as a domain-specific programming language for model checking. The

concept is built on providing model-checking capabilities without the need

for precise knowledge of general-purpose programming languages [23]. How-

ever, the language derives heavily from Java which may be difficult for non-

programmers and it is built on SMC as an IFC engine, and therefore is still

8



quite opaque. The language also has a focus on aggregation relations rather

than geometrical relations, therefore, it is difficult to see how a simple relation

check like the distance between two objects would be represented.

BIM Rule Language (BIMRL) [44] represents another rule language ap-

proach. This method draws influence heavily from SQL, therefore, for a non-

programmer the language can appear complex. This language does contribute

some key concepts such as the representation of the data from complex IFC

data to simplified shape representations and the use of temporary geometry

for spacial based evaluations [41].

KBim [21], [31] was built specifically for expressing the Korean building act

legislation’s into commutable form. The method is broken down into KBim-

Logic [21], a tool for assisting users in the natural language parsing and in-

formation extraction of the rules based on objects, properties, and high-level

methods stored in SQL database tables, and KBimCode, which then further

converts the KBimLogic structured rules into computer executable code [31].

The code checking system is called KBimAssess-lite [6]. While the KBimCode

language structure is comparable to ours, the language is more closely related

to that of a programming language compared to ours with a list of functions

pre-coded.

While these represent the most comparable solutions, we believe our im-

plementation represents an even lower level of complexity as it has a focus

specifically on interior design rules. We do anticipate that our language would

be able to support rules more akin to those used in the case studies, such

as the Korean Building Act, however, this will be left to future evaluation

and research. For the purpose of our automated design, the rule language is

expressive enough for our test cases as evident in the generative design section.

Furthermore, unlike these previous methods, our language supports the

ability to scale the results of rules which is necessary for a generative design

model. Should a rule fail, our language is able to additionally determine a

severity of the failure. This concept is necessary for the generative design

to adjust and improve configurations of the model layout such that a locally

optimal solution can be found.

9



Visual Programming Languages (VPL)

Some approaches have taken the Rule Languages one step further by adding a

visual component to them, in the same sense that Dynamo is a visual language

for Revit’s API. This is intended to allow for more complex rules to be created

without adding the need to code programming, although, to our knowledge,

this has not been tested for ease of use.

Check-mate [30] first introduced this as a very simple puzzle-based interface

that allowed connecting pieces that together would form a structured rule,

however, the expressiveness of this language was limited. The Visual Code

Checking Language (VCCL) took a node-based approach, calling it a “white-

box” approach with the available nodes to be extendable as the project matures

[34], [35]. The language was then refined to support more complex rules by

modularizing nodes, thus allowing for nodes to build around other predefined

nodes [36]. In similar fashion, KBim has also since implemented a VPL version

of KBimCode to improve ease of use [20], although, to our knowledge there

have been no studies to verify this does improve usability.

Creating a VPL from our language will be implemented in future work,

however, as with the Rule-Checking Languages, these methods have yet to be

explored in the capacity of generative design.

Natural Language Processing (NLP)

Attempts have been made to parse natural language rules from design hand-

books and regulation texts. While such approaches could potentially simplify

the rule-creation process, many of the natural language rules lack clarity and

unambiguity required to be directly parsed without any human intervention

or interpretation. One of the more commonly cited approaches in this vein is

that of [16], [17] which used a four-sentence component classification to parse

natural language rules, namely Requirement, Applicability, Selection, Excep-

tion (RASE). Another use of NLP has been to identify information from rules

that is missing or may need to be added to models [47]. Such methods could

potentially be antecedent to our method and will be explored in the future.
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2.3 Generative Design

Germer and Schwartz [12] developed a method that uses an object hierarchy,

relating every object with a parent object and placing objects in alignment

with their parents objects. The automated furniture arrangement starts with

a fully furnished room and evolves at each iteration towards a more compliant

layout. Rooms have a predetermined furniture count and style. The possible

alignments of an object to its parent are above, below, in font of, behind, left

to, and right to, with objects being placed directly touching and aligned with

their parent. New rules can be added using these alignments but no other

rules are possible to create (such as distance between objects). Each object,

or agent as they describe it, is in one of three possible states, namely search,

arrange, or rest. When in the search state, the agent looks for an object that

can serve as its parent, based on the hierarchy. When one is found, it will

enter the arrange state and identify if there is an available side available on

the parent object such that it can align with it. If an alignment is possible,

the agent enters the rest state and it will no longer move; if not it repeats

back to the search state. If all parents are full, the object is deleted. When

all remaining objects have found a parent, the model is said to be full and

the process concludes. The alignment rules used in their method could be

represented in our language using the same alignment checks (above, right of,

etc.) with a distance of 0 between the objects.

Merrell et al. [28] proposed a generative building design process, based

on rules, such as room adjacency. Features learned from a database of exist-

ing building layouts include total square footage, footprint, room, per-room

area, per-room aspect ration, room-to-room adjacency, and room-to-room ad-

jacency type, each of these features being hard-coded. These determined the

initial rooms in the building and their sizes. The layout rules were based on

hard-coded accessibility, dimensions, floors, and shape of the building. The

generation-process operations were limited to “sliding a wall” and “swapping

rooms”. The evaluation metric is a weighted combination of the design rules.

Although the task differs from our implementation, as we focus on the inte-
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rior of building rather than the room adjacency configurations, we believe the

rules can be described using our language assuming spaces are updated in the

building model. As their layouts are represented in 2D, expanding to a 3D

BIM might be a difficult task as a room moving effects the supporting rooms

walls.

In a similar methodological vein, Yu et at.[46] propose a method for au-

tomatically arranging interior furniture, based on relationships learned from

previous arrangements. The rooms start with all objects placed in the model.

The features extracted from previous arrangements are the distance and ori-

entation to the nearest wall. Other rules are mathematically calculated using

spatial relationships for objects based on an object accessibility and visibility

spaces. Additionally, there must be a pathway connecting doors and object

pairwise relationships which the user inputs along with the desired distance

and orientation of the pair. Additional features and rule functions would re-

quire manual encoding. The possible actions are object translation, rotation,

or an object swap with another object in the scene, as well as the movement

of controlled pathway points for a pathway object. The method uses simu-

lated annealing with a Metropolis-Hastings state-search step to determine the

actions to take towards a local optima. At each step, the model is evalu-

ated based on mathematically coded cost functions for accessibility, visibility,

pathways connecting doors, similarity to prior configurations, and objects pair-

wise relations. The overall cost function is a empirically determined weighted

summation of each individual cost function. Our language would be able to

support their rules using alignment and distance relation properties for visi-

bility, accessibility, and pairwise relations. The rules for the pathway would

require implicit object creation (Virtual Objects) in the same way they cre-

ate their pathways, with a check on the geometrical property of the pathway.

Any prior features values, such as distance to walls, would be a separate rule

with the learned features acting as the property check value and, therefore,

using prior distances and orientations could easily be incorporated in our rule

language.

In [29], the user first selects and places a number of objects, such as couches,

13



chairs, tables, and shelves in the scene. The user has the option to lock

the placement of some objects before starting the generation process. Their

method uses seven design constraints, i.e., clearance, circulation, pairwise re-

lations, conversation, visual balance, alignment, and emphasis. These design

constraints are evaluated in the 2D floor plane of the space, using hard-coded

mathematical formulas based on center distances, area intersection, direction

vector angles, and a number of implicitly created objects, such as room cen-

troid and free configuration space. A number of user inputs are required, such

as object groupings and a focal point with axis. Over each iteration in the

genetic algorithm, the variations to the model objects include rotations and

translations of objects on the floor plane, and swapping of object locations

and orientations. The method adopts a Markov Chain Monte Carlo sampler

approach, to pursue solutions closer to the objective function. A number of

iterations are completed which output a number of possible solutions. Each

of the constraint evaluation results in a value between 0 to 1. The overall

design quality is an empirically formulated weighted sum of the seven design

constraint values. We use this method as an evaluation to determine if their

rules can be recreated using our rules language. The results are outlined in

the evaluation of Chapter 6.

Akase and Okada [1] proposed an interactive method for automated interior-

space layout, beginning with a random pre-populated layout. Using rules sim-

ilar to [46], the rules hard-coded functions for accessibility, visibility, pairwise

distance and angle. In addition to the rules, the user evaluated each inter-

mediate generated layout, which is added to the fitness functions from the

design rules. The search selects highly rated generated models and performs

crossovers and mutations of those models. The resulting models from these

operations are displayed to the user for further evaluation and repeats until

a model is satisfactory to the user. In effect, the method requires the users

to evaluate the designs and guide the process towards better solutions, which

our method does not take into account, although, the rules, as with [46], can

be recreated.

Interestingly, each of the previously described methods is built around CAD
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or 3D game development, with [1] using XML to store object attributes. None

of them make use of BIM as part of the process although it contains the same

data in a standardized representation.

Approaches using BIM include work by [39] who created a generative-

design system on top of Revit that manipulates window sizes and invokes the

Green Building Studio APIs to determine the resulting energy-analysis met-

ric. In a subsequent work [37], the authors used Autodesk Dynamo [2], a

visual-programming tool, to solve a similar problem, namely that of discrete

window-size optimization for reducing LEED daylight usage and energy con-

sumption. Finally, [38] created a framework for optimization BPOpt based

on Dynamo, which breaks the generative design into fives phases: Decision

variables (input), Initial Random Population (initial setup), Fitness Functions

(evaluation), Generation Loop (decision making), and writing to CSV File

(output). Depending on the problem the user plans to optimize, they can al-

ter the input parameters and develop the appropriate fitness functions, thereby

making the problem seemingly independent of the type of generative design.
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Chapter 3

BIM Concepts

The purpose of this chapter is to briefly outline some basic principles which

will be referred to throughout the thesis. First, a BIM model, as opposed

to a strictly CAD model, contains classifications of building components and

relations among them. Additionally, each BIM model component contains

properties or attributes which can extend beyond the geometrical. These are

vital for evaluating the compliance of a model. We consider a BIM model to

have three main sets of information, namely objects, relations, and properties

(also known as attributes), providing the basic information required for the

rule language.

• Objects contain a unique identifier (such as a name or Guid), a class type

(henceforth known simply as type), a shape representation (or mesh),

and a set of properties

• Properties are defined as name-value pairs

• Relations are defined in terms of a list of objects and a set of geometrical

relation properties

While in practice, each software vendor has its own internal representation of

a BIM model, these concepts are typically in some form present in every BIM

structure, exported by most modern tools. Relations are typically used for

object association and assignment but not for geometrical relations.

Furthermore, the proposed rule language draws heavily from Industry Foun-

dation Classes (IFC), an open standard for BIM model representation and file
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structure, the most recent being IFC4 [5]. As the name implies, IFC comprises

of a standard set of classes for BIM concepts, deriving from the concept of

Object-Oriented Programming (OOP) where each model object is represented

as a class. In this sense, the class and type of the object are synonymous and

are an inherent feature for each building object. We utilize the class hierarchy

of IFC as the basis for object types which serve as a means of classifying and

filtering objects in the model.

As IFC is the more popular standard BIM representation, our implementa-

tion and toolkit are based around importing, exporting, and utilizing its class

hierarchical structure. However, as IFC shape representations are complex

in nature, the imported model must go through a parsing phase in order to

convert them into more computationally efficient structures.

We created built in-house Unity-based IFC building interior editor that is

currently capable of reading an IFC file, displaying the model in 3D, enabling

a user to review an object catalogue and add IfcFurnishing elements to the

IFC model, and save the new model containing the added furnishing. The

IFC editor uses our in house IFC Engine package, build on top of the open

GeometryGymIFC Library [25], which can parse an IFC file and convert the

complex IFC shape representations into Unity supported triangular meshes.

