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Abstract

Most modern smartphones are equipped with barometer sensors. Accessing

barometers does not require any permission or user notification, as it is deemed

to be harmless. We show, however, that by simply reading low-rate barometer’s

samples, any background application can detect user’s finger taps on the device’s

touch screen, and infer information about the positions of the taps. This

can reveal sensitive information to background applications that, for security

reasons, do not have access to the touch screen input. In addition, we show

that barometers’ samples reveal information about the smartphone’s speaker

activity. Specifically, using simple machine learning and classification methods,

we detect with high accuracy whether the speaker is silent or playing a given

sound such as a ringtone.
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“Knowledge, like air,

is vital to life. Like air,

no one should be denied it, ” said V

- - Alan Moore, V for Vendetta
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Chapter 1

Introduction

1.1 Motivation

Smartphones have become an integral part of many people’s lives. In fact,

there are now more than 3.5 billion smartphone users in the world [1]. We

are increasingly relying on them for various tasks including, communications,

navigation, fitness tracking, gaming, social networking and banking. To support

this wide set of tasks, smartphones have been equipped with a large collection

of sensors ranging from microphones and cameras to GPS, accelerometers,

gyroscopes and barometers.

Barometers are now found in most mid-range to high-range smartphones.

In addition to measuring air pressure, barometers can be used as altimeters

as pressure data can be translated to altitude. The sensitivity of barometer

samples allow detection of altitude changes as little as one meter [2]. As such,

many applications, including floor level detection in indoor tracking, rely on

barometer sensors. Barometers can also be used in low-power outdoor tracking

as they consume significantly lower power than GPS.

The abundance and sensitivity of data collected by sensors in smartphones

is a major source of privacy concern. To mitigate these privacy concerns,

smartphones have put in place permission mechanisms that allow users to
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control apps’ access to many of the smartphone’s sensors. For example, in

Android, apps must get permission from users either at install time or at runtime

to access sensitive sensors. In addition, access to sensitive inputs may be taken

away when the app goes to the background. For instance, when an app goes to

the background, its access to the touch screen input is stopped, as this input

can have sensitive information such as typed password or text that belongs only

to the foreground app. However, there are sensors such as barometers whose

access requires no permission or user notification because their input data is

considered non-sensitive. These sensors may be used as side-channels to gain

sensitive information.

In this work, we are interested to know if barometers can be used as

side-channels to gain sensitive information. A major challenge in doing so is

the low sampling rate of smartphone’s barometers, currently limited to 25Hz.

Nevertheless, we show two possible side-channel information leaks based on

internal barometer readings. First, we show that in smartphones with ingress

protection, any app in the background can detect touch screen user’s finger

taps (gentle user touch on the screen with a finger), and to some extent their

positions. Second, we show that any app can gain information about earpiece

speaker activity without permission.

Thesis Organization. The remainder of this thesis is organized as follows.

In the remainder of this chapter, we provide background information, and cover

related work. In Chapter 2, we present our results, which include our initial

observation, and data gathering methods. We conclude, and mention possible

future work in Chapter 3.

2



1.2 Background

In this section, we cover the background information deemed to be necessary

for understanding the concepts and terms we used throughout this thesis.

1.2.1 Side-Channel Attacks

Side-channel attacks infer sensitive information by exploiting information leakage

of computing devices or implementations [3]. The source of this information

leakage is typically an implementation flaw in hardware or software.

Side-channel attacks are not new. The idea of side-channel attacks started

decades ago. In 2007,the National Security Agency of the United States de-

classified a paper [4], which shows that these attacks started to emerge in the

early 1960s. In this period, Britain was trying to join the European economic

community.They were worried about France blocking their entry, so they asked

their intelligence agency to gather intelligence about France’s stance on this

matter. In pursuing this, the agency discovered that the enciphered french

communication signal carries a weak signal that is extractable. The extracted

signal was discovered to be the actual communication in plain text, which leaked

through the cipher machine [5]. Another example of early side-channel attacks

is a proof of concept (presented by Van Eck Phreaking in 1985) which showed

that CRT displays leak their contents through electromagnetic emanations [6].

