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ABSTRACT

De la Cruz and Spanos (1989a) presented a complete set of
equations which describe the propagation of low frequency waves
through fluid filled porous media. In this theory the porous matrix is
assumed to be elastic and thus wave attenuation is almost entirely
due to fluid viscosity. The temperature changes associated with
mechanical compressions and the respective mechanical expansions
due to the temperature change, bring thermo-mechanical coupling
into the analysis. Since the temperature variations within the fluid
and solid are different, heat conduction between the phases occur
throughout the volume of the porous medium.

An analysis of the equations yields predictions for two S waves
and four P waves of which the two S waves are unaffected by thermo-
mechanical coupling. The effect on the P waves is found to be small
for water or air in a silica sand. However, when the fluid is given the
properties of an Athabasca bitumen the effect of thermo-mechanical
coupling on the attenuation of the first P wave is found to be
extremely large.

The theory was used to model the asthenosphere and core-
mantle boundary as zones containing partial melt. The theory
confirmed that the presence of a paftial melt can account for the
negative velocity gradients and low Q* values observed. Thermo-
mechanical coupling appears to be an important process within the
| core-mantle boundary. However, more experimental work is needed
in determining physical properties of the component materials
constituting these zones before any quantitative estimates of velocity

and attenuation are made.
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1. INTRODUCTION

The attenuation and dispersion of seismic waves propagating in a
porous solid filled with a compressible viscous fluid can be used to
obtain fundamental details about the constituent materials and their
interaction. This information is of fundamental importance to the oil
industry for both exploration techniques and monitoring of in-situ
production processes. It also contributes significantly to the
interpretation and understanding of anomalous deep Earth features,
such as the low velocity zone, which are observed on global seismic
records.

The first models for seismic wave propagation in porous media
were proposed by Gassman (1951a,b) and Biot (1956a,b). The Biot
theory has long been regarded as the basis for solving wave
propagation problems in porous media and predicts the existence of
two compressional waves and one rotational wave. The theory is based
upon a model consisting of two superposed and interacting continua,
one representing the solid component, the other the fluid component.
It is assumed that the porous medium is macroscopically
homogeneous and isotropic and that the macroscopic fluid motions
can be adequately described by Darcy’'s equation. Thermo-elastic
effects are ignored in Biot's formulation. The macroscopic equations
are constructed through macroscopic energy arguments in
conjunction with phenomenological arguments of the effect of the
fluid motions. The theory has six macroscopic parameters, the
medium permeability K, induced mass coefficient p;2, A and N which

correspond to Lamé's constants and two additional macroscopic



elastic parameters Q and R. For high frequency waves an additional

parameter F(w) allows for the description of a frequency dependent

permeability.
These macroscopic parameters are not defined uniquely in terms of

pore-scale mechanisms. This has resulted in many misinterpretations
of these parameters in the Biot theory. For example, the standard
interpretations given to the frame bulk modulus and frame shear
modulus as parameters which can be measured directly by
compressing and shearing of the porous matrix is incorrect, since it
totally ignores the fundamental role of porosity (Spanos et al., 1990).

The standard interpretation used is valid only in the limit as porosity

approaches zero. It has also prompted experimenters to determine
these parameters by correlating the theory such that it produces a
best fit with experiments (Johnson and Plona, 1982; Winkler and
Plona, 1982; Winkler, 1983, 1985, 1986). This sort of curve fitting
appears to have led to a rather questionable correlation between

theory and experiments.
Other researchers (Toksoz et al., 1979; Johnston et al., 1979) have

concluded that when many of the specific pore scale details, not
allowed for in Biot's theory, are altered one observes changes in
velocity and attenuation data. This sort of dependence on pore-scale
detail is believed to be due to the rather high frequencies used in
these experiments. (Eastwood et al., 1990). These high frequencies
were sufficiently close to the pore-scale that the basic assumptions
used to create a scale independent macroscopic continuum
description has been violated. However, particular changes in pore
scale detail could induce changes in the macroscopic parameters.

Hence, the absence of a physical understanding of these parameters



could be the source of the discrepancy.

In order to completely understand the Biot theory and its limits of
application one must obtain a description of Biot's macroscopic
empirical parameters in terms of physical mechanisms. Once this is
attained, it will facilitate development of proper experimental
procedures to measure the necessary parameters.

Geertsma and Smit (1961) analyze Biot's low frequency theory for
the velocity and attenuation of the waves of both the first and second
kind. They conclude that the wave of the second kind dies out with
increasing distance from the source and that only the wave of the first
kind need be considered in seismic studies. Berryman(1981)
determined expressions for Biot's empirical parameters as a function
of frame and fluid moduli for a fully consolidated frame.

Burridge and Keller (1981) derived the equations governing the
macroscopic mechanical behavior of a porous medium starting with
the appropriate equations and boundary conditions at the pore-scale.
The macroscopic equations are constructed from the pore-scale
equations using the two-space method of homogenization and are valid
only when the size of the pores is small compared to the macroscale.
When the assumption used in their analysis, ie. the dimensionless
viscosity of the fluid is small, coincide with those of Biot (1956a.b)
their equations appear to be identical in form. From comparison of
their equations with those of Biot's they obtain expressions for Biot's
coefficients (see Burridge & Keller, 1981 eq 43a-43h). Some are
merely averages of component materials, such as the mass density of
the bulk material; however, others are far from obvious. The complex
expressions associated with the mathematical rigor of this work lack

the physical transparency needed to fully comprehend Biot's



macroscopic parameters in terms of pore scale mechanisms.

De la Cruz and Spanos (1985) developed a complete set of
macroscopic equations for seismic wave propagation in porous media
using volume averaging. The theory is constructed from the pore scale
equations and boundary conditions using volume averaging to provide
the initial framework. They incorporate order of magnitude
considerations and plausible physical arguments to yield a theory
which is somewhat more physically transparent. The theory predicts
two compressional and two rotational waves. The wave attenuation is
affected by the fluid viscosity, firstly owing to the Darcy resistance and
secondly to viscous dissipation within the fluid. When the main
underlying assumptions equating the de la Cruz - Spanos theory and
. the Biot (1956a) theory are imposed one obtains an interpretation of
Biot's phenomenological parameters in terms of pore scale quantities
and two empirical parameters (cf. