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Abstract 

 

Amyotrophic lateral sclerosis (ALS) is a, neurodegenerative disorder which is characterized by 

progressive impairment of the upper motor neurons in the brain and lower motor neurons in the 

brainstem and spinal cord. The disease is ultimately fatal with death eventually resulting from 

aspiration pneumonia. The motor neuronal impairment results in clinical signs such as muscle 

weakness, increased muscle tone and reflexes, and muscular atrophy and fasciculations. Cognitive 

impairment, recognized as a correlate of frontotemporal lobar degeneration, may occur 

concurrently with  the disease process in ALS. Despite the recognition of corticospinal tract and 

corpus callosal degeneration as hallmarks of white matter microstructural impairment, the 

functional connectivity alterations of the default mode and sensorimotor cerebral networks as 

hallmarks of gray matter impairments, and alterations in concentrations of excitatory and 

inhibitory neurochemicals as well as neurochemical markers of neuronal health, there is an 

inadequate understanding of the relationship between these independent observations across 

various measurement modalities as well as an inadequate understanding of the pathophysiological 

mechanisms underlying such disease characteristics. This makes accurate stratification of patients 

based on disease pathophysiology challenging, and hinders the study of targeted therapeutic 

interventions or inclusion in clincial trials. In addition, due to the stringency of inclusion criteria 

for clinical drug trials, some patients are deemed ineligible for inclusion based on a decline in their 

clinical measures.  

 

Therefore, this thesis aimed to characterize markers of early disease using an approach that 

stratifies patients based on interindividual similarities in disease pathophysiology using 

neuroimaging instead of clinical measures. In order to assess the performance of such 

neuroimaging-based measures against clinically-defined methods, a comparison of clinical and 

functional neuroimaging measures is performed in Chapter 2. This study provides evidence of 

better sensitivity of the imaging-derived method of patient stratification over the clinically-defined 

method. The next step is to perform an evaluation of network-based evolution of disease 
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pathophysiology in clinically-defined and imaging-derived patient subgroups. These evaluations 

were performed in Chapters 3 and 4. Chapter 3 was able to demonstrate that longitudinal network 

connectivity alterations were present in both motor and extra-motor networks in the 

comprehensive ALS cohort as well as in the clinically-defined patient subgroups. Additionally, an 

assessment of cerebral function in this chapter revealed that brain regions participating in motor 

encoding have altered longitudinal functional connectivities in the motor imagery network in early 

disease and in the action observation network in advanced disease. In chapter 4, distinct disease 

evolution patterns were identified in imaging-derived patient subgroups. While one subgroup had 

a more severe (advanced pathophysiological) disease with a predominantly motor phenotype, the 

other subgroup had a less severe (early pathophysiological) disease with a motor-frontotemporal 

phenotype. Clinical features of the disease in both patient subgroups correlated with their network 

characteristics. The longitudinal patterns of network functional alterations in patients stratified by 

both clinically-defined and imaging-derived criteria are suggestive of the role of the motor network 

in the disease process. Therefore, identifying the neuroanatomical basis of motor network 

impairment might help provide clues to the biological mechanisms underlying functional 

impairment of the upper motor neurons. Chapter 5 performed an assessment of the 

neuroanatomical features of white matter microstructure and neurochemical concentrations within 

the foot region of the primary motor cortex homunculus. As expected, a correlation was observed 

between reduced neurochemical concentrations of N-acetyl aspartate (a marker of neuronal health) 

and reduced foot tapping scores in ALS. Furthermore, these clinically-relevant neurochemical 

concentrations demonstrated both positive and negative associations with reduced motor cortex 

functional connectivity.  

 

In sum, the evidence presented in this thesis highlights that the connectivity of the motor network 

plays a vital role in ALS disease pathophysiology, thereby corroborating the extensive evidence in 

the literature. Specifically, the evidence in this thesis suggests that the pathophysiological disease 

mechanisms manifest differently in ALS patients, and these differences are apparent when distinct 

patient stratification criteria are used. However, this thesis also highlights the lack of congruence 

between the various criteria used in this thesis to stratify patients. This is indicative of a gap in 
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biological-phenotypic coherence of pathophysiological disease characterization, which remains a 

major player in the lack of identification of an effective biomarker for disease monitoring in the 

clinical setting. 
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Chapter 1: General Introduction 

 

1.1. General overview of ALS 

Amyotrophic lateral sclerosis (ALS) is a complex adult-onset neurodegenerative disorder. The 

incidence of ALS is 2/100,000 per year (Marin et al. 2017) with a mean age of onset of 55 years. 

It is considered to be the most frequently occurring motor neuron disorder (Braak et al. 2013) and 

is characterized by the degeneration of cortical or upper motor neurons (UMNs) and spinal or 

lower motor neurons (LMNs). The complexity of ALS is a result of its genotypic and phenotypic 

heterogeneity. Over 50 genes contribute to the genotypic heterogeneity of ALS (Taylor, Brown, 

and Cleveland 2016). The occurrence of ALS has been linked to genetic or familial factors in about 

5-10% of all cases, with the remaining majority of cases having an unknown or sporadic etiology. 

Phenotypic variability in ALS is contributed by factors such as genetics, region of onset, type of 

motor neuron involvement, the extent of extra-motor involvement, and the duration of symptoms 

(Swinnen and Robberecht 2014) – providing evidence of the multisystem nature of the disease. 

Depending on a combination of variables contributing to disease in an individual, the presentation 

of the symptoms of ALS can be heterogenous. Classically, ALS can present as painless progressive 

muscle weakness (paresis) (Goutman 2017) which can result in a decreasing ability to perform 

activities such as walking, running, swallowing food, and ultimately respiration. A recent review 

has suggested that after the onset of symptoms, patients wait for about 3-6 months before 

contacting a primary care provider (Richards, Morren, and Pioro 2020). Coupled with other factors 

such as delays from referrals to specialists, misdiagnosis, age and region of onset, or the presence 

of comorbidities, the diagnostic delay for a patient with ALS can range from 10 to 16 months 

(Richards, Morren, and Pioro 2020). Following diagnosis, the survival of an ALS patient ranges 

from 3-5 years (Taylor, Brown, and Cleveland 2016).  

 

The most common presentation of ALS involves onset in a distal limb with contiguous spread 

rostrocaudally and contralaterally to other limbs (Goutman 2017). This type of onset is generally 
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classified as limb-onset ALS. Some patients may present with difficulties in swallowing 

(dysphagia) and speech (dysarthria), which is classified as bulbar-onset ALS and occurs in 

approximately 20-30% of all ALS cases (Swinnen and Robberecht 2014). A small percentage of 

cases can present with breathing difficulties and/or cognitive and behavioural impairment 

(Goutman 2017). ALS can also coexist with other disease pathologies and present with 

extrapyramidal involvement (impairment of the dopaminergic neurons in the nigrostriatal 

pathway), cerebellar ataxia (impairment of the cerebellar circuits), as well as sensory involvement 

(Swinnen and Robberecht 2014). Therefore, given the heterogeneity of presentation, it is important 

to stratify the patients into well-established clinical phenotypic subtypes (based on genetic 

information, and diverse motor and psychological features) to provide an accurate diagnosis, 

treatment plan, and aid their inclusion in clinical trials (Swinnen and Robberecht 2014).  

 

1.2. Pathophysiology of ALS 

Identification of the biological mechanisms that contribute to the presentation of these clinical 

features is important to understanding the pathophysiology of ALS. These pathophysiological 

mechanisms include the interplay of a variety of factors such as environmental and lifestyle factors, 

genetics, neuronal and glial dysfunction, impaired protein homeostasis, aberrant RNA metabolism, 

mitochondrial dysfunction, excitotoxicity, and metabolic dysregulation (Figure 1) which are 

discussed in the following sections. 
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Figure 1. Mechanisms contributing to the pathophysiology of ALS. These mechanisms have been 

implicated to be direct consequences of several gene mutations in ALS and have been thought to 

be interlinked. SOD1 is a gene that has been studied extensively and has been associated with, in 

combination with other genes, the occurrence of a large number of pathophysiological mechanisms 

such as hyperexcitability, glial dysfunction, mitochondrial dysfunction, and oxidative stress. 

C9orf72 has been linked to mechanisms such as aberrant RNA metabolism, impaired DNA repair, 

impaired nuclear transport, and impaired protein homeostasis. Other mechanisms such as impaired 

nuclear export, impaired DNA repair and dysregulated vesicle transport can directly alter neuronal 

function. Source: Hardiman et al., 2017 
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1.2.1. Environmental and lifestyle factors 

Environmental exposure to neurotoxins is assumed to be a weak factor in the causation of the 

disease. For example, exposure to water containing cyanobacteria blooms, or exposure to the 

neurotoxin β-methylamino-l-alanine have been suggested to be possible environmental triggers in 

susceptible populations (Hardiman et al. 2017). An epidemiological study has suggested that 

environmental triggers could be active for years before the clinical onset of disease (Factor-Litvak 

et al. 2013). These environmental factors could include excessive smoking, exposure to pollutants, 

dietary patterns, occupation, excessive physical activity, and changes to the body’s immune 

response (Eisen et al. 2014). 

 

1.2.2.Genetics 

ALS is a neurodegenerative disorder that has a complex Mendelian inheritance pattern (Hardiman 

et al. 2017). Variations in over 50 genes have already been associated with ALS (Taylor, Brown, 

and Cleveland 2016). Of the 5-10% cases of genetically linked (familial) ALS, a majority of cases 

(30%) can result from a hexanucleotide repeat expansion in the chromosome 9 open reading factor 

(C9orf72), 20% result from a mutation in the superoxide dismutase 1 (SOD1) gene, and 4-5% of 

the cases have been linked to mutations in the transactive response DNA binding protein 

(TARDBP) and fused in sarcoma (FUS) genes (S. Chen et al. 2013). The remainder (45%) of the 

familial cases have been linked to mutations in other genes such as the vesicle associated 

membrane protein associated protein B (VAPB), angiogenin (ANG), ataxin 2 (ATXN2), factor 

induced gene 4 (FIG 4), optineurin (OPTN), and other genes that are still undiscovered (S. Chen 

et al. 2013).  

 

However, the discovery of genes contributing to sporadic forms of ALS (90-95% of all cases) has 

been largely unsuccessful with only about 10% of the cases having an identified genetic basis 

(Boylan 2015). Genome wide association studies in sporadic ALS suggest that the genetic variants 
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that render the patients ‘high-risk’ might be specific to their family ancestry (van Rheenen et al. 

2016). Heritability studies estimate that 60% of the risk for ALS is determined genetically and the 

remaining 40% is contributed by environmental factors (Al-Chalabi et al. 2010). The interactions 

between mutations in the genes for familial ALS and cellular, neuronal, and glial functions have 

been shown to result in the degeneration of motor neurons via biological mechanisms which 

contribute to ALS pathophysiology. These genetically linked pathophysiological mechanisms 

include protein aggregation, aberrant RNA processing, oxidative stress, mitochondrial disruption, 

apoptosis or programmed cell death, microglial activation, metabolic dysregulation, and axonal 

dysfunction (Figure 2) (S. Chen et al. 2013). 
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Figure 2. Interactions of ALS-specific genes with cellular, neuronal, and glial processes 

contributing to the degeneration of motor neurons in familial ALS. Boxes on the outside in purple 

list the genes associated with the different pathophysiological processes (boxes on the inside in 

green). Source: Chen et al., 2013. 

 

1.2.3.Impaired protein homeostasis 

Protein homeostasis involves the translation of a gene to a protein, protein folding, and clearance. 

During the translation process of a gene into a protein, the presence of mutations in a gene can 

result in the generation of misfolded proteins. The accumulation of these misfolded proteins can 

contribute to various neurodegenerative diseases and is central to ALS pathophysiology. The 

disruption of the two main pathways for excessive protein clearance – autophagy and the ubiquitin-

proteasome system – are considered to be key players in the pathogenesis of ALS (Mejzini et al. 

2019). The proteinopathies of ALS-linked genes (e.g., SOD1, TDP-43, and C9orf72) contributing 

to impaired protein-related ALS pathogenesis are discussed in the following sections.  

a) TDP-43 is a DNA/RNA binding protein consisting of 414 amino acids which is localized to 

the nucleus and is encoded by the TARDBP gene (Mejzini et al. 2019). TDP-43 acts as a 

regulator of gene expression and plays an important role in different steps of RNA processing 

including RNA splicing, mRNA transport, regulation of mRNA stability, and the regulation of 

non-coding RNAs (Mejzini et al. 2019). TDP-43 also functions as a transporter protein 

molecule that can easily cross the nuclear membrane into the extra-nuclear cytoplasm of the 

cell and shuttle back and forth (Ayala et al. 2008). 

 

Mutations in the TARDBP gene resulting in abnormal function of TDP-43 were first identified 

in 2008 as a cause of neurodegeneration in ALS (Mejzini et al. 2019). Familial cases of ALS 

with C9orf72 hexanucleotide repeat expansions and sporadic cases of ALS not containing any 

pathogenic variants in the TARDBP gene were shown in histopathological studies to contain 

ubiquitin-positive cytoplasmic aggregates of TDP-43 protein (Takeuchi et al. 2016), 

suggesting a dysfunction of the ubiquitin-proteasome system and mislocalization of the protein 
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from the nucleus to the cytoplasm in the brain and spinal cord (Hardiman et al. 2017) (Figure 

2) – this is now considered to be a pathological hallmark of ALS.  

 

The discovery of mislocalization of TDP-43 from the nucleus to the cytoplasm has been 

instrumental in proposing different mechanisms of the disease which involve a loss of normal 

TDP-43 function in the nucleus, a gain of toxic TDP-43 function, or a combination of both 

(Mejzini et al. 2019). The various animal models used to study the loss/gain of TDP-43 

function are discussed in a later section. 

 

 

Figure 3. Normal and aberrant localization of TDP-43 in the neuronal cell. The arrow on the 

left depicts a neuron showing abnormal localization of TDP-43 in the cytoplasm of the neuron, 

whereas the arrowhead on the right depicts a neuron showing normal localization of TDP-43 

in the nucleus of the neuron. Figure sourced and modified from Hardiman et al., 2017. 

 

The depletion of TDP-43 in the nucleus has been thought to result in the upregulation of TDP-

43 synthesis continually and the increase of TDP-43 in the cytoplasm has been linked to the 

formation of protein aggregates resulting in cellular dysfunction alongside the dysregulation 

of mRNA metabolism in the nucleus (Mejzini et al. 2019). 
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b) SOD1 is a protein that maps to the chromosome 21q22.1 (S. Chen et al. 2013), encodes a 

metalloenzyme consisting of 153 amino acids, binds one molecule each of copper and zinc (S. 

Chen et al. 2013) generating an extremely stable homodimer (Mejzini et al. 2019). SOD1 

protein dimers are present in the cytosol and intermembrane space of the mitochondria and 

provide an important antioxidant defence mechanism against reactive oxygen species produced 

as a product of normal cellular respiration (Mejzini et al. 2019). The pathogenic variants of 

SOD1 have been shown to occur in approximately 15-30% of the familial cases of ALS (Zou 

et al. 2017) and about 1-4% of the sporadic cases of ALS (S. Chen et al. 2013). 

 

Mutations in the SOD1 gene have been studied extensively and related to disease phenotype, 

duration, and severity. Approximately 185 mutations have been located in the SOD1 gene; 

patients with mutations recognized as the G85R and G93A variants, among others, have been 

observed to have a rapid progression of the disease and shorter survival, and those with G93C, 

D90A, and H46R variants have been associated with longer life expectancies (Mejzini et al. 

2019). The exact mechanisms by which SOD1 mutations contribute to the pathophysiology of 

ALS are unknown; however, mechanisms such as misfolded protein aggregation, oxidative 

stress, mitochondrial dysfunction, glutamatergic excitotoxicity, inflammation, and 

mitochondrial dysfunction have been postulated to contribute to gain of toxic SOD1 function 

in ALS (S. Chen et al. 2013). 

 

c)  A hexanucleotide repeat expansion in the non-coding region of the C9orf72 gene was 

discovered in 2011 as the cause for a majority of the cases for familial ALS (Renton et al. 2011) 

and has been shown to occur in 34% of familial and 5% of sporadic cases of ALS in the 

European populations but not in the Asian populations (Zou et al. 2017). People without ALS 

typically have about 5-10 copies but patients with ALS may have thousands of copies of this 

hexanucleotide repeat expansion (Mejzini et al. 2019).  

 

The mechanisms of action of the C9orf72 gene in ALS are still unknown. The C9orf72 gene 

might contribute to ubiquitin-positive, p62-positive, and TDP-43 negative inclusions in the 



 

9 

 

extra-motor brain regions and result in a loss of function in autophagy initiation, contributing 

to the toxic accumulation of misfolded proteins (Hardiman et al. 2017). However, a reduction 

in the levels of C9orf72 mRNA and proteins in patients with ALS formed the basis for a 

hypothesis that states that a loss of the protein might be associated with the disease (Xiao et al. 

2015). The models for loss and gain of function for C9orf72 are discussed in a later section.  

 

1.2.4.Aberrant RNA metabolism 

RNA metabolism includes various processes such as RNA splicing, transcription, transport, 

translation, and storage in free granules. These processes are mediated by RNA-binding proteins. 

In ALS, disease causing variations have been associated with the RNA-binding proteins such as 

TARDBP, C9orf72, and FUS (Mejzini et al. 2019), among others. ALS-linked RNA-binding 

proteins contain many prion-like domains that result in the development of stress granules that 

sequester specific mRNAs and inhibit the mRNA translation process (Mejzini et al. 2019).  

 

1.2.5.Glial dysfunction 

Microglia are the innate immune cells of the central nervous system and are employed in all forms 

of ALS (Taylor, Brown, and Cleveland 2016). The GTPase namely RAC1 in microglial cells are 

responsible for the reduction of oxidative stress by limiting the activation of the enzyme NADPH 

oxidase that generates intracellular superoxidase; however, in SOD1 ALS, misfolded mutant 

SOD1 can interfere with this process and drive microglia to generate excess amounts of 

extracellular superoxidase (Taylor, Brown, and Cleveland 2016). Therefore, the microglial 

synthesis of mutant SOD1 is considered to be an important determining factor of rapid disease 

progression. A number of experiments have been performed to study this including the silencing 

of mutant SOD1 in microglia, using cell grafts to replace mutant SOD1 microglia with normal 

microglia, and inhibition of the transcription factor NF-κB to suppress the neuroinflammation 

resulting from the toxic functions of activated microglia (Taylor, Brown, and Cleveland 2016). In 

a C9orf72-linked ALS mouse model, the inactivation of a potential guanine exchange factor for 
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one or more G-proteins has been shown to result in abnormal microglia and age-related 

neuroinflammation, providing evidence of non-cell-autonomous inflammatory processes in ALS 

(Taylor, Brown, and Cleveland 2016). 

 

Oligodendrocytes are myelinating cells of central nervous system processes such as axons of the 

UMNs and the initial axonal segments of the LMNs. These cells are replaced by the proliferation 

of oligodendrocyte precursor cells which are abundantly present throughout the central nervous 

system. However, in ALS, the differentiation process of the precursor cells fails at the final stages, 

contributing to motor neuronal axonopathy (Hardiman et al. 2017). In SOD1 ALS, a delay in the 

onset of disease has been associated with a suppression of mutant SOD1 protein expression in the 

early stages of oligodendrocyte maturation (Taylor, Brown, and Cleveland 2016). The levels of the 

energy metabolite lactate protein, namely the monocarboxylate transporter 1, supplied by the 

oligodendrocytes to support the functioning of motor neurons, have been shown to be reduced in 

the motor cortices of mice models as well as ALS patients (Mejzini et al. 2019; Taylor, Brown, and 

Cleveland 2016). 

 

Astrocytes are glial cells that are involved in providing motor neurons with nutrients, ion buffering 

and recycling of the neurotransmitter glutamate, as well as interacting with microglial cells (Taylor, 

Brown, and Cleveland 2016). The association between astrocytic impairment and excitotoxicity is 

discussed in the next section.  

 

1.2.6. Excitotoxicity – metabolic dysregulation and astrocytic 

dysfunction 

Hyperexcitability is a characteristic of cortical or upper motor neurons which can occur because 

of increased intrinsic excitation, decreased inhibition, or a combination of both. An increase in 

cortical excitability can occur due to increased concentrations and reduced uptake of extracellular 
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glutamate. Glutamatergic excitotoxicity can result in the impaired uptake of excess glutamate by 

the GluR2 subunit of the α-amino-3-hydroxy-5-isoxazole propionate (AMPA) receptor system of 

the neuronal cell membrane and the excitatory amino acid transporter (EAAT)-2 receptor subunit 

localized to the neuronal and glial cell membranes (Blasco et al. 2014; Van Den Bosch et al. 2006). 

The dysregulation of both of these synaptic glutamate uptake pathways have been linked to 

mutations in the SOD1 gene in familial ALS; mutant SOD1 sensitizes the GluR2 subunit to 

glutamatergic excitation and inactivates the EAAT2 receptor in the presence of ROS (Blasco et al. 

2014). Sensitization of the GluR2 AMPA receptor subunit results in an increase in the levels of 

extracellular glutamate in the neuronal environment which results in increased influx of calcium 

ions into the neurons (Bear 2016). Decreased calcium buffering capability of the cell, in addition 

to impaired glutamate clearance, results in a constant state of depolarization for the neuronal 

membrane – thereby reducing the threshold for depolarization of the neuronal membrane 

(hyperexcitability). Increased calcium concentrations in the neuronal cell activates apoptotic 

enzymes such as phospholipases, proteases, and endonucleases that can damage the components 

of the cytoskeleton, cell membrane, mitochondria, and genetic material, and lead to neuronal cell 

death (Bear 2016; Blasco et al. 2014). Reduced glutamate clearance from the synapses and the 

extracellular neuronal environment also occurs due to the dysfunction of the astrocytic EAAT2 

transporter protein. Reduced expression of the EAAT2 transporter protein channels as well as 

mutations in the EAAT2 gene have been reported in SOD1 mice models of ALS (Van Den Bosch 

et al. 2006); however, these findings have not been confirmed in humans. In addition, 

excitotoxicity in ALS occurs because of other factors including the selective vulnerability of motor 

neurons, high concentrations of calcium permeable AMPA receptors on the neuronal cell 

membrane, chloride influx related AMPA receptor mediated excitotoxicity (Van Den Bosch et al. 

2006). 

 

1.2.7.Mitochondrial dysfunction and oxidative stress 

Mitochondrial dysfunction is an event that can occur early on in various neurodegenerative 

diseases (Reddy 2008) and serve as a precursor to various neurodegenerative processes. An 

imbalance in mitochondrial fission/fusion reactions is postulated to cause mitochondrial 
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fragmentation in the presymptomatic/early stages of ALS (Eisen et al. 2014). As a result of being 

a very active process, mitochondrial renewal can cause mutations in the mitochondrial DNA, 

thereby accelerating the accumulation of disease pathology (Chinnery et al. 2012). Mitochondrial 

dysfunction related pathogenic mechanisms occur due to the abnormal aggregation products of 

ALS related genes, impaired autophagic clearance of damaged mitochondria, and mitochondrial 

damage due to aberrant RNA processing (Mejzini et al. 2019). The majority of reactive oxygen 

species (ROS), molecules that contribute to oxidative stress are produced in large concentrations 

by mitochondria, with large amounts of superoxide radicals generated as a by-product of cellular 

respiration (Mejzini et al. 2019).  

 

Oxidative stress is a process that occurs as a result of the excessive production of reactive oxygen 

species (ROS), over and above the rate at which these can be removed from the cell by 

antioxidants. When antioxidants are unable to neutralize ROS, these can result in catastrophic 

outcomes for the cell, such as lipid peroxidation and protein glycoxidation that have been shown 

to occur in the spinal cords of sporadic ALS patients (Mejzini et al. 2019). However, in a 

progressive neurodegenerative process, the capacity of the cells to balance the reduction-oxidation 

reactions decreases (X. Chen, Guo, and Kong 2012). ROS toxicity can cause damage to the 

mitochondrial DNA leading to a disruption of the respiratory chain, thereby further increasing ROS 

levels and facilitating cellular damage – resulting in the formation of a self-amplifying cycle of 

ROS toxicity (X. Chen, Guo, and Kong 2012).  

 

Mitochondrial dysfunction is also associated with the specificity of the ALS-related genetic 

mutation. Normal SOD1 acts as a cytosolic antioxidant. However, in ALS, mutant SOD1 does not 

assume a loss of antioxidant function; it is associated with the increased production of ROS by 

interacting with mitochondria and other proteins (Mejzini et al. 2019). Mutation of the TAR DNA 

binding protein (TARDBP) results in increased localization of the TDP-43 protein molecules in 

the mitochondria (Hardiman et al. 2017) where they bind to and disassemble the respiratory chain 

complex 1 subunits encoded by micro ribonucleic acids (mRNAs) (W. Wang et al. 2016). A 
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CHCHD10 mutation can impair mitochondrial genome maintenance, promote the loss of 

mitochondrial cristae junctions, and interfere with apoptosis by preventing the release of 

cytochrome c (Genin et al. 2016). 

 

 

1.3. Models for the study of ALS pathophysiology 

1.3.1.General overview of the models for the study of neurodegenerative 

disorders 

Neurodegenerative disorders, in general, are characterized by the uncontrolled, age-related loss of 

neurons, leading to an impairment of brain function and are associated with a wide range of clinical 

presentations (phenotypes) including impaired motor function, cognition, and behaviour (Slanzi et 

al. 2020). As such, the determination of the genotype of an individual with a neurodegenerative 

disorder is important to obtaining an understanding of the disease phenotype. This genotypic-

phenotypic correlation is more feasible if the individual has family members previously diagnosed 

with a neurodegenerative disorder or if the genotype of the individual resembles previously 

discovered genetic abnormalities. As the majority of patients have an unknown disease etiology, 

the information obtained from genetic forms of the disease is unable to completely characterize 

sporadic forms of the disease. However, such information can provide surrogates to study the 

physiological mechanisms underlying the disease and for the development of targeted disease-

modifying therapies (Dawson, Golde, and Lagier-Tourenne 2018). 

 

1.3.2.Models for the study of ALS 

ALS is a neurodegenerative disorder that shares pathogenic pathways with frontotemporal 

dementia (FTD) (Swinnen and Robberecht 2014). The strongest connecting link between the two 

disease entities is a hexanucleotide repeat expansion in the C9orf72 gene (Renton et al. 2011). 

Other genetic links between the two diseases include the mutations and/or mislocalizations of 
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previously discussed genes such as TDP-43, FUS, ataxin 2 (Dawson, Golde, and Lagier-Tourenne 

2018) – to name a few. ALS is therefore considered to be a multisystem disorder, affecting motor, 

cognitive, and behavioural systems. While ALS and FTD are clinically distinct disorders, motor 

neuron deficits and cognitive impairment can coexist in familial forms of both disease entities, 

with substantial clinical, genetic, and pathological overlap (Dawson, Golde, and Lagier-Tourenne 

2018).  

 

Therefore, the generation of a controlled system (referred to as modelling) is important to obtain 

a better understanding of the biological pathways that underlie clinical presentation of the disease. 

In a model, the complex interactions between cells and cell-specific circulating hormones and 

factors are important to the characterization of the physiological mechanisms and systemic 

interactions between different organ systems. Such models are largely generated from animal 

species, generally other mammals, before applying the findings to human species. This is because 

humans and other mammals are considered to be complex organisms that develop distinct 

physiological mechanisms in a highly regulated and integrated manner (Barré-Sinoussi and 

Montagutelli 2015) in a similar fashion. For example, models generated by inducing a mutation in 

the SOD1 gene (ALS) or MAPT gene (FTD) have been helpful in the identification of disease 

mechanisms and in the generation of preclinical models to study the impact of potential 

therapeutics (Dawson, Golde, and Lagier-Tourenne 2018). However, species-specific differences 

in genome, brain anatomy, differences in normal aging processes – to name a few – between 

humans and laboratory regulated mammals can pose challenges to a direct comparison of 

pathophysiological mechanisms or drug effects (D’Souza et al. 2021). Therefore, there was a need 

to generate disease models that more closely resembled disease in humans in terms of specific 

genes, protein and molecular pathways. This was accomplished by the utilization of in-vitro cell 

culture models such as human-induced pluripotent stem cells (iPSCs), induced neural stem cells 

(iNSCs), and induced neurons (iNs) (D’Souza et al. 2021). The starting point for each of these in 

vitro cell cultures are fibroblast cells obtained from humans that are converted using different 

processes (Figure 4) into human iPSCs and iNs. Human iPSC neurons are versatile cells – they 

can be differentiated into microglia – and can help characterize a patient's unique genome in a dish 
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and can help in the identification of factors contributing to the neurodegenerative disease 

processes, especially those that are genetically determined (D’Souza et al. 2021). Cells that 

undergo a direct conversion to iNs do not undergo the conversion to the pluripotent fetal state. This 

may allow the cells to retain more of the epigenetic signature of the starting fibroblast cells, 

rendering them more likely to represent phenotypes which may occur with normal cellular aging. 

 

 

Figure 4. A schematic of the steps involved in the generation of in-vitro models for the study of 

neurodegenerative disorders. In panel (a), the schematic pathway for neuronal differentiation from 

human-induced pluripotent stem cells involves (1) reprogramming human primary fibroblasts or 

other somatic primary cells back into the fetal state by introducing defined transcription factors, 

(2) inducing neural fate through the inhibition of an dual intercellular signalling pathway (also 

known as the SMAD pathway), resulting in the formation of neural stem cells, and (3) 

differentiating neurons with the help of neurotrophic factors. Panel (b) shows a schematic of a 

pathway for the direct conversion of fibroblasts to neurons in which the same starting fibroblasts 

can be directly converted into induced neurons by the introduction of neuron-specific transcription 
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factors and other small molecules that include SMAD pathway inhibitors and cell cycle blockers. 

Source: D’Souza et al., 2021. 

 

Technological advancements have been instrumental in progressively improving the elegance of 

models used to study ALS. Models can be classified on the basis of their physical representations 

which include cell lines and primary cell cultures, various small animal and rodent models, in vitro 

biochemical models, and patient-derived cellular models. Another method of model classification 

is dependent on the pathophysiological mechanism being studied including proteinopathies of 

ALS-linked genes, the role of iNs in the understanding of genetic mutations and cell survival. The 

following sections briefly outline various models employed to understand ALS pathophysiology. 

 

1.3.2.1. Proteinopathy models 

Proteinopathies refer to the misfolding and/or mislocalization of various proteins that are linked to 

diseases such as ALS. As discussed in earlier sections, TDP-43 and SOD1 are key players towards 

the understanding of ALS pathophysiology. 

 

In SOD1 rodent (mice, rats) models of ALS, the degeneration of upper and lower motor neurons, 

denervation of the neuromuscular junction, progressive limb weakness resulting in paralysis, and 

reduced lifespan (Dawson, Golde, and Lagier-Tourenne 2018) are features that have been observed 

when the models were made to overexpress the missense, mutant, or truncated human forms of the 

SOD1 gene (Mejzini et al. 2019); interestingly, the deletion of the SOD1 gene was not associated 

with an impairment of motor neurons (Dawson, Golde, and Lagier-Tourenne 2018). However, a 

major limitation of SOD1 rodent models is the inability to characterize sporadic forms of the 

disease which are associated with the accumulation of mutant and/or misfolded TDP-43.  
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The physiological mechanisms surrounding the role of TDP-43 in ALS have been postulated to be 

categorized into two classes – the loss of normal TDP-43 function, and the gain of toxic TDP-43 

function. Several mice models have been used to test the loss of TDP-43 function hypothesis in 

ALS. As TDP-43 is important to embryonic development, homozygous mice models not 

containing TDP-43 have been shown to not be viable; the same study showed the presence of 

motor deficits without the degeneration of motor neurons and reduction in TDP-43 protein levels 

in heterozygous mice with a TARDBP deletion (Kraemer et al. 2010). Other mice models were 

generated to overexpress TDP-43 in order to study the gain of function hypothesis. The 

overexpression of the wildtype and mutant forms of TDP-43 resulted in neuronal degeneration, 

and the overexpression of normal human TDP-43 has been shown to result in protein fragmentation 

into 25kDa and 35kDa fragments that are typically observed in human ALS (Mejzini et al. 2019). 

 

1.3.2.2. Human induced pleuripotent stem cell models 

In ALS, motor neurons derived from iPSCs have been used to study genetic variants in SOD1, 

TARDBP, C9ORF72, FUS and in models of sporadic disease (Mejzini et al. 2019). SOD1 variant 

iPSC models of ALS have been successful in reflecting the pathological features observed in 

patients such as the aggregation of the SOD1 protein (Mejzini et al. 2019). In a TARDBP (M337V) 

iPSC model, motor neurons derived from iPSCs of patients expressing the TARDBP genetic 

variant have been reported to show increased levels of soluble and detergent-resistant cytoplasmic 

TDP-43 inclusions as well as reduced survival, whereas other studies did not report these 

observations despite the use of the same variant of TARDBP (Mejzini et al. 2019) – demonstrating 

the heterogeneity in observations from the same pathophysiological model. iPSCs derived motor 

neurons from patients having the C9orf72 variant of ALS express disease-associated 

characteristics such as mRNA aggregation, alterations in gene expression, nucleocytoplasmic 

transport defects, and excitotoxic susceptibility (Mejzini et al. 2019).  
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1.3.2.3. Induced neuronal models 

The introduction of neuron-specific transcription factors to human fibroblasts can result in the 

generation of motor neurons that display disease-specific degeneration. This process is also 

referred to as the direct reprogramming of motor neurons. These neurons are able to preserve aging 

hallmarks such as the loss of heterochromatin, damage to DNA, and nuclear organization (Mejzini 

et al. 2019). Although, research on directly reprogrammed motor neurons is in the initial phases, 

it is speculated that this model may be more suitable in the study of late-onset neurodegenerative 

processes compared to human iPSCs (Mejzini et al. 2019).    

 

 

1.4. General clinical overview of ALS 

1.4.1.Clinical features of ALS 

A method commonly used in clinic to diagnose and stratify ALS patients is the administration of 

a physical or neurological examination of upper and lower motor neuronal impairment. The 

diagnostic criteria commonly used is the revised El Escorial criteria. In accordance with the revised 

El Escorial criteria, a diagnosis of ALS requires the presence of UMN degeneration on clinical 

examination and LMN degeneration on clinical, electrophysiological, or neuropathological 

examination, a progressive spread of UMN and LMN signs within a single region or other 

contiguous regions, and the absence of other disease processes that might explain the observed 

degeneration on electrophysiological, neuroimaging, or neuropathological examination (Brooks et 

al. 2000). Signs of UMN degeneration include increased muscle tone (spasticity) and increased 

muscular reflexes (hyperreflexia) on physical exam (Hal Blumenfeld 2010), and signs of LMN 

degeneration include the presence of irregular muscle twitches (fasciculations) and reduction in 

muscle size (atrophy) (Hal Blumenfeld 2010) (Table 1). Muscle weakness is an observation on 

physical exam that can occur as a result of the impairment of both UMN and LMN (Hal 
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Blumenfeld 2010). Figure 5 provides a visual representation of groups of motor neurons impaired 

in ALS and the grouping of related clinical signs into upper vs lower motor neuronal signs. 

 

Table 1. Summary of observations on neurological examination in the presence of lesions in the 

lower and upper motor neurons. In the presence of a LMN lesion, the observed signs are muscle 

weakness, reduction in muscle bulk (atrophy), increased involuntary muscle twitches 

(fasciculations), decreased muscle tone, and decreased reflexes. In the presence of an UMN lesion, 

the signs observed are muscle weakness, increased muscle tone and weakness. Changes to muscle 

bulk and involuntary muscle twitches are not observed in the presence of an UMN lesion.  

Sign LMN lesion UMN lesion 

Weakness Yes Yes 

Atrophy Yes No 

Fasciculations Yes No 

Tone Decreased Increased 

Reflexes Decreased Increased 
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Figure 5. Sites of motor neuronal involvement in ALS. Upper motor neurons are localized to the 

primary motor cortex and shown in blue. Bulbar and spinal lower motor neurons are shown in red. 

These two groups of motor neurons are preferentially affected in ALS. Extra-motor neuronal 

involvement includes the neurons of the frontal and temporal cortices, shown in orange. There is 

rare involvement of the oculomotor and vesicorectal motor neurons, shown in green and yellow 

respectively; although it is thought that these motor neurons can be affected in the later stages of 

longstanding disease. Source: Swinnen et al., 2014 

 

In addition to UMN and LMN degeneration, ALS can also present with non-motor symptoms such 

as impaired cognition. In a typical multidisciplinary clinic, the incidence of ALS patients with 
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cognitive impairment is approximately 50% (Woolley and Jonathan 2008). Up to 25% of patients 

with ALS meet clinical criteria for the clinical manifestation of frontotemporal lobar degeneration, 

specifically the behavioural variant of frontotemporal dementia (Swinnen and Robberecht 2014). 

In addition to the impairments of the motor and cognitive systems, small percentages of patients 

with ALS can also present with extrapyramidal involvement, cerebellar ataxia, deafness, 

ophthalmoplegia, and the involvement of the sensory, urinary, and autonomic nervous systems – 

thereby confirming the multisystem nature of the disorder (Swinnen and Robberecht 2014). 