Over time, this IFC Engine will need to be updated to ensure compatibility

with the latest IFC versions.
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Chapter 4

The Rule Language

The rule language is designed to express basic rules about

1. Geometrical and non-geometrical properties of objects that are either

actual or virtual IFC elements;

2. Geometrical relations between pairs of elements;

3. Complex rules that are logical compositions of the above two types of

basic rules.

As many rules are inherently logic-based, our language derives much of its

structure from mathematical logical reasoning. As [30] suggested, it is easy

to see the similarity between a statement “For every x in Real Numbers. . . ”

in mathematics with “For every Window. . . ” in building regulations. We also

use simple boolean logic for basic composition of checks.

The following sections will describe the syntax of the rule, how a rule is

evaluated based on the multiple instances of the relevant rule objects, and one

implementation of an editor for the rule language. We conclude the chapter

with a discussion and summary.

4.1 Rule Syntax

To demonstrate the syntax of our language, we present an example of a rule in

our language and its natural language description is shown in Table 4.1. The

natural language form of rule is “The refrigerator must have 16” of counter
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space on one side”. They relevant objects here are “refrigerator” and “counter

space”. The key property implied is the width of the counter space, which is

checked against being 16 inches or greater. The relation is that the counter

space is “on one side” of the refrigerator. Furthermore, it is important that

both these checks are satisfied in order for this whole statement to be true and

thus the rule passing. The following will show how each of these is structured

in our language to formulate the rule.

Table 4.1: Example rule in natural language and in the proposed rule language.

Natural Language
“The refrigerator must have 16inches of counter space on one side”, which
is re-formulated as follows in our language:
“For every object of type “Refrigerator” in the space, there must exist
another object of type “CounterTop” that is at least 16inches wide and
is placed right next to the refrigerator.

Rule Language
ALL Obj0 ∈ IfcFurnishing {FunctionOfObj = “Refrigerator”};
ANY Obj1 ∈ IfcCounterTop;

(Obj1 MustHave Width ≥ 16INCH AND
Obj0 and Obj1 MustHave BoundingBoxDistance ≤ 1FT AND
Obj1 and Obj0 MustHave IsNextTo = TRUE)

Property Check

Object properties contain a name for defining the feature, and a value, which

can be of three types: boolean, strings, or numeric. Some properties can be

present in the model, such as a name or comment, however, many of the geo-

metric property values are implicit and therefore not contained in the property

set of the object. In those cases it is required to calculate some of the basic

geometrical properties of individual objects.

Table 4.2 contains a list of geometrical functions for calculating properties

of object as required by the rules. Each of these determines a value based on

the geometry of the object or in some cases the name of the object. Most

of the properties of the objects required for the checks are simple functions

such as determining an objects “Width”. Generally, these are performed on
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the local coordinate of the object as they are often properties on the object

irrespective of the model.

Therefore, if a rule, such as in our example in Table 4.1, performs a check

on the width of an object, the “Width” function from Table 4.2 is called with

the object as the parameter. When the value is calculated, a new property is

created with the function name, in this case “Width”, as the new properties

name, and the function result as the properties value. The created property

is then added to the objects property set and the new property’s value is

compared against the check-value, which results in either true or false. Addi-

tionally, the result can be negated depending on if the check “MustHave” or

“MustNotHave” be true. The property check in the Table 4.1 is:

Obj1 MustHave Width ≥ 16INCH (4.1)

Width is the property name, ≥ 16INCH is the check value and unit, and

MustHave is the possible negation term. Obj1 is a placeholder for the object

that is being checked which we explain in the Rule Evaluation section.

Because a newly created property is added to the objects property set,

it allows for the reuse of the property later, should another function call for

it. Therefore, before a property is calculated for an object, a search on the

objects existing properties is performed. If the property with a matching

property name exists, then that existing properties value is used rather than

requiring any calculation. Thus, properties are in a sense cached by the object

during the check process, thereby speeding up the check. However, they are

not saved to the model as model-checking does not modify the model but only

evaluates it.

Relation Check

For the case of relations between objects in our language, we initially restrict

them to involving pairs of objects. A relation is simply a container for the

properties of the relationship of the objects. An example of a relationship

property is the distance between the objects or if the objects overlap. These

relationship properties work in the same fashion to object properties, in that
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Table 4.2: List of geometrical properties

Name Description

FunctionOfObj Returns a string value corresponding to the type of ob-
ject. This is determined by a keyword search of the
objects name. As IFC types do not extend past IfcFur-
nishing, this serves as a type check.

Width The width of the object, determined by the difference
between the largest X value and the smallest X value of
the objects local vertices

Depth The depth of the object, determined by the difference
between the largest Y value and the smallest Y value of
the objects local vertices

Height The width of the object, determined by the difference
between the largest Z value and the smallest Z value of
the objects local vertices

MinEdgeLength The length of the smallest edge of the mesh of the object
MaxEdgeLength The length of the largest edge of the mesh of the object
TotalEdgeLength The sum of edge lengths of the mesh of the object

both are defined by a name and a value. Therefore, similar to object proper-

ties, if a rule checks a relationship property, such as “IsNextTo”, the function

“IsNextTo” from Table 4.3 is called, for the case of relations however passing

both the objects as function parameters. When the result is calculated, a rela-

tion with the first object and the second object is created with a new property,

having the name of the function as the property name and the functions re-

turn value as the property value. The value can then be checked against the

relation check value. The relation checks in the Table 4.1 are:

Obj0 and Obj1 MustHave BoundingBoxDistance ≤ 1FT (4.2)

and

Obj1 and Obj0 MustHave IsNextTo = TRUE (4.3)

As with object properties, if a rule requires a relation check for two objects,

it will first search the existing relations to find if a relation between the two

specific objects already exists, in the same object order as the rule specifies.

If so, it will further search that relation’s property set for a property that

matches the required relationship property.
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Because some of the relation properties are directional, the order or direc-

tion of the objects in the relation is critical. For example, for the property

of “IsBehind”, object1 being behind object2 does not imply object2 is behind

object1. Therefore, two relations between object1 and object2 would exist, one

being object1-to-object2 and object2-to-object1, potentially containing differ-

ent properties and value. Explicit function naming is important to assist in

determining the order to this as best as possible.

Logical Composition Check

While the basis of the rule check is on the property values of the objects and

relations, rules often posses conditional logic based on the combined results of

each individual property and relation check. In the example in Table 4.1, this

is the expression:

((4.1) AND (4.2) AND (4.3)) (4.4)

The result of this expression is the aggregation of the encapsulated property

check and relation checks, dependent on the logical operation, in this case the

logical AND operator. Other logical operations supported in the language

are the OR and XOR operators. In addition to property checks and relation

checks within an expression, a logical expression can also have nested logical

expression, containing different logical operators. Thus, when determining a

logical expressions result, all nested results must first be determined.

4.2 Rule Evaluation

The property check, relation check, and logical composition of the two provides

a means to determine the result of an instance of a rule, namely for a particular

Obj0 and Obj1. In this case Obj0 and Obj1 being place holders for instances

of the relevant objects which are in this case refrigerators and countertops.

However, a model often contains multiple object instances that are relevant

to a rule. Thus, in addition to determining the result of each pair of relevant

objects, each of those results must be aggregated to determine a single pass

or fail result for the total rule.
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Table 4.3: List of geometrical relations

Name Description

BoundingBoxDistance The distance between the bounding boxes of the
two objects.

CenterDistanceXY The distance between the centers of the two ob-
jects, projected onto the XY plane.

FrontCenterDistance The distance between the front centers of the
bounding boxes of the two objects.

FacingAngle The angle between the forward direction vector of
the first object with the vector from the center of
the first object to the center of the second object.

AlignmentAngle The angle between the forward direction vector of
the first object and the forward direction vector of
the second object.

IsBehind A boolean value which determines whether the
first object is behind the second object. Calculated
by checking if a ray in the backwards direction of
the second object from each of the bounding box
vertices and the center of the bounding box inter-
sects with the bounding box of the first object.

IsInFrontOf A boolean value which determines whether the
first object is in front of the second object.

IsLeftOf A boolean value which determines whether the
first object is left of the second object.

IsRightOf A boolean value which determines whether the
first object is right of the second object.

IsNextTo A boolean value which determines whether the
first object is next to the second object. Calcu-
lation is the same as IsBehind although in both
the left and right directions. Note this does not
imply the objects are touching.

IsAbove A boolean value which determines whether the
first object is above the second object.

IsBelow A boolean value which determines whether the
first object is below the second object.

IsInside A boolean value which determines whether the
first object is inside the second object.

AreOverlapping A boolean value which determines whether the
first object and the second object are overlapping.
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Therefore, the rule-evaluation process is broken down into three steps. First

the model must be searched to find all object sets relevant to the rule and build

up a rule instance table using the cartesian product of the relevant object sets.

Each row in the rule instance table is an instance of a rule and a column is a

relevant object set. Next, the result of each instance of the rule is determined

based on the individual property checks of the object and relations, aggregated

based on the logical composition of the rule. Finally, a single result for the

rule as a whole is determined based on the clause of each of the relevant object

sets.

Identifying Relevant Object Instances

The first and third steps both pertain to the relevant object sets and thus we

combine them into a single rule component known as an existential clause. The

existential clause takes the full set of objects in the model and filters it based

on the type of the object, such as IfcFurnishing, and a set of the property

checks that it must pass. As the IFC schema provides a type hierarchy for

building object classes and their super- and sub-classes and our checks are

performed on models represented in IFC, we use their type classification as

opposed to defining our own. In the case of our example in Figure 4.1 table

(5) this is the two statements:

ALL Obj0 ∈ IfcFurnishing {FunctionOfObj = “Refrigerator”}; (4.5)

Where in this case we search through all model object, selecting only the

IfcFurnishing objects that have a property FunctionOfObj value equal to Re-

frigerator. And

ANY Obj1 ∈ IfcCounterTop; (4.6)

where only the IfcCounterTop objects are selected.

Each existential clause set corresponds to a subset of the objects in the

model. Once each subset of filtered objects is created, all objects from sepa-

rate subsets are combined via a cartesian product resulting in a table of rule

instances. Each column of the rule instance table corresponds to a existential

clause object set and each row an instance of the rule. It is possible for an
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object to be in multiple subsets if it passes the filters of multiple existential

clauses. In these cases, no instance is created, as we do not consider self rela-

tions of objects; in a sense self relations would be no different than an object

property. Figure 4.1(5) shows an example of a rule instance table resulting

from the existential clauses of the example rule in Figure 4.1(4). In this case

there is a single refrigerator object in the model and four countertops.

Rule Evaluation on an Object-Instance Tuple

In order to evaluate an instance of the rule, and determine the resulting true or

false value in the rightmost column of Figure 4.1(5), we use the rules property

and relation checks and the logical expression which correspond to (1), (2),

and (3) in Figure 4.1 respectively. This requires mapping the relevant object

set objects in each rule instance row to the placeholder object in the logical

expression. For instance, in the previous Equations 4.1, 4.2, and 4.3, the

objects Obj0 and Obj1 represent the objects from the relevant object sets in

4.5 and 4.6 respectively. Thus, each rule instance result is the result of the

logical expression, with the object in the rule instance passed as the parameters

of the logical expression of the rule. The result is a true or false for each rule

instance which is placed in the rightmost column of the rule instance table.

Overall Rule Evaluation

Some rules require that all rule instances pass, while others depend on only

the condition that one instance of the rules passes. For example, in the rule in

Table 4.1, all refrigerators require one countertop space next to them, however,

the rule does not imply refrigerators require all countertops in the model to

be next to them.

Therefore, once each of the results of the rule instance, or rows in the

rule instance result table, have been determined, the final result of the rule is

determined using the ALL/ANY/NONE clause of the existential clause(s).