By emerging new types of devices such as personal computers and smart-

phones, the attack surface has expanded, and further side-channel attacks

appeared. Some of them exploit the physical characteristics of the device, such

as Backes et al. [7] work on recovering the words printed by the dot-matrix

printers using acoustic analysis. Some others exploit the human interactions

with the target device, like Aviv et al. [8], which infers the lock screen patterns

on Android smartphones by analyzing the smudges on the screen as a result of

human interaction with touch screens. In this thesis, we exploit the physical
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characteristics of the touch screen alongside the side effects of human interaction

on internal barometric pressure to infer the user input. We also investigate the

side effects of internal speakers’ activity on the barometric pressure to determine

the internal earpiece speaker activity.

Spreitzer et al. [3] divide side-channel leaks in mobile devices into two

categories: intended and unintended information leaks [3]. Intended information

leaks are those that are either considered harmless (e.g. data consumption) or

accessible through OS APIs, SDK and NDK in Android OS, to other third-party

apps to support their functionalities. In contrast, unintended information leaks

result from exploiting characteristics of hardware such as power consumption,

electromagnetic and acoustic emissions [3].

According to Spreitzer et al. categorization, our proposed attacks fall into

the first category (i.e., intended information leaks). In addition, our attacks can

be categorized as Runtime Information Gathering (RIG) attacks. RIG attacks

refer to the attacks where a malicious app collects or uses any data provided to

or produced by the app under attack during its lifecycle [9]. In our case, the

malicious app listens and profiles the barometric pressure sensor data alongside

the other apps running on the device.

1.2.2 Android Permission Model

Permissions are an essential part of the Android security model. Each permission

controls access to a set of Android or Java APIs. In this security model, using

any of these controlled APIs without special permission will result in a security

exception [10]. Such an exception indicates a security violation and as a result

the access to the controlled API will remain blocked.

The permission model in Android devices [11] is a gateway for third-party

apps to gain access to different resources such as internal/external storage

for data read and write, Internet and various sensors. Android defines four

permission levels: normal, signature, dangerous and special permissions [12].
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• Normal permissions control the access to APIs that are not harmful

to the user but can damage the user experience. For example, normal

permissions control the access to SET WALLPAPER, which can set the

phone’s wallpaper.

• Signature permissions control access to the system level and dangerous

operations, such as deleting the installed apps and packages. To operate

at this level, the app must be signed by the device’s manufacturer.

• Dangerous permissions control the access to potentially harmful APIs and

resources, like access to fitness data, cameras, microphones, or sending

text messages.

• Special permissions are a subcategory of dangerous permissions. However,

the process of granting these permissions to third-party apps is different.

Users have to go through the settings of the device and confirm the access

to such capabilities upon request. Accessing device admin apps, battery

optimizations, display over other apps are some examples that require

this type of permission.

Before Android Marshmallow (aka, Android 6.0), Android used an instal-

lation time permission model. In this model, the app shows the list of all its

required permissions with a brief description of what they do at the time of

installation. In this model, the installation fails if the user does not grant the

app all the permissions in the list [13]. According to a study by Felt et al. [12],

about one-third of the Android apps were overprivileged and had access to

dangerous and unneeded permissions. Starting with Android Marshmallow in

2015, Android introduced the runtime permission model. In this model, normal

permissions are requested at the installation time, while dangerous permissions,

such as camera access, are requested at runtime [13]. This permission model

allows user to install an app without giving it any dangerous permissions. It
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also gives users the chance to deny permission when the motivation behind a

requested access is not clear [13].

There are some sensors whose access does not require any permission. In

Android devices, these sensors are:

• Accelerometer

• Gyroscope

• Barometer

• Ambient light sensor

• Proximity sensor

• Magnetic field sensor

However, according to Android documentation since Android 9 (API 28),

apps running in the background have some restrictions on receiving sensor

events [14]. There are two main problems with this approach. First being, that

according to Section 1.2.8, it leaves more than 60% percent of the existing An-

droid devices vulnerable. Second, There are workarounds around this restriction.

For example, running the app as a foreground service or with START STICKY

flag on the activity and using a notification in the notification bar to make

Android identify it as foreground.

Android also supports multitasking and background services. The combi-

nation of unregulated access in the list above and the multitasking nature in

Android can lead to information leakage of sensitive user information via RIG

attacks.

1.2.3 Ingress Protection

Smartphones are an inseparable part of our daily lives and activities, and as a

result, they go through quite an abuse, including getting exposed to dust and
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liquids. As a response to this problem, manufacturers started incorporating

ingress protection to their smartphones to prolong their lifespan. Most of them

go through thorough testing and get an Ingress Protection (IP) rating, which is

based on National Electrical Manufacturers Association’s (NEMA) Standard

approved by American National Standards Institute (ANSI).

