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Abstract

In this thesis we present approximation algorithms for some multi-processor task scheduling

problems. In a scheduling problem, there is a set of processors P that can be used to process

a set of tasks T and the goal is to find a feasible scheduling of the tasks on the processors,

while optimizing an objective function. In a multi-processor task scheduling problem, tasks

can be executed on several processors simultaneously.

In scheduling problems, tasks can be preemptive or non-preemptive. Preemptive tasks

can be interrupted during their execution and resumed later with no cost. In contrast, a

non-preemptive task cannot be interrupted during its execution. In Chapter 2 we propose

polynomial time algorithms using linear programming to solve the preemptive scheduling

problems for minimizing the maximum completion time, the maximum latency, and the

maximum flow time. In Chapter 3 we consider two non-preemptive scheduling problems:

the problem of minimizing the maximum completion time when tasks have minimum degree

of parallelism, and problem of minimizing the maximum flow time.

In Chapter 4 we consider online scheduling of multi-processor tasks with minimum degree

of parallelism. In online scheduling, the scheduler does not have access to the entire input

instance initially and the scheduler will have access to tasks’ characteristics over time. We

show that it is not possible for an online scheduler to find a feasible scheduling for all input

instances of the problem. We propose a bicriteria (O(logm), 1)-approximation algorithm

for the problem.



Table of Contents

1 Introduction 1
1.1 Multi-processor task scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Notations and Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Approximation algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.2 Linear Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.3 3-Field Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Outline of thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Preemptive Scheduling 9
2.1 Related works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Makespan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Flow time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Non-preemptive scheduling 17
3.1 Related works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 Minimum degree of parallelism . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2.1 Complexity of P |var, sj ,minj |Cmax . . . . . . . . . . . . . . . . . . . 19
3.2.2 Complexity of P |var, lin, sj ,minj |Cmax . . . . . . . . . . . . . . . . . 21
3.2.3 Dynamic programming algorithm for Pm|var, lin, sj ,minj |Cmax . . . 23

3.3 Flow time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3.1 Complexity of P |sizej , rj |Fmax . . . . . . . . . . . . . . . . . . . . . . 29
3.3.2 Bicriteria (1 + ε, O(1/ε))-approximation for P |sizej , rj |Fmax . . . . . 30

4 Online Scheduling 33
4.1 Related works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2 Scheduling of P |online-time, var, lin, sj ,minj |Cmax . . . . . . . . . . . . . . 36
4.3 Lower-bound for processor augmentation . . . . . . . . . . . . . . . . . . . . . 37
4.4 A (O(logm), 1)-competitive algorithm . . . . . . . . . . . . . . . . . . . . . . 39

5 Conclusion 42
5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.2 Direction for Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Bibliography 44



List of Figures

3.1 Scheduling of R ∪ S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.1 Online Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37



Chapter 1

Introduction

Scheduling problems are some of the most well studied problems in computer science, with

applications in computer resource allocation, networks, manufacturing, transport, and many

other areas. In a scheduling problem, there is a set of processors P = {P1, P2, ..., Pm} that

can be used to process a set of tasks T = {T1, T2, ..., Tn}. The goal is to find a feasible

scheduling of the tasks on the processors, while optimizing an objective function.

There are three different processor environments: identical processors, uniform proces-

sors, and unrelated processors. In an identical environment all processors have the same

speed and the processing time of a task is processor independent. So when processors are

identical, the processing time of task Tj can be denoted by pj . In a uniform environment

the speed of processors can be different. In this environment the processing time of task Tj

on processor Pi is pj/si, where si is the speed of processor Pi. In an unrelated environment

the speed of a processor depends on the task it is executing. In unrelated environments we

use pij to denote the processing time of task Tj when it is executed by processor Pi.

In scheduling problems, tasks can be preemptive or non-preemptive. Preemptive tasks

can be interrupted during their execution and resumed later with no extra cost. In contrast,

a non-preemptive task cannot be interrupted during its execution.

Scheduling problems can be divided into two groups: offline problems and online prob-

lems. In offline problems, the scheduler has access to all the characteristics of tasks at the

beginning. But in online problems, the scheduler does not have access to the entire input

instance initially and the scheduler will have access to the tasks’ characteristics over time.

Therefore, the scheduler does not know about the future tasks and should make its decisions

online based on the currently available information.

1.1 Multi-processor task scheduling

With the advent of parallel computing systems, a new type of scheduling called multi-

processor task scheduling emerged. In multi-processor task scheduling problems, the sched-
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uler is allowed to schedule a task on several processors simultaneously. The number of

processors assigned to a task Tj is called its degree of parallelism.

In a multi-processor task scheduling problem, processors can be dedicated or parallel.

Dedicated processors are specialized for specific functionalities. So when processors are ded-

icated, a task may be processed by a specific set or a group of alternative sets of processors.

On the contrary, parallel processors are similar and all processors are capable of processing

all the tasks.

There are two types of multi-processor task scheduling problems for dedicated processors:

• Fixed set: For each task Tj a set Fixj of processors is given. Fixj denotes the subset

of processors required by task Tj . The scheduler should schedule Tj on all of the

processors in Fixj simultaneously. The processing time of Tj is denoted by pj .

• Alternative sets: For each task Tj a set setj of subsets of processors is given and the

scheduler should schedule Tj on all of the processors in one of the subsets in setj

simultaneously. The processing time of Tj is denoted by pj .

There are three types of multi-processor task scheduling problems for parallel processors:

• Rigid tasks: When tasks are rigid, the number of processors required for executing

a task is fixed and given. In these problems we use sizej to denote the number of

processors required by task Tj . Task Tj should be scheduled simultaneously on exactly

sizej processors during its execution. The processing time of Tj is denoted by pj .

• Moldable tasks: When tasks are moldable, the scheduler can schedule a task on any

number of processors, but the number of processors cannot change during the execution

of the task. The execution time of a task depends on the number of processors it is

scheduled on. We denote the execution time of Tj on l processors by pj(l).

• Malleable tasks: When tasks are malleable, the scheduler can schedule a task on

any number of processors and the scheduler is also allowed to change the number

of processors assigned to a task during the execution of the task. We denote the

processing time of task Tj on l processors by pj(l). Which means we can process a

fraction of size 1
pj(l)

of Tj by assigning l processors to Tj in one unit of time.

In moldable and malleable scheduling problems, the processing time of a task depends

on the number of processors assigned to it and it is denoted by a function pj(l). One of the

special cases of this function considered in the scheduling literature is called linear speed-up

function. A processing time function pj(l) is linear if pj(l) = pj(1)/l.
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1.2 Notations and Preliminaries

In this section we introduce some notations used in this thesis. In Section 1.2.1 we give a

brief introduction to approximation algorithms. In Section 1.2.2 we introduce some notations

and definitions about linear programming. Finally in Section 1.2.3 we introduce scheduling

problem notation of Graham et al. [31], extended to include multi-processor task systems.

1.2.1 Approximation algorithms

An optimization problem is the problem of finding a feasible solution with optimum objective

value from a set of feasible solutions. An optimization problem can be defined as a pair

(S, f), where S is the set of feasible solutions and f : S → R is the objective function. If our

goal is to minimize the objective value, we say the problem is a minimization problem and

if our goal is to maximize the objective value, we say the problem is maximization problem.

Many optimization problems are NP-hard and it is not possible to find a polynomial

time algorithm for them unless P=NP. So we try to approximate the solution. We say

an algorithm is an α-approximation algorithm for a minimization problem, if it finds a

feasible solution s in polynomial time such that f(s) ≤ αOPT, where OPT is the optimum

objective value for the problem. Similarly, an α-approximation for a maximization problem

is an algorithm that finds a solution s in polynomial time such that f(s) ≥ OPT
α . Sometimes

α is called the approximation ratio, approximation factor, or performance guarantee.

For NP-hard optimization problems, it is not possible to find a 1-approximation algo-

rithm unless P=NP. For these problems the best we can hope for is a (1 + ε)-approximation

algorithm for an arbitrary small but fixed ε > 0. We say an algorithm is a polynomial

time approximation scheme (PTAS) if for any given fixed constant ε > 0, it finds a feasi-

ble solution s such that f(s) ≤ (1 + ε)OPT in time polynomial in input size (but maybe

exponential in 1
ε ). We say an algorithm is an asymptotic polynomial time approximation

scheme (APTAS) if for any given fixed constant ε > 0, it finds a feasible solution s such that

f(s) ≤ (1+ε)OPT +c in time polynomial in input size (but maybe exponential in 1
ε ), where

c is a constant. An asymptotic fully polynomial time approximation scheme (AFPTAS) is

an APTAS whose time complexity is polynomial in the input size and 1
ε .

For some optimization problems, we may allow an approximation algorithm to violate

some constraints within a factor, to achieve a better approximation ratio. This leads to a

generalization of approximation algorithms. A bicriteria (α, β)-approximation algorithm is

a polynomial time algorithm that finds a solution within a factor α of the optimum solution

and violates a group of constraints within factor β.
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1.2.2 Linear Programming

Linear programming (LP) is a problem that can be expressed in the following form [53].

Minimize

n∑
i=1

cixi

Subject to

n∑
i=1

Ajixi ≥ bj ∀1 ≤ j ≤ m,

xi ≥ 0 ∀1 ≤ i ≤ n,

where x ∈ Rn represents the vector of variables and A ∈ Rm×n, b ∈ Rm, and c ∈ Rn are

fixed known coefficients. The goal is to find a vector x which satisfies the inequalities and

minimizes the objective function.

We say vector x is a feasible solution to the LP if x satisfies all of the constraints. We

say vector x is a Basic Feasible Solution (BFS) if it is a feasible solution and it cannot be

written as a convex combination of two other feasible solutions.

If an LP has a feasible solution, we say the LP is feasible. Otherwise, we say the

LP is infeasible. If an LP is feasible, but the optimum value for the objective function is

unbounded, we say the LP is unbounded. Otherwise, we say the LP has a bounded optimum.

If an LP has a bounded optimum, then there exists a basic feasible solution that attains the

optimum value.

We say an algorithm solves linear programming, if for a given linear program, the algo-

rithm produces a basic feasible solution x minimizing the objective function, or determines

the given LP is infeasible or unbounded. LP can be solved in time polynomial in n and m

using ellipsoid algorithm [32]. In some cases, where there exists a separation oracle for an

LP in time polynomial in n, it is possible to solve the LP in time polynomial in n even if

the number of constraints is very large. A separation oracle is an algorithm that for a given

vector x either determines that x is feasible or returns a violated constraint.

For every linear programming problem, referred to as a primal problem, there is a con-

verted dual problem, which provides a lower bound to the optimum value of the primal

problem. The dual LP has the following form.

Maximize

m∑
j=1

bjyj

Subject to

m∑
j=1

Ajiyj ≤ ci ∀1 ≤ i ≤ n,

yj ≥ 0 ∀1 ≤ j ≤ m.

Every feasible solution for a linear program gives a bound on the optimal value of the

objective function of its dual. There are two fundamental theorems about duality: the weak

duality theorem and the strong duality theorem.
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The weak duality theorem states that the objective function value of the primal LP for

any feasible solution is always greater than or equal to the objective function value of the

dual LP for any feasible solution. In other words every feasible solution of the dual LP can

be used as a bound for the optimal solution of the primal LP and vice versa.

The strong duality theorem states that if the primal has an optimal solution x, then the

dual also has an optimal solution y, and
∑n
i=1 cixi =

∑m
j=1 bjyj . Using this theorem, we

can conclude that we can find the solution of the primal LP by solving the dual LP.

Integer Programming (IP) is presented the same way as linear programming with the

additional constraint that xi should be integer for every 1 ≤ i ≤ n. A large number of

combinatorial optimization problems can be formulated as integer programs. Among them

are NP-complete problems that can be reduced to IP in polynomial time. So the decision

version of integer programming is NP-complete and we cannot solve IP in polynomial time

unless P = NP .

If we relax the constraints that xi should be integer, then we have a linear program. We

call this LP, the LP relaxation of the integer programming. Since every feasible solution

for the integer programming instance is a feasible solution for the LP relaxation, then the

optimum value of LP relaxation provides a lower bound for the optimum value of IP if it is a

minimization problem or an upper bound for the optimum value of IP if it is a maximization

problem.

Given an LP-relaxation for a minimization problem Π , let OPT(I) denote the cost of an

optimal solution to a given instance I of Π , and let OPTf (I) denote the cost of an optimal

solution to the LP-relaxation. The integrality gap of the LP-relaxation is defined to be

sup
I

OPT(I)

OPTf (I)
.

In the case of a maximization problem, the integrality gap is defined to be the infimum of

this ratio.

1.2.3 3-Field Notation

In a scheduling problem, there is a set of processors P = {P1, P2, ..., Pm} that can be used

to process a set of tasks T = {T1, T2, ..., Tn}. Each processor can process one task at a time,

but a task may be allowed to be executed by several processors simultaneously. The goal is

to find a feasible scheduling of tasks, while optimizing an objective function.

A scheduling problem can be specified with three elements: the processor set charac-

teristics, the task system characteristics, and the optimality criterion. Graham et al. [31]

introduced a three-field representation for scheduling problems. In this representation a

scheduling problem is denoted by a three-field descriptor α|β|γ, where α defines the proces-

sor set characteristics, β defines the task system characteristics, and γ specifies optimality

criterion.
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The first field α defines processors characteristics. α = 1 means there is only one

processor. α = P denotes identical processors. α = Q denotes uniform processors with

different speeds and α = R denotes unrelated processors, which means the execution time

of a task depends on the processor it is scheduled on.

In the case of parallel processors it is possible to specify the number of processors. For

example α = P3 means there are three identical processors and α = Rm means there is a

constant number m of unrelated parallel processors, but m is not specified.

The second field β represents task system characteristics. This field can be a subset of

the following items.

• rj : Each task has a release time and it can be scheduled only after its release time.

• sj : Task Tj has a start time sj and it must be started at sj .

• dj : Task Tj has a deadline dj and should be finished by its deadline.

• prec : Tasks have precedence constraints denoted by a precedence graph, which is an

arbitrary directed acyclic graph.

• pmtn: Preemption is allowed. A task may be interrupted during its execution and

resumed later at no cost.

• online-list: The scheduler must schedule tasks from some queue or list one by one.

The characteristics of a task becomes known after scheduling the previous tasks on

the list.

• online-time: Each task has a release time and the scheduler is unaware of the existence

of a task and its characteristics before its release time.

• online-time-nclv: Each task has a release time and the scheduler is unaware of the

existence of a task and its characteristics before its release time. The scheduler does

not know tasks’ processing times even after their release times.

For multi-processor task scheduling problems, the following items are used to specify the

characteristics of multi-processor tasks.

• fixj : Task Tj must be processed by a specific set of dedicated processors.

• setj : Task Tj may be executed by some family of alternative dedicated processor sets.

• sizej : Tasks are rigid. Task Tj should be executed by exactly sizej parallel processors

simultaneously.

• any: Tasks are moldable. Tasks can be executed on any number of processors.
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• var: Tasks are malleable. The number of processors executing a task can change

during its execution.

• lin: In a malleable or moldable task system, the processing time functions of tasks are

linear.

• δj : Tasks have maximum degree of parallelism. Task Tj cannot be scheduled on more

that δj processors simultaneously.

• minj : Tasks have minimum degree of parallelism. Task Tj should be scheduled on at

least minj processors during its execution.

The last field specifies the optimality criterion. There are two general groups of opti-

mality criteria: min-max criteria and min-sum criteria. In min-max criteria the goal is to

minimize maxj f(Tj), where f(Tj) is an arbitrary function. In contrast, in min-sum criteria

the goal is to minimize
∑
j f(Tj), where f(Tj) is an arbitrary function.

Given a schedule, we define Cj to be the completion time of task Tj . Then we can

compute the flow time Fj = Cj − rj , and the latency Lj = max(Cj −dj , 0) for each task Tj .

These functions can be used in min-max and min-sum criteria. For example, some important

min-max criteria are maximum completion time (also called makespan) maxj{Cj} denoted

by Cmax, maximum latency Lmax = maxj{max(Cj − dj , 0)}, and maximum flow time

Fmax = maxj{Cj − rj}. Important min-sum criteria are total completion time
∑
Cj , total

weighted completion time
∑
wjCj , total latency

∑
Lj , and total flow time

∑
wjFj .

For example P |sizej , rj , prec|
∑
wjCj is the problem of minimizing weighted completion

time for rigid tasks with release times and arbitrary precedence graph on identical parallel

processors, and P |any, pmtn|Lmax is the problem of minimizing the maximum latency for

preemptive moldable tasks on identical parallel processors.

1.3 Outline of thesis

In this thesis we study multi-processor task scheduling problems, their complexity, and some

algorithms proposed to solve them. In Chapter 2 we study preemptive multi-processor tasks.

The following problems are considered.

• P |var, rj |Cmax: The problem of minimizing the maximum completion time for mal-

leable tasks with release times when preemption is allowed.

• P |var, rj , dj |Lmax: The problem of minimizing the maximum latency for malleable

tasks with release times and deadlines when preemption is allowed.

• P |var, rj |Fmax: The problem of minimizing the maximum flow time for malleable

tasks with release times when preemption is allowed.
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Polynomial time algorithms are proposed to solve these problems using linear programming.

In Chapter 3 we study non-preemptive multi-processor tasks scheduling. We consider

the following problems.

• P |var, sj ,minj |Cmax: We show that finding a feasible solution for P |var, sj ,minj |Cmax
is strongly NP-hard. We also show that the problem is NP-hard when the processing

time function is linear. We propose an algorithm for Pm|var, lin, sj ,minj |Cmax which

needs (1 + ε)-speed augmentation and runs in time polynomial in n and 1
ε .

• P |sizej , rj |Fmax: We show that the problem is strongly NP-hard and propose a bicri-

teria (1 + ε, O(1/ε))-approximation algorithm for the problem.

In Chapter 4 we consider online scheduling of multi-processor tasks with minimum degree

of parallelism. We show that it is not possible for an online scheduler to find a feasible

scheduling for all input instances of the problem. We propose a bicriteria (O(logm), 1)-

approximation algorithm for the problem.
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Chapter 2

Preemptive Scheduling

In this chapter we study scheduling of preemtive multi-processor tasks on a set of identical

processors. In the preemptive execution, processors are allowed to interrupt a task during

its execution and resume the task later with no extra cost. We also assume that migration is

allowed, which means a different set of processors can be assigned to a task after interruption.

In multi-processor task scheduling problems each task can be executed on several pro-

cessors simultaneously. In the rigid multi-processor task model, the number of processors

for each task is specified for each task. In the moldable and malleable models tasks can be

executed on an arbitrary number of processors and the processing time of a task depends on

the number of processors assigned to that task (sometimes called the degree of parallelism).

In this chapter we focus on preemptive scheduling of malleable multi-processor tasks and

consider different optimality criteria. In Section 2.2 we consider the scheduling problem of

minimizing the makespan when each task has a release time. In Section 2.3 the problem of

minimizing maximum latency and in Section 2.4 the problem of minimizing maximum flow

time is considered.

2.1 Related works

Preemptive non-malleable parallel scheduling problem P |sizej , pmtn|Cmax is shown to be

NP-hard [22, 20]. However, the special case of sizej ∈ {1, k} is polynomially solvable [11].

When the number of processors is constant, the problem can be solved in polynomial time

using Linear Programming [11]. Janson and Porolab [38] improved this result and proposed

a linear time algorithm for Pm|sizej , pmtn|Cmax. They also proposed a pseudo-polynomial

time algorithm for P |sizej , pmtn|Cmax.

Regarding the complexity of preemptive malleable parallel tasks, Du and Leung [22]

showed that P |any, pmtn|Cmax is strongly NP-hard and Pm|any, pmtn|Cmax is NP-hard.

They also proposed a pseudo-polynomial time algorithm for Pm|any, pmtn|Cmax, which

implies that this problem cannot be strongly NP-hard.
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For preemptive moldable parallel tasks, Janson and Porolab [38] showed that their Linear

Program for non-malleable tasks can be modified to solve Pm|var|Cmax in linear time and

P |var|Cmax in pseudo-polynomial time. Drozdowski [19] proposed an on-line polynomial

time algorithm for P |var, lin, δj , rj |Cmax.

In [12], the problem Pm|sizej , pmtn|Lmax is shown to be polynomially solvable when

sizej ∈ {1, k} using Linear Programming. Janson and Porolab [38] also generalized their

Linear Program for minimizing maximum latency. They developed linear time algorithms for

Pm|sizej , pmtn|Lmax and Pm|var|Lmax and pseudo-polynomial algorithms for the schedul-

ing problems P |sizej , pmtn|Lmax and P |var|Lmax. For moldable parallel tasks with linear

speedup, Vizing [55, 54] proposed a polynomial time algorithm for P |var, lin, δj , rj |Lmax
and a polynomial time algorithm for R|var, lin, rj |Lmax = 0.

2.2 Makespan

In this section we consider the preemptive scheduing problem denoted by P |var, rj |Cmax. In

this problem a set T = {T1, T2, ..., Tn} of tasks has to be processed by m identical processors.

Let rj denote the release time of task Tj , and let pj(l) be the processing time of task Tj

when it is executed on l processors simultaneously. Each task can be interrupted at any

time and restarted later without any cost. The goal is to find a schedule minimizing the

maximum completion time Cmax.

We demonstrate how this problem can be solved in polynomial time using Linear Pro-

gramming. Our Linear Program is similar in spirit to the configuration-based Linear Pro-

gram used in [38] to solve some scheduling problems like P |sizej , pmtn|Cmax and P |var|Cmax.

In our problem a configuration is an assignment of processors to tasks which can be denoted

by a function f : {1, 2, ...,m} → {0, 1, ..., n} where 0 denotes a dummy task.

Theorem 2.2.1. The scheduling problem P |var, rj |Cmax with n tasks and m processors can

be solved in time polynomial in n and m.

We may assume that the tasks are ordered according to their release time, i.e., r1 ≤

... ≤ rn. We define Ii to be the i-th time interval, where Ii = [ri, ri+1] for i = 1, 2, ..., n− 1

and In = [rn, Cmax]. Note that during Ii, only tasks in {T1, T2, ..., Ti} can be scheduled.

We also define a configuration to be an assignment f : {1, 2, ...,m} → {0, 1, ..., n} of

processors to tasks, where 0 denotes a dummy task. Let Fi be the set of all configurations

that assign processors to only tasks from the subset {T1, T2, ..., Ti}. Note that the config-

urations in Fi can be scheduled during the i-th interval Ii and a configuration f ∈ Fi is

also a member of Fj for every j > i. For every f ∈ Fi, let xf,i denote the length (in time)

that configuration f is being executed during the i-th interval. Then we can formulate our

problem as follows.
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Minimize Cmax (2.1)

Subject to
∑
f∈Fn

xf,n ≤ Cmax − rn,∑
f∈Fi

xf,i ≤ ri+1 − ri, ∀i ∈ {1, 2, ..., n− 1},

n∑
i=1

∑
f∈Fi

1

pj(|f−1(j)|)
xf,i ≥ 1, ∀j ∈ {1, 2, ..., n},

xf,i ≥ 0, ∀i ∈ {1, 2, ..., n},∀f ∈ Fi.

The first and the second constraints are to assure that the total execution time of con-

figurations scheduled in each time interval does not exceed the duration of the interval. The

third constraint guarantees that all tasks are fully processed. In this constraint, i iterates

over the time intervals and f iterates over the configurations executable in each time inter-

val. The last constraint guarantees that the duration of a configuration in a time interval

is not a negative number.