 

1.4.2.Neurological examination for a diagnosis of ALS 

The purpose of administering a neurological examination is to diagnose and manage the symptoms 

that a person might be presenting with. It follows a conventional format which examines mental 

status, cranial nerves, motor function, reflexes, coordination and gait, and sensory function. The 

examination of mental status is administered to test the function of the frontal and parietal 

association cortices in the brain (Hal Blumenfeld 2010). The examination of cranial nerve function 

can provide important information that can help pinpoint disorders in the nervous system, rather 

than a systemic disorder. The examination of motor function involves various components such as 

observation, inspection, palpation, muscle tone testing, functional testing, and muscle strength 

testing. Examination of deep tendon reflexes and plantar response is performed in all patients. 

These two sections are discussed in the following sections. Examination of coordination and gait 

are performed to identify the presence of any cerebellar dysfunction and a sensory examination is 

performed to check the intactness of sensory responses (Hal Blumenfeld 2010). 

 

1.4.2.1. The examination of motor function  

The five components of a motor exam include observation, inspection, palpation, muscle tone 

testing, functional testing, and muscle strength testing. Observation during the motor exam is 

performed to detect any muscle twitches, tremors, involuntary muscle movements, or any unusual 
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paucity of movements (Hal Blumenfeld 2010). The inspection component involves visually 

looking at the muscle groups in the hand/arm, shoulder girdle, and leg/thigh to identify muscle 

wasting or decreases in size (atrophy), increases in muscle size (hypertrophy), and the presence of 

fasciculations. Typically, in ALS, atrophy of the abductor pollicis brevis and first dorsal 

interosseous with relative sparing of the abductor digit minimi muscles (split hand syndrome (Z. 

L. Wang et al. 2019)) and fasciculations are observed (Goutman 2017) which point to the presence 

of a LMN lesion (Hal Blumenfeld 2010). Palpation is performed to check for tenderness in any 

muscle groups. Muscle tone testing is performed to identify any rigidity or resistance when the 

muscle is in a relaxed state. Typically, in ALS, increased muscle tone (spasticity) is observed 

(Goutman 2017) which point to the presence of an UMN lesion (Hal Blumenfeld 2010). The 

modified Ashworth scale is a gradation scale that is used to test muscle tonicity. The scoring ranges 

from 0 to 4, where 0 corresponds to no increase in muscle tone and 4 corresponds to rigidity in 

flexion or extension of the affected region (Bohannon and Smith 1987). Following this, functional 

testing of muscles is performed to identify if there are any subtle abnormalities before conducting 

an examination of muscle strength. This component involves testing for drift and fine motor 

movements. Next, muscle strength testing is performed to identify patterns of weakness that can 

help localize the presence of a lesion in a cortical or white matter region, spinal cord, nerve root, 

or peripheral muscle. Muscle strength is often graded on a scale from 0 to 5, where 0 signifies no 

muscular contraction and 5 signifies normal strength (Hal Blumenfeld 2010).  

 

1.4.2.2. The examination of reflexes 

Reflexes can be categorized into deep tendon reflexes and plantar responses. A description of deep 

tendon or monosynaptic stretch reflexes has been provided in a previous section. Increased muscle 

tone is often accompanied by the increase in reflexes (brisk reflexes or hyperreflexia). With brisk 

reflexes, a repetitive vibratory contraction of muscle occurring in response to muscle and tendon 

stretch can be observed (Hal Blumenfeld 2010). This is known as clonus. Deep tendon reflexes are 

graded according to a scale ranging from 0 to 4+, where 0 corresponds to absent reflex, 1+ 

corresponds to trace reflexes or reflexes only seen with reinforcement, 2+ corresponds to normal, 
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3+ corresponds to brisk reflexes, and 4+ corresponds to brisk reflexes with clonus. A normal 

plantar response is a downward contraction of the toes. However, in ALS, the response is 

characterized by upward motion of the big toe and the fanning out of the other toes, also known as 

Babinski sign (Hal Blumenfeld 2010). Other signs of hyperreflexia include the spreading of 

reflexes to other muscles not being directly tested, crossed adductor reflex of the contralateral leg 

when the medial aspect of a knee is tapped, and Hoffman’s sign indicating brisk reflexes when the 

fingernail of the middle finger is loosely flicked downward (Hal Blumenfeld 2010). These reflexes 

can typically be observed in a patient with ALS on neurological examination. Muscle tone and 

reflexes are usually tested at the same time. In ALS, spasticity and hyperreflexia are thought to 

occur as a result of the degeneration of pathways that travel in close association with the CST, not 

as a result of direct damage to the CST itself (Hal Blumenfeld 2010). 

 

Lesions in the frontal lobe can cause the re-emergence of certain primitive reflexes that are present 

in infants but disappear with increasing age. However, if such responses are observed in adults, 

they are associated with frontal lobe pathology and are known as frontal release signs. Albeit the 

controversial nature of such testing, it is of interest in a clinical neurological examination in ALS 

due to the relative lack of bulbar UMN signs (Tremolizzo et al. 2014). Some examples of frontal 

release signs observed in ALS are the grasp, snout, and palmomental reflexes (Hal Blumenfeld 

2010; Tremolizzo et al. 2014).  

 

1.4.3.Assessment of cognitive and behavioural impairment in ALS 

Some patients with ALS can also present with psychological impairments, specifically in cognition 

and behaviour. These impairments can occur because of the degeneration of brain regions that 

control various aspects of cognition and behaviour – the temporal and prefrontal cortices (Bear 

2016) – known as frontotemporal lobar degeneration (FTLD) (Strong et al. 2009, 2017). The 

original Strong criteria(Strong et al. 2009) (discussed later) recognized that ALS can coexist with 

frontotemporal dementia (FTD), a manifestation of FTLD . The criteria recognized the presence 
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of behavioural and/or cognitive features in ALS that were not sufficient to meet criteria for a 

diagnosis of dementia but were sufficient to be detected and/or give rise to impairment. These 

subtypes of ALS were known as ALS-frontotemporal dementia (ALS-FTD), ALS behavioural 

impairment (ALSbi), and ALS cognitive impairment (ALSci). The criteria was revised in 2015 to 

include hierarchical axes which would allow the systematic characterization of impairments in 

social cognition, language, memory, and the presence of neuropsychiatric symptoms (Strong et al. 

2017).  

 

A diagnosis of ALSci requires evidence for the impairment of either executive functioning or 

language or a combination of both (Strong et al. 2017). Some instruments that have been reported 

in the literature that can be used to screen for impaired cognition or behaviour are the 

Addenbrooke’s Cognitive Examination – revised (ACE-R), the ALS-Brief Cognitive Assessment 

(ALS-BCA), the ALS-Cognitive Behavioral Screen (ALS-CBS), the Edinburgh Cognitive and 

Behavioral ALS Screen (ECAS), the Frontal Assessment Battery (FAB), the Mini-Mental State 

Examination (MMSE), the Montreal Cognitive Assessment (MoCA), the Penn State Screening 

examination of Frontal and Temporal dysfunction Syndromes (PSSFTS), and the University of 

California San Francisco – Screening Battery (UCSF-SB) (Gosselt, Nijboer, and Van Es 2020). 

The majority of these cognitive tests do not perform an in-depth assessment of cognitive function, 

test only specific cognitive domains, or are non-specific to ALS. While tests such as the MoCA 

and MMSE are short screening batteries that can provide a starting point for cognitive assessment 

a wider battery of tests would need to be administered to perform an in-depth examination of 

cognitive function. A detailed assessment of multiple cognitive domains, tests such as the ECAS 

also correct for motor impairment that constitutes the clinical presentation of ALS patients. The 

ECAS assesses cognition in ALS under five domains namely language, verbal fluency, executive 

function, memory, and visuospatial. Multiple tests are administered, and cutoffs defined within 

each ECAS domain, to be able to identify cognitively-intact from cognitively-impaired ALS 

patients. In the current thesis, the total score across all five ECAS domains are used to assess 

cognition in both ALS patients and healthy controls. Additionally, the 2SD-NAC cutoff (McMillan 
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et al. 2022) was employed in this thesis as an inclusion criteria for cognitively intact healthy 

controls.  

 

A diagnosis of ALSbi is dependent on the clinical observation of alterations in behaviour that can 

not be accounted for by the disease related symptoms, psychological response to the ALS 

diagnosis, a premorbid personality disorder, a comorbid psychiatric disorder, or pseudobulbar 

affects (Strong et al. 2017). Instruments that can be used to assess behaviour are the Amyotrophic 

Lateral Sclerosis-Frontotemporal Dementia-Questionnaire (ALS-FTD-Q), the Apathy Evaluation 

Scale (AES), the Beaumont Behavioral Inventory (BBI), the Dimensional Apathy Scale (DAS), 

the Frontal Behavioral Inventory (FBI), the Frontal Systems Behavior scale (FrSBe), Motor 

Neuron Disease Behavior scale (MiND-B), and the Neuropsychiatric Inventory (NPI) (Gosselt, 

Nijboer, and Van Es 2020). For behavioural screening instruments, the ALS-FTD-Q, the BBI, and 

the behavioural subdomain of the ECAS assess all behavioural domains that are affected in ALS 

patients (Gosselt, Nijboer, and Van Es 2020). 

 

1.5. Diagnostic criteria for ALS 

1.5.1.Revised El Escorial criteria 

The revised El Escorial criteria is a framework for the diagnosis and stratification of patients with 

ALS. In accordance with these criteria, a diagnosis of ALS requires the presence of the evidence 

of LMN degeneration by clinical, electrophysiological, or neuropathological examination, the 

evidence of UMN degeneration by clinical examination, and the progressive spread of signs within 

a region or to other regions (Brooks 1994). In addition to these, the criteria also require the absence 

of electrophysiological evidence of other disease processes that might explain LMN and/or UMN 

degeneration signs, and neuroimaging evidence of other disease processes that could explain the 

observed clinical and electrophysiological signs (Brooks 1994). These criteria also provide a 

detailed categorization of LMN and UMN signs based on region of onset and spinal cord segment. 
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Table 2 provides a summary of LMN and UMN signs observed in ALS as per the El Escorial 

criteria. 

Table 2. LMN and UMN signs in four regions. Source: Brooks, 1994. 

 

According to the definition of ALS diagnosis by these criteria, a patient can be diagnosed as having 

clinically possible ALS when both LMN and UMN signs are present only in one region, only UMN 

signs are present in two or more regions, or LMN signs are rostral to UMN signs (Brooks 1994; 

Brooks et al. 2000). A diagnosis of clinically probable ALS is provided when both LMN and UMN 

signs are present in two or more regions and some UMN signs must be rostral to LMN signs 

(Brooks 1994; Brooks et al. 2000). A diagnosis of clinically definite ALS is provided when both 

LMN and UMN signs are present either in the bulbar region and at least two spinal regions, or in 

three spinal regions (Brooks 1994; Brooks et al. 2000). An additional level, namely, “Clinically 

Probable ALS – Laboratory-supported” was included to provide an intermediate level between 

“clinically possible ALS” and “clinically probable ALS”. This diagnosis can be provided when 

clinical LMN and UMN degeneration is present in one region, or when only UMN signs alone are 

present in one region, and LMN signs defined by EMG criteria are present in at least two regions, 

with proper application of neuroimaging and clinical laboratory protocols to exclude other causes 

(Brooks et al. 2000). The various diagnostic levels include “clinically” in their descriptions to 

indicate that a clinical diagnosis of ALS, without pathological confirmation, may be categorized 

into various levels by clinical assessment alone, based on the presence of both UMN and LMN 
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signs in the same anatomical region (Brooks et al. 2000). The revised El Escorial criteria is widely 

used to stratify patients for their inclusion in research studies and clinical drug trials. 

 

1.5.2.Awaji criteria 

With the revised El Escorial criteria, clinical neurophysiologists noted that fibrillation-sharp wave 

potentials, defined as an obligatory LMN sign, were often absent in otherwise affected muscles 

(Shefner et al. 2020). To address this concern, the Awaji criteria were defined as a modification of 

the revised El Escorial criteria. The Awaji criteria was proposed to further integrate 

electrophysiological criteria with clinical examination findings, and to include the presence of 

fasciculations as a LMN sign that could replace positive sharp waves of fibrillation potentials in 

muscles with neurogenic changes (de Carvalho et al. 2008). Furthermore, the Awaji criteria 

removed the diagnostic level of clinically probable ALS – lab supported, that was added in the 

revised El Escorial criteria (Shefner et al. 2020). Despite the initial heterogeneity observed in 

various studies, a recent multicenter study has shown increased diagnostic sensitivity when using 

the Awaji criteria (Shefner et al. 2020). 

 

Despite efforts in refining the criteria for the diagnosis of ALS, both the revised El Escorial and 

the Awaji criteria had some limitations. Firstly, the definition of these criteria was ascribed to a 

high degree of certainty that patients would be diagnosed with ALS. Secondly, there was no clear 

indication that patients with possible ALS will evolve through the categories of probable and 

definite disease (Shefner et al. 2020). Thirdly, these criteria provide a diagnosis of possible ALS 

when UMN signs are present in at least two body regions without the presence of any LMN signs. 

Such patients could ultimately receive a diagnosis of primary lateral sclerosis based on progressive 

UMN degeneration and the absence of any LMN degeneration for at least four years from disease 

onset (M. Turner et al. 2020). Fourthly, these criteria did not account for the cognitive and 

behavioural impairment occurring in ALS.  
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1.5.3.Strong criteria 

The Strong criteria recognized the biological importance of the presence of cognitive and 

behavioural impairment, as a manifestation of frontotemporal lobar degeneration (FTLD), as it 

raised the possibility of an overlap syndrome in which ALS and FTLD existed within a continuum 

(Strong et al. 2009). Therefore, it was important to consider the presence of FTLD when making 

a diagnosis of ALS. These criteria recommended that the approach to the clinical characterization 

of the frontotemporal syndromes in ALS or related MNDs would be based on four ‘diagnostic 

axes’, including the following: Axis I to define the MND variant, Axis II to define cognitive and 

behavioural dysfunction, Axis III to identify additional non-motor disease manifestations, and Axis 

IV to identify the presence of disease modifiers.  

a) Axis I: Bases on this diagnostic axis, disease phenotypes can include ALS, primary lateral 

sclerosis (PLS), progressive muscular atrophy (PMA), spinal muscular atrophy (SMA), spinal 

bulbar muscular atrophy (Kennedy’s disease), progressive bulbar palsy, bibrachial 

amyotrophy, and monomelic amyotrophy. Given that the most common presentation of adult-

onset MNDs is ALS, the focus was towards the identification of a frontotemporal syndrome in 

the context of ALS. 

 

b) Axis II: This axis recognized the manifestation of FTD in three clinically distinct phenotypes 

namely behavioural variant FTD (bvFTD), progressive non-fluent spontaneous speech with 

agrammatism (PNFA), and semantic dementia (SD) – grouped together as ALS-FTD. As 

neuropsychological impairments in ALS are often subtle, the need was to define a minimum 

set of criteria that were both sensitive and specific to these syndromes. The most common 

deficits are observed in the following domains: problem solving, attention/mental control, 

word generation, and frontally mediated aspects of memory (verbal learning, source memory, 

free recall). It was recommended that neuropsychological assessments should include tests 

geared towards assessing executive functioning that includes a verbal fluency measure. In 

addition, a recommendation was made to perform a caregiver interview to measure emotional 

and behavioural functioning. This was thought to be an important step towards assessing the 

full spectrum of frontotemporal impairments. It was also thought to be important to use tests 

that minimized the impact of speech and motor dysfunction on performance, particularly when 



 

29 

 

conducting a longitudinal analysis. Aside from the definition of the category of ALS-FTD, 

other categories that were defined included ALS behavioural impairment (ALSbi), ALS 

cognitive impairment (ALSci), and ALS comorbid dementia.  

 

c) Axis III: This recognized the coexistence of additional disease manifestations including 

extrapyramidal signs (bradykinesia, cogwheel rigidity, tremor), cerebellar degeneration, 

autonomic dysfunction (abnormal cardiovascular reflexes, bowel, or bladder dysfunction), 

sensory impairment (decreased vibration, blunting of temperature discrimination), or ocular 

movement abnormalities with ALS.  

 

 

d) Axis IV: This axis recognizes the presence of several disease modifiers that can have an impact 

on survival, in addition to specific disease phenotypes.  

The Strong criteria was revised in 2015 to include three levels of complexity or depths of 

assessment. These hierarchical levels include criteria which can be applied in everyday clinical 

practice (Level I), utilized for prognostic stratification in clinical trials (Level II), and considered 

as research intensive to better define the nature and extent of FTD in ALS (Level III) (Figure 6). 

 

Figure 6. Hierarchical levels of assessment. Level I is the lowest level of complexity and can be 

adapted to a clinical setting. The implementation of levels II and III require formal 

neuropsychological and speech and language expertise, expertise with higher statistical 
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complexity, and include tests that may require further validation in the ALS population. Source: 

Strong et al., 2015 

 

1.5.4.Gold Coast 

The Gold Coast criteria (Shefner et al. 2020) for the diagnosis of ALS were proposed in 2020. In 

accordance with these criteria, a diagnosis of ALS can be provided if progressive motor 

impairment preceded by normal motor function is documented in a patient’s medical history 

(including through repeated clinical assessment), if UMN or LMN dysfunction is observed in at 

least one body region or LMN dysfunction is observed in at least two body regions, and if clinical 

investigations can exclude other diagnoses. If symptoms are present in only one body region, there 

needs to be a presence of both UMN and LMN dysfunction within that body region.  

 

The definition of UMN dysfunction entails  

1. The presence of increased deep tendon reflexes, including the presence of a reflex in a 

clinically weak and atrophied muscle, or spread to adjacent muscles,  

2. The presence of pathological reflexes, including Hoffman and Babinski signs, crossed 

adductor reflex, or snout reflex,  

3. An increase in velocity-dependent tone (spasticity), and 

4. Slowed, poorly coordinated voluntary movement, not attributable to LMN weakness or 

Parkinsonian features 

 

The definition of LMN dysfunction entails 

1. Clinical examination evidence of muscle weakness and atrophy or 

2. EMG abnormalities that must include both 
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a. Evidence of chronic neurogenic change, defined by large motor unit potentials of 

increased duration and/or increased amplitude, with polyphasia and motor unit 

instability regarded as supportive but not obligatory evidence, and  

b. Evidence of ongoing denervation including Fibrillation potentials or positive sharp 

waves, or fasciculation potentials 

 

1.6. Disease staging in ALS 

Staging systems are criteria that can be used to define clinical milestones during the disease course 

that reflect severity, prognosis, and treatment options. The two proposed staging systems for ALS 

are the King’s College staging system and the Milano-Torino staging system.  

 

1.6.1.King’s College staging 

This system (Roche et al. 2012) proposes disease stages based on the number of involved regions, 

diagnosis, and the need for invasive or non-invasive interventions. This staging system assumed 

that clinical milestones occur at predictable times during the natural progression of ALS. Stage 1 

indicates the involvement of one region, stage 2 indicates the involvement of a second region, 

stage 3 indicates the involvement of a third region, stage 4A indicates nutritional failure , and stage 

4B indicates respiratory failure. It does not follow the revised El Escorial criteria as it does not 

require the presence of both LMN and UMN involvement but only requires the evidence of 

neurological weakness. This staging system also allows a progression through the different stages 

based on the progression of the disease and can also take into account factors such as the rate of 

early symptom progression and diagnostic delay (Roche et al. 2012). 
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1.6.2.Milano-Torino staging 

In this staging system (Chiò et al. 2015), critical milestones in ALS progression were defined by 

the loss of independent function in four key domains that are included in both the ALSFRS and 

ALSFRS-R questionnaires. These four domains are: walking/self-care, swallowing, 

communicating, and breathing. For each  of the subitems within each domain, scored from 0-4, 0 

corresponds to complete impairment and 4 corresponds to no impairment. As per the staging 

system, based on the scores obtained on the various subitems, a stage score of 0 or 1 is provided. 

These stage scores correspond to a threshold value that recognizes an important transition point in 

functional status of any anatomical region. Values of 0 (below threshold) or 1 (above threshold) 

are assigned, and the stages are determined as the sum of threshold values across the four ALSFRS 

domains. For domains consisting of two ALSFRS subitems, a staging score was provided based 

on either of both items as indicated. The sum of the threshold scores were used to stage patients as 

per the following stages as shown in Table 3.  

 

Table 3. The Milano-Torino stages and the corresponding number of ALSFRS domains associated 

with functional loss. Sourced and adapted from Chio et al., 2015 

 

The sections above describe the pathophysiological mechanisms underlying the core biological 

features and clinical presentations of ALS. The following sections describe the basic neuroimaging 

principles that can be applied to the study of ALS.  
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1.7. Study of the pathophysiological mechanisms of ALS using 

neuroimaging 

Neuroimaging is a branch of science which allows the non-invasive study of brain structure and 

function. Good spatial and temporal resolution is necessary in order for neuroimaging to be 

relevant for use in a clinical or research setting. Spatial resolution pertains to the mapping of the 

structure of brain tissue and can help identify the occurrence of any alterations to normal brain 

tissue as a result of any apparent or non-apparent pathological events such as brain trauma or 

cellular mechanisms causing neuronal loss and related processes. In the case of the latter, these 

pathological events occur at a micro-scale level which can only be studied ex vivo or with the use 

of invasive techniques. By the time these localized pathological changes of brain tissue assume 

spatial importance at a macro- or meso-scale level, they can result in the impairment of neuronal 

function and related behavioural outcomes such as cognition, information processing, motor 

execution – to name a few.  

 

Pathological processes in neurodegenerative disorders such as ALS can be studied using 

neuroimaging tools such as magnetic resonance imaging (MRI), positron emission tomography 

(PET), or techniques that directly probe underlying physiological processes such as 

electroencephalography (EEG), transcranial magnetic stimulation (TMS), and 

magnetoencephalography (MEG). As functional MRI has good spatial and temporal resolution and 

can be used non-invasively to probe neuronal function, it has evolved to be the most widely used 

neuroimaging technique to map brain function. This thesis aims to study the pathophysiology of 

ALS using functional MRI in conjunction with other advanced neuroimaging approaches including 

diffusion weighted imaging, which is applied to assess brain microstructure, and magnetic 

resonance spectroscopy, which is applied to assess the concentration of neurochemicals. These 

sequences are based on the property of nuclear magnetic resonance, which is defined in the next 

section. 
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1.7.1.Nuclear magnetic resonance 

The acquisition of magnetic resonance images is dependent on properties of subatomic particles 

of the nuclei that constitute the matter within biological tissue. Nuclear magnetic resonance (NMR) 

is dependent on a property of constituent atomic nuclei known as ‘spin’. Only nuclei with an odd 

number of neutrons or protons can exhibit a spin. Large amounts of free fluid exists in biological 

tissue in the form of cytoplasmic and extra-cellular water, fat, and bulk fluids (Mansfield 1978). 

Water exists in abundance in all biological tissue and has the highest concentration in human tissue 

(Plewes and Kucharczyk 2012). In addition, each water molecule consists of two protons, therefore 

effectively doubling the number of spins per molecule that can be subjected to an external magnetic 

field. The majority of NMR imaging thus utilizes water as their molecule-of-interest in the study 

of biological tissue. The spin of a proton is a fractional value ½ and is a measure of its angular 

momentum (Plewes and Kucharczyk 2012), a property wherein a rotating object (here, proton) 

maintains its state of rotational motion unless it is resisted by force (here, external magnetic field).  

 

In the absence of an external magnetic field, protons are distributed equally between high and low 

energy states, creating a sum zero magnetic effect. When an external magnetic field (B0) is applied 

to tissue containing protons, the spins align either parallel or anti-parallel to the magnetic field. 

However, the number of spins that align parallel are higher than those that align anti-parallel to the 

magnetic field (Plewes and Kucharczyk 2012). Figure 7 is a diagrammatic representation of the 

behaviour of protons in the absence of and when exposed to an external magnetic field.  
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Figure 7. On the left, protons are misaligned as there is no external aligning magnetic field. On the 

right, on the application of an external magnetic field, the protons align themselves parallel and 

anti-parallel to the magnetic field. The number of protons aligned in the direction of the applied 

magnetic field is greater than the number of protons aligned in the direction opposite to the applied 

magnetic field. Adapted from (Azhar and Chong 2023).  

 

The number of protons experiencing an equal and opposite magnetic field produce a net zero 

magnetic field. The remaining protons that are aligned parallel to the external magnetic field can 

thus be represented as a magnetic field vector and constitute the net magnetization that can be used 

to generate an MR image (Azhar and Chong 2023). It is difficult to directly measure this net 

magnetization as it has a small magnitude and is in the same direction as the strong, external 

magnetic field. This small net magnetization can be indirectly measured when a radiofrequency 

pulse is applied to perturb the magnetic field vector such that it undergoes displacement (Figure 

8) into a transverse plane that is perpendicular to the external magnetic field (Azhar and Chong 

2023).  
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Figure 8. On application of a 90° radiofrequency (RF) pulse, the net magnetization vector 

undergoes displacement into the transverse plane (Azhar and Chong 2023) 

 

The interaction between the net magnetization and the excitatory radiofrequency pulse generates 

two properties, namely longitudinal and transverse relaxations, which are fundamental to the 

generation of contrast in an MR image. The following sections define these properties and the MRI 

sequences that can be derived from them.  

 

1.7.2.Magnetization relaxation in the study of brain structure 

1.7.2.1. Longitudinal relaxation 

Longitudinal relaxation refers to the recovery of the net magnetization after the protons are 

displaced in the perpendicular plane by an excitatory radiofrequency (RF) pulse. As soon as the 

RF pulse is removed, the protons start to lose the energy received from the RF pulse into the 

surrounding environment. This results in the exponential regrowth of the longitudinal 

magnetization along the direction of the externally applied magnetic field B0 with a time constant 
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known as the longitudinal or T1 relaxation time. More specifically, T1 is the time taken by the net 

longitudinal magnetization to recover 63% of its original value (Azhar and Chong 2023).  

 

1.7.2.2. Transverse relaxation 

Transverse relaxation refers to the property by which energy is transferred between neighbouring 

protons that exhibit slight differences in transverse magnetization, in a process known as 

dephasing. The protons dephase in the transverse plane after receiving energy from the RF pulse 

and result in a decrease in the net transverse magnetization. This process causes differences in 

precession of individual protons relative to the precession of the adjacent protons, therefore 

causing them to lose phase with each other. This in turn results in decay of the net transverse 

magnetization over time with a time constant known as the transverse or T2 relaxation time. More 

specifically, T2 is the time taken by the net transverse magnetization to decay to approximately 

37% of its original value (Azhar and Chong 2023).  

 

While T2 relaxation represents the exponential decay of transverse magnetization in an ideal 

homogeneous B0 field, such decay might occur faster due to the presence of inhomogeneities in 

the B0 field in a practical setting. Rapid proton-proton dephasing can occur due to the variations 

in the B0 field (Azhar and Chong 2023). Therefore, the combined effects of tissue-specific T2 

relaxation and the additional dephasing from B0 inhomogeneities can be expressed as T2* 

relaxation.  

  

Both the T1 and T2 relaxation times are properties that are independent of each other and are 

inherently specific to different tissue types for a given magnitude of B0. These relaxation times are 

used to define the two numerical properties which are crucial to MRI acquisition: repetition time 

(TR) and echo time (TE). TR is the time interval between two excitation RF pulses and is used to 

determine the time interval for T1 relaxation. TE is the time interval between the excitation RF 
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pulse and the received echo, and is used to determine the time interval for T2 relaxation (Azhar 

and Chong 2023). Depending on the property-of-interest of the specific tissue, the TR and TE can 

be modified to generate adequate contrast in the MR images.  

 

For example, a short TR is used to achieve maximal differences in longitudinal magnetization and 

thus maximizes contrast between different tissue types and a short TE minimizes the effect of T2 

decay on image contrast as it decreases differences in transverse magnetization between tissues 

(Azhar and Chong 2023). Therefore, a T1-weighted image is acquired with a short TR and short 

TE for ease of assessment of different tissue types. In a T1-weighted image of the brain, the white 

matter is hyperintense (bright), the CSF, air, and bone are hypointense (dark), and gray matter is 

of intermediate brightness. T1-weighted imaging is therefore performed as part of routine clinical 

tests to assess neuroanatomical details.  

 

A long TR is used to minimize T1 effects on image contrast by reducing longitudinal magnetization 

and thus minimizes contrast between different tissue types and a long TE maximizes the transverse 

magnetization between tissue types (Azhar and Chong 2023). In T2-weighted imaging, image 

contrast is achieved by differing the T2 times between tissue types. Therefore, in a T2-weighted 

image of the brain, the CSF and tumours are hyperintense, gray matter is hypointense, and white 

matter is of intermediate brightness. T2-weighted imaging is used in clinical settings to assess for 

the presence of edema from various pathologies such as trauma, infection, or inflammation. Figure 

9 shows examples of T1-weighted and T2-weighted MRI.  
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Figure 9. Representative images from the CALSNIC dataset of image contrast when different 

lengths of TR and TE are applied at the time of image acquisition.  

 

In addition to these conventional MRI sequences, advanced neuroimaging sequences such as 

diffusion-weighted imaging, functional MRI, and magnetic resonance spectroscopy are used to 

study the properties of brain tissue in health and disease. These sequences are defined in the 

following sections. 

 

1.7.3.Advanced neuroimaging 

1.7.3.1. Diffusion-weighted imaging 

Sequences such as diffusion-weighted imaging (DWI) quantify information based on the 

displacement of water molecules in myelinated axons (white matter). In an unrestricted 
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environment, water molecules can move in all directions without encountering any impedance 

from permeable or semi-permeable axonal membranes (Figure 7). This random motion of water 

molecules is termed Brownian, Gaussian, or isotropic diffusion. However, in biological tissue, the 

displacement or diffusion of water molecules is restricted by cells and extracellular compartments 

such as cellular membranes and axons. The introduction of such boundaries place restrictions on 

Gaussian diffusion in terms of the distance of diffusion and the number of collisions experienced 

by the water molecules within the bounding membranes. This causes the diffusion of water 

molecules to assume a non-Gaussian or anisotropic property (Figure 7). In an unrestricted diffusion 

environment, water molecules retain their spherical orientation whereas in a restricted environment 

such as in axons, the water molecules assume an elliptical orientation (Figure 8).  

 

 

Figure 10. Random (Gaussian) and restricted (non-Gaussian) diffusion of water molecules in 

unrestricted and restricted environments (Mahmood and Hansen 2017).   
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Figure 11. Spherical and elliptical orientations of water molecules in unrestricted and restricted 

motion, respectively (Karlsgodt et al. 2008).  

 

Mathematical modelling of the diffusion of water has been performed extensively in a model 

known as the diffusion tensor model. The tensor that describes the diffusion of water in neural 

tissue is represented by an ellipsoid with three axes that correspond to their respective eigenvalues 

(λ1, λ2, and λ3) and are determined by their corresponding eigenvectors (Figure 9). λ1 represents 

the long axis of the ellipsoid (Tae et al. 2018) which corresponds to the predominant direction of 

water diffusion in each voxel of a DW image. λ2 and λ3 respectively represent the width and depth 

of the ellipsoid (Tae et al. 2018) and correspond to the diffusion of water along or perpendicular 

to the long axis of the ellipsoid or tensor within a voxel. The greater the magnitude of the 

eigenvalue λ1, the greater is the property of fractional anisotropy (FA) – a measure that is most 

extensively used to quantify anisotropic diffusion of water and is representative of the degree of 

directionality of water diffusion within a voxel (Kashefi and Winston 2020). It therefore provides 

a sensitive marker of cerebral white matter microstructural integrity, based on the assumption that 

the shape of the ellipsoid changes due to degeneration (Tae et al. 2018).  
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Figure 12. Ellipsoid or diffusion tensor model corresponding to water diffusion in neural tissue 

(Kashefi and Winston 2020). In unrestricted (isotropic) diffusion, the tensor attains a spherical 

orientation and in restricted (anisotropic) diffusion, the tensor attains an elliptical orientation. The 

greater the λ1 magnitude, the greater the fractional anisotropy. 

 

Although FA provides a measure of tensor directionality within a voxel based on λ1, it can be 

mathematically expressed in terms of all three eigenvalues as  

𝐹𝐴 =  √
1

2
 . √

(λ1 − λ2)2 +  (λ2 − λ3)2 +  (λ3 − λ1)2 

(λ1)2 +  (λ2)2 +  (λ3)2 
 

 

Mean diffusivity (MD) is a measure that evaluates microstructural alterations in white matter as a 

function of the average of all three eigenvalues, effectively quantifying the average distance of the 

displacement of water molecules without placing any restrictions on the directionality of motion. 

It can be mathematically expressed as 
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𝑀𝐷 =  
λ1 + λ2 + λ3

3
  

 

MD can be further decomposed into its constituent diffusivity measures – axial diffusivity (AD) 

and radial diffusivity (RD). AD quantifies the displacement of water molecules along or parallel 

to the predominant direction (λ1) of water displacement within the axon, and can be 

mathematically expressed as 

𝐴𝐷 =  λ1 

 

RD quantifies the displacement of water molecules perpendicular to λ1, which represents the 

predominant direction of water displacement within the axon, and can be mathematically 

expressed as 

𝑅𝐷 =  
λ2 + λ3

2
 

 

DWI is sensitive to the presence of artifacts such as motion, field inhomogeneities, and distortions 

due to eddy currents. Motion in DWI can have multiple sources. Phase shifts induced by diffusion-

driven displacements of water molecules (microscopically), and head motion, cardiac pulsation, 

and breathing (macroscopically) can contribute to motion artifacts in DWI (Soares et al. 2013). 

Field inhomogeneities refer to spatial and intensity distortions that  are induced by magnetic 

susceptibility variations due to field inhomogeneity in the static magnetic field (B0) (Arsenault et 

al. 2021). All DWIs suffer from field inhomogeneity distortions which intensify with increasing 

field strength and along the phase encoding direction (Arsenault et al. 2021). Distortions due to 

eddy currents occur due to rapidly changing diffusion gradients and can be induced in the scanner 

or the subject being scanned; this warps the image and can result in time-varying gradients and 
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shifts in the static magnetic field (Arsenault et al. 2021). Assessment of and correction for such 

artifacts constitute important steps for quality control and preprocessing of DWI data.  

 

Once the DWI data is quality controlled and preprocessed, the next step of processing involves the 

estimation of the diffusion tensor. Estimation of the diffusion tensor entails the availability of 

diffusion-encoding gradients in at least six non-collinear directions as well as the application of 

one of three methods for tensor estimation (ordinary least squares, weighted linear least squares, 

and non-linear least squares) (Soares et al. 2013). This is used to generate the diffusion tensor 

which is a symmetric 3x3 matrix defined by its eigenvalues and corresponding eigenvectors, which 

can then be utilized to generate scalar indices and tractography measures.  

 

The diffusion tensor matrix can be expressed as 

𝐷 = [

𝐷𝑥𝑥 𝐷𝑥𝑦 𝐷𝑥𝑧

𝐷𝑦𝑥 𝐷𝑦𝑦 𝐷𝑦𝑧

𝐷𝑧𝑥 𝐷𝑧𝑦 𝐷𝑧𝑧

] 

where Dxx, Dyy, and Dzz represent diffusion coefficients measured along the principal axes and Dxy, 

Dxz, Dyx, Dyz, Dzx, and Dzy represent the pairwise correlation in random motion between principal 

axes or directions. The following pictographic demonstrates the diffusion trajectory, shape of the 

diffusion ellipsoid, and the diffusion tensor matrix for various diffusion conditions of water 
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Figure 13. Trajectory, shape of ellipsoid, and tensor matrix for various diffusion conditions 

(Mukherjee et al. 2008) 

 

DTI is sensitive to microstructural properties of brain tissue and is therefore very useful in a 

research or clinical setting to examine white matter anatomy. DTI has been successfully used to 

study brain structure in conditions such as acute stroke or brain tumors, neurodegenerative and 

neuropsychiatric disorders, developmental disorders, and movement disorders – to name a few. 

Measures of brain microstructure obtained from DTI, including fractional anisotropy, radial 

diffusivity, axial diffusivity etc., usually relate to alterations in structure occurring as a result of 

disease and can uncover microscale impairments such as the loss of myelin or axonal injury 

(Soares et al. 2013). 
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1.7.3.2. Functional MRI 

Functional MRI (fMRI) is a non-invasive neuroimaging technique that is sensitive to neuronal 

activity-related changes in local blood flow. When neurons are actively engaged in the 

performance of a task, they utilize oxygen from blood in the surrounding blood vessels. This 

oxygen is provided to the neurons from the blood via a molecule known as hemoglobin which is 

an oxygen transporter. Hemoglobin contains iron and its properties changes depending on its 

oxygenation. Oxygenated hemoglobin is diamagnetic in nature and deoxygenated hemoglobin is 

paramagnetic in nature.  

 

When a neuron is activated, oxygen from the surrounding blood is used up. This results in 

deoxygenation of local hemoglobin, making it paramagnetic. Within a magnetic field, the increase 

in concentration of deoxygenated blood causes a loss of signal on a T2*-weighted MRI because 

of the generation of a local magnetic field by the deoxygenated hemoglobin. When the quantities 

of deoxygenated hemoglobin increase in the local neuronal environment, blood flow to the region 

increases to replenish the supply of oxygenated hemoglobin. As oxygenated hemoglobin is 

diamagnetic in nature, it does not produce a local magnetic field, therefore causing no loss of T2* 

signal. As neuronal activation continues until the task is completed, the hemoglobin in the 

surrounding blood cycles through its properties of oxygenation and deoxygenation. The 

differences in magnetic properties of oxygenated and deoxygenated hemoglobin provide the basis 

for the blood-oxygenation-level-dependent (or, BOLD) contrast utilized in fMRI.  

