
Learning Hierarchies from Knowledge Graphs

by

Marcin Pietrasik

A thesis submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Software Engineering and Intelligent Systems

Department of Electrical and Computer Engineering
University of Alberta

© Marcin Pietrasik, 2023

Abstract

Knowledge graphs are data storage structures that rely on principles from graph

theory to represent information. Specifically, facts are stored as triples which bring

together two entities via a predicate. In a graphical context, these entities are anal-

ogous to nodes, and the relations between them are analogous to edges. In recent

years, using graph structures to model and store data has been garnering an increas-

ing amount of attention among practitioners in sectors ranging from academia to

government to industry. Indeed by some measures, graph database management sys-

tems are the fastest growing database type over the past decade and large scale public

knowledge bases counting billions of triples have become widely available. The open

access to such amounts of graph data has spurred on its use in research related to the

Semantic Web, artificial intelligence, and computer science broadly. One field of re-

search which has received less attention is that of learning hierarchies from knowledge

graphs.

Learning hierarchies from knowledge graphs refers to a broad concept that en-

compasses distinct tasks related by their induction of hierarchical relations between

knowledge graph entities. Perhaps the simplest reason for learning hierarchical struc-

tures is that they organize data in a way that is highly intuitive and interpretable to

humans. Indeed, the most widely used knowledge bases are organized by hierarchi-

cal structures, namely trees and directed acyclic graphs. That is to say, knowledge

graphs are hierarchical at their core. With this in mind, this doctoral work proposes

novel methods and models for learning hierarchies from knowledge graphs using arti-

ficial intelligence. In doing so, it seeks to advance both hierarchy induction as well as

ii

the application of hierarchies to common tasks and problems in the knowledge graph

community.

The first problem confronted is that of class taxonomy induction. In this regard, a

novel method using a greedy algorithm based on class frequencies and co-occurrences

is proposed. It’s shown empirically that this method is capable of inducing well

structured taxonomies and that it outperforms existing class taxonomy induction

methods. The second problem is that of using hierarchies to improve knowledge

graph embeddings. Embeddings are one of the most widely investigated knowledge

graph representations and their utility reaches far to downstream tasks such as link

prediction and entity classification. With this in mind, a meta-strategy involving

hierarchically coarsening a knowledge graph before embedding is proposed. This al-

lows the embedding process to be performed on a smaller graph, thereby reducing

computational complexity. It’s shown that such a strategy is capable of attaining

faster and oftentimes higher quality knowledge graph embeddings. The third prob-

lem investigated is that of learning a hierarchical clustering of a knowledge graph’s

entities. To this end, a class of probabilistic models called stochastic blockmodels are

leveraged. First, it is shown that blockmodels are capable of modelling the intricacies

of knowledge graphs by proposing a novel model for knowledge graph generation.

This model fuses blockmodelling together with neural networks in what is a first in

the context of knowledge graphs. Empirical results demonstrate that such an ap-

proach yields results comparable to state-of-the-art methods on real world datasets.

Afterwards, a fully probabilistic model is proposed for hierarchical clustering of a

knowledge graph’s entities. The model is presented in a non-parametric and fully

probabilistic framework, allowing for flexibility in learning the structure of the hier-

archy. Results indicate that such an approach is capable of learning a coherent cluster

hierarchy as per quantitative and qualitative evaluation.

iii

Preface

This thesis presents original research work conducted by Marcin Pietrasik during

his time as a Master’s and Doctoral student in the Department of Electrical and

Computer Engineering at the University of Alberta working under the supervision of

Prof. Marek Reformat.

The thesis contains adapted versions of the following works which were published

in the following conference proceedings:

• Pietrasik, Marcin, and Marek Reformat. “Neural Blockmodeling for Mul-

tilayer Networks.” 2021 International Joint Conference on Neural Networks

(IJCNN). IEEE, 2021.

• Pietrasik, Marcin, and Marek Reformat. “A Simple Method for Inducing

Class Taxonomies in Knowledge Graphs.” In European Semantic Web Confer-

ence, pp. 53-68. Springer, Cham, 2020.

Furthermore, the thesis contains segments of the following work published as a preprint

on arXiv:

• Pietrasik, Marcin, and Marek Reformat. “Path Based Hierarchical Clustering

on Knowledge Graphs.” Preprint. 2021.

Finally, the thesis draws heavily from the following completed works, intended for

publication and to be submitted before the final defence:

• Pietrasik, Marcin, and Marek Reformat. “Hierarchical Blockmodelling for

Knowledge Graphs.”

iv

• Pietrasik, Marcin, and Marek Reformat. “Probablistic Coarsening for Knowl-

edge Graphs Embeddings.”

The doctoral work also included significant contributions to the following pub-

lished work not included in the thesis:

• Zhang, Yujia, Marcin Pietrasik, Wenjie Xu, and Marek Reformat. “Hierar-

chical Topic Modelling for Knowledge Graphs.” In European Semantic Web

Conference, pp. 270-286. Springer, Cham, 2022.

• Singh, Abhineet, Marcin Pietrasik, Gabriell Natha, Nehla Ghouaiel, Ken

Brizel, and Nilanjan Ray. “Animal Detection in Man-made Environments.” In

The IEEE Winter Conference on Applications of Computer Vision, pp. 1438-

1449. 2020.

• Yu, Zheng, Xuhui Fan, Marcin Pietrasik, and Marek Z. Reformat. “Frag-

mentation Coagulation Based Mixed Membership Stochastic Blockmodel.” In

AAAI, pp. 6704-6711. 2020.

• Yu*, Zheng, Marcin Pietrasik*, and Marek Reformat. “Deep Dynamic Mixed

Membership Stochastic Blockmodel.” In 2019 IEEE/WIC/ACM International

Conference on Web Intelligence (WI), pp. 141-148. IEEE, 2019.

Where the asterisk (*) denotes equal contribution.

In all the aforementioned works where Marcin Pietrasik is listed as the first author,

he was solely responsible for all aspects of completing the research. These aspects

include and are not limited to: background research; problem formulation and its

proposed solution; implementation; evaluation; and manuscript preparation. Due to

the fact that portions of the these works appear in segments dispersed throughout

the thesis’ chapters, we indicate which works constitute each chapter in each corre-

sponding chapter preamble.

v

Acknowledgements

First of all, I would like to extend my sincerest gratitude to my supervisor, Prof.

Marek Reformat, for his guidance throughout my degree. I have developed tremen-

dously as an academic in the past 6 years and am grateful that I could always count

on his encouragement and insight during this time. I would also like to thank the re-

maining members of my supervisory committee, Prof. Petr Musilek and Prof. Witold

Pedrycz, for reviewing my work and providing feedback.

Furthermore, I would like to thank my internship providers: ACAMP, Granfiy,

FIND AI, and TU Dresden. During these internships I learned the invaluable skill of

applying my knowledge outside the world of academia to tackle real world problems.

Perhaps it is this exact skill which will prove most important as I continue in my

professional journey. Specifically, I would like to thank (in order of acquaintance):

Ken Brizel, Dr. Nehla Ghouaiel, Prof. Denilson Barbosa, Dr. Marcin Mizianty,

Alireza Haghnegahdar, and Prof. Markus Krötzsch. Without their risk in taking me

on, these internships would not have been possible.

Finally, I would like to thank my friends and family for their unconditional love

and support. In particular, I would like to thank my parents who have always been

there for me. I would also like to thank my little brother for not believing in me and

pushing me to prove him wrong.

vi

Table of Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Objectives . 3

1.3 Outline . 4

2 Background 6

2.1 Knowledge Graphs . 6

2.1.1 Resource Description Framework 8

2.1.2 Ontologies . 8

2.2 Embeddings . 10

2.3 Probabilistic Graphical Models . 11

2.3.1 Stochastic Blockmodels . 11

2.3.2 The Chinese Restaurant Process 15

2.3.3 The Nested Chinese Restaurant Process 17

2.3.4 The Stick Breaking Process 19

2.4 Artificial Neural Networks . 21

2.4.1 Rosenblatt’s Perceptron . 22

2.4.2 The Multilayer Perceptron . 23

2.4.3 Backpropagation . 25

3 A Simple Method for Inducing Class Taxonomies in Knowledge

Graphs 27

3.1 Introduction . 27

3.2 Related Work . 28

3.2.1 Methods for Class Taxonomy Induction 29

3.2.2 Methods for Tag Hierarchy Induction 30

3.2.3 Methods for Hierarchical Clustering 31

3.3 Problem Description . 32

3.4 Proposed Method . 33

vii

3.4.1 Class Taxonomy Induction Procedure 34

3.4.2 Hierarchical Clustering Procedure 36

3.5 Evaluation . 38

3.5.1 Datasets . 39

3.5.2 Hyperparameter Sensitivity 42

3.5.3 Taxonomy Induction . 45

3.5.4 Hierarchical Clustering . 48

3.5.5 Computational Complexity Analysis 49

3.5.6 Effect of Dataset Size on Induced Taxonomy 51

3.6 Conclusions . 52

4 Probabilistic Coarsening for Knowledge Graph Embeddings 53

4.1 Introduction . 53

4.2 Related Work . 55

4.3 Problem Description . 56

4.4 Proposed Strategy . 57

4.4.1 Probabilistic Graph Coarsening 58

4.4.2 Coarse Graph Embedding . 61

4.4.3 Reverse Mapping and Fine Tuning 62

4.5 Evaluation . 63

4.5.1 Datasets . 63

4.5.2 Procedure . 64

4.5.3 Results . 66

4.6 Conclusions . 68

5 Neural Blockmodelling for Knowledge Graphs 69

5.1 Introduction . 69

5.2 Related Work . 70

5.2.1 Stochastic Blockmodels . 70

5.2.2 Embedding Models . 72

5.3 Problem Description . 73

5.4 Model Description . 73

5.4.1 Mixed Membership Stochastic Blockmodel 73

5.4.2 Proposed Model . 75

5.5 Evaluation . 78

5.5.1 Link Prediction . 80

5.5.2 Entity Classification . 82

viii

5.5.3 Community Detection . 84

5.5.4 Predicate Embeddings . 86

5.5.5 Hyperparameter Sensitivity 88

5.5.6 Conclusions . 91

6 Hierarchical Blockmodelling for Knowledge Graphs 92

6.1 Introduction . 92

6.2 Related Work . 93

6.3 Problem Description . 94

6.4 Proposed Model . 95

6.4.1 Community Memberships . 95

6.4.2 Community Relations . 98

6.4.3 Generative Process . 102

6.4.4 Collapsed Gibbs Sampling . 104

6.4.5 Sampling Procedure . 115

6.5 Evaluation . 116

6.5.1 Datasets . 117

6.5.2 Quantitative Evaluation . 119

6.5.3 Qualitative Evaluation . 124

6.6 Conclusion . 128

7 Conclusion 129

7.1 Contributions . 129

7.2 Future Directions . 131

Bibliography 134

Appendix A: Probability Mass and Density Functions 144

Appendix B: Integral Form of the Beta Function 145

Appendix C: Marginalizing Finite Level Memberships 146

Appendix D: Simplifying Level Likelihood 148

ix

List of Tables

3.1 Datasets used to evaluate the SMICT method 41

3.2 Results for the SMICT method . 45

3.3 Results of hierarchical clustering using SMICT method 48

3.4 Impact of document count on SMICT performance 51

4.1 Summary of datasets used in coarse embedding strategy evaluation . 64

4.2 Pairwise comparison of coarse and regular embedding approaches . . 65

4.3 Reduction in datasets as a result of coarsening 66

5.1 Summary of datasets used in MNB evaluation 79

5.2 Results of link prediction task for MNB 81

5.3 Results of entity classification task for MNB 83

5.4 Results of community detection task for MNB 87

5.5 MNB predicate subgraph and embedding similarities 89

5.6 Optimal MNB hyperparameters for task and dataset 90

6.1 Datasets used to evaluate the our hierarchical blockmodelling approach 119

6.2 Hierarchical blockmodelling ARI and NMI scores on three datasets. . 121

6.3 Hierarchical blockmodelling ARI and NMI scores on three datasets

against baselines. 122

x

List of Figures

2.1 Example of a knowledge graph . 7

2.2 Class taxonomy example . 10

2.3 Example of knowledge graph and its stochastic blockmodel community

representation . 12

2.4 The Chinese restaurant process . 16

2.5 The nested Chinese restaurant process 18

2.6 The stick breaking process . 20

2.7 The Perceptron . 22

2.8 The Multilayer Perceptron . 24

3.1 Sensitivity to hyperparameters of the SMICT method 43

3.2 Excerpts of taxonomies induced by the SMICT method 47

3.3 Excerpt of cluster hierarchy induced by the SMICT method 50

4.1 Toy example of proposed embedding via coarsening strategy 54

4.2 Pairwise comparison of coarse and regular embedding approaches . . 67

5.1 Plate diagram for the MMSB . 75

5.2 Graphical representation of MNB . 76

5.3 MNB embedding scatterplots . 84

6.1 Hierarchical blockmodelling path and level example 96

6.2 Hierarchical blockmodelling community relations example 99

6.3 Hierarchical blockmodelling plate diagram 102

6.4 Log likelihood plots for hierarchical blockmodelling 123

6.5 Excerpt of our induced hierarchy on the FB15k-237 dataset. 124

6.6 Excerpt of our induced hierarchy on the WikiData dataset. 126

6.7 Plots of learned community relations 127

xi

Abbreviations

ANN Artificial Neural Network.

ARI Adjusted Rand Index.

AUC Area Under the Receiver Operating Characteristic Curve.

CRP Chinese Restaurant Process.

DDBM Deep Dynamic Mixed Membership Stochastic Blockmodel.

dMMSB Dynamic Mixed Membership Stochastic Blockmodel.

fcMMSB Fragmentation Coagulation Mixed Membership Stochastic Blockmodel.

IRM Infinite Relational Model.

LDA Latent Dirichlet Allocation.

MCMC Markov Chain Monte Carlo.

MI Mutual Information.

MLP Multilayer Perceptron.

MMSB Mixed Membership Stochastic Blockmodel.

MNE Multiplex Network Embedding.

nCRP Nested Chinese Restaurant Process.

NLP Natural Language Processing.

NMI Normalized Mutual Information.

OWL Web Ontology Language.

xii

PDF Probability Density Function.

PMF Probability Mass Function.

PMNE Principled Multilayer Network Embedding.

RDF Resource Description Framework.

URI Universal Resource Identifier.

xiii

Chapter 1

Introduction

This thesis outlines the research of Marcin Pietrasik’s doctoral work, namely the

induction of hierarchical structures from knowledge graphs. It is structured as a

summary of five papers captured in four chapters. In addition to this, it provides

the motivation for the work as well as its objectives in contributing to the scientific

community. Furthermore, it briefly outlines the relevant background information

and related works, placing it at the intersection of knowledge graphs and artificial

intelligence. Finally, it presents potential directions for future work.

This chapter contains excerpts from the candidacy exam as well as the paper A

Simple Method for Inducing Class Taxonomies in Knowledge Graphs.

1.1 Motivation

Knowledge graphs are data storage structures that rely on principles from graph

theory to represent information. Specifically, facts are stored as triples which bring

together two entities via a predicate. In a graphical context, these entities are analo-

gous to nodes, and the relations between them are analogous to edges. In recent years,

knowledge graphs have garnered widespread attention as a medium for storing data

on the web. Public knowledge graphs such as DBpedia [1], YAGO [2], and WikiData

[3] are all underpinned by large-scale knowledge graphs containing upwards of one

billion triples each. The last of these, for instance, contains just over 100 million en-

1

tities as of 2022, a near seven fold increase over its count in 2014. The open access to

such amounts of data has spurred on its uses in personal, academic, and commercial

domains and knowledge graphs are ubiquitous in the research fields of the Seman-

tic Web, artificial intelligence, and computer science broadly. Furthermore, private

companies are known to use proprietary knowledge graphs as a component of their

data stores. Google, for instance, uses a knowledge graph derived from Freebase [4]

to enhance their search engine results by providing infoboxes which summarize facts

about a user’s query [5].

In this thesis, the titular Learning Hierarchies from Knowledge Graphs refers to a

broad concept that encompasses distinct tasks related by their induction of hierarchi-

cal relations between knowledge graph entities. The clearest example of a knowledge

graph hierarchy is the class taxonomy which organizes a knowledge graph’s classes

through superclass-subclass relations. The task of inducing such a taxonomy merely

amounts to learning how the classes are organized hierarchically in the knowledge

graph. Similarly, hierarchical clustering of knowledge graphs allows not only to dis-

cover which entities are semantically similar as per the clustering but also how entities

relate to one another hierarchically. Perhaps less obviously, knowledge graph coars-

ening may be viewed as a form of hierarchy learning. This task involves collapsing

knowledge graph entities with one another based on some – generally structural – sim-

ilarity. By iteratively coarsening a knowledge graph, a chain of progressively smaller

knowledge graphs is built and a hierarchy emerges. These three tasks are further

elucidated upon in this thesis and novel solutions for them are proposed.

The motivating factors behind learning knowledge graph hierarchies are various.

Perhaps the simplest is that hierarchical structures organize data in a way that is

highly intuitive and interpretable to humans. For instance, a hierarchical clustering

of knowledge graph entities makes it apparent which entities constitute the broadest

concepts in the knowledge graph and how they relate to their descendants. Similarly,

a taxonomy of classes reveals implicit relations between entities through its transitive

2

properties. Put plainly, hierarchies induced from knowledge graphs are useful because

they are easy to understand. Indeed, the most widely used knowledge bases such as

DBpedia, YAGO, and WikiData are organized by hierarchical structures, namely

trees and directed acyclic graphs. That is to say, knowledge graphs are hierarchical

at their core. Furthermore, hierarchies are used as components of larger systems to

solve common tasks related to knowledge graphs. For instance, hierarchies are used

in learning knowledge graph embeddings, both explicitly as an input feature of the

model [6] and implicitly as a byproduct of the embedding process [7]. As embedding

is one of the most common problems in the knowledge graph community, learning

accurate hierarchies is valuable. In summary, the importance of hierarchical learning

to knowledge graphs in conjunction with the rise of knowledge graphs as a viable data

storage structure provides the motivation for this work.

1.2 Objectives

The objectives of this doctoral work are to develop novel methods and models for

learning hierarchies from knowledge graphs using artificial intelligence. Although

broad in scope and consisting of four independent projects, the thesis seeks to ad-

vance both hierarchy induction as well as application of hierarchies to common tasks

and problems in the knowledge graph community. Due to the varied nature of the

aforementioned projects, their objectives are summarized independently:

• The first objective is to develop a novel method for class taxonomy induction

and hierarchical clustering from knowledge graphs. Developing such a method

allows for the automation of class taxonomy construction which, when done

manually, is time consuming and requires curators knowledgeable in the area.

The dearth of approaches pertaining to this task motivates us to propose a

method which outperforms existing methods.

• Afterwards, we will investigate the use of hierarchies to improve knowledge

3

graph embeddings. Specifically, we will propose using hierarchical coarsening

as a meta-strategy for embedding with the objective of obtaining higher quality

embeddings at reduced training cost. Due to the meta-strategy’s independence

to the embedding method used, we will perform a pairwise comparison to de-

termine the effectiveness of such an approach

• Furthermore, we will introduce a novel technique for modelling knowledge graphs

based on the marriage of blockmodelling and embeddings methods. To our best

knowledge, this will be the first fusion of its kind in the context of knowledge

graph representation. The objective with this work is to establish the utility

of using a blockmodel structure for modelling knowledge graphs. This struc-

ture can then be utilized for learning a hierarchical clustering of entities in a

subsequent project.

• Finally, we will present a novel stochastic blockmodel for learning a hierarchical

clustering of knowledge graph entities. The objective of developing this model

is to show that stochastic blockmodels can be used for learning hierarchies from

knowledge graphs as such models have not been used for this task thus far.

Utilizing a model which is fully non-parametric, allows for greater flexibility in

learning the structure of the hierarchy. By developing this model, the founda-

tions were set for further application of stochastic blockmodels to the domain

of knowledge graphs.

The aforementioned points are unified in that the learning of hierarchies, whether

explicit or implicit, constitutes a significant part of each work. Each of the above

objectives relates to a chapter in the thesis, as outlined in what follows.

1.3 Outline

After this introductory chapter, the thesis proceeds with a brief overview of the in-

formation and notation necessary for its understanding in Chapter 2. In particular,

4

we formally define knowledge graphs as well as the types of methods we use in our

work, namely stochastic blockmodels and artificial neural networks (ANNs). The

subsequent four chapters summarize four independent works covering various aspects

of hierarchy learning from knowledge graphs. Specifically, Chapter 3 presents the

class taxonomy and hierarchy induction methods from the papers A Simple Method

for Inducing Class Taxonomies in Knowledge Graphs and Path Based Hierarchical

Clustering on Knowledge Graphs, respectively. The coarsening based meta-strategy

for knowledge graph embeddings adapted from Probabilistic Coarsening for Knowl-

edge Graph Embeddings is outlined in Chapter 4. Chapter 5 comprises of an extended

version of the paper Neural Blockmodeling for Multilayer Networks which discusses

the aforementioned marriage of stochastic blockmodels with neural networks. The

stochastic blockmodel for hierarchical clustering of knowledge graphs, is introduced

in Chapter 6 which is in large part taken from the paper Hierarchical Blockmodelling

for Knowledge Graphs. Finally, the thesis is summarized and possible avenues for

future work are discussed in Chapter 7.

5

Chapter 2

Background

This chapter provides a brief summary to the background information necessary for

understanding the thesis. Due to the scope and complexity of the concepts covered

in this work, what follows is merely an introduction to each concept and readers are

encouraged to follow the citations in each section for a thorough discussion.

This chapter contains sections adapted from the candidacy exam as well as the

paper Hierarchical Blockmodelling for Knowledge Graphs.

2.1 Knowledge Graphs

We refer to Hogan et al. [8] for their definition of knowledge graphs as “a graph of data

intended to accumulate and convey knowledge of the real world, whose nodes represent

entities of interest and whose edges represent potentially different relations between

these entities.” Concretely, information is stored as a collection of triples wherein

each triple relates a subject entity, ei, to an object entity, ej, via a predicate, rr. For-

mally, we define a knowledge graph, G, as a set such that G = {⟨ei, rr, ej⟩ ∈ E×R×E}

where ⟨ei, rr, ej⟩ is a triple, E is the set of entities in G, and R is the set of predicates

in G. When put together, the triples form a directed graph with vertices correspond-

ing to entities and edges corresponding to predicates. Each triple in a knowledge

graph describes one piece of information, or a fact. For instance, ⟨dbr:Henry Ford,

dbo:Occupation, dbr:Engineer⟩ relates the subject dbr:Henry Ford to the object

6

dbr:Henry Ford

dbr:Clara Bryant Ford

1866-04-11

1863-07-30

dbr:Engineer

dbo:Person

dbr:Michigan

dbr:United States

dbo:spouse

dbo:birthDate

dbo:birthDate

dbo:spouse

dbo:occupation

rdf:type

rdf:typerdf:type

dbo:birthPlace

dbo:country

rdfs:seeAlso

Figure 2.1: Excerpt of DBpedia triples describing Henry Ford and his wife Clara.

dbr:Engineer through the predicate dbo:Occupation and states that, in plain En-

glish, Henry Ford’s occupation is an engineer. When put together, triples form a

graph as shown in Figure 2.1 which visualizes a subset of DBpedia triples describing

Henry Ford and his wife Clara. Notice that knowledge graphs allow for cycles and

self-relations as shown through the two dbo:spouse and rdfs:seeAlso relations, re-

spectively. This is further made clear when analyzing a knowledge graph’s binary

adjacency tensor which may be symmetric and containing non-zero values in its main

diagonal. To this point, knowledge graphs are oftentimes represented in their tensor

form as it allows for easier numerical operation and thus opens the door to vari-

ous tools and methods in artificial intelligence. A binary adjacency tensor is obtained

from a knowledge graph by ordering its entities and predicates along an |E|×|E|×|R|

tensor, G, that takes on values gijr = 1 if there exists a triple in G from entity ei to

entity ej on predicate rr and gijr = 0 otherwise. A comprehensive introduction to

knowledge graphs is provided by Gutierrez and Sequeda [9].

7

2.1.1 Resource Description Framework

The prefixes dbr, dbo, rdf, and rdfs in Figure 2.1 are artefacts of the notation

used as part of the Resource Description Framework (RDF)1. RDF refers to a set

of standards introduced by the World Wide Web Consortium 2 for representing and

exchanging data on the web. It uses the triple structure as its foundation and includes

notations and formats for serializing triples. For instance, in the N-Triples format,

the three leftmost triples in Figure 2.1 are written as:

@prefix dbo: <http://dbpedia.org/ontology/> .

@prefix dbr: <http://dbpedia.org/resource/> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema> .

dbr:Michigan dbo:country dbr:United States .

dbr:United States rdfs:seeAlso dbr:United States .

dbr:Henry Ford dbo:birthPlace dbr:Michigan .

Where the first three lines define Universal Resource Identifiers (URIs) as prefixes

before using them to define the triples themselves. Using such prefixes decreases the

size of storing triples and enhances readability. This type of format may be queried

using languages such as SPARQL [10] and Cypher [11].

2.1.2 Ontologies

Ontologies are often used in conjunction with knowledge graphs to provide an ax-

iomatic foundation on which knowledge graphs are built. In this view, an ontology

may be seen as a vocabulary and a rule book that provides semantics to a knowledge

graph and governs how the information contained within it is represented and how it

can be reasoned with. Perhaps the most salient feature of ontologies is their definition

of knowledge graph classes as well as rules for how they are organized and interact

with one another. In adding a layer which conceptually sits on top of a knowledge

1https://www.w3.org/RDF/
2https://www.w3.org/

8

https://www.w3.org/RDF/
https://www.w3.org/

graph, ontologies both enrich the knowledge graph by allowing it to be reasoned with

in more complex ways and constrain it by introducing boundaries for what is and

isn’t possible. Consider, for instance, the classes Parent and Child and the predi-

cate hasChild. An ontology can provide structure to the predicate by defining its

domain and range. Specifically, it can state that the subject related by the predicate

hasChild has to be of class Parent and the object of class Child. In the Web Ontol-

ogy Language (OWL) – a widely used collection of languages for defining ontologies

– this constraint may look as follows:

<owl:ObjectProperty rdf:ID="hasChild">

<rdfs:domain rdf:resource="Parent"/>

<rdfs:range rdf:resource="Child"/>

</owl:ObjectProperty>

In addition to the aforementioned constraints on domain and range, ontologies al-

low for defining subsumption, transitivity, symmetricity, cardinality, equivalence, set

operations, and enumeration amongst many more. Of particular importance to this

thesis is the use of subsumption rules, which define superclass-subclass relationships

between classes. This allows for building of class taxonomies to organize concepts

hierarchically. Consider, for instance, the following definitions:

<owl:Class rdf:ID="Dog">

<rdfs:subClassOf rdf:resource="Mammal"/></owl:Class>

<owl:Class rdf:ID="Cat">

<rdfs:subClassOf rdf:resource="Mammal"/></owl:Class>

<owl:Class rdf:ID="Mammal">

<rdfs:subClassOf rdf:resource="Animal"/></owl:Class>

<owl:Class rdf:ID="Turtle">

<rdfs:subClassOf rdf:resource="Reptile"/></owl:Class>

<owl:Class rdf:ID="Reptile">

<rdfs:subClassOf rdf:resource="Animal"/></owl:Class>

9

Animal

Mammal

Dog Cat

Reptile

Turtle

Figure 2.2: Toy example of class taxonomy describing the relations between different
animal classes.

These rules form a taxonomy between five animal classes as shown in Figure 2.2.

Building such hierarchies enriches a knowledge graph as it allows for reasoning that

instances of the Dog class are also instances of Mammal and Animal. Furthermore, it

provides a conceptual basis for how classes are related to one another. Dog and Cat,

for example, are more closely related conceptually than Dog and Turtle.

2.2 Embeddings

In mathematics, embeddings are defined as an injective mapping between two objects

which preserves properties in the domain. Formally, an embedding function, f , maps

object x to its embedding y as f : x ↦→ y. A more granular definition of property

preservation as well as the constraints and conditions of the mapping vary depending

on the types of objects being embedded and the branch of mathematics being studied.

In this thesis, and in artificial intelligence more generally, embeddings are used in

a narrower context. Specifically, embeddings are continuous vector representations

of entities, mapped from their original, or ambient, space. The vector space that is

formed by the set of embeddings is called the embedding space and is usually of a lower

dimension than the ambient space. Generally, embeddings rely on the intuition that

entities which are embedded close to one another in the embedding space share similar

semantics or properties which are intended to be preserved in the embedding process.

Such representations are desired as they are both intuitive and highly operable by

machines. For instance, embeddings allow for the calculation of distance between any

10

two entities, revealing potentially useful information. Furthermore, if the ambient

space is discrete, the embedding process provides a representation which opens the

door to the range of tools and methods in artificial intelligence which operate on

continuous inputs.

Graph embeddings are continuous vector representations of a graph’s entities and,

in some cases, relations. Thus, the task of generating graph embeddings involves

finding a function, f , which maps each entity to the embedding space. Defined

formally, f : E ↦→ R
|E|×d where d is the dimensionality of the embedding space such

that d << |E|. The obtained embeddings are subsequently used to solve downstream

tasks such as link prediction and entity classification.

2.3 Probabilistic Graphical Models

Probabilistic graphical models are – as their name suggests – probabilistic models in

which the conditional dependencies between their variables are structured as a graph.

The range of models and approach which fall under this category is too broad to be

adequately introduce in this thesis. We thus focus on just the concepts which are

utilized in subsequent chapters.

2.3.1 Stochastic Blockmodels

Stochastic blockmodels are a class of probabilistic graphical models used for generat-

ing random graphs with roots in the fields of social science and mathematics. First

proposed in 1983 by Holland et al. [12] for modelling social networks, they have ex-

panded their utility to fields such as biochemistry [13], education [14], and artificial

intelligence [15–17] among others. In simplest terms, stochastic blockmodels are a

type of Bayesian non-parametric graph partition model in that their approach relies

on grouping graph entities together via partitions – often referred to as blocks – which

share similar structural properties. The generative process by which this partition-

ing occurs is realized by sampling from a set of probability distributions, giving rise

11

e7 e6

r0

r0

e5
r0

e0

r1

e1

r1

e2

r1

e4

e3r2

r2

r1

r2

e0 e1 e2 e3 e4 e5 e6 e7

0

0

0

0

0

0

0

0

e0 e1 e2 e3 e4 e5 e6 e7

0

0

0

0

0

0

0

0

e0 e1 e2 e3 e4 e5 e6 e7

e0 0 0 0 0 0 0 0 0

e1 0 0 0 0 0 0 0 0

e2 0 0 0 0 0 0 0 0

e3 0 0 0 0 0 0 0 0

e4 0 0 0 0 0 0 0 0

e5 0 0 0 0 0 0 1 0

e6 0 0 0 0 0 0 0 1

e7 0 0 0 0 0 0 1 0

r2

r1

r0

e7 e6 e5

e0 e1 e2

e4

e3

r1
r0

r2

r1

r2

t0

t2

t1

t0 t1 t2

0

0

0

t0 t1 t2

0

0 0 0

0 0 0

t0 t1 t2

t0 0 0 0

t1 0 0 0

t2 0 0 0.3

r2

r1

r0

Figure 2.3: Toy example of a knowledge graph and how it may be modelled by a
stochastic blockmodel. Starting from top left quadrant and proceeding clockwise:
graphical representation of a knowledge graph with entities e0 through e7 and predi-
cates r0 through r2; graphical representation of the aforementioned knowledge graph
as modelled by a stochastic blockmodel with communities t0 through t2; potential
community relations tensor induced by stochastic blockmodel; adjacency tensor of
knowledge graph above it.

to the stochasticity of stochastic blockmodels. The learning process is then to infer

the parameters of these distributions using a Bayesian inference scheme. Figure 2.3

provides a toy example of a knowledge graph along with how it may be modelled by

a stochastic blockmodel.

Because stochastic blockmodels constitute a heterogeneous class of methods, de-

scribing them by referring to a concrete instance is bound to include definitions which

do not apply to all members of the class. With this in mind, our introduction to

stochastic blockmodels draws on their key characteristics to motivate a toy stochastic

12

blockmodel for generating a knowledge graph. All stochastic blockmodels are defined

by a set of probability distributions which are sampled from to generate the adja-

cency tensor of the knowledge graph, G. In order to perform this generation, the

knowledge graph’s entities must first be assigned to one of the model’s communities.

This is done by sampling the model’s variables responsible for this assignment. Let

A be a tensor representing these variables with a corresponding hyperparameter of

α responsible for parameterizing their prior distribution. In stochastic blockmodels,

the probability of an interaction between two entities is modelled as the degree of

interaction between their respective communities. It is necessary, therefore, to cap-

ture these community interactions by sampling their corresponding model variables.

