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Abstract. Herein, we propose generating CAPTCHAs through random field simulation and give a

novel, effective and efficient algorithm to do so. Indeed, we demonstrate that sufficient information

about word tests for easy human recognition is contained in the site marginal probabilities and the

site-to-nearby-site covariances and these quantities can be embedded into KNW conditional proba-

bilities, designed for effective simulation. The CAPTCHAs are then partial random realizations of

the random CAPTCHA word: we start with an initial random field (e.g., randomly scattered letter

pieces) and use Gibbs resampling to re-simulate portions of the field repeatedly using the KNW

conditional probabilities until the word becomes human-readable. The residual randomness from

the initial random field together with the random implementation of the CAPTCHA word provide

significant resistance to attack. This results in a CAPTCHA which is unrecognizable to modern

OCR but is recognized about 95% of the time in a human readability study.

Image processing, security, statistical information compression, Markov random field, simulation.

1. Introduction

A CAPTCHA is a “Completely Automated Public Turing test to tell Computers and Humans

Apart” von Ahn et al. [1], widely used to protect online resources from abuse by automated

agents. Von Ahn et al. [2] suggests that hard artificial intelligence (AI) problems form the test

basis and defines a (α, β, η)-CAPTCHA as a test that 1) can be solved by at least α proportion

of humans (e.g., the English-speaking adult portion) with a probability of success greater than

β; 2) if a computer program can solve it with probability greater than η in fixed time, then the
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program can be used to solve the hard AI problem (see [2] for details). A common CAPTCHA is an

image of (usually alphanumeric) characters to that are easy to identify by English-reading humans

yet translate into the hard AI problem of optical character recognition (OCR). Segmentation of

characters within a word image is error prone [3], and continues to be difficult for contemporary

OCR algorithms [4]. Therefore, segmentation should be hard to ensure an OCR-based CAPTCHA

is resistant to computer programs.

Herein, we introduce a general method for generating “KNW-CAPTCHAs” with the view that

random CAPTCHA creation is really random field simulation (“KNW-CAPTCHAs” are pro-

nounced KNOW CAPTCHAs, meaning people rather than computers will know what they are,

whereas the other computer resistant CAPTCHAs are apparently people resistant too). We sim-

ulate random fields with given pixel marginal probabilities and pixel-pixel correlations, which are

estimated from a priori samples with random variations in the fonts and placement of letters. This

can be thought of as a form of lossy compression: while the complete information is the joint distri-

bution, we store only the marginal probabilities and covariances, from which a (possibly different)

joint distribution can be reconstructed. However, we simulate directly from the marginal probabil-

ities and covariances. A KNW-CAPTCHA is initialized as a random field, and the CAPTCHA is

then generated via partial Gibbs re-sampling in order to provide enough information to make the

test word human-recognizable, yet ensure that OCR remains hard. Perhaps our most important

contribution is our method to simulate these random field CAPTCHAs in real time. In contrast

to other methods which apply deformations to an initial word image, the KNW-CAPTCHA is a

partial evolution from OCR-disruptive noise towards a random word image.

For an effective (α, β, η)-CAPTCHA, β should be high and η should be low. The target popula-

tion for our KNW-CAPTCHAs is English-readers with better than 20/60 vision (though we have

little control over the participants in our readability studies). We establish high β via a readability

study and endorse low η via experiments with modern OCR programs.
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We begin with an overview of past and present text-based CAPTCHAs. (While there are many

alternatives to text-based CAPTCHAs, such as the image-based IMAGINATION [5], which re-

quires users to annotate images, text-based CAPTCHAs continue to be the de facto standard in

industry.) The early, now broken PayPal and the Microsoft CAPTCHAs discussed in [6] and [4],

respectively, both relied on background noise and random character strings to resist automated

attacks but did not employ character crowding, significant distortion, nor sophisticated random

field techniques. The background noise (random arcs in [4] - see Figure 1) was trivial to remove

due to its distinctiveness.

Mori et al. [7] successfully attack both EZ-Gimpy and Gimpy CAPTCHAs. EZ-Gimpy uses

word images, and employs clutter and character distortion to defend against attacks. However, it

does not employ character crowding. The authors of [7] make use of character shape contexts in

order to obtain many candidate letter locations and exploit EZ-Gimpy’s use of words. Gimpy’s

clutter is two distorted overlapping word images (chosen from a dictionary of 411). In a CAPTCHA

challenge, five pairs of overlapping words are presented. In [7], the authors determine the opening

and closing bigrams of each word and use this knowledge to prune the space of possible words.

Further pruning is accomplished using word-sized shape contexts. Moy et al. [8] break EZ-Gimpy

and Gimpy-r. Gimpy-r presents the user with four random, distorted character images from an

alphabet of 19 letters against a cluttered background. It does not, however, use character crowding

nor random field techniques to impede segmentation. The authors of [8] are able to remove the

background clutter and segment the challenge into four character recognition problems, which are

solved by determining which template character image requires the least distortion to match the

observed character image. (Performance is further improved using additional steps.)

Pessimal Print (see Figure 1b), introduced in Coates et al. [9], simulates low-quality print

images that challenge OCR. The CAPTCHA generation randomly selects a word, a font, and a set

of image degradation parameters to thicken, crowd, fragment, and add noise to character images.
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685 word images were generated; all were readable to the ten human volunteers, while almost all

were unrecognizable to the Expervision TR, ABBYY FineReader, and IRIS Reader OCR programs.

Furthermore, OCR performance was very sensitive to changes in the parameters.

Chew et al.’s [10] BaffleText CAPTCHA relies on a human’s Gestalt perception, i.e., the ability

to assemble the whole given fragments of an image. BaffleText generates pronounceable non-

English random character strings, displayed in a randomly selected font and masked by random

circles, squares, and ellipses using one of the pixel-wise boolean operations “or”, “not and”, or

“exclusive or”. Character strings are generated using a trigram Markov model to solve the small

dictionary problem that can plague English word-based CAPTCHAs; random masks are used over

simple additive pixel noise in order to exercise humans’ Gestalt perception. Human readability

results were collected from 33 volunteers on 1212 BaffleText images, with 79% success. Attack

resistance is established by subjecting BaffleText images to the attack described in [7]. The attack

succeeded on only 11% of the BaffleText images, lower than both Pessimal Print and EZ-Gimpy.