 

This interdependence between transient neural activity and cerebral blood flow is known as 

neurovascular coupling. Despite being tightly linked, the increase in blood flow to replenish the 

amounts of oxygenated hemoglobin in the immediate neuronal environment occur later than the 

initial neuronal activation, creating a delay between the two phenomena. If these independent, but 

highly-linked, phenomena are plotted against time, two waveforms can be identified (Figure 14).  
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Figure 14. Graphical representation of the neuronal activation and cerebral blood flow signals over 

time (Schaper 2019).  

 

As the direct study of neuronal function can be challenging without the use of invasive methods 

such as electrophysiological recordings, a non-invasive characterization of the T2* contrast can be 

useful as a proxy measure for neuronal function. As the T2* contrast in MRI is sensitive to local 

magnetic fields, the oxygenation-deoxygenation (i.e., the paramagnetic-diamagnetic) cycling of 

hemoglobin in the local neuronal environment can act as a proxy to neuronal function. In task-

based fMRI studies, this property can be used to identify the cerebral areas that are activated when 

performing a task. However, the brain is active even when not performing an explicit task i.e., 

when the brain is in a state of rest. These resting-state activations occur to maintain normal 
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functioning of the human brain and illustrate slow, synchronous, spontaneous fluctuations of 

spatially-organized neuronal activity (Pizoli et al. 2011).  The network of neurons that are active 

at rest are known as resting-state networks (RSNs). These RSNs represent physiological processes 

that are important to developmental process and towards the maintenance of the brain’s functional 

integrity. Two theories existed regarding the organization of functional activity in the resting brain. 

One suggested the presence of two anticorrelated functional systems whereas the other suggested 

the presence of local, modular functional systems (Doucet et al. 2011). Findings from the 

investigations of these two theoretical viewpoints were successful in the identification of two sets 

of brain regions (Seitzman et al. 2019): one with highly correlated, spontaneous activity that is 

involved in goal-directed response to external stimuli as well as the default mode network (DMN) 

(Raichle 2015) which is not activated during goal-directed activity (Figure 15). These sets of brain 

networks constitute the functional organization of the human brain and undergo activation in 

different states.  
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Figure 15. Resting-state networks of the human brain and their associated functions (Seitzman et 

al. 2019) 

 

Brain networks are organized hierarchically (Doucet et al. 2011). The highest level of hierarchy is 

comprised of task-positive networks and the DMN that is active when no task is being performed. 

At lower levels of hierarchy, task-positive networks can be further delineated based on their 

response to a behavioural task condition. Unsupervised learning methods such as hierarchical 

clustering or independent component analyses have been successful in identifying the task-positive 

networks that are involved in the performance of specific tasks. These techniques have been 

discussed in detail in section 1.8.2.  

 

1.7.3.3. Magnetic resonance spectroscopy 

Magnetic resonance spectroscopy (MRS) is a non-invasive neuroimaging technique that refers to 

the utilization of the phenomenon of magnetic resonance to determine the relative concentrations 

of neurochemicals within specific regions-of-interest within the cerebral cortex. Spectroscopic 

evaluation of brain tissue provides a graphical representation of the MR signal from specific nuclei 

as a function of their temporal frequencies (Buonocore and Maddock 2015). Some of the most 

extensively studied neurochemicals in health and disease are N-acetyl aspartate, creatine, choline, 

myoinositol, lactate, glutamate, and γ-aminobutyric acid. Their spectral signatures are specific to 

the spins of the nuclei that constitute the neurochemical molecules. In the absence of an external 

magnetic field, the nucleus of a neurochemical molecule has a non-zero intrinsic magnetic moment 

which is dependent on the unique intrinsic spin of the nucleus. The spin of the nucleus is a function 

of the quantum mechanical intrinsic spin of the individual protons and neutrons that comprise the 

nucleus. In the presence of an external applied magnetic field, the nuclei within the respective 

neurochemical nuclei precess around the static magnetic field at a frequency known as the Larmor 

frequency. The Larmor frequency is a temporal frequency that is a product of the unique 
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gyromagnetic ratio (which is a function of the intrinsic nuclear magnetic moment) and the strength 

of the experienced magnetic field (Buonocore and Maddock 2015).  

 

However, the acquisition of the spectral signature of a single neurochemical does not occur at a 

single Larmor frequency. This can be due to a multitude of factors such as a combination of 

constituent nuclei within a neurochemical molecule, the inherent T2 relaxation of transverse 

magnetization, and the range of magnetic field values and inhomogeneities within the MRS region-

of-interest (or, MRS voxel). This causes spreading of the spectral signature from the MRS voxel 

over a narrow range of frequencies which is characterized by a property known as linewidth of the 

MRS chemical peak (Buonocore and Maddock 2015) (Figure 16).  

 

 

Figure 16. Representative linewidth of the MRS spectrum (Juchem and Rothman 2013) 
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Another nuclear property that defines the MRS spectra is known as chemical shift. The physical 

basis of chemical shift is due to the presence of electrons around the nuclei of the constituent 

neurochemical molecules. These electrons generate local magnetic fields which alter the applied 

magnetic field experienced by the nuclei in the neurochemical molecule. Each nucleus in the 

neurochemical molecule thus experiences a unique magnetic field based on their immediate 

microenvironment, therefore exhibiting a Larmor frequency that is slightly different from the 

Larmor frequencies of the other constituent nuclei within the same molecule or across different 

molecular species (Buonocore and Maddock 2015). Because different molecules (and 

subsequently, nuclei) have different Larmor frequencies, a molecule with zero magnetic moment 

(tetramethylsilane) is designated as the reference molecule. Based on this reference, chemical shift 

of the constituent neurochemical nuclei is defined as the difference between the Larmor frequency 

of the molecule-of-interest and the reference molecule (Buonocore and Maddock 2015).  

 

Multiple methods can be employed to acquire MRS data from a cerebral region-of-interest. These 

methods include single-voxel MRS, 2D and 3D chemical shift imaging, and proton echo planar 

spectroscopic imaging (Buonocore and Maddock 2015). Single-voxel MRS provides a robust 

method for the acquisition of a large signal from a relatively large cerebral region-of-interest, 

typically spanning one anatomical region. 2D and 3D chemical shift imaging is used to cover larger 

brain regions, typically spanning multiple anatomical regions, and provides spatially-resolved 

MRS spectra throughout the selected brain region. The spatial resolution of spectra obtained from 

2D and 3D chemical shift imaging provides higher resolution than single-voxel spectroscopic 

imaging. The proton echo planar spectroscopic imaging replaces one direction of phase encoding 

performed in 2D/3D chemical shift imaging with frequency encoding, therefore interleaving the 

spectral estimation echo acquisition with spatial encoding (Buonocore and Maddock 2015). The 

development of the PEPSI MRS sequence therefore allowed frequency encoding in the same time 

frame as the time between sampling points for spectroscopy (Buonocore and Maddock 2015).    
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Once conventional or advanced neuroimaging sequences are acquired, they need to undergo 

processing in order to obtain important information for the study of the neurological disorder (in 

this thesis, ALS). The following sections define the different processing steps that can be employed 

to identify specific characteristics of brain tissue types which can act as biomarkers for the 

diagnosis or to rule out the presence of other disorders.  

 

1.8. Processing of conventional and advanced MRI  

Some of the common approaches used to extract information from conventional and advanced MR 

images include region-of-interest-based, whole-brain-based, or graph theoretical analyses. 

Depending on the specificity of the MR sequence used, additional preprocessing steps are 

employed to correct for artifactual signals arising from normal physiological functions of the body 

or due to MRI hardware. The following sections briefly describe the approaches that are used to 

extract information from different MRI sequences 

 

1.8.1.Region-of-interest-based approaches 

Regions-of-interest (ROIs)  can be defined either based on a pre-existing atlas (for analyses not 

proposing a priori hypotheses) or an area that has been previously identified in the literature as a 

salient region (for analyses requiring the proposition of an a priori hypothesis). In studies with no 

a priori hypotheses regarding affected brain regions, examples of some atlases used for the 

definition of ROIs are the Desikan-Killiany atlas (Desikan et al. 2006), Harvard-Oxford cortical 

and subcortical atlases (https://www.nmr.mgh.harvard.edu/~nikos/Public/CMA/CMA-

Segmentation-Manual.pdf), Julich-Brain Cytoarchitectonic Atlas (Amunts et al. 2020). In 

hypothesis-driven studies with regard to the brain regions affected, ROIs can be defined using 

manual, semi-automatic, or completely automatic segmentation methods. Such ROI-based 

approaches can be applied to the analysis of volumes of different brain regions, cortical thickness 

measurements, measurements of brain microstructure from diffusion tensor images, or the 
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measurement of physiological measures relating to neuronal function such as the amplitude of low 

frequency fluctuations or regional homogeneity measures obtained from functional MRI. ROI-

based approaches are quite versatile in that they can be used to extract information from derived 

maps (for example, graph theory, discussed in section 1.8.3.) of brain structure and function. 

 

1.8.2.Whole-brain-based approaches 

Such approaches can be employed to obtain information about multiple regions at the same time, 

either to examine the congruence in their activation or deactivation or to ascertain the sequence of 

neural events that link the detected regions. Such approaches are important to the study of brain 

function in task-based fMRI studies but can also be employed for conventional and advanced 

neuroimaging sequences. This approach can also be used as a precursor to the extraction of 

information using ROI-based approaches when no a priori hypothesis is present.  

 

1.8.3.Graph theory-based approaches 

Graph theory is a branch of mathematics that is being increasingly applied to study the brain and 

its networks. The term “network theory” in the context of the brain refers to the collection of brain 

regions that are connected in terms of their structure and/or functional coherence. However, the 

principle underlying network-based studies of the brain suggests that brain function does not rely 

only on the presence of brain regions or their connections, but on the idea that functioning of the 

brain is governed by the topology of this network as a whole (van den Heuvel and Sporns 2011). 

The comprehensive brain network, taken as a whole, is termed connectome. The brain regions 

constituting the connectome are referred to as nodes and the connections between them are referred 

to as edges. Some brain regions or nodes play an integral role in facilitating and maintaining 

communication between remote brain regions i.e., in the overall organization of the brain network. 

These brain regions are designated as “hubs”; the hubs that are closely linked to each other 

constitute the “rich-club” organization of the human brain connectome. (van den Heuvel and 
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Sporns 2011). The presence of the “rich-club” brain regions is indicative of the need for the system 

of brain regions to maintain stability and distribute the processing of behaviourally-intensive 

processes so as to not overload the connectome, analogous to that in a highly connected power 

grid; subsequently, the non-inclusion of certain brain nodes into the “rich-club” suggests that these 

regions are highly functionally specialized (van den Heuvel and Sporns 2011). Graph metrics that 

are extensively used to study structural and functional brain networks in health and disease include 

degree, degree centrality, betweenness centrality, path length, clustering coefficient, global 

efficiency, modularity – among others. These metrics point to specific properties of the 

connectome and can be used independently or in conjunction to assess  health or disease in the 

brain. For example, for the same magnitude of “attack” on global efficiency, impairment of the 

“rich-club” hubs is 3x more severe than less connected nodes (van den Heuvel and Sporns 2011). 

Graph metrics can be estimated for the whole-brain or within an ROI, therefore being versatile in 

the study of the connectome.  

 

The sections above discussed the various approaches that can be employed to estimate measures 

of brain structure and function. These steps can only be applied to structural (T1- and T2-weighted, 

DW images) and functional MRI, but not to MRS. The following sections describe the specifics 

of preprocessing steps that are applied to DWI, fMRI, and MRS.  

 

1.8.4.Preprocessing of diffusion-weighted images 

Information regarding the microstructural properties of different brain tissue types can be obtained 

using the diffusion tensor model that is estimated on DW images. An overview of the tensor 

estimation has already been provided in section 1.7.3.1. The eigenvector corresponding to the 

primary direction of water diffusion can be utilized to obtain 3D representations of cerebral white 

matter tracts, in a method known as tractography. The estimation of 3D tracts between brain 

regions using DTI can be performed in three steps: seeding, propagation, and termination (Soares 

et al. 2013). Seeding entails the definition of regions- or voxels-of-interest between which the 
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white matter tracts would be estimated. Propagation entails the generation of tracts between seeds 

and can be performed with different algorithms. The methods for the estimation or generation of 

tracts can be categorized into two classes: deterministic and probabilistic tractography. 

Deterministic tractography is used to generate one tract from one seed. Probabilistic tractography 

is used to estimate the likelihood of a voxel constituting a white matter tract, thus providing 

multiple possible tract orientations at a single seed. Termination aims to avoid the propagation of 

tracts in voxels where the vectorial field is not assured. The common termination criteria are 

minimum FA thresholds (0.1-0.3 in adult brain and 0.1 in infant) and turning angle threshold 

(typically 40°-70°, depending on the white matter tract-of-interest) (Soares et al. 2013).  

 

DWI data can also be processed to identify differences across study populations and to identify 

associations between diffusion measures and covariates of interest. Two major methods that 

approach such questions are the voxel-based analysis (VBA) and tract-based spatial statistics 

(TBSS). VBA entails the automated  estimation of maps of diffusion measures-of-interest which 

are then transformed into a standard space so as to achieve congruence across subjects in terms of 

the location of anatomical structures. TBSS is another automated method wherein group-level 

voxel-wise changes are detected in the whole brain based on a skeleton defined using group-level 

registered FA maps. TBSS is the most widely used method of estimating group differences in 

diffusion measures as it eliminates the need to perform spatial smoothing and increases statistical 

power by reducing the total number of voxels tested (Soares et al. 2013). However, TBSS can be 

subject to inaccuracies due to image artifacts such as large anatomical shifts, white matter lesions, 

or registration errors that might be challenging to detect visually. In addition, back projection to 

native space is also prone to errors as the skeletonization process aligns local maxima which may 

not necessarily correspond to the same anatomical location across subjects (Soares et al. 2013).  
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1.8.5.Processing of resting-state functional MRI 

In resting-state fMRI studies, brain networks are studied using different methods such as seed-

based connectivity analysis, independent component analysis/dual regression, or template-based 

rotation in order to establish patterns of functional connectivities of the brain regions in health and 

disease. These methods are defined in the following sections.  

 

1.8.5.1. Seed-based functional connectivity 

Seed-based functional connectivity (FC) can be quantified using a technique known as seed-based 

correlational analysis. This technique was first described by (Biswal et al. 1995) and is the most 

commonly used FC analysis technique in both task-based and resting-state fMRI studies. In this 

technique, the time series of a ‘seed’ region (or simply, a region-of-interest (ROI)) undergoes a 

Pearson’s correlation with the time series of voxels in other brain regions. The strength of 

correlation between the pair of time series defines the connectivity between the two regions. Seed-

based FC analysis is very versatile as it allows the definition of multiple ROIs and subsequently 

the assessment of the strength of connections between them. However, as this method requires 

user input in the definition of ROIs, it can be cumbersome to assess all the distinct brain networks. 

In addition, each of the brain networks consists of numerous hub regions which have connectivities 

with brain regions in other networks, therefore making the definition of seeds a complex process. 

Consequently, testing the same seed region as part of different brain networks can result in a 

problem of multiple comparisons which might render meaningful study findings statistically 

insignificant after corrections.  

 

1.8.5.2. Independent component analysis/Dual regression 

Independent component analysis (ICA) is a statistical technique that is used to identify and 

separate features from a set of observations that are assumed to be a linear mixture of independent 
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features. The ICA algorithm performs higher-order statistical manipulations of these observations 

to achieve features that are maximally independent of each other.  

 

In fMRI, it is typically considered that the different brain networks are spatially and temporal 

independent or non-overlapping. In such, ICA in fMRI can be split into two components: spatial 

ICA and temporal ICA. Spatial ICA is used to identify network components that are spatially-

distinct while retaining the temporal coherence across them. Most studies use spatial ICA to study 

brain networks as it is difficult to study the temporal coherence properties of brain networks using 

fMRI without an adequate understanding of the brain-activation model (Calhoun and Adali 2006). 

The purpose of ICA is to decompose an fMRI data matrix (number of time points x number of 

voxels) into a set of time courses that each correspond to a set of spatial patterns. ICA can be used 

at a single-subject as well as a group-level. Although single-subject level ICA analyses can help 

identify unique spatial components at the level of a single individual, this information cannot be 

used to draw inferences at a group or population level, as different individuals within the group 

will have different time series information in their fMRI data matrix. After obtaining a group-level 

delineation of spatial components that are spatially distinct but temporally coherent, these spatial 

components can be back projected to obtain spatial components for every individual within the 

group.  

 

The most commonly used back projection method for group ICA is the dual regression method. It 

estimates voxel-level FC maps at an individual subject level from group ICA components 

generated on the same dataset. In dual regression, spatial components are regressed onto all 

functional volumes of an individual’s fMRI. Here each functional volume is estimated as a linearly 

weighted sum of ICs. The corresponding beta weights from the regression are then considered as 

time courses and mapped onto the temporal signal at each voxel, producing maps of FC at an 

individual subject level (Schultz et al. 2014). However, such back projection maps can only be 

computed when the assumption of maximal independence of the ICs is true. When there is overlap 

between two or more components, the parameter estimates of the beta weights become relatively 
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unstable. Therefore, the orthogonality assumptions of dual regression can be beneficial when there 

is minimal overlap between ICs as it can accurately isolate neuronal signal and remove any sources 

of non-neuronal signal (noise). However, this can be a disadvantage when there is considerable 

overlap between the ICs as it can result in the removal of shared neuronal information across 

components in order to maintain maximal spatial independence.   

 

1.8.5.3. Template based rotation 

This is a technique that improves upon the back projection method used by dual regression wherein 

it removes the spatial and temporal orthogonality assumptions of the dual regression method and 

additionally allows for the utilization of an external template set for the estimation of FC maps.  

The core difference between the two methods is in the directionality of FC estimation. While FC 

maps are estimated within each functional volume as a linear combination of group-specific ICs 

in dual regression, the template-based rotation (TBR) method predicts components or templates as 

a linear combination of functional volumes. This inversion of directionality enables the estimation 

of each network independently and also retains any shared variance between networks. Figure 17 

shows a schematic of the directionalities of voxel-wise FC estimations by the dual regression and 

TBR methods. The TBR method also estimates signal from white matter, cerebrospinal fluid, and 

noise or artifactual sources within each functional volume, therefore providing a method to remove 

unwanted sources of signal.  
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Figure 17. Schematic representation of the dual regression (left) and template-based rotation (right) 

methods.  

 

1.8.5.4. Magnetic resonance spectroscopy 

The area under the linewidth in an MR spectrum represents the concentration of the metabolites 

that constitute the spectrum. Approaches that have commonly been used to quantify these areas 

are peak integration and fitting. Peak integration entails the definition of a frequency range 

containing the peak-of-interest followed by summing the values across that frequency range and 

subtracting an estimate of the baseline above which the peak rises, providing the area under the 

curve (Buonocore and Maddock 2015). Peak fitting can provide more accurate quantification of 

the metabolite signal intensity compared to peak integration. In peak fitting, each peak-of-interest 

is fit to a mathematically-defined model peak shape for which the fitted peak has a predetermined 

area under the curve. This is followed by iterative calculation of peak integral values for the entire 

set of peaks. This method is most useful when prior knowledge of peak characteristics such as 

frequency relationships, amplitude ratios, scalar coupling is available (Buonocore and Maddock 
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2015). Prior knowledge of peak characteristics can be obtained from simulated or empirical 

metabolite basis sets. Such approaches are available with the linear combination model (LCModel) 

software and with the Quantitation Based on Quantum Estimation (QUEST) program. The use of 

these methods requires the in vitro simulation of the specific spectroscopic response of every 

anticipated metabolite (phantoms) to the exact scanning parameters to be used (Buonocore and 

Maddock 2015). 

  

1.9. Neural correlates of disease in ALS 

Neuroimaging studies have been successful in uncovering biomarkers that can be employed in the 

diagnosis, stratification, monitoring of disease progression, and in the identification of drug targets 

for patients with ALS. The following sections outline the most consistent findings of the neural 

correlates of ALS across various MRI modalities.  

 

1.9.1.Diffusion-weighted MRI 

Brain microstructure in ALS has been studied extensively using DTI. The majority of studies have 

consistently been able to identify microstructural alterations of white matter in the corticospinal 

tract and the corpus callosum, as well as in tracts connecting the frontotemporal regions of the 

brain in patients experiencing cognitive impairments (Agosta, Spinelli, and Filippi 2018). Despite 

the consistently observed alterations in CST FA, a meta-analytic study was unable to identify a 

good discrimination property of this measure when differentiating between ALS patients and 

healthy controls (Bradley R. Foerster et al. 2012). Greater upper motor neuronal impairment was 

observed to be associated with significant FA decreases in the CST with increases in AD, MD, and 

RD co-localized to areas showing FA decreases in the CST, superior longitudinal fasciculi, and 

corpus callosum (Agosta et al. 2014; Ricarda A. L. Menke et al. 2014). While a direct correlation 

was observed between TBSS-derived CST FA and disease progression rate (Ricarda A.L. Menke 

et al. 2012), an inverse correlation was observed between CST MD and the lower limb subscore 
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on the ALSFRS (Ricarda A. L. Menke et al. 2014). Longitudinally, progressive impairment of 

white matter microstructure in the corticospinal tract has been linked to worsening clinical function 

(Kalra, Müller, et al. 2020; Ricarda A L Menke et al. 2016).  

 

1.9.2.Functional MRI 

The literature on resting-state FC alterations of the sensorimotor network is quite heterogeneous 

in ALS (Agosta, Spinelli, and Filippi 2018). In addition to increased activation of the cortical motor 

areas during the performance of a motor task (Mohammadi et al. 2011), connectivity impairments 

of the motor network and extra-motor networks such as the DMN and frontoparietal networks have 

been identified and  associated with impairments in cognitive and behavioural processing (Agosta 

et al. 2013a; Chenji et al. 2016; Luo et al. 2012; Ricarda A L Menke et al. 2016). In the past decade, 

there has been a paradigm shift in the number of resting-state networks studied and the definition 

of statistical significance in resting-state fMRI studies assessing FC at the voxel level. Previous 

studies (Agosta et al. 2013b; Chenji et al. 2016; Mohammadi et al. 2009; Tedeschi et al. 2012; 

Welsh, Jelsone-Swain, and Foerster 2013) have assessed a maximum of five RSNs (default mode, 

salience, sensorimotor, executive, frontoparietal). It is also important to note that previous studies 

using SBC or ICA techniques (Agosta et al. 2013b; Chenji et al. 2016; Mohammadi et al. 2009; 

Tedeschi et al. 2012) have used very liberal statistical thresholds. In the recent years, the study by 

(Bharti et al. 2022) has examined all known RSNs and identified clinically-relevant alterations in 

FC in a multicenter sample of ALS patients. In addition to cerebral networks, alterations of 

cerebellar functional connectivity have been identified in ALS patients (Bharti et al. 2020), 

specifically in symptomatic sporadic patients and asymptomatic carriers of mutations in ALS-

relevant genes (Schmidt et al. 2014). Methodological differences across task-based and resting-

state fMRI studies as well as the clinical and cognitive heterogeneity of the patient samples 

examined in the respective studies have contributed to inconsistencies in observations of brain 

network function in ALS.  
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1.9.3.Neurochemical concentrations 

Despite a limited number of studies examining neurochemical concentrations in ALS, the finding 

of reductions in the concentrations of the neurometabolite N-acetyl aspartate (NAA) has been 

consistently reported. As NAA is the most abundant neurometabolite in the human brain (Barker 

et al. 2010), reductions in its concentrations have been identified in cortical and subcortical gray 

matter regions as well as along the length of the corticospinal tract (Agosta, Spinelli, and Filippi 

2018; Ricarda A L Menke et al. 2016). In terms of other metabolites, reduced concentrations of the 

inhibitory neurotransmitter γ-aminobutyric acid and increased concentrations of the excitatory 

neurotransmitter glutamate have been identified in the motor cortex in ALS patients (Agosta, 

Spinelli, and Filippi 2018; B. R. Foerster et al. 2012; Ricarda A L Menke et al. 2016). However, 

longitudinal alterations in neurometabolite concentrations were very inconsistent across studies. 

Treatment with Riluzole has previously been shown to reduce the concentrations of glutamate 

(Bradley R. Foerster et al. 2013) and increase the concentrations of NAA (Kalra et al. 2006; Sanjay 

Kalra, Neil R. Cashman 1998). Levels of total NAA moieties have been shown to be associated 

with reduced foot tapping, a measure of upper motor neuron impairment, and with reduced 

functional connectivity of the primary motor cortex with other brain regions (Dey et al. 2022), 

therefore providing a potential biomarker of importance to the objective examination of ALS. 

 

The heterogeneity in observations of cerebral alterations across these modalities at cross-sectional 

and longitudinal evaluations might occur due to differences in study populations including 

differences in sample sizes, inadequate sampling of disease phenotypes, longitudinal sampling 

intervals, the ability of patients to complete an adequate number of longitudinal visits, differences 

in disease stages across patients based on clinical phenotype and underlying pathophysiology, and 

the extent/severity of cerebral pathology at baseline. Other factors that are thought to contribute to 

these inconsistencies include the use of magnets with different hardware and software as well as 

the pharmacodynamic effects of drugs approved by regulatory health organizations for use in the 

treatment of ALS. Therefore, future studies could conduct a prospective evaluation of the effects 

of Riluzole on neurochemical concentrations to distinguish disease effects from drug effects. 
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1.10. Multicenter analysis of cerebral changes in ALS 

In order to partially address the limitations within the ALS literature i.e., small sample sizes, 

inadequate sampling of disease phenotypes, inconsistencies across MRI acquisition protocols, and 

sampling of different ALS populations, the respective studies within this thesis utilized data from 

the Canadian ALS Neuroimaging Consortium (CALSNIC) (Kalra, Khan, et al. 2020). While 

conducting an evaluation of cerebral changes across multiple centers can help overcome these 

limitations, it comes with its own set of challenges. Despite the use of an MRI acquisition protocol 

that is preharmonized across multiple centers participating in the consortium, the acquired data 

can suffer from the additive and multiplicative effects of scanner variances arising due to the 

differences in manufacturers, hardware, or software. To minimize these systemic effects, thesis 

chapters 2-4 utilized an empirical Bayesian method known as ComBat for baseline (Fortin et al. 

2017) and longitudinal (Beer et al. 2020) data. The term ComBat stands for ‘‘combating batch 

effects when combining batches”.  

  

1.11. Thesis rationale and overarching objective 

Despite consistently reported evidence of cerebral alterations in ALS in terms of cerebral function, 

microstructure, and the concentrations of neurochemicals, some gaps in the literature still persist. 

These gaps contribute to the rationale for the current thesis: 

1. There is no adequate understanding of the biological mechanisms underlying ALS 

pathophysiology, 

2. The long clinical prodrome of ALS impedes the identification of the specific disease 

processes that contribute to the different clinical manifestations of ALS. This makes it 

challenging to accurately stratify patients for disease diagnosis and management including 

their enrollment in clinical trials,  
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3. The differences in the chronological order of manifestation of disease features across ALS 

patients makes it challenging to perform a qualitative or quantitative assessment of patient 

disease stage, and 

4.  There is a lack of effective biomarkers for the determination of disease stage and in 

monitoring the pharmacodynamic effect of drugs on disease characteristics. 

 

The overarching objective of the experimental chapters in this thesis is to uncover the biological 

mechanisms that underlie cerebral function, and how they relate to clinical observations, in ALS. 

As early disease characterization is important to defining a timeline for effective therapeutic 

intervention, the focus of this thesis is to first examine whether existing patient stratification 

criteria based on clinical features are sensitive to the identification of cerebral network patterns. 

This is followed by a clinically-blinded method of patient stratification wherein a data-driven 

approach utilizes neuroimaging variables to stratify patients, followed by an assessment of their 

cerebral function and clinical features. Chapters 2-4 present a comparison of clinically-defined and 

data-driven patient subgrouping methods in the characterization of cerebral function. Cortical 

functioning depends on factors such as the microstructure and biochemistry of the underlying 

neurons. Chapter 5 presents an examination of the neuroanatomical features that underlie cerebral 

function in ALS. The specific aims within the respective chapters and the corresponding findings 

are presented in the next sections.  

 

1.12. Thesis organization – experimental chapters 

1.12.1. Chapter 2  

This study had three aims: 

a) To identify cerebral connectivity alterations in ALS at baseline, 

b) To utilize a data-driven method to characterize early and advanced pathophysiological 

disease in ALS using baseline cerebral connectivity measures, and  
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c) To perform a comparison of baseline demographic, clinical, and cerebral function features 

between the imaging-derived patient subgroups and those identified by clinically-defined 

criteria.  

 

The salient findings of the study were: 

a) Two biologically-distinct patient subgroups were identified based on the connectivities of 

different cerebral networks at baseline,  

b) A combination of clinical and connectivity measures for these subgroups were indicative 

of the differences in group-specific disease severity albeit relative to each other, and 

c) The spatial extents of cerebral connectivities of different resting-state networks in by 

imaging-derived patient subgroups was observed to be greater than that in clinically-

defined patient subgroups. 

 

Next steps: To identify longitudinal patterns of cerebral function differences between clinically-

defined (Chapter 3) and imaging-derived (Chapter 4) patient subgroups.  

 

1.12.2. Chapter 3  

This study aimed to examine the longitudinal properties of cerebral networks in ALS patients and 

clinically-defined patient subgroups. 

 

The salient findings of the study were: 

a) Network connectivity alterations were exhibited by both motor and extra-motor networks 

in the comprehensive ALS cohort as well as in the clinically-defined patient subgroups. 
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b) Assessments of cerebral function in clinically-defined patient subgroups revealed that brain 

regions participating in motor encoding have altered longitudinal functional connectivities. 

Specifically, the connectivity of the motor imagery network is altered in early disease and 

that of the action observation network is altered in advanced disease. 

 

1.12.3. Chapter 4  

This study aimed to examine the longitudinal properties of cerebral networks in imaging-derived 

patient subgroups. 

 

The salient findings of the study were: 

a) Disease evolution patterns were distinct across the two identified patient subgroups. While 

one subgroup had a more severe (advanced pathophysiological) disease with a 

predominantly motor phenotype, the other subgroup had a less severe (early 

pathophysiological) disease with a motor-frontotemporal phenotype.  

b) Clinical features of the disease in both patient subgroups corroborated their network 

characteristics. Specifically, the subgroup with the predominantly motor phenotype had 

reduced foot tapping scores at visit 1 and the subgroup with the motor-frontotemporal 

phenotype had lower cognitive function scores at visit 3.  

 

 

Next steps: Owing to the selective specificity of the motor network (encompassing the primary 

motor cortex) towards disease severity in ALS, the thesis findings thus far suggest that the motor 

network undergoes progressive changes in connectivity across various pathophysiological disease 

stages of ALS. Combined with pathological evidence of a corticofugal axonal spread of TDP-43 

proteinopathy originating at the motor cortex, a characterization of motor connectivity in terms of 

the neuroanatomical substrates of this region could enable the identification of an objective marker 

of upper MN function in ALS.  
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1.12.4. Chapter 5  

This study had two aims: 

a) To examine alterations in resting-state functional connectivity of the primary motor cortex 

with other brain regions 

b) To identify the neuroanatomical features that were associated with these alterations 

 

The salient findings of the study were: 

a) The FC of the primary motor cortex with other brain regions was reduced  

b) Although both neurochemical and structural measures were associated with clinical 

impairment, alterations in primary motor cortex FC were associated only with 

corresponding reductions in neurochemical concentrations within the primary motor 

cortex. This suggests that neurochemical alterations of the motor cortex might occur in 

earlier stages of disease pathophysiology and be more relevant to cerebral connectivity 

alterations. 

 

In conclusion, the thesis findings characterize connectivities of the motor and extra-motor neuronal 

systems in ALS both at baseline and longitudinally from both clinical and neuroimaging 

standpoints. As expected, imaging-derived criteria are better able to characterize distinct patterns 

of disease spread compared to clinical criteria. This is suggestive of the need to include imaging-

derived early disease characterization in addition to clinical measures when monitoring disease 

and also in the assessment of drug effectiveness in clinical trials. This could be beneficial towards 

encouraging the stratification of patients based on both their upper and lower MN function, 

assessing the pharmacodynamic effects of existing and upcoming drugs in clinical trials, and 

suggesting targets for potential drugs. This could not only help improve clinical outcomes but also 

the overall quality of life. In addition, routine monitoring of brain function, not only in people with 

a familial/genetic predisposition to ALS but also in people with no prior family history of 
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neurological or neuropsychiatric illnesses, might offer helpful clues for early diagnosis, prognosis, 

and relevant therapeutic intervention. 
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2.1. Abstract 

2.1.1. Introduction 

Characterization of early disease in ALS is important for understanding pathophysiology and 

identifying patients who are more likely to respond to therapy in clinic or in clinical drug trials. 

However, identification of early disease based on observable clinical features may be subjective 

and not necessarily related directly to disease state. This study hypothesized that biologically 

distinct patient subgroups exist based on brain functional connectivity (FC).  

 

2.1.2. Methods 

174 ALS patients and 165 healthy participants from seven university centers in Canada and the 

United States were included from the Canadian ALS Neuroimaging Consortium (CALSNIC). A 

template-based rotation analysis technique was utilized to obtain maps of FC across 11 resting-

state networks (RSNs) which were used in a hierarchical clustering algorithm to identify imaging-

derived patient subgroups with similar characteristics of brain function. Early and advanced 

disease stages were characterized for imaging-derived patient subgroups based on their clinical 

and neuroimaging measures. Clinical staging was performed using stratification criteria adapted 

from 2 clinical drug trials (Criteria 1 and 2) and by disease progression rate (Criteria 3). Derived 

patient subgroups were compared with respect to clinical and FC characteristics.  

 

2.1.3. Results 

Two patient subgroups were identified using connectivity characteristics of RSNs. These imaging-

derived patient subgroups demonstrated FC differences (pFWE<0.05) for all RSNs, and had 

significantly different symptom durations, disease progression rates, and foot tapping scores 

(p<0.05). Patient subgroups defined using clinical Criteria 1 demonstrated FC differences for the 

salience, right control, and primary visual RSNs (pFWE<0.05) and had significantly different 
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symptom duration, disease progression rate, forced vital capacity (FVC), ALSFRS-R total score, 

and foot tapping score (p<0.05). Patient subgroups defined using Criteria 2 demonstrated FC 

differences for the dorsal attention and subcortical RSNs and had significantly different symptom 

duration, disease progression rate, and FVC (p<0.05). While no differences in RSN FC were 

observed, Criteria 3 subgroups had significantly different education level, symptom duration, and 

ALSFRS-R, neurological examination, and cognitive scores (p<0.05).  

 

2.1.4. Discussion  

Individual-level imaging-derived patient stratification criteria are able to better distinguish ALS 

patients in terms of degree of cerebral degeneration than clinically-defined criteria of early versus 

late-stage disease. Resting-state brain FC requires further study as a potential biomarker for patient 

stratification, including for patient selection, and predicting and monitoring therapeutic response 

in clinical trials.  
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2.2. Introduction 

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the 

impairment of motor neurons (MNs) in the cerebral cortex, brainstem, and spinal cord. This 

manifests as a combination of clinical features including spasticity, hyperreflexia, atrophy, 

fasciculations, and weakness. The clinical syndrome of ALS can be explained, in part, by the 

‘neural network disruption hypothesis’ which assesses the impact of disease (neurodegeneration) 

on healthy interconnected neuronal populations (functional networks) (Strong and Swash 2022). 

The complexity of the ALS disease process is also reflected by the region and laterality of disease 

onset, the rate of functional decline, and is accentuated by the subjectiveness of diagnosis due to a 

limited window of observation during clinical visits, goals-of-care, or quality-of-life. Therefore, it 

is essential to disentangle the individual and interaction effects of such variables on core disease 

features in order to determine disease phenotypes that are biologically intuitive.  

 

From a phenotypic perspective, it is important to subtype patients based on their clinical 

observations to allow for an objective examination of their disease characteristics. Such clinical 

observations can help define standardized criteria that are useful in observational studies or in the 

design of endpoints for clinical trials. From a biological perspective, an assessment of vulnerable 

neuron pools (van den Heuvel and Sporns 2011) can help uncover the core unifying features of 

disease in ALS, notwithstanding observable clinical phenotypes. This can help provide insights 

into a (structural or functional) network-specific spread of neurodegeneration (Strong and Swash 

2022) common to all disease phenotypes. Recent studies in ALS (Bede et al. 2022a; Tan et al. 

2022; Thome et al. 2022) have attempted to identify phenotypic patient subtypes, or classify ALS 

patients from healthy controls (HCs), based on structural measurements including brain volume, 

cortical thickness, and white matter fractional anisotropy. In terms of functional brain measures, 

static and dynamic resting-state functional connectivity (FC) measures have been used to classify 

study participants as ALS patients or HCs with a classification accuracy of ~62 percent (Bede et 

al. 2022a). Comparable classification accuracies (Bede et al. 2022a) across structural and 

functional studies, in addition to the neural network disruption hypothesis (Strong and Swash 

2022), suggest that brain function might be a more intuitive measure of disease pathophysiology 

and could provide biological-phenotypic clues to address the heterogeneity problem in ALS.  
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Therefore, this study had two hypotheses: a) biologically distinct patient subtypes are identifiable 

based on imaging features of resting brain function, and b) these imaging-derived patient subtypes 

are phenotypically distinct. The current study had three aims which included 1) the identification 

of group differences in voxel-wise FC between ALS patients and HCs, 2) the identification of 

biologically-distinct patient subgroups based on intra-network FC of individual patients, and 3) a 

comparison of demographic, clinical, and imaging (FC) features between imaging and phenotypic 

ALS subtypes. 

