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Abstract

Recently, poker has emerged as a popular domain for investigating decision problems under condi-

tions of uncertainty. Unlike traditional games such as checkers and chess, poker exhibits imperfect

information, varying utilities, and stochastic events. Because of these complications, decisions at

the poker table are more analogous to the decisions faced by humans in everyday life.

In this dissertation, we investigate regret minimization in extensive-form games and apply our

work in developing champion computer poker agents. Counterfactual Regret Minimization (CFR) is

the current state-of-the-art approach to computing capable strategy profiles for large extensive-form

games. Our primary focus is to advance our understanding and application of CFR in domains with

more than two players. We present four major contributions. First, we provide the first set of theo-

retical guarantees for CFR when applied to games that are not two-player zero-sum. We prove that

in such domains, CFR eliminates strictly dominated plays. In addition, we provide a modification

of CFR that is both more efficient and can lead to stronger strategies than were previously possi-

ble. Second, we provide new regret bounds for CFR, present three new CFR sampling variants, and

demonstrate their efficiency in several different domains. Third, we prove the first set of sufficient

conditions that guarantee CFR will minimize regret in games with imperfect recall. Fourth, we gen-

eralize three previous game tree decomposition methods, present a new decomposition method, and

demonstrate their improvement empirically over standard techniques. Finally, we apply the work in

this thesis to construct three-player Texas hold’em agents and enter them into the Annual Computer

Poker Competition. Our agents won six out of the seven three-player events that we entered from

the 2010, 2011, 2012, and 2013 computer poker competitions.
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Chapter 1

Introduction

Autonomous computer agents capable of meaningful interactions with the world is the holy grail

of artificial intelligence research. Every day, humans must make decisions based on an incomplete

view of the world, experienced only through limited observations. In addition, the consequences of

these decisions often cannot be fully known at the time of the decision-making. These decisions can

be short term, such as quick decisions made while driving, or long term, such as whether or not to

move to a new city. To further complicate matters, the world is full of millions of people and the

actions of others often affect our own actions. For instance, if we see a lot of vehicles on the highway

nearby, we may believe that it will be faster to take a detour to work rather than potentially being

slowed by the traffic. We would expect any fully autonomous robot to be capable of making such

decisions, despite lacking all pertinent information (like a full traffic report). Unfortunately, current

science and technology is far from achieving such complete autonomous behaviour in artificially

intelligent agents.

For at least the past few decades, games have been an exceptional platform for artificial intelli-

gence research. Many successful computer programs have been developed that play at expert levels

in games such as Othello [11], checkers [63], chess [12], and Go [22]. These examples are all two-

player, zero-sum, deterministic games where both players share perfect information about the game

state. Such games can be handled reasonably well by classic artificial intelligence techniques, such

as heuristic search. In many real-life problems, however, multiple players exist, non-determinism

(chance) abounds, and we often have imperfect information about the state of the game.

Recently, poker has become a popular domain for artificial intelligence research [3, 5, 6, 8, 31,

40]. Poker involves multiple players, random card dealings, and some information hidden from the

players (the other players’ hole cards). Texas hold’em is a tremendously popular version of poker

played around the world, and many professional players have earned millions of dollars playing the

game. The game is considered to be very strategic, making it an excellent showcase for artificial

intelligence research.

The Computer Poker Research Group (CPRG) at the University of Alberta uses poker as a

testbed for conducting artificial intelligence research in games. Since 2006, the CPRG has com-
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peted in the Annual Computer Poker Competition (ACPC) [4] that evaluates computer poker agents

developed by teams of academics and hobbyists to help drive research in this area. In addition, the

CPRG competed against teams of human professionals in two Man vs. Machine Poker Competitions

[1, 2], where the CPRG edged the humans at heads-up (two-player) limit Texas hold’em in 2008.

Since joining the research group in 2009, my role in the CPRG has been to focus on research in

games with three or more agents and to evaluate the research results in poker. My activities have

included managing the team’s three-player entries of the 2010, 2011, 2012, and 2013 ACPC and

building on the group’s previous work in ring (more than two players) poker.

1.1 Previous State of the Art in Ring Poker

Three-player limit Texas hold’em events were first included in the ACPC in 2009. For these events,

Abou Risk [62] of the CPRG built agents using the Counterfactual Regret Minimization (CFR)

algorithm [75]. CFR is an iterative algorithm described later in Section 2.2.2 and is the current state-

of-the-art approach to computing approximate Nash equilibria in large two-player, zero-sum games.

To our knowledge, Abou Risk was the first to apply CFR to a game with more than two players and

his agents won the three-player events by a significant margin.

Despite winning the ACPC events, there are four major issues with regards to the CPRG’s 2009

ring poker agents:

1. There is no theory to explain why CFR is successful in games with more than two players.

While CFR is guaranteed to converge to an equilibrium strategy profile in two-player zero-sum

games, the algorithm does not, in general, produce equilibrium profiles for even small three-player

games [3, Table 2]. In games with more than two players, a Nash equilibrium profile may not be our

best choice of strategy anyways. A Nash equilibrium only guarantees that no player can benefit from

unilaterally deviating from the profile; if more than two players deviate, all guarantees are lost. Even

worse, if each player is playing a strategy from a different Nash equilibrium profile, the combination

of the players’ strategies might not comprise an equilibrium profile. In games with more than two

players, it is not clear what properties a strategy should have to be considered optimal or whether

such a notion even exists.

2. Chance Sampling is very slow in three-player limit Texas hold’em. Chance Sampling [75] is a

CFR variant that uses Monte Carlo sampling to reduce the algorithm’s per iteration time cost. This is

achieved by considering just a single outcome for the card deals on each iteration and only traversing

the portion of the game tree associated with the given card outcome. For two-player limit poker and

other games with many chance branches, Chance Sampling can significantly reduce computation

time to reach a given solution quality. Abou Risk used Chance Sampling to generate the CPRG’s

2009 ACPC entries for the three-player events. However, in three-player Texas hold’em and other

games with many player decision states, Chance Sampling can be quite slow as we demonstrate later

in Section 5.6.
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3. CFR’s original analysis only applies to games with perfect recall. CFR uses space linear

in the number of information sets in the game. However, even heads-up limit Texas hold’em, the

smallest variant of Texas hold’em, is too large to feasibly solve. To address this limitation, an

abstract version of the game is created that groups similar states together into single abstract states.

If players never forget information that was revealed to them in the abstract game, nor the order in

which the information was revealed, the abstract game exhibits perfect recall; otherwise, the abstract

game exhibits imperfect recall. We can then apply CFR to the abstract game and use the resulting

abstract strategy to play the real game. In practice, agents built with imperfect recall abstractions

often perform better than agents employing perfect recall abstractions of the same size [45, 73].

However, regret minimization is only guaranteed by CFR in games with perfect recall [75]. In

games with imperfect recall, it is unclear what theoretical guarantees are provided by CFR. This is

true for all types of imperfect recall games, even those that are two-player zero-sum.

4. Given a finite amount of computing resources, ring poker strategies typically suffer from

more card ambiguity than two-player strategies. As mentioned previously, limit Texas hold’em

is too large to feasibly solve with CFR or other strategy computation techniques, even in the two-

player case. Extending to more players further complicates the problem because the number of

game states increases. As a result, under a fixed memory limitation, three-or-more-player poker

strategies must employ much coarser abstractions compared to two-player strategies, leaving many

different states indistinguishable. In an attempt to alleviate this problem, Abou Risk and Szafron [3]

created heads-up experts by applying CFR to a selection of two-player subtrees using an alternative

abstraction. Their results from combining these experts with a base strategy, however, were mixed.

1.2 Main Contributions

This dissertation presents my research results that address each of the four major impediments enu-

merated in the previous section. My work here advances the state of the art in developing automated

agents for imperfect information domains containing two or more adversaries and particularly targets

the development of three-player Texas hold’em poker agents. My contributions are the following:

1. Proof that CFR avoids strict domination in games that are not two-player zero-sum. Dom-

inated actions are formally defined in extensive-form games and it is shown that CFR avoids itera-

tively strictly dominated actions and strategies. These are the first theoretical results to suggest that

CFR may lead to good performance in games with more than two players. In addition, for two-

player non-zero-sum games, worst case performance is bounded and regret minimization is shown

to yield strategies very close to equilibrium in practice. These theoretical advancements lead us to a

new variant of CFR for games with more than two players that is more efficient and may be used to

generate stronger strategies than previously possible.

2. A general analysis, both theoretical and empirical, of CFR and its sampling variants. Monte

Carlo CFR (MCCFR) [54], a family of algorithms to which Chance Sampling belongs, is gener-
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alized and it is shown that any bounded, unbiased estimator of the sought values can be used to

probabilistically minimize regret. In addition, the variance of the estimator is shown to bound the

convergence rate of an algorithm that calculates regret directly from the estimator. Furthermore,

three new sampling variants for CFR are presented, two of which are now the best known algo-

rithms for abbreviated no-limit games and for three-player limit Texas hold’em respectively.

3. The first set of regret bounds for CFR when applied to a general class of imperfect recall

games. Well-formed games are defined as a special class of games containing all perfect recall

games, but also many games with imperfect recall. CFR is shown to minimize regret in well-formed

games. In addition, skew well-formed games, a generalization of well-formed games, are introduced

where an additional regret bound for these games is also derived.

4. A general framework for strategy stitching in large games. We discuss strategy stitching,

a family of techniques for combining a base strategy in a coarse abstraction of the full game tree

to expert strategies in fine abstractions of smaller subtrees. Two techniques are analyzed. Firstly,

static experts, an approach that generalizes some previous strategy stitching efforts, are defined and

used to create entries to the 2010 and 2011 ACPC three-player events. Secondly, dynamic experts

are proposed that combine multiple abstractions simultaneously within one abstract game. Dynamic

experts were used to win the three-player competitions of the 2012 and 2013 ACPC.

Portions of these research contributions have appeared in the following refereed papers:

• ”Regret Minimization in Multiplayer Extensive Games” (extended abstract) appearing at IJ-

CAI 2011 [26],

• ”On Strategy Stitching in Large Extensive Form Multiplayer Games” appearing at NIPS 2011

[27],

• ”Generalized Sampling and Variance in Counterfactual Regret Minimization” appearing at

AAAI 2012 [25],

• ”No-Regret Learning in Extensive-Form Games with Imperfect Recall” appearing at ICML

2012 [53], and

• ”Efficient Monte Carlo Counterfactual Regret Minimization in Games with Many Player Ac-

tions” appearing at NIPS 2012 [24].

The rest of this dissertation is organized as follows. First, fundamental background material

in game theory, including normal and extensive-form games, CFR, and abstraction, is presented in

Chapter 2. Next, Chapter 3 describes several poker games, including Kuhn Poker, Leduc hold’em,

and Texas hold’em, and touches on related work in poker. Chapters 4 through 7 present the main

research contributions in domination, sampling, imperfect recall, and strategy stitching respectively.

This is followed by Chapter 8 that presents the 2010, 2011, 2012, and 2013 ACPC three-player

agents that won all but one of the seven events competed in from these four years. Finally, Chapter
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9 concludes the dissertation and discusses possible future directions and extensions of this research.

An extended example of CFR is provided in Appendix A, while full proofs for Theorems presented

in Chapters 4, 5, and 6 appear in Appendices B, C, and D respectively.
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Chapter 2

Background

In this chapter, we formally define normal-form and extensive-form games and describe the dif-

ference between perfect recall and imperfect recall extensive-form games. We also define Nash

equilibrium and dominated strategies, two main solution concepts of particular interest to us. This is

followed by a thorough explanation of Counterfactual Regret Minimization (CFR) and Monte Carlo

CFR (MCCFR). We then discuss other solution concepts and techniques that have appeared in the

literature before ending this chapter with a formal introduction to abstraction in games.

2.1 Normal-Form and Extensive-Form Games

Normal-form games are a common and general framework useful for modelling problems involving

single, simultaneous decisions made by multiple agents. Two-player normal-form games are often

represented by a matrix with rows denoting the row player’s actions, columns denoting the column

player’s actions, and entries denoting payoffs resulting from the row player’s and column player’s

actions respectively. More formally, a normal-form game is defined as follows:

Definition 2.1. A finite normal-form game G is a tuple 〈N,A, u〉 containing the following compo-

nents:

• A finite set N = {1, 2, ..., n} of players.

• A set of action profilesA = A1×A2×· · ·×An, withAi being a finite set of actions available

to player i.

• For each i ∈ N , a utility function ui : A→ R that denotes the payoff for player i under each

possible action profile.

If n = 2 and u1 = −u2, the game is zero-sum. Otherwise, we say the game is non-zero-sum. We

emphasize here that zero-sum only refers to two-player games. For example, a three-player game

with u1 + u2 + u3 = 0 is considered a non-zero-sum game. Note that two-player constant-sum
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
a b c

A 3 −1 −3
B 1 0 1
C −3 −1 3


Figure 2.1: A zero-sum normal-form game. Entries represent utilities for the row player; utilities
for the column player are the negation.

games where u1 +u2 = C for some constant C can easily be translated to a zero-sum game without

changing the strategic properties by simply subtracting C from one player’s utility.

Figure 2.1 presents a zero-sum normal-form game in matrix form. In this example, both players

in N = {1, 2} have three actions, A1 = {A,B,C} and A2 = {a, b, c}. The utilities for the players

range between −3 and +3 depending on the actions selected.

A player’s strategy defines how likely the player is to play each of the available actions. More

precisely, a mixed strategy σi for player i is a probability distribution over Ai, where σi(a) is the

probability that action a is taken under σi. For example,

σ1(a) =

 3/4 if a = A
1/4 if a = B
0 if a = C

is a mixed strategy for player 1 (row player) in the game shown in Figure 2.1. The set of all such

strategies for player i is denoted Σi. A pure strategy for player i, si ∈ Si, assigns a probability of

1 to a single action. Define the support of σi, supp(σi), to be the set of actions assigned positive

probability by σi. For instance, the support of the example strategy above is supp(σ1) = {A,B},

the possible actions that player 1 might take when following σ1. A strategy profile σ ∈ Σ is a

collection of strategies σ = (σ1, σ2, ..., σn), one for each player. We let σ−i refer to the strategies in

σ excluding σi, and ui(σ) to be the expected utility for player i when players play according to σ.

If we define σ2 = {(a, 1), (b, 0), (c, 0)}, then the expected utility for player 1 under σ in the game

shown in Figure 2.1 is

u1(σ) = 3 · 3/4 + 1 · 1/4 + (−3) · 0 = 5/2.

When decisions are sequential rather than simultaneous, or when the game involves imperfect

information or stochastic events, extensive-form games are generally more applicable than normal-

form games. An extensive-form game is a rooted directed tree with nodes representing decision

states (possibly belonging to chance), edges representing actions, and terminal nodes holding end-

game utility values for the players. For each player, the decision states are partitioned into in-

formation sets such that game states within an information set are indistinguishable to the player.

Non-singleton information sets arise due to hidden information that is only available to a subset of

the players, such as private cards in poker. We now provide a formal definition of extensive-form

games:
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Definition 2.2 (Osborne and Rubenstein [59, p. 200]). A finite extensive-form game Γ with im-

perfect information is a tuple 〈N,H,P, σc, u, I〉 containing the following components:

• A finite set N = {1, 2, ..., n} of players.

• A finite set H of sequences, the possible histories of actions, such that the empty sequence is

in H and every prefix h of a sequence h′ ∈ H , denoted h v h′, is also in H . For h ∈ H , we

denote A(h) = {a | ha ∈ H} to be the set of actions available at h. In addition, Z ⊆ H

denotes the set of terminal histories that are not a prefix of any other sequence.

• A player function P that assigns to each nonterminal history h ∈ H\Z a member P (h) ∈

N ∪ {c}. P (h) is the player who acts after the history h. If P (h) = c, then chance generates

the action taken after history h. We denote Hi = {h ∈ H | P (h) = i} to be the set of

histories belonging to player i.

• A function σc that associates with every history in Hc a probability measure σc(h, ·) on A(h),

where each such probability measure is independent of every other such measure. For h ∈ Hc

and a ∈ A(h), σc(h, a) is the probability that action a occurs after history h.

• For each player i ∈ N , a utility function ui : Z → R that denotes the payoff for player i at

each possible terminal history. We denote ∆i = maxz,z′∈Z ui(z)− ui(z′) to be the range of

utilities for player i.

• For each player i ∈ N , an information partition Ii of Hi with the property that A(h) =

A(h′) whenever h and h′ are in the same member of the partition. For any information set

I ∈ Ii, we denote A(I) to be the set of actions A(h) and denote P (I) to be the player P (h)

for any h ∈ I . In addition, for h ∈ Hi, let I(h) denote the information set containing h.

Finally, let |A(Ii)| = maxI∈Ii |A(I)| denote the maximum number of actions available to

player i at any information set.

Analogous to normal-form games, an extensive-form game is zero-sum if n = 2 and u1 = −u2,

and is non-zero-sum otherwise.

Figure 2.2 shows an example of an extensive-form game tree with one chance action followed

by one decision for each of two players, N = {1, 2}. The game has 22 histories with termi-

nal histories Z = {all, alr, arl, arr, bll, blr, brl, brr, dll, dlr, drl, drr} and non-terminal histories

H\Z = {∅, a, b, d, al, ar, bl, br, dl, dr}. The empty sequence, ∅, represents the initial game state

(the root of the tree) where it is chance’s action. Since player 1 cannot distinguish between whether

chance generated b or d, player 1 has two information sets, namely I1 = {{a}, {b, d}}. Player 2, on

the other hand, has perfect information regarding the current game state and thus has six information

sets in I2 = {{al}, {ar}, {bl}, {br}, {dl}, {dr}}.
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2 2 2 2 2 2

1 1 1

a
b

d

l r l r l r

l r l r l r l r l r l r

Figure 2.2: A two-player extensive-form game, where game states connected by a bold dashed curve
are in the same information set. In this game, player 1 cannot distinguish between whether chance
generated b or d. Utilities at terminal nodes are not shown.

While extensive-form games are primarily used to model stochastic games with imperfect in-

formation, they are versatile enough to also represent deterministic games and games where no

information is hidden from the players. For example, checkers can be modelled in extensive form

where chance does not occur (i.e. P (h) 6= c for all h ∈ H) and every information set for each player

contains a single history. In addition, backgammon can also be represented as an extensive-form

game where chance’s actions represent the possible dice rolls. Like in checkers, the information sets

in backgammon are also singleton sets since both players know the exact state of the game at all

times. However, in most poker games, a player cannot see the cards held by the opponent(s). An

information set represents this imperfect information by containing the histories for every possible

hand the opponent(s) might be holding, given the cards our player can see. In other words, Ii parti-

tions the histories according to the cards seen by player i and the public actions taken by the players,

but not according to the private cards held by players other than i.

A behavioral strategy σi for player i is a function that maps each information set I ∈ Ii to a

probability distribution over A(I). This defines how likely player i is to take each of the available

actions at each information set belonging to player i. The set of all possible behavioral strategies

for player i is again denoted by Σi and a strategy profile σ ∈ Σ is a collection of strategies σ =

(σ1, σ2, ..., σn). We overload the notation here with that of mixed strategies in normal-form games

as we will only consider strategies in normal-form games to be mixed and strategies in extensive-

form games to be behavioral.

Let πσ(h) denote the probability of history h occurring if all players play according to σ =

(σ1, σ2, ..., σn). With this notation, it follows that the expected utility for player i when all players
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play according to σ is ui(σ) =
∑
z∈Z π

σ(z)ui(z). We can decompose πσ(h) =
∏
i∈N∪{c} π

σ
i (h)

into each player’s and chance’s contribution to this probability. Hence, πσi (h) =
∏

h′avh
P (h′)=i

σi(h
′, a)

is the probability that player i plays to reach h under σi. Let πσ−i(h) =
∏
j∈(N−i)∪{c} π

σ
j (h) be

the product of all players’ contributions (including chance) except that of player i. In addition, let

πσ(h, h′) be the probability of history h′ occurring after h, given that h has occurred. Let πσi (h, h′)

and πσ−i(h, h
′) be defined similarly.

Consider again the example game tree in Figure 2.2. A possible strategy for player 1 is

σ1(I) :=

{
{(l, 1), (r, 0)} if I = {a}

{(l, 1/2), (r, 1/2)} if I = {b, d},

which always takes action l after chance generates a, but is equally likely to take l or r if chance

generates b or d. Since the histories b and d fall into the same information set for player 1, any

strategy in Σ1 must act under a single set of action probabilities for both of the game states.

Furthermore, assume now that both chance and player 2 take actions uniformly at random. Thus,

σc(∅, â) = 1/3 for all â ∈ {a, b, d} and σ2(I, â) = 1/2 for all I ∈ I2, â ∈ A(I). We can

then determine the probability of reaching any history h by simply decomposing the probabilities

according to each player’s contribution, πσ(h) = πσc (h) · πσ1 (h) · πσ2 (h). For example,

πσ(alr) = 1/3 · 1 · 1/2 = 1/6,

πσ(brl) = 1/3 · 1/2 · 1/2 = 1/12,

and

πσ(dl) = 1/3 · 1/2 · 1 = 1/6.

A strategy si is pure if a single action is assigned probability 1 at every information set; for

each I ∈ Ii, let si(I) be this action. We denote by Si the (finite) set of all pure strategies for

player i. For a behavioral strategy σi, define the support of σi to be supp(σi) = {si ∈ Si |

σi(I, si(I)) > 0 for all I ∈ Ii}, the set of pure strategies that σi follows with positive probability

at each information set.

A best response to an opponent profile σ−i is a player i strategy σ∗i ∈ arg maxσi ui(σi, σ−i)

that maximizes player i’s expected utility against σ−i. The best response value for player i is

the value of that strategy, bri(σ−i) = ui(σ
∗
i , σ−i). The exploitability of a strategy profile σ,

e(σ) = −
∑
i∈N minσ′−i ui(σi, σ

′
−i)/n, measures how much σ loses on average to a set of worst-

case opponents when players rotate positions. In zero-sum games, exploitability is the average

amount lost to a best response, e(σ) = (br1(σ2) + br2(σ1))/2. In non-zero-sum games, however,

exploitability becomes less meaningful. For these games, the worst-case scenario for player i would

be for all other players to minimize player i’s expected utility while disregarding their own individual

utilities. Because this is unrealistic behavior, we will rarely consider exploitability in non-zero-sum

games.
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2.1.1 Perfect Vs. Imperfect Recall

In an extensive-form game with perfect recall, players never forget any information that was revealed

to them, nor the order in which the information was revealed. To formally define perfect recall, we

need some additional notation. First, for a history h ∈ H , let Xi(h) be the sequence of information

set, action pairs (I1, a1), (I2, a2), ..., (I`, a`) such that player i visited each I1, I2, ..., I` in turn and

took actions a1, a2, ..., a` in turn before reaching h. More formally, define Xi(h) to be the sequence

of information set, action pairs such that (I, a) ∈ Xi(h) if I ∈ Ii and there exists h′ v h such

that h′ ∈ I and h′a v h. The order of the pairs in Xi(h) is the order in which they occur in h.

Define X(h) to be the sequence of information set, action pairs belonging to all players in the order

in which they occur in h, and X−i(h) similarly, by removing player i’s information set, action pairs

from X(h). Also, define X(h, h′) to be the sequence of information set, action pairs belonging to

all players that start at h and end at h′ when h v h′; if h 6v h′, X(h, h′) is defined to be the empty

sequence. We will make use of X(h, h′) in Chapter 6. Let Xi(h, h
′) and X−i(h, h′) be similarly

defined.

Definition 2.3. An extensive-form game has perfect recall if for every player i ∈ N , for every

information set I ∈ Ii, and for any h, h′ ∈ I,Xi(h) = Xi(h
′). Otherwise, the game has imperfect

recall.

Intuitively, with perfect recall every player has an infallible memory and cannot “forget” anything

during a play of the game that they once knew. Hence, what a player knows at I is a composition of

what the player has discovered in the past up to this point and the precise order in which information

was discovered. For games with perfect recall, we denote Xi(I) = Xi(h) for any h ∈ I .

Perfect recall presents a nice connection between normal-form and extensive-form games. In

particular, any extensive-form game Γ, with perfect recall or not, can be represented in normal form

G by setting the action set in G for player i to be all pure strategies in Γ and for all s ∈ S, assigning

utility ui(s) =
∑
z∈Z π

s(z)ui(z). Kuhn [51] proved that if Γ has perfect recall, then any mixed

strategy in G has a utility-equivalent behavioral strategy in Γ; that is, for every mixed strategy σGi ,

there exists an equivalent behavioral strategy σΓ
i such that for all mixed opponent profiles σG−i with

corresponding equivalent behavioral opponent profiles σΓ
−i, we have ui(σGi , σ

G
−i) = ui(σ

Γ
i , σ

Γ
−i).

Similarly, a behavioral strategy σi in Γ has a utility-equivalent mixed strategy in G where the prob-

ability of selecting the pure strategy (action) si is
∏
I∈Ii σi(I, si(I)). In imperfect recall games,

however, Kuhn’s theorem does not hold. Intuitively, this is because a mixed strategy in G provides

a probability of following each possible sequence of actions in Γ, whereas behavioral strategies

in imperfect recall games cannot condition action probabilities from previously forgotten infor-

mation. For example, consider the imperfect recall game and its normal-form representation in

Figure 2.3. In the normal-form game, player 2 (the column player) can guarantee an expected

utility of 2 by playing the mixed strategy σ2 = {(ac, 0.5), (ad, 0), (bc, 0), (bd, 0.5)}. However, a
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-4 0

2 2 2 2

2 2

A B

a

c

1

a bb

d d d dc c c

0 0 0 0 0 -4
(a) Extensive form

( ac ad bc bd

A −4 0 0 0
B 0 0 0 −4

)
(b) Normal form

Figure 2.3: (a) A zero-sum extensive-form game with imperfect recall, where game states connected
by a bold dashed curve are in the same information set. Values at terminal nodes indicate utilities
for player 1; player 2’s utilities are the negation. The game has imperfect recall since player 2 takes
an action, a or b, and then immediately forgets which action they took. Originally found in Koller
and Megiddo [48, Figure 1]. (b) The game’s normal-form representation created by assigning each
pure strategy in the extensive-form game as an action in the normal-form game.

behavioral strategy for player 2 in the extensive-form game can only guarantee an expected util-

ity of at most 1. To see this, let w, x, and y be the probabilities that player 1 plays A, player

2 plays a, and player 2 plays c respectively. Then player 2’s best worst-case expected utility is

maxx,y∈[0,1] minw∈[0,1] 4wxy + 4(1− w)(1− x)(1− y) = 1 by choosing x = y = 0.5.

For an information set I ∈ Ii, in perfect recall games we let πσi (I) = πσi (h) for any h ∈ I .

As the sequence of information set, action pairs taken by player i to reach h must be identical for

all h ∈ I , this value is well-defined. In addition, we define πσ−i(I) =
∑
h∈I π

σ
−i(h) to be the

probability that chance and players other than i play to reach I . Note that in an imperfect recall

game, πσ−i(I) may not be a valid probability. For example, consider a game where player i acts

at the root and takes one of two actions, a or b, and then acts again but forgets the previous action

taken. If we consider the information set I = {a, b}, then πσ−i(I) = πσ−i(a) + πσ−i(b) = 1 + 1 = 2,

which is not in the valid probability range [0, 1].

We will now assume perfect recall from here on until we investigate imperfect recall games in

Chapter 6.

2.1.2 Solution Concepts

In this thesis, we consider the problem of computing a strategy profile to a game for play against

a set of unknown opponents. For this problem, the most common solution concept is the Nash
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( a b c

A 1, 1 0, 0 1, 0
B 1, 1 1, 0 0, 0

)
Figure 2.4: A two-player normal-form game where every row player strategy is iteratively weakly
dominated. Originally found in Conitzer and Sandholm [15].

equilibrium. For ε ≥ 0, a strategy profile σ is an ε-Nash equilibrium if no player can unilaterally

deviate from σ and gain more than ε in expected utility.

Definition 2.4. For ε ≥ 0, a strategy profile σ is an ε-Nash equilibrium if

max
σ′i∈Σi

ui(σ
′
i, σ−i) ≤ ui(σ) + ε for all i ∈ N.

A 0-Nash equilibrium is simply called a Nash equilibrium.

This concept is due to John Nash [58], who showed that any finite game must have a Nash equilib-

rium. In equilibrium, all players are playing a best response to the opponents’ strategies.

A Nash equilibrium is most meaningful in zero-sum games. In this case, if σ = (σ1, σ2) is a

Nash equilibrium, then by playing σ1, player 1 is guaranteed to earn no worse than u1(σ); if player 2

deviates from σ2, player 1 may only do the same or better. As a consequence of this, Nash equilibria

in zero-sum games are interchangeable: if (σ1
1 , σ

1
2) and (σ2

1 , σ
2
2) are both Nash equilibria, then

(σk1 , σ
`
2) is a Nash equilibrium for any k, ` ∈ {1, 2}. Note that an arbitrary extensive-form game

can have an arbitrary number of Nash equilibria associated with it; however, for zero-sum games,

all Nash equilibria have the same game value. In other words, if σ and σ′ are Nash equilibria of a

zero-sum game, then

u1(σ) = u1(σ′) = −u2(σ′) = −u2(σ).

While a Nash equilibrium of a zero-sum game can be computed in polynomial time, computing a

Nash equilibrium of a non-zero-game is hard and belongs to the PPAD-complete class of problems

[13, 14, 16, 17].

Nash equilibria also guarantee avoidance from making strictly dominated errors: mistakes where

there exists an alternative that is guaranteed to do better, regardless of what the opponents do.

Definition 2.5. A strategy σi for player i is a weakly dominated strategy if there exists another

player i strategy σ′i such that

(i) ui(σi, σ−i) ≤ ui(σ′i, σ−i) for all opponent profiles σ−i ∈ Σ−i, and

(ii) ui(σi, σ−i) < ui(σ
′
i, σ−i) for some opponent profile σ−i ∈ Σ−i.

If ui(σi, σ−i) < ui(σ
′
i, σ−i) for all opponent profiles σ−i ∈ Σ−i, then σi is a strictly dominated

strategy.
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
a b

A 1, 0 0, 0
B 0, 0 2, 0
C −1, 0 1, 0


Figure 2.5: A two-player non-zero-sum normal-form game, where the column player’s utility is
always zero.

In addition, very weakly dominated strategies have been studied [36, 47] that only require part (i)

of Definition 2.5 to hold, but we do not consider very weak dominance here.

For each type of dominance, an iteratively dominated strategy can be defined recursively as

any strategy that is either dominated or becomes dominated after successively removing iteratively

dominated strategies from the game. It is well-known that iterated removal of strictly dominated

strategies always results in the same nonempty set of remaining strategies, regardless of the order

of removal [28]. However, it is possible to have every strategy for a player be iteratively weakly

dominated, such as for the row player in the game in Figure 2.4. Here, any column player strat-

egy that plays b or c with positive probability is iteratively weakly dominated by the strategy that

always plays a. If we first remove just b, then B is iteratively weakly dominated for the row player.

Likewise, removing just c results in A for the row player being iteratively weakly dominated. This

demonstrates that the set of remaining strategies resulting from iterated removal of weakly domi-

nated strategies can be different depending on the order in which they are removed.

Two generalizations of Nash equilibria, correlated and coarse correlated equilibria, require a

mechanism for correlation among the players. Suppose an independent moderator selects a profile

σk from E = {σ1, ..., σK} according to distribution q and privately recommends each player i play

strategy σki . Then (E, q) is a correlated equilibrium if no player has an incentive to unilaterally

deviate from any recommendation. A coarse correlated equilibrium is similar but even more

general, where for all i ∈ N , we only require that

K∑
k=1

q(k)ui(σ
k) ≥ max

σ′i∈Σi

K∑
k=1

q(k)ui(σ
′
i, σ

k
−i). (2.1)

To not be in a coarse correlated equilibrium, a player would need incentive to deviate even be-

fore receiving a recommendation and the deviation must be independent of the recommendation.

For extensive-form games, von Stengel and Forges [69] introduced an alternative generalization of

correlated equilibria called extensive-form correlated equilibria. Here, recommended strategies

are only revealed action-by-action at the players’ information sets until a deviation occurs, rather

than revealing the entire strategy before play. Extensive-form correlated equilibria can be efficiently

approximated even in large games [18].

Without a mechanism for correlation, it is unclear how a practitioner should use a correlated

equilibrium. In addition, while correlated equilibria remove strictly dominated strategies [9], a

coarse correlated equilibrium may lead to the recommendation of a strictly dominated strategy. For
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example, in the normal-form game in Figure 2.5, the distribution q = {(A, a) = 0.5, (B, b) =

0.25, (C, b) = 0.25} is a coarse correlated equilibrium with the row player’s expected utility being

5/4, yet the strictly dominated row player strategy that always plays C is recommended 25% of the

time.

2.2 Regret Minimization

Given a sequence of strategy profiles σ1, σ2, ..., σT , the (external) regret for player i is

RTi = max
σ′i∈Σi

T∑
t=1

(
ui(σ

′
i, σ

t
−i)− ui(σt)

)
. (2.2)

RTi measures the amount of utility player i could have gained by following the single best fixed

strategy in hindsight over all time steps t = 1, ..., T . We say that an algorithm is regret mini-

mizing for player i if it generates player i strategies such that RT,+i /T → 0 as T → ∞, where

x+ = max{x, 0}. The following well-known “folk theorem” states the connection between regret

minimization and Nash equilibrium in zero-sum games:

Theorem 2.1. Let ε ≥ 0. In a zero-sum game with perfect recall, if RTi /T ≤ ε for both players

i = 1, 2, then the average of the strategy profiles σ̄T (defined below) is a 2ε-Nash equilibrium.

A proof is provided by Waugh [70, p. 11], while we provide a proof to a more general result in

Chapter 4. It is also well-known that in any game, minimizing internal regret, a stronger notion of

regret, for all players leads to a correlated equilibrium, but we only consider external regret here.

In a normal-form game with mixed strategy profiles σ1, σ2, ..., σT , the average profile σ̄T is de-

fined in the obvious way, where σ̄Ti (a) =
∑T
t=1 σ

t
i(a)/T for all i ∈ N , a ∈ Ai. For extensive-form

games and behavioral strategy profiles σ1, σ2, ..., σT , the corresponding definition of the average

profile is

σ̄Ti (I, a) =

∑T
t=1 π

σt

i (I)σti(I, a)∑T
t=1 π

σt
i (I)

for all i ∈ N , I ∈ Ii, and a ∈ A(I).

2.2.1 Regret Matching

Regret matching [34, 37] is a very simple, iterative procedure that minimizes regret in a normal-

form game. First, the initial profile σ1 is chosen arbitrarily. For each action a ∈ Ai, we store

the accumulated regret RTi (a) =
∑T
t=1

(
ui(a, σ

t
−i)− ui(σti , σt−i)

)
that measures how much player

i would rather have played a at each time step t than follow σti . Successive strategies are then

determined according to

σT+1
i (a) =

RT,+i (a)∑
b∈Ai R

T,+
i (b)

, (2.3)

where actions are chosen arbitrarily when the denominator is zero.

15



Algorithm 1 Counterfactual Regret Minimization (Vanilla CFR) [75]
1: Initialize regret: ∀I, a ∈ A(I) : R(I, a)← 0
2: Initialize cumulative profile: ∀I, a ∈ A(I) : s(I, a)← 0
3: Initialize current profile: ∀I, a ∈ A(I) : σ(I, a) = 1/|A(I)|
4: for t ∈ {1, 2, ..., T} do
5: for i ∈ N do
6: for I ∈ Ii do
7: σi(I, ·)← RegretMatching(R(I, ·))
8: for a ∈ A(I) do
9: R(I, a)← R(I, a) + vi(I, σ(I→a))− vi(I, σ)

10: s(I, a)← s(I, a) + πσi (I)σi(I, a)
11: end for
12: end for
13: end for
14: end for

The following theorem shows that when using regret matching, a player’s regret grows propor-

tional to the square root of the number of time steps. A proof of a more general result is provided

by Gordon [33], but for completeness, we provide a simple proof of Theorem 2.2 in Appendix A.

Theorem 2.2. If player i uses regret matching, then after T time steps,

RTi ≤ ∆i

√
T |Ai|.

2.2.2 Counterfactual Regret Minimization (CFR)

Consider now minimizing regret in an extensive-form game. One possibility is to apply regret

matching to the derived normal-form game, such as the game in Figure 2.3b. However, regret

matching requires storage of RTi (a) for all pure strategies a ∈ Ai = Si in the extensive-form game,

and |Si| is exponential in |Ii| · |A(Ii)|. Thus, this possibility is infeasible for even moderately-sized

extensive-form games due to the resulting exponential size of the storage required and exponential

time required to update strategy profiles on each iteration.

Alternatively, Counterfactual Regret Minimization (CFR) [75] is a state-of-the-art algorithm

that minimizes regret while only requiring storage proportional to |Ii| · |A(Ii)| in the extensive-form

game. To distinguish CFR from its variants presented later in Section 2.2.3 and Chapter 5, we often

refer to CFR as Vanilla CFR. Pseudocode is provided in Algorithm 1. On each iteration t and for

each player i, the expected utility for player i is computed at each information set I ∈ Ii under the

current profile σt, assuming player i plays to reach I . This expectation is the counterfactual value

for player i,

vi(I, σ) =
∑
z∈ZI

ui(z)π
σ
−i(z[I])πσ(z[I], z),

where ZI is the set of terminal histories passing through I and z[I] is the history leading to z

contained in I . For each action a ∈ A(I), these values determine the counterfactual regret at

iteration t, rti(I, a) = vi(I, σ
t
(I→a)) − vi(I, σ

t), where σ(I→a) is the profile σ except at I , action
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a is always taken. The regret rti(I, a) measures how much player i would rather play action a at

I than follow σti at I , assuming player i plays to reach I . These regrets are accumulated to obtain

the cumulative counterfactual regret, RTi (I, a) =
∑T
t=1 r

t
i(I, a), that define the current strategy

profile via regret matching at I ,

σT+1
i (I, a) =

RT,+i (I, a)∑
b∈A(I)R

T,+
i (I, b)

. (2.4)

When the denominator of equation (2.4) is zero, we simply set σT+1
i (I, ·) to play uniformly random

at I . During computation, CFR stores a cumulative profile sTi (I, a) =
∑T
t=1 π

σt

i (I)σti(I, a).

Once CFR is terminated after T iterations, the output is the average strategy profile σ̄Ti (I, a) =

sTi (I, a)/
∑
b∈A(I) s

T
i (I, b). We provide a walk-through of Vanilla CFR on a small extensive-form

game in Appendix A.

A key result in the original CFR analysis shows that player i’s regret is bounded by the sum of

the positive parts of the cumulative counterfactual regrets.

Theorem 2.3 (Zinkevich et al. [75]). In an extensive-form game with perfect recall,

RTi ≤
∑
I∈Ii

max
a∈A(I)

RT,+i (I, a).

Thus, since each RTi (I, a) is minimized via regret matching at I , it follows by Theorem 2.3 that

player i’s regret is also minimized. This in turn implies that, by Theorem 2.1, the average strategy

profile in a zero-sum game converges to a Nash equilibrium.

Prior to our work in Chapter 5, the best known bound on the average regret was due to Lanctot

et al. [54] and requires some addition notation to present. For each player i, let Bi be the partition

of Ii such that two information sets I, I ′ are in the same part B ∈ Bi if and only if the sequence of

player i’s actions leading to I is the same as the sequence of player i’s actions leading to I ′. Bi is

well-defined due to perfect recall, as player i’s actions leading to an information set I ∈ Ii cannot

be different among the histories h ∈ I . Next, define the M -value of the game to player i to be

Mi =
∑
B∈Bi

√
|B|.

Theorem 2.4 (Lanctot et al. [54]). When using Vanilla CFR in a game with perfect recall, average

regret is bounded by
RTi
T
≤

∆iMi

√
|A(Ii)|√
T

.

The M -value can range anywhere between
√
|Ii| ≤ Mi ≤ |Ii| with each side of the bound

being realized by some game. For example, in the game shown in Figure 2.2, for each i = 1, 2, Bi
has just one part B that contains all of player i’s information sets, and thus Mi =

√
|Ii|. However,

in the game in Figure 2.6a, each part of Bi is a singleton. This is because every information set is

reached by an action sequence of different length. Thus, Mi =
∑
B∈Bi

√
|B| =

∑
I∈Ii

√
1 = |Ii|.
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Figure 2.6: (a) A two-player extensive-form game where both players have K information sets. The
M -value for both players is Mi = K = |Ii|. (b) A two-player game where the M -value for player
1 is dependent on the labeling of the actions.

A subtle note is that the M -value can be dependent on the labeling of the actions, as in the game

in Figure 2.6b. If player 1’s actions a and c are labeled differently, then the information sets {lar}

and {rcr} are in different parts of the partition B1, giving M1 = 2 +
√

2. However, if a and c are

identically labeled by, say, replacing the label c with the label a, then these two information sets are

in the same part within B1 and M1 = 2
√

2.

2.2.3 Monte Carlo CFR

For large games, CFR’s full game tree traversals can be very expensive. Alternatively, one can

traverse a smaller, sampled portion of the tree on each iteration using Monte Carlo CFR (MCCFR)

[54]. Let Q = {Q1, ..., QK} be a set of subsets, or blocks, of the terminal histories Z such that

the union of Q spans Z. For example, Chance Sampling (CS) [75] is an instance of MCCFR that

partitions Z into blocks such that two histories are in the same block if and only if all corresponding

chance actions are the same. Thus, CS applied to the game in Figure 2.6b would yield two blocks in

Q, Q1 = {lal, lare, larf, lbl, lbr} and Q2 = {rcl, rcrg, rcrh, rdl, rdr}. On each iteration, a block

Qj is sampled with probability qj , where
∑K
k=1 qk = 1. In CS, we generate a block by sampling

18



a single action a at each history h ∈ H with P (h) = c according to its likelihood of occurring,

σc(h, a). In general, the sampled counterfactual value for player i is

ṽi(I, σ) =
∑

z∈ZI∩Qj

ui(z)π
σ
−i(z[I])πσ(z[I], z)/q(z), (2.5)

where q(z) =
∑
k:z∈Qk qk is the probability that z was sampled. For example, in CS, q(z) = πσc (z).