The ScatterType CAPTCHA (see Figure 1c), introduced in Baird et al. [11], also relies on Gestalt

perception. Pseudo-words are generated using an n-gram Markov model; then each character in

the word is cut vertically and horizontally and the resulting fragments are displaced randomly.

Finally, we examine some popular CAPTCHAs in use today. The CAPTCHAs used by Google,

Yahoo!, and Windows Live (see Figure 1) all share similar properties: a lack of background noise,

distortion of character or word images, and extreme crowding of adjacent characters. Segmentation

resistance is largely accomplished by character crowding, notably lacking from earlier, now broken

CAPTCHAs such as the captchaservice.org CAPTCHAs in [12], the PayPal CAPTCHA in [6], the

Microsoft CAPTCHA in [4], EZ-Gimpy in [7], and Gimpy-r in [8]. However, this extreme crowding

also makes human-recognition a challenge. For example, is it obvious what the character string in

the Google CAPTCHA is?
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(a) Microsoft (broken) [4] (b) Pessimal Print [9] (c) ScatterType [11]

(d) Windows Live
(e) Google

(f) Yahoo!

Figure 1. A few CAPTCHA Examples

In contrast with the methods covered above, we view CAPTCHA generation as correlated random

field simulation. Like Pessimal Print [9], our images provide partial, noisy information. We also

leverage Gestalt perception to maintain a human-readable image, as in [10] and [11]. However, our

use of randomness is far more fundamental and thereby far harder for computers to deal with than

prior methods. We observe that the human readability of random CAPTCHA images is captured

by the site, i.e. pixel, marginal probabilities and the site-to-nearby-site covariances; the actual joint

distribution of the sites is not so important. Our method begins with a correlated random image

that is evolved randomly a site at a time via Gibbs sampling until the random test word is human-

readable. Our method of calculating each site’s conditional probability mass function given the

nearby sites that are either known or already simulated gives us exactly what is required for Gibbs

sampling. The initial image can be a simple white background, any correlated random field, or, for

strong segmentation resistance, a CAPTCHA generated by the ScatterType algorithm [11] with

a different base word. Both the legibility and segmentation-resistance of our KNW-CAPTCHA

depends on the number of iterations used in the Gibbs sampling step. The upshot is that we

generate flexible, random CAPTCHAs automatically and efficiently and explain exactly how we do

it.
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In this work, we investigate two variants of the KNW-CAPTCHA: the KNW-CAPTCHAE,

an easy variant generated without any background noise, and the KNW-CAPTCHAH, which is

generated using character fragments as the background noise. The KNW-CAPTCHAE is used

to investigate how the generation parameters (especially the number of Gibbs iterations, NG) af-

fect the attack resistance of the resulting CAPTCHA. Figure 2a shows both the attack resistance

and human readability of the KNW-CAPTCHAE for various values of NG, where computer suc-

cess is the proportion of CAPTCHAs where either of the OCR programs Tesseract or ABBYY

FineReader successfully recognized it, and human success is the proportion of CAPTCHAs where

a human successfully recognized it. The KNW-CAPTCHAH would be used in practice as the

background noise provides additional security but the CAPTCHA remains highly readable to hu-

mans. Figure 2b compares the human readability and attack resistance of the KNW-CAPTCHAH

with several CAPTCHAs deployed by major corporations. As the correct answers for the compar-

ison CAPTCHAs are unknown, we use optimistic solving accuracy (see Section 4.4) to determine

human success; similarly, an OCR program is considered correct if it matches any of the human re-

sponses. These graphs clearly illustrate that both the KNW-CAPTCHAE and KNW-CAPTCHAH

are highly readable and difficult to attack; even the KNW-CAPTCHAE appears to have resistance

to OCR comparable to or surpassing CAPTCHAs currently used by Google, YAHOO, and eBay.

There were no computer successes against the KNW-CAPTCHAH, yet it obtained over 94% human

success. (None of the other CAPTCHAs went unrecognized by OCR; only the eBay CAPTCHA

bested the KNW-CAPTCHAH in human success, but it also appears to be trivially broken.)

Our notation and random field algorithm are given in Section 2. Section 3 details our CAPTCHA

generation, and Section 4 contains our results. We discuss alternative implementations of the

KNW-CAPTCHA in Section 5.1. The mathematics behind the methodology in this paper will be

published separately (see [13]).



ON RANDOM FIELD CAPTCHA GENERATION 7

0.01 0.02 0.03 0.04 0.05

0.
99

0
0.

99
2

0.
99

4
0.

99
6

Computer Success

H
um

an
 S

uc
ce

ss

NG = 200
NG = 400
NG = 600
NG = 800
NG = 1000

(a) KNW-CAPTCHAE with various NG

0.00 0.10 0.20 0.30

0.
85

0.
90

0.
95

Computer Success

H
um

an
 S

uc
ce

ss

KNW
Google
YAHOO
eBay

(b) KNW-CAPTCHAH, Google, YAHOO, and eBay

Figure 2. Human and Computer Success on Various CAPTCHAs
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Figure 3. Simulation Example

2. Notation, Background, and Probability Computation

We begin by giving the required mathematical background and the equation for the conditional

probability of a pixel given the nearby pixels based on correlations and marginal probabilities.

Our goal is to randomly turn a pixel on/off given an estimated set of parameters (the marginal

probabilities and site-site covariances) and the values of nearby pixels. The parameters capture the

fundamental properties of the challenge word and, as pixels are re-simulated, the random image

approaches the desired image. Figure 3 illustrates this setup, where the grey node represents the

pixel being simulated and the nodes with solid outlines represent the nearby already-simulated

pixels.

We consider a rectangular image of M×N pixels at the sites S = {(i, j) : 1 ≤ i ≤ M, 1 ≤ j ≤ N},

let ρ(s, t) =
√

(i2 − i1)2 + (j2 − j1)2 be the Euclidean distance between s(i1, j1) and t(i2, j2), and

define the neighborhoods of s = (i, j) ∈ S with radius ℓ ∈ R as the ℓ-neighborhood

∂ℓ(s) = {(u, v) ∈ S : 0 < ρ((i, j), (u, v)) ≤ ℓ}.