 

2.3. Methods 

2.3.1. Study design 

The Canadian ALS Neuroimaging Consortium (CALSNIC) (Kalra, Khan, et al. 2020) is a 

prospective multicenter study conducted at participating hospitals affiliated with seven university 

centers across Canada and the United States. These centers included the University of Alberta 

(Edmonton), University of Calgary (Calgary), University of Miami (Miami), McGill University 

(Montreal), Université Laval (Quebec City), University of Toronto (Toronto), and University of 

British Columbia (Vancouver).  

 

2.3.2.Participant inclusion and exclusion  

Participants enrolled in CALSNIC until October 2022 were considered for inclusion in the current 

study. Inclusion criteria for patients required the completion of a resting-state functional MRI scan, 

presence of both upper and lower MN signs on neurological examination, a diagnosis of clinically 

possible, probable, or definite ALS based on the El Escorial diagnostic criteria (Brooks et al. 2000), 

and a symptom duration not greater than 5 years. Inclusion criteria for HCs required them to obtain 

a minimum ECAS total score of 95 to be classified as cognitively intact as per the 2SD-NAC 

recommendation (McMillan et al. 2022). Patients were excluded from the study if they presented 
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with co-morbid frontotemporal dementia or other neurological conditions (e.g., traumatic brain 

injury requiring hospitalization). HCs were excluded from the study if they had previously 

experienced traumatic brain injury requiring hospitalization or received a diagnosis of/therapeutic 

intervention for depression. The final study sample consisted of 174 patients and 165 HCs. The 

demographics and clinical characteristics of the study sample are shown in Table 1.  

 

2.3.3.Imaging acquisition 

A multicenter harmonized MRI protocol was employed(Kalra, Khan, et al. 2020). Whole brain 3D 

T2*-weighted rs-fMRI data was acquired axially using an echo-planar imaging pulse sequence 

(repetition time = 2200 ms, echo time = 30 ms, flip angle = 70 degrees, field of view = 224 mm x 

224 mm) with 3.5 mm3 isotropic voxels. Patients were instructed to keep their eyes closed for the 

duration of the scan. The rs-fMRI acquisition times for CALSNIC 1 and 2 were respectively ~7 

min and ~10 min (Kalra, Khan, et al. 2020). 3D T1-weighted structural MRI data was acquired for 

anatomical localization and normalization with 1 mm3 isotropic voxels, 176 slices, and 256 mm x 

256 mm field of view (Kalra, Khan, et al. 2020). 

 

2.3.4.Imaging analysis and corrections for multicenter data 

2.3.4.1. Preprocessing for rs-fMRI 

The CONN toolbox (https://web.conn-toolbox.org/) was used to preprocess the rs-fMRI images. 

The first four functional volumes were removed for every participant to allow for the stabilization 

of signal intensity. Functional data were corrected for differences in slice acquisition times and 

realigned for head motion and orientation using a six-parameter rigid body transformation 

algorithm. The mean functional image was co-registered to the T1-weighted structural image, and 

the resulting transformation was applied to all functional images within each session. Following 

this, all functional images underwent normalization to the MNI space and smoothing with a 

https://web.conn-toolbox.org/
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Gaussian kernel of 8 mm full-width-at-half-maximum. The white matter and cerebrospinal fluid 

signals as well as motion estimates were removed from the data and further denoising was 

performed using a bandpass filter of 0.008-0.09 Hz. The filtered and denoised images were used 

in further analyses using the template-based rotation (TBR) method (section 2.3.4.2). 

 

2.3.4.2. Template based rotation  

Maps of FC were generated by applying TBR to preprocessed rs-fMRI data. TBR allows for the 

utilization of the spatial stability of brain functional organization, thereby incorporating the 

strengths of seed-based-connectivity (SBC) analysis, independent component analysis (ICA), and 

dual regression analysis for the estimation of RSNs. This technique predicts RSN components at 

an individual level as a linear combination of time courses that correspond to spatial patterns of an 

a priori out-of-sample template set, thus removing the spatial and temporal orthogonality 

assumptions of distributed functional networks (at a group level) (Schultz et al. 2014). Of the 20 

targets estimated for each participant by the TBR method, we preselected 11 RSN components 

(cerebellar, default mode, salience, dorsal attention, frontal, left and right control, motor, primary 

visual, subcortical, and temporal language networks) for assessment. The remaining nine 

components corresponding to white matter and artifactual signals (cerebellar white, extrastriate 

visual, eyes, frontal artifact, global signal, lateral artifact, nasal artifact, sagittal sinus, white 

matter) were excluded from assessment owing to their non-relevance to gray matter function. 

Individual RSN components underwent FisherZ transformation to allow for variance 

normalization. These FischerZ-transformed TBR maps were then entered into the Combat 

harmonization algorithm to correct for site- and scanner-specific effects.  

 

2.3.4.3. Adjustment for site effects using ComBat Harmonization  

ComBat is a tool based on an Empirical Bayesian algorithm which can be used to eliminate 

unwanted technical variability in biological data (Fortin et al. 2017). This technical variability can 
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occur because of differences in scanner hardware at the respective sites for data acquisition, 

software, or imaging acquisition protocols. ComBat can help dissect and remove this technical 

variability from biological variability by correcting for additive and multiplicative scanner effects, 

thereby improving statistical power (Fortin et al. 2017). In CALSNIC, technical variability was 

addressed at the point of acquisition by pre-harmonizing imaging protocols across scanners and in 

part across both phases of the CALSNIC study (Kalra, Khan, et al. 2020). However, the data can 

still retain some technical variability due to additive and multiplicative effects from scanner 

hardware and software. Therefore, in the current study, the ComBat harmonization method for 

baseline data (Fortin et al. 2017) was employed on the FisherZ-transformed TBR maps to correct 

for the remaining technical variability. For this, the 3D maps for each participant were grouped 

into a 4D image using the ‘fslmerge’ function. These 4D images for individual subjects were 

subsequently entered into the ComBat harmonization algorithm, allowing us to account for the 

covariance across different RSNs. The ComBat-harmonized FisherZ-transformed 3D TBR maps 

were entered into further analyses in the study. 

 

2.3.4.4. Differences in RSN functional connectivity in ALS  

Individual FisherZ-transformed TBR maps were included in a two-sample t-test generalized linear 

model (GLM) in SPM12 (https://www.fil.ion.ucl.ac.uk/spm/software/spm12/) to examine group 

differences in within- and between-network FC between the ALS and HC group. Age, sex, and 

education levels were included as regressors in the statistical model. Monte Carlo simulations were 

performed to correct for multiple comparisons over 11 RSNs. Simulations were performed over 

10,000 iterations with global and local p-values of 0.05 and 0.001 to set the significance threshold 

at 27 voxels per cluster. 

 

https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
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2.3.4.5. Patient subgrouping based on RSN connectivity  

The TBR templates for individual RSNs were used as regions-of-interest to calculate RSN FC 

values from TBR maps for an individual subject at a voxel-level. The voxel-wise FC values were 

averaged to obtain a single measure of intra-network connectivity for each RSN. These FC 

averages underwent adjustments for demographic variables (age, sex, and education level) using 

a multiple regression model. Adjusted FCs for the ALS group were transformed into z-scores based 

on the HC average. These z-transformed time courses for the ALS group were used as inputs in a 

hierarchical clustering analysis to identify patient subgroups with distinct biological 

characteristics. Eleven continuous variables (z-scored FC for 11 RSNs) were entered into the 

clustering model as inputs, the Ward’s method was used for estimating the clusters, and a squared-

Euclidean distance function was used as a measure of dissimilarity to identify patient subgroups. 

The number of solutions were not defined a priori. The solution clusters (patient subgroups) were 

assessed for differences in clinical, demographic, and mean FC measures using SPSS28. Statistical 

significance was set at p < 0.05 for all clinical/demographic and intra-network FC comparisons. 

 

2.3.4.6. Group differences in RSN functional connectivity in 

imaging-derived subgroups  

A two-sample t-test GLM was used in SPM12 to examine group differences in voxel-wise FC 

between patient subgroups identified in section 2.6. As age, sex, and education levels were 

matched across the subgroups, these variables were not included as regressors to allow for an 

increase in the degrees of freedom. Statistical significance for voxel-level differences between 

subgroups was set at a family wise error corrected p-value < 0.05.  

 

2.3.4.7. Phenotypic patient subtyping  

The ALS patients in the study were also subtyped based on disease stage and progression. In this 

study, disease staging was defined based on clinical drug trial inclusion criteria for two drugs 
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approved by Health Canada for the treatment of sporadic and familial ALS – riluzole (Criteria 1) 

and edaravone (Criteria 2). These drugs have been previously shown to increase survival 

(Bensimon, Lacomblez, and Meininger 1994) and slow the accrual of disability (Abe et al. 2017) 

when administered to patients who are deemed to be in early disease stages based on their 

respective clinical trial criteria. Criteria 1, extrapolated from the riluzole criteria (Sanofi-Aventis 

2010), identified patients as being in early disease stages if they had experienced symptoms for 

less than 2 years and had an FVC greater than or equal to 60%. Criteria 2, formulated on the 

edaravone criteria, identified patients as being in early disease stages if they had experienced 

symptoms for less than 2 years, had an FVC greater than or equal to 80%, and a minimum total 

ALSFRS-R score of 24/48 (minimum of 2 points per scale item)(Abe et al. 2017). Only patients 

meeting all conditions of the disease staging criteria were categorized as experiencing early disease 

(“Early-ALS” [E-ALS]). Patients not meeting one or more conditions were categorized as 

experiencing advanced disease (“Advanced-ALS” [A-ALS]). An additional subtyping method 

(Criteria 3) was employed that used estimated disease progression rate to subtype patients into 

slow progressors (SP-ALS) and fast progressors (FP-ALS).  

 

Independent sample t-tests were performed to identify differences in three demographic and twelve 

clinical features between the E-ALS and A-ALS as well as SP-ALS and FP-ALS subgroups. The 

demographic features assessed included age, sex, education level and the clinical features assessed 

included symptom duration, general functional status (ALSFRS-R), disease progression rates, 

forced vital capacity, finger and foot tapping rates, and neurological (upper and lower MN) 

examination scores. Significance for all comparisons was set at p < 0.05. A two-sample t-test 

statistical GLM was used in SPM12 to identify differences in voxel-wise FC between the 

clinically-defined E-ALS and A-ALS patient subgroups. Statistical significance for voxel-level 

differences between subgroups was set at a family wise error corrected p-value < 0.05. 
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2.4. Results 

2.4.1.Demographic and clinical characteristics of the study groups  

A total of 339 participants (174 ALS, 165 HC) were included in this study. The demographic and 

clinical characteristics of all study groups are given in Table 1.  

 

Table 1. Demographic and clinical characteristics of the study cohort. Single asterisk (*) represents 

significant group differences at p < 0.05 and double asterisk (**) represents group differences at p 

< 0.001. Group differences in all continuous variables were assessed using an independent samples 

t-test. Differences in sex distributions were assessed using chi-square test. HC = healthy controls, 

ALS = amyotrophic lateral sclerosis, E-ALS = Early ALS, A-ALS = Advanced ALS, Sig. = 

Significance of group differences, M = males, F = females, ALSFRS-R = ALS Functional Rating 

Scale (Revised), UMN = upper MN, LMN = lower MN, n.s. = not significant.  

 

Characteristic HC ALS 
Si

g.  

Imaging-derived 

subgroups 

Clinically-defined subgroups 

Criteria 1 Criteria 2 Criteria 3 

Subtype 

1 

Subtype 

2 

Sig

. 

E-

ALS 

A-

ALS 

Sig

. 

E-

ALS 

A-

ALS 

Si

g. 

SP-

ALS 

FP-

ALS 

Si

g. 

Number of 

participants 
165 174 - 109 62 - 100 59 - 78 81 - 85 89 - 

Age (years) 
55.4 

(10.1) 

59.9 

(10.5) 
** 

60.1 

(10.6) 

59.8 

(9.8) 

n.s

. 

59.5 

(10.8) 

60.7 

(9.3) 

n.s

. 

59.5 

(11.1) 

60.4 

(9.5) 

n.s

. 

59.8 

(10.4) 

59.7 

(10.8) 

n.s

. 

Sex: M/F 74/91 108/66 * 66/43 41/21 
n.s

. 
63/37 37/22 

n.s

. 
48/30 52/29 

n.s

. 
58/27 50/39 

n.s

. 

Education 

level (years) 

16.5 

(3.0) 

15.2 

(3.5) 
** 

15.1 

(3.4) 

15.4 

(3.6) 

n.s

. 

14.9 

(3.4) 

15.4 

(3.4) 

n.s

. 

15.2 

(3.6) 

15.0 

(3.2) 

n.s

. 

15.7 

(3.4) 

14.6 

(3.4) 
* 

Symptom 

duration 
- 

1.7 

(1.1) 
- 

1.6 

(0.9) 

1.9 

(1.2) 
* 

1.1 

(0.4) 

2.7 

(1.1) 
** 

1.1 

(0.5) 

2.3 

(1.2) 
** 

2.2 

(1.1) 

1.2 

(0.7) 
** 

Functional 

status 

(ALSFRS-R 

total) 

- 
37.9 

(6.2) 
- 

37.7 

(5.9) 

38.8 

(6.2) 

n.s

. 

38.7 

(5.1) 

36.5 

(7.3) 
* 

38.6 

(4.8) 

37.2 

(7.1) 

n.s

. 

41.2 

(4.4) 

34.7 

(6.1) 
** 

Disease 

progression 

rate 

- 
0.7 

(0.6) 
- 

0.8 

(0.7) 

0.5 

(0.3) 
* 

0.8 

(0.6) 

0.5 

(0.5) 
** 

0.9 

(0.7) 

0.6 

(0.6) 
* 

0.3 

(0.1) 

1.1 

(0.6) 
** 

Forced vital 

capacity (%) 
- 

89.0 

(19.8) 
- 

89.7 

(18.8) 

88.3 

(21.7) 

n.s

. 

93.8 

(16.5) 

81.2 

(22.3) 
** 

98.8 

(13.5) 

79.8 

(20.5) 
** 

90.9 

(22.2) 

87.4 

(17.1) 

n.s

. 

Left UMN 

exam score 
- 

2.5 

(1.5) 
- 

2.6 

(1.5) 

2.4 

(1.5) 

n.s

. 

2.6 

(1.5) 

2.6 

(1.6) 

n.s

. 

2.7 

(1.5) 

2.5 

(1.5) 

n.s

. 

2.2 

(1.3) 

2.8 

(1.6) 
* 

Right UMN 

exam score 
- 

2.4 

(1.6) 
- 

2.5 

(1.6) 

2.4 

(1.5) 

n.s

. 

2.5 

(1.5) 

2.6 

(1.6) 

n.s

. 

2.6 

(1.5) 

2.4 

(1.6) 

n.s

. 

2.2 

(1.4) 

2.7 

(1.6) 
* 
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Left LMN 

exam score 
- 

2.4 

(1.2) 
- 

2.6 

(1.2) 

2.3 

(1.4) 

n.s

. 

2.5 

(1.1) 

2.4 

(1.3) 

n.s

. 

2.4 

(1.2) 

2.5 

(1.2) 

n.s

. 

2.2 

(1.2) 

2.7 

(1.2) 
* 

Right LMN 

exam score 
- 

2.5 

(1.3) 
- 

2.6 

(1.2) 

2.3 

(1.3) 

n.s

. 

2.5 

(1.2) 

2.3 

(1.4) 

n.s

. 

2.4 

(1.2) 

2.5 

(1.3) 

n.s

. 

2.2 

(1.3) 

2.7 

(1.2) 
* 

Left finger 

tapping score 
53 (13) 38 (16) ** 38 (16) 38 (16) 

n.s

. 

38 

(18) 

36 

(14) 

n.s

. 

38 

(18) 

37 

(15) 

n.s

. 

40 

(13) 

36 

(18) 

n.s

. 

Right finger 

tapping score 
59 (14) 43 (17) ** 43 (17) 42 (18) 

n.s

. 

42 

(20) 

41 

(13) 

n.s

. 

42 

(20) 

42 

(16) 

n.s

. 

44 

(16) 

41 

(19) 

n.s

. 

Left foot 

tapping score 
40 (10) 23 (15) ** 22 (15) 26 (15) 

n.s

. 

25 

(15) 

19 

(14) 
* 

25 

(15) 

21 

(15) 

n.s

. 

25 

(14) 

21 

(15) 

n.s

. 

Right foot 

tapping score 
43 (10) 25 (15) ** 23 (15) 29 (15) * 

26 

(15) 

21 

(15) 
* 

26 

(15) 

22 

(15) 

n.s

. 

27 

(16) 

24 

(15) 

n.s

. 

ECAS total 

(/136) 
114 (8) 

103 

(21) 
** 

103 

(23) 

103 

(19) 

n.s

. 

100 

(25) 

106 

(16) 

n.s

. 

100 

(27) 

104 

(16) 

n.s

. 

107 

(15) 

100 

(25) 
* 

 

2.4.2.Differences in RSN functional connectivity in ALS  

Comparing all ALS patients with healthy controls, the motor, temporal language, and right control 

networks had both increased and decreased FC with other brain regions. The frontal, dorsal 

attention, and primary visual networks had decreased FC, and the salience and subcortical 

networks had increased FC, with other brain regions (Figure 1, Table 2).  

 



 

81 

 

 

Figure 1. Group differences in voxel-wise intra- and inter-network FC in all patients with ALS 

compared to HC. HC=healthy controls. 

 

Table 2. Group differences in voxel-wise intra- and inter-network FC across different RSNs in all 

patients with ALS compared to HCs. ALS = amyotrophic lateral sclerosis, HC = healthy controls, 

R = right, L = left, B = bilateral. 

 

Resting-state 

network 
Contrast Brain region 

Cluste

r size 

Cluster 

coordinates 

(x,y,z) 

T-value 

Salience ALS > HC L frontal eye fields 29 -18, 27, 54 3.93 

Motor ALS > HC 

B visuomotor area 48 -3, -72, 57 4.18 

B dorsal posterior 

cingulate cortex 
32 -3, -39, 48 3.98 
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ALS < HC R anterior cerebellum 33 3, -54, -6 3.94 

Temporal 

Language 

ALS > HC 
R posterior cingulate 

cortex 
44 6, -51, 9 4.01 

ALS < HC L posterior cerebellum 29 
-36, -54, -

57 
4.08 

Frontal ALS < HC 

B medial temporal 

cortex 
27 

-66, -33, -

15 
4.42 

R supramarginal gyrus 73 63, -21, 27 4.31 

Subcortical ALS > HC 
L primary auditory 

cortex 
47 

-36, -27, 

12 
4.16 

Right Control 

ALS > HC 

L anterior cingulate 

gyrus 
29 0, -9, 51 4.26 

L anterior prefrontal 

cortex 
71 -12, 63, 3 3.95 

L ventral posterior 

cingulate gyrus 
78 -6, -57, 9 3.93 

ALS < HC L posterior cerebellum 58 
-30, -63, -

36 
4.29 

Dorsal 

Attention 
ALS < HC R posterior cerebellum 57 

15, -69, -

48 
4.05 

Primary 

Visual 
ALS < HC L posterior cerebellum 102 -6, -63, -48 4.87 

 

 

2.4.3.Clustering based on intra-network RSN connectivity values 

The hierarchical clustering algorithm revealed two ALS subgroups (Subtype 1: n = 109, Subtype 

2: n = 62) based on network-specific FC. An assessment of the intra-network FC (Table 3) revealed 

that FCs were lower in Subtype 1 compared to Subtype 2, except in the subcortical RSN which 

showed no significant difference between subgroups. Post hoc pairwise comparisons with HCs 

showed that the cumulative ALS cohort had increased intra-network FCs in all RSNs, except in 

the cerebellar network for which the FC was decreased, and the subcortical network for which the 

FC did not differ in comparison to HCs. Intra-network FCs were significantly different for nine 

RSNs in Subtype 1 and ten RSNs in Subtype 2 compared to HCs. 
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Table 3. Intra-network FC in study cohorts. Means for intra-network FC values, corrected for the 

effects of age, sex, and education level, are displayed. The standard errors for intra-network FCs 

for all RSNs across all study cohorts were ≤0.01. Asterisk (*) represents significant differences 

(p<0.05) in intra-network FC in ALS patients (and ALS subgroups) when compared to HCs. 

 

Resting-state network HC ALS 

Imaging-derived ALS 

subgroups 

Subtype 1 Subtype 2 

Default Mode Network 0.20 0.26* 0.23* 0.30* 

Motor Network 0.23 0.29* 0.27* 0.32* 

Frontal Network 0.37 0.40* 0.38 0.42* 

Temporal Language Network 0.25 0.31* 0.29* 0.35* 

Salience Network 0.23 0.25* 0.24* 0.28* 

Dorsal Attention Network 0.22 0.27* 0.25* 0.30* 

Left Control Network 0.23 0.27* 0.24* 0.31* 

Right Control Network 0.22 0.25* 0.23* 0.28* 

Subcortical Network 0.30 0.30 0.30 0.31 

Cerebellar Network 0.31 0.22* 0.21* 0.24* 

Primary Visual Network 0.33 0.39* 0.37* 0.41* 

 

2.4.4.Demographic and clinical features of imaging and phenotypic 

subgroups  

The demographic and clinical features of patient subgroups are summarized in Table 1.  

 

Patient subgroups were matched for demographics (age, sex, and education levels), except for 

Criteria 3 subgroups (SP-ALS and FP-ALS) that were different in terms of their education.  

 

In terms of clinical features, imaging-derived subgroups had significantly different symptom 

durations (Subtype 2 > Subtype 1), disease progression rate (Subtype 1 > Subtype 2), and right 

foot tapping scores (Subtype 2 > Subtype 1). Criteria 1 subgroups had significantly different 
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symptom durations (A-ALS > E-ALS), ALSFRS-R total scores (E-ALS > A-ALS), disease 

progression rates (E-ALS > A-ALS), FVC% (E-ALS > A-ALS), right and left foot tapping scores 

(E-ALS > A-ALS). Criteria 2 subgroups had significantly different symptom durations (A-ALS > 

E-ALS), disease progression rates (E-ALS > A-ALS), FVC% (E-ALS > A-ALS). Criteria 3 

subgroups had significantly different symptom durations (SP-ALS > FP-ALS), ALSFRS-R total 

scores (SP-ALS > FP-ALS), disease progression rates (FP-ALS > SP-ALS), upper and lower MN 

function scores (FP-ALS > SP-ALS), and ECAS total scores (SP-ALS > FP-ALS). On correcting 

for multiple comparisons, subgroup differences for upper and lower MN function scores (Criteria 

3) and foot tapping scores (imaging-derived subgrouping and Criteria 1) did not retain their 

significance.  

 

2.4.5.Intra- and inter-network FC alterations in imaging-derived and 

clinically-defined subgroups  

See figures 2, 3 and table 4 for details on FC differences in imaging- and clinically-defined ALS 

subgroups. Post hoc t-tests were performed pairwise to compare voxel-wise FCs of imaging-

derived and clinically-defined subgroups with HCs (supplementary). 
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Figure 2. Differences in voxel-wise FC across imaging-derived ALS subgroups 
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Figure 3. Differences in voxel-wise FC across clinically-defined ALS subgroups 

 

Table 4. Differences in voxel-wise FC across imaging-derived and clinically-defined ALS 

subgroups. ALS = amyotrophic lateral sclerosis, HC = healthy controls, R = right, L = left, B = 

bilateral. 

 

Contrast Brain region 
Cluster 

size 

Coordinates 

(x,y,z) 
T-value 

Default Mode Network 

Subgroup 1 > Subgroup 2 

L anterior prefrontal cortex 202 -39, 42, 21 6.4 

B insula 269 -45, 9, -3 4.9 

R dorsal dorsolateral 

prefrontal cortex 
90 33, 51, 30 4.8 

L inferior parietal lobule 92 -33, -45, 39 4.6 

L premotor and 

supplementary motor areas 
71 -21, -3, 54 4.5 

R postcentral gyrus 149 66, -27, 42 4.5 
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Subgroup 2 > Subgroup 1 

R dorsal posterior 

cingulate cortex 
789 6, -60, 36 8.2 

L dorsal dorsolateral 

prefrontal cortex 
2171 -6, 45, 45 7.8 

B medial temporal gyrus 557 60, -9, -21 7.7 

R angular gyrus 287 -42, -60, 33 6.8 

B posterior cerebellum 191 9, -54, -45 6.3 

Motor Network 

Subgroup 1 > Subgroup 2 L visuomotor cortex 212 -6, -75, 57 5.2 

Subgroup 2 > Subgroup 1 

L supramarginal gyrus 879 -54, -18, 15 7.2 

L premotor and 

supplementary motor areas 
1423 -6, 3, 45 6.1 

Frontal Network 

Subgroup 1 > Subgroup 2 

L Broca’s area 

(opercularis) 
318 -45, 12, 27 5.2 

L anterior prefrontal cortex 171 -39, 48, -9 5.1 

Subgroup 2 > Subgroup 1 

R ventral posterior 

cingulate cortex 
131 3, -15, 36 5.1 

L ventral anterior cingulate 

cortex 
131 -6, 39, 9 4.8 

L dorsal posterior 

cingulate cortex 
77 -9, -54, 39 4.3 

Temporal Language Network 

Subgroup 1 > Subgroup 2 

R angular gyrus 130 42, -60, 45 4.8 

B ventral posterior 

cingulate cortex 
175 15, -54, 12 4.6 

Subgroup 2 < Subgroup 1 

R angular gyrus 418 63, -48, 15 7.1 

L angular gyrus 456 -60, -51, 21 6.0 

R pars orbitalis 194 51, 27, -3 5.7 

R premotor and 

supplementary motor areas 
374 9, 15, 66 5.3 

L Broca’s area 

(triangularis) 
441 -51, 21, 6 5.2 

R inferior temporal gyrus 68 48, 3, -45 5.2 

B posterior cerebellum 85 24, -78, -39 4.3 

Salience Network 

Subgroup 1 > Subgroup 2 

R dorsal posterior 

cingulate cortex 
334 3, -60, 36 6.0 

L medial temporal gyrus 116 -57, -21, -21 5.0 
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R inferior temporal gyrus 107 57, -3, -33 4.8 

L angular gyrus 65 -48, -75, 36 4.8 

R superior frontal gyrus 532 3, 54, 36 4.7 

Subgroup 2 > Subgroup 1 

L inferior parietal lobule 382 -66, -36, 30 6.5 

B insula 364 -42, 6, 3 6.3 

R supramarginal gyrus 426 63, -24, 45 6.0 

B premotor and 

supplementary motor areas 

(superior) 

150 -12, -3, 72 5.9 

B anterior prefrontal 

cortex 
168 -42, 42, 24 5.5 

R premotor and 

supplementary motor areas 

(midline) 

203 9, 6, 54 5.3 

B fusiform gyrus 112 -60, -63, -12 4.6 

E-ALS > A-ALS  

(Criteria 1) 
L posterior cerebellum 66 -6, -66, -45 4.8 

Dorsal Attention Network 

Subgroup 1 > Subgroup 2 

L medial temporal gyrus 105 -57, -36, -6 5.3 

L dorsal dorsolateral 

prefrontal cortex 
80 -12, 51, 39 4.8 

Subgroup 2 > Subgroup 1 

L premotor and 

supplementary motor areas 
150 -27, -3, 66 6.3 

L visual association area 141 -36, -90, 18 6.1 

L superior parietal lobule 279 -24, -60, 51 5.8 

R fusiform gyrus 162 57, -60, -9 5.1 

R supramarginal gyrus 98 36, -39, 45 4.8 

R frontal eye fields 99 27, 9, 48 4.6 

E-ALS > A-ALS  

(Criteria 2) 
L posterior cerebellum 68 -33, -54, -24 4.2 

Left Control Network 

Subgroup 1 > Subgroup 2 

R anterior prefrontal 

cortex 
636 6, 57, -9 6.1 

L sensory association area 611 -12, -30, 48 5.2 

R medial temporal gyrus 151 57, -3, -30 5.1 

R visuomotor cortex 78 15, -75, 42 4.5 

R dorsal dorsolateral 

prefrontal cortex 
94 24, 42, 39 4.5 

Subgroup 2 > Subgroup 1 L pars orbitalis 1197 -42, 39, -15 7.9 
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L fusiform gyrus 454 -63, -54, -9 7.0 

L frontal eye fields 123 -3, 27, 45 6.6 

R middle frontal gyrus 189 51, 30, 33 6.5 

L supramarginal gyrus 473 -51, -48, 51 6.4 

R posterior cerebellum 516 33, -69, -51 6.2 

Right Control Network 

Subgroup 1 > Subgroup 2 

R premotor and 

supplementary motor areas 

(midline) 

315 3, 0, 63 5.2 

R premotor and 

supplementary motor areas 

(lateral) 

112 63, 6, 21 4.8 

L visuomotor area 148 -6, -51, 54 4.9 

L orbitofrontal cortex 59 -6, 60, -15 4.8 

L dorsal anterior cingulate 

cortex 
120 -12, 45, 6 4.8 

L visual association area 61 -51, -66, 3 4.2 

Subgroup 2 > Subgroup 1 

B anterior prefrontal 

cortex 
944 33, 54, 0 8.4 

R supramarginal gyrus 506 51, -48, 54 8.1 

R ventral posterior 

cingulate cortex 
57 6, -36, 36 5.8 

R frontal eye fields 85 6, 30, 45 5.7 

R fusiform gyrus 182 57, -48, -12 5.3 

L angular gyrus 66 -51, -51, 51 4.9 

L posterior cerebellum 136 -36, -69, -48 4.9 

A-ALS > E-ALS  

(Criteria 1) 
L inferior temporal gyrus 61 -57, -24, -24 4.4 

Subcortical Network 

Subgroup 1 > Subgroup 2 

R anterior prefrontal 

cortex 
71 42, 45, 18 4.4 

L superior temporal gyrus 64 -51, 3, -9 4.1 

Subgroup 2 > Subgroup 1 
L globus pallidus 89 -18, 0, -12 5.8 

R putamen 77 24, 3, -12 5.0 

E-ALS > A-ALS  

(Criteria 2) 
L posterior cerebellum 57 -39, -66, -45 4.4 

Cerebellar Gray Network 

Subgroup 2 > Subgroup 1 
L dorsal posterior 

cingulate cortex 
197 -3, -60, 39 5.5 
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L angular gyrus 109 -48, -72, 30 4.8 

R posterior cerebellum 178 27, -78, -27 4.8 

Primary Visual Network 

Subgroup 2 > Subgroup 1 

L secondary visual cortex 261 -21, -96, 21 5.9 

R visual association area 371 12, -87, 42 5.5 

R fusiform gyrus 181 36, -60, -18 5.2 

E-ALS > A-ALS  

(Criteria 1) 
R secondary visual cortex 75 12, -51, 3 4.3 

 

2.5. Discussion 

The current study aimed to assess FC alterations in ALS, stratify patients using imaging-derived 

measures of cerebral FC as a proxy for biological state, and perform a comparison of clinical and 

imaging features across imaging-derived and clinically-defined subgrouping methods. In line with 

the study hypotheses, two patient subgroups were identified based on RSN FC. These patient 

subgroups were distinct in terms of both their clinical phenotypes and FC-based network 

alterations. Although the combination of patient clinical features in imaging-derived subgroups 

were comparable to those of the clinically-defined subgroups, patterns of FC were vastly different. 

While clinically-defined subgrouping revealed single (Criteria 1 and 2) or no (Criteria 3) clusters 

of altered FC in a few subsets of RSNs, imaging-derived subgrouping revealed large-scale FC 

alterations for all RSNs. Therefore, RSN-derived stratification is more sensitive than clinical 

stratification in identifying groups with distinct states of cerebral degeneration in ALS patients. 

Interpretations of study findings corresponding to the specific aims of the study are discussed in 

the following sections. 

 

2.5.1.Functional connectivity alterations in ALS vs HC 

An assessment of RSNs in the current study suggests the occurrence of a dissociation of 

corticocerebellar connectivity in ALS. Specifically, there was decreased intra-network FC of the 

cerebellar network compared to increased intra-network FC of other networks (Table 3), indicating 
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a reduction in cerebellar self-connectivity. Decreased connectivity between the cerebellum and 

other networks (motor, temporal, dorsal attention, primary visual, and right control) indicates 

reduced corticocerebellar FC. In contrast, increased connectivity between cortical networks 

suggests that corticocortical circuits are preferentially utilized over corticocerebellar circuits in 

ALS. This leads to a speculation that stronger corticocortical connectivity occurs to counteract the 

loss of corticocerebellar connectivity as a compensatory response towards the maintenance of 

cerebral homeostasis. This can be partially addressed by a phenomenon known as ‘cerebellar 

diaschisis’ (Fornito, Zalesky, and Breakspear 2015) where there is reduced involvement of a 

remote anatomical region (cerebellum) following reduced excitatory signalling from the source of 

the ‘anatomical lesion’ (cortical functional impairment). Cerebellar dysfunction has been widely 

implicated in ALS (Bharti et al. 2020; R. Chipika et al. 2022). While increased corticocerebellar 

FC is considered a compensatory mechanism in ALS literature, a decrease in such connectivity (as 

in the current study) suggests a disengagement between the cerebellar and cortical functional 

networks. In a previous study in which patients were grouped based on simulated neuronal 

excitation-inhibition signatures, improved clustering performance was observed when 

corticocerebellar networks were considered in the clustering algorithm in addition to cortical 

networks (Monteverdi et al. 2022). This improvement was observed specifically in ALS rather 

than in Alzheimer’s disease or FTD (Monteverdi et al. 2022). Therefore, corticocerebellar 

connectivity alterations seem to be a feature with some specificity to neurodegeneration in ALS.  

 

In contrast to other RSNs in the current study, the frontal network had reduced connectivity with 

other cortical regions, specifically with the middle temporal cortex (Table 2). Reduced 

frontotemporal connectivity, in addition to increased intra-network FC (Table 3) of the frontal 

network, is suggestive of a breakdown in functional integration between the frontal and non-frontal 

cortical networks – impaired frontal networks dissociate from the rest of the cortex and become 

more self-connected. These independent processes likely occur in a progressive and 

complementary fashion resulting in progressive impairment of the frontal network, which could 

contribute to the evolution of cognitive dysfunction with advancing disease in ALS(Crockford et 

al. 2018). Impairments of frontotemporal structural and (resting-state) functional connections have 
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been respectively observed in the C9orf72-linked (cognitive) ALS subtype (van Veenhuijzen et al. 

2022) and in ALS patients not carrying the C9orf72 mutation (Bharti et al. 2022; Govaarts et al. 

2022; Proudfoot, Bede, and Turner 2018). In accordance with reduced FC in the frontal network, 

ALS patients had significantly lower ECAS total scores compared to HCs (Table 1).  

 

FC impairments of the right control, primary visual, and dorsal attention networks occur with 

regions subserving the processing of semantic (Ogura et al. 2019; Pinto-Grau et al. 2021) and 

sensory (R. H. Chipika et al. 2022b) information in ALS. The subcortical network has increased 

FC with the primary auditory cortex, a brain region shown to be impaired in bulbar-onset ALS 

(Shellikeri et al. 2019) and to have reduced cortical thickness (R. H. Chipika et al. 2022b; Consonni 

et al. 2018). The salience network has increased FC with the frontal eye fields (FEFs), brain regions 

that have been anatomically localized to the precentral sulcus in both human and animal (primate) 

studies, are responsible for eye movements, and are heavily interconnected with the temporal, 

parietal, and occipital cortices, brainstem, and cerebellum (Vernet et al. 2014). Alterations in 

volume (Yunusova et al. 2019) and function (Witiuk et al. 2014) of the FEFs have been linked to 

the performance of anti-saccade tasks in ALS.  

 

2.5.2.Identification of patient subgroups based on individual-level intra-

network FC 

To our best knowledge, this is the first study that utilized the biological characteristics of brain 

networks (FC) at an individual level to subtype ALS patients. The findings of the current study 

suggest that, in terms of their clinical characteristics, Subtype 1 patients might be in more advanced 

disease stages as they have a faster disease progression rate, shorter symptom duration, and worse 

voluntary motor function than Subtype 2 patients.  

 



 

93 

 

In terms of cerebral FC, Subtype 1 patients have lower generalized FC compared to Subtype 2 

patients. Despite the understanding that the lack of longitudinal assessments, as in the current 

study, might pose an impediment towards characterizing disease evolution, the Scaffolding Theory 

of Aging and Cognition (STAC) (D. C. Park and Reuter-Lorenz 2009; Reuter-Lorenz and Park 

2014) might provide clues as to the severity of the disease process in the imaging-derived 

subgroups even at baseline. STAC suggests that, as part of a normal adaptive response of the brain 

towards healthy aging, additional brain networks are recruited (resulting in increased network 

activation) to compensate for alterations in goal-oriented functioning of relevant brain networks. 

When healthy aging is interrupted by a pathological event, STAC suggests that normal adaptive 

processes to the pathological stressor are still maintained to preserve normal function. However, 

with increasing intensity of the pathological process, the rate of network activation impairment 

surpasses that of restorative adaptation, eventually reaching a critical point in the disease course 

and resulting in a decline in compensatory mechanisms (increased network activation) for the 

preservation of brain function (Gregory et al. 2017). However, as there currently exists no 

quantification of the critical threshold in ALS, it is difficult to infer from such baseline assessments 

whether the critical point has been reached or surpassed for either of the subgroups. Therefore, 

three scenarios are likely –  

a) Both patient subgroups are experiencing an increase in functional activation to counteract 

the pathological event before the critical threshold is reached. In this case, patients in Subtype 2 

are experiencing advanced disease.  

b) Both patient subgroups have reached the critical threshold at the time of assessment. This 

would indicate that patients in Subtype 1 are experiencing advanced disease as their decline in 

network activation is greater than that of Subtype 2. 

c) Only one patient subgroup has reached the critical threshold and is experiencing a decline 

in network activation, indicating that patients in Subtype 1 are experiencing advanced disease. In 

this case, Subtype 2 is approaching critical threshold.  
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Based on the plausibility of these independent scenarios, the responses in network activation for 

the two subgroups suggest that patients in Subtype 1 are more likely to be experiencing advanced 

disease. In sum, both the clinical and FC observations independently suggest that the disease is 

more advanced in patients belonging to Subtype 1. However, a characterization of the critical point 

is necessary to confidently arrive at such inferences from imaging features alone and to identify 

targets for disease management or modification.  