When q(z) > 0 for all z ∈ Z satisfying πσ−i(z) > 0, ṽi(I, σ) is an unbiased estimate of the true

counterfactual value vi(I, σ) [54, Lemma 1]1. Define the sampled counterfactual regret for action

a at I to be r̃ti(I, a) = ṽi(I, σ
t
(I→a))− ṽi(I, σ

t). Strategies are then generated by applying equation

(2.4) to the sampled cumulative counterfactual regret R̃Ti (I, a) =
∑T
t=1 r̃

t
i(I, a).

MCCFR results in faster iterations than Vanilla CFR since we only need to traverse to the his-

tories in Q to compute the sampled counterfactual regrets. In games with many possible chance

outcomes, CS significantly reduces traversal time, although more iterations are required before con-

vergence. Nonetheless, this trade-off has been shown to significantly reduce computing time in

poker games [74, Appendix A.5.2]. Other instances of MCCFR include External Sampling (ES)

and Outcome Sampling (OS) [54]. ES takes CS one step further by considering only a single action

for not only chance, but also for the opponents, where opponent actions are sampled according to

the current profile σt−i. OS is the most extreme version of MCCFR that samples a single action at

every history, walking just a single trajectory through the tree on each traversal (Qj = {z}). ES and

OS converge to equilibrium faster than Vanilla CFR in a number of different domains [54, Figure 1].

Pseudocode for an implementation of ES is presented in Algorithm 2. ES and other MCCFR

instances are conveniently implemented as recursive procedures that obtain utilities by recursing

down the tree, and then use these values to update counterfactual regret while recursing back up the

tree. In Algorithm 2, the recursive function WalkTree considers four different cases. Firstly, if we

have reached a terminal node (line 6), we simply return the utility at that node. Secondly, when

at a chance node (line 7), we sample a single action according to σc and recurse down that action.

Thirdly, at an opponent’s choice node (lines 9 to 14), we again sample a single action and recurse,

this time according to the opponent’s current strategy obtained via regret matching (equation (2.4)).

In two-player games, we also update the cumulative profile (line 11). We do so here because the

current strategy is conveniently an unbiased estimate of the value πσ−i(I)σ−i(I, a) that we want to

add to our cumulative profile. For games with more than two players, UpdateCumulativeProfile is

called instead after WalkTree updates the regret. Note that in practice, UpdateCumulativeProfile

need not be called on every iteration and can instead be called every 1/p iterations on average to

save computation time, where p > 0 is a probability parameter. Throughout this dissertation, when

using MCCFR on a game with more than two players, we use p = 0.001 as this choice worked well

in preliminary experiments. Later in Chapter 4, we show that in games with more than two players,

1When πσ−i(z) = 0, ṽi(I, σ) is still an unbiased estimate if q(z) = 0 and we simply treat z’s contribution to the sum in
equation (2.5) as zero.
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Algorithm 2 External Sampling [54]
1: if n > 2 then require: Update cumulative profile probability, p ∈ (0, 1]
2: Initialize regret: ∀I, ∀a ∈ A(I) : R(I, a)← 0
3: Initialize cumulative profile: ∀I, ∀a ∈ A(I) : s(I, a)← 0
4:
5: WalkTree(history h, player i):
6: if h ∈ Z then return ui(h) end if
7: if P (h) = c then Sample action a ∼ σc(h, ·), return WalkTree(ha, i) end if
8: I ← I(h), σ(I, ·)← RegretMatching(R(I, ·))
9: if P (h) 6= i then

10: if n = 2 then
11: for a ∈ A(I) do s(I, a)← s(I, a) + σ(I, a) end for
12: end if
13: Sample action a ∼ σ(I, ·), return WalkTree(ha, i)
14: end if
15: for a ∈ A(I) do ṽ(a)←WalkTree(ha, i) end for
16: for a ∈ A(I) do R(I, a)← R(I, a) + ṽ(a)−

∑
a∈A(I) σ(I, a)ṽ(a) end for

17: return
∑
a∈A(I) σ(I, a)ṽ(a)

18:
19: UpdateCumulativeProfile(history h, player i)
20: if P (h) = c then Sample action a ∼ σc(h, ·), UpdateCumulativeProfile(ha, i)
21: else if h /∈ Z and P (h) 6= i then
22: for a ∈ A(h) do UpdateCumulativeProfile(ha, i) end for
23: else if P (h) = i then
24: I ← I(h), σ(I, ·)← RegretMatching(R(I, ·))
25: for a ∈ A(I) do s(I, a)← s(I, a) + σ(I, a) end for
26: Sample action a ∼ σ(I, ·), UpdateCumulativeProfile(ha, i)
27: end if
28:
29: Solve(iterations T ):
30: for t ∈ {1, 2, ..., T} do
31: for i ∈ N do WalkTree(∅, i) end for
32: if n > 2 and Random(0, 1) < p then
33: for i ∈ N do UpdateCumulativeProfile(∅, i) end for
34: end if
35: end for

the average strategy can be discarded in favour of the current strategy without any significant loss in

theoretical guarantees.

The final case in WalkTree handles choice nodes for player i (lines 15 to 17). For each ac-

tion a ∈ A(I), we recurse to obtain the sampled counterfactual value ṽ(a) = ṽi(I, σ
t
(I→a)) (line

15). We then update the regrets at I (line 16) and return the sampled counterfactual value at I ,∑
a∈A(I) σ(I, a)ṽ(a) = ṽi(I, σ

t). Note that ES does not need to weight the sampled counterfactual

values by the probability of the opponent reaching each terminal history, πσ−i(z), as this is exactly

the probability of sampling z, q(z), and is canceled out in equation 2.5.

ES and OS yield a probabilistic bound on the average regret given below in Theorem 2.5, and

thus provide a probabilistic guarantee that σ̄T converges to a Nash equilibrium in zero-sum games.

A probabilistic bound can also be established for CS, though it appears to have been overlooked
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in previous work. We present that bound in Chapter 5. Since both ES and OS generate blocks by

sampling actions independently, we can decompose q(z) =
∏
i∈N∪{c} qi(z) so that qi(z) is the

probability contributed to q(z) by sampling player i’s actions. For example, when updating player

i’s regret with ES, we have qi(z) = 1 because all of player i’s actions are sampled.

Theorem 2.5 (Lanctot et al. [54]). Let X be one of ES or OS (assuming OS also samples chance

and opponent actions according to σ−i), let p ∈ (0, 1], and let δ = minz∈Z qi(z) > 0 over all

1 ≤ t ≤ T when updating player i’s regret. When using X in a game with perfect recall, with

probability 1− p, player i’s average regret is bounded by

RTi
T
≤

(
Mi +

√
2|Ii||Bi|√

p

)(
1

δ

)
∆i

√
|A(Ii)|√
T

.

Theorem 2.5 is presented slightly differently by Lanctot et al. [54], but the last step of their proof

mistakenly used Mi ≥
√
|Ii||Bi|, which is actually incorrect. For example, in the game in Figure

2.6b with a 6= c, we have Mi = 2 +
√

2, but
√
|Ii||Bi| =

√
4 · 3 =

√
12 > 2 +

√
2. The bound we

present in Theorem 2.5 is correct.

2.3 Other Solution Concepts and Techniques

While MCCFR is currently the best known technique for solving large zero-sum extensive-form

games, a number of other methods have been proposed. Koller et al. [49] developed a linear pro-

gramming approach for solving extensive-form games without the need to convert to the derived

normal-form game. This is done by representing the players’ strategies σi in sequence form accord-

ing to a realization plan βi(I, a) = πσi (I)σi(I, a). A sparse matrix U is then constructed where

each column represents a player 1 sequence and each row represents a player 2 sequence. When a

player 1 sequence together with a player 2 sequence correspond to a set of terminal histories, the

corresponding entry in U gives the expected utility for player 1 at those terminal histories; all other

entries of U are zero. For example, for the game in Figure 2.6b, U is the matrix



∅1 la lb rc rd lare larf rcrg rcrh

∅2
{lal, rcl} 0.5 −0.5

{lar, rcr} −0.5 1 −0.5 −1

{lbl, rdl} 0.5 0.5

{lbr, rdr} 1 −1


where blank entries are zero. Note that all utilities in Figure 2.6b have been multiplied by one-

half in U to account for chance’s likelihood for reaching each terminal history. A solution to the

optimization problem

min
β2

max
β1

βT2 Uβ1 (2.6)
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subject to ∀I ∈ I,
∑

a∈A(I)

β(I, a) = ρ(I),

∀I ∈ I, a ∈ A(I), β(I, a) ≥ 0

is a Nash equilibrium, where ρ(I) = β(J, a) with J and a being the last information set visited and

action taken respectively by player P (I) before reaching I , or ρ(I) = 1 if I is the first information

set visited. By taking the dual of the inner maximization problem, one can then solve the resulting

minimization problem for an equilibrium in polynomial time. As for memory requirements, note

that the number of non-zero entries in U is the number of sequence pairs for the players that result

in a terminal history. This number is |I1||A(I1)| · |I2||A(I2)| in the worst case, whereas CFR only

requires space proportional to |I1||A(I1)|+ |I2||A(I2)|.

While this linear programming approach solves for an exact equilibrium, even the best linear

programming implementations can take a long time to solve games with millions of sequences per

player. Alternatively, one can relax the optimization problem to instead find an ε-Nash equilibrium

in much less time. This is done in the excessive gap technique (EGT) [38] by augmenting the

objective function of (2.6) to make it differentiable and convex so that a solution is suboptimal by

at most some value ε0. EGT iteratively generates solutions with suboptimality ε0 > ε1 > ε2 > ...

by applying gradient descent along the objective function, with εT → 0 as T → ∞. EGT was

successfully used to solve a version of poker called Rhode Island hold’em [29] that contains over

3.1× 109 histories. Unfortunately, EGT can only be applied to zero-sum games with perfect recall.

CFR, on the other hand, can be applied to non-zero-sum games [3] and games with imperfect recall

[45, 73], as we further study in Chapters 4 and 6 respectively.

With regards to elimination of dominated strategies, Conitzer and Sandholm [15] prove that a

strictly dominated strategy σi ∈ Σi in a normal-form game can be identified in time polynomial in

|Ai| = |Si| by showing that the objective of the linear program

minimize
∑
si∈Si

psi (2.7)

subject to ∀s−i ∈ S−i,
∑
si∈Si

psiui(si, s−i) ≥ ui(σi, s−i)

∀si ∈ Si, psi ≥ 0

is less than 1. Iteratively strictly dominated pure strategies can then be eliminated by repeatedly

solving this program up to O(|S|2) times and iteratively removing the dominated pure strategies

from Si and S−i. An alternative linear program can be used to prove weak dominance, but as men-

tioned earlier, iterative weak dominance can be dependent on the order in which weakly dominated

strategies are removed. However, these methods are infeasible for large extensive-form games as

the linear programs would require an exponential number of constraints in the size of the game.

In addition, Hansen et al. [36] develop a dynamic programming algorithm for partially observable

stochastic games, a generalization of normal-form games, that removes iteratively very weakly dom-
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inated strategies, but is not practical beyond small problems. In Chapter 4, we will provide evidence

that CFR eliminates iterative strict domination in non-zero-sum extensive-form games.

Finally, there are two other solution concepts associated with the notion of regret minimization.

Both concepts define the regret of a strategy σi to be the maximum amount of utility that could have

been gained across all possible alternative strategies σ′i and opponent profiles σ−i,

regreti(σi) = max
σ′i∈Σi

σ−i∈Σ−i

ui(σ
′
i, σ−i)− ui(σi, σ−i).

Firstly, Renou and Schlag [61] define σ∗ ∈ Σ as a minimax regret equilibrium relative to Σ if

regreti(σ
∗
i ) ≤ regreti(σi) for all σi ∈ Σi and all i ∈ N.

The authors also define the ε-minimax regret equilibrium variant where with probability 1 − ε the

opponents are assumed to play according to the equilibrium, and with probability ε no assumption

is made. This can lead to an ε-minimax regret equilibrium that plays iteratively strictly dominated

strategies [61, p. 276]. Secondly, Halpern and Pass [35] introduce iterated regret minimization.

Much like iterated removal of dominated strategies, the authors iteratively remove all strategies σi

that do not provide minimal regreti(σi). They show that while the set of non-iteratively strictly

dominated strategies can be disjoint from those that survive iterated regret minimization, their solu-

tions match closely to those solutions played by real people in a number of small games. Our work

in this dissertation is less concerned with understanding how humans arrive at solutions and more

concerned with understanding and improving CFR to increase performance in large extensive-form

games, such as Texas hold’em.

2.4 Abstraction

A common approach to computing strategies in extensive-form games is summarized in Figure 2.7.

For small games, we can simply compute a strategy directly using, for instance, CFR. However,

many real-world problems have very large extensive form representations, which makes strategy

computation with CFR and other techniques infeasible. Instead, an abstract game can be created

by combining information sets together into single abstract states, restricting the actions a player

can take, or both. If the abstract game is sufficiently small, we can then compute a strategy for

the abstract game. Finally, we must decide how to translate the abstract game strategy in order to

employ it in the real game.

Abstraction can be formally described as follows:

Definition 2.6 (Waugh et al. [72]). An abstraction for player i is a pair αi =
〈
αIi , α

A
i

〉
, where

• αIi is a partition of Hi defining a state abstraction or a set of abstract information sets

coarser than Ii (i.e., every I ∈ Ii is a subset of some set in αIi ), and
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Abstract Game

Strategy for 
Real Game
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Abstraction
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Compute strategy (CFR)

Compute 
Strategy (CFR)

Figure 2.7: An overview of the process for creating a strategy for playing an extensive-form game.
We start with an extensive-form game in the top left and work our way to a strategy for the game in
the bottom left.

• αAi is a function on histories where αAi (h) ⊆ A(h) and αAi (h) = αAi (h′) for all histories h

and h′ in the same abstract information set. We will call this the action abstraction or the

abstract action set.

The null abstraction for player i is φi = 〈Ii, A〉. An abstraction α is a set of abstractions αi, one

for each player. Finally, for any abstraction α, the abstract game, Γα, is the extensive-form game

obtained from Γ by replacing Ii with αIi and A(h) with αAi (h) when P (h) = i, for all i ∈ N .

Figure 2.8 shows an example of an abstraction of the game in Figure 2.2. In this example, player 1’s

two information sets have been merged into a single abstract information set, so αI1 = {{a, b, d}}.

Player 1’s action set has not been abstracted, and thus αA1 = A. For player 2, we now have four

abstract information sets, namely αI2 = {{al, bl}, {ar, br}, {dl}, {dr}}. However, at some abstract

information sets, player 2’s actions have been restricted so that αA2 (ar) = αA2 (br) = {l} and

αA2 (dl) = {r}.

Once we have a strategy σαi for playing an abstract game Γα, we must translate σαi into a strategy

σi in the real game Γ. When no action abstraction is applied so that αAi = A for all i ∈ N , the

translation process is easy; for I ∈ Ii with I ⊆ Iα ∈ αIi , simply set σi(I) = σαi (Iα). For abstract

games with action abstraction, translation can become trickier. For example, one could simply

interpret each possible opponent action from the real game as a fixed legal action in the abstract

game, or probabilistically map each real game action to several possible legal interpretations [64].

For the majority of this dissertation, we do not apply action abstractions. Intuitively, if σα performs

well in Γα, and if αIi is defined such that merged information sets are “strategically similar,” then σ
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Figure 2.8: An abstraction of the game in Figure 2.2, where bold dashed curves denote game states
in the same information set and thin dashed curves denote merged information sets. Here, player 1
cannot distinguish between any of chance’s actions and player 2 cannot distinguish between a and
b. If chance generates a or b and player 1 takes action r, player 2 can no longer take action r. If
chance generates c and player 1 takes action l, player 2 cannot take action l.

is also likely to perform well in Γ. Identifying strategically similar information sets can be delicate

though and typically becomes a domain-specific task.

One should also be aware that applying abstraction leads to no guarantees on how well equilib-

rium strategies of the abstract game perform in the real game. In fact, abstraction pathologies are

known where equilibrium strategies in one abstract game are less exploitable in the real game than

equilibrium strategies in a second abstract game, where the second abstraction is a strict refinement

of the first [72]. On the other hand, Johanson et al. [42] recently developed a new regret minimiza-

tion algorithm called CFR-BR that converges to the least exploitable strategy in an unabstracted

zero-sum game that is representable in a given abstract space. By keeping the opponent’s informa-

tion unabstracted, their procedure eliminates pathologies, but can be computationally expensive in

large games. In this dissertation, we simply compute abstract game strategies using CFR and its

variants.

2.4.1 Strategy Grafting

Although these abstraction pathologies exist, we generally would like to have as fine granularity

in our abstractions as possible. Larger abstract games allow the abstract strategies to differentiate

between more situations that may need to be treated differently in the real game.

A natural approach is to break the game down into subtrees and compute a strategy for each

subtree independently. Divide-and-conquer methodologies have been used, for example, in chess
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Figure 2.9: An overview of a general procedure for creating a stitched strategy in an extensive-form
game. The sub-games depend on both a base strategy and a partition of the game tree.

to solve small sub-games near the leaves of the tree [68]. Using a bottom-up approach, the results

can then be backed up to higher places in the tree, reducing the effort required to play optimally.

However, in games such as poker with imperfect information, subtrees are often dependent because

action probabilities for histories in different subtrees but the same information set must be consistent.

In addition, an opponent may choose actions differently according to his or her private information

and thus reaches a particular subtree with some distribution over private states. This should be taken

into consideration when computing a strategy for a smaller subtree of the entire game.

Strategy grafting is an instance of strategy stitching discussed in Chapter 1 and uses the general

procedure shown in Figure 2.9. First, a base strategy σi ∈ Σi for player i is computed for playing

the undivided game, typically using abstraction as described in Figure 2.7. Secondly, the game is

divided into sub-games:

Definition 2.7 (Waugh et al. [71]). Gi = {Gi,0, Gi,1, ..., Gi,p} is a grafting partition for player i

if

• Gi is a partition of Hi,

• ∀I ∈ Ii, ∃j ∈ {0, 1, ..., p} such that I ⊆ Gi,j , and

• ∀j ∈ {1, 2, ..., p}, if h v h′ ∈ Hi and h ∈ Gi,j , then h′ ∈ Gi,j ∪Gi,0.

Then, since the sub-games are disjoint, expert strategies for these sub-games, or grafts, can be

computed and combined without any overlap to the base strategy in the undivided game:
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Figure 2.10: An example of a game Γσ2,j for strategy grafting derived from the game Γ in Figure
2.2. Here, if player 1 takes action r, player 2 no longer controls which actions to take. The actions
are instead generated by the base strategy σ2, computed beforehand.

Definition 2.8 (Waugh et al. [71]). Let σi ∈ Σi be a strategy for player i and Gi be a grafting

partition for player i. For j ∈ {1, 2, ..., p}, define Γσi,j to be an extensive-form game derived from

the original game Γ where, for all h ∈ Hi\Gi,j , we set P (h) = c and σc(h, a) = σi(h, a). That is,

player i only controls his or her actions for histories in Gi,j and is forced to play according to σi

elsewhere. Let the graft of Gi,j , σ∗,j , be an ε-Nash equilibrium of the game Γσi,j . Finally, define

the grafted strategy for player i, σ∗i , as

σ∗i (h, a) =

{
σi(h, a) if h ∈ Gi,0
σ∗,ji (h, a) if h ∈ Gi,j .

We will call σi the base strategy and Gi the grafting partition for the grafted strategy σ∗i .

Figure 2.10 shows an example of an extensive-form game Γσ2,j for some j derived from the

game in Figure 2.2. For this sub-game, we have G2,j = {al, bl, cl} as these are the histories where

player 2 still has control over which action to take. This may be the only sub-game for which a

graft is computed, i.e. j = 1 and G2 = {G0 = H2\G2,1, G2,1}, or there could be more sub-games

contained in the grafting partition. A grafted strategy for player 2 would then follow a graft for this

game whenever player 2 has observed one of the histories in G2,j .

Under a fixed memory limitation, we can employ finer abstractions for the sub-games Γσi,j than

we can in the full game Γ. This is because Γσi,j removes some of player i’s information sets from

the game, freeing up valuable memory when running algorithms such as CFR. Note that strategy

grafting is only applied to one specific player at a time. An entire strategy grafted profile can be

constructed by repeating the process for each individual player.
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Chapter 3

Poker

In this chapter, we provide the rules for Kuhn Poker and Leduc hold’em, two very simple poker

games that we use throughout this dissertation. We then explain the rules of Texas hold’em poker

and a number of shortened variants that require less computation to reach a desired solution quality.

Finally, we end this chapter with a discussion about previous work in poker related to our research

contributions in Chapters 4 through 8.

3.1 Introduction

We begin this chapter by describing the order of play for a single hand of poker, which can be

modelled as an extensive-form game as defined in Section 2.1. To begin a hand, one player is

denoted as the dealer and each player, including the dealer, pays an ante equal to a fixed number

of chips from their stack to the pot. Alternatively, a game may use blinds instead of or in addition

to antes, where two players must place a small blind or a big blind equal to a set number of chips

in the pot. The big blind is typically twice the size of the small blind and is often used as a unit of

measurement for winnings. With more than two players, the player immediately to the left of the

dealer posts the small blind and the next player to the left posts the big blind. In a two-player game

with blinds, the dealer posts the small blind and the other player posts the big blind.

Once antes or blinds have been posted, private cards or hole cards are dealt out to the players.

The hole cards give rise to non-singleton information sets in the extensive-form game representation,

since hole cards are not seen by other players. Next, the first betting round, or pre-flop, begins. In

each betting round, play begins with the player to the left of the dealer, with the exception of the

pre-flop round when blinds are used. In this case, the player to the left of the big blind starts the

pre-flop round. On a player’s turn, if a player is not faced with a prior bet (or blind), then that player

may:

• check - pass without committing any chips to the pot, or

• bet - place an amount of chips into the pot.
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When faced with a bet or a blind, a player typically has three options:

• fold - forfeit the pot, eliminating the player from the remainder of the hand,

• call - match the previous bets and raises, placing an amount of chips equal to the sum of the

previous unmatched bets or raises into the pot, or

• raise - increase the previous bet, achieved by first calling the previous bets and then placing

an amount of chips greater than the previous bet or raise into the pot.

All actions are public information. In addition, a limit game is where the total number of raises and

the sizes of each bet or raise is fixed each round. In contrast, a no-limit game is where a bet or raise

can be any number of chips from a player’s stack greater than or equal to the size of the big blind.

In no-limit poker, a raise must also be greater than the previous bet or raise.

Each poker game is made up of a set number of betting rounds. In each betting round, each

player still in the hand is given a turn to act. After a bet or raise, all players remaining must then

respond to that action. A betting round ends once all players have checked or once all other players

have responded to the last bet or raise. At the beginning of each betting round after the pre-flop,

public community cards are revealed before players again take actions in turn. At the end of the

last betting round, all players that did not fold enter the showdown and reveal their hole cards. The

player with the highest ranked poker hand made up of their hole cards and community cards wins

the pot. If all players but one fold before the end of the final betting round, then the single remaining

player takes the pot and no hole cards are revealed.

3.2 Kuhn Poker

Kuhn Poker [50] is a very basic limit poker game. Though the original rules are only for two

players, Abou Risk and Szafron [3] defined a three-player version and we now extend the rules to n

players. Kuhn Poker is played with a deck consisting of n + 1 cards labelled 1, 2, ..., n + 1, where

1 has the lowest rank and n+ 1 has the highest. Antes of one chip are used and each player is dealt

one hole card. Kuhn Poker has just the pre-flop betting round where the bet size is one chip. No

raises are allowed, so following a bet, the other players may only fold or call the bet. There are no

community cards and the showdown is won by the player holding the highest ranked card among

those who did not fold.

Figure 3.1 shows the three-player Kuhn Poker extensive-form game tree for a fixed dealing of

the cards. Each player has four information sets per private card, and since the deck contains four

cards, this gives |Ii| = 16 for each i ∈ {1, 2, 3}. Because the opponents’ hole card cannot be seen,

each information set contains all 3 · 2 = 6 possible card dealings consistent with the player’s hole

card and betting sequence. Hence, |I| = 6 for all information sets I . Since raises are never allowed,

we also have |A(I)| = 2 for all information sets I .
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Figure 3.1: The three-player Kuhn Poker game tree for when player 1 is dealt the 1, player 2 is dealt
the 3, and player 3 is dealt the 4. Actions check, bet, fold, and call are denoted by k, b, f , and c
respectively. The utilities for each player are denoted under the corresponding terminal node. Each
decision state belongs to an information set of size six (not shown).

The two-player version of Kuhn Poker is very small and all Nash equilibria can be computed by

hand [50]. For the three-player game, Abou Risk and Szafron [3] showed that 100 million iterations

of Chance Sampling MCCFR produces an ε-Nash equilibrium with ε ≈ 1.69 milli-antes per hand.

This result is surprising since there is no theoretical evidence to suggest that CFR will produce an

approximate equilibrium in a three-player game. Recently, the author of this dissertation contributed

to work that derived a parameterized family of Nash equilibrium profiles for three-player Kuhn Poker

[66]. It is still an open question as to whether more equilibria exist beyond this discovered family.

3.3 Leduc Hold’em

The next poker game that we consider is Leduc hold’em, or simply Leduc, a limit poker game

originally described by Southey et al. [65]. Again, the original rules for Leduc are only for two

players, but we can easily allow more players to participate in the game. In this dissertation, we

consider both two-player and three-player Leduc. Leduc is played with a six card deck consisting

of two Jacks, two Queens, and two Kings. As in Kuhn Poker, antes of one chip are used and each

player is dealt one hole card. However, Leduc has two betting rounds, the pre-flop and the flop.
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Bets and raises in the pre-flop are fixed at two chips and in the flop are fixed at four chips. In each

round, at most one raise is allowed. At the start of the flop, one community card is revealed. In a

showdown, a player whose hole card matches the community card (a pair) wins the pot. Otherwise,

the pot goes to the player with the highest ranked hole card, where the pot is split in the case of a tie.

Note that Abou Risk and Szafron defined a three-player version of Leduc that used a deck of eight

cards rather than six cards. In this dissertation, we use a six card deck for both the two-player and

three-player games.

While the extensive-form game representation of Leduc is complex enough that we do not show

it here, two-player Leduc is still a small enough zero-sum game to rapidly compute an approxi-

mate Nash equilibrium with CFR without using abstraction. Alternatively, an exact equilibrium

of two-player Leduc can be computed by linear programming using the sequence form represen-

tation described in Section 2.3 [72]. For three or more players, however, no equilibrium profiles

are known. In contrast to Kuhn Poker, CFR applied to three-player Leduc has not produced an ε-

Nash equilibrium for small ε, and the linear programming approach is not applicable to three-player

games. These problems do not deter us, however, as our research contributions listed in Chapter 1

do not focus on Nash equilibrium solutions for non-zero-sum games.

3.4 Texas Hold’em

Texas hold’em, or simply hold’em, is arguably the most popular poker game played around the

world today. The game is played in many casinos and in many on-line poker rooms, with millions

of dollars at stake in the top level tournaments. Hold’em is not only an interesting domain from a

scientific perspective, but also from a financial perspective for players, event sponsors, promoters,

and broadcasters.

3.4.1 Rules

Hold’em is typically played by two to ten players with a full fifty-two card deck consisting of

thirteen ranks (2, 3, ..., 10, Jack, Queen, King, and Ace) and four suits (diamonds, clubs, hearts, and

spades). Blinds are used instead of antes and players are dealt two hole cards each. There are four

betting rounds, the pre-flop, flop, turn, and river. For limit hold’em, a maximum of three raises

total are allowed per round, where bets and raises during the pre-flop and flop rounds are equal to

the size of the big blind. In the turn and river rounds, bets and raises are doubled to twice the size of

the big blind. Three community cards, called the flop cards, are revealed at the start of the flop, with

one additional community card revealed on the turn (turn card) and one final card revealed on the

river (river card). The player that has the best five-card poker hand using any combination of the

two private cards and the five community cards wins the pot in a showdown. Poker hand rankings

can be found on-line [57].

We assume throughout this dissertation that in limit hold’em, the players’ chip stacks are infinite.
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This way, a player always has enough chips to make a bet, call, or raise when desired. In contrast,

in no-limit games, a player can go all-in, meaning that the player’s entire stack is committed to the

pot and the player has no chips left for another call, bet, or raise. In this case, the all-in player no

longer participates in the betting rounds, but remains in play during a showdown. In no-limit games,

we will always specify the size of the players’ stacks and reset to the initial stacks after each game.

When evaluating in-game performance, we simply average the amount of chips won or lost across

many games rather than comparing final stack sizes.

3.4.2 Abstraction

Hold’em is a massive game in terms of the number of information sets. For example, two-player

limit hold’em has approximately |H| ≈ 1018 histories [5, Figure 1] contained in |Ii| ≈ 3 × 1014

information sets per player [41], and three-player has |Ii| ≈ 5 × 1017. Applying CFR to these

enormous state spaces necessitates abstraction.

Abstractions in poker typically group many different card dealings into buckets so that any

deals that fall into the same bucket become indistinguishable. Two common bucketing techniques

are percentile hand strength [7] and percentile hand strength squared [40]. First, for each betting

round, these techniques order all possible hands according to expected hand strength (E[HS]) and

expected hand strength squared (E[HS2]) respectively. E[HS] is the probability of the given hand

winning against a single random opponent hand in a showdown, averaged over all possible future

community cards and all possible opponent hands. E[HS2] squares each term before averaging,

giving a bonus to possible straights, flushes, and other hands with high potential. Then, percentile

bucketing with k buckets and m hands groups the top m/k hands into one bucket, the next top m/k

hands into a second bucket, and so on so that buckets are approximately equal in size.

Recently, Johanson et al. [45] proposed a new bucketing technique that groups hands not based

on a scalar metric such as E[HS] or E[HS2], but instead based on hand strength distributions. This

is done by discretizing hand strength into a number of small ranges and forming histograms, one for

each set of private cards and public board cards for the given round. The histograms represent the

number of ways the remaining board cards can be dealt that result in a hand strength value in a given

range [45, Figure 2]. Hands are then merged according to how similar the resulting histograms

are using k-means clustering over earth mover’s distance. While this approach is not applicable

on the river round, Johanson et al. suggest a second new technique called opponent cluster hand

strength (OCHS) that does apply to the river. Instead of averaging over all possible opponent hands

as is done by E[HS], OCHS splits the possible opponent hands into eight clusters using the pre-flop

hand strength distribution. For each cluster, hand strength is then computed averaging only over the

possible opponent hands within that cluster. This results in a vector of eight hand strength values

per hand, which are then grouped using k-means clustering over L2 distance.

Once a bucketing technique has been chosen in each round for player i, it is straightforward to
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construct an abstraction αi for the player. We merge information sets in Ii that contain histories

with card deals falling into the same bucket. In limit hold’em, we do not consider abstractions that

hide or remove public player actions, and so αAi (h) = A(h) for all h ∈ H . For no-limit hold’em,

we will use common action abstractions used by others [32, 64] that limit players to a small number

of possible bet sizes relative to the pot size. In addition, we apply the same bucketing techniques to

all players unless otherwise noted.

For perfect recall abstractions, we remember which bucket the hand belonged to on all previous

rounds before more card(s) were revealed. For example, consider a perfect recall abstraction that

separates new card information into five buckets per round. This means that we have 5 pre-flop

buckets, 5 ∗ 5 = 52 flop buckets, 53 turn buckets, and 54 river buckets. As a convention, we write

5/5/5/5, or simply 5s, to denote the size of the abstraction. In contrast, an imperfect recall abstraction

forgets which bucket the hand belonged to on one or more rounds. For instance, writing IR5/5/5/5

means that the pre-flop bucket is forgotten in later rounds, leaving us with 5 preflop buckets, 5 flop

buckets, 52 turn buckets, and 53 river buckets.

We apply bucketing to hold’em to produce an abstract game Γα that is much more manageable

in size. For example, a 5s abstraction in two-player limit hold’em contains 3.6 × 106 information

sets between both of the players. If we apply imperfect recall on every round, we can produce even

smaller abstract games. For instance, IR5/IR5/IR5/5 contains a total of 3.2×104 information sets in

two-player limit hold’em. In addition, an IR169/IR569/IR569/569 abstraction is roughly the same

size as a 5s abstraction. Imperfect recall abstractions sacrifice previous card information in order to

differentiate between more hands on the current round.

3.4.3 2-1 and 2-NL Hold’em

Throughout this thesis, we consider several abstractions of different Texas hold’em games. In addi-

tion, we consider two variants of Texas hold’em that reduce the amount of abstraction required to

feasibly run algorithms such as CFR. The first variant, 2-1 hold’em [43], is identical to limit Texas

hold’em, except consists of only the first two betting rounds, the pre-flop and flop, and only one bet

or raise is allowed per round. Two-player 2-1 hold’em has approximately 1.6×107 information sets

and can easily be solved with CFR without any abstraction.

The second variant, 2-NL hold’em, is a new game derived from no-limit Texas hold’em. As

in 2-1 hold’em, 2-NL hold’em consists of just the pre-flop and flop betting rounds; otherwise, the

game is identical to no-limit Texas hold’em. This means that any number of bets and raises of any

size are allowed by the players up to their remaining stack sizes. While we will still employ card

abstractions and keep the players’ starting stacks small, we will not use any action abstraction with

2-NL hold’em. In Chapter 5, we will use 2-NL hold’em to study the effects of our algorithms on

games with a large range of player actions.
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3.5 Related Work in Poker

3.5.1 Domination

Since Nash equilibria do not contain iteratively strictly dominated strategies, and because much

work in poker and other games has revolved around computing equilibria, very little effort has gone

into examining domination in poker. The closest work in this area is by Waugh [70]. He defines

the domination value of a strategy σi in a zero-sum game to be the amount of utility player i loses

relative to the game value when the opponent plays a strategy from a Nash equilibrium profile that

best exploits σi. More precisely, the domination value of a player 1 strategy σ1 in a zero-sum game

is

Dom1(σ1) = max
σ2∈Σ∗2

u2(σ1, σ2) + u1(σ∗)

(and similarly for a player 2 strategy σ2), where Σ∗ is the set of all Nash equilibrium profiles and

σ∗ is any Nash equilibrium. Waugh examines the correlation between domination value and actual

agent performance by computing exact Nash equilibrium profiles in a number of different abstract

games of two-player Leduc. Tournaments between all of the strategy profiles are run and the results

are compared to both the exploitability and the domination value of each of the strategies within the

real game. Domination value is found to be strongly correlated with actual tournament performance,

whereas exploitability is only weakly correlated.

While strictly dominated strategies have positive domination value, non-dominated strategies

may also have positive domination value. For example, in the zero-sum normal-form game in Figure

2.1, one can check that no pure strategy for either player is even weakly dominated and that the

only Nash equilibrium is the pure strategy profile (B, b) with u1(B, b) = 0. However, the pure

strategy for the row player that always plays A, for example, has a domination value of 1 since the

column player earns 1 utility when playing b against A. Thus, domination value may be somewhat

of a misnomer as not all non-dominated strategies have zero domination value as, it seems, was

originally intended.

3.5.2 Monte Carlo CFR

In Section 2.2.3, we defined CS, ES, and OS, three MCCFR algorithms that differ in choice of

blocks Q. Recently, Johanson et al. [43] proposed a new MCCFR algorithm called Public Chance

Sampling (PCS). PCS is similar to CS, except that two histories are in the same block if and only if

no two public chance actions differ. This means that in poker, one iteration of PCS will consider all

possible private cards for the players, whereas CS considers just one sampled private hand per player.

Johanson et al. show that in two-player 2-1 hold’em and in large enough card abstractions of two-

player limit Texas hold’em, strategies generated with PCS are less exploitable than those generated

by CS after a fixed amount of time. A major reason for this success comes from computing O(k2)

terminal node evaluations in O(k) time, where k is the number of possible private hands. This is
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achieved by exploiting a total ordering on the ranks of the private hands. PCS is currently the most

efficient algorithm known for two-player limit hold’em. In Chapter 5, we will show that PCS may

not be the best choice for no-limit and three-player poker games.

3.5.3 Imperfect Recall

To our knowledge, prior to our work later in Chapter 6, no theoretical results are known for regret

minimization in imperfect recall games. On the other hand, Waugh et al. [73] explore the empirical

advantages of using imperfect recall abstractions over perfect recall counterparts. For example,

they show that a CFR solution to a 14s perfect recall abstraction of two-player limit hold’em is

outperformed by a CFR solution to an imperfect recall abstraction containing roughly the same

number of information sets as the 14s abstraction. More recently, Johanson et al. [45] similarly

compared a perfect recall 10s abstraction to imperfect recall abstractions of the same size in two-

player limit hold’em. They found that regret minimization in an imperfect recall abstraction led to

a strategy that was significantly less exploitable than the least exploitable strategy representable in

the perfect recall abstraction. Unfortunately, our theoretical analysis in Chapter 6 cannot directly

explain these results. Nonetheless, Chapter 6 does present the first known class of imperfect recall

games for which CFR is guaranteed to minimize regret.

3.5.4 Strategy Stitching

The earliest example of applying tree decomposition in poker is the PsOpti family of programs from

2003 [5]. The programs play two-player limit hold’em and were built using the process depicted in

Figure 2.9. First, a base strategy called the pre-flop model was computed in a very coarse abstraction

and was only used to play the pre-flop round during on-line play. Secondly, seven experts or post-

flop models were created, one for each of the possible pre-flop betting sequences leading to the flop.

The experts are not grafts; instead, each expert focused solely on its individual subtree and ignored

the other parts of the game. In addition, the experts were provided with seeded probabilities of pre-

flop play for both players according to the pre-flop model, much like the base strategy determines

probabilities in grafting. While the PsOpti bots were strong for their time, they are no match for

today’s top programs. Due to resource and technology limitations back then, the abstractions used

to build pre-flop and post-flop models were very limited. Nonetheless, we generalize this approach

in Chapter 7 and provide further evidence that the PsOpti approach is indeed credible.

Using a similar approach, Abou Risk and Szafron [3] apply heads-up experts to three-player limit

hold’em. They reason that because the subtrees immediately following a fold action in hold’em are

dramatically smaller relative to the entire game tree, much finer abstractions can be used on these

subtrees when the rest of the game is omitted. Thus, they create experts for six such subtrees in a

5s abstraction to go along with a base strategy contained in a much more coarse abstraction. The

experts were similar to the PsOpti experts and ignored the parts of the game outside of the given
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subtree. Their strongest experts were seeded by a sensible strategy based on advice from poker

professionals as opposed to using the base strategy. However, their results were mixed. In one

case, the agent using experts performed better than just the base strategy alone, but in another case

the experts agent was worse. In hindsight, the negative result was due to the 5s abstraction for the

experts being no more effective than the imperfect recall abstraction they used for the base strategy.

In Chapter 7, we show that heads-up experts can in fact significantly increase performance relative

to a single base strategy.

Waugh et al. [71] apply strategy grafting to create grafted strategies for both two-player Leduc

and two-player limit hold’em. Each Leduc grafted strategy consists of a base strategy in a simple ab-

straction and three grafts. Each grafting partition for player i splits the game tree according to either

player i’s private card or the flop card, and the resulting subtrees simply use the null abstraction. For

hold’em, they construct a single grafted strategy consisting of a base strategy and twenty grafts. The

base strategy plays the pre-flop while the grafts play from the flop onwards. Each possible combi-

nation of flop cards are classified as one of twenty types, and this classification is used to define the

grafting partition. They found that the grafted strategies provided a significant performance boost

relative to the base strategies alone and were competitive with other agents. However, they did not

experiment with grafting partitions based on the players’ actions.

Furthermore, Gilpin and Sandholm [30] create a poker strategy for two-player limit hold’em

that is quite different from those discussed thus far. As with PsOpti, their strategy construction is

performed in two phases. The first phase computes a strategy in an abstraction of the game with

action probabilities fixed in the river round. This first phase strategy is only used to play the pre-flop

and flop rounds. A second phase strategy that plays the turn and river rounds is computed on-line

during an actual poker game. One drawback of this approach is that the on-line computations must

be quick enough to play in real time. Despite fixing the flop cards, this constraint forced the authors

to still employ a very coarse abstraction during the second phase.

3.5.5 Other Related Work

We end this chapter by briefly highlighting some other research related to our objectives. Firstly,

Gilpin et al. [31] use an automated abstraction building tool to dynamically bucket hands for a

two-player limit hold’em agent. While we are concerned with employing abstractions with high

granularity, our goals do not focus on the actual abstraction building process itself. In general,

our research directions are actually orthogonal to abstraction improvements and could be used in

conjunction with more sophisticated abstraction techniques.

Secondly, Ganzfried and Sandholm [19, 20] developed algorithms for computing ε-Nash equi-

libria in non-zero-sum games and applied it to a small three-player no-limit poker game. The rules

of the game allowed each player only one of two actions: either jam by going all-in, or fold the

hand. Unfortunately, it is unclear how to extend these approaches to much larger games. Finally,
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the authors later developed a new algorithm for finding equilibria by constructing an infinite ap-

proximation of the original game and translating a solution from the infinite game back to the finite

game [21]. While they suggest that their approach could provide strong strategies in large non-

zero-sum games, their only experiments are with a small game similar to three-player Kuhn Poker.

As mentioned previously, although Nash equilibria do not contain strictly dominated strategies, this

dissertation is not concerned with finding equilibria in non-zero-sum games.
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Chapter 4

Regret Minimization and
Domination

CFR, described in Section 2.2.2, is a state-of-the-art approach for approximating Nash equilibria of

large zero-sum extensive-form games. Recall that during computation, CFR stores both a current

profile and an average profile. The average profile approaches equilibrium and is generally used in

practice, while the current profile is discarded. CFR can still be applied in non-zero-sum games;

however, the resulting average profile is not guaranteed to be in equilibrium [3, Table 2]. Despite

this, CFR has been used to generate more aggressive, or tilted, poker strategies from two-player

non-zero-sum games capable of defeating top poker professionals [44], as well as winning three-

player Texas hold’em poker strategies [3] in the Annual Computer Poker Competition (ACPC) [4].

