
Error-tolerant Exemplar Queries on Knowledge Graphs

by

Zhaoyang Shao

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

University of Alberta

c© Zhaoyang Shao, 2016

Abstract

Edge-labeled graphs are widely used to describe relationships between enti-

ties in a database. We study a class of queries on edge-labeled graphs, re-

ferred to as exemplar queries, where each query gives an example of what

the user is searching for. Given an exemplar query, we study the problem

of efficiently searching for similar subgraphs in a large data graph, where the

similarity is defined in terms of the well-known graph edit distance. We call

these queries error-tolerant exemplar queries since matches are allowed despite

small variations in the graph structure and the labels. The problem in its gen-

eral case is computationally intractable but efficient solutions are reachable

for labeled graphs under well-behaved distribution of the labels, commonly

found in knowledge graphs. In this thesis, we propose two efficient exact algo-

rithms, based on a filtering-and-verification framework, for finding subgraphs

in a large data graph that are isomorphic to a query graph under some edit op-

erations. Our filtering scheme, which uses the neighbourhood structure around

a node and the presence or absence of paths, significantly reduces the number

of candidates that are passed to the verification stage. We analyze the costs of

our algorithms and the conditions under which one algorithm is expected to

outperform the other. Our cost analysis identifies some of the variables that

affect the cost, including the number and the selectivity of the edge labels in

the query and the degree of nodes in the data graph, and characterizes the re-

lationships. We empirically evaluate the effectiveness of our filtering schemes

and queries, the efficiency of our algorithms and the reliability of our cost

models on real datasets.

ii

Acknowledgements

I would like to express my sincere gratitude to all the people who contributed

to the work described in this thesis. First and foremost, I wish to express my

sincere thanks to my supervisor, Dr. Davood Rafiei for his patience, motiva-

tion, and continuous support for my graduate studies. Besides my supervisor,

I would like to thank the rest of my thesis committee: Dr. Lorna Stewart and

Dr. Denilson Barbosa, for their interest in my work and insightful comments.

My sincere thanks also goes to Dr. Themis Palpanas and Dr. Davide

Mottin. They have helped me with ideas and implementation, and I learned

a lot through their research work.

Finally, I would like to thank my parents and friends for their selfless

support and encouragement to finish my graduate studies.

iii

Table of Contents

1 Introduction 1
1.1 Background . 1
1.2 Motivating Example . 6
1.3 Definitions and Problem Statement 7
1.4 Overview . 9

2 Related Work 11
2.1 Subgraph Isomorphism . 11
2.2 Subgraph Matching with Edit Distance Constraints 12
2.3 Similarity-based Search . 13

3 Exemplar Queries with Edit Distance Constraint 15
3.1 The Basic EXED Algorithm 15
3.2 A Neighbourhood-based Pruning 15
3.3 Improving Neighbourhood-based Pruning 20
3.4 Wildcard Approach . 21

4 Algorithm Cost Analysis 24
4.1 Selectivity Estimation . 25
4.2 An Exact Cost Model . 25

4.2.1 A cost model for WCED 25
4.2.2 EXED Cost Model . 28
4.2.3 Cost Model Comparison 29

4.3 An Upper Bound Cost Model 34

5 Experimental Evaluation 36
5.1 Effectiveness of Our Cost Models 37
5.2 Effectiveness of Our Filtering Strategies 41
5.3 Combining Filtering Schemes 44
5.4 Algorithms Comparison . 46

6 Conclusion 51

Appendices 52

Bibliography 54

iv

List of Tables

6.1 Query 1 - 5 . 52
6.2 Query 6 - 10 . 53

v

List of Figures

1.1 ETEQ and relevant answer. 7

3.1 Query graph and data graph 18
3.2 Query graph and its wildcard queries 23

5.1 Correlation between estimated and actual selectivities for WCED
(top) and EXED (bottom) . 38

5.2 Correlation between estimated and actual costs varying the
number of query edges . 39

5.3 Correlation between estimated and actual costs varying the
number of query edges . 39

5.4 Correlation between actual and estimated cost differences vary-
ing the number of query edges 40

5.5 Pruning power of WCED (top) and EXED (bottom) varying
the number of query edges . 41

5.6 Pruning Power of WCED (top) and EXED (bottom) for differ-
ent edit distance thresholds 42

5.7 Candidates pruned vs path label correlation of WCED (on the
top) and EXED (on the bottom) 43

5.8 Time vs edit distance threshold 45
5.9 Time vs average degree of data graphs 45
5.10 Time vs number of query edges 46
5.11 Time vs different algorithms 47
5.12 Time vs different algorithms 48
5.13 Number of answers vs number of nodes in data graph 48
5.14 Answer set composition . 49
5.15 Relevant answer set composition for edit distance 1 (top) and 2

(bottom) . 50

vi

Chapter 1

Introduction

1.1 Background

Motivation. Graphs are widely used to model relationships, for example

between chemical compounds and organisms, objects and scenes in images,

entities in a knowledge graph, subjects and objects in Resource Description

Framework (RDF)[19] or triplet stores, functions and subroutines in a piece of

software, etc.

In particular, RDF is a graph data model for representing and exchanging

information on the Web. The model intrinsically represents a labeled, directed

multi-graph. The core structure of RDF is a set of triples, each consisting of

a subject, a predicate and an object.

Knowledge Graphs, which maintain structured data about entities, are

becoming a common support for browsing, searching and knowledge discovery

activities. Search engines, such as Google, Yahoo! and Bing, use knowledge

graphs to complement search results with facts about entities. Examples of

real-world knowledge graphs include DBpedia[1], YAGO[10], Freebase[4] and

Probase[37].

An important problem that arises in graph database models is finding graph

structures that are similar to a query graph. Searching for similar rather than

exact matches of a query is more desirable when data is noisy or inconsistencies

are allowed. Here are some example scenarios.

1. In computational biology, annotating, indexing and searching for sub-

1

graphs in large networks generated with high throughput experiments

is a challenging problem for biologists. To be specific, biologists want

to identify well-characterized pathways or patterns in less studied model

organisms[9]. In protein-protein interaction networks where vertices and

edges represent proteins and iterations respectively, it is useful to query

for pathways or patterns from well studied model organisms in other

unfamiliar organisms with known protein-protein interaction networks.

However, the data can be highly noisy because of possible errors in data

collection and different thresholds used in experiments. Missing interac-

tions are common and it is very difficult to clean the data. Despite the

noise, searching for similar biological structures may enable a biologist to

understand and identify pathways/patterns in not so well studied model

organisms.

2. In molecular chemistry, a challenging problem is to identify similar molec-

ular structures of a target molecule in a large molecular graph database.

In molecular graph, the vertices and edges may represent atom and co-

valent bonds respectively. Identifying similar molecular structures of a

molecule can help chemists understand and learn the similarities and

differences between two different molecular structures and may enable a

chemist to design new molecular structures[2].

3. Social networks represent a particular graph model where profiles and

links between them are represented by nodes and edges respectively . So-

cial networks play an increasing role in many areas of computer science

applications. An important aspect of these applications relies on iden-

tifying similar nodes or structures. Searching for similar subgraph may

help to identify communities and to predict the network dynamics[33].

4. In object-oriented programming, multiple objects of the same or differ-

ent classes are handled by developers and testers. In the object depen-

dency graph of a program, each object is a vertex and the interaction

between two objects through a method call is an edge. This dependency

2

graph is helpful for developers and testers to understand the flow of the

program and identify bugs. Querying for structure similar to a typical

pattern may help developers and testers to quickly locate the bugs in

programs[28].

Similarity Search. In all aforementioned scenarios, one needs to identify

the subgraphs in a data graph that are similar to a query graph. A num-

ber of similarity measures have been proposed[11, 5, 29], of which the graph

edit distance[12] is the most general and widely accepted similarity measure.

Graph edit distance is defined as the number of operations (i.e. the dele-

tion, insertion and substitution of nodes or edges) that needed to transform

one graph into another. In nearest-neighbour classification, graphs may be

classified into different categories based on their edit distances to graphs in

different categories. Also, graph edit distance can be used to describe the pat-

tern similarity in the context of kernel methods of machine learning. Graph

edit distance has found applications in a large number of domains[26], such

as support vector machines for classification and kernel principal component

analysis for pattern analysis. A valuable feature of graph edit distance is its

error tolerance, allowing user information needs to be captured in the presence

of noise and distortion. This thesis uses the graph edit distance as its similar-

ity measure between graphs. It has been proved that edit distance is suitable

for error-tolerant graph matching in many applications[25, 31].

There is a large body of work on subgraph similarity search[34, 43, 22,

17, 18]. TALE[34], which indexes each node of a data graph with the node

neighbourhood information (such as adjacent node labels, degrees, etc.), al-

lows matching a subset of query nodes before progressively extending these

matches. SAPPER[43] proposes a method to find approximate graph matches

where the number of missing edges in the subgraphs is no more than a thresh-

old. The authors take advantage of pre-generated random spanning trees to

avoid a cost for searching overlapping graphs and a carefully designed graph

enumeration order to minimize unnecessary searches. A set-cover based inex-

act subgraph matching technique is introduced in SIGMA[22]. The basic idea

3

is to decompose each query to a set of edge features and look for collections of

such feature sets in a data graph. This converts the subgraph search problem

into the set cover problem. However, both SAPPER and SIGMA can only

deal with missing edges for inexact graph matching and these techniques are

not applicable in many scenarios. For example, consider searching for isomor-

phic matches of the query “Ruby influenced Swift” in the Freebase knowledge

graph[4]. This search in TALE will return the query itself. The same query in

SAPPER or SIGMA will return the nodes “Ruby” and “Swift”, providing the

information that users already know about. The Exemplar queries of Motin

et al.[23] proposes a query paradigm, where a query is an example of the ex-

pected query answer. More formally, an exemplar query returns all isomorphic

matches where the matching edge of a query has the same label as the query.