IEC 60529, Degrees of Protection Provided by Enclosures, is the source of

IP rating for today’s smartphones [15]. The rating uses the symbol IP followed

by two digits. The first digit refers to the ingress protection against solids. This

scale goes from 0 to 6, where 0 is no protection, and 6 is dust-tight. Second

digit refers to the protection against water. The digit ranges from 0 - 9; the

higher the number, the more the protection [16]. Most of the mid to high-end

Android smartphones are either IP68 or IP67 certified. These ratings imply

that they’re dust-tight and also protected against immersion in water, and it’s

effects on the device [16].

1.2.4 Barometer and barometric vents

A barometer, also known as the air-pressure sensor, is now found in most

mid-range to high-end smartphones (e.g. iPhone 6/7/8/X/11, Samsung note

6/7/8/9/10/20, Google Pixel 2/3). It can act as an altimeter and provide a

rough altitude to improve GPS accuracy in vertical direction [17], and indoor

navigation by revealing floor changes [18], and provide additional data in

applications such as fitness apps to improve their accuracy [19].

In devices with ingress protection, barometric vents are added to allow an

internal barometer to measure outside atmospheric pressure. This also protects

the device’s seals and its internal components from the stress that can be placed

by the difference in air pressure inside and outside the device. Today, most

smartphones use their speaker and microphone holes as their barometric vents.

They use polytetrafluoroethylene (ePTFE) meshes on these vents to keep the

device water resistant [16]. They are structured to prevent penetration of dust
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particles and to deter water while allowing a flow of air to equalize internal and

external barometric pressures. The air pressure equalization is, however, slow

and occurs over a short period of time. This makes it possible to capture sudden

changes to the internal pressure using low-rate barometric samples provided by

the barometer.

Figure 1.1 shows the placement of the barometer sensor inside our testing

smartphone, Samsung Galaxy S10 Plus. The barometer used in this smartphone

is an ultra-compact LPS22HH pressure sensor by STMicroelectronics. According

to the LPS22HH datasheet, the sensor is capable of sampling air pressure at

rate 200 Hz [20]. However, the Android API limits the output pressure sampling

rate to 25 Hz.

Figure 1.1: Samsung Galaxy S10 Plus barometer sensor.

1.2.5 Earpiece Speaker

Figure 1.2 shows the Samsung Galaxy S10 Plus earpiece speaker. Vent holes

on both sides of the speaker allow air to get in and out of the speaker when it

plays a sound.
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Sound is a pressure wave: it consists of a repeating pattern of low-pressure

and high-pressure regions. Moreover, both the barometer and earpiece speaker

are inside the smartphone. Therefore, it is natural to ask if the barometer would

leak information about the activity of the speaker even when it samples air

pressure at a low rate. In this work, we show that this is indeed the case.

Figure 1.2: The Samsung Galaxy S10 Plus earpiece speaker with vent holes on
both sides to allow air to get in and out.

1.2.6 Trusted Execution Environment

Trusted Execution Environment (TEE) is an isolated, secure and tamper-

resistant environment [21]. It guarantees the integrity of code being executed

and data being processed inside of it. TEE provides a separation between

normal and secure world. The normal world runs the Android OS, and the

secure world handles the security operations [22]. TEE provides a secure way

for sensitive apps like banking, mobile payment, and healthcare to store and

process their sensitive data, like user credentials or keychains [23].
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1.2.7 Samsung KNOX

Samsung KNOX is a secure container; it provides a secure environment alongside

the normal user environment. KNOX allows the running and configuration of

enterprise apps in an isolated environment [24]. KNOX isolates the KNOX apps

(apps that are running on top of the KNOX platform) from other user apps.

KNOX’s runtime protection relies on ARM TrustZone (an implementation of

the TEE standard) accompanied by SELinux in Android OS [24].

1.2.8 Android Updates and Version Distributions

In the Android ecosystem, there is a significant delay between the time a new

version of Android is released and when phone manufacturers adopt the new

version to their phones. This delay usually happens for two main reasons. First,

because most vendors tend to customize the Android to their will and add extra

features and functionalities (like their own user interface or home screen) to

it. This makes it time-consuming to adopt a new release or apply a bug fix to

existing smartphones. Second, the device might be out of its support period;

most high-end Android devices get up to 18 months of update and support. As

the day of writing this Thesis, Android 11 (released on February, 2020) is the

most recent version, and only 39.5 percent of all Android devices run Android 9

(released on August, 2018) and higher (SDK 28+) [25].