LP (2.1) has 3n constraints and
∑n
i=1(i+ 1)m variables. We use the dual of this LP to

solve the problem as justified in [53]. The dual has the following form.

Maximize rnyn −
n−1∑
i=1

(ri+1 − ri)yi +

n∑
j=1

zj (2.2)

Subject to yn ≤ 1,
n∑
j=1

1

pj(|f−1(j)|)
zj − yi ≤ 0, ∀i ∈ {1, 2, ..., n}, f ∈ Fi,

yi ≥ 0, zj ≥ 0, ∀i ∈ {1, 2, ..., n},∀j ∈ {1, 2, ..., n}.

LP (2.2) has polynomially many variables, but the number of constraints is exponential.

However, we can solve this LP in polynomial time if there is a polynomial time separation

oracle. The separation problem is the following: Given a 2n-vectorX = (y1, ..., yn, z1, ..., zn),

decide whether X is a feasible solution, and if it is not, find a constraint that vector X does

not satisfy.

Lemma 2.2.2. The separation problem for LP (2.2) can be solved in time polynomial in n

and m, where n is the number of tasks and m is the number of processors.

Proof. Given a 2n-vector X = (y1, ..., yn, z1, ..., zn), we are to decide if the following con-

straints are satisfied.

n∑
j=1

1

pj(|f−1(j)|)
zj ≤ yi, ∀i ∈ {1, 2, ..., n}, f ∈ Fi

11



We can check if all constraints are satisfied, by checking these constraints:

max
f∈Fi

n∑
j=1

1

pj(|f−1(j)|)
zj ≤ yi, ∀i ∈ {1, 2, ..., n}

Let F (p, k) denote the maximum of
∑n
j=1

1
pj(|f−1

pk (j)|)zj over the mappings fpk : {1, ..., p} →

{0, 1, ..., k}. Now the constraints can be written as follows.

F (m, i) ≤ yi, ∀i ∈ {1, 2, ..., n}

Now it suffices to compute F (p, k). Let fpk : {1, ..., p} → {0, 1, ..., k} be the mapping

that maximizes
∑n
j=1

1
pj(|f−1

pk (j)|)zj . Assume that fpk maps h processors to task Tk and p−h

processors to the other tasks. We know that 0 ≤ h ≤ p. So we can compute F (p, k) using

the following recursive relation.

F (p, k) = max
0≤h≤p

{F (p− h, k − 1) +
zk

pk(h)
}, ∀p ∈ {0, ...,m}, k ∈ {1, ..., n}

The base case is when k = 0.

F (p, 0) = 0, ∀p ∈ {0, ...,m}

Using this recursive formulation, we can use dynamic programming to compute F (p, k).

Algorithm 1 shows how this dynamic programming can be implemented.

Algorithm 1 Separation Oracle

1: for all p← 0 to m do . Initializing Base Case
2: F (p, 0)← 0

3: for k ← 1 to n do . Dynamic Programming
4: for p← 0 to m do
5: F (p, k)← 0
6: for h← 0 to p do
7: if F (p, k) < F (p− h, k − 1) + zk

pk(h)
then

8: F (p, k) = F (p− h, k − 1) + zk
pk(h)

In this dynamic program, we can also store the configuration that maximizes F (p, k)

for each 0 ≤ p ≤ m and 0 ≤ k ≤ n. The configuration that maximizes F (m, i) identifies

the constraint that is violated. The running time of the algorithm is O(nm2). Since it is

possible to compute F (p, k) in time polynomial in n and m, the separation problem can be

solved in time polynomial in n and m.

2.3 Latency

In the previous section, we considered the problem of minimizing the makespan of parallel

preemptive tasks. In this section we consider minimizing the maximum latency of such

tasks. We are given a set T = {T1, T2, ..., Tn} of tasks. For each task Tj , let rj be the

12



release time, dj be the deadline, and let pj(l) denote the processing time of task Tj when it

is executed on l processors simultaneously. The goal is to find a scheduling of these tasks

on m identical processors minimizing the maximum latency, i.e., maxj{max(0, Cj − dj)}.

First we prove that given a maximum latency L, there is a polynomial time algorithm

that decides if there exists a feasible scheduling with maximum latency at most L. Then

we do a binary search over the possible maximum latency to find the scheduling which

minimizes the maximum latency.

Lemma 2.3.1. For the scheduling problem P |var, rj , dj |Lmax with n tasks and m processors,

it is possible to decide in time polynomial in n and m, if there exists a scheduling with

maximum latency at most L.

We demonstrate how this can be done using Linear Programming. If there is a scheduling

with maximum latency less than or equal to L, it means that we can schedule all the tasks

such that each task Tj is scheduled in time interval [rj , dj + L]. Let S = {s1, s2, ..., s2n} be

the set of all points that are endpoints of these time intervals. we may assume that these

points are ordered, i.e., s1 ≤ ... ≤ s2n. We define Ii to be the i-th time interval, where

Ii = [si, si+1] for i = 1, 2, ..., 2n− 1. Note that during Ii, task Tj can be scheduled if rj ≤ si
and dj + L ≥ si+1. Let T (i) = {Tj |rj ≤ si, dj + L ≥ si+1}.

We define a configuration to be an assignment f : {1, 2, ...,m} → {0, 1, ..., n} of processors

to tasks, where 0 denotes a dummy task. Let Fi be the set of all configurations that consists

of only tasks from T (i). Note that the configurations in Fi can be scheduled during the i-th

interval Ii and a configuration f ∈ Fi is also a member of Fj for every j > i. For every

f ∈ Fi, let xf,i denote the length (in time) that configuration f is being executed during

the i-th interval. Then we can formulate our problem as follows.

Minimize 0 (2.3)

Subject to
∑
f∈Fi

xf,i ≤ si+1 − si, ∀i ∈ {1, 2, ..., 2n− 1},

2n−1∑
i=1

∑
f∈Fi

1

pj(|f−1(j)|)
xf,i ≥ 1, ∀j ∈ {1, 2, ..., n},

xf,i ≥ 0, ∀i ∈ {1, 2, ..., 2n− 1},∀f ∈ Fi.

The first constraints guarantee that the total execution time of configurations scheduled

in each time interval does not exceed the duration of that interval and the second ones

guarantee that all tasks are fully processed.

LP (2.3) has exponentially many variables. So we use the dual of this LP, to solve it [53].

The dual LP has the following form.

13



Maximize

2n−1∑
i=1

(si − si+1)yi +

n∑
j=1

zj (2.4)

Subject to

n∑
j=1

1

pj(|f−1(j)|)
zj − yi ≤ 0, ∀i ∈ {1, 2, ..., 2n− 1}, f ∈ Fi,

yi ≥ 0, zj ≥ 0, ∀i ∈ {1, 2, ..., 2n− 1},∀j ∈ {1, 2, ..., n}.

Although the number of constraints in LP (2.4) is exponential, we can solve it in poly-

nomial time if there is a polynomial time separation oracle. In the separation problem one

has to decide whether a vector X = (y1, ..., y2n−1, z1, ..., zn) is a feasible vector, and if it is

not, find a constraint that vector X does not satisfy.

Lemma 2.3.2. The separation problem for LP (2.4) can be solved in time polynomial in n

and m, where n is the number of tasks and m is the number of processors.

Proof. Given a vector X = (y1, ..., y2n−1, z1, ..., zn), we are to decide if following constraints

are satisfied.

n∑
j=1

1

pj(|f−1(j)|)
zj ≤ yi, ∀i ∈ {1, 2, ..., 2n− 1}, f ∈ Fi

We can check if all the constraints are satisfied, by checking these constraints:

max
f∈Fi

n∑
j=1

1

pj(|f−1(j)|)
zj ≤ yi, ∀i ∈ {1, 2, ..., 2n− 1}

Let F (l, p, k) denote the maximum of
∑n
j=1

1
pj(|f−1

pk (j)|)zj over all configurations fpk :

{1, ..., p} → {0, 1, ..., k} that do not map any processor to a task which is not a member of

T (l). Now the constraints can be written as follows.

F (i,m, n) ≤ yi, ∀i ∈ {1, 2, ..., 2n− 1}

Note that the number of constraints is 2n− 1 and now it suffices to compute F (l, p, k).

Let fpk : {1, ..., p} → {0, 1, ..., k} be the mapping that maximizes
∑n
j=1

1
pj(|f−1

pk (j)|)zj and

does not map any processor to a task which is not a member of T (l). Assume that fpk

maps h processors to task Tk and p − h processors to the other tasks. If Tk /∈ T (l), fpk

should not map any processor to task Tk and h = 0. If Tk ∈ T (l), fpk can map any number

of available processors to task Tk, so 0 ≤ h ≤ p. So we can compute F (l, p, k) using the

following recursive relations.

F (l, p, k) =

{
max0≤h≤p{F (l, p− h, k − 1) + zk

pk(h)
}, Tk ∈ T (l),

F (l, p, k − 1), Tk /∈ T (l),

for each 1 ≤ l < 2n, 0 ≤ p ≤ m, and 1 ≤ k ≤ n. The base case is when k = 0.

F (l, p, 0) = 0, 1 ≤ l < 2n, 0 ≤ p ≤ m

14



Algorithm 2 Separation Oracle

1: for all l← 1 to 2n− 1 do . Initializing Base Case
2: for all p← 0 to m do
3: F (l, p, 0)← 0

4: for all l← 1 to 2n− 1 do . Dynamic Programming
5: for k ← 1 to n do
6: for p← 0 to m do
7: if Tk /∈ T (l) then
8: F (l, p, k) = F (l, p, k − 1)
9: else

10: F (l, p, k)← 0
11: for h← 0 to p do
12: if F (l, p, k) < F (l, p− h, k − 1) + zk

pk(h)
then

13: F (l, p, k) = F (l, p− h, k − 1) + zk
pk(h)

Using this recursive formulation, we can use dynamic programming to compute F (l, p, k).

Algorithm 2 shows how this dynaminac programming can be implemented.

The running time of the algorithm is O(n2m2). Since it is possible to compute F (l, p, k)

in time polynomial in n and m, the separation problem can be solved in time polynomial in

n and m.

The separation problem and LP (2.4) can be solved in polynomial time. So it is possible

to decide in polynomial time if there exists a scheduling with maximum latency at most L.

Theorem 2.3.3. The scheduling problem P |var, rj , dj |Lmax with n tasks and m processors

can be solved in polynomial time.

Proof. Let Pmax be the maximum processing time, i.e., maxj,l{pj(l)}. The maximum la-

tency Lmax is always less than nPmax. We presented an algorithm which decides if there

exists a feasible scheduling with maximum latency at most L. So we can use a binary search

algorithm to find the minimum maximum latency for which there exists a feasible schedul-

ing. This can be done in O(log (nPmax)poly(n,m)), where poly(n,m) is the time required

for the algorithm which decides if a feasible scheduling can be found for a specific maximum

latency.

2.4 Flow time

The problem of minimizing maximum flow time P |var, rj |Fmax, can be considered as a

special case of the scheduling problem denoted by P |var, rj , dj |Lmax. In the previous section

we demonstrated how we can solve this problem in polynomial time. The following is a

consequence of Theorem 2.3.3.

Corollary 2.4.1. The scheduling problem P |var, rj |Fmax with n tasks and m processors

can be solved in polynomial time.
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Proof. For each task Tj , we define dj to be equal to rj . So flow time for each task equals

its latency. Theorem 2.3.3 says we can find a scheduling minimizing the maximum latency

in polynomial time. So we can find a scheduling minimizing the maximum flow time in

polynomial time.
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Chapter 3

Non-preemptive scheduling

In this chapter we consider some non-preemptive multiprocessor task scheduling problems.

A multiprocessor task is a task that can be executed on several processors simultaneously

and a non-preemptive task is a task that is not allowed to be interrupted during its execution.

The problems considered in this chapter are related to the starvation problem in schedul-

ing tasks. Generally speaking, starvation is a problem in scheduling where a task execution

is delayed for a long time. For example a First In First Out (FIFO) scheduler can have

starvation problem in some environments, because a large task can ”starve” a small task

that arrives a bit later.

One solution to avoid the starvation problem in scheduling is to use objective functions

like the maximum flow time. If we use the maximum flow time for objective function of the

scheduling problem, the scheduler will try to minimize the maximum delay for execution of

tasks and starvation does not occur.

Another solution is to ensure that each task is scheduled on at least some minimum

number of processors at each time. We call this number the minimum degree of parallelism

of the task. Since in this solution it is not necessary to change the objective function, then

it can be used with any objective function. Using this method, it is also possible to enforce

a priority order among tasks, by giving larger minimum degree of parallelism to the tasks

with higher priority.

This solution was used by one of MapReduce implementations called Hadoop Fair Sched-

uler [58, 57, 56]. MapReduce is a framework typically used for processing parallelizable

tasks across huge datasets using distributed computing on clusters of computers [17]. Early

MapReduce implementations employed First In First Out (FIFO) which has problems with

task starvation in most environments. Hadoop Fair Scheduler overcomes this issue, by en-

suring that each task is allocated at least some minimum number of processors.

In Section 3.2 we consider the problem of minimizing makespan for malleable tasks with

minimum degree of parallelism and in Section 3.3 we study the problem of minimizing the

maximum flow time for rigid tasks.
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3.1 Related works

For scheduling non-preemptive rigid tasks, the problems of minimizing the maximum latency

and minimizing the maximum completion time are strongly NP-hard [22, 45]. Du and

Leung [22] showed that P5|sizej |Cmax and Lee and Cai [45] showed that P2|sizej |Lmax are

strongly NP-hard. For constant number of processors, Amoura et al. [2] proposed a PTAS for

Pm|sizej |Cmax. Johannes [40] presented a 2-approximation algorithm for P |sizej , rj |Cmax.

The problem of scheduling non-preemptive moldable tasks has been studied in several

papers, e.g., [22, 36, 37, 6]. Jansen [36] proposed an AFPTAS for P |any|Cmax and Jansen

and Porkolab [37] proposed a PTAS for the special case of constant number of processors,

i.e., Pm|any|Cmax.

For scheduling malleable tasks, Drozdowski and Kubiak [21] considered P |var, lin, δj |Cmax
in which tasks have maximum degree of parallelism and showed that this problem is polyno-

mially solvable. Vizing [55] considered a similar scheduling problem with different objective

function and showed that P |var, lin, δj |Lmax is also polynomially solvable.

Regarding minimizing the maximum flow time, Bansal and Pruhs [7] considered the

single processor scheduling problem and proposed a bicriteria (1 + ε, O(1/ε))-approximation

algorithm with speed augmentation. They showed that a scheduler that schedules the

shortest task first finds a solution within a factor of O(1/ε) of the optimal solution using (1+

ε)-speed augmentation. Chekuri and Moseley [15] studied this problem for multiprocessor

environments and proposed a bicriteria (1 + ε, O(1/ε))-approximation algorithm for parallel

processors. This problem has also been studied for unrelated processors and a bicriteria

(1 + ε, O(1/ε))-approximation algorithm is proposed for it [35, 3].

3.2 Minimum degree of parallelism

In this section we consider the problem of minimizing makespan for malleable tasks with

minimum degree of parallelism, denoted by P |var, sj ,minj |Cmax. In this problem task Tj

must be started at time sj and it must be scheduled on at least minj processors simultane-

ously. The number of processors assgined to task Tj can change during the execution of Tj

but it always must be at least minj . We denote the processing time function of task Tj on

l processors by pj(l).

In Section 3.2.1, we study the complexity of problem P |var, sj ,minj |Cmax and show it

is strongly NP-hard. In Section 3.2.2 we consider the problem when the processing time

functions are linear, i.e., pj(l) = pj(1)/l, and we show that P |var, lin, sj ,minj |Cmax is NP-

hard. In Section 3.2.3 we propose a dynamic program for Pm|var, lin, sj ,minj |Cmax which

needs (1 + ε)-speed augmentation and runs in time polynomial in input size and 1
ε .
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Figure 3.1: Scheduling of R ∪ S

3.2.1 Complexity of P |var, sj,minj|Cmax

In this section we show that P |var, sj ,minj |Cmax is strongly NP-hard by reducing the

3-partition problem to it. The 3-partition problem is known to be strongly NP-hard [39].

3-partition problem: Given a listA = (a1, a2, ..., a3z) of 3z integers such that
∑3z
i=1 ai =

zB and B/4 < ai < B/2 for each 1 ≤ i ≤ 3z, can J = {1, 2, ..., 3z} be partitioned into

J1, J2, ..., Jz such that
∑
j∈Ji aj = B and |Ji| = 3 for each 1 ≤ i ≤ z?

Theorem 3.2.1. Finding a feasible solution for the scheduling problem P |var, sj ,minj |Cmax
is strongly NP hard.

Proof. We reduce the 3-partition problem to this problem. Given an instance I of the 3-

partition problem, A = {a1, a2, ..., a3z}, we construct an instance I ′ of P |var, sj ,minj |Cmax
as follows. Let m = B + 3z and T = Q ∪ R ∪ S, where Q = {T1, T2, ..., T3z} , R =

{T3z+1, T3z+2, ..., T4z}, and S = {T4z+1, T4z+2, ..., T5z}.

sj =


0 1 ≤ j ≤ 3z

2(j − 3z)− 2 3z < j ≤ 4z

2(j − 4z)− 1 4z < j ≤ 5z

minj =


1 1 ≤ j ≤ 3z

3(j − 3z) 3z < j ≤ 4z

B + 3(j − 4z) 4z < j ≤ 5z

pj(l) =


1 1 ≤ j ≤ 3z, l = aj

∞ 1 ≤ j ≤ 3z, l 6= aj

1 3z < j ≤ 5z, 1 ≤ l ≤ m

The number of tasks is 5z and all of the computation for tasks’ characteristics can

be done in polynomial time. So this construction can be done in polynomial time. Now

we prove that if instance I has a solution, then the constructed instance I ′ has a feasible

scheduling, and vice versa.

19



First we show if instance I has a solution, there exists a feasible scheduling for instance

I ′. If I has a solution, we can partition J = {1, 2, ..., 3z} into z disjoint sets J1, J2, ..., Jz,

such that
∑
j∈Ji aj = B and |Ji| = 3 for 1 ≤ i ≤ z. We construct a feasible scheduling for

I ′ as follows. We assign minj processors to Tj ∈ R ∪ S during [sj , sj + 1]. Then for each

j ∈ Ji, we assign one processor to Tj during [0, 2i−2] and aj processors during [2i−2, 2i−1].

To show that this scheduling is a feasible scheduling, we should show that the number of

required processors does not exceed the number of processors at any time.

Note that for each j ∈ Ji task Tj will be finished at t = 2i−1, because we schedule Tj on

aj processors at t = 2i− 2 and processing time of Tj on aj processors is 1, i.e., pj(aj) = 1

for Tj ∈ Q. So exactly 3 tasks finish at t = 2i− 1 for every 1 ≤ i ≤ z and there are 3z − 3i

tasks in Q to schedule during [2i−1, 2i] and 3z−3i+ 3 tasks during [2i−2, 2i−1] for every

1 ≤ i ≤ z.

During [2i−1, 2i] we assign one processor to every task in Q. So we need 3z−3i processors

for tasks in Q. We also need B + 3i processors for T4z+i. So the total number of required

processors is B + 3z which is equal to the number of processors. During [2i − 2, 2i − 1]

we have 3z − 3i + 3 tasks in Q to schedule. We assign aj processors to 3 of them and one

processors to the other 3z − 3i. We also assign min3z+i processors to T3z+i. So the total

number of required processors are:∑
j∈Ji

aj + 3z − 3i+min3z+i =
∑
j∈Ji

aj + 3z − 3i+ 3i

= B + 3z − 3i+ 3i

= B + 3z.

Now it suffices to show that if there exists a feasible scheduling for instance I ′, then

instance I has a solution. Suppose there is a feasible scheduling for I ′. Since for each

Tj ∈ R ∪ S, pj(l) = 1 for all 1 ≤ l ≤ m, there is no benefit in assigning more than minj

processors to these tasks and we can assume that the scheduling assigns minj processor to

these tasks. See Figure 3.1 for an illustration.

With similar reasoning, we can assume that the scheduling assigns either 1 or aj proces-

sors to Tj ∈ Q at any time. Moreover, the scheduling assigns aj processors to Tj ∈ Q for

exactly one unit of time, because pj(l) =∞ for every l 6= aj and pj(aj) = 1.

Note that for 1 ≤ i ≤ z, at time t = 2i− 1 the number of finished tasks in Q is exactly

3i for the following reason. It cannot be less than 3i, because during [2i− 1, 2i] we assigned

B+3i processors to the tasks in R∪S and we have 3z−3i free processors available for tasks

in Q. Each task in Q needs at least one processor, so at least 3i tasks should be finished at

time t = 2i− 1.

It also cannot be more than 3i, because we cannot finish more than 3 tasks in every 2

unit of time (because sum of every four members of A is more than B). So we can finish at
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most 3i tasks by time t = 2i− 1.

So the solution assign aj processors to Tj for exactly 3 tasks during [2i − 2, 2i − 1] for

each 1 ≤ i ≤ z. For each task Tj scheduled on aj processors during [2i− 2, 2i− 1], we put

j in Ji. This partitioning is a solution for instance I.

Corollary 3.2.2. P |var, sj ,minj |Cmax is not approximable in polynomial time, unless

P=NP.

Proof. Any approximation algorithm for P |var, sj ,minj |Cmax with approximation ratio α

would find a feasible scheduling with makespan of at most α times the makespan of optimal

scheduling. Since finding a feasible scheduling for this problem is strongly NP-hard, no

polynomial time approximation algorithm exists for P |var, sj ,minj |Cmax unless P=NP.

3.2.2 Complexity of P |var, lin, sj,minj|Cmax

In Section 3.2.1 we showed that P |var, sj ,minj |Cmax is strongly NP-hard. In this sec-

tion we consider the complexity of P |var, lin, sj ,minj |Cmax which is a restricted version of

P |var, sj ,minj |Cmax in which the speed-up function is linear. We show that this problem

is NP-hard by reducing the knapsack problem to it. The knapsack problem is well-known

to be NP-hard [43, 51].

Knapsack Problem: Given a set U of n items, each with a weight wu and a value vu,

a knapsack capacity limit W , and a desired total value V , is there a subset U ′ ⊂ U such

that
∑
u∈U ′ wu ≤W and

∑
u∈U ′ vu ≥ V ?

Theorem 3.2.3. Finding a feasible solution for P |var, lin, sj ,minj |Cmax is NP-hard.

Proof. We reduce the knapsack problem to this problem. Given an instance I of the

knapsack problem, we construct an instance I ′ of the scheduling problem as follows. Let

m = W +
∑n
j=1 vj and T = {T1, T2, ..., Tn+1}, where:

sj =

{
0 1 ≤ j ≤ n
1 j = n+ 1

minj =

{
vj 1 ≤ j ≤ n
W + V j = n+ 1

pj =

{
vj + wj 1 ≤ j ≤ n
W + V j = n+ 1

Note that the number of tasks is n+ 1 and this construction can be done in polynomial

time. Now we show that if instance I has a feasible solution, then the constructed instance

I ′ has a feasible scheduling, and vice versa.