For instance, the exemplar query “Ruby influenced Swift” (as shown in Fig-

ure 1.1) returns all matches of the form “A influenced B”, e.g. “D influenced

Swift”, “Java influenced Closure”, etc. However, a perfect matching of the

labels of all query edges can be too strong constraint and may not retrieve

many desired matches.

Error-Tolerant Exemplar Queries. In this thesis, we propose a method

that overcomes the problems mentioned above, through the use of graph edit

distance operations. Introducing edit operations in exemplar queries may sig-

nificantly expand the search space: on a data graph with L distinct labels,

a naive solution is to run an exemplar query for every edit, i.e. O(Lt
(

|Eq |
t

)

)

exemplar queries for a query with |Eq| edges and edit distance threshold t,

which would be prohibitively expensive. Therefore, novel techniques are nec-

essary in order to provide efficient and scalable solutions. Since edges with

mismatching labels can match when edit distance operations are allowed, we

call our queries error-tolerant exemplar queries (ETEQ). A detailed motivating

example is given in Section 1.2.

Given that ETEQ generalizes exemplar queries, the queries in ETEQ are

applicable in many domains where one does not have a clear idea of what is

being searched, but has a starting element in the result set. For example,

the query “Ruby and D influenced Swift” with ETEQ can give the influence

4

relationships between programming languages as well as other relevant rela-

tionships that may be retrieved when edit operations are allowed. Also, ETEQ

can help existing search engine services improve in two ways. First, search en-

gines can append the results of ETEQ to their results, which can increase the

recall and may better capture the users’ information needs. Second, the results

of ETEQ can be considered related, or additional queries that are suggested

by the search engines. For instance, when a user searches information about

“relationship between Ruby and Swift”, current search engines will return the

results that mention the relationship. ETEQ can provide relationships of other

programming languages, e.g. Java and Closure, Swift and Ruby, etc.

We identify a few challenges with efficiently evaluating ETEQ. First, the

number of joins for a query with |Eq| edges is in the order of O(|Eq|). This

becomes a computationally intensive process for large values of |Eq|. Second,
allowing edit operations further increases the size of the search space, as well

as the space overhead for the intermediate results. We address these challenges

by (1) constructing efficient indexes and sketches for filtering candidates; and

(2) developing accurate estimates for query selectivity and cost. Accordingly,

we develop two algorithms for efficiently evaluating ETEQ: these algorithms

explore the overlap among query transformations under different edit oper-

ations, and can effectively reduce the search space and minimize the overall

cost.

Our contributions can be summarized as follows:

1. We extend exemplar queries with edit distance operations to support

error-tolerant searches on graph data.

2. We propose two efficient algorithms for ETEQ based on a filtering-and-

verification framework, and study efficient pruning strategies that use

the neighbourhood structure and the paths to filter unqualified results.

3. We develop cost models that allow us to compare the cost of our algo-

rithms and across different queries without actually running the algo-

rithms.

5

4. We analyze our algorithms using our cost model and study the conditions

under which one algorithm is expected to outperform the other.

5. We perform a thorough experimental evaluation of the effectiveness of

our filtering schemes, the performance and the scalability of our algo-

rithms and the reliability of our cost model.

1.2 Motivating Example

Consider a search scenario where one wants to find more information about

programming languages. The user, if not familiar with the area, may try

“programming languages’ basic information”. But this query will most likely

return documents discussing programming languages in general terms. The

user may instead provide an example result. Thus, she can formulate a query

with all basic information about Swift as shown in Figure 1.1. This query,

typed into a search engine, will return results about Swift (or maybe Ruby,

Scala, etc.), but no results covering other languages.

Using exemplar queries allows us to find relevant answers matching all

query edges. However, the given relationships in the query only holds for

Swift. In other words, there is no other relevant answer that perfectly matches

all query edges and their labels. Consider the candidate answer shown in Fig-

ure 1.1 regarding the Closure programming language. Although the relation-

ship between Closure and Rich Hickey (“developer”) does not appear in the

query graph and there are only two edges labeled ”influenced” in the Closure

figure (three edges labeled ”influenced” in the Swift figure), the candidate has

very similar structure to the query and is very likely an answer that users will

find relevant. Exemplar queries cannot find such relevant answers. Also, it

might be difficult for the users to describe the query with accurate relationships

between entities, e.g. relationship between Swift and Treehouse.

Thus, there is a need to devise a method for searching relevant answers

the user is interested in from a single example that may contain errors and

mismatches in labels.

6

if there is a bijective function f : V1 → V2 such that u
l−→ v ∈ E1 if and only if

f(u)
l−→ f(v) ∈ E2.

Unless explicitly stated otherwise, the terms isomorphism and edge-preserving

isomorphism are used interchangeably in this thesis.

Definition 4. (Edge-preserving Edit Distance) The edit distance between two

non-isomorphic graphs G and G′ is the minimum number of edit operations

that makes G ' G′, where edit operations include:

1. vertex insertion (to introduce a single new labeled vertex to a graph).

2. vertex deletion (to remove a single vertex from a graph).

3. vertex substitution (to change the label of a given vertex).

4. edge insertion (to introduce a new labeled edge between a pair of vertices).

5. edge deletion (to remove a single edge between a pair of vertices).

6. edge substitution (to change the label of a given edge).

As an example, the edge-preserving edit distance between two graphs in

Figure 1.1 is 2, because the label of “subject of” in the query is deleted in the

answer graph and one label of “influenced” in the query is substituted by the

label “developer” in the answer graph.

Without loss of generality, we may limit the edit operations only to the

queries. On the other hand, not all edit operations are applicable to exemplar

queries. In particular, inserting an edge or a vertex to the query graph is not a

meaningful operation under subgraph isomorphism; if there is no subgraph in

the data graph that matches a query under an edit distance threshold, adding

an edge to the query will not decrease the edit distance between the query

and subgraphs in the data graph and thus is not going to change the result.

Also the label substitutions are limited to the edge labels since the node labels

are ignored in exemplar queries (this is because we are interested in answers

that have the same structure as the query, but do not necessarily involve the

same nodes[23]). This reduces the edit operations to edge deletion and edge

8

label substitution. In general, each edit operation may have a different cost.

For example, substituting a label may be less costly when the two labels are

synonyms. That said, for the sake of simplicity of our presentation, we assume

all edit operations have the same cost, and may sometime refer to the edit

threshold t as the number of edit operations that are allowed.

Definition 5. (Error-tolerant Exemplar Query) An error-tolerant exemplar

query is a pair (Q, t) where Q is a graph and t ∈ R is a threshold. The answer

to query (Q, t) on a database D is the set of all subgraphs Dsub in D such

that Dsub becomes edge-preserving isomorphic to Q after applying some edit

operations to Q, Dsub or both, and the cost of those operations does not exceed

the threshold t.

An example of error-tolerant exemplar query is shown in Figure 1.1 with

edit distance threshold set to 2.

In the rest of this thesis, we will refer to error-tolerant exemplar queries

simply as queries. By query cost model, we mean a parametric equation that

estimates the cost of an algorithm or a query plan, in terms of the number of

operations (I/O and CPU) that is needed to evaluate the query.

Problem Statement: We aim to address the following two problems. (1)

Given an ETEQ in the form of a query graph Q and an edit distance threshold

t, we aim to efficiently retrieve all relevant answers in a data graph that are

edge-preserving isomorphic to Q with at most t edit operations. (2) Given two

algorithms for the problem in (1), we aim to compare their costs in terms of a

cost model and find out the conditions under which one algorithm outperforms

the other.

1.4 Overview

In this thesis, we extend exemplar queries with edit distance operations to

support error-tolerant searches on graph data. To perform efficient error-

tolerant searches on graph data, we propose two efficient algorithms based on

a filtering-and-verification framework (exemplar queries with edit distance al-

gorithm and wildcard queries with edit distance algorithm), and study efficient

9

pruning strategies that use the neighbourhood structure and the paths to filter

unqualified results. The empirical experiments show that: (1) wildcard queries

with edit distance algorithm using both pruning strategies have the best per-

formance with different experiment parameter settings; (2) both algorithms

outperform SAPPER, which is a state-of-the-art algorithm for the problem of

subgraph searches with edit distance constraints; (3) error-tolerant exemplar

queries algorithms show its effectiveness comparing to exemplar queries for

queries with introduced errors. Also, two types of cost models (exact cost

model and upper-bounded cost model) are developed to compare the cost of

our algorithms and across different queries without actually running the algo-

rithms. We evaluate our cost models in terms of the correlation between our

estimates and the actual costs. The empirical results show that: (1) our exact

cost model is reliable for comparison of our algorithms when the number of

query edges |Eq| ≤ 6; (2) our upper-bounded cost model is reliable for the

comparison of query costs when the number of query edges |Eq| ≤ 8.

10

Chapter 2

Related Work

Graph-based data models have received much attention lately, and this has in-

spired more recent work on efficiently searching and querying graphs. Related

works of this thesis, in particular, include subgraph isomorphism algorithms,

graph edit distance, graph similarity search and querying knowledge graph.

2.1 Subgraph Isomorphism

Subgraph isomorphism problem is known to be NP-complete. Ullmann[35]

proposed a backtracking-based algorithm using state space search method.