 

Persistent low-level excitation of inhibitory interneurons has been hypothesized to induce 

compensatory restructuring of sensorimotor functional pathways, disinhibiting sensorimotor 

connectivity and resulting in sustained hyperexcitability of the primary motor cortex (Rosenthal et 

al. 2020). Cortical hyperexcitability, a correlate of impaired inhibitory interneuronal (GABAergic) 

activity and/or calcium-mediated excitotoxicity resulting in reduced synaptic transport and 

elevated glutamate concentrations (M. R. Turner and Kiernan 2012; Vucic et al. 2021), is 

postulated to occur in early pathophysiological disease stages before the clinical onset of ALS as 

evidenced by transcranial magnetic stimulation studies (M. R. Turner and Kiernan 2012). Riluzole, 

a drug commonly used to treat ALS, is believed to regulate cortical glutamate concentrations by 

preventing its release from the presynaptic terminal to the extra-neuronal space (Sanofi-Aventis 

2010), and is shown to be beneficial when administered early in the disease (Thakore et al. 2022). 

Therefore, one of the aims of the current study was to characterize the features of early disease in 

ALS based on the clinical drug trial criteria for Riluzole with the additional criteria of symptom 

duration under 2 years.  

 

2.5.3.Choice of pathophysiological disease staging criteria and 

recommendations for targeted therapeutics 

Assessing disease staging across clinically-defined and imaging-derived criteria, it seems apparent 

that the two stratification methods subgroup patients based on different characteristics of the 

disease. While clinical criteria focus on early disease characterization (likely driven by how ‘soon 
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after’ the first onset of symptoms the patient presents at an ALS clinic), the imaging-derived 

criteria focus on characterizing disease stage based on pathophysiology (cerebral network 

properties). Intuitively, this suggests that there could be a possible discordance in the properties of 

the two stratification methods in segregating distinct patient clusters, as patients with minimal 

extents of network alteration (and longer duration of symptoms) would be considered to be in the 

early stages of disease as per the imaging-derived criteria and patients with shorter duration of 

symptoms (presumably with extensive network alterations) are identified early as per the clinical 

trial criteria. However, patients with shorter symptom durations had a faster rate of disease 

progression according to both imaging-derived and clinically-defined criteria – being suggestive 

of similarities in disease staging shared by the two methods. An assessment of similarities in 

disease staging revealed a concordance of imaging-derived subgrouping with Criteria 1 for 66/174 

patients (E-ALS, n = 32; A-ALS, n = 34) as well as with Criteria 2 for 76/174 patients (E-ALS, n 

= 26; A-ALS, n = 50). Therefore, only 38% (Criteria 1) and 44% (Criteria 2) of patients in the ALS 

cohort were accurately characterized to be in their respective disease stages according to both 

clinically-defined and imaging-derived stratification criteria.  

 

Contrary to expectations and despite observed FC differences, neurological examination or 

cognitive scores were not different between patient subgroups identified using imaging-derived or 

clinically-defined (1 and 2) criteria. Additionally, although no FC differences were observed, 

patient subgroups identified using Criteria 3 differed in terms of their neurological examination 

and cognitive scores. While imaging-derived and clinically-defined criteria (Criteria 1) 

differentiated between patients experiencing early and advanced disease in terms of voluntary 

motor function, there were no differences in voluntary motor function in Criteria 2 and 3 

subgroups. This suggests that, in the context of imaging-derived characterization, the clinically-

defined stratification criteria were able to characterize patients only partially in terms of their 

phenotypic and biological characteristics. This provides objective evidence of a lack of biological-

phenotypic correlation in ALS.  
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As evidenced by findings from the current study, contemporary clinical criteria for clinical drug 

trials inaccurately designate disease stage for more than 50% of the patient sample, further 

supporting a proposed need for the modification of clinical trial design to accurately widen the 

scope of patient enrollment (van Eijk et al. 2021). Accurate identification of disease stage would 

have implications for clinical management and drug trials. For example, the ATLAS clinical trial 

aims to identify phenoconversion in presymptomatic ALS SOD1 carriers as inferred by an increase 

in plasma neurofilament light chains (NfL) (Benatar et al. 2018; Benatar, Turner, and Wuu 2019); 

such patients are then randomized to receive active treatment (tofersen) or placebo. FC itself may 

also play a role as a biomarker of therapeutic efficacy. For example, in mild cognitive impairment, 

repetitive transcranial magnetic stimulation of the dorsolateral prefrontal cortex resulted in a 

significant long-term increase in FC in the frontoparietal RSN at baseline and longitudinal time 

points (Esposito et al. 2022). In Parkinson’s disease (PD), treatment with levodopa has been shown 

to improve the functioning of the default mode network (Spetsieris et al. 2015). Future research is 

required to further examine the potential of FC in patient selection and stratification, and as a 

biomarker of efficacy in clinical trials.  

 

2.5.4.Implications of the methodology of the current study in 

comparison with contemporary practice  

To our best knowledge, this is the first neuroimaging study in ALS that utilizes two novel methods 

to respectively assess voxel-wise FC (TBR) and adjust for site and scanner effects (ComBat 

harmonization). It is therefore prudent for the authors to acknowledge the reasons for a dissonance 

in findings between the current and a previous CALSNIC study (Bharti et al. 2022) assessing FC 

in approximately similar study cohorts. Firstly, the preprocessing steps for rsfMRI data in the two 

studies were different. Differences in fMRI preprocessing strategies have been suggested to yield 

heterogeneous findings and reduce data reproducibility (B. Y. Park, Byeon, and Park 2019). 

Additionally, RSN maps were generated in the standard MNI space in the current study, but in the 

‘native’ space in the previous study (Bharti et al. 2022). Secondly, FC analysis techniques 

employed in the two studies were different in terms of two inherent properties: sample size 
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requirements and assumptions of spatial and temporal orthogonality (for a review, see Schultz et 

al. (Schultz et al. 2014)). Thirdly, the two studies used different statistical thresholds for the 

identification of distinct clusters in group comparisons. The threshold used in the current study 

(minimum cluster size = 27 voxels) was more stringent compared to that used in the previous 

study. When the cluster threshold of the current study was applied to the Bharti et al. study, a 

consensus was achieved with regards to network-specific FC alterations in ALS compared to HCs. 

Notably, there are a number of factors that can contribute to heterogeneity in findings across 

neuroimaging studies, including differences in patient cohorts, number of ICs assessed, differences 

in statistical methods used to correct for site or scanner effects in multicenter studies. To our 

knowledge, this is the second study (following the Bharti et al. study) to have assessed all known 

RSNs within the human connectome. Previous studies (Agosta et al. 2013b; Chenji et al. 2016; 

Mohammadi et al. 2009; Tedeschi et al. 2012; Welsh, Jelsone-Swain, and Foerster 2013) have 

assessed a maximum of five RSNs (default mode, salience, sensorimotor, executive control, 

frontoparietal networks). It is also important to note that this study has used more stringent 

statistical threshold compared to prior studies using SBC or ICA techniques (Agosta et al. 2013b; 

Chenji et al. 2016; Mohammadi et al. 2009; Tedeschi et al. 2012). Given the significant variations 

in the approaches employed, it is a challenging direct comparison across studies – possibly 

resulting in their heterogeneity. However, it does speak to the importance of the appropriate 

selection of analysis method to the given objective, and more broadly to the need for 

standardization in neuroimaging acquisition and processing practices. TBR, as used this study, 

may be more suited to the identification of brain function in ALS at an individual level.  

 

2.5.5.Limitations in the current study 

A limitation of the current study was that patient subgrouping was restricted to elements of clinical 

and neuroimaging measures available in the CALSNIC dataset. Additional phenotyping based on 

clinical and biological features such as genotype, region/laterality of disease onset, serum or 

cerebrospinal fluid NfL might provide a more comprehensive understanding of the complex 

pathophysiology at hand.  
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2.6. Conclusion 

In contrast to clinical measures, neuroimaging measures of resting brain function are better able to 

stratify patient subgroups in terms of their clinical and neuroimaging characteristics. This may 

serve as a biomarker for participant enrichment in clinical trials. This requires further research 

along with such strategies with other potential imaging and biofluid measures. Another future 

direction to further understand the underlying biology of the MND spectrum could be the 

assessment of presymptomatic ALS gene carriers and patients with a pure upper (primary lateral 

sclerosis) or lower (primary muscular atrophy) MN clinical presentation.  

 

2.7. Supplementary 

Group differences in voxel-wise intra- and inter-network FC across different RSNs in imaging-

derived patient subgroups compared to HCs. ALS = amyotrophic lateral sclerosis, HC = healthy 

controls, R = right, L = left, B = bilateral. 

 

Resting-state 

network 
Contrast Brain region 

Brodmann 

area 

Cluster 

size 

Cluster 

coordinates 

(x,y,z) 

T-value 

Cerebellar 

Gray 

Subgroup 2 < 

HC 

R anterior 

cerebellum 
- 36 18, -24, -21 4.76 

R ventral 

posterior 

cingulate cortex 

BA 23 27 12, -48, 30 4.08 

Dorsal 

attention 

Subgroup 1 < 

HC 
L lingual gyrus BA 18 72 -3, -75, -9 4.23 

Frontal 

Subgroup 1 < 

HC 

R anterior 

cerebellum 
- 91 33, -45, -36 4.50 

Subgroup 2 > 

HC 

L frontal eye 

fields 
BA 8 40 -3, 36, 48 4.57 

Subgroup 2 < 

HC 

R ventral anterior 

cingulate cortex 
BA 24 61 0, -12, 39 4.67 
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Left control 

Subgroup 1 > 

HC 

R anterior 

prefrontal cortex 
BA 10 29 21, 60, -9 4.06 

R fusiform gyrus BA 37 29 51, -66, -3 3.81 

Subgroup 2 > 

HC 

R anterior 

prefrontal cortex 
BA 10 39 6, 63, 9 3.98 

L visual 

association cortex 
BA 19 29 -24, -87, 15 3.77 

Motor 

Subgroup 1 < 

HC 

B secondary 

visual cortex 
BA 18 54 -9, -81, -9 4.23 

R visual 

association cortex 
BA 19 35 42, -72, -9 3.83 

Subgroup 2 > 

HC 

R dorsal posterior 

cingulate cortex 
BA 31 66 0, -33, 48 4.52 

Subgroup 2 < 

HC 

B visual 

association cortex 
BA 19 580 21, -54, -9 4.51 

Primary Visual 

Subgroup 1 > 

HC 

L angular gyrus BA 39 98 -57, -63, 27 4.44 

R supramarginal 

gyrus 
BA 40 52 60, -57, 36 4.26 

L putamen - 38 -24, 3, -6 4.13 

Subgroup 1 < 

HC 

L primary motor 

cortex 
BA 4 114 -48, -15, 42 4.64 

R precentral 

gyrus 
BA 6 38 57, -3, 21 4.50 

L paracentral 

lobule  
BA 5 40 -3, -42, 69 4.25 

L posterior 

cerebellum 
- 49 -12, -63, -51 4.16 

Subgroup 2 > 

HC 

L anterior 

prefrontal cortex 
BA 10 66 -39, 54, 0 4.82 

R angular gyrus BA 39 51 57, -51, 45 4.15 

Subgroup 2 < 

HC 

R primary 

sensory cortex 
BA 1 216 3, -42, 63 5.50 

R precentral 

gyrus 
BA 4 110 42, -15, 51 4.63 

Right Control 
Subgroup 1 > 

HC 

L dorsal posterior 

cingulate cortex 
BA 31 119 -12, -48, 39 4.75 

R fusiform gyrus BA 37 59 51, -72, -6 4.31 
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Subgroup 2 > 

HC 

L anterior 

prefrontal cortex 
BA 10 39 -3, 57, -6 4.12 

L secondary 

visual cortex 
BA 18 39 -27, -90, 0 3.73 

Subgroup 2 < 

HC 

L frontal eye 

fields 
BA 8 28 -3, 39, 42 4.42 

R thalamus - 39 3, 0, 6 4.05 

L supramarginal 

gyrus 
BA 40 46 -60, -39, 27 3.56 

Salience 

Subgroup 1 < 

HC 

R anterior 

cerebellum 
- 99 6, -60, -27 4.33 

Subgroup 2 < 

HC 

L frontal eye 

fields 
BA 8 40 -3, 15, 48 4.02 

Subcortical 

Subgroup 1 < 

HC 

R posterior 

cerebellum 
- 86 18, -84, -36 4.82 

Subgroup 2 > 

HC 

L insula BA 13 57 -42, 6, 0 4.40 

L anterior 

cerebellum 
- 50 -3, -54, -12 4.16 

Subgroup 2 < 

HC 

L fusiform gyrus BA 37 40 -54, -63, -12 4.22 

R dorsal 

dorsolateral 

prefrontal cortex 

BA 9 45 15, 51, 42 4.12 

Temporal 

Language 

Subgroup 1 > 

HC 
R angular gyrus BA 21 27 30, -75, 21 3.96 

Subgroup 1 < 

HC 

L premotor + 

supplementary 

motor area 

BA 6 38 -6, 12, 66 3.81 

Subgroup 2 > 

HC 

R medial 

temporal gyrus 
BA 21 99 57, -36, 3 4.18 

Subgroup 2 < 

HC 

L anterior 

cerebellum 
- 52 -18, -45, -27 4.70 

R dorsal 

dorsolateral 

prefrontal cortex 

BA 9 28 39, 36, 33 3.89 
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3.1. Abstract 

3.1.1.Introduction 

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder that affects the ability of 

patients to perform activities of daily living. Therapeutics for the treatment of ALS are commonly 

prescribed to patients early in their disease course, identified based on a combination of clinical 

features in contemporary clinical trials. While such trials have shown moderate improvements in 

clinical function in patients meeting these stratification criteria, there is a lack of understanding of 

the pharmacodynamic effects of these drugs on their cerebral function. Additionally, objective 

disease monitoring in only a subpopulation of patients is counterintuitive towards an understanding 

of the biological mechanisms associated with clinically-defined disease severity. This study sought 

to identify if the pattern of evolution of cerebral network function is distinct in patients stratified 

using clinically-defined criteria.  

3.1.2.Methods 

One hundred and seventy-four ALS patients and 165 healthy controls (HCs) participated in the 

prospective, longitudinal, multicentre CALSNIC study. Each of these participants underwent a 

resting-state functional MRI (rs-fMRI) and was assigned to a patient subgroup based on a 

characterization of their disease features using clinically-defined stratification criteria. A template-

based rotation analysis method was utilized to obtain maps of functional connectivity (FC) from 

the rs-fMRI data. The longitudinal ComBat harmonization pipeline was utilized to remove 

variance effects of multicenter data. A sandwich estimator model was used to identify longitudinal 

alterations in FC in ALS patients and subgroups. Clinical criteria 1 and 2 (based on clinical trial 

criteria) subgrouped patients into early (E-ALS) and advanced (A-ALS) disease, and Criteria 3 

subgrouped patients based on their disease progression rate into slow (SP-ALS) and fast (FP-ALS) 

progressors.  
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3.1.3.Results 

In ALS compared to HCs, FCs of the motor, cerebellar gray,  and temporal language networks 

were observed to be altered longitudinally. E-ALS patients (Criteria 1) demonstrated reduced FC 

of the cerebellar gray network and the precentral gyrus and increased FC of the motor network and 

the visual association area. In A-ALS patients (Criteria 1), the FC of the frontal network was 

reduced with the middle temporal gyrus and FC of the salience network was reduced with the 

caudate. E-ALS patients (Criteria 1) had increases in FC of the left control network and the 

agranular retrolimbic cortex and reductions in FC of the temporal language network and the visual 

association cortex when compared to A-ALS patients. In E-ALS patients (Criteria 2), FC was 

increased between the motor network and the visual association area. In A-ALS patients (Criteria 

2), FC of the motor network was reduced with the sensory association area and FC of the temporal 

language network was increased with the posterior cerebellum. E-ALS patients (Criteria 2) had 

increased FC of the motor network and the left visual association cortex and reduced FC of the 

motor network and the sensory association cortex when compared to A-ALS patients. In SP-ALS, 

FC of the dorsal attention network was reduced with the primary visual cortex, FC of the frontal 

network was reduced with the angular gyrus, FC of the salience network was reduced with the 

caudate, and FC of the cerebellar gray network was reduced with the visuomotor area, 

premotor/supplementary motor area (premotor/SMA), and the ventral posterior cingulate cortex. 

In FP-ALS, FC of the left control network and premotor/SMA was reduced, FC of the motor 

network and secondary visual cortex was increased, and FC of the subcortical network and the 

posterior cerebellum was increased. No differences in voxel-wise longitudinal FC were observed 

between SP-ALS and FP-ALS patients (Criteria 3). 

 

3.1.4.Discussion 

Progressive alterations in FC of motor and extra-motor brain regions were observed in patients 

experiencing both early and advanced disease. FC of brain regions subserving motor encoding 

were observed to be altered throughout the disease course. Specifically, FC impairments were 
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observed in brain regions subserving motor imagery in early disease and those subserving action 

observation in advanced disease.  

 

3.2. Introduction 

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder which affects motor neurons 

in the brain and spinal cord, typically presenting with an inability to perform activities of daily 

living such as walking, eating, dressing, and ultimately respiration. Such inability could be a 

consequence of the impairment of upper motor neurons (MNs) in the brain and lower MNs in the 

brainstem and spinal cord. The recognition of cognitive, behavioural, sensory, emotional, and 

visual impairments, in addition to motor impairments,  within the clinical syndrome of ALS (R. 

Chipika et al. 2022; R. H. Chipika et al. 2022a; Strong et al. 2017) suggests a multisystem 

involvement of the disease and the occurrence of dysfunction in the network of neuronal 

populations that subserve these functions. The focality (or conversely, generalizability) of neuronal 

degeneration, and the relatively distinct progression patterns in individual neuronal pools, could 

contribute to the uniqueness of disease phenotype at the level of an individual patient. It is 

important to recognize the core unifying disease features across different ALS phenotypes towards 

achieving a confirmed diagnosis. Early detection of these features could help provide 

recommendations for disease management, including the development of general and 

individualized therapeutics for the improvement of patient outcomes such as slowing disease 

progression and extending patient survival (Genge and Chio 2023).  

 

Disease staging systems (Chiò et al. 2013; Roche et al. 2012) in ALS characterize early disease 

based on observed clinical features and have been employed in neuroimaging studies to identify 

the correlates of disease stage-relevant structural and functional alterations in neuronal populations 

(Consonni et al. 2020; Floeter et al. 2018; S. Liu et al. 2021). However, these staging systems are 

based on the assumption that disease progression occurs by the incidence of disability in additional 

body regions (Roche et al. 2012) or functional domains (Chiò et al. 2013), thus overlooking the 
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accrual of disability in the already impaired body regions or functional domains. In continuation 

with this idea, disease can appear to be advanced in patients presenting at initial assessment based 

on the number of affected body regions/functional domains. 

 

The limitations of these disease staging systems suggest the use of alternative methods to 

characterize early disease. Patient clinical features have also been used in landmark clinical drug 

trials (Abe et al. 2017; Sanofi-Aventis 2010) to define inclusion criteria that would allow for the 

study of drug effects and track disease outcomes. Two drugs – Riluzole and Edaravone – approved 

for the treatment of ALS in Canada have used such inclusion criteria for patient stratification. 

Administration of these drugs has been reported to extend patient survival and reduce oxidative 

stress. However, disease monitoring in ALS clinical trials is achieved using measures that are more 

sensitive to lower MN function. This can limit the understanding of disease mechanisms and drug 

effects at the level of upper MNs. A direct measurement of pathology and drug effects at a single 

neuron might be ideal in understanding the core cellular mechanisms of disease and effectiveness 

of therapeutics. However, in contrast to lower MNs, direct assessment of upper MNs is 

technologically more challenging to accomplish in a clinical setting. Additionally, due to the 

multisystem nature of ALS, it might be more beneficial to assess the functional properties of a 

network of specialized neurons. 

 

Maximum drug effectiveness has been shown to be achieved in patients receiving therapeutic 

intervention in early disease identified by clinically-defined stratification criteria (T. Fang et al. 

2018). Therefore, eligibility criteria for patient enrollment in drug trials are poised to identify 

treatment responders early, suggesting that the disease is different in patients not meeting 

enrollment criteria. However, it is possible that patients who are deemed ineligible for inclusion in 

these trials might respond to these treatments. Prior to the evaluation of drug effects, it is necessary 

to characterize cerebral networks in both sets of patients as it would provide a reference against 

which drug effectiveness can be tested. The study hypothesized that patterns of cerebral network 

function are distinct for patients subgrouped using clinically-defined stratification criteria. The 
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study aimed to examine longitudinal properties of cerebral networks in – a) the complete study 

ALS cohort and b) in patients experiencing early and advanced disease.  

 

3.3. Methods 

3.3.1.Study description 

The study used data from multiple university centers across Canada and the United States 

constituting the Canadian ALS Neuroimaging Consortium (CALSNIC). The participating centers 

were in Edmonton (University of Alberta), Calgary (University of Calgary), Montreal (McGill 

University), Toronto (University of Toronto), Vancouver (University of British Columbia), Quebec 

City (Universite Laval) and Miami (University of Miami). The study was approved by the 

respective research ethics review boards at all participating centers. 

 

3.3.2.Participants 

The current study included 174 clinically diagnosed ALS patients and 165 healthy controls (HCs) 

recruited at baseline as part of CALSNIC by October 2022. All patients met diagnostic criteria for 

clinically possible, probable lab-supported, probable, or definite ALS according to the revised El 

Escorial criteria (Brooks et al. 2000). Participants were included if they had completed at least one 

study visit. Patients were not included in the study if they had a disease duration of more than five 

years at baseline, did not complete rs-fMRI scans, or presented with co-morbid frontotemporal 

dementia (FTD) or other neurological conditions. HCs were excluded from the study if they had 

previously received a diagnosis of any neurological or psychiatric conditions. See table 1 for 

details on demographics and clinical characteristics of our sample. 
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3.3.3.Magnetic resonance imaging 

3.3.3.1. Scanner information 

All imaging data in this study was acquired on MRI scanners with a field strength of 3T. In 

CALSNIC 1, Siemens systems were used in Edmonton (Prisma) and Montreal (Tim Trio), General 

Electric (Discovery MR 750) systems were used in Calgary and Toronto, and a Philips (Intera) 

system was used in Vancouver. In CALSNIC 2, Siemens (Prisma) systems were used in Edmonton, 

Montreal, and Toronto, a Siemens (Tim Trio) system was used in Miami, a General Electric 

(Discovery MR 750) system was used in Calgary, and a Philips (Achieva TX) system was used in 

Quebec City.  

 

3.3.3.2. Magnetic resonance imaging protocol 

A multicenter harmonized scanning protocol was employed to acquire T1-weighted (T1w) 

anatomical MRI and rs-fMRI from all participants in this study across all study visits. Participants 

were instructed to lie still with their eyes closed and to not think of anything in particular for the 

duration of the rs-fMRI scan. A brief description of the protocol for the Siemens (Prisma) scanner 

in both studies is provided in the following sections. A description of the complete protocol for 

other scanners can be found in our CALSNIC overview paper (Kalra, Khan, et al. 2020). 

 

CALSNIC 1 

A magnetization-prepared rapid gradient-echo imaging (MPRAGE sequence; Repetition time, 

TR= 2300 ms; Echo time, TE= 3.43 ms; Inversion time, TI= 900 ms; flip angle= 9°; FOV= 256 

mm x 256 mm) was used to acquire T1w data with an isotropic resolution of 1 × 1 × 1 mm3. 

Whole-brain 3D T2*-weighted rs-fMRI data was acquired using an echo-planar imaging (EPI) 

pulse sequence with an isotropic voxel resolution of 3.5 × 3.5 × 3.5 mm3 and the following 
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specifications: TR = 2,200 ms; TE = 30 ms; field of view = 224 × 224 × 64 matrix; 40 slices, 192 

trains; acquisition time = ~7 minutes.  

 

CALSNIC 2 

A magnetization-prepared rapid gradient-echo imaging (MPRAGE sequence; TR= 1700 ms; TE= 

2.21 ms; TI= 880 ms; flip angle= 10°; FOV= 232 mm x 256 mm) was used to acquire T1w data 

with an isotropic resolution of 1 × 1 × 1 mm3. Whole-brain 3D T2*-weighted rs-fMRI data was 

acquired using an echo-planar imaging (EPI) pulse sequence with an isotropic voxel resolution of 

3.5 × 3.5 × 3.5 mm3 and the following specifications: TR = 2,200 ms; TE = 30 ms; field of view 

= 224 × 224 × 64 matrix; 40 slices, 250 trains; acquisition time = 9 minutes 10 seconds.  

 

3.3.3.3. Magnetic resonance image processing 

3.3.3.3.1. T1-weighted MRI 

T1w images across visits for participants completing more than one study visit were realigned and 

coregistered to each other to ensure voxel-matching using the available routines in the Statistical 

Parametric Mapping (SPM) software (version 12). Following realignment and coregistration, the 

“AverageImages” module within the Advanced Normalization Tools (ANTs) software was used 

across the T1w images on an individual level to generate an average T1w image in the native space 

of each participant. This average T1w image was used in the coregistration step of the rs-fMRI 

processing pipeline. 

 

3.3.3.3.2. Resting-state fMRI 

The rs-fMRI images were preprocessed using the longitudinal processing pipeline of the functional 

connectivity toolbox (CONN) based on SPM. The first four volumes were removed for every 
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participant to allow for steady state magnetization. The time series data for each participant were 

corrected for differences in image slice acquisition times, followed by realignment for head motion 

within and across imaging sessions using a six-parameter rigid body transformation algorithm. The 

mean multi-slice rs-fMRI data (temporally averaged across the time series) was co-registered to 

the average T1w image, and the resulting transformation matrices were applied to all volumes of 

the rs-fMRI data for longitudinal time points. The resultant co-registered functional images 

underwent spatial normalization to the Montreal Neurological Institute (MNI) template (Collins et 

al. 1992) space and smoothing with a Gaussian smoothing kernel of 8 mm full width at half-

maximum. 

 

3.3.3.3.3. Resting-state functional MRI analysis: Template Based 

Rotation 

This technique of estimation of resting-state network (RSN) components (or, template maps) at 

the individual level utilizes the application of an a priori, out-of-sample network template for 

individual RSNs. This technique predicts RSN template maps, at an individual participant level, 

as a linear combination of time courses that correspond to spatial patterns in a reference template 

set, thereby removing the spatial and temporal orthogonality assumptions of distributed functional 

networks (at a group level). Refer to (Schultz et al. 2014) for a complete overview of this technique. 

RSN maps for each participant were generated for every longitudinal time point using the TBR 

code (Schultz et al. 2014). Ten target components (cerebellar gray, default mode, dorsal attention, 

frontal, left and right control, motor, precuneus, subcortical, and temporal language networks) 

were estimated for each participant by the TBR technique and were preselected based on 

correspondence to gray matter functional connectivity (FC) or disease relevance. The gray matter 

TBR components were identified as RSNs-of-interest in the current study. Individual subject 

resting-state functional connectivity (rsFC) maps underwent transformation from correlation (r)-

maps to Fisher (z)-maps to allow for variance normalization. These z-maps were used in further 

statistical analyses. 
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3.3.4.Statistical analysis 

3.3.4.1. Longitudinal ComBat Harmonization:     

Removing study x scanner interaction effects from voxel-wise FC 

ComBat is a tool based on an Empirical Bayesian algorithm and is used to eliminate unwanted 

technical variability from biological data (Fortin et al. 2017). This technical variability can arise 

because of differences in scanner hardware, software, or imaging acquisition protocols (Fortin et 

al. 2017). ComBat can help dissect and remove this technical variability from biological variability 

by correcting for the additive and multiplicative scanner effects as well as small sample sizes at an 

individual scanner. This can help combine datasets with different acquisition protocols employed 

to acquire images with different scanner hardware and software specifications. In the CALSNIC 

studies, technical variability can occur only due to the additive and multiplicative effects from 

scanner hardware and software. There is no technical variability contributed by imaging 

acquisition protocols as these parameters were harmonized across scanners and across both 

CALSNIC studies. In the current study, the longitudinal ComBat harmonization method was 

applied using the ‘longCombat’ package on R statistical software (https://www.r-project.org/) to 

estimate and correct for additive and multiplicative scanner effects on RSN functional connectivity 

as well as to account for subject-specific effects (e.g., age, subject consistency) inherent to 

longitudinal studies (Beer et al. 2020). 3D functional connectivity maps across visits and across 

participants were combined using the ‘fslmerge’ routine on FSL to generate a 4D image. This was 

performed for individual RSNs. Of the 11 RSN components, 10 successfully underwent 

longitudinal harmonization. The motor RSN component was not subjected to the longitudinal 

combat harmonization pipeline as the data had a singular fit indicating that the model was 

optimally fit to the demographic variables, and performing harmonization by forcing the model 

would result in overfitting.  
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3.3.4.2. Group differences in resting-state functional connectivity 

A sandwich estimator model (SwE, http://www.nisox.org/Software/SwE/) was used to assess 

differences in rsFC. Differences in rsFC were assessed between the HCs and the entire ALS group, 

as well as individual ALS subtypes (defined in the next section). A non-parametric restricted wild 

bootstrapping approach (number of bootstraps = 5000) was employed for small sample 

adjustments (type C2). In addition, an SwE implementation of the threshold free cluster 

enhancement technique (Smith and Nichols 2009) (TFCE) was employed to identify clusters that 

showed significantly different rsFC between ALS patients and HCs, as well as between different 

ALS subtypes. An explicit gray matter mask in the MNI space was applied to restrict all analyses 

of rsFC to gray matter voxels within the brain. Statistical significance for all group comparisons 

using SwE models was set at a family-wise error (FWE) corrected p-value less than 0.05. 

 

3.3.5.Subgrouping 

Patients in the current study were subgrouped into early and advanced disease stages based on 

criteria defined on measures recorded during routine clinical examinations. The clinical criteria 

used to stratify patients into early and advanced disease were extrapolated from the clinical drug 

trial criteria of Health Canada approved treatments for ALS (Abe et al. 2017; Sanofi-Aventis 2010) 

and included measures of forced vital lung capacity (%), duration from first symptom onset, and 

total score on the revised ALS functional rating scale (ALSFRSr) questionnaire. Another criteria 

was defined based on the median disease progression rate of the patient sample. The disease 

progression rate or rate of functional decline for an individual patient was calculated from the 

ALSFRSr using the formula: Disease progression rate = (48 – ALSFRSr at baseline)/symptom 

duration in months. The median disease progression rate of the ALS sample in the study was 0.44. 

For details see Chapter 2.  

 

http://www.nisox.org/Software/SwE/
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3.3.6.Identification of cerebral functional patterns across clinical 

subgroups 

Longitudinal changes in RSN functional connectivity were assessed in patient subgroups identified 

at the baseline assessment using these subgrouping criteria. A SwE statistical model (as outlined 

in section 3.3.5.2.) was used to identify longitudinal patterns of disease stage-based network 

pathology by comparing RSN connectivities between HCs and individual patient subgroups. 

Analyses of RSN FC alterations between patient subgroups were also performed. Statistical 

significance was set at TFCE FWE-corrected p-value of less than 0.05.  

 

3.4. Results 

3.4.1.Demographic and clinical characteristics of the study sample 

Participants included in the study were not matched for age and sex at the first study visit. The 

second follow-up visit (V2) had a drop out rate of 53.5% for patients (retained n = 81) and 39.4% 

for HCs (retained n = 100). The third follow-up visit (V3) had a drop out rate of 38.3% for patients 

(retained n = 50) and 23% for HCs (retained n = 77). One hundred and seventeen participants 

(nALS = 45, nHC = 72) completed rsfMRI scans for all three longitudinal visits. See table 1 for 

the baseline characteristics of the study population.  

 

Table 1. Baseline demographic and clinical characteristics of the study population. Single asterisk 

(*) denotes p < 0.05 and double asterisk (**) denotes p < 0.001.  

 

Characteristic HC ALS Sig. 

Number of participants 165 174 - 

Age (years) 55.4 (10.1) 59.9 (10.5) ** 

Sex: M/F 74/91 108/66 * 
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Education level (years) 16.5 (3.0) 15.2 (3.5) ** 

Symptom duration (years) - 1.7 (1.1) - 

Functional status  

(ALSFRS-R total) 
- 37.9 (6.2) - 

Disease progression rate - 0.7 (0.6) - 

Forced vital capacity (%) - 89.0 (19.8) - 

Left UMN exam score - 2.5 (1.5) - 

Right UMN exam score - 2.4 (1.6) - 

Left LMN exam score - 2.4 (1.2) - 

Right LMN exam score - 2.5 (1.3) - 

Left finger tapping score 53 (13) 38 (16) ** 

Right finger tapping score 59 (14) 43 (17) ** 

Left foot tapping score 40 (10) 23 (15) ** 

Right foot tapping score 43 (10) 25 (15) ** 

ECAS total (/136) 114 (8) 103 (21) ** 

 

3.4.2.ALS vs HC 

FC of the motor network is observed to be progressively increased with the premotor and 

supplementary motor areas (premotor/SMA), anterior cerebellum, visual association and Broca’s 

areas and reduced with the posterior cerebellum, FC of the temporal language network is observed 

to be reduced with the secondary visual cortex, and FC of the cerebellar gray network is reduced 

with the visuomotor area and the premotor/SMA (table 2, figure 1).  

 

Table 2. Voxel-wise alterations in longitudinal FC between ALS and HC. RSN  = resting-state 

network, MNI = Montreal Neurological Institute, ALS = amyotrophic lateral sclerosis, HC = 

healthy controls, BA = Brodmann area, R = right, L = left, B = bilateral 
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RSN Contrast Brain region 
Cluster 

size 

MNI coordinates 
Z-value 

x y z 

Motor 
ALS > HC 

L premotor + 

supplementary motor areas 

(BA 6) 

173 -54 3 27 3.97 

B anterior cerebellum 10 6 -42 -18 3.49 

L visual association area 

(BA 19) 
11 -21 -45 -6 3.34 

L pars opercularis (Broca’s 

area; BA 44) 
6 -36 15 18 3.14 

ALS < HC R posterior cerebellum 2 30 -66 -30 4.25 

Temporal 

Language 
ALS < HC 

L secondary visual cortex 

(BA 18) 
12 -24 -90 9 4.13 

Cerebellar 

Gray 
ALS < HC 

L visuomotor area (BA 7) 76 -12 -54 57 4.43 

R premotor + 

supplementary motor areas 

(BA 6) 

79 45 -6 27 4.27 

 

 

Figure 1. Voxel-wise differences in longitudinal FC between ALS and HCs.  

 

3.4.3.Group comparisons of longitudinal FC across clinical subgroups 

3.4.3.1. Criteria 1 patient subgroups 

The left control network has increased FC with the agranular retro limbic cortex and the temporal 

language network has reduced FC with the visual association cortex in E-ALS compared to A-

ALS (table 3, figure 2).  
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3.4.3.2. Criteria 2 patient subgroups 

The motor network has increased FC with the left visual association cortex and reduced FC with 

the sensory association cortex in E-ALS compared to A-ALS (table 3, figure 2).  

 

3.4.3.3. Criteria 3 patient subgroups 

No differences in voxel-wise longitudinal FC were observed.  

 

Table 3. Voxel-wise alterations in longitudinal FC between E-ALS and A-ALS. RSN  = resting-

state network, MNI = Montreal Neurological Institute, ALS = amyotrophic lateral sclerosis, HC = 

healthy controls, BA = Brodmann area, R = right, L = left 

 

RSN Contrast Brain region 
Cluster 

size 

MNI coordinates 
Z-value 

x y z 

Criteria 1 

Left 

Control 
E-ALS > A-ALS  

R agranular 

retrolimbic cortex  

(BA 30) 

5 3 -42 9 3.82 

Temporal 

Language 
E-ALS < A-ALS  

R visual association 

area (BA 19) 
27 51 -63 15 3.41 

Criteria 2 

Motor 

E-ALS > A-ALS 
L visual association 

area (BA 19) 
4 -33 -93 21 4.55 

E-ALS < A-ALS 

R sensory 

association area  

(BA 5) 

21 12 -33 54 3.68 

Criteria 3 

No suprathreshold clusters 
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Figure 2. Voxel-wise differences in longitudinal FC between E-ALS and A-ALS. 

 

 

3.4.4.Identification of longitudinal cerebral FC patterns of clinical 

subgroups 

3.4.4.1. Criteria 1 patient subgroups vs HC 

Longitudinal FC of the cerebellar gray network is reduced with the precentral gyrus and that of the 

motor network is increased with the visual association area in E-ALS when compared to HCs. 

Longitudinal FC of the frontal network is reduced with the middle temporal gyrus and that of the 

salience network is reduced with the caudate in A-ALS when compared to HCs (Table 4, Figure 

3).  

 

3.4.4.2. Criteria 2 patient subgroups vs HC 

Longitudinal FC of the temporal language network is increased with the posterior cerebellum in 

A-ALS compared to HCs (Table 4, Figure 3).  
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3.4.4.3. Criteria 3 patient subgroups vs HC 

In SP-ALS, longitudinal FC was reduced between the dorsal attention network and the primary 

visual cortex, the frontal network and the angular gyrus, the salience network and the caudate, and 

the cerebellar gray network and the visuomotor area, premotor/SMA, and the ventral posterior 

cingulate cortex when compared to HCs. In FP-ALS, longitudinal FC was reduced between the 

left control network and the premotor/SMA and increased between the motor network and 

secondary visual cortex as well as between the subcortical network and the posterior cerebellum 

when compared to HCs (Table 4, Figure 3).  

 

Table 4. Voxel-wise alterations in longitudinal FC between ALS subgroups (E-ALS and A-ALS) 

and HCs. RSN  = resting-state network, MNI = Montreal Neurological Institute, ALS = 

amyotrophic lateral sclerosis, HC = healthy controls, BA = Brodmann area, R = right, L = left, B 

= bilateral 

 

Brain 

network 
Contrast Brain region 

Brodmann 

area 

Cluster 

size 

MNI 

coordinates Z 

x y z 

Criteria 1 

Cerebellar 

Gray 
E-ALS < HC 

R precentral 

gyrus 
BA 4 4 36 -18 54 3.62 

Frontal A-ALS < HC 
R middle 

temporal gyrus 
BA 39 10 36 -72 18 3.54 

Motor E-ALS > HC 

L visual 

association 

area 

BA 19 112 -21 -48 -6 4.01 

Salience A-ALS < HC R caudate - 7 9 0 18 3.15 

Criteria 2 

Temporal 

Language 
A-ALS > HC 

R posterior 

cerebellum 
- 11 24 -66 -27 3.85 

Criteria 3 

Cerebellar 

Gray 
SP-ALS < HC 

L visuomotor 

area 
BA 7 450 -12 -57 54 3.99 
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R premotor + 

supplementary 

motor areas 

BA 6 16 45 -12 27 3.30 

R ventral 

posterior 

cingulate 

cortex 

BA 23 8 12 -45 33 2.93 

Dorsal 

Attention 
SP-ALS < HC 

L primary 

visual cortex 
BA 17 66 -3 -87 9 3.50 

Frontal SP-ALS < HC 
R angular 

gyrus 
BA 39 79 36 -81 27 3.64 

Left 

Control 
FP-ALS < HC 

R premotor + 

supplementary 

motor areas 

BA 6 11 33 -12 33 3.92 

R caudate - 1 21 -9 30 3.44 

Motor FP-ALS > HC 
B secondary 

visual cortex 
BA 18 174 3 -90 21 3.73 

Salience SP-ALS < HC R caudate - 33 15 -3 24 3.63 

Subcortical  FP-ALS > HC 
L posterior 

cerebellum 
- 94 -9 -75 -24 4.01 
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Figure 3. Voxel-wise differences in longitudinal FC between ALS subgroups (E-ALS and A-ALS) 

and HCs. 

 

3.5. Discussion 

The aim of the current study was to examine longitudinal alterations in resting-state FC in ALS 

patients and subgroups defined using clinically-defined stratification criteria. The main study 

findings included longitudinal FC alterations in both motor and extra-motor networks across the 

complete ALS cohort, and the abilities of criteria 1 and 2 (extrapolated from enrollment criteria 

for drugs Riluzole and Edaravone) but not criteria 3 (defined based on the median disease 

progression rate of the study cohort) to define patient subgroups with distinct longitudinal patterns 

of FC alterations in extra-motor and motor networks respectively. Longitudinal assessment of 

network properties in ALS suggests an impairment in the functioning of neuronal systems that 

underlie the encoding of voluntary motor function.  

 

3.5.1.Impairment of brain networks underlying motor encoding 

Motor encoding refers to the planning of an executable sequence of voluntary motor movements 

in response to internal stimuli. The network of regions participating in the processes (imagery, 

planning, and execution) underlying motor encoding are sequentially linked. Motor imagery 

entails the imagination, but not actual execution, of movement based on internalized recall of 

previously learned motor tasks from long-term to working memory (Munzert and Zentgraf 2009), 

motor planning entails the determination of the precise sequence of appropriate motor responses, 

and motor execution occurs by encoding the speed, direction, extent, and force of execution of the 

planned motor response. Planning of motor function by the premotor/SMA depends on cortical 

(prefrontal and parietal cortices) and subcortical (basal ganglia and posterior cerebellar) inputs 

(Henschke and Pakan 2023). The cortical-premotor/SMA circuits influence goal-directed motor 
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activity and the subcortical-premotor/SMA circuits provide continuous adaptive feedback to the 

primary motor cortex (PMC) for the generation of precise movements (Henschke and Pakan 2023).  

 

Hypothesis-driven paradigm-based studies (Malek Abidi et al. 2021, 2022; Fiori et al. 2013; Hosni 

et al. 2019; Jelsone-Swain et al. 2015; Y. H. Liu, Huang, and Huang 2017; Lulé et al. 2007; Stanton 

et al. 2007) in ALS have assessed motor planning in goal-directed activity, primarily probing the 

cortical circuits that encode motor imagery. In the current study, without the need to plan an 

anticipated motor function (i.e., at rest), ALS patients experiencing early disease (as per Criteria 

1) exhibit FC alterations in brain regions constituting the motor imagery network whereas patients 

experiencing advanced disease exhibit FC alterations in brain regions constituting the action 

observation network (Jelsone-Swain et al. 2015) – a network that functions in parallel to the motor 

imagery network and processes information from the external environment (for example, in 

visualizing motor tasks performed by someone else) to prepare for the execution of motor function. 

Brain regions involved in the processing of external (visuospatial) stimuli are reported to be 

affected in ALS (R. H. Chipika et al. 2022a) and demonstrate longitudinal FC alterations with 

cortical motor regions in the current study. This suggests that motor task internalization is impaired 

earlier on in the disease process and undergoes deterioration as the disease evolves. The 

premotor/SMA and the inferior parietal lobule, brain regions that constitute common anatomical 

links between action observation and motor imagery networks (Jelsone-Swain et al. 2015), were 

observed to have altered longitudinal FC in the current study. This is suggestive of their role in 

task switching during motor encoding and of a potential explanation that altered FC of these 

cortical regions might be associated with progressive motor execution impairments in ALS. As 

disease progresses, clinical motor ability worsens due to accumulation of pathological features and 

the action observation network – a component of the mirror neuron system – starts to become 

dysfunctional. Impairment of the mirror neuron system has been previously suggested in ALS 

(Eisen et al. 2015), especially in the early stages of disease (Wittstock et al. 2011). Contrasting 

observations in the current study and the previous study (Wittstock et al. 2011) suggests that a 

dysfunction of the mirror neuron system might occur early on in the disease process but likely 

assumes prominence in the advanced disease stages. In addition, the two studies used different 
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imaging techniques (transcranial magnetic stimulation vs rs-fMRI) and measures to assess 

neuronal function – alluding to the relative differences in sensitivities of the imaging techniques 

to the identification of neuronal functional impairments.  

 

Although a commonly used method for patient subgrouping, Criteria 3 is able to identify FC 

alterations in brain regions underlying only the motor imagery network in both slow and fast 

progressing ALS patients. In patients experiencing advanced disease (as per Criteria 2), weakened 

functional linkage was observed between the temporal language network and the cerebellum – 

therefore being unable to pinpoint the specific neural system/s affected. In sum, the study findings 

reveal that Criteria 1 is most sensitive to disease stage-specific FC alterations in motor circuits, a 

characterization which is not possible when directly comparing all ALS patients to HCs or by the 

use of subgrouping criteria 2 and 3.  

 

3.5.2.Links between longitudinal impairments of motor encoding and 

working memory in ALS 

Processing of imagined movement in working memory is key to the planning and execution of 

motor function. In the planning phase, the determination of a motor response depends on salient 

elements of the imagined movement such as their speed or kinetics and the maintenance of motor 

images in the working memory (Munzert and Zentgraf 2009). Paradigm-based fMRI (Kobeleva et 

al. 2021; Vellage et al. 2016), EEG (Hammer et al. 2011; Zaehle et al. 2013), and cortical thickness 

(Libon et al. 2012) assessments have revealed impairments in brain networks subserving working 

memory operations in ALS. In early compared to advanced disease (Criteria 1), the left control 

network had increased longitudinal FC with the agranular retro limbic cortex, a constituent brain 

region within the posterior cingulate cortex (PCC). Slow progressing ALS patients (Criteria 3) 

demonstrated increased longitudinal FC of the ventral PCC with the cerebellar gray network when 

compared to HCs. The PCC is a cortical functional hub that is heavily connected to other cortical 

hubs and is implicated in cognition, visuospatial processing, and decision-making – functional 
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domains (Foster et al. 2023) that are affected in ALS (Consonni et al. 2021). The left control 

network constitutes, in part, the frontoparietal network system and is therefore important to mental 

processes that involve the utilization of working memory as well as decision-making in the context 

of goal-directed behaviour (Vincent et al. 2008). Clinically, the cerebellum is considered to play 

an integral role in the mediation of cognitive and behavioural processes, and its dysfunction has 

been shown in neurodegenerative conditions (for example, FTD) to be associated with 

impairments in the working memory, attention, visuospatial processing, and language domains (R. 

Chipika et al. 2022). Therefore, later on in the disease course, impairments of motor imagery are 

indicative of cognitive impairment that is known to occur in approximately 50% of patients 

presenting to a clinic with an El Escorial diagnosis of suspected ALS (Strong et al. 2017). 

 

3.5.3.Interpreting longitudinal FC increase between the PMC and 

premotor/SMA 

A hypothesis-driven approach in paradigm-based fMRI studies has been successful in 

characterizing the FC between the PMC and premotor/SMA in ALS. In the absence of pathology, 

activity of the healthy premotor/SMA increases during the ongoing learning of skilled movement 

and is reduced after the motor skill is learned (Berlot, Popp, and Diedrichsen 2020). While 

evidence of PMC activation during motor learning in healthy individuals is heterogeneous (Berlot, 

Popp, and Diedrichsen 2020), the PMC in ALS exhibits increased activity during imagined motor 

function (Jelsone-Swain et al. 2015; Lulé et al. 2007). In a neurodegenerative process such as ALS, 

increased premotor/SMA activation (Malek Abidi et al. 2021, 2022; Jelsone-Swain et al. 2015; 

Lulé et al. 2007) is suggestive of a compensatory response to counteract the reduced ability of the 

PMC to execute a learned motor task (Jelsone-Swain et al. 2015). While paradigm-based studies 

can successfully characterize activation profiles and effective connectivity between discrete motor 

regions, such characterizations are biased towards the specific study paradigm. Therefore, it is 

important to employ an unbiased approach towards uncovering the biological basis of these 

alterations. This can be achieved by studying the FC of the motor regions when not involved in 

the performance of an explicit task. In a baseline paradigm-free evaluation (Chapter 2) of the 
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cohort in the current study, the motor network (PMC) had increased intrinsic activation, reduced 

FC with the anterior cerebellum, and increased FC with the PCC and visuomotor areas. In another 

study, reduced FC between the PMC and the premotor/SMA was associated with reduced PMC 

concentrations of the neurochemical N-acetyl aspartate at baseline (Dey et al. 2022). Previous 

fMRI studies in ALS have not been successful in demonstrating FC alterations between the PMC 

and premotor/SMA at baseline (Zhou et al. 2013) or longitudinally (Castelnovo et al. 2020; R. A.L. 

Menke et al. 2018a; Trojsi et al. 2021) at rest. A previous EEG study has reported an association 

between structural degeneration and reduced activity in the motor areas (Nasseroleslami et al. 

2019). It is postulated that, given the coherence between structural and functional connectivities, 

a highly connected brain region is unable to obtain high activity during a metabolically intense 

task and therefore delegates neural functioning to regions that are less connected (Zarei et al. 

2022). The lack of physical constraints in less connected regions allows them to be highly 

activated, therefore compensating for the inability of the highly connected region to achieve the 

required activation amplitude to meet the task demands (Zarei et al. 2022). In the current study, 

the motor network (PMC) underwent progressive decline in functional activation (supplementary) 

and progressive FC increases with adjacent motor regions (premotor/SMA, Table 2). These 

observations in the absence of a motor encoding task suggest that additional pathological processes 

exist in ALS that could result in functional impairments of the motor networks even at rest. For 

example, progressive glutamatergic excitotoxicity (Blasco et al. 2014; Bradley R. Foerster et al. 

2013; Pradhan and Bellingham 2021), which manifests in early stages of ALS as cortical 

hyperexcitability (Bakulin et al. 2016) and intensifies with increasing disease severity (Menon et 

al. 2020), might accentuate the already existing high metabolic demand on the PMC, causing it to 

be increasingly reliant on the premotor/SMA for the execution of motor tasks. FC impairment of 

the PMC might be a correlate of glutamate excitotoxicity-mediated degeneration (Van Den Bos et 

al. 2019) or clinically-relevant neuroanatomical deficits (Dey et al. 2022) in PMC neurons. As the 

premotor/SMA now assumes the functions of the PMC, in addition to intrinsic motor imagery and 

planning tasks, the metabolic demand on this region progressively increases. High metabolic 

demand is postulated to drive increased oxidative stress, and consequently increase the 

vulnerability of the neuronal pools (Strong and Swash 2022) to the degenerative process (Zarei et 

al. 2022). It is likely that processes such as the degeneration of PMC MNs and premotor/SMA 
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adaptation to maintain normal motor function start to occur during the long preclinical phase 

(Benatar et al. 2022) and before the first occurrence of symptoms of ALS. Because of diagnostic 

delays (Richards, Morren, and Pioro 2020), the disease is quite advanced by the time a patient 

participates in observational (e.g., neuroimaging) studies. Therefore, if a parallel was sought 

between the current study findings and a model of corticofugal axonal spread of TDP-43 

proteinopathy (Braak et al. 2013) (occurring in ~90% of ALS patients), longitudinal FC alterations 

occurred in neuronal pools wherein TDP-43 accumulation occurred in Stages 1-3 of the axonal 

spread model. Keeping in mind the changes occurring in cortical motor regions during the 

preclinical phase, one can theorize that the accumulation of misfolded TDP-43 first occurs in PMC 

neurons and then in the premotor/SMA neurons – thereby helping understand disease mechanisms 

further by providing more granularity to the spread of disease pathology.  

 

3.5.4.Contrasting directionality of FC alterations of the motor network at 

baseline and longitudinally 

The PMC, anterior cerebellum, and premotor/SMA constitute important network nodes in motor 

processing. In a baseline evaluation of the ALS cohort in the current study (Chapter 2), the motor 

network had reduced FC with the anterior cerebellum, and increased FC with the PCC and 

visuomotor areas. Longitudinal FC increases of the PMC with the anterior cerebellum and 

premotor/SMA observed in the current study might suggest the occurrence of adaptive processes 

to counteract the baseline reduction in PMC FC and maintain network homeostasis. In the context 

of motor function, increased corticocerebellar FC is suggested to represent the occurrence of a 

compensatory reorganization to counteract the degeneration of the motor cortex (R. Chipika et al. 

2022). Given the multiplicative effects of factors including but not limited to age, genetic 

predisposition, length of prodrome (Benatar et al. 2022), region of disease onset, disease severity, 

disease stage, and properties of RSNs on the pathophysiology of ALS, it might be challenging to 

make inferences regarding the directionality of FC alterations with disease evolution. However, 

pathology-dependent correlates of FC alterations in other study populations can provide some 

clues. For example, in a cohort of cognitively healthy individuals, an inverse association was 
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observed between levels of accumulated tau in the neocortex and FC of the DMN and salience 

RSNs (Schultz et al. 2017). In Parkinson’s disease (PD), the DMN maintained normal functioning 

in earlier disease stages and underwent functional decline in later unmedicated stages; normal 

functioning of the DMN was partially restored on treatment with levodopa, indicating that the 

motor symptoms of PD occurred as a result of the neurochemical dysfunction of the dopaminergic 

mesolimbic system (Spetsieris et al. 2015). Such observations suggest that FC alteration patterns 

are specific to the underlying neurodegenerative process across different neurological disorders 

and are suggestive of functional segregation and the selective vulnerabilities of different neuronal 

pools to the disease process (Strong and Swash 2022).  

 

3.5.5.Advantages of the current study  

This is the first study in ALS that has utilized a number of new techniques to improve the sensitivity 

of resting-state fMRI in the detection of longitudinal network alterations. These techniques include 

the template-based rotation method to examine network properties in ALS, longitudinal ComBat 

harmonization to remove longitudinal effects of scanner and site, a sandwich estimator statistical 

model to account for missing data or participant dropouts thus allowing for the inclusion of all 

scans from all participants enrolled in the study, and a TFCE technique to improve the 

interpretability and sensitivity of the observed clusters of significant FC differences.  

 

3.5.6.Limitations 

The current study did not characterize the effects of therapeutic interventions on network FC in 

patients. Riluzole and Edaravone have respectively been shown to improve survival and reduce 

progression. However, the data on therapeutic intervention at the three visits was variable as some 

patients stopped taking medication due to drug side effects, and sometimes data collection across 

study centers was incomplete. In addition, treatment-based subgrouping within the disease stage-

based patient subgroups would yield very small sample sizes. This suggests the need to conduct a 
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prospective study as part of a clinical drug trial that would use neuroimaging measures to assess 

drug effectiveness on cerebral function.  

 

3.6. Conclusions and future directions 

Deficits in neuronal processes underlying motor encoding, specifically in the motor imagery and 

action observation domains, occur in ALS and attain prominence with disease progression. 

Specifically, the study criteria 1, extrapolated from the inclusion criteria for the Riluzole study, 

was able to identify longitudinal FC impairments of cerebral networks subserving functioning of 

both motor processes in disease stage-based patient subgroups. These deficits in motor processing 

were interpreted based on the assumption that patients in early disease will eventually progress to 

an advanced disease stage based on the progressive changes in their clinical features. However, as 

this assumption does not account for disease features at the cerebral level, future studies could 

examine the properties of cerebral networks that stratify patients into early and advanced disease 

stages based on disease pathophysiology. This examination of cerebral network properties could 

also be extended in future studies to include measurements from other neuroimaging techniques 

such as transcranial magnetic stimulation and positron emission tomography, in addition to 

functional MRI.  

 

Disease progression can be clinically defined based on two factors – the duration of symptoms and 

the degree of disability. In observational studies, it is challenging to independently model the 

effects of both factors on outcome measures. Clinical trials tend to enroll patients presenting to the 

clinic earlier, therefore focusing on identifying disease in patients early based on the duration from 

the onset of symptoms and not on their extent of disability. Patient subgrouping based on the 

median disease progression rate factors in both symptom duration and the extent of disability. 

However, as the measure of disability used in this method is more sensitive to lower MN function, 

it fails to characterize the complete extent of disease pathology in ALS. This is suggestive of the 

need to define subgrouping criteria which stratifies patients based on an upper MN-sensitive 
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disease measure. This could then be extended to develop a composite measure that would 

incorporate both upper and lower MN measures of disease pathology in ALS. This measure could 

be used to understand disease mechanisms and undergo evaluations regarding its potential as a 

primary endpoint or in the definition of drug targets in clinical trials.  

 

3.7. Supplementary 

Visit-wise functional activations of distinct resting-state networks 

RSN 
Visit 1 Visit 2 Visit 3 

ALS HC p-value ALS HC p-value ALS HC p-value 

Cerebellar 

Gray 

0.26 

(0.08) 

0.43 

(0.08) 
<0.001* 

0.27 

(0.07) 

0.39 

(0.08) 
<0.001* 

0.27 

(0.06) 

0.43 

(0.06) 
<0.001* 

DMN 
0.32 

(0.06) 

0.23 

(0.05) 
<0.001* 

0.26 

(0.06) 

0.26 

(0.05) 
n.s. 

0.23 

(0.05) 

0.27 

(0.05) 
<0.001* 

DAN 
0.31 

(0.05) 

0.25 

(0.05) 
<0.001* 

0.27 

(0.05) 

0.32 

(0.05) 
<0.001* 

0.22 

(0.05) 

0.29 

(0.04) 
<0.001* 

Frontal 
0.42 

(0.08) 

0.50 

(0.08) 
<0.001* 

0.49 

(0.08) 

0.57 

(0.08) 
<0.001* 

0.33 

(0.08) 

0.51 

(0.06) 
<0.001* 

Left 

Control 

0.29 

(0.06) 

0.30 

(0.05) 
n.s. 

0.29 

(0.05) 

0.28 

(0.05) 
n.s. 

0.24 

(0.05) 

0.32 

(0.05) 
<0.001* 

Motor 
0.32 

(0.05) 

0.32 

(0.05) 
n.s. 

0.27 

(0.05) 

0.32 

(0.05) 
<0.001* 

0.23 

(0.04) 

0.35 

(0.05) 
<0.001* 

Primary 

Visual 

0.25 

(0.18) 

0.33 

(0.05) 
<0.001* 

0.34 

(0.07) 

0.42 

(0.06) 
<0.001* 

0.27 

(0.07) 

0.42 

(0.06) 
<0.001* 

Right 

Control 

0.25 

(0.05) 

0.31 

(0.04) 
<0.001* 

0.28 

(0.05) 

0.27 

(0.05) 
n.s. 

0.24 

(0.04) 

0.31 

(0.05) 
<0.001* 

Salience 
0.27 

(0.04) 

0.28 

(0.04) 
n.s. 

0.29 

(0.05) 

0.29 

(0.05) 
n.s. 

0.30 

(0.04) 

0.27 

(0.04) 
<0.001* 
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Subcortical 
0.26 

(0.05) 

0.33 

(0.06) 
<0.001* 

0.30 

(0.05) 

0.41 

(0.05) 
<0.001* 

0.25 

(0.05) 

0.37 

(0.06) 
<0.001* 

Temporal 

Language 

0.39 

(0.06) 

0.38 

(0.06) 
n.s. 

0.39 

(0.06) 

0.37 

(0.06) 
n.s. 

0.28 

(0.05) 

0.38 

(0.07) 
<0.001* 

 

 

 

 

Chapter 4: Characterization of distinct patterns of disease 

evolution in imaging-derived subgroups of amyotrophic 

lateral sclerosis 

 

4.1. Abstract 

4.1.1.Introduction 

ALS is a neurodegenerative disorder with a unique complex clinical presentation across patients. 

This makes it challenging to identify the exact neuronal populations that are affected by the 

underlying pathophysiological disease mechanisms. Data-driven methods that utilize measures of 

brain structure and function have previously been successful in the identification of patient 

subgroups with distinct patterns of disease. However, owing to the differences in clustering 

algorithms and neuroimaging features used, there is no consensus in observations across studies. 

In addition, there is no clear understanding from these studies – conducted at baseline – of the 

patterns of disease evolution in the respective patient subgroups. Therefore, this study 
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hypothesized that disease evolution patterns were distinct in imaging-derived patient subgroups, 

and that the observed patterns were similar to those estimated at baseline.  

 

4.1.2.Methods 

174 ALS patients and 165 healthy controls (HCs) participated in the prospective, longitudinal, 

multicentre CALSNIC study. Each of these participants underwent a resting-state functional MRI 

(rs-fMRI) and was assigned to a patient subgroup based on a characterization of their disease 

features using clinically stratification criteria. A template-based rotation analysis method was 

utilized to obtain maps of functional connectivity (FC) from the rs-fMRI data. The longitudinal 

ComBat harmonization pipeline was utilized to remove variance effects of multicenter data. 

Measures of functional activations of discrete resting-state networks were utilized as inputs in a 

hierarchical clustering algorithm to identify imaging-derived patient subgroups. Clinical and 

network function measures were assessed across longitudinal time points to identify the patterns 

of disease evolution within each subgroup.   

 

4.1.3.Results 

Two patient subgroups (Subgroup 1 – S1, Subgroup 2 – S2) were identified based on their baseline 

measures of resting-state network function. In terms of clinical function, right foot tapping scores 

were higher in S2 compared to S1 patients at visit 1 and ECAS total scores were higher in S1 

compared to S2 patients at visit 3 (p < 0.05). For S1 patients and S2 patients, there was a decline 

in bilateral foot tapping scores from visit 1 to 3 (p < 0.05). S1 patients also experienced a significant 

increase in bilateral upper motor neuron burden from visit 1 to 3 (p < 0.05). No alterations in upper 

or lower motor neuron burden scores were observed in S2 patients. In terms of functional activation 

of resting-state cerebral networks, a general reduction was observed in S1 patients, and a general 

increase was observed in S2 patients at visit 1 when compared pairwise with HCs (p < 0.001). By 

visit 3, functional activations of these networks were not significantly different from HCs for S1 

and showed increases for S2 (p < 0.001). Network functional connectivities were significantly 

increased for both patient subgroups as well as for HCs (pFWE < 0.05), therefore providing non-



 

130 

 

specific information regarding behaviour of cerebral networks in the context of a pathological 

process. However, the spatial extent of connectivity alterations for S2 patients were lower than S1 

patients.  

 

4.1.4.Discussion 

A characterization of longitudinal alterations in clinical function, neurological examination 

findings, and network function were able to independently point to distinct features of the disease 

process in both patient subgroups. However, the discordance in findings across the various 

examined features were unable to resolve the lack of coherence between biological and phenotypic 

features of the pathophysiological disease process.  

 

4.2. Introduction 

ALS is a neurodegenerative disorder wherein motor neurons in the central nervous system are 

impaired as a result of pathophysiological disease processes. This results in the emergence of 

clinically observable symptoms such as muscle weakness, spasticity, hyperreflexia, fasciculations, 

and atrophy. Depending on the motor neuron populations that are affected by the disease process, 

the relative presentations of these symptoms can be used to localize the focal point of the disease 

process. However, the complex nature of manifestation of disease pathological features, a long 

clinical prodrome (Benatar et al. 2022), as well as a long diagnostic delay in ALS (Richards, 

Morren, and Pioro 2020) can pose a challenge towards pinpointing the exact motor neurons that 

are affected by the disease process. This, in turn, can delay the indication of therapeutics which 

can target the affected motor neurons.  

 

These gaps in literature can be addressed by the use of data-driven methods to identify patterns of 

neuronal impairment that are common across patient populations, thereby enabling the 

identification of the neuronal impairment patterns that contribute to specific clinical presentations. 
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This can help improve the coherence between biological and phenotypic characterization of ALS 

patients. Thus far, in the literature, clustering algorithms have been employed to group patients 

into distinct phenotypic subtypes based on neuroimaging features of brain structure (Bede et al. 

2022b; Tan et al. 2022) and function (Chapter 2). In addition to the lack of sufficient literature on 

the use of neuroimaging features in the identification of phenotypic ALS subgroups, there currently 

exists no consensus on the core biological features that result in the various clinical presentations 

of ALS. For example, the use of structural measures of whole-brain cortical thickness and white 

matter fractional anisotropy classified the patients into three subgroups with pure motor, 

frontotemporal, and cingulate-parietal-temporal disease patterns (Tan et al. 2022). Another study 

utilized cortical thickness, volumetric, and white matter microstructural measures from 15 

preselected brain regions and was able to identify two patient clusters, the larger of which had a 

frontotemporal disease pattern and the smaller cluster had a diffuse extra-motor disease pattern 

(Bede et al. 2022a). In Chapter 2, intrinsic activation values of discrete resting-state networks 

subgrouped the patients into early and advanced pathophysiological disease clusters which were 

in accordance with their corresponding clinical characteristics of disease severity. While existing 

disease staging systems classify patients based on the observable clinical features,  they have been 

unsuccessful in characterizing distinct pathophysiological features of their disease processes. 

Despite the heterogeneity in patient classification, the recency of implementation of, and the 

differences in goals/hypotheses in each of these data-driven methods of patient classification, such 

approaches might be successful in segregating the contributions of the functional and 

neuroanatomical features to the disease process. Such methods might also be able to predict the 

patterns of disease evolution in patient subgroups at baseline, an assessment that is currently 

lacking in the literature.  

 

In the current study, previously identified imaging-derived patient subgroups (Chapter 2) are 

assessed in the context of their longitudinal clinical and resting-brain functional characteristics. 

The study had two hypotheses: a) the patterns of cerebral function at rest are distinct in imaging-

derived patient subgroups, and b) longitudinal disease characteristics of imaging-derived 

subgroups are similar to their baseline disease characteristics.  
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4.3. Methods 

4.3.1.Participants 

174 ALS patients and 165 healthy controls (HCs) were recruited from multiple university centers 

across Canada and the United States as part of CALSNIC by October 2022. The participating 

centers were in Edmonton (University of Alberta), Calgary (University of Calgary), Montreal 

(McGill University), Toronto (University of Toronto), Vancouver (University of British 

Columbia), Quebec City (Universite Laval) and Miami (University of Miami). The study was 

approved by the respective research ethics review boards at all participating centers. 

 

All patients met diagnostic criteria for clinically possible, probable lab-supported, probable, or 

definite ALS according to the El Escorial criteria (Brooks 1994; Brooks et al. 2000). Participants 

were included into the study if they had completed at least one longitudinal study visit. Patients 

were excluded from the study if their symptom duration exceeded 5 years at baseline, or they did 

not complete rs-fMRI scans, or if they presented with co-morbid frontotemporal dementia (FTD) 

or other neurological conditions. HCs were excluded from the study if they had previously received 

a clinical diagnosis of any neurological or psychiatric disorders. See table 1 for details on 

demographics and clinical characteristics of our sample. 

 

4.3.2.Image Acquisition  

A multicenter harmonized scanning protocol, preadjusted for scanner variances, was used to 

acquire T1-weighted (T1w) structural MRI and T2*-weighted resting-state functional MRI (rs-

fMRI) data from all participants in the study across all study visits. Participants were instructed to 

lie still with their eyes closed and to not think of anything in particular for the duration of the rs-

fMRI scan. A brief description of the protocol for the Siemens (Prisma) scanner for CALSNIC 1 
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is provided in the following section. A description of the complete protocol for other scanners and 

CALSNIC 2 can be found in our CALSNIC overview paper (Kalra, Khan, et al. 2020).  

 

A magnetization-prepared rapid gradient-echo imaging (MPRAGE sequence; Repetition time, 

TR= 2300 ms; Echo time, TE= 3.43 ms; Inversion time, TI= 900 ms; flip angle= 9°; FOV= 256 

mm x 256 mm) was used to acquire T1w data with an isotropic resolution of 1 × 1 × 1 mm3. 

Whole-brain 3D T2*-weighted rs-fMRI data was acquired using an echo-planar imaging (EPI) 

pulse sequence with an isotropic voxel resolution of 3.5 × 3.5 × 3.5 mm3 and the following 

specifications: TR = 2,200 ms; TE = 30 ms; field of view = 224 × 224 × 64 matrix; 40 slices, 192 

trains; acquisition time = ~7 minutes.  

 

4.3.3.Image processing 

4.3.3.1. T1-weighted MRI 

All T1w images for participants completing at least two study visits were realigned and 

coregistered to each other to ensure voxel-matching using Statistical Parametric Mapping (SPM) 

software (version 12). Following realignment and coregistration, the “AverageImages” module 

within the Advanced Normalization Tools (ANTs) software was used to generate an average T1w 

image in the native space of each participant. This average T1w image was used in the 

coregistration step of the rs-fMRI processing pipeline. 

 

4.3.3.2. Resting-state fMRI 

The baseline and longitudinal preprocessing pipelines of the CONN toolbox (https://web.conn-

toolbox.org/) were used to preprocess the rs-fMRI images. The first four volumes were removed 

for every participant to allow for steady state magnetization. The time series data for each 

participant were corrected for differences in image slice acquisition times, followed by realignment 

for head motion within and across imaging sessions using a six-parameter rigid body 

https://web.conn-toolbox.org/
https://web.conn-toolbox.org/
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transformation algorithm. The mean multi-slice rs-fMRI data (temporally averaged across the time 

series) was co-registered to the average T1w image, and the resulting transformation matrices were 

applied to all volumes of the rs-fMRI data for longitudinal time points. The resultant co-registered 

functional images underwent spatial normalization to the Montreal Neurological Institute (MNI) 

template (Collins et al. 1992) space and smoothing with a Gaussian smoothing kernel of 8 mm full 

width at half-maximum. The white matter and cerebrospinal fluid signals as well as motion 

estimates were removed from the data and further denoising was performed using a bandpass filter 

of 0.008-0.09 Hz. The filtered and denoised images were used in further analyses of resting-state 

functional connectivity (FC) using the template-based rotation (TBR) method.  

 

4.3.3.3. Resting-state functional MRI analysis: Template Based 

Rotation 

This technique of estimation of resting-state network (RSN) components (or, template maps) at 

the individual level utilizes the application of an a priori, out-of-sample network template for 

individual RSNs. This technique predicts RSN template maps, at an individual participant level, 

as a linear combination of time courses that correspond to spatial patterns in a reference template 

set, thereby removing the spatial and temporal orthogonality assumptions of distributed functional 

networks (at a group level). Refer to (Schultz et al. 2014) for a complete overview of this technique. 

RSN maps for each participant were generated for every longitudinal time point using the TBR 

code (Schultz et al. 2014). Eleven target components (cerebellar gray, default mode, dorsal 

attention, frontal, left and right control, motor, primary visual, salience, subcortical, and temporal 

language networks) were estimated for each participant by the TBR technique and preselected 

based on correspondence to gray matter functional connectivity (FC) or disease relevance. The 

gray matter TBR components were identified as RSNs-of-interest in the current study. Individual 

subject resting-state functional connectivity (rsFC) maps underwent transformation from 

correlation (r)-maps to Fisher (z)-maps to allow for variance normalization. These z-maps were 

used in further statistical analyses. 
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4.3.3.4. Subgrouping: Hierarchical clustering of patients based on 

resting-brain function  

The method for patient subgrouping based on imaging-derived measures of functional connectivity 

of resting-state cerebral networks (or, resting-state networks – RSNs) is outlined in Chapter 2. 

Briefly, the TBR templates for individual RSNs were used as regions-of-interest to calculate RSN 

FC values from TBR maps for individual subject at a voxel-level. The voxel-wise FC values were 

averaged to obtain a single measure of intra-network connectivity for each RSN. These FC 

averages underwent adjustments for demographic variables (age, sex, and education level) using 

a multiple regression model. Adjusted FCs for the ALS group were transformed into z-scores based 

on the HC average. These z-transformed time courses for the ALS group were used as inputs in a 

hierarchical clustering analysis to identify patient subgroups with distinct biological 

characteristics. Eleven continuous variables (z-scored FC for 11 RSNs) were entered into the 

clustering model as inputs, the Ward’s method was used for estimating the clusters, and a squared-

Euclidean distance function was used as a measure of dissimilarity to identify patient subgroups. 

The number of solutions were not defined a priori. Two patient subgroups were identified and are 

referred to as S1 and S2 in the current study. These subgroups were identified in chapter 2 as 

experiencing early (S2) and advanced (S1) disease based on a combination of clinical and imaging 

features.  

 

4.3.4.Statistical analysis 

4.3.4.1. Longitudinal 

A sandwich estimator model (SwE, http://www.nisox.org/Software/SwE/) was used to assess 

differences in rsFC. Differences in rsFC were assessed between the HCs and two imaging-derived 

ALS subgroups. A non-parametric restricted wild bootstrapping approach (number of bootstraps = 

5000) was employed for small sample adjustments (type C2). In addition, an SwE implementation 

of the threshold free cluster enhancement technique (Smith and Nichols 2009) (TFCE) was 

employed to identify clusters that showed significantly different rsFC between ALS subgroups and 
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HCs. An explicit gray matter mask in the MNI space was applied to restrict all analyses of rsFC to 

gray matter voxels within the brain. Statistical significance for all group comparisons using SwE 

models was set at a family-wise error (FWE) corrected p-value less than 0.05. 

 

4.3.4.2. ComBat Harmonization: Removing study x scanner 

interaction effects from voxel-wise rsFC  

ComBat is a tool based on an Empirical Bayesian algorithm and is used to eliminate unwanted 

technical variability from biological data (Fortin et al. 2017). This technical variability can arise 

because of differences in scanner hardware, software, or imaging acquisition protocols (Fortin et 

al. 2017). ComBat can help dissect and remove this technical variability from biological variability 

by correcting for the additive and multiplicative scanner effects as well as small sample sizes at an 

individual scanner. This can help combine datasets with different acquisition protocols employed 

to acquire images with different scanner hardware and software specifications. In the CALSNIC 

studies, technical variability can occur only due to the additive and multiplicative effects from 

scanner hardware and software. There is no technical variability contributed by imaging 

acquisition protocols as these parameters were harmonized across scanners and across both 

CALSNIC studies. In the current study, the longitudinal ComBat harmonization method was 

applied using the ‘longCombat’ package on R statistical software (https://www.r-project.org/) to 

estimate and correct for additive and multiplicative scanner effects on RSN functional connectivity 

as well as to account for subject-specific effects (e.g., age, subject consistency) inherent to 

longitudinal studies (Beer et al. 2020). 3D functional connectivity maps across visits and across 

participants were combined using the ‘fslmerge’ routine on FSL to generate a 4D image. This was 

performed for individual RSNs. Of the 11 RSN components, 10 successfully underwent 

longitudinal harmonization. The motor RSN component was not subjected to the longitudinal 

combat harmonization pipeline as the data had a singular fit indicating that the model was 

optimally fit to the demographic variables, and performing harmonization by forcing the model 

would result in overfitting.  
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4.4. Results 

4.4.1. Demographic and clinical characteristics of the study cohort 

Table 1 shows the baseline and longitudinal demographic and clinical characteristics of the study 

cohort.  

