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ABSTRACT 17 

Construction practitioners face considerable challenges when selecting economically feasible 18 

policies for maximizing crew motivation and performance. This paper proposes a methodology 19 

for integrating fuzzy agent-based modeling (FABM) with multi-criteria decision-making 20 

(MCDM) to develop a decision support system, which takes into account the complex relationships 21 

and social interactions between crews and crew members. This decision support system both 22 

accounts for the dynamic construction environment and captures the subjective and the objective 23 

factors that influence crew motivation and performance. The proposed methodology and decision 24 

support system are illustrated with a case study, which demonstrates that integration of FABM 25 

with MCDM serves to address subjective uncertainty when analyzing different policies related to 26 

crew motivation and performance. These findings can in turn help construction practitioners adopt 27 

economically feasible strategies to improve the motivation and performance of their crews, thus 28 

increasing their competitiveness in the market. 29 

INTRODUCTION 30 

Computer-aided simulation offers advantages in representing processes, interactions, and complex 31 

systems, which would have otherwise been impossible to capture. Agent-based modeling (ABM) 32 

is a technique that simulates interactions among a number of ‘agents’ (e.g., crew members, 33 

supervisors, departments) and their environment within a system. 34 

Decision-making is a critical part of any construction-related process, such as budgeting, risk, 35 

bidding, productivity and performance, etc. The nature of many construction problems entails 36 

subjective uncertainties that cannot be addressed by ABM alone, nor by other available simulation 37 

techniques (Raoufi and Fayek 2018). In this regard, one of the major challenges lies in developing 38 

an approach that is able to support an MCDM model and that can integrate models to allow for 39 

interactive exchange of information, while accounting for complexities related to social behaviors 40 

(e.g., the effect of crew motivation on performance). On the basis of Zadeh’s fuzzy set theory, 41 

Enrique Herrera-Viedma (2015) discussed fuzzy logic in MCDM, highlighting the significance of 42 

applying fuzzy logic concepts to help decision makers in situations that usually involve uncertain, 43 
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imprecise, indefinite, and subjective data, which are onerous to represent and manage. FABM 44 

integrates fuzzy logic concepts with agent-based models and advances the application of ABM to 45 

address construction-related problems that are highly uncertain and subjective in nature. 46 

In the literature, however, FABM has not yet been implemented as a decision support tool to 47 

help construction practitioners make critical decisions. MCDM models have yet to be integrated 48 

in FABM models to help advance FABM’s application as a decision support system. The objective 49 

of this paper is to expand the current scope of FABM approaches through the integration of a 50 

decision support system. The challenge posed by such an integration lies in processing the FABM 51 

simulation results, which can differ depending on which combination of inputs is selected. The 52 

challenge becomes even more pronounced when studying the effects of variable input parameters. 53 

This research explores several scenarios involving iterative simulation of inputs using FABM and 54 

analyzes the results of each scenario to select the best solution for improving the performance 55 

levels of construction crews. The best solution would be an economically feasible scenario (in 56 

terms of cost) that takes into account the ramifications of a selected scenario on predefined criteria 57 

(e.g., schedule or safety). This paper begins by presenting a literature review of ABM and decision-58 

making in construction. Studies related to the motivation and performance of crews are also briefly 59 

discussed. Next, a methodology to integrate FABM and MCDM into a fuzzy agent-based decision 60 

making (FABDM) model is proposed, and a case study is used to illustrate the model. Finally, 61 

conclusions and recommendations for future research are presented. 62 

LITERATURE REVIEW 63 

In recent years, there has been a growing amount of research exploring the integration of ABM 64 

with other approaches. Ben-Alon and Sacks (2017) proposed a combination of ABM and building 65 

information modeling (BIM) to better study production systems in construction. Cheng et al. 66 

(2018) integrated ABM and BIM to simulate accidents and improve evacuation planning. Xiao et 67 

al. (2018) used ABM to study the impact of water demand management on the behavior of different 68 

municipal and industrial users. Raoufi and Fayek (2018) developed a fuzzy agent-based model of 69 

construction crew motivation and performance, capable of handling subjective uncertainties. 70 

Literature on decision-making has covered modeling approaches that can be used for a wide 71 

range of construction problems. ABM has been directly used for decision-making when the 72 

decision-making elements have been explicitly modeled. For example, in research by Bernhardt et 73 

al. (2007), when ABM was used in decision-making processes for infrastructure management, 74 

decisions were made with four aspects in mind: the agents within the system, their values and 75 

characteristics, the learning capacity of some (or all) agents, and their interactions with one another 76 

and the environment. ABM can also be used with other decision-making models to achieve better 77 

performance. Eid and El-Adaway (2018) presented a holistic, sustainable disaster recovery 78 

approach using a decision-making framework, which employs agent-based modeling. In addition, 79 