1.2.9 Support Vector Machine

A support-vector machine (SVM) is a popular classification method. It gets a

set of n-dimensional points, and constructs a hyperplane or a set of hyperplanes

to separate them. In this work, we used SVM for two main reasons. First, the

SVM’s classification results in our study were at least as good as the results

of other classification methods we used, including trees and ensemble. Second,

there are highly efficient SVM libraries for Android OS (e.g., AndroidLibSVM
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in NDK [26]). This allows an app to perform classification at the user’s end

(i.e., on the smartphone) without consuming too much power.

1.2.10 Cross-Validation

Cross-validation is a simple statistical method commonly used in applied machine

learning to test the model’s behaviour towards new or unseen data, especially

when the dataset size is small [27]. In addition, cross-validation is a robust

preventative measure against overfitting [27]. The general procedure of a k-fold

cross-validation is as follows:

• Randomly shuffle the dataset

• Split the dataset into k equally sized groups

• For each group:

– Mark the group as the test set

– Mark the remaining groups as training sets

– Train the model on the training sets and evaluate it on the test set

– Store the evaluation score

• Summerize the model’s performance based on the derived k evaluation

scores

In a k-fold cross-validation, the performance of the model is usually sum-

merized as the mean of the derived k evaluation scores [28]. In this work, we

set k = 5 as test error rate estimations resulted from this setting do not suffer

from a high bias or a high variance [29].
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1.3 Contributions

In this thesis, we show that the barometer sensor in water-sealed smartphones

can leak user’s sensitive information. To this end, we present two proof of

concepts. First, we show that air pressure low-rate samples from the smart-

phone’s barometer can be used to detect gentle finger taps on the touch screen,

and to some extent, the position of the tap. This improves and extends the

previous work by Quinn et al. [30], which showed that these air pressure samples

could be used to detect long-press and force touch [30]. Our second main

contribution is to show, for the first time, that air pressure low-rate samples

of the smartphone’s barometer can reveal information about the smartphone’s

earpiece speaker activity. To the best of our knowledge, there is no prior work

that studies the feasibility of detecting speaker activities, or detecting sounds

in general, using smartphone’s barometers. These findings are alarming be-

cause any app currently can access the smartphone’s barometer without any

permission or user notification.

1.4 Related Work

We cover two types of related work: 1) applications that rely on smartphone’s

barometric air pressure samples; 2) side-channel attacks that attempt to infer

touch screen input.

1.4.1 Barometer Senors’ Applications

Barometric air pressure measurements by smartphones’ barometers can be used

to estimate altitude, and detect altitude changes of as little as one meter [19].

Because of this, barometers on smartphones have been used in many applications

such as aiding GPS [17], detecting floor level for indoor positioning [31], and

improving calorie estimation in fitness apps [19].
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Smartphone barometers have not been explicitly used in the literature for

side-channel attacks. However, existing work suggest that barometer’s mea-

surements leak information about users’ activities and surroundings. Sankaran

et al. [19] showed that barometer data can be used to detect user’s activities

IDLE, WALKING, and in VEHICLE. Ho et al. [32] exploited barometer data to

infer driving routes. Moreover, sudden changes in barometric data were utilized

by Wu et al. [33] to detect the buildings’ door opening/closing events. In an

attempt to provide force sensing functionality in smartphones that lack inte-

grated force-sensing hardware, Quinn showed that barometers on smartphones

with ingress protection can estimate robotic forces on their touch screen. One

of our main contributions, as mentioned earlier, is to show that barometers on

such devices are able to detect even gentle finger taps, and to some extent, their

positions.

1.4.2 Touch Screen Input Inference

The touch screen, which is the main source of user input, carries some of the

most valuable user information, such as banking credentials, passwords, and

text messages. Consequently, accessing this input and protecting it have been

at the center of attention of adversaries, and security solutions.

One of the earliest side-channel attacks on touch screen input in Android

devices was achieved by using the motion sensors. Cai et al. [34] is one of

the earliest works that exploited the internal motion sensors, accelerometer

and Gyroscope to track the small vibrations and pivots in the device when

user interacts with the device to extract the user keystrokes on a numpad.