First we assume that instance I ′ has a feasible scheduling and show that instance I has

a solution. Assume that there exists a feasible scheduling for I ′ and let T ′ be the set of

tasks completed before t = 1 in that feasible scheduling.
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At t = 1, the number of processors required by all tasks is
∑
Tj∈T\T ′ minj and the

number of available processors is W +
∑n
j=1 vj . In the feasible scheduling, the number of

required processors should be not greater than the number of available processors. So:

W +

n∑
j=1

vj ≥
∑

Tj∈T\T ′
minj

≥
∑
Tj∈T

minj −
∑
Tj∈T ′

minj

≥
n∑
j=1

vj + V +W −
∑

j:Tj∈T ′
vj

Subtracting W +
∑n
j=1 vj −

∑
j:Tj∈T ′ vj from both sides of the inequality yields:∑

j:Tj∈T ′
vj ≥ V (3.1)

Now we compute the total number of processors assigned to the tasks during time interval

[0, 1]. We know that all tasks in T ′ have been fully processed by time t = 1. So each

task Tj ∈ T ′ is scheduled on vj + wj processors during time interval [0, 1]. Other tasks

Tj ∈ (T\T ′)\{Tn+1} should be scheduled on at least minj processors during time interval

[0, 1]. The total number of processors assigned to tasks should be not greater than the

number of available processors. So:

W +

n∑
j=1

vj ≥
∑
Tj∈T ′

(vj + wj) +
∑

Tj∈(T\T ′)\{Tn+1}

minj

≥
∑
Tj∈T ′

vj +
∑
Tj∈T ′

wj +
∑

Tj∈(T\T ′)\{Tn+1}

vj

≥
∑
Tj∈T ′

wj +

n∑
j=1

vj

Subtracting
∑n
j=1 vj from both sides of the inequality yields:

W ≥
∑
Tj∈T ′

wj (3.2)

Let U ′ be the set of items that their corresponding tasks are in T ′, formally U ′ = {uj |Tj ∈

T ′}. Equation (3.2) guarantees that the total weight of the items in U ′ is at most W and

Equation (3.1) guarantees that their total value is at least V . So U ′ is a feasible solution

for instance I.

Now it suffices to show that if there is a solution for instance I, there is a feasible

scheduling for instance I ′. Let U ′ be the feasible set of items for instance I.∑
uj∈U ′

wj ≤W (3.3)

∑
uj∈U ′

vj ≥ V (3.4)
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Let T ′ denote the set of tasks corresponding to the items in U ′. We schedule every

task in Tj ∈ T ′ on vj + wj processors and other tasks Tj ∈ T\T ′ on minj processors.

In this scheduling, we need
∑
Tj∈T\T ′\{Tn+1} vj +

∑
Tj∈T ′ vj + wj processors at t = 0 and∑

Tj /∈T ′ minj at t = 1. It is sufficient to show that these two numbers do not exceed the

number of available processors, which is W +
∑n
j=1 vj .

∑
Tj∈T\T ′\{Tn+1}

vj +
∑
Tj∈T ′

vj + wj =
∑
Tj∈T ′

wj +

n∑
j=1

vj

=
∑
uj∈U ′

wj +

n∑
j=1

vj

≤W +

n∑
j=1

vj by Equation (3.3)

∑
Tj /∈T ′

minj = V +W +

n∑
j=1

vj −
∑
Tj∈T ′

vj

= V +W +

n∑
j=1

vj −
∑
uj∈U ′

vj

≤W +

n∑
j=1

vj by Equation (3.4)

Corollary 3.2.4. P |var, lin, sj ,minj |Cmax is not approximable in polynomial time, unless

P=NP.

Proof. Any approximation algorithm for P |var, lin, sj ,minj |Cmax with approximation ratio

α ≥ 1 should find a feasible scheduling with makespan of at most α times the makespan

of optimal scheduling. Since finding a feasible scheduling for this problem is NP-hard, no

polynomial time approximation algorithm exists for P |var, lin, sj ,minj |Cmax unless P=NP.

3.2.3 Dynamic programming algorithm for Pm|var, lin, sj,minj|Cmax

In this section we propose an algorithm for Pm|var, lin, sj ,minj |Cmax which finds a schedul-

ing with minimum makespan that runs in time polynomial in input size and 1
ε and requires

(1+ε)-speed augmentation for processors, which means that this scheduler needs processors

which are (1 + ε) times faster than the processors than the optimal scheduler uses.

We divide each task into equal size blocks and require the scheduler to process an integer

number of blocks of each task [sj , sj+1]. First we show that such a scheduling exists. Then

we propose a dynamic program which finds such a scheduling in time polynomial in input

size and 1
ε and finally we explain how it can be used to develop an algorithm which finds a

scheduling with minimum makespan using binary search.
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Without loss of generality we may assume that ε is at most 1
2 . Because any feasible

scheduling which uses 1
2 -speed augmentation can be considered as a feasible scheduling

which uses ε-speed augmentation if ε > 1
2 , so when ε > 1

2 we assume that ε = 1
2 . For every

ε ∈ [0, 12 ] the following inequality holds.

(1 + ε)(1− ε

2
) ≥ 1 (3.5)

We may also assume that tasks are ordered such that s1 ≤ s2 ≤ ... ≤ sn. We define Ii

to be the i-th time interval, where Ii = [si, si+1] for 1 ≤ i ≤ n− 1 and In = [sn, Cmax]. For

a feasible scheduling S, let Sji denote the amount of processing dedicated to Tj during Ii.

For each task Tj , we define uj in the following way:

uj =
ε

2n
pj . (3.6)

We also define bj = (1 + ε)uj and nj = dpjbj e. We call bj the block size and nj the number of

blocks of task Tj . The idea behind our algorithm is to require the scheduler to process an

integer number of blocks of each task in each time interval. The following lemma shows that

if there is a feasible scheduling for the problem, then there is a feasible scheduling which

processes an integer number of blocks of tasks in every time interval and uses (1 + ε)-speed

augmentation.

Lemma 3.2.5. If there is a feasible scheduling S for Pm|var, lin, sj ,minj |Cmax , then there

is a scheduling S′ with (1 + ε)-speed augmentation such that
S′ji

(1+ε)uj
is integer for 1 ≤ i ≤ n

and 1 ≤ j ≤ n.

Proof. We know that S is a feasible scheduling for Pm|var, lin, sj ,minj |Cmax. Then

n∑
i=1

Sji = pj ∀1 ≤ j ≤ n (3.7)

n∑
j=1

Sji ≤ m|Ii| ∀1 ≤ i ≤ n (3.8)

Equation (3.7) guarantees that each task is fully processed. Equation (3.8) guarantees that

in each time interval the amount of processing required for tasks is not more than number

of processors m multiplied by the length of the time interval |Ii|.

Now we construct scheduling S′ in the following way.

S′ji = (1 + ε)bSji
uj
cuj (3.9)

It can be seen that
S′ji

(1+ε)uj
is equal to bSji

uj
c which is an integer. Now it suffices to show

that S′ is a feasible scheduling for the problem with (1 + ε)-speed augmentation. To show

that S′ is a feasible scheduling with (1 + ε)-speed augmentation, we need to show that in
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each time interval the amount of processing required for tasks is at most (1 + ε)m|Ii| and

we also need to show each task is fully processed.

First we prove that the amount of processing required for the tasks in time interval Ii is

at most (1 + ε)m|Ii| for every 1 ≤ i ≤ n.

n∑
j=1

S′ji =

n∑
j=1

(1 + ε)bSji
uj
cuj by Equation (3.9)

≤
n∑
j=1

(1 + ε)
Sji
uj
uj

= (1 + ε)

n∑
j=1

Sji

≤ (1 + ε)m|Ii| by Equation (3.8)

Now we prove that that each task is fully processed by scheduling S′. It is sufficient to

show that
∑n
i=1 S

′
ji ≥ pj for every 1 ≤ j ≤ n.

n∑
i=1

S′ji =

n∑
i=1

(1 + ε)bSji
uj
cuj by Equation (3.9)

≥ (1 + ε)

n∑
i=1

(
Sji
uj
− 1

)
uj

= (1 + ε)

(
n∑
i=1

Sji −
n∑
i=1

uj

)

= (1 + ε)

(
pj −

n∑
i=1

uj

)
by Equation (3.7)

= (1 + ε)
(
pj −

ε

2
pj

)
by Equation (3.6)

= (1 + ε)
(

1− ε

2

)
pj

≥ pj by Equation (3.5)

So S′ is a feasible scheduling with (1 + ε)-speed augmentation.

Assuming there is a feasible scheduling for the problem, we proved that there exists

a feasible scheduling which processes an integer number of blocks of each task in each

time interval and uses (1 + ε)-speed augmentation. The following lemma explains how an

algorithm can find such a scheduling.

Lemma 3.2.6. For constant m, there exists an algorithm which finds a feasible (but not nec-

essarily optimal) scheduling for Pm|var, lin, sj ,minj |Cmax with (1 + ε)-speed augmentation

and its running time is polynomial in input size and 1
ε .

Proof. We require the scheduler to process an integer number of blocks of task Tj during

time interval Ii for 1 ≤ i ≤ n and 1 ≤ j ≤ n.
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We define a configuration to be an n-vector c = (c1, c2, ..., cn), in which cj is the remaining

number of blocks of Tj . A configuration shows that at a specific time, which tasks should

be processed and how many blocks of them are remaining. We use T (c) to denote the set

of tasks which need to be scheduled in configuration c, i.e., T (c) = {Tj |cj 6= 0}. We say

configuration c is feasible if
∑
j:Tj∈T (c)minj ≤ m.

Let C be the set of all feasible configurations. Since at most m tasks can be scheduled

at any time the number of non-zero elements of a feasible configuration is at most m. We

also know that cj ≤ nj and nj ≤ 2n
ε for each task Tj . So

|C| ≤
(
n

m

)(
2n

ε

)m
=

n!

(n−m)!m!
2mnm

(
1

ε

)m
∈ O

(
n2m

(
1

ε

)m)
,

where m is a constant.

Let F (c, i) denote the feasibility of configuration c at time si, which means F (c, i) = 1 if

there is a feasible scheduling in which at time si configuration c is scheduled, and F (c, i) = 0

otherwise.

We can use a dynamic program for computing F (c, i). The base cases for this dy-

namic program are F (c, i) where i = 1. The only feasible configuration at time s1 is

c1 = (n1, 0, 0, ..., 0). Because at time s1, T1 is just released so its remaining number of

blocks is n1 and other tasks are not released.

For i ≥ 2, to check if configuration c is feasible at time si, we check if there exists a

feasible configuration c′ at time si−1, such that we can reach from configuration c′ at time

si−1 to configuration c at time si. So:

F (c, i) =
∑
c′∈C

F (c′, i− 1)R(c′, c, i), 2 ≤ i ≤ n, c ∈ C,

where R(c′, c, i) = 1 if it is possible to reach from configuration c′ at time si−1 to configura-

tion c at time si, and R(c′, c, i) = 0 otherwise. We can compute R(c′, c, i) by computing the

total processing required for reaching from configuration c′ to configuration c and comparing

it to (1 + ε)m|Ii−1|.