Definition 2.1. A point s = (i, j) ∈ A is ℓ-connected within set A ⊂ S if ∂ℓ(s) ∩ A is not empty.

A is ℓ-connected if for every proper subset B ⊂ A, ∂ℓ(B) ∩A is not empty.

We assume the desired site marginals {πh} satisfy πh(1) = 1− πh(−1) ∈ (0, 1), h ∈ S and {βh,t :

t ∈ ∂l(h), h ∈ S} are site-site covariances. Assume the numbers on the RHS of (2.1) are in [0, 1]

(conditions for this to be true are given in [13]). Then, there is a probability measure Π on {−1, 1}S



ON RANDOM FIELD CAPTCHA GENERATION 9

such that for each h ∈ S

Π(Xh = c) = πh(c), ∀ c ∈ {−1, 1}, cov(Xh, Xt) = βh,t, ∀ t ∈ ∂l(h),

i.e., with correct marginals and covariances, and

Π(Xh = xh|X∂ℓ(h) = x∂ℓ(h)) = πh(xh) +

∑

t∈∂ℓ(h)

xhβh,txt

1
4d

|∂ℓ(h)|+1Π(X∂ℓ(h) = x∂ℓ(h))
(2.1)

for each xh ∈ {−1, 1} and x∂ℓ(h) ∈ X∂ℓ(h), where | · | denotes the cardinality of a set.

Now, we explain how we use the marginals and covariances to determine the conditional probabil-

ities (2.1) for simulating a KNW-CAPTCHA. Suppose we have determined the site pmf’s {πh}h∈S

and the covariances {βh,t : h, t ∈ S and ρ(h, t) ≤ ℓ} of sites within distance ℓ of each other for

random instances of the challenge word. (This is dealt with below.) Then, we start with a ran-

dom field designed to bait computers into the wrong conclusions. Finally, we resample using {πh}

and {βh,t} together with (2.1) until the challenge word is just human-readable yet there is such

correlated noise that automated agents are unable to recognize the text.

We resample using Gibbs-like sampling, where we condition only on a large area around a site

instead of all sites. The algorithm will randomly select a site h ∈ S to resample using (2.1) to

ensure we keep the desired pmf’s and covariances. The joint probability Π(X∂ℓ(h) = x∂ℓ(h)) in the

denominator on the RHS of (2.1) can be computed easily in real time by caching and re-using

results. Let {t1, . . . , t|∂ℓ(h)|} be the sites in ∂ℓ(h) and Bk = {t1, ..., tk} for k = 1, . . . , |∂ℓ(h)| and

B0 = ∅. Then, we compute Π(X∂ℓ(h) = x∂ℓ(h)) using the multiplication rule

Π(X∂ℓ(h) = x∂ℓ(h)) =

|∂ℓ(h)|
∏

i=1

Π(Xti = xti |XBi−1 = xBi−1).(2.2)

Π(Xti = xti |XBi−1 = xBi−1), i = 1, . . . , |∂ℓ(h)| can be computed directly using (2.1).

Next, based on the conditional probabilities computed using (2.1), we use the following straight-

forward simulation algorithm to simulate h with the appropriate marginals and covariances.

(1) Compute Π(Xh = cu|X∂ℓ(h) = x∂ℓ(h)) for 1 ≤ u ≤ d, using (2.1).



10 MICHAEL A. KOURITZIN*, FRASER NEWTON, AND BIAO WU

(2) Generate a [0, 1]-uniform random variable U . If

w−1
∑

u=1

Π(Xh = cu|X∂ℓ(h) = x∂ℓ(h)) ≤ U <

w
∑

u=1

Π(Xh = cu|X∂ℓ(h) = x∂ℓ(h))

for some 1 ≤ w ≤ d, then we set Xh = cw, i.e., the realization of Xh is cw.

3. The KNW-CAPTCHA

We now present how to estimate the required parameters for a particular KNW-CAPTCHA and

use those parameters to generate a novel random CAPTCHA in Sections 3.1 and 3.2, respectively.

3.1. Parameter Estimation. We begin by generating the data for the estimation process that

consists of many independent instances of a particular word, where each instance varies randomly

in many ways. The parameters learned from this data will represent the challenge word; by learning

the parameters (site probabilities and site-to-nearby-site covariances) from this data, we can con-

struct the conditional probabilities of the previous section and, thereby, do the Gibbs resampling

portion of our CAPTCHA creation.

The algorithm for generating the data consists of selecting a word to serve as the KNW-

CAPTCHA’s correct response and then generating a number of random images representing this

word by varying fonts and placement of characters in the word. The word images will be con-

structed by joining individual character images. Herein, we select a random word uniformly over a

fixed dictionary of common English words with a length of at least three characters.

For each letter in the English alphabet and for each of 18 fonts, we generate character images

denoted {f1,1, . . . , f1,26, . . . , f18,1, . . . , f18,26}, i.e., fi,j is the character image of the jth letter in

the ith font. To ensure that forming a word image by joining random character images results

in consistent horizontal placement of individual character images, we work with character images

that, for a given letter, all have the same width. To accomplish this, we generate trimmed or

scaled character images for each letter as appropriate. Let Nf
j denote the maximum width of the
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bounding boxes over the character images {f1,j , . . . , f18,j}, where a bounding box is the smallest

rectangle that encloses the character. For i = 1, . . . , 18, j = 1, . . . , 26,

• if j is one of the letters {i,j,l,r,t}, generate a new character image f ′
i,j by centering and

trimming fi,j so that its width is Nf
j by removing columns outside the bounding box;

• otherwise, generate a new character image f ′
i,j by scaling fi,j so that f ′

i,j ’s bounding box

has a width of Nf
j and removing all columns outside the bounding box.

The letters {i,j,l,r,t} were chosen for trimming instead of scaling since scaling some of their images

results in very tall bounding boxes due to their highly variable character widths.

We then generate K images of the chosen character string with pixel state space {−1, 1} =

{white, black}, and nc is the number of characters in the character string using the following

algorithm.

(1) The horizontal distance between each adjacent character’s bounding box is chosen using a

random number selected uniformly over {1, 2, 3}. This is fixed for all K images.