Marzouk and Mohamed (2018) integrated simulation results from ABM into an MCDM model to 80 

evaluate the evacuation performance of buildings under different scenarios, including minor 81 

design changes, in case of a fire emergency. 82 

Decision-making models have allowed for integration of a decision-making tool with a range 83 

of techniques (e.g., fuzzy analytic hierarchy processes (FAHPs), genetic algorithms, ABM-84 

MCDM, etc.). However, a modeling approach that can account for dynamic and complex social 85 

interactions within model elements (e.g., ABM) and that can incorporate subjective uncertainties 86 

explained in a fuzzy environment (e.g., fuzzy-agent based modeling) into an MCDM model is yet 87 

to be developed for use in the construction industry. Even with the vast application of ABM models 88 

in decision-making problems, there is a gap in the literature in terms of integrating FABM with 89 
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MCDM. Moreover, there is a need to be able to assess subjective uncertainties related to the social 90 

aspects of a construction problem and to analyze multiple scenarios for decision-making through 91 

predefined criteria and constraints. To address this gap, this paper covers the development of a 92 

methodology for integrating FABM and MCDM and illustrates the methodology using analysis of 93 

a real case scenario in the context of improving construction crew motivation and performance. 94 

In addition to earlier theories of motivation that focused on ‘expectancy theory’ (e.g., Maloney, 95 

1986), researchers such as Maloney and McFillen (1987) investigated motivational factors and the 96 

impact of motivation on construction crews as a compound effect of individual and work crew 97 

performance. Other researchers have tried to address (increasing) motivation in the construction 98 

setting by focusing on identifying motivational parameters for individuals (e.g., managers) (Shoura 99 

and Singh 1999) or by addressing groups of construction workers and looking for ways to increase 100 

their motivation (Cox et al. 2006). Raoufi and Fayek (2018) provided a comprehensive framework 101 

for identifying factors affecting construction crew motivation and performance that can address 102 

both individual and crew behavior. 103 

MODEL DEVELOPMENT 104 

This section presents a model to integrate FABM with MCDM, as elaborated in Figure 1. The 105 

FABDM model has two major components, which are highlighted in Figure 1. The first component 106 

(FABM) integrates fuzzy logic (in MATLAB) and ABM (in AnyLogic). The FABM simulates a 107 

combination of inputs to provide results of mean crew performance. Sensitivity analysis is then 108 

performed to systematically select and simulate only those main inputs that have a significant 109 

correlation with the output. The second component (MCDM) model receives the results of a 110 

parametric variation study that follows the FABM simulation model and uses the defined criteria 111 

and alternatives to provide MCDM model results (e.g., revealing the most feasible scenario among 112 

several scenarios). The two components are connected by the parametric variation study, which is 113 

performed by varying the inputs of the FABM simulation model within a predefined range. 114 
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Figure 1. FABDM model. 116 

Each range is used to simulate possible combinations of parameters in the FABM simulation 117 

model. An example of the results of the parametric study are several ‘alternatives (Alt.)’, each 118 

representing a set of inputs and an associated output value of cost, crew performance (Perf.), and 119 

schedule (Sch.). These outputs are considered the criteria. 120 

This paper uses the FABM simulation model developed by Raoufi and Fayek (2018). The 121 

MCDM model is developed using the following steps. First, a criteria matrix is developed for each 122 
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alternative based on the results of the parametric variation study. Equation 1 shows a criteria matrix 123 

for ‘N’ number of criteria and ‘M’ number of alternatives. 124 

              Alt.1   Alt.2       Alt.M 125 

  Criteria Matrix = 

𝐶𝑜𝑠𝑡
𝑃𝑒𝑟𝑓.
𝑆𝑐ℎ.