We describe this algorithm in pseudocode in Algorithm 1. The algorithm

takes as input the rule instance table and the existential clauses, specifically

a list of their clauses. The algorithm starts with the leftmost column of the
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Figure 4.1: Rule instances extracted from a model based on a sample rule with
instance evaluation based on the rules logical expression term.

rule instance table and groups the rows by equal objects in that column (lines

10-19). Then for each grouping of rows, or sub-table, recursively calls the

evaluation method (line 22), not including the current existential clause set or

table column. The recursive call ends when a single row and column exist in the

sub-table, meaning only the rule instance result remains which is the returned

boolean value (lines 7-9). Then, the results of each sub-table are aggregated

based on the clause of the existential clause for the grouped column (lines 23-

31). When all sub-tables have been evaluated, the final result is returned (line

33). In the case where no relevant objects exist, meaning one of the existential

clause sets is empty, then the rules returns the default value, which in this

case is set to FALSE (line 4-6).

Note that the existential clauses are non-commutative. This means that the

order of the ALL/ANY/NONE can change the final rule result. An example

of this is ALL microwaves must be on ANY countertop. Using this order,

every microwave must be on a countertop that does not need to be the same
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Algorithm 1: Recursive function for ALL/ANY/NONE.

1 Function EvaluateRule(RuleInstanceTable, Clauses):
Input:

RuleInstanceTable
Clauses

Output:
Result

2 rowCount← RuleInstanceTable.RowCount
3 columnCount← RuleInstanceTable.ColumnCount
4 if rowCount == 0 then
5 Result← FALSE
6 end
7 if rowCount == 1 ∧ columnCount == 1 then
8 Result← RuleInstanceTable[0][0]
9 end

10 Column0Split← newDictionary{key ← object, value←
rowList{}}

11 foreach row ∈ RuleInstanceTable.Rows do
12 Object← row[0]
13 rowMinusObject← row[1 : end]
14 if Column0Splitcontainskey == Object then
15 Column0Split[Object].Add(rowMinusObject)
16 else
17 Column0Split.Add({Object, rowMinusObject})
18 end

19 end
20 returnResult← TRUE
21 foreach subTable ∈ Column0Split.V alues do
22 methodResult← EvaluateRule(subTable, Clauses[1 : end])
23 if Clauses[0] == ALL then
24 returnResult← returnResult ∧methodResult
25 end
26 if Clauses[0] == ANY then
27 returnResult← returnResult ∨methodResult
28 end
29 if Clauses[0] == NONE then
30 returnResult← returnResult ∧ ¬methodResult
31 end

32 end
33 Result← returnResult
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countertop. If the order were ANY countertop must have ALL microwaves on

it, then a single countertop must have each of the microwaves on it. Therefore,

if two microwaves sit on different countertops, the first example would pass

where as the second would fail.

Virtual Objects

There is also the case where a rule requires a check on an object that is not

explicit in the model. Objects such as walking-space or corners fall into this

category as one does not model a corner but rather they are implied as the

connection locations of walls. Rules can often reference or check against these

object types in the same way they would for an explicit object.

Our approach to address this is to have a collection of methods for creating

the objects that can be called by the rule-checker, similar to the object and

relationship properties. If the rule references a virtual type, the types can be

created and added to the model as objects. We define these implicit types as

Virtual Objects (VOs). As part of the existential clause, the type is used to

filter for relevant objects for the rule. The type is selected from the the existing

IFC defined classes, however, in a addition, the type can also be selected from

a set of available VO types. For our implementation we created a number of

additional virtual types, which can be seen in Table 4.4.

When a model-check is initialized with a given model and ruleset, the

initialization process will first check all rules and find all unique VO types. For

each of these VO types the initialization will call the function corresponding

to the type name. The function takes in the list of all model objects as the

function parameter. The result of the functions is a list of all that type of VO

created based on the current state of the model. The VOs are then added to

the list of all model objects and for the remainder of the model-check treated

the same as any other object.

In the example in Table 4.1, as seen in the second existential clause 4.6,

we call for a type IfcCounterTop. This type does not exist in the current IFC

schema, however, it is one of the types we have defined in our VO table. This

is because in practice, countertops are modeled differently by different users,
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and thus they are difficult to consistently check in a model. For instance,

some countertops are modeled as a single object that surrounds the sink, thus,

determining whether there is a certain amount on each side of the sink cannot

be done by the width and would require extra computation. Therefore, we

created a function that takes in the objects in the model and determines

segments of flat surfaces that can act as a countertop or landing area. We

create VOs as model objects, by which geometrical properties can be calculated

as with real model objects.

Table 4.4: Virtual Objects for kitchen and living room rules. All Virtual
Objects are sub-types of the IFC type IfcSpatialElement.

Virtual Object Description

IfcKitchenTriangle Object that connects the front center points of the
sink, range, and refrigerator. The resulting mesh
is the front center point of each of the objects pro-
jected onto the floor the objects are placed on. The
mesh has only three vertices and three edges.

IfcCounterTop Object that represents the flat countertop surfaces
in a kitchen. The mesh is created by finding neigh-
bouring similar cabinets and creating a single flat
surface above all of them. This is because coun-
tertops are often modeled as part of the top of the
cabinets.

IfcCorner Object that represents the intersection of walls.
Objects mesh is the mesh intersection of the walls.

IfcFurnishingCoM Object that represents the center of mass of all Ifc-
Furnishin items in a model. the mass is calculated
as the geometrical volumn of the object (width x
depth x height). Result is a single point in 3D
space.

IfcRoomCentroid Object that represents the center of an IfcSpace,
projected onto the floor below the space. Result is
a single point in 3D space.

4.3 Rule Editor

In our system, rules are edited through a special-purpose syntax-aware edi-

tor. This editor restricts users from entering in invalid rules by guiding the
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users through each existence clause, property and relation check, and logical

expression addition. Rules must be grouped into rulesets which serve to group

rules based on common functionality or projects. Rulesets have an ID, title

and descriptions, while in addition, rules have an associated Error Level, such

as Error, Warning, Recommendation, etc. Each of the rulesets from the edi-

tor can be exported to JSON format, allowing for sharing of rulesets among

different users.

The Rule Editor uses a empirically defined subset of the IFC hierarchy as

the possible types the existential clause can select to filter the relevant model

objects. Types from Table 4.4 are available from the VO function list in

addition to the IFC types. The available geometrical properties in the Table

4.2 and 4.3 provide the possible properties to check. However, if the user

is aware of properties that have been predefined such as user entered tags or

comments on each object, they can enter those values in manually and perform

checks on them as well. Finally, the Rule Editor output rulesets in the form

of JSON files.

4.4 Discussion

Rules inherently have a level of ambiguity to them. A simple example is when

a rule refers to the distance between two objects. While intuition might say

the distance refers to the length of the shortest path between the objects, often

times rules are in reference to either the center of objects or the distance in

2D space. VOs are also ambiguous in their definition as the exact location

of a corner in not definite. Therefore, the geometric properties and relational

properties outlined in Table 4.2 and Table 4.3 and the VOs in Table 4.4 are

only best guess solutions to the true intention of the rule. These tables were

constructed to satisfy the rules for the case studies exemplified throughout

this thesis. As new rules emerge, there will inevitably be rules that cannot be

comprised of the existing properties, relations, and implicit objects we have

defined. Thus, as the language matures these tables will be required to be

expanded, however, the reusability and logical composition of these properties
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allows for a abundance of different rule scenarios to be constructed.

Object Types

The types used in the rule language follow types defined in the IFC schema.

IFC has a predefined class hierarchy, beginning with the IfcRoot class and

branching out to many subclasses. Although many class types are supported,

such as IfcStandardWall and IfcDoor, many standard building objects often

are defined by generic types such as IfcBuildingElementProxy and IfcFurnish-

ing, as these might represent the lowest branch available that fit the types

classification. For instance, a couch would fall under they type IfcFurnishing

as no IfcCouch type exist. Most standard rules for interior design require

checking items types more specific than furnishing. Therefore, we propose two

potential solutions for further filtering objects by type and identify the key

benefits and shortcomings of each.

The first is to extend the IFC class hierarchy to include new types. This

would require introducing new classes and specifying the existing class that

they are a subclass of, i.e., inherent from. For instance, an IfcCouch type could

be introduced as a new type that inherits from the existing IfcFurnishing type.

Figure A.1 illustrates some of the IFC existing types (A) along with additional

types that could be introduced (B). The benefit for this method would be the

ability to easily perform type filtering based on exiting intermediate types,

such as IfcFurnishing, which encompasses many different types underneath it,

or newly created intermediate types such as IfcSeatingFurnishing, which could

be a superclass of chairs, couches, and any other object that supports seating.

One drawback however, is that the new type hierarchy would need to be sent

along with the model in order for another application using the rule language

to be able to identify the new object types. Additionally, this would require

a merging strategy for the new type hierarchy with the existing hierarchy.

Having a single standardizes hierarchy would assist with these limitations.

The alternative is to keep the hierarchy as is and include the more indepth

types as a property of the object. Therefore, a couch would remain as type

IfcFurnishing but have a property that states it is a couch, either by a string
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property with value “couch” or a boolean property “IsCouch”. The latter

would be inefficient for our model check implementation as it would result in

an “IsCouch” property being created for every object when the model-check

searches an instance.

As there were few cases in rules for our case studies where type group-

ing were advantageous, we opted for a type string property attached to each

object, over the IFC hierarchy extension. The property for this method is

“FucntionOfObj” as seen in Table 4.2. It uses a keyword search on the name

string to determine the object type and if none is determined returning a value

of “Unknown”. Therefore, there is a large onus on the names of the objects to

be explicit with the type. In an ideal scenario, “FunctionOfObj” would infer

and classify the object type or affordance based on the surface representation

of the object. However, the existence of such a method has not been explored

at this time.

4.5 Summary

Our rule language expresses basic rules as checks on the properties (i.e., height,

width, etc.) of individual objects, and geometrical properties of relations be-

tween pairs of objects (i.e., centre-distance between objects, object1 being in

front of object2, etc.). These checks can be further composed in complex rules

using logic operations. The rules are expressed based on the following core

utilities for this language.

• The relevant object filter or existential clause searches through all objects

in the input model and filters them into relevant object sets. A rule

instance table is created based on the cartesian product of theses sets.

Virtual objects can be created and added to the model check such that

they can also be search as real objects.

• The rule instance evaluation first identifies the basic property checks

applicable to each (pair of) object(s), and evaluates them based on the

object properties and interrelations. Then applies the logic composition
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operators to each of the property evaluations involved, providing a result

for each rule instance.

• The final rule evaluation is determined based on the aggregation of

each of the individual rule instance results, dependent on the clause

(ALL/ANY/NONE) of the existential clause search.

Future work might be to further explore the necessity and feasibility of an

extendable type hierarchy. Additionally, there could be a type mapping im-

plementation, meaning rather than using IFC class names, such as IfcStan-

dardWall, one could use simply “Wall”. We will also continue to explore

alternative rule editors for better user interaction.

The next chapter will describe the model-checking method that supports

these rules and how we implement a model-checking tool for checking real

models.
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Chapter 5

Model Checking

Checking a BIM model against a set of design rules has been a major topic in

BIM research for over a decade, and yet no broadly available solutions exist to

support rules from a variety of sources, such as governing agencies, handbooks,

and builders. While some model-checking software systems exist, they either

require that their users possess a strong software-programming knowledge to

configure them with rules of interest, or they are black boxes, not configurable

at all. Since it is unlikely that all stakeholders will ever be able to agree on

a single immutable set of rules, applicable to all buildings, these products are

fundamentally limiting the wider adoption of automated model-checking of

buildings.