Let B be a tensor representing this subset of variables with a prior hyperparameter

of β. The joint distribution of this model is obtained by applying the chain rule of

probability as follows:

P(G,A,B | α, β) =
∏︂

gijr∈G

P(gijr|Aijr,Bijr, α, β)P(Bijr | Aijr, β)P(Aijr | α) (2.1)

WhereAijr andBijr indicate the latent variables inA andB associated with sampling

gijr and α and β are their respective hyperparameters. Notice that the probability

of drawing a value in the knowledge graph’s adjacency tensor, P(gijr|Aijr,Bijr, α, β),

is conditioned on Aijr and Bijr. Thus, in order to generate the knowledge graph,

it’s necessary to first infer the values of Aijr and Bijr. This inference process is

analogous to the training phase of other machine and deep learning models. In

most cases, the solution is intractable for exact inference and must be approximated

using an inference scheme. Perhaps the simplest inference scheme used in stochastic

blockmodelling is Gibbs sampling, a Markov chain Monte Carlo method which can

be used for sampling from a joint distribution. Gibbs sampling approximates this

distribution by iteratively sampling from its variables’ full conditional distributions.

This iterative sampling creates a Markov chain of samples wherein its stationary

distribution approximates the joint distribution of the model. Continuing the example

13

above, to infer the blockmodel’s parameters for gijr, namelyAijr and Bijr, inference is

performed on their conditional distributions P(Aijr | G,B, α) and P(Bijr | G,A, β),

respectively. We apply Bayes’ theorem to obtain these distributions. Recall that by

this theorem the posterior distribution is proportional to the product of the likelihood

and the prior. We can therefore express the conditionals of Aijr and Bijr as follows:

P(Aijr | G,B, α) ∝ P(G | A,B)P(Aijr | α) (2.2)

P(Bijr | G,A, β) ∝ P(G | B,A)P(Bijr | β) (2.3)

Where P(G | A,B) and P(G | B,A) are the likelihoods, and P(Aijr | α) and

P(Bijr | β) are the priors of Aijr and Bijr, respectively. The likelihood may be un-

derstood as the chance observing the data given the model parameters. In Equations

2.2 and 2.3, it is the likelihood of drawing G from our model with parameters A

and B. The prior represents the assumptions about a variable before any data is

taken into account. They are oftentimes chosen in order to leverage a conjugacy with

their dependant variables. Priors are parameterized by hyperparameters which must

be specified a priori. The choice of these hyperparameters influences the density of

the prior and can thus change the output of the model. Gibbs sampling draws from

the variables’ full conditional distributions iteratively for a predetermined number of

iterations, iters. To highlight this, the superscript iter is added to denote the value

of a variable at the corresponding iteration. The Gibbs sampling process may be

summarized as follows:

1. Initialize A0
ijr and B0

ijr for each gijr ∈ G

2. For iteration iter in 1, 2, ..., iters

(a) Draw Aiter
ijr ∼ P(A

iter
ijr | G,Biter−1, α) for each gijr ∈ G using Equation 2.2

(b) Draw Biter
ijr ∼ P(B

iter
ijr | G,Aiter−1, α) for each gijr ∈ G using Equation 2.3

In the first step, variables can be initialized by sampling from their prior distributions

or specified explicitly if a priori evidence to suggest their true values exists. The sec-

14

ond step depicts the iterative sampling of model variables from their full conditionals.

We note that samples obtained early in this process may be drawn from a distribu-

tion distant to that of the desired stationary distribution. As such it is necessary to

discard the samples obtained before this distribution has been reached. This process

is commonly referred to as burning in the Gibbs sampler and the number of discarded

samples as the burn in samples. Furthermore, as successive samples in this process

are autocorrelated, there may be a lag period applied in obtaining results such that

samples in during the lag period are also discarded. Thus, if our toy example per-

forms 1000 iterations with a burn in of 900 and a lag of 10, only 9 samples will be

obtained as the output of the Gibbs sampler. These 9 samples are then aggregated

over to account for the stochasticity in sampling from the posterior and arrive at a

final result. The process by which these samples are aggregated are model specific

and may be as simple as merely taking the sampled mode. An introduction to Gibbs

sampling and related sampling schemes is covered by Mackay [18] and a thorough

discussion of stochastic blockmodels along with their concrete examples is provided

by Abbe [19].

2.3.2 The Chinese Restaurant Process

The Chinese restaurant process (CRP) [20] is a discrete stochastic process that yields

a probability distribution in accordance with the preferential attachment principle. In

this view, it is both a Dirichlet process [21] as it generates a probability distribution

and a preferential attachment process [22] as the distribution is generated such that

probabilities are proportional to past draws. The process is explained through a

metaphor of sitting patrons at a Chinese restaurant. Consider this restaurant as

containing an infinite number of tables with each table having the capacity to seat an

infinite number of patrons. Patrons are seated sequentially, such that the first patron

is seated at the first table and every subsequent patron may be seated at an occupied

table or the first unoccupied table. The probability of being seated at an occupied

15

t0

e0 e2

e4

t1

e1

t2

e3 e5

t3

Figure 2.4: Toy example of the CRP after sitting patrons e0 through e5. Tables
t0 through t2 are occupied and table t3 is the next unoccupied table. We illustrate
Equation 2.4 by calculating the probabilities of sitting patron p6 at tables t0 and t3:
P(e6 = t0) =

3
6+γ

and P(e6 = t2) =
γ

6+γ
.

table is proportional to the number of patrons already seated at it. This process is

illustrated through the toy example in Figure 2.4 which shows a potential state of

the CRP after sitting six patrons along with the sample probabilities of sitting the

seventh. Formally, the probability of seating patron ei at a table tm in a restaurant

where Ti is the set of occupied tables when patron ei arrives is:

P(ei = tm | e0, e1, ..., ei−1, γ) =

⎧

⎪

⎨

⎪

⎩

#m
i

i+ γ
tm ∈ Ti

γ

i+ γ
tm /∈ Ti

(2.4)

Here, #m
i is the number of patrons seated at table tm when patron ei arrives and

γ > 0 is a hyperparameter of the CRP responsible for controlling the probability that

an incoming patron is seated at an unoccupied table such that increasing γ increases

this probability. Thus, increasing γ values will yield results with an increasing num-

ber of occupied tables. Specifically, the expected number of occupied tables grows

logarithmically with respect to the number of seated patrons:

❊

[︄

∑︂

tm∈Ti

■(#m
i > 0) | γ

]︄

= O(γ log i) (2.5)

Where ■ is the indicator function which returns 1 if the condition is met and 0

otherwise. Big-O notation is leveraged with O to indicate the asymptotic upper

bound of the expectation. This principle become relevant when controlling for the

branching factor of the induced tree as we will see later on. The realization of the

16

CRP yields a partition of patrons over the infinitely many tables in the restaurant.

If we consider each table to be a community, we can leverage this process to obtain

a probability distribution over an infinite number of communities. Indeed this is

the main utility of the CRP, namely to serve as a conjugate prior to infinite non-

parametric discrete distributions. While this approach allows for the modelling of

flat communities, it does not account for hierarchical relations between them. To

remedy this, the CRP must be extended to its nested variant.

2.3.3 The Nested Chinese Restaurant Process

The nested Chinese restaurant process (nCRP) [23, 24] is an extension of the CRP

formulated to account for hierarchical relations between the generated communities.

The realization of this process is an infinitely deep and infinitely branching tree of

communities defined by a set of paths, P , taken from the root community to a leaf

community. In principle, the tree is unbounded in depth, however we limit our dis-

cussion to a nCRP bounded to a depth of L. As in the case of the CRP, the allocation

of paths along the tree is consistent with the preferential attachment principle. The

tree is generated stochastically by sampling a path at each level in the tree via the

CRP such that drawing a table is analogous to taking a path at that level. To extend

the metaphor of seating patrons at a Chinese restaurant, consider the scenario of an

infinite number of restaurants with an infinite number of infinite seat tables. When

patrons are seated at these restaurants they are not served food but rather a table

specific reference to another restaurant to which they must go. One of these restau-

rants is designated a root restaurant with no reference and all other restaurants are

referenced exactly once. The seating of patrons at these restaurants is performed as

in the CRP. We can see how realizing this process yields a tree by examining the

paths taken by patrons. They first arrive at the root restaurant before being sent

off to one of the root restaurant’s descendant restaurants. At this restaurant the

patron is sent off to another descendant restaurant and this process is repeated until

17

t2 t6 t4 t5 t7 t9

t1 t3 t8

t0

e0 e1

e2

e3

e4

e5

Figure 2.5: Toy example of a nCRP truncated to a depth of L = 2 after assigning
patrons e0 through e5. Solid lines indicate paths which have been taken by patrons
and thus exist in the tree whereas dashed lines indicate indicate potential paths.
We illustrate Equation 2.4 by calculating the probability of a patron taking a path
through communities t2 and t9: P(e6 = t2) = (2

2+γ
)(2

6+γ
) and P(e6 = t9) =

γ

6+γ
.

L restaurants have been visited in the bounded case. The paths taken by patrons

generate the tree as illustrated in the toy example in Figure 2.5. As before, we extend

this analogy of patrons and tables to entities and communities, respectively. Thus,

when drawing path pi for entity ei, the process starts by initializing the path at the

top level to the root community, namely p0i = t0 where the superscript in p0i indexes

into the path vector to obtain the community at the corresponding level and t0 is the

root community. The process then continues by drawing a descendent community

according to the CRP. Recall that this draw results in a community which either

has or hasn’t been visited before by a previous entity. The latter case corresponds to

branching out a new path in the tree at the descendant level. This process is repeated

L times at which point the specified depth has been reached. We can formalize this

process by extending the previously defined notation. Specifically, let Ti be the set

of communities in the tree before entity ei has its path sampled and Cqi be the set of

18

children communities for community tq at this time as well. The sampling process is

then expressed as follows: when entity ei arrives at community tq on the (l−1)th level

in the tree , the probability of selecting an existing community, pli ∈ C
q
i or creating a

new community, pli /∈ Ti, is:

P(pli = tc | p0,p1, ...,pi−1,p
1: l−1
i , γ) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

#tc
i

#
tq
i + γ

tc ∈ C
c
i

γ

#
tq
i + γ

tc /∈ Ti

(2.6)

Where #
tq
i and #tc

i is the number of entities that have passed through communities

tq and tc before entity ei started its path. The superscript in p1:l−1
i indicates that the

probability distribution for sampling pli is conditioned on the path taken by entity

ei up until level l. The hyperparameter γ serves a similar function as in the CRP,

namely controlling the branching factor of the tree such that higher γ values yield

trees with more branches. The use of the CRP in the path decision process ensures

that the probability mass will be pulled towards drawing paths which have been more

frequently drawn before. The resulting distribution allows us to use the nCRP as a

non-parametric prior over a tree structure in our model. In drawing paths, we not

only generate a hierarchy but also define a subset of communities to which an entity

can belong to, namely those along the path.

2.3.4 The Stick Breaking Process

The stick breaking process [25] is – like the CRP and nCRP – a Dirichlet process that

draws its name from a metaphor which describes it. The metaphor starts by breaking

a stick of unit length into two fragments at a point in the interval from 0 to 1 as drawn

from the Beta distribution. One of the two fragments is preserved and the other

fragment is broken again, analogously to the initial stick. This process is repeated

an infinite number of times to yield an infinite number of fragments whose combined

length is that of the initial stick. These fragments may be viewed as a probability

distribution over the infinite sequence of discrete time-steps used to generate them.

19

0.125 (1− 0.125)

a1
0.25(1− 0.125) (1− 0.25)(1− 0.125)

a2
(0.5)(1− 0.25)(1− 0.125) (1− 0.5)(1− 0.25)(1− 0.125)

a3

· · ·

Figure 2.6: Toy example of the stick breaking process with values v1 = 0.125 v2 =
0.25 v3 = 0.5. Starting at the top of the figure, a unit length stick is broken at
v1. The remainder is then iteratively broken proportionally to draws from the Beta
distribution.

In other words, the stick breaking process is an infinite extension of the Dirichlet

distribution insofar as while the Dirichlet distribution yields a probability distribution

over L categories, the stick breaking process yields a probability distribution over an

infinite number of categories. Formally, let the draw from the Beta distribution at

the lth iteration of the stick breaking process be denoted as vl ∼ Beta(µσ, (1− µ)σ).

Thus, the lengths of the first fragment, denoted a1, and its remainder are v1 and

1 − v1, respectively. To obtain the length of the second fragment, a2, draw v1 and

break off that fragment from what remains of the stick, namely a2 = v1(1− v1). We

define this process for an arbitrary lth time-step as follows:

al = vl
l−1
∏︂

k=1

(1− vk) (2.7)

A concrete example involving the application of this rule is illustrated in Figure 2.6

which demonstrates the first three breaks of the stick along with the respective values

of the broken fragments and their remainders. The realized stick fragments form a

probability distribution in that
∑︁∞

l=1 a
l = 1. We can thus define the probability mass

function of the stick breaking process, denoted Stick(µ, σ), as follows:

Stick(µ, σ) =
∞
∑︂

l=1

al

20

=
∞
∑︂

l=1

vl
l−1
∏︂

k=1

(1− vk) (2.8)

The stick breaking process is a generalization of the Griffiths-Engen-McCloskey dis-

tribution [24, 26] which may be seen as a special case where µσ = 1. The hyperpa-

rameters, 1 > µ > 0 and σ > 0, control the mean and variance of the distribution,

respectively. Specifically, increasing µ values will pull the mean towards fragments

broken later in the process and increasing σ values will increase the variance of the

distribution.

2.4 Artificial Neural Networks

Artificial neural networks comprise a class of models whose underlying inspiration

is the intelligence of living organisms, specifically the biological neuron of animals.

Neurons are a type of cell found in the nervous system and are composed of three main

parts: the soma, the axon, and dendrites. They operate by sending and receiving

chemical and electrical signals to and from cells around them via tiny gaps called

synapses. Specifically, when a neuron receives a chemical signal via the stimulation of

its dendrites, it transmits it along as an electrical signal through its axon to stimulate

surrounding cells. When these signals are transmitted to other neurons, they form

what is called a neural circuit. Neural circuits form the basis of intelligent life on earth

and are responsible for a broad range of tasks from simple movements to higher order

thinking. Currently, understanding of how neurons give rise to such complex processes

is still in its infancy. Part of this is due to the high number of neurons interacting

with one another and the combinatoric nature of these interactions. To highlight

this, the human brain, for instance, has approximately 100 billion neurons [27] and 60

trillions neuronal connections [28]. These hindrances to biological understanding have

not prevented the adoption of neuronal concepts to the field of artificial intelligence.

Indeed, one of the most successful areas of artificial intelligence research is related

to the study of ANNs. These networks mimic the structure neural circuits through

21

Σx2

x1

x3

b

sgn ȳ

w1

w2

w3

Figure 2.7: Visualization of a three dimensional input Perceptron.

the interaction of artificial neurons. The canonical example of this is the Multilayer

Perceptron (MLP) which catapulted the field of neural networks in the 1980s. Since

then the MLP has evolved into the most commonly used neural networks today such as

convolutional neural networks [29], recurrent neural networks [30], and autoencoders

[31, 32]. Compared to other [33] classification techniques, neural networks have several

advantages, including: self-adaptation [34], universal function approximation [34, 35],

and flexibility [34]. Going as far back as the mid 1990s, neural networks were being

applied to solve practical problems in commerce, science, industry, and medicine

[36]. Furthermore, they’ve won contests and set benchmarks in speech recognition

[37], character recognition [38], and language identification [39] among other tasks.

This gives reason, outside of a strictly theoretical nature, to pursue the study and

understanding of neural networks. A recent review of neural networks is provided by

Samek et al. [40].

2.4.1 Rosenblatt’s Perceptron

The MLP is best understood by first examining Rosenblatt’s Perceptron. Introduced

in 1958 by Frank Rosenblatt [41], the Perceptron takes one or more inputs and asso-

ciates a weight with each input. The product of these inputs and their corresponding

weights is summed along with a bias term. The result is called the induced local field

and is then passed through the sign function [42], denoted sgn, giving a result of -1

if the induced local field is negative and 1 if the induced local field is positive. These

22

values correspond to two class labels to which the input is classified. Figure 2.7 shows

— from left to right -– the flow of a three input Perceptron. The Perceptron’s output,

ȳ, can be expressed mathematically. Given that x is vector of inputs, w is a vector

of its corresponding weights, b is a scalar bias term, and sgn is the sign function, ȳ is

as follows:

ȳ = sgn(xTw + b) (2.9)

Finding weights which result in the correct classification of the input is done iter-

atively, adjusting the weights after every misclassification of input x. After a time

step, denoted n, the update of the weights for the next time step, n+1, is computed

as follows:

wn+1 = wn + η(y − ȳ)xn (2.10)

Where the bias, b, is treated as a weight with a corresponding fixed input of 1, y

is the desired classification of input xn such that y ∈ {−1, 1} and η is the learning

parameter such that η > 0. This update rule has been proven to converge when the

data it’s classifying is linearly separable [43]. For data which is not linearly separable,

such as the XOR function, the update rule fails to guarantee weights which correctly

classify the inputs [44]. It is this problem which is solved by the MLP.

2.4.2 The Multilayer Perceptron

The MLP uses a form of artificial neuron that is similar to that of the Perceptron.

The induced local field is the summation of the product of inputs and their weights

plus a bias term. The result of which is passed through an activation function which

must be differentiable for all real numbers [42]. This requirement precludes the use

of the signum function used in Rosenblatt’s perceptron. Many [45] functions can be

used in its place and such as the logistic sigmoid and the hyperbolic tangent. We use

the notation φ to denote an arbitrary, differentiable activation function.

23

x2

x1 ȳ1

ȳ2

Input Layer Hidden Layer Output Layer

Figure 2.8: Visualization of a two dimensional input, two dimensional output MLP
with one hidden layer of three artificial neurons.

In the MLP, the neuron is used many times throughout the network and is grouped

according to when it is activated after the network receives an input. This grouping

is called a layer and is comprised of one or more nodes. A MLP network must have at

least three layers: one input layer, one output layer, and one or more hidden layers.

The input layer processes the features of what is to be classified. Input layer nodes

don’t perform any calculation but rather send the input signals to the hidden layer.

Each node in a hidden layer is an artificial neuron whose output connects to another

hidden layer or the output layer. Like the hidden layer, the output layer nodes are

artificial neurons, the output of which is a final output of the network. Figure 2.8

shows a network with one hidden layer having two input nodes, three hidden nodes,

and two output nodes. The signals travel from left to right in what is called the

forward step.

In a fully connected MLP network, each signal will pass through every node in the

hidden and output layers. This means that the extent to which each hidden layer

node impacts the final output cannot be calculated as in Rosenblatt’s Perceptron.

The problem of updating the weights is solved by backpropagation.

24

2.4.3 Backpropagation

Backpropagation is a technique used to find out to what extent connections between

neurons are responsible for the output of a neural network and how to change their

weights to move towards a more desirable network. It occurs after a forward pass of

the neural network starting at the output layer and working its way backward. What

follows is a simplified explanation of the backpropagation algorithm using gradient

descent as described by Haykin [42] and Rumelhart et al. [31].

Consider a neuron, a, in the hidden layer and a neuron, b, in the subsequent layer.

The connection weight between the neurons at time step n is written as wn
ab. If En

is a measure of the error of the entire network, the negative of its partial derivative

with respect to wn
ab indicates the direction in weight space that the weight adjustment

should be made. This can be calculated with repeated application of the chain rule,

the result of which is:

∂En

∂wn
ab

= −enb · φ
′
b(v

n
b) · ȳ

n
a (2.11)

Where enb is the error signal produced by neuron b, φ′b(v
n
b) is the derivative of the

activation function given the induced local field of neuron b at time step n, and ȳna is

the output of neuron a. The local gradient, δnb is defined as δnb = −enb · φ
′
b(v

n
b) giving

rise to the following:

∂En

∂wn
ab

= δnb · ȳ
n
a (2.12)

Given this information, wn
ab can be updated via gradient descent. In this process, wab

moves down the gradient at each time step by an amount determined by the learning

rate, η, giving the weight correction equation:

∆wn
ab = η · δnb · ȳ

n
a (2.13)

For output neurons, applying this equation is simple because all the values are avail-

able from the forward pass or can be easily calculated. Such is the case for en which

25

is calculated the same way as in Rosenblatt’s perceptron, that is the difference be-

tween the desired output y and the neuron output ȳn, namely en = y − ȳn. In the

case of hidden nodes, calculating en requires a different formula because the desired

output is not known. The steps required to solve this problem are omitted from this

explanation but can be found in Haykin [42]. The resulting local gradient for hidden

neurons is as follows:

δna = φ′a(v
n
a)
∑︂

b∈B

δnb · w
n
ab (2.14)

Where B is the set of neurons that neuron a is connected to in the subsequent layer.

These formulas used in conjunction with one another, starting from the output layer

working backwards allow the updating of weights by the weight correction equation,

∆wn
ab.

An extension to the backpropagation with gradient descent algorithm is to add the

concept of momentum. In this scheme, the weight correction is not only affected by

the local gradient, but also by the change in weight at the previous time step, ∆wn−1
ab .

Intuitively, momentum adds the effect of inertia as wab moves on the error surface.

This helps speed up learning especially when the weight is stuck in plateaus where

the gradient is low. Momentum is controlled by the momentum constant, α, and is

expressed as follows:

∆wn
ab = −η · δ

n
b · ȳ

n
a + α ·∆wn−1

ab (2.15)

Such that higher values of α result in more inertia from the previous weight change

being considered.

26

Chapter 3

A Simple Method for Inducing
Class Taxonomies in Knowledge
Graphs

This section summarizes the work presented in the papers: A Simple Method for

Inducing Class Taxonomies in Knowledge Graphs [46] which was published in the

proceedings of the 17th European Semantic Web Conference; and Path Based Hier-

archical Clustering on Knowledge Graphs [47] which exists as a preprint on arXiv.

3.1 Introduction

One of the core components of an ontology is the class taxonomy: a set of sub-

sumption axioms between the type classes that may exists in the knowledge graph.

When put together, the subsumption axioms form a hierarchy of classes where gen-

eral concepts appear at the top and their subconcepts appear as their descendants.

A challenge that arises when working with large knowledge graphs is that of class

taxonomy construction. Manual construction is time consuming and requires cura-

tors knowledgeable in the area. DBpedia, for instance, relies on its community to

curate its class taxonomy. Similarly, YAGO relies on a combination of information

from Wikipedia and WordNet, both of which are manually selected and organized.

On the other hand, automated methods are not able to induce class taxonomies of

the quality necessary to reliably apply to complex knowledge graphs. Furthermore,

27

they oftentimes rely on external information which may itself be manually curated

or may only be applicable to knowledge graphs in a particular domain. With this in

mind, the impetus for automatically inducing class taxonomies of high quality from

large-scale knowledge graphs becomes apparent.

In this chapter, we propose a scalable method for inducing class taxonomies from

knowledge graphs without relying on information external to the knowledge graph’s

triples. Our approach applies methods used to solve the problem of tag hierarchy

induction, which involves inducing a hierarchy of tags from a collection of documents,

and identifying the tags that annotate them. Although extensively studied in the field

of natural language processing, these methods have yet to be applied to knowledge

graphs to the best of our knowledge. In order to use these methods, we reshape the

knowledge graph’s triple structure to a tuple structure, exploiting the graph’s single

dimensionality in assigning entities to type classes. Using the new structure, we

construct a novel approach to inducing class taxonomies which outperforms existing

tag hierarchy induction methods both in terms scalability and quality of induced

taxonomies. Finally, we show that an induced class taxonomy may be used as the

foundation for performing hierarchical clustering on the knowledge graph’s subjects.

The idea behind this is that each class in the taxonomy may serve as a hierarchical

cluster, reducing the clustering procedure to merely assigning each entity to one class

in the taxonomy. Empirical evaluation demonstrates that this process constructs

coherent hierarchical clusters.

3.2 Related Work

We divide our discussion of related work into three subsections: class taxonomy induc-

tion methods, tag hierarchy induction methods, and hierarchical clustering methods

for knowledge graphs. The first two methods are used to construct a hierarchy of

concepts, however they differ in the type of data they are applied to. Class tax-

onomy induction methods are used on knowledge graphs and thus operate on data

28

represented as triples. Tag hierarchy induction methods operate on documents and

the tags that annotate them. In practice, these documents are often blog posts, im-

ages, and videos annotated by users on social networking websites. We can view our

proposed method as a combination of the aforementioned categories as it takes the

input structure of documents and tags but is applied to knowledge graphs to induce

a class taxonomy. Hierarchical clustering methods seek to learn clusters of knowledge

graph entities based on shared semantics and organize them hierarchically such that

descendant clusters contain more specific instances of their corresponding ancestors.

3.2.1 Methods for Class Taxonomy Induction

Völker and Niepert [48] introduce Statistical Schema Induction which uses association

rule mining on a knowledge graph’s transaction table to generate ontology axioms.

Each row in the transaction table corresponds to a subject in the graph along with

the classes it belongs to. Implication patterns which are consistent with the table are

mined from this table to create candidate ontology axioms. The candidate axioms

are then sorted in terms of descending certainty values and added greedily to the

ontology only if they are logically coherent with axioms added before them.

Nickel et al. [49] propose a method using hierarchical clustering on a decomposed

representation of the knowledge graph. Specifically, they extend RESCAL [50], a

method for factorizing a three-way tensor, to better handle sparse large-scale data

and apply OPTICS [51], a density based hierarchical clustering algorithm.

Ristoski et al. [52] rely on entity and text embeddings in their proposed method,

TIEmb. The intuition behind this approach is that entities of a subclass will be

embedded within their parent class’s embeddings. Thus if you calculate the centroid

for each class’s embeddings, you can infer its subclasses as those whose centroid falls

within a certain radius. For instance, the class centroids of Mammals and Reptiles

will fall inside the radius of Animals although the converse is not true since Mammals

and Reptiles are more specific classes and are expected to have a smaller radius.

29

3.2.2 Methods for Tag Hierarchy Induction

Heymann and Garcia-Molina [53] propose a frequency based approach using cosine

similarity to calculate tag generality. In their approach, tags are assigned vectors

based on the amount of times they annotate each document. The pairwise cosine

similarity between tag vectors is used to build a tag similarity graph. The closeness

centrality of tags in this graph is used as the generality of tags. To build the hierarchy,

tags are greedily added – in order of decreasing generality – as children to the tag in

the hierarchy that has the highest degree of similarity. This approach was extended

by Benz et al. [54] to better handle synonyms and homonyms in the dataset.

Schmitz [55] unveils a method extending on the work done by Sanderson and

Croft [56] which uses subsumption rules to identify the relations between parents and

children in the hierarchy. The subsumption rules are calculated by tag co-occurrence

and filtered to control for “idiosyncratic vocabulary”. These rules form a directed

graph which is then pruned to create a tree. Solskinnsbakk and Gulla [57] use the

Aprioir algorithm [58] to mine a set of association rules from the tags. Each of these

rules has the relationship of premise and consequence which the authors treat as that

of class and subclass. This is used to construct a tree which is then verified based on

the semantics of each tag.

The application of Latent Dirichlet Allocation (LDA) [59] to generate topics com-

prised of tags is proposed in Tang et al. [60]. Generality can then be calculated

following the reasoning that tags with high frequencies across many topics are more

general than ones that have a high frequencies in a single topic. Relations between

tags are induced based on four divergence measures calculated on the LDA results.

Agglomerative Hierarchical Clustering for Taxonomy Construction [61] avoids explic-

itly computing tag generality by employing agglomerative clustering and selecting

cluster medoids to be promoted upwards in the hierarchy. Cluster medoids are cho-

sen based on a similarity metric calculated as the divergence between a tag’s topic

30

distributions as learned by LDA.

Wang et al. [62] introduce a taxonomy generation method based on repeated

application of k-medoids clustering. As the distance metric necessary for k-medoids

clustering, they propose a similarity score based on the weighted sum of document

and textual similarities. Levels in the hierarchy are created by repeated application

of k-medoids clustering such that for each cluster, the cluster medoid becomes the

parent of all other tags in the cluster.

A supervised learning approach is used in Dong et al. [63] where binary classifiers

are trained to predict a “broader-narrower” relation between tags. LDA is used to

generate topic distributions for tags which act as a basis for three sets of features used

to train the classifier. This approach does not guarantee that the relations between

tags will form a rooted tree.

3.2.3 Methods for Hierarchical Clustering

In an early method, Roy et al. [64] sample a graph from a generative model in a fash-

ion reminiscent of blockmodelling. The model is learned by performing inference on

its parameters via the Metropolis-Hastings algorithm. A consequence of this process

is the generation of a tree describing entity similarity. Nickel et al. [49] perform hier-

archical clustering on latent representations learned by the aforementioned RESCAL

method. Using these latent representations has the advantage of being agnostic to

the underlying hierarchical clustering method used, allowing for flexibility to adapt

to different data.

In an approach which bears similarity to our own, Chen and Reformat [65] describe

each subject in a knowledge graph by its predicate-object pairs. These pairs are then

used to calculate a similarity matrix between subjects on which agglomerative hier-

archical clustering is performed using the extended Ward’s minimum variance [66]

as its measure. Mohamed [67] takes a similar approach wherein subjects which are

described by the same predicate-object pairs are assigned to the same groups. The

31

similarity between these groups is then calculated to construct a hierarchy. An em-

bedding based approach was used in Martel and Zouaq [68] wherein embeddings are

first learned on a knowledge graph before being clustered using hierarchical agglom-

erative clustering and assigned types. This type of clustering was used in the field of

cybersecurity in Ding et al. [69] wherein a bag-of-words representation of a knowledge

graph served as input.

3.3 Problem Description

Given a triple in the form ⟨ei, rr, ej⟩, we can think of predicate-object pairs, ⟨rr, ej⟩,

as tags that describe the subject entity, ei. In this view, each entity that takes on

the role of subject is annotated by tags, tj ∈ Ai, where Ai is the set of tags that

annotate ei. We call these entities documents, di ∈ D, such that the set of all

documents is a subset of all entities, D ⊆ E . Tags are defined as predicate-object

pairs, t := ⟨rr, ej⟩, and belong to the set of all tags, the vocabulary, denoted as V ,

i.e., tj ∈ Ai and Ai ⊆ V . For a concrete example of this notation consider DBpedia,

wherein the entity dbr:Canada is annotated by the tags ⟨dbo:capital,dbr:Ottawa⟩,

⟨dbo:currency,dbr:Canadian dollar⟩, ⟨rdf:type,dbo:Location⟩, and ⟨rdf:type,

dbo:Country⟩ amongst others. In this view, the knowledge base G may be represented

as the set of document-tag tuples G = {⟨d, t⟩ ∈ D ×V}, where ⟨d, t⟩ is the tuple that

relates document d with tag t. We refer to this notation as the tuple structure for

the remainder of the chapter.

Information in knowledge graphs is often structured using an ontology, which pro-

vides semantics to the knowledge graph’s triples through an axiomatic foundation

which defines how entities and predicates associate with one another. A key compo-

nent of most ontologies is the class taxonomy which organizes classes through a set

of class subsumption axioms. These subsumption axioms may be thought of as is-a

relations between classes. For instance, in the DBpedia class hierarchy, the subsump-

tion axioms {dbo:Person→ dbo:Artist} and {dbo:Artist→ dbo:Painter} imply

32

that dbo:Painter is a dbo:Artist and that dbo:Artist is a dbo:Person. Further-

more, since class subsumption axioms are transitive, dbo:Painter is a dbo:Person.

This taxonomy oftentimes takes the form of a rooted tree with a root class of which

all other classes are considered logical descendants of.

The problem of class taxonomy induction from knowledge graphs involves gener-

ating subsumption axioms from triples to build the class taxonomy. We notice that

in most knowledge graphs, subjects are related to their class type by one predicate.

This has the effect of reducing the knowledge graph’s class identifying triples to a

single dimension. The property can be exploited in the tuple structure, since all

class identifying predicates are the same, they can be ignored without loss of infor-

mation. For instance, in DBpedia the predicate which relates subjects to their class

is rdf:type. Thus, when compiling a dataset of class identifying tuples, we can

treat the tags ⟨rdf:type,dbo:Country⟩ and dbo:Country as equivalent. Therefore,

the tuple ⟨dbr:Canada, dbo:Country⟩ preserves all information required to induce a

class taxonomy. This can be exploited by tag hierarchy induction methods which

take documents and their tags as input.

3.4 Proposed Method

Our proposed method uses class frequencies and co-occurrences to calculate similarity

between tags. This approach, inspired by the method proposed by Schmitz, relies on

the intuition that subclasses will co-occur in documents with their superclasses more

often than with classes they are not logical descendants of. Unlike Schmitz’s method

which uses this assumption to generate candidate subsumption axioms, our method

uses similarity to choose a parent tag which already exists in the taxonomy. In this

step, which draws inspiration from Heymann and Garcia-Molina, tags are greedily

added to the taxonomy in order of decreasing generality. Thus, subsumption axioms

induced by our method have to abide by the following rules:

33

• The parent tag has a higher generality than the child tag.

• The parent tag is the tag with the highest similarity to the child tag from the

tags that exist in the taxonomy when the child tag is being added.

We can populate the induced class taxonomy with documents, which has the effect

of hierarchically clustering the knowledge graph’s subject entities. The process for

this is to merely find the class, in the hierarchy, to which the document belongs to and

assign it to that class. We can then treat each class as a cluster and its constituent

documents as cluster elements. The result of this is a hierarchical structure of clusters

annotated by tags and with strong inheritance properties.