However, the running time of this algorithm is, in general, exponential and

is difficult to be applied for large data graph. VF2[8] is proposed to improve

Ullmann’s refinement by reducing the number of backtracks with the help of

a forward checking technique. In these algorithms, they directly search for

isomorphic subgraphs without preprocessing the data graphs.

There are many graph matching and searching algorithms proposed us-

ing indexing structures[7, 16, 32, 39, 41, 13], which fall into two categories:

graph indexing and subgraph indexing. Given a query graph, graph index-

ing (e.g. TreePi[41], FG-index[7] and gIndex[39]) searches all data graphs to

find graphs that contain or are contained by the query; while subgraph index-

ing (e.g. GraphGrep[13], TALE[34], GADDI[42]) indexes a large data graph

so that similar subgraphs for given query graph can be efficiently retrieved.

Our indexing techniques in this thesis that indexes neighbourhood and path

information for large data graph is a type of subgraph indexing.

11

2.2 Subgraph Matching with Edit Distance Con-

straints

Subgraph isomorphism is a special case of graph edit distance with the edit

distance threshold set to zero. Graph edit distance problem is known as NP-

hard[40]. To compute the graph edit distance of two graphs, most of the

existing algorithms use the best first search paradigm A*[14]. A* is originally

used to find the minimum cost path between two nodes using heuristics. Since

edit distance of two graphs is the minimum number of operations that one

graph has to make to transform into another graph, it is intuitive to apply A*

to find the edit distance of two graphs. A* explores the node mappings space

like traversing an ordered tree. At each search stage, A* selects the best node

mapping to expand, where the mapping induces the minimum edit cost. This

step continues until every node in a graph has its mapping. In the simplest

scenario of A*, the estimated future cost of choosing a node mapping is set

to zero. In the other extreme, the future cost of choosing a node mapping

is computed in exponential time, which is also unreasonable. To solve this

problem, Riesen et. al.[30] proposed a new heuristic function to estimate the

future cost using bipartite graph matching. The idea is to convert the selection

of node mappings to assignment problem[20] and use Munkres’ algorithm[24]

to find the minimum cost of node mappings, which costs polynomial time in

the worst case. Since the graph structure is not considered while choosing the

node mappings, the estimated cost using bipartite graph matching is lower

than the actual edit cost, this algorithm guarantees that the optimal edit cost

can be found. However, as stated in the paper[27], these kind of algorithms

are practical for computing the edit distance of two graphs with at most 12

vertices.

Most other existing methods adopt a filter-and-verification framework.

Wang et. al.[36] proposed an efficient index for sparse data graphs. They

decompose graphs to small κ-Adjacent tree patterns and use these κ-AT pat-

terns to estimate a lower bound of their edit distance for candidate filtering.

Zeng et. al.[40] proposed another method to compute the edit distance by

12

transforming a graph to a multi-set of star structures, which is exactly a 1-

gram defined by κ-AT; however, they apply bipartite matching instead of count

filtering to derive the lower and upper bounds of edit distance for filtering and

verification. Zheng et. al.[40] proposed a path-based q-gram index to derive

a lower bound for candidates filtering. However, in most of these algorithms,

they are targeting at data graphs that are small (< 10K nodes) or sparse, the

derived lower bound are not suitable for subgraph search and thus are not

suitable for discovering information from RDF data graphs such as freebase.

The authors of SAPPER[43] proposed a method to find the approximate

graph matches, i.e. the number of missing edges in the subgraphs is no more

than some threshold. They take advantage of pre-generated random spanning

trees to avoid the cost for searching overlapped graphs and a carefully de-

signed graph enumeration order is designed to minimize unnecessary searches.

Mongiovi et. al.[22] introduced a set-cover based inexact subgraph matching

technique, called SIGMA. The basic idea is to decompose the query to a set

of edge features and look for collections of such feature set in the given graph.

This converts graph search problem into the set cover problem. However, both

SAPPER and SIGMA can only deal missing edges for inexact graph matching.

2.3 Similarity-based Search

Similarity based search in large graphs has been studied in the past under var-

ious settings. TALE[34] introduces a neighbourhood based index (NH-Index)

where it matches important vertices of a query graph first before extending

the match progressively. In our approach, the importance of each node is

considered as same and thus this technique is not applicable in our case.

In NESS[17] and Nema[18], the match of a query graph may not necessarily

be isomorphic to the query graph in terms of label and topologically equal-

ity. NESS[17] introduces a novel neighbourhood-based similarity measure by

vectorizing nodes according to the label distribution of their neighbours and

extends the similarity notion to graph by finding the embeddings in the target

graph that maximize the sum of node matches. Similarly, Khan et. al.[18]

13

introduces a similarity measure that preserves the proximity of node pairs and

label information using k-hop neighbourhood of each node. In both above

methods, a node is considered as a match of another node when the labels

in their neighbourhood match regardless of the node structure in their neigh-

bourhood. The difference between two measures is that in NESS, a mismatch

in the neighbourhoods of two nodes costs the same irrespective of the neigh-

bourhood while the cost of a mismatch in NeMa depends on the distance to

the nodes. In our approach, the label distribution and node structure are

both considered when matching two nodes. Our approach is related to NESS

in which the query node’s neighbourhood information is used to prune graph

candidate nodes that are not related to those in the query. Our experiments

confirm that combining both indexes performs better than either index alone.

Our work is also related to exemplar queries in the way that we both

find relevant answers with similarity measure based on edge label. Exemplar

queries can only find relevant answers that are edge-isomorphic to the query,

while our algorithms in this thesis can find relevant subgraphs that are edge-

preserving isomorphic to the query after some edit operations.

Jayaram et al.[15] present an algorithm that takes a set of entities (instead

of a graph) and finds the best matching subgraph that includes those entities.

Yahya et al.[38] introduce a method for querying and ranking on extended

knowledge graph that combine knowledge graph and textual web contents.

The resulting subgraph of both above two methods may be used as an exemplar

query. This work is orthogonal to ours and may be combined with ETEQ, for

more efficiently developing queries.

14

Chapter 3

Exemplar Queries with Edit

Distance Constraint

3.1 The Basic EXED Algorithm

Given a data graph G = (V, E), a query Q and the edit distance threshold t,

a naive approach to find subgraphs that are within t edit distance of the query

Q is to compare the query with every subgraph in the data graph G. Our basic

exemplar queries with edit distance constraint algorithm (EXED) randomly

chooses one node nq from the query as a seed, instead of comparing the query

with an exponential number of subgraphs in the data graph. Subsequently, it

considers all nodes of the data graph one by one as possible mappings of the

node nq. For each such node ng in V , it checks if there exists a subgraph that

contains ng and is isomorphic to the query with at most t edit operations. All

matching subgraphs are added into the result set. Algorithm 1 describes the

above steps in pseudocode.

The algorithm starts from a query subgraph Q only containing nq and a

data subgraph g only containing ng, and maps nq to ng. It iteratively adds

edges from Q and G to Q and g respectively until Q is equal to Q and g is

isomorphic to Q with at most t edit operations.

3.2 A Neighbourhood-based Pruning

In EXED, every node ng of the data graph is considered a possible match

of the query node nq and as a seed to start the search for relevant answers.

15

Algorithm 1 EXED

Input: Data graph G = 〈V, E〉, query graph Q
Input: Threshold t
Output: Set of answers S
1: S ← ∅
2: nq ← chooseARandomNode(Q)
3: for each node ng ∈ V do

4: s = SearchSimilarSubgraph(G, Q, nq, ng, t)
5: if s 6= ∅ then
6: Add s to answer set S.
7: end if

8: end for

9: return S

This is highly inefficient since only a small fraction of data nodes are true

candidates. To reduce this search space, one has to reduce the number of

unnecessary data nodes from which the search for similar subgraphs starts.

Inspired by [17], we propose a method called NeighbourhoodPruning to

prune the search space.

Definition 6. (d-neighbour) Let n ∈ V be a node of the data graph G = 〈V,E〉.
The node ni ∈ V is a d-neighbour of n if there exists a path from n to ni of

length at most d. The d-neighbourhood nodes of n, denoted as Nd(n), is the set

of all d-neighbours of n, and the d-neighbourhood labels of n, denoted as Ld(n),

is the set of edge labels on paths of length at most d from n to its d-neighbour

nodes.

NeighbourhoodPruning compares data nodes with query nodes using

their neighbourhood information, and filters out those data nodes that requires

more than t edit operations to match the query node’s neighbourhood. Let

Tn,k,l denotes those neighbour nodes of a node n which are reachable from the

node n in a path of length k and l is the last label in the path, i.e.

Tn,k,l =
{

n1|n1
l−→ n2 ∨ n2

l←− n1, n2 ∈ Nk−1(n)
}

.

where n1
l−→ n2 is an edge labeled with l.

Since keeping the table of neighbour nodes for every data node is expensive

in term of space, we only keep the cardinality of Tn,k,l. Also, to efficiently

16

retrieve candidates matching a query node, we implement an inverted index

which stores a list of nodes for every label, every cardinality and every distance.

In other words, the index allows us to efficiently find data nodes that have a

label l at their k-neighbourhood with a certain cardinality.

Once the neighbourhood tables Tn,k,l of both data and query nodes are

computed for each label l and path length k ≤ d for some neighbourhood depth

d, then we can compare the neighbourhood of a query node to that of a data

node and filter out unqualified data nodes. We introduce the d-neighbourhood

distance to filter out unqualified data nodes using neighbourhood table.