Rule languages offer a means of rule creation and customization without

the need for strong software-programming knowledge. While there have been

previously proposed languages, such as BERA, KBim, and BIMRL, they still

possess a higher level of complexity or have generally minimal support and

extended uses. We believe our rule language, described in the previous chapter

is a more user friendly language, as the language reads more closely to the

natural language from rule codes. It also supports use beyond model-checking

as we will describe in chapter 6, thus making it more broadly useable.

This chapter focuses on automated model-checking, which is defined as

“software that does not modify a building design, but rather assesses a design

on the basis of the configuration of objects, their relations or attributes” [11].

The chapter outlines a model-checking implementation using our proposed
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rule language exemplifying well-defined model-checking concepts from [11] and

previous related research.

Building off the rule language outlined in the previous chapter, this chapter

outlines the proposed model-checking methodology in section 5.1, followed by

the current implementation in Section 5.2. Section 5.3 contains discussion

points on our methodological assumptions and how the language and rules fit

in the larger picture. Finally, concluding remarks are in Section 5.4.

5.1 Methodology

Rule-based model compliance checking, as outlined in [11], involves four stages:

(a) rule interpretation, (b) building-model preparation, (c) rule execution, and

(d) reporting of the checking results. The first step involves converting natural

language design constraints into a computer-interpretable rule language, which

is vital for the automation of the rule language. The second stage involves the

information present in the model. Model information can be disorganized

and not explicitly defined, making checking slow and tedious. Therefore, the

second stage is to organize and summarize the information in the model for

faster, more efficient check results. The rule execution stage is to sequentially

determine the results for each rule-based on the organized model information.

And finally, the user must get a report of the result, indicating the compliance

evaluation of the model, as a rule-by-rule evaluation and, in addition, the

information was used to determine a fault.

5.1.1 Rule Interpretation

Rule interpretation involves the creation of rules in a computer interpretable

form. This includes the translation of rules from natural language text based

formats or other documents. In an ideal scenario, rules could be directly

interpreted using some form of Natural Language Processing (NLP) to extract

the rules logic, however, this is largely infeasible due to the vagueness of the

language used to describe rules. Efforts into mandating regulatory texts into

machine interpretable writing have not been successful thus far [9].
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Therefore, the interpretation phase in this study, as outlined in the previous

chapter, is through a rule editor interface by manually interpreting the rules

logic into that of the rule language. When all rules have been created, they

are exported to a file which the model check application reads. The exception

is object overlap, which is by default always included in the checks as there

are no cases where non-virtual object overlapping is valid.

5.1.2 Model Preparation

There are two major inputs into the model check. They are the model and

the ruleset. The ruleset is a file which has been exported from the rule editor

which the model language can parse back into the original rule for execution.

We use JSON for the ruleset file serialization and deserialization.

For this research, the model is in the form of an IFC file, and as explained

in the previous chapter, the rule language utilizes the IFC types for object

filtering. While other BIM schemas exist, this research opted to be IFC based

as it is the primary open standard and many BIM tools have IFC exporting

capabilities.

Model Check Preparation

Data in IFC is structured in a highly complex manner as an objects’ surface

representation can take the form of extruded solid, Boundary Representation

(BREP), or their combinations. This implies that, before the rules can be eval-

uated, the BIM data must first be transformed into structural objects that

support efficient geometric calculations. Similar to [41], our method parses

the model into an internal object structure that includes a global triangulated

mesh, a local triangulated mesh, and a global bounding box that contains the

direction and dimensions of the object in 3D space; a mesh being a series of

vertices grouped into sets of three forming triangular boundary faces. The

global bounding box is typically used for the geometric calculations as it re-

duces the computational speed of the model check drastically at the cost of

lower accuracy. For a global mesh, the vertices are defined in global coor-

dinates relative to the whole building model, while local meshes are relative
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to the coordinate system of the object. In a local coordinate system the X

represents Left to right, the Y represents forwards and backwards, and the

Z represents up and down. Property checks are performed on the local mesh

of an object while relation checks are performed on the global meshes of the

involved objects.

Each object whose type is nested under IfcProduct contains a surface rep-

resentation. Therefore, from the input model, every object with type nested

under IfcProduct is extracted, has its mesh representation parsed into the

model-check internal mesh representation, and added to the set of objects

that can be checked.

Algorithm 2 outlines the initialization of the model check process, taking

in the model file, converting the model objects that are subtypes of IfcProduct

to structures objects (line 4) and adding them to the list of model objects that

can be searched (line 5).

Algorithm 2: Algorithm for initializing the model-check.

1 Function InitializeModelCheckObjects(IfcModel):
Input:

IfcModel
Output:

ModelObjects
2 ModelObjects← {}
3 foreach IfcProduct ∈ IfcModel do
4 Obj ← Convert(IfcProduct)
5 ModelObjects.Add(Obj)

6 end

Included in the model-check initialization is also the ruleset preparation,

which comprises of removing rules that might be semantically invalid and pre-

compiling the rules the generic programming language. Algorithm 3 outlines

the validation and compiling of rules. Rule validation (line 4) includes checks

that might always result in true or false. Currently the only validations we have

is whether a rule has at least one existential clause and one logical expression

and to check that the index of the property check and relation check are in

the range of 0 to the number of existential clauses, since this must correspond
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to a column number in the rule instance table. The rule generic programming

language code must be generated from the structured rule syntax (line 8) and

then compiled (line 9). These compiled rules can then be executed by the

model-check.

Algorithm 3: Algorithm for validating and pre-compiling the rules.

1 Function ModelCheckRulePrep(Ruleset):
Input:

Ruleset
Output:

CompiledRules
2 CompiledRules← {}
3 foreach Rule ∈ Rulesets do
4 RuleV alid← Valid(Rule)
5 if RuleV alid == FALSE then
6 Skip
7 end
8 RuleCode← GenerateRuleCode(Rule)
9 CompiledRule← Compile(RuleCode)

10 CompiledRules.Add(CompiledRule)

11 end

Pre-check Model Enhancement

Once all the IFC objects have been read, our method constructs and adds to

the model several different types of Virtual Objects (VOs), based on whether

or not they are required for the input ruleset.

To reiterate, VOs are implicit model objects generally representing com-

plex, multi-object relationships. By this definition, some VO types are already

included in the IFC vocabulary, such as IfcSpace and IfcSite for example, which

are nested under IfcSpatialElement. As VOs by definition also have geometric

bounds, we represent them internally in the same category as IfcSpatialEle-

ments. Given that they also are nested under IfcProducts, IfcSpatialElements

have a surface representation and thus existing the IfcSpatialElements are

reconstructed into the internal shape representation when the model is read.

After the model is read, all VO that are required by the input rules are created

and stored with the existing model objects.
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While both nested under IfcProduct, the major difference between the Ifc-

SpatialElements and IfcElements is that IfcSpatialElements, such as IfcBuild-

ing or IfcSpace are typically created based on IfcElements thus depending

on them in order to create their own representations, whereas IfcElements

have no strict dependence relations. If an IfcElements object is updated, any

IfcSpatialElements that were created based on that object would require re-

calculation. While VOs created using the rule language are not saved to the

model after creation, IfcSpatialElements should be checked and recalculated

if they do not properly encompass their composed IfcElements. [7] proposes

one such method for checking the validity of these spaces in IFC.

This process is outline in Algorithm 4. The algorithm takes in the rules

and iterates over each one (line 4) and each of their existential clauses (line

5). First it must check that it is a virtual object and if so that it has not been

created already to ensure no duplicate virtual objects are created (line 6). The

new virtual objects are then added to a list of new objects (line 10) and once

all have been created, they are added to the list of model objects (line 14).

Intra-check Model Enhancement

Relations do not function in the same way as model objects. Fundamentally

they are relationship property storage items defined by their object set, having

no geometric shape representation. Therefore, they are not stored in the model

objects set but rather in a separate model relation set at runtime. While IFC

does contain a IfcRelation type, they are not strictly geometrically based. As

a result, we only store relations in run-time data.

For the implementation, we set the object set size of a relation to two, as

this covers the large majority of relational properties that are checked; VOs

would be added instead for relations that exceed two objects. Additionally,

relations are directional, meaning a relation of object1 and object2 is sepa-

rate from the relation object2 and object1. This is due to the nature of the

properties, such as “InFrontOf” where the order of the objects matter.

While all possible relations, corresponding to all possible pairs of objects,

and all the relationship property data could potentially be added in the ini-
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Algorithm 4: Algorithm for adding virtual objects to the set of model
objects.

1 Function PreModelCheckEnhance(ModelObjects):
Input:

ModelObjects
Output:

ModelObjects
2 AddedV OTypes← {}
3 V Os← {}
4 foreach Rule ∈ Rulesets do
5 foreach EC ∈ Rule.ExistentialClauses do
6 if IfcTypes.Contains(EC.Type) ∨

AddedV OTypes.Contains(EC.Type) then
7 Skip
8 end
9 NewV Os← CreateVO(EC.Type,ModelObjects)

10 V Os.Add(newV Os)
11 AddedV OTypes.Add(EC.Type)

12 end

13 end
14 ModelObjects.Add(V Os)

tialization phase of the model check, for computational efficiency, we decided

to embed the creation of object relations and property calculations in the

execution phase.

As an example, the distance between two objects is not calculated unless

it is necessary for a rule. When a rule calls for the distance of two object

instances, it first checks the model relations for a relation where the first

object matches the first object in the relation and the second object matches

the second object in the relation. If none exists, a new relation is created.

Then the specific distance function required by the rule is called and executed

with the two object instances as parameters and a value is returned. The

function name and the return value make up a new property that is added

to the relation. On the other hand, if a matching relation is found, then the

existing properties of the relation are checked for a property that matches the

distance function name. If one is found then that properties value is used, if

not then it must be calculated as before. Therefore, properties are cached and
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can be reused as necessary, until the complete set of rules has been evaluated

and the building model-checking is complete.

This happens during the rule instance evaluations, as that is the stage in the

model-check when the individual property and relation checks are performed.

In Algorithm 6 these are the line 5 for property checks and lines 12 and 13 for

the relation check.

5.1.3 Execution

Algorithm 5 outlines the execution process, which is referred to in section

4.2 as the Rule Evaluation. The method takes as input the model objects

and compiled rules. For each of the rules, an instance table is created (line

5) in the form of Figure 4.1 (5) using the cartesian product of the relevant

object sets. However, initially the rule instance result is empty as it has not

been evaluated. Thus, for each row in the rule instance table (line 6) the rule

instance result, which is the last row in the table, is calculated by the rule

instance evaluate method (line 7), outlined in Algorithm 6. Then, the full rule

result is evaluated (line 9) using the method in Algorithm 1. The return of

the execution is the list of all rules with the corresponding evaluation result

of the rule and the table of rule instances.

The detailed pseudocode for the rule instance evaluation can be seen in

Algorithm 6. This takes in the rules instance, which is the row in the table

which contains a ordered list of objects, the relation list for checking exist-

ing relations, and the logical expression that will evaluate the rule instance.

First, the evaluation goes through each property check contained in the log-

ical expression (line 3), and for each one, gets the object at the index of the

checks existential clause index (line 4). Next, it searches for the property in

the objects property set; if it finds it then it uses that property, if not it must

create the property and calculate its value (line 5). The algorithm proceeds to

compares that value against the property check to determine the check value

(line 6) and adds that checks result to the list of all check results (line 7). In

a similar fashion, all of the relations in the logical expression are checked, this

time using two objects (lines 10 and 11) and first checking if the relation exists
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Algorithm 5: Algorithm for executing the Model Check.