 

Table 1. Baseline and longitudinal demographic and clinical characteristics of the study cohort. 

Means (SD) are displayed for the assessed characteristics. Single asterisk (*) denotes p < 0.05 and 

double asterisk (**) denotes p < 0.001. n.s. denotes no significant differences.  

 

Characteristic 
Baseline (Visit 1) Visit 2 Visit 3 

HC S1 S2 HC S1 S2 HC S1 S2 

Number of 

participants 
165 109 62 100 45 34 77 25 24 

Age (years) 
55.4 

(10.1) 

60.1 

(10.6)

** 

59.8 

(9.8)* 

57.1 

(9.4) 

60.9 

(10.7)

* 

61.8 

(8.2)* 

57.7 

(9.7) 

61.3 

(11.4) 

62.6 

(2.2)* 

Sex: M/F 74/91 66/43 41/21 43/57 24/21 25/9 37/40 13/12 16/8 

Symptom 

duration 

(years) 

- 
1.6 

(0.9) 

1.9 

(1.2) 
-   -   

Functional 

status  

(ALSFRS-R 

total) 

- 38 (6) 39 (6) - 36 (6) 38 (5) - 35 (7) 36 (5) 

Left finger 

tapping score 

53 

(13) 

38 

(16)*

* 

38 

(16)*

* 

54 

(11) 

39 

(14)*

* 

37 

(14)** 

56 

(12) 

32 

(20)*

* 

36 

(16)*

* 

Right finger 

tapping score 

59 

(14) 

43 

(17)*

* 

42 

(18)*

* 

58 

(12) 

45 

(17)*

* 

42 

(15)** 

60 

(13) 

40 

(16)*

* 

41 

(15)*

* 

Left foot 

tapping score 

40 

(10) 

22 

(15)*

* 

26 

(15)*

* 

42 

(10) 

23 

(16)*

* 

23 

(16)** 

44 

(10) 

21 

(15)*

* 

19 

(17)*

* 

Right foot 

tapping score 

43 

(10) 

23 

(15)*

* 

29 

(15)*

* 

44 

(10) 

24 

(16)*

* 

27 

(15)** 

46 

(10) 

23 

(15)*

* 

22 

(16)*

* 
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L UMN 

Burden score 

(/7) 

- 
2.6 

(1.5) 

2.4 

(1.5) 
- 

2.8 

(1.5) 

2.3 

(1.4) 
- 

2.4 

(1.9) 

2.1 

(1.4) 

R UMN 

Burden score 

(/7) 

- 
2.5 

(1.6) 

2.4 

(1.5) 
- 

2.9 

(1.7) 

2.2 

(1.4) 
- 

2.9 

(1.9) 

2.3 

(1.4) 

L LMN 

Burden score 

(/6) 

- 
2.6 

(1.2) 

2.3 

(1.4) 
- 

2.8 

(1.2) 

2.5 

(1.5) 
- 

3.0 

(1.2) 

2.4 

(1.7) 

R LMN 

Burden score 

(/6) 

- 
2.6 

(1.2) 

2.3 

(1.3) 
- 

2.6 

(1.2) 

2.4 

(1.5) 
- 

3.2 

(0.8) 

2.2 

(1.6) 

ECAS total 

(/136) 

110 

(14) 

106 

(20)*

* 

107 

(19) 

116 

(8) 

112 

(10) 

112 

(10) 

114 

(8) 

115 

(8) 

105 

(12) 

 

4.4.2. Longitudinal RSN activations of the study groups  

Table 2. Longitudinal evolution of RSN activation values of the study groups 

Resting-

state 

network 

Baseline (Visit 1) Visit 2 Visit 3 

HC S1 S2 HC S1 S2 HC S1 S2 

Cerebellar 

Gray 

0.30 

(0.07) 

0.28 

(0.07) 

0.30 

(0.06) 

0.35 

(0.08) 

0.33 

(0.07) 

0.33 

(0.07) 

0.34 

(0.06) 

0.33 

(0.06) 

0.34 

(0.08) 

Default 

Mode 

0.25 

(0.05) 

0.22 

(0.04)

** 

0.29 

(0.04)

** 

0.23 

(0.05) 

0.19 

(0.05)

** 

0.24 

(0.04) 

0.25 

(0.05) 

0.24 

(0.04) 

0.28 

(0.05)

* 

Dorsal 

Attention 

0.25 

(0.04) 

0.23 

(0.04)

* 

0.28 

(0.04)

** 

0.28 

(0.04) 

0.27 

(0.05) 

0.30 

(0.04)

* 

0.26 

(0.04) 

0.24 

(0.05) 

0.28 

(0.05)

* 

Frontal 
0.42 

(0.08) 

0.41 

(0.09) 

0.44 

(0.07)

* 

0.51 

(0.08) 

0.51 

(0.08) 

0.53 

(0.07) 

0.43 

(0.04) 

0.43 

(0.07) 

0.45 

(0.09) 

Left Control 
0.27 

(0.05) 

0.24 

(0.04)

** 

0.31 

(0.04)

** 

0.28 

(0.05) 

0.24 

(0.05)

** 

0.29 

(0.04) 

0.29 

(0.05) 

0.27 

(0.05) 

0.32 

(0.05)

* 

Motor 
0.28 

(0.05) 

0.26 

(0.04)

** 

0.31 

(0.04)

** 

0.27 

(0.05) 

0.25 

(0.05)

* 

0.28 

(0.04) 

0.31 

(0.05) 

0.30 

(0.04) 

0.32 

(0.04) 
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Primary 

Visual 

0.36 

(0.06) 

0.34 

(0.05)

* 

0.35 

(0.05) 

0.36 

(0.05) 

0.36 

(0.06) 

0.37 

(0.06) 

0.36 

(0.06) 

0.36 

(0.07) 

0.37 

(0.08) 

Right 

Control 

0.26 

(0.05) 

0.23 

(0.03)

** 

0.29 

(0.04)

** 

0.28 

(0.05) 

0.25 

(0.05)

** 

0.29 

(0.04) 

0.28 

(0.05) 

0.26 

(0.04) 

0.30 

(0.04) 

Salience 
0.27 

(0.05) 

0.25 

(0.04)

** 

0.30 

(0.03)

** 

0.27 

(0.04) 

0.24 

(0.05)

* 

0.27 

(0.04) 

0.27 

(0.04) 

0.26 

(0.03) 

0.29 

(0.04)

* 

Subcortical 
0.32 

(0.05) 

0.31 

(0.05) 

0.32 

(0.04) 

0.34 

(0.05) 

0.33 

(0.05) 

0.33 

(0.05) 

0.33 

(0.06) 

0.34 

(0.05) 

0.33 

(0.06) 

Temporal 

Language 

0.29 

(0.06) 

0.27 

(0.05)

* 

0.33 

(0.05)

** 

0.34 

(0.05) 

0.33 

(0.06) 

0.35 

(0.05) 

0.35 

(0.07) 

0.32 

(0.05) 

0.36 

(0.07) 

 

 

4.4.3. Longitudinal alterations in RSN voxel-wise FC  

Longitudinal FC reductions were observed for the cerebellar gray, default mode, frontal, left 

control, and salience networks for S1 patients and longitudinal FC increases were observed for the 

default mode and motor networks for S2 patients (Table 3, Figure 1). 

 

Table 3. Voxel-wise differences in longitudinal functional connectivity between ALS subgroups 

(S1 and S2) and HCs. RSN = resting-state network, MNI = Montreal Neurological Institute, BA = 

Brodmann area, R = right, L = left, B = bilateral 

RSN Contrast Brain region 
Cluster 

size 

MNI 

coordinates 
Z-

value 
x y z 

Cerebellar 

Gray 
S1 < HC L visuomotor area (BA 7) 17 -12 -54 57 3.95 

Default 

Mode 
S1 < HC 

R Broca’s area (pars opercularis) 

(BA 44) 
273 39 12 33 3.51 

R premotor + supplementary 

motor areas (BA 6) 
35 42 -9 57 3.35 

R primary motor cortex (BA 4) 10 33 -27 66 3.13 
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R primary sensory cortex (BA 1) 10 48 -24 54 3.02 

S2 > HC 

L anterior prefrontal cortex (BA 

10) 
10 -18 60 -9 3.33 

L medial temporal gyrus (BA 

21) 
8 -57 -18 -6 3.32 

Frontal S1 < HC 

L lateral dorsolateral prefrontal 

cortex (BA 46) 
15 -42 27 15 3.61 

R Broca’s area (pars 

triangularis) (BA 45) 
5 39 33 6 3.44 

Left 

Control 
S1 < HC 

B caudate 726 15 24 12 3.88 

L posterior cingulate cortex (BA 

31) 
257 -24 -24 36 3.71 

L premotor + supplementary 

motor areas (BA 6) 
13 -36 -3 45 2.71 

Motor S2 > HC 

L supramarginal gyrus (BA 40) 2799 -42 -39 42 3.53 

R premotor + supplementary 

motor areas (BA 6)  
223 33 -6 69 3.39 

Salience S1 < HC R thalamus 15 3 -15 21 3.65 

 

 

Figure 1. Voxel-wise alterations in longitudinal FC in imaging-derived patient subgroups 

compared to healthy controls 
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4.5. Discussion 

The current study aimed to identify differences in function of resting-state networks in patient 

subgroups identified using imaging-based measures of RSN activations as well as examine the 

coherence between observed disease evolution patterns and those postulated at baseline (Chapter 

2). Distinct patterns of RSN activations and functional connectivity patterns were observed in the 

identified patient subgroups. An assessment of clinical and imaging characteristics of disease 

evolution over a one-year observation period revealed a coherence between postulated disease 

evolution patterns at baseline assessment and actually observed disease evolution. Interpretations 

of findings corresponding to the aims are discussed in the next sections.  

 

4.5.1. Distinctness of longitudinal evolution patterns of resting-state 

functional networks in imaging-derived patient subgroups 

In terms of network activation values, at visit 1, S1 patients had reduced activations in the default 

mode, dorsal attention, motor, bilateral control, primary visual, salience, and temporal language 

networks whereas S2 patients had increased activations in the default mode, dorsal attention, 

frontal, motor, bilateral control, salience, and temporal language networks. At visit 2, S1 patients 

had reduced activations of the default mode, motor, bilateral control, and salience networks and 

S2 patients had increased activation in the dorsal attention network. At visit 3, while network 

activations of S1 patients were comparable to HCs, S2 patients had increased activations of the 

default mode, dorsal attention, left control, and salience networks. Overall, S1 and S2 patients had 

reduced and increased network activations respectively across visits. In accordance with the 

Scaffolding Theory of Aging and Cognition (STAC) (D. C. Park and Reuter-Lorenz 2009; Reuter-

Lorenz and Park 2014), the effects of neurodegenerative processes in a brain region or a network 

of brain regions are compensated by the involvement of additional brain regions – resulting in an 

increase in activity in the recruited brain regions. However, with progression of the pathological 

process, a critical point is reached in the disease process after which there is a decline in 
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compensation (reduction in activation). The functional activation profiles of the RSNs across the 

timeline for the observation of disease evolution suggest that the disease might be more severe in 

S1 patients, and therefore this subgroup of patients might be experiencing more advanced disease 

than S2 patients.  

 

In terms of longitudinal FC, network alterations of the S2 subgroup were less generalized than 

those of the S1 subgroup. S1 patients had longitudinal FC alterations in the cerebellar gray, default 

mode, frontal, left control, and salience networks and S2 patients had longitudinal FC alterations 

in the default mode and motor networks. The brain regions exhibiting altered longitudinal FC in 

S1 patients constitute in part the motor circuits that are involved in motor encoding and execution. 

As the disease evolves, the connectivity of these RSNs with motor regions progressively reduces, 

suggesting the occurrence of progressive impairment in brain regions subserving motor functions. 

Specifically, the cerebellar gray RSN has reduced FC with the visuomotor area, suggesting an 

impairment in motor coordination based on stimuli from the external environment. The default 

mode network has reduced FC with components of the sensorimotor network (primary sensory 

cortex, primary motor cortex, and the premotor/SMA regions) as well as the Broca’s area, a brain 

region that participates in various aspects of motor encoding and execution (Papitto, Friederici, 

and Zaccarella 2020). The frontal network also has reduced FC with the Broca’s area. The left 

control network has reduced FC with the caudate, posterior cingulate cortex, and the 

premotor/SMA. The caudate and premotor/SMA contribute to planning the execution of a motor 

function and the posterior cingulate cortex is a heavily connected brain region within the default 

mode network which helps in coordinating the functioning of multiple distinct cerebral networks 

in response to a task (Leech and Sharp 2014). The salience network has reduced FC with the 

thalamus, a brain region that acts as a center for the relay of top-down and bottom-up motor 

information. This suggests that multiple routes of information processing relating to motor 

execution are progressively impaired in S1 patients.  
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The motor network in S2 patients shows an increase in reliance on the premotor/SMA as well as 

the supramarginal gyrus – brain regions that are involved in motor planning. The default mode 

network also has increased FC with brain regions in the frontal and temporal cortices, suggesting 

that S2 patients have a frontotemporal pattern of disease in addition to a motor phenotype.  

 

In sum, based on RSN activation patterns and FC alterations longitudinally, it seems apparent that 

impairments in brain regions subserving motor encoding occur in all ALS patients. Specifically, 

the findings of the current study suggest that S1 patients have a more severe disease with a 

predominant motor phenotype and S2 patients have a less severe disease with a motor-

frontotemporal phenotype. This alludes to a distinct pattern of disease evolution in patient 

subgroups identified using imaging-derived measures, as well as to a coherence between disease 

evolution patterns postulated using only baseline data (Chapter 2) and actual longitudinal patterns 

of disease evolution.  

 

4.5.2. Longitudinal clinical characterization of patient subgroups  

At baseline evaluation, patients in the S2 subgroup had a longer symptom duration, a slower 

disease progression rate, and higher right foot tapping scores compared to S1 patients (Chapter 2 

and current study). Based on these clinical observations, it seemed apparent that S2 patients 

underwent clinical decline slower than S1 patients which corroborated with observations of RSN 

function (Chapter 2). While voluntary motor function (foot tapping) is significantly different 

between subgroups at baseline, this significance is lost later in the disease course (visit 3). On the 

contrary, while cognitive function is not significantly different at baseline, differences between 

subgroups become apparent by the third longitudinal visit. S2 has lower cognitive scores than S1, 

therefore providing further evidence of a frontotemporal disease phenotype in S2 patients. It has 

been previously shown that cognitive decline occurs more frequently in the advanced as opposed 

to the early stages of disease (Chiò et al. 2019a). However, disease stages in this study were defined 

based on two disease staging systems (King’s college staging and MiToS staging) which use 
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clinical measures to stage patients. S1 patients, but not S2 patients, had reduced ECAS total scores 

when compared to HCs at baseline but these differences were not observed at later visits. These 

observations are in line with findings from previous studies in ALS literature that suggest a strong 

coherence between motor and cognitive decline (Elamin et al. 2013; Oh et al. 2014; Phukan et al. 

2012). However, it is challenging to monitor progression of cognitive decline in patients presenting 

with cognitive decline at baseline due to high rates of dropout in patients with cognitive decline 

(Chiò et al. 2019a).  

 

In comparison to S1 patients, the emergence of cognitive decline in S2 patients at visit 3 suggests 

a delayed manifestation in cognitive impairment. Coupled with a greater spatial extent of network 

connectivity alterations, but not activation alterations of the motor network, this suggests a slower 

rate of the incidence of disease characteristics in S2 patients. This is indicative of differences in 

the timeline of clinical manifestation of the pathophysiological disease process in the two patient 

subgroups. However, these interpretations are unable to identify whether the pathophysiological 

disease process is distinct in the two subgroups.  

 

4.5.3. Longitudinal change in clinical and functional connectivity 

measures 

4.5.3.1. Clinical measures 

Unique patterns of clinical change were observed between the baseline and third longitudinal study 

visits for the two patient subgroups. While foot tapping scores were significantly reduced for both 

subgroups S1 and S2 bilaterally, only subgroup S1 had significantly increased upper and lower 

motor neuron burden scores on the right side. While upper and lower motor neuron burden scores 

were elevated for S1 on the left side and for S2 bilaterally, they did not attain significance. This 

significant increase in burden at the level of both the upper and lower motor neurons during the 

same observation time frame suggests that the disease is more severe in S1 patients. In addition, 

the significant reduction in foot tapping scores in both subgroups suggests that the motor neurons 

constituting the foot region of the motor homunculus might have specific neuroanatomical 
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characteristics (relating to their microstructure and neurochemical profiles) that might suggest the 

potential role of this region in disease monitoring. A recent study (Chapter 5) has reported that 

concentrations of the neurochemical N-acetyl aspartate within the foot region of the motor 

homunculus of the primary motor cortex are associated with foot tapping scores, and reductions in 

these concentrations are associated with reduced functional connectivity of the primary motor 

cortex at baseline in ALS. In conjunction with the findings of the current study, one might postulate 

that a progressive decline in foot tapping scores might be suggestive of a progressive degenerative 

process within primary motor cortical neurons that could cause a decline in their functional and 

neuroanatomical properties.  

 

4.5.3.2. Cerebral function measures  

In terms of cerebral function, contrary to expectations, the decline in functional activation patterns 

from baseline to the third longitudinal visit were directionally similar for the S1 patients and HCs. 

In both groups, increases in resting-state functional activations were observed in the cerebellar 

gray, motor, bilateral control, subcortical, and temporal language networks. However, as expected, 

fewer functional activation alterations were observed for patients in the S2 subgroup compared to 

the S1 subgroup. Patients in the S2 subgroup experienced functional activation alterations for the 

cerebellar gray, right control, and temporal language networks but not for the motor, left control, 

and subcortical networks.  

 

In S1 patients, while functional activations of the cerebellar gray and left control networks were 

increased, FCs of these networks were reduced with other regions, from V1 to V3. This suggests 

that these networks increase their functional activations as a compensatory response to a 

progressive neurodegenerative process, and progressively become self-reliant by reducing FC with 

other regions. In S2 patients, while the motor network had no increases in activation, it had 

increased FC with other brain regions. This follows the reasoning that in the presence of a 

metabolically-intense task, brain regions that are highly connected to other brain regions are unable 
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to obtain high activation and therefore delegate their functions to other brain regions that are less 

connected (Zarei et al. 2022). While no changes in activation were observed for the default mode 

network for either patient subgroup, the longitudinal FC of this network was reduced in S1 patients 

and increased in S2 patients. This is suggestive of a divergence of default mode network behaviour 

in response to the ALS disease process across both patient subgroups. 

 

4.6. Discussion 

In sum, a characterization of longitudinal alterations in clinical function, neurological examination 

findings, and network function were able to individually characterize the pathophysiological 

mechanisms underlying the disease process in distinct ALS patient subgroups. However, these 

measures put together are unable to distinguish between the pathophysiological disease 

mechanisms. Distinct features of disease were observable when a comparison of neurological 

examination findings was performed across subgroups. Clinical function was able to point towards 

a relative difference in the rate at which different features of the disease manifest so as to attain 

clinical significance. These patterns of clinical function changes were consistent with change in 

functional activation patterns of the cerebral resting-state networks in terms of the respective rates 

at which disease manifests in individual patient subgroups. However, network functional 

activations for all study populations (HCs and both patient subgroups) had similar directionality 

of alterations across visits, adding to the uncertainty of estimation of actual disease-related change 

versus measurement errors. Longitudinal changes in resting-state FC of the cerebral networks were 

indicative of lesser spatial extents of change in S2 patients compared to S1 patients. Additionally, 

differences in topographical network changes revealed a more motor phenotype for S1 patients 

and an additional frontotemporal phenotype in S2 patients. However, this might be possible 

because of selective dropouts of cognitively-impaired patients from the study.  
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4.7. Conclusions 

When alterations in clinical and neuroimaging features from baseline to the last observational 

study visit were assessed, clinical measures were observed to be more likely to distinctly 

characterize the disease process as opposed to neuroimaging measures. This was contrary to 

expectations that cerebral network function would be more indicative of disease mechanisms in 

comparison to clinical measures as the patient subgroups were defined at baseline using activation 

patterns of cerebral RSNs. This lends additional evidence to the lack of coherence between 

biological and phenotypic characterizations of the ALS disease process, thereby presenting the 

possibility that patients might be subgrouped differently when considering only baseline features 

compared to the consideration of longitudinal patterns of functional activation in the clustering 

algorithm.  

 

4.8. Limitations of the current study  

In a longitudinal study, sources of noisy data include measurement errors and dropout or attrition 

rate. As such, it might be prudent to acquire multiple measurements of the same feature in order to 

monitor change. In the current study, multiple measurements of individual clinical or 

neuroimaging features could not be made owing to disease-related limitations faced by ALS 

patients, especially later on in their disease course. This partially explains any observed increases 

or decreases in clinical and neuroimaging measurements at visit 2 when such patterns of change 

were not expected. However, such change patterns could also be a characteristic of the disease 

process. Thus, it is important to be able to dissect actual disease-related change from measurement 

errors – an approach that was not taken in the current study.  

 

4.9. Future directions 

A future direction of the current study could be to estimate patient subgroups based on longitudinal 

patterns of change in their neuroimaging features, followed by an assessment of its ability to 
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identify distinct patterns of disease pathophysiology in the resultant patient subgroups. Another 

future direction could be to perform an assessment of measurement errors by acquiring the same 

set of measures more than once in a same day visit and again by repeating such measurements at 

longitudinal visits. This could help distinguish between disease-related changes and measurement 

errors.  

 

4.10. Supplementary 

S1. Patterns of longitudinal change from visit 1 to visit 3 in clinical measures 

Clinical characteristic S1 S2 HC 

ALSFRS-R total n.s. n.s. n.s. 

R Finger Tapping n.s. n.s. n.s. 

L Finger Tapping n.s. n.s. n.s. 

R Foot Tapping *                ˄ *                ˅ n.s. 

L Foot Tapping *                ˄ *                ˅ n.s. 

R UMNB *                ˄ n.s. n.s. 

L UMNB n.s. n.s. n.s. 

R LMNB *                ˄ n.s. n.s. 

L LMNB n.s. n.s. n.s. 

ECAS total n.s. n.s. n.s. 

 

S2. Patterns of longitudinal change from visit 1 to visit 3 in functional activation measures 

Network  S1 S2 HC 

Cerebellar Gray *                ˄ *                ˄ *                ˄ 

Default Mode n.s. n.s. n.s. 

Dorsal Attention n.s. n.s. n.s. 

Frontal n.s. n.s. n.s. 

Left Control *                ˄ n.s. *                ˄ 

Motor *                ˄ n.s. *                ˄ 

Primary Visual n.s. n.s. n.s. 

Right Control *                ˄ *                ˄ *                ˄ 

Salience n.s. n.s. n.s. 

Subcortical *                ˄ n.s. *                ˄ 

Temporal Language *                ˄ *                ˄ *                ˄ 
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* represents significant change from visit 1 to visit 3, n.s. represents no significant changes 

˄ and ˅ represent the directionality of change from visit 1 to visit 3 
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5.1. Abstract 

5.1.1.Introduction 

To identify structural and neurochemical properties that underlie functional connectivity 

impairments of the primary motor cortex and how these relate to clinical findings in amyotrophic 

lateral sclerosis (ALS).  

 

5.1.2.Methods 

52 ALS patients and 52 healthy controls, matched for age and sex, were enrolled from 5 centers 

across Canada for the Canadian ALS Neuroimaging Consortium study. Resting-state functional 

magnetic resonance imaging, diffusion tensor imaging, and magnetic resonance spectroscopy data 

were acquired. Functional connectivity maps, diffusion metrics, and neurometabolite ratios were 

obtained from the analyses of the acquired multimodal data. A clinical assessment of foot tapping 

(frequency) was performed to examine upper motor neuron function in all participants.  

 

5.1.3.Results 

Compared to healthy controls, the primary motor cortex in ALS showed reduced functional 

connectivity with sensory (T=5.21), frontal (T=3.70), temporal (T=3.80), putaminal (T=4.03), and 

adjacent motor (T=4.60) regions. In the primary motor cortex, N-acetyl aspartate (NAA, a neuronal 

marker) ratios and diffusion metrics (mean, axial, and radial diffusivity, fractional anisotropy) were 

altered. Within the ALS cohort, foot tapping frequency correlated with NAA (r = 0.347) and white 

matter fractional anisotropy (r = 0.537). NAA levels showed associations with disturbed FC of the 

motor cortex.  
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5.1.4.Conclusion 

In vivo neurochemistry may represent an effective imaging marker of impaired motor cortex 

functional connectivity in ALS.  

 

5.2. Key messages of this study 

5.2.1.What is already known on this topic 

The resting brain shows impaired functional connectivity in ALS. This can occur in conjunction 

with alterations in brain structure. 

 

5.2.2.What this study adds 

Compared to alterations in brain structure, alterations in neurochemical levels in the primary motor 

cortex may occur earlier and may be more sensitive to resting brain function in ALS.  

 

5.2.3.How this study might affect research, practice, or policy 

Clinical investigations could include assessments of primary motor cortical neurochemistry as an 

effective surrogate imaging marker of functional alterations in ALS. This might help provide an 

earlier diagnosis of ALS 
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5.3. Introduction 

Amyotrophic lateral sclerosis (ALS) is an adult-onset neurodegenerative disorder. ALS manifests 

with an impaired ability to perform motor tasks (for example, walking, eating, or breathing) due 

to the degeneration of upper motor neurons (UMNs) in the primary motor cortex (PMC) and lower 

motor neurons in the brainstem and spinal cord. Clinical signs of ALS include muscular atrophy, 

fasciculations, hyperreflexia, weakness, and spasticity (Swinnen and Robberecht 2014). Of these, 

hyperreflexia, weakness, and spasticity are signs of UMN impairment. Task and resting-state 

functional magnetic resonance imaging (fMRI) (M Abidi et al. 2019; Bueno et al. 2019; Chenji et 

al. 2016; Mohammadi et al. 2015; Zhou et al. 2014) studies have shown impairments in 

synchronous activity (i.e., functional connectivity (FC)) occurring within and between motor and 

extra-motor brain regions. Studies using diffusion tensor imaging (DTI) and voxel-based 

morphometry have respectively shown evidence of altered microstructure of the corticospinal tract 

(F. Zhang et al. 2018) and atrophy in the precentral gyrus(Z. Chen and Ma 2010). Magnetic 

resonance spectroscopy (MRS) studies have shown alterations in neurochemical levels in the PMC 

in ALS patients when compared to healthy controls (Kalra 2019). These independent observations 

of UMN impairment, assessed in conjunction, could potentially provide deeper insights into ALS 

pathophysiology. Previous analyses of multiple MRI techniques have revealed associations 

between impaired cortical structure and function (Cheng et al. 2021; Douaud et al. 2011; Bradley 

R. Foerster et al. 2014; R. A.L. Menke et al. 2018b; Ratai et al. 2018). However, there is no 

adequate understanding of the association between the functional and anatomical (structure and 

neurochemistry) properties of affected UMNs inherent to the PMC in ALS.  

 

To address this gap in literature, a multimodal approach was employed. fMRI, MRS, and DTI data 

were analyzed to assess FC, neurochemical, and microstructural properties of the PMC. It was 

hypothesized that, in ALS 1) there is altered FC of the PMC with the rest of the brain, 2) these FC 

alterations relate to underlying structural and/or neurochemical deficits, and 3) these FC alterations 

are associated with clinical measures of UMN impairment. An extensive investigational approach 

was thus applied to evaluate FC of the PMC across different brain regions, and to evaluate the 

relationship between FC and altered structural, neurochemical, and clinical measures. 
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5.4. Methods 

5.4.1.Study design and participants  

A prospective, multicenter magnetic resonance imaging (MRI) study was conducted at academic 

hospitals affiliated with universities at five centers located in Edmonton (University of Alberta), 

Calgary (University of Calgary), Montreal (McGill University), Toronto (Sunnybrook Health 

Sciences Centre), and Vancouver (University of British Columbia), as part of the Canadian ALS 

Neuroimaging Consortium (CALSNIC) (Kalra, Khan, et al. 2020). The study was approved by 

research ethics review boards at all participating centers. 

 

Participant demographics and clinical characteristics are shown in Table 1 (and detailed in the 

Results section). Fifty-two patients with ALS were recruited from multidisciplinary ALS clinics at 

all centers. All patients met diagnostic criteria for clinically possible, probable-lab supported, 

probable, or definite ALS according to El Escorial criteria (Brooks et al. 2000). Patients were not 

included in the study if they had a symptom duration more than five years, did not complete 

imaging acquisition for either of the MRI sequences in this study, or presented with co-morbid 

frontotemporal dementia (FTD) or other neurological conditions. Fifty-two healthy controls 

matched for age, sex, and number of years of education, without a history of neurological or 

psychiatric conditions were also recruited into the study. See supplementary section 1 for a 

breakdown of participant numbers by site. Foot tapping frequencies (number of taps per 10 

seconds) were recorded for all participants bilaterally and averaged. This clinical variable was 

selected based on the midline localization of the MRS region of interest, encompassing the foot 

region of the motor homunculus bilaterally. Therefore, the right/left foot tapping frequencies were 

averaged to obtain a single representative measure of UMN function.  

 

Table 1. Participant demographics and clinical characteristics 
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Participant characteristics ALS patients Healthy controls p-value 

Number of participants 52 52   

Sex (n): Male / Female 34 / 18 25 / 27 n.s. 

Age (years)       

  Mean ± SD 58.4 ± 10.0 54.9 ± 9.8 n.s. 

 Median (Range) 57.5 (33.0 – 78.0) 56.0 (29.0 – 69.0)  

Education (number of years)    

 Mean ± SD 15.4 ± 4.0 16.6 ± 3.2 n.s. 

 Median (Range) 15 (4 – 28) 16.25 (11 – 28)  

Onset (n)       

  Limb / Bulbar 42 / 10 -   

El Escorial clinical diagnosis 

category (n) 
      

  Definite ALS 11 -   

  Probable ALS 19 -   

  Probable ALS-lab supported 9 -   

  Possible ALS 12 -   

ALSFRS-R score (/48)       

  Mean ± SD 38.8 ± 5.2 -   
 Median (Range) 40 (22 – 47) -  

Symptom duration (months)       

  Mean ± SD 26.7 ± 14.6 -   
 Median (Range) 21.5 (7.8 – 57.4) -  

Foot tapping frequencies (taps/10s)    

 Mean ± SD 24 ± 15 40 ± 8 < 0.001 

 Median (Range) 23 (0 – 64) 40 (24 – 62)  

ECAS Total (/136)    

 Mean ± SD 102.8 ± 17.7 113.3 ± 10.8 < 0.001 

 Median (Range) 106 (53 – 127) 114 (62 – 134)  
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5.4.2.Image acquisition  

Imaging data were acquired on 3T Siemens scanners at Edmonton (Prisma) and Montreal (Tim 

Trio) using 20- and 32-channel receiving head coils, respectively; on 3T General Electric 

Healthcare (Discovery MR750) scanners at Calgary and Toronto using 12- and 8-channel receiving 

head coils, respectively; and on 3T Philips Achieva scanner at Vancouver using an 8-channel head 

coil receiver.  

 

A multicenter harmonized scanning protocol, adjusted for scanner variances, was employed to 

acquire T1-weighted anatomical MRI, resting-state fMRI (rs-fMRI) of neuronal activity (measured 

indirectly by the blood oxygenation level-dependent effect), DTI, and single-voxel MRS data. For 

anatomical localization and normalization, a high-resolution 3D T1-weighted (T1w) scan of the 

whole brain was acquired. A magnetization-prepared rapid gradient-echo imaging (MPRAGE 

sequence; Repetition time, TR= 2300 ms; Echo time, TE= 3.43 ms; Inversion time, TI= 900 ms; 

flip angle= 9°; field of view, FOV= 256 mm x 256 mm) was used to acquire T1w data with an 

isotropic resolution of 1 mm cubic. Magnetic resonance spectroscopy (MRS) data were acquired 

using a single voxel data acquisition protocol. As described previously (Srivastava et al. 2019), 

anatomical landmarks were used to place the MRS voxel in the left/right foot region of the PMC, 

centered symmetrically along the midline. A stimulated echo acquisition mode (STEAM) sequence 

was performed to acquire water suppressed spectra from the PMC with the following 

specifications: TR = 3,000 ms; TE = 160 ms; mixing time, TM = 40 ms; two acquisitions of 32 

signal averages each. Whole-brain 3D T2*-weighted rs-fMRI data was acquired using an echo-

planar imaging (EPI) pulse sequence with an isotropic resolution of 3.5 mm cubic and the 

following specifications: TR = 2,200 ms; FOV = 224 × 224 × 64 matrix; 40 slices, 192 trains; 

acquisition time = ~7 minutes. Participants were instructed to lie still with their eyes closed during 

the rs-fMRI scan. A 2D spin-echo, single-shot, EPI pulse sequence was used for the acquisition of 

diffusion-weighted images axially with the following specifications: TR = 10,000 ms; TE = 90 ms; 

flip angle = 90°; 70 slices; b0 images = 5; diffusion gradient directions = 30; steady magnetization, 

b0 = 1,000 s/mm2; voxel size = 2 mm cubic. The parameters mentioned above are for the Siemens 

systems. MRI data acquired on the General Electric and Philips systems were harmonized to the 
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Siemens data with slight differences specific to the scanner manufacturer (Kalra, Khan, et al. 

2020). Harmonization of MRI parameters was further ensured by scanning a set of participants 

twice at each scanner to ascertain test-retest and multicenter reliability (Ta et al. 2021).  

 

5.4.3.Image processing 

See figure 1 for an overview of the processing pipeline used in this study. The details of data 

processing for the different MRI modalities are discussed in the following sections. 

 

5.4.3.1. Magnetic resonance spectroscopy  

Magnetic resonance spectroscopy is an imaging technique that has been important to the study of 

neurological disorders. Metabolites such as N-acetyl aspartate (NAA) and NAA glutamate 

(NAAG), collectively referred to as total NAA (tNAA) moieties, provide an important marker of 

neuronal integrity (Kalra 2019). Ratios of tNAA to creatine (Cr), choline (Cho), or a combination 

(Cr+Cho) have been consistently shown to be reduced in the PMC and corticospinal tract regions, 

as well as in other extra-motor brain regions (Kalra 2019). Based on the consistency of 

observations of PMC tNAA neurochemistry in the literature, the neurometabolite ratios of interest 

in this study were tNAA/Cr and tNAA/Cho. As described in a previous study (Srivastava et al. 

2019), the proton MRS spectra from the PMC underwent fitting using LCModel (version 6.1). 

Spectra were excluded from further analysis if visual inspection showed data corruption or if a 

standard deviation greater than 15% was obtained from the spectral fit. The peak areas for the 

NAA and NAAG metabolites were summed from the combined gray and white matter tissue 

classes within the MRS voxel to quantify the total amount of N-acetyl aspartyl moieties (tNAA) 

and expressed as ratios to creatine (Cr) and choline (Cho) for statistical analyses. 
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5.4.3.2. Generation of gray and white matter segments within the 

MRS region of interest 

The whole-brain T1-weighted anatomical image underwent segmentation into the gray matter 

(GM), white matter (WM), and cerebrospinal fluid tissue classes using a standard voxel-based 

morphometry pipeline (http://dbm.neuro.uni-jena.de/vbm8/). The obtained whole-brain segments 

for the GM and WM tissue classes underwent voxel-wise matrix multiplication with the MRS 

voxel to generate GM and WM segments for the PMC region of interest, which were used in further 

analyses in the study (Figure 1). Prior to this multiplication, the T1-weighted and MRS voxel 

images of all included participants were inspected manually to ascertain accuracy in voxel-

matching and to ensure that the subsequent FC and DTI analyses were performed in the exact 

anatomical region from which the MRS spectra were obtained. 

 

5.4.3.3. Diffusion tensor imaging 

As described in a previous study (Ishaque et al. 2019), the DTI data were processed using 

ExploreDTI (version 4.8.6). First, a visual quality check was performed to assess for scan quality, 

head motion, signal artifacts. Preprocessing steps included corrections for temporal signal drift 

using quadratic model, Gibbs ringing artifacts (5 non-diffusion-weighted images, lambda = 100, 

iterations = 100, step size = 0.01), head motion, and eddy current-induced geometric distortions. 

In particular, a non-rigid registration of the DTI data to the respective T1-weighted MRI data was 

performed for each participant to correct for EPI distortions. Following this, voxel-wise maps were 

calculated for four diffusion metrics: fractional anisotropy (FA), mean diffusivity (MD), radial 

diffusivity (RD), and axial diffusivity (AD). Subsequently, average values for these diffusion 

measures were estimated for the WM tissue classes within the PMC using the ‘fslmeants’ function 

in FSL (https://fsl.fmrib.ox.ac.uk/fsl). 

 

http://dbm.neuro.uni-jena.de/vbm8/
https://fsl.fmrib.ox.ac.uk/fsl
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5.4.3.4. Functional connectivity analysis for rs-fMRI  

The rs-fMRI images were preprocessed using the functional connectivity toolbox (CONN) based 

on the Statistical Parametric Mapping (SPM) software (version 12, www.fil.ion.ucl.ac.uk/spm). 

The first four points in the time series of collected images were removed for every participant to 

account for the approach to steady state magnetization. The time series data for each participant 

were corrected for differences in image slice acquisition times, followed by realignment for head 

motion within each imaging session and across imaging sessions using a six-parameter rigid body 

transformation algorithm. The mean of the multi-slice rs-fMRI data (temporally averaged across 

the time series) was co-registered to the T1-weighted anatomical MRI data, and the resulting 

transformation matrix was applied to all time points of the rs-fMRI data within each session. Maps 

of FC were calculated in the ‘native’ anatomical space prior to transformation. Temporal 

correlations were performed voxel-wise between the rs-fMRI signal time-course of the PMC and 

other GM brain voxels to generate FC maps, using the PMC as a seed. A binary cutoff threshold 

was set at a Pearson correlation coefficient r ≥ 0.25 (Buckner et al. 2009) to identify strongly 

correlated voxel pairs, as a proxy to brain regions depicting high levels of functional integration. 