(2) The vertical displacements of characters are determined using the values {v0, v1, v2, . . . }

of a reflecting random walk, moving upward or downward one with probability 1
2 ; upon

hitting the boundary {−25, 25}, it reflects. The random walk is initialized randomly over

{−10, ..., 10}. The ith character image, where i ∈ {1, 2, . . . , nc}, will be placed vertically by

centering it according to the vertical center of its bounding box, and then shifting it up or

down according to the value v(i−1)×6 of the random walk. This produces (n = 6, p = 1
2)-

binomial shifts before reflection. This is also fixed for all K images.

(3) For 1, ...,K

(a) For each letter in the string, a random character image is chosen uniformly over

{f ′
1,i, . . . , f

′
18,i}, where i corresponds to the given letter.

(b) The string image is generated by positioning each character image according to the

above horizontal distance and vertical displacement parameters.
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The data generation algorithm is motivated by the following: the horizontal distance is varied

randomly to introduce crowding between some adjacent characters and make the horizontal po-

sitions of characters unpredictable, both of which make segmentation more difficult; the vertical

displacement is varied to ensure the vertical location of the word is unpredictable, but a random

walk is used to introduce dependence between adjacent characters and aid the reader in following

the flow of the word; and the font is chosen randomly for each character to ensure the estimated

parameters represent an “average” character, rather than a particular font, so that feature detec-

tion or pattern recognition becomes difficult. Still, it must be remembered that the main sources

of defense against automated attacks come from the original correlated random field and the pixel

by pixel randomness in simulating the word so we do not rely just on character crowding as other

methods do, but rather use it as one more layer of protection.

Returning to estimation, we let s(i), t(i) denote the value of pixels s and t in the ith image and

use the unbiased covariance estimator

βs,t =
1

K − 1

K
∑

i=1

(xs(i) − x̄s)(xt(i) − x̄t) for 0 < ρ(s, t) ≤ ℓ,

where x̄s =
1
K

∑K
i=1 xs(i) is the empirical mean. We estimate the marginal probabilities as

πs(xs) =
1

K

K
∑

i=1

1x
s(i)

=xs
, where 1x

s(i)
=xs

=



















1 if xs(i) = xs

0 otherwise.

3.2. KNW-CAPTCHA Generation. We now present the KNW-CAPTCHA generation details,

which consists of generating background noise and then simulating the character string, using

modified Gibbs sampling with the parameters obtained in Section 3.1, on top of the background

noise.

Introducing background noise is a common technique when generating CAPTCHAs since it

introduces red herring character shapes that must be removed or ignored by a computer program.

Our view is that the best red herrings are actual character pieces. Background noise also makes
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segmentation more difficult since, for example, vertical projection will not detect gaps between

adjacent characters bridged by appropriate background noise, and connected components will view

two adjacent characters as one if they are connected by background noise (see e.g. Figures 1a, 6c).

We generate background noise via the ScatterType algorithm in [11]. While the original intent

of the ScatterType algorithm was to produce CAPTCHAs that were human-readable but difficult

to crack, our goal is the reverse: produce ScatterType CAPTCHAs that are clearly unreadable to

humans yet “readable” to computers, i.e., the character shapes produced will serve as effective red

herrings. By being obviously human-unreadable, the background noise will be visually distinct from

the actual character string, serving as a form of stenography. Still, the character pieces are often

erroneously detected by computer programs as part of the actual character string. The unreadable

background noise is generated using the following algorithm.

(1) Choose a five-letter character string uniformly, with replacement, over the English alphabet.

(2) Apply the ScatterType algorithm using a fixed font and the following parameters:

Cutting Fraction 0.50 Expansion Fraction 0.60

Horizontal Scatter Mean 0.00 Vertical Scatter Mean 0.00

Scatter Standard Error 0.05 Character Separation 0.20

For our purposes, it is sufficient to say that this algorithm cuts each character into large chunks

(roughly quadrants), scatters each chunk, and separates each adjacent character by roughly the

width of a character. The reader is referred to [11] for a description of the ScatterType algorithm.

Finally, we are ready to generate the KNW-CAPTCHA. We apply Gibbs-like sampling, where we

consider background noise as the initial state and use (2.1) to calculate the conditional probabilities

of sites in order to re-simulate them. The challenge is to choose and re-simulate the correct sites so

that the KNW-CAPTCHA is human-readable but resistant to crack attempts. We consider such

a KNW-CAPTCHA to be a “minimally-readable CAPTCHA”.
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The KNW-CAPTCHA is generated using the following algorithm. See Figure 4 for examples.

(1) Select a character string, generate a data sample of size K = 30 × nc, where nc is the

number of characters in the string, and estimate the parameters as described in 3.1.

(2) Set R, the sites to re-simulate, as follows:

(a) Sp = {s ∈ {1, . . . ,M} × {1, . . . , N} : πxs
(1) > 0}, i.e., the sites that have a non-zero

probability of being black.

(b) S4
p = {s ∈ {1, . . . ,M}× {1, . . . , N} : s ∈ ∂4(p) for some p ∈ Sp}, i.e., the sites that are

within a distance of ℓ = 4 from a site that has a non-zero probability of being black.

(c) To choose R, selectNG×nc sites, where NG ∈ N is constant for all characters, randomly

and without replacement from S such that the probability of selecting a site from S4
p

is ten times greater than selecting a site from S \ S4
p .

1

(3) Generate the random ScatterType-based noise as described above. Select 400 sites in the

same manner as choosing R, and re-simulate each of those sites using only the marginal

probabilities (i.e., assuming independence). Take this to be the background noise.

(4) Apply the modified Gibbs sampling:

(a) Take the initial state to be the background noise.

(b) Re-sample each site in R according to Section 2.2

1Sites within and near the defining “shape” of a letter are likely to be re-simulated, while others are not, ensuring

the background noise is preserved while the character string is sufficiently human-readable. We consider this a Gibbs-

like sampler since the goal is not to reach the joint distribution of the KNW-CAPTCHA but to effectively blend the

encoded word with the background noise.