1 Function ExecuteModelCheck(ModelObjects, CompiledRules):
Input:

ModelObjects
CompiledRules

Output:
RuleResults

2 RuleResults← {}
3 ModelRelations← {}
4 foreach Rule ∈ CompiledRules do
5 RITable← CreateRI(ModelObjects, Rule.EC)
6 foreach RInsti ∈ RITable.Rows do
7 RITable[i, end]←

RuleInstanceEval(RInsti,ModelRelations,Rule.LE)
8 end
9 RuleResult← EvaluateRule(RITable, Rule.EC)

10 Ruleresults.Add(Rule, RuleResult, RITable)

11 end

in the model relations set. If so, it uses that relation, otherwise it creates a

new one and adds it to the model relation set (line 12). As with the property

check, it searches the relation for a property that matches the relation check

property. If it exists, the program will use that property, if not then it will

create a new one, calculate that value and return it (line 13). The algorithm

compares the value against the check value (line 14) and adds it to the check

results (line 15). Finally, all nested logical expression must be calculated, call-

ing the rule instance evaluation recursively (line 18). The result of all nested

logical expression are added the the check set (line 19). Finally, the result

of the logical expression is the aggregation of all the checks using the logical

operator of the expression.

5.1.4 Reporting

Finally, each result of the rules is relayed back to the end user or application.

In addition to pass/fail value, we return a list of all instances of the rule along

with the rule for reference. The reports may also be narrowed down to only the

failed rule instances as these are typically more important to know from the

42



Algorithm 6: Algorithm for evaluating a rule instance.

1 Function RuleInstanceEval(RInstObjs, ModelRelations, LogicExpr):
Input:

RInstObjs
ModelRelations
LogicExpr

Output:
RuleInstanceResult

2 CheckResults← {}
3 foreach PropCheck ∈ LogicExpr.PropChecks do
4 CheckObj ← RInstObjs[PropCheck.EcIndex]
5 PropV al←

FindOrCreateObjProp(CheckObj, PropCheck.FuncName)
6 PCResult←

Compare(PropV al, PropCheck.Op, PropCheck.V alue)
7 CheckResults.Add(PCResult)

8 end
9 foreach RelCheck ∈ LogicExpr.RelChecks do

10 RelObj1← RInstObjs[RelCheck.EcIndex1]
11 RelObj2← RInstObjs[RelCheck.EcIndex2]
12 Rel← FindOrCreateRel(ModelRelations,RelObj1, RelObj2)
13 PropV al← FindOrCreateRelProp(Rel, RelCheck.FuncName)
14 RCResult←

Compare(PropV al, RelCheck.Op,RelCheck.V alue)
15 CheckResults.Add(RCResult)

16 end
17 foreach LogicExprNest ∈ LogicExpr.NestLE do
18 LEResult←

RuleInstanceEval(RInstObjs,ModelRelations, LogicExprNest)
19 CheckResults.Add(LEResult)

20 end
21 RuleInstanceResult← LEEval(LogicExpr.Op, CheckResults)
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users perspective. The client application can parse the result information and

graphically display the objects that failed the rule and the rule information

such as the error level of the rule and description.

5.2 Implementation

As validation for the proposed research, we have created a prototype model-

checking .NET WindowsForm application. This application takes in a IFC

model file and a ruleset JSON file which can be exported from the Rule Editor

application.

Additionally, the model check application contains a public method library

by which another .NET application can call the model checking methods.

To demonstrate this, we used a previously built in-house Unity-based IFC

model editor to test and visualize the results. The editor calls the model

checking method by passing along the edited IFC model and selecting the rule

set exported from the rule language editor. We have developed a library of

basic functionalities for computation of VOs and numerous geometric functions

(i.e., for calculating object height and width, and distance between objects)

which can be seen in Tables 4.2, 4.3, and 4.4. Both the IFC editor and the

Model Checker utilize our in house IFC Engine package for parsing models

and extracting the simplified geometry from IFC model objects.

After execution, the model-checking method returns the results for each of

the rules. A rule result includes a pass/fail boolean, the rule for reference which

contains a description of the rule, and each rule instance and the result of that

instance. Each of these result instances can be selected and the corresponding

objects and rule information will be highlighted and displayed respectively as

seen in Figure 5.1. Currently, the report does not include the property and

relation values used by the rule instances, however, if they were saved to the

model, they could be accessible and referenced in the report. The VO meshes

are stored and accessible and can optionally be created and displayed in the

IFC editor, however they are also not saved to the model.
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Figure 5.1: Unity interface highlighting objects red.

5.3 Discussion

Archiving Implicit Computations An interesting challenge is how to

archive the computations performed, i.e., the VOs and the relations among

objects, in support of the complete model-checking process. In principle, there

are two choices: (a) they may be saved with the building model itself, or (b)

they may be saved in a separate data structure but with references to the

building model. Should the VOs and properties be saved to the model, it

would be necessary to develop a management process to remove the results of

individual rule evaluations as the objects to which the rules apply are mod-

ified. For instance, if the “Distance” relation property was calculated but

the dishwasher has been moved in the new model version, then the original

“Distance” property should be removed and recalculated if required.

If the building model editor is capable of flagging the objects that have been

modified since the last model check, the model check could recalculate the VOs

and properties that depend on those modified objects. This would theoretically
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expedite the subsequent model checks. The safer, more conservative, choice

is to assume the building model has not been checked previously and that all

VOs and properties must be newly calculated and, if existing, overwritten by

the new values. This is the current practice in our prototype, however, we are

currently investigating the most efficient way to save and flag changes in our

editor.

Object Type Issues For the purpose of this study, we used the object name

to determine automatically an objects classification, however, the onus is on

a more intelligent BIM editor to infer the most specific type of the object,

beyond IfcElement. For instance, many objects created in CAD environments

then imported into Revit are placed in the Generic Family type. When these

types are exported they are then classified as IfcBuildingElementProxy ele-

ments, as the exact type is unknown by Revit, (unless specifically created in

or placed in another Family type). It is also imperative that objects do not

fall under multiple categories or are compositions of multiple other objects.

For instance, difficulties can arise when a collection of objects, such as mul-

tiple chairs surrounding a table, are modeled as a single object. This can

make checking table to chair distances problematic. Therefore, good modeling

practices should be adhered to the largest extent possible.

Standard Modeling Practices Other issues encountered included the ori-

entation of the objects not always being standardized in IFC, or at least by

the BIM editors that export the models. This happens when the front face

of an object is not in line with the intended front of the object, due to an

inconsistent local coordinate system for each object. The result is relationship

properties such as behind and in front of, which appear frequently in our rules,

return unintentional values. We see this as an error in the objects design, since

from an end user viewing the model, this error may not be visually apparent

when placing the object.

We also acknowledge that, while many other subtypes exist, for the purpose

of this thesis, IfcElement and IfcSpatialElement make up the two notable
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branches of the IfcProduct type. It could be possible to utilize other branches

of the IfcRoot class such as the IfcRelationship types, however, in practice we

found they are often not consistent in their usage among software vendors that

export to IFC. Further exploring the potential usage of additional IFC types

is left to future work.

5.4 Summary

In this chapter, we have outlined a model-checking method able to evaluate

rules (in the form of the rule language from the previous chapter) on IFC

building models. The model-checking is separated into four key stages and

we outlined the workflow for each. Furthermore, we described an implemen-

tation example connecting the rule editor, model editor, and model-checking

application and the data flow between them. Future work includes intelligent

implicit data saving for expediting subsequent checks and exploring the usage

of other IFC types.

The next chapter will further utilize and expand upon the model-check

method from this chapter for the purpose of generative design.
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Chapter 6

Generative Design

Optimizing interior layout design can be a time-consuming task. This is be-

cause there are a number of design constraints that must be met in addition to

the preference towards more visually appealing designs for the end consumer.

The challenge of striking a balance between an interior space that complies

with ergonomic and stylistic rules and guidelines and satisfies the consumer’s

preferences is exacerbated by the large number of potential placements, ori-

entations, and combinations of objects that the end consumer would like to

place in the potential space.

Computationally generating and testing a number of design alternative can

potentially expedite this process as it makes use of fast and efficient evaluations

of layout alternatives, based on computationally specified and evaluated design

guidelines. Therefore, the designer need only to provide the overall space

layout as the starting point for the design generation, select from a catalog

a set of objects that should be laid out in this space, and specify the design

guidelines that the final layout configuration should meet. The system would

generate a number of alternative designs, which can subsequently be compared

and contrasted to one another based on the basis of other metrics, such as cost

for example, or shown as 3D models to the consumer to select the design they

prefer, knowing that the final design adheres to the selection of required design

constraints.

The key difficulty in developing such a generative system lies in the number

and complexity of possible design solutions, which implies that performing an
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exhaustive search of the solution space is not feasible for this type of prob-

lem. Secondly, the design guidelines themselves must be expressed in such

a way that they can be computationally evaluated. The specification of de-

sign rules in manuals and documents is often ambiguous, making it difficult

to evaluate them and conclusively assert whether they “pass” or “fail”. The

generative-design method presented in this chapter relies on our design model

checking based on a domain-specific language for capturing design rules from

the previous chapters. The model checking serves as the evaluation of the

object placement in the space and to prioritize positive design additions. The

candidate object placements are determined based on a grid, configured in the

input space and the design search continues until a compliant layout is created.

This chapter is organized as follows. Section 6.1 outlines the generative

design methodology. Section 6.2 describes the implementation and method

evaluation. The evaluation consists of a comparison of real world kitchen

layouts with our generated layouts and the implementation comparison of

living room guidelines from previous literature against our rule language. We

reflect on the findings of our evaluation in Section 6.3 and conclude with a

summary of our contributions and our plans for future work in Section 6.4.

6.1 Methodology

According to [26], the generative-design process requires (a) a Performance

Metric to impose an order to the solutions in terms of their quality; (b) a Con-

figuration Variation method to systematically change the design configurations

and their quality; and (c) a Decision-Making Response to determine, based on

the evaluated configuration variations and corresponding performance metrics,

the next design configuration which trends towards improved design solutions.

6.1.1 Performance Metric

Our method proposes a rule-based compliance checking as a quality-evaluation,

at each stage in the generative design. We use the model-checking described

in the previous chapter, however, with a few alterations to the four stages
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involved.

The first stage, the rule interpretation, involves converting natural language

design constraints into a computer-interpretable rule language. As the rules are

the same throughout the generative design, this stage is a one-time execution

before the generative design begins and thus the generative design uses the

same compiled rules throughout.

The model preparation stage is largely dependent on the generative design

method, specifically on the changes to the model at each step in the genera-

tive design. Therefore, all static model objects do not require any property

recalculation, however, if an object is added or moved, then all relations of

the object to any other object must be recalculated. Furthermore, as virtual

objects are relative to the whole model, virtual objects must be re-created at

each step in the generative design, to ensure it is up-to-date with the model

changes.

As this model-check is performed in the context of generative design, which

requires a large number of model modifications and evaluations to be per-

formed, we reduce the shape representation complexity for each object by

replacing it with a bounding box object. These are created by determining

the X, Y, Z dimensions of the shape in the shape’s local coordinate system

and creating an encompassing box. When generative design completes and the

final model is constructed, the box can be replaced back with the true shape

representation. Virtual objects, however, retain their shape representation

rather than a bounding box.