The FC maps generated in the individual native space underwent normalization to the Montreal 

Neurological Institute (MNI) template (Collins et al. 1992) space and smoothing with a Gaussian 

smoothing kernel of 8 mm full width at half-maximum. 

 

http://www.fil.ion.ucl.ac.uk/spm
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Figure 1. Overview of the processing pipeline. Spectral signatures of neurometabolites of interest 

were obtained from the PMC (MRS) voxel. The MRS voxel underwent segmentation into gray 

and white matter tissue classes, which respectively underwent analyses of functional connectivity 

and diffusion tensor imaging. 

 

5.4.4.Rs-fMRI, MRS, and DTI statistical analyses 

Statistical plan: All generalized linear models (GLM) utilized the available software routines in 

SPM12 and included CALSNIC center of data acquisition as a ‘factor’ in the statistical model. 

Significance for all analyses in SPM12 was set at a cluster threshold of k = 25 voxels (obtained 

after performing Monte-Carlo simulations for 5000 iterations and plocal = 0.001, pglobal = 0.05 using 

a code developed in-house (Chenji et al. 2016). Significance for all analyses in SPSS was set at p 

< 0.05. 
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The following sections describe the statistical analyses performed in this study: 

a) Group differences in resting-state FC: A univariate full factorial GLM was used in SPM12 to 

examine group differences in FC of the PMC with other brain regions. Diagnosis was included 

as a factor in the GLM in addition to the CALSNIC center of data acquisition. Age, sex, and 

number of years of education had no influence on FC differences, so these variables were 

removed from the model to allow for an increase in the degrees of freedom.  

b) Group differences in diffusion and neurochemical measures: A univariate analysis of variance 

full factorial model was used in SPSS to examine group differences in the average GM and 

WM diffusion metrics (FA, MD, RD, AD) and neurochemical levels (tNAA/Cr, tNAA/Cho) 

within the PMC across the two groups. Site-wise scatterplots of the data were generated to test 

for any outliers in the data to be eliminated in further statistical analyses.  

c) Relationship between diffusion and neurochemical measures & UMN dysfunction: The 

structural and neurochemical measures which revealed significant between-group differences 

underwent bivariate Pearson’s correlational analyses with UMN measures in SPSS for the 

patient group. This was performed to identify the structural and neurochemical measures that 

were related to clinical UMN dysfunction. The imaging measures showing correlations with 

clinical variables were used in further analyses (see the next section).  

d) Relationship between structural and neurochemical measures and FC differences in ALS: The 

structural and neurochemical measures showing significant correlations with UMN 

dysfunction were modelled as independent variables in a univariate full factorial GLM 

including CALSNIC center of data acquisition as a factor. Subsequent bivariate correlational 

analyses were performed in SPM12 to examine the associations between these imaging 

measures and FC differences.  

e) Relationship between UMN dysfunction and FC differences in ALS: Foot tapping was 

modelled as an independent variable in the univariate full factorial model in SPM12 (from 

statistical analyses section 1) and correlational analyses were performed to examine the 

relationship with FC differences. 

f) Relationship between structural, neurochemical, and functional characteristics and the rate of 

functional decline: The revised ALS Functional Rating Scale (ALSFRS-R), a 12-question self-

administered questionnaire (maximum score = 48), was used to calculate the rate of functional 
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decline in ALS patients using the formula (48-ALSFRS-R score)/symptom duration. To 

ascertain the relationship between the rate of functional decline and MRI measures in the PMC, 

two sets of correlations were performed: 

i. Bivariate Pearson’s correlational analyses between spectroscopy, diffusion measures and 

disease progression rate (SPSS) 

ii. Group-wise FC and disease progression rate (SPM12) 

 

5.5. Results 

5.5.1.Demographic and clinical characteristics of the sample 

All patients in our study had a confirmed diagnosis of ALS and were matched with healthy controls 

on the basis of age and sex. Patients had an average symptom duration of 26.7 months and a mean 

ALSFRS-R score of 38.8/48, with forty-two patients having limb-onset ALS. Foot tapping 

frequencies were significantly reduced in ALS (Mean ± S.D. = 24 ± 15) compared to healthy 

controls (Mean ± S.D. = 40 ± 8). The score obtained on the Edinburgh Cognitive and Behavioral 

ALS Screen (ECAS) Total domain were significantly reduced in patients (Mean ± S.D. = 103 ± 

18) compared to healthy controls (Mean ± S.D. = 113 ± 11) (Table 1). In terms of UMN 

involvement at the level of the lower limbs, as assessed on neurological examination, hyperreflexia 

was observed in 48/52 patients, spasticity was observed in 21/52 patients, and the Babinski sign 

was observed in 15/52 patients at the time of data acquisition.  

 

5.5.2.Group differences in resting state FC 

The PMC of ALS patients showed reduced FC with regions in adjacent bilateral premotor cortices 

and supplementary motor areas (cluster extent, k = 48, T = 4.50), bilateral primary sensory cortices 

(k = 95, T = 5.21), right putamen (k = 34, T = 4.03), right temporal pole (k = 38, T = 3.80), and 

right inferior frontal gyrus (k = 34, T = 3.70) (Figure 2, Table 2). 
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Table 2. Differences in resting-state FC. T-values and coordinates in MNI standard space are 

reported (T; x,y,z). R = right, B = bilateral, BA = Brodmann area, MNI = Montreal Neurological 

Institute. 

Brain region 
Brodmann 

area 

Number of 

voxels in the 

cluster 

Peak MNI coordinates 

T-value 
x y z 

 
Reduced FC in ALS (contrast ALS < HC) 

B primary sensory 

cortex 
BA 1 95 -12 -40 77 5.21 

B premotor + 

supplementary 

motor area 

BA 6 48 36 -4 59 4.60 

R putamen - 34 30 5 2 4.03 

R temporal pole BA 38 38 45 8 -25 3.80 

R inferior frontal 

gyrus 
BA 47 34 18 20 -28 3.70 

Increased FC in ALS (contrast ALS > HC) 

- No suprathreshold clusters - 
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Figure 2. Functional connectivity of the primary motor cortex is reduced in ALS. L = left, R = 

right, A = anterior, P = posterior. 

 

5.5.3.Group differences in diffusion and neurochemical measures in the 

primary motor cortex  

Neurochemical ratios in the PMC were reduced for tNAA/Cr (p < 0.001) and tNAA/Cho (p = 

0.017) in ALS when compared to HCs. For the DTI measures, FA (p < 0.001), MD (p < 0.001), 

and WM (p = 0.022) values were increased in the WM (Table 3).  

 

Table 3. Summary of structural and neurochemical measures in the PMC. FA = fractional 

anisotropy, MD = mean diffusivity, RD = radial diffusivity, AD = axial diffusivity, tNAA = total 

NAA moieties, Cr = creatine, Cho = choline, SE = standard error. MD, RD, AD are x 10-3 mm2/s  
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Imaging metric Mean ± SE p-value 

 ALS HC  

Neurochemical ratios 

tNAA/Cr 1.88 ± 0.03 2.05 ± 0.03 < 0.001 

tNAA/Cho 2.44 ± 0.14 2.94 ± 0.14 0.017 

Diffusion in PMC WM 

FA  0.38 ± 0.00 0.41 ± 0.00 < 0.001 

MD  (0.80 ± 0.01)  (0.77 ± 0.01)  < 0.001 

RD  (0.64 ± 0.01)  (0.6 ± 0.01)  0.022 

AD  (1.12 ± 0.01)  (1.12 ± 0.01)  n.s. 

 

5.5.4.Relationship of diffusion and neurochemical measurements with 

UMN function in ALS 

Foot tapping frequencies showed positive significant correlations with FA values in the WM 

(Figure 3(a), r = 0.537, p < 0.001) and tNAA/Cr levels (Figure 3(b), r = 0.347, p = 0.023) in the 

PMC of the ALS cohort.  
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Figure 3. Correlations between foot tapping frequency and a) white matter fractional anisotropy 

and b) tNAA/Cr metabolite ratios. 

 

5.5.5.Relationship between diffusion and neurochemical measures & FC 

differences 

Despite WM FA showing stronger associations with clinical UMN impairment compared to 

tNAA/Cr, significant positive and negative associations of FC alterations were observed with 

tNAA/Cr and not WM FA values (Figure 4, Table 4).  

 

Table 4. Regional associations of reduced functional connectivity with PMC neurochemistry and 

FA. T-values and coordinates in MNI standard space are reported (T; x, y, z). L = left, R = right, B 

= bilateral. 

 

Group 

comparison 

Brain region 

(Brodmann area) 

Brodmann 

area 

Type of 

association 
T-value 

Associations between reduced FC and tNAA/Cr ratios 

ALS < HC 

L primary sensory cortex BA 1 

Positive 

5.09 

R primary motor cortex BA 4 4.55 

B premotor + 

supplementary motor area 
BA 6 4.44 

R putamen - 4.10 

R temporal pole - 3.82 

ALS < HC R inferior frontal gyrus BA 47 Negative -4.12 

Associations between reduced FC and WM FA - No suprathreshold clusters 
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Figure 4. Regional associations of reduced functional connectivity with PMC neurochemistry. L = 

left, R = right, A = anterior, P = posterior. 

 

5.5.6.Relationship between UMN function and FC reductions 

There were no associations between foot tapping frequencies and FC alterations.  

 

5.5.7.Relationship between structural, neurochemical, and functional 

connectivity measures and the rate of functional decline in ALS 

There were no associations between rate of functional decline and structural or neurochemical 

measures of the PMC. A positive association was observed between the rate of functional decline 

and FC of the PMC with the right dorsal anterior cingulate cortex (BA 32; k = 343; T = 4.49) and 

the left thalamus (k = 51; T = 4.40). A negative association was observed between the rate of 

functional decline and FC of the PMC with the right ventral anterior cingulate cortex (BA 24; k = 

244; T = 4.95), left dorsolateral prefrontal cortex (BA 9; k = 28; T = 3.92), and right ventral 
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posterior cingulate cortex (BA 23; k = 25; T = 3.62). When comparing ALS and HC cohorts, neither 

of these brain regions showed alterations in FC with the PMC. 

 

5.6. Discussion 

The present study sought to identify the effects of underlying diffusion and neurochemical deficits 

on PMC FC, and how these effects relate to clinical impairment in ALS. The main findings of the 

study are that FC of the PMC is reduced with multiple regions of the brain, the structural and 

neurochemical deficits in the PMC are associated with UMN dysfunction, and impaired PMC FC 

is related to altered neurochemistry but not white matter microstructure. 

 

The majority of studies on resting-state fMRI in ALS have reported heterogeneous findings of 

altered FC within and between different resting-state networks, specifically the default mode and 

sensorimotor networks (Agosta et al. 2013a; Chenji et al. 2016; X. Fang et al. 2016; Mohammadi 

et al. 2009). In whole-brain resting-state fMRI studies that assessed other measures of resting brain 

function (e.g., regional homogeneity, fractional amplitude of low frequency fluctuations, etc.), 

altered function was identified in the motor and extra-motor brain regions (Bueno et al. 2019; Zhou 

et al. 2014). In region-of-interest-based studies on resting-state FC, reduced FC between the right 

and left motor cortices (Verstraete et al. 2010), altered FC of the motor cortex with other motor 

regions (superior parietal lobule, thalamus, basal ganglia, cerebellum) (Zhou et al. 2013), and 

altered FC of the motor cortex with extra-motor regions (superior frontal and temporal cortices) 

(Cheng et al. 2021) have been reported. The findings from the current study (Table 2) are congruent 

with these findings in ALS literature.  

 

Multimodal MRI has been previously used to identify the neurobiological changes underlying 

impaired cerebral function. Such studies have revealed structural-functional congruence in 

impairment between motor connectivity and WM structure (Qiu et al. 2019; Schmidt et al. 2014; 
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J. Zhang et al. 2017) that relates to clinical measures (Douaud et al. 2011; Verstraete et al. 2010) 

(e.g., ALSFRS-R scores, disease progression rates). These studies assessed the co-occurrence of 

functional and structural but not neurochemical alterations – an investigation that has been 

conducted for the first time in the present study. Additionally, none of the aforementioned studies 

considered the somatotopic organization of the PMC in their interpretation of FC alterations in 

terms of clinical outcome measures. In the current study, the seed region was strategically defined 

in the foot region of the motor homunculus. The subsequent finding of the association between FC 

alterations and neurochemical concentrations in the PMC (Table 4) is important for enhanced 

understanding of the diverse nature of ALS disease pathology.  

 

Previously, structural-functional decoupling and the heterogeneity of its occurrence has been 

postulated in multiple disease pathologies. Decoupling, in the context of cerebral connectivity, 

refers to the dissociation between functional and structural connectivity abnormalities in a disease-

specific state (Skudlarski et al. 2010; Z. Zhang et al. 2011). In other words, decoupling simply 

refers to the co-occurring and/or sequential alterations in brain function and structure. For example, 

brain structural alterations preceding functional changes have been implicated cross-sectionally in 

major depressive disorder (Yao et al. 2019), in Parkinson’s disease with no cognitive impairment 

(Rektor et al. 2018), and longitudinally in multiple sclerosis (Koubiyr et al. 2019). In contrast, 

functional alterations have been shown to precede structural changes in Alzheimer’s disease (Lu 

et al. 2019). In patients with idiopathic Parkinson’s disease, differential atrophy patterns in 

hippocampal subfields have been reported to precede their phenotypic diagnostic conversion to 

Parkinson’s disease dementia (Low et al. 2019), suggesting that structural changes occur before 

impairment of clinically-defined cognitive functioning. In this study, no such evidence of 

sequential structure-function decoupling was observed. 

 

Instead, we observed neurochemical-functional decoupling in relation to UMN impairment. To our 

best knowledge, there is no functional MRI evidence of neurochemical-functional decoupling in 

neurodegenerative disorders in humans. Of the three imaging measures investigated (FC, FA, and 
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tNAA/Cr), FA and tNAA/Cr levels were found to correlate strongly with clinical UMN 

impairment, but not FC. Furthermore, the relationship between FC reductions and tNAA/Cr 

concentrations, but not of FC reductions and WM FA, could suggest that in terms of imaging 

identifiers of clinical impairment, alterations in neurochemical properties of the PMC might be an 

earlier occurrence in ALS pathophysiology and be more sensitive towards probing the functional 

underpinnings of ALS. The present work also observed changes in the underlying brain tissue 

microstructure which correlated with clinical impairment. However, the lack of associations 

between these microstructural changes and FC alterations suggests that neurochemical changes 

might even precede structural changes and translate to alterations in brain function and clinical 

outcomes. However, such chronology of cerebral changes cannot be confidently inferred through 

a cross-sectional study, presenting the need to perform a longitudinal characterization of cerebral 

changes.  

 

The present study benefits from a harmonized and multimodal MRI acquisition protocol across 

different ALS populations in Canada. This enables us to study different patient cohorts with 

varying clinical phenotypes of disease pathology across a multicenter cohort. This can provide a 

better understanding of the core neuronal processes that underlie cortical dysfunction in ALS. 

Additionally, harmonized imaging protocols can help reduce MRI system-related variance and 

increase statistical power (George et al. 2020). Another advantage of the present study is a 

localized, hypothesis-driven approach to uncover the diffusion and neurochemical signatures of 

altered function. This lowers the possibility of interpreting ALS disease pathology incorrectly by 

eliminating erroneous observations. 

 

Heterogeneity of ALS, in terms of its clinical presentation and the underlying neurobiology, poses 

a challenge for scientific study of this complex disorder. Different genetic variants correlate with 

different clinical presentations of ALS (Brown and Al-Chalabi 2017). A limitation of the current 

study is that genetic information was not available for all patients. However, the present study 

controlled for heterogeneity to some extent by including patients who had a symptom duration of 
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no more than 5 years (Brown and Al-Chalabi 2017) and who did not previously receive a diagnosis 

of other neurological conditions such as FTD. Approximately 50% of patients presenting to a clinic 

with an El Escorial designation of suspected ALS can present with varying cognitive and 

behavioural impairments (Strong et al. 2017). Notably, there was no control for cognitive 

impairment as, even in patients presenting primarily with motor symptoms, brain regions outside 

the motor network could be affected (Christidi et al. 2018). Another limitation of this study could 

be the lack of control for the potential pharmacodynamic impact of Riluzole therapy, a glutamate 

agonist, on in vivo imaging features. Previously, Riluzole therapy has been shown to prolong 

survival (Bensimon, Lacomblez, and Meininger 1994) and in a small cohort to improve the 

concentrations of NAA after approximately 3 weeks of treatment (Kalra et al. 1998); however, the 

long term effects on NAA are unknown.  

 

In conclusion, this study has shown that reduced functional connectivity of the motor cortex in 

ALS is linked to the local concentrations of N-acetyl aspartate. This highlights the importance of 

assessment of in vivo neurochemistry as an early pathophysiological marker of PMC functional 

changes in the characterization of ALS disease pathology. Based on the findings from this study, 

it could be helpful to include MRS of N-acetyl aspartate moieties within the PMC in relevant 

research protocols and in the investigation of patients with suspected ALS. However, we recognize 

that MRS can be more logistically challenging in a clinical setting because of the technical 

expertise required by the MRI system operator to accurately prescribe the MRS voxel. Future 

research studies could explore the functional, neurochemical, and structural dynamics of the PMC, 

longitudinally and also in relation to Riluzole therapy. Such studies could aim to explore in greater 

depth neurochemical contributions to functional impairment and cortical excitability, for example, 

with the use of MRS to quantify levels of excitatory and inhibitory neurotransmitters, as well as 

techniques such as transcranial magnetic stimulation and positron emission tomography to 

quantify cortical motor neuron excitation and glucose metabolism respectively.  
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5.7. Supplementary 

A subgrouping analysis was performed in ALS patients with regions of onset in the bulbar and 

limb regions (Bulbar-onset ALS, Limb-onset ALS). Diffusion and spectroscopy measures were 

characterized for the two groups separately, and no differences in measurements were observed 

across the two patient cohorts. When comparing FC of the PMC between Bulbar- and Limb-onset 

ALS, no differences in FC were observed. We then investigated whether there were any differences 

in FC when each group was compared to HCs, and if these differences were congruent with group-

level differences observed when comparing ALS to HCs (Table 2). 

 

5.7.1.Bulbar-onset ALS vs HC 

S1. Demographic and clinical characteristics 

Participant characteristics Bulbar-onset ALS  Healthy controls p-value 

Number of participants 10 52  

Sex (n): Male / Female 7 / 3 25 / 27 n.s. 

Age (years)    

 Mean ± SD 56.3 ± 10.3 54.9 ± 9.8 n.s. 

 Median (Range)  (41.0 – 72.0) 56.0 (29.0 – 69.0)  

Education (number of years)    

 Mean ± SD 16.8 ± 4.5 16.6 ± 3.2 n.s. 

 Median (Range)  (12 – 25) 16.25 (11 – 28)  

ALSFRS-R score (/48)    

 Mean ± SD 38.3 ± 6.1 -  

 Median (Range) (25 – 45) -  

Symptom duration (months)    

 Mean ± SD 21.3 ± 12.1 -  

 Median (Range) (9 – 43) -  

Foot tapping frequencies (taps/10s)    

 Mean ± SD 31 ± 21 40 ± 8 0.047 

 Median (Range) (0 – 64) 40 (24 – 62)  

ECAS ALS Specific (/100)    

 Mean ± SD 79.0 ± 14.1 84.9 ± 9.0 n.s. 
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 Median (Range) (46 – 95) 87 (40 – 98)  

ECAS Total (/136)    

 Mean ± SD 109 ± 15 113.3 ± 10.8 n.s. 

 Median (Range) (78 – 127) 114 (62 – 134)  

 

S2. Differences in resting state FC between Bulbar-onset ALS and HC 

 

Figure S1. FC of the PMC in Bulbar-onset ALS. The colour bars represent the SPM(T) statistic for 

increased and reduced FC. Colour bars represent the SPM(T) statistic for each map across the 

whole brain ranging from lowest (blue) to the highest (red). See Table S2 for details on the cluster 

extents and locations. L = left, R = right, A = anterior, P = posterior.  

 

Table S2. Differences in resting-state FC between Bulbar-onset ALS and HC. T-values and 

coordinates in MNI standard space are reported (T; x,y,z). R = right, L = left, BA = Brodmann area, 

MNI = Montreal Neurological Institute. 

Brain region 
Brodmann 

area 

Number of 

voxels in the 

cluster 

Peak MNI coordinates 
T-value 

x y z 
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Increased FC in Bulbar-onset ALS (contrast Bulbar-onset ALS > HC) 

L visual 

association cortex 
BA 19 59 -6 -88 32 4.70 

R secondary visual 

cortex 
BA 18 45 27 -94 17 4.23 

Reduced FC in Bulbar-onset ALS (contrast  Bulbar-onset ALS < HC) 

L superior parietal 

lobule 
BA 7 261 -33 -76 50 -4.86 

L frontal eye fields BA 8 31 -30 26 59 -4.90 

R angular gyrus BA 39 27 36 -73 44 -4.38 

 

S3. Group differences in diffusion and neurochemical measures in the primary motor cortex in 

Bulbar-onset ALS 

Imaging metric Mean ± SE p-value 
 Bulbar-onset ALS HC  

Neurochemical ratios 

tNAA/Cr 1.9 ± 0.08 2.05 ± 0.02 0.003 

tNAA/Cho 2.34 ± 0.16 2.91 ± 0.21 n.s. 

Diffusion in PMC WM 

FA  0.37 ± 0 0.41 ± 0 0.003 

MD  (0.79 ± 0) (0.76 ± 0)  0.006 

RD  (0.64 ± 0)  (0.62 ± 0)  n.s. 

AD  (1.11 ± 0)  (1.1 ± 0)  n.s. 

 

S4. Relationship of diffusion and neurochemical measurements with UMN function in Bulbar-

onset ALS 

Variable 
Foot tapping frequencies 

Pearson’s r p 

Neurochemical ratios 

tNAA/Cr 0.717 0.045 

tNAA/Cho 0.601 n.s. 

Diffusion in PMC WM 

FA 0.710 0.049 

MD -0.141 n.s. 
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RD -0.315 n.s. 

AD 0.266 n.s. 

 

S5. Relationship between diffusion and neurochemical measures & FC differences in Bulbar-

onset ALS 

 

Figure S2. Positive regional associations of reduced functional connectivity with PMC 

neurochemistry and WM diffusion. Colour bars represent the positive SPM(T) statistic for each 

map (red to yellow). See Table S5 for details on the cluster extents and locations. 
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Table S5. Regional associations of reduced functional connectivity with PMC neurochemistry in 

Bulbar-onset ALS compared to HC. T-values and coordinates in MNI standard space are reported 

(T; x, y, z). L = left, R = right. 

Group 

comparison 

Brain region 

(Brodmann area) 

Brodmann 

area 

Type of 

association 
T-value 

Associations between reduced FC and tNAA/Cr ratios 

Bulbar-onset 

ALS < HC 

R angular gyrus BA 39 

Positive 

4.78 

L frontal eye fields BA 8 4.09 

Associations between reduced FC and FA WM values 

Bulbar-onset 

ALS < HC 
L superior parietal lobule BA 7 Positive 4.29 

 

5.7.2.Limb-onset ALS vs HC 

S6. Demographics and clinical characteristics 

Participant characteristics Limb-onset ALS  Healthy controls p-value 

Number of participants 42 52  

Sex (n): Male / Female 27 / 15 25 / 27 n.s. 

Age (years)    

 Mean ± SD 58.9 ± 10.0 54.9 ± 9.8 n.s. 

 Median (Range)  (33.0 – 78.0) 56.0 (29.0 – 69.0)  

Education (number of years)    

 Mean ± SD 15.0 ± 3.8 16.6 ± 3.2 0.033 

 Median (Range)  (4 – 28) 16.25 (11 – 28)  

ALSFRS-R score (/48)    

 Mean ± SD 39.0 ± 5.0 -  

 Median (Range) (22 – 47) -  

Symptom duration (months)    

 Mean ± SD 27.9 ± 15.0 -  

 Median (Range) (8 – 57) -  

Foot tapping frequencies (taps/10s)    
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 Mean ± SD 23 ± 13 40 ± 8 < 0.001 

 Median (Range) (0 – 50) 40 (24 – 62)  

ECAS ALS Specific (/100)    

 Mean ± SD 74.0 ± 16.0 84.9 ± 9.0 < 0.001 

 Median (Range) (29 – 95) 87 (40 – 98)  

ECAS Total (/136)    

 Mean ± SD 102 ± 18 113.3 ± 10.8 < 0.001 

 Median (Range) (53 – 127) 114 (62 – 134)  

 

S7. Differences in resting state FC between Limb-onset ALS and HC 

 

Figure S3. FC of the PMC in Limb-onset ALS. The colour bar represents the SPM(T) statistic for 

reduced FC. Colour bars represent the SPM(T) statistic for each map across the whole brain 

ranging from lowest (blue). See Table S7 for details on the cluster extents and locations. L = left, 

R = right, A = anterior, P = posterior.  

 

Table S7. Differences in resting-state FC between Limb-onset ALS and HC. T-values and 

coordinates in MNI standard space are reported (T; x,y,z). R = right, L = left, BA = Brodmann area, 

MNI = Montreal Neurological Institute. 
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Brain region 
Brodmann 

area 

Number of 

voxels in the 

cluster 

Peak MNI coordinates 

T-value 
x y z 

 
Reduced FC in Limb-onset ALS (contrast Limb-onset ALS < HC) 

L primary sensory 

cortex 
BA 1 448 -12 -40 77 5.81 

R superior frontal 

gyrus 
BA 6 329 18 -7 77 5.67 

R putamen - 133 30 5 2 4.40 

 

S8. Group differences in diffusion and neurochemical measures in the primary motor cortex in 

Limb-onset ALS 

Imaging metric Mean ± SE p-value 
 Limb-onset ALS HC  

Neurochemical ratios 

tNAA/Cr 1.91 ± 0.04 2.05 ± 0.02 < 0.001 

tNAA/Cho 2.51 ± 0.08 2.91 ± 0.21 n.s. 

Diffusion in PMC WM 

FA  0.38 ± 0 0.41 ± 0 < 0.001 

MD  (0.79 ± 0)  (0.76 ± 0)  < 0.001 

RD  (0.6 ± 0)  (0.6 ± 0)  0.046 

AD  (1.1 ± 0)  (1.1 ± 0)  n.s. 

 

S9. Relationship of diffusion and neurochemical measurements with UMN function in Limb-onset 

ALS 

Variable Foot tapping frequencies 

Pearson’s r p 

Neurochemical ratios 

tNAA/Cr 0.261 n.s. 

tNAA/Cho 0.252 n.s. 

Diffusion in PMC WM 

FA 0.492 0.002 

MD -0.269 n.s. 

RD -0.227 n.s. 

AD 0.028 n.s. 
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S10. Relationship between diffusion and neurochemical measures & FC differences in Limb-onset 

ALS 

There were no regional associations of FC reductions with PMC neurochemical and WM diffusion 

measures in limb-onset ALS.  

 

S11. Assessment of whether correlations in Table 4 in the main document are driven by either ALS 

subgroup (Limb-onset ALS or Bulbar-onset ALS) 
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5.7.3.Conclusion 

Due to the low sample size of ALS patients with bulbar-onset disease and no correlations between 

diffusion & neurochemical measures with FC differences in ALS patients with limb-onset disease, 

it is difficult to reliably interpret the findings in terms of the disease pathology. To ascertain 

whether the findings in the main study were driven by bulbar-onset ALS patients, we looked at the 

correlation plots between foot tapping frequencies and WM FA, tNAA/Cr. We did not observe any 

such evidence. 
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Chapter 6: General discussion 

 

The objective of this thesis was to characterize markers of cerebral impairments in early 

pathophysiological disease in ALS. This could provide a better understanding of the distinctiveness 

of disease mechanisms in early and advanced disease and provide a step towards bridging the gap 

in understanding of the coherence between biological and clinical characterizations of the ALS 

disease process. This could allow physicians to accurately diagnose and stage ALS patients, 

making it possible for them to follow a personalized treatment strategy. Such personalized 

treatments could improve clinical function for patients as well as improve quality-of-life for 

patients and their caregivers. However, as such characterization of early disease markers is 

hindered by an inadequate understanding of disease mechanisms as well as the use of clinical 

function measures to assess disease severity, this thesis aimed to undertake an assessment of 

clinical and biological characteristics of the ALS disease process in patients experiencing different 

extents of disease severity. Patients were subgrouped based on two major classes of stratification 

criteria: imaging-derived (data-driven) and clinically-defined criteria. An assessment of the 

clinical and neuroimaging (resting-state functional activation and connectivity) features for these 
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patients was performed at baseline and longitudinal evaluations, following which an assessment 

of the cerebral neuroanatomical features (structure and chemical concentrations) was performed 

to identify the biology underlying functional impairment of cerebral resting-state networks.  

 

In chapter 2, two distinct patient subgroups were identified using imaging-derived subgrouping. 

These patient subgroups were distinct in terms of their clinical and resting-state network 

characteristics. The spatial extents of alterations in network connectivity between imaging-derived 

patient subgroups were greater than that between patients identified using clinically-defined 

subgrouping criteria. These findings would suggest that imaging-derived measures were more 

sensitive to interindividual similarities in cerebral disease pathophysiology across patients as 

compared to clinically-defined measures, and therefore can be considered as a viable method for 

patient stratification in clinical drug trials. Additionally, this chapter utilized a template-based 

rotation (Schultz et al. 2014) analysis method to obtain maps of functional connectivity. An 

advantage of this method is that it is able to use external templates that are derived from a larger 

healthy population than that in the current study to estimate functional connectivity, as opposed to 

other existing methods. This helps in the removal of sample size requirements (to generate group-

specific templates) and makes it possible to process single-subject data (due to the inversion of 

directionality when predicting functional connectivity maps at an individual level) while also 

maintaining spatial and temporal coherence between components. This is the first time in ALS 

literature that the template-based rotation method has been utilized for the estimation of distinct 

resting-state networks of the human connectome.  

 

Chapter 3 aimed to evaluate disease evolution patterns at the level of cerebral networks in 

clinically-defined patient subgroups (identified in Chapter 2). Specifically, the aim was to examine 

whether clinically-defined patient subgrouping criteria were sensitive to the identification of 

longitudinal alterations in functional connectivity despite their non-sensitivity to the identification 

of functional connectivity alterations at baseline (as outlined in Chapter 2). Of the three applied 

clinically-defined criteria , Criteria 1 (devised on the clinical trial criteria for Riluzole) was able to 
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identify longitudinal functional connectivity impairments across patient subgroups in brain regions 

underlying motor encoding (action observation and motor imagery) and working memory. While 

Criteria 3 (based on the median disease progression rate of the complete ALS cohort) was able to 

identify functional connectivity alterations in brain regions subserving motor imagery, Criteria 2 

(devised on clinical trial criteria for Edaravone) was unable to identify any differences in functional 

connectivity across subgroups. Therefore, Criteria 1 seemed to show the greatest sensitivity in the 

identification of longitudinal functional connectivity alterations across multiple networks. This 

study also further dissected the progressive dependence of the primary motor cortical regions on 

the premotor and supplementary motor areas as an adaptive response to the impairment of motor 

cortical function, potentially adding more granularity to the understanding of disease spreading 

mechanisms in ALS.  

 

Chapter 4 aimed to evaluate disease evolution patterns at the level of cerebral networks in imaging-

derived patient subgroups (identified in Chapter 2). Specifically, the aims were to assess whether 

disease evolved differently in the two patient subgroups and whether the postulated disease 

evolution patterns at baseline were in accordance with actual patterns of disease evolution. The 

study observed patients in Subtype 1 to have a more severe disease compared to patients in Subtype 

2 based on longitudinal disease evolution, similar to the observations at baseline. While Subtype 

1 patients were observed to have a predominantly motor phenotype of longitudinal change, 

Subtype 2 patients had an additional frontotemporal pattern of change. As patients with early 

manifestation of cognitive decline tend to drop out of longitudinal studies as shown in ALS (Chiò 

et al. 2019b), it might be possible that the longitudinal patterns of alterations and their 

corresponding clinical manifestations follow the same trajectory in both groups of patients, albeit 

with differences in the rates of the incidence of progressive changes. Due to the established 

correspondence in the literature between motor and cognitive impairments, and evidence from the 

current study, it seems apparent that monitoring the neuroanatomical health of neurons constituting 

the motor network might be beneficial towards providing insights into the disease process and in 

the potential development of a biomarker.  
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Chapter 5 aimed to uncover the neuroanatomical features that were associated with functional 

connectivity impairments of the primary motor cortex in ALS. Of the two neuroanatomical 

measures assessed (i.e., neurochemical concentrations and diffusion properties), both were 

correlated with clinical measures of upper motor neuron function, while only neurochemical 

concentrations were associated with functional connectivity alterations of the primary motor 

cortex. The findings of this study suggest that it is important to identify methods to improve the 

concentrations of N-acetyl aspartate (NAA) in the primary motor cortex early in the disease 

process, as this neurochemical seems to have a direct correlation with functional connectivity 

impairments of the primary motor cortical network. Potentially, based on the findings of this study, 

for motor network connectivity to undergo a smaller spatial extent of functional connectivity 

impairments, the concentrations of this neurochemical would need to be higher – perhaps alluding 

to the neuroprotective effects of NAA. Previously in the literature, increased spatial extent of 

activation was observed outside the primary motor cortical regions during the execution of a motor 

task (Mohammadi et al. 2011). Given the coherence in findings of the current thesis and previous 

studies in the literature, it might be prudent to extend the improvement of NAA using targeted drug 

therapies to people who are at risk of developing ALS. This could include first-degree relatives of 

patients with ALS, and potentially other related neurodegenerative conditions such as patients with 

diagnoses belonging in the frontotemporal dementia spectrum.  

 

There is evidence of various modes of therapeutic interventions leading to improvement of motor 

function at the level of the upper motor neurons. For example, administration of noradrenergic 

enhancing drugs has been shown to improve motor performance, reduce the intrinsic activation of 

the motor network and the degree of functional connectivity alterations of the motor network (L. 

E. Wang et al. 2011). In patients with moderate-to-severe upper limb impairments, motor imagery 

training has been shown to reduce compensatory reorganization of the motor network and protect 

against ipsilateral alterations in motor functional connectivity resulting in improved motor 

outcomes (H. Wang et al. 2023). The utilization of brain-computer interfaces for 12 weeks has 

been shown to result in a decrease in motor network hyperactivation and the spatial extent of motor 

functional connectivity impairments (Humphries et al. 2022). Different modes of therapeutic 
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interventions previously published or based on the findings of Chapter 5 in this thesis, included as 

part of the standard-of-care of patients with ALS, might be helpful in improving clinical and 

neurological functional outcomes and potentially help improve patient survival while maintaining 

a better quality of life.  

 

Despite the findings presented in this thesis, there are some limitations, in the current thesis and 

the literature in general, that need to be addressed. The first is the non-comparability of baseline 

and longitudinal functional MRI processing pipelines in terms of data handling. The additive 

effects of the use of baseline and longitudinal ComBat harmonization algorithms can result in 

differences in estimating functional activations within resting-state network. These limitations can 

be mitigated by conducting a step-wise study of these effects on resting-brain function (and 

potentially extended to other modalities) on brains that are scanned more than once. This would 

allow for rigorous quality control at baseline and longitudinally. Although the preprocessing and 

harmonization algorithms would be expected to minimize data manipulation to accurately provide 

relevant  information without introducing more noise, there is a possibility that the differences in 

the methods of handling data by these algorithms could lead to more noisy data. Secondly, despite 

the use of patient subgrouping criteria devised on clinical trial-based patient stratification, an 

investigation of the effects of drug therapies on cerebral function were not conducted in this thesis. 

One major impediment to such investigation is that the mechanism of action of drugs such as  

Riluzole and Edaravone are not completely understood. Therefore, without a hypothesis-driven 

approach to identifying specific effects of these drugs, it would be challenging to examine the 

pharmacodynamic impact of these drugs on cerebral function. Another impediment to such 

investigation is the lack of a prospective, randomized, and controlled evaluation of drug effects on 

cerebral function. Thirdly, due to the lack of an effective clinical or neuroimaging-based biomarker 

of ALS, patients may present with multiple co-occurring pathologies that mimic the symptoms of 

ALS but may not be relevant to ALS. Disorders such as primary lateral sclerosis and progressive 

muscular atrophy are considered to be subtypes of ALS as there is impairment of upper motor 

neurons and lower motor neurons respectively in these conditions. However, co-occurring 

pathologies that mimic the clinical signs of ALS can not be identified until a postmortem 
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evaluation of brain and spinal cord tissue can be conducted. A patient mimicking the clinical signs 

of ALS was identified at the ALS Clinic in Edmonton (case report (Dey et al. 2021)).  

 

In conclusion, the findings of this thesis strongly suggest that patient stratification efforts need to 

conduct objective evaluations of both upper and lower motor neuron function using multimodal 

clinical and imaging approaches, where applicable, in order to stratify their patients. The findings 

of this thesis also suggest the inclusion of imaging-based upper motor neuron measures as tools 

for disease tracking and monitoring in addition to lower motor neuron-driven clinical measures in 

clinical trials.   
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