Algorithm 3 shows how this dynamic programming algorithm can be implemented. Func-

tion IsReachable(c′, c, i) checks if it is possible to reach from configuration c′ at time si−1 to

configuration c at time si, by comparing (1 + ε)m|Ii−1| to the total processing required for

reaching from c′ to c. The running time of functions IsFeasible(c, i) and IsReachable(c′, c, i)

is of O(n). Our dynamic program calls these functions |C|2n times, where C is the set of

feasible configurations. We know that |C| ∈ O
(
n2m

(
1
ε

)m)
. So the running time of the

algorithm is in O
(
n4m+2

(
1
ε

)2m)
.
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Algorithm 3 Dynamic Program

1: for all c ∈ C do . Initializing Base Case
2: F (c, 1)← 0

3: c1 ← (n1, 0, 0, ..., 0)
4: F (c1, 1)← 1
5: for i← 2 to n do . Dynamic Program
6: for all c ∈ C do
7: F (c, i)← 0
8: if IsFeasible(c, i) = False then
9: Continue

10: for all c′ ∈ C do
11: if F (c′, i− 1) = 1 and IsReachable(c′, c, i) then
12: F (c, i)← 1

13: function IsFeasible(c, i) . Checks if c is feasible
14: if ci 6= ni then
15: return False
16: for all j ← i+ 1 to n do
17: if cj 6= 0 then
18: return False
19: Sum← 0
20: for all j ← 1 to n do
21: if cj 6= 0 then
22: Sum← Sum +minj

23: if Sum > m then
24: return False
25: return True
26: function IsReachable(c′, c, i) . Checks if c is reachable from c’
27: TotalProcess← 0
28: for all j ← 1 to i− 1 do
29: Process← (cj − c′j)bj
30: if cj 6= 0 then
31: Process← max{Process,minj |Ii−1|}
32: else
33: Process← max{Process, 0}
34: TotalProcess← TotalProcess + Process

35: if TotalProcess > (1 + ε)m|Ii−1| then
36: return False
37: return True
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Now we use this algorithm to develop an algorithm which finds a scheduling with mini-

mum makespan using a binary search method.

Theorem 3.2.7. For constant m, there is an algorithm which finds a feasible scheduling

with minimum makespan for Pm|var, lin, sj ,minj |Cmax with (1 + ε)-speed augmentation in

time polynomial in input size and 1
ε .

Proof. Let pmax be the maximum processing time, i.e., maxj{pj}. We know that makespan

is at least sn and at most sn + pmax. We use binary search to find the minimum time we

can finish all the tasks.

We add another task Tn+1 to the set of tasks, where minn+1 = m , pn+1 = m, and

sn+1 = sn + X for some positive X. Since this task needs all of processors, other tasks

should be finished by starting time of this task. If the algorithm described in Lemma 3.2.6

cannot find a feasible scheduling for T ∪{Tn+1}, it means that there is no feasible scheduling

for T with makespan sn +X.

Assuming that there is a feasible scheduling for T , we know that the minimum makespan

is at least sn and at most sn+pmax. So we know the minimum X for which there is feasible

scheduling is at least 0 and at most pmax. We can use a binary search to find the minimum

X. Algorithm 4 shows how we can implement the binary search method for this problem.

Algorithm 4 Binary Search

1: minn+1 ← m
2: pn+1 ← m
3: MinX = BinarySearch(0, pmax + 1)
4: if MinX = pmax + 1 then
5: No Feasible Solution
6: else
7: Makespan = sn + MinX

8: function BinarySearch(f, l)
9: if f + 1 = l then

10: return l
11: x← f+l

2
12: sn+1 ← sn + x
13: if DynamicProgram(T ∪ Tn+1) then
14: return BianrySearch(f, x)
15: else
16: return BianrySearch(x, l)

Notice that if function BinarySearch does not find any feasible scheduling for a positive

X, it returns pmax + 1. In this case there is no feasible scheduling for T . The algorithm

executes the dynamic program O(log pmax) times. So the running time of the algorithm is

in O
(
n4m+2

(
1
ε

)2m
log pmax

)
.
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3.3 Flow time

In this section we consider the problem of minimizing the maximum flow time for rigid

parallel tasks, i.e., P |sizej , rj |Fmax. In this problem, each task Tj should be scheduled

after its release time rj on exactly sizej processors.

In Section 3.3.1 we consider the complexity of P |sizej , rj |Fmax and we show that this

problem is strongly NP-hard. In Section 3.3.2 we propose a bicriteria (1 + ε, O(1/ε))-

approximation algorithm for the problem, which finds a solution within a factor of 1 + ε of

the optimal solution using O(1/ε)-speed augmentation.

3.3.1 Complexity of P |sizej, rj|Fmax

We show that P |sizej , rj |Fmax is strongly NP-hard by reducing the Bin packing problem

to it. The Bin packing problem is known to be strongly NP-hard [26].

Given a list of objects and their weights, and a collection of bins of fixed size, find the

smallest number of bins so that all of the objects are assigned to a bin.

Bin packing problem: Given a list A = {a1, a2, ..., an} of integer numbers, and an

integer number V , find the minimum integer B and a B-partition S1∪ ...∪SB of {1, 2, ..., n}

such that
∑
j∈Si

aj ≤ V for all 1 ≤ i ≤ B.

Theorem 3.3.1. The scheduling problem P |sizej , rj |Fmax is strongly NP-hard.

Proof. We reduce the bin packing problem to this problem. Given an instance I of the

bin packing problem, we construct an instance I ′ of the scheduling problem as follows. Let

m = V and T = {T1, T2, ..., Tn}, where rj = 0, sizej = aj , and pj = 1. We should show

that for every solution for I with B bins, there exists a scheduling for I ′ with maximum

flow time of B, and vice versa.

First we show that if instance I has a solution with B bins, there exists a feasible

scheduling for I ′ with maximum flow time of B. Let S1 ∪ ... ∪ SB be the B-partition for I.

If j ∈ Si, then we schedule task Tj in time interval [i − 1, i]. Since
∑
j∈Si

aj ≤ V , at any

time the number of processors assigned to the tasks is at most V and this scheduling is a

feasible scheduling. We scheduled all the tasks during time interval [0, B], so the maximum

flow time is equal to B.

Now we assume there exists a feasible scheduling for I ′ with maximum flow time of B

and show that there is a solution for I with B bins. If Tj is scheduled during time interval

[i − 1, i], we put j in Si. The total number of required processors for the tasks scheduled

during [i − 1, i] is equal to
∑
j∈Si

aj and it cannot be more than the number of processors

V , so the total size of the items in Si does not exceed V and it is a feasible packing for I.

We know that all tasks are scheduled during [0, B], so the number of bins is equal to B.
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Corollary 3.3.2. The problems P |sizej , rj |Cmax and P |sizej , rj |Lmax are strongly NP-

hard.

Proof. Notice that in the constructed instance of the scheduling problem, Fmax equals Cmax

and Lmax.

3.3.2 Bicriteria (1 + ε, O(1/ε))-approximation for P |sizej, rj|Fmax

In this section we propose an approximation algorithm for P |sizej , rj |Fmaxwhich finds a

solution within a factor of 1 + ε of the optimal solution using O(1/ε)-speed augmentation

and runs in time polynomial in input size and 1/ε.

Our algorithm is based on an LP-relaxation where preemption of tasks is allowed. Using

the solution of the LP, we create a preemptive scheduling for an instance of the scheduling

on heterogeneous platforms (SPP) and use the rounding method proposed by Bougeret et

al. [14] to obtain a non-preemptive scheduling for SPP. Finally we create a non-preemptive

solution for our problem using the non-preemptive scheduling of SPP.

Scheduling on heterogeneous platforms (SPP): Given a set of tasks T1, ..., Tn

that have to be scheduled on a set of platforms P1, ..., PN , find a scheduling in which the

maximum completion time of the tasks is minimum. A platform Pl contains a set of ml

processors. A task Tj is described by a pair (pj , qj) where pj is its processing time and qj

is its degree of parallelism on all platforms.

First we show that the preemptive version of P |sizej , rj |Fmax can be solved polynomi-

ally.

Lemma 3.3.3. Problem P |sizej , rj , pmtn|Fmax with n tasks and m processors can be solved

in time polynomial in n and m.

Proof. Note that this problem is a special case of P |var, rj |Fmax in which the processing

time function of task Tj has the following form.

pj(l) =

{
pj l = sizej

∞ otherwise

where l is the number of processors assigned to task Tj . In Section 2.4 we showed that

P |var, rj |Fmax can be solved in time polynomial in n and m, so P |sizej , rj , pmtn|Fmax can

be solved in polynomial time.

Let S denote the preemptive scheduling produced by Lemma 3.3.3. We divide S into

R = 2Cmax

εFmax
intervals of length L = εFmax

2 . Let Ii denote the i-th interval, where Ii =

[(i− 1)L, iL]. Now we create an instance of SPP with R platforms where each platform has

m processors. The set of tasks for SPP is the same set of tasks we have in our problem.

We create a preemptive scheduling for SPP by scheduling time interval Ii on platform Pi.

Since |Ii| = L, the constructed preemptive scheduling of SPP is of length L.
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Let pmax = max1≤j≤n{pj}. We use the following result proved by Bougeret et al. [14].

Theorem 3.3.4. For every ε′ ∈ (0, 1] there exists an approximation algorithm with running

time polynomial in input size and 1
ε′ that for every preemptive schedule of length L of SPP

produces a non-preemptive schedule of length at most (1 + ε′)L+O( 1
ε′2 )pmax, such that the

non-preemptive schedule does not schedule task Tj on platform Pi if the preemtive schedule

does not schedule task Tj on platform Pi.

Let L′ denote the length of the non-preemptive schedule produced with ε′ = 1.

L′ ≤ (1 + ε′)L+O(
1

ε′2
)pmax

≤ 2L+ c pmax,

where c is a constant. Since L = εFmax

2 and pmax < Fmax, we know that pmax <
2L
ε . So

L′ ≤ 2L+ c
2L

ε

≤ (2 +
2c

ε
)L

≤ c′

ε
L

where c′ is a constant. Now we use this non-preemptive schedule of SPP to create a non-

preemptive solution for our problem with c′

ε -speed augmentation. The length of the non-

preemptive scheduling of SPP is at most c′

ε L. With c′

ε -speed augmentation we can schedule

tasks on platform Pi in time interval [iL, (i+ 1)L].

Let S′ denote this non-preemptive schedule. To show that S′ is a feasible schedule,

we have to show that S′ does not schedule a task before its release time. Assume that

S′ schedules Tj in time interval [iL, (i + 1)L], then task Tj is scheduled on platform Pi.

Which means that preemptive schedule S schedules task Tj in time interval [(i − 1)L, iL].

So rj < iL and task Tj is scheduled after its release time by S′.

Now we show that the maximum flow time of S′ is within a factor of 1+ ε of the optimal

solution. Let Cj and C ′j denote the completion time of Tj in S and S′, respectively. If Tj

is scheduled during time interval [iL, (i + 1)L] in S′, it is scheduled during time interval

[(i − 1)L, iL] in S. So C ′j ≤ Cj + 2L. Let Fmax and F ′max denote the maximum flow time

of S and S′ respectively.

F ′max = max1≤j≤n{C ′j − rj}

≤ max1≤j≤n{Cj + 2L− rj}

= 2L+max1≤j≤n{Cj − rj}

= 2
εFmax

2
+ Fmax

= (1 + ε)Fmax.
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Since any non-preemptive solution is also a preemptive solution for the problem, Fmax is

a lower bound for the optimal solution and F ′max is within a factor of 1 + ε of the optimal

solution.

The running time of finding the optimal preemptive schedule is polynomial in n and m.

The running time of constructing the non-preemptive schedule is polynomial in n, m, and

R, where R = 2
ε
Cmax

Fmax
. To show that the algorithm is polynomial in input size and 1/ε, it

suffices to show that Cmax

Fmax
is polynomially bounded by n.

Assume the tasks are sorted by non-decreasing order of their release time, i.e., r1 ≤ r2 ≤

... ≤ rn. We may assume that r1 = 0. We may also assume that ri+1 < ri+ i pmax, because

if ri+1 ≥ ri + i pmax, then we have enough time to schedule the first i tasks before Ti+1

arrives and we can divide the tasks into two groups {T1, ..., Ti} and {Ti+1, ..., Tn}, and solve

the problem for them separately. With similar reasoning, we know that Cmax < rn+n pmax.