Previous work makes no attempt to explain why the average profile might perform well outside of

two-player zero-sum games.

In this chapter, we provide the first theoretical groundings for regret minimization algorithms ap-

plied to non-zero-sum games. This is achieved by establishing elimination of iteratively dominated

errors. As described in Section 2.1.2, these are mistakes where there exists an alternative that is guar-

anteed to do better, assuming the opponents do not make such errors themselves. Strategies avoiding

such errors belong to a superset of Nash equilibria, generalizing previous zero-sum results to games

with many players. Firstly, we prove that in normal-form games, common regret minimization tech-

niques eliminate (play with probability zero) iteratively strictly dominated strategies. Secondly, we

formally define a dominated action and prove that under certain conditions, both the current and

average CFR profiles eliminate iteratively strictly dominated actions. Thirdly, for two-player non-

zero-sum games, we bound the average profile’s exploitability and measure this value empirically

with a number of tilted poker strategies. Our theoretical results lead us to a simple modification of

CFR for games with more than two players that just uses the current profile and does not average.

We demonstrate that with this change, CFR generates strategies that perform just as well as those

generated without the change, but now require less time and less memory to compute. Furthermore,

for large games requiring abstraction, this reduction in memory allows finer-grained abstractions to
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Figure 4.1: The mismatching pennies game. All actions are private until the game ends at a terminal
history. The utilities for reaching each terminal history are written from left to right for players 1, 2,
and 3 respectively below each terminal node.

be used by CFR, leading to even stronger strategies than previously possible. Finally, we demon-

strate that with our modification of CFR, a similar strategy to our 2012 ACPC three-player hold’em

entry can be computed in 25% of the time using only half the RAM. Throughout this chapter, we

assume perfect recall in extensive-form games.

4.1 Equilibria in Non-Zero-Sum Games

As discussed in Section 2.1.2, a Nash equilibrium is a powerful solution concept in zero-sum games.

Outside of zero-sum games, however, Nash equilibria are less useful. Consider the 3-player game

of mismatching pennies shown in Figure 4.1. In this game, each player has exactly one information

set (|Ii| = 1 for i = 1, 2, 3) and privately chooses either heads (h) or tails (t). If all players choose

the same action, they each receive zero utility. Otherwise, the player that chooses the unique action

receives 2 utility while the others receive −1. The strategy profile σhtt, where player 1 always

picks h and players 2 and 3 always pick t, is a Nash equilibrium since none of the three players can

increase their utility by unilaterally changing their strategy. Here, u1(σhtt) = 2, but player 1 is not

guaranteed to earn this much by playing σhtt1 . If instead of σhtt2 , player 2 plays σ̂2 that always plays

action h, then player 2 still earns u2(σhtt) = −1 = u2(σ̂2, σ
htt
−2 ). However, player 1’s utility is

decreased to u1(σ̂2, σ
htt
−2 ) = −1. This example shows that player 2 can arbitrarily push the utilities

towards player 1 or player 3 while player 2’s own utility stays the same. Since player 1 cannot

control the strategies of the other players, it is not clear whether σhtt1 is even a good strategy to play.
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Another Nash equilibrium is the strategy profile σRAND where all players pick h or t with equal

probability. For this profile, ui(σRAND) = 0 for all i ∈ N . While players 2 and 3 have a higher

expected utility under σRAND than σhtt, player 1’s utility is lower. Even if we decided that we do

want to play part of a Nash profile, following an arbitrary Nash equilibrium may not yield as much

utility as other Nash profiles. More importantly, no payoff guarantees even hold for equilibrium

strategies when more than one player deviates from the equilibrium profile.

As mentioned above, the average strategy profile computed by CFR is not guaranteed to converge

to an equilibrium in non-zero-sum games. However, if we assign probability 1/T to each of the

profiles {σ1, ..., σT } generated by CFR or any other regret minimizer, then by equation (2.1) and

minimization of regret, this distribution over profiles converges to a coarse correlated equilibrium

as defined in Section 2.1.2. Though previous work omits this fact, it is unclear how this could be

useful, let alone why the average strategy from CFR might be valuable. As we demonstrated earlier

with Figure 2.5, a coarse correlated equilibrium might still recommend a strictly dominated strategy,

and so this property alone is not enough to rule out domination.

4.2 Dominated Actions

Our contributions in this chapter begin with a formal definition of dominated actions that are specific

to extensive-form games, and we relate such actions to dominated strategies. Our definition of a

dominated action in an extensive-form game is not to be confused with the definition of a dominated

pure strategy in a normal-form game, as the latter is covered by Definition 2.5. We say an action a at

I ∈ Ii is a strictly dominated action if there exists a strategy σ′i that guarantees higher counterfactual

value at I to any other strategy σi that always plays a at I , regardless of what the opponents play

but assuming they reach I with positive probability. The formal definition is below.

Definition 4.1. An action a ∈ A(I) of an extensive-form game is a strictly dominated action if

there exists a strategy σ′i ∈ Σi such that for all profiles σ ∈ Σ satisfying
∑
h∈I π

σ
−i(h) > 0, we

have vi(I, σ(I→a)) < vi(I, (σ
′
i, σ−i)).

We use the counterfactual value vi instead of ui in Definition 4.1 because we are only concerned

with the utility to player i from I onwards rather than over the entire game. Similar to iteratively

dominated strategies, we also define an iteratively strictly dominated action as one that is either

strictly dominated or becomes strictly dominated after successively removing strictly dominated

actions from the players’ action sets. Analogous to strategic dominance in Definition 2.5, weak and

very weak action dominance allow equality rather than strict inequality for all but one profile σ and

for all profiles respectively. In addition, weak and very weak action dominance do not require the

condition that
∑
h∈I π

σ
−i(h) > 0.

While we are unaware of any other publications that consider dominated actions in extensive-

form games, the Gambit Software Tools package [56] contains algorithms for removing similar
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notions of action dominance. However, Gambit considers an action a at I to be strictly dominated if

there exists another action b at I such that for every history h ∈ I and every pure strategy profile s,

taking b leads to greater utility than taking a; i.e.,
∑
hbvz π

s(hb, z)ui(z) >
∑
havz π

s(ha, z)ui(z)

for all h ∈ I and s ∈ S1. Gambit’s definition is more restrictive than Definition 4.1 for two

reasons: Gambit requires domination by a pure strategy si rather than by a behavioral strategy σ′i,

and Gambit requires that all strategies si lead to greater utility rather than just a single strategy σ′i.

For these reasons, we only consider Definition 4.1 as this potentially leads to more actions being

strictly dominated.

Consider again Kuhn Poker as defined in Section 3.2. When either player is faced with a bet

from the opponent, calling the bet when holding the Jack is a strictly dominated action. This is

because the Jack is the worst card and thus never wins regardless of the opponent’s private card.

Similarly, folding with the King is a strictly dominated action. Note that a strategy that plays either

of these actions with positive probability is not necessarily a strictly dominated strategy (but is a

weakly dominated strategy, as Hoehn et al. [39] conclude) because there exist opponent strategies

that never bet. In addition, once these two actions are removed, one can check that player 1’s action

of betting with the Queen is iteratively strictly dominated. Since player 2 now only folds with the

Jack and only calls with the King, it is strictly better for player 1 to always check with the Queen

and then call a player 2 bet with probability 2/3. Thus, iteratively strictly dominated actions can

identify errors that iteratively strictly dominated strategies cannot. Note that betting with the Queen

for player 1 could lead to positive utility if player 2 holds the Jack, and checking with the Queen

could lead to negative utility if player 2 holds the King. As such, Gambit does not label betting with

the Queen for player 1 as even iteratively weakly dominated.

Proposition 4.1 below states a fundamental relationship between dominated actions and strate-

gies. Any strategy that plays to reach information set I (πσi (I) > 0) and plays a weakly dominated

action a at I (σi(I, a) > 0) is a weakly dominated strategy. Since strictly dominated actions are also

weakly dominated, it follows from Proposition 4.1 that any strategy that plays a strictly dominated

action is a weakly dominated strategy. Note that perfect recall is required in Proposition 4.1 for

πσi (I) to be well-defined as described in Section 2.1.1. We provide a proof sketch of the proposition

below, while full proofs for this chapter can be found in Appendix B.

Proposition 4.1. In an extensive-form game with perfect recall, if a is a weakly dominated action

at I ∈ Ii and σi ∈ Σi satisfies πσi (I)σi(I, a) > 0, then σi is a weakly dominated strategy.

Proof sketch. By definition of action dominance, there exists a strategy σ′i ∈ Σi such that

vi(I, σ(I→a)) ≤ vi(I, (σ
′
i, σ−i) for all opponent profiles σ−i ∈ Σ−i. One can then construct a

strategy σ′′i that follows σi everywhere except within the subtree rooted at I , where instead we fol-

low a mixture of σi and σ′i. The weight in this mixture assigned to σ′i is (1 − σi(I, a)) > 0. The

1Gambit also has an option for computing action dominance by taking utilities from the root rather than from information
set I , but this is generally less useful.
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Figure 4.2: A zero-sum extensive-form game with strictly dominated strategies, but no strictly or
weakly dominated actions. Nodes connected by a dashed line are in the same information set.
Terminal values indicate utilities for player 1.

strategy σi is then weakly dominated by σ′′i . �

It is possible, however, for a dominated strategy to not play any dominated actions. For exam-

ple, consider the zero-sum extensive-form game in Figure 4.2 where both players take two private

actions. The pure strategy for player 1 of playing b and then e is strictly dominated by the pure

strategy that plays a and then e because the latter strategy guarantees exactly 1 more utility than

the former, regardless of how player 2 plays. Similarly, the pure strategy that plays a and then f is

strictly dominated by the pure strategy that plays b and then f . However, no action is even weakly

dominated. For instance, after playing a (or b), the utility player 1 receives for playing e can be

greater, equal to, or less than the utility for playing f depending on how player 2 plays.

4.3 Theoretical Results

Clearly, one should never play a strictly dominated action or strategy as there always exists a better

alternative. Furthermore, if we make the common assumption that our opponents are rational and

do not play strictly dominated actions or strategies themselves, then we should never play itera-

tively strictly dominated actions or strategies. In zero-sum games, CFR’s average strategy profile

converges to a Nash equilibrium, and so the average profile is guaranteed to eliminate strictly dom-

inated strategies. For non-zero-sum games, however, Abou Risk and Szafron [3] demonstrated that

CFR may not converge to a Nash equilibrium. In this section, we provide proof that under cer-
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tain conditions, CFR does eliminate (i.e., play with probability zero) strictly dominated actions and

strategies.

We begin by showing that in normal-form games, all regret minimization algorithms that assign

zero probability to actions with negative regret, which includes regret matching, remove iteratively

strictly dominated strategies. This is a simple result that, to our knowledge, was previously unknown.

Recall that the support of a strategy σi, supp(σi), is the set of actions assigned positive probability

by σi.

Theorem 4.1. Let σ1, σ2, ... be a sequence of strategy profiles in a normal-form game where all

players’ strategies are computed by regret minimization algorithms where for all i ∈ N , a ∈ Ai,

T ≥ 0, if RTi (a) < 0 and RTi (a) < maxb∈Ai R
T
i (b), then σT+1

i (a) = 0. If σi is an iteratively

strictly dominated strategy, then there exists an integer T0 such that for all T ≥ T0, supp(σi) *

supp(σTi ).

Proof sketch. For the non-iterative dominance case, by strict domination of σi, there exists another

strategy σ′i ∈ Σi such that

ε = min
a−i∈A−i

ui(σ
′
i, a−i)− ui(σi, a−i) > 0.

One can then show that there exists an action a ∈ supp(σi) such that

RTi (a) ≤ −εT + max
b∈Ai

RTi (b) ≤ −εT +RT,+i .

Since RT,+i /T → 0 as T →∞, it follows that RTi (a) < 0 after some finite number of iterations T0.

By our assumption, this implies a /∈ supp(σTi ) for all T ≥ T0 as desired. Using the fact that new

iterative dominances only arise from removing actions and never from removing mixed strategies

[15], iterative dominance is proven by induction on the finite number of iteratively dominated pure

strategies (actions) that must first be removed to exhibit domination of σi. �

Note that regret matching is a regret minimization algorithm that satisfies the conditions required

by Theorem 4.1, as long as when the denominator of equation (2.3) is zero, we choose σT+1
i (a) = 0

when RTi (a) < maxb∈Ai R
T
i (b). Also, if a pure strategy si(a) = 1 is iteratively strictly dominated,

then Theorem 4.1 implies that σTi never plays action a after a finite number of iterations. However,

we cannot guarantee that all iteratively strictly dominated strategies will be eliminated after a finite

number of iterations. This is because a strategy could be strictly dominated by only an infinitesimal

amount and could require a near infinite number of iterations to remove. Regardless, if one wanted

to simply find the strategies in a normal-form game that avoid iterative strict domination, one can

repeatedly solve the linear program (2.7) to do so in polynomial time.

Contrary to Theorem 4.1, it is not true that regret matching will always eliminate weakly

dominated strategies. For example, consider the game in Figure 4.3 where the row player’s (de-

noted player 1) pure strategies S and W are strictly and weakly dominated by A respectively,

43
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A 2, 1 1, 0
W 2, 0 0, 1
S 0, 1 0, 0


Figure 4.3: A two-player non-zero-sum normal-form game, where regret matching plays the weakly
dominated row player strategy W with positive probability.

and the column player’s (denoted player 2) pure strategy I is iteratively weakly dominated by B.

Suppose that when the denominator of equation (2.3) is zero, we assign σT+1
i (a) = 1/|XT

i | if

a ∈ XT
i = {a ∈ Ai | RTi (a) = maxb∈Ai R

T
i (b)}, and σT+1

i (a) = 0 otherwise. Starting with

all regrets being zero, the initial profile σ1 is the uniform random profile. After one iteration, we

have regrets R1
1(A) = 2/3, R1

1(W ) = 1/6, R1
1(S) = −5/6, R1

2(B) = 1/6 and R1
2(I) = −1/6,

yielding the next strategy profile σ2 = {(A, 4/5), (W, 1/5), (S, 0), (B, 1), (I, 0)}. One can check

that successive iterations after the first only add negative regret to S and I and that σT = σ2 for

all T ≥ 2. In particular, the weakly dominated strategy W continues to be played indefinitely with

probability 1/5.

We now turn our attention to extensive-form games, which are our primary concern. Here, the

linear program (2.7) cannot feasibly be applied to find non-iteratively strictly dominated strategies in

even moderately-sized extensive-form games as the programs would require a number of constraints

exponential in the size of the game. On the other hand, we can apply CFR.

First, we consider the removal of iteratively strictly dominated actions. Our results rely on

two conditions. Let xT be the number of iterations t where
∑
a∈A(I)R

t,+
i (I, a) = 0 for some

i ∈ N and I ∈ Ii, 1 ≤ t ≤ T . The first condition we require is that xT be sublinear in T .

Intuitively, this is necessary because otherwise, the denominator of equation (2.4) is zero too often,

and so regret matching too often yields an arbitrary strategy at some I ∈ Ii that potentially plays

a dominated action. While we cannot prove that this condition always holds, we show empirically

that xT /T decreases over time in the next section. Next, for I ∈ Ii and δ ≥ 0, define Σδ(I) =

{σ ∈ Σ |
∑
h∈I π

σ
−i(h) ≥ δ} to be the set of profiles where the probability that the opponents

play to reach I ,
∑
h∈I π

σ
−i(h), is at least δ. The second condition we require is that the opponents

reach each information set I containing a dominated action often enough, meaning that there exist

real numbers δ, γ > 0 and an integer T ′ such that for all T ≥ T ′, |Σδ(I) ∩ {σt | T ′ ≤ t ≤

T}| ≥ γT . This condition appears necessary because the magnitude of the counterfactual regret

|rti(I, a)| = |vi(I, σt(I→a)) − vi(σ
t)| ≤ ∆i

∑
h∈I π

σt

−i(h) is weighted by the probability of the

opponents reaching I . Thus, if the opponents reach I with probability zero, then we will stop

learning how to adjust our strategy. Since it could take several iterations to eliminate an iteratively

strictly dominated action, we may end up playing such an action when I is not reached by the

opponents often enough.

44



Theorem 4.2. Let σ1, σ2, ... be strategy profiles generated by CFR in an extensive-form game with

perfect recall, let I ∈ Ii, and let a be an iteratively strictly dominated action at I , where removal

in sequence of the iteratively strictly dominated actions a1, ..., ak at I1, ..., Ik respectively yields

iterative dominance of ak+1 = a. If for 1 ≤ ` ≤ k + 1, there exist real numbers δ`, γ` > 0 and an

integer T` such that for all T ≥ T`, |Σδ`(I`) ∩ {σt | T` ≤ t ≤ T}| ≥ γ`T , then

(i) there exists an integer T0 such that for all T ≥ T0, RTi (I, a) < 0,

(ii) if limT→∞ xT /T = 0, then limT→∞ yT (I, a)/T = 0, where yT (I, a) is the number of

iterations 1 ≤ t ≤ T satisfying σt(I, a) > 0, and

(iii) if limT→∞ xT /T = 0, then limT→∞ πσ̄
T

i (I)σ̄Ti (I, a) = 0.

Proof sketch. Similar to the proof of Theorem 4.1, there exists an ε > 0 and a term F such that

RTi (I, a) ≤ −εγT + F

where in a game with perfect recall, limT→∞ F/T = 0. Again, this implies that there exists an

integer T0 such that for all T ≥ T0, RTi (I, a) < 0, establishing part (i). Since CFR applies regret

matching at I , part (i) and equation (2.4) imply that for all T ≥ T0, either
∑
b∈A(I)R

T,+
i (I, b) = 0

or σT+1
i (I, a) = 0. From this, we have

lim
T→∞

yT (I, a)

T
≤ lim
T→∞

yT0(I, a) + xT

T
= 0,

proving part (ii). Finally, part (iii) follows according to

lim
T→∞

πσ̄
T

i (I)σ̄Ti (I, a) = lim
T→∞

∑T
t=1 π

σt

i (I)σti(I, a)

T
≤ lim
T→∞

yT (I, a)

T
= 0,

where the first equality is by the definition of the average strategy and the inequality is by definition

of yT (I, a). �

Part (iii) of Theorem 4.2 says that an iteratively strictly dominated action is not reached or is

removed from the average profile σ̄T in the limit, whereas part (i) suggests that iteratively strictly

dominated actions are removed from the current profile σT after just a finite number of iterations

(except possibly when
∑
a∈A(I)R

T,+
i (I, a) = 0). Finally, part (ii) states that the number of current

profiles that play an iteratively strictly dominated action a at I , yT (I, a), is sublinear in T .

Next, we show that the profiles generated by CFR eliminate all iteratively strictly dominated

strategies, assuming again that xT /T → 0.

Theorem 4.3. Let σ1, σ2, ... be strategy profiles generated by CFR in an extensive-form game with

perfect recall, and let σi be an iteratively strictly dominated strategy. Then,

(i) there exists an integer T0 such that for all T ≥ T0, there exist I ∈ Ii, a ∈ A(I) such that

πσi (I)σi(I, a) > 0 and RTi (I, a) < 0, and
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Figure 4.4: A two-player non-zero-sum extensive-form game where each player has a single infor-
mation set.

(ii) if limT→∞ xT /T = 0, then limT→∞ yT (σi)/T = 0, where yT (σi) is the number of iterations

1 ≤ t ≤ T satisfying supp(σi) ⊆ supp(σti).

Proof sketch. For σ′i ∈ Σi, define

RTi,full(σ
′
i) =

T∑
t=1

(ui(σ
′
i, σ

t
−i)− ui(σt)).

Similar to the proof of Theorems 4.1 and 4.2, there exists an ε > 0 and a term F ′ such that

RTi,full(σi) ≤ −εT + F ′ (4.1)

where in a game with perfect recall, limT→∞ F ′/T = 0. Next, one can show that

RTi,full(σi) =
∑
I∈Ii

πσi (I)
∑

a∈A(I)

σi(I, a)RTi (I, a). (4.2)

Since πσi (I), σi(I, a) ≥ 0, it follows by equations (4.1) and (4.2) that after a finite number of

iterations T0, there exist I ∈ Ii, a ∈ A(I) such that πσi (I)σi(I, a) > 0 and RTi (I, a) < 0,

establishing part (i). Part (ii) then follows as in the proof of part (ii) of Theorem 4.2. �

Similar to part (i) of Theorem 4.2, part (i) of Theorem 4.3 says that after a finite number of itera-

tions, there is always some information set I that the dominated strategy σi plays to reach and some

action at I played by σi which σTi does not play (except possibly when
∑
a∈A(I)R

T,+
i (I, a) = 0)

and so σTi 6= σi. Part (ii) similarly states that the number of profiles generated whose support

contains supp(σi), yT (σi), is sublinear in T . Notice that Theorems 4.1 and 4.3 do not draw any

conclusions upon the average profile σ̄T . Perhaps surprisingly, it is possible to have a sequence of

profiles with no regret where the average profile converges to a strictly dominated strategy. Con-

sider the two-player non-zero-sum game in Figure 4.4. The sequence of pure strategy profiles

(A, a), (B, b), (A, a), (B, b), ... has no positive regret for either player, and in the limit, the average

profile for player 1, σ̄T1 , playsA andB each with probability 0.5. However, σ̄T1 is strictly dominated

by the pure strategy that always plays C. As with regret matching in normal-form games, CFR
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cannot guarantee elimination of weakly dominated actions or strategies by a similar counterexample

to that presented in Figure 4.3.

Our final theoretical contribution of this chapter shows that in two-player non-zero-sum games,

regret minimization yields a bound on the average strategy profile’s exploitability.

Theorem 4.4. Let ε, δ ≥ 0 and let σ1, σ2, ..., σT be strategy profiles in a two-player game with

perfect recall. If RTi /T ≤ ε for i = 1, 2, and |u1 +u2| ≤ δ, then σ̄T is a 2(ε+ δ)-Nash equilibrium.

Proof. We generalize the proof of Waugh [70, p. 11]. For i = 1, 2, by the definition of regret, we

have

ε ≥ 1

T
max
σ′i∈Σi

T∑
t=1

(
ui(σ

′
i, σ

t
−i)− ui(σt)

)
= max
σ′i∈Σi

ui(σ
′
i, σ̄

T
−i)−

1

T

T∑
t=1

ui(σ
t)

by linearity of expectation and perfect recall. Summing the two inequalities for i = 1, 2 gives

2ε ≥ max
σ′1∈Σ1

u1(σ′1, σ̄
T
2 ) + max

σ′2∈Σ2

u2(σ̄T1 , σ
′
2)− 1

T

T∑
t=1

(
u1(σt) + u2(σt)

)
≥ max
σ′1∈Σ1

u1(σ′1, σ̄
T
2 ) + max

σ′2∈Σ2

(
−u1(σ̄T1 , σ

′
2)− δ

)
− δ

= max
σ′1∈Σ1

u1(σ′1, σ̄
T
2 )− min

σ′2∈Σ2

u1(σ̄T1 , σ
′
2)− 2δ

≥ max
σ′1∈Σ1

u1(σ′1, σ̄
T
2 )− u1(σ̄T )− 2δ,

where the last line follows by setting σ′2 = σ̄T2 . Rearranging terms gives

max
σ′1∈Σ1

u1(σ′1, σ̄
T
2 ) ≤ u1(σ̄T ) + 2(ε+ δ).

Applying the same arguments but reversing the roles of the two players gives

max
σ′2∈Σ2

u2(σ̄T1 , σ
′
2) ≤ u2(σ̄T ) + 2(ε+ δ),

and thus by definition σ̄T is a 2(ε+ δ)-Nash equilibrium. �

Theorem 4.4 is a generalization of Theorem 2.1. When δ = 0, the game is zero-sum, and so the

average profile converges to equilibrium as ε→ 0. In addition, when the players’ utilities sum to at

most δ > 0, then as ε→ 0, the average profile converges to a 2δ-Nash equilibrium.

Remarks. Theorems 4.1, 4.2, and 4.3 provide evidence that regret minimization removes iterative

strict domination. Of course, eliminating strict domination may not provide any useful insights

in games where few strategies are iteratively strictly dominated. Despite this obvious limitation,

Theorems 4.2 and 4.3 provide a better understanding of the strategies generated by CFR in non-

zero-sum games than what coarse correlated equilibria provide. In the next section, we show that

avoiding iteratively strictly dominated actions is enough to perform well in Kuhn Poker. However,
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Table 4.1: Results of a six-agent mock tournament of Kuhn poker. Reported scores for the row
strategy profile against the column profile are in expected milli-chips per game, averaged over both
player orderings.

Uni ND NID Nash-0 Nash-0.5 Nash-1 Overall Exploitability
Uni - -250 -187 -111 -139 -167 -171 458
ND 250 - -21 -69 -56 -42 13 188

NID 187 21 - -56 -42 -28 17 167
Nash-0 111 69 56 - 0 0 47 0

Nash-0.5 139 56 42 0 - 0 47 0
Nash-1 167 42 28 0 0 - 47 0

large games such as three-player Texas hold’em are too complex to analyze action and strategic

dominance beyond obvious errors, such as folding the best hand. It remains open as to how well our

theory explains the success of CFR in these large games.

Perhaps more importantly, the theory developed here has guided us to a more efficient adaptation

of CFR, in both time and memory, that we will use for games with more than two players. Given

Theorems 4.2 and 4.3 and given we have only finite time, we suggest using the current profile in

practice rather than the average. In fact, while Theorem 4.4 says that the average profile converges

to a 2δ-Nash equilibrium in two-player games, there is no clear case for preferring the average

over the current profile in three-or-more-player games. Furthermore, the average profile is not used

in any computations during CFR, so when discarding the average, there is no reason to store the

cumulative profile. This reduces the memory requirements of CFR by a factor of two, since then

only one value per information set, action pair (RTi (I, a)) must be stored as opposed to two. Not

only does this allow us to tackle larger games, the extra memory might be utilized to compute even

stronger strategies than previously possible. Note that we are not the first to consider using the

current profile. In CFR-BR, the algorithm described at the end of Section 2.4, the current profile

converges to equilibrium with high probability in zero-sum games [42, Theorem 4]. The authors

discuss similar benefits to discarding the cumulative profile in CFR-BR and just using the current

strategy profile. Nonetheless, we are the first to suggest using the current profile in CFR and in

games with more than two players. The next section explores these new insights.

4.4 Empirical Results

We now test our theory developed in the previous section across several poker domains.

4.4.1 Iteratively Strictly Dominated Actions and Performance in Kuhn Poker

To begin, we investigate the correlation between the presence of iteratively strictly dominated ac-

tions in one’s strategy with the performance of the strategy in a mock ACPC-style tournament. In

the ACPC, each game is evaluated according to two different scoring metrics. The total bankroll
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Figure 4.5: Log-log plots measuring exploitability of CFR strategies in w%-tilted 2-1 hold’em over
iterations, measured in milli-big-blinds per game (mbb/g).

(TBR) metric simply ranks competitors according to their overall earnings in money per game av-

eraged across all possible opponents. The instant runoff (IRO) metric, however, ranks competitors

by iteratively eliminating the lowest scoring agent from consideration and reevaluating the overall

scores by averaging only across the remaining agents. In a zero-sum game where players alternate

positions, a Nash equilibrium strategy is optimal for winning IRO since it never loses in expectation

to any opponent.

We ran a six-agent mock tournament of Kuhn Poker, which was introduced in Section 3.2. Kuhn

Poker is a small enough game where we can easily identify all iteratively dominated actions and

all Nash equilibrium strategies have already been classified [50]. Our agents consist of a uniform

random strategy (Uni), a strategy that plays no strictly dominated actions (does not call with the Jack

or fold with the King) but is otherwise uniform random (ND), a strategy that plays no iteratively

strictly dominated actions (no strictly dominated actions and player 1 does not bet with the Queen)

but is otherwise uniform random (NID), and three Nash equilibrium strategies (Nash-γ) for γ =

0, 0.5, 1, where γ is the probability of betting with the King. A cross table of the results for each

pair of strategies is given in Table 4.1, along with each profile’s exploitability. Not surprisingly,

the Nash equilibrium strategies all tie for first place in IRO and happen to also tie for first in TBR.

After the equilibrium strategies, NID is the next best agent in terms of IRO, TBR, and exploitability.

Notice that despite winning less against Uni than ND wins, NID plays better against ND and the

equilibrium strategies to still earn more than ND overall. Finally, we see that simply avoiding

strictly dominated actions is enough to earn positive utility overall and be much closer to equilibrium

compared to playing uniformly at random. This mock tournament provides one example where good

performance can be achieved by simply avoiding (iteratively) strictly dominated actions.
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4.4.2 Exploitability in Two-Player Non-Zero-Sum Games

Our next experiment applies CFR to non-zero-sum tilted variants of two-player 2-1 hold’em, where

the original version of 2-1 hold’em was defined in Section 3.4.3. Tilted games are constructed by

rewarding or penalizing players depending on the outcome of the game. This can lead to more

aggressive play when applied to the regular, non-tilted game and were used by the poker program

Polaris that won the 2008 Man-vs-Machine competition [44]. Here, we use the orange tilt that gives

the winning player an extra w% bonus, and the green tilt that both reduces the losing player’s loss in

a showdown (i.e., when neither player folded) byw% and penalizes the winning player byw% when

the losing player folded. In both of these games, we can bound |u1 +u2| ≤ ∆iw/100, and so Theo-

rem 4.4 states that CFR will converge to at least a ∆iw/50-Nash equilibrium. Forw ∈ {0, 7, 14, 35},

we ran the Public Chance Sampling variant of CFR, described in Section 3.5.2, and measured ex-

ploitability of the average profile in the w%-tilted game by calculating maxσi∈Σi ui(σi, σ̄
T
−i) and

averaging over both players i = 1, 2. In addition, we also measured the exploitability of the current

strategy profile in the zero-sum case (w = 0). These results are shown in Figure 4.5. As expected,

in the non-tilted game (w = 0), the average profile is approaching a Nash equilibrium. For the tilted

games, we see that as w is increased, most of the profiles are further from equilibrium, coinciding

with Theorem 4.4. However, the strategies are much closer to equilibrium than the distance guaran-

teed by Theorem 4.4 (note that ∆i = 8 big blinds) and only in the green tilt withw = 35 is it obvious

that CFR is not converging to an exact equilibrium. Of course, Theorem 4.4 only provides an upper

bound on the average profile’s exploitability, and this bound appears to be very loose. These results

warrant further investigation into regret minimization in two-player non-zero-sum games. Finally, it

is clear that the current strategy profile with w = 0 is not converging to equilibrium. Thus, unlike

CFR-BR, the average profile from CFR is often preferred to the current profile in two-player games

as it gives a better worst-case guarantee.

4.4.3 Nonpositive Regret and Current Profile in Three-Player Hold’em

Next, we examine how often
∑
a∈A(I)R

T,+
i (I, a) = 0 as required by parts of Theorems 4.2 and

4.3. External Sampling MCCFR was applied to two different abstractions of three-player limit

Texas hold’em. The first, labelled 1X, consists of 169, 900, 100, and 25 buckets per betting round

respectively. This abstraction size was used in our winning 2010 ACPC 3-player agents described

later in Section 8.1 and contains about 262 million information sets. The second abstraction, labelled

2X, uses 169, 1800, 200, and 50 buckets per betting round respectively, resulting in an abstract game

approximately twice the size. All of our abstractions were built using k-means clustering on earth

mover’s distance or OCHS as described in Section 3.4.2. For each abstraction, we measured

ξT =

∣∣∣∣∣∣
(I, t) |

∑
a∈A(I)

Rt,+i (I, a) = 0, I ∈ Îti , 1 ≤ t ≤ T


∣∣∣∣∣∣ ,
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Figure 4.6: Log-log plot measuring the frequency at which an information set is visited where every
action has nonpositive cumulative counterfactual regret during CFR in the 1X and 2X abstractions
of three-player limit Texas hold’em.

the total number of times where External Sampling traversed an information set that had no positive

regret at any action, where the set of information sets traversed on iteration t are denoted Îti . The

average of ξT is plotted over iterations T in Figure 4.6. In both cases, we see that encountering

an information set with no positive regret becomes less frequent over time, where we eventually

encounter fewer than one such information set per iteration on average. While we cannot guarantee

that xT /T ≈ ξT /T → 0 as required by Theorems 4.2 and 4.3, we at least have evidence that

having no positive regret becomes a rare event. By part (i) of Theorems 4.2 and 4.3, this means

that iteratively strictly dominated actions and strategies will likely be avoided in the current strategy

profile.

Using these same abstractions of three-player hold’em, we now show that the current profile

can reach higher performance faster than the average profile, and that the extra savings in memory

acquired by discarding the average profile can be utilized to generate even stronger strategies. In this

experiment, we generated three different strategy profiles with CFR, saving the profiles at various

iteration counts. For the 1X abstraction, we kept both the average and the current profile, while

for the 2X abstraction, we kept just the current profile. Note that running CFR on the 2X abstract

game without keeping the average profile requires no more RAM than running CFR on the 1X

abstraction and keeping both profiles. For each of our saved profiles, we then played a four-agent

round-robin competition (RRC) against the base strategy profiles2 from the CPRG’s 2009, 2010,

and 2011 ACPC three-player entries for the IRO competitions. Figure 4.7a shows the amount won

by each of our three strategies over iterations, averaged over 50 RRCs consisting of 10,000 games

per match. Clearly, the 1X current profile reaches strong play much sooner than the average profile,

which requires about ten times the number of iterations to peak at the same level of performance.

Furthermore, while more iterations are needed in the 2X abstraction as expected by Theorem 2.5, we

see that 2X eventually yields a current profile that outperforms both profiles in the 1X abstraction.
2The 2010 and 2011 agents employed special experts in two-player subtrees that were not used in this specific experiment.
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Figure 4.7: (a) Performance over iterations (log scale) of three strategy profiles in a four-agent
round-robin competition, measured in milli-big-blinds per game. Current-2X is the current profile
generated by CFR in the 2X abstraction that is twice as large as the 1X abstraction used to generate
Average-1X and Current-1X. Error bars indicate 95% confidence intervals over 50 competitions.
(b) Performance over time (in days) of the average profile that won the three-player events of the
2012 ACPC, and of the current profile computed in the same abstraction. Error bars indicate 95%
confidence intervals over 10 competitions versus the CPRG’s 2009, 2010, and 2011 ACPC three-
player agents for the IRO competitions.

Finally, as a final validation of our CFR modification, we show that the current strategy profile

reaches peak performance faster than the average profile under the abstraction used for our 2012

ACPC three-player entry. The abstract game used contains approximately 2.5 billion information

sets and is described later in Section 8.3. For the competition, the average profile was used and

was computed over 20 days with External Sampling parallelized across 48 processors. We reran

the same implementation of External Sampling with 48 processors on the same machine using the

same abstraction, except now saving the current profile and discarding the average. For several

checkpoints of the original average strategy and the new current strategy, we played 10 RRCs versus

the CPRG’s agents from the 2009, 2010, and 2011 competitions described in Chapter 8 and plotted

the results in Figure 4.7b. While the average strategy takes 20 days before earning 25 mbb/g, the

current strategy reaches better performance in just 5 days while requiring only half the memory to

compute.

4.5 Conclusion

This chapter provides the first theoretical advancements for applying CFR to games that are not

zero-sum. While previous work had demonstrated that CFR does not necessarily converge to a Nash

equilibrium in such games, we have provided theoretical evidence that CFR eliminates iteratively

strictly dominated actions and strategies. Thus, CFR provides a mechanism for removing iterative

strict domination, which is infeasible with other techniques in large, non-zero-sum extensive-form

More details regarding these agents are provided in Chapter 8.

52



games. In addition, our theory is the first step to understanding why CFR generates well-performing

strategies in non-zero-sum games. Though our experiments show that the current profile reaches a

high level of performance faster than the average, it remains unclear whether this is due to faster

removal of domination that our theory illustrates. Nonetheless, we have shown that just using the

current profile gives a more time and memory efficient implementation of CFR for games with more

than two players that can lead to increased performance.

53



Chapter 5

Generalized Sampling and Improved
Monte Carlo CFR

Recall from Section 2.2.3 that MCCFR typically results in faster iterations than Vanilla CFR and

can significantly reduce computation time to reach a given solution quality. Rather than compute the

exact counterfactual values vi as in Vanilla CFR, MCCFR computes sampled counterfactual values

ṽi by traversing only a subset of the actions at each history. However, as we traverse fewer actions

at a given node, the sampled counterfactual value is potentially less accurate. Figures 5.1a and 5.1b

compare the values computed by Vanilla CFR and Outcome Sampling (OS) respectively to illustrate

this point. For OS, an “informative” sampled counterfactual value for just a single action is obtained

at each information set along the sampled block (history). All other actions are essentially assigned

a sampled counterfactual value of zero by definition (equation (2.5)). While EQ[ṽi] = vi, variance

is introduced, affecting both the regret updates and the value recursed back to the parent. As we will

see later in the chapter, OS is a poor choice of algorithm for many games.

While Chance Sampling (CS) and External Sampling (ES) are typically better options than

Vanilla CFR and OS, they may still not be suitable for games containing many player actions, such

as no-limit poker. This is because during player i’s traversal, both CS and ES traverse subtrees under

every action at player i’s reached information sets. For example, if player i can choose between one

of k actions at an information set, both CS and ES will spend the time to traverse all k actions. When

k is large, every iteration of CS and ES is computationally expensive.

In this chapter, we address these problems and more with the following contributions:

1. Tighter theoretical bounds on the number of iterations required by Vanilla CFR, CS, ES, and

OS to reach a given solution quality.

2. A generalization of MCCFR in which we bound the average regret in terms of the variance of

estimated counterfactual values, suggesting that estimates with lower variance are preferred.

3. A new probing CFR sampling algorithm that lives outside of the MCCFR family of algo-

54



I

(a)

I

(b)

Figure 5.1: (a) The computed values at information set I during Vanilla CFR. First, for each action,
the counterfactual values are recursively computed. The counterfactual regrets are then computed
before returning the counterfactual value at I to the parent. (b) The computed values at I during
OS. Here, only action a1 is sampled and its sampled counterfactual value is recursively computed.
The remaining two actions are effectively assigned zero sampled counterfactual value. The sampled
counterfactual regrets are then computed before returning the sampled counterfactual value at I to
the parent.

rithms and demonstrates one way of reducing the variance in the updates to provide faster

convergence to equilibrium in zero-sum games.

4. Average Strategy Sampling (AS), a new MCCFR algorithm propelled from our tighter theoret-

ical bounds that samples player actions and is more suitable for games involving many player

choices.

5. Pure CFR, a second algorithm outside the MCCFR family that resembles the tree traversals

of ES, but requires only half the computer memory.

We start by introducing the tighter theoretical bounds. Then, we discuss our MCCFR generaliza-

tion, provide a regret bound, and demonstrate our probing technique that can reduce variance and

converge to equilibrium faster than corresponding MCCFR algorithms. Next, we introduce AS and

demonstrate its effectiveness in no-limit poker and a non-poker game called Bluff. Finally, we de-

scribe Pure CFR and conclude with a comparison of several of these algorithms across a number of

different poker games.
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5.1 New CFR Bounds

In this section, we revisit the original CFR analysis to uncover a tighter bound on each player’s av-

erage regret. More importantly, this result provides insight into our new Average Strategy Sampling

algorithm, which we present later in Section 5.4. The results in this section and in Section 5.4 are

joint work with Marc Lanctot, Neil Burch, and Duane Szafron [24].

Throughout this chapter, we assume perfect recall as defined by Definition 2.3. In the original

CFR paper, Zinkevich et al. [75] prove that a player’s regret is bounded by the sum of the cumulative

counterfactual regrets (Theorem 2.3). Through a more careful examination, we can actually equate

a player’s regret to a weighted sum of the cumulative counterfactual regrets. This result is our main

improvement over the original analysis and is stated below in Theorem 5.1. For a strategy σi ∈ Σi

and an information set I ∈ Ii, define RTi (I, σi) =
∑
a∈A(I) σi(I, a)RTi (I, a). In addition, let

σ∗i ∈ Σi be a player i strategy such that

σ∗i = argmax
σ′i∈Σi

T∑
t=1

ui(σ
′
i, σ

t
−i). (5.1)

Note that in a two-player game,
∑T
t=1 ui(σ

∗
i , σ

t
−i) = Tui(σ

∗
i , σ̄

T
−i), and thus σ∗i is a best response

to the opponent’s average strategy after T iterations. We provide a sketch of the proof of Theorem

5.1 below, while all proofs in this chapter are provided in full in Appendix C.

Theorem 5.1. In an extensive-form game with perfect recall,

RTi =
∑
I∈Ii

πσ
∗

i (I)RTi (I, σ∗i ).

Proof sketch. The proof is by induction on the maximum number of information sets that player

i can reach in a single game. The base case where player i has no information sets is trivial as

RTi = 0 =
∑
I∈∅ π

σ∗

i (I)RTi (I, σ∗i ). For the induction step, we can express part of the regret term

RTi (I, σ∗i ) as a weighted sum over future counterfactual values,∑
I′∈Succ(I,a)

σ∗i (I ′, a)vi(I
′, σt) (5.2)

for each a ∈ A(I), where Succ(I, a) is the set of all possible next information sets for player i

after playing a at I . Next, we apply the induction hypothesis at each I ′ ∈ Succ(I, a), equating the

average regret in each subtree to the weighted sum of the cumulative counterfactual regrets within

the subtree. Since vi(I ′, σt) appears in this equation, we can substitute for this term in equation (5.2).

We then note that if the probability of player i reaching information set J under σ∗i in a subtree is

π̂σ
∗

i (J), then the probability of reaching J from I in the full game is πσ
∗

i (I, J) = σ∗i (I, a)π̂σ
∗

i (J).

Rearranging the remaining terms gives the result. �

Theorem 5.1 leads to a tighter bound on the average regret when using CFR. To achieve this

tighter bound, we extend the definition of the M -value presented in Section 2.2.2 as follows. For
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a strategy σi ∈ Σi and for Bi as defined previously, define the M -value of σi to be Mi(σi) =∑
B∈Bi π

σ
i (B)

√
|B|, where πσi (B) = maxI∈B π

σ
i (I). Clearly, Mi(σi) ≤Mi for all σi ∈ Σi since

πσi (B) ≤ 1. For Vanilla CFR, we can simply replace Mi in Theorem 2.4 with Mi(σ
∗
i ):

Theorem 5.2. When using Vanilla CFR in a game with perfect recall, average regret is bounded by

RTi
T
≤

∆iMi(σ
∗
i )
√
|A(Ii)|√

T
.