Definition 7. (d-Neighbourhood Distance) The d-neighbourhood distance be-

tween a data node ng and a query node nq is the difference between their

d-neighbourhood tables defined as

dist(ng, nq) =
d

∑

k=1

∑

l∈Lk(nq)

M(Tng ,k,l, Tnq ,k,l),

where Lk(nq) is the set of labels in the kth-neighbourhood of nq and M(x, y)

is a positive difference function as given below:

M(x, y) =

{

0 if x ≥ y

x− y otherwise.

The reason to adapt a positive difference function is that if the subgraphs in

the data graph carries more labels than the query, we shall not penalize it.

Then, the d-neighbourhood distance between a data node ng and a query node

nq for label l at k
th-neighbourhood can be written as

M(Tng ,k,l, Tnq ,k,l) =

{

0 if |Tng ,k,l| ≥ |Tnq ,k,l|
|Tng ,k,l| − |Tnq ,k,l| otherwise.

A data node, which is at t neighbourhood distance from the query node, needs

at least t label substitutions to be qualified as a candidate for the query node.

Therefore, given an edit distance threshold t, ng is considered a candidate for

the query node nq if the distance between the d-neighbourhoods of the two

nodes does not exceed t, i.e.

dist(ng, nq) ≤ t.

17

Note that this filtering may introduce false positives, because neighbourhood-

based pruning cannot identify if the labels are in the same path. For example,

the neighbourhood-based distance between q1 and g1 in Figure 3.1 is 0 whereas

the actual edit distance is 6. It may be noted that the more correlated the edge

labels in a query’s path are, the less false positives the neighbourhood-based

pruning can produce. This summarized representation of a neighbourhood is

highly effective at pruning nodes without actually visiting their neighbour-

hood. False positives can be removed at the verification stage which takes the

previous comparisons of the nodes into consideration.

q1

q2

q3 q4 q5

q3

l1

l2 l3 l4

l5

g1

g2 g3

g4 g5 g6

l1 l5

l2 l3 l4

Figure 3.1: Query graph and data graph

Definition 8. (Simulation) Let G1 = 〈V1, E1〉 and G2 = 〈V2, E2〉 be two

graphs. G2 simulates G1 if there exists a relation R ⊆ V1 × V2 such that,

for every node n1 ∈ V1 and n2 ∈ V2 for which (n1, n2) ∈ R and n1
l−→ n′

1, there

exists a n′
2 ∈ V2 such that n2

l−→ n′
2 and (n′

1, n
′
2) ∈ R.

While verifying a simulation, n′
2 ∈ Vg is a possible match of n′

1 ∈ Vq only if

in a previous comparison of nodes n2 and n1, n2 is identified as a possible match

of n1 and there is an edge between n2 and n′
2 with label l and a corresponding

edge with label l between n1 and n′
1. With this observation, we only need to

examine adjacent nodes of previously matched data nodes rather than all data

nodes to find possible matches of a query node.

The EXED algorithm randomly chooses a query node nq as a seed (start-

ing node) and starts the search from the seed node. However, when we take

the previous comparisons of the nodes into consideration, the choice of the

starting node can affect the performance of the algorithm. The fewer previ-

ously matched data nodes are, the less comparisons we need do in the following

18

steps of the simulation. We capture this by introducing the selectivity of query

nodes and labels into our algorithm.

Definition 9. (Selectivity) The selectivity of a query node n in a data graph

G is the probability that a node of G matches n. The selectivity of a label l is

the probability that an arbitrary edge of G is labeled l, and is computed as the

ratio of the frequency of label l to the number of edges in G.

As the actual selectivity of a query node may be known only after finding

its matches, we devise a method to estimate the selectivity in advance (see

Sec. 4.1 for details). In this section, we assume the selectivities of nodes are

known.

Algorithm 2 NeighbourhoodPruning

Input: Data graph G = 〈Vg, Eg〉, query graph Q = 〈Vq, Eq〉
Input: Threshold t
Output: Set of candidate mappings µ ⊆ Vq ×Ng

1: Lq

d ← d-neighbour labels of Q
2: Vis← ∅
3: nmin ← argmin

n∈Vg

Sel(n)

4: Ng ← (Vg, 0)
5: µ(nmin)← Ng

6: Q← {nmin}
7: for each nq ∈ Q do

8: if nq
l←− n′

q ∈ Eq ∨ nq
l−→ n′

q ∈ Eq and n′
q 6∈ Vis then

9: Update edit distance of nodes in µ(nq), µ(n
′
q).

10: Remove nodes that exceed threshold.
11: end if

12: Q← Q ∪ {n′
q|nq

l←− n′
q ∨ nq

l−→ n′
q}

13: Q← Q \ {nq}
14: Vis← Vis ∪ {nq}
15: end for

Let nmin be a query node with the minimum selectivity. Our Algorithm 2

initially takes the set of all data nodes as candidate mappings of nmin. For

each query node nq that has not been visited yet, the algorithm checks if each

data node n ∈ Vg has the matching edges (i.e. edges with the same label

and direction) for each adjacent edges of nq. If it does not match and the

edit distance t has already reached the threshold, (n, t) is removed from the

19

mapping µ(nq), where n is a possible candidate for query node nq and t is the

edit distance between the partial query containing nq and partial matching

containing n. If it does not match and t has not reached the threshold, a node

n′ adjacent to n is considered as a candidate for the query node n′
q adjacent to

nq and the entry (n′, t+1) is inserted into µ(n′
q). Otherwise, n′ is a candidate

match of n′
q with no edit penalty and the entry (n′, t) is inserted into µ(n′

q).

Finally, the query node nq is marked as visited and is removed.

3.3 Improving Neighbourhood-based Pruning

The neighbourhood-based filtering may introduce false positives, because two

matching labels may not be under the same path or have the same direction.

In this section, we introduce a path-based filtering algorithm to prune out

some of the false positives.

The path-based filtering algorithm compares data nodes with the query

node in terms of their paths and filters out those data nodes that require more

than t edit operations to match the query node. However, keeping every path

for every node can be very expensive in term of space. For a graph with average

degree D̂ and d-edge path indexes, the space required for using path indexes

is O(D̂d). Our approach to reduce the space is using the Bloom filter[3].

A Bloom filter is a space-efficient probabilistic data structure to efficiently

test whether an element is a member of a set N . An empty Bloom filter is

a bit array of m bits, all set to 0. There are k different hash functions, each

mapping an element to one of the m array positions. To query for an element,

one needs to find the k array positions the element is mapped to. If any of

the bits at these positions is 0, the element is definitely not in the set. If all

are 1, then either the element is in the set, or the bits have by chance been

set to 1 during the insertion of other elements, resulting in a false positive.

The error rate p depends on m, |N | and k. We set the false positive rate to

1%. The optimal number of hash functions is approximately 0.7m/|N |, and
the optimal number of bits m is approximately |N | ln p/ ln2 2. The number of

inserted elements can be estimated by D̂d, where D̂ is the average degree of

20

the data graph[6]. The Bloom filter based path filtering allows us to control

the false positives at a low rate with a compact storage and an efficient access

time. Moreover, it has no false negatives.

To insert a path into the Bloom filter, we concatenate the labels in the

path to form a string that is inserted into the Bloom filter. To encode the

direction of an edge, a sign symbol is added to each label to distinguish between

incoming and outgoing edges. In addition, the count of each path is described

by preceding the label sequence and separated from the rest of string by “P”.

For example, the string “2P+1-2” describes two paths that have one outgoing

edge labeled with value 1 and one incoming edge labeled with value 2. Since

all labels in a path are encoded into one string, an unmatched path can have

up to d unmatched labels. To avoid filtering out false negatives, we consider

the lower bound of the edit distance for an unmatched path, which is 1. This

also introduces false positives if we only use path filtering. However, these

false positives can be removed by considering the neighbourhood filter.

Our experiments show that the two filtering schemes work nicely, com-

plementing each other. Path filtering can identify if multiple labels are in the

same path and if the matching edges with the same labels have the same direc-

tion which neighbourhood filter cannot do; on the other hand, neighbourhood

filtering can identify the level of mismatched labels which cannot be done by

a path-based filtering.

3.4 Wildcard Approach

The main problem with EXED is that the number of intermediate results

can become huge, especially for large edit distance thresholds and large node

degrees of the data graph. Most of those intermediate results need to be kept

until a very late stage of the searching.

To reduce the number of intermediate results, we develop a new algorithm

referred to as wildcard queries with edit distance constraint (WCED). The

approach taken in this algorithm is to map the subgraph edit distance problem

instance into subgraph isomorphism problem instances without missing any

21

relevant answers. This is done by introducing wildcard labels. A wildcard

label is a label that can substitute for any other label in graph matching.

The main idea is to perform multiple subgraph isomorphism searches based

on the original query and merge the retrieved answers to obtain the final

results. This approach has two phases: query pre-processing and subgraph

search and answer mergence.

In the query preprocessing phase, we choose t edges from |Eq| query edges,

where t is the edit distance threshold and set their labels to the wildcard

for edge label substitution (see our discussion in this section for other edit

operations). This gives us O(
(

|Eq |
t

)

) wildcard queries assuming that t ≤ |Eq|.
For example, Figure 3.2 shows a two-edge query and its wildcard queries with

edit distance threshold 1.

In the next phase, we run subgraph isomorphism searches on those gener-

ated wildcard queries. For this, we directly adopt EXED with edit threshold

set to 0. This returns the subgraphs where the wildcard matches any label.