As previously mentioned, our approach leverages the tuple structure of a knowledge

graph to induce a class taxonomy in the form of a rooted tree. As such, the first step

is data preprocessing wherein all of a knowledge graph’s class identifying triples are

converted to tuple structure.

3.4.1 Class Taxonomy Induction Procedure

Before describing the taxonomy induction procedure for our method, we define mea-

sures which are calculated on the knowledge graph as required input for our algorithm.

• The number of documents annotated by tag ta is denoted as Da.

• The number of documents annotated by both tags ta and tb is denoted as Dab.

We note that this measure is symmetrical, i.e. Dab = Dba.

• The generality of tag ta, denoted as Ga, measures how general the concept

described by the tag is and how high it belongs in the taxonomy. The generality

is defined as:

Ga =
∑︂

tb∈V−ta

Dab

Db

(3.1)

Where V−ta is the set of all tags excluding tag ta.

34

Algorithm 1 Procedure for Class Taxonomy Induction

Input: knowledge graph in tuple structure in a form of sets D and V ; document
counts annotated by tag(s) D; generality of tags G; decay factor α
Output: induced class taxonomy subsumption axioms T and
T ∗

1: Sort tags in order of decreasing generality Gi, create Vsorted
2: Initialize taxonomy with root tag equal to the tag with highest generality, T =
{{∅ → Vsorted[0]}}

3: Initialize the set of tags that have already been added to the taxonomy, T ∗ =
{Vsorted[0]}

4: for b = 1, 2, ..., |Vsorted| do
5: tb = Vsorted[b]
6: maxSimTag = Vsorted[0]
7: maxSimV alue = 0
8: for ta ∈ T ∗ do
9: Calculate Sa→b using Equation 3.2
10: if Sa→b > maxSimV alue then
11: maxSimTag = ta
12: maxSimV alue = Sa→b

13: end if
14: end for
15: T = {maxSimTag → tb} ∪ T
16: T ∗ = tb ∪ T ∗
17: end for

Having calculated the aforementioned measures, we proceed by sorting tags in the

order of decreasing generality and store them as Vsorted. The first element of this list,

Vsorted[0], is semantically the most general of all tags and becomes the root tag of the

taxonomy. The taxonomy, T , is represented as a set of subsumption axioms between

parent and child tags. Formally, each subsumption between parent tag, tparent, and

child tag, tchild, is represented by {tparent → tchild} such that {tparent → tchild} ∈ T .

The taxonomy is therefore initialized with the root tag as T = {{∅ → Vsorted[0]}}

where ∅ represents a null value, i.e. no parent.

Following initialization, the remaining tags are added to the taxonomy in terms of

decreasing generality by calculating the similarity between the tag being added, tb,

and all the tags already in the taxonomy, T ∗. The tag ta ∈ T ∗ that has the highest

similarity with tag tb becomes the parent of tb and {a → b} is added to T . The

35

similarity between tags ta and tb, denoted as Sa→b, measures the degree to which tag

tb is the direct descendant of tag ta. It is calculated as the degree to which tag tb is

compatible with tag ta and all the ancestors of ta:

Sa→b =
∑︂

tc∈Pa

αla−lc
Db,c

Db

(3.2)

Where Pa is the path in the taxonomy from the root tag Vsorted[0] to tag ta. la and

lc denote the levels in the hierarchy of tags ta and tc, respectively. The levels are

counted from the root tag starting at zero. Thus, the level of Vsorted[0], denoted as

lVsorted[0], is equal to zero, the levels of its children are equal to one, and so on. The

decay factor, α, is a hyperparameter that controls the effect ancestors of tag ta have

on its similarity when calculating Sa→b. By setting the value of α such that 0 < α < 1,

we ensure that the effect is lower the more distant an ancestor tag is. The cases were

α = 0 and α = 1 correspond to ancestors having no effect and equal effect on the

similarity, respectively. We explore the effect various α values have on the induced

class taxonomy in the following section. The full details of our method’s procedure

are outlined in Algorithm 1.

3.4.2 Hierarchical Clustering Procedure

We can use the induced taxonomy as the foundation of a hierarchical clustering of

documents, i.e. the knowledge graph’s subject entities. The taxonomy is used to

initialize the clusters such that each tag in the taxonomy becomes a cluster and the

hierarchical relations between tags are extended to the clusters. The tags may then

be seen as annotations for each cluster. We exploit this in our notation such that

ca is the cluster initialized from tag ta. Documents are assigned to clusters by the

degree to which they belong to a cluster. Belonging of document di to cluster ca,

denoted Bi→a, is calculated as the Jaccard coefficient between the document’s tags,

Ai, and the tags encountered in the path from the root cluster to cluster ca, denoted

36

Algorithm 2 Procedure for Hierarchical Clustering

Input: knowledge graph in tuple structure in a form of sets D and V ; class taxonomy
as subsumption axioms T and T ∗; paths in hierarchy to clusters Pa; decay factor α
Output: cluster hierarchy as subsumption axioms T ; cluster members
C

1: Initialize all clusters C as empty
2: for di ∈ D do
3: maxBelClus = None
4: maxBelV alue = 0
5: for ca ∈ T ∗ do
6: Calculate Bi→a using Equation 3.3
7: if Bi→a > maxBelV alue then
8: maxBelClus = ca
9: maxBelV alue = Bi→a

10: end if
11: end for
12: CmaxBelClus = CmaxBelClus ∪ di
13: end for
14: Prune cluster hierarchy defined by T and C recursively

Pa. Formally, this is:

Bi→a =
|Ai ∩ Pa|

|Ai ∪ Pa|
(3.3)

Each document is added to the cluster to which it has the highest degree of belonging.

We denote the set of documents that belong to cluster ca as Ca. The process of

assigning documents to clusters may be parallelized to increase performance.

This process may induce a hierarchy containing empty clusters which need to get

pruned. Pruning is performed by traversing the hierarchy depth first and removing all

empty clusters. In addition, non-empty clusters which have empty parent clusters are

reattached as the children of their first non-empty ancestor. If a non-empty cluster

has no non-empty ancestors, it becomes the child of the root. The root cluster is

never removed, regardless of whether it is empty or not. The hierarchical clustering

process is summarized in Algorithm 2.

37

3.5 Evaluation

Evaluation of class taxonomy induction methods is difficult as there may be several

equally valid taxonomies for a dataset. Previous works such as Gu et al. [70] and

Wang et al. (2009) [71] have opted for human evaluation, wherein domain experts

assess the correctness of relations between classes. Wang et al. (2012) [62] used

domain experts to rank entire paths on a three point scale. Others, such as Liu et

al. [72] and Almoqhim et al. [73], compare class relations against a gold standard

taxonomy. In this approach, a confusion matrix between class subsumption axioms is

calculated between the induced and gold standard taxonomies. When a gold standard

taxonomy can be established, it is the preferred evaluation method as it provides an

objective measurement; as such, it is the one we use in our work. We use the confusion

matrix to derive the harmonic mean between precision and recall, the F1 score [74],

as our evaluation metric:

precision =
TP

TP + FP
(3.4)

recall =
TP

TP + FN
(3.5)

F1 = 2 ∗
precision ∗ recall

precision+ recall
(3.6)

Where TP , FP , and FN are the number of true positives, false positives, and false

negatives, respectively. Since the F1 score is also used in evaluating the quality of the

cluster hierarchy, we use the notation Tax-F1 to refer to the F1 score calculated on

the induced and gold standard taxonomies.

We evaluate the hierarchical clustering by calculating the F1 score of: the belong-

ing of documents to clusters (Doc-F1); and how well clusters represent the tags in

the vocabulary (Tag-F1). Doc-F1 and Tag-F1 highlight the trade-off between large,

heterogeneous clusters on a strongly heritable hierarchy (favoured by Doc-F1) and

smaller homogeneous clusters on a less heritable hierarchy (favoured by Tag-F1). For

obtaining the former, each cluster inherits all the documents of its descendant clusters

38

and the F1 score is calculated such that a document is correctly assigned to a cluster

if both document and cluster are annotated by the same tag. The latter is obtained

in a way similar to the technique used in Nickel et al. [49]. As before, each cluster

inherits all the documents of its descendant clusters and the F1 score between each

tag and each cluster is calculated. The F1 that is highest among the clusters becomes

the score of the tag.

For the remainder of this section, we first evaluate the effect of our method’s

hyperparameter, α, on each of the four datasets and provide suggestions for selecting

the α value when applying our method to other datasets. This is followed by a

comparison our method to the aforementioned Heymann and Garcia-Molina method,

Schmitz method, as well as results from the literature. We also provide visualizations

of excerpts from the class taxonomies induced by our method on the Life, DBpedia,

and IIMB datasets. Finally, our method’s computational complexity and the effect

of dataset size on induced taxonomies are evaluated.

3.5.1 Datasets

We evaluate the method on four real-world datasets generated from public online

knowledge bases: Life, DBpedia, WordNet, and IIMB. All four datasets as well as

their respective gold standard class taxonomies were generated or acquired during

the month of November 2019.

Life

The Life dataset was generated by querying the Catalogue of Life: 2019 Annual

Checklist (CoL) [75], an online database that indexes living organisms by their taxo-

nomic classification. One hundred thousand living organisms were randomly selected

from the GBIF Type Specimen Names [76], an online checklist of 1226904 organisms,

and queried on CoL at each of their taxonomic ranks to generate the document-tag

tuples. The resulting dataset takes the form such that each organism is a docu-

39

ment and its membership at each taxonomic rank is a tag related by is-a. For in-

stance, the document Canis latrans (coyote) will have the tags ⟨is-a, Mammalia⟩

and ⟨is-a, Canidae⟩. Furthermore, to anchor the class taxonomy to a root tag,

we added the tag ⟨is-a, LivingOrganism⟩ to every document. We note that even

though the number of taxonomic ranks is fixed, most organisms in the database are

not defined on all of them. As such, the number of tags per document varies from two

to ten. In total, there are 100000 documents and 37368 unique tags. Since the dataset

itself is classified in the correct taxonomic order, the Life gold standard taxonomy

could simply be obtained by querying for subsumption axioms from the dataset.

DBpedia

The DBpedia dataset was generated by randomly querying for 50000 unique subjects

in DBpedia for which there exists a triple where the subject is related to a DBpedia

class object (an object having the prefix dbo:) via the predicate rdf:type. These

50000 subjects become the documents in the tuple structure. Following this step, all

the triples for each document having the tag form ⟨rdf:type, dbo:*⟩ were queried

to make the document-tag tuples. (dbo:* represents any object with the prefix dbo.)

In total, 205793 triples were used to create the dataset with 418 unique tags. The

DBpedia gold standard taxonomy was taken from the DBpedia ontology class map-

pings which can be found on the DBpedia website1. At the time of querying, the

ontology had 765 classes, 418 of which were present in the dataset. This difference

made it necessary to include only those subsumption axioms for which parent and

child tags exist in the dataset when computing the confusion matrix. This is similar

to the dataset generated in Ristoski et al. [52] where the number of classes present

in their dataset was 415.

1http://mappings.dbpedia.org/server/ontology/classes/

40

http://mappings.dbpedia.org/server/ontology/classes/

Dataset # Triples # Documents # Tags

Life 726042 100000 37368

DBpedia 205793 50000 418

WordNet 392846 50000 1752

IIMB 4793 1416 82

Table 3.1: Summary of the datasets used in this chapter.

WordNet

The WordNet dataset was generated by querying DBpedia for subjects of types that

exist in WordNet [77], an English language lexical database. Fifty thousand subjects

having a WordNet class object related by rdf:type were queried. In DBpedia, Word-

Net class objects use the yago: prefix, giving the tag format ⟨rdf:type, yago:*⟩.

This process yielded a dataset comprised of 50000 documents and 1752 unique tags

generated from 392846 triples. To generate the WordNet gold standard taxonomy,

DBpedia was queried to learn the relations between WordNet classes through the

rdfs:subClassOf predicate. In this process, yago:PhysicalEntity100001930 is set

as the root class and the taxonomy is built by recursively querying for subclasses

using rdfs:subClassOf as the predicate. This process builds a taxonomy of 30722

tags. To fit the 1752 tags present in the dataset, it was necessary to collapse the gold

standard taxonomy. This was done by removing tags in the gold standard taxonomy

that are missing in the dataset and adopting orphaned tags with the nearest ancestor

existing in the dataset.

IIMB

The IIMB dataset [78] is a benchmark created by the 2010 Ontology Alignment

Evaluation Initiative to evaluate instance matching techniques and tools. The dataset

contains 1416 documents and 4793 triples which describe facts about popular movies

including: titles, genres, actors, locations, etc. The dataset is structured into five

41

top-level tags to which all other tags belong: Location, Language, Film, Creature,

and Budget. We manually added a root tag to anchor the dataset such that there are

82 unique tags in total.

3.5.2 Hyperparameter Sensitivity

We evaluate our method’s sensitivity to the decay factor, α, by performing a hyper-

parameter sweep on each of the four datasets. In this process, our method is applied

five times on each dataset for α values starting at α = 0.05 and increasing by incre-

ments of 0.05 up until α = 0.95. This process is analogous to increasing the relative

importance of ancestor tags when calculating tag similarity. Furthermore, since sim-

ilarity is calculated as a summation, increasing α will favour placing tags lower in

the taxonomy. The F1 scores are calculated and their means at each α value are

displayed graphically in Figure 3.1. For clarity, we omit graphing the mean F1 scores

at α = 0 as the values are disproportionately low for all four datasets (F1 < 0.1).

This is because when α = 0, the similarity gets reduced to Sa→b = Da,b/Db which has

the effect of inducing shallow taxonomies with most tags as children of the root tag.

For class taxonomy induction, cursory inspection of the Tax-F1 scores shows that

there is no clear behaviour that α exhibits which is constant across datasets. This

is also apparent when comparing the optimal α values: 0.95, 0.70, 0.35, and 0.4

for Life, DBpedia, WordNet, and IIMB datasets, respectively. Furthermore, we no-

tice that as α increases, the trend follows three different patterns: stable, generally

increasing, and generally decreasing. A possible reason for the relative stability of

α on the Life dataset is its consistency. Due to the strict requirements for source

datasets to be included in CoL, all entries are well scrutinised. As such, tags will

always appear with their ancestors in the same documents. For example, all 893

instances of the tag Mammalia co-occur with the tag’s ancestors Animalia, Chordata,

and LivingOrganism. In this scenario, there is less information to be gained by in-

corporating information from higher up in the taxonomy. On the other hand, the

42

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α

T
ax

-F
1
S
co
re

Tax-F1 Scores

Life
DBpedia
WordNet
IIMB

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.6

0.7

0.8

0.9

1

α

D
o
c-
F
1
S
co
re

Doc-F1 Scores

Life
DBpedia
WordNet
IIMB

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.4

0.5

0.6

0.7

0.8

0.9

1

α

T
ag
-F

1
S
co
re

Tag-F1 Scores

Life
DBpedia
WordNet
IIMB

Figure 3.1: Sensitivity to α as per Tax-F1, Doc-F1, and Tag-F1 on the Life, DBpeida,
WordNet, and IIMB datasets.

43

DBpedia dataset shows improvement with increasing α values until a peak is reached

and Tax-F1 declines. The increase in induced taxonomy quality with increasing α

values is consistent with the assumption that taking into account a potential parent’s

path is advantageous when selecting a parent. The decline in Tax-F1 after α = 0.8

can be explained by distant ancestor tags having too strong an influence in assigning

parent tags to children. One possible explanation for better Tax-F1 scores of lower

α values on WordNet and IIMB is our method’s overall lower Tax-F1 scores on these

datasets. Errors in the induced taxonomy propagate downwards and their effect in-

creases with the value of α. Thus, in a taxonomy with many errors, it is advantageous

to place a relatively higher value on the similarity between the direct parent tag and

its child, as is done with lower α values.

Broadly, the measures of performance of hierarchical clustering, Doc-F1 and Tag-

F1, follow a similar pattern to Tax-F1. The main reason for this is that hierarchical

clustering is initialized by taxonomy induction. As such, errors present in the taxon-

omy propagate to the clustering procedure. We note two exceptions to this: Doc-F1

and Tag-F1 scores on the WordNet dataset; and Tag-F1 scores on the IIMB dataset.

The former exception does not show decline in clustering performance at α > 0.7,

despite initialization by lower quality taxonomies. We hypothesize that this is due to

the fact that many errors in the WordNet taxonomy occur at lower levels which get

pruned during hierarchical clustering and therefore do not impact Doc-F1 and Tag-F1

scores. The latter exception only shows a decline in Doc-F1 scores at α > 0.4, with

Tag-F1 scores increasing. This is because higher α values induced a deeper hierarchy

which introduces more errors when higher level clusters inherit the documents of their

descendants. Unlike Doc-F1, Tag-F1 is resistant to these errors since only the highest

F1 score is considered in the pairwise comparison between tags and clusters.

In general, it is difficult to predict the optimal α value a priori, however there are

a few rules of thumb to guide this process when applying our method. When there

is no prior information about a nature of the dataset or its expected class taxonomy,

44

Method Life DBpedia WordNet IIMB

Heymann and Garcia-Molina – 0.7982 0.5918 0.2025

±0.0159 ±0.0114 ±0.0068

Schmitz 0.8423 0.8013 0.7943 0.5211

±0.0000 ±0.0000 ±0.0000 ±0.0000

Paulheim and Fümkranz2 [52, 79] – 0.1410 – –

Ristoski et al.2 [52] – 0.5210 – –

Völker and Niepert2 [48] – 0.9950 – –

Our method 0.8625 0.8824 0.7144 0.4444

±0.0040 ±0.0052 ±0.0069 ±0.0000

Table 3.2: Doc-F1 (mean ± standard deviation) on the Life, DBpedia, WordNet, and
IIMB datasets.

we suggest using α values around 0.5 as these values perform well (although not

optimally) in our experiments. Datasets which are complex, or have low co-occurence

rates between ancestor and descendent tags will favour lower α values as these ensure

errors will propagate less through the taxonomy. On the other hand, well structured

datasets will be less affected by varying α values.

3.5.3 Taxonomy Induction

In our experiments, we applied our proposed method to each of the aforementioned

datasets at the α values determined optimal in the previous subsection. Each dataset

was applied five times to account for the stochasticity in sorting tags of equal gen-

erality. The results of our method as well as those of the comparison methods are

summarized in Table 3.2. We implemented Heymann and Garcia-Molina, and Schmitz

methods to the best of our understanding and performed hyperparameter exploration

for their respective hyperparameters on each dataset. After obtaining the optimal

hyperparameters, we ran the methods five times on each dataset and collected the

results. We note that Heymann and Garcia-Molina was not able to terminate suf-

45

ficiently fast enough for us to obtain results on the Life dataset. In the table we

also included the results reported in previous work applied on the DBpedia dataset.

Although the DBpedia dataset was derived similarly to our own, it is not identical

and thus conclusions in comparing these methods to our proposed method should be

drawn cautiously. We indicate these entries in the table with a footnote2.

In general, all tag hierarchy methods achieve encouraging results and our method

outperforms the others on two of the four datasets. We notice that since Tax-F1 mea-

sures the balance between precision and recall values, this suggests that our method is

both capable of inducing subsumption axioms (recall) while ensuring these axioms are

correct (precision). Furthermore, closer inspection of the results reveals that many

of the errors can be categorized by two types, which we illustrate by using results

from the DBpedia dataset. In the first, the order between parent and child tags

are reversed as in the induced {dbo:Guitarist→ dbo:Instrumentalist} when the

correct order is {dbo:Instrumentalist → dbo:Guitarist}. In the second, a tag

is misplaced as the child of its sibling, for instance, the gold standard classification

of educational institutions is {{dbo:EducationalInstitution→ dbo:University},

{dbo:EducationalInstitution→ dbo:College}} while our induced taxonomy gives

the following: {{dbo:EducationalInstitution→ dbo:University},

{dbo:University → dbo:College}}. Finally, our induced taxonomy includes sub-

sumption axioms which are considered incorrect as per the gold standard but may

not be to a human evaluator. An example of this is that our method induced the

subsumption axiom {dbo:SportFacility→ dbo:Stadium} while the gold standard

considers {dbo:Venue → dbo:Stadium} to be the correct parent for dbo:Stadium.

We provide an excerpt of our induced class taxonomies on the Life and DBpedia

datasets in Figure 3.2.

46

LivingOrganism

Animalia

Anthropoda Insecta
Coleoptera Trochida Trochoidea Arene

Diptera Tipuloidea Limoniidae Atarba
Mollusca

Cnidaria

Annelida

Bryozoa

Chordata

Actinopterygii

Amphibia

Anura

Hylidae
Litoria

Hyla

Ranidae Rana

Caudata Plethodontidae

Plethodon

Bolitoglossa

Pseudoeurycea

Aves

Capensis

Dorsalis

Mammalia
Carnivora

Canidae Canis Lupus

Felidae Felis Silvestris
Primates

Reptilia

Archaea

Bacteria

Chromista

Fungi
Ascomycota

Lachnella

Plantae Tracheophyta Magnoliopsida
Astrales Asteraceae Hieracium

Lamiales Lamiaceae Salvia
Protozoa

owl:Thing

dbo:Agent

dbo:Person

dbo:Artist

dbo:Actor dbo:AdultActor

dbo:MusicalArtist dbo:Instrumentalist

dbo:Painter

dbo:Athlete
dbo:Boxer dbo:AmateurBoxer

dbo:WinterSportPlayer

dbo:Organisation dbo:Company
dbo:Airline

dbo:Bank

dbo:Place

dbo:NaturalPlace dbo:BodyOfWater
dbo:Stream

dbo:Lake

dbo:PopulatedPlace
dbo:Country

dbo:Settlement dbo:City

Figure 3.2: Excerpts of the induced class taxonomies for the Life (top) and DBpedia
(bottom) datasets. (Read left to right.)

47

Dataset Doc-F1 Tag-F1

Life 0.9949± 0.0000 0.9499± 0.0000

DBpedia 0.9624± 0.0000 0.9572± 0.0000

WordNet 0.8977± 0.0000 0.8765± 0.0000

IIMB 0.8903± 0.0000 0.7843± 0.0000

Table 3.3: Hierarchical clustering results (mean ± standard deviation) on the Life,
DBpedia, WordNet, and IIMB datasets.

3.5.4 Hierarchical Clustering

As before, we apply our hierarchical clustering scheme on each of the four datasets at

optimal α values as per the Tax-F1 score. We repeat this process five times for each

dataset and report the results in Table 3.3. We notice no variance in results despite

our model’s stochasticity in sorting tags. This is because the Doc-F1 and Tag-F1

metrics are insensitive to the ordering errors between parents and children discussed

earlier. Furthermore, Doc-F1 is higher than Tag-F1 on all datasets. This suggests

that our method is better at inducing clusters with strong inheritance properties and

a high degree of consistency between cluster members and cluster annotation than

it is at representing every class in the taxonomy with a cluster. Closer inspection

of clustering errors shows that the majority of errors are the result of errors carried

over from the taxonomy induction step. Specifically, the most common type of error

is due to missing or incorrect ancestors in the paths of documents’ clusters. Missing

ancestors result in a false negative whereas incorrect ancestors result in a false positive,

decreasing F1 scores.

Figure 3.3 provides an excerpt of hierarchical clustering on the IIMB dataset.

Recall that the induced class taxonomy showed a poor Tax-F1 score on this dataset.

Despite this, the hierarchical clustering obtained from this taxonomy scores highly on

Doc-F1 and Tag-F1 and qualitative assessment confirm that it is well structured and

2 The result for this method was obtained from the literature.

48

coherent. This highlights problems with using gold standards, namely: there may

be multiple valid ways of structuring a taxonomy; and there may be a disconnect

between how the data ought to be structures and how it is structured. Both of these

problems are manifest in the IIMB dataset.

3.5.5 Computational Complexity Analysis

One of the most salient issues that arises when applying class taxonomy induction

methods to real-world knowledge graphs is that of scalability. As mentioned previ-

ously, DBpedia, Yago, and WikiData have upwards of one billion triples each, thus

for a method to operate on these datasets, it has to be computationally efficient. It

is important to note, however, that in inducing a class taxonomy, it is not necessary

to use all the triples available in the knowledge graph but rather to only use as many

as is required to achieve an acceptable result. We discuss this idea in the following

subsection.

The most computationally taxing procedure in taxonomy induction using our

method is that of calculating the number of documents annotated by two tags, Da,b,

which has a worst case time complexity of O(|D||V|2), where |D| and |V| are the

number of documents and tags, respectively. It is important to note, however, that

the worst case only occurs when all documents are annotated by all tags. In this sce-

nario, every subject in a knowledge graph is of every class type in the ontology. The

average computation complexity of our algorithm is O(|D||A|
2
) where |A| is the av-

erage number of tags that annotate a document. In our experiments our method was

faster to terminate than both the Heymann and Garcia-Molina and Schmitz methods

on all four datasets.

49

root

location

anhui burnaby
miami queens

country

canada colombia
germany scotland

city

havana madrid
montevideo prague

actor

james woods brad pitt
meg ryan tom hanks

film

seven swords shane
some girls do spy game

comedy

schtonk scoop
silverado strange brew

musical

school of rock seven brides for seven brothers
singin in the rain south park bigger longer uncut

buddy film

shanghai knights stripes
starsky hutch 2004 swingers

language

english french
polish russian

director

alfred hitchcock andrei tarkovsky
richard linklater stanley kubrick

character creator

george lucas stanislaw lem
stan lee steve ditko

Figure 3.3: Excerpt of the cluster hierarchy induced on the IIMB dataset. Node top indicates cluster’s tag; bottom indicates
cluster’s constituent subjects.

50

Documents # Tags # Triples Optimal α Time (sec) F1

100000 428 422860 0.65 1.6311 0.8810

90000 427 379444 0.65 1.5131 0.8808

80000 425 336084 0.45 1.3340 0.8826

70000 424 292791 0.55 1.1248 0.8847

60000 423 249383 0.70 0.9767 0.8783

50000 418 205793 0.70 0.8556 0.8824

40000 414 164470 0.70 0.6545 0.8783

30000 408 123408 0.55 0.5564 0.8716

20000 392 82381 0.65 0.3652 0.8791

10000 365 41081 0.65 0.2001 0.8425

5000 326 20481 0.70 0.1161 0.8354

2500 284 10330 0.60 0.0670 0.8372

1000 211 4097 0.35 0.0280 0.7632

Table 3.4: Summary of our method’s results on DBpedia datasets at various document
counts, |D|.

Hierarchical clustering of documents involves a pairwise comparison between the

documents and classes in the taxonomy. Thus, the time complexity of performing

hierarchical clustering given the induced class taxonomy isO(|D||V|), allowing for fast

execution even on large datasets. We note that the two metrics used for evaluating

the clustering are relatively costly. Specifically, Doc-F1 has a time complexity of

O(|V|) and Tag-F1 has a time complexity of O(|V2|).

3.5.6 Effect of Dataset Size on Induced Taxonomy

As mentioned previously, although a method’s scalability to large knowledge graphs

is important in the context of the Semantic Web, it’s not the case that larger datasets

will produce better taxonomies. To demonstrate this, we applied our method to DB-

pedia datasets at differing document counts. Each dataset was derived the same way

51

as described in the Datasets subsection, such that all of the smaller DBpedia datasets

are strict subsets of the larger ones. A summary of the results is displayed in Table

3.4. We note that runtime measures the execution of our method without including

time for input and output. We notice that although larger datasets obtain higher

Tax-F1 scores, the incremental increase in Tax-F1 diminishes, and the scores plateau

after 20,000 documents. However, relying on Tax-F1 score as the sole comparison

metric may be misguiding since it is calculated on the tags which exist in the dataset.

Thus since there are 211 unique tags in the DBpedia 1,000 dataset and 428 unique

tags in the DBpedia 100,000 dataset, the induced taxonomy of the latter will be over

twice as large as the former.

3.6 Conclusions

In this chapter, we described the problem of inducing class hierarchies from knowl-

edge graphs and its significance to the Semantic Web community. In our contribution

to this research area, we proposed an approach to the problem by marrying the fields

of class taxonomy induction from knowledge graphs with tag hierarchy induction

from documents and tags. To this end, we reshaped the knowledge graph to a tuple

structure and applied two existing tag hierarchy induction methods to show the vi-

ability of such an approach. Furthermore, we proposed a novel method for inducing

class taxonomies that relies solely on class frequencies and co-occurrences and can

thus be applied on knowledge graphs irrespective of their content. We demonstrated

our method’s ability to induce class hierarchies by applying it on four real-world

datasets and evaluating it against their respective gold standard taxonomies. Finally,

we showed how a class taxonomy may be used as the foundation for a simple hier-

archical clustering scheme. This scheme was applied to the aforementioned datasets

and evaluated on two metrics. Results demonstrate that our approach is capable of

inducing high quality class taxonomies as well as hierarchical clusterings and can be

reliable applied to large-scale knowledge graphs.

52

Chapter 4

Probabilistic Coarsening for
Knowledge Graph Embeddings

This section summarizes the paper Probabilistic Coarsening for Knowledge Graph

Embeddings which is intended for publication at an artificial intelligence or semantic

web conference.

4.1 Introduction

As mentioned in Chapter 2, embeddings are among the most common operations on

knowledge graphs. Despite this, relatively less work has been done on methods of

preprocessing a knowledge graph prior to embedding to yield better results. This

provides the motivation for this work which investigates coarsening as a tool for

knowledge graph embedding. Specifically, a simple embedding meta-strategy that

can be applied to any arbitrary embedding method is proposed. The strategy first

reduces an input knowledge graph – henceforth referred to as a base graph – to a

coarsened graph along with a mapping between the entities in each knowledge graph.

Coarse embeddings are then learned on the coarse graph and mapped back down as

base embeddings. They may then be fine tuned on the base graph to reintroduce

information that was lost in the coarsening procedure. Figure 4.1 outlines the flow of

this approach.

The rationale for coarsening is multifactorial, as pointed out in Chen et al. [80]

53

Ba
se

ea

eb ec

ed

ef

eg
pr

pr pr

pq

pq
pq

Co
ar
se
ne

d

eab
ec

ed

efg

pr

pr

pq

pq

Co
ar
se
ne

d

eab
ec

ed
efg

Ba
se

ea
eb ec

ed ef
eg

Figure 4.1: Toy example demonstrating the proposed embedding strategy. The logical
flow is guided by dashed line arrows, starting in the bottom left corner and proceeding
clockwise.

and Liang et al. [81]. Specifically:

• Coarsening reduces knowledge graph size whilst preserving global structure,

potentially revealing higher-order features.

• Training schemes which rely on stochastic gradient descent may learn embed-

dings that fall in local minima. Initializations learned on the coarse graph may

be more resistant to this problem.

• Structurally equivalent entities are embedded jointly in coarse graphs, reducing

training complexity.

We evaluate our strategy on the entity classification task using four real-world datasets

and perform a pairwise comparison against common embedding methods. The results

54

indicate that embedding on a coarse graph produces faster and in many cases higher

quality embeddings.

In summary, the contributions of the work in this chapter are as follows. To the

best of our knowledge, we are the first to use coarsening as an explicit preprocessing

strategy for generating knowledge graph embeddings. To this end, we propose a novel

probabilistic coarsening procedure that reduces knowledge graph size while preserving

its global structure. The results of our empirical evaluation allow us to conclude that

coarsening is a recommended strategy regardless of the underlying embedding method

being used.

4.2 Related Work

Research in graph representation, including graph embeddings, has a long history

rooted in mathematics with early methods discussed in a survey by Archdeacon [82].

More recently, deep learning has been leveraged for graph embeddings to achieve state-

of-the-art results. For instance, DeepWalk [83], Large-scale Information Network

Embedding [84], and node2vec [85] sample random walks on a graph and treat them

as input words to the skip-gram language model [86]. The intuition behind this

approach is that nodes which are sampled in the same random walks are more similar

semantically and should have similar embeddings. Another class of deep approaches,

Graph Convolution Networks (GCN) [87, 88], utilize the convolution operator to learn

neighbourhood information for graph entities. Extensions and derivatives of GCNs

are ample; for a comprehensive discussion of these methods we refer readers to Wu et

al. [89]. Autoencoders use neural networks to reduce an input to a latent embedding

before reconstructing the embedding back to the original input. This approach has

shown success in generating graph embeddings in works by Bellini et al. [90] and

Simonovsky and Komodakis [91].

Meta-strategies which preprocess graphs into hierarchies before applying embed-

ding methods have been shown to produce higher quality embeddings at reduced

55

training complexity. The first of these proposed, HARP [80], sequentially reduces

the input graph into a hierarchy of progressively coarser graphs. These coarse graphs

are then embedded starting with the coarsest graph such that their embeddings serve

as the initialization of the graph directly below it in the hierarchy. This idea was

extended in Multi-Level Embedding [81] and GOSH [92], both of which modify the

coarsening procedure.