Later, Spreitzer et al. [35] showed that by exploiting the light sensor in Android

smartphones, it is also possible to infer and recover the user’s input.
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Chapter 2

Finger Tap Positioning and

Speaker Activity Detection in

Android Smartphones Using

Internal Barometer

2.1 Introduction

The substantial increase of smartphone usage in our daily life, alongside them

equipped with dozens of accurate sensors, opens a new window for side-channel

attacks and information leaks. Side-Channel attacks are posing a severe threat

to the user’s security and privacy these days.

Many smartphone’s sensors require user’s permission to access, while others

do not need any permission as their information is considered safe, and not

a source of information leakage. In this chapter, we investigate one of these

widely used “safe” sensors, namely the barometric pressure sensor. To this

end, we design apps that collect low-rate barometric samples from the sensor,

and then use these samples to extract sensitive user’s information. In our first

experience, we use the barometric pressure samples to detect and position user’s
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finger taps on the touch screen in an attempt to discover user’s pin entered

through a custom numpad. In our second experience, we use the samples to

detect the smartphone’s earpiece speaker’s activity, e.g. whether the speaker is

playing a ringtone or not. We conclude that both these detections are possible.

2.2 Observations

As mentioned earlier, in devices with ingress protection, the internal pressure

equalizes with the external pressure over a short period of time. This makes

it possible to observe changes to the internal pressure using low-rate samples

from the built-in barometer.

Figure 2.1 shows the effect of a 12 Hz sinusoid tone played by our IP68 rated

testing device’s speaker1 on the internal barometric pressure sampled at 25 Hz2

by the barometer. Notice that the barometer’s sample signal roughly follows the

sinusoid signal recorded by the device’s microphone. This primary observation

we made suggested that it may be possible to detect earpiece speaker activity

using the device’s internal barometer.

Figure 2.2 shows the effect of the same signal played by our non-IP rated

testing device’s speaker3 on the internal barometric pressure sampled by the

barometer. Notice that the barometer’s sample signal does not follow any

pattern of the actual sinusoid signal, and does not show any resemblance to

the actual data. This makes sense as the internal pressure of our non IP rated

device equalizes to the outside barometric pressure so fast that the low-rate

barometric pressure samples are not able to capture the change in the internal

pressure.

Figure 2.3 shows the impact of a touch screen finger tap on the internal

pressure of our testing device. Note that a tap slightly flexes the screen inwards,

1Samsung Galaxy S10 Plus
2Maximum sample rate is limited by the Android API to 25 Hz
3Samsung Galaxy S6 Edge
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causing the device’s internal volume to slightly decrease. Since the device is

nearly airtight, the gas inside the device cannot escape immediately through

the vents. Consequently, the gas inside the device is compressed, causing the

internal barometric pressure to increase. When the user removes the finger of

the screen, the screen returns to its normal position and causes a short vacuum,

this time causing the internal pressure to decrease.

Figures 2.4 and 2.5 show the average4 impact of a finger tap on two different

positions on the touch screen (number 2 and number 6 in the custom numpad).

The variance for the peak and valley of the shown signals in the case of number

2 are 0.22 and 0.06, and for number 6 are 0.08 and 0.04, respectively. The

difference between these two depicted impact signals suggested that it may

be possible to detect the positions of finger taps on the touch screen. The

main reason for the difference between these two impact signals is that taps on

different positions of the touch screen can cause different amount of screen flex.

4Average of all the available samples, 124 samples for each number
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earpiece speaker.
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Figure 2.2: Signals recorded by our non IP rated device’s barometer, and its
microphone when a 12 Hz sinusoid tone was played on the device’s earpiece
speaker.
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Figure 2.3: The impact of a finger tap on the internal pressure captured by the
device’s barometer. (1) internal pressure increases as the result of finger tap,
(2) a decrease in the pressure after the finger tap (3) pressure equalization.
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Figure 2.4: The average impact of a finger tap as the result of tapping on
Number 6 of our custom numpad. As shown in Figure 2.7, this number is
located on the right side of the screen.
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Figure 2.5: The average signal of a finger tap on Number 2 of our custom
numpad. As shown in Figure 2.7, this number is located around the center of
the screen.
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2.3 Experiments

2.3.1 Data collection

We developed two custom Android apps for data collection: SpeakerSpy and

TouchSpy. Using SpeakerSpy (Figure 2.6), we read and recorded barometric

pressure samples during earpiece speaker activity (i.e., when a sound is played)

and during inactivity (i.e., when the speaker is silent). A data record was

labeled active if the barometer samples were taken when the earpiece speaker

was playing a sound; otherwise, it was labeled inactive. We collected in total

450 records, half of which were labeled as active and the other half as inactive.