So

Cmax ≤ pmax + 2 pmax + ...+ n pmax

= O(n2).pmax

= O(n2).Fmax

So Cmax

Fmax
is in O(n2) and the algorithm is polynomial in input size and 1/ε.
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Chapter 4

Online Scheduling

One of the disadvantages of offline scheduling problems is their assumption on the availability

of tasks’ characteristics. In reality we usually cannot predict the future and the data on

the future tasks are unknown. For example, the process scheduler of an operating system

receives tasks that arrive over time, and generally must schedule the tasks without any

knowledge of the future tasks.

In online scheduling problems, the scheduler does not have access to the entire input

instance initially and the scheduler will have access to tasks’ characteristics when the tasks

arrive. The scheduler does not know about the future tasks and may make its decisions

online based on the currently available information.

Online scheduling problems can be divided into two groups based on the way the infor-

mation is released: online-time and online-list. In online-time scheduling problems, each

task has a release time and the scheduler is unaware of the existence of a task and its

characteristics before its release time. In contrast, in online-list scheduling problems, the

scheduler must schedule tasks from some queue or list one by one. The characteristics of a

task becomes known after scheduling the previous tasks on the list.

In online-time scheduling problems, once a task is released, the scheduler learns about its

characteristics. In reality it is sometimes difficult to gather information about the processing

time of tasks. For example the process scheduler of an operating system does not know the

processing time of a task even after its release time. This lack of information about the

processing time of tasks is called nonclairvoyance. In a nonclairvoyant online scheduling

problem, the scheduler does not know tasks’ processing times even after their release times.

In contrast, in a clairvoyant online scheduling problem the scheduler knows pj at release

time of Tj . We denote nonclairvoyant scheduling problem by online-time-nclv.

For some online scheduling problems finding optimum online scheduling is possible. For

example 1|online-time, rj , pmtn|Fmax, which is the problem of minimizing the maximum

flow time for online preemtive tasks on one processor, can be solved optimally by an online

algorithm [49]. But for most online scheduling problems, because of the lack of information
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about the future tasks, finding the optimal schedule for all input instances is impossible.

For example no online scheduler can solve P2|online-time, rj , pmtn|Lmax optimally for all

input instances [18].

For the scheduling problems for which an optimum online scheduler cannot be con-

structed, we use competitive analysis to evaluate the worst-case performance of the online

scheduler. Competitive ratio is used to show the worst-case performance of an online al-

gorithm similarly to the approximation ratio of an offline algorithm. More precisely, a

c-competitive online algorithm finds a solution online which is at most c times worse than

the optimum solution for any input instance.

For some online problems, a satisfactory competitive ratio cannot be achieved because

of the nature of the problem. It can even be impossible for an online algorithm to find

a feasible solution for some problems. To overcome this obstacle Kalyanasundaram and

Pruhs [41] introduced resource augmentation for online scheduling problems. In resource

augmentation techniques the online scheduler is allowed to use more resources than the

optimal offline algorithm to which it is compared, e.g., more processors, faster processors,

to achieve a better competitive ratio.

Let A(m, I) denote the scheduling that online scheduling algorithm A outputs for input

instance I on m processors. We say online scheduling algorithm A is (v, c)-competitive if

it constructs a scheduling using vm processors which is at most c times worse than the

optimum scheduling using m processors, i.e.,A is (v, c)-competitive if

f(A(vm, I)) ≤ c . f(OPT (m, I)) ∀ input instance I

where f is the objective function of the problem.

In this chapter we consider the online problem P |online-time, var, lin, sj ,minj |Cmax,

which is the online scheduling problem of minimizing the maximum completion time for

tasks with minimum degree of parallelism and linear speed-up. In Section 4.2 we show that

no online algorithm can find any feasible schedule for all input instances of this problem.

In Section 4.3 we show that an online algorithm for this problem needs at least 9−
√
17

4

processor augmentation. In Section 4.4 we propose a (O(logm), 1)-competitive algorithm

for the problem.

4.1 Related works

In the online-list scheduling problems, tasks are ordered in a list and the scheduler should

schedule the tasks one by one according to the list. Each task should be scheduled before the

next tasks are seen and the scheduler cannot change the scheduling of the previous tasks.

Problem P |online-list|Cmax is one of the most intensively studied online-list problems.

Graham [30] showed that LIST algorithm which always assigns the next task to the least
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loaded processor is a (2− 1
m )-competitive algorithm for the problem. Galambos and Woeg-

inger [25] proposed a (2 − 1
m − εm)-competitive algorithm, where εm > 0, but εm tends to

0 as m goes to infinity. This result was improved by a series of papers [8, 42, 1] and finally

online algorithm with competitive ratio 1.9201 was proposed by Fleischer and Wahl [24].

Regarding the lower bound for the competitive ratio of an online algorithm for problem

P |online-list|Cmax, Faigle et al. [23] showed that 1.707 is a lower bound for m ≥ 4. This

bound was improved to 1.837 for m ≥ 3454 by Bartal et al. [9], to 1.852 for m ≥ 80

by Albers [1], and to 1.85358 for m ≥ 80 by Gormley et al. [29]. Finally Rudin and

Chandrasekaran [50] proved that no online algorithm for the problem can be better than

1.88-competitive.

Azar et al. [5] considered a restricted assignment variant of P |online-list|Cmax in which

each task cannot be scheduled on some of the processors. They showed that LIST algorithm

is (dlog2me + 1)-competitive for this variant of the problem and showed that no online

scheduler can be better than (dlog2me)-competitive.

Aspnes et al. [4] proposed an 8-competitive algorithm for Q|online-list|Cmax. Blum et

al. [13] improved this result and proposed a 5.828-competitive algorithm. Aspnes et al. [4]

also proposed a O(logm)-competitive algorithm for unrelated processors R|online-list|Cmax.

In the online-time scheduling problems, tasks are released over time and the scheduler

is not aware of the existence of the tasks before their release times. After a task is released

the scheduler has access to its characteristics.

Problem P |online-time, rj , pmtn|Cmax can be solved optimally [33]. For uniform proces-

sors Q|online-time, rj , pmtn|Cmax there is a (1 + ε)-competitive online algorithm [44]. For

the non-preemptive case P |online-time, rj |Cmax there is a 1.5-competitive algorithm and it

is shown that no online algorithm can be better than 1.3473-competitive [16].

For minimizing total completion time, SRPT algorithm which schedules the task with

shortest remaining processing time first, constructs the optimum scheduling for problem

1|online-time, rj , pmtn|
∑
j Cj . SRPT algorithm is also a 2-competitive algorithm for prob-

lem P |online-time, rj , pmtn|
∑
j Cj [48]. For the non-preemptive scheduling, there is a

2-competitive algorithm and it is shown that no online algorithm can be better than 2-

competitive [34]. For minimizing total weighted completion time a (1 +
√

2)-competitive

algorithm is proposed by Goemans [28].

Minimizing total flow time is harder than minimizing total completion time. For prob-

lem 1|online-time, rj |
∑
j Fj no online algorithm can be better than (n − 1)-competitive

and even for the offline case there is no algorithm with approximation ratio better than

(
√
n) [52]. Leonardi [46] proposed an online algorithm with competitive ratio Θ(log n

m ) for

P |online-time, rj , pmtn|
∑
j Fj . If we allow the algorithm to use processors with speed-up

factor 1 + ε, there is a (1 + 1
ε )-competitive algorithm for P |online-time, rj , pmtn|

∑
j Fj [41].
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Another objective function which is studied in the context of file transfer over a network

is the maximum stretch [27]. The stretch for a task is the ratio of between the execution

time of the task to the processing time of the task (i.e.,
Cj−rj
pj

). Bender et al. [10] stud-

ied the maximum stretch as a performance measure for online scheduling problems. The

average stretch also has been used to evaluate the scheduling algorithms. Muthukrishnan

et al. [47] analyzed SRPT (Shortest remaining processing time) algorithm and showed that

this algorithm is a constant factor competitive algorithm for minimizing average stretch on

uniprocessor and multiprocessor systems.

4.2 Scheduling of P |online-time, var, lin, sj,minj|Cmax

In this section we show that problem P |online-time, var, lin, sj ,minj |Cmax cannot be solved

by an online algorithm. We create an input instance with two scenarios and demonstrate

that no online scheduler can find feasible schedules for both scenarios.

Theorem 4.2.1. No online algorithm can find feasible scheduling for all input instances of

problem P |online-time, var, lin, sj ,minj |Cmax.

Proof. We denote task Tj by a 3-vector (sj ,minj , pj), where sj is the start time, minj is

the minimum degree of parallelism, and pj is the processing time of Tj . Let m = 4 and

suppose there are 4 tasks.

T1 = (0, 1, 4)

T2 = (0, 2, 9)

T3 = (2, 2, 2)

T ′3 = (3, 3, 3)

Tasks T1 and T2 are known at time t = 0, and T3 and T ′3 may arrive in different scenarios.

Suppose the online algorithm does not schedule task T1 on two processors during time

interval [0, 2], then if task T3 arrives at time t = 2, there is not enough available processors

to schedule task T3. However if the scheduler had scheduled T1 on two processors during

[0, 2], then a feasible schedule could have been constructed as in Figure 4.1a.

Now assume that the algorithm schedules T1 on two processors during time interval [0, 2],

then task T2 cannot be finished at time t = 3 and if task T ′3 arrives at time t = 3, it cannot

be scheduled. Had the algorithm scheduled T1 on one processor during [0, 2], task T2 could

be finished at t = 3 and T ′3 could be scheduled as in Figure 4.1b.

Whatever decision the algorithm makes during time interval [0, 2], there is a scenario

for which there is not a feasible schedule. So there is no online algorithm to a find feasible

scheduling for all input instances of P |online-time, var, lin, sj ,minj |Cmax.
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Figure 4.1: Online Scheduling

4.3 Lower-bound for processor augmentation

In Section 4.2 we showed that an online algorithm cannot find a feasible schedule for all

input instances of problem P |online-time, var, lin, sj ,minj |Cmax, So it is reasonable to use

resource augmentation techniques and allow the online algorithm to use extra processors.

In this section we show that the processor augmentation should be at least 9−
√
17

4 for an

online algorithm to find a feasible solution for problem P |online-time, var, lin, sj ,minj |Cmax.

Theorem 4.3.1. For v < 9−
√
17

4 , there is no (v, c)-competitive online algorithm for problem

P |online-time, var, lin, sj ,minj |Cmax for any c ≥ 1.

Proof. Assume that for some v < 9−
√
17

4 and some c ≥ 1, there exists a (v, c)-competitive

algorithm for the problem. We create an input instance with two scenarios and show that

the algorithm cannot find a feasible schedule for both scenarios.

We choose m such that m > 3/( 9−
√
17

4 − v). So

9−
√

17

4
m = vm+ (

9−
√

17

4
− v)m

≥ vm+ 3 (4.1)

By Equation (4.1), we know that the difference between 9−
√
17

4 m and vm is at least 3, so

there exist at least two integer numbers between 9−
√
17

4 m and vm and we can find a positive

integer a such that

vm < m+ a− 1 < m+ a <
9−
√

17

4
m.

We give the algorithm a− 1 extra processors. Note that

a < (
5−
√

17

4
)m. (4.2)
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We denote task Tj by a 3-vector (sj ,minj , pj). Suppose there are 4 tasks.

T1 = (0, a, p1)

T2 = (0, 2a, p2)

T3 = (
p1

m− 2a
,m− 2a, p3)

T ′3 = (
p2

m− a
,m− a, p′3)

Lemma 4.3.2. We can choose p1 and p2 such that:

m− 1

m− 2a
p1 < p2 <

m− a
2a− 1

p1 (4.3)

Proof. First we show that m−1
m−2a <

m−a
2a−1 .

m− 1

m− 2a
=

(
m− 1

m− 2a

)(
m− a
m− a

)(
2a− 1

2a− 1

)
=
m− a
2a− 1

.
(2a− 1)(m− 1)

(m− a)(m− 2a)

<
m− a
2a− 1

.
2am

(m− a)(m− 2a)

≤ m− a
2a− 1

.
5−
√
17

2

(1− 5−
√
17

4 )(1− 5−
√
17

2 )
By Equation (4.2)

≤ m− a
2a− 1

Now we choose p1 such that p1 > 2/(m−a2a−1 −
m−1
m−2a ), then m−1

m−2ap1 + 2 < m−a
2a−1p1. Which

means there exist an integer between m−1
m−2ap1 and m−a

2a−1p1. we choose p2 to be that integer.