2Depending on the parameters estimated and the background noise used, we may encounter conditional probabili-

ties outside the bounds of [0, 1]. In this paper, we are more concerned with the practical outcome of the algorithm over

perfect mathematical sensibility; for this reason, if a probability is encountered outside these bounds, we instead use

the marginal probability as a fallback. Please see [13] for a detailed exploration of the constraints on the parameters.
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(a) A KNW-CAPTCHAE. (b) A KNW-CAPTCHAH, with outline.

Figure 4. KNW-CAPTCHA examples

This process generates a matrix of black and white pixels saved as a PNM file; in practice, we

must use an image format supported by modern web browsers as the CAPTCHAs will typically be

deployed on websites. We use ImageMagick [14] to convert the PNM file to a 72 DPI JPEG file,

which is used in the following OCR and human readability experiments.

4. Results

In the following, we describe how we measure the properties of the KNW-CAPTCHA and pro-

vide results. In Section 4.1, we attack a weak variant of the KNW-CAPTCHA with computer

programs to establish a lower-bound to the KNW-CAPTCHAs’ attack resistance; in Sections 4.2

and 4.4, we measure the human readability of the hardened KNW-CAPTCHA; finally, in Sec-

tion 4.3, we measure the attack resistance together with the human readability of the hardened

KNW-CAPTCHAs.

We use KNW-CAPTCHAE to refer to the easy KNW-CAPTCHA variant (Figure 4a). This vari-

ant is generated with no background noise and no vertical displacement of individual characters,

and is designed to be as easy as possible to attack while maintaining the fundamental proper-

ties of the KNW-CAPTCHA. The hardened variant, KNW-CAPTCHAH, generated with both

background noise and random vertical displacement, is deployed in practice. See Figure 4b.

4.1. KNW-CAPTCHAE Experiments. Recall that in a (α, β, η)-CAPTCHA, we want η to be

low. We now show our η is low by establishing that modern OCR programs are unable to recognize

the encoded words. In particular, we use KNW-CAPTCHAE and design each experiment to give
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the attacks the best chance of success. The resistance to attacks in these easy cases is a lower

bound for the hardened KNW-CAPTCHA used in practice. However, our results below show even

the KNW-CAPTCHAE is basically unbreakable with contemporary OCR programs.

In order to understand the effect of NG, the proportion of sites to resimulate in our modified

Gibbs sampling, we perform the following experiments over a number of values of NG and expect

NG to be related to how readable by both computer programs and humans the resulting image is.

We use two OCR programs: Tesseract and ABBYY FineReader. Tesseract is available at http:

//code.google.com/p/tesseract-ocr/ (retrieved 2010-09-14). To our knowledge, Tesseract is

the best available open-source OCR. An overview of the implementation of Tesseract is given in

Smith [15]. ABBYY FineReader is a propriertary OCR program used in, for example, [9].

We proceed in the spirit of giving the OCR programs a “fighting chance” by using KNW-

CAPTCHAE. In essence, we make the KNW-CAPTCHA as easy as possible to recognize (while

maintaining its fundamental construction). This tactic will provide the most evidence that η is

low, i.e., that the KNW-CAPTCHA is difficult to crack. Word accuracy is calculated based on the

number of words recognized, and all word comparisons are done ignoring case.

For a particular word, the experiment is as follows.

(1) Generate a KNW-CAPTCHAE for the word wordK with no background noise and no ver-

tical displacement.

(2) Run the OCR program to obtain wordO.

(3) Compare wordK and wordO.

We vary NG and obtain the results over nT trials under each given value of NG. Under a

given NG, we model each attempt to recognize the word as i.i.d. (pw)-Bernoulli random variables,

where pw is the probability of recognizing the word. We use the maximum likelihood estimator

p̂w and provide the 95% confidence interval. We perform the experiment for nT words, selected

without replacement randomly from our dictionary. In order to validate the human readability of
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the KNW-CAPTCHAE, we also collect human results via Amazon Mechanical Turk (AMT) [16]

(see Section 4.2.2 for details). Results are summarized in Table 1, and an example of a KNW-

CAPTCHAE is provided in Figure 4a. Based on these results, it appears that both OCR programs

have great difficulty recognizing the KNW-CAPTCHAEs. In fact, the computer performance on the

unhardened KNW-CAPTCHAE with NG = 200 is similar to the results on the Google CAPTCHA

(Table 3), which was the most difficult for OCR to recognize of Google, YAHOO, and eBay.

In addition, human performance on the KNW-CAPTCHAE is very high; taken together, this

experiment strongly indicates that η is low while β is high, as desired. As expected, both OCR

and human performance generally increase as NG increases, which indicates that NG will serve an

important role in balancing readability and security.

NG nT ABBYY Tesseract Human

200 1000 0.012± 0.007 0.000± 0.000 0.990± 0.006

400 1000 0.015± 0.008 0.000± 0.000 0.991± 0.006

600 1000 0.007± 0.005 0.002± 0.003 0.991± 0.006

800 1000 0.032± 0.011 0.015± 0.008 0.996± 0.004

1000 1000 0.034± 0.011 0.020± 0.009 0.993± 0.005

Table 1. 95% Confidence Interval of Computer and Human p̂w

4.2. KNW-CAPTCHAH Experiments. In the (α, β, η)-CAPTCHA context, our β is high. The

KNW-CAPTCHA should be applied to literate English-reading adults with normal eyesight. (In

practice, alternative CAPTCHAs, such as an audio CAPTCHA, should be provided others.) Our

task is to estimate β and the time to complete the challenge empirically.

The following experiments use a set of 300 KNW-CAPTCHAH images generated with NG = 800

based on the results of the previous sections along with visual inspection in order to balance attack

resistance with readability.
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4.2.1. Online Readability Study. To collect these results, we set up the website http://www.

knwcaptcha.org. Volunteers participating in this online study were anonymous. No incentive

was provided. The procedure was as follows.

(1) The visitor is presented with information on how the experiment is conducted and how the

data will be used. If the user does not accept, the experiment is terminated.

(2) In order to familiarize the visitor with the process, he or she is presented with an example

of a KNW-CAPTCHAH along with the correct response. The example shows a KNW-

CAPTCHAH with the encoded word outlined, and is designed to show the visitor how to

recognize the encoded word in noise. See Figure 4b.

(3) The visitor is shown a set of 25 KNW-CAPTCHAHs. A visitor is never shown the same

word more than once. Beside each KNW-CAPTCHAH, the visitor enters a response, and

submits the entire data set upon completion.