We used the second app, TouchSpy, to read and record barometric pressure

samples during a screen finger tap. Each record spans an interval of two seconds,

starting one second prior to the tap. The barometer sampling rate is 25 Hz;

thus each record consists of 50 samples.

To collect real data using TouchSpy, we employed three participants. Each

participant was asked to tap (as they normally do) the screen of a stationary

phone placed on a desk. In one setting, the participants were asked to tap a

randomly selected position on the screen. In the second setting, the participants

were asked to tap a random number on a custom 3 by 3 pin entry numpad

shown in Figure 2.7. For each setting, we collected 1116 records per participant.

The records collected in the first setting were used to see how accurate we can

detect the occurrence of a tap, while the ones collected in the second setting

were used to see if we can guess the position of a tap.

Normalizing. We treated each record as a time series, and normalized

it to reduce/eliminate the impact of the measurement unit, signal power and

gradual changes in atmospheric pressure in the course of data gathering. To

this end, we used a simple normalization called standardizing, in which each

data point x in the time series is replaced by its z-score z = x−x̄
S

, where x̄ and

S are the mean and standard deviation of the time series, respectively.
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Figure 2.6: Automated UI for logging the barometric pressure alongside the
microphone data in the SpeakerSpy app.
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Figure 2.7: Our custom pin entry numpad in the TouchSpy app.
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2.3.2 Detection accuracy results

We used SVM as our classification method, and 5-fold cross-validations to

evaluate the performance of SVM. Each reported accuracy performance in this

section is the average of the results of ten different 5-fold cross-validations.

Earpiece speaker activity detection. Barometer-based speaker activity

detection (B-SAD) is a binary classification problem: it uses the smartphone’s

barometer to predict whether the smartphone’s speaker is playing a given sound

or is silent. A malicious app with B-SAD capability can steal user’s sensitive

information. For example, it can set the sound to, say, the device’s default

ringtone in an attempt to detect the onset of received phone calls.

To evaluate the performance of SVM in solving B-SAD, we used two type

of sounds. The first one was a simple sinusoid tone of 12 Hz (nearly half the

barometer’s sampling rate of 25 Hz). For the second sound we used a popular

Android ring tone (Over The Horizon, Samsung Phones). In our experiment we

achieved an overall detection accuracy of 96% for the 12 Hz sinusoid tone and

95% for the default Samsung ringtone5.

Detecting taps. Quinn [30] recently showed that, in devices with ingress

protection, forces on touch screen can be detected using the device’s internal

barometer. To this end, a robotic arm was programmed to perform five second

touch contacts with three different force levels (1, 3, and 5N). In our work,

however, we explore the possibility of detecting taps (rather than robotic arm

pressures) and their positions.

Unlike the 5-second robotic arm touch contacts in [30], taps make a quick

force on the touch screen (fraction of a second). As stated in [30] if a user’s

input force changes too quickly, it may not be captured by the barometer. In

addition, based on the study in [36], finger taps typically produce less force

than those applied in Quinn’s experiment. Therefore it is not clear if finger

5Over The Horizon, extracted from Samsung Galaxy S10 Plus
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taps are detectable at all. Nevertheless, our SVM classifier achieves an accuracy

of 100% in detecting occurrence of taps. Next, we show that the classifier can

reveal information about the position of taps too.

Detecting the position of a tap. Our custom numpad (Figure 2.7) uses

exclusively the lower half of the screen, as this is the default location of touch

keyboards and numpads on most smartphones. The numpad divides the lower

half into nine different regions/keys. Each region/key has different degrees of

freedom. The difference in degrees of freedom leads to different amounts of

screen flex and recovery as the result of a tap. Ultimately, this makes it possible

to profile each region/key, hence detect the number tapped.

Our accuracy results are summarized in Table 2.1. The number in row i and

column j of the table is the probability of predicting i when the actual number

tapped was j. For instance, when user presses 5 our SVM classifier detects it

as 2, 3, 5, 6 and 8 with probabilities 24%, 8%, 41%, 17% and 10%, respectively.

As shown in Table 2.1, probabilities of correct identification (i.e., numbers on

the main diagonal of the table) range from 18% to 69% with the average of 41%.