Knowledge graphs present structural traits which render the aforementioned meth-

ods ill-suited for their embedding. Specifically, knowledge graphs are directed and

labelled in their relations between entities. In light of this, much research has been

devoted to developing methods which account for these complexities. For instance,

RDF2Vec [93] uses breadth-first graph walks on the skip-gram model to generate em-

beddings. GCNs have been extended to knowledge graphs with the Relational Graph

Convolution Network (R-GCN) [94] which aggregates predicate specific convolutions

of the original model. ConvE [95] also leverages the convolution operator in a neural

framework by stacking embeddings as a matrix and convolving them in two dimen-

sions. Translation based methods such as TransE [96] apply the intuition that subject

embeddings should be near object embeddings when translated by valid correspond-

ing predicates. Factorization models such as the aforementioned RESCAL [50] and

DistMult [97] learn embeddings by factorizing the knowledge graph adjacency tensor

into the product of entity embeddings and relation specific translation matrices. Deep

reinforcement learning has also shown promise in this domain with MINERVA [98]

which learns knowledge graph paths to find the correct entity in incomplete triples.

A recent and comprehensive discussion of knowledge graphs embedding methods can

be found in Ji et al. [99].

4.3 Problem Description

Recall from Chapter 2 that the task of knowledge graph embedding is to find a

function, f , which maps each entity to the embedding space f : E ↦→ R
|E|×d where d

56

is the dimensionality of the embedding space such that d << |E||R|.

Given an arbitrary knowledge graph embedding function, f , the task is to find a

mapping which reduces a base graph, G, to a coarse graph, G ′, such that |G ′| < |G|.

This non-injective surjective mapping, denoted Ψ : E ↦→ E ′ where E ′ is the set of

entities in the coarse graph, should preserve the global structure of the base graph

and be computationally efficient so as to not bottleneck the proposed strategy. Having

found Ψ, the proposed strategy can trivially be carried out as outlined earlier.

The tuple structure introduced in Chapter 3 is extended such that each subject

is now identified by both incoming and outgoing relations. Thus, a tag t, is defined

as a predicate-entity pair that describes another entity, t := ⟨rp, ej⟩ | ⟨ei, rp⟩. Order

between a tag’s predicate and entity corresponds to whether the tag is incoming or

outgoing. Thus, each triple in G corresponds to two entity-tag mappings. As before,

these mappings are expressed as sets such that each entity ei has a corresponding set

of tags which annotate it, denoted Ai.

4.4 Proposed Strategy

Our proposed strategy embeds a base graph via an intermediary coarse graph. In

this process, the coarse graph is first generated from the base graph before being

embedded. Coarse embeddings are then mapped back down to the base graph and

fine tuned. Our strategy may be divided into the following three steps:

1. Probabilistic graph coarsening reduces the base graph to a smaller, coars-

ened graph and returns an entity mapping between the two graphs.

2. Coarse graph embedding applies a predetermined embedding method on the

coarse graph to obtain coarse embeddings.

3. Reverse mapping and fine tuning maps coarse embeddings back down to

the base graph to obtain base embeddings. Base embeddings may be fine tuned

on the base graph.

57

The remainder of this section describes each of the these steps in detail. The intuition

for this process is described visually in Figure 4.1 while its sequence is outlined in

Algorithm 3.

4.4.1 Probabilistic Graph Coarsening

In this step, the base graph is reduced to create a coarse graph, denoted G ′, such that

|G ′| < |G|. This procedure involves collapsing structurally similar entities in G to one

entity cluster in G ′. Relations in G are extended to G ′ such that a cluster’s relations

are the union of its constituent entities’ relations. Collapsing entities is divided into

two stages, designed to preserve the first order and second order proximities of the

base graph [84]. This allows the base graph to be reduced of structural redundan-

cies, making it more computationally manageable and potentially revealing its global

and most salient features. The mapping between base entities and coarse entities is

represented by Ψ : E ↦→ E ′. Coarsening is demonstrated visually on the left half of

Figure 4.1.

Collapsing First Order Neighbours

Preserving first order proximity refers to the notion that entities should be embedded

proximally to their first order (i.e. one-hop) neighbours. By collapsing entities with

their first order neighbours, proximity is ensured as collapsed entities share identi-

cal embeddings. In undirected, single predicate graphs, edge collapsing [80, 100, 101]

finds the largest subset of edges such that no two edges are incident to the same vertex.

Vertices incident to each edge in this set are then collapsed, yielding a graph coars-

ened to preserve first order proximity. Edge collapsing may be applied to knowledge

graphs by assuming undirected graph relations. This approach proves too liberal in

its coarsening, however, since the cost of coarsening is increased in knowledge graphs

due to loss of predicate information. Graphs without labelled edges do not suffer

from this issue. In response, we restrict edge collapsing to entities whose collapsing

58

incurs no loss of predicate information other than predicates which are incident to

both entities. Formally, entity ea is collapsed with eb if:

{t ∈ Aa : eb /∈ t} ⊆ {t ∈ Ab : ea /∈ t} (4.1)

First order entity collapsing is demonstrated in the lower left quadrant of Figure

4.1 where entity eg is collapsed with its neighbour ef to form entity cluster efg in the

coarse graph. We note that entities ea and eb are also valid candidates for first order

collapsing with ed. This demonstrates the necessity of initially performing second

order neighbour collapsing since ea and eb are structurally equivalent and thus more

similar to one another than to ed. As such, first order collapsing is performed after

second order collapsing as seen in Algorithm 3 where it is captured in lines 11 to 18.

Collapsing Second Order Neighbours

Second order (i.e. two-hop) neighbours are two entities which share a first order

neighbour. The rationale for preserving second order proximity is discussed in [84]

and predicated on the intuition that entities which have many common first order

neighbours tend to exhibit similar structural and semantic properties. As such, they

should be proximal to one another in the embedding space. In Figure 4.1, we see that

second order neighbours ea and eb have identical tag sets (i.e. Aa = Ab) and are thus

structurally equivalent. Collapsing these entities and embedding them jointly ensures

preservation of second order proximity in the embedding space while incurring no

loss of information. We apply this reasoning to our coarsening procedure. Namely, if

two second order neighbours exhibit a high degree of structural similarity, we collapse

them in the coarse graph. We measure the similarity between a pair of second order

neighbours as the Jaccard coefficient between their tag sets:

Sim(ea, ec) =
|Aa ∩ Ac|

|Aa ∪ Ac|
(4.2)

Where Sim(ea, ec) is the similarity between ea and ec such that 0 ≤ Sim(ea, ev) ≤ 1.

Second order neighbours are collapsed if their similarity is greater than or equal to

59

a threshold, α, which is chosen such that 0 < α ≤ 1. The value of α dictates

the coarseness of the graph with lower α values resulting in smaller, coarser graphs.

This process may be seen as a relaxation of Structural Equivalence Matching (SEM)

proposed in Liang et al. [81] which collapses second order neighbours only if they are

structurally equivalent. In other words, SEM is analogous to our method at α = 1;

collapsing entities ea and ec when Aa = Ac. Second order collapsing is summarized

in lines 2 to 10 of Algorithm 3.

Neighbour Sampling

The pairwise comparison between entities and their first and second order neigh-

bourhoods has a worst case time complexity of O(|E|2) and is thus computationally

infeasible for large scale knowledge graphs. To overcome this, we propose a scheme

for sampling neighbours using constrained random walks. To obtain a first order

neighbour for entity ea, we first sample a tag from its tag set:

t1 ∼ Uniform(Aa) (4.3)

Where t1 represents one hop in a random walk on the base graph. The first order

neighbour eb is then extracted from t1:

eb = t1 ∩ E (4.4)

Note that since t1∩E is a singleton set, we can abuse the = symbol such that eb = {eb}.

The predicate pr = t1∩P is used as a constraint in sampling a second order neighbour

for ea. Specifically, given ea and its first order neighbour eb on predicate pr, we only

sample second order neighbours which are incident to eb on pr:

t2 ∼ Uniform({t ∈ Ab : pr ∈ t ∧ ea /∈ t}) (4.5)

The second order neighbour ec is extracted from t2 analogously to eb:

ec = t2 ∩ E (4.6)

60

Sampled neighbours are collapsed if they meet the aforementioned requirements, re-

sulting in a stochastically derived coarse graph.

We sample η ≥ 1 neighbours for each entity resulting in a O(|E|η) time complexity

for our sampling scheme. As a hyperparameter of coarsening, η is chosen a priori

allowing for flexibility to account for knowledge graph size. In practice we see that

even small values of η yield encouraging results. The intuition behind this may be

summarized as follows:

• Entities which meet the criteria for collapsing are likely to have smaller neigh-

bourhoods.

• Entities that belong to smaller neighbourhoods have a higher chance of getting

sampled as candidates for collapsing.

This allows our strategy to be performed with little added computational overhead.

We note that reading a dataset has a time complexity of O(|G|) which may itself be

more computationally taxing than coarsening on dense knowledge graphs.

4.4.2 Coarse Graph Embedding

Having coarsened the base graph, coarse embeddings are obtained by applying an

arbitrary embedding method on the coarse graph. Since the coarse graph has all the

properties of its base counterpart, no additional changes to the embedding method

are necessary, merely a different input. Due to there being fewer entities in the coarse

graph than its base counterpart, coarse embeddings may require fewer training steps

resulting in faster training times. We use the notation f(G ′) to denote the embedding

of coarse graph G ′ to yield coarse embeddings E′:

E′ = f(G ′) (4.7)

Line 19 in Algorithm 3 places this step in the context of our whole strategy.

61

Algorithm 3 Coarse knowledge graph embeddings

Input: base graph G; collapsing threshold α; random walk count η
Output: base embeddings E

1: Initialize G ′ and Ψ
2: for all ea ∈ E do
3: for iteration in 1,2,...,η do
4: Obtain second order neighbour ec using (4.5) and (4.6)
5: Calculate Sim(ea, ec) using (4.2)
6: if Sim(ea, ec) ≥ α and ec /∈ Ψ then
7: Collapse ea with ec; Update G

′ and Ψ
8: end if
9: end for
10: end for
11: for all ea ∈ E do
12: for iteration in 1,2,...,η do
13: Obtain first order neighbour eb using (4.3) and (4.4)
14: if (4.1) holds for ea and ea /∈ Ψ then
15: Collapse ea into eb; Update G

′ and Ψ
16: end if
17: end for
18: end for
19: Obtain coarse embeddings E′ using (4.7)
20: for all ea ∈ E do
21: Reverse map base embedding E[ea] using (4.8)
22: end for
23: Fine tune base embeddings E using (4.9)

4.4.3 Reverse Mapping and Fine Tuning

Coarse embeddings are extended down as base embeddings E by reversing the

mapping obtained in the coarsening step:

E[ea] = E′[Ψ(ea)] (4.8)

Where E[ea] indexes the base embedding for ea. A consequence of reverse mapping is

that entities which were coarsened together share identical embeddings. In applica-

tions which rely on the distinction between these entities, this property is not desired.

As such, base embedding may be fine tuned by embedding E with respect to the base

graph using E′ as initialization. This ensures that structural information which was

lost in the coarsening process is reintroduced to base embeddings and collapsed en-

62

tities become delineated. Furthermore, the training process may be less likely to get

stuck in local minima due to its global initializations. We use the following notation

to capture fine tuning E using E′ as initialization:

E = f(G|E′) (4.9)

Reverse mapping and fine tuning are described in lines 20 to 23 of Algorithm 3 as the

final steps in our strategy.

4.5 Evaluation

We evaluate our strategy on the entity classification task as performed in Schlichtkrull

et al. [94] and Ristoski and Paulheim [93] which involves embedding a knowledge

graph and using the embeddings to infer entity labels. Our strategy is compared

pairwise against the baseline methods used in the embedding step. This allows us

to measure whether our coarsening strategy is justified in comparison to using the

baseline methods conventionally. We use three baseline methods to evaluate our

strategy: RDF2Vec, R-GCN, and TransE. These methods were selected to capture

the diversity of approaches to knowledge graph embedding. We use the notation C(x)

to refer to our strategy applied to baseline embedding method x.

4.5.1 Datasets

We use four canonical datasets from Schlichtkrull et al. in our evaluation: MUTAG,

AIFB, BGS, and AM. Each dataset consists of a knowledge graph in Resource Descrip-

tion Framework format and labels for a subset of its entities. We mirror Schlichtkrull

et al. in removing knowledge graph relations which are on predicates that correlate

strongly with its labels. Statistics for each dataset are provided in Table 4.1. What

follows is a brief description of each dataset.

• MUTAG depicts the properties and interactions of molecules which may or

may not be carcinogenic. We remove the labeling predicate isMutagenic from

63

Dataset MUTAG AIFB BGS AM

Triples 74227 29043 916199 5988321

Entities 23644 8285 333845 1666764

Predicates 23 45 103 133

Labeled 340 176 146 1000

Classes 2 4 2 11

Table 4.1: Summary of datasets used in the evaluation.

the dataset.

• AIFB reports the work done at the AIFB research group and labels its members

by affiliation. We remove predicates employs and affiliation.

• BGS captures geological data from the island of Great Britain and is used to

predict the lithogenicity of rocks. As such, we remove the hasLithogenesis

predicate.

• AM describes and categorizes artifacts in the Amsterdam Museum. We remove

the materials predicate as it correlates with artifact labels.

4.5.2 Procedure

Embeddings were learned using each of the baseline embedding methods on the base

graph and on the coarse graph as per our strategy. To assess the quality of these

embeddings, entity classification was performed by training a support vector machine

on 80% on labeled entities and testing on the remaining 20% using splits provided

in Ristoski et al. We use the accuracy of classification on the testing entities as the

metric of our of strategy’s performance. To account for stochasticity in this process,

embeddings were learned and evaluated ten times for each dataset.

To obtain optimal results, we set aside 20% of the training entities as valida-

64

Method MUTAG AIFB BGS AM

RDF2Vec 0.7500 0.9111 0.7828 0.8758

±0.0392 ±0.0117 ±0.0327 ±0.0143

C(RDF2Vec) 0.7956 0.9167 0.8828 0.8778

±0.0340 ±0.0000 ±0.0178 ±0.0211

Change 6.1%* 0.6% 12.8%* 0.2%

R-GCN 0.7397 0.9528 0.8345 0.8833

±0.0286 ±0.0264 ±0.0424 ±0.0197

C(R-GCN) 0.7294 0.9694 0.8690 0.8828

±0.0242 ±0.0088 ±0.0317 ±0.0138

Change -1.4% 1.7%* 4.1%* -0.1%

TransE 0.7397 0.8722 0.6793 0.4207

±0.0422 ±0.0397 ±0.0371 ±0.0143

C(TransE) 0.7412 0.9056 0.7759 0.4955

±0.0368 ±0.0299 ±0.0335 ±0.0179

Change 0.3% 3.8%* 14.2%* 17.7%*

Table 4.2: Results of pairwise comparison between our strategy and baseline embed-
ding methods as measured by accuracy (mean ± standard deviation) obtained on
testing entities for each dataset. Asterisk (*) indicates superior performance as per
Student’s t-test at 0.05 level of significance. Underline indicates top performance on
dataset, regardless of baseline method.

tion for hyperparameter selection and to prevent overfitting. In magnanimity, we

used embedding hyperparameters which were selected on validation results obtained

on the base graphs. For coarsening hyperparameters, we performed exploration on

α ∈ {0.25, 0.5, 0.75, 1} and used η = 10 in all of our experiments. The optimal hyper-

parameters for each dataset and baseline method may be found with our published

code.

65

Dataset MUTAG AIFB BGS AM

Triples 52179 20134 501722 4080981

Change -29.7% -30.7% -45.2% -31.8%

Entities 16115 2801 78335 944759

Change -31.8% -66.2% -76.5% -43.3%

Predicates 23 43 97 129

Change 0% -4.4% -5.8% -3.0%

Table 4.3: Percent reduction in coarse graphs relative to base graphs at α = 0.5 and
η = 10.

4.5.3 Results

The results of entity classification are summarized in Table 4.2. Our strategy im-

proved on the baseline in ten of the twelve experiments, seven of which were statisti-

cally significant. Furthermore, we were able to achieve state-of-the-art performance

on three of the four datasets, albeit using different baseline methods. Our strategy

appears to perform worse on R-GCN relative to the other baselines. The reason

for this may be that coarsening produces graphs with a larger proportion of highly

connected hub entities, which is a structural weakness of R-GCN as pointed out by

its authors. Finally, we see that datasets with knowledge graphs that have a higher

degree of reduction at α = 0.5 and η = 10 perform better. This is because not all

knowledge graphs are equally suitable candidates for coarsening. Namely, knowledge

graphs which exhibit a high degree of structural equivalency between entities loose

less information in the coarsening process. We see this in the AIFB and BGS datasets

where more than half of their entities get collapsed in the coarsening step as shown

in Table 4.3.

66

0 0.5 1 1.5 2 2.5

·106

0.65

0.7

0.75

0.8

0.85

Training steps

A
cc
u
ra
cy

MUTAG

RDF2Vec
C(RDF2Vec)

0 0.2 0.4 0.6 0.8 1

·106

0.66

0.68

0.7

0.72

0.74

Training steps

MUTAG

R-GCN
C(R-GCN)

0 2 4 6 8

·107

0.7

0.72

0.74

0.76

Training steps

MUTAG

TransE
C(TransE)

0 1 2 3

·105

0.85

0.9

0.95

1

Training steps

A
cc
u
ra
cy

AIFB

R-GCN
C(R-GCN)

0 0.5 1 1.5 2 2.5

·105

0.5

0.6

0.7

0.8

0.9

1

Training steps

AIFB

RDF2Vec
C(RDF2Vec)

0 0.5 1 1.5 2 2.5 3 3.5

·107

0.7

0.8

0.9

1

Training steps

AIFB

TransE
C(TransE)

0 0.2 0.4 0.6 0.8 1 1.2

·106

0.6

0.7

0.8

0.9

Training steps

A
cc
u
ra
cy

BGS

RDF2Vec
C(RDF2Vec)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

·107

0.6

0.7

0.8

0.9

Training steps

BGS

R-GCN
C(R-GCN)

0 0.2 0.4 0.6 0.8 1

·109

0.6

0.65

0.7

0.75

0.8

Training steps

BGS

TransE
C(TransE)

0 2 4 6 8

·106

0.5

0.6

0.7

0.8

0.9

Training steps

A
cc
u
ra
cy

AM

RDF2Vec
C(RDF2Vec)

0 2 4 6

·107

0.4

0.5

0.6

0.7

0.8

0.9

Training steps

AM

R-GCN
C(R-GCN)

0 2 4 6

·109

0.3

0.35

0.4

0.45

0.5

0.55

Training steps

AM

TransE
C(TransE)

Figure 4.2: Pairwise comparison between baseline method and our strategy demon-
strating performance (accuracy) as a function of the number of training steps per-
formed for each dataset.

67

Figure 4.2 plots the performance of our strategy compared to baselines when in-

creasing the number of training steps performed. Due to computational constraints,

we trained the embeddings up to fifty epochs. It is possible that given enough train-

ing, baseline methods could catch up in performance to our coarsening strategy as

can be seen on the AM dataset using TransE. This, however, still demonstrates that

coarse graphs produce quality embeddings faster than embedding on base graphs.

This is further confirmed by RDF2Vec on AIFB and AM, and R-GCN on MUTAG

which show similar trendlines with the coarsened counterpart requiring fewer training

steps. This suggests that our strategy is faster to train than its baseline counterparts.

4.6 Conclusions

In this chapter, we introduced a simple meta-strategy for embedding knowledge

graphs that relies on coarsening as a preprocessing step to obtain a reduced knowl-

edge graph prior to embedding. To this end, we adapted existing graph coarsening

concepts to knowledge graphs and introduced a novel entity collapsing and neigh-

bour sampling scheme. Our evaluation demonstrates that such an approach results

in faster and oftentimes more accurate knowledge graph embeddings. Coupled with

the fact that our strategy incurs little overhead costs, we conclude that graph coars-

ening is a recommended preprocessing step before applying any existing knowledge

graph embedding method.

68

Chapter 5

Neural Blockmodelling for
Knowledge Graphs

This chapter is a modified extension of the paper Neural Blockmodelling for Multilayer

Networks published in the 2021 International Joint Conference on Neural Networks

[102]. The purpose of the work presented in this chapter is to serve to demonstrate

the viability of using blockmodels in the context of knowledge graphs.

5.1 Introduction

In this chapter we focus on the fusion of two common approaches to knowledge graph

modelling: blockmodelling and embeddings. As mentioned in Chapter 2, blockmodels

impose prior distributions on the structure of the graph. This allows for flexibility in

modelling since different structural priors can shape the graph to meet the demands

of a specific task. This approach is limited, however, in that it is difficult to jointly

model entities and learn deep entity representations. Furthermore, they usually rely

on complicated posterior inference schemes to learn the model such that minor struc-

tural changes may not be easy to solve. Embedding models, on the other hand, are

model capable of capturing deep entity representations and thus achieve state-of-the-

art performance on different measures of knowledge graph modelling. However, due

to them only performing entity embeddings, they have to be used in conjunction

with other classification or clustering methods since they do not perform these tasks

69

explicitly.

In this regard, we propose a neural model in an attempt to overcome the short-

comings and leverage the strengths of the aforementioned approaches. Our model

allows for simultaneously learning entity embeddings while assigning each entity with

a community membership distribution and modelling community relations. To han-

dle knowledge graphs, we propose an embedding for each predicate in the graph for

mixing with community relations when generating the graph. We are able to achieve

this by organizing each of these components in a neural network architecture. To the

best of our knowledge, this fusion of blockmodelling and embedding approaches is the

first of its kind in a knowledge graph context. We evaluate our model by performing

three tasks which aim to demonstrate the different capabilities of our model: link

prediction, entity classification, and community detection.

5.2 Related Work

We divide our discussion of related work into two classes of approaches to graph

modelling: blockmodels and embedding models. Both of these approaches provide

inspiration for our model and may be viewed as a separate components of it which

we combine in a neural network framework.

5.2.1 Stochastic Blockmodels

The seminal work in this area is the Stochastic Blockmodel [103] which partitions

entities into a fixed number of communities and models the relations between them

as those of their communities. Community relations are modelled via a community

relations matrix which assigns a degree to all pairwise relations between the com-

munities in the model. This idea was extended to the infinite case allowing for an

a priori unspecified number of communities via the Chinese restaurant process [20]

in the Infinite Relational Model (IRM) [104]. A variant which relaxes the notion of

community membership to allow for entities belonging to multiple communities is the

70

aptly named Mixed Membership Stochastic Blockmodel (MMSB) [15]. By allowing

for mixed membership, the model is better able to capture entities whose belonging to

a community is not crisp. For instance, the belonging of tomatoes to the community

of fruits is not perfect since it can be considered a vegetable in certain contexts such

as in cooking. This idea was generalized to the infinite case in the Dynamic Infinite

Mixed Membership Stochastic Blockmodel [105]. We provide a detailed description

of the MMSB in the next section. All of the aforementioned models, however, op-

erate on graphs wherein entities are related to one another through the same type

of predicate, making them unsuitable for application to knowledge graphs without

modification.

The underlying structure of a knowledge graph is that of a multilayer graph wherein

entities interact with one another through different types of relations, represented as

different types of predicates in the graph. These predicates may be thought of as

separate layers of graphs which share the same entities. Multilayer graphs have also

received considerable attention in stochastic blockmodelling. Perhaps the simplest

approach is to aggregate the layers in the multilayer graph to a single layer before

applying a conventional blockmodelling approach as was done in Berlingerio et al.

[106]. A closely related approach is to model each layer in the graph independently as

done in Barigozzi et al. [107] and aggregate the results afterwards. These approaches

offer limited success as they don’t capture the interlayer dependencies in the multilayer

graph and treat each layer as equally valuable in its content during modelling, as

pointed out by Paul and Chen [108]. To remedy this, the authors propose a multilayer

extension of the aforementioned Stochastic Block Model, aptly named the Multi-Layer

Stochastic Blockmodel, which modifies the original community relations matrix to a

community relations tensor to account for graph multilayeredness. Analogously, a

multilayer extension for the MMSB was proposed by De Bacco et al. [109].

Dynamic blockmodels are a subclass of multilayer blockmodels which are designed

to model the changes that occur in a graph over time. These temporal changes, or

71

time-steps, correspond to different predicates in a graph. The key difference in the

approach of temporal blockmodels with respect to multilayer blockmodels is that they

model graph relations based on previous time-steps whereas multilayer blockmodels

model graph relations irrespective of temporality. The Dynamic Mixed Membership

Stochastic Blockmodel (dMMSB) [110] extends the MMSB for this purpose by using a

Markov model to capture the temporal changes in a graph. The Deep Dynamic Mixed

Membership Stochastic Blockmodel (DDBM) [111] factorizes the community relations

matrix to avoid the problem of missing community relations. In addition to this, it

utilizes a long short-term memory cell to model the dynamic changes in a graph. The

Fragmentation Coagulation Mixed Membership Stochastic Blockmodel (fcMMSB)

[112] uses the discrete fragmentation coagulation process [113] to allow for modelling

appearances and disappearances of communities over time. A comprehensive review

of stochastic blockmodels and their applications is provided by Lee and Wilkinson

[114].

5.2.2 Embedding Models

A brief overview of embedding models for knowledge graphs was provided in the

discussion of related works in Chapter 4. We supplement this by drawing attention

to several embedding models for multilayer graphs which are used in the comparison

procedure of our evaluation.

To the best of our knowledge, the first methods for specifically generating deep

embeddings on multilayer graphs are the three variants proposed in Principled Multi-

layer Network Embedding (PMNE) [115]. The first two variants rely on aggregation,

either on the level of graph relations or embeddings. The third extends random walk

sampling to account for multiple relation types and runs an optimization algorithm

similar to node2vec. Multiplex Network Embedding (MNE) [116] models embeddings

as the sum of a base embedding, which is shared across relation types, and relation-

specific embeddings. As with the previous methods, optimization is performed by

72

sampling random walks and applying the skip-gram algorithm. A multilayer exten-

sion of DeepWalk, M-DeepWalk [117], was proposed which first performs DeepWalk

on all the relation layers together and then use a deep neural network to refine the

embeddings.

5.3 Problem Description

Our model is formulated as a blockmodel and must therefore generate a knowledge

graph as its output. Specifically, we want to generate the adjacency tensor of a

knowledge graph, G, as defined earlier. Recall that in this formulation, there exists

a relation from entity ei to entity ej on predicate rr if there is a corresponding value

of 1 in the adjacency tensor. Thus, given the indices for ei, ej, and rr our model will

output a probability value of seeing corresponding relation in the knowledge graph.

5.4 Model Description

We introduce our model by first describing the model from which it draws inspira-

tion, the aforementioned MMSB. Indeed, our model may be viewed as a multilayer

extension of the MMSB in a neural framework. Introducing our model in this context

allows us to better draw attention to the similarities and differences between the two

models.

5.4.1 Mixed Membership Stochastic Blockmodel

Recall that in blockmodelling, relations between entities are modelled as those of

their respective communities. In the MMSB, the relation probabilities between com-

munities are captured in the K ×K community relations matrix, C, where K is the

predefined number of communities. The probability of a relation from an entity in

community tp to an entity in community tq is thus equal to the entry cpq, indicating

the value at the pth row and qth column of C. Community relations are drawn from

73

the Beta distribution:

cpq ∼ Beta(λ1, λ2) (5.1)

Where λ1 and λ2 are parameters for the Beta distribution and thus hyperparameters

of the model. Entity membership to communities is modelled by a K-dimensional

community membership vector, ai, such that its values specify the probability distri-

bution of entity ei belonging to each of the K communities. It is modelled by the

Dirichlet distribution, a conjugate prior of the multinomial distribution:

ai ∼ Dirichlet(α) (5.2)

Where α is the parameter of the Dirichlet distribution. When modelling gij, these

community membership vectors are used to obtain two community indicator vectors,

zi→j and zi←j. The arrows indicate the sender’s (→) and receiver’s (←) communities

in the relation from entity ei to entity ej. This means that entity ei’s community

indicator is dependent on the entity it is interacting with, entity ej, as well as its

role (sender or receiver) in the relation. Community indicators are drawn from the

multinomial distribution parametrized by the community memberships:

zi→j ∼ Multinomial(ai) (5.3)

zi←j ∼ Multinomial(aj) (5.4)

With these blocks in place, zi→j and zi←j are used to index C for the community

relation probability, which is then extended as the probability of a relation from

entity ei to entity ej. Given the relation probability, we can then generate the graph

from the Bernoulli distribution:

g′ij ∼ Bernoulli(zi→jCzi←j) (5.5)

Posterior inference is performed on the parameters using Markov chain Monte Carlo

methods such as Gibbs sampling or variational inference. Figure 5.1 depicts the

graphical representation of the MMSB using plate notation.

74

gij

zi→j

zi←j

ai

aj

α

C

λ1 λ2

Figure 5.1: Plate diagram for the MMSB.

5.4.2 Proposed Model

Structurally, our model is an adaptation of the MMSB with five key differences:

• Entities are assigned an embedding that’s used to generate community mem-

bership distributions.

• Community indicators are equivalent to community memberships; we do not

draw them from community memberships.

• Relations between two communities are modelled by a community relations

vector as opposed to a scalar variable.

• A predicate embedding is mixed with community relations to account for dif-

ferent relations in the graph.

• Our model is structured in a neural framework, eliminating the need to solve

for posterior inference as parameters can be inferred with stochastic gradient

descent.

To clarify the connections between the two models, we adopt the notation introduced

in the MMSB when denoting similar structures in our model.

75

gijr

ai

aj

bi

bj

C

pr

Figure 5.2: Graphical representation of MNB.

Entities are embedded in an E-dimensional embedding space via embedding vec-

tors such that each entity ei has a corresponding embedding bi. Entity embeddings

are then used to generate the entity’s community membership vector, ai, which is

a K-dimensional probability distribution analogous to the one of the MMSB. The

embedding dimension, E, and the number of communities, K, are hyperparame-

ters of the model and chosen independently of one another. The embeddings are

transformed into community memberships using an artificial neuron with a Softmax

activation function:

ai = Softmax(Rbi + s) (5.6)

Where R is a K×E weight matrix and s is a K-dimensional bias weight. Since com-

munity memberships are not sampled, they are deterministic and independent of the

other entity in the relation. Furthermore, this allows for a more relaxed understand-

ing of membership since a entity may draw information from several communities in

modelling an relation.

Community relations are modelled in a K × K × A community relations tensor,

C. In this view, the relation from community tp to community tq is captured by the

A-dimensional vector Cpq. A is a hyperparameter of the model which determines the

size of the community relation vector. The community relation vector for the entity

relation from entity ei to entity ej is indexed by the community memberships of the

76

Algorithm 4 Generative Procedure for MNB

Input: Knowledge graph as adjacency tensor G; entity embedding dimension E;
number of communities K; predicate embedding dimension A
Output: Generated G′

Initialize all R and s randomly
Initialize all b and a randomly
repeat
for ei, ej ∈ {1, 2, ..., |E|} × {1, 2, ..., |E|} do
Obtain ai using (5.6)
Obtain aj using (5.6)
for rr ∈ {1, 2, 3, ..., |R|} do
Obtain g′ijr using (5.8)

end for
end for
for mini-batch do
Update model parameters via Adam on (5.10)

end for
until convergence
for ei, ej, rr ∈ {1, 2, ..., |E|} × {1, 2, ..., |E|} × {1, 2, ..., |R|} do
Draw graph relation using (5.9)

end for

respective entities, ai and aj:

caiaj
= aj

T (ai
TC) (5.7)

Where the superscript T indicates the transpose operation.

To account for knowledge graph predicates, we introduce the A-dimensional pred-

icate embedding, pr, which mixes with the community relation vector to predict the

value of graph relations. Intuitively, it may be thought of as a modifier which changes

the way communities relate with one another in the context of a predicate. The dot

product between the community relation vector and the predicate embedding models

the probability of a link from entity ei to entity ej on the predicate rr, denoted by

g′ijr. To allow for this probabilistic interpretation, we apply an element-wise logistic

sigmoid function, σ, on each vector before taking the dot product:

g′ijr = σ(cTaiaj
)σ(pr) (5.8)

77

We can use this to generate the graph by sampling from the Bernoulli distribution:

g′′ijr ∼ Bernoulli(g′ijr) (5.9)

Where g′′ijr is a binary value in the generated graph’s adjacency tensor.

Since our model is structured as a neural network, its parameters are inferred by a

neural compatible optimization method. For this we choose Adaptive Moment Esti-

mation stochastic gradient descent optimization (Adam) [118] and use mean squared

error as our loss function, L, to calculate the error in model predictions:

L(X,X′) =
1

|E|2|R|

|E|
∑︂

i=1

|E|
∑︂

j=1

|R|
∑︂

r=1

(gijr − g′ijr)
2

(5.10)

The generative process is summarized in Algorithm 4. A graphical representation of

our model is captured in Figure 5.2.

5.5 Evaluation

Our model is compared against both blockmodels and embedding models where pos-

sible. Specifically, we use existing implementations of MMSB, dMMSB, fcMMSB,

DDBM, DeepWalk, node2vec, PMNE, and MNE. When evaluating the MMSB, we

applied it to each predicate independently. For PMNE, we use the results of the best

performing variant for each dataset.