When Mi(σ
∗
i ) < Mi, Theorem 5.2 provides a tighter bound on player i’s average regret at time T .

This strict inequality occurs for player 1 in the game in Figure 2.6a, for example, whenever σ∗1 is not

the strategy that always plays action r at every information set.

For MCCFR, we can show a similar improvement applied to Theorem 2.5 for both ES and OS.

Our proof also includes a bound for CS that appears to have been omitted in previous work. Recall

form Section 2.2.3 that these particular MCCFR algorithms allow us to decompose the probability

of sampling a terminal history z according to q(z) =
∏
i∈N∪{c} qi(z) so that qi(z) is the probability

contributed to q(z) by sampling player i’s actions. In addition, a factor of
√
|A(Ii)| can be removed

from the term introduced from sampling which appears to have been overlooked in the proof of

Theorem 2.5. Details of this improvement are in Appendix C.

Theorem 5.3. Let X be one of CS, ES, or OS (assuming OS samples chance and opponent actions

according to σ−i), let p ∈ (0, 1], and let δ = minz∈Z qi(z) > 0 over all 1 ≤ t ≤ T . When using X

in a game with perfect recall, with probability 1− p, average regret is bounded by

RTi
T
≤

(
Mi(σ

∗
i )
√
|A(Ii)|+

2
√
|Ii||Bi|√
p

)(
1

δ

)
∆i√
T
.

Recall that when using CS or ES, each of player i’s actions are sampled with probability 1, and

therefore δ = minz∈Z qi(z) = 1.

5.2 Generalized Sampling

Here, we present a new, generalized bound on the average regret to that of Theorems 2.5 and

5.3. While MCCFR provides an explicit form for the sampled counterfactual values ṽi(I, σ)

given by equation (2.5), we let v̂i(I, σ) denote any estimator of the true counterfactual value

vi(I, σ). We then define the estimated counterfactual regret on iteration t for action a at I to

be r̂ti(I, a) = v̂i(I, σ
t
(I→a)) − v̂i(I, σ

t), and define the cumulative estimated counterfactual re-

gret to be R̂Ti (I, a) =
∑T
t=1 r

t
i(I, a). This generalization creates many possibilities not considered

in MCCFR. For instance, instead of sampling a block Q of terminal histories, one can consider

a sampled set of information sets and only update regrets at those sampled locations. Two more

examples are provided later in Sections 5.3 and 5.5.

The results in this section and the following section are joint work with Marc Lanctot, Neil

Burch, Duane Szafron, and Michael Bowling [25]. The following lemma probabilistically bounds

57



the average regret in terms of the variance, covariance, and bias between the estimated and true

counterfactual regrets:

Lemma 5.1. Let p ∈ (0, 1] and suppose that there exists a bound ∆̂i on the difference between any

two estimates, v̂i(I, σ(I→a)) − v̂i(I, σ(I→b)) ≤ ∆̂i. If strategies are selected according to regret

matching (2.4) on the cumulative estimated counterfactual regrets in a game with perfect recall, then

with probability at least 1− p, the average regret is bounded by

RTi
T
≤ |Ii|

∆̂i

√
|A(Ii)|√
T

+

√
Var
pT

+
Cov
p

+
E2

p


where

Var = max
t∈{1,...,T}
I∈Ii
a∈A(I)

Var
[
rti(I, a)− r̂ti(I, a)

]
,

Cov = max
t,t′∈{1,...,T}

t6=t′
I∈Ii
a∈A(I)

Cov
[
rti(I, a)− r̂ti(I, a), rt

′

i (I, a)− r̂t
′

i (I, a)
]
, and

E = max
t∈{1,...,T}
I∈Ii
a∈A(I)

E[rti(I, a)− r̂ti(I, a)].

The proof is similar to that of Theorem 7 by Lanctot et al. [55] and of Theorem 5.3 and is provided in

Appendix C. Lemma 5.1 implies that unbiased estimators of vi(I, σ) that are sampled independently

on each iteration give a probabilistic guarantee of minimizing regret:

Theorem 5.4. If in addition to the conditions of Lemma 5.1, for all I ∈ Ii, a ∈ A(I), t ≥ 1,

v̂i(I, σ
t) and v̂i(I, σt(I→a)) are unbiased estimators of vi(I, σt) and vi(I, σt(I→a)) respectively, and

for all t′ 6= t, v̂i(I, σt) and v̂i(I, σt(I→a)) are sampled independently of v̂i(I, σt
′
) and v̂i(I, σt

′

(I→a)),

then with probability at least 1− p,

RTi
T
≤

(
∆̂i

√
|A(Ii)|+

√
Var
√
p

)
|Ii|√
T
. (5.3)

Note that Var defined in Lemma 5.1 is bounded above by ∆̂i. If we were to substitute this bound

in for Var in equation (5.3), we would arrive at a bound similar to those provided by Theorems

2.5 and 5.3. However, by avoiding this simplification, Theorem 5.4 provides new insight into the

role played by the variance of the estimator. Given two unbiased estimators v̂i(I, σ) and v̂′i(I, σ)

with a common bound ∆̂i but differing variance, using the estimator with lower variance will yield

a smaller bound on the average regret after T iterations. For a fixed ε > 0, this suggests that

in a zero-sum game, estimators with lower variance will require fewer iterations to reach an ε-Nash

equilibrium. Furthermore, if some structure on the estimates v̂i(I, σ) holds, we can produce a tighter

bound than equation (5.3) by replacing |Ii| with Mi(σ
∗
i ) introduced in the previous section. Details

of this improvement can be found in Appendix C.
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I

Figure 5.2: An example of computed values at I during our new probing algorithm. In this ex-
ample, again only a1 is sampled and its estimated counterfactual value is recursively computed.
The remaining two actions are probed to improve both the estimated counterfactual regrets and the
returned estimated counterfactual value at I .

While unbiased estimators with lower variance may reduce the number of iterations required,

we must define these estimators carefully. If the estimator is expensive to compute, the time per

iteration will be costly and overall computation time may even increase. For example, the true

counterfactual values vi(I, σ) have zero variance, but computing these values with Vanilla CFR

is too time consuming in large games. In the next section, we present a new bounded, unbiased

estimator that exhibits lower variance than ṽi(I, σ) and can be computed efficiently.

5.3 Probing

We now provide an example of how our new theoretical findings from Section 5.2 can be leveraged

to produce better quality strategies after a fixed amount of computation time. Our example is an ex-

tension of MCCFR that attempts to reduce variance by replacing “zeroed-out” counterfactual values

of player i’s non-sampled actions, as in Figure 5.1b, with closer estimates of the true counterfactual

values. Figure 5.2 illustrates this idea. The simplest instance of our new algorithm probes each non-

sampled action a at I for its counterfactual value. A probe is a single Monte Carlo roll-out, starting

with action a at I and selecting subsequent actions according to the current strategy profile σt until

a terminal history z is reached. By rolling out actions according to the current profile, a probe is

guaranteed to provide an unbiased estimate of the counterfactual value for a at I . In general, one can

perform multiple probes per non-sampled action, probe only a subset of the non-sampled actions,

probe off-policy, or factor in multiple terminal histories per probe. While Appendix C touches on

this generalization, our presentation here sticks to the simple, inexpensive case of one on-policy,

single trajectory probe for each non-sampled action.

We now formally define the estimated counterfactual value v̂i(I, σ) obtained via probing, fol-

lowed by a description of a new CFR sampling algorithm that updates regrets according to these

estimates. Similar to MCCFR, let Q be a set of blocks spanning Z from which we sample a block

59



Q ∈ Q for player i on every iteration. To further simplify our discussion, we will assume for the

remainder of this section that just as in External Sampling, each Q samples a single action at every

history h not belonging to player i, sampled according to the known chance probabilities σc or the

opponent’s current strategy σ−i respectively. Additionally, we assume that the set of actions sampled

at I ∈ Ii, denoted Q(I), is nonempty and independent of every other set of actions sampled. While

Appendix C shows that probing can be generalized to work for any choice of Q, this simplification

reduces the number of probabilities to compute in our algorithm and worked well in preliminary

experiments. Once Q has been sampled, we form an additional set of terminal histories, or probes,

Y ⊆ Z\Q, generated as follows. For each non-terminal history h ∈ Hi for player i reached and

each action a ∈ A(h) that Q does not sample (a /∈ Q(I(h))), we generate exactly one terminal

history z = zha ∈ Y , where z ∈ Z\Q is selected on-policy (i.e., with probability πσ(ha, z)). In

other words, each non-sampled action is probed according to the current strategy profile σ and the

known chance probabilities. Recall that ZI is the set of terminal histories that have a prefix in the

information set I . Given both Q and Y , when ZI ∩ Q 6= ∅, our estimated counterfactual value is

defined to be

v̂i(I, σ) =
1

qi(I)

 ∑
z∈ZI∩Q

πσi (z[I], z)ui(z) +
∑

zha∈ZI∩Y
πσi (zha[I], ha)ui(zha)

 ,
where

qi(I) =
∏

(I′,a′)∈Xi(I)

Prob[a′ ∈ Q(I ′)]

is the probability contributed from sampling player i’s actions that I is reached. Recall that in a

game with perfect recall, Xi(I) is the sequence of information set, action pairs for player i that lead

to information set I , as defined in Section 2.1.1. When ZI ∩Q = ∅, v̂i(I, σ) is defined to be zero.

Proposition 5.1. In a game with perfect recall, if qi(I) > 0 for all I ∈ Ii, then v̂i(I, σ) is a

bounded, unbiased estimate of vi(I, σ).

The proof of Proposition 5.1 is provided in Appendix C. Since estimated counterfactual values are

sampled independently between iterations, Proposition 5.1 and Theorem 5.4 provide a probabilistic

guarantee that updating regret according to our estimated counterfactual values will minimize regret.

Note that the differences ṽi(I, σ(I→a))− ṽi(I, σ(I→b)) and v̂i(I, σ(I→a)) − v̂i(I, σ(I→b)) are both

bounded above by ∆̂i = ∆i/δ, where δ = minI∈Ii qi(I). Thus, Theorem 5.4 suggests that variance

reduction should lead to less regret after a fixed number of iterations. Probing specifically aims

to achieve variance reduction through v̂i(I, σ) when only a strict subset of player i’s actions are

sampled. Note that if we choose Q such that we always sample all of player i’s actions, like in

External Sampling, then we have Y = ∅ and v̂i(I, σ) = ṽi(I, σ).
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Algorithm 3 MCCFR + Probing (Two-player version)
1: Require: ∀ I , action set sampling distribution Q(I)
2: Initialize regret: ∀I,∀a ∈ A(I) : R(I, a)← 0
3: Initialize cumulative profile: ∀I, ∀a ∈ A(I) : s(I, a)← 0
4:
5: function Probe(history h, player i):
6: if h ∈ Z then return ui(h) end if
7: if P (h) = c then Sample action a ∼ σc(h, ·), return Probe(ha, i) end if
8: I ← I(h), σ(I, ·)←RegretMatching(R(I, ·))
9: Sample action a ∼ σ(I, ·)

10: return Probe(ha, i)
11:
12: function WalkTree(history h, player i, sample prob q):
13: if h ∈ Z then return ui(h) end if
14: if P (h) = c then Sample action a ∼ σc(h, ·), return WalkTree(ha, i, q) end if
15: I ← I(h), σ(I, ·)←RegretMatching(R(I, ·))
16: if P (h) 6= i then
17: for a ∈ A(I) do s(I, a)← s(I, a) + (σ(I, a)/q) end for
18: Sample action a ∼ σ(I, ·), return WalkTree(ha, i, q)
19: end if
20: Sample action set Q(I) ∼ Q(I)
21: for a ∈ A(I) do
22: if a ∈ Q(I) then
23: q′ ← q · PQ(I)[a ∈ Q(I)]
24: v̂(a)←WalkTree(ha, i, q′)
25: else
26: v̂(a)← Probe(ha, i)
27: end if
28: end for
29: for a ∈ A(I) do R(I, a)← R(I, a) + (1/q)

(
v̂(a)−

∑
b∈A(I) σ(I, b)v̂(b)

)
end for

30: return
∑
a∈A(I) σ(I, a)v̂(a)

31:
32: function Solve(iterations T ):
33: for t ∈ {1, 2, ..., T} do
34: WalkTree(∅, 1, 1)
35: WalkTree(∅, 2, 1)
36: end for

5.3.1 Pseudocode

Algorithm 3 provides pseudocode for the two-player version of our new probing algorithm that

updates regrets according to our estimated counterfactual values. For more than two-players, an

extra tree walk is required to update the cumulative profile as in Algorithm 2 and is omitted here. The

Probe function recurses down the tree from history h following a single trajectory according to the

known chance probabilities (line 7) and the current strategy obtained through Regret Matching (line

9, see equation (2.4)) until the utility at a single terminal history is returned (line 6). The WalkTree

function is the same as the corresponding function of Algorithm 2, except at histories belonging to

player i (lines 20 to 30). After sampling a set of actions (line 20), the value of each action a, v̂(a), is
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obtained. For each sampled action, we obtain its value by recursing down that action (line 24) after

updating the sample probability for future histories (line 23). While MCCFR assigns zero value to

each non-sampled action, Algorithm 3 instead obtains these action values through the probe function

(line 26). Note that q = qi(I) is the probability of reaching I contributed from sampling player i’s

actions, and that the estimated counterfactual value v̂i(I, σ(I→a)) = v̂(a)/q.

Note that v̂i(I, σ) obtained through probing is not guaranteed to have lower variance than

ṽi(I, σ) obtained through regular MCCFR under the same block Q. Probing could provide a less

accurate update if the true counterfactual value of a non-sampled action is zero, but samples of the

value have high variance. This is because MCCFR sets non-sampled values to zero, which could

coincidentally be accurate estimates. However, our intuition suggests that probing should reduce

variance in the majority of cases. Next, we show that probing can lead to faster convergence to

equilibrium in zero-sum games.

5.3.2 Experiments

Here, we compare basic MCCFR to Algorithm 3 in two-player limit hold’em. To further validate

probing, we compare the two algorithms in two additional domains, which we describe below. Ex-

periments on these additional domains were performed by Marc Lanctot as part of our collaboration

on this work. We focus on two-player games here so that we can measure the exploitability of the

computed profiles.

Goofspiel(n) is a two-player card-bidding game consisting of n rounds. Each player begins

with a hand of bidding cards numbered 1 to n. In our version, on round k, players secretly and

simultaneously play one bid from their remaining cards and the player with the highest bid receives

n− k + 1 points; in the case of a tie, no points are awarded. The player with the highest score after

n rounds receives a utility of +1 and the other player earns −1, and both receive 0 utility in a tie.

Our version of Goofspiel is less informative than conventional Goofspiel as players know which of

the previous bids were won or lost, but not which cards the opponent played.

Bluff(D1, D2) is a two-player dice-bidding game played over a number of rounds. Each player

i starts with Di six-sided dice. In each round, players roll their dice and look at the result without

showing their opponent. Then, players alternate by bidding a quantity of a face value, q-f , of all

dice in play until one player claims that the other is bluffing (i.e., claims that the bid does not hold).

To place a new bid, a player must increase q or f of the current bid. A face of 6 is considered wild

and counts as any other face value. The player calling bluff wins the round if the opponent’s last bid

is incorrect, and loses otherwise. The losing player removes one of their dice from the game and a

new round begins. Once a player has no more dice left, that player loses the game and receives a

utility of −1, while the winning player earns +1 utility.

We use domain knowledge and our intuition to select the sampling schemes Q. By our earlier

assumption, we always sample a single action on-policy when P (h) 6= i, as is done in Algorithm
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3. For the traversing player i, we focus on sampling actions leading to more “important” parts of

the tree, while sampling other actions less frequently. Doing so updates the regret at the important

information sets more frequently to quickly improve play at those locations. In Goofspiel, we always

sample the lowest and highest bids, while sampling each of the remaining bids independently with

probability 0.5. Strong play can be achieved by only ever playing the highest bid (giving the best

chance at winning the bid) or the lowest bid (sacrificing the current bid, leaving higher cards for

winning future bids), suggesting that these actions will often be taken in equilibrium. In Bluff(2,2),

we always sample bluff and the bids 1-5, 2-5, 1-6, 2-6, and for each face f that we roll, k-f for all

1 ≤ k ≤ 4. Bidding on the highest face is generally the best bluff since the opponent’s next bid must

increase the quantity, and bidding on one’s own dice roll is more likely to be correct. Finally, in two-

player limit hold’em, we always sample fold and raise actions, while sampling call with probability

0.5. Folds are cheap to sample (since the game ends) and raise actions increase the number of bets

and consequently the magnitude of the utilities. In addition, we apply a 10s percentile hand strength

squared abstraction that reduces the branching factor at each chance node down to ten, as described

in Section 3.4.2. This abstract game contains roughly 57 million information sets.

Firstly, we performed a test run in Goofspiel(6) that measured the empirical variance of the sam-

ples ṽi(I, σ) provided by MCCFR and of v̂i(I, σ) provided by Algorithm 3. During each iteration

t of the test run, we performed 2000 traversals with no regret or strategy updates, where the first

1000 traversals computed ṽi(I, σt) and the second 1000 computed v̂i(I, σt) at the root of the game.

Both ṽi(I, σt) and v̂i(I, σt) were computed under the same sampling scheme Q described above

for Goofspiel. Once the empirical variance of each estimator was recorded from the samples at time

t, a full Vanilla CFR traversal was then performed to update the regrets and acquire the next strategy

σt+1. The empirical variances for 1 ≤ t ≤ 150 are reported in Figure 5.3a. Since the estimators are

unbiased, the variance here is also equal to the mean squared error of the estimates. Over 1000 test

iterations, the average variances were 0.295 for MCCFR and 0.133 for Algorithm 3. This agrees

with our earlier intuition that probing reduces variance and provides some validation for our choice

of estimator.

Next, for each domain, we performed five runs for each of MCCFR and Algorithm 3, each under

the same sampling schemes Q described above. For each domain, the average of the results are

provided in Figures 5.3b to 5.3d. Our new algorithm converges faster than MCCFR in all three do-

mains. In particular, at our final data points, Algorithm 3 shows a 31%, 10%, and 18% improvement

over MCCFR in Goofspiel(7), Bluff(2,2), and two-player limit hold’em respectively. For both Goof-

spiel(7) and hold’em, the improvement was statistically significant. In Goofspiel(7), for example,

the level of exploitability reached by MCCFR’s last averaged data point is reached by Algorithm 3 in

nearly half the time. To our knowledge, probing and our choice of Q is the fastest known algorithm

for approximating equilibria in Goofspiel(7).
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Figure 5.3: (a) Empirical Var[ṽi(I, σ
t)] and Var[v̂i(I, σ

t)] over iterations at the root of Goof-
spiel(6). (b-d) Log-log plots of exploitability over time of strategies computed by MCCFR and by
Algorithm 3 using identical sampling schemes Q, averaged over five runs. Error bars indicate 95%
confidence intervals at each of the five averaged data points. In hold’em, exploitability is measured
in terms of milli-big-blinds per game (mbb/g).

5.4 Average Strategy Sampling

While Algorithm 3 demonstrates a new technique outside of the MCCFR family, Average Strategy

Sampling (AS) is a new MCCFR algorithm that is intended for games with many player actions.

AS is inspired by Theorem 5.1 that states player i’s regret is equal to the weighted sum of player

i’s cumulative counterfactual regrets at each I ∈ Ii, where the weights are equal to player i’s

probability of reaching I under σ∗i defined by equation (5.1). Since our goal is to minimize regret,

this means that we only need to minimize the cumulative counterfactual regret at each I ∈ Ii that σ∗i
plays to reach. The more likely σ∗i plays to reach I , the more important it is to minimize cumulative

counterfactual regret at I . Therefore, AS intends to sample more often those information sets that

σ∗i plays to reach, and less often those information sets that σ∗i avoids.

Unfortunately, we do not have the exact strategy σ∗i on hand. Recall that in a two-player game,

64



σ∗i is a best response to the opponent’s average strategy, σ̄T−i. In addition, for zero-sum games, the

average profile σ̄T converges to a Nash equilibrium. This means that player i’s average strategy, σ̄Ti ,

converges to a best response of σ̄T−i. While the average strategy is not an exact best response, we

use it as a heuristic to guide sampling within AS. This is convenient since player i’s average strategy

can be directly obtained from the cumulative profile, s(I, a), that CFR stores as in Algorithm 1.

AS selects actions for player i according to the cumulative profile and three predefined parame-

ters. AS can be seen as a sampling scheme between OS and ES where a subset of player i’s actions

are sampled at each information set I , as opposed to sampling one action (OS) or sampling every ac-

tion (ES). Given the cumulative profile sTi (I, ·) on iteration T , an exploration parameter ε ∈ (0, 1],

a threshold parameter τ ∈ [1,∞), and a bonus parameter β ∈ [0,∞), each of player i’s actions

a ∈ A(I) are sampled independently with probability

ρ(I, a) = max

{
ε,

β + τsTi (I, a)

β +
∑
b∈A(I) s

T
i (I, b)

}
, (5.4)

or with probability 1 if either ρ(I, a) > 1 or β +
∑
b∈A(I) s

T
i (I, b) = 0. As in ES, at opponent and

chance nodes, a single action is sampled on-policy according to the current opponent profile σT−i
and the fixed chance probabilities σc respectively. Note that on the first iteration, sTi (I, a) = 0 and

so all actions for player i are sampled with probability 1. Thus, the first iteration of AS is equivalent

to ES. On later iterations, many actions may have a much lower probability of being sampled during

AS.

The three parameters in AS have a variety of effects on the sampling probabilities. If

τ = 1 and β = 0, then ρ(I, a) is equal to the probability that the average strategy σ̄Ti =

sTi (I, a)/
∑
b∈A(I) s

T
i (I, b) plays a at I , except that each action is sampled with probability at least

ε. When τ > 1, τ acts as a threshold so that any action taken with probability at least 1/τ by the

average strategy is always sampled by AS. In preliminary experiments, we found τ = 1 to sample

too few actions on each iteration, and that always sampling actions with significant probability by

choosing τ > 1 improved performance. Furthermore, β’s purpose is to increase the rate of explo-

ration during early AS iterations. When β > 0, we effectively add β as a bonus to the cumulative

value sTi (I, a) before normalizing. Since player i’s average strategy σ̄Ti is not a good approximation

of σ∗i for small T , we include β to avoid making ill-informed choices early-on. As the cumulative

profile sTi (I, ·) grows over time, β eventually becomes negligible. Alternatively, one can view β

as a parameterization between “absolute” AS (β = 0) and ES (β → ∞). Finally, when β = 0,

ε is required to guarantee that sampled counterfactual values remain unbiased and ensures that the

regret bound presented later in Theorem 5.5 is valid. For β > 0, ε maintains a minimum frequency

at which actions are sampled, even after β becomes negligible. In Section 5.4.2, we present a set of

values for ε, τ , and β that work well across all of the games we tested.
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Algorithm 4 Average Strategy Sampling (Two-player version)
1: Require: Parameters ε, τ, β
2: Initialize regret: ∀I,∀a ∈ A(I) : R(I, a)← 0
3: Initialize cumulative profile: ∀I, ∀a ∈ A(I) : s(I, a)← 0
4:
5: WalkTree(history h, player i, sample prob q):
6: if h ∈ Z then return ui(h)/q end if
7: if P (h) = c then Sample action a ∼ σc(h, ·), return WalkTree(ha, i, q) end if
8: I ← I(h), σ(I, ·)← RegretMatching(R(I, ·))
9: if P (h) 6= i then

10: for a ∈ A(I) do s(I, a)← s(I, a) + (σ(I, a)/q) end for
11: Sample action a ∼ σ(I, ·), return WalkTree(ha, i, q)
12: end if
13: for a ∈ A(I) do
14: ρ← max

{
ε, β+τs(I,a)
β+

∑
b∈A(I) s(I,b)

}
, ṽ(a)← 0

15: if Random(0, 1) < ρ then ṽ(a)←WalkTree(ha, i, q ·min{1, ρ}) end if
16: end for
17: for a ∈ A(I) do R(I, a)← R(I, a) + ṽ(a)−

∑
b∈A(I) σ(I, b)ṽ(b) end for

18: return
∑
a∈A(I) σ(I, a)ṽ(a)

19:
20: Solve(iterations T ):
21: for t ∈ {1, 2, ..., T} do
22: WalkTree(∅, 1, 1)
23: WalkTree(∅, 2, 1)
24: end for

5.4.1 Pseudocode and Analysis

Pseudocode for a two-player version of AS is presented in Algorithm 4. Again, the WalkTree

function is the same as in Algorithms 2 and 3, except when sampling actions for player i (lines 13

to 16). For each action a, we compute the probability ρ of sampling a and stochastically decide

whether to sample a or not, where Random(0,1) returns a real number uniformly at random in [0, 1).

If we do sample a, then we recurse to obtain the sampled counterfactual value ṽ(a) = ṽi(I, σ
t
(I→a))

(line 15). Otherwise, ṽ(a) is left as zero.

Running Solve(T ) provides a probabilistic guarantee that all players’ regret will be minimized.

The bound is the same as that of Theorem 5.3 and is reported below for completeness.

Theorem 5.5. Let p ∈ (0, 1] and let δ = minz∈Z qi(z) > 0 over all 1 ≤ t ≤ T . When using AS in

a game with perfect recall, with probability 1− p, average regret is bounded by

RTi
T
≤

(
Mi(σ

∗
i )
√
|A(Ii)|+

2
√
|Ii||Bi|√
p

)(
1

δ

)
∆i√
T
.

Note that δ in Theorem 5.5 is guaranteed to be positive for AS by the inclusion of ε in equation

(5.4). However, for CS and ES, δ = 1 since all of player i’s actions are sampled, whereas δ ≤ 1 for

OS and AS. While this suggests that fewer iterations of CS or ES are required to achieve the same

regret bound compared to OS and AS, iterations for OS and AS are faster as they traverse less of the
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game tree. Just as CS, ES, and OS have been shown to benefit from this trade-off over Vanilla CFR,

we will show that in practice, AS can likewise benefit over CS and ES and that AS is a better choice

than OS.

5.4.2 Experiments

We now compare the convergence rates of AS to those of CS, ES, and OS. While AS can be ap-

plied to any extensive-form game, the aim of AS is to provide faster convergence rates in games

involving many player actions. Thus, we consider 2-NL hold’em, described in Section 3.4.3, and

Bluff(D1, D2), described in Section 5.3.2, where we can easily scale the number of actions available

to the players. Again, we focus on two-player games so that we can measure the exploitability of

the computed profiles. The results for Bluff were again provided by Marc Lanctot in collaboration

on this work. For the remainder of this section, let k be the starting stack sizes for both players in

2-NL hold’em. We also consider variations of Bluff where we use s-sided dice for various values of

s rather than the usual six-sided dice. Note that 2-NL hold’em has up to k actions at an information

set, whereas Bluff(D1, D2) has a maximum of s(D1 +D2) + 1 player actions.

Preliminary tests. Before comparing AS to CS, ES, and OS, we first run some preliminary exper-

iments to find a good set of parameter values for ε, τ , and β to use with AS. All of our preliminary

experiments are in two-player 2-NL hold’em with k = 30 chips. This time, we employ a 5s per-

centile hand strength squared abstraction that reduces the branching factor at each chance node

down to five, as described in Section 3.4.2. Note that our preliminary experiments here are far

from exhaustive and do not necessarily find the optimal set of parameters for AS. Nonetheless, our

main results later in this section show that the set of parameters we do find work well enough to

outperform CS, ES, and OS across multiple domains.

Firstly, we fix τ = 1000 and test different values for ε and β. Recall that τ = 1000 implies

actions taken by the average strategy with probability at least 0.001 are always sampled by AS.

Figure 5.4a shows the exploitability in the 5s abstract game, measured in milli-big-blinds per game

(mbb/g), of the profile produced by AS after 1012 nodes visited. Each data point is averaged over

five runs of AS. The ε = 0.05 and β = 105 or 106 profiles are the least exploitable profiles (darkest

colour) within statistical noise (not shown).

Next, we fix ε = 0.05 and β = 106 and test different values for τ . Figure 5.4b shows the

abstract game exploitability over the number of nodes visited by AS, where again each data point is

averaged over five runs. Here, the least exploitable strategies after 1012 nodes visited are obtained

with τ = 100 and τ = 1000 (again within statistical noise). Similar results to Figure 5.4b hold in

2-NL hold’em with k = 40 and are not shown.

Throughout the remainder of our experiments with AS, we use the fixed set of parameters ε =

0.05, β = 106, and τ = 1000. As can be seen in Figure 5.4, the performance of AS is not overly
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Figure 5.4: (a) Abstract game exploitability of AS profiles for τ = 1000 after 1012 nodes visited
in 2-NL hold’em with k = 30 starting chips, where a darker colour represents lower exploitability
and a lighter colour represents higher exploitability. (b) Log-log plot of abstract game exploitability
over the number of nodes visited by AS with ε = 0.05 and β = 106 in 2-NL hold’em, k = 30. For
both figures, units are in milli-big-blinds per hand (mbb/g) and data points are averaged over five
runs with different random seeds. Error bars in (b) indicate 95% confidence intervals.

sensitive to the choice of parameters. Many other choices around this chosen set worked nearly

as well in the preliminary experiments. Only for a few extreme choices of parameters (β ≥ 108,

ε = 0.01 and β ≤ 101, τ = 100) did the performance of AS drastically worsen.

While we will not investigate parameter choices any further, we note here that there are some

obvious cases where our choice of parameters may not be suitable. For example, for a game with

up to millions of player actions at a single information set, choosing ε = 0.05 would still result

in at least tens of thousands of actions being sampled on average each iteration. It is likely that

sampling this many actions will still be too costly and that better performance can be achieved by

decreasing ε and τ . In addition, in games with large depth where each iteration is costly regardless

of sampling, we may expect to run only a small number of iterations. For such games, β = 106 may

never become negligible and result in AS behaving too much like ES. Here, a smaller value for β

may be preferred.

Main results. We now compare AS to CS, ES, and OS in both 2-NL hold’em and Bluff(D1, D2).

Similar to Lanctot et al. [54], our OS implementation is ε′-greedy so that the current player i samples

a single action at random with probability ε′ = 0.5, and otherwise samples a single action according

to the current strategy σi.

Firstly, we consider two-player 2-NL hold’em with starting stacks of k = 20, 22, 24, ..., 38,

and 40 chips, for a total of eleven different 2-NL hold’em games. Again, we apply the same 5s

abstraction as before to keep the games reasonably sized. For each game, we ran each of CS, ES,

OS, and AS five times, measured the abstract game exploitability at a number of checkpoints, and
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Figure 5.5: (a) Log-log plot of abstract game exploitability over the number of nodes visited by CS,
ES, OS, and AS in 2-NL hold’em with k = 36 starting chips. The initial uniform random profile is
exploitable for 6793 mbb/g, as indicated by the black dashed line. (b) Abstract game exploitability
after approximately 3.16× 1012 nodes visited over the game size for 2-NL hold’em with even-sized
starting stacks k between 20 and 40 chips. For both graphs, units are in milli-big-blinds per game
(mbb/g) and data points are averaged over five runs with different random seeds. Error bars indicate
95% confidence intervals. For (b), units on the y-axis are normalized by dividing by the starting
chip stacks.

averaged the results. Figure 5.5a displays the results for k = 36, a game with approximately 68

million information sets and 5 billion histories (nodes). Here, AS achieved an improvement of 54%

over ES at the final data points. In addition, Figure 5.5b shows the average exploitability in each of

the eleven games after approximately 3.16× 1012 nodes visited by CS, ES, and AS. OS performed

much worse and is not shown. Since one can lose more as the starting stacks are increased (i.e.,

∆i becomes larger), we “normalized” exploitability across each game by dividing the units on the

y-axis by k. While there is little difference between the algorithms for the smaller 20 and 22 chip

games, we see a significant benefit to using AS over CS and ES for the larger games that contain

many player actions. For the most part, the margins between AS, CS, and ES increase with the game

size.

Figure 5.6 displays similar results for various Bluff games. Figures 5.6a to 5.6c consider standard

Bluff games with s = 6-sided dice in Bluff(1,1), Bluff(2,1), and Bluff(2,2). Again, AS converged

faster than CS, ES, and OS in all three Bluff games. Finally, Figure 5.6d shows the exploitability

after approximately 1010 nodes visited by AS, CS, and ES for various choices of s in Bluff(1,1). OS

was again too poor to be shown. Similar to the 2-NL hold’em(k) results, there is more benefit to

using AS as we increase the number of player actions by increasing the number of die faces. Note

that the same choices of parameters (ε = 0.05, β = 106, τ = 1000) that worked well in 2-NL

hold’em with k = 30 continued to outperform CS, ES, and OS in other 2-NL hold’em games and in

Bluff.
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Figure 5.6: (a-c) Log-log plots of exploitability over number of nodes visited by CS, ES, OS, and
AS in Bluff(1, 1), Bluff(2, 1), and Bluff(2, 2) with s = 6-sided dice. The initial uniform random
profile is exploitable for 0.780 and 0.784 in Bluff(1, 1) and Bluff(2, 1) respectively, as indicated by
the black dashed lines. (d) Exploitability after approximately 1010 nodes visited over the game size
of Bluff(1,1) with s-sided dice for 6 ≤ s ≤ 12. For all graphs, data points are averaged over five
runs with different random seeds and error bars indicate 95% confidence intervals.

5.5 Pure CFR

Our third and final new sampling algorithm, Pure CFR, comes from Oskari Tammelin [67], a hob-

byist poker programmer from Finland. Our contributions here connect Pure CFR with our theory

derived in Section 5.2. We also provide an open-source C++ implementation of Pure CFR [23] that

can be applied to a variety of poker games, including Kuhn Poker, Leduc, and Texas hold’em. Fi-

nally, in Section 5.6, we compare Pure CFR to other sampling algorithms in three different Texas

hold’em games.

Unlike MCCFR algorithms and our probing algorithm from Section 5.3, Pure CFR does not

sample blocks of terminal histories Q ∈ Q. Instead, Pure CFR samples a pure strategy profile ŝt

from the current profile σt, and a pure chance distribution ŝtc from σc. Then, an iteration of Vanilla

CFR is performed using ŝt and ŝtc in place of σt and σc respectively. When the utilities of the game

are integers, as they are in poker, all computations in Pure CFR can be done with integer arithmetic.

70



Algorithm 5 Pure CFR (Two-player version)
1: Initialize regret: ∀I,∀a ∈ A(I) : R(I, a)← 0
2: Initialize cumulative profile: ∀I, ∀a ∈ A(I) : s(I, a)← 0
3:
4: WalkTree(history h, player i):
5: if h ∈ Z then return ui(h) end if
6: if P (h) = c then Sample action a ∼ σc(h, ·), return WalkTree(ha, i) end if
7: I ← I(h), σ(I, ·)← RegretMatching(R(I, ·))
8: Sample action a ∼ σ(I, ·)
9: if P (h) 6= i then s(I, a)← s(I, a) + 1, return WalkTree(ha, i) end if

10: for b ∈ A(I) do v̂(b)←WalkTree(hb, i) end for
11: for b ∈ A(I) do R(I, b)← R(I, b) + v̂(b)− v̂(a) end for
12: return v̂(a)
13:
14: Solve(iterations T ):
15: for t ∈ {1, 2, ..., T} do
16: WalkTree(∅, 1)
17: WalkTree(∅, 2)
18: end for

This provides two benefits. Firstly, integer arithmetic can be faster than floating-point arithmetic.

Secondly, this also allows us to store both the cumulative regret and the cumulative profile as in-

tegers. For our implementation, storing values as integers rather than as floating-point numbers

reduces our memory cost by 50%. This means that for the same cost in memory, abstractions with

twice as many buckets can be employed by Pure CFR compared to Vanilla CFR and MCCFR algo-

rithms. As we saw in three-player limit Texas hold’em from Figure 4.7a, increasing the number of

buckets can lead to better performing strategies.

More formally, given our current strategy profile σ = σt, we sample ŝ from σ by independently

assigning a single action at each information set I , where

Prob[ŝ(I) = a] = σ(I, a) for all a ∈ A(I),

and for each h ∈ Hc,

Prob[ŝc(h) = a] = σc(h, a) for all a ∈ A(h).

We then define the estimated counterfactual value at information set I and strategy σ for Pure CFR

to be

v̂i(I, σ) =
∑
z∈ZI

ui(z)π
ŝ
−i(z[I])πŝ(z[I], z).

The estimated cumulative counterfactual regret R̂Ti (I, a) is then defined as in Section 5.2.

5.5.1 Pseudocode and Analysis

Pseudocode for a two-player version of Pure CFR is provided in Algorithm 5. Notice the sim-

ilarities between Pure CFR and ES listed in Algorithm 2. Both algorithms traverse all actions at
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player i’s nodes (line 10 of Algorithm 5) and traverse a single, sampled action at all other nodes

(lines 6 and 9). In Pure CFR, there is no need to traverse other opponent or chance actions a at

history h because the estimated counterfactual values following a at h are weighted by πŝ−i(ha), the

probability of the opponents and chance reaching ha under ŝ. This probability is zero by definition

for all a 6= ŝ(I(h)). Similar cutoffs can be utilized in Chance Sampling when an opponent plays an

action with zero probability under the current strategy profile.

Pure CFR only differs from ES in how the cumulative profile and the cumulative regrets are up-

dated (lines 9 and 11 respectively), as well as the counterfactual value returned. In both of these up-

dates, the current profile σ is replaced with the sampled pure profile ŝ. This results in a simple incre-

ment of the cumulative profile. For the regret update, the estimated counterfactual value at I , v̂(I, σ),

is now equal to v̂(a) = v̂i(I, σ(I→a)), the estimated value after taking action a at I . Intuitively, this

estimate will often have higher variance than the estimate ṽi(I, σ) =
∑
a∈A(I) σi(I, a)ṽi(I, σ(I→a))

provided by ES that weights over all actions at I rather than just one. However, Pure CFR’s estimates

remain bounded and unbiased:

Proposition 5.2. In Pure CFR, v̂i(I, σ) is a bounded, unbiased estimate of vi(I, σ).

Proof. To start, note that v̂i(I, σ) ≤ πŝ−i(I)∆i ≤ ∆i, and thus v̂i(I, σ) is bounded. To prove

v̂i(I, σ) is unbiased, we have

Eŝ[v̂i(I, σ)] = E

[∑
z∈ZI

ui(z)π
ŝ
−i(z[I])πŝ(z[I], z)

]
=
∑
z∈ZI

ui(z)E
[
πŝ−i(z[I])πŝ(z[I], z)

]

=
∑
z∈ZI

ui(z)E

 ∏
havz[I]
P (h)6=i

I[ŝ(I(h)) = a]
∏

z[I]vhavz

I[ŝ(I(h)) = a]


where I[·] is the indicator function and I(h) = h when P (h) = c

=
∑
z∈ZI

ui(z)
∏

havz[I]
P (h)6=i

E [I[ŝ(I(h)) = a]]
∏

z[I]vhavz

E [I[ŝ(I(h)) = a]]

by independence of action sampling for ŝ

=
∑
z∈ZI

ui(z)
∏

havz[I]
P (h)6=i

σ(I(h), a)
∏

z[I]vhavz

σ(I(h), a)

=
∑
z∈ZI

ui(z)π
σ
−i(z[I])πσ(z[I], z)

= vi(I, σ). �

Proposition 5.2 and Theorem 5.4 provide a probabilistic guarantee that Pure CFR minimizes regret.

In fact, we can derive an identical bound on the average regret to that achieved by both CS and ES.
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Theorem 5.6. Let p ∈ (0, 1]. When using Pure CFR in a game with perfect recall, with probability

1− p, average regret is bounded by

RTi
T
≤

(
Mi(σ

∗
i )
√
|A(Ii)|+

2
√
|Ii||Bi|√
p

)
∆i√
T
.

While the regret bounds presented here for Pure CFR and ES are the same, Pure CFR typically

requires more iterations than ES in practice to reach the same solution quality. This increase in iter-

ations is predicted by perhaps the more informative bound in Theorem 5.4 because we expect Pure

CFR’s estimates to have higher variance. Nonetheless, Pure CFR’s lighter memory requirements

make it an appealing choice for large games requiring abstraction, such as Texas hold’em.

5.6 Comparison of Algorithms in Texas Hold’em

In this chapter, we have presented a number of new CFR sampling algorithms and shown cases

when our new algorithms have outperformed previous techniques. We now end this chapter by

comparing the time efficiency of each of our new algorithms against previous MCCFR instances

in an abstract game of two-player limit, of two-player no-limit, and of three-player limit Texas

hold’em. In particular, we compare four previous MCCFR algorithms, CS, ES, OS, and PCS from

Section 3.5.2, to our new algorithms AS, probing, and Pure CFR for a total of seven algorithms.

Firstly, we run each of the seven algorithms in two-player limit hold’em using the same 10s

percentile hand strength squared abstraction from Section 5.3.2. Throughout this section, we use the

same set of parameters for AS (ε = 0.05, β = 106, τ = 1000) that worked well in Section 5.4.2.

Here and again later for three-player limit, the results for probing use the same sampling scheme

derived from domain knowledge that was used in Section 5.3.2. These two-player limit results were

generated from parallel implementations that used all 12 processors on machines with two six-core

Intel Xeon X5650 2.66GHz processors and 48GB of RAM. The exploitability of the two-player limit

hold’em strategies generated by each of the algorithms over time is shown in Figure 5.7a. OS was

exploitable for 36.9 mbb/g after 32 hours of computation, which is too poor to be seen on the graph.

While probing was shown to outperform MCCFR under a set of hand-chosen sampling blocks Q in

Figure 5.3d, it appears that better sampling blocks Q for two-player limit hold’em are provided by

the other algorithms. Recall that AS was designed specifically for games with many player actions,

yet it surprisingly performs quite well here where there are a maximum of three player actions at

any information set. However, PCS remains the most time-efficient algorithm for two-player limit

hold’em, likely thanks to the O(k2) to O(k) reduction described in Section 3.5.2.