For example, searching for the first wildcard query in Figure 3.2 will give us

all subgraphs which have an edge labelled l1 and and an edge with any label,

both under the same parent node. Finally, duplicates due to possible overlaps

between wildcard queries are removed.

The WCED algorithm reduces the number of intermediate results by con-

verting the subgraph edit distance into subgraph isomorphism. This is for the

cost of running EXED
(

|Eq |
t

)

times with edit distance threshold 0.

Other edit operations Supporting edge deletion is similar to substitution

except that the edges are removed instead of being labeled with a wildcard.

The only exception is that deleting an edge can result in a disconnected query

graph, hence deletion may be applied to a subset of the edges whereas substi-

tution can be applied to all edges. With |Eq| query edges and edit distance

threshold t, there are at most
(

|Eq |
t

)

possible choices for deletion, each leading

to a subgraph isomorphism search. As discussed in Section 1.3, edge insertion

does not arise in Exemplar queries since we are searching for subgraphs of the

query graph, and insertions are already supported at no cost. For example,

the data graph can have any number of additional edges, and those edges are

22

ignored in a subgraph search.

q1

q2 q3

l1 l2

q1

q2 q3

l1 ∗
q1

q2 q3

∗ l2

Figure 3.2: Query graph and its wildcard queries

23

Chapter 4

Algorithm Cost Analysis

We have presented two algorithms for exemplar queries with edit distance

constraints, each with some advantages over the other. WCED has fewer

intermediate results (meaning less space usage), while EXED only needs to

be run once and has no duplicate answers. To determine which algorithm

has the least cost for a given query and data graph (without actually running

the algorithms), one needs an accurate cost estimation. This is the problem

addressed in this section.

EXED consists of three parts: starting node selection, neighbourhood-

based pruning and subgraph verification. The time cost of starting node se-

lection and neighbourhood-based pruning are linear in the number of query

nodes and number of data graph nodes respectively, while the time cost of sub-

graph verification grows exponentially with the edit distance threshold and the

number of query edges. WCED consists of three phases: query pre-processing,

subgraph isomorphism search and answer mergence. Subgraph isomorphism

search uses EXED with the edit distance threshold 0, the cost of which also

grows exponentially with the number of query edges. The time cost of query

pre-processing depends on the number of query edges and the edit distance

threshold. The time cost of answer mergence is linear in the number of an-

swers. Both of them are relatively low and negligible compared to the cost of

subgraph isomorphism search. Therefore, we focus on the cost of verification

of two algorithms. The cost depends on the number of data nodes (candidates)

matching the query starting node and the cost of verifying each candidate.

24

In this section, we first present an estimation for the selectivities of edge

labels. We then present an exact cost model and an upper-bound cost model.

4.1 Selectivity Estimation

The probability that an arbitrary edge in the data graph has label l, referred

to as the selectivity of label l, can be written as

Sel(l) =
freq(l)

|Eg|
,

where freq(l) is the frequency of label l in the data graph G, and |Eg| is the
number of edges in G.

4.2 An Exact Cost Model

Both algorithms EXED and WCED start with a set of candidate nodes in

data graph G that are likely to match a query node ns; those candidates may

be selected based on a filtering scheme such as the neighbourhood or the path

filtering. Given a candidate node in G, we must check if there is a subgraph

in G that simulates the query graph in which the candidate node matches ns.

The cost of this process depends on two factors: the number of candidates

matching the query node and the cost of verifying each candidate.

4.2.1 A cost model for WCED

Given a query and an edit distance threshold that is larger than zero, the

WCED algorithm generates a set of wildcard queries based on the edit distance

threshold, hence it has to perform multiple subgraph isomorphism searches on

those wildcard queries. The cost is the sum of the costs of those searches. It

should be noted that a wildcard query is like any query except that some edges

are labeled with wildcards and those wildcards can match any label.

Estimating the number of candidates: Given a seed nq, we want to

estimate the probability that a data node is a candidate for nq.

Lemma 1. Given a query node and its adjacent edge labels l1, . . . , lk, and

assuming independence between the labels, the probability that a data node

25

with D adjacent labels has all query labels is

PD(l1, l2, ..., lk) = (4.1)

k−1
∑

j=1

k
∑

i=j+1

(−1)i−1PD(¬lj, . . . ,¬li−1, li+1, . . . , lk)+

k−1
∑

j=1

(−1)k−j+1(1−
k

∑

i=j

Sel(li))
D + (1− (1− Sel(lk))

D.

Proof. This lemma can be proved using the probability subtraction rule:

PD(l1, l2, ..., lk) =

PD(l2, ..., lk)− PD(¬l1, l2, ..., lk) =

PD(l2, ..., lk)− (PD(¬l1, l3, . . . , lk)− PD(¬l1,¬l2, ..., lk)) =

PD(l2, l3, ..., lk)− PD(¬l1, l3, . . . , lk) + PD(¬l1,¬l2, l4, . . . , lk)

− PD(¬l1,¬l2,¬l3, ..., lk) =

...

k
∑

i=2

(−1)i−1PD(¬li, . . . ,¬li−1, li+1, . . . , lk)

+ (−1)kPD(¬l1,¬l2, ...,¬lk) + PD(l2, l3, ..., lk). (4.2)

If we expand PD(l2, . . . , lk) further using the equation above, we will have a

set of terms that look similar to the first and the second terms in Eq 4.2 and the

base case PD(lk). For the base case, we have PD(lk) = (1− (1−Sel(lk))
D. We

also know that PD(¬lj, . . . ,¬lk) = (1−∑k

i=j Sel(li))
D assuming independence.

Putting these pieces together will give the statement of the lemma.

Lemma 1 directly gives the selectivity of a query node based on its 1-

neighbourhood. Let Li(nq) denote the set of labels at the ith neighbourhood

of a query node nq. The probability that the neighbourhood of a data node

matches that of a query node at levels 1, . . . , d can be written as

P (nq) =
d
∏

m=1

PDm
(Lm(nq)). (4.3)

26

where PDm
(Lm(nq)) is as defined in Lemma 1 and Dm is the number of edges

at the mth neighbourhood of a data node. We generally don’t know Dm when

estimating our probabilities in Equations 4.1. Assuming that each data node

has the same degree D̂, then Dm = D̂m. Let C(nq) denote the candidate set

for query node nq. We can have the number of candidates matching query

node nq as

|C(nq)| = |Vg| ∗ P (nq).

Estimating the cost of verifying each candidate: For each candidate

of the starting node, the algorithm starts from a graph g with only one node

(i.e. the candidate node) and iteratively adds new edges to g until either g

simulates the query, or no such simulation is found. The cost of adding each

new edge depends on the expected number of matching edges of a query edge

and the number of subgraphs to which the edges are added. Let D̂ denote the

expected degree of a data node. For a query label li, we expect D̂ ∗ Sel(li)
edges of a node in the data graph to match li. For a fixed candidate node in

the data graph, the expected number of subgraphs (partial matches) that can

be constructed starting from the candidate and simulating the query subgraph

rooted at the seed with labels l1, . . . , lk is

k
∏

i=1

D̂ ∗ Sel(li).

and the total expected cost of verifying a candidate n is

|Eq |
∑

i=1

i
∏

j=1

D̂ ∗ Sel(lj). (4.4)

Note that this is based on the assumption that a search starting from a can-

didate node will not stop early if the simulation exceeds the edit distance

threshold. The total cost of verifying |C(nq)| candidates is

Cost(q) = |C(nq)| ∗
|Eq |
∑

i=1

i
∏

j=1

D̂ ∗ Sel(lj). (4.5)

Since we have replaced a query graph with
(

|Eq |
t

)

graphs each with t wild-

cards, the total cost is the sum of the costs of verifying those wildcard queries.

27

4.2.2 EXED Cost Model

To estimate the cost for EXED, we also need to estimate the number of candi-

dates in the data graph matching a query seed node and the cost of verifying

each candidate.

Estimating the number of candidates: Since a data node is allowed to

have up to t edit operations in its neighbourhood, directly estimating the

probability that a data node is a qualified candidate is difficult. Therefore, we

estimate the number of candidates for a set of wildcard queries where the labels

are all fixed. By summing up the number of candidates for these wildcard

queries and removing the repetitive candidates due to overlaps between queries,

the number of candidates for nq in EXED can be written as

|C(nq)| =
(|Eq |

t)
∑

i=1

|Vg| ∗ P (nwi(q,t))

− (

(|Eq|
t

)

− 1) ∗ |Vg| ∗ P (nq). (4.6)

where wi(q, t) is a wildcard query constructed from q by replacing t edge labels

with wildcards and P (nq) is as in Equation 4.3. The last term gives the number

of double-count candidates for
(

|Eq |
t

)

wildcard queries.

Estimating the cost of verifying each candidate: To estimate the cost of

verifying each candidate, we need to estimate the number of partial matches.

There are two kinds of partial matches in EXED: (1) matches that have reached

the edit distance threshold, and (2) matches that have not reached the thresh-

old. For (1), edges with any label can be added to the matching in the next

step of the simulation, whereas for (2), only edges with matching labels can

be added. Let m be the number of edges in a partial matching, and k be

the number edges in the matching where the matching edges have different

labels. If l1, . . . , lk denote the query labels in the matching where the labels

don’t match, and lk+1, . . . , lm be the labels where both data and query edges

in the matching have the same labels, then the number of partial matches can

be written as

D̂m

m−k
∏

i=1

Sel(li)
k
∏

j=1

(1− Sel(lj)).