…

[

𝐶11 𝐶12 . 𝐶1𝑀

𝐶21 𝐶22 . 𝐶2𝑀

. . . .
𝐶𝑁1 𝐶𝑁2 . 𝐶𝑁𝑀

]            (1) 126 

Second, the criteria (in relation to their importance to the project) are scored by experts (e.g., 127 

construction practitioners), and a weight matrix is developed, as shown in Equation 2. Hence, for 128 

‘N’ number of criteria, there will be an NxN matrix of scores with scales ranging from 1 to 5, which 129 

are obtained by pairwise comparisons. The FAHP is used for defining the relative weights of each 130 

pair of criteria, as this procedure is easy to implement, and it allows for better consistency of results 131 

compared to direct weighting methods. 132 

                Cost   Perf.  Sch.    … 133 

𝑊𝑒𝑖𝑔ℎ𝑡 𝑀𝑎𝑡𝑟𝑖𝑥 = 

𝐶𝑜𝑠𝑡
𝑃𝑒𝑟𝑓.
𝑆𝑐ℎ.

…

[

1 𝑊12 . 𝑊1𝑁

𝐶21 1 . 𝑊2𝑁

. . 1 .
𝑊𝑁1 𝑊𝑁2 . 𝑊𝑁𝑁

]   (2) 134 

Third, the resulting eigenvectors (E1, E2…EN) are normalized for use as final weights for the 135 

corresponding values of ‘Cost’, ‘Perf.’, ‘Sch.’, and other criteria. This process is repeated for ‘M’ 136 

number of alternatives. Hence, the alternative matrix is of the form shown in Equation 3. 137 

                Alt.1   Alt.2       Alt.M 138 

Alternative Matrix =  

𝐶𝑜𝑠𝑡
𝑃𝑒𝑟𝑓.
𝑆𝑐ℎ.

…

[

𝐸11 𝐸12 . 𝐸1𝑀

𝐸21 𝐸22 . 𝐸2𝑀

. . . .
𝐸𝑁1 𝐸𝑁2 . 𝐸𝑁𝑀

]              (3) 139 

Finally, for each alternative, the aggregated score is computed based on the corresponding 140 

eigenvectors and criteria for each alternative, as shown in Equation 4. The output of the MCDM 141 

model will then be a ranking of all the alternatives proposed by construction practitioners. 142 

𝑆𝑐𝑜𝑟𝑒 (𝐴𝑙𝑡𝑗) = ∑ 𝐸𝑖𝑗 ∗𝑁
𝑖=1 𝐶𝑖𝑗      𝑗 = 1, 𝑀      (4) 143 

CASE STUDY 144 

In this case study, the fuzzy agent-based model of construction crew motivation and performance 145 

developed by Raoufi and Fayek (2018) has been integrated with MCDM to illustrate the proposed 146 

FABDM model. Crew motivation is defined based on four motivational concepts (i.e., efficacy, 147 

commitment/engagement, identification, and cohesion) and crew performance is determined by 55 148 

key performance indicators (e.g., productivity) using the FABM framework [see Raoufi and Fayek 149 

(2018) for the list of motivational factors and crew performace metrics as well as the method of 150 

data collection and measurement]. The sensitivity analysis performed by Raoufi and Fayek (2018) 151 

produced five parameters (as shown in Table 1), which showed correlation with crew performance.  152 



 5 

Table 1. Input parameters. 153 

No. Input Range 

1 Contact rate (no. per day per crew) [0.5–3.0] 

2 Susceptibility (probability that an interaction leads to a change 

in motivation) 

[0.05–2.0] 

3 Rate of non-interactive motivation variability (perf/day/crew) [0–0.2] 

4 Initial percentage of low motivated crews [0–1.0] 

5 Initial percentage of high motivated crews [0–1.0] 

For this study, input parameters that contribute to the randomness of the model (e.g., 154 

susceptibility and non-interactive motivation variability) have been kept constant. Furthermore, 155 

the percentage of low-motivated crews is not considered in the analysis. The corresponding 156 

intervals for the chosen input parameters were selected by splitting the range into three 157 

symmetrical ranges: low (L), medium (M), and high (H). A total of 9 alternatives have been 158 

investigated using a combination of these categories, as shown in Table 2. For all these alternatives, 159 

only simulations to obtain the results of crew performance were carried out. The associated 160 

normalized cost in each alternative is not actual cost, and it has been assumed for the following 161 

analysis and discussions. The related schedule was not considered due to the lack of data in this 162 

case study. 163 

RESULTS AND DISCUSSION 164 

The parameter variation experiment produced several combinations of ‘contact rate’ and ‘initial 165 

motivation of crews’. The most frequent defuzzified crew performance (normalized values) for 166 

each alternative, as provided by FABM, are shown in Table 2. 167 

The results indicate two significant findings. The first is that the increase in the initial 168 

motivation of crews could lead to higher crew performance. This trend can be seen in Figure 2, 169 

where crew performance improved consistently with the increase in motivation irrespective of 170 

lower or higher contact rates (Alt. 1–3, Alt. 4–6, and Alt. 7–9). The second observation is related 171 

to the importance of contact rate in improving overall crew performance. When initial crew 172 

motivation was low (Alt. 1, 4, and 7), the increase in contact rate did not affect crew performance. 173 

This finding is important, as it suggests that decision makers can avoid the extra cost of increasing 174 

crew motivation if they do not intend to have meetings and discussions (i.e., increasing the contact 175 

rate). 176 

Table 2. Input and output of each alternative. 177 

Alternative 

 (Alt.) 