Next, we move to two-player no-limit hold’em. For this experiment, we employ the abstraction

used by the CPRG to win the no-limit instant run-off competition of the 2011 Annual Computer

Poker Competition (ACPC). This abstraction limits the players’ raise actions to a small number of

choices relative to the current pot size. More specifically, players may raise a number of chips equal
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Figure 5.7: (a) Log-log plot of exploitability over time achieved by CS, ES, PCS, probing, AS, and
Pure CFR in a 10s abstraction of two-player limit Texas hold’em. (b) Performance over time for
each of the sampling algorithms in an abstraction of two-player no-limit Texas hold’em. Error bars
indicate 95% confidence intervals over 30 sets of duplicate matches in one-on-one play against the
CPRG’s no-limit program that won the 2011 instant run-off event of the ACPC. (c) Performance
over time for each of the sampling algorithms in an abstraction of three-player limit Texas hold’em.
Error bars indicate 95% confidence intervals over 10 sets of triplicate matches against each pair of
opponents from the CPRG’s 2009, 2010, and 2011 ACPC three-player instant runoff entries.

to the pot size, three times the pot size, eleven times the pot size, or may raise all-in. In addition,

each player is allowed to make one raise equal to half the pot size and one raise equal to three-

quarters of the pot size once per flop, turn, and river. Furthermore, an IR169/IR3700/IR3700/3700

card abstraction is employed using k-means clustering over earth mover’s distance and OCHS (see

Section 3.4.2).

The performances of the strategies generated over time by each of the sampling algorithms in

this no-limit hold’em abstraction are shown in Figure 5.7b. We used the same parallel implemen-

tations across 12 processors and the same machines used in the two-player limit experiments. With

imperfect recall abstractions and with larger betting spaces compared to two-player limit, we cannot

easily measure abstract game exploitability here. Instead, performance is measured by playing 30

sets of 500,000 duplicate hand matches (each hand is played twice with agents switching positions)
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against the CPRG’s 2011 two-player no-limit program that uses the same abstraction as our gener-

ated strategies. Again, OS performed too poorly to be seen in the graph, losing 7135 mbb/g after

120 hours of computation. Notice now that ES and AS outperform both CS and PCS as the latter

two algorithms suffer from traversing all possible actions for both players on every iteration. While

AS outperforms ES in 2-NL hold’em as seen in Figure 5.5, the betting abstraction employed here

reduces the number of player actions to a maximum of eight per information set. This appears to be

too few actions for AS to benefit over ES; however, AS and ES perform equally best in this game.

Furthermore, Figures 5.7a and 5.7b show that despite performing similar tree walks to ES, Pure CFR

is less time-efficient than ES as expected.

Finally, we perform a similar experiment in three-player limit hold’em. Here, we employ the

same abstraction used for the experiments in Section 4.4 and for the CPRG’s three-player entry

in the 2012 ACPC. This abstraction is described in detail later in Section 8.3. We again measure

performance by playing round robin competitions (RRCs) against the CPRG’s competition entries

from 2009, 2010, and 2011 as was done in Section 4.4. Performance over time for each of the

generated strategies is shown in Figure 5.7c. These results were generated using 48 processors on

machines with four Opteron AMD twelve-core processors at 2.2GHz and 256GB of RAM. Given

our findings in Section 4.4, we use the current profiles here instead of the average profiles. Note

that for AS, we must continue to store the cumulative profile to sample actions correctly, making

AS less appealing in terms of memory efficiency. This time, PCS1 performed too poorly to be seen,

losing 169.8 mbb/g after 96 hours of computation. While ES, AS, and Pure CFR appear to be the

most time-efficient algorithms here, the implementation of Pure CFR used only for the three-player

experiments is actually a special, optimized routine. This Pure CFR implementation uses a number

of technical tricks to reduce overhead that our current implementations of ES and AS still suffer

from, making the comparison here somewhat unfair. These optimizations include storing a betting

tree as opposed to applying function calls for faster tree walks and can be found in our Open Pure

CFR implementation [23]. Nonetheless, Pure CFR reaches peak performance after about 48 hours

of computation and still uses half the memory of ES (using integers instead of floating-point values)

and a quarter the memory of AS (does not store the average profile).

5.7 Conclusion

In this chapter, we have established a number of improvements for computing strategies in extensive-

form games through sampling with CFR, both theoretically and empirically. We have provided new,

tighter bounds on the average regret when using Vanilla CFR or one of several different MCCFR

sampling algorithms. In addition, we have provided a new theoretical framework that generalizes

MCCFR and a new regret bound that depends on the variance of the estimates, suggesting estimates
1For PCS, we use an approximate terminal node evaluation function to perform O(k3) evaluations in O(k) time. How-

ever, the effective k is likely smaller in the three-player case compared to the two-player case because player action sequences
are longer on average and are therefore likely to provide private hand distributions with lower probabilities.
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with lower variance are preferred. Furthermore, we have introduced three new sampling algorithms,

AS, probing, and Pure CFR. Our experiments show that AS is often preferred in games with many

player actions, that probing can reduce the variance of MCCFR estimates, and that Pure CFR can

reduce memory requirements without a large penalty in time efficiency.
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Chapter 6

CFR in Games with Imperfect Recall

So far, this dissertation has only considered extensive-form games with perfect recall, as defined in

Definition 2.3. In games with perfect recall, players remember all information that was revealed

to them throughout the game and the order in which that information was revealed. When perfect

recall is assumed, CFR is guaranteed to minimize regret because a player’s regret is bounded by the

sum of the positive cumulative counterfactual regrets, as given by Theorem 2.3 and improved upon

by Theorem 5.1. Unfortunately, these results are not guaranteed to hold in games with imperfect

recall.

For example, consider again the extensive-form game shown in Figure 2.3a from Section 2.1.1.

We will label player 2’s information sets as I = {A,B} and J = {Aa,Ab,Ba,Bb}. Let us consider

the initial strategy profile σ = σ1 where both player 1 and player 2 play actions uniformly at random

at every information set. We can calculate player 2’s counterfactual regret at J for action c according

to

r1
2(J, c) = v2(J, σ(J→c))− v2(J, σ)

=
∑
z∈Z

πσ1 (z[J ])πσ(z[J ]c, z)u2(z)−
∑
z∈Z

πσ1 (z[J ])πσ(z[J ], z)u2(z)

= [0.5 · 1 · 4 + 0.5 · 1 · 0 + ...]− [0.5 · 0.5 · 4 + 0.5 · 0.5 · 4 + 0.5 · 0.5 · 0 + ...]

= 2− 2

= 0.

Similarly, r1
2(J, d) = r1

2(I, a) = r1
2(I, b) = 0. Thus, player 2 has zero counterfactual regret at

both I and J . However, player 2’s regret, R1
2 = maxσ′2∈Σ2

u2(σ1
1 , σ
′
2) − u2(σ1), is positive. This

is because the player 2 strategy σ′2 where σ′2(I, a) = 1 and σ′2(J, c) = 1 has expected utility

u2(σ1
1 , σ
′
2) = 2, whereas following σ1

2 only has expected utility u2(σ1) = 1. Therefore, R1
2 = 1 >

0 = maxa′∈A(I)R
1
2(I, a′) + maxa′∈A(J)R

1
2(J, a′), showing that Theorems 2.3 and 5.1 may not

hold in games with imperfect recall.

Imperfect recall brings about a number of additional complications. In games with perfect re-

call, every mixed strategy has a utility-equivalent behavioral strategy [51], as discussed in Section
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2.1.1. While certain lossless imperfect recall games share this property [46], Section 2.1.1 gave a

counterexample showing that this is not true for imperfect recall games in general. In addition, the

decision problem of determining if a player can assure themself a certain payoff in an imperfect

recall game is NP-complete [48].

On the other hand, imperfect recall games are more versatile than perfect recall games for mod-

elling large real-world problems. While perfect recall requires all past information to be remem-

bered, imperfect recall allows irrelevant information to be forgotten so that the size of the game is

smaller. As CFR’s memory requirements are linear in the size of the game, more games become

feasible through imperfect recall. Despite the complications above, CFR has been shown to work

well in practice when applied to imperfect recall abstractions of Texas hold’em [73], but there is

currently no theory to suggest why this is so.

This chapter presents theoretical groundings for applying CFR to games exhibiting imperfect

recall. We define a general class of imperfect recall games and provide a bound on CFR’s regret in

such games. For a subset of this class, CFR minimizes regret in the extensive-form game. Moreover,

our results also provide regret guarantees when applying CFR to an abstract game, provided the

abstract game belongs to our general class. We test our theory in a new game called die-roll poker.

To the best of our knowledge, this work demonstrates the first theoretical results for CFR applied to

extensive-form games with imperfect recall.

In this chapter, we only consider games without absentmindedness [60] so that players cannot

reach the same information set twice in a single game. In other words, we assume that for all i ∈ N

and h, h′ ∈ Hi,

h v h′, h 6= h′ ⇒ I(h) 6= I(h′). (6.1)

Note that every perfect recall game satisfies equation (6.1), but not every imperfect recall game

does. The work in this chapter is joint work with Marc Lanctot, Neil Burch, Martin Zinkevich, and

Michael Bowling [53] and much of this work is also found in Lanctot’s dissertation [52]. Our main

contribution here is the formal analysis and theoretical proofs presented in Section 6.2 and Appendix

D.

6.1 Die-Roll Poker

We now introduce a game that we will use as a running example throughout this chapter. Die-roll

poker (DRP) is a simplified two-player poker game that uses dice rather than cards. To begin, each

player antes one chip to the pot. There are two betting rounds, where at the beginning of each round,

players roll a private six-sided die. The game has imperfect information due to the players not seeing

the result of the opponent’s die rolls. During a betting round, a player may fold, call, or raise by a

fixed number of chips, with a maximum of two raises per round. In the first round, raises are worth

two chips, whereas in the second round, raises are worth four chips. If both players have not folded
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by the end of the second round, a showdown occurs where the player with the largest sum of their

two dice wins all of the chips in the pot.

DRP is naturally a game with perfect recall; players remember the exact sequence of bets made

and the exact outcome of each die roll from both rounds. However, consider an imperfect recall

abstraction of DRP, DRP-IR, where at the beginning of the second round, both players forget their

first die roll and only know the sum of their two dice. In other words, any two histories are in the

same abstract information set of DRP-IR if and only if the sum of the player’s private dice is the

same and the sequence of betting is the same. DRP-IR has imperfect recall since histories that were

distinguishable in the first round (for example, a roll of 1 and a roll of 4) are no longer distinguishable

in the second round (for example, a roll of 1 followed by a roll of 5, and a roll of 4 followed by a

roll of 2).

6.2 CFR with Imperfect Recall

In this section, we investigate the application of CFR to games with imperfect recall. We begin by

showing that CFR minimizes regret for a class of games that we call well-formed games. We then

present a bound on the average regret for a more general class of imperfect recall games that we call

skew well-formed games.

6.2.1 Well-formed Games

For extensive-form games Γ = 〈N,H,P, σc, u, I〉 and Γ̆ = 〈N,H,P, σc, u, Ĭ〉, we say that Γ̆ is a

perfect recall refinement of Γ if Γ̆ has perfect recall and Γ is an abstraction of Γ̆. The information

available to players in Γ̆ is never forgotten, and is at least as informative as the information available

to them in Γ. For example, DRP is a perfect recall refinement of DRP-IR. Every game has at least

one perfect recall refinement by simply making Γ̆ a perfect information game by choosing Ĭ = {h}

for all Ĭ ∈ Ĭi. Furthermore, a perfect recall game is a perfect recall refinement of itself. For I ∈ Ii,

we define

P̆(I) = {Ĭ | Ĭ ∈ Ĭi, Ĭ ⊆ I}

to be the set of all information sets in Ĭi that are subsets of I . Note that our notion of refinement

is similar to the one described by Kaneko and Kline [46]. Our definition differs in that we consider

any possible refinement, whereas Kaneko and Kline consider only the coarsest such refinement.

We now define a well-formed game. Intuitively, a game is well-formed if for each information

set I ∈ Ii, the structures around each Ĭ , Ĭ ′ ∈ P̆(I) of some perfect recall refinement are isomorphic

across four conditions. Recall that X(h) is the sequence of information set, action pairs leading

to history h, as defined in Section 2.1.1. In addition, recall that ZI is the set of terminal histories

containing a prefix in the information set I , and that z[I] is that prefix. Note that z[I] is well-defined

by equation (6.1).
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Definition 6.1. For a game Γ and a perfect recall refinement Γ̆, we say that Γ is a well-formed game

with respect to Γ̆ if for all i ∈ N , I ∈ Ii, Ĭ , Ĭ ′ ∈ P̆(I), there exists a bijection φ : ZĬ → ZĬ′ and

constants kĬ,Ĭ′ , `Ĭ,Ĭ′ ∈ [0,∞) such that for all z ∈ ZĬ :

(i) ui(z) = kĬ,Ĭ′ui(φ(z)),

(ii) πc(z) = `Ĭ,Ĭ′πc(φ(z)),

(iii) In Γ, X−i(z) = X−i(φ(z)), and

(iv) In Γ, Xi(z[Ĭ], z) = Xi(φ(z)[Ĭ ′], φ(z)).

We say that Γ is a well-formed game if it is well-formed with respect to some perfect recall refine-

ment.

Conditions (i) and (ii) state that the corresponding utilities and chance frequencies at each terminal

history are proportional. Condition (iii) asserts that the opponents can never distinguish the corre-

sponding histories at any point in Γ. Finally, condition (iv) states that player i cannot distinguish

between corresponding histories from Ĭ and Ĭ ′ until the end of the game.

Consider again DRP as a perfect recall refinement of DRP-IR. In DRP, the available actions

are independent of dice outcomes, and the final utilities are only dependent on the final sum of the

players’ dice. Therefore, in DRP the utilities are equivalent between, for example, the terminal

histories where player i rolled a 1 followed by a 5, and the terminal histories where player i rolled

a 4 followed by a 2 (condition (i)). In addition, the chance probabilities of reaching each terminal

history are equal (condition (ii)). Furthermore, the opponents can never distinguish between two

isomorphic histories since player i’s rolls are private (condition (iii)). Finally, in DRP-IR, player

i never remembers the outcome of the first roll from the second round on (condition (iv)). Thus,

DRP-IR is well-formed with respect to DRP, with constants kĬ,Ĭ′ = `Ĭ,Ĭ′ = 1.

Any perfect recall game is well-formed with respect to itself since P̆(I) = {I}, φ equal to the

identity bijection, and kĬ,Ĭ′ = `Ĭ,Ĭ′ = 1 satisfies Definition 6.1. However, many imperfect recall

games are also well-formed, with DRP-IR being one example.

We now show that CFR can be applied to any well-formed game to minimize regret. A sketch

of the proof is described below, while a full proof is provided in Appendix D.

Theorem 6.1. If Γ is well-formed with respect to Γ̆, then the average regret in Γ̆ for player i when

using CFR in Γ is bounded by
R̆Ti
T
≤

∆iK
√
|A(Ii)|√
T

,

where K =
∑
I∈Ii maxĬ,Ĭ′∈P̆(I) kĬ,Ĭ′`Ĭ,Ĭ′ .

Proof sketch. One can show that conditions (i) to (iv) of Definition 6.1 imply that the positive

regrets are proportional between any two information sets in Γ̆ that are merged in the well-formed
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game, Γ. In other words, for all I ∈ Ii, Ĭ , Ĭ ′ ∈ P̆(I), and a ∈ A(I),

RT,+i (Ĭ , a) = kĬ,Ĭ′`Ĭ,Ĭ′R
T,+
i (Ĭ ′, a).

Since regrets between Γ and Γ̆ are additive, i.e.,

RTi (I, a) =
∑

Ĭ∈P̆(I)

RTi (Ĭ , a) for all I ∈ Ii,

the proportionality implies that minimizing regret at each I ∈ Ii minimizes regret at each Ĭ ∈ Ĭi.

Because Γ̆ has perfect recall, applying Theorem 2.3 gives the result. �

Since the strategy space is more expressive in Γ̆ than in Γ (Σ ⊆ Σ̆), RTi ≤ R̆Ti and thus it

immediately follows that the average regret in Γ is minimized. In the case when Γ has perfect recall,

because Γ is well-formed with respect to itself, Theorem 6.1 withK = |Ii| is a direct generalization

of the original CFR bound [75, Theorem 4]. Note that unlike Theorem 2.4, we cannot incorporate the

M -value of the game Γ into the bound of Theorem 6.1 since the M -value may not be well-defined

in an imperfect recall game. Nonetheless, Theorem 6.1 not only guarantees regret minimization for

perfect recall games, but also for well-formed imperfect recall games.

6.2.2 Skew Well-formed Games

We now present a generalization of well-formed games to which a regret bound can still be derived.

Definition 6.2. For a game Γ and a perfect recall refinement Γ̆, we say that Γ is a skew well-formed

game with respect to Γ̆ if for all i ∈ N , I ∈ Ii, Ĭ , Ĭ ′ ∈ P̆(I), there exists a bijection φ : ZĬ → ZĬ′

and constants kĬ,Ĭ′ , δĬ,Ĭ′ , `Ĭ,Ĭ′ ∈ [0,∞) such that for all z ∈ ZĬ :

(i)
∣∣∣ui(z)− kĬ,Ĭ′ui(φ(z))

∣∣∣ ≤ δĬ,Ĭ′ ,
(ii) πc(z) = `Ĭ,Ĭ′πc(φ(z)),

(iii) In Γ, X−i(z) = X−i(φ(z)), and

(iv) In Γ, Xi(z[Ĭ], z) = Xi(φ(z)[Ĭ ′], φ(z)).

We say that Γ is a skew well-formed game if it is skew well-formed with respect to some perfect

recall refinement.

The only difference between Definitions 6.1 and 6.2 is in condition (i). While utilities must be

exactly proportional in a well-formed game, in a skew well-formed game they must only be pro-

portional up to a constant δĬ,Ĭ′ . Note that any well-formed game is skew well-formed by setting

δĬ,Ĭ′ = 0.

For example, consider a new version of DRP called Skew-DRP(δ) with slightly modified pay-

outs at the end of the game. Whenever the game reaches a showdown, player 1 receives a bonus
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Table 6.1: DRP game sizes, where A = {(I, a) : i ∈ N, I ∈ Ii, a ∈ A(I)} is the set of all
information set, action pairs in the game.

Game |A| Savings
Skew-DRP(δ) 2610 —

Skew-DRP-IR(δ) 860 67.05%

δ times the number of chips in the pot from player 2 if player 1’s second die roll was even; other-

wise, no bonus is awarded. The pot is then awarded to the player with the highest dice sum as usual.

Analogously, define Skew-DRP-IR(δ) to be the imperfect recall abstraction of Skew-DRP(δ) where

in the second round, players only remember the sum of their two dice. Now, Skew-DRP-IR(δ) is

not well-formed with respect to Skew-DRP(δ). To see this, note that the utilities resulting from the

rolls 1,5 and the rolls 4,2 and the same sequence of betting are not exactly proportional because the

second roll 5 is odd but 2 is even (utilities are off by δ times the pot size). However, Skew-DRP-

IR(δ) is skew well-formed with respect to Skew-DRP(δ) with δĬ,Ĭ′ = δ times the maximum pot size

attainable from I .

Unfortunately, there is no guarantee that regret will be minimized by CFR in a skew well-formed

game. However, we can still bound regret in a predictable manner according to the degree in which

the utilities are skewed:

Theorem 6.2. If Γ is skew well-formed with respect to Γ̆, then the average regret in Γ̆ for player i

when using CFR in Γ is bounded by

R̆Ti
T
≤

∆iK
√
|A(Ii)|√
T

+
∑
I∈Ii

|P̆(I)|δI ,

where K =
∑
I∈Ii maxĬ,Ĭ′∈P̆(I) kĬ,Ĭ′`Ĭ,Ĭ′ and δI = maxĬ,Ĭ′∈P̆(I) δĬ,Ĭ′`Ĭ,Ĭ′ .

The proof is similar to that of Theorem 6.1 and can be found in Appendix D. Theorem 6.2 shows

that as T approaches infinity, the bound on our regret approaches
∑
I∈Ii |P̆(I)|δI . Our experiments

in Section 6.3 demonstrate that as the skew δ grows, so does our regret in Skew-DRP-IR(δ) after a

fixed number of iterations.

6.2.3 Remarks

Theorems 6.1 and 6.2 are, to our knowledge, the first results to provide theoretical guarantees in

imperfect recall settings. However, these results are also relevant with regards to regret in the full

game when CFR is applied to an abstraction. Recall that if Γ has perfect recall, then Γ is a perfect

recall refinement of any (skew) well-formed abstract game. Thus, if we choose an abstraction that

yields a (skew) well-formed game, then applying CFR to the abstract game achieves a bound on the

average regret in the full game, Γ. This is true regardless of whether the abstraction exhibits perfect

recall or imperfect recall. Previous counterexamples show that abstraction in general provides no
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Figure 6.1: Sum of average positive regrets for both players, (R̆T,+1 +R̆T,+2 )/T , as iterations increase
for DRP, DRP-IR, and Skew-DRP-IR(δ). Both figures are log-log plots.

guarantees in the full game [72]. In contrast, our results show that applying CFR to an abstract

game leads to bounded regret in the full game, provided we restrict ourselves to (skew) well-formed

abstractions. If such an abstract game is much smaller than the full game, a significant amount of

memory is saved when running CFR. This suggests that when using abstraction, we should construct

an abstract game that is (skew) well-formed whenever possible to guarantee regret minimization in

the original, larger game.

Unfortunately, the poker abstractions for Texas hold’em described in Section 3.4.2 and used

throughout this dissertation are neither well-formed nor skew well-formed with respect to the origi-

nal game. Much of the complication arises from cards being dealt without replacement. This allows

players to infer a small amount of information about the opponents’ hands from their own private

cards. Many of our card abstractions are of the form IR169/X/Y/Z where information about the play-

ers’ starting hands may be forgotten on later rounds. This information could be (mildly) retained by

an opponent, breaking condition (iii) of Definitions 6.1 and 6.2. Furthermore, some of this informa-

tion could be re-remembered on future rounds depending on well or how poorly the additional board

cards play with the private cards, breaking condition (iv). We leave further analysis of the imperfect

recall abstractions that we use for poker as future work.

6.3 Experiments

To complement our theoretical results, we run CFR in both DRP and Skew-DRP-IR(δ) for various

skews δ and measure the sum of the average positive regrets for both players in the perfect recall

refinements DRP and Skew-DRP(δ) respectively. As shown in Table 6.1, Skew-DRP-IR(δ) abstracts

Skew-DRP(δ) to roughly 33% of the size of Skew-DRP(δ). Note that Skew-DRP(δ) is the same size

as DRP (Skew-DRP(0)) regardless of the skew, and recall that CFR requires space linear in the size

of the game.
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For ease of implementation, our experiments use Chance Sampling MCCFR (CS) described

in Section 2.2.3. Firstly, Figure 6.1a compares the rate of regret minimization for CS applied to

DRP to that applied to DRP-IR. In addition to the savings in memory provided by DRP-IR over

DRP, regret is also less in DRP-IR than in DRP at any given time. This is reflected in Theorem

6.1. Since DRP-IR contains fewer information sets than DRP, the constant K in Theorem 6.1 is

smaller for DRP-IR, suggesting fewer iterations are required in DRP-IR to reach a given solution

quality. Secondly, we measure the sum of the average positive regrets attained in Skew-DRP-IR(δ)

for δ ∈ {0, 0.05, 0.2, 0.8}. These regrets are reported in Figure 6.1b. We see that as δ increases,

so does the regret as predicted by Theorem 6.2, though
∑
I∈Ii

∣∣∣P̆(I)
∣∣∣ δI appears to be a very loose

bound on the final regret.

6.4 Discussion

Well-formed games are described by four conditions provided in Definition 6.1. Recall that Koller

and Megiddo [48] prove that determining a player’s guaranteed payoff in an imperfect recall game

is NP-complete. However, Koller and Megiddo’s NP-hardness reduction creates an imperfect recall

game that breaks conditions (i), (iii), and (iv) of Definition 6.1. In this section, we discuss the

following question: for minimizing regret, how important is it to satisfy each individual condition

of Definition 6.1?

Skew well-formed games and Theorem 6.2 show that one can relax condition (i) of Definition

6.1 and still derive a bound on the average regret. In addition, Waugh et al. [73] use imperfect recall

abstractions of Texas hold’em that do not satisfy condition (iii), but CFR still produces reliable

solutions. This suggests that it may be possible to relax condition (iii) in a similar manner to the

relaxation of condition (i) introduced by skew well-formed games. While we leave this question

open, we now demonstrate that breaking condition (iii) can lead CFR to a dead-lock situation where

one player has constant average regret.

Let us walk through the process of applying CFR to the game in Figure 6.2a. Note that this game

satisfies all of the conditions of Definition 6.1, except for condition (iii) as player 2 can distinguish

information forgotten by player 1. To begin, the current strategy profile σ1 is set to be uniform

random at every information set. Under this profile, when player 1 is at I3, each of the four histories

are equally likely. Thus, vi(I3, σ1
(I3→l)) = vi(I3, σ

1
(I3→r)) = vi(I3, σ

1) = 0, and so r1
1(I3, l) =

r1
1(I3, r) = 0. Similarly, under σ1, the counterfactual value of the pass (p) and continue (c) actions

at both I1 and I2 are zero, and thus the counterfactual regrets at I1 and I2 on iteration 1 are also

zero. Player 2, however, has positive counterfactual regret for passing at histories ac and ec (to

always receive ξ utility) and for continuing at bc and de (to always avoid receiving −ξ utility), and

has negative counterfactual regret for continuing at ac and ec and for passing at bc and de. Therefore,

the next profile σ2 still has player 1 playing uniformly random everywhere, but player 2 now always
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Figure 6.2: (a) A zero-sum game with imperfect recall where CFR does not minimize regret. The
utilities for player 1 are given at the terminal histories, where ξ ∈ (0, 1). (b) A single player game
with imperfect recall where CFR does not minimize regret. In both games, nodes connected by a
bold, dashed curve are in the same information set for player 1.

passes at ac and ec, and always continues at bc and dc. On the second iteration of CFR, the positive

regrets for player 1 at I3 remain the same because the histories bcc and dcc are equally likely. Also,

player 2’s positive regrets remain the same at all four information sets in I2. However, player 1’s

expected utility for continuing at I1 or I2 is now negative since player 2 now passes at ac and ec,

and player 1 gains positive regret for passing at both I1 and I2. This leads us to the next profile

σ3 = {(I1, p) = 1, (I2, p) = 1, (ac, p) = 1, (bc, p) = 0, (dc, p) = 0, (ec, p) = 1, (I3, l) = 0.5}.

One can check that running CFR for more iterations yields σt = σ3 for all t ≥ 3. The average regret

for playing this way will be constant and hence does not approach zero because player 1 would

rather play σ′1 = {(I1, p) = 1, (I2, p) = 0, (I3, l) = 0} and get u1(σ′1, σ
3
2) = (1 − ξ)/4 > u1(σ3)

for ξ ∈ (0, 1). A similar example where condition (iii) holds, but chance’s probabilities are not

proportional (breaking condition (ii)) is given in Figure 6.2b. Here, CFR never plays anything but

uniform random at both information sets. However, this strategy is strictly worse than an optimal

strategy that always takes action l at both information sets.

Despite the problems of breaking conditions (ii) or (iii), condition (iv) of Definition 6.1 can be

relaxed. Rather than enforcing player i’s future information to be the same across the bijection φ,

we only require that the corresponding subtrees be isomorphic, allowing player i to re-remember

information that was previously forgotten. The details for this relaxation are in Appendix D. It is

not clear, however, that this relaxation is possible in skew well-formed games, nor does it seem to

provide any practical advantage.

6.5 Conclusion

This chapter has provided the first set of theoretical guarantees for CFR in imperfect recall games.

We defined well-formed and skew well-formed games and provided bounds on the average regret
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that results from applying CFR to such games. In addition, our theory shows that we can achieve low

average regret in a full, perfect recall game when employing CFR on an abstract version of the game,

provided the abstract game is skew well-formed (with or without imperfect recall). Our experiments

in DRP, DRP-IR, and Skew-DRP-IR(δ) confirm these theoretical results. Unfortunately, our theory

developed here does not directly inform us about the quality of solutions generated by CFR when

employing the abstractions for Texas hold’em described in Section 3.4.2.
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Chapter 7

Strategy Stitching

As described in Section 2.4 and used throughout this dissertation, abstraction is often employed

to tackle large extensive-form games that would otherwise be infeasible for CFR or other strategy

computation techniques. Typically, and as evidenced by Figure 4.7a, strategies for the abstract

game perform better in the real game as the granularity of abstraction is increased. For very large

games, however, these abstractions need to be quite coarse, leaving many different information sets

indistinguishable. In hold’em, this becomes problematic as the number of players increases; even

just three-player limit hold’em has over 1000 times more information sets than two-player limit

hold’em. Under current hardware with fixed memory limitations, card abstractions must resort to

much fewer buckets in three-player hold’em than in the two-player game. On the other hand, if we

partition the full game into smaller subtrees, strategies for the subtrees can be computed in much

finer abstractions. Such expert strategies can then be pieced together, typically connecting to a base

strategy computed in the full coarsely-abstracted game. As described in Chapter 1, we refer to this

procedure as strategy stitching.

Strategy grafting [71], described in Section 2.4.1, is an example of strategy stitching. In strategy

grafting, we convert a subset of one player’s information sets into chance nodes and assign chance

probabilities according to a precomputed base strategy. Other examples include the approaches

used to construct PsOpti [5] and heads-up experts [3] in hold’em outlined in Section 3.5.4. Here,

some of not just one, but of every player’s information sets were converted to chance nodes to

reduce the size of the games. As opposed to strategy grafting, a potential disadvantage of these two

approaches is that the experts make assumptions about the other agents’ strategies. In addition, for

all of these approaches, computing the base strategy and the experts separately could suffer from loss

of cohesion among the different components. In other words, if strong play requires coordination

among the base strategy and the experts, then computing the different strategies in isolation could

be detrimental.

In this chapter, we investigate stitched strategies in extensive-form games, focusing on the trade-

offs between the sizes of the abstractions versus the assumptions made and the cohesion among the

computed strategies. We define two strategy stitching techniques: (i) static experts that are computed
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in very fine abstractions with varying degrees of assumptions and little cohesion, and (ii) dynamic

experts that are contained in abstractions with lower granularity, but make fewer assumptions and

have perfect cohesion. This chapter generalizes previous strategy stitching efforts [3, 5, 71] under the

more general static expert framework. We demonstrate in hold’em that, despite recent mixed results,

static experts can create much stronger overall agents than the base strategy alone. Furthermore, we

show that under a fixed memory limitation, a specific class of static experts are preferred to several

alternatives because of the increase in granularity of abstraction allowed by the static approach. The

techniques described in this chapter have been used to construct winning three-player limit Texas

hold’em agents at the Annual Computer Poker Competition and is joint work with Duane Szafron

[27].

7.1 Static Experts

As we just discussed, a natural approach to achieve abstractions with finer granularity is to break the

game up into subtrees, abstract each of the subtrees independently, and compute a strategy for each

abstract subtree. We now introduce a formalism for doing so that generalizes strategy grafting from

Section 2.4.1 and the two poker-specific methods described in Section 3.5.4. First, select a subset

S ⊆ N of players. Secondly, for each i ∈ S, compute a base strategy σi for playing the full game

using any strategy computation technique, such as CFR. Next, for each i ∈ S, choose a grafting

partition Gi as given by Definition 2.7 so that each partition has an equal number of parts p. Then,

compute a strategy, or static expert, for each subtree. Again, this can be done using CFR or any

other appropriate method. Finally, since the subtrees are disjoint, create a static expert strategy by

combining the static experts without any overlap to the base strategy in the undivided game. This

process is outlined in the definition below:

Definition 7.1. Let S ⊆ N be a nonempty subset of players. For each i ∈ S, let σi be a strategy for

player i and Gi = {Gi,0, Gi,1, ..., Gi,p} be a grafting partition for player i. For j ∈ {1, 2, ..., p},

let Γj be the extensive-form game derived from the original game Γ where, for all i ∈ S and

h ∈ Hi\Gi,j , we set P (h) = c and σc(h, a) = σi(h, a). That is, each player i ∈ S only controls

actions for histories in Gi,j and is forced to play according to σi elsewhere. Let the static expert of

{Gi,j | i ∈ S}, σj , be a strategy profile of the game Γj . Finally, define the static expert strategy for

player i, σSi , as

σSi (I(h), a) =

{
σi(I(h), a) if h ∈ Gi,0
σji (I(h), a) if h ∈ Gi,j .

We call {σi | i ∈ S} the base strategies and {Gi | i ∈ S} the grafting profile for the static expert

strategy σSi .

An illustrative summary of this process has already been provided in Section 2.4.1 by Figure 2.9.

Figure 7.1 shows an example of a game Γj from Definition 7.1, where S = N and j ∈

{1, 2, ..., p}. This may be the only subtree for which static experts are computed (j = p = 1),
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Figure 7.1: An example of a game Γj for a static expert derived from the game Γ in Figure 2.2. Here,
S = {1, 2}, G1,j = ∅, and G2,j = {al, bl, dl}. All of player 1’s actions are decided by the base
strategy σ1, computed beforehand. If player 1 takes action r, the base strategy σ2 controls player
2’s actions.

or there could be more subtrees contained in the grafting partitions (p > 1). Under a fixed memory

limitation, we can employ finer abstractions for the subtrees Γj than we can in the full game Γ. This

is because Γj removes some of the information sets belonging to players in S, freeing up memory

for computing strategies on the subtrees.

Figure 7.2 provides another example of an extensive-form game Γj for some j ∈ {1, 2, ..., p},

this time derived from three-player Kuhn Poker shown in Figure 3.1. Here, S = {1, 3} and we

have chosen G1,j = {h ∈ H1 | akb v h for some a ∈ A(∅)} and G3,j = {h ∈ H3 | akb v

h for some a ∈ A(∅)}, where A(∅) is the set of all of chance’s actions at the root of the game. The

action probabilities for players 1 and 3 are fixed to the corresponding base strategies outside of the

subtrees following a check (k) from player 1 and a bet (b) from player 2. Player 2, however, is

unrestricted throughout the entire game. We call this a kb static expert game for three-player Kuhn

Poker with S = {1, 3}.

When |S| = 1, the static expert approach is identical to strategy grafting given by Definition 2.8,

with the exception that each static expert need not be an approximate Nash equilibrium. We relax

the definition for static experts because Nash equilibria are difficult to compute in games with more

than two players, and may not be the best solution concept outside of zero-sum games anyways.

In addition, setting S = N captures the expert construction processes from Section 3.5.4 of both

Billings et al. in the PsOpti agents [5], and of Abou Risk and Szafron in three-player limit hold’em

[3]. Following the naming convention for the three-player Kuhn expert game above, the seven post-
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Figure 7.2: The kb static expert game for three-player Kuhn Poker with S = {1, 3} derived from
Figure 3.1.

flop models for PsOpti are ck, crc, crrc, crrrc, rc, rrc, and rrrc static experts for two-player limit

hold’em with S = N , where c denotes a call and r denotes a raise. The pre-flop model of PsOpti is

used as a base strategy for the experts. As for the six heads-up experts in three-player limit hold’em,

they are f , cf , rf , crf , rcf , and rrf static experts with S = N , where f denotes a fold. However,

Abou Risk and Szafron did not define the new chance probabilities σc(h, a) according to the base

strategy used to play the rest of the game. Instead, they tested alternatives including a uniform

random policy and distributions suggested by poker professionals.

Choosing |S| > 1 is potentially dangerous because we fix opponent probabilities and assume

that our opponents are static at certain locations. For example, in Figure 7.2, it may not be wise for

player 3 to assume that player 1 must follow σ1 at the start of the round. Doing so can dramatically

skew player 3’s beliefs about the card held by player 1 and hurt the static expert’s performance

against opponents that do not follow σ1. As we will see in Section 7.3, |S| > 1 can result in a more

exploitable static expert strategy compared to |S| = 1.

On the other hand, by removing information sets for multiple players, the static expert approach

results in fewer remaining information sets than strategy grafting does under the same set of grafting

partitions. This can be seen by comparing the static expert game in Figure 7.1 with S = N that

contains three information sets, versus the static expert game in Figure 2.10 with S = {2} that

contains five information sets. As a result, in larger games, we can employ even finer abstractions

90



within the subtrees. Section 7.3 later shows that despite the risks, the abstraction gains often lead to

static experts with S = N being preferred.

Regardless of the choice of S, the base strategy lacks cohesion with the static experts since the

base strategy is computed prior to the existence of any experts. The base strategy may want to play

towards the expert subtrees more often to increase utility. This observation motivates our next type

of expert.

7.2 Dynamic Experts

While static experts are computed separately from a base strategy, dynamic experts are computed

concurrently with a base. The full extensive-form game is divided into subtrees and each subtree

is supplied its own abstraction. We then compute a strategy profile across all abstract subtrees,

once again using any strategy computation technique desired. Our definition below is somewhat

redundant to abstraction given in Definition 2.6 as we simply define a new abstract game derived

from multiple, different abstractions. Nonetheless, we supply the definition below to provide the

terms in bold that we will use throughout the remainder of this dissertation.

Definition 7.2. Let α0, α1, ..., αp be abstractions for the game Γ and for each i ∈ N , let Gi =

{Gi,0, Gi,1, ..., Gi,p} be a grafting partition for player i in Γ such that each abstract information set

is contained entirely in some part of the grafting partition. In other words, for all j ∈ {0, 1, ..., p}

and I ∈ αj,Ii , either I∩Gi,j = ∅ or I ⊆ Gi,j . Let Γ′ be the dynamic expert abstract game obtained

from Γ by replacing Ii with
⋃p
j=0{I ∈ α

j,I
i | I ⊆ Gi,j} andA(h) with αj,Ai (h) when P (h) = i and

h ∈ Gi,j , for all i ∈ N . Let the dynamic expert strategy for player i, σ′i, be a strategy for player i

of the game Γ′. Finally define the dynamic expert of Gi,j , σ
j
i , to be σ′i restricted to the histories in

Gi,j , σ′i|Gi,j . The abstraction α0 is denoted as the base abstraction and the dynamic expert σ0
i is

denoted as the base strategy.

An illustrative summary of this process is provided in Figure 7.3. The only difference between this

process and the common procedure for computing a strategy profile outlined in Figure 2.7 is that we

use multiple abstractions, rather than just one, to create our abstract game.

Figure 7.4 contains a dynamic expert abstract game tree Γ′. Using a similar naming convention

used for static experts above, we call this an l dynamic expert because a finer-grained abstraction (the

null abstraction) is used after player 1 takes the l action. We can view a dynamic expert strategy as

a strategy computed in an abstraction with differing granularity dependent on the history of actions

taken.

Under memory constraints, a dynamic expert strategy can sacrifice abstraction granularity in

the base strategy to achieve finer granularity in the experts. We hope doing so achieves better

performance at parts of the game that we believe may be more important. For instance, importance
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Figure 7.3: An overview of the process for creating a dynamic expert strategy for playing a large
extensive-form game. We use different abstractions for different histories according to a partition of
the game tree containing exactly p+ 1 parts (not shown).

could depend on the predicted relative frequencies of reaching different subtrees, or on the predicted

relative utilities of the subtrees. Compared to static experts, the base strategy of a dynamic expert

profile has reduced abstraction granularity to guarantee perfect cohesion between the base and the

experts; the base strategy knows about the experts and can calculate its probabilities dynamically

during strategy computation based on the feedback from the experts. In Section 7.3, we contrast

static and dynamic experts to compare this trade-off between abstraction size and strategy cohesion.

7.3 Experiments

In this section, we create several stitched strategies in both Leduc and hold’em, using Chance Sam-

pling MCCFR (CS) for strategy computation. While previous experiments in Chapter 5 were con-

cerned with the time-efficiency of different algorithms, here we only restrict our resources in terms

of memory. Recall that Leduc, defined in Section 3.3, is a small poker game played with a six

card deck over two betting rounds. Even though Leduc is small enough to not necessitate strategy

stitching, we conduct experiments in Leduc to further evaluate our hypothesis that static experts

with S = N can improve play, and to compare the performances of static, grafted, and dynamic

experts. For the remainder of this chapter, grafted experts refer to our static experts with S = {i}; in

other words, our three-player grafted experts are simply computed using CS and are not necessarily

approximate Nash equilibria of the corresponding expert games.

To be consistent with post-flop models [5] and heads-up experts [3], our grafting partitions are

defined only in terms of the players’ actions. To formalize the naming convention used in the

previous sections, for each history h ∈ H , let d = d(h) be the subsequence of h obtained by
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Figure 7.4: An example of a dynamic expert abstract game Γ′ derived from the game Γ in Figure
2.2 and an alternative to the abstraction in Figure 2.8. Here, p = 1, α1 is the null abstraction,
and G2,1 = {al, bl, dl}. The base abstraction merges players’ information sets into one abstract
information set each.

removing all actions generated by chance. For a fixed sequence of actions d, we refer to a d expert

for player i as an expert constructed for the subtree Gi(d) = {h ∈ Hi | d v d(h)} containing all

histories where the players initially follow d.

We test two types of abstraction, symmetric and asymmetric, to employ within each expert j.

Neither type employs any action abstraction. For a base abstraction α0, a symmetric abstraction

for expert j, αj , is such that for every player i, αji has higher granularity than α0
i within the

expert subtree. In particular, our symmetric abstractions use the same card bucketing scheme for all

players. On the other hand, an asymmetric abstraction for expert j, αj , only increases granularity

within the subtree for a single player i′ so that αj,Ii = α0,I
i for all i 6= i′. By only increasing the

abstraction size for the player whose strategy we are after, our strategy can be more diverse than

with symmetric abstractions under a fixed memory limitation. This is at the cost of being computed

against opponent(s) in a coarse abstraction. For both symmetric and asymmetric abstractions, we

leave the rest of the game that is outside of the expert subtree in the base abstraction α0.