We use five real-world datasets to evaluate the performance of our model: Trade

[119]; Vickers-Chan [120]; Lazega [121]; Krebs [122]; and Twitter [123]. Datasets

were selected based on previous use in the literature and to be freely available for

comparison and reproduction. Their statistics are displayed in Table 5.1. What

follows is a brief summary of each dataset.

Trade

This dataset summarizes the trade relations between countries such that each pred-

icate in the graph describes the presence of trade between countries on a specific

78

Dataset # Entities # Predicates # Triples # Classes

Trade 24 5 1428 2

Vickers-Chan 29 3 740 2

Lazega 71 3 2571 3

Krebs 56 5 2037 5

Twitter 1000 2 25967 None

Table 5.1: Summary of datasets used in the evaluation.

commodity such as manufactured goods or raw minerals. Countries are classified by

energy consumption, specifically whether or not they use more than 1000 kilo coal

equivalents per capita.

Vickers-Chan

This dataset describes the relations between Australian seventh grade students. Pred-

icates represent a student’s relations with respect to questions regarding whom they’re

friends with and whom they work with. Students are classified by gender.

Lazega

This dataset documents the social network of employees in American law firms. Each

employee was asked how they relate to one another in different social contexts, creat-

ing the predicates in the graph. Employees are classified by the office they work out

of.

Krebs

Krebs’ dataset consists of the social relations between IT Department employees in

a Fortune 500 company. Employees were asked to rate their interactions with other

employees in various contexts on a five point scale. We binarized the values such that

any degree of interaction translates to a link between two employees. Employees are

classified by their departments.

79

Twitter

The Twitter dataset describes the relations between Twitter users who tweeted around

the time of discovery of the Higgs boson particle. Interactions between users exist

on two predicates capturing which users follow one another and which users have

retweeted one another at least once. The dataset was truncated to the first 1000

users in our experiments. Users do not have ground truth classes.

5.5.1 Link Prediction

In the link prediction task, a subset of graph relations are unknown and the goal is to

predict their value by modelling the remaining, known, relations. For our evaluation,

we generated these incomplete graphs by masking relations in the aforementioned

datasets. Specifically we created disjoint training and testing sets composed of 80%

and 20% of graph relations, respectively. Each of the models was then trained on

the training set and evaluated by generating the testing set. The metric we used

to measure the performance of the models is the area under the receiver operating

characteristic curve (AUC) which is calculated by plotting the predictions’ true pos-

itive rate against the false positive rate at different thresholds. Higher AUC values

indicate better performance. To account for stochasticity in the training process, we

repeat this process five times for each dataset. The resulting means and standard

deviations are summarized in Table 5.2.

We observe that model performance on the link prediction task is highly dataset

dependent with relative AUC scores varying widely between models, as evidenced by

three different models achieving top performance on the five datasets. This suggests

that there is currently no model which could reliably outperform the others but rather

that there is a class of state-of-the-art models with comparable performances. With

this in mind, the results indicate that our model is consistent with state-of-the-art

methods on the link prediction task. Moreover, it demonstrates higher aggregate per-

formance despite only being the best performing on the Trade and Lazega datasets.

80

Method Trade Vickers-Chan Lazega Krebs Twitter

Blockmodels

MMSB 0.8679 0.8153 0.8202 0.8335 0.7752

±0.0418 ±0.0420 ±0.0246 ±0.0759 ±0.0825

dMMSB 0.8768 0.8513 0.8155 0.8401 0.9166

±0.0102 ±0.0171 ±0.0040 ±0.0271 ±0.0023

fcMMSB 0.7746 0.7926 0.7642 0.8092 0.9030

±0.0422 ±0.0390 ±0.0246 ±0.0135 ±0.0033

DDBN 0.8525 0.8924 0.8386 0.9276 0.8589

±0.0145 ±0.0127 ±0.0056 ±0.0048 ±0.0040

Embeddings

DeepWalk 0.5782 0.8340 0.7978 0.8269 0.6027

±0.0185 ±0.0183 ±0.0048 ±0.0099 ±0.0016

node2vec 0.5377 0.8214 0.7821 0.8183 0.6015

±0.0295 ±0.0203 ±0.0052 ±0.0079 ±0.0022

PMNE 0.6207 0.8457 0.8142 0.8887 0.7081

±0.0295 ±0.0138 ±0.0084 ±0.0052 ±0.0027

MNE 0.5444 0.8707 0.8246 0.8544 0.6001

±0.0696 ±0.0103 ±0.0078 ±0.0050 ±0.0036

Our model 0.8797 0.8707 0.8527 0.8948 0.8980

±0.0130 ±0.0172 ±0.0028 ±0.0071 ±0.0064

Table 5.2: Link prediction AUC scores (mean ± standard deviation) on various
datasets.

Our model may benefit in this regard from its relatively higher number of hyperpa-

rameters which allow it to better fit each dataset. We note, however, that this comes

at the cost of hyperparameter tuning which makes it less “out of the box” ready.

We notice that blockmodels and embedding models tend to behave differently from

one another on certain datasets. For instance, the mean AUC of blockmodels on the

Trade dataset is 0.8430 compared to the 0.5703 of embedding models. The Krebs

81

dataset, on the other hand, shows similar performance between the two approaches

with mean AUCs of 0.8526 and 0.8471 for blockmodels and embedding models, re-

spectively. The reason for such dataset sensitivity is not clear and does not appear

to be associated with graph entity count, predicate count, or density. One possible

explanation for the difference is that the community structures underlying certain

datasets lend themselves more naturally to the blockmodelling approach. However,

the question of why some methods perform substantially better than other methods

on certain datasets is an open question which requires further investigation but is

outside of the scope of this work.

5.5.2 Entity Classification

The entity classification task evaluates the quality of entity embeddings by measuring

how well they separate entities according to their classes. In this process, each model

was trained on all the interactions in a graph and learned entity embeddings were

extracted. Two embedding dimensions were considered in this task, E = 2 and

E = 10. They were then classified using a linear support-vector machine classifier

using each dataset’s ground truth entity classes with a 80% to 20% training to testing

split. Recall that ground truth classes are only known for Trade, Vickers-Chan,

Lazega, and Krebs datasets. Furthermore, only models which produce embeddings

could be considered in this part of the evaluation, excluding all other blockmodels.

Due to the small sizes of testing data, we repeated the process ten times for each

dataset. We used accuracy as the evaluation metric, defined as the fraction of correctly

classified entities over all entities. The results are displayed in Table 5.3. We also

provide visualizations of the learned embeddings in two dimensional space in Figure

5.3.

Overall, our model performs comparably to other embedding models on entity

classification. As in the link prediction task, we notice that no model consistently

outperforms the others, suggesting a degree of dataset and embedding size sensitivity.

82

Method Trade Vickers-Chan Lazega Krebs

Deepwalk

E = 2 0.3200± 0.1600 1.0000± 0.0000 0.7733± 0.0998 0.6833± 0.1856

E = 10 0.3200± 0.0980 1.0000± 0.0000 0.9333± 0.0596 0.8667± 0.1130

node2vec

E = 2 0.3200± 0.0980 1.0000± 0.0000 0.7067± 0.1236 0.7167± 0.0850

E = 10 0.3200± 0.0980 1.0000± 0.0000 0.9200± 0.0267 0.8333± 0.0913

PMNE

E = 2 0.3200± 0.0980 0.9000± 0.0816 0.9333± 0.0422 0.7333± 0.0133

E = 10 0.3200± 0.0980 0.9667± 0.0667 0.9200± 0.0499 0.8500± 0.0333

MNE

E = 2 0.3800± 0.2088 1.0000± 0.0000 0.9333± 0.0667 0.7167± 0.1546

E = 10 0.3600± 0.1200 1.0000± 0.0000 0.9267± 0.0554 0.8500± 0.1041

MNB

E = 2 0.7200± 0.1600 1.0000± 0.0000 0.7867± 0.0778 0.7333± 0.0624

E = 10 0.8600± 0.2010 1.0000± 0.0000 0.9200± 0.0581 0.8083± 0.1057

Table 5.3: Entity classification accuracy scores (mean ± standard deviation) on var-
ious datasets.

For instance, our model shows top performance on the Trade dataset, consistent with

results from the link prediction task, yet slightly underperforms on other datasets.

All models perform well on the Vickers-Chan dataset as shown by the corresponding

embeddings in Figure 5.3, suggesting the classes are highly separable on this dataset.

In general, that larger embedding dimensions performed better than the smaller one.

The reason for this is that larger embeddings can encode more feature information

for each entity and a higher dimensionality allows for easier linear separability. We

conclude that our model is able to generate embeddings of similar quality compared

to state-of-the-art embedding methods.

83

−6 −4 −2 0 2 4 6 8

−5

0

5

Trade

High Energy Use
Low Energy Use

−10 0 10 20

−5

0

5

10

Vickers-Chan

Boy
Girl

−8 −6 −4 −2 0 2 4 6

−10

−5

0

Lazega

Boston
Hartford
Providence

−10 0 10 20

0

2

4

6

8

Krebs

Admin.
Dept. 1
Dept. 2
Dept. 3
Exec.

Figure 5.3: Scatterplots of two dimensional entity embeddings on various datasets.

5.5.3 Community Detection

The community detection task is related to the entity classification task in that it

evaluates a model’s ability to cluster entities based on similar properties. The key

difference between the two is that while entity classification evaluates a model’s entity

embeddings and their ability to implicitly cluster entities, the community detection

task evaluates a model’s explicit clusterings via community membership assignments.

In our evaluation procedure, each model was first trained on all relations in the graph

and the most probable community for each entity was extracted. In probabilistic

models, this was done by sampling two hundred community membership indicators

and using the most frequently occurring community. In neural methods this was done

84

by taking the community with the highest membership degree. Due to the absence

of ground truth classes for varying K values, we used internal clustering metrics to

evaluate the inferred communities, namely conductance [124] and normalized cut size

[125]. Both of these metrics measure the degree of connectivity between intra-cluster

entities with respect to inter-cluster entities such that lower values indicate better

performance. Specifically, conductance measures the quotient between the volumes

of two sets of entities. We define the conductance on each predicate in the knowledge

graph, conductancer as follows:

conductancer =

∑︁

i∈E ′

∑︁

j∈E ′′ gijr

min(
∑︁

i∈E ′

∑︁

j∈E gijr,
∑︁

i∈E ′′

∑︁

j∈E gijr)
(5.11)

Where E ′ and E ′′ are the entities in the knowledge graph partitioned such that E =

E ′ ∪ E ′′ and ∅ = E ′ ∩ E ′′. The normalized cut is calculated as the size of the partition

cut times the sum of the volume reciprocals of the two partitions:

NCr =

(︄

∑︂

i∈E ′

∑︂

j∈E ′′

gijr

)︄(︄

1
∑︁

i∈E ′

∑︁

j∈E gijr
+

1
∑︁

i∈E ′′

∑︁

j∈E gijr

)︄

(5.12)

The average conductance and normalized cut across all predicates was used to obtain

the final metrics across the entire knowledge graph.

We evaluated each model on two community sizes: K = 2 andK = 4. For fcMMSB

we set the number of groups (G) analogously to the number of communities, G = 2

and G = 4. As in the link prediction task, we applied the MMSB predicate by

predicate and took the mean of the results. Since embedding models do not perform

explicit community detection, we only compare against other blockmodels. Each

model was trained five times. The results are summarized in Table 5.4.

In general, our model tends to outperform the other blockmodels on both metrics

and at both community sizes. The largest difference in relative performance is seen

on the datasets with the most predicates, Trade and Krebs, suggesting that mixing

a relation embedding with community interactions is a viable approach to capturing

relationally invariant communities. Furthermore, models with fewer communities

85

outperform those with more communities. One possible explanation for this is that

a higher number of communities increases the number of model parameters thus

increasing the propensity to overfit the data. We note that our model induces the

least coherent communities on the Twitter dataset. Interestingly, however, the other

models which performed well on the link prediction task on this dataset (dMMSB and

fcMMSB) also perform relatively poorly. This suggests that there exist peculiarities

in the Twitter dataset wherein communities which are generate entity relations with

high performance are not the ones with low conductances and normalized cut sizes.

5.5.4 Predicate Embeddings

Predicate embeddings provide insight into the information modelled by each knowl-

edge graph predicate since they act as a predicate specific modifier on community and

entity relations. Thus, predicates with similar semantics should be embedded close to

one another in the predicate embedding space. We compared the similarities between

predicates and their embeddings quantitatively by looking at the average similari-

ties of each pairwise predicate subgraph and embedding. Due to the NP-Hard time

complexity of computing subgraph similarities via the Graph Edit Distance [126],

we adopted a simplified approach which compares the degree of similarity between

predicate subgraphs as the proportion of same entries in their respective adjacency

tensors. For embedding similarity, we calculated the average cosine similarity between

each embedding and the others for each dataset. The results of this procedure are

described in Table 5.5. We notice the high degree of dissimilarity in the minerals

predicate embedding on the Trade dataset is reflected in that it is the least similar

subgraph relative to the other ones. The get on with predicate on the Vickers-

Chan dataset and the work with predicate on the Lazega dataset follow the same

phenomenon. Predicate embedding similarity on the Krebs dataset is reflected in the

similarity between its predicate subgraphs.

86

Trade Vickers-Chan Lazega Krebs Twitter

Method Cond. NC Cond. NC Cond. NC Cond. NC Cond. NC

MMSB

K = 2 1.6780 2.5277 1.0622 1.6465 1.0008 1.7353 1.3459 1.9175 1.2950 2.1856

±0.3111 ±0.1982 ±0.3411 ±0.4282 ±0.1518 ±0.1933 ±0.4599 ±0.6069 ±0.2486 ±0.2131

K = 4 2.0239 2.5731 1.2673 1.6738 1.3843 1.8314 1.4023 1.8012 1.6420 2.1556

±0.2510 ±0.2517 ±0.1925 ±0.2397 ±0.1235 ±0.1614 ±0.1989 ±0.2607 ±0.1751 ±0.1907

dMMSB

K = 2 1.7184 2.5604 1.2788 1.7502 1.2291 1.8821 1.6324 2.2407 3.2061 3.7244

±0.2422 ±0.1937 ±0.3864 ±0.1590 ±0.1458 ±0.1097 ±0.3734 ±0.2137 ±1.9318 ±1.5897

K = 4 1.9284 2.4654 1.3704 1.7691 1.4409 1.9122 1.6047 2.0690 2.3241 2.8486

±0.1880 ±0.1731 ±0.2819 ±0.3008 ±0.0750 ±0.0916 ±0.1561 ±0.1797 ±0.9502 ±0.9661

DDBN

K = 2 1.8312 2.0096 1.3398 1.6351 1.8124 2.0123 1.5638 1.6492 1.1670 1.8951

±0.0000 ±0.0000 ±0.0000 ±0.0000 ±0.1721 ±0.0913 ±0.0000 ±0.0000 ±0.1218 ±0.1522

K = 4 4.3723 4.6180 1.3142 1.6433 1.1887 1.5504 0.8777 1.1465 1.5977 1.8010

±0.2296 ±0.2055 ±0.1131 ±0.1043 ±0.0404 ±0.0420 ±0.2552 ±0.2749 ±0.2244 ±0.3806

fcMMSB

G = 2 2.2501 2.7666 1.0812 1.6067 1.4995 1.9915 1.0538 1.6878 1.4734 1.6958

±0.9639 ±0.7634 ±0.2471 ±0.2686 ±0.2405 ±0.0967 ±0.2148 ±0.2854 ±1.3274 ±1.2327

G = 4 2.1971 2.6536 1.3488 1.7595 1.3570 1.7906 1.2889 1.6787 0.9198 1.1103

±0.5501 ±0.4846 ±0.2156 ±0.2649 ±0.1093 ±0.1353 ±0.1891 ±0.2336 ±0.2550 ±0.2310

MNB

K = 2 1.4900 2.5698 0.7606 1.3161 1.1047 1.7754 0.4386 0.6692 2.8168 3.0646

±0.0000 ±0.0000 ±0.0000 ±0.0000 ±0.0330 ±0.0440 ±0.0000 ±0.0000 ±0.2837 ±0.3090

K = 4 1.7313 2.2945 1.1643 1.5456 1.3035 1.7083 0.8908 1.1395 3.4614 3.7755

±0.0289 ±0.0269 ±0.0367 ±0.0381 ±0.0815 ±0.0974 ±0.1480 ±0.1941 ±0.4343 ±0.4530

Table 5.4: Community detection conductance (Cond.) and normalized cut (NC) scores (mean ± standard deviation) on various
datasets.

87

The low similarity between predicate embeddings coupled with the high similarity

in predicate subgraphs on the Twitter dataset may be explained by the fact there

are only two subgraphs allowing for overfitting. This is supported by evidence in the

following subsection which shows that a predicate embedding dimension of A = 1

performs the best on the link prediction task on this dataset, implying overfitting at

higher A values.

5.5.5 Hyperparameter Sensitivity

Hyperparameter selection is an important consideration for our model as it balances

the trade-off between underfitting and overfitting of the data. Thus, for each task

and dataset, we performed hyperparameter exploration on the model’s three hyper-

parameters from the sets E ∈ {2, 4, 8}, K ∈ {2, 4, 8, 16}, and A ∈ {1, 2, 4, 8, 16}. The

best performing hyperparameters are summarized in Table 5.6.

We notice that hyperparameters appear to be more sensitive to the task performed

rather than the dataset in our model. Furthermore, close inspection of the hyperpa-

rameter exploration results suggests that E is the least sensitive of the three. High

A values correlate negatively with community detection performance, perhaps due to

higher values allowing for more expressive community interactions and thus lead to

overfitting.

Drawing conclusions or “rules of thumb” about a priori hyperparameter selection

is difficult, thus we suggest at least a cursory hyperparameter tuning when applying

our model to new datasets. The hyperparameters from the aforementioned sets are

a good starting point and the constraint E ≤ K ≤ A may be applied to reduce the

search space.

88

Dataset and Predicates Subgraph Similarity Embedding Similarity

Trade

manufactured goods 0.7552 0.1338

foods 0.7253 0.3247

crude materials 0.7418 0.2781

minerals 0.6194 -0.8303

diplomacy 0.6949 0.3212

Vickers-Chan

get on with 0.7782 -0.9993

friends with 0.8424 -0.0002

work with 0.8347 0.0003

Lazega

advice from 0.8430 0.2725

friends with 0.8193 0.2446

work with 0.8112 -0.2760

Krebs

work with BP 1 0.8870 0.9914

work with BP 2 0.9035 0.9949

advice from 0.8893 0.9956

expertise from 0.8984 0.9876

discuss with 0.8831 0.9902

Twitter

follows 0.9744 -0.9963

retweets 0.9744 -0.9963

Table 5.5: Predicate subgraph and embedding similarities.

89

Task and Dataset E K A

Link Prediction

Trade 8 4 8

Vickers-Chan 2 8 16

Lazega 8 8 16

Krebs 8 16 16

Twitter 8 16 1

Node Classification

Trade – 8 8

Vickers-Chan – 4 8

Lazega – 8 8

Krebs – 4 4

Community Detection

Trade 2 – 1

Vickers-Chan 4 – 4

Lazega 4 – 4

Krebs 2 – 1

Twitter 2 1

Table 5.6: Optimal hyperparameters for task and dataset.

90

5.5.6 Conclusions

In this chapter we proposed a novel method for knowledge graph modelling which

fuses blockmodels with graph embedding models in a neural architecture. Our model

utilizes the block structure of other blockmodelling methods, namely decomposing

the graph into communities of entities to model their interactions. Furthermore, it

leverages entity embeddings to generate community memberships, drawing inspiration

from embedding models. Finally, our model handles knowledge graph predicates by

mixing a predicate embedding with the community relations. In doing so, our model

“fills in the gaps” left behind by both blockmodels and embedding models. We

demonstrated this by evaluating it on three tasks using real-world datasets: link

prediction, entity classification, and community detection. On each of these tasks our

model achieves better than or comparable performance with respect to state-of-the-

art blockmodels and embedding models. Moreover, only our model is able to perform

these tasks explicitly, highlighting its flexibility.

91

Chapter 6

Hierarchical Blockmodelling for
Knowledge Graphs

This chapter describes the work presented in the paper Hierarchical Blockmodelling

for Knowledge Graphs. As mentioned earlier, this paper is still unpublished and

intended for publication in the Semantic Web Journal.

6.1 Introduction

Entity clustering refers to the task of grouping together entities in a knowledge graph

which share similar properties. The measure by which entities are judged to be

similar varies and is one of the key considerations when devising an approach to their

clustering. Obtaining an entity clustering allows for the discovery of structures which

are implicit in the knowledge graph and provides insight into the number and types

of categories which exist in the data. The process operates on unlabelled data and

is therefore a type of unsupervised learning. As such, it is one of the first and most

useful operations applied to a knowledge graph when performing exploratory analysis.

Hierarchical clustering of a knowledge graph’s entities extends the clustering task by

imposing a hierarchical organization to the clusters themselves. This allows not only

to discover which entities are semantically similar as per the clustering but also how

entities relate to one another hierarchically.

In this regard, this chapter proposes a generative model for knowledge graphs which

92

induces a clustering of entities and organizes it hierarchically. Similar to the approach

described in Chapter 5, the proposed model is formulated as a stochastic blockmodel

albeit this time in a fully probabilistic framework. In broad strokes, this model

operates by decomposing a knowledge graph into a set of probability distributions

which are then sampled from to generate the knowledge graph. As a byproduct of

this sampling process, a hierarchical clustering of knowledge graph entities is induced.

To the best of our knowledge, our approach is the first to apply stochastic blockmodels

to knowledge graphs and one of a very few probabilistic graphical models to be used

for the purpose of knowledge graph hierarchy induction.

6.2 Related Work

The work presented in this chapter lies at the intersection of two areas in artificial

intelligence which deal with modelling graph data: stochastic blockmodelling and hi-

erarchy induction. The related works for the former and latter of the pair were largely

discussed in Chapters 5 and 3, respectively. As such, this section focuses on what

was previously left out, specifically the hierarchical extensions to the probabilistic

methods discussed earlier.

A hierarchical extension of the IRM, the aptly named Hierarchical Infinite Rela-

tional Model [127], was developed to overcome the overfitting problem in the origi-

nal. The MMSB was extended to the hierarchical case in the Multiscale Community

Blockmodel [16]. This model is closely related to the one proposed in this chapter and

operates by placing nCRP and stick breaking priors over the community relations of

the original model. These ideas are explored further when defining our model in Sec-

tion 6.4. In another method which bears similarity to our own, Zhang et al. [17] use a

non-parametric Bayesian approach to induce a hierarchy of topic communities. This

model draws heavily from topic models used in natural language processing such as

those of Blei et al. [24] and Paisley et al. [128]. Despite a similar statistic framework

and inference scheme, the hierarchy induced by this work differs significantly from

93

our own. For instance, relations between communities are not modelled and entities

are never explicitly assigned to communities. Along similar lines is GMMSchema

[129] which uses a Gaussian mixture model to generate a schema graph which can be

viewed as a hierarchical abstraction of the original knowledge graph.

6.3 Problem Description

The task of hierarchical clustering in the context of knowledge graphs may be de-

fined by its goal, namely to find a surjective mapping from the set of entities to

the set of clusters (henceforth referred to as communities). Formally, we seek to

find f such that f : E ↦→ T where E and T are the sets of entities and com-

munities, respectively, as introduced in Chapter 2. Entities which share the same

community after clustering should share similar semantics. Note that this does not

suggest that they must be proximal in the knowledge graph. To highlight this, con-

sider the triples ⟨Henry Ford, dbo:birthPlace, dbr:Michigan⟩ and ⟨Henry Ford,

dbo:spouse, dbr:Clara Bryant Ford⟩ introduced in Figure 2.1. Despite both

dbr:Michigan and dbr:Clara Bryant Ford being equidistant in proximity to Henry -

Ford, their semantic similarity is not. This feature of knowledge graphs, which sep-

arates them from simple graphs in which proximity is of foremost importance, was

discussed in the context of second order neighbours in Chapter 4.

In addition to finding a mapping from entities to communities, hierarchical clus-

tering necessitates a hierarchical organization of its communities. Although the ways

in which this is formulated varies, in this chapter we will draw upon the notion of

subsumptions introduced in Chapter 3. Specifically, we use {tp → tq} to denote that

community tp subsumed community tq. In other words, community tp is the parent

of community tq in the hierarchy. Furthermore, given our model formulation and its

use of the nCRP, we restrict the hierarchy implied by its subsumptions to take on the

structure of a tree.

94

6.4 Proposed Model

Like all stochastic blockmodels, our model is defined as a set of probability dis-

tributions such that when these distributions are sampled from, they generate the

adjacency tensor of the knowledge graph. The choice of these distributions makes

assumptions about the underlying structure that governs the graph’s relations. In

devising our model, we assume a hierarchy of entity communities which are captured

in the form of a tree. The entities in these communities interact with one another as a

function of their membership to a community. In other words, relations are modelled

at the community level and extended downwards to their constituent entities. Unlike

most stochastic blockmodels, these community relations are modelled with respect

to a predicate in the knowledge graph. This allows the model to capture structures

extending beyond those implied by mere relation density. Thus, in order generate

the knowledge graph’s adjacency tensor, we need to know its hierarchical community

structure, its entities’ memberships to communities, and the relations between its

communities. The induction of these components, which may be seen as a byproduct

of the generative process, is the objective of our model. We note that the commu-

nities’ constituent entities do not conform to is-a relationships as would be implied

by the hierarchy. This is because the hierarchy is imposed on the communities them-

selves as opposed to their constituent entities. An example of this is highlighted in

Figure 6.1 where the entity Canada is a descendant of the entity Pacific Ocean. Of

course, Canada is not a Pacific Ocean however the concept modelled by community

t5, namely countries, is an instance of the concept modelled by community t2, namely

locations.

6.4.1 Community Memberships

95

t0

t1
John Doe

Michael Smith

t3
Brad Pitt

Johnny Depp

t4
Donald Trump

Joe Biden

t2
Europe

Pacific Ocean

t5
Canada

Germany

Entity Path Level Community

Brad Pitt t1 t3 2 t3

Canada t2 t5 2 t5

Donald Trump t1 t4 2 t4

Europe t2 t5 1 t2

Germany t2 t5 2 t5

Joe Biden t1 t4 2 t4

John Doe t1 t4 1 t1

Johnny Depp t1 t3 2 t3

Michael Smith t1 t3 1 t1

Pacific Ocean t2 t5 1 t2

Figure 6.1: Toy example depicting a potential hierarchy induced by our model. The table on right side captures the path
and level sampled for each entity in the knowledge graph as well as its corresponding community. The left side provides a
visualization of this hierarchy.

96

Entities are assigned to communities through the conjunction of two variables:

entity paths and level indicators. Paths define the tree structure over the community

hierarchy by sampling from the nCRP as described in Chapter 2. We thus denote an

entity path as pi for entity ei, such that pi := [p1i , p
2
i , . . . , p

L
i] where pli represents the

community at level l. We draw attention to the fact that this definition omits the

root community from the path, namely p0i , since all entities must pass through it. It

also allows a hierarchy with a depth of L to have entity path vectors of dimension

L, simplifying the notation. Entity paths are drawn from the nCRP, denoted as

pi ∼ nCRP(γ). Thus, all the entity paths sampled in the model form a |E| × L

matrix which we denote as P. γ is the aforementioned hyperparameter of the nCRP

and is responsible for controlling the probability of generating a new branch in the

hierarchy as the path is being sampled. When a new branch is generated at level l

such that l < L, L − l new communities are also generated and populated solely by

the sampling entity. Furthermore, if a path is resampled such that its corresponding

entity obtains a new path which leaves behind empty communities, those empty

communities and removed from the hierarchy. As such, the number of communities

in the hierarchy is subject to constant change throughout the sampling process.

Having sampled entity paths, in order for entities to be assigned to communities,

their levels must be obtained. Entity levels are modelled by two variables in our

approach: level memberships and level indicators. Level memberships, denoted ai for

entity ei, capture the probability of the entity’s belonging to each of the L levels. As

such, all the level memberships in our model form a |E|×L matrix, A. This is similar

to the mixed-membership property of the MMSB wherein an entity has a membership

distribution over all communities. The difference, as pointed out by Ho et al. [16],

is that in hierarchical models this distribution is restricted to communities along

the entity’s sampled path, otherwise the process of obtaining paths, and indeed the

hierarchy itself, would lose its meaning. Level memberships are drawn from the stick

breaking process, ai ∼ Stick(µ, σ) with hyperparameters µ and σ. Recall that this

97

process yields an infinite distribution and must therefore be truncated to a dimension

of L to correspond with the depth of the tree. The truncation is performed by

removing all probabilities at levels greater than L and renormalizing. The distribution

captured by an entity’s level membership is used to sample its level indicator. The

level indicator indicates the level to which an entity belongs and thus, in conjunction

with its path, assigns it to a community. Level indicators are drawn in the context

of a relation between two entities. Specifically, when modelling the probability of a

relation from entity ei to entity ej we draw two level indicators, one for the sender

entity and one for the receiver entity denoted as zi→j and zi←j, respectively. The

sender and receiver level indicators correspond to the levels of entities ei and ej

in the context of their pairwise interaction. Thus, our model samples |E|2 sender

and receiver level indicators each leading to two |E| × |E| matrices Z→ and Z← for

all the senders and receivers, respectively. To simplify notation in our inference

procedure, we concatenate these matrices to form a |E|×|E|×2 level indicator tensor,

Z. Since level memberships are themselves probability distributions, they may be

sampled from directly to indicate an entity’s level. Specifically, level indicators are

drawn from multinomial distributions, namely zi→j ∼ Multinomial(ai) and zi←j ∼

Multinomial(aj), which yield one of the L levels in the hierarchy.

The interplay between paths and levels when assigning entities to communities may

be summarized as follows: paths identify a hierarchy of candidate communities and

level indicators select one of the candidates for the entity. This dynamic is captured

in the toy example in Figure 6.1.

6.4.2 Community Relations

98

t0

t1
John Doe

Michael Smith

t3
Brad Pitt

Johnny Depp

t4
Donald Trump

Joe Biden

t2
Europe

Pacific Ocean

t5
Canada

Germany

t1 t2

t1 0.2

t2 0

t1 t2

t1 0

t2 0.3

t1 t2

t1 0.3 0

t2 0 0

t3 t4

t3 0

t4 0

t3 t4

t3 0

t4 0

t3 t4

t3 0.8 0.6

t4 0.7 0.9

t5

t5 0
t5

t5 0.1
t5

t5 0

bornIn

locatedIn

knows

bornIn

locatedIn

knows

bornIn

locatedIn

knows

Figure 6.2: The potential community relations induced by our model on the toy example introduced earlier. The hierarchy on
the left of the figure has three sibling groups and three predicates: knows, locatedIn, and bornIn. The three tensors on the
right correspond to the community relations of the three sibling groups.

99

Community relations describe the degree to which entities in any two communities

are likely to interact with one another through a specific predicate. In other words,

they model the probability of observing a value of one in the knowledge graph’s ad-

jacency tensor. These relations are captured by a |T | × |T | × |R| tensor, denoted C,

where T is the set of all communities in the hierarchy and R is the set of all relations

in the knowledge graph. We note that because the communities in T are a result of

sampling from the nCRP and are thus subject to change with each successive sam-

ple, the dimensionality of C is also subject to change in the sampling process. This

presents a challenge to our sampling scheme since it is possible to sample communities

via the nCRP for which there are no community relation values. We overcome this

issue through the marginalization of community relations as discussed in the subse-

quent subsection. The community relation cpqr is an entry in C and captures the

probability of a relation between entities in community tp with entities in commu-

nity tq through predicate rr. As such, the value of cpqr is bounded to 1 ≥ cpqr ≥ 0.

In order to preserve the hierarchical structure that was induced by sampling paths

and levels, the community relations must be limited to take on non-zero values only

when interacting with communities which are proximal to them in the hierarchy. This

restriction is vital as allowing for a relation between any two communities in the hi-

erarchy would render it meaningless and our model would be reduced to a fixed size

mixed membership stochastic blockmodel such as the ones described in Chapter 2.

In restricting the values of community relations we take an approach similar to that

of the Multiscale Community Blockmodel. Specifically, we borrow the concept of a

sibling group which refers to a set of communities that share the same parent in the

hierarchy. Only the community relations between communities in the same sibling

group are modelled in our approach. Thus, when obtaining the relation degree of two

entities whose communities have the same parent, it’s sufficient to merely access the

corresponding value in C. When their communities do not share the same parent, a

coarsening procedure is applied to obtain a relation degree. The coarsening procedure

100

traverses the paths of the two entities to find the deepest pair of communities which

are in the same sibling group. Formally, to obtain the community relation degree

from entity ei to entity ej on predicate rr, we define the function Ψ(i, j, r) as follows:

Ψ(i, j, r) =

⎧

⎨

⎩

c
p
zi→j
i p

zi←j
j r

p
zi→j−1
i = p

zi←j−1
j

cΦ(i | j)Φ(j | i)r p
zi→j−1
i ̸= p

zi←j−1
j

(6.1)

Wherein Φ(i | j) and Φ(j | i) are functions that find the ancestor communities of

entities ei and ej which share the same sibling group, respectively. These values are

obtained by indexing the entities’ paths on the level at which they diverge from their

partner. This process is made clear in their definitions:

Φ(i | j) = p
min({l : pli ̸= plj})

i

Φ(j | i) = p
min({l : pli ̸= plj})

j (6.2)

This approach differs from the Multiscale Community Blockmodel in that while there

are restricted entries in C, these values are never accessed. Instead, all communities

are coarsened to an ancestor which allows for their relation to take on a non-restricted

value.