Input  Output 

Contact rate  Initial motivation of 

crews 

 Crew performance 

(Perf.) [0–1] 

Cost 

[0–1] 

1 L  L  0.785 0.598 

2 L  M  0.790 0.667 

3 L  H  0.796 0.736 

4 M  L  0.784 0.649 

5 M  M  0.791 0.718 

6 M  H  0.798 0.787 

7 H  L  0.785 0.699 

8 H  M  0.792 0.768 

9 H  H  0.798 0.837 
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 178 
Figure 2. Mean performance of crews for each alternative. 179 

In order to better investigate the effect of contact rate on groups of alternatives, a set of 180 

simulations was carried out by categorizing the alternatives into three distinct groups. Each 181 

category includes the alternatives with the same contact rate (Category 1 = Alt 1–3; Category 2 = 182 

Alt  4–6; and Category 3 = Alt 7–9). The mean crew performance for each category was calculated 183 

from the start of the project over its 68-day duration and is shown below in Figures 3a to 3c. 184 

 185 
  a. Category 1      b. Category 2 186 

 187 
c. Category 3 188 

Figure 3. Crew performance over time for alternatives 1–9. 189 

Irrespective of the contact rate, increasing crew motivation affects crew performance more 190 

during the earlier stages of the project. Thus, implementing a policy of increasing crew motivation 191 

in these stages can result in higher crew performance in later project stages. Similar experiments 192 
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can be performed for other criteria. For example, the cost of implementing each alternative 193 

throughout the 68-day project duration can be assessed based on the costs incurred from providing 194 

incentives to increase crew motivation, the cost of meetings (including briefings by experts), and 195 

the benefits of improved crew performance. A sample of normalized cost values is provided in 196 

Table 2. Then, using Equations 1 through 3, a combination of several criteria (e.g., crew 197 

performance and cost) can be used to select the best alternative. The implications of this endeavor 198 

are that decision makers can investigate several policy alternatives for improving crew 199 

performance on a project, such as increasing the frequency of meetings held on site; increasing 200 

incentives, rewards, and recognitions; and facilitating positive interactions among crew members 201 

through safety meetings, daily meetings, or training. 202 

CONCLUSIONS AND FUTURE WORK 203 

Addressing factors that affect crew motivation and performance is paramount for success in the 204 

construction industry. In projects that involve labor, capturing complex relationships and social 205 

interactions between crews and crew members is critical in proposing a decision-making scheme 206 

that can improve crew performance with optimal cost. This paper has introduced an advancement 207 

in fuzzy agent-based modeling techniques to support decision-making and improve construction 208 

crew performance. The proposed methodology has been used to carry out a decision-making 209 

process, which is illustrated in a case study. Moreover, the results of the case study have shown 210 

that the proposed FABDM model can be implemented in construction research. 211 

This paper makes two contributions. First, it proposes a methodology to integrate FABM and 212 

MCDM in order to improve decision-making processes in construction. Second, it uses the 213 

proposed methodology and develops an MCDM processor to analyze the implications of 214 

implementing different construction crew motivation and performance improvement policies. The 215 

FABM uses the motivation level that is calculated by accounting for both individual and crew level 216 

situations (which is lacking in previous studies). In addition, the integration of FABM with MCDM 217 

advances the literature by proposing a framework for decision-making that involves scenarios 218 

described by dynamic agent interaction. Future research will investigate additional inputs 219 

contributing to crew performance as well as more criteria to increase the applicability of the model 220 

within a broader context. In larger projects, and in more dynamic project situations, more factors 221 

(i.e., crew size, rate of project-level situation variability, zealot percentage, etc.) need to be 222 

investigated, as other factors may also contribute to overall crew performance. Finally, the 223 

implications of adopting crew performance improvement policies on project scheduling will also 224 

be investigated. 225 
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