28

Given query labels l1, . . . , lm, we generally don’t know in advance which labels

will mismatch and need to check all choices of
(

m

t

)

sets of labels. The number

of partial matches that needs to be verified is

St(q,m) =



























0 if t > m

D̂m
m
∏

i=1

Sel(li) if t = 0

(mt)
∑

k=1

D̂m
m−t
∏

i=1

Sel(lk,i)
t
∏

j=1

(1− Sel(lk,j)) if t < m.

(4.7)

For any partial matching that have not reached the threshold t, any edge

can be added into the matching in the next step of the simulation. In this

case, the next step of simulation costs
t−1
∑

j=0

Sj(q,m) ∗ D̂.

For any partial matching that have reached the threshold, only edges with

a matching label can be added. In this case, the next step of a simulation

costs

St(q,m) ∗ D̂ ∗ Sel(lm+1).

The cost of verifying each candidate in EXED is

Cost(q) =

|Eq |−1
∑

i=0

(St(q, i) ∗ D̂ ∗ Sel(li+1) +
t−1
∑

j=0

Sj(q, i) ∗ D̂), (4.8)

and the total cost of EXED is the product of the number of candidates (as

given in Equation 4.6) and the cost of verifying a candidate (as given above).

Costex = |C(nq)|Cost(q).

4.2.3 Cost Model Comparison

We want to compare the costs of verifying the candidates for EXED and

WCED and identify the conditions under which one outperforms the other.

Our cost comparison assumes that the threshold t is less than the number

of query edges; otherwise, edges in the query can match every edge in the

data graph, the labels become irrelevant and the problems becomes subgraph

29

isomorphism on unlabeled graphs, which has been studied in many other works

and we will not address this problem in this thesis.

For the edit distance threshold larger than zero, the cost of verifying a

candidate in EXED is higher than that in WCED, because edit operations

can happen on any label in EXED while they are fixed in WCED. Hence if the

number of candidates for WCED and EXED are roughly the same, WCED will

outperform EXED. In other words, WCED outperforms EXED if the number

of candidates for the original query is small (See Equation 4.6). This is a more

plausible scenario for our queries; otherwise edit operations are less likely to

be considered. The next lemma shows what happens when this condition does

not hold.

Lemma 2. Given a data graph with expected node degree D̂, a query graph

Q with at least 2 edges and the edit distance threshold set to 1, the cost of

verifying a candidate in EXED is less than the sum of the cost of verifying a

candidate for every wildcard queries in WCED when

Sel(l1) >
1

|Eq |
√

D̂
. (4.9)

where l1 is a query label that has the highest selectivity (i.e. the smallest value

of Sel(li)).

Proof. Using Equation 4.4, the cost of verifying each wildcard query for WCED

with edit distance 1 can be written as

Costwc =

|Eq |
∑

k=1

|Eq |
∑

i=1

i
∏

j=1

D̂ ∗ Sel(lk,j).

Let l1, . . . , lk denote the labels in increasing order of selectivities. Since

the edges in a query are verified in increasing order of selectivities, for those

wildcard queries where lj(1 ≤ j ≤ i) is not set to wildcard, the edge with

label li is verified at ith step of the simulation, the cost of verifying the edge

is D̂i
∏i

j=1 Sel(lj), there are |Eq| − i these type of wildcard queries; for those

that lj(1 ≤ j ≤ i) is set to wildcard, the edge with label li+1 is verified at ith

step of the simulation, the cost of verifying this edge is D̂i
∏i+1

j=1 Sel(lj), where

lj 6= lm.

30

Let Ti be

Ti =
i

∑

k=1

i
∏

m=1

Sel(lk,m) where lk,m 6= lk, (4.10)

which will be used in following proof to simplify the other equations.

The sum of verifying costs for those wildcard queries that lm(1 ≤ m ≤ i−1)
is set to wildcard at ith step of the simulation is D̂i(Ti+1 − D̂i

∏i−1
j=1 Sel(lj)).

Then, the sum of verifying costs for WCED can be written as

Costwc =

|Eq |−1
∑

i=1

D̂i((|Eq| − i− 1)
i

∏

j=1

Sel(lj) + Ti+1)

+ D̂|Eq |T|Eq |.

Using Equations 4.7 and 4.8, the verifying cost of EXED with edit distance

threshold 1 can be written as

Costex = D̂ +

|Eq |
∑

i=2

(D̂i

i−1
∑

k=1

(1− Sel(lk))
i

∏

j=1

Sel(lk,j)

+ D̂i

i−1
∏

j=1

Sel(lj)),where lk,j 6= lk.

Using Ti in Equation 4.10 to simplify above equation, Costex can be written

as

Costex = D̂ +

|Eq |
∑

i=2

D̂i(Ti − (i− 1)
i

∏

j=1

Sel(lj)).

Then, combining the costs of WCED and EXED and computing the difference

between the costs of EXED and WCED will give us

∆cost = D̂(1− (|Eq| − 1)Sel(l1)− Sel(l2))

+

|Eq |−1
∑

i=2

D̂i(Ti − Ti+1 − (|Eq| − 2)
i

∏

j=1

Sel(lj))

− (|Eq| − 1)D̂|Eq |

|Eq |
∏

i=1

Sel(li).

Since query edges are visited in increasing order of label selectivities and the

value of selectivities is less than 1, we have an inequality as follows

Sel(l1) ≤ Sel(li) ≤ 1.

31

With the inequality above, we have

iSel(l1)
i−1 ≤ Ti =

i
∑

k=1

i
∏

m=1

Sel(lk,m) ≤ i.

Using both inequalities above, the upper bound of ∆cost can be written as

∆cost ≤ D̂(1− |Eq|Sel(l1))− (|Eq| − 1)D̂|Eq |Sel(l1)
|Eq |

+

|Eq |−1
∑

i=2

D̂i(i− (|Eq|+ i− 1)Sel(l1)
i).

Let Fn(x) denote the upper bound of ∆cost, x denote Sel(l1) and n to denote

the number of query edges. To show the correctness of the Lemma 2, we

only need to prove that F|Eq |(x) ≤ 0 with different number of edges when the

conditions in the Lemma holds using mathematical induction.

Basis: n = 2: F2(x) can be written as

F2(x) = D̂(1− 2x)− D̂2x2.

When x = 1√
D̂
, we have

F2(x) = D̂(1− 2x)− D̂2(
1

√

D̂
)2 = D̂(−2x) < 0.

We also know that the derivative of F2(x) is

∂F2

∂x
= −2D̂ − 2D̂2x < 0.

Combining two facts above, we know that F2(x) < 0 when Sel(l1) >
1√
D̂
.

Induction hypothesis: Assume the Lemma holds when the query has k

edges.

Fk(x) = D̂(1− kx)− (k − 1)D̂kxk

+
k−1
∑

i=2

D̂i(i− (k + i− 1)xi) < 0

subject to x >
1

k
√

D̂
.

Note that the derivative of Fk(x) is

∂Fk

∂x
= −k − k(k − 1)D̂kxk−1 −

k
∑

i=2

i(k + i− 1)xi−1 < 0.

32

Induction: Using Fk(x) to substitute some terms in Fk+1(x), Fk+1(x) can be

written as

Fk+1(x) = D̂(1− (k + 1)x)− kD̂k+1xk+1

+
k

∑

i=2

D̂i(i− (k + i)xi) =

Fk(x)− D̂x−
k−1
∑

i=2

xi − D̂k(k − (k + 1)xk)− kD̂k+1xk+1.

When x = 1
k+1
√

D̂
, after replacing the x with the value in the last term and

combining the last two terms, Fk+1(x) can be written as

Fk+1(
1

k+1
√

D̂
) = Fk(x)− D̂x−

k−1
∑

i=2

xi + D̂k(k − (k − 1)xk)

− kD̂k+1(
1

k+1
√

D̂
)k+1 = Fk(x)− D̂x−

k−1
∑

i=2

xi − (k + 1)D̂kxk.

Since x = 1
k+1
√

D̂
> 1

k
√

D̂
, Fk(x) < 0 and the rest of terms are also negative, we

have

Fk+1(
1

k+1
√

D̂
) < 0.

We also know that the derivative of Fk+1(x) is negative.

∂Fk+1

∂x
=

∂Fk

∂x
− D̂ −

k−1
∑

i=2

ixi−1 − k(k − 1)D̂kxk−1 < 0.

Combining two facts above, we know that Fk+1(x) < 0 when Sel(l1) >
1

k+1
√

D̂
.

When the number of candidates for the original query is large (more pre-

cisely, roughly equal to the number of candidates for a wildcard query), the

cost of EXED and WCED can both be approximated based on the number of

candidates for the original query. In this case, EXED can outperform WCED

given the condition of the lemma.

33

4.3 An Upper Bound Cost Model

The exact cost model is based on two assumptions: (1) labels are evenly

distributed, and (2) labels are pairwise independent. These assumptions may

not hold in real-world data graphs. This is a problem especially for large

queries since the error can accumulate and become significant as the number

of query edges increases. In this section, we present a cost model that gives an

upper bound of the actual cost but is more accurate for larger query graphs.

Estimating the number of candidates: To estimate the upper bound for

the number of candidates, two weaker assumptions of label independence are

considered: (1) the labels of the adjacent edges of a data node are independent

whereas labels, which are in a path starting from a node, are correlated; (2)

the labels of the adjacent edges of a data node are correlated whereas labels,

which are in a path starting from the node, are independent. For two or more

correlated labels, the selectivity of the label with the least selectivity provides

an upper bound of the selectivity of the set.