Community relations are drawn from the Beta distribution parameterized by λ > 0

and η > 0 , and denoted as cpqr ∼ Beta(λ, η). This ensures that community relations

take on probability values which can be used in conjunction with the Bernoulli dis-

tribution. λ and η are hyperparameters of our model and determine the density of

the generated knowledge graph such that increasing λ values with respect to η yields

denser results. Figure 6.2 provides a visualization of a potential sampling of commu-

nity relations. We note that the three tensors correspond to the three sibling groups

for which community relations take on non-restricted values. The diagonal and off-

diagonal values in these tensors represent the intra and inter community relations,

respectively. Thus, based on these values, there is a probability of 0.8 that Brad Pitt

knows Johnny Depp and a probability of 0.6 that Brad Pitt knows Donald Trump.

101

γ

.

p1i

p2i

...

pLi.

.

.

pi

. zi→j

gijr

µ σ

zi←j

ai aj

cpqr

λ η

Figure 6.3: Plate diagram for our model.

We provide an exploration of the recovered community relations on real-world data

in Section 6.5.

6.4.3 Generative Process

The generative process of our model refers to the sequential sampling of components

which allow for the generation of the target knowledge graph. In other words, the

goal is to draw a binary value for each gijr ∈ G such that it equals the knowledge

graph’s adjacency tensor. But before this can be done, it’s necessary to sample the

variables it is dependent on. The first components sampled in the generative process

are the paths and level memberships for each entity in the knowledge graph from the

nCRP and stick distributions, respectively. Having drawn the paths, we now have the

set of communities in the hierarchy and can draw community relations from the Beta

distribution. At this point in the generative process, entities are not yet assigned

to communities. The community memberships for these entities have been drawn,

however, allowing for the sampling of community levels for each pair of entities in

the knowledge graph from the multinomial distribution. With the community levels

drawn, all the components for generating the knowledge graph are in place. The

binary value for the relation from entity ei to entity ej on predicate rr is drawn

102

from the Bernoulli distribution using each entity’s respective community’s relations,

namely gijr ∼ Bernoulli(Ψ(i, j, r)). The plate diagram for this process is illustrated

in Figure 6.3 and the formal definition is as follows:

• For each entity in the knowledge graph; ei ∈ E

– pi ∼ nCRP(γ)

– ai ∼ Stick(µ, σ)

• For each sender community in the hierarchy; tp ∈ T

– For each receiver community in the hierarchy; tq ∈ T

∗ For each predicate in the knowledge graph; rr ∈ R

· cpqr ∼ Beta(λ, η)

• For each sender entity in the knowledge graph; ei ∈ E

– For each receiver entity in the knowledge graph; ej ∈ E

∗ zi→j ∼ Multinomial(ai)

∗ zi←j ∼ Multinomial(aj)

∗ For each predicate in the knowledge graph; rr ∈ R

· gijr ∼ Bernoulli(Ψ(i, j, r))

We note that this process is unsupervised and does not impose any assumptions about

the partition of entities to communities or the structure of the hierarchy other than

to limit its depth. In fact, the depth is the only constraint imposed on the generative

process. The other hyperparameters which must be specified a priori – namely γ, µ,

σ, λ, and η – merely influence the prior distributions of our model. They may pull the

latent variables in the assumed direction but only insofar as the data allows it. This,

recall, is due to the sampling of latent variables from their posterior distribution which

is conditioned on the data. As a result, with a strong enough likelihood, the effects

103

of the hyperparameters and the prior relatively diminish. The joint distribution of

our model may be expressed as follows:

P(G,C,P,Z,A | γ, µ, σ, λ, η) =
∏︂

gijr

P(gijr | cpqr,pi, zi→j, zi←j)
∏︂

cpqr

P(cpqr | λ, η)

∏︂

pi

P(pi | γ)
∏︂

zi→j

P(zi→j | ai)
∏︂

zi←j

P(zi←j | aj)

∏︂

ai

P(ai | µ, σ) (6.3)

As with most stochastic blockmodels, the exact inference for our model is intractable

and must be approximated using an inference scheme. For this we adopt collapsed

Gibbs sampling, an extension of the aforementioned Gibbs sampling.

6.4.4 Collapsed Gibbs Sampling

Collapsed Gibbs sampling refers to an extension of Gibbs sampling in which a subset

of model variables are marginalized over and therefore do not need to be sampled

directly. These variables are said to be collapsed out of the Gibbs sampler. Col-

lapsing of these variables is done analytically via integration and ensures a faster

mixing process. This is because the calculation of probability distributions for sam-

pling is generally computationally expensive. Having fewer variables then leads to

a faster arrival at the desired stationary distribution. Furthermore, the calculation

of probability distributions which have not been collapsed out of the sampling pro-

cess is generally faster in collapsed Gibbs sampling. This is because in regular Gibbs

sampling draws are made from the full conditionals of variables. In collapsed Gibbs

sampling, collapsed variables have been integrated out of the process and the remain-

ing variables are conditioned on a lower-dimensional space. Collapsing of variables is

usually tractable when they are the conjugate prior of their dependent variables. In

our model, community relations and level memberships are both conjugate priors of

their dependant variables, namely level indicators and entity relations, respectively.

We leverage these conjugacies to marginalize over these two variables in our sam-

104

pling process. After marginalization, the sampling equations may be derived for the

remaining variables.

Marginalizing Community Relations

In order to marginalize out community relations, it is necessary to find a closed form

solution which allows for integration during path sampling. To this end, we can

leverage the Bernoulli-Beta conjugacy which ensures that given a Bernoulli likelihood

and Beta prior, the posterior will also be drawn from the Beta distribution. Employing

this conjugacy is possible due to the formulation of our model in which entity relations

are drawn from the Bernoulli distribution and community relations assume a Beta

prior. We see this explicitly when applying Bayes’ theorem to obtain the posterior as

follows:

P(cpqr | C−(pqr),G,P,Z, λ, η) =
P(G | C,P,Z, λ, η)P(cpqr | C−(pqr), λ, η)

∫︁

cpqr
P(G | C,P,Z, λ, η)P(cpqr | C−(pqr), λ, η) dcpqr

(6.4)

Where P(G | C,P,Z, λ, η) is the likelihood of generating entity relations and

P(cpqr | C−(pqr), λ, η) is the prior placed on community relations. C−(pqr) indicates the

community relations tensor C without cpqr. Before proceeding we introduce helper

variables #cpqr=1 and #cpqr=0 to indicate the number of existing and non-existing

relations between entities from community tp to community tq on predicate rr, re-

spectively:

#cpqr=1 =
⃓

⃓

⃓

{︂

gxyz ∈ G : Ψ(x, y, z) = cpqr ∧ gxyz = 1
}︂⃓

⃓

⃓

#cpqr=0 =
⃓

⃓

⃓

{︂

gxyz ∈ G : Ψ(x, y, z) = cpqr ∧ gxyz = 0
}︂⃓

⃓

⃓
(6.5)

We can now derive a closed-form solution for the posterior of community relations by

applying the distributions defined in our model:

P(cpqr | C−(pqr),G,P,Z, λ, η)

(1)
=

(︂

∏︁

gxyz∈G
Bernoulli(cpqr, 1− cpqr)

)︂(︂

Beta(λ, η)
)︂

∫︁

cpqr

(︂

∏︁

gxyz∈G
Bernoulli(cpqr, 1− cpqr)

)︂(︂

Beta(λ, η)
)︂

dcpqr

105

(2)
=

(︄

c#
cpqr=1

pqr (1− cpqr)
#cpqr=0

)︄(︄

cλ−1pqr (1− cpqr)
η−1

B(λ, η)

)︄

∫︁

cpqr

(︄

c#
cpqr=1

pqr (1− cpqr)#
cpqr=0

)︄(︄

cλ−1pqr (1− cpqr)
η−1

B(λ, η)

)︄

dcpqr

(3)
=

c#
cpqr=1+λ−1

pqr (1− cpqr)
#cpqr=0+η−1

∫︁

cpqr
c#

cpqr=1+λ−1
pqr (1− cpqr)#

cpqr=0+η−1 dcpqr

(4)
=

c#
cpqr=1+λ−1

pqr (1− cpqr)
#cpqr=0+η−1

B(#cpqr=1 + λ,#cpqr=0 + η)

= Beta(#cpqr=1 + λ,#cpqr=0 + η) (6.6)

Such that in the derivation above: (1) is the Bayes’ theorem definition as per Equation

6.4 using the probability distributions defined in our model; (2) uses the probability

masses and densities of the Bernoulli and Beta distributions as per Equations A.1 and

A.3; (3) is obtained by applying power rules and dividing out the Beta function which

is constant with respect to cpqr in the integral; and (4) utilizes the integral form of the

Beta function as derived in Equation B.1. The posterior as defined in Equation 6.6

allows for community relations to be integrated out when sampling paths. As such

they are not sampled directly in the inference process.

Marginalizing Level Memberships

There are two ways in which to approach marginalizing level memberships in our

model. Firstly, Sethuraman [25] showed that the realization of the stick breaking

process follows the Dirichlet distribution. We can leverage this because, in practice,

the dimensionality of the level memberships gets bounded to the depth of the tree, L.

It is therefore possible to model level memberships with an L dimensional Dirichlet

distribution. As discussed in Ho et al. [16], this prior has the disadvantage of either

being too expressive or not expressive enough depending on its parameterization.

Regardless, we show the marginalization of this case in Appendix C. In this subsection,

however, we focus on the infinite case using the stick breaking process as defined in

our model. To this end, we use the multinomial-stick conjugacy to obtain a stick

106

breaking posterior which is used as the prior for the level indicators later on. The

posterior is defined as follows:

P(ai | A−i,Z, µ, σ) =
P(Z | A, µ, σ)P(ai | A−i, µ, σ)

∫︁

ai
P(Z | A, µ, σ)P(ai | A−i, µ, σ) dai

=
Multinomial(ai)Stick(µ, σ)

∫︁

ai
Multinomial(ai)Stick(µ, σ) dai

(6.7)

Where P(Z | A, µ, σ) and P(ai | A−i, µ, σ) are the likelihood and prior of level

memberships, respectively. We use the definitions from our model and replace these

with the multinomial and stick breaking distributions. Before proceeding, we define

zi∗ = {zx↔y ∈ Z : x = i ∨ y = i} representing all level indicators for entity ei. In this

notation zi↔j := zi→j∨zi←j is used as shorthand for any level indicator relating entity

ei with entity ej regardless of which entities are taking on the sender and receiver

roles. This allows for defining two helper variables, #zi∗=l and #zi∗>l, to indicate the

number of indicators in zi∗ at and below level l in the hierarchy:

#zi∗=l =
⃓

⃓

⃓

{︂

zi↔j ∈ zi∗ : zi↔j = l
}︂
⃓

⃓

⃓

#zi∗>l =
⃓

⃓

⃓

{︂

zi↔j ∈ zi∗ : zi↔j > l
}︂⃓

⃓

⃓
(6.8)

With these definitions in place, we can derive the stick breaking posterior of level

memberships:

P(ai | A−i,Z, µ, σ)

(1)
=

(︄Γ(
∞
∑︁

l=1

#zi∗=l + 1)

∞
∏︁

l=1

Γ(#zi∗=l + 1)

∞
∏︁

l=1

a#zi∗=l

i

)︄(︄

∞
∑︁

l=1

vl
l−1
∏︁

k=1

(1− vk)■(a
l
i = l)

)︄

∫︁

V

(︄Γ(
∞
∑︁

l=1

#zi∗=l + 1)

∞
∏︁

l=1

Γ(#zi∗=l + 1)

∞
∏︁

l=1

a#zi∗=l

i

)︄(︄

∞
∑︁

l=1

vl
l−1
∏︁

k=1

(1− vk)■(ali = l)

)︄

d∞V

107

(2)
=

(︄Γ(
∞
∑︁

l=1

#zi∗=l + 1)

∞
∏︁

l=1

Γ(#zi∗=l + 1)

∞
∏︁

l=1

(︁

vl
l−1
∏︁

k=1

(1− vk)
)︁#zi∗=l

)︄

∫︁

V

(︄Γ(
∞
∑︁

l=1

#zi∗=l + 1)

∞
∏︁

l=1

Γ(#zi∗=l + 1)

∞
∏︁

l=1

(︁

vl
l−1
∏︁

k=1

(1− vk)
)︁#zi∗=l

)︄

(︄

Beta(µσ, (1− µ)σ)
l−1
∏︁

k=1

Beta((1− µ)σ, µσ)

)︄

(︄

Beta(µσ, (1− µ)σ)
l−1
∏︁

k=1

Beta((1− µ)σ, µσ)

)︄

d∞V

(3)
=

(︄Γ(
∞
∑︁

l=1

#zi∗=l + 1)

∞
∏︁

l=1

Γ(#zi∗=l + 1)
v#

zi∗=l

l (1− vl)
#zi∗>l

l−1
∏︁

k=1

v#
zi∗>k

k (1− vk)
#zi∗=k

)︄

∫︁

V

(︄Γ(
∞
∑︁

l=1

#zi∗=l + 1)

∞
∏︁

l=1

Γ(#zi∗=l + 1)
v#

zi∗=l

l (1− vl)#
zi∗>l

l−1
∏︁

k=1

v#
zi∗>k

k (1− vk)#
zi∗=k

)︄

(︄

vµσ−1l (1− vl)
(1−µ)σ−1

B(µσ, (1− µ)σ)

l−1
∏︁

k=1

v
(1−µ)σ−1
k (1− vk)

µσ−1

B((1− µ)σ, µσ)

)︄

(︄

vµσ−1l (1− vl)
(1−µ)σ−1

B(µσ, (1− µ)σ)

l−1
∏︁

k=1

v
(1−µ)σ−1
k (1− vk)

µσ−1

B((1− µ)σ, µσ)

)︄

d∞V

(4)
=

v#
zi∗=l+µσ−1

l (1− vl)
#zi∗>l+(1−µ)σ−1

l−1
∏︁

k=1

v
#zi∗>k+(1−µ)σ−1
k (1− vk)

#zk∗=k+µσ−1

∫︁

V
v#

zi∗=l+µσ−1
l (1− vl)#

zi∗>l+(1−µ)σ−1
l−1
∏︁

k=1

v
#zi∗>k+(1−µ)σ−1
k (1− vk)#

zk∗=k+µσ−1d∞V

(5)
=

v#
zi∗=l+µσ−1

l (1− vl)
#zi∗>l+(1−µ)σ−1

l−1
∏︁

k=1

v
#zi∗>k+(1−µ)σ−1
k (1− vk)

#zk∗=k+µσ−1

B(#zi∗=l + µσ,#zi∗>l + (1− µ)σ)
l−1
∏︁

k=1

B(#zi∗=k + (1− µ)σ,#zk∗=k + µσ − 1)

= Beta(#zi∗=l + µσ,#zi∗>l + (1− µ)σ)
l−1
∏︂

k=1

Beta(#zi∗>k + (1− µ)σ,#zi∗=k + µσ)

=
∞
∑︂

l=1

vl

l−1
∏︂

k=1

(1− vk) | zi∗

= Stick(µσ, (1− µ)σ) | zi∗ (6.9)

108

Where (1) is an application of the definitions of the Multinomial and stick breaking

distributions as per Equations A.2 and 2.8 to the posterior as per Equation 6.7. (2)

redefines the likelihood in terms of the Beta samples of the stick breaking process and

the prior leverages the mirror symmetry property of the Beta function. The summa-

tion is removed at this stage to enhance readability. (3) rearranges the likelihood and

substitutes the probability density function of the Beta distribution as per Equation

A.3. (4) involves cancelling out terms in the numerator and denominator which a

constant with respect to the integration. (5) utilizes the integral form of the Beta

function as per Equation B.1 and the remainder of the derivation merely reverses

the definitions applied earlier to arrive at the definition of the stick breaking process.

We use the notation | zi∗ to denote that the distribution preceding the notation is

conditioned on zi∗.

Sampling Entity Paths

Entity paths are one of the two variables which remain after collapsing the Gibbs

sampler and must therefore be sampled directly. To sample a path for entity ei, it

must first be removed from the hierarchy, thereby allowing for its full conditional

distribution to be obtained. The set of paths after having removed path pi is denoted

as P−i. We derive the posterior distribution of pi by applying Bayes’ theorem:

P(pi | P−i,G,Z, γ, λ, η) =
P(Gi∗ | G−(i∗),P,Z, γ, λ, η)P(pi | P−i, γ)

∫︁

pi
P(Gi∗ | G−(i∗),P,Z, γ, λ, η)P(pi | P−i, γ) dpi

∝ P(Gi∗ | G−(i∗),P,Z, γ, λ, η)P(pi | P−i, γ) (6.10)

Where Gi∗ = {gxyz ∈ G : i = x ∨ i = y} denotes all the triples in the knowledge

graph that depend on path pi and G−(i∗) = G \Gi∗ is its complement. The integral

form of the marginal distribution for generating the data is a normalizing constant

for the posterior distribution. Calculating this integral is not necessary and we can

instead sample paths from its proportional distribution as per Equation 6.10. The

prior for sampling an entity path, P(pi | P−i, γ), is obtained from the nCRP. We note

109

that due to the iterative nature of the Gibbs sampler, a path for entity ei may already

exist in the hierarchy from a previous iteration. As such, it must first be removed,

hence the conditioning on P−i. We use pi = tq as a shorthand to indicate the path

that terminates at community tq, in other words pi = tq if pLi = tq. Thus, the prior

is calculated as follows:

P(pi = tq | P−i, γ) = P(pLi = tq | P−i, γ)

= ❊

[︂

(■(pLi = tq)
⃓

⃓ P−i, γ)
]︂

= P(pLi = tq | p
1 : L−1
i ,P−i, γ)

L−1
∏︂

l=1

P(pli = tlq | p
1 : l−1
i ,P−i, γ)

(6.11)

Where tlq is the ancestor community of community tq at level l. Equation 6.11 requires

the distribution for sampling a community conditioned on a partially sampled path.

Recall that this is defined by the nCRP in Equation 2.6 and can be adapted here.

Specifically, we calculate the probability of taking community tq on level l having

already sampled its path up to level l − 1 as:

P(pli = tq | p
1 : l−1
i ,P−i, γ) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

#
tq
−i

#
tl−1
q

−i + γ
tq ∈ T−i

γ

#
tl−1
q

−i + γ
tq /∈ T−i

(6.12)

Where #
tq
−i extends the notation defined earlier to indicate the number of entities that

have gone through community tq in the hierarchy with path pi removed. T−i indicates

all the communities in the hierarchy after path pi has been removed. We note that this

process requires the sampling of a path to start at the root community and proceed

sequentially to a leaf community. Having obtained the prior, it’s necessary to update

the belief about the posterior with the data via the likelihood. The likelihood given a

sampled path, P(Gi∗ | G−(i∗),P,Z, γ, λ, η), is defined with the help of the following

helper variables:

Ci∗ =
{︂

cpqr ∈ C : (∃gxyz ∈ Gi∗ : Ψ(x, y, z) = cpqr)
}︂

110

#
cpqr=1
−i =

⃓

⃓

⃓

{︂

gxyz ∈ G−(i∗) : Ψ(x, y, z) = cpqr ∧ gxyz = 1
}︂⃓

⃓

⃓

#
cpqr=0
−i =

⃓

⃓

⃓

{︂

gxyz ∈ G−(i∗) : Ψ(x, y, z) = cpqr ∧ gxyz = 0
}︂⃓

⃓

⃓

#
cpqr=1
i =

⃓

⃓

⃓

{︂

gxyz ∈ Gi∗ : Ψ(x, y, z) = cpqr ∧ gxyz = 1
}︂⃓

⃓

⃓

#
cpqr=0
i =

⃓

⃓

⃓

{︂

gxyz ∈ Gi∗ : Ψ(x, y, z) = cpqr ∧ gxyz = 0
}︂
⃓

⃓

⃓
(6.13)

The definitions above capture the following: Ci∗ is the set of communities dependant

on a relation in Gi∗; #
cpqr=1
−i and #

cpqr=1
i are the counts of existing entity relations

from communities p to q in G−(i) and Gi, respectively; and #
cpqr=0
−i and #

cpqr=0
i are

the counts of non-existing entity relations from communities p to q in G−(i) and Gi,

respectively. In the discrete space, the likelihood is understood as the joint probability

of generating the data as per a probability mass function. In our model, the data

is obtained by drawing from the Bernoulli distribution conditioned on community

relations. Recall that these parameters are marginalized out of our model and thus

never sampled directly. As such, in order to calculate the likelihood we must integrate

with respect to the community relations. This is possible by leveraging Equation 6.6

which allows us to obtain a closed form solution:

P(Gi∗ | G−(i∗),P,Z, γ, λ, η)

=
∏︂

cpqr∈Ci∗

∫︂

cpqr

P(Gi∗ | G−(i∗),C,P,Z, γ, µ, σ, λ, η)

P(cpqr | C−(pqr),G−(i∗),P,Z, λ, η) dcpqr

(1)
=

∏︂

cpqr∈Ci∗

∫︂

cpqr

(︄

∏︂

gxyz∈Gi∗

Bernoulli(cpqr, 1− cpqr)

)︄

(︄

Beta(#
cpqr=1
−i + λ,#

cpqr=0
−i + η)

)︄

dcpqr

(2)
=

∏︂

cpqr∈Ci∗

∫︂

cpqr

(︄

c
#

cpqr=1

i
pqr (1− cpqr)

#
cpqr=0

i

)︄(︄

c
#

cpqr=1

−i +λ−1
pqr (1− cpqr)

#
cpqr=0

−i +η−1

B(#
cpqr=1
−i + λ,#

cpqr=0
−i + η)

)︄

dcpqr

=
∏︂

cpqr∈Ci∗

1

B(#
cpqr=1
−i + λ,#

cpqr=0
−i + η)

111

∫︂

cpqr

c
#

cpqr=1

i +#
cpqr=1

−i +λ−1
pqr (1− cpqr)

#
cpqr=0

i +#
cpqr=0

−i +η−1 dcpqr

(3)
=

∏︂

cpqr∈Ci∗

B(#
cpqr=1
i +#

cpqr=1
−i + λ,#

cpqr=0
i +#

cpqr=0
−i + η)

B(#
cpqr=1
−i + λ,#

cpqr=0
−i + η)

(4)
=

∏︂

cpqr∈Ci∗

(︄

Γ(#
cpqr=1
i +#

cpqr=1
−i + λ)Γ(#

cpqr=0
i +#

cpqr=0
−i + η)

Γ(#
cpqr=1
i +#

cpqr=1
−i +#

cpqr=0
i +#

cpqr=0
−i + λ+ η)

)︄

(︄

Γ(#
cpqr=1
−i +#

cpqr=0
−i + λ+ η)

Γ(#
cpqr=1
−i + λ)Γ(#

cpqr=0
−i + η)

)︄

(6.14)

In the derivation above: (1) the prior probability of drawing cpqr is obtained from

Equation 6.6; (2) utilizes the definitions as per Equations A.1 and A.3 as well as

the helper variables introduced in Equation 6.13; (3) leverages the integral form of

the Beta function as per Equation B.1; and (4) expands the Beta function to its

Gamma formulation as per Equation A.3. Having derived the prior and likelihood

in Equations 6.11 and 6.14, respectively, it is possible to sample from Equation 6.10

to obtain entity paths in our model. The time complexity of sampling one such

path is O(|E|2|R|L). This is due to the fact that it’s necessary to obtain a sampling

probability for all potential paths in the hierarchy, which has a bound of |E|L in the

case where each entity takes a unique path. For each of these potential paths, the

iteration through all |E| entities and |R| predicates is required to determine the effect

on the likelihood selecting such a path would have.

Sampling Level Indicators

Level indicators are drawn from the multinomial distribution conditioned on level

memberships. Recall that level memberships were marginalized over in our inference

scheme using the multinomial-stick conjugacy and are thus never sampled directly.

Nevertheless, we draw them indirectly when computing the prior for level indicators.

As with sampling paths, we obtain the distribution proportional to that of level

indicators by Bayes’ rule. In what follows, we provide the derivation for the posterior

112

of zi→j and note that given its structural symmetry, zi←j is derived analogously. The

posterior distribution of zi→j is expressed as:

P(zi→j | Z−(i→j),G,P, γ, µ, σ, λ, η)

=
P(gij∗ | G−(ij∗),C,P,Z, λ, η)P(zi→j | Z−(i→j), µ, σ)

∫︁

zi→j
P(gij∗ | G−(ij∗),C,P,Z, λ, η)P(zi→j | Z−(i→j), µ, σ) dzi→j

∝ P(gij∗ | G−(ij∗),P,Z, λ, η)P(zi→j | Z−(i→j), µ, σ) (6.15)

Where gij∗ = {gxyz ∈ G : i = x ∧ j = y} denotes the vector of relations in G from

entity ei to ej across all predicates, G−(ij∗) = G \ gij∗ is its complement, and Z−(i→j)

is all the level indicators excluding zi→j. The prior probability for sampling levels,

P(zi→j | Z−(i→j), µ, σ), is drawn from the derived posterior of level memberships in

Equation 6.9 . We follow Blei et al. [24] and use the law of total expectations to

obtain the probability of zi→j realizing level l as the expectation of the size of the

stick broken off at the lth break. To do this we define two variables which may be

seen as the directed extensions of those introduced in Equation 6.8:

#Z
−(i→j)=l =

⃓

⃓

⃓

{︂

zi→j ∈ Z−(i→j) : zi→j = l
}︂⃓

⃓

⃓

#Z
−(i→j)>l =

⃓

⃓

⃓

{︂

zi→j ∈ Z−(i→j) : zi→j > l
}︂⃓

⃓

⃓
(6.16)

With these variables in place, we obtain the prior distribution as follows:

P(zi→j = l | Z−(i→j),G−(ij∗),P, µ, σ)

= ❊

[︂

■(zi→j = l)
⃓

⃓ Z−(i→j), µ, σ
]︂

(1)
= ❊

[︄

❊

[︄

■(zi→j = l)
⃓

⃓ v1, v2, . . . , vl,Z−(i→j), µ, σ

]︄]︄

(2)
= ❊

[︄

∞
∑︂

m=1

vl

l−1
∏︂

k=1

(1− vk)■(m = l)
⃓

⃓ Z−(i→j), µ, σ

]︄

= ❊

[︂

vl | Z−(i→j), µ, σ
]︂

l−1
∏︂

k=1

❊

[︂

1− vk
⃓

⃓ Z−(i→j), µ, σ
]︂

(3)
=

µσ +#Z
−(i→j)=l

σ +#Z
−(i→j)=l +#Z

−(i→j)>l

l−1
∏︂

k=1

(1− µ)σ +#Z
−(i→j)>k

σ +#Z
−(i→j)=k +#Z

−(i→j)>k

(6.17)

113

Where (1) is derived by the application of the law of total expectation; (2) is obtained

from the probability of drawing level l from the stick breaking process conditioned on

the successive draws from the Beta distribution, denoted v1, v2, . . . , vl, as per Equation

2.8; and (3) is the expected value of drawing from the Beta distribution conditioned

on Z−(i→j) as per the level membership posterior obtained in Equation 6.9. The

likelihood, P(gij∗ | G−(ij∗),P,Z, λ, η), is obtained analogously to entity paths. To aid

in this derivation, we define two constants as follows:

#
cpqr=1

−(ijr) =
⃓

⃓

⃓

{︂

gxyz ∈ G−(ijr) : Ψ(x, y, z) = cpqr ∧ gxyz = 1
}︂⃓

⃓

⃓

#
cpqr=0

−(ijr) =
⃓

⃓

⃓

{︂

gxyz ∈ G−(ijr) : Ψ(x, y, z) = cpqr ∧ gxyz = 0
}︂
⃓

⃓

⃓
(6.18)

Such that #
cpqr=1

−(ijr) and #
cpqr=0

−(ijr) capture the number of existing and non-existing rela-

tions from communities tp to tq not including gijr. With these in place, we can derive

the level indicator likelihood. This process is analogous to the one for entity paths in

that we use the Bernoulli distribution for model output and integrate over community

relations:

P(gij∗ | G−(ij∗),C,P,Z, λ, η)

=

∫︂

cpqr

P(gij∗ | G−(ij∗),C,P,Z, γ, µ, σ, λ, η)P(cpqr | C−(pqr),G−(ij∗),P,Z, λ, η) dcpqr

(1)
=

∫︂

cpqr

∏︂

gijr∈gij∗

P(gijr | G−(ijr),C,P,Z, γ, µ, σ, λ, η)

P(cpqr | C−(pqr),G−(ijr),P,Z, λ, η) dcpqr

(2)
=

∫︂

cpqr

∏︂

gijr∈gij∗

(︄

Bernoulli(cpqr, 1− cpqr)

)︄(︄

Beta(#
cpqr=1

−(ijr) + λ,#
cpqr=0

−(ijr) + η)

)︄

dcpqr

=

∫︂

cpqr

∏︂

gijr∈gij∗

(︄

cgijrpqr (1− cpqr)
1−gijr

)︄(︄

c
#

cpqr=1

−(ijr)
+λ−1

pqr (1− cpqr)
#

cpqr=0

−(ijr)
+η−1

B(#
cpqr=1

−(ijr) + λ,#
cpqr=0

−(ijr) + η)

)︄

dcpqr

=
∏︂

gijr∈gij∗

1

B(#
cpqr=1

−(ijr) + λ,#
cpqr=0

−(ijr) + η)
∫︂

cpqr

c
gijr+#

cpqr=1

−(ijr)
+λ−1

pqr (1− cpqr)
(1−gijr)+#

cpqr=0

−(ijr)
+η−1 dcpqr

114

(3)
=

∏︂

gijr∈gij∗

B(#
cpqr=1

−(ijr) + gijr + λ,#
cpqr=0

−(ijr) + (1− gijr) + η)

B(#
cpqr=1

−(ijr) + λ,#
cpqr=0

−(ijr) + η)

(4)
=

∏︂

gijr∈gij∗

Γ(#
cpqr=1

−(ijr) + gijr + λ)Γ(#
cpqr=0

−(ijr) + (1− gijr) + η)Γ(#
cpqr=1

−(ijr) +#
cpqr=0

−(ijr) + λ+ η)

Γ(#
cpqr=1

−(ijr) +#
cpqr=0

−(ijr) + 1 + λ+ η)Γ(#
cpqr=1

−(ijr) + λ)Γ(#
cpqr=0

−(ijr) + η)

(5)
=

∏︂

gijr∈gij∗

gijr(#
cpqr=1

−(ijr) + λ) + (1− gijr)(#
cpqr=0

−(ijr) + η)

#
cpqr=1

−(ijr) +#
cpqr=0

−(ijr) + λ+ η
(6.19)

Where (1) applies the chain rule of probability; (2) utilizes the prior for cpqr obtained

in Equation 6.6; (3) and (4) leverage the integral and Gamma forms the Beta function

as per Equations B.1 and A.3, respectively; and (5) simplifies the preceding equation

for computational reason by eliminating the Gamma function as shown in Appendix

D. With the prior and likelihood derived in closed form as per Equations 6.17 and

6.19, respectively, it’s possible to sample level indicators via Equation 6.15. The time

complexity of sampling a level indicator is O(|R|L) due to the |R| calculations that

need to be performed at each of the L levels in the hierarchy.

6.4.5 Sampling Procedure

Having marginalized out community relations and level memberships as well as de-

rived the sampling equations for entity paths and level indicators, it is possible it per-

form collapsed Gibbs sampling by iteratively sampling from the remaining variables’

full conditional distributions. This process has a time complexity of O(|E|2|R|L +

|E|3|R|L) for each iteration of the sampler where the former and latter terms are

derived from the sampling complexities of the level indicators and entity paths, re-

spectively. This makes the inference scheme infeasible for large-scale datasets. We

respond to this issue by modifying one of the characteristics of collapsed Gibbs sam-

pling, namely that samples are obtained in equal proportions. In its original formu-

lation, one iteration of the sampler samples |E|2 level indicators and |E| entity paths.

One of the assumptions underlying this process is that the relative importance of all

samples is the same. Such an assumption may be ill-adapted for knowledge graphs

115

which are oftentimes sparse in their adjacency tensors and whose entities exhibit

highly imbalanced relation densities. In this regard, the placement of highly con-

nected entities will have a disproportionate effect on model likelihood and therefore

the induced hierarchy as well. Preferentially sampling these entities may result in

faster arrival at a distribution from which we can obtain output samples. Consider,

for instance, a knowledge graph with the entities Thing and Henry Ford. Assuming

that Thing has a higher relation density than Henry Ford, its proper placement in

the hierarchy may be more critical for model output than Henry Ford. With this

in mind, we propose a stochastic sampling scheme in which samples are drawn for

an entity in proportion to their probability of interacting with other entities. Specif-

ically, we introduce a sampling probability, denoted si for entity ei, which specifies

the chance of sampling a variable for the corresponding entity in an iteration of the

collapsed Gibbs sampler. This probability is calculated for each entity as the fraction

of entities in the knowledge graph which have fewer relations than itself. Such as

formulation ensures that 1 ≥ si > 0 which allows si to serve as the parameter of a

Bernoulli distribution to indicate whether a variable will get sampled in the current

iteration of the Gibbs sampler.