Tasks T1 and T2 are known at time t = 0, and T3 and T ′3 may arrive in different scenarios.

Note that s3 < s′3 because

s3 =
p1

m− 2a

= (
1

m− 1
)(
m− 1

m− 2a
) p1

≤ (
1

m− 1
) p2 by Equation (4.3)

≤ p2
m− a

= s′3

First we show that both scenarios {T1, T2, T3} and {T1, T2, T ′3} can be scheduled on m

processors. If the scheduler schedules T1 on 1−2a processors and T2 on 2a processors during

time interval [0, p1
m−2a ], task T1 will be finished at t = p1

m−2a and if task T3 arrives, it can be

scheduled. So {T1, T2, T3} can be scheduled on m processors.

38



For the second scenario, if the scheduler schedules T1 on a processors and T2 on 1 − a

processors during time interval [0, p2
m−a ], task T2 will be finished at t = p2

m−a and if task T ′3

arrives, it can be schedules. So {T1, T2, T ′3} also can be scheduled on m processors.

Now we show that the online scheduler cannot schedule tasks in both scenarios on m+

a − 1 processors. If task T3 arrives at time t = p1
m−2a , at least one of the tasks T1 and T2

should be finished, otherwise, there is not enough available processors to schedule task T3.

During time interval [0, p1
m−2a ], task T2 can be scheduled on at most m − 1 processor. So

task T2 cannot be finished before p1
m−2a , because

p1
m− 2a

(m− 1) < p2 by Equation (4.3)

Which means task T1 should be finished by time t = p1
m−2a .

On the other hand, if task T ′3 arrives, task T2 should be finished, because min2 +min′3 >

m + a − 1 and they cannot be scheduled simultaneously. We showed that task T1 should

be finished by time t = p1
m−2a . So by time t = p2

m−a both T1 and T2 should be finished. To

show that both of them cannot be finished by time t = p2
m−a , it suffices to show p1 + p2 >

p2
m−a (m+ a− 1).

p1 + p2 ≥
2a− 1

m− a
p2 + p2 by Equation (4.3)

=
2a− 1 +m− a

m− a
p2

=
p2

m− a
(m+ a− 1)

So the online algorithm cannot schedule both {T1, T2, T3} and {T1, T2, T ′3} on m+ a− 1

processors, which means there is no (v, c)-competitive algorithm for the problem for any

v < 9−
√
17

4 .

4.4 A (O(logm), 1)-competitive algorithm

In this section we propose a (O(logm), 1)-competitive online algorithm for the scheduling

problem P |online-time, var, lin, sj ,minj |Cmax. First we divide the tasks into blog2 (m)c+2

groups. Then we show that we can schedule each group online on 2m processors.

We divide the tasks based on their minimum degree of parallelism minj . We partition

T into blog2 (m)c+ 2 subsets in the following way.

T (i) =

{
{Tj |minj = 0} i = 0

{Tj |2i−1 ≤ minj < 2i} 1 ≤ i ≤ blog2 (m)c+ 1

Note that if there is a feasible scheduling for T on m processors, then there is a feasible

scheduling for each subset T (i) on m processors.

Lemma 4.4.1. There exists a feasible scheduling for T (i) on 2m processors which assigns

at least 2i processors to each task Tj during its execution.
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Proof. Let S be a feasible scheduling for T (i) on m processors. We create another scheduling

S′ in the following way. At any time t, for every task Tj ∈ T (i), if S assigns at least 2i

processor to Tj , S
′ assigns the same number of processors to Tj . Otherwise, S′ assigns 2i

processors to Tj . Let P (S, Tj , t) denote the number of processors schedule S assigns to task

Tj at time t. Then ∑
Tj∈T (i)

P (S′, Tj , t) ≤
∑

Tj∈T (i)

2P (S, Tj , t)

= 2
∑

Tj∈T (i)

P (S, Tj , t)

≤ 2m

So S′ does not use more than 2m processors at any time and it is a feasible schedule on

2m processors.

Now that we showed that a scheduling for T (i) on 2m processors exists which assigns

at least 2i processors to each task Tj ∈ T (i) during [sj , Cj ], it suffices to develop an online

algorithm to find such a scheduling. Note that minj < 2i for all Tj ∈ T (i), so we can assume

that the minimum degree of parallelism for all tasks in T (i) is 2i now. The following lemma

shows that when the minimum degree of parallelism of all tasks are equal, SRPT (shortest

remaining processing time) algorithm is optimal.

Lemma 4.4.2. SRPT algorithm is optimal for P |online-time, var, lin, sj ,minj |Cmax, when

mini = c for 1 ≤ i ≤ n.

Proof. SRPT algorithm assigns c processors to each task and assigns the remaining free

processors to the task with the shortest remaining processing time. Assume that SRPT is

not optimal and let S be the optimal scheduling. Let t be the smallest number such that

at time t scheduling S does not assign the free processors to the the task with the shortest

remaining processing time. let Ti be the task with the shortest remaining processing time

and Tj be the task to which scheduling S assigns the free processors. Also let Ci and Cj

denote the completion time of Ti and Tj , respectively.

Assume that Ci ≤ Cj . If we assign the free processors at time t to Ti, task Ti will

finish at time C ′i, such that C ′i < Ci. Then we can use the processors that were assigned

to Ti during time interval [C ′i, Ci] for processing Tj and the completion time of Tj does not

change. So if we assign the free processors at time t to Ti, completion time of Ti decreases

and completion time of Tj does not change.

Now assume Ci > Cj . Since the remaining processing time of Ti is less than Tj , if we use

the processors assigned to Tj during [t, Cj ] to process Ti, task Ti will finish at time C ′i, such

that C ′i < Cj . Then we can use the processors that were assigned to Ti during [t, Ci] and

the processors that were assigned to Tj during [C ′i, Cj ] to process Tj and Tj will finish at
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time Ci, because we do not assign any processor previously dedicated to Ti and Tj to other

tasks and we still should be able to finish Ti and Tj using the same processors during time

interval [t, Ci]. So the new completion time of Ti is less than Cj and the new completion

time of Tj is equal to Ci.

In both cases, we can assign the free processors to Ti and the scheduling stays optimal. So

SRPT algorithm is optimal for problem P |online-time, var, lin, sj ,minj |Cmax, when mini =

c for 1 ≤ i ≤ n.

Algorithm 5 shows how this online algorithm can be implemented. The first loop par-

titions T into blog2 (m)c + 2 subsets based on their minimum degree of parallelism minj .

The second loop schedules each subset on 2m processors based on SRPT algorithm. For

each subset T (i), it assigns 2i processors to each task in T (i), then it assigns the remaining

2m− 2i|T (i)| processors to the task with the smallest remaining processing time in T (i).

Algorithm 5 (O(logm), 1)-competitive online algorithm

1: for Tj ∈ T do
2: if minj = 0 then
3: T (0)← T (0) ∪ Tj
4: else
5: T (blog2 (minj)c+ 1)← T (blog2 (minj)c+ 1) ∪ Tj
6: for i← 0 to blog2 (m)c+ 1 do
7: freeProc← 2m
8: for Tj ∈ T (i) do
9: assign 2i processors to Tj

10: freeProc← freeProc− 2i

11: assign freeProc processors to the task with minimum remaining processing time in
T (i)

The running time of the first loop is in O(|T |) and the running time of the second loop

is in O(
∑blog2 (m)c+1
i=0 |T (i)|). So the running time of Algorithm 5 is in O(|T |). When a new

task arrives or a task finishes, Algorithm 5 should be executed to reschedule the tasks on

the processors. So it is executed 2|T | times and the running time of the online algorithm is

in O(|T |2).
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Chapter 5

Conclusion

We conclude by summarizing the results of this thesis and discussing future work directions

for the problems considered.

5.1 Summary

In this thesis, we studied hardness of approximation and polynomial-time algorithms for

several scheduling problems of multi-processor tasks on parallel identical processors.

In Chapter 2 we considered some preemptive scheduling problems with different objective

functions and solved them in time polynomial in input size using Linear Programming.

Three preemptive scheduling problems with different objective function were considered:

• P |var, rj |Cmax: The problem of minimizing the maximum completion time for pre-

emptive malleable tasks.

• P |var, rj , dj |Lmax: The problem of minimizing the maximum latency for preemptive

malleable tasks.

• P |var, rj |Fmax: The problem of minimizing the maximum flow time for preemptive

malleable tasks.

We assumed that the tasks have release times and are malleable with arbitrary speed-up

function. Since the speed-up function is arbitrary, it can also be used to solve scheduling of

rigid tasks.

In Chapter 3 we studied some non-preemptive scheduling problems, which are related

to the starvation problem in scheduling tasks. Two solutions for starvation problem were

studied. One solution is to use objective functions like the maximum flow time. The other

solution is to ensure that each task is scheduled on at least some minimum number of

processors at each time. We considered complexity and proposed approximation algorithms

for two non-preemptive scheduling problems:
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• P |var, sj ,minj |Cmax: The problem of minimizing the maximum completion time of

non-preemptive malleable tasks with minimum degree of parallelism.

• P |sizej , rj |Fmax: The problem of minimizing the maximum flow time of non-preemptive

rigid tasks.

For the first problem, we showed that finding a feasible solution for P |var, sj ,minj |Cmax
is strongly NP-hard. We also showed that the problem is NP-hard when the processing time

function is work preserving. We proposed an algorithm for Pm|var, lin, sj ,minj |Cmax which

needs (1 + ε)-speed augmentation and runs in time polynomial in n and 1
ε .

For the second problem, we showed that the problem is strongly NP-hard and propose

a bicriteria (1 + ε, O(1/ε))-approximation algorithm for the problem.

Finally in Chapter 4 we considered online scheduling of malleable tasks with minimum

degree of parallelism, i.e., P |online-time, var, lin, sj ,minj |Cmax. We showed that speed

augmentation is necessary and no online algorithm can schedule the tasks feasibly without

speed augmentation. We also found a lower bound for speed augmentation and proposed

an online algorithm with O(log(n))-speed augmentation which finds an optimal scheduling.

5.2 Direction for Future Work

An interesting open problem is to find a Linear Program for preemptive scheduling of mold-

able tasks. While the Linear Programs in Chapter 2 can be used for preemptive scheduling

of rigid and malleable tasks, they cannot be used for moldable tasks. Since some approx-

imation algorithms for non-preemtive problems are based on an LP-relaxation where the

preemption is allowed, finding an LP-relaxation for preemptive moldable tasks can also be

helpful for solving some non-preemptive problems.

Regarding scheduling non-preemptive tasks with minimum degree of parallelism, we

presented complexity results for arbitrary number of processors. We also presented an

algorithm to solve the problem when the number of processors is constant. It remains open

if the problem is NP-hard when the number of processors is constant.

For solving P |sizej , rj |Fmax we used a rounding method proposed by Bougeret et al. [14]

for scheduling on heterogeneous platforms (SPP). It is possible that other rounding tech-

niques used for solving SPP can be used to solve P |sizej , rj |Fmax more efficiently.

Another open problem is whether it is possible for an online algorithm with constant

speed augmentation to solve scheduling of malleable tasks with minimum degree of paral-

lelism. We found a constant lower bound for speed augmentation and proposed an algorithm

with O(log(n)) speed augmentation. But it is still open if there is an online algorithm with

constant speed augmentation or not.
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