7.3.1 Leduc

Our Leduc experiments use three different perfect recall base abstractions for three corresponding

base strategies. The first is simply the null abstraction where all cards can be distinguished from

one another in both rounds. The second and third abstractions are the JQ-K and J-QK abstractions

that, on the pre-flop, cannot distinguish between whether the private card is a Jack or Queen, or

whether the private card is a Queen or King respectively. In addition, these two abstractions can only

93



distinguish between whether the flop card pairs with the private card or not rather than knowing the

identity of the flop card. Because Leduc is such a small game, we do not consider a fixed memory

restriction and instead just compare the techniques within the same base abstraction. This also

helps us better compare how much the static experts lose through lack of cohesion compared to the

dynamic experts.

For each position in both two-player and three-player Leduc and for each of the three base

abstractions, we build a base strategy, two dynamic expert strategies, two grafted strategies, and

four static expert strategies with S = N . For two-player Leduc, we consider four expert subtrees: b,

kb, kk/b, and kk/kb, where again k denotes the check action, b denotes the bet action, and / indicates

a new betting round. We consider two types of static expert strategies. The Pre-flop static expert

strategies only use the b and kb experts, whereas the All strategies use all four experts. Each of the

dynamic and grafted strategies also employ all four experts. For three-player Leduc, we consider b,

kb, kkb, kkk/b, kkk/kb, and kkk/kkb expert subtrees. The dynamic, grafted, and All static strategies

use all six experts, whereas the Pre-flop static strategies use just the b, kb, and kkb experts. The

null abstraction is employed on every expert subtree, either symmetrically or asymmetrically. All

strategies are built from 100 million iterations of CS, which for full, unabstracted two-player Leduc

converges to an ε-Nash equilibrium with ε less than one milli-ante per game.

Each strategy is evaluated against all combinations and orderings of opponent strategies, where

the set of opponents is the set of all strategies that use a different base abstraction. The scores

are then averaged across all of these opponents. For example, for each of our two-player strategy

profiles σ in the JQ-K base abstraction, we compute 1/2(u1(σ1, σ
′
2) + u2(σ′1, σ2)), averaged over

all profiles σ′ that use either the null or J-QK base abstraction. Leduc is a small enough game

that the expected utilities can be computed exactly. These scores, along with two-player real-game

exploitability values as defined in Section 2.1, are reported in Tables 7.1 and 7.2.

Firstly, the null base abstraction results demonstrate the value of cohesion between the base and

expert strategies. In two-player, the grafted strategy suffers no more exploitability than the base

strategy, which is guaranteed to converge to zero exploitability. Also, the Static.Preflop strategy

performs just as well as the base strategy and only takes a minor hit in exploitability, while the

Static.All strategy suffers slightly more in both measures. In three-player, the grafted strategy in the

null abstraction surprisingly earns at least 20 milli-antes per game more than the corresponding base

and static strategies. Overall, losing cohesion only hurts the grafted and static strategies by at most

a small amount.

Secondly, by increasing abstraction granularity, nearly all of the expert strategies in the JQ-K

and J-QK base abstractions earn more than the corresponding base strategy with no experts. Inter-

estingly, of the JQ-K and J-QK base abstractions, the JQ-K strategies are generally more effective

in two-player and the J-QK strategies are more effective in three-player. Within these two preferred
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Table 7.1: The size, earnings, and exploitability in the real game of the two-player Leduc strategies.
The sizes are measured in terms of the maximum number of information sets present within a single
run of CS. The reported earnings, as described in the text, and exploitability are in milli-antes per
game (ma/g).

Strategy Abstraction Type Size Earnings (ma/g) Exploitability (ma/g)
Null Base Abstraction

Base / Dynamic - 468 48 1
Grafted - 468 46 1

Static.All - 468 43 38
Static.Preflop - 468 48 9

JQ-K Base Abstraction
Base - 132 39 496

Dynamic symmetric 444 54 160
Grafted symmetric 226 47 168

Static.All symmetric 186 51 433
Static.Pre-flop symmetric 186 48 214

Dynamic asymmetric 288 -32 517
Grafted asymmetric 159 38 587

Static.All asymmetric 132 43 812
Static.Pre-flop asymmetric 132 51 643

J-QK Base Abstraction
Base - 132 -166 740

Dynamic symmetric 444 -8 124
Grafted symmetric 226 -35 332

Static.All symmetric 186 -89 609
Static.Pre-flop symmetric 186 -48 335

Dynamic asymmetric 288 -47 631
Grafted asymmetric 159 -28 531

Static.All asymmetric 132 -112 1119
Static.Pre-flop asymmetric 132 -65 954

abstractions, static expert strategies earn more overall than grafted strategies, despite the two-player

static strategies being more exploitable. The increased exploitability of the static strategies here is

not surprising, though, and is likely due to the static opponent assumptions with S = N described

earlier in Section 7.1. Despite requiring much less memory to compute, the J-QK static strategies

surprisingly earn more than the respective dynamic strategies in three-player Leduc. However, in the

less effective base abstractions, the static strategies do worse. This is likely because the base strategy

itself is poor and provides bad advice regarding the static opponent assumptions. Finally, we see that

only using the two pre-flop static experts as opposed to all four reduces the number of dangerous

assumptions to provide a less exploitable two-player strategy, and sometimes even a stronger overall

strategy. However, as expected, the dynamic and grafted strategies are safer in terms of this worst

case guarantee.
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Table 7.2: The size and earnings of the three-player Leduc strategies. The sizes are measured in
terms of the maximum number of information sets present within a single run of CS. The reported
earnings, as described in the text, are in milli-antes per game (ma/g).

Strategy Abstraction Type Size Earnings (ma/g)
Null Base Abstraction

Base / Dynamic - 6939 71
Grafted - 6939 91

Static.All - 6939 69
Static.Pre-flop - 6939 68

J-QK Base Abstraction
Base - 1890 -185

Dynamic symmetric 6903 -100
Grafted symmetric 3017 -126

Static.All symmetric 2145 -158
Static.Pre-flop symmetric 2145 -155

Dynamic asymmetric 3561 -134
Grafted asymmetric 1977 -145

Static.All asymmetric 1890 -163
Static.Pre-flop asymmetric 1890 -158

J-QK Base Abstraction
Base - 1890 -67

Dynamic symmetric 6903 105
Grafted symmetric 3017 100

Static.All symmetric 2145 107
Static.Pre-flop symmetric 2145 110

Dynamic asymmetric 3561 72
Grafted asymmetric 1977 60

Static.All asymmetric 1890 78
Static.Pre-flop asymmetric 1890 81

7.3.2 Hold’em

Our hold’em experiments enforce a fixed memory restriction per run of CS, which we artificially

set to 24 million information sets for two-player and 162 million information sets for three-player.

Throughout this section, we use the definitions and notations for hold’em abstractions outlined in

Section 3.4.2. We compute stitched strategies of each type using as many percentile E[HS2] buckets

as possible within the restriction. Our two-player abstractions use perfect recall and distribute the

buckets as close to uniformly as possible across the betting rounds. On the other hand, our three-

player abstractions, both for the base strategy and the experts, all use imperfect recall with 169

pre-flop buckets that are forgotten on later rounds. Our three-player base abstractions additionally

apply imperfect recall of buckets on all of the remaining rounds. As with the Leduc experiments, we

again consider both symmetric and asymmetric abstractions for each type of expert strategy. Note

that again, all of our strategies labelled Static are referring to static experts with S = N .

For two-player, our base strategy is contained in an 8s abstraction and is used to seed both our

static and grafted strategies. Our static expert Pre-flop strategy employs r and cr experts, where c
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Table 7.3: The abstraction sizes for the hold’em strategies. All abstractions use percentile E[HS2]
bucketing. Each two-player abstraction contains no more than 24 million information sets, while
each three-player abstraction contains no more than 162 million information sets.

Strategy Expert(s) Symmetric Abstraction Size Asymmetric Abstraction Size
Two-Player

Base - 8/8/8/8 -
Dynamic base 6/6/6/6 -
Dynamic r 10/9/9/9 11/11/11/10
Grafted r, cr 9/9/9/9 10/10/10/9
Grafted ck/b, ck/kb 15/15/14/14 16/16/16/15
Static r, cr 10/10/10/9 11/11/11/11
Static ck/b, ck/kb 16/16/16/15 19/19/19/18

Three-Player
Base - IR169/IR16/IR16/16 -

Dynamic base IR169/IR8/IR8/8 -
Dynamic f , rf , rrf , rcf IR169/90/9/9 IR169/121/11/11
Grafted f IR169/100/10/10 IR169/144/12/11
Grafted rf IR169/156/12/12 IR169/225/15/14
Grafted rrf IR169/196/13/13 IR169/272/16/16
Grafted rcf IR169/276/16/16 IR169/380/19/19
Static f IR169/169/13/12 IR169/240/15/15
Static rf IR169/256/16/16 IR169/361/19/19
Static rrf IR169/324/18/17 IR169/441/21/21
Static rcf IR169/441/21/21 IR169/625/25/25

denotes the call action and r denotes the raise action. Our grafted and static expert All strategies, on

the other hand, use r, cr, ck/b, and ck/kb experts, and our dynamic strategy has just an r expert.

These choices were based on preliminary experiments to make the most effective use of the limited

memory available for each stitching technique. Similar to Abou Risk and Szafron, our three-player

experts act only in subtrees after one player has folded. In particular, our static, grafted, and dynamic

strategies all have an expert for each of the sequences f , rf , rrf , and rcf , where f denotes the fold

action, as these appear to be the most commonly reached two-player scenarios [3, Table 4].

Our abstractions range quite dramatically in terms of number of buckets. For example, in three-

player, our dynamic strategy’s base abstraction has just 8 river buckets with 7290 river buckets for

each expert in the symmetric abstraction, whereas our static and grafted strategies have 16 river

buckets in the base abstraction with up to 390,625 river buckets for the static rcf expert in the

asymmetric abstraction. The size of each percentile E[HS2] abstraction is provided in Table 7.3.

All of the two-player base strategies and experts are built from 720 million iterations of CS, while

we run CS for 100 million and 5 billion iterations for the three-player base strategies and experts

respectively.

We evaluate our two-player strategy profiles by playing 500,000 duplicate hands (players play

both sides of the dealt cards) of poker between each pair of profiles. In addition to our base and
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Table 7.4: Earnings and 95% confidence intervals over 500,000 duplicate hands of two-player
hold’em per pairing. The real game exploitability of the strategies is also provided. All values
are in milli-big-blinds per game (mbb/g).

Strategy Abstraction Type Earnings (mbb/g) Exploitability (mbb/g)
Base - −8± 2 310

Base.797M - 33± 2 135
Dynamic symmetric −1± 2 308
Grafted symmetric −8± 2 301

Static.All symmetric −2± 2 288
Static.Pre-flop symmetric 0± 2 289

Dynamic asymmetric 0± 2 339
Grafted asymmetric −9± 2 316

Static.All asymmetric 0± 2 314
Static.Pre-flop asymmetric −1± 2 312

Table 7.5: Earnings and 95% confidence intervals over 500,000 triplicate hands of three-player
hold’em per combination. All values are in milli-big-blinds per game.

Strategy Abstraction Type Earnings (mbb/g)
Base - −9± 2

Hyperborean3p.IRO.2009 - −16± 2
Hyperborean3p.IRO.2010 symmetric 27± 1

Dynamic symmetric −2± 2
Grafted symmetric −2± 2
Static symmetric 5± 2

Dynamic asymmetric −3± 2
Grafted asymmetric −3± 3
Static asymmetric 4± 3

stitched strategies, we also included a base strategy profile called Base.797M in an abstraction with

over 797 million information sets that we expected to beat all of the strategies we were evaluat-

ing. Furthermore, using a specialized best response computation tool [44], we computed the ex-

ploitability of our two-player profiles. For three-player, we play 500,000 triplicate hands (each set

of dealt cards played six times, one for each of the player orderings) between each combination of

three strategy profiles. We also added to the pool of agents Hyperborean3p.IRO.2009 and Hyper-

borean3p.IRO.2010, the winners of the 2009 and 2010 Annual Computer Poker Competition instant

run-off events. Hyperborean3p.IRO.2009 is a base strategy in an IR16/IR16/IR16/16 abstraction,

whereas Hyperborean3p.IRO.2010 uses larger abstractions, static experts with S = N , and is de-

scribed in detail later in Chapter 8. The results are provided in Tables 7.4 and 7.5.

Firstly, we see that the two-player static and dynamic strategies outperform the grafted strate-

gies considerably, agreeing with the majority of the Leduc results. In fact, the grafted strategies fail

to even improve upon the base strategy, which is somewhat surprising. For three-player, the static

strategies are noticeably ahead of the dynamic and grafted strategies as the static strategies are the
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only competitors, aside from Hyperborean3p.iro.2010, to win money. By forcing one player to fold,

the static experts essentially reduce the size of the game tree from a three-player to a two-player

game, allowing many more buckets to be used. This result indicates that at least for poker, the gains

in abstraction bucketing outweigh the risks of static opponent action assumptions and lack of co-

hesion between the base strategy and the experts. Further support for the use of static experts with

S = N comes from the two-player exploitability results, where the static strategies are slightly less

exploitable in the real game than the grafted and dynamic strategies. However, the strategies com-

puted here are not necessarily the least exploitable strategies for the real game that can be represented

in the base and expert abstractions. Finding the least exploitable strategies is possible with CFR-BR

[42] described in Section 2.4, but is not pursued here. Notice that in hold’em, the choice of sym-

metric versus asymmetric abstractions appears to matter little in overall performance. However, in

two-player, all of the stitched strategies employing symmetric abstractions are less exploitable than

the base and the stitched strategies employing asymmetric abstractions. In summary, the symmetric

static expert strategies with S = N are most preferred in the experiments we ran.

7.4 Conclusion

In this chapter, we formalized two strategy stitching techniques for extensive-form games. The static

expert approach generalizes strategy grafting and some previous techniques used in poker, while

dynamic experts offer a new way of interpreting special abstractions that vary in quality across a

grafting profile. Despite the accompanying potential dangers and lack of cohesion, we have shown

static experts with S = N outperform the dynamic and grafted experts that we considered, especially

when memory limitations are present. However, additional static experts with several forced actions

can lead to a more exploitable strategy. Note that static and dynamic experts can also be combined

by, for example, using a dynamic expert strategy as a base for a set of static experts. In fact, both

static and dynamic experts have been used to construct winning three-player agents in the Annual

Computer Poker Competition. These agents are described in detail in the following chapter.
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Chapter 8

Results from Annual Computer
Poker Competitions

Throughout this dissertation, much of our empirical analysis has involved computing strategy pro-

files for abstractions of Texas hold’em and playing these strategies in mock poker matches. To

further validate our work, we have led the development of the CPRG’s three-player Texas hold’em

agents, nicknamed Hyperborean3p, that were entered in the 2010, 2011, 2012, and 2013 Annual

Computer Poker Competitions (ACPC) [4].

The ACPC is an international event that attracts entrants from top universities and hobbyists

from around the world. The competition aims to promote research and encourage new ideas and

algorithms for problems arising in poker, such as strategy computation and abstraction. There are

currently three games played in the ACPC: heads-up (two-player) limit, heads-up no-limit, and

three-player limit Texas hold’em. As described in Section 4.4.1, there are currently two winner

determination rules per game. Recall that the total bankroll (TBR) metric ranks agents by their

total average winnings across all opponents, whereas the instant runoff (IRO) metric determines the

winner by iteratively removing agents with the least earnings among the remaining competitors.

Each team may enter one unique agent per game and per winner determination rule.

While the ACPC was first held in 2006, the three-player hold’em events were not included until

2009. In this first year of the three-player competitions, the CPRG entered two different agents. For

the IRO event, the program entered was a strategy profile computed with Chance Sampling MCCFR

(CS). Recalling our abstraction notation from Section 3.4.2, an IR16/IR16/IR16/16 percentile hand

strength squared abstraction was used. For TBR, a static expert profile with S = N , as described

in Section 7.1, was used that employed a 5s-sized abstraction for the experts and the IRO profile for

the base [3]. While both entries won their respective divisions, these two agents are no match for

the new agents that we present here.

In this chapter, we provide specific details of each three-player agent that we entered into the

ACPC for the 2010, 2011, 2012, and 2013 competitions. These agents were developed jointly with

the CPRG and were designed and generated primarily by the author of this dissertation. A summary

100



of the results from the ACPC for each of these four years is also provided. Finally, we present a

mock five-agent tournament consisting of the CPRG’s top three-player entrants from each of the

past five years of the ACPC. The results of this mock tournament demonstrate yearly improvement

in our champion three-player poker agents.

8.1 2010

For the 2010 competition, similar to the TBR agent from 2009, we constructed two static expert strat-

egy profiles as defined in Section 7.1, one for our IRO agent and one for our TBR agent. Both agents

used the same base strategy profile, which itself was a dynamic expert profile as defined in Section

7.2. For this base strategy, the nonterminal histories were partitioned into two parts according to the

number of players, zero or one, that had folded. For each part, an IR169/IR900/IR100/25-sized ab-

straction was employed. Flop and turn bucketing, as described in Section 3.4.2, was performed using

k-means clustering over earth mover’s distance, while river bucketing used percentile hand strength.

Note that up to suit isomorphisms, there are exactly 169 different pre-flop deals of two private cards,

and so essentially no abstraction is employed during the pre-flop. The only difference between the

abstractions for the two parts was that the “zero-players-folded” part defined hand strength for earth

mover’s distance and percentile bucketing as the probability that the given hand wins against two

random opponent hands in a showdown. The “one-player-folded” part used hand strength as the

probability of winning against a single random hand as we defined it to be in Section 3.4.2. In

hindsight, this special three-player hand strength that we defined over the zero-players-folded part

had no significant benefit in practice and was abandoned in later competitions. This base profile was

computed from 70 million iterations of CS. We note here that all of our competition strategies and

experts from 2010, 2011, and 2012 use the average strategy computed by the MCCFR algorithms

rather than the current strategy. Only our 2013 agent uses the current strategy. Our positive results

regarding the current strategy in Chapter 4 were not discovered until after the 2012 competition.

Each of our static expert profiles consisted of our base strategy profile and four static ex-

perts with S = N , one for each of the betting sequences f , rf , rrf , and rcf , where f

denotes fold, c denotes call, and r denotes raise. All of these experts employed the same

IR169/IR60,000/IR180,000/26,160-sized abstraction. Here, flop, turn, and river bucketing was per-

formed by first partitioning all possible card deals into 20 parts for the flop and 60 parts for the

turn and river according to a similarity metric on just the public community cards as described by

Waugh et al. [73]. Then, the hands in each part were bucketed into 3000 buckets on the flop and turn

using k-means clustering on earth mover’s distance, and 436 buckets on the river using OCHS as

defined in Section 3.4.2. The only difference between the experts for our IRO agent and the experts

for our TBR agent was that the TBR experts were computed in a tilted game. We previously used

tilted games in Section 4.4 to create two-player non-zero-sum games. Here, during computation, we

employed the orange tilt that awarded each TBR expert a fictitious 7% bonus for winning a hand
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Table 8.1: Results of the 2010 ACPC three-player limit hold’em events. Earnings are in milli-big-
blinds per game (mbb/g) and errors indicate 95% confidence intervals.

Total Bankroll
Agent Total Earnings (mbb/g)

Hyperborean3p.TBR.2010 248± 45
LittleRock 116± 50

Bender −40± 18
Arnold3 −104± 48

dcu3pl.tbr −221± 92

Instant Runoff
Agent Round 1 Round 2 Round 3

Hyperborean3p.IRO.2010 144± 32 105± 5 75± 6
dcu3pl.iro 98± 30 49± 6 −18± 7
LittleRock 65± 35 −20± 7 −58± 7

Arnold3 −135± 39 −135± 7 Eliminated
Bender −172± 16 Eliminated Eliminated

in an attempt to force the experts to play more aggressively. All experts were computed from 10

billion iterations of CS, except for the rf and rcf IRO experts that were generated from 8 billion

iterations of CS. The use of four experts here was a reduction from six experts that were used in

the 2009 TBR event. The cf and crf experts were not employed since these sequences appear to

happen infrequently in practice. Omitting these experts also kept our disk usage below the allowed

30GB for the competition.

The abstract games for the base strategy profile and the experts contained approximately 262

million information sets and up to 266 million information sets respectively. These games were

significantly larger than the abstract games employed in 2009 that only contained up to 155.4 million

information sets. We were able to employ finer abstractions in 2010 thanks to a more memory

efficient implementation of CS that did not require new hardware.

The results of the 2010 IRO and TBR events are presented in Table 8.1. Our agents finished first

place out of the five entrants in both competitions. The victories were statistically significant.

8.2 2011

Our 2011 IRO agent was again a static expert profile. Compared to our 2010 base profile that

only required about 10GB of RAM to compute with our implementation of CS, our IRO base strat-

egy profile employed an abstraction with many more buckets compared to the previous year. This

was possible because we gained access to supercomputers maintained by WestGrid and Compute

Canada containing compute nodes with 256GB of RAM and 24 cores. We used this to compute our

base profile from 180 million iterations of CS in an IR169/IR10,000/IR5450/500-sized abstraction.

Bucketing on the flop and turn rounds again used k-means clustering on earth mover’s distance,

while river bucketing used OCHS. This abstract game contains over 5.9 billion information sets. For
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Table 8.2: Results of the 2011 ACPC three-player limit hold’em events. Earnings are in milli-big-
blinds per game (mbb/g) and errors indicate 95% confidence intervals.

Total Bankroll (mbb/g)
Agent Total Earnings

Sartre3p 266± 24
Hyperborean3p.TBR.2011 171± 23

AAIMontybot 130± 45
LittleRock 122± 22

OwnBot 16± 35
Bnold3 −84± 28

Entropy −99± 43
player.zeta.3p −521± 40

Instant Runoff
Agent Round 1 Round 2 Round 3 Round 4

Hyperborean3p.IRO.2011 204± 20 136± 21 116± 23 96± 27
Sartre3p 243± 20 161± 22 102± 23 77± 26

LittleRock 113± 19 56± 20 47± 21 31± 22
dcubot3plr 77± 19 38± 19 34± 20 20± 24

Bnold3 −91± 22 −125± 24 −63± 21 −75± 23
AAIMontybot 96± 44 17± 48 −113± 51 −148± 52

OwnBot −4± 30 −101± 31 −122± 35 Eliminated
Entropy −108± 36 −182± 37 Eliminated Eliminated

player.zeta.3p −530± 33 Eliminated Eliminated Eliminated
Agent Round 5 Round 6 Round 7

Hyperborean3p.IRO.2011 75± 7 51± 8 24± 10
Sartre3p 40± 7 21± 7 −5± 9

LittleRock 6± 6 −14± 7 −29± 9
dcubot3plr −17± 6 −58± 7 Eliminated

Bnold4 −103± 6 Eliminated Eliminated

our experts, we again used four static experts with S = N for the f , rf , rrf , and rcf sequences.

Each of these experts used an IR169/IR180,000/IR540,000/78,480-sized abstraction using the same

bucketing techniques that were used for the experts in 2010. These abstract games contained up to

797.8 million information sets and could be computed with the hardware used in 2010 and without

the special cluster used for the base profile. In order to fit our base profile and our four experts on

disk within the 30GB limitation, we represented each action probability by a single byte by rounding

floating-point values to the nearest 1/256.

For the TBR event, our 2011 agent was somewhat experimental. Given the presence of weaker

agents like dcu3pl.tbr in the 2010 TBR competition, we attempted to build an agent that could earn

more money from weaker opponents. To this end, we used abstractions similar to the asymmetric

abstractions described in Section 7.3. For each player i, we computed a dynamic expert strategy by

partitioning the nonterminal histories into two parts, Hi and H−i, depending on whether player i

acted at the history or not. For the Hi part, we used the IR169/IR900/IR100/25 abstraction used for

the 2010 base strategy profile, whereas for theH−i part, we used the IR16/IR16/IR16/16 abstraction

used in 2009. In preliminary experiments, we found that this profile was moderately successful
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Table 8.3: Results of the 2012 ACPC three-player limit hold’em events. Earnings are in milli-big-
blinds per game (mbb/g) and errors indicate 95% confidence intervals.

Total Bankroll
Agent Total Earnings

Hyperborean3p.2012 28± 5
little.rock −4± 7

neo.poker.lab −11± 5
sartre −12± 7

Instant Runoff
Agent Round 1 Round 2 Round 3

Hyperborean3p.2012 37± 5 28± 5 23± 8
little.rock 13± 6 −4± 7 −9± 9

neo.poker.lab 7± 5 −11± 5 −14± 6
sartre 5± 7 −12± 7 Eliminated

dcubot −62± 8 Eliminated Eliminated

against weaker opponents computed using very coarse abstractions; however, it was less successful

against better opponents. So, our 2011 TBR agent was essentially a “meta-agent” that dynamically

switched between this dynamic expert strategy and our 2010 IRO agent depending on which of the

two had a higher estimate of winning. Estimates were computed using importance sampling as

described by Bowling et al. [10]. We note here that we were also in the process of computing static

experts to attach to our new dynamic expert strategy, but these computations were not completed in

time for the competition due to a power outage.

The results of the 2011 IRO and TBR events are presented in Table 8.2. Our agents finished first

and second place out of the nine and eight entrants in the respective competitions. Our victory in the

IRO event was again statistically significant.

8.3 2012

For the 2012 competitions, we constructed just a single agent that played in both the IRO and TBR

events. This agent was a dynamic expert strategy profile with a grafting profile that again partitioned

the nonterminal histories into two parts, an important part and an unimportant part. The important

histories were defined as follows. First, we scanned all of the 2011 ACPC match logs that our 2011

IRO agent played in and for each betting sequence, we calculated the frequency at which we were

faced with a decision at that sequence. For example, the frequency we were faced with a decision

at the empty betting sequence was 1/3 since we were in the dealer position and first to act once

in every three hands. Next, we multiplied each of these frequencies by the pot size at that betting

sequence. For instance, we multiplied the 1/3 frequency for the empty betting sequence by 15 since

the game is played with a small blind of 5 chips and a big blind of 10 chips, creating an initial

pot of 15 chips. For each history, if this value for the history’s betting sequence was greater than

1/100, then the history was labeled as important. In addition, any prefix of an important history was
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Table 8.4: Results of the 2013 ACPC three-player instant-runoff limit hold’em event. Earnings are
in milli-big-blinds per game (mbb/g) and errors in the final round indicate 95% confidence intervals
(errors in other rounds are unavailable).

Agent Round 1 Round 2 Round 3 Round 4
Hyperborean3p.IRO.2013 221 185 114 49.3± 14.4

littlerock 162 118 60 −8.6± 8.7
neo poker lab 123 150 52 −40.8± 18.5

kempfer −166 −169 −226 Eliminated
HITSZ CS 13 −74 −285 Eliminated Eliminated

liacc −266 Eliminated Eliminated Eliminated

also labeled as important, while the remaining histories were labeled as unimportant. Since betting

actions are public information, this forms a valid grafting partition as defined by Definition 2.7 for

each player. Only 0.023% of the nonterminal betting sequences in three-player hold’em belonged

to the important part.

Using this grafting profile, our dynamic expert profile employed a very fine-grained abstraction

on the important part and a coarse abstraction on the unimportant part. This way, our agent can

distinguish between many more hands at the few sequences that historically were reached more fre-

quently. Our coarse abstraction for the unimportant part was twice the size of our 2010 base abstrac-

tion, using IR169/IR1800/IR200/50 buckets per round from k-means clustering on earth mover’s

distance on the flop and turn and OCHS on the river. On the other hand, our fine-grained abstraction

for the important part used IR169/IR180,000/IR765,000/840,000 buckets per round. Similar to the

2010 experts, these were constructed by first partitioning the flop, turn, and river hands into 9, 51,

and 280 parts respectively according to hand-chosen public card textures. Then, for each part, the

hands were independently bucketed into 20,000, 15,000, and 3000 buckets on the flop, turn, and

river respectively. Again, we used k-means clustering on earth mover’s distance for the flop and

turn, and OCHS for the river. In total, this dynamic expert abstract game contained roughly 2.5

billion information sets.

The dynamic expert profile was computed using External Sampling MCCFR, run in parallel for

16 days using 48 2.2 GHz AMD processors with 256GB of total RAM. The 2012 competition results

are presented in Table 8.3. Despite the field of competitors being generally better than the previous

year, our agent won both the IRO and TBR events by significant margins.

8.4 2013

Finally, the IRO agent for the 2013 competition was constructed in a very similar manner to our

2012 agent, with a few differences that we note here. Firstly, the rules for the 2013 compe-

tition increased the maximum allowable disk space for an agent to 100GB. Thus, we designed

our agent to use this maximum disk space entirely. Secondly, a new grafting profile was built,
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Table 8.5: Results of a mock five-agent tournament between the CPRG’s 2009 IRO agent and our
2010, 2011, 2012, and 2013 IRO agents. Earnings are in milli-big-blinds per game for the row player
against the column players and errors indicate 95% confidence intervals.

Agent 2009,2010 2009,2011 2009,2012 2009,2013 2010,2011 2010,2012
2009 - - - - −21± 7 −26± 5
2010 - 0± 4 −5± 3 −10± 6 - -
2011 21± 6 - 6± 5 3± 6 - 8± 5
2012 31± 5 25± 5 - 11± 5 16± 4 -
2013 38± 4 33± 5 25± 3 - 30± 6 24± 4

Agent 2010,2013 2011,2012 2011,2013 2012,2013 Overall
2009 −28± 7 −31± 5 −35± 6 −35± 4 −29 ± 3
2010 - −23± 5 −27± 7 −27± 4 −16 ± 3
2011 −3± 8 - - −12± 4 4 ± 3
2012 3± 5 - 0± 5 - 14 ± 3
2013 - 12± 3 - - 27 ± 3

this time combining the logs from both the 2011 IRO and the 2012 competitions. This grafting

profile was built in the same manner as the previous year, except now any history’s betting se-

quence with a value greater than 0.0014 was labeled as important, of which about 0.13% of the

nonterminal betting sequences achieved. The important part used a very fine-grained abstraction

with IR169/IR1,348,620/IR1,530,000/2,800,000 buckets per round, while the unimportant part used

IR169/IR180,000/IR18,630/875 buckets per round. This resulted in a dynamic expert abstract game

containing over 38.8 billion information sets. The 2013 three-player hold’em TBR agent, on the

other hand, was a new opponent modelling agent that was built by Nolan Bard, another member of

the CPRG, and is not discussed here.

We again used 48 2.2 GHz AMD processors to compute this dynamic expert profile, this time

with 512GB of total RAM. This was only possible because we used Pure CFR, run for approximately

303 billion iterations over 16 days, and only computed the current strategy. Note that our most

efficient implementation of External Sampling, for example, would have required over 700GB of

RAM and thus would have been infeasible for the machine that was readily available to us. The

2013 IRO competition results are reported in Table 8.4. Our agent won again by a comfortable

margin.

8.5 Summary

In total, our agents placed first in six competitions and second in one competition out of the seven

three-player events that we competed in from the 2010, 2011, 2012, and 2013 ACPC. To conclude

this chapter, we compare the head-to-head performances of our strongest competition agents and

demonstrate improvement in performance each year. We ran a mock five-agent tournament con-

sisting of the CPRG’s IRO agent from the 2009 ACPC described at the beginning of this chapter,

and our four IRO agents from 2010, 2011, 2012, and 2013 presented above. Full results from this
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tournament are presented in Table 8.5. Looking at the overall totals, we see that our 2010, 2011,

2012, and 2013 IRO agents earn 13, 20, 10, and 13 milli-big-blinds per game more than the agent

from the previous year respectively.
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Chapter 9

Conclusions

This dissertation has studied regret minimization and strategy stitching in extensive-form games.

The primary motivation of our work was to resolve a number of complications listed in Chapter 1

that arose when computing strategy profiles for three-player limit Texas hold’em and other large

games with two or more players. We now summarize our efforts towards this goal.

Although strategy profiles computed with CFR have performed well in the three-player events

of the ACPC, there was no theoretical explanation to support this. In Chapter 4, we formally defined

dominated actions and gave theoretical evidence suggesting that CFR avoids iteratively strictly dom-

inated actions and strategies. Supporting previous conclusions of Waugh using domination value

[70], we showed that in two-player Kuhn Poker, simply avoiding iteratively strictly dominated ac-

tions led to good performance. In addition, domination can be avoided by using the current strategy

from CFR without averaging, and doing so is more efficient in terms of both computation time and

memory usage.

Between 2009 and 2011, the majority of the CPRG’s ACPC entries were computed with Chance

Sampling MCCFR (CS), which must traverse all player actions and resulted in long computation

times being required. Chapter 5 explored other sampling techniques and proposed three new algo-

rithms, Probing (Algorithm 3), Average Strategy Sampling (AS), and Pure CFR. Firstly, Probing

can reduce the variance of traditional MCCFR algorithms and can result in faster convergence to

equilibrium in zero-sum games. Secondly, AS reduces convergence time in games with many player

actions, such as no-limit poker games with no action abstraction, while still being comparable to

External Sampling in other domains. Thirdly, Pure CFR’s memory costs are half of that of other

sampling algorithms, allowing larger abstractions to be employed at only a minor cost in computa-

tion time. Today, CS is no longer used to compute any of the CPRG’s competition agents.

Furthermore, the CPRG’s strongest agents have employed imperfect recall abstractions of Texas

hold’em, yet the original CFR analysis only guarantees regret minimization in perfect recall games.

Our theoretical work in Chapter 6 provides the first regret bounds for CFR when applied to a class

of games with imperfect recall. We defined well-formed and skew well-formed games, and proved

that regret is minimized and bounded when using CFR in these games respectively. Using a variant
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of die-roll poker, we demonstrated that lower regret can be achieved in skew well-formed games

than that guaranteed by our regret bound.

Finally, in large games like three-player limit hold’em, we must employ fairly coarse abstrac-

tions to feasibly compute strategies with CFR. In Chapter 7, we defined static experts and dynamic

experts that attempt to alleviate this problem by partitioning a game into smaller parts and employing

finer abstractions within a number of these parts. Our static expert framework generalized strategy

grafting from Section 2.4.1 and two previous techniques used in poker. We showed that despite

recent mixed results, static experts can improve play over a base strategy alone and for the types

of partitions we considered, they can be preferred over other approaches. Our 2010, 2011, 2012,

and 2013 three-player entries for the ACPC described in Chapter 8 won a total of six out of seven

competitions using these techniques, further validating the use of static and dynamic experts.

9.1 Future Work

In spite of these contributions, our work in domination and imperfect recall games has only begun

to enlighten our understanding of CFR outside of zero-sum perfect recall games. In addition, our

generalized sampling techniques and strategy stitching methods leave us with some open questions.

We end this thesis by listing a number of these questions and areas for future work:

1. Clearly, it is undesirable to play a dominated action or strategy due to the existence of an al-

ternative that is guaranteed to do better, regardless of what the opponents do. Are there other

properties of an action or strategy that are undesirable against a set of unknown opponents?

More importantly, does CFR avoid such undesirable actions or strategies? Alternatively, what

are the desirable properties of actions and strategies in non-zero-sum games and do CFR

solutions exhibit these properties? As we argued at the beginning of Chapter 4, a Nash equi-

librium is less meaningful outside of zero-sum games and we know CFR does not compute an

equilibrium for these games anyways. Answering these questions could further improve our

understanding of why CFR solutions can perform well in large, non-zero-sum games.

2. Theorem 5.4 demonstrates that estimated counterfactual values with low variance provide a

better bound on a player’s regret than estimates with high variance. Probing, presented in

Algorithm 3, provides one example of how to reduce variance and converge to equilibrium

faster in zero-sum games. We suspect that there are other efficiently-computable definitions

of the estimated counterfactual values v̂i(I, σ) that are bounded, unbiased, and exhibit lower

variance than our probing example. Further improvements to convergence rates are likely

possible through such alternative definitions. More importantly, however, we still lack a com-

prehensive theory for deciding which sampling algorithm to use when. As we saw in Section

5.6, the relative time efficiency of each algorithm we considered varied greatly between two-

player limit, two-player no-limit, and three-player limit hold’em. A prominent area for future
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work would be to build a set of rules that decide which sampling algorithm to use for a given

game or how to perform sampling in CFR to minimize regret most efficiently.

3. From Definition 6.1, a well-formed game is required to satisfy four conditions. By introducing

skew well-formed games in Definition 6.2, we showed that one of these conditions can be

relaxed and a regret bound can still be established. However, the games presented in Figure

6.2 break conditions (ii) or (iii) of Definition 6.1 and CFR does not minimize regret in these

games. Unfortunately, as described at the end of Section 6.2.3, these conditions are also

broken by the imperfect recall abstract games used by the our three-player entries and the

CPRG’s other entries that performed well in the ACPC. We would like to expand on the set of

imperfect recall games to which CFR gives regret guarantees. In particular, it may be possible

to derive regret bounds for a new class of games where conditions (ii) and (iii) are relaxed to

better justify the imperfect recall abstractions that we currently employ.

4. Static experts, as given by Definition 7.1, are constructed by holding the action probabilities

for a nonempty subset S of players fixed off of the given subtree. Our experiments in Section

7.3 considered static experts for S = {i} and S = N . However, in games with three or more

players, other choices of S could produce interesting results. For example, in three-player

hold’em we could compute an expert strategy for player i, say on a subtree where player j has

folded, such that player j’s probabilities are all fixed and the third player is left unrestricted.

This would be achieved by setting S = {i, j}. These types of experts could be considered

hybrids between strategy grafting and heads-up experts presented by Abou Risk and Szafron

[3]. Furthermore, there are practically endless choices for grafting partitions. The profiles

constructed in Section 7.3 and our ACPC agents described in Chapter 8 touched only a small

number of these choices. Better grafting partitions could result in even greater performance

for static and dynamic experts.

5. Finally, this work has only considered the problem of computing a stationary strategy pro-

file for play in an extensive-form game. For zero-sum games, if our opponent is playing an

equilibrium profile, then the best we can do is play an equilibrium profile ourselves. On the

other hand, for repeated non-zero-sum games, we can likely do better than always following

our stationary profile, even if the opponents are independently following different equilibrium

profiles. While our stationary profiles continue to win three-player hold’em competitions, we

believe that our agents could be greatly improved with opponent modelling capabilities. One

approach to modelling would be to compute several profiles and dynamically switch to the

best performing strategy on-line, similar to our 2011 TBR competition agent from Section

8.2. However, given disk space restrictions, only a small number of profiles can be stored and

could severely limit performance. A more effective course of action may be to update our ac-

tion probabilities on-line in response to the play of the opponents. This approach requires no
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more disk space than a single, stationary profile. Unfortunately, no time-efficient and robust

methods for this type of opponent modelling are currently known.
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Appendix A

Supplementary Background
Material

In this appendix, we provide a simpler proof of Theorem 2.2 to that of Gordon [33] and walk through

CFR in a small example game.

Theorem 2.2. If player i uses regret matching, then after T time steps,

RTi ≤ ∆i

√
T |Ai|.

Proof. We will prove by induction that∑
a∈Ai

(
RT,+i (a)

)2

≤ ∆2
iT |Ai|. (A.1)

Then, note that RTi = maxa∈Ai R
T
i (a) since mixing between two actions in σ′i of equation (2.2)

would require the actions to have the same value. Furthermore, we may assume RTi > 0, otherwise

we are done. Then,

(
RTi
)2

=

(
max
a∈Ai

RTi (a)

)2

=

(
max
a∈Ai

RT,+i (a)

)2

= max
a∈Ai

(
RT,+i (a)

)2

≤
∑
a∈Ai

(
RT,+i (a)

)2

≤ ∆2
iT |Ai|,

and taking the square root of both sides gives the result.

To complete the proof, we prove equation (A.1) by induction on T . The base case T = 0 is

trivial. For the induction step, we may assume
∑
a∈Ai(R

T−1,+
i (a))2 ≤ ∆2

i (T −1)|Ai|. Firstly, one

can easily verify that (
(a+ b)+

)2 ≤ (a+ + b)2 for all a, b ∈ R (A.2)

by checking the cases where a ≤ 0, a > 0 and b ≥ −a, and a > 0 and b < −a. Then,(
RT,+i (a)

)2

=
∑
a∈Ai

((
RT−1
i (a) +

(
ui(a, σ

T
−i)− ui(σTi , σT−i)

))+)2

≤
∑
a∈Ai

(
RT−1,+
i (a) +

(
ui(a, σ

T
−i)− ui(σTi , σT−i)

))2
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=
∑
a∈Ai

(
RT−1,+
i (a)

)2

+ 2
∑
a∈Ai

RT−1,+
i (a)

(
ui(a, σ

T
−i)− ui(σTi , σT−i)

)
+
∑
a∈Ai

(
ui(a, σ

T
−i)− ui(σTi , σT−i)

)2
, (A.3)

where the inequality follows by equation (A.2). We claim that∑
a∈Ai

RT−1,+
i (a)

(
ui(a, σ

T
−i)− ui(σTi , σT−i)

)
= 0.

Provided the claim is true, equation (A.3) gives us(
RT,+i (a)

)2

≤
∑
a∈Ai

(
RT−1,+
i (a)

)2

+
∑
a∈Ai

(
ui(a, σ

T
−i)− ui(σTi , σT−i)

)2
≤ ∆2

i (T − 1)|Ai|+ |Ai|∆2
i = ∆2

iT |Ai|,

completing the induction step.