After the Gibbs sampler has been burned in, it necessary to obtain final samples to

obtain a hierarchical clustering. We take multiple samples to account for the spread

in the posterior distribution. A consequence of this is that samples may differ and

need to be aggregated to produce a final result. In this regard, we take the mode

over the final samples to arrive at a final hierarchy. The Gibbs sampling procedure

is summarized in Algorithm 5.

6.5 Evaluation

The evaluation of our model is split into two parts: quantitative and qualitative. The

quantitative evaluation provides objective measures of model performance whereas

the qualitative evaluation assesses our model through illustrations and subjective

116

Algorithm 5 Collapsed Gibbs Sampling Procedure for Model Inference

Input: Knowledge graph adjacency tensor, G; model hyperparameters, γ, µ, σ, λ,
and η; number of iterations, iters
Output: Paths P; level indicators Z;
community relations C

1: Initialize level indicators using Equation 6.17
2: Initialize paths using Equation 6.11
3: for iter = 1, 2, ..., iters do
4: Update level indicators using Equation 6.15 if Bernoulli(si)
5: Update paths using Equation 6.10 if Bernoulli(si)
6: end for
7: Obtain final level indicators using 6.15
8: Obtain final paths using 6.10

analysis of the results. For both types of evaluations, our model first had to be inferred

before final samples could be drawn. In this regard, we trained our model on three

datasets using 200 burn-in samples using hyperparameters chosen by assessing the

model’s log likelihood. After burn-in, ten final samples were obtained by discarding

all but the third of successive samples to account for autocorrelation between samples.

All models we trained to a depth of L = 4. Furthermore, the model was trained five

times for each dataset to account for stochasticity in the inference process.

6.5.1 Datasets

Our model was evaluated on three datasets: Synthetic Binary Tree, FB15k-237, and

WikiData. A summary of these datasets’ statistics is provided in Table 6.1. What

follows is a brief description of each dataset as well as how it was generated.

Synthetic Binary Tree

The Synthetic Binary Tree (SBT) dataset was synthetically generated to capture

our model’s ability to separate communities at the lowest level in the hierarchy. The

generative process first constructed a binary tree with a depth of four, assigned entities

to communities, and sampled relations for each entity pair. All entities were assigned

uniformly to communities on the lowest level of the hierarchy, resulting in 25 entities

117

per leaf community. The sampling probability for each entity pair was determined by

the level of their lowest common ancestor. Specifically, sampling probabilities of 0, 0.1,

0.4, and 0.6 were used for levels 0, 1, 2, and 3, respectively. Two entities belonging to

the same community have a sampling probability of 1 and are thus always related. The

dataset was generated for two predicates which shared the aforementioned sampling

probabilities. We note that even though these probabilities are identical, they do

not result in a dataset in which entity relations are identical across predicates. The

generative process yielded a dataset of 55880 triples, 400 entities, and 2 predicates.

FB15k-237

The FB15k-237 dataset [130] is a subset of the FB15k dataset [96], created by remov-

ing redundant and inverse triples. The original FB15k dataset is in turn a subset of

a 2013 version of Freebase, from which triples were queried. The FB15k-237 dataset

is comprised of 272115 triples, 14541 entities, and 237 predicates thus presenting a

computation challenge to our model if modelled in whole. To address this issue,

we generated a subset of the data and derived ground truth community labels in

an approach insipred by Jain et al. [131]. Specifically, entities were mapped to the

WordNet taxonomy [77] through the sameAs predicate, which relates entities from

Freebase and YAGO. Triples were then extracted to contain subjects from the sets

provided in Zhang et al [17]. This process yielded a subset of the data containing

103550 triples, 10018 entities, and 190 predicates. Finally, the subset was reduced

even further by extracting only the triples relating to footballers, pianists, journal-

ists, politicians, and scientists as per the identifiers /m/05vyk, /m/06q2q, /m/0gl2ny2,

/m/0fj9f, /m/0d8qb on the predicate /people/person/profession. This final step

resulted in a dataset with 2499 triples, 1142 entities, and 79 predicates.

118

Dataset # Triples # Entities # Predicates

SBT 55880 400 2

FB15k-237 2499 1142 79

WikiData 2525 716 6

Table 6.1: Summary of the datasets used in this chapter.

WikiData

The WikiData dataset was generated by querying Wikidata for triples relating to

people and locations. Specifically, artists and footballers corresponding to WikiData

identifiers wd:Q1028181 and wd:Q937857 respectively were extracted. These entities

were then filtered to having been born in cities in four countries: Germany, the United

Kingdom, Canada, and the United States of America. Furthermore, the knowledge

graph was reduced to the following predicates: instance of, place of birth, citizen of,

occupation, country, and located in which are represented by the identifiers wdt:P31,

wdt:P19, wdt:P27, wdt:P106, wdt:P17, and wdt:P131, respectively. Finally, the

tripleset was further reduced to yield 2525 triples, 716 entities, and 6 predicates.

6.5.2 Quantitative Evaluation

In our quantitative evaluation, we first analyzed the quality of our learned hierarchical

clustering by calculating two clustering quality metrics at each level of the hierarchy:

the Adjusted Rand Index (ARI) [132] and Normalized Mutual Information (NMI)

[133]. This type of evaluation jointly assesses the quality of the learned community

hierarchy as well as the membership of entities to communities.

The ARI is an adjustment to the commonly used Rand Index (RI) [134], cor-

rected to account for chance. Specifically, chance is factored in by calculating the

expected RI given a random clustering and measuring the obtained clustering’s de-

viation. Specifically, given an obtained entity clustering C = {C1, C2, . . . , Co} and the

119

ground truth clustering C∗ = {C∗1 , C
∗
2 , . . . , C

∗
t } , the ARI is calculated as follows:

ARI =

∑︁

Ci∈C

∑︁

C∗j∈C
∗

(︁

#ij

2

)︁

−
(︁

|E|
2

)︁−1
(︂

∑︁

Ci∈C

(︁

#i

2

)︁
∑︁

C∗j∈C
∗

(︁#∗j
2

)︁

)︂

2−1
(︂

∑︁

Ci∈C

(︁

#i

2

)︁

+
∑︁

C∗j∈C
∗

(︁#∗j
2

)︁

)︂

−
(︁

|E|
2

)︁−1
(︂

∑︁

Ci∈C

(︁

#i

2

)︁
∑︁

C∗j∈C
∗

(︁#∗j
2

)︁

)︂ (6.20)

Where #ij = |Ci ∩ C
∗
j | is the number of entities in common between a ground truth

and obtained cluster pair; #i =
∑︁

C∗j∈C
∗ #ij is the total number of entities in obtained

cluster Ci; and #∗j =
∑︁

Ci∈C
#ij is the total number of entities in ground truth cluster

C∗j .

The NMI is a normalized extension of the Mutual Information (MI) score which

quantifies the information gained about the obtained clustering given the ground truth

clusters. The normalization of the MI score ensures the result is in the range [0, 1]

thereby allowing for its comparison against clusterings of different sizes. Utilizing the

notation defined earlier, we define MI and NMI as follows:

MI =
∑︂

Ci∈C

∑︂

C∗j∈C
∗

|Ci ∩ C
∗
j |

|E|
log

(︄

|E||Ci ∩ C
∗
j |

|Ci||C∗j |

)︄

NMI =
MI

mean

(︄

−
∑︁

Ci∈C

|Ci|

|E|
log

(︄

|Ci|

|E|

)︄

,−
∑︁

C∗j∈C
∗

|C∗j |

|E|
log

(︄

|C∗j |

|E|

)︄)︄ (6.21)

For both the ARI and NMI, higher scores indicate a clustering of higher quality. We

summarize the results of our clustering as per these two metrics in Table 6.2.

In general, the results indicate that our model is capable of learning a coher-

ent community hierarchy on each of the three datasets tested. Perhaps unsurpris-

ingly, communities at higher levels in the hierarchy are judged as higher quality as

per the two evaluation metrics. This is because the task of clustering entities at

higher levels is simpler as the communities are less fine grained. For instance, on the

FB15k-237 dataset, clustering at level 1 requires the distinction between Place and

Person whereas level 4 requires the distinction between AmericanFootballPlayer

and IceHockeyPlayer. We note that the SBT dataset is an exception to this. This

is likely due to the nature of the dataset wherein entity relations are drawn at higher

120

SBT FB15k-237 WikiData

Method ARI NMI ARI NMI ARI NMI

Level 1 0.3055 0.4855 0.5326 0.6646 0.8411 0.7991

±0.0685 ±0.1013 ±0.1308 ±0.0702 ±0.2980 ±0.1581

Level 2 0.5895 0.7826 0.3492 0.5083 0.8057 0.7232

±0.2826 ±0.1434 ±0.2044 ±0.1175 ±0.2839 ±0.1410

Level 3 0.7279 0.8882 0.2851 0.4329 0.4255 0.5880

±0.1656 ±0.0621 ±0.1993 ±0.1030 ±0.2749 ±0.1367

Level 4 0.8337 0.9319 0.1964 0.5334 0.3812 0.4980

±0.1032 ±0.0357 ±0.0438 ±0.0288 ±0.2500 ±0.1309

Overall 0.6141 0.7721 0.3408 0.5348 0.6134 0.6521

±0.2577 ±0.1988 ±0.1867 ±0.1145 ±0.3341 ±0.1770

Table 6.2: ARI and MNI scores (mean ± standard deviation) of our model on the
SBT, FB15k-237 and WikiData datasets.

proportions between neighbouring communities at lower levels of the hierarchy. In

this sense, the claim made before gets inverted and it’s easier to assign communities

at lower levels in the hierarchy. We also compared our model against embedding and

clustering methods used in conjunction. Specifically, we first embedded each of the

knowledge graphs using the RDF2VEC and TransE embedding methods. Afterwards,

we applied four clustering methods: k-means, Agglomerative, DBSCAN, and Spec-

tral.These results are summarized in Table 6.3 and indicate comparable or superior

performance to baselines.

We can also analyze the results of the complete log likelihood as a function of the

number of Gibbs samples taken in the inference process. Indeed, while this does not

provide us information about the quality of the obtained results, it does verify the

inference process itself. Specifically, we expect to see the log likelihood of our model

to rise given more burn-in samples of the Gibbs sampler. This suggests that the

likelihood of generating the knowledge graph given the current state of the sampler is

121

SBT FB15k-237 WikiData

Method ARI NMI ARI NMI ARI NMI

RDF2VEC

k-means 0.8060 0.8928 0.0109 0.1402 0.2672 0.2918

±0.1845 ±0.0707 ±0.0929 ±0.1052 ±0.1582 ±0.1040

Agglomerative 0.8750 0.9317 0.0461 0.1532 0.4674 0.5287

±0.1254 ±0.0575 ±0.0860 ±0.1435 ±0.3281 ±0.2052

DBSCAN 0.5549 0.6904 0.1468 0.2293 0.3831 0.3698

±0.4576 ±0.3032 ±0.1291 ±0.0561 ±0.2343 ±0.0935

Spectral 0.6175 0.7590 -0.0014 0.0347 0.0918 0.1021

±0.3540 ±0.2924 ±0.0082 ±0.03129 ±0.0636 0.0297

TransE

k-means 0.9851 0.9958 0.3559 0.4334 0.7427 0.6504

±0.0334 ±0.0066 ±0.0776 ±0.1096 ±0.1953 ±0.2468

Agglomerative 1.0000 1.0000 0.1362 0.3107 0.3799 0.3650

±0.0000 ±0.0000 ±0.1379 ±0.1104 ±0.4037 ±0.3780

DBSCAN 0.8899 0.9665 0.2768 0.2582 0.2418 0.3128

±0.1213 ±0.03829 ±0.1616 ±0.0728 ±0.1355 ±0.1143

Spectral 1.0000 1.0000 0.1400 0.2509 0.2778 0.3296

±0.0000 ±0.0000 ±0.1920 ±0.2418 ±0.1541 ±0.0153

Our method 0.6141 0.7721 0.3408 0.5348 0.6134 0.6521

±0.2577 ±0.1988 ±0.1867 ±0.1145 ±0.3341 ±0.1770

Table 6.3: ARI and MNI scores (mean ± standard deviation) of our model on the
SBT, FB15k-237 and WikiData datasets as compared with baseline approaches.

increasing and learning is taking place. We can see this rise in Figure 6.4 which plots

the complete log likelihoods of our model across Gibbs samples for the three datasets.

We note a dips in log likelihoods on the SBT and WikiData datasets. This is likely

due to the sampler being temporarily stuck in a local minimum before leaving that

area in the sample space.

122

0 50 100 150 200

−3.8

−3.7

−3.6

·105

Samples

L
og

li
ke
li
h
o
o
d

SBT

0 50 100 150 200
−2.8

−2.6

−2.4

−2.2
·104

Samples

L
og

li
ke
li
h
o
o
d

FB15k-237

0 50 100 150 200

−1.46

−1.44

−1.42

−1.4

·105

Samples

L
og

li
ke
li
h
o
o
d

WikiData

Figure 6.4: Plots of average log likelihood of our model across burn in samples on
three datasets.

123

Root

A

D

H

O : Klaas-Jan Huntelaar, Wayne Dyer, Jonathan Walters

I

P : David Carney, Giuseppe Colucci, Jonathan Forte

B

E

J

Q : Ennio Morricone, Ernest Hemingway, Abraham Lincoln,

Winston Churchill, Aristotle, Leonardo da Vinci, ...

K

R : John Quincy Adams

F

L

S : Julius Caesar

C

G

M

T : England, Canada, Denmark, Scotland, New Zealand,

United Kingdom, Greece, Netherlands ...

N

U : Austria, Russia, Guatemala, France, Italy,

Australia, Germany, Seychelles, Guyana, ...

Figure 6.5: Excerpt of our induced hierarchy on the FB15k-237 dataset.

6.5.3 Qualitative Evaluation

We begin our qualitative evaluation by investigating the results obtained on the

FB15k-237 dataset as seen in the excerpt provided in Figure 6.5. Perhaps the most

glaring inaccuracy is the misplacement of footballers into the subtree rooted in com-

munity A. Footballers should ideally be placed as a subtree within the subtree rooted

by community B, along with the majority of other persons in the dataset. Further-

more, the footballers assigned to different communities in their subtree do not appear

to have any properties which would warrant their splitting. For instance, the foot-

ballers in community O do not share properties that make them more alike to one

another than to the footballers in community P. The first issue can largely be ex-

124

plained by the data itself. Footballers in our dataset have structural properties which

differ them from the persons clustered in the community B subtree. In addition to

sharing the same profession, they belong to football teams, have football specific

triples such as the position they play, and are more likely than non-footballer persons

in the dataset to have information relating to physical characteristics such as height

and weight. In contrast, non-footballer persons have less structural similarities, even

within members of their own professions. For instance, even though all scientists

have their scientific contributions, this isn’t reflected in the data as uniformly. This

segues to another issue with the learned hierarchy, namely that the remaining occu-

pations – pianists, journalists, politicians, and scientists – are not sufficiently split

in the clustering. Indeed, the majority of them belong to community Q. A closer

look at the dataset reveals that unlike with footballers, there is insufficient structural

information to induce a split in our model. The final issue in the hierarchy is the

splitting of nations into two communities in the third level. A cursory glance does

not reveal why such a splitting took place. There is no evident geographic, social,

political, or economic distinction made in the clustering. A deeper look into the data

also reveals no apparent structural differences between communities M and N. It is

likely, therefore, that this issue can be chalked up to model inaccuracy and arrival at

a suboptimal state after inference.

An excerpt of the hierarchy learned on the WikiData dataset is captured in Figure

6.6. In general, this dataset is simpler than FB15k-237 due to there being only two

professions with largely disjoint neighbourhoods. With this in mind, a major gripe

with the hierarchy is the splitting of persons – namely footballers and painters –

and places – namely cities and countries – too high in the hierarchy. Specifically,

this happens at the first level in the presented excerpt where persons are split into

communities A and B and places into communities C and D. We note, however, the

high ARI and NMI scores at this level despite this error. A closer inspection reveals

that not all runs of our model encounter this issue, thus the scores are higher than

125

Root

A

E

J

Q : Adrian Kleinbergen, Isaac Rosenberg, Lynd Ward, John

William Inchbold, Walt Disney, Helen Frankenthaler, ...

R : Charles Krafft, Kenneth Armitage, Beth Hart, ...

B

F

K

S : Owen Hargreaves, Thomas Hitzlsperger, Franz

Beckenbauer, Andy Welsh, Paul Breitner, ...

T : Adam Smith

G

L

U : Marcus Stewart

C

H

M

V : Dortmund, Toronto, Ottawa, Munich, ...

N

W : Edmonton, Manchester

D

I

O

X : England, Sweden, Netherlands, Uruguay, Tunisia, ...

Y : Spain, Malta, Japan, Norway, Great Britain, Finland,

Paraguay, Kingdom of Saxony

P

Z : Poland, France

Figure 6.6: Excerpt of our induced hierarchy on the WikiData dataset.

they would be had they been measured only on the hierarchy in Figure 6.6. Otherwise,

the hierarchy also suffers from unsubstantiated splits at the lowest levels as seen in

communities R, T, and Y. This issue may be the result of the small size of the data and

the model’s resultant sensitivity to the relational information provided. For instance,

close to half of the entities in this dataset have have first order neighborhoods of one

or two entities, giving our model little to learn from.

126

10−5 10−4 10−3 10−2

O : Footballers

X : Nations

Q : Persons

Relation Degree (Log Scale)

O : Footballers

lived in

nationality

athlete

10−6 10−5 10−4

Relation Degree (Log Scale)

X : Nations

lived in

nationality

athlete

10−5 10−4 10−3 10−2 10−1

Q : Painters

S : Footballers

V : Cities

X : Countries

Relation Degree (Log Scale)

Q : Painters

citizen of

place of birth

occupation

10−4 10−3 10−2 10−1

Relation Degree (Log Scale)

V : Cities

citizen of

country

located in

Figure 6.7: Plots of learned community relations for selected outgoing predicates
for the FB15k-237 and WikiData datasets. Specifically we showcased community
O (Footballers) and community T (Nations) outgoing relations for the FB15k-237
dataset (top) and community Q (Painters) and community V (Cities) outgoing rela-
tions for the WikiData dataset.

Finally, we analyze the learned community relations for the FB15k-237 and Wiki-

Data datasets as shown in Figure 6.7. The community labels correspond to the

lettering in Figures 6.5 and 6.6. We added descriptive labels in aid in understanding,

however these do not come from the model itself. The results indicate community

relations which are largely expected. For instance, on the FB15k-237 dataset, Foot-

ballers are much more likely to be related to nations by predicates nationality and

lived in than athlete. Furthermore, we see that Nations are equally unlikely to be the

subjects with the other communities or predicates such as lived in, nationality, and

127

athlete. On the WikiData dataset, we likewise see explainable results. Painters, for

instance, are likely to be related to cities by place of birth and countries by nationality.

They are unlikely to relate to other painters and footballers on these predicates.

6.6 Conclusion

In this chapter we examined the topic of using stochastic blockmodels to learn hierar-

chies from knowledge graphs. This presents a first in the knowledge graph community

as these types of models have not been traditionally applied to this task. To this end

we propose a hierarchical blockmodel which leverages the nCRP and stick breaking

process to generate a community hierarchy. The model is fully non-parametric, capa-

ble of learning a potentially infinite number of communities on an infinite number of

levels. In addition to the model itself, we propose an MCMC inference scheme lever-

aging collapsed Gibbs sampling. Results on three dataset suggest that our model is

capable of learning coherent community hierarchies as demonstrated by quantitative

and qualitative analysis. Currently the main issue with the approach is scalability

to large scale datasets. Indeed, the three used in the evaluation are dwarfed by the

size of existing knowledge bases like DBpedia and WikiData. In this respect, there is

much potential for future work, as stochastic blockmodels lend themselves to infer-

ence schemes faster than the one proposed in this chapter. We briefly discuss these

approaches in the following chapter.

128

Chapter 7

Conclusion

The conclusions for each of the four projects which make up this thesis have already

been made in each of their respective chapters. We thus devote this section to a

summary of the contributions of the thesis along with broad, overarching conclusions

and potential directions for future work.

7.1 Contributions

This thesis explored different facets of learning hierarchies from knowledge graphs

from inducing class taxonomies to utilizing coarsening for enhancing knowledge graph

embeddings to generating a hierarchical clustering of knowledge graph entities. To

this end, it proposed several novel methods for learning hierarchies and demonstrated

their effectiveness on real world data. In summary, the contributions are:

• In Chapter 3, we introduced a novel method for class taxonomy induction from

knowledge graphs using a greedy algorithm based on class frequencies and co-

occurrences. The dearth of such methods presents an important area for con-

tribution given the utility of the class taxonomy in organizing data. We showed

that in an arena of few competitors, our method and those adjacent to it outper-

forms existing class taxonomy induction methods. Furthermore, we introduced

the idea of treating a knowledge graph as sets of entities and tags, simplifying its

structure and opening the door to methods used in natural language processing

129

(NLP) such as topic models [17].

• Afterwards, in Chapter 4, we developed a meta-strategy for knowledge graph

embedding using coarsening as a preprocessing step. Embeddings present one of

the most widely investigated knowledge graph representations in the community

and their utility reaches far down to downstream tasks such as link prediction

and entity classification. As such, developing an approach which enhances their

learning is highly desired. In this regard, our meta-strategy proposes to carry

out most of the learning on a coarsened version of the original knowledge graph,

thereby reducing its computational complexity. We showed that such an ap-

proach is capable of attaining faster and oftentimes higher quality knowledge

graph embeddings.

• In Chapter 5, we married stochastic blockmodels with neural networks for the

purpose of modelling knowledge graphs in what is – to the best of our knowledge

– the first time such a fusion has been investigated. This allows the model to

perform the tasks of both of the approaches it draws inspiration from. More

importantly, it highlights the utility of stochastic blockmodels in the context of

knowledge graphs. In doing so, it serves as the foundation for its successor, a

stochastic blockmodel for learning hierarchies in knowledge graphs.

• Finally, in Chapter 6, we proposed a stochastic blockmodel for learning hierar-

chies from knowledge graphs. Our approach expands upon the other works in

this thesis in that it offers the induction of a hierarchical clustering of knowl-

edge graph entities and models the degree of predicate specific relationship

between clusters. Furthermore, it is formulated in a non-parametric and fully

probabilistic framework, allowing for greater flexibility in learning the structure

of the hierarchy. To the best of our knowledge, this the first time stochastic

blockmodels have been applied to knowledge graphs for the purpose of learning

hierarchies. In general, utilizing stochastic blockmodels for modelling knowl-

130

edge graphs is an understudied area in the knowledge graph community. By

developing stochastic blockmodels specifically suited to the domain of knowl-

edge graphs, the foundations are set for further adoption of such models in the

future.

We anticipate that these contributions will be utilized and expanded upon by the

community in the future. With this in mind, the problem of learning hierarchies from

knowledge graphs has not been solved. Indeed, there is no single method capable

of performing all the aforementioned tasks and many of the hierarchies learned by

the existing methods – whether described in this thesis or not – leave much to be

desired. That is to say we have not reached a point of optimal automated learning of

hierarchies from knowledge graphs. It is our expectation that future practitioners will

continue to make progress in this oftentimes neglected area. This provides a segue

into the final topic discussed in this thesis, namely the potential directions which

could be taken in future work.

7.2 Future Directions

Regarding our taxonomy induction method, there are still challenges which, due to

their scope and complexity, remain unaddressed and are thus topics for future consid-

eration. We draw attention to two of these, namely typing errors and gold standard

taxonomy evaluation. The first of these refers to the problem of typing errors that

exist in a knowledge graph. Typing errors refer to incorrect information in triples

which assign types to entities. For instance, the triple ⟨dbo:Edmonton, rdf:type,

dbo:Country⟩ would constitute a typing error because Edmonton is not a country.

This problem is widespread in existing knowledge bases with estimates concluding

that up to 27% of the entity in DBpedia incorrectly assigned to a type [135]. This

presents a significant challenge to our method since type information is what is lever-

aged in inducing the taxonomy. By first preprocessing the input data to remove

131

incorrect type information, it may be possible to obtain better results. This provides

a segue into the problem with how results are evaluated and interpreted when using a

gold standard taxonomy. We touched on this briefly in Chapter 3 by drawing atten-

tion to the fact that there may be more than one correct way to organize a taxonomy.

Furthermore, we provided examples of subsumption axioms which may are incorrect

as per a gold standard taxonomy but may be considered correct by a human evalu-

ator. Despite this, we never resolved this issue in our evaluation. Indeed, to do so

would require a panel of impartial evaluators to qualitatively judge the correctness

of taxonomies induced with our method and those of competitors. Finding a method

for better evaluation of taxonomies thus presents an interesting topic for future work.

The most salient problem which arises when applying stochastic blockmodels to

knowledge graphs is that of scalability. Indeed, these types of models are more com-

putationally complex than other approaches on simple graphs, so the additional re-

lational information in knowledge graphs exacerbates the problem. Having said this,

there is reason for optimism. First of all, the two optimization schemes presented in

this work, namely stochastic gradient descent and Gibbs sampling, generally do not

scale well to large datasets. As such, it may be worth investigating their replacement

for a more scalable method. Gibbs sampling, for instance, may be replaceable by

variational inference which uses the evidence lower bound to guide the training pro-

cess to obtain the posterior distribution. This process is generally faster than Gibbs

sampling and, although not asymptotically exact, produces similar results [136]. The

challenge with this approach is that the optimization equations are not easy to obtain

compared to Markov chain Monte Carlo methods. Despite this, several works have

already successfully applied variational inference to probabilistic graphical models.

Indeed, the original inference scheme for the MMSB leveraged variational inference.

Furthermore, Blei and Jordan [137] provided a variation inference scheme for Dirich-

let processes and a variational inference scheme for the nCRP was proposed in Wang

and Blei [138]. Departing from the variational approach, Chen et al. [139] propose

132

an evolution of the Gibbs sampling algorithm for the nCRP with partially collapsed

Gibbs sampling. This approach resulted in a 111 times increase in efficiency over the

classic Gibbs sampling approach. Another line of approach to increase the scalabil-

ity of stochastic blockmodels is to devise a model which does not require sampling

all |E|2|R| relations in the knowledge graph directly. To this end, the Bernoulli-

Poisson link function has been applied successfully to simple graphs [140–142]. These

methods eliminate the need for quadratic time relation sampling and instead rely

on density based sampling which is less computationally demanding, especially on

sparse networks. Given that most knowledge graphs are highly sparse, applying such

an approach appears promising.

133

Bibliography

[1] J. Lehmann et al., “Dbpedia–a large-scale, multilingual knowledge base ex-
tracted from wikipedia,” Semantic Web, vol. 6, no. 2, pp. 167–195, 2015.

[2] T. Pellissier Tanon, G. Weikum, and F. Suchanek, “Yago 4: A reason-able
knowledge base,” in European Semantic Web Conference, Springer, 2020, pp. 583–
596.

[3] D. Vrandečić and M. Krötzsch, “Wikidata: A free collaborative knowledge-
base,” Communications of the ACM, vol. 57, no. 10, pp. 78–85, 2014.

[4] K. Bollacker, C. Evans, P. Paritosh, T. Sturge, and J. Taylor, “Freebase: A
collaboratively created graph database for structuring human knowledge,” in
Proceedings of the 2008 ACM SIGMOD international conference on Manage-
ment of data, AcM, 2008, pp. 1247–1250.

[5] A. Singhal, Introducing the knowledge graph: Things, not strings, https://www.blog.google/pro
knowledge-graph-things-not/, 2012, accessed January 28, 2022. (visited on
01/28/2022).

[6] R. Xie, Z. Liu, M. Sun, et al., “Representation learning of knowledge graphs
with hierarchical types.,” in IJCAI, vol. 2016, 2016, pp. 2965–2971.

[7] Z. Zhang, J. Cai, Y. Zhang, and J. Wang, “Learning hierarchy-aware knowledge
graph embeddings for link prediction,” in Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 34, 2020, pp. 3065–3072.

[8] A. Hogan et al., “Knowledge graphs,” ACM Computing Surveys (CSUR),
vol. 54, no. 4, pp. 1–37, 2021.

[9] C. Gutierrez and J. F. Sequeda, “Knowledge graphs,” Communications of the
ACM, vol. 64, no. 3, pp. 96–104, 2021.

[10] J. Pérez, M. Arenas, and C. Gutierrez, “Semantics and complexity of sparql,”
ACM Transactions on Database Systems (TODS), vol. 34, no. 3, pp. 1–45,
2009.

[11] N. Francis et al., “Cypher: An evolving query language for property graphs,”
in Proceedings of the 2018 International Conference on Management of Data,
2018, pp. 1433–1445.

[12] P. W. Holland, K. B. Laskey, and S. Leinhardt, “Stochastic blockmodels: First
steps,” Social networks, vol. 5, no. 2, pp. 109–137, 1983.

134

[13] X. Wang et al., “Ppisb: A novel network-based algorithm of predicting protein-
protein interactions with mixed membership stochastic blockmodel,” IEEE/ACM
Transactions on Computational Biology and Bioinformatics, 2022.

[14] T. M. Sweet, “Modeling social networks as mediators: A mixed membership
stochastic blockmodel for mediation,” Journal of Educational and Behavioral
Statistics, vol. 44, no. 2, pp. 210–240, 2019.

[15] E. M. Airoldi, D. Blei, S. Fienberg, and E. Xing, “Mixed membership stochas-
tic blockmodels,” Advances in neural information processing systems, vol. 21,
2008.

[16] Q. Ho, A. Parikh, L. Song, and E. Xing, “Multiscale community blockmodel for
network exploration,” in Proceedings of the Fourteenth International Confer-
ence on Artificial Intelligence and Statistics, JMLR Workshop and Conference
Proceedings, 2011, pp. 333–341.

[17] Y. Zhang, M. Pietrasik, W. Xu, and M. Reformat, “Hierarchical topic mod-
elling for knowledge graphs,” in European Semantic Web Conference, Springer,
2022, pp. 270–286.

[18] D. J. MacKay, D. J. Mac Kay, et al., Information theory, inference and learn-
ing algorithms. Cambridge university press, 2003.

[19] E. Abbe, “Community detection and stochastic block models: Recent develop-
ments,” The Journal of Machine Learning Research, vol. 18, no. 1, pp. 6446–
6531, 2017.

[20] D. J. Aldous, “Exchangeability and related topics,” in École d’Été de Proba-
bilités de Saint-Flour XIII—1983, Springer, 1985, pp. 1–198.

[21] T. S. Ferguson, “A bayesian analysis of some nonparametric problems,” The
annals of statistics, pp. 209–230, 1973.

[22] A.-L. Barabási and R. Albert, “Emergence of scaling in random networks,”
science, vol. 286, no. 5439, pp. 509–512, 1999.

[23] T. Griffiths, M. Jordan, J. Tenenbaum, and D. Blei, “Hierarchical topic models
and the nested chinese restaurant process,” Advances in neural information
processing systems, vol. 16, 2003.

[24] D. M. Blei, T. L. Griffiths, and M. I. Jordan, “The nested chinese restaurant
process and bayesian nonparametric inference of topic hierarchies,” Journal of
the ACM (JACM), vol. 57, no. 2, pp. 1–30, 2010.

[25] J. Sethuraman, “A constructive definition of dirichlet priors,” Statistica sinica,
pp. 639–650, 1994.

[26] J. Pitman et al., “Combinatorial stochastic processes,” Technical Report 621,
Dept. Statistics, UC Berkeley, 2002. Lecture notes for . . ., Tech. Rep., 2002.

[27] B. Pakkenberg and H. J. G. Gundersen, “Neocortical neuron number in hu-
mans: Effect of sex and age,” Journal of comparative neurology, vol. 384, no. 2,
pp. 312–320, 1997.

135

[28] A. Gulati, “Understanding neurogenesis in the adult human brain,” Indian
journal of pharmacology, vol. 47, no. 6, p. 583, 2015.

[29] Y. LeCun et al., “Backpropagation applied to handwritten zip code recogni-
tion,” Neural computation, vol. 1, no. 4, pp. 541–551, 1989.

[30] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural com-
putation, vol. 9, no. 8, pp. 1735–1780, 1997.

[31] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations
by back-propagating errors,” nature, vol. 323, no. 6088, pp. 533–536, 1986.

[32] D. H. Ballard, “Modular learning in neural networks.,” in Aaai, vol. 647, 1987,
pp. 279–284.

[33] S. B. Kotsiantis, I. Zaharakis, P Pintelas, et al., “Supervised machine learning:
A review of classification techniques,” Emerging artificial intelligence applica-
tions in computer engineering, vol. 160, no. 1, pp. 3–24, 2007.