Under the first assumption, the selectivity of the label with the minimum

selectivity in each path is used to estimate the selectivity upper bound of the

path. This reduces each path in the query to an edge (with the minimum

selectivity), and as a result the query becomes a node with a set of adjacent

edges (i.e. a tree with only one level). Assuming independence between the

labels of these edges, Lemma 1 will give an upper bound of the probability

that a data node is a candidate for a query node. Note that D in the Lemma

is set to the number of paths in the d-neighbourhood.

Under the second assumption, all edges under a node are collapsed into

a single edge, which is labeled with a label from the set that has the least

selectivity. Since the edge labels of the resulting query are all independent,

Equation 4.3 can be used to estimate the upper bound.

Estimating the cost of verifying each candidate: To estimate the upper

bound for the cost of verifying each candidate, the maximum frequency of each

label under a node is used to upper bound the number of matching label in

each step of the simulation. Let N(li) denote the maximum frequency of label

34

li in the adjacent edges of a node.

In our exact cost model, the number of matching labels for a label li is

D̂ ∗ Sel(li) assuming that every label is uniformly distributed on the adjacent

edges of a node. Replacing D̂ ∗ Sel(li) in Equations 4.5 and 4.8 by N(li) will

give us an upper bound of the cost of verifying each candidate in WCED and

EXED respectively.

35

Chapter 5

Experimental Evaluation

This section presents an experimental evaluation of our algorithms and cost

models. All our experiments were performed on a 2.4 GHz 8 Core CPU with

100G memory running Linux. The algorithms are implemented in Java 1.8.

Unless explicitly stated otherwise, the path length d in our filtering scheme is

set to 3.

Dataset: We downloaded a full dump of Freebase1 in May 2015. We removed

the triples that were used as internal specification for the community (e.g. user

and group data and discussion topics) obtaining a fully connected graph of 84

million nodes and 335 million edges . Since the entire Freebase is too large for

our machine (occupies approximately 90G of memory when fully loaded), we

extract subgraphs from Freebase with different parameters. The subgraphs

are extracted using a breadth first traversal of the graph from a randomly

selected starting node and randomly choosing new edges to be included in the

data graph. Unless explicitly stated otherwise, the data graphs are randomly

generated from Freebase with the number of nodes set to 10K and average

node degree set to 15.

Queries: Two types of queries are used in our experiments: (1) A set of real

queries from the AOL query log, manually mapped to the data graph, and

(2) randomly selected subgraphs of the data graph. These queries vary in the

numbers of edges and the selectivities of their labels. Unless explicitly stated

otherwise, our experiments use 100 randomly selected queries, each a subgraph

1https://developers.google.com/freebase/

36

of the data graph.

Summary of our experiments: Our cost models are evaluated in Sec-

tion 5.1, and the effectiveness of our filtering schemes under different settings

and combinations is evaluated in Sections 5.2 and 5.3. The impact of our fil-

tering schemes on the performance of our algorithms and improvements over

existing algorithms are evaluated in Sec 5.4.

5.1 Effectiveness of Our Cost Models

In this section, we evaluate our cost models in terms of the correlation between

our estimates and the actual costs. Our results show that: (1) the selectivity

estimation is reliable when the number of query edges |Eq| ≤ 10 (See Figure 5.1

and its discussions); (2) there is a linear relationship between our exact cost

model and the real cost for |Eq| ≤ 3 , which allows us to estimate the running

time of our algorithms (See Figure 5.2 and its discussions); (3) the exact cost

is reliable for the comparison of our algorithms when |Eq| ≤ 6 (See Figure 5.4

and its discussions); (4) the upper-bounded cost is reliable for the comparison

of query costs when |Eq| ≤ 8 (See Figure 5.3 and its discussions).

Effectiveness of the selectivity estimation Since selectivity estimation is

a core component of our cost model, we first assess the quality of our selectivity

estimation. To do so, we measure the correlation between the actual number

of candidates and the estimated number of candidates based on our selectivity

estimates. In our case, the selectivity is used in choosing a query starting node

and for cost comparisons, hence, a relative ordering of the selectivity values

is sufficient in theses cases. Therefore, we chose Spearman’s rank correlation

between estimate and actual selectivities, which shows the monotonic rela-

tionship of the two variables. The experiments are in the context of WCED

and EXED algorithms. Let “exact” denote the exact selectivity estimation,

“ub-path” and “ub-adj” denote the upper bound of the selectivity estimations

respectively assuming that path labels and adjacent labels are independent.

Figure 5.1 shows that although “exact” has a better correlation (0.96) than

“ub-adj” and “ub-path” for queries with 2 edges, the correlation decreases

37

fixed the number of query edges at 8 and set the edit distance threshold to

1. As shown in Figure 5.7 , the improvement in pruning power by adding

“path” in both EXED and WCED drops with more correlation. This meets

our expectation since the more correlated the labels are, the less false positives

the neighbourhood-based pruning can produce and the less room for “path”

filtering improvements.

5.3 Combining Filtering Schemes

In these set of experiments, we evaluate the impact of adding path filtering on

top of the neighbourhood filtering. In order to show the impact of using both

filtering schemes, we consider EXED with the neighbourhood filtering scheme

as our baseline and compare it against EXED with both filtering schemes,

WCED with the neighbourhood filtering scheme and WCED with both filter-

ing schemes. We denote EXED and WCED with the neighbourhood filtering

scheme as “neighbour-EXED” and “neighbour-WCED” respectively, WCED

and EXED with both filtering schemes as “both-WCED” and “both-EXED”

respectively.

Varying the edit distance threshold: We varied the edit distance thresh-

old t from 1 to 5 and fixed the number of query edges at 8. Figure 5.8 shows

that “neighbour-WCED” outperforms EXED by a factor of 1.5 when t = 5, re-

ducing the search time more than half in this particular experiment. Compar-

ing “neighbour-WCED” and “both-WCED”, we find that even though there is

no clear speedup for adding path filtering on top of the neighbourhood filter-

ing scheme at small thresholds (t ≤ 2), the performance gap becomes wider at

larger thresholds with around 200 seconds saved when t = 5. This meets our

expectation because the benefits of using both schemes over “neighbour” in

pruning power becomes clear when the edit distance threshold increases (See

Figure 5.6).

Varying average degree of data graph: In another experiment, we varied

the average degree of a node from 5 to 25. Figure 5.9 shows that “both-

WCED” has a greater advantage in a data graph with larger average degrees,

44

Chapter 6

Conclusion

In this thesis, we study the problem of error-tolerant exemplar queries on

knowledge graphs. Unlike exemplar queries that support only exact match-

ing of the labels, our developed algorithms allow errors in query and data

graph. Two filtering techniques (neighbourhood and path filtering) and two

algorithms (EXED and WCED) are developed to handle edit operations as

well as to facilitate the searching process. Through a comprehensive experi-

mental evaluation on real and synthetic datasets, we show that our algorithms

are both efficient and effective, outperforming existing algorithms. As a fu-

ture work, instead of retrieving all answers for a query, we plan to efficiently

retrieve Top-k relevant answers for the query.

51

Appendices

Query Set

Query ID Subject Predicate Object
1 D influenced Swift

Scala influenced Swift
Ruby influenced Swift
Rust influenced Swift
Swift languages Function programming
Swift languages Procedural programming
Swift languages Generic programming
Swift subject of Treehouse

2 Lloyd Wright structures designed Oasis Hotel
Lloyd Wright place of death Santa Monica
Lloyd Wright architectural style Modern architecture
Lloyd Wright influenced by Frederick Law Olmsted
Lloyd Wright influenced by Frank Lloyd Wright

3 National Audubon Society notable types Nonprofit organization
National Audubon Society program partnership s Appalachian Mountains Joint Venture
National Audubon Society program partnership s Virginia Bird Conservation Initiative
National Audubon Society named after John James Audubo

4 Pythagoras namesakes Pythagoras
Pythagoras influenced Nikohl Vandel
Pythagoras children Damo
Pythagoras influenced Plato
Pythagoras influenced Jbir ibn Hayyn

5 Frederick County contains Ole Orchard Estates
Frederick County events Second Battle of Winchester
Frederick County partially contains North Mountain
Frederick County contains Echo Village
Frederick County people born here James Brenton (17401782)
Frederick County contains Green Acres
Frederick County contains US Census 2000 Tract 51069050100

Table 6.1: Query 1 - 5

52

Query ID Subject Predicate Object
6 Research subject of Carnegie Moscow Center

Research works Hot talk, cold science
Research works Person or Persons Unknown
Research organizations of this type Stanford University School of Medicine
Research schools of this kind Indian Institute of Forest Management
Research organizations of this type Stanford Radiology

7 Valve Corporation games developed Half-Life 2
Valve Corporation games published Wolfenstein 3D
Valve Corporation games published The Maw
Valve Corporation games developed CS Online
Valve Corporation games published Half-Life 2
Valve Corporation is reviewed Place founded
Valve Corporation games published CS Online

8 Scheme influenced Haskell
Scheme influenced Clojure
Scheme influenced LFE
Scheme influenced Dylan
Scheme influenced by Lisp
Scheme parent language Lisp

9 Cruze Control genre Southern hip hop
Cruze Control notable types Musical Album

Southern hip hop artists Triple C’s
Cruze Control featured artists Baby
Cruze Control featured artists Pitbull

Southern hip hop albums Cruze Control
10 Luke Carroll place of birth Sydney

Marcus Einfeld place of birth Sydney
Martin Lynes place of birth Sydney
George Tarr place of birth Sydney

Adventures by Disney Australia Vacation travel destinations Sydney
Dayne Hudson place of birth Sydney

Table 6.2: Query 6 - 10

53

Bibliography

[1] Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard
Cyganiak, and Zachary Ives. Dbpedia: A nucleus for a web of open data.
In The semantic web, pages 722–735. Springer, 2007.