The third stage, the execution stage, iterates over each rule and determines

the result of the rule. While for model-checking, returning a value of true or

false is sufficient, for generative design it is advantageous to scale the result

of the rule. Providing a numeric value can determine whether a modification

in the design configuration is better or worse than another, regardless if the

rule fails. This provides a gradient on the configuration search space which a

generative design method could use to find the local maximum corresponding

to more compliant solutions. While boolean properties and string properties

could only provide a true of false value, which would correspond to a value of
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1 or 0 respectively, the numeric property check could be formulated to return

a result in the range of [0, 1], with 1 being full rule compliance and any value

less than 1 being a degree of rule violation. Using the formulation inspired by

[29], the numeric property checks return a value using the function:

GreaterThan(d, v, α) =

{
(d
v
)α, if d < v

1, if d ≥ v

LessThan(d, v, α) =

{
(v
d
)α, if d > v

1, if d ≤ v

Equal(d, v, α) =

⎧⎪⎨⎪⎩
(d
v
)α, if d < v

1, if d = v

(v
d
)α, if d > v

NotEqual(d, v, α) =

{
0, if d = v

1, if d ̸= v

Where d is the property value, v is the check value, and α is the “degree of

attraction” [29]. The formulation of the functions provides a means of scaling

the rule result values, such that values farther from the check value are always

decreasing, yet always remain above 0. Larger α values result in a sharper

decline for values not equal to the check values. In practice, the α need only

be greater than 1, however, any value too large could result in rule result values

to small for floating point precision. Therefore, for the implementation an α

value of 2 was sufficient.

In the special case that v = 0, we use a value of v = 0.00001 since for

v = 0, v/d would always return a result of 0, giving no information on the

severity of the failure.

Using this formulation for the numeric property checks, and 0 and 1 for the

boolean and string property checks, the calculations for the logical expression

can then be converted to numeric return values. This is done by substituting

the AND logic for boolean values to multiplication of the numeric values (A

AND B = A ∗ B). The numeric equivalent for the OR operation would be to

take the maximum value of each of the check results (A OR B = max(A,B)).

A XOR B can be expressed as (A OR B) AND NOT (A AND B), thus
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numeric equivalent for XOR would be A XOR B = max(A,B) ∗ (1 − A ∗ B)

(associatively using the first two value result against the next etc.). Any

negation would result in 1 minus the value (NOT A = 1 − A). The same

logic is applied to the ALL/ANY/NONE clause operations for the existential

clause.

Finally, the reporting stage returns the final quality assessment of the

model, based on an aggregation of each of the individual results of the rules.

This gives the evaluation for the model state, which is necessary for any gen-

erative design algorithm to compare intermediary design decisions so that the

generation trends towards the optimal solution.

6.1.2 Configuration Variation

Our generative-design method requires as input a BIM model of an empty

space, a set of objects that should be placed in the space, and a set of in-

put design rules. This differs from the majority of previous automated design

methods which start with a populated model and only evolve the model into

better designs. Our approach is scene population where the final design can

have a range of possible objects so long as the design satisfies all rule require-

ments. Therefore, the process ends with a new BIM model that is based on

the input model and also includes (some of) the input objects, placed in a

manner that conforms to the input rules.

Our method generates new model configurations by (a) selecting which

object to add to the model, (b) deciding the 3D location where the object

should be placed, and (c) selecting the orientation of the objects. The process

is initialized with the configuration of a grid of possible object-placement lo-

cations, based on the input model. One can potentially imagine different ways

for configuring such a grid.

In our method, the grid is determined based on the walls in the model,

where a variable number of lines are created that run parallel to the wall

center line. The grid location points are points on each of these lines, starting

from the walls start point to the wall end point. The distances between each

point is based on increments of a standard step, established as the greatest
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common denominator of the widths of the to-be-placed objects. Each of the

grid points affords placement of an object in orientations perpendicular and

parallel to the walls bounding the space.

For the test case of the kitchen, only one line parallel to each wall is used

as we only considered L and U shape kitchens without kitchen islands. For

the living rooms we use a sufficient number of lines such that the whole floor

was covered. In both cases, grid points that were not placed on a floor or

were located under an existing furnishing item were removed. In addition, we

removed points that were close to already existing grid points if there distance

was bellow a specified threshold. Each time an item was placed in the model,

the grid points underneath the new item would be removed.

6.1.3 Decision-Making Response

To determine whether a valid model has been generated, and thus should be

added to the valid solution set, is to check the model evaluation, or model-

check. If all rules are fully satisfied, then the model is added to the solutions.

However, as there is the possibility that rules are conflicting, or simply impos-

sible given the initial model and object set, the “best-so-far” solution, based

on the evaluation value, is always temporarily stored.

The algorithm is shown in pseudocode in Algorithm 7. The algorithm is

a heuristic search, that takes as input the model, the set of n model elements

that can be added, and the ruleset the model must comply with. First, the

algorithm must configure the placement grid and the possible rotations of the

model objects based on the walls in the model (lines 2 and 3). Then for each

combination of object, location, and orientation (configuration variation) (line

7-9), a model configuration is created (line 10), evaluated based on the qual-

ity estimate produced by the model-checking evaluation process (performance

metric) (line 11), and then ranked (line 12) based on the quality evaluation.

The best model configuration, which is an object placement and orientation

that have the highest quality based on the model-check, is then selected as the

basis for a new round of the process (decision-making response). If there is a

tie for the best model configuration, then one is randomly selected (line 16).
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Solutions are output when a fully compliant layout is generated or passes the

acceptable compliance threshold (lines 17-20). However, if additional objects

can still be placed, the process will repeat, using the model with the best con-

figuration (line 21) and testing the remaining objects (line 22) on an updated

grid, removing locations underneath the newly placed object (line 23). There-

fore, it is possible that each solution in the final compliant solution set can

have varying numbers of objects. The algorithm can be called multiple times,

giving potentially different solution due to the random best selection at line

16.

6.2 Evaluation

We implemented the generative design as a standalone .NET application,

which reads in an IFC model and creates models populated with furnishing

objects selected from an object catalog, such that they are compliant with

a selected ruleset file exported from the Rule Editor. The generative design

application calls the model-check evaluation method from the model-check li-

brary. The solutions, i.e., the input model configurations updated to include

(some of) the input objects in design-rule compliant placements, are exported

incrementally as they are created giving the user the option to terminate the

process after they have received “enough” valid Solutions.

To evaluate the generative design methodology, we test our method for two

room cases. In the first case we tested kitchen design using initial layouts based

on real-world building layouts, the goal being to see the similarity between our

results and the existing results. The second test case was a comparison against

work form a previous literature on living room layout generation, interpret-

ing there mathematical layout formulas into our language to determine if the

interpreted rules can create living rooms that are meet these guidelines.

6.2.1 Kitchen Layout

The first evaluation task is to compare the generated kitchen designs from our

system against real world kitchen designs. For this case study, a set of design

54



Algorithm 7: Generative design algorithm.

Input:
IFCin

Soln ← {el1, el2, . . . eln}
Ruleset

Output:
IFCout

1 BEGIN
2 GPx,y ← CreateGridPoints(IFCin)
3 rotations← DetermineRotations(IFCin)
4 IFCout ← {}
5 repeat
6 IFCord ← {}
7 for i← 1..n do
8 for gp ∈ GPx,y do
9 for r ∈ rotations do

10 IFCi,gp,r
in ← Place(IFCin, eli, gp, r)

11 Q← Evaluate(IFCi,gp,r
in , Ruleset)

12 IFCord.SortInsert(IFCi,gp,r
in , Q)

13 end

14 end

15 end
16 IFCbest ← BestSelect(IFCord)
17 if Q(IFCbest, Ruleset) ≥ QThreshold then
18 IFCout.Add(IFCbest)
19 Export(IFCbest)

20 end
21 IFCin ← IFCbest

22 Sol← (Soln − {eli})
23 GPx,y = UpdateGridPoints(IFCin, GPx,y)

24 until Sol.Count == 0
25

26 END
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rules were provided by an industry partner. Each rule uses a combination of

properties and VOs from Tables 4.2, 4.3, and 4.4. These rules were translated

manually into our rule language, using the rule language editor (see Table

A.1). Also provided were a series of standard object sizes from which 3D

kitchen objects, such as sinks, cabinets, ranges, were created in addition to

objects from Revit’s standard families package.

For initial layouts, a number of models were created based on show-home

layouts from the web site of a local building manufacturer. These initial layouts

contained finished kitchens in 2D, which we recreated in 3D using Revit which

can be seen in the first column of Table 6.1.

For each of theses real-world layouts, we performed a model check to assess

their compliance to the rules from our industry partner. Results of the model-

check on the initial layouts are outlined underneath each image in the first

column of Table 6.1. Only two of the models were fully compliant (1(a) and

9(a)) with the rules. In seven cases the model-check determined the triangle

rule was not compliant (2(a), 3(a), 5(a), 6(a), 7(a), 8(a), and 10(a)) with 6(a)

being more severe in that the total triangle edge length was too large. The

other major design flaw was the lack of countertop space next to the refriger-

ators (2(a), 3(a), and 5(a)). In total there were 12 rule violation instances in

the initial layouts.

From the selected layouts, the kitchen rooms were isolated to reduce the

layout search space. For each layout, a kitchen configuration was generated

using the proposed generative design method with objects sharing similar fea-

tures (such as function and dimensions) as those in the layout. The initial

kitchen objects were removed from the building model leaving only the walls,

windows, doors, and the floors. The generative-design service was invoked

with this empty model as input, the rules defined in out rule language, and

the selection of objects to be placed. Based on the empty model, the grid lay-

out determined how many possible configurations there were for each object.

As the model objects each had a width that was a multiple of 12in, this was

determined as the spacing amount for the grid. Orientations configurations

were 0, 90, 180, 270 degrees for each.
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As each test model was run, the best solution thus far, based on the rule

check evaluation, was continuously stored. After completion, the best model

was given a final evaluation, which can be seen in the second column of Table

6.1 with the model check evaluation of the best model provided underneath.

Table 6.1: Comparison of initial kitchen layouts against generated kitchen
layouts.

Original Layouts Generated Layouts

1(a)

All rules passed

1(b)

(1) Range did not have 15 inches
countertop space next to it

2(a)

(1) Refrigerator did not have 16
inches of countertop space next to it
(2) Range and refrigerator distance
was less than 4ft

2(b)

(1) Sink did not have the required
48” free space in front of it
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3(a)

(1) Refrigerator did not have 16
inches of countertop space next to it
(2) Range and refrigerator distance
was less than 4ft

3(b)

All rules passed

4(a)

(1) Sink was not under a window
(although no windows were present
in the kitchen space)

4(b)

(1) Sink was not under a window
(although no windows were present
in the kitchen space) (2) Sink did
not have the required 48” free space
in front of it
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5(a)

(1) Refrigerator did not have 16
inches of countertop space next to
it (2) Sink and refrigerator distance
was greater than 9ft and range and
refrigerator distance was less than
4ft (both triangle rule)

5(b)

(1) Range and refrigerator were over
9ft from each other

6(a)

(1) Sink and refrigerator distance
was greater than 9ft and range and
refrigerator distance was greater
than 9ft (both triangle rule) (2)
Triangle edge sum was greater than
26 ft

6(b)

(1) Range and sink were over 9ft
from each other
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7(a)

(1) Sink and refrigerator were over
9ft from each other

7(b)

All rules passed

8(a)

(1) Range and sink were less than
4ft from each other

8(b)

(1) Refrigerator and sink were less
than 4ft from each other (2) Tri-
angle edge sum was less than 13
ft

9(a)

All rules passed

9(b)

All rules passed
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10(a)

(1) Sink and refrigerator were more
than 9ft from eachother

10(b)

(1) Sink and refrigerator were more
than 9ft from eachother (2) Refrig-
erator did not have 16 inches of
countertop space next to it

Our method produced fully compliant solutions for three of the 10 models.

In four cases (1(b), 2(b), 5(b), and 6(b)) the generated solutions violated one

rule. In three models the kitchen triangle was violated (5(b),6(b), 8(b), and

10(b)), with 8(b) being more severe in that the total triangle edge length

was too small. Model 1(b) had the issue of not having enough countertop

space next to the range. In 2(b) and 4(b) the sinks did not have 48 inches

of free space in front of them. Model 10(b) did not have enough refrigerator

countertop space next to it. The total number of violations in all generated

models was 10.