A human’s response to a KNW-CAPTCHAH is marked as correct if it matches the encoded

word, ignoring case, and incorrect otherwise. In the analysis, we model the trials as i.i.d. (β)-

Bernoulli random variables. The experiment yields nT responses from humans y1, . . . , ynT
, where

yi = 1ith response was correct. As before, we use the maximum likelihood estimator β̂ to estimate β.

The time to solve each challenge is calculated using the time elapsed from when the user is first

presented with the CAPTCHAs to the submission of the responses. The results are summarized in

Table 2. Humans succeeded at solving a high proportion of KNW-CAPTCHAHs quickly, helping

to establish that β is high and our CAPTCHAs are not onerous.

4.2.2. Amazon Mechanical Turk. In addition to collecting responses from volunteers at knwcaptcha.

org, we used Amazon Mechanical Turk (AMT) [16]. AMT is an online service which allows re-

questers to submit tasks which will be completed by a pool of workers. The use of AMT for

collecting human feedback in research has been established in several works. In Kittur et al. [17],
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the authors found that high quality responses are achievable when using an appropriate experimen-

tal design; for example, in order to be resistant to workers gaming the task, it is important that

the task be as much effort to complete incorrectly as correctly. In Sorokin et al. [18], the authors

successfully use AMT for the purpose of image annotation. In Bursztein et al. [19], a number of

popular CAPTCHA schemes are evaluated in terms of human readability based on the amount

of agreement between three workers on a CAPTCHA image containing an unknown word. (For

further discussion of [19], please see Section 4.4.) Our task of evaluating the responses to a known

CAPTCHA is relatively straightforward and an appropriate fit for AMT.

Our AMT task design is similar to that of knwcaptcha.org. Each task submitted to AMT

consisted of a KNW-CAPTCHAH image and a response field. A batch of tasks is preceded by brief

instructions and an example, as on knwcaptcha.org. No qualification pre-tests are administered,

nor are workers penalized (via, for example, lack of payment) for wrong answers. AMT provides

more diverse, international respondents than could be obtained by recruiting local volunteers as

in Section 4.2.1. While no demographic information is collected, a comprehensive survey of the

AMT worker population conducted by Ross et al. [20] found a large population of international,

young, educated workers. Furthermore, [19] examines the effect of demographics on CAPTCHA

solving ability; of particular interest to us is that native English speakers are able to solve English

or pseudo-English CAPTCHAs far faster, which indicates that the KNW-CAPTCHAH is biased

against non-native English speakers.

The responses collected are summarized in Table 2. As before, we model the trials as i.i.d.

(β)-Bernoulli random variables, and solving time is calculated as in Section 4.2.1. While there is

a drop in accuracy when compared with the results in Section 4.2.1, this is likely explained by

the different demographics of the respondents, particularly native language, as well as the lack

of incentives for correct responses. Unsurprisingly, the AMT workers, who are incentivized to

complete tasks quickly, solve the CAPTCHAs faster than their volunteer counterparts.
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4.3. OCR Attacks on Hardened KNW-CAPTCHAs. Next, we confirm that the KNW-

CAPTCHAH is an effective separator of humans and computer programs by providing an “apples

to apples” comparison of OCR performance against human performance. To obtain these results,

we ran Tesseract and ABBYY FineReader on the KNW-CAPTCHAHs for which we have human

responses and determined accuracy as before. The results are in Table 2.

As is clear from Table 2, neither OCR program is able to recognize any of the KNW-CAPTCHAHs,

while humans perform remarkably well on them. In fact, the OCR programs seldom recognized

any of the characters present in the word. These results, taken together with the results in Section

4.1, provide strong evidence that the KNW-CAPTCHAH defends automated attacks well while

also remaining quickly and easily solvable by humans. In particular, we see that the human time

to solve the KNW-CAPTCHAH is low so our CAPTCHAs are not onerous.

NG nT 95% Confidence Interval Time to Solve

knwcaptcha.org 800 300 0.960± 0.022 6.41s

AMT 800 3319 0.910± 0.010 4.98s

Tesseract 800 300 0.000± 0.000 N/A

ABBYY 800 300 0.000± 0.000 N/A

Table 2. KNW-CAPTCHAH Human and Computer Performance

4.4. Comparison. We now compare the KNW-CAPTCHAH to other popular CAPTCHAs by

replicating the procedure used in the excellent CAPTCHA readability study in Bursztein et al.

[19].

In [19], responses are collected from three distinct AMT workers for each CAPTCHA image.

Since the correct answer for each CAPTCHA is unknown, they instead compute “optimistic solving

accuracy”: for a particular CAPTCHA image, if all three responses agree then all three responses

assumed to be correct; if two agree, then two responses are assumed to be correct; otherwise, one

response is assumed to be correct. In addition, we collect responses from ABBYY and Tesseract
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Figure 5. Authorize CAPTCHA Example [19]

as before; in this case, an OCR program is considered correct if it matches any of the three human

responses. See Table 3 for optimistic computer and human solving accuracy, where nC is the

number of CAPTCHAs used, and nH is the number of human responses collected.

nC ABBYY Tesseract nH β̂

KNW-

CAPTCHAH

300 0.00± 0.00 0.00± 0.00 900 0.94± 0.02

Google 300 0.00± 0.00 0.01± 0.01 900 0.81± 0.03

YAHOO 300 0.01± 0.01 0.02± 0.01 900 0.93± 0.02

eBay 300 0.05± 0.02 0.29± 0.05 900 0.97± 0.01

Table 3. 95% Confidence Interval of Optimistic Computer and Human Performance

The KNW-CAPTCHAH compares favourably with the Google, YAHOO, and eBay CAPTCHAs:

it is the only CAPTCHA that was unrecognized by either OCR program, and only the eBay

CAPTCHA was more human readable (though the eBay CAPTCHA also appears trivially broken).

The Google CAPTCHA was seldomly recognized by OCR, but at significant human readability cost.