[2] Alexandru T Balaban. Applications of graph theory in chemistry. Journal
of Chemical Information and Computer Sciences, 25(3):334–343, 1985.

[3] Burton H Bloom. Space/time trade-offs in hash coding with allowable
errors. Communications of the ACM, 13(7):422–426, 1970.

[4] Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie
Taylor. Freebase: a collaboratively created graph database for structuring
human knowledge. In Proc. of the SIGMOD Conf., pages 1247–1250, 2008.

[5] Horst Bunke and Kim Shearer. A graph distance metric based on the
maximal common subgraph. Pattern recognition letters, 19(3):255–259,
1998.

[6] Bernard Chazelle, Joe Kilian, Ronitt Rubinfeld, and Ayellet Tal. The
bloomier filter: an efficient data structure for static support lookup tables.
In Proc. of the SODA Conf., pages 30–39, 2004.

[7] James Cheng, Yiping Ke, Wilfred Ng, and An Lu. Fg-index: towards
verification-free query processing on graph databases. In Proceedings
of the 2007 ACM SIGMOD international conference on Management of
data, pages 857–872. ACM, 2007.

[8] Luigi P Cordella, Pasquale Foggia, Carlo Sansone, and Mario Vento. A
(sub) graph isomorphism algorithm for matching large graphs. IEEE
transactions on pattern analysis and machine intelligence, 26(10):1367–
1372, 2004.

[9] Banu Dost, Tomer Shlomi, Nitin Gupta, Eytan Ruppin, Vineet Bafna,
and Roded Sharan. Qnet: a tool for querying protein interaction networks.
Journal of Computational Biology, 15(7):913–925, 2008.

[10] MS Fabian, K Gjergji, and W Gerhard. Yago: A core of semantic knowl-
edge unifying wordnet and wikipedia. In 16th International World Wide
Web Conference, WWW, pages 697–706, 2007.

[11] Mirtha-Lina Fernández and Gabriel Valiente. A graph distance metric
combining maximum common subgraph and minimum common super-
graph. Pattern Recognition Letters, 22(6):753–758, 2001.

54

[12] Xinbo Gao, Bing Xiao, Dacheng Tao, and Xuelong Li. A survey of graph
edit distance. Pattern Analysis and applications, 13(1):113–129, 2010.

[13] Rosalba Giugno and Dennis Shasha. Graphgrep: A fast and universal
method for querying graphs. In Pattern Recognition, 2002. Proceedings.
16th International Conference on, volume 2, pages 112–115. IEEE, 2002.

[14] Peter E Hart, Nils J Nilsson, and Bertram Raphael. A formal basis for
the heuristic determination of minimum cost paths. IEEE transactions
on Systems Science and Cybernetics, 4(2):100–107, 1968.

[15] Nandish Jayaram, Arijit Khan, Chengkai Li, Xifeng Yan, and Ramez El-
masri. Querying knowledge graphs by example entity tuples. IEEE Trans-
actions on Knowledge and Data Engineering, 27(10):2797–2811, 2015.

[16] Haoliang Jiang, Haixun Wang, S Yu Philip, and Shuigeng Zhou. Gstring:
A novel approach for efficient search in graph databases. In 2007
IEEE 23rd International Conference on Data Engineering, pages 566–
575. IEEE, 2007.

[17] Arijit Khan, Nan Li, Xifeng Yan, Ziyu Guan, Supriyo Chakraborty, and
Shu Tao. Neighborhood based fast graph search in large networks. In
Proc. SIGMOD Conf., pages 901–912, 2011.

[18] Arijit Khan, Yinghui Wu, Charu C Aggarwal, and Xifeng Yan. Nema:
Fast graph search with label similarity. In Proceedings of the VLDB En-
dowment, volume 6, pages 181–192. VLDB Endowment, 2013.

[19] Graham Klyne and Jeremy J Carroll. Resource description framework
(rdf): Concepts and abstract syntax. W3C, 2006.

[20] Harold W Kuhn. The hungarian method for the assignment problem.
Naval research logistics quarterly, 2(1-2):83–97, 1955.

[21] Anna Lubiw. Some np-complete problems similar to graph isomorphism.
SIAM Journal on Computing, 10(1):11–21, 1981.

[22] Misael Mongiovi, Raffaele Di Natale, Rosalba Giugno, Alfredo Pulvirenti,
Alfredo Ferro, and Roded Sharan. Sigma: a set-cover-based inexact graph
matching algorithm. Journal of bioinformatics and computational biology,
8(02):199–218, 2010.

[23] Davide Mottin, Matteo Lissandrini, Yannis Velegrakis, and Themis Pal-
panas. Exemplar queries: Give me an example of what you need. PVLDB,
7(5):365–376, 2014.

[24] James Munkres. Algorithms for the assignment and transportation prob-
lems. Journal of the society for industrial and applied mathematics,
5(1):32–38, 1957.

[25] Michel Neuhaus and Horst Bunke. An error-tolerant approximate match-
ing algorithm for attributed planar graphs and its application to finger-
print classification. In Joint IAPR International Workshops on Statistical
Techniques in Pattern Recognition (SPR) and Structural and Syntactic
Pattern Recognition (SSPR), pages 180–189. Springer, 2004.

55

[26] Michel Neuhaus and Horst Bunke. Edit distance-based kernel functions
for structural pattern classification. Pattern Recognition, 39(10):1852–
1863, 2006.

[27] Michel Neuhaus, Kaspar Riesen, and Horst Bunke. Fast suboptimal al-
gorithms for the computation of graph edit distance. In Joint IAPR In-
ternational Workshops on Statistical Techniques in Pattern Recognition
(SPR) and Structural and Syntactic Pattern Recognition (SSPR), pages
163–172. Springer, 2006.

[28] Tung Thanh Nguyen, Hoan Anh Nguyen, Nam H Pham, Jafar M Al-
Kofahi, and Tien N Nguyen. Graph-based mining of multiple object
usage patterns. In Proceedings of the the 7th joint meeting of the European
software engineering conference and the ACM SIGSOFT symposium on
The foundations of software engineering, pages 383–392. ACM, 2009.

[29] John W Raymond, Eleanor J Gardiner, and Peter Willett. Rascal: Calcu-
lation of graph similarity using maximum common edge subgraphs. The
Computer Journal, 45(6):631–644, 2002.

[30] Kaspar Riesen, Stefan Fankhauser, and Horst Bunke. Speeding up graph
edit distance computation with a bipartite heuristic. In MLG, 2007.

[31] Antonio Robles-Kelly and Edwin R Hancock. Graph edit distance from
spectral seriation. IEEE transactions on pattern analysis and machine
intelligence, 27(3):365–378, 2005.

[32] Haichuan Shang, Ying Zhang, Xuemin Lin, and Jeffrey Xu Yu. Taming
verification hardness: an efficient algorithm for testing subgraph isomor-
phism. Proceedings of the VLDB Endowment, 1(1):364–375, 2008.

[33] Ellen Spertus, Mehran Sahami, and Orkut Buyukkokten. Evaluating sim-
ilarity measures: a large-scale study in the orkut social network. In Proc.
of the KDD Conf., pages 678–684, 2005.

[34] Yuanyuan Tian and Jignesh M Patel. Tale: A tool for approximate large
graph matching. In Proc. of the ICDE Conf., pages 963–972, 2008.

[35] Julian R Ullmann. An algorithm for subgraph isomorphism. Journal of
the ACM (JACM), 23(1):31–42, 1976.

[36] Guoren Wang, Bin Wang, Xiaochun Yang, and Ge Yu. Efficiently indexing
large sparse graphs for similarity search. TKDE, 24(3):440–451, 2012.

[37] Wentao Wu, Hongsong Li, Haixun Wang, and Kenny Q Zhu. Probase:
a probabilistic taxonomy for text understanding. In Proceedings of the
2012 ACM SIGMOD International Conference on Management of Data,
pages 481–492. ACM, 2012.

[38] Mohamed Yahya, Denilson Barbosa, Klaus Berberich, Qiuyue Wang, and
Gerhard Weikum. Relationship queries on extended knowledge graphs. In
Proceedings of the Ninth ACM International Conference on Web Search
and Data Mining, pages 605–614. ACM, 2016.

56

[39] Xifeng Yan, Philip S Yu, and Jiawei Han. Graph indexing: a frequent
structure-based approach. In Proceedings of the 2004 ACM SIGMOD
international conference on Management of data, pages 335–346. ACM,
2004.

[40] Zhiping Zeng, Anthony KH Tung, Jianyong Wang, Jianhua Feng, and
Lizhu Zhou. Comparing stars: on approximating graph edit distance.
PVLDB, 2(1):25–36, 2009.

[41] Shijie Zhang, Meng Hu, and Jiong Yang. Treepi: A novel graph indexing
method. In 2007 IEEE 23rd International Conference on Data Engineer-
ing, pages 966–975. IEEE, 2007.

[42] Shijie Zhang, Shirong Li, and Jiong Yang. Gaddi: distance index based
subgraph matching in biological networks. In Proceedings of the 12th
International Conference on Extending Database Technology: Advances
in Database Technology, pages 192–203. ACM, 2009.

[43] Shijie Zhang, Jiong Yang, and Wei Jin. Sapper: Subgraph indexing and
approximate matching in large graphs. PVLDB, 3(1-2):1185–1194, 2010.

57