One may compare this to the probability of correct identification in random

guess, which is about 11%.

The above experiment was conducted in a room environment with incon-

sistent/unreliable air pressure. We expect our prediction results to somewhat

improve when the environment’s air pressure is steady. To evaluate this claim,

we repeated the above experiment in a commercial flight, which, as we observed,

had a more consistent air pressure in the cabin, compared to a room with

air conditioning. The results of this experiment are shown in Table 2.2. The

average correct identification in Table 2.2 is 44%, a slight increase to that in

Table 2.1.

25



 

# #1 #2 #3 #4 #5 #6 #7 #8 #9 

#1 18   4   27 31 16 

#2  42 45  24 6    

#3  39 40  8 6    

#4 10   69  13 4 2  

#5  11 15 7 41 25    

#6 3 8  16 17 50    

#7 28      33 27 9 

#8 31   4 10  26 19 18 

#9 10      10 21 57 

 

 

 

 

 

Table 2.1: The number in row i and column j of the table is the probability of
predicting i when the actual number tapped was j. The test was conducted in
a room condition.
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# #1 #2 #3 #4 #5 #6 #7 #8 #9 

#1 23   8   26 25 18 

#2  51 37  10 7    

#3  30 44  21 7    

#4 6   60  16 11 4  

#5  14 13 12 40 22    

#6  5 6 12 29 48 3   

#7 33   2   37 25 10 

#8 29   6   18 27 20 

#9 9      5 19 52 

 

 

 

 

 

Table 2.2: The number in row i and column j of the table is the probability of
predicting i when the actual number tapped was j. The test was conducted in
a commercial airplane.
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2.4 Attack Scenario

Traditionally, to conduct a side-channel attack such as the one by Van Eck [6], an

adversary requires to have physical access to the device or be in the close vicinity

of the device. The trend, however, has shifted for smartphones. Although the

work that we have presented in this thesis is taking advantage of the device’s

physical properties, an advarsary can execute our side-channel attacks entirely

remotely. To do so, the adversary has to take the following steps to execute a

successful touch screen tap inference or B-SAD on the victims’ phone:

1. Embed a malicious code into an Android application package

(APK). Since the barometer sensor’s API is not accessible through

browsers [37], an attacker is left with two options to access the API.

The first option is to build a completely new app (e.g., a weather forcast

app) from scratch, and embed the malicious code (which gathers barom-

eter’s samples, and performs inference) inside it. The second option is

to inject the malicious code into a popular and well-known app such as

a popular game. There are pros and cons to each method. Making an

app from scratch gives the attacker the ability to publish the malicious

app silently via Google Play Store. Also, it gives the attacker the chance

to request some permissions (like Internet access) that may initially look

legit. Such accesses can come in handy. For example, the Internet access

can be used to transfer the inferred user’s information to the attacker.

By injecting the malicious code into a well-known and popular app, on

the other hand, the attacker can hit a larger population. This option,

however, does not allow the attacker to put the modified app on a trusted

source like Google Play Store. This makes it harder for the app to find

its way to the users’ phones.

2. Perform data gathering and training. Data gathering does not

require any permissions from the user but needs the user to interact with
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the malicious app that has been disguised as we described. Putting an

invisible overlay layout on top of the malicious app makes it possible to

gather the necessary data for training our model for the user’s typing

habits (the exact force of user’s finger taps) and phone screen size. In

our tests, about 50 samples per region (key) was the minimum for our

classification to be viable. As for B-SAD, embedded sound queues in

the malicious app are enough to train the model. Also, to perform an

accurate B-SAD, a minimum of 25 samples of each state (active/silence)

is necessary. Finally, attackers can use the gathered data to train an SVM

classifier either locally at the victims’ smartphones, or remotely at the at

their own end.

3. Perform inference and extraction. At this point, the malicious app

continuously logs the barometer’s samples in the background. At the same

time, it feeds the collected samples to its SVM classifier to detect taps

and/or earpiece speaker activity. The results of these detections can be

stored locally, or sent to the attacker over the Internet.

2.5 Limitations

Our results confirm the possibility of detecting earpiece speaker activity and

touch screen taps using barometric air pressure samples. These results rely on

relative pressure rather than absolute pressure values of the barometer; thus

they are applicable to different locations/altitude levels, and weather conditions.