The optimistic human solving accuracy on the KNW-CAPTCHAH also compares favourably to

many popular CAPTCHA schemes used in [19], including reCAPTCHA (0.75), Google (0.86), and

Yahoo (0.88). A few CAPTCHA schemes achieved higher accuracy, like the Authorize CAPTCHA

(0.98). However, this study did not assess attack resistance; the Authorize CAPTCHA example in

Figure 5 is straightforward to segment, for example. The reader is referred to [19] for details.
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5. Security Discussion

Removal of noise is typically the first step of a CAPTCHA attack, and is often straightforward due

to the noise’s distinctness from the character images, as in the PayPal CAPTCHA [6] and Gimpy-r

[8]. Dictionary knowledge facilitates specific pattern discovery in many text-based CAPTCHAs, as

in the bigram-based attack against Gimpy [7]. Font knowledge can be used to determine the most

likely character for a particular character image, as in [8]. Finally, segmentation of word images

was often a critical step in order to individually attack and recognize characters, as in [6] and [8].

We now examine how the KNW-CAPTCHAH resists like-minded attacks.

The KNW-CAPTCHAH uses ScatterType background noise comprised of character fragments

difficult to differentiate from the encoded CAPTCHA characters, in contrast to the Microsoft

CAPTCHA [4], which relied on random arcs. However, the background still retains distinct qual-

ities; in particular, it does not appear as “noisy” as the encoded characters; which works in our

favor for untargeted attacks. If an attack were to target this feature, the amount of degradation

done to the initial state could be varied (see Section 5.1 for more details).

The KNW-CAPTCHAH also uses an English dictionary with a fixed number of words for human

readability. However, this does enable attackers to use dictionary knowledge to improve attack

effectiveness. If this proves a weakness, there are three straightforward alternatives: increase the

dictionary size (reCAPTCHA uses 100,000 words [21]); use pseudo-words as in [11]; or use random

character strings.

It will prove very difficult for attackers to leverage font knowledge against the KNW-CAPTCHAH.

The KNW-CAPTCHA algorithm learns the parameters to simulate a character image from many

fonts; no one particular font is used, and the set of fonts used can be changed easily. Instead, each

character image in the KNW-CAPTCHA is randomly simulated, leading to a partial, noisy image

such that no two realizations are the same nor do they match any of the fonts. This contrasts
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particular font distortions, as in Gimpy-r, which yielded to distortion estimation techniques [8], or

to particular font noise obscurations, as in the Pessimal Print CAPTCHA [9].

Segmentation resistance is critical for CAPTCHA design since a trained computer program can

outperform humans at recognizing distorted, cluttered single character images [22]. Segmentation

continues to be error-prone for OCR, but several CAPTCHAs have been broken via segmentation

attacks (see Section 1). As several modern CAPTCHAs, the KNW-CAPTCHAH uses character

crowding (in addition to random images). The KNW-CAPTCHAH crowds using adjustable random

spacing, as in [11], which typically leads to some adjacent character images overlapping.

To illustrate, we implement and execute a vertical projection segmentation attack on the easier

KNW-CAPTCHAE. The vertical projection attack, at its simplest, calculates the total number

of “on”, or black, pixels in each column in an image. The image is then segmented at columns

where there are few or no black pixels. This method is very fast since only one pass of the image

is required, making it a useful tool for attempting to crack large numbers of CAPTCHAs. We

implement a more sophisticated variant of the vertical projection attack to identify segmentation

candidates as described by Tsujimoto et al. [23], which is designed to segment touching characters

as in KNW-CAPTCHAs. (Casey et al. [3] provides an excellent overview of segmentation methods.)

Tsujimoto et al. [23] define their algorithm for finding segmentation candidates as follows.

(1) For each adjacent pair of columns, perform an AND operation and determine the number

of black pixels in the resulting column (i.e., the number of pixels that were black in both

columns); this number is called the break cost.

(2) Smooth the break costs obtained in the previous step.

(3) Identify break candidates as local minima in the smoothed break costs.

Herein, we smooth using a moving average.

We use the following experimental procedure for measuring the segmentation performance.
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(1) Generate an easy KNW-CAPTCHA for a character string consisting of two random (i.e.,

chosen uniformly over the English alphabet), lower case letters, with no background noise

(i.e., the modified Gibbs sampling is initialized with a white image).

(2) Find the global smoothed break point minimum within the boundaries (i.e., in the horizontal

region between the first and last black pixels) of the generated KNW-CAPTCHA using the

above sophisticated vertical projection segmentation attack. In the case of a tie, select the

point randomly amongst the global minima. Use this as the point of segmentation.

(3) If the bounding boxes of the two characters overlap, and the segmentation point is within

two pixels of the middle of the overlapping region, then consider the segmentation correct.

If the bounding boxes do not overlap, then consider the segmentation point correct if it lies

anywhere in the region between the bounding boxes.

The determination of whether the segmentation point is correct is slightly modified from the

work done by Hoffman et al. [24], which sought to isolate measures of segmentation performance

from recognition engines. Since we are attempting to evaluate only segmentation resistance at this

point, rather than recognition resistance, ours was an appropriate technique to adopt.

We estimate ps, the probability of successful segmentation, using the maximum likelihood esti-

mator p̂s. The results are summarized in Table 4. The segmentation performance is low despite

targeting character crowding and presenting simplified two character images without scatter noise.

Furthermore, the segmentation performance does not vary significantly with NG indicating the

vertical projection algorithm has difficulty with the basic construction of the KNW-CAPTCHA.

Collectively, the security mechanisms in the KNW-CAPTCHAH will prove difficult to circumvent.

However, should it be successfully attacked, other variants may take its place.

5.1. Variants. The mechanism described in Section 3 is more general than the particular example

we study in this work: it can easily be extended to counter new attacks. For example, if an attacker

is able to remove the background noise, one can use striped correlated noise (see Figure 6c); if a
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NG nT 95% Confidence Interval of p̂s

600 1000 0.094± 0.018

800 1000 0.092± 0.018

1000 1000 0.088± 0.018

Table 4. Segmentation Performance

dictionary-based attack succeeds, one can use pseudo-words; if a segmentation attack succeeds, one

can increase character crowding or decrease NG (see Figure 6a). In fact, one could deploy several

variants simultaneously, effectively reducing the reward for successfully attacking any particular

variant. We now provide a high-level view of potentially useful variants; furthermore, we will

discuss how a variant can be selected by a user of the KNW-CAPTCHA.