Finally, it remains to prove the claim. To that end, we may assume
∑
a∈Ai R

T−1,+
i (a) > 0,

otherwise we are done. Then,∑
a∈Ai

RT−1,+
i (a)

(
ui(a, σ

T
−i)− ui(σTi , σT−i)

)

=
∑
a∈Ai

RT−1,+
i (a)

(
ui(a, σ

t
−i)−

∑
b∈Ai

σTi (b)ui(b, σ
T
−i)

)
=
∑
a∈Ai

RT−1,+
i (a)ui(a, σ

t
−i)−

∑
a∈Ai

∑
b∈Ai

RT−1,+
i (a)σTi (b)ui(b, σ

T
−i)

=
∑
a∈Ai

RT−1,+
i (a)ui(a, σ

t
−i)−

∑
a∈Ai

∑
b∈Ai

RT−1,+
i (a)RT−1,+

i (b)ui(b, σ
T
−i)∑

d∈Ai R
T−1,+
i (d)

by (2.3)

=
∑
a∈Ai

RT−1,+
i (a)ui(a, σ

t
−i)−

∑
b∈Ai

RT−1,+
i (b)ui(b, σ

T
−i)

∑
a∈Ai R

T−1,+
i (a)∑

d∈Ai R
T−1,+
i (d)

=
∑
a∈Ai

RT−1,+
i (a)ui(a, σ

t
−i)−

∑
b∈Ai

RT−1,+
i (b)ui(b, σ

T
−i)

= 0,

completing the proof. �

We will now walk through two iterations of CFR on the small game shown in Figure A.1. To

begin, all the regret and cumulative profile values are initialized to zero. As stated on line 3 of

Algorithm 1, our initial profile is the uniform random profile. We will also use uniform random

when the denominator of equation 2.4 is zero.

Starting the first iteration for player 1, we have two information sets to visit, labeled I and I ′.

At I ′, we calculate the counterfactual values v1(I ′, σ1
I′→f ) and v1(I ′, σ1

I′→c) according to

v1(I ′, σ1
(I′→f)) =

∑
z∈ZI′

πσ
1

−1(z[I ′])πσ
1

(z[I ′]f, z)u1(z)

= πσ
1

−1(Jkb)πσ
1

(Jkbf, Jkbf)u1(Jkbf) + πσ
1

−1(Kkb)πσ
1

(Kkbf,Kkbf)u1(Kkbf)
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Figure A.1: A zero-sum extensive-form game where player 2 has perfect information. This game is
Kuhn Poker, described in Chapter 3, where player 1 is always dealt the Queen.

= 0.25 · 1 · (−1) + 0.25 · 1 · (−1)

= −0.5

and

v1(I ′, σ1
(I′→c)) = πσ

1

−1(Jkb)πσ
1

(Jkbc, Jkbc)u1(Jkbc) + πσ
1

−1(Kkb)πσ
1

(Kkbc,Kkbc)u1(Kkbc)

= 0.25 · 1 · 2 + 0.25 · 1 · (−2)

= 0.

From these, the counterfactual value v1(I ′, σ1) is straightforward to calculate from

v1(I ′, σ1) =
∑

a∈A(I′)

σ1(I ′, a)v1(I ′, σ1
(I′→a)) = 0.5 · (−0.5) + 0.5 · 0 = −0.25.

This gives us our regret updates

R1
1(I ′, f) = R0

1(I ′, f) + v1(I ′, σ1
(I′→f))− v1(I ′, σ1) = 0 + (−0.5)− (−0.25) = −0.25

and

R1
1(I ′, c) = R0

1(I ′, c) + v1(I ′, σ1
(I′→c))− v1(I ′, σ1) = 0 + 0− (−0.25) = 0.25.

We also update the cumulative profile according to the current strategy, giving us

s1
1(I ′, f) = s0

1(I ′, f) + πσ
1

1 (I ′)σ1
1(I ′, f) = 0 + 0.5 · 0.5 = 0.25
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and s1
1(I ′, c) = 0.25. Similarly, at I , we can calculate the counterfactual values, summing over

terminal nodes in Figure A.1 from left to right,

v1(I, σ(I→k)) = 0.5 · 0.5 · (−1) + 0.5 · 0.25 · (−1) + 0.5 · 0.25 · (−2)

+ 0.5 · 0.5 · 1 + 0.5 · 0.25 · (−1) + 0.5 · 0.25 · 2

= −0.25

and

v1(I, σ(I→b)) = 0.5 · 0.5 · 1 + 0.5 · 0.5 · (−2) + 0.5 · 0.5 · 1 + 0.5 · 0.5 · 2 = 0.5.

This gives us the counterfactual value

v1(I, σ) =
∑

a∈A(I)

σ1(I, a)v1(I, σ1
(I→a)) = 0.5 · (−0.25) + 0.5 · 0.5 = 0.125,

updated regret

R1
1(I, k) = R0

1(I, k) + v1(I, σ(I→k))− v1(I, σ) = 0 + (−0.25)− 0.125 = −0.375

and

R1
1(I, b) = R0

1(I, b) + v1(I, σ(I→b))− v1(I, σ) = 0 + 0.5− 0.125 = 0.375,

and updated cumulative profile s1
1(I, k) = 0.5 and s1

1(I, b) = 0.5. Our new regret values give us

player 1’s current strategy for the second iteration according to equation (2.4), with

σ2
1(I, k) = R1,+

1 (I, k)/
(
R1,+

1 (I, k) +R1,+
1 (I, b)

)
= 0/(0 + 0.375) = 0,

and similarly σ2
1(I, b) = 1, σ2

1(I ′, f) = 0, and σ2
1(I ′, c) = 1. Player 2’s updates follow the same

procedures and we skip over these details.

On iteration 2, we repeat the same calculations, except this time using the updated current strat-

egy profile σ2. For example, at I ′, the counterfactual value

v1(I ′, σ2
(I′→c)) = πσ

2

−1(Jkb)πσ
2

(Jkbc, Jkbc)u1(Jkbc) + πσ
2

−1(Kkb)πσ
2

(Kkbc,Kkbc)u1(Kkbc)

= 0.5 · 1 · (−2) + 0.5 · 1 · 2

= 0

and similarly v1(I ′, σ2
(I′→f)) = −1, giving

v1(I ′, σ2) =
∑

a∈A(I′)

σ2
1(I ′, a)v1(I ′, σ2

(I′→a)) = 0 · (−1) + 1 · 0 = 0.

Our regret updates are then

R2
1(I ′, f) = R1

1(I ′, f) + v1(I ′, σ2
(I′→f))− v1(I ′, σ2) = −0.25 + (−1)− 0 = −1.25
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and

R2
1(I ′, c) = R1

1(I ′, c) + v1(I ′, σ2
(I′→c))− v1(I ′, σ2) = 0.25 + 0− 0 = 0.25,

and the cumulative profile is unchanged according to

s2
1(I ′, c) = s1

1(I ′, c) + πσ
2

1 (I ′)σ2
1(I ′, c) = 0.25 + 0 · 1 = 0.25

and s2
1(I ′, f) = 0.25. The updates at I , however, result in a new cumulative profile value s2

1(I, b) =

1.5 while s2
1(I, k) = 0.5. If we were to terminate CFR after two iterations, the outputted average

strategy for player 1 would be σ̄2
1(I) = {(k, 0.25), (b, 0.75)} and σ̄2

1(I ′) = {(f, 0.5), (c, 0.5)}.
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Appendix B

Proofs for Chapter 4: Regret
Minimization and Domination

In this appendix, we prove Proposition 4.1 and Theorems 4.1, 4.2, and 4.3. To start, we need a few

additional definitions. First, for I ∈ Ii, define

D(I) = {I ′ ∈ Ii | ∃h ∈ I, h′ ∈ I ′ such that h v h′}

to be the set of information sets descending from I . Second, for I, I ′ ∈ Ii, h ∈ I , h′ ∈ I ′, and

σi ∈ Σi, define πσi (I, I ′) = πσi (h, h′). As in Chapter 4, perfect recall is assumed throughout this

appendix, which ensures that πσi (I, I ′) is well-defined.

Proposition 4.1. In an extensive-form game with perfect recall, if a is a weakly dominated action

at I ∈ Ii and σi ∈ Σi satisfies πσi (I)σi(I, a) > 0, then σi is a weakly dominated strategy.

Proof. Since a is weakly dominated, there exists a strategy σ′i ∈ Σi such that vi(I, σ(I→a)) ≤

vi(I, (σ
′
i, σ−i)) for all opponent profiles σ−i ∈ Σ−i, and there exists an opponent profile σ′−i such

that vi(I, (σi(I→a), σ
′
−i)) < vi(I, (σ

′
i, σ
′
−i)). Let σ̂i be the strategy σi except at I , where σ̂i(I, a) =

0 and σ̂i(I, b) = σi(I, b)/(1− σi(I, a)) for all b ∈ A(I), b 6= a. Next, for all J ∈ Ii and b ∈ A(J),

define

σ′′i (J, b) =


σi(I,a)πσ

′
i (I,J)σ′i(J,b)+(1−σi(I,a))πσ̂i (I,J)σ̂i(J,b)

σi(I,a)πσ
′
i (I,J)+(1−σi(I,a))πσ̂i (I,J)

if J ∈ D(I)
(and arbitrary when the
denominator is zero),

σi(J, b) if J /∈ D(I).

This is well-defined due to perfect recall and one can verify that σ′′i ∈ Σi is a valid strategy for

player i. Now, fix σ−i ∈ Σ−i. Then,

ui(σi, σ−i) =
∑
z∈ZI

πσ(z)ui(z) +
∑
z/∈ZI

πσ(z)ui(z)

= πσi (I)
∑

b∈A(I)

σi(I, b)vi(I, σ(I→b)) +
∑
z/∈ZI

πσ(z)ui(z)

≤ πσi (I)σi(I, a)vi(I, (σ
′
i, σ−i))
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+ πσi (I)(1− σi(I, a))
∑

b∈A(I)
b6=a

σ̂i(I, b)vi(I, (σ̂i(I→b), σ−i))

+
∑
z/∈ZI

πσ(z)ui(z)

= πσi (I)vi(I, (σ
′′
i , σ−i)) +

∑
z/∈ZI

πσ(z)ui(z)

= ui(σ
′′
i , σ−i).

Thus, ui(σi, σ−i) ≤ ui(σ
′′
i , σ−i) for all σ−i ∈ Σ−i. A similar argument shows that ui(σi, σ′−i) <

ui(σ
′′
i , σ

′
−i), proving that σi is weakly dominated by σ′′i . �

Next, we prove Theorem 4.1, using the fact that new iterative dominances only arise from re-

moving actions and never from removing mixed strategies [15]:

Theorem 4.1. Let σ1, σ2, ... be a sequence of strategy profiles in a normal-form game where all

players’ strategies are computed by regret minimization algorithms where for all i ∈ N , a ∈ Ai,

if RTi (a) < 0 and RTi (a) < maxb∈Ai R
T
i (b), then σT+1

i (a) = 0. If σi is an iteratively strictly

dominated strategy, then there exists an integer T0 such that for all T ≥ T0, supp(σi) * supp(σTi ).

Proof. Let a1, a2, ..., ak be iteratively strictly dominated actions (pure strategies) for play-

ers j1, j2, ..., jk respectively that once removed in sequence yields strict domination of σi. Let

B−i = A−i\{a1, a2, ..., ak} be the set of opponent actions other than a1, a2, ..., ak. Next, by itera-

tive strict domination of σi and because the game is finite, there exists another strategy σ′i ∈ Σi such

that

ε = min
a−i∈B−i

ui(σ
′
i, a−i)− ui(σi, a−i) > 0,

so that ui(σi, a−i) ≤ ui(σ′i, a−i)− ε for all a−i ∈ B−i. Then,∑
a∈Ai

σi(a)RTi (a) =
∑
a∈Ai

σi(a)RTi (a)−
∑
a∈Ai

σ′i(a)RTi (a) +
∑
a∈Ai

σ′i(a)RTi (a)

=
∑
a∈Ai

(σi(a)− σ′i(a))

T∑
t=1

(
ui(a, σ

t
−i)− ui(σt)

)
+
∑
a∈Ai

σ′i(a)RTi (a)

=

T∑
t=1

(
ui(σi, σ

t
−i)− ui(σ′i, σt−i)

)
+
∑
a∈Ai

σ′i(a)RTi (a)

=
∑

supp(σt−i)*B−i
1≤t≤T

(
ui(σi, σ

t
−i)− ui(σ′i, σt−i)

)

+
∑

supp(σt−i)⊆B−i
1≤t≤T

(
ui(σi, σ

t
−i)− ui(σ′i, σt−i)

)
+
∑
a∈Ai

σ′i(a)RTi (a)

=
∑

supp(σt−i)*B−i
1≤t≤T

(
ui(σi, σ

t
−i)− ui(σ′i, σt−i)

)
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+
∑

supp(σt−i)⊆B−i
1≤t≤T

∑
a−i∈B−i

σt−i(a−i) (ui(σi, a−i)− ui(σ′i, a−i))

+
∑
a∈Ai

σ′i(a)RTi (a), where σ−i(a−i) =
∏
j 6=i

σj(aj)

≤
∑

supp(σt−i)*B−i
1≤t≤T

(
ui(σi, σ

t
−i)− ui(σ′i, σt−i)

)

+
∑

supp(σt−i)⊆B−i
1≤t≤T

(−ε) + max
a∈Ai

RTi (a). (B.1)

We claim that there exists an integer T0 such that for all T ≥ T0, there exists a ∈ supp(σi) such that

RTi (a) < 0 and RTi (a) < maxb∈Ai R
T
i (b). By our assumption, this implies that for all T ≥ T0,

there exists an action a ∈ supp(σi) such that a /∈ supp(σTi ), establishing the theorem.

To complete the proof, it remains to establish the claim, which we prove by strong induction on

k, the number of actions removed to yield iterative strict dominance of σi. For the base case k = 0,

we have B−i = A−i, and so by equation (B.1) we have

min
a∈supp(σi)

RTi (a) ≤
∑
a∈Ai

σi(a)RTi (a)

≤ −εT + max
a∈Ai

RTi (a) (B.2)

≤ −εT +RT,+i .

Dividing both sides by T and taking the limit superior gives

lim sup
T→∞

1

T
min

a∈supp(σi)
RTi (a) ≤ −ε+ lim sup

T→∞

RT,+i

T

= −ε

< 0.

Thus, there exists an integer T0 such that for all T ≥ T0, RTi (a∗) < 0 where a∗ =

argmina∈supp(σi)R
T
i (a). Also, by equation (B.2), RTi (a∗) ≤ −εT + maxa∈Ai R

T
i (a) <

maxa∈Ai R
T
i (a), completing the base case.

For the induction step, we may assume that there exist integers T1, ..., Tk such that for all 1 ≤

` ≤ k, T ≥ T`, RTj`(a
`) < 0 and RTj`(a

`) < maxb∈Aj` R
T
j`

(b). This means that for all T ≥ T ′0 =

max{T1, ..., Tk}, a` /∈ supp(σTj`) for all 1 ≤ ` ≤ k. Hence, supp(σT−i) ⊆ B−i for all T ≥ T ′0.

Therefore, again setting a∗ = argmina∈supp(σi)R
T
i (a), by equation (B.1) we have

RTi (a∗) ≤
∑
a∈Ai

σi(a)RTi (a)

≤
∑

supp(σt−i)*B−i
1≤t≤T

(
ui(σi, σ

t
−i)− ui(σ′i, σt−i)

)

+
∑

supp(σt−i)⊆B−i
1≤t≤T

(−ε) + max
a∈Ai

RTi (a)
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≤ T ′0∆i − ε(T − T ′0) + max
a∈Ai

RTi (a), where ∆i = max
a,a′∈A

ui(a)− ui(a′) (B.3)

≤ T ′0∆i − ε(T − T ′0) +RT,+i .

Dividing both sides by T and taking the limit superior gives

lim sup
T→∞

RTi (a∗)

T
≤ lim sup

T→∞

(
T ′0∆i

T
− ε(T − T ′0)

T
+
RT,+i

T

)
= −ε

< 0.

Thus, there exists an integer T0 such that for all T ≥ T0, T ′0∆i < ε(T − T ′0) and RTi (a∗) < 0.

By equation (B.3), this also means that for T ≥ T0, RTi (a∗) < maxa∈Ai R
T
i (a), completing the

induction step. This establishes the claim and completes the proof. �

Before proving Theorems 4.2 and 4.3, we need an additional lemma. For σi ∈ Σi and I ∈ Ii,

define the full counterfactual regret for σi at I to be

RTi,full(I, σi) =

T∑
t=1

(vi(I, (σi, σ
t
−i))− vi(I, σt)). (B.4)

We begin by relating full counterfactual regret to a sum over cumulative counterfactual regrets. A

similar step was part of the original CFR analysis [74], but we improve the analysis here by equating

terms rather than simply bounding them. Perfect recall is again required to ensure πσi (I, I ′) is well-

defined. This lemma will also be used to prove Theorem 5.1 in Appendix C.

Lemma B.1. In an extensive-form game with perfect recall,

RTi,full(I, σi) =
∑

I′∈D(I)

πσi (I, I ′)
∑

a∈A(I′)

σi(I
′, a)RTi (I ′, a).

Proof. We prove the lemma by strong induction on |D(I)|. For I ∈ Ii and a ∈ A(I), define

S(I, a) = {I ′ ∈ Ii |∃h ∈ I, h′ ∈ I ′ where ha v h′

and @h′′ ∈ Hi where ha v h′′ @ h′}

to be the set of all possible successor information sets for player i after taking action a at I . In

addition, define Z(I, a) to be the set of terminal histories where the last action taken by player i was

a at I . To begin,

RTi,full(I, σi) =

T∑
t=1

vi(I, (σi, σ
t
−i))−

T∑
t=1

vi(I, σ
t)

=

T∑
t=1

∑
a∈A(I)

σi(I, a)vi(I, (σi(I→a), σ
t
−i))−

T∑
t=1

vi(I, σ
t)

=
∑

a∈A(I)

σi(I, a)

T∑
t=1

 ∑
z∈Z(I,a)

πσ
t

−i(z)ui(z)
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+
∑

I′∈S(I,a)

vi(I
′, (σi, σ

t
−i))

− T∑
t=1

vi(I, σ
t). (B.5)

For the base case D(I) = {I}, we have S(I, a) = ∅ and Z(I, a) = ZI , and so the right hand side

of equation (B.5) reduces to
∑
a∈A(I) σi(I, a)RTi (I, a) as desired. For the induction step, note that

|D(I ′)| < |D(I)| for all I ′ ∈ S(I, a), and so we may apply the induction hypothesis to get, for all

I ′ ∈ S(I, a),

T∑
t=1

vi(I
′, (σi, σ

t
−i)) = RTi,full(I

′, σi) +

T∑
t=1

vi(I
′, σt)

=
∑

I′′∈D(I′)

πσi (I ′, I ′′)
∑

b∈A(I′′)

σ(I ′′, b)RTi (I ′′, b)

+

T∑
t=1

vi(I
′, σt).

Finally, substituting into equation (B.5), we have

RTi,full(I, σi) =
∑

a∈A(I)

σi(I, a)

 T∑
t=1

∑
z∈Z(I,a)

πσ
t

−i(z)ui(z)

+
∑

I′∈S(I,a)

 ∑
I′′∈D(I′)

πσi (I ′, I ′′)
∑

b∈A(I′′)

σi(I
′′, b)RTi (I ′′, b)

+

T∑
t=1

vi(I
′, σt)

)]
−

T∑
t=1

vi(I, σ
t)

=
∑

a∈A(I)

σi(I, a)

T∑
t=1

vi(I, σ
t
(I→a))−

T∑
t=1

vi(I, σ
t)

+
∑

a∈A(I)

σi(I, a)
∑

I′∈S(I,a)

 ∑
I′′∈D(I′)

πσi (I ′, I ′′)
∑

b∈A(I′′)

σi(I
′′, b)RTi (I ′′, b)


=

∑
a∈A(I)

σi(I, a)RTi (I, a)

+
∑

I′∈D(I)
I′ 6=I

πσi (I, I ′)
∑

b∈A(I′)

σi(I
′, b)RTi (I ′, b)

=
∑

I′∈D(I)

πσi (I, I ′)
∑

a∈A(I′)

σi(I
′, a)RTi (I ′, a),

completing the proof. �

Corollary B.1. In an extensive-form game with perfect recall,

RTi,full(I, σi) ≤ ∆i|D(I)|
√
|A(Ii)|T .

Proof. By Lemma B.1,

RTi,full(I, σi) =
∑

I′∈D(I)

πσi (I, I ′)
∑

a∈A(I′)

σi(I
′, a)RTi (I ′, a)
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≤
∑

I′∈D(I)

max
a∈A(I)

RT,+i (I ′, a)

≤ |D(I)|∆i

√
|A(Ii)|T

by Theorem 2.2 since regret matching is used at each I ′ ∈ D(I). �

Theorem 4.2. Let σ1, σ2, ... be strategy profiles generated by CFR in an extensive-form game with

perfect recall, let I ∈ Ii, and let a be an iteratively strictly dominated action at I , where removal

in sequence of the iteratively strictly dominated actions a1, ..., ak at I1, ..., Ik respectively yields

iterative dominance of ak+1 = a. If for 1 ≤ ` ≤ k + 1, there exist real numbers δ`, γ` > 0 and an

integer T` such that for all T ≥ T`, |Σδ`(I`) ∩ {σt | T` ≤ t ≤ T}| ≥ γ`T , then

(i) there exists an integer T0 such that for all T ≥ T0, RTi (I, a) < 0,

(ii) if limT→∞ xT /T = 0, then limT→∞ yT (I, a)/T = 0, where yT (I, a) is the number of

iterations 1 ≤ t ≤ T satisfying σt(I, a) > 0, and

(iii) if limT→∞ xT /T = 0, then limT→∞ πσ̄
T

i (I)σ̄Ti (I, a) = 0.

Proof. We will first prove parts (i) and (ii) by strong induction on k, followed by proving (iii) from

(ii). For δ ≥ 0, let Σ̂δ(I) = {σ ∈ Σδ(I) | σ(I`, a`) = 0, 1 ≤ ` ≤ k} be the set of strategies in

Σδ(I) that do not play a1, ..., ak. By iterative strict domination of a, there exists σ′i ∈ Σi such that

vi(I, σ(I→a)) < vi(I, (σ
′
i, σ−i)) for all σ ∈ Σ̂0(I). Next, let δ = δk+1 and γ = γk+1. Then, since

Σ̂δ(I) is a closed and bounded set and vi(I, ·) is continuous, by the Balzano-Weierstrass Theorem

there exists an ε > 0 such that vi(I, σ(I→a)) ≤ vi(I, (σ
′
i, σ−i)) − ε for all σ ∈ Σ̂δ(I). Then, with

T ′0 = max1≤`≤k+1 T`,

RTi (I, a) = RTi (I, a)−RTi,full(I, σ
′
i) +RTi,full(I, σ

′
i)

=

T∑
t=1

(
vi(I, σ

t
(I→a))− vi(I, (σ

′
i, σ

t
−i))

)
+RTi,full(I, σ

′
i)

=

T ′0−1∑
t=1

(
vi(I, σ

t
(I→a))− vi(I, (σ

′
i, σ

t
−i))

)
+

∑
T ′0≤t≤T
σt /∈Σ̂0(I)

(
vi(I, σ

t
(I→a))− vi(I, (σ

′
i, σ

t
−i))

)

+
∑

T ′0≤t≤T
σt∈Σ̂δ(I)

(
vi(I, σ

t
(I→a))− vi(I, (σ

′
i, σ

t
−i))

)

+
∑

T ′0≤t≤T
σt∈Σ̂0(I)\Σ̂δ(I)

(
vi(I, σ

t
(I→a))− vi(I, (σ

′
i, σ

t
−i))

)
+RTi,full(I, σ

′
i). (B.6)

For the base case k = 0, we have Σ̂0(I) = Σ and Σ̂δ(I) = Σδ(I). Choose T0 to be any integer
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greater than max{T ′0,∆2
i |D(I)|2|A(Ii)|/ε2γ2} so that for all T ≥ T0,

RTi (I, a) =

T ′0−1∑
t=1

(
vi(I, σ

t
(I→a))− vi(I, (σ

′
i, σ

t
−i))

)
+

∑
T ′0≤t≤T
σt∈Σδ(I)

(
vi(I, σ

t
(I→a))− vi(I, (σ

′
i, σ

t
−i))

)

+
∑

T ′0≤t≤T
σt /∈Σδ(I)

(
vi(I, σ

t
(I→a))− vi(I, (σ

′
i, σ

t
−i))

)
+RTi,full(I, σ

′
i)

≤ −ε|Σδ(I) ∩ {σt | T0 ≤ t ≤ T}|+RTi,full(I, σ
′
i)

≤ −εγT + ∆i|D(I)|
√
|A(Ii)|T by Corollary B.1

< 0

by choice of T0. This establishes part (i) of the base case. For part (ii), since CFR applies regret

matching at I , by equation (2.4) it follows that for all T ≥ T0, either
∑
b∈A(I)R

T,+
i (I, b) = 0 or

σT+1
i (I, a) = 0. Thus,

lim
T→∞

yT (I, a)

T
= lim
T→∞

yT0(I, a) + (yT (I, a)− yT0(I, a))

T

≤ lim
T→∞

yT0(I, a) + xT

T

= 0.

Thus, (ii) holds and we have established the base case of our induction.

For the induction step, we now assume that parts (i) and (ii) hold for all a1, ..., ak. We will show

that there exists an integer T0 such that for all T ≥ T0, RTi (I, a) < 0. This will establish part (i),

and part (ii) will then follow as before to complete the induction step.

Firstly, note that ∑
T ′0≤t≤T

σt∈Σ̂0(I)\Σ̂δ(I)

(
vi(I, σ

t
(I→a))− vi(I, (σ

′
i, σ

t
−i))

)
≤ 0

by iterative domination of a. Secondly,∑
T ′0≤t≤T
σt∈Σ̂δ(I)

(
vi(I, σ

t
(I→a))− vi(I, (σ

′
i, σ

t
−i))

)

≤ −ε|Σ̂δ(I) ∩ {σt | T0 ≤ t ≤ T}|

= −ε
(
|Σδ(I) ∩ {σt | T0 ≤ t ≤ T}| − |(Σδ(I)\Σ̂δ(I)) ∩ {σt | T0 ≤ t ≤ T}|

)
≤ −εγT + ε

k∑
`=1

yT (I`, a`).

Thirdly,
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∑
T ′0≤t≤T
σt /∈Σ̂0(I)

(
vi(I, σ

t
(I→a))− vi(I, (σ

′
i, σ

t
−i))

)
≤ ∆i

k∑
`=1

yT (I`, a`).

Thus, substituting these three inequalities and Corollary B.1 into equation (B.6) gives

RTi (I, a) ≤
T ′0−1∑
t=1

(
vi(I, σ

t
(I→a))− vi(I, (σ

′
i, σ

t
−i))

)
+ ∆i

k∑
`=1

yT (I`, a`)− εγT + ε

k∑
`=1

yT (I`, a`) + ∆i|D(I)|
√
|A(Ii)|T .

Dividing both sides by T and taking the limit superior gives

lim sup
T→∞

RTi (I, a)

T
≤
T ′0−1∑
t=1

(
vi(I, σ

t
(I→a))− vi(I, (σ

′
i, σ

t
−i))

)
lim sup
T→∞

1

T

+ (∆i + ε)

k∑
`=1

lim sup
T→∞

yT (I`, a`)

T
− εγ + ∆i|D(I)|

√
|A(Ii)| lim sup

T→∞

1√
T

= −εγ

< 0

by applying part (ii) of the induction hypothesis. Therefore, there exists an integer T0 such that for

all T ≥ T0, RTi (I, a)/T < 0 and thus RTi (I, a) < 0, completing the induction step.

Parts (i) and (ii) are now proven. It remains to prove (iii). To that end,

lim
T→∞

πσ̄
T

i (I)σ̄Ti (I, a) = lim
T→∞

(
1

T

T∑
t=1

πσ
t

i (I)

) ∑T
t=1 π

σt

i (I)σti(I, a)∑T
t=1 π

σt
i (I)

= lim
T→∞

∑T
t=1 π

σt

i (I)σti(I, a)

T

≤ lim
T→∞

yT (I, a)

T

= 0

by part (ii). Since πσ̄
T

i (I)σ̄Ti (I, a) is nonnegative, it follows that limT→∞ πσ̄
T

i (I)σ̄Ti (I, a) = 0,

completing the proof. �

Theorem 4.3. Let σ1, σ2, ... be strategy profiles generated by CFR in an extensive-form game with

perfect recall, and let σi be an iteratively strictly dominated strategy. Then,

(i) there exists an integer T0 such that for all T ≥ T0, there exist I ∈ Ii, a ∈ A(I) such that

πσi (I)σi(I, a) > 0 and RTi (I, a) < 0, and

(ii) if limT→∞ xT /T = 0, then limT→∞ yT (σi)/T = 0, where yT (σi) is the number of iterations

1 ≤ t ≤ T satisfying supp(σi) ⊆ supp(σti).
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Proof. Let s1
j1
, s2
j2
, ..., skjk be iteratively strictly dominated pure strategies that once removed in

sequence yields strict domination of σi. Let S−i = S−i\{s1
j1
, s2
j2
, ..., skjk} be the set of opponent

pure strategy profiles that do not play any of s1
j1
, s2
j2
, ..., skjk . Next, by iterative strict domination of

σi and because the game is finite, there exists another strategy σ′i ∈ Σi such that

ε = min
s−i∈S−i

ui(σ
′
i, s−i)− ui(σi, s−i) > 0,

so that ui(σi, s−i) ≤ ui(σ′i, s−i)− ε for all s−i ∈ S−i.

For σ̂i ∈ Σi, define RTi,full(σ̂i) =
∑T
t=1

(
ui(σ̂i, σ

t
−i)− ui(σt)

)
. Note that

RTi,full(σ̂i) =
∑
I∈I0

i

RTi,full(I, σ̂i),

where I0
i = {I ∈ Ii | ∀h ∈ I, h′ @ h, P (h′) 6= i} is the set of all possible first information sets

for player i reached. So, by Corollary B.1, RTi,full(σ̂i) ≤ ∆i|Ii|
√
|A(Ii)|T for all σ̂i ∈ Σi. Then by

Lemma B.1, we have∑
I∈Ii

πσi (I)
∑

a∈A(I)

σi(I, a)RTi (I, a)

= RTi,full(σi)−RTi,full(σ
′
i) +RTi,full(σ

′
i)

=

T∑
t=1

(
ui(σi, σ

t
−i)− ui(σ′i, σt−i)

)
+RTi,full(σ

′
i)

=
∑

supp(σt−i)⊆S−i
1≤t≤T

∑
s−i∈S−i

σt−i(s−i) (ui(σi, s−i)− ui(σ′i, s−i))

+
∑

supp(σt−i)*S−i
1≤t≤T

(
ui(σi, σ

t
−i)− ui(σ′i, σt−i)

)
+RTi,full(σ

′
i),

where σ−i(s−i) =
∏
j 6=i
I∈Ij

σj(I, sj(I))

≤ −ε

(
T −

k∑
`=1

yT (s`j`)

)
+ ∆i

k∑
`=1

yT (s`j`) + ∆i|Ii|
√
|A(Ii)|T . (B.7)

We claim that

lim sup
T→∞

1

T

∑
I∈Ii

πσi (I)
∑
a∈A(I)

σi(I, a)RTi (I, a) < 0.

Assuming the claim holds, because (1/T ), πσi (I), and σi(I, a) are nonnegative, it follows that there

exists an integer T0 such that for all T ≥ T0, there exist I ∈ Ii, a ∈ A(I) such that πσi (I)σi(I, a) >

0 and RTi (I, a) < 0, establishing (i). For part (ii), note that part (i) and equation (2.4) imply that for

all T ≥ T0, either
∑
b∈A(I)R

T,+
i (I, b) = 0 or supp(σi) * supp(σTi ). Thus,

lim
T→∞

yT (σi)

T
= lim
T→∞

yT0(σi) + (yT (σi)− yT0(σi))

T

≤ lim
T→∞

yT0(σi) + xT

T
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= 0,

establishing part (ii).

To complete the proof, it remains to prove the claim, which we will prove by induction on k. For

the base case k = 0, equation (B.7) gives

lim sup
T→∞

1

T

∑
I∈Ii

πσi (I)
∑
a∈A(I)

σi(I, a)RTi (I, a) ≤ lim sup
T→∞

−ε+
∆i|Ii|

√
|A(Ii)|√
T

= −ε

< 0.

For the induction step, we may assume that parts (i) and (ii) hold for all s1
j1
, s2
j2
, ..., skjk . Then

equation (B.7) implies

lim sup
T→∞

1

T

∑
I∈Ii

πσi (I)
∑

a∈A(I)

σi(I, a)RTi (I, a) ≤ −ε+ (ε+ ∆i)

k∑
`=1

lim sup
T→∞

yT (s`j`)

T

+ lim sup
T→∞

∆i|Ii|
√
|A(Ii)|√
T

= −ε

< 0,

proving the claim. �
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Appendix C

Proofs for Chapter 5: Generalized
Sampling and Improved Monte
Carlo CFR

In this appendix, we prove Theorems 5.1 through 5.6 and prove Proposition 5.1. In addition, we

state and prove a tighter regret bound than that of Theorem 5.4 when some structure on the estimate

v̂i is assumed. We also present a more general version of our probing algorithm. As we did in

Chapter 5, we assume perfect recall throughout this appendix.

C.1 Preliminaries

To begin, we state a number of results that we will use in our analysis throughout this appendix. All

of these results are provided and proved by Lanctot et al. in their technical report [55], thus we do

not repeat the proofs here.

Lemma C.1 (Lanctot et al. [55], Lemma 2). For any random variable X ,

Prob
[
|X| ≥ k

√
E[X2]

]
≤ 1

k2
.

Lemma C.2 (Lanctot et al. [55], Lemma 5). If b1, ..., bk are nonnegative real numbers where∑k
i=1 b

2
i = S, then

∑k
i=1 bi ≤

√
Sk.

For the next lemma, recall the definition of Bi from Section 2.2.2 and the definition of πσ−i(I) =∑
h∈I π

σ
−i(h).

Lemma C.3 (Lanctot et al. [55], Lemma 16). For any strategy profile σ and for any B ∈ Bi, in a

game with perfect recall, ∑
I∈B

πσ−i(I) ≤ 1.

The final lemma of this section also holds true in imperfect recall games and will be used in both

this appendix and later in Appendix D.
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Lemma C.4 (Lanctot et al. [55], Theorem 6). Define ∆t to be maxa,b∈A(I)(v̂i(I, σ
t
(I→a)) −

v̂i(I, σ
t
(I→b))). When using regret matching at I ,

∑
a∈A(I)

(
R̂T,+i (I, a)

)2

≤ |A(I)|
T∑
t=1

∆2
t .

The proof of Lemma C.4 is analogous to the proof of Theorem 2.2 given in Appendix A.

C.2 New CFR Bounds

In this section, we prove Theorems 5.1, 5.2, 5.3, and 5.5. To begin, Theorem 5.1 is simply a special

case of Lemma B.1 established in the previous appendix. Again, perfect recall is required for πσ
∗

i (I)

to be well-defined.

Theorem 5.1. In an extensive-form game with perfect recall,

RTi =
∑
I∈Ii

πσ
∗

i (I)RTi (I, σ∗i ).

Proof. Let I0
i = {I ∈ Ii | ∀h ∈ I, h′ @ h, P (h′) 6= i} be the set of all possible first information

sets for player i reached. Then,

RTi = max
σ′i∈Σi

T∑
t=1

(ui(σ
′
i, σ

t
−i)− ui(σti , σt−i))

=
∑
I∈I0

i

RTi,full(I, σ
∗
i ) as defined by equation (B.4)

=
∑
I∈I0

i

∑
I′∈D(I)

πσ
∗

i (I, I ′)
∑

a∈A(I′)

σ∗i (I ′, a)RTi (I ′, a) by Lemma B.1

=
∑
I∈Ii

πσ
∗

i (I)RTi (I, σ∗i ),

where the last line follows since πσi (I) = 1 for all I ∈ I0
i and by definition of RTi (I, σi). �

Theorem 5.2. When using Vanilla CFR in a game with perfect recall, average regret is bounded by

RTi
T
≤

∆iMi(σ
∗
i )
√
|A(Ii)|√

T
.

Proof.

RTi =
∑
I∈Ii

πσ
∗

i (I)RTi (I, σ∗i ) by Theorem 5.1

=
∑
I∈Ii

πσ
∗

i (I)
∑

a∈A(I)

σ∗i (I, a)RTi (I, a)

=
∑
I∈Ii

πσ
∗

i (I) max
a∈A(I)

RTi (I, a)

≤
∑
I∈Ii

πσ
∗

i (I)

√ ∑
a∈A(I)

(RT,+i (I, a))2
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≤
∑
I∈Ii

πσ
∗

i (I)∆i

√
|A(I)|

√√√√ T∑
t=1

(πσ
t

−i(I))2

by Lemma C.4 with ∆t = ∆iπ
σt

−i(I)

≤ ∆i

√
|A(Ii)|

∑
B∈Bi

πσ
∗

i (B)
∑
I∈B

√√√√ T∑
t=1

(πσ
t

−i(I))2

≤ ∆i

√
|A(Ii)|

∑
B∈Bi

πσ
∗

i (B)

√√√√|B| T∑
t=1

∑
I∈B

πσ
t

−i(I) by Lemma C.2

≤ ∆i

√
|A(Ii)|

∑
B∈Bi

πσ
∗

i (B)
√
|B|T by Lemma C.3

= ∆i

√
|A(Ii)|TMi(σ

∗
i ).

Dividing both sides by T gives the result. �

We now prove a general, probabilistic bound that can be applied to any generalized sampling

algorithm. We then apply this bound to our MCCFR algorithms to prove Theorems 5.3 and 5.5.

This lemma will also be used at the end of this appendix to prove Theorem 5.6. We again require

perfect recall so that Bi and Mi(σ
∗
i ) are well-defined and so that we can also apply Lemma C.3 and

Theorem 5.1.

Lemma C.5. Let p, δ ∈ (0, 1]. When using any generalized sampling algorithm with unbiased

estimated counterfactual values v̂i(I, σ), sampled independently on each iteration, in a game

with perfect recall, if there exists a bound ∆̂i(I, σ) on the difference between any two estimates

v̂i(I, σ(I→a))− v̂i(I, σ(I→b)) ≤ ∆̂i(I, σ), and if∑
I∈B

(∆̂i(I, σ))2 ≤ (∆i)
2

δ2
(C.1)

for all B ∈ Bi, then with probability at least 1− p, average regret is bounded by

RTi
T
≤

(
Mi(σ

∗
i )
√
|A(Ii)|+

2
√
|Ii||Bi|√
p

)(
1

δ

)
∆i√
T
.

Proof. Our proof follows that of [55, Theorem 7]. To start, we may assume σ∗i defined in equation

(5.1) is pure as it is a best response to the average correlated play of the opponents up to time T .

The proof will proceed as follows. First, we prove a bound on the weighted sum of the cumulative

estimated counterfactual regrets
∑
I∈I π

σ∗

i (I)R̂Ti (I, σ∗i ). Secondly, we prove a probabilistic bound

on the expected squared difference between
∑
I∈Ii π

σ∗

i (I)RTi (I, σ∗i ) and
∑
I∈I π

σ∗

i (I)R̂Ti (I, σ∗i ),

showing that the true counterfactual regrets are not too far from the estimated counterfactual regrets.

Finally, we apply Theorem 5.1 to obtain the bound on the average regret.

For the first step,

∑
I∈Ii

πσ
∗

i (I)R̂Ti (I, σ∗i ) ≤
∑
I∈Ii

πσ
∗

i (I)

√√√√ ∑
a∈A(I)

(
R̂T,+i (I, a)

)2
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≤
∑
I∈Ii

πσ
∗

i (I)

√√√√|A(I)|
T∑
t=1

(∆̂i(I, σt))2 by Lemma C.4

≤
√
|A(Ii)|

∑
B∈Bi

πσ
∗

i (B)
∑
I∈B

√√√√ T∑
t=1

(∆̂i(I, σt))2

≤
√
|A(Ii)|

∑
B∈Bi

πσ
∗

i (B)

√√√√|B| T∑
t=1

∑
I∈B

(∆̂i(I, σt))2

by Lemma C.2

≤
√
|A(Ii)|

∑
B∈Bi

πσ
∗

i (B)

√
|B|T (∆i)2

δ2
by equation (C.1)

=
∆iMi(σ

∗
i )
√
|A(Ii)|T

δ
. (C.2)

Secondly, for I ∈ Ii with σ∗i (I, a) = 1,

(
RTi (I, σ∗i )− R̂Ti (I, σ∗i )

)2

=

(
T∑
t=1

(
rti(I, a)− r̂ti(I, a)

))2

=

T∑
t=1

(
rti(I, a)− r̂ti(I, a)

)2
+ 2

T∑
t=1

T∑
t′=t+1

(
rti(I, a)− r̂ti(I, a)

) (
rt
′

i (I, a)− r̂t
′

i (I, a)
)
.