However, there are certain limitations in collecting side-channel information

from screen touch contacts and earpiece speaker activities. First, the device

must have some level of ingress protection. It is because, otherwise, changes in

internal pressure (due to, for example, finger taps) would quickly equalize the

external atmosphere.

The second major limitation is related to the low sampling rate of the
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barometer sensor. The STMicro LPS22HH sensor datasheet shows that it is

capable of sampling at 200 Hz. However, it appears that the Android sensor

API is limiting the barometer sample rate to 25 Hz6 [19]. In our experiments,

the low sampling rate of 25 Hz was not deterrent in detecting earpiece speaker

activity and detecting finger touch contacts. There are, however, certain tasks

that are impossible to perform at low sampling rates. For instance, by the

Nyquist–Shannon sampling theorem, it is impossible to reconstruct the speaker’s

sound signal fully if the signal has frequencies higher than half the sampling

rate of the barometer.

The low sampling rate of barometer can be preventive in carrying certain

tasks related to screen touch detection as well. For example, in our experiment,

we need to have at least three sample points in our signal to register a finger

tap, and wait for at least two sampling cycles for air pressures to equalize. At

the sampling rate of 25 Hz, these five sampling cycles translate to a total of 200

milliseconds, which would limit the continuous detection of finger taps to five

taps per second.

Finally, the flow rate of the barometric vent can also become a limiting

factor. As stated in [30], if a user’s input force changes either too quickly or

too slowly, it may not be captured by the barometer.

2.6 Security Implications

Reading barometric pressure low-rate samples is considered harmless. Because

of this, modern mobile platforms like Android allow apps to access the device’s

barometer sensor without user’s permission or notification. Therefore, a mali-

cious app can readily bypass the user’s permission and attention. In addition,

as shown in [38], sensor-based side-channel attacks can bypass strong separation

6The sampling rate of 25 Hz is achievable through the SensorManager.SENSOR DELAY
FASTEST in Android SDK
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mechanisms like Samsung KNOX, which tries to provide a secure environment

to protect corporate data on smartphones.

Finally, due to low power usage and low frequency of the barometer sensors,

accessing the barometric pressure samples may not be detected as, for example,

a power virus. We ran a background service that continuously reads barometric

pressure samples for over 40 hours. This service was never detected as a

suspicious activity by McAfee, Avast, AVG, Bitdefender and Norton antivirus.

2.7 Defenses

A first line of defense is to use the device’s permission system to ask users for

permission to access the device’s barometer. This gives users the chance to

deny permission to apps whose motivation behind requesting the access is not

clear. For instance, users can deny barometer access to a “flashlight app” as

such access is clearly outside the scope of the app’s functionality.

Another defense is to use third-party apps such as [39] that enforce security

policies. These apps can pause sensor readings (or even kill) background

processes/services when an app with sensitive input (e.g. a banking app)

is running. In addition, malware-analysis apps such as [12] and [40] can be

extended and used to check for malicious sensor accesses.

Finally, sensitive apps can implement their own custom security solution.

For example, a PIN pad can rearrange its buttons prior to every sensitive

input [41].
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Chapter 3

Conclusion and future work

Microphone and touch screen inputs expose sensitive information. Because of

this, microphone’s access requires user’s permission, and touch screen is only

accessible to the app currently running in the foreground. On the other hand, any

app (even those running in the background) can access the barometer’s samples

without any permission or notification. This is alarming as our results show

that low-rate barometric pressure samples reveal information about earpiece

speaker activity. In addition, the pressure samples give information about finger

taps, and, to some extent, their positions.

Our work is a first feasibility study, and there are many ways to extend and

improve our results. First, we only used SVM as our classifying method. More

advanced classifiers and techniques can improve our reported accuracy results.

In addition, barometric pressure samples may be combined with data samples

from other sensors such as ambient-light or motion sensors to improve accuracy.

In detecting finger taps and their positions, we used a small number of

participants to collect data. Further study is needed to show if similar results

is observed with more number of participants with, say, various tapping habits.

Also, we used a single type of smartphone in our experiments. However, we

expect similar results to be observed in many other types of smartphones with

ingress protection.
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With regards to earpiece speaker activity, it is interesting to see how many

different classes of activities we can distinguish using low-rate barometric

pressure samples. Our initial study, not reported to this work, indicate that

there is a possibility of distinguishing different sounds.

Finally, it would be interesting to see if external sounds can be distinguished

from, say, silence using barometric pressure samples.
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