The algorithm given in Section 3 consists of the following steps.

(1) Sample generation: many random instances of a character string image are generated.

(2) Parameter estimation: simulation parameters are estimated from image samples.

(3) Initial state: an initial state for the KNW-CAPTCHA is generated.

(4) Simulation: re-simulate random pixels of the KNW-CAPTCHA until word appears.

This is a template method pattern [25], meaning that we have given a high-level description of the

algorithm while allowing variants to define the details of how each step is accomplished.

Within, we studied two variants, the KNW-CAPTCHAE and the KNW-CAPTCHAH. The

KNW-CAPTCHAE was deliberately designed to be vulnerable to attack by eschewing random

vertical displacement in the sample generation step, and background noise. In contrast, the KNW-

CAPTCHAH does use random vertical displacement and the initial state is generated using a

ScatterType CAPTCHA. These two relatively simple differences produce significantly different

CAPTCHAs, yet the overall algorithm remains the same.

Now we introduce several variants to illustrate the flexibility of the KNW-CAPTCHA algorithm.



26 MICHAEL A. KOURITZIN*, FRASER NEWTON, AND BIAO WU

Low NG: We use a less cluttered initial state and alter the simulation step by using a lower

NG, NG = 100 say. The intent is quite different from the KNW-CAPTCHAH: instead of

relying on background noise to defend against attack, we are relying on using only partially-

formed character shapes to ensure segmentation is difficult. See Figure 6a.

Clustered Correlated Noise: Instead of the ScatterType character fragments, we generate

the initial state using the simulation algorithm detailed in Section 2, with pair-wise covari-

ances set to the Euclidean distance from the pixel being simulated with ℓ = 2. The effect

is an initial state with clustered random shapes. See Figure 6b.

Striped Correlated Noise: We generate the initial state using one pass of the simulation

algorithm with ℓ = 2. Let the pixel p being simulated have the coordinates (x, y), and let

pixel pi have the coordinates (xi, yi). For each pixel pi in the neighbourhood of p, set the

pair-wise covariance to 0 if x < xi and y < yi, or if x > xi and y > yi; otherwise set the

pair-wise covariance according to the Euclidean distance between p and pi. This generates

striped correlated noise. See Figure 6c.

Simulated Characters: generate the initial state using the KNW-CAPTCHAE algorithm

with a lower NG and a random character string. This produces a background noise that

is distinct to humans but difficult to eliminate automatically due to the similarity in form

to the CAPTCHA word. A random character string is used instead of a word to prevent

confusion between the background noise and the CAPTCHA word. See Figure 6d.

5.1.1. Variant Selection. While it is clear that it is easy to generate varied CAPTCHAs using the

methods laid out in this work by modifying parameters or the steps in the CAPTCHA algorithm,

we have not yet discussed how these variants can be compared and selected. In the following, we

will present an idea of how to accomplish this automatically.

Any comparison should naturally take into account both attack resistance and human readability.

However, different users of CAPTCHAs will place different on each quality and a CAPTCHA should
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(a) Low NG (b) Clustered Correlated Noise

(c) Striped Correlated Noise (d) Simulated Characters

Figure 6. Variants of the KNW-CAPTCHA

be able to balance the two qualities. More precisely, let f(θ) = w × a(θ) − (1 − w) × h(θ), where

θ is the set of parameters determining the variant of KNW-CAPTCHA generated, a(θ) is the

probability of an attack succeeding on an instance of the variant, h(θ) is the probability of a human

being able to read an instance of the variant, and w ∈ [0, 1] is a weight balancing the two qualities.

Then f(·) is a cost function, and the goal of a CAPTCHA should be to minimize it. The role of w

is to allow the user of a CAPTCHA to balance attack resistance and readability. a(θ) and h(θ) are

unknowable and can only be estimated. One method of estimating a(θ) would be to attempt to

attack the many instances of the CAPTCHA with several OCR engines and consider it a success if

any of them succeed (similar to how the reCAPTCHA project determines if a word image should

be used as a CAPTCHA challenge [21]), i.e., â(θ) = 1
n

∑n
i=1 yi where yi = 1 if any of the OCR

engines recognize the word, and yi = 0 otherwise. h(θ) could be estimated in a similar fashion,

using human readability experiments. Then, selecting the appropriate CAPTCHA variant becomes

a matter of minimizing the cost function over the evaluated variants, i.e., θ∗ = minθ∈Θ f̂(θ).

6. Conclusion and Future Work

We developed and implemented a new method of generating random CAPTCHAs, called KNW-

CAPTCHAs, using random field simulation that outperforms popular CAPTCHAs in use today.
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First, we estimated the marginal probabilities of sites and site-to-site covariances of the KNW-

CAPTCHA based on randomly generated samples; second, we used an efficient algorithm to sim-

ulate a new KNW-CAPTCHA based on these parameters in a Gibbs-like manner.

Furthermore, we established that the KNW-CAPTCHA is an effective separator of computer

programs and humans. We provided evidence that the KNW-CAPTCHA is difficult for computer

programs to crack through an analysis of its resistance to segmentation attacks and OCR attacks.

We also established that the KNW-CAPTCHA is very readable to humans.

Finally, we discussed targeted attacks against the KNW-CAPTCHA and several implementation

variants, as well as how to select a variant automatically based on empirical results.

There are several methods of further hardening the KNW-CAPTCHA, which we explored in part

in Section 5.1. Characteristics of the generated CAPTCHA can be varied within the CAPTCHA.

For example: the number of sites to re-simulate per character could increase with each character

in a KNW-CAPTCHA; the colors used for the background noise and the CAPTCHA could change

from left to right; or the amount of noise could be increased or decreased vertically. The intent of

these changes would be to effectively add another dimension to the problem, further confusing an

attacker without compromising readability.

Finally, in this work we used only black and white when generating samples; however, this

method can be readily extended to generate CAPTCHAs with one or many grey levels. As above,

the intent would be to increase the dimensionality of the problem for the attacker without decreasing

readability; for example, grey levels could be used to make distinguishing between the background

and the letters themselves more difficult, or to make the shapes of the characters themselves less

obvious. The main challenge would be to adjust the random sample generation and parameter

estimation methods used in this paper in such a way that maintains or improves readability.
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