(C.3)

We now multiply both sides by (πσ
∗

i (I))2 and take the expectation of both sides. Note that

E
[(
rti(I, a)− r̂ti(I, a)

) (
rt
′

i (I, a)− r̂t
′

i (I, a)
)]

= E
[
E
[
(rt
′

i (I, a)− r̂t
′

i (I, a)) | rti(I, a), r̂ti(I, a)
] (
rti(I, a)− r̂ti(I, a)

)]
and that E

[
(rt
′

i (I, a)− r̂t′i (I, a)) | rti(I, a), r̂ti(I, a)
]

= 0 since for t′ > t, r̂t
′

i is an unbiased es-

timate of rt
′

i and is sampled independently of rti(I, a) and r̂ti(I, a). Thus from equation (C.3), we

have

E
[
(πσ

∗

i (I))2
(
RTi (I, σ∗i )− R̂Ti (I, σ∗i )

)2
]

=

T∑
t=1

E
[
(πσ

∗

i (I))2
(
rti(I, a)− r̂ti(I, a)

)2]
≤

T∑
t=1

E
[(
rti(I, a)

)2 − 2rti(I, a)r̂ti(I, a) +
(
r̂ti(I, a)

)2]
≤

T∑
t=1

[(
πσ

t

−i(I)
)2

∆2
i + 2πσ

t

−i(I) max{∆2
i ,
(

∆̂i(I, σ
t)
)2

}+
(

∆̂i(I, σ
t)
)2
]
. (C.4)

We can now bound the expected squared difference between
∑
I∈Ii π

σ∗

i (I)RTi (I, σ∗i ) and∑
I∈Ii π

σ∗

i (I)R̂Ti (I, σ∗i ) by
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E

(∑
I∈Ii

πσ
∗

i (I)
(
RTi (I, σ∗i )− R̂Ti (I, σ∗i )

))2


≤ E

(∑
I∈Ii

∣∣∣πσ∗i (I)
(
RTi (I, σ∗i )− R̂Ti (I, σ∗i )

)∣∣∣)2


≤ E


√|Ii|∑

I∈Ii

∣∣∣πσ∗i (I)
(
RTi (I, σ∗i )− R̂Ti (I, σ∗i )

)∣∣∣2
2


by Lemma C.2

= |Ii|
∑
I∈Ii

E
[(
πσ
∗

i (I)
)2 (

RTi (I, σ∗i )− R̂Ti (I, σ∗i )
)2
]

≤ |Ii|
∑
I∈Ii

T∑
t=1

[(
πσ

t

−i(I)
)2

∆2
i + 2πσ

t

−i(I) max{∆2
i ,
(

∆̂i(I, σ
t)
)2

}+
(

∆̂i(I, σ
t)
)2
]

by equation (C.4)

≤ |Ii|
∑
B∈Bi

T∑
t=1

[∑
I∈B

(
πσ

t

−i(I)
)2

∆2
i +

∑
I∈B

2πσ
t

−i(I) max{∆2
i ,
(

∆̂i(I, σ
t)
)2

}

+
∑
I∈B

(
∆̂i(I, σ

t)
)2
]

≤ |Ii|
∑
B∈Bi

T∑
t=1

[
∆2
i +

3∆2
i

δ2

]
by Lemma C.3 and equation (C.1)

≤ 4|Ii||Bi|T∆2
i

δ2
(C.5)

Finally, with probability 1− p, we can bound the regret by

RTi =
∑
I∈Ii

πσ
∗

i (I)RTi (I, σ∗i ) by Theorem 5.1

=
∑
I∈Ii

πσ
∗

i (I)
(
RTi (I, σ∗i )− R̂Ti (I, σ∗i ) + R̂Ti (I, σ∗i )

)
≤

∣∣∣∣∣∑
I∈Ii

πσ
∗

i (I)
(
RTi (I, σ∗i )− R̂Ti (I, σ∗i )

)∣∣∣∣∣+
∑
I∈Ii

πσ
∗

i (I)R̂Ti (I, σ∗i )

≤ 1
√
p

√√√√√E

(∑
I∈Ii

πσ
∗
i (I)

(
RTi (I, σ∗i )− R̂Ti (I, σ∗i )

))2
+

∆iMi(σ
∗
i )
√
|A(Ii)|T

δ

by Lemma C.1 and equation (C.2)

≤

(
2
√
|Ii||Bi|√
p

+Mi(σ
∗
i )
√
|A(Ii)|

)(
1

δ

)
∆i

√
T

by equation (C.5). Dividing both sides by T gives the result. �

Theorems 5.3 and 5.5. Let X be one of CS, ES, OS (assuming OS samples opponent actions ac-

cording to σ−i), or AS, let p ∈ (0, 1], and let δ = minz∈Z qi(z) > 0 over all 1 ≤ t ≤ T . When
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using X in a game with perfect recall, with probability 1− p, average regret is bounded by

RTi
T
≤

(
Mi(σ

∗
i )
√
|A(Ii)|+

2
√
|Ii||Bi|√
p

)(
1

δ

)
∆i√
T
.

Proof. To start, recall that ṽi(I, σ) is an unbiased estimate of the true counterfactual value vi(I, σ)

[54, Lemma 1]. Next, for Q ∈ Q, define

∆̂i(I, σ) = ∆i

∑
z∈Q∩ZI

πσ(z[I], z)πσ−i(z[I])

q(z)

so that the difference between two sampled counterfactual values at information set I is bounded by

ṽi(I, σ(I→a))− ṽi(I, σ(I→b)) ≤ ∆̂i(I, σ)

for all a, b ∈ A(I). By Lemma C.5, it suffices to show that

Y =
1

∆2
i

∑
I∈B

(∆̂i(I, σ))2 =
∑
I∈B

 ∑
z∈Q∩ZI

πσ
t

(z[I], z)πσ
t

−i(z[I])

q(z)

2

≤ 1

δ2

for all B ∈ Bi, Q ∈ Q, and σ ∈ Σ. To that end, fix B ∈ Bi, Q ∈ Q, and σ ∈ Σ. Since X samples

a single action at each h ∈ Hc according to σc, there exists a unique a∗h ∈ A(h) such that if z ∈ Q

and h v z, then ha∗h v z. Consider the new chance probability distribution σ̂c defined according to

σ̂c(h, a) =

{
1 if a = a∗h
0 if a 6= a∗h

for all h ∈ Hc, a ∈ A(h). When X 6= CS, we also have a unique such action a∗I for each I ∈ I−i
sampled according to σ−i, so we can similarly define the new opponent profile σ̂−i according to

σ̂−i(I, a) =

 σ−i(I, a) if X = CS
1 if X 6= CS and a = a∗I
0 if X 6= CS and a 6= a∗I

for all I ∈ I−i, a ∈ A(I). Then

Y =
∑
I∈B

 ∑
z∈Q∩ZI

πσi (z[I], z)πσ−i(z)

q(z)

2

=
∑
I∈B

(∑
z∈ZI

πσi (z[I], z)πσ̂−i(z)

qi(z)

)2

≤ 1

δ2

∑
I∈B

(∑
z∈ZI

πσ̂−i(z)

)2

=
1

δ2

∑
I∈B

(
πσ̂−i(I)

)2
≤ 1

δ2
,

where the last line follows by Lemma C.3. �
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C.3 Generalized Sampling

Below, we restate and prove Lemma 5.1 and Theorem 5.4. We then show how to obtain a tighter

bound than that of Theorem 5.4 when some structure on the estimate v̂i(I, σ) is assumed.

Lemma 5.1. Let p ∈ (0, 1] and suppose that there exists a bound ∆̂i on the difference between any

two estimates, v̂i(I, σ(I→a)) − v̂i(I, σ(I→b)) ≤ ∆̂i. If strategies are selected according to regret

matching (2.4) on the cumulative estimated counterfactual regrets in a game with perfect recall, then

with probability at least 1− p, the average regret is bounded by

RTi
T
≤ |Ii|

∆̂i

√
|A(Ii)|√
T

+

√
Var [ri − r̂i]

pT
+

Cov
[
rti − r̂ti , rt

′
i − r̂t

′
i

]
p

+
E[ri − r̂i]2

p

 ,

where

Var [ri − r̂i] = max
t∈{1,...,T}
I∈Ii
a∈A(I)

Var
[
rti(I, a)− r̂ti(I, a)

]
,

Cov
[
rti − r̂ti , rt

′

i − r̂t
′

i

]
= max
t,t′∈{1,...,T}

t 6=t′
I∈Ii
a∈A(I)

Cov
[
rti(I, a)− r̂ti(I, a), rt

′

i (I, a)− r̂t
′

i (I, a)
]
, and

E[ri − r̂i] = max
t∈{1,...,T}
I∈Ii
a∈A(I)

E[rti(I, a)− r̂ti(I, a)].

Proof. The proof is a generalized version of the proof for Lemma C.5. Let σ∗i be a strategy defined

by equation (5.1). Again, we may assume σ∗i is pure. Firstly, for I ∈ Ii,

R̂Ti (I, σ∗i )

T
≤ 1

T

√√√√ ∑
a∈A(I)

(
R̂T,+i (I, a)

)2

≤
∆̂i

√
|A(I)|√
T

by Lemma C.4. (C.6)

Next, define Ji = {I ∈ Ii | RTi (I, σ∗i ) ≥ 0}. Similar to the proof of Lemma C.5, we now

prove a probabilistic bound on the expected squared difference between
∑
I∈Ji R

T
i (I, σ∗i ) and∑

I∈Ji R̂
T
i (I, σ∗i ). Given perfect recall, we then complete the proof by using Theorem 5.1.

Now, for I ∈ Ii,

(RTi (I, σ∗i )− R̂Ti (I, σ∗i ))2 =

T∑
t=1

(
rti(I, a)− r̂ti(I, a)

)2
+2

T∑
t=1

T∑
t′=t+1

(rti(I, a)− r̂ti(I, a))(rt
′

i (I, a)− r̂t
′

i (I, a)).

Taking the expectation of both sides gives
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E
[
(RTi (I, σ∗i )− R̂Ti (I, σ∗i ))2

]

≤

[
T∑
t=1

E
[
(rti(I, a)− r̂ti(I, a))2

]
+2

T∑
t=1

T∑
t′=t+1

E
[
(rti(I, a)− r̂ti(I, a))(rt

′

i (I, a)− r̂t
′

i (I, a))
]]

=

T∑
t=1

(
Var

[
rti(I, a)− r̂ti(I, a)

]
+ E

[
rti(I, a)− r̂ti(I, a)

]2)
+2

T∑
t=1

T∑
t′=t+1

(
Cov

[
(rti(I, a)− r̂ti(I, a)), (rt

′

i (I, a)− r̂t
′

i (I, a))
]

+E[rti(I, a)− r̂ti(I, a)]E[rt
′

i (I, a)− r̂t
′

i (I, a)]
)

=

T∑
t=1

Var
[
rti(I, a)− r̂ti(I, a)

]
+2

T∑
t=1

T∑
t′=t+1

Cov
[
rti(I, a)− r̂ti(I, a), rt

′

i (I, a)− r̂t
′

i (I, a)
]

+

(
T∑
t=1

E[rti(I, a)− r̂ti(I, a)]

)2

. (C.7)

We can now bound the expected squared difference between
∑
I∈Ji R

T
i (I, σ∗i ) and∑

I∈Ji R̂
T
i (I, σ∗i ) as follows:

E

(∑
I∈Ji

(RTi (I, σ∗i )− R̂Ti (I, σ∗i ))

)2


≤ E

(∑
I∈Ji

∣∣∣RTi (I, σ∗i )− R̂Ti (I, σ∗i )
∣∣∣)2


≤ E


√|Ii|∑

I∈Ji

∣∣∣RTi (I, σ∗i )− R̂Ti (I, σ∗i )
∣∣∣2
2
 by Lemma C.2

= |Ii|
∑
I∈Ji

E
[
(RTi (I, σ∗i )− R̂Ti (I, σ∗i ))2

]

≤ |Ii|
∑
I∈Ji

T∑
t=1

Var
[
rti(I, a)− r̂ti(I, a)

]
+2|Ii|

∑
I∈Ji

T∑
t=1

T∑
t′=t+1

Cov
[
rti(I, a)− r̂ti(I, a), rt

′

i (I, a)− r̂t
′

i (I, a)
]

+|Ii|
∑
I∈Ji

(
T∑
t=1

E[rti(I, a)− r̂ti(I, a)]

)2

by (C.7)

≤ |Ii|2
(
TVar [ri − r̂i] + T 2Covt 6=t′

[
rti − r̂ti , rt

′

i − r̂t
′

i

]
+ T 2E[ri − r̂i]2

)
. (C.8)
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Finally, with probability at least 1− p,

RTi
T

≤ 1

T

∑
I∈Ji

RTi (I, σ∗i ) by Theorem 5.1

=
1

T

∑
I∈Ji

(
RTi (I, σ∗i )− R̂Ti (I, σ∗i ) + R̂Ti (I, σ∗i )

)
≤ 1

T

∣∣∣∣∣∑
I∈Ji

(
RTi (I, σ∗i )− R̂Ti (I, σ∗i )

)∣∣∣∣∣+
∑
I∈Ji

R̂Ti (I, σ∗i )

T

≤ 1

T
√
p

√√√√√E

(∑
I∈Ji

(RTi (I, σ∗i )− R̂Ti (I, σ∗i ))

)2
+

∑
I∈Ji

∆̂i

√
|A(I)|√
T

by Lemma C.1 and (C.6)

≤ |Ii|

∆̂i

√
|A(Ii)|√
T

+

√
Var [ri − r̂i]

pT
+

Cov
[
rti − r̂ti , rt

′
i − r̂t

′
i

]
p

+
E[ri − r̂i]2

p


by (C.8). �

Theorem 5.4. If in addition to the conditions of Lemma 5.1, for all I ∈ Ii, a ∈ A(I), t ≥ 1,

v̂i(I, σ
t) and v̂i(I, σt(I→a)) are unbiased estimators of vi(I, σt) and vi(I, σt(I→a)) respectively, and

for all t′ 6= t, v̂i(I, σt) and v̂i(I, σt(I→a)) are sampled independently of v̂i(I, σt
′
) and v̂i(I, σt

′

(I→a)),

then with probability at least 1− p,

RTi
T
≤

(
∆̂i

√
|A(Ii)|+

√
Var [ri − r̂i]√

p

)
|Ii|√
T
.

Proof. Since v̂i(I, σ) is unbiased, it immediately follows that r̂ti(I, a) = v̂i(I, σ
t
(I→a))− v̂i(I, σ

t)

is also unbiased. Thus,

E[ri − r̂i] = 0.

In addition,

Covt 6=t′
[
rti − r̂ti , rt

′

i − r̂t
′

i

]
= 0

because samples are chosen independently between iterations. The result follows by Lemma 5.1. �

Now, if some structure on the estimates v̂i(I, σ) holds, then using Theorem 5.1 and the value

Mi(σ
∗
i ), we can tighten the bound of Theorem 5.4. The structure we require is that the difference

between any two estimates v̂i(I, σ(I→a)) and v̂i(I, σ(I→b)) can be bounded by

v̂i(I, σ(I→a))− v̂i(I, σ(I→b)) ≤ ∆̂i ≡ πσ−i(I)∆̂′i

for some ∆̂′i. Note that both

vi(I, σ(I→a))− vi(I, σ(I→b)) ≤ πσ−i(I)∆i

and

ṽi(I, σ(I→a))− ṽi(I, σ(I→b)) ≤ πσ−i(I)
∆i

δ
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with δ = minz∈Z q(z) can be bounded in this way. We can similarly derive a bound on the difference

between any two estimates v̂i(I, σ(I→a)) and v̂i(I, σ(I→b)) where v̂i(I, σ) is as defined for probing

(Algorithm 3). This bound is derived in Lemma C.6 of Section C.4.

Theorem C.1. If in addition to the conditions of Lemma 5.1 and Theorem 5.4, there exists ∆̂′i such

that we can bound the difference between any two estimates by v̂i(I, σ(I→a)) − v̂i(I, σ(I→b)) ≤

πσ−i(I)∆̂′i, then with probability at least 1− p, the average regret is bounded by

RTi
T
≤

∆̂′iMi(σ
∗
i )
√
|A(Ii)|√

T
+
|Ii|
√

Var [ri − r̂i]√
pT

,

where

Var [ri − r̂i] = max
t∈1,...,T
I∈Ii
a∈A(I)

Var
[
(rti(I, a)− r̂ti(I, a))

]
.

Proof. The proof follows the same general steps as the proof of Lemma 5.1, with a few minor

changes as noted here. Firstly,

∑
I∈Ji

πσ
∗

i (I)R̂Ti (I, σ∗i ) ≤
∑
I∈Ii

πσ
∗

i (I)

√√√√ ∑
a∈A(I)

(
R̂T,+i (I, a)

)2

≤
∑
I∈Ii

πσ
∗

i (I)

√√√√|A(I)|
T∑
t=1

(πσ−i(I)∆̂′i)
2

by Lemma C.4

≤
√
|A(Ii)|∆̂′i

∑
B∈Bi

πσ
∗

i (B)
∑
I∈B

√√√√ T∑
t=1

(πσ−i(I))2

≤
√
|A(Ii)|∆̂′i

∑
B∈Bi

πσ
∗

i (B)

√√√√|B| T∑
t=1

∑
I∈B

(πσ−i(I))2

by Lemma C.2

≤
√
|A(Ii)|∆̂′i

∑
B∈Bi

πσ
∗

i (B)
√
|B|T by Lemma C.3

= ∆̂′iMi(σ
∗
i )
√
|A(Ii)|T . (C.9)

Next, note that the covariance and expectation terms from equation (C.8) are zero by the arguments

in the proof of Theorem 5.4 above. Also, since πσ
∗

i (I) ∈ [0, 1], we have

E
[(
πσ
∗

i (I)(RTi (I, σ∗i )− R̂Ti (I, σ∗i ))
)2
]
≤ E

[
(RTi (I, σ∗i )− R̂Ti (I, σ∗i ))2

]
and so following the same arguments used to reach equation (C.8), we have

E


∑
I∈Ji

πσ
∗

i (I)(RTi (I, σ∗i )− R̂Ti (I, σ∗i ))

2
 ≤ |Ii|2TVar [ri − r̂i] .
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Therefore, given perfect recall, by Theorem 5.1, we have

RTi
T
≤ 1

T

∑
I∈Ji

πσ
∗

i (I)RTi (I, σ∗i )

=
1

T

∑
I∈Ji

πσ
∗

i (I)
(
RTi (I, σ∗i )− R̂Ti (I, σ∗i ) + R̂Ti (I, σ∗i )

)
≤ 1

T

∣∣∣∣∣∑
I∈Ji

πσ
∗

i (I)
(
RTi (I, σ∗i )− R̂Ti (I, σ∗i )

)∣∣∣∣∣+
∑
I∈Ji

πσ
∗

i (I)R̂Ti (I, σ∗i )

T

≤ 1

T
√
p

√√√√√E

(∑
I∈Ji

πσ
∗
i (I)(RTi (I, σ∗i )− R̂Ti (I, σ∗i ))

)2
+

∆̂′iMi(σ
∗
i )
√
|A(Ii)|√

T

by Lemma C.1 and (C.9)

≤
∆̂′iMi(σ

∗
i )
√
|A(Ii)|√

T
+
|Ii|
√

Var [ri − r̂i]√
pT

. �

C.4 Probing

In this section, we formally define the estimated counterfactual value v̂i(I, σ) obtained via probing

in its most general form. We then prove that v̂i(I, σ) is bounded and unbiased, which leads to the

proof of Proposition 5.1. Fix the iteration t and let K be the number of probes to perform at each

information set. Suppose that on iteration t, we sample a block X ∈ X , X ⊆ Z, according to some

probability distribution on X that spans Z (as with Q in MCCFR). The set X represents candidate

terminal histories that may be visited on iteration t, though some terminal histories in X may not

be visited. Now, in addition, sample a sub-block Q ∈ QX , Q ⊆ X , according to some probability

distribution on QX , where the union of all sets in QX spans X . Finally, for each k = 1, 2, ...,K,

we independently sample a set of probes Y k ∈ YX,Q, Y k ⊆ X\Q according to some probability

distribution on YX,Q, where the union of all sets in YX,Q spans X\Q. It is assumed that all X , Q,

and Y are sampled with some positive probability. When ZI ∩ Q 6= ∅, we define our estimated

counterfactual regret under probing to be

v̂i(I, σ) =
1

q(I|X)

 ∑
z∈ZI∩Q

πσ−i(z[I])πσ(z[I], z)ui(z)

x(z)

+
1

K

K∑
k=1

∑
z∈ZI∩Y k

πσ−i(z[I])πσ(z[I], z)ui(z)

x(z)y(z|X,Q)

 , (C.10)

where

x(z) = P[z ∈ X] for all z ∈ Z,

q(I|X) = P[ZI ∩Q 6= ∅ | X], and

y(z|X,Q) = P[z ∈ Y | X,Q] for all z ∈ X\Q.
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Otherwise, when ZI ∩Q = ∅, we define v̂i(I, σ) = 0.

Lemma C.6. Given perfect recall, the following two conditions hold:

(i) For a, a′ ∈ A(I), v̂i(I, σ(I→a)) − v̂i(I, σ(I→a′)) ≤ πσ−i(I)∆̂′i, where ∆̂′i = ∆i/δ and δ =

minz,X,Q,I x(z)q(I|X)y(z|X,Q), and

(ii) v̂i(I, σ) is an unbiased estimate of vi(I, σ).

Proof. (i) v̂i(I, σ(I→a))− v̂i(I, σ(I→a′))

=
∑

z∈ZI∩Q

πσ−i(z[I])(πσ(z[I]a, z)ui(z)− πσ(z[I]a′, z)ui(z))

x(z)q(I|X)

+
1

K

K∑
k=1

∑
z∈ZI∩Y k

πσ−i(z[I])(πσ(z[I]a, z)ui(z)− πσ(z[I]a′, z)ui(z))

x(z)q(I|X)y(z|X,Q)

≤∆i

δ

1

K

K∑
k=1

∑
z∈ZI∩(Q∪Y k)

πσ−i(z[I])

≤∆̂′i
∑
h∈I

πσ−i(h)

K∑
k=1

1

K

=πσ−i(I)∆̂′i.

(ii) For brevity, define Uσi (z) = πσ−i(z[I])πσ(z[I], z)ui(z). We will extend the definition of

y(z|X,Q) by defining

y′(z|X,Q) = P[z ∈ Y ∪Q | X,Q] for all z ∈ X.

Note that for z ∈ X\Q, y′(z|X,Q) = y(z|X,Q) and for z ∈ Q, y′(z|X,Q) = 1. So, we can

rewrite v̂i(I, σ) as

v̂i(I, σ) =
I[ZI ∩Q 6= ∅]
Kq(I|X)

K∑
k=1

∑
z∈ZI∩(Q∪Y k)

Uσi (z)

x(z)y′(z|X,Q)
,

where I[·] is the indicator function. Given this form for v̂i(I, σ), we have

E [v̂i(I, σ)] =
∑
X∈X

∑
Q∈QX

∑
Y 1∈YX,Q

· · ·
∑

Y K∈YX,Q

P[X]P[Q | X]

K∏
k=1

P[Y k | X,Q]

I[ZI ∩Q 6= ∅]
Kq(I|X)

K∑
k=1

∑
z∈ZI∩(Q∪Y k)

Uσi (z)/(x(z)y′(z|X,Q))

=
∑
X∈X

P[X]
∑

z∈ZI∩X

Uσi (z)

x(z)q(I|X)

∑
Q∈QX

P[Q | X] I[ZI ∩Q 6= ∅]
y′(z|X,Q)

· 1

K

K∑
k=1

∑
Y k∈YX,Q

P[Y k | X,Q] I[z ∈ Q ∪ Y k]
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∑
Y 1∈YX,Q

· · ·
∑

Y k−1∈YX,Q

∑
Y k+1∈YX,Q

· · ·
∑

Y K∈YX,Q

K∏
`=1
` 6=k

P[Y ` | X,Q]. (C.11)

Now, notice that ∑
Y 1∈YX,Q

· · ·
∑

Y k−1∈YX,Q

∑
Y k+1∈YX,Q

· · ·
∑

Y K∈YX,Q

K∏
`=1
6̀=k

P[Y ` | X,Q] = 1

and
1

K

K∑
k=1

∑
Y k∈YX,Q

P[Y k | X,Q] I[z ∈ Q ∪ Y k] = y′(z|X,Q).

Thus,

E [v̂i(I, σ)] =
∑
X∈X

P[X]
∑

z∈ZI∩X

Uσi (z)

x(z)q(I|X)

∑
Q∈QX

P[Q | X] I[ZI ∩Q 6= ∅] by (C.11)

=
∑
X∈X

P[X]
∑

z∈ZI∩X

Uσi (z)

x(z)
, since

∑
Q∈QX

P[Q | X] I[ZI ∩Q 6= ∅] = q(I|X)

=
∑
z∈ZI

Uσi (z)

x(z)

∑
X∈X

P[X] I[z ∈ X]

=
∑
z∈ZI

Ui(z), since
∑
X∈X

P[X] I[z ∈ X] = x(z)

= vi(I, σ). �

Proof of Proposition 5.1. LetX be the partition of Z such that two terminal histories are in different

blocks if and only if some chance or opponent action differs, and sample X ∈ X according to the

known chance probabilities and current profile1 so that x(z) = πσ−i(z). Set K = 1 and define the

probes Y as in Section 5.3 so that y(zha|X,Q) = πσi (ha, z). Thus, when ZI ∩Q 6= ∅, the estimated

counterfactual regret simplifies to

v̂i(I, σ) =
1

qi(I)

 ∑
z∈ZI∩Q

πσi (z[I], z)ui(z) +
∑

zha∈ZI∩Y
πσi (z[I], ha)ui(z)

 .
The result now follows by Lemma C.6. �

C.5 Pure CFR

Lastly, we now prove Theorem 5.6 by once again applying Lemma C.5.

Theorem 5.6. Let p ∈ (0, 1]. When using Pure CFR in a game with perfect recall, with probability

1− p, average regret is bounded by

RTi
T
≤

(
Mi(σ

∗
i )
√
|A(Ii)|+

2
√
|Ii||Bi|√
p

)
∆i√
T
.

1As mentioned in Section 2.2.3, when πσ−i(z) = 0, v̂i(I, σ) is still an unbiased estimate if x(z) = 0 and we simply
treat z’s contribution to the sum in equation (C.10) as zero.
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Proof. By Proposition 5.2, the estimated counterfactual value v̂i(I, σ) from Pure CFR is an unbi-

ased estimate of the true counterfactual value vi(I, σ). Define ∆̂i(I, σ) = πŝ−i(I)∆i, where ŝ is the

pure strategy profile and pure chance distribution sampled from σ. The difference between any two

counterfactual values is then bounded by

v̂i(I, σ(I→a))− v̂i(I, σ(I→b)) ≤ ∆̂i(I, σ)

for all a, b ∈ A(I). Then, given perfect recall, by Lemma C.3, we have∑
I∈B

(∆̂i(I, σ))2 =
∑
I∈B

(πŝ−i(I))2∆2
i ≤ ∆2

i

∑
I∈B

πŝ−i(I) ≤ ∆2
i

for all B ∈ Bi. The result now follows by Lemma C.5 with δ = 1. �
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Appendix D

Proofs for Chapter 6: CFR in Games
with Imperfect Recall

In this appendix, we prove Theorems 6.1 and 6.2. In addition, we consider an alternative extension

of well-formed games called nearly well-formed games and prove that regret is also minimized in

nearly well-formed games.

D.1 Proof of Theorems 6.1 and 6.2

To begin, note that by the definition of counterfactual value, the regrets between Γ and a perfect

recall refinement Γ̆ are additive; specifically, for I ∈ Ii in Γ,

RTi (I, a) =
∑

Ĭ∈P̆(I)

RTi (Ĭ , a). (D.1)

First, we provide a lemma stating that if the immediate counterfactual regrets of each Ĭ ∈ P̆(I) are

proportional up to some difference D, then the average regret can be bounded above:

Lemma D.1. Let Γ̆ be a perfect recall refinement of a game Γ. If for all I ∈ Ii, Ĭ , Ĭ ′ ∈ P̆(I), and

a ∈ A(I), there exist constants CĬ,Ĭ′,a, DĬ,Ĭ′,a ∈ [0,∞) such that

1

T

∣∣∣RT,+i (Ĭ , a)− CĬ,Ĭ′,aR
T,+
i (Ĭ ′, a)

∣∣∣ ≤ DĬ,Ĭ′,a, (D.2)

then the average regret in Γ̆ is bounded by

R̆Ti
T
≤

∆iC
√
|A(Ii)|√
T

+
∑
I∈I
|P̆(I)|DI ,

where

C =
∑
I∈Ii

max
Ĭ,Ĭ′∈P̆(I)
a∈A(I)

CĬ,Ĭ′,a

and

DI = max
Ĭ,Ĭ′∈P̆(I)
a∈A(I)

DĬ,Ĭ′,a.
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Proof.

R̆Ti ≤
∑
Ĭ∈Ĭi

max
a∈A(I)

RT,+i (Ĭ , a) by Theorem 2.3

=
∑
I∈Ii

∑
Ĭ∈P̆(I)

max
a∈A(I)

RT,+i (Ĭ , a) by definition of a perfect recall refinement

≤
∑
I∈Ii

|P̆(I)|RT,+i (Ĭ∗, a∗) where Ĭ∗ = argmax
Ĭ∈P̆(I)

max
a∈A(I)

RT,+i (Ĭ , a)

and a∗ = argmax
a∈A(I)

RT,+i (Ĭ∗, a)

≤
∑
I∈Ii

|P̆(I)|
(
CĬ∗,Ĭ∗∗,a∗R

T,+
i (Ĭ∗∗, a∗) + TDĬ∗,Ĭ∗∗,a∗

)
by (D.2),

where Ĭ∗∗ = argmin
Ĭ∈P̆(I)

RTi (Ĭ , a∗)

≤
∑
I∈Ii

|P̆(I)|CĬ∗,Ĭ∗∗,a∗

 1

|P̆(I)|

∑
Ĭ∈P̆(I)

RTi (Ĭ , a∗)

+

+ T
∑
I∈Ii

|P̆(I)|DI

because the minimum is at most the average and (·)+ is monotone increasing

=
∑
I∈Ii

CĬ∗,Ĭ∗∗,a∗R
T,+
i (I, a∗) + T

∑
I∈Ii

|P̆(I)|DI by (D.1)

≤
∑
I∈Ii

CĬ∗,Ĭ∗∗,a∗

√√√√ ∑
a∈A(I)

(
RT,+i (I, a)

)2

+ T
∑
I∈Ii

|P̆(I)|DI

≤
∑
I∈Ii

CĬ∗,Ĭ∗∗,a∗∆i

√
|A(I)|T + T

∑
I∈Ii

|P̆(I)|DI by Lemma C.4 with ∆t = ∆i

≤ ∆iC
√
|A(Ii)|T + T

∑
I∈Ii

|P̆(I)|DI .

Dividing both sides by T establishes the lemma. �

Note that if Γ has perfect recall, then the constants CI,I,a = 1 and DI,I,a = 0 for all I ∈ Ii
and a ∈ A(I) satisfies the condition of Lemma D.1. In this case, C = |Ii| and DI = 0, and so

RTi /T ≤ ∆i|Ii|
√
|A(Ii)|/

√
T , recovering Theorem 2.4 in the case when Mi = |Ii|.

We now use Lemma D.1 to prove Theorems 6.1 and 6.2:

Theorem 6.2. If Γ is skew well-formed with respect to Γ̆, then the average regret in Γ̆ for player i

when using CFR in Γ is bounded by

R̆Ti
T
≤

∆iK
√
|A(Ii)|√
T

+
∑
I∈Ii

|P̆(I)|δI ,

where K =
∑
I∈Ii maxĬ,Ĭ′∈P̆(I) kĬ,Ĭ′`Ĭ,Ĭ′ and δI = maxĬ,Ĭ′∈P̆(I) δĬ,Ĭ′`Ĭ,Ĭ′ .

Proof. We will show that for all I ∈ Ii, Ĭ , Ĭ ′ ∈ P̆(I), and a ∈ A(I),

1

T

∣∣∣RT,+i (Ĭ , a)− kĬ,Ĭ′`Ĭ,Ĭ′R
T,+
i (Ĭ ′, a)

∣∣∣ ≤ δĬ,Ĭ′`Ĭ,Ĭ′ , (D.3)

which, by Lemma D.1, proves the theorem.
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Fix I ∈ Ii, Ĭ , Ĭ ′ ∈ P̆(I), and a ∈ A(I). Firstly, for all z ∈ ZĬ and σ ∈ Σ, by conditions (ii)

and (iii) of Definition 6.2, we have

πσ−i(z) = πc(z)
∏

(I,a)∈X−i(z)

σ(I, a)

= `Ĭ,Ĭ′πc(φ(z))
∏

(I,a)∈X−i(φ(z))

σ(I, a)

= `Ĭ,Ĭ′π
σ
−i(φ(z)) (D.4)

and by condition (iv) of Definition 6.2, we similarly have

πσi (z[Ĭ], z) = πσi (φ(z)[Ĭ ′], φ(z)) (D.5)

and

πσi (z[Ĭ]a, z) = πσi (φ(z)[Ĭ ′]a, φ(z)). (D.6)

We can then bound the positive part of the cumulative counterfactual regretRT,+i (Ĭ , a) above by

RT,+i (Ĭ , a) =

(
T∑
t=1

rti(Ĭ , a)

)+

=

 T∑
t=1

∑
z∈ZĬ

πσ−i(z)(π
σ
i (z[Ĭ]a, z)− πσi (z[Ĭ], z))ui(z)

+

≤ (
T∑
t=1

∑
z∈ZĬ

`Ĭ,Ĭ′π
σ
−i(φ(z))(πσi (φ(z)[Ĭ ′]a, φ(z))

− πσi (φ(z)[Ĭ ′], φ(z)))(kĬ,Ĭ′ui(φ(z)) + δĬ,Ĭ′))
+

by equations (D.4), (D.5), (D.6), and condition (i) of Definition 6.2

= (
T∑
t=1

∑
z∈ZĬ′

`Ĭ,Ĭ′π
σ
−i(z)(π

σ
i (z[Ĭ ′]a, z)

− πσi (z[Ĭ ′], z))(kĬ,Ĭ′ui(z) + δĬ,Ĭ′))
+

since φ is a bijection

≤

 T∑
t=1

∑
z∈ZĬ′

kĬ,Ĭ′`Ĭ,Ĭ′π
σ
−i(z)(π

σ
i (z[Ĭ]a, z)− πσi (z[Ĭ], z))ui(z)

+

+

 T∑
t=1

∑
z∈ZĬ′

δĬ,Ĭ′`Ĭ,Ĭ′π
σ
−i(z)(π

σ
i (z[Ĭ]a, z)− πσi (z[Ĭ], z))

+

≤ kĬ,Ĭ′`Ĭ,Ĭ′R
T,+
i (Ĭ ′, a) +

T∑
t=1

δĬ,Ĭ′`Ĭ,Ĭ′π
σ
−i(Ĭ

′)
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≤ kĬ,Ĭ′`Ĭ,Ĭ′R
T,+
i (Ĭ ′, a) + TδĬ,Ĭ′`Ĭ,Ĭ′ , (D.7)

where the last line follows because πσ−i(Ĭ
′) =

∑
z∈ZĬ′

πσ−i(z[Ĭ
′]) ≤ 1 in a perfect recall game

Γ̆. Similarly,

RT,+i (Ĭ , a) ≥ kĬ,Ĭ′`Ĭ,Ĭ′R
T,+
i (Ĭ ′, a)− TδĬ,Ĭ′`Ĭ,Ĭ′ , (D.8)

which together with equation (D.7) and dividing by T establishes (D.3), completing the proof. �

Note that Theorem 6.1 immediately follows from Theorem 6.2 since a well-formed game is skew

well-formed with δĬ,Ĭ′ = 0 for all Ĭ , Ĭ ′ ∈ P̆(I).

D.2 Nearly Well-Formed Games

In this section, we consider an alternative extension of well-formed games that relaxes condition (iv)

of Definition 6.1. Similar to the definition of D(I) in Appendix B, for a subset of histories L ⊆ Hi,

define

Di(L) = {I | I ∈ Ii,∃h ∈ L, h′ ∈ I such that h v h′}

to be the set of all information sets descending from any history in L.

Definition D.1. For a game Γ and a perfect recall refinement Γ̆, we say that Γ is a nearly well-

formed game with respect to Γ̆ if for all i ∈ N , I ∈ Ii, Ĭ , Ĭ ′ ∈ P̆(I), J ∈ Di(Ĭ), there exist

bijections φ : ZĬ → ZĬ′ , ψ : Di(Ĭ) → Di(Ĭ
′), ω : A(J) → A(ψ(J)) and constants kĬ,Ĭ′ , `Ĭ,Ĭ′ ∈

[0,∞) such that for all z ∈ ZĬ :

(i) ui(z) = kĬ,Ĭ′ui(φ(z)),

(ii) πc(z) = `Ĭ,Ĭ′πc(φ(z)),

(iii) In Γ, X−i(z) = X−i(φ(z)), and

(iv) Xi(z[Ĭ], z) = (J1, a1), ..., (Jm, am) if and only if

Xi(φ(z)[Ĭ ′], φ(z)) = (ψ(J1), ω(a1)), ..., (ψ(Jm), ω(am)).

We say that Γ is a nearly well-formed game if it is nearly well-formed with respect to some perfect

recall refinement.

In a nearly well-formed game, condition (iv) says that player i may now remember information

that was once forgotten, provided the descendants from Ĭ and Ĭ ′ are isomorphic across φ. This

relaxes the corresponding condition for a well-formed game where player i could never remember

information once it was forgotten. Clearly, any well-formed game is nearly well-formed by choosing

ψ and ω to be the identity bijections.
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For example, consider a longer version of DRP, DRP-3, that consists of three betting rounds

instead of two where a third die is rolled at the beginning of round 3. We then define DRP-IR-

3 to be the imperfect recall abstraction of DRP-3 where during round 2, players only know the

sum of their two dice. In round 3, players once again know the outcome of each individual die

roll, recovering information from the first round that was forgotten in the second. For instance,

corresponding histories where player i’s first two rolls were 1,5 and where the first two rolls were

4,2 will be in the same information set during round 2, but will be in different information sets in

round 3. However, betting is independent of die rolls and utilities are only dependent on the final

sum of the three dice. Therefore, the descendants from these histories are isomorphic across φ and

thus DRP-IR-3 is nearly well-formed with respect to DRP-3.

CFR guarantees that average regret is also minimized in nearly well-formed games:

Theorem D.1. If Γ is nearly well-formed with respect to Γ̆, then the average regret in Γ̆ for player

i when using CFR in Γ is bounded by

R̆Ti
T
≤

∆iK
√
|A(Ii)|√
T

,

where K =
∑
I∈Ii maxĬ,Ĭ′∈P̆(I) kĬ,Ĭ′`Ĭ,Ĭ′ .

Proof. Fix I ∈ Ii, Ĭ , Ĭ ′ ∈ P̆(I), and a ∈ A(I). By conditions (ii) and (iii) of Definition D.1,

equation (D.4) holds.

Claim: RTi (J, b) = kĬ,Ĭ′`Ĭ,Ĭ′R
T
i (ψ(J), ω(b)) for all J ∈ Di(Ĭ), b ∈ A(J), T ≥ 0.

Provided the claim is true, and assuming we play uniformly at random when the denominator of

equation (2.4) is zero, we have

σT+1(J, b) =


RT,+i (J,b)∑

d∈A(J) R
T,+
i (J,d)

if
∑
d∈A(J)R

T,+
i (J, d) > 0

1
|A(J)| otherwise

=


kĬ,Ĭ′`Ĭ,Ĭ′R

T,+
i (ψ(J),ω(b))∑

d∈A(J) kĬ,Ĭ′`Ĭ,Ĭ′R
T,+
i (ψ(J),ω(b))

if
∑
d∈A(J) kĬ,Ĭ′`Ĭ,Ĭ′R

T,+
i (ψ(J), ω(b)) > 0

1
|A(ψ(J))| otherwise

since ω is a bijection

= σT+1(ψ(J), ω(b)) (D.9)

for all J ∈ Di(Ĭ), b ∈ A(J), T ≥ 0. Therefore, for t ≥ 1,

πσ
t

i (z[Ĭ], z) =
∏

(J,b)∈Xi(z[Ĭ],z)

σt(J, b)

=
∏

(J,b)∈Xi(z[Ĭ],z)

σt(ψ(J), ω(b))

=
∏

(J,b)∈Xi(φ(z)[Ĭ′],φ(z))

σt(J, b) by condition (iv) of Definition D.1
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= πσ
t

i (φ(z)[Ĭ ′], φ(z)),

and thus equation (D.5) and similarly equation (D.6) hold for σ = σt. By following the proof of

Theorem 6.2, we then have that equations (D.7) and (D.8) with δĬ,Ĭ′ = 0 hold, and hence equation

(D.3) with δĬ,Ĭ′ = 0 holds. This establishes the theorem by Lemma D.1.

To complete the proof, we are left to show that the claim holds. We will do so by induction on

T . The base case T = 0 holds since R0
i (I, a) = 0 for all I ∈ Ii, a ∈ A(I). For the inductive step,

assume that RT−1
i (J, b) = kĬ,Ĭ′`Ĭ,Ĭ′R

T−1
i (ψ(J), ω(b)) for all J ∈ Di(Ĭ), b ∈ A(J). We will show

that RTi (J, b) = kĬ,Ĭ′`Ĭ,Ĭ′R
T
i (ψ(J), ω(b)) for all J ∈ Di(Ĭ), b ∈ A(J).

Fix J ∈ Di(Ĭ) and b ∈ A(J). By the induction hypothesis and equation (D.9) with T set to

T − 1, we have for all z ∈ ZJ ,

πσ
T

i (z[J ], z) =
∏

(J′,b′)∈Xi(z[J],z)

σT (J ′, b′)

=
∏

(J′,b′)∈Xi(z[J],z)

σT (ψ(J ′), ω(b′)) by equation (D.9)

=
∏

(J′,b′)∈Xi(φ(z)[ψ(J)],φ(z))

σT (J ′, b′)

by condition (iv) of Definition D.1 since Xi(z[J ], z) is a subsequence

(more precisely, a suffix) of Xi(z[Ĭ], z)

= πσ
T

i (φ(z)[ψ(J)], φ(z)) (D.10)

and similarly

πσ
T

i (z[J ]b, z) = πσ
T

i (φ(z)[ψ(J)]ω(b), φ(z)). (D.11)

Now consider the counterfactual regret at time T ,

rTi (J, b) =
∑
z∈ZJ

πσ
T

−i (z)(πσ
T

i (z[J ]b, z)− πσ
T

i (z[J ], z))ui(z)

=
∑
z∈ZJ

`Ĭ,Ĭ′π
σT

−i (φ(z))(πσ
T

i (φ(z)[ψ(J)]ω(b), φ(z))

− πσ
T

i (φ(z)[ψ(J)], φ(z)))kĬ,Ĭ′ui(φ(z))

by equations (D.10), (D.11) and conditions (i), (ii), and (iii) of Definition D.1

= `Ĭ,Ĭ′kĬ,Ĭ′r
T
i (ψ(J), ω(b)).

Finally,

RTi (J, b) =

T∑
t=1

rti(J, b)

= RT−1
i (J, b) + rTi (J, b)

= `Ĭ,Ĭ′kĬ,Ĭ′(R
T−1
i (ψ(J), ω(b)) + rTi (ψ(J), ω(b)))

by the induction hypothesis and the above
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= `Ĭ,Ĭ′kĬ,Ĭ′

T∑
t=1

rti(ψ(J), ω(b))

= `Ĭ,Ĭ′kĬ,Ĭ′R
T
i (ψ(J), ω(b)),

establishing the inductive step. This completes the proof. �
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