For both the initial model and the generated model, model 4 had a rule

violation for sinks not being placed under windows, however, as there were no

windows in the kitchen room, it was infeasible for this rule to be satisfied.

While the generated models did have fewer errors and thus were compliant

with the kitchen design rules, in some cases they were not aesthetically pleasing

in that there were gaps between some of the furnishing objects. For instance,

model 1(b), 2(b), 4(b), 8(b) all had some form of small gap between the corner

cabinets and the objects on one side of the corner. When the grid is created,

it uses points along the wall lines, however, the points from one wall may

not align perfectly with the points from its connected walls, thus resulting in

the space that is too small for the smallest width cabinet to fit, which in our

case is 12 inches. Another undesirable, yet has no effect on the compliance
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of the design are the corner cabinet placements. There rules only state that

corner cabinets must be placed in a corner, however, which corner is technically

irrelevant from the rule perspective. This can be seen in the models 7(b), 9(b),

and 10(b) where corner cabinets are placed in corners, but the corner that it

has been placed in is not the corner the kitchen is built around. To account for

this, a guideline would need to be added, for instance, enforcing two objects

on either end of the corner cabinet or restricting the distance from the corner

cabinet to the centroid of the existing kitchen object.

6.2.2 Living Room Layout

The second evaluation test was to compare our methodology against the works

of [29]. We compare with their work, as opposed to more recent efforts, as they

do not use a trained model for the relationships and rules of objects but rather

explicitly evaluate the layout using quantifiable guidelines.

First, this required interpreting the rules they used in their language into

our language. Table 6.2 shows the comparison for each of their rules with

explanation on how the rule is formulated, bearing in mind their exact code

is not available and thus was interpreted to the best of our ability.

One of the results of the generation using the translated rules, as we have

implemented them, and a simplistic empty living room can be seen in Figure

6.1. Major differences in our work versus [29] is evident in the fact they the

rules they proposed are tailored to the task of generative design with guidelines,

rather than strict compliance rules. This is evident in the fact that a number

of their guidelines conflict with one another and thus no fully compliant model

is possible. For instance, two couches cannot be both facing each other and a

focal point on a wall. Therefore, in their work they shift the designs towards

“better” layouts, but there is no notion that a rule must pass. This is further

evident in the weighting scheme for the final evaluation value. If all rules

were to be intended to pass, then all rules should have equal weighting. In

this research we use the model check as the evaluation, which is based on the

notion that all rules must be met and thus there was no initial motivation to

weigh each rule. To find the balance between the two would be to have rules
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Table 6.2: Living Room Guidelines

Rule Description [29] Our Rule Language (Table
A.2)

Clearance Furniture items need open
space around them to be ac-
cessible and functional

(1) All couches must have
30” clearance in front (2) All
shelves must have 24” clear-
ance in front (3) All cabinets
must have 24” clearance in
front (4) All dinning tables
36” clearance all around

Circulation An effective furniture lay-
out must support circulation
through the room and access
to all of the furniture

-

Pairwise(Distance) Recommended distances be-
tween pairs of objects

(5) All coffee tables must be
16”-18” in front of all couches
(6) All end tables must be 0-
12” to the back or side of a
couch

Pairwise(Angular) Recommended angles be-
tween pairs of objects

(7) All coffee tables must be
in front of couches

Conversation(Distance) To support conversation at
a normal tone of voice, the
seats within a conversation
area should be roughly four to
eight feet apart

(8) Couch to couch distance
must be 4-8ft

Conversation(Angular) The seats should also be an-
gled towards each other to en-
courage eye contact

(9) Couch to couch angled to-
wards eachother

Balance The principle is to place the
mean of the distribution of vi-
sual weight at the center of
the composition

(10) Center of mass of fur-
nishing should be close to the
room centroid

Alignment(Furniture) In furniture arrangement,
alignment primarily concerns
the orientation of the furni-
ture items relative to each
other and to the walls of the
room

(11) All furniture should be
aligned with nearby furniture

Alignment(Wall) Furniture items should also
be aligned with nearby walls.

(12) All furniture should be
aligned with nearby walls

Emphasis(Focal Point) It is generally desirable to
have a dominant focal point
in the interior, so that the
eye can rest without suffering
competing demands for visual
attention

(13) All furnishing should be
angled towards focal point
(This case center of room)

Emphasis(Symmetry) The second emphasis term
evaluates the symmetry of
groups about their focal
points

-
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that are “must-pass” while others that are stylistic guidelines, that although

important, are given lower priority to the mandatory regulations. This could

use the Error/Recommendation/Warning tag associated with each rule but

has been left for future work at this time.

The method used in this research for the generation was to place and

check placements based on a grid. The major benefit over the method in [29]

is our methods ability to vary the number of objects placed in the model. For

instance, if you had an initial empty model that you wanted to populate with

a kitchen, but did not know the number of objects required for the kitchen,

this method could potentially be able to find the minimum number of objects

that would need to be placed.

Figure 6.1: Generated living room.
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6.3 Discussion

Assumptions A key assumption of the implementation is that the input to-

be-placed objects are properly scaled and tagged with BIM metadata necessary

for design-rule checking. This metadata includes the object type (IfcWall,

IfcFurnishing, IfcWindow, etc.), orientation (front versus back of the object),

the function property which can be determined based on the object name (such

as ’chair’, ’cabinet’, ’sink’), and the surface boundary or mesh representation

of the object. Therefore, there is an onus on the creator of the BIM objects

to properly develop each of the objects.

Surface Geometry Simplification Rather than dealing with the poten-

tially complex geometry of an object, we perform all geometric checks on the

bounding-box triangulated meshes, which are created upon model import us-

ing the IFC Engine API. In the current implementation the objects are first

placed as bounding boxes and then later replaced with the true object. A

better approach would be to reduce the surface representation by a triangle

reduction method rather than bounding boxes as objects liked curved walls

can be an issue, however, for the general cases bounding boxes are sufficient.

We will also explore in the future ways to link the virtual objects to the objects

they depend on such that they can be updated rather than recreated.

Method Selection There are inherently a number of issues with this search

strategy. First, it requires the grid and its spacing values to be set ahead of

time including the object orientations. These values can play a key role in the

ability to find fully compliant layouts as the granularity might not be sufficient

for the rules check values. Second, as it is a one placement at a time approach,

certain rules can be problematic for the generation. For instance, if there is a

rule that states all objects must be placed surrounding the center of the room,

then when the first object is placed it will be placed at the center of the room

as no other objects have been placed yet, the next object will then attempt to

be placed near the center as well and so on resulting in all objects iteratively
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being placed towards the center of the room. This was evident in the case

of the living room furnishing center of mass being as close as possible to the

center of the room.

The alternative would have been to use a Genetic Algorithm (GA) approach

to the problem. This would have alleviated the issues with the placement.

However, the general principle of this research was to use the model check

based on the rule language for any generative design approach as they all

require an evaluation stage. Future work will be to refine the project to use

either GA or a combination of both for the generation and improve upon the

results with a more intelligent generation and human interaction to the system.

Usability Feedback Finally, we did not receive feedback on the generated

models from experts in the domain to determine the visual appeal of the gener-

ated layouts. Ideally, we would conduct surveys to determine the effectiveness

and usability of the current system. This would first require extensive mod-

ification to the interface and importantly the 3D BIM model rendering and

interaction. As we did not build off an existing software base we essentially

build a BIM editor with minor functionality. The key challenge was in the

rendering and editing of IFC models, which is an area that is severely limited

in the current BIM industry.

6.4 Summary

In this chapter, we describe our method for generative design of interior lay-

outs, based on model checking and design rules from the previous chapters.

Our generative design method starts with an empty space to be filled with

the desired objects, as opposed to previous methods that start with an initial

placement and perform adjustments. The proposed method generates solu-

tions using a heuristic search on a placement grid, and evaluates each object

placement configuration, using a rule-based model compliance check.

We demonstrated the promise of our method by comparing the designs it

produces for six real-world kitchen spaces, a challenging case study, due to
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the high number and complexity of relevant design rules. We also performed

a comparative analysis against prior works on automated living room layouts,

translating their rules into our language. Future work will include the use of

Genetic Algorithms to improve search convergence on locally optimal solutions

and gain insight and feedback into how a user might interact with such a

system.
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Chapter 7

Conclusion

The research presented in this thesis defines a rule language for building de-

sign compliance checking. The rule language and its subsequent model check

methodology combine concepts put forth in prior research and have been im-

plemented to provide validation for these concepts. What many previous lan-

guages lack is simplicity to create new rules, while maintaining expressiveness

to cover a wide range of possible rules. By allowing for the reuse of implicit

added objects (VOs) and geometrical properties and relations, and the ability

to create complex rules using simple logical operations, the language proposed

in this research can cover a broader range of possible rules.

Furthermore, previous rule languages have been focused on the evaluation

of a model, returning a single pass or fail for a rule. We use the evaluation

method from the rules-based model check to automatically place interior fur-

nishing in a building layout, resulting in a rule compliant model. Typically in

automated design, design guidelines are expressed in complex hard-coded for-

mulas. Therefore, we have expanded the use of our rule language for generative

design, scaling the results of rules numerically to mimic the automated design

guideline formulas. Additionally, unlike previous automated design methods,

we propose our solution in the context of BIM, specifically around the open

BIM standard IFC, as the building model information representation. We

tested our system using kitchen and living room layouts and populating them

with interior furnishing objects. The kitchen results were compared against

real-world designs to determine the similarities in the models, while the living

rooms used translated rules from previous literature in order to exemplify the
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ability of their rules to be expressed in our language while maintaining similar

results.

Future work will be to improve upon the generative-design algorithm that

has more flexibility in the design configurations, as opposed to the grid place-

ment. We also will perform a comprehensive study on the use of rule languages

for model-checking and generative design from a user friendliness perspective

as well as user interactions with the generative design system. Thus, we can

find a way to add user preference and visual aesthetics into the evaluation

without sacrificing the model code compliance.

To reiterate, the contributions of this thesis are:

An expressive Rule Language for representing design rules for the layout

of elements in interior spaces (Chapter 4), outlined by the language syntax

(Section 4.1), and the evaluation procedure (Section 4.2).

A Model-Checking Algorithm for evaluating the compliance of a BIM

model against a set of design rules (Chapter 5). The methodology is out-

lined by the four stages of model-checking, namely rule interpretation (Section

5.1.1), model preparation (Section 5.1.2), execution (Section 5.1.3), and finally

reporting (Section 5.1.4).

A Generative Design Algorithm for automating the placement of el-

ements in interior spaces, relying on design rules (Chapter 6), which follows

the three generative-design process requirements: A performance metric (Sec-

tion 6.1.1), the configuration variation (Section 6.1.2), and a decision-making

response (Section 6.1.3).

A service-oriented implementation of the above in a Software Toolkit

that can be invoked by external client applications. This includes the IFC

Engine (Chapter 3), the Rule Editor (Section 4.3), the Model-Checking .NET

library (Section 5.2), and the Generative-Design Application (Section 6.2).

In summary, the contributions of this thesis are a simple yet expressive

rule language for building design compliance checking and the methodology

for model-checking using those rules. We demonstrated the ability to further

utilize the rule-based model-checking as the evaluation stage in automated

design.
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Appendix A

Background Material

Figure A.1: Subset of the IFC class type hierarchy. A) IFC object types
above the dashed line represent a subset of the current IFC4 schema. B)
IFC object types under the dashed line indicate sample extensions to the
IFC hierarchy; those under IfcSpatialElement representing VOs that would be
created implicitly from the existing model IfcElements

Table A.1: Kitchen design rules in Natural Language and the proposed Rule
Language.