[34] G. P. Zhang, “Neural networks for classification: A survey,” IEEE Transactions
on Systems, Man, and Cybernetics, Part C (Applications and Reviews), vol. 30,
no. 4, pp. 451–462, 2000.

[35] K. Hornik, “Approximation capabilities of multilayer feedforward networks,”
Neural networks, vol. 4, no. 2, pp. 251–257, 1991.

[36] R. Andrews, J. Diederich, and A. B. Tickle, “Survey and critique of techniques
for extracting rules from trained artificial neural networks,” Knowledge-based
systems, vol. 8, no. 6, pp. 373–389, 1995.

[37] A. Graves, A.-r. Mohamed, and G. Hinton, “Speech recognition with deep re-
current neural networks,” in 2013 IEEE international conference on acoustics,
speech and signal processing, Ieee, 2013, pp. 6645–6649.

[38] T. Bluche, J. Louradour, M. Knibbe, B. Moysset, M. F. Benzeghiba, and C.
Kermorvant, “The a2ia arabic handwritten text recognition system at the
open hart2013 evaluation,” in 2014 11th IAPR International Workshop on
Document Analysis Systems, IEEE, 2014, pp. 161–165.

[39] J. Gonzalez-Dominguez, I. Lopez-Moreno, and H. Sak, “Automatic language
identification using long short-term memory recurrent neural networks,” 2014.

[40] W. Samek, G. Montavon, S. Lapuschkin, C. J. Anders, and K.-R. Müller,
“Explaining deep neural networks and beyond: A review of methods and ap-
plications,” Proceedings of the IEEE, vol. 109, no. 3, pp. 247–278, 2021.

[41] F. Rosenblatt, “The perceptron: A probabilistic model for information storage
and organization in the brain.,” Psychological review, vol. 65, no. 6, p. 386,
1958.

[42] S. Haykin, Neural networks and learning machines, 3/E. Pearson Education
India, 2009.

136

[43] F. Rosenblatt, “Principles of neurodynamics. perceptrons and the theory of
brain mechanisms,” Cornell Aeronautical Lab Inc Buffalo NY, Tech. Rep.,
1961.

[44] M. Minsky and S. Papert, “An introduction to computational geometry,” Cam-
bridge tiass., HIT, vol. 479, p. 480, 1969.

[45] B. Karlik and A. V. Olgac, “Performance analysis of various activation func-
tions in generalized mlp architectures of neural networks,” International Jour-
nal of Artificial Intelligence and Expert Systems, vol. 1, no. 4, pp. 111–122,
2011.

[46] M. Pietrasik and M. Reformat, “A simple method for inducing class tax-
onomies in knowledge graphs,” in European Semantic Web Conference, Springer,
2020, pp. 53–68.

[47] M. Pietrasik and M. Reformat, “Path based hierarchical clustering on knowl-
edge graphs,” arXiv preprint arXiv:2109.13178, 2021.

[48] J. Völker and M. Niepert, “Statistical schema induction,” in Extended Seman-
tic Web Conference, Springer, 2011, pp. 124–138.

[49] M. Nickel, V. Tresp, and H.-P. Kriegel, “Factorizing yago: Scalable machine
learning for linked data,” in Proceedings of the 21st international conference
on World Wide Web, ACM, 2012, pp. 271–280.

[50] M. Nickel, V. Tresp, and H.-P. Kriegel, “A three-way model for collective
learning on multi-relational data.,” 2011.

[51] M. Ankerst, M. M. Breunig, H.-P. Kriegel, and J. Sander, “Optics: Ordering
points to identify the clustering structure,” in ACM Sigmod record, ACM,
vol. 28, 1999, pp. 49–60.

[52] P. Ristoski, S. Faralli, S. P. Ponzetto, and H. Paulheim, “Large-scale taxonomy
induction using entity and word embeddings,” in Proceedings of the Interna-
tional Conference on Web Intelligence, ACM, 2017, pp. 81–87.

[53] P. Heymann and H. Garcia-Molina, “Collaborative creation of communal hi-
erarchical taxonomies in social tagging systems,” Tech. Rep., 2006.

[54] D. Benz, A. Hotho, S. Stützer, and G. Stumme, “Semantics made by you and
me: Self-emerging ontologies can capture the diversity of shared knowledge,”
2010.

[55] P. Schmitz, “Inducing ontology from flickr tags,” in Collaborative Web Tagging
Workshop at WWW2006, Edinburgh, Scotland, vol. 50, 2006, p. 39.

[56] M. Sanderson and B. Croft, “Deriving concept hierarchies from text,” in Pro-
ceedings of the 22nd annual international ACM SIGIR conference on Research
and development in information retrieval, ACM, 1999, pp. 206–213.

[57] G. Solskinnsbakk and J. A. Gulla, “A hybrid approach to constructing tag
hierarchies,” in OTM Confederated International Conferences” On the Move
to Meaningful Internet Systems”, Springer, 2010, pp. 975–982.

137

[58] R. Agrawal and R. Srikant, “Fast algorithms for mining association rules,” in
Proc. 20th int. conf. very large data bases, VLDB, vol. 1215, 1994, pp. 487–
499.

[59] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,” Journal
of machine Learning research, vol. 3, no. Jan, pp. 993–1022, 2003.

[60] J. Tang, H.-f. Leung, Q. Luo, D. Chen, and J. Gong, “Towards ontology learn-
ing from folksonomies,” in Twenty-First International Joint Conference on
Artificial Intelligence, 2009.

[61] X. Li et al., “Inducing taxonomy from tags: An agglomerative hierarchical
clustering framework,” in International Conference on Advanced Data Mining
and Applications, Springer, 2012, pp. 64–77.

[62] S. Wang, D. Lo, and L. Jiang, “Inferring semantically related software terms
and their taxonomy by leveraging collaborative tagging,” in 2012 28th IEEE
International Conference on Software Maintenance (ICSM), IEEE, 2012, pp. 604–
607.

[63] H. Dong, W. Wang, and F. Coenen, “Learning relations from social tag-
ging data,” in Pacific Rim International Conference on Artificial Intelligence,
Springer, 2018, pp. 29–41.

[64] D. M. Roy, C. Kemp, V. K. Mansinghka, and J. B. Tenenbaum, “Learning
annotated hierarchies from relational data,” in Advances in neural information
processing systems, 2007, pp. 1185–1192.

[65] J. X. Chen and M. Z. Reformat, “Learning categories from linked open data,”
in International Conference on Information Processing and Management of
Uncertainty in Knowledge-Based Systems, Springer, 2014, pp. 396–405.

[66] G. J. Székely, M. L. Rizzo, N. K. Bakirov, et al., “Measuring and testing
dependence by correlation of distances,” The annals of statistics, vol. 35, no. 6,
pp. 2769–2794, 2007.

[67] S. K. Mohamed, “Unsupervised hierarchical grouping of knowledge graph en-
tities,” arXiv preprint arXiv:1908.07281, 2019.

[68] F. Martel and A. Zouaq, “Taxonomy extraction using knowledge graph em-
beddings and hierarchical clustering,” in Proceedings of the 36th Annual ACM
Symposium on Applied Computing, 2021, pp. 836–844.

[69] Z. Ding, D. Cao, L. Liu, D. Yu, H. Ma, and F. Wang, “A method for discovering
hidden patterns of cybersecurity knowledge based on hierarchical clustering,”
in 2021 IEEE Sixth International Conference on Data Science in Cyberspace
(DSC), IEEE, 2021, pp. 334–338.

[70] C. Gu, G. Yin, T. Wang, C. Yang, and H. Wang, “A supervised approach for
tag hierarchy construction in open source communities,” in Proceedings of the
7th Asia-Pacific Symposium on Internetware, ACM, 2015, pp. 148–152.

138

[71] W. Wang, P. M. Barnaghi, and A. Bargiela, “Probabilistic topic models for
learning terminological ontologies,” IEEE Transactions on Knowledge and
Data Engineering, vol. 22, no. 7, pp. 1028–1040, 2009.

[72] K. Liu, B. Fang, and W. Zhang, “Ontology emergence from folksonomies,”
in Proceedings of the 19th ACM international conference on Information and
knowledge management, ACM, 2010, pp. 1109–1118.

[73] F. Almoqhim, D. E. Millard, and N. Shadbolt, “Improving on popularity as
a proxy for generality when building tag hierarchies from folksonomies,” in
International Conference on Social Informatics, Springer, 2014, pp. 95–111.

[74] N. Chinchor, “Muc-4 evaluation metrics,” in Proceedings of the 4th conference
on Message understanding, Association for Computational Linguistics, 1992,
pp. 22–29.

[75] O. T. N. D. B. N. K. P. B. T. D. R. D. W. N. E. v. Z. J. P. L. e. Roskov Y.
Ower G., “Species 2000 & itis catalogue of life, 2019 annual checklist.,” 2019.

[76] M. Döring. “Gbif type specimen names.” (2017), [Online]. Available: https:
//doi.org/10.15468/sl9pyf (visited on 11/27/2019).

[77] G. A. Miller, “Wordnet: A lexical database for english,” Communications of
the ACM, vol. 38, no. 11, pp. 39–41, 1995.

[78] J. Euzenat et al., “Results of the ontology alignment evaluation initiative
2010,” University of Trento, Tech. Rep., 2011.

[79] H. Paulheim and J. Fümkranz, “Unsupervised generation of data mining fea-
tures from linked open data,” in Proceedings of the 2nd international confer-
ence on web intelligence, mining and semantics, ACM, 2012, p. 31.

[80] H. Chen, B. Perozzi, Y. Hu, and S. Skiena, “Harp: Hierarchical representation
learning for networks,” in Proc. 32nd AAAI Conf.Artif. Intell., 2018, 2127–
–2134.

[81] J. Liang, S. Gurukar, and S. Parthasarathy, “Mile: A multi-level framework
for scalable graph embedding,” arXiv preprint arXiv:1802.09612, 2018.

[82] D. Archdeacon, “Topological graph theory,” A survey. Congressus Numeran-
tium, vol. 115(5-54):18, 1996.

[83] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning of social
representations,” in Proceedings of the 20th ACM SIGKDD international con-
ference on Knowledge discovery and data mining, 2014, pp. 701–710.

[84] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei, “Line: Large-
scale information network embedding,” in Proceedings of the 24th international
conference on world wide web, 2015.

[85] A. Grover and J. Leskovec, “Node2vec: Scalable feature learning for networks,”
in Proceedings of the 22nd ACM SIGKDD international conference on Knowl-
edge discovery and data mining, 2016, pp. 855–864.

139

https://doi.org/10.15468/sl9pyf
https://doi.org/10.15468/sl9pyf

[86] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Distributed
representations of words and phrases and their compositionality,” Advances in
neural information processing systems, vol. 26, pp. 3111–3119, 2013.

[87] D. K. Duvenaud et al., “Convolutional networks on graphs for learning molec-
ular fingerprints,” Advances in neural information processing systems, vol. 28,
pp. 2224–2232, 2015.

[88] T. N. Kipf and M. Welling, “Semi-supervised classification with graph convo-
lutional networks,” arXiv preprint arXiv:1609.02907, 2016.

[89] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip, “A comprehensive
survey on graph neural networks,” IEEE Transactions on Neural Networks and
Learning Systems, 2020.

[90] V. Bellini, A. Schiavone, T. Di Noia, A. Ragone, and E. Di Sciascio, “Knowledge-
aware autoencoders for explainable recommender systems,” in Proceedings of
the 3rd Workshop on Deep Learning for Recommender Systems, 2018.

[91] M. Simonovsky and N. Komodakis, “Graphvae: Towards generation of small
graphs using variational autoencoders,” in International Conference on Arti-
ficial Neural Networks, Springer, 2018, pp. 412–422.

[92] T. A. Akyildiz, A. A. Aljundi, and K. Kaya, “Gosh: Embedding big graphs
on small hardware,” in 49th International Conference on Parallel Processing-
ICPP, 2020, pp. 1–11.

[93] P. Ristoski and H. Paulheim, “Rdf2vec: Rdf graph embeddings for data min-
ing,” in International Semantic Web Conference, Springer, 2016, pp. 498–514.

[94] M. Schlichtkrull, T. N. Kipf, P. Bloem, R. Van Den Berg, I. Titov, and M.
Welling, “Modeling relational data with graph convolutional networks,” in
European Semantic Web Conference, Springer, 2018, pp. 593–607.

[95] T. Dettmers, P. Minervini, P. Stenetorp, and S. Riedel, “Convolutional 2d
knowledge graph embeddings,” arXiv preprint arXiv:1707.01476, 2017.

[96] A. Bordes, N. Usunier, A. Garcia-Duran, J. Weston, and O. Yakhnenko, “Trans-
lating embeddings for modeling multi-relational data,” Advances in neural in-
formation processing systems, vol. 26, pp. 2787–2795, 2013.

[97] B. Yang, W.-t. Yih, X. He, J. Gao, and L. Deng, “Embedding entities and rela-
tions for learning and inference in knowledge bases,” arXiv preprint arXiv:1412.6575,
2014.

[98] R. Das et al., “Go for a walk and arrive at the answer: Reasoning over paths in
knowledge bases using reinforcement learning,” arXiv preprint arXiv:1711.05851,
2017.

[99] S. Ji, S. Pan, E. Cambria, P. Marttinen, and P. S. Yu, “A survey on knowl-
edge graphs: Representation, acquisition and applications,” arXiv preprint
arXiv:2002.00388, 2020.

140

[100] B. Hendrickson and R. W. Leland, “A multi-level algorithm for partitioning
graphs.,” SC, vol. 95, no. 28, pp. 1–14, 1995.

[101] G. Karypis and V. Kumar, “A fast and high quality multilevel scheme for
partitioning irregular graphs,” SIAM Journal on scientific Computing, vol. 20,
no. 1, pp. 359–392, 1998.

[102] M. Pietrasik and M. Reformat, “Neural blockmodeling for multilayer net-
works,” in 2021 International Joint Conference on Neural Networks (IJCNN),
IEEE, 2021, pp. 1–8.

[103] K. Nowicki and T. A. B. Snijders, “Estimation and prediction for stochas-
tic blockstructures,” Journal of the American statistical association, vol. 96,
no. 455, pp. 1077–1087, 2001.

[104] C. Kemp, J. B. Tenenbaum, T. L. Griffiths, T. Yamada, and N. Ueda, “Learn-
ing systems of concepts with an infinite relational model,” in AAAI, vol. 3,
2006, p. 5.

[105] X. Fan, L. Cao, and R. Y. Da Xu, “Dynamic infinite mixed-membership
stochastic blockmodel,” IEEE transactions on neural networks and learning
systems, vol. 26, no. 9, pp. 2072–2085, 2014.

[106] M. Berlingerio, M. Coscia, and F. Giannotti, “Finding redundant and com-
plementary communities in multidimensional networks,” in Proceedings of the
20th ACM international conference on Information and knowledge manage-
ment, 2011, pp. 2181–2184.

[107] M. Barigozzi, G. Fagiolo, and G. Mangioni, “Identifying the community struc-
ture of the international-trade multi-network,” Physica A: statistical mechanics
and its applications, vol. 390, no. 11, pp. 2051–2066, 2011.

[108] S. Paul and Y. Chen, “Consistent community detection in multi-relational
data through restricted multi-layer stochastic blockmodel,” Electronic Journal
of Statistics, vol. 10, no. 2, pp. 3807–3870, 2016.

[109] C. De Bacco, E. A. Power, D. B. Larremore, and C. Moore, “Community
detection, link prediction, and layer interdependence in multilayer networks,”
Physical Review E, vol. 95, no. 4, p. 042 317, 2017.

[110] E. P. Xing, W. Fu, and L. Song, “A state-space mixed membership blockmodel
for dynamic network tomography,” The Annals of Applied Statistics, vol. 4,
no. 2, pp. 535–566, 2010.

[111] Z. Yu, M. Pietrasik, and M. Reformat, “Deep dynamic mixed membership
stochastic blockmodel,” in 2019 IEEE/WIC/ACM International Conference
on Web Intelligence (WI), IEEE, 2019, pp. 141–148.

[112] Z. Yu, X. Fan, M. Pietrasik, and M. Z. Reformat, “Fragmentation coagulation
based mixed membership stochastic blockmodel,” in Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 34, 2020, pp. 6704–6711.

141

[113] L. Elliott and Y. Teh, “Scalable imputation of genetic data with a discrete
fragmentation-coagulation process,” Advances in neural information process-
ing systems, vol. 25, 2012.

[114] C. Lee and D. J. Wilkinson, “A review of stochastic block models and exten-
sions for graph clustering,” Applied Network Science, vol. 4, no. 1, pp. 1–50,
2019.

[115] W. Liu, P.-Y. Chen, S. Yeung, T. Suzumura, and L. Chen, “Principled mul-
tilayer network embedding,” in 2017 IEEE International Conference on Data
Mining Workshops (ICDMW), IEEE, 2017, pp. 134–141.

[116] H. Zhang, L. Qiu, L. Yi, and Y. Song, “Scalable multiplex network embed-
ding.,” in IJCAI, vol. 18, 2018, pp. 3082–3088.

[117] H. Song and J. J. Thiagarajan, “Improved deep embeddings for inferencing
with multi-layered graphs,” in 2019 IEEE International Conference on Big
Data (Big Data), IEEE, 2019, pp. 5394–5400.

[118] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv
preprint arXiv:1412.6980, 2014.

[119] S. Wasserman, K. Faust, et al., “Social network analysis: Methods and appli-
cations,” 1994.

[120] M Vickers and S Chan, “Representing classroom social structure,” Victoria
Institute of Secondary Education, Melbourne, 1981.

[121] E. Lazega et al., The collegial phenomenon: The social mechanisms of cooper-
ation among peers in a corporate law partnership. Oxford University Press on
Demand, 2001.

[122] V Krebs, Fortune 500 teams, http://moreno.ss.uci.edu/data.html#krebs.

[123] M. De Domenico, A. Lima, P. Mougel, and M. Musolesi, “The anatomy of a
scientific rumor,” Scientific reports, vol. 3, no. 1, pp. 1–9, 2013.

[124] A. Sinclair and M. Jerrum, “Approximate counting, uniform generation and
rapidly mixing markov chains,” Information and Computation, vol. 82, no. 1,
pp. 93–133, 1989.

[125] J. Shi and J. Malik, “Normalized cuts and image segmentation,” IEEE Trans-
actions on pattern analysis and machine intelligence, vol. 22, no. 8, pp. 888–
905, 2000.

[126] A. Sanfeliu and K.-S. Fu, “A distance measure between attributed relational
graphs for pattern recognition,” IEEE transactions on systems, man, and cy-
bernetics, no. 3, pp. 353–362, 1983.

[127] F. A. Saad and V. K. Mansinghka, “Hierarchical infinite relational model,” in
Uncertainty in Artificial Intelligence, PMLR, 2021, pp. 1067–1077.

[128] J. Paisley, C. Wang, D. M. Blei, and M. I. Jordan, “Nested hierarchical dirichlet
processes,” IEEE transactions on pattern analysis and machine intelligence,
vol. 37, no. 2, pp. 256–270, 2014.

142

[129] A. Bonifati, S. Dumbrava, and N. Mir, “Hierarchical clustering for property
graph schema discovery.,” in EDBT, 2022, pp. 2–449.

[130] K. Toutanova and D. Chen, “Observed versus latent features for knowledge
base and text inference,” in Proceedings of the 3rd workshop on continuous
vector space models and their compositionality, 2015, pp. 57–66.

[131] N. Jain, J.-C. Kalo, W.-T. Balke, and R. Krestel, “Do embeddings actually
capture knowledge graph semantics?” In European Semantic Web Conference,
Springer, 2021, pp. 143–159.

[132] L. Hubert and P. Arabie, “Comparing partitions,” Journal of classification,
vol. 2, no. 1, pp. 193–218, 1985.

[133] C. E. Shannon, “A mathematical theory of communication,” The Bell system
technical journal, vol. 27, no. 3, pp. 379–423, 1948.

[134] W. M. Rand, “Objective criteria for the evaluation of clustering methods,”
Journal of the American Statistical association, vol. 66, no. 336, pp. 846–850,
1971.

[135] P. Yao and D. Barbosa, “Typing errors in factual knowledge graphs: Severity
and possible ways out,” in Proceedings of the Web Conference 2021, 2021,
pp. 3305–3313.

[136] T. Salimans, D. Kingma, and M. Welling, “Markov chain monte carlo and vari-
ational inference: Bridging the gap,” in International conference on machine
learning, PMLR, 2015, pp. 1218–1226.

[137] D. M. Blei and M. I. Jordan, “Variational inference for dirichlet process mix-
tures,” Bayesian analysis, vol. 1, no. 1, pp. 121–143, 2006.

[138] C. Wang and D. Blei, “Variational inference for the nested chinese restaurant
process,” Advances in Neural Information Processing Systems, vol. 22, 2009.

[139] J. Chen, J. Zhu, J. Lu, and S. Liu, “Scalable inference for nested chinese
restaurant process topic models,” arXiv preprint arXiv:1702.07083, 2017.

[140] M. Zhou, “Infinite edge partition models for overlapping community detec-
tion and link prediction,” in Artificial intelligence and statistics, PMLR, 2015,
pp. 1135–1143.

[141] P. Rai, C. Hu, R. Henao, and L. Carin, “Large-scale bayesian multi-label learn-
ing via topic-based label embeddings,” Advances in neural information pro-
cessing systems, vol. 28, 2015.

[142] X. Fan, B. Li, C. Li, S. SIsson, and L. Chen, “Scalable deep generative rela-
tional model with high-order node dependence,” Advances in Neural Informa-
tion Processing Systems, vol. 32, 2019.

143

Appendix A: Probability Mass and
Density Functions

In this appendix, we provide the probability mass and density functions for the dis-

tributions used in our paper. Probability mass functions capture the probability of a

discrete random variable realizing a value, denoted x:

Bernoulli(p, q) = pxq(n−x) (A.1)

Multinomial(p) =
Γ(
∑︁

i xi + 1))
∏︁

i Γ(xi + 1))

L
∏︂

i

pxi

i (A.2)

Where p, q, and p are the parameters of their respective distributions. Probability

density functions capture the relative likelihood of a continuous random variable

realizing the value x:

Beta(α, β) =
xα−1(1− x)β−1

B(α, β)
,B(α, β) =

Γ(α)Γ(β)

Γ(α + β)
(A.3)

Dirichlet(ααα, L) =
Γ(
∑︁L

l=1 αl)
∏︁L

l=1 Γ(αl)

L
∏︂

l=1

xαl−1
l (A.4)

(A.5)

Where α, β, ααα, and L are the parameters of their respective distributions.

144

Appendix B: Integral Form of the
Beta Function

In this appendix, we provide the derivation to obtain the integral form of the Beta

function. We do this by leveraging the definition of the Beta distribution. Specifically,

we begin with the identity that the integral of a probability density function with

respect to its support is equal to 1 and proceed with simple integral calculus:

∫︂ 1

0

Beta(α, β) dx = 1

∫︂ 1

0

xα−1(1− x)β−1

B(α, β)
dx = 1

1

B(α, β)

∫︂ 1

0

xα−1(1− x)β−1 dx = 1

∫︂ 1

0

xα−1(1− x)β−1 dx = B(α, β) (B.1)

145

Appendix C: Marginalizing Finite
Level Memberships

In order to marginalize finite level memberships, we begin with the definition of its

posterior, P(ai | A−i,Z,ααα), which is defined analogously to Equation 6.7 with the

exception that the Dirichlet prior is used in the this case. Formally, we obtain the

following through Bayes’ rule:

P(ai | A−i,Z,ααα) =
P(Z | A,ααα)P(ai | A−i,ααα)

∫︁

ai
P(Z | A,ααα)P(ai | A−i,ααα)dai

(C.1)

=
Multinomial(ai)Dirichlet(ααα, L)

∫︁

ai
Multinomial(ai)Dirichlet(ααα, L) dai

(C.2)

Where ααα is a vector of L concentration parameters for each level in the distribution,

namely ααα = [α1, α2, ..., αL] such that αl > 0 and L is the finite number of levels in

the hierarchy. In our marginalization, we adopt the notation from Equation 6.8 to

indicate the number of indicators in zi∗. Furthermore, we define the following vector of

concentration parameters to aid in readability: α′α′α′ = [α1+#zi∗=1, α2+#zi∗=2, ..., αL+

#zi∗=L]. With these variables in place, we can derive the Dirichlet posterior for finite

level indicators:

P(ai | A−i,Zi∗,ααα)

=
Multinomial

(︁

ai

)︁

Dirichlet(ααα)
∫︁

ai
Multinomial

(︁

ai

)︁

Dirichlet(ααα) dai

(1)
=

(︄

Γ(
∑︁L

l=1 #
zi∗=l + 1)

∏︁L

l=1 Γ(#
zi∗=l + 1)

∏︁L

l=1(a
l
i)
#zi∗=l

)︄(︄

Γ(
∑︁L

l=1 αl)
∏︁L

l=1 Γ(αl)

∏︁L

l=1(a
l
i)
αl−1

)︄

∫︁

ai

(︄

Γ(
∑︁L

l=1 #
zi∗=l + 1)

∏︁L

l=1 Γ(#
zi∗=l + 1)

∏︁L

l=1(a
l
i)
#zi∗=l

)︄(︄

Γ(
∑︁L

l=1 αl)
∏︁L

l=1 Γ(αl)

∏︁L

l=1(a
l
i)
αl−1

)︄

dai

146

(2)
=

(︄

Γ(
∑︁L

l=1 #
zi∗=l + 1)

∏︁L

l=1 Γ(#
zi∗=l + 1)

∏︁L

l=1 Γ(αl)

Γ(
∑︁L

l=1 αl)

)︄(︄

∏︁L

l=1 Γ(α
′
l)

Γ(
∑︁L

l=1 α
′
l)

Γ(
∑︁L

l=1 α
′
l)

∏︁L

l=1 Γ(α
′
l)

)︄

∏︁L

l=1(a
l
i)
α′
l
−1

∫︁

ai

(︄

Γ(
∑︁L

l=1 #
zi∗=l + 1)

∏︁L

l=1 Γ(#
zi∗=l + 1)

∏︁L

l=1 Γ(αl)

Γ(
∑︁L

l=1 αl)

)︄(︄

∏︁L

l=1 Γ(α
′
l)

Γ(
∑︁L

l=1 α
′
l)

Γ(
∑︁L

l=1 α
′
l)

∏︁L

l=1 Γ(α
′
l)

)︄

∏︁L

l=1(a
l
i)
α′
l
−1 dai

(3)
=

(︄

Γ(
∑︁L

l=1 #
zi∗=l + 1)

∏︁L

l=1 Γ(#
zi∗=l + 1)

∏︁L

l=1 Γ(αl)

Γ(
∑︁L

l=1 αl)

∏︁L

l=1 Γ(α
′
l)

Γ(
∑︁L

l=1 α
′
l)

)︄

Dirichlet(α′α′α′)

∫︁

ai

(︄

Γ(
∑︁L

l=1 #
zi∗=l + 1)

∏︁L

l=1 Γ(#
zi∗=l + 1)

∏︁L

l=1 Γ(αl)

Γ(
∑︁L

l=1 αl)

∏︁L

l=1 Γ(α
′
l)

Γ(
∑︁L

l=1 α
′
l)

)︄

Dirichlet(α′α′α′) dai

(4)
=

(︄

Γ(
∑︁L

l=1 #
zi∗=l + 1)

∏︁L

l=1 Γ(#
zi∗=l + 1)

∏︁L

l=1 Γ(αl)

Γ(
∑︁L

l=1 αl)

∏︁L

l=1 Γ(α
′
l)

Γ(
∑︁L

l=1 α
′
l)

)︄

Dirichlet(α′α′α′)

(︄

Γ(
∑︁L

l=1 #
zi∗=l + 1)

∏︁L

l=1 Γ(#
zi∗=l + 1)

∏︁L

l=1 Γ(αl)

Γ(
∑︁L

l=1 αl)

∏︁L

l=1 Γ(α
′
l)

Γ(
∑︁L

l=1 α
′
l)

)︄∫︁

ai

Dirichlet(α′α′α′) dai

(5)
= Dirichlet(α′α′α′) (C.3)

Where (1) is obtained by applying the definitions of the Multinomial and Dirichlet

distributions as per Equations A.2 and A.4, respectively; (2) leverages the definition

of ααα′ to group level memberships and introduces cancelling numerator and denomi-

nator terms using ααα′ to obtain a Dirichlet probability density function as shown by

replacement in (3); (4) groups terms constant with respect to ai in integration; and

(5) leverages the law of total probability.

147

Appendix D: Simplifying Level
Likelihood

In this appendix, we provide the simplification of level likelihood by eliminating the

Gamma function for more efficient computation. Recall from Equation 6.19 that the

level likelihood, P(gij∗ | G−(ij∗),P,Z, λ, η), is expressed as follows:

P(gij∗ | G−(ij∗),P,Z, λ, η)

=
∏︂

gijr∈gij∗

Γ(#
cpqr=1

−(ijr) + gijr + λ)Γ(#
cpqr=0

−(ijr) + (1− gijr) + η)Γ(#
cpqr=1

−(ijr) +#
cpqr=0

−(ijr) + λ+ η)

Γ(#
cpqr=1

−(ijr) +#
cpqr=0

−(ijr) + 1 + λ+ η)Γ(#
cpqr=1

−(ijr) + λ)Γ(#
cpqr=0

−(ijr) + η)

=
∏︂

gijr∈gij∗

1

#
cpqr=1

−(ijr) +#
cpqr=0

−(ijr) + λ+ η

Γ(#
cpqr=1

−(ijr) + gijr + λ)Γ(#
cpqr=0

−(ijr) + (1− gijr) + η)

Γ(#
cpqr=1

−(ijr) + λ)Γ(#
cpqr=0

−(ijr) + η)

(D.1)

We can leverage the fact that gijr ∈ {0, 1} to define the second term as a piecewise

function with respect to the value of gijr. Doing so allows us to cancel out terms

which appear in both the numerator and denominator after expanding the Gamma

function. This process leads to the following simplification:

Γ(#
cpqr=1

−(ijr) + gijr + λ)Γ(#
cpqr=0

−(ijr) + (1− gijr) + η)

Γ(#
cpqr=1

−(ijr) + λ)Γ(#
cpqr=0

−(ijr) + η)
=

⎧

⎨

⎩

#
cpqr=1

−(ijr) + λ gijr = 1

#
cpqr=0

−(ijr) + η gijr = 0
(D.2)

This allows us to put together Equations D.1 and D.2 to get the following, as seen in

Equation 6.19:

P(gij∗ | G−(ij∗),P,Z, λ, η) =
∏︂

gijr∈gij∗

gijr(#
cpqr=1

−(ijr) + λ) + (1− gijr)(#
cpqr=0

−(ijr) + η)

#
cpqr=1

−(ijr) +#
cpqr=0

−(ijr) + λ+ η

(D.3)

148

	Introduction
	Motivation
	Objectives
	Outline
	Background
	Knowledge Graphs
	Resource Description Framework
	Ontologies
	Embeddings
	Probabilistic Graphical Models
	Stochastic Blockmodels
	The Chinese Restaurant Process
	The Nested Chinese Restaurant Process
	The Stick Breaking Process
	Artificial Neural Networks
	Rosenblatt's Perceptron
	The Multilayer Perceptron
	Backpropagation
	A Simple Method for Inducing Class Taxonomies in Knowledge Graphs
	Introduction
	Related Work
	Methods for Class Taxonomy Induction
	Methods for Tag Hierarchy Induction
	Methods for Hierarchical Clustering
	Problem Description
	Proposed Method
	Class Taxonomy Induction Procedure
	Hierarchical Clustering Procedure
	Evaluation
	Datasets
	Hyperparameter Sensitivity
	Taxonomy Induction
	Hierarchical Clustering
	Computational Complexity Analysis
	Effect of Dataset Size on Induced Taxonomy
	Conclusions
	Probabilistic Coarsening for Knowledge Graph Embeddings
	Introduction
	Related Work
	Problem Description
	Proposed Strategy
	Probabilistic Graph Coarsening
	Coarse Graph Embedding
	Reverse Mapping and Fine Tuning
	Evaluation
	Datasets
	Procedure
	Results
	Conclusions
	Neural Blockmodelling for Knowledge Graphs
	Introduction
	Related Work
	Stochastic Blockmodels
	Embedding Models
	Problem Description
	Model Description
	Mixed Membership Stochastic Blockmodel
	Proposed Model
	Evaluation
	Link Prediction
	Entity Classification
	Community Detection
	Predicate Embeddings
	Hyperparameter Sensitivity
	Conclusions
	Hierarchical Blockmodelling for Knowledge Graphs
	Introduction
	Related Work
	Problem Description
	Proposed Model
	Community Memberships
	Community Relations
	Generative Process
	Collapsed Gibbs Sampling
	Sampling Procedure
	Evaluation
	Datasets
	Quantitative Evaluation
	Qualitative Evaluation
	Conclusion
	Conclusion
	Contributions
	Future Directions
	Bibliography
	Appendix A: Probability Mass and Density Functions
	Appendix B: Integral Form of the Beta Function
	Appendix C: Marginalizing Finite Level Memberships
	Appendix D: Simplifying Level Likelihood