Natural Language Rule Rule Language

All furnishing objects must
be placed with their back
against a wall

ALL Object0 = IfcFurnishing
ANY Object1 = IfcWall

(Object1 and Object0 MUST-HAVE Is-
Behind EQUAL True AND
Object0 and Object1 MUST-HAVE Bound-
ingBoxDistance LESS-THAN-OR-EQUAL
2INCH)
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All corner cabinets must be
placed in a corner

ALL Object0 = IfcFurnishing
{FunctionOfObj EQUAL Cornercabinet}
ANY Object1 = IfcWall
ANY Object2 = IfcWall

(Object1 and Object0 MUST-HAVE Is-
Behind EQUAL True AND
Object2 and Object0 MUST-HAVE Is-
NextTo EQUAL True AND
Object1 and Object0 MUST-HAVE Bound-
ingBoxDistance LESS-THAN-OR-EQUAL
2INCH AND
Object2 and Object0 MUST-HAVE Bound-
ingBoxDistance LESS-THAN-OR-EQUAL
12INCH)

Each edge of the kitchen
working triangle, implied
by the front center of the
sink, range, and refrigera-
tor, must be between 4ft
and 9ft long

ANY Object0 = IfcTriangle

(Object0 MUST-HAVE MinEdgeLength
GREATER-THAN-OR-EQUAL 4FT AND
Object0 MUST-HAVE MaxEdgeLength
LESS-THAN-OR-EQUAL 9FT)

The sum of edges of the
kitchen working triangle
must be between 13ft and
26ft

ANY Object0 = IfcTriangle

(Object0 MUST-HAVE TotalEdgeLength
GREATER-THAN-OR-EQUAL 13FT AND
Object0 MUST-HAVE TotalEdgeLength
LESS-THAN-OR-EQUAL 26FT)

No furnishing items should
block a window

ALL Object0 = IfcFurnishing
{FunctionOfObj NOT-EQUAL Sink}
ALL Object1 = IfcWindow

(Object1 and Object0 MUST-HAVE Is-
Behind EQUAL False OR
Object0 and Object1 MUST-HAVE Bound-
ingBoxDistance GREATER-THAN-OR-
EQUAL 4FT)
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No furnishing should block
a door

ALL Object0 = IfcDoor
ALL Object1 = IfcFurnishing

(Object0 and Object1 MUST-HAVE
BoundingBoxDistance GREATER-THAN
60INCH OR
(Object1 and Object0 MUST-HAVE In-
FrontOf EQUAL False AND
Object1 and Object0 MUST-HAVE IsBe-
hind EQUAL False))

A sink must be placed under
a window

ANY Object0 = IfcFurnishing
{FunctionOfObj EQUAL Sink}
ANY Object1 = IfcWindow

(Object0 and Object1 MUST-HAVE Cen-
terDistanceXY LESS-THAN-OR-EQUAL
2FT)

The range cannot be placed
under a window and should
be 12in away from a window

ALL Object0 = IfcFurnishing
{FunctionOfObj EQUAL Range}
ALL Object1 = IfcWindow

(Object0 and Object1 MUST-HAVE
CenterDistanceXY GREATER-THAN 6FT)

No object may be placed
less than 48in in front of
a furnishing object with a
door

ALL Object0 = IfcFurnishing
{FunctionOfObj NOT-EQUAL Cornercabi-
net}
ALL Object1 = IfcAllNonVirtualTypes

(Object1 and Object0 MUST-HAVE
BoundingBoxDistance GREATER-THAN
48INCH OR
Object1 and Object0 MUST-HAVE In-
FrontOf EQUAL False)
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The sink must have a mini-
mum of 3in of counter space
on one side and 18in on the
other

ALL Object0 = IfcFurnishing
{FunctionOfObj EQUAL Sink}
ANY Object1 = IfcCounterTop
ANY Object2 = IfcCounterTop

(Object1 MUST-HAVE Width GREATER-
THAN-OR-EQUAL 3INCH AND
Object2 MUST-HAVE Width GREATER-
THAN-OR-EQUAL 18INCH AND
Object0 and Object1 MUST-HAVE Is-
NextTo EQUAL True AND
Object0 and Object2 MUST-HAVE Is-
NextTo EQUAL True AND
Object0 and Object1 MUST-HAVE Bound-
ingBoxDistance LESS-THAN-OR-EQUAL
1FT AND
Object0 and Object2 MUST-HAVE Bound-
ingBoxDistance LESS-THAN-OR-EQUAL
1FT)

The range must have a min-
imum of 15in of counter
space on one side

ALL Object0 = IfcFurnishing
{FunctionOfObj EQUAL Range}
ANY Object1 = IfcCounterTop

(Object1 MUST-HAVE Width GREATER-
THAN-OR-EQUAL 15INCH AND
Object1 and Object0 MUST-HAVE Is-
NextTo EQUAL True AND
Object0 and Object1 MUST-HAVE Bound-
ingBoxDistance LESS-THAN-OR-EQUAL
1FT)

The refrigerator must have
a minimum of 16in of
counter space on one side

ALL Object0 = IfcFurnishing
{FunctionOfObj EQUAL Refrigerator}
ANY Object1 = IfcCounterTop

(Object1 MUST-HAVE Width GREATER-
THAN-OR-EQUAL 16INCH AND
Object0 and Object1 MUST-HAVE Bound-
ingBoxDistance LESS-THAN-OR-EQUAL
1FT AND
Object1 and Object0 MUST-HAVE Is-
NextTo EQUAL True)
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(Additional) Cabinets must
be directly against another
kitchen furnishing object

ALL Object0 = IfcFurnishing
{FunctionOfObj EQUAL Cabinet}
ANY Object1 = IfcFurnishing

(Object0 and Object1 MUST-HAVE Bound-
ingBoxDistance LESS-THAN-OR-EQUAL
2INCH)

Table A.2: Living room design rules in Natural Language and the proposed
Rule Language.

Natural Language Rule Rule Language

(1) All couches must have
30” clearance in front

ALL Object0 = IfcFurnishing
{FunctionOfObj EQUAL Couch }
ALL Object1 = IfcAllNonVirtualTypes
{FunctionOfObj NOT-EQUAL CoffeeTable
}

(Object1 and Object0 MUST-HAVE
InFrontOf EQUAL False OR
Object0 and Object1 MUST-HAVE
BoundingBoxDistance GREATER-THAN
30INCH)

(2) All shelves must have
24” clearance in front

ALL Object0 = IfcFurnishing
{FunctionOfObj EQUAL Shelf }
ALL Object1 = IfcAllNonVirtualTypes

(Object1 and Object0 MUST-HAVE
InFrontOf EQUAL False OR
Object0 and Object1 MUST-HAVE
BoundingBoxDistance GREATER-THAN
24INCH)

(3) All cabinets must have
24” clearance in front

ALL Object0 = IfcFurnishing
{FunctionOfObj EQUAL Cabinet}
ALL Object1 = IfcAllNonVirtualTypes

(Object0 and Object1 MUST-HAVE
BoundingBoxDistance GREATER-THAN
24INCH OR
Object1 and Object0 MUST-HAVE In-
FrontOf EQUAL False)
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(4) All dinning tables 36”
clearance all around

ALL Object0 = IfcFurnishing
{FunctionOfObj EQUAL DiningTable}
ALL Object1 = IfcAllNonVirtualTypes
(Object0 and Object1 MUST-HAVE
BoundingBoxDistance GREATER-THAN
36INCH)

(5) All coffee tables must
be 16”-18” in front of all
couches

ALL Object0 = IfcFurnishing
{FunctionOfObj EQUAL CoffeeTable }
ALL Object1 = IfcFurnishing
{FunctionOfObj EQUAL Couch }

(Object0 and Object1 MUST-HAVE
InFrontOf EQUAL True AND
Object0 and Object1 MUST-HAVE Bound-
ingBoxDistance LESS-THAN-OR-EQUAL
18INCH AND
Object0 and Object1 MUST-HAVE Bound-
ingBoxDistance GREATER-THAN-OR-
EQUAL 16INCH)

(6) All end tables must be
0-12” to the back or side of
a couch

ALL Object0 = IfcFurnishing
{FunctionOfObj EQUAL EndTable }
ANY Object1 = IfcFurnishing
{FunctionOfObj EQUAL Couch }

(Object0 and Object1 MUST-HAVE
BoundingBoxDistance GREATER-THAN-
OR-EQUAL 0INCH AND
Object0 and Object1 MUST-HAVE Bound-
ingBoxDistance LESS-THAN-OR-EQUAL
12INCH AND
(Object0 and Object1 MUST-HAVE Is-
NextTo EQUAL True OR
Object0 and Object1 MUST-HAVE IsBe-
hind EQUAL True))
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(7) All coffee tables must be
in front of couches

ALL Object0 = IfcFurnishing
{FunctionOfObj EQUAL CoffeeTable }
ALL Object1 = IfcFurnishing
{FunctionOfObj EQUAL Couch }

(Object1 and Object0 MUST-HAVE
AngleBetweenForwardAndAngleTo EQUAL
0DEG)

(8) Couch to couch distance
must be 4-8ft

ALL Object0 = IfcFurnishing
{FunctionOfObj EQUAL Couch }
ALL Object1 = IfcFurnishing
{FunctionOfObj EQUAL Couch }

(Object0 and Object1 MUST-HAVE
CenterDistanceXY GREATER-THAN-OR-
EQUAL 4FT AND
Object0 and Object1 MUST-HAVE Cen-
terDistanceXY LESS-THAN-OR-EQUAL
8FT)

(9) Couch to couch angled
towards eachother

ALL Object0 = IfcFurnishing
{FunctionOfObj EQUAL Couch }
ANY Object1 = IfcFurnishing
{FunctionOfObj EQUAL Couch }

(Object0 and Object1 MUST-HAVE
AngleBetweenForwardAndAngleTo EQUAL
0DEG)

(10) Center of mass of fur-
nishing should be close to
the room centroid

ALL Object0 = IfcFurnishingCoM
ALL Object1 = IfcRoomCentroid

(Object0 and Object1 MUST-HAVE
CenterDistanceXY EQUAL 0INCH)
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(11) All furniture should be
aligned with nearby furni-
ture

ALL Object0 = IfcFurnishing
ALL Object1 = IfcFurnishing
(Object0 and Object1 MUST-HAVE Align-
mentAngle EQUAL 0DEG OR
Object0 and Object1 MUST-HAVE Align-
mentAngle EQUAL 90DEG OR
Object0 and Object1 MUST-HAVE Align-
mentAngle EQUAL 180DEG OR
Object0 and Object1 MUST-HAVE Bound-
ingBoxDistance GREATER-THAN 2FT)

(12) All furniture should be
aligned with nearby walls

ALL Object0 = IfcFurnishing
ALL Object1 = IfcWall

(Object0 and Object1 MUST-HAVE
AlignmentAngle EQUAL 90DEG OR
Object0 and Object1 MUST-HAVE Bound-
ingBoxDistance GREATER-THAN 2FT)

(13) All furnishing should
be angled towards focal
point (This case center of
room)

ALL Object0 = IfcFurnishing
ANY Object1 = IfcRoomCentroid

(Object0 and Object1 MUST-HAVE
AngleBetweenForwardAndAngleTo EQUAL
0DEG)

(Extra) All shelves must be
places against a wall

ALL Object0 = IfcFurnishing
{FunctionOfObj EQUAL Shelf }
ANY Object1 = IfcWall

(Object1 and Object0 MUST-HAVE Is-
Behind EQUAL True AND
Object0 and Object1 MUST-HAVE Bound-
ingBoxDistance LESS-THAN-OR-EQUAL
1INCH)

(Extra) All plants should be
placed near a wall

ALL Object0 = IfcFurnishing
{FunctionOfObj EQUAL Plant }
ANY Object1 = IfcWall

(Object0 and Object1 MUST-HAVE
BoundingBoxDistance EQUAL 0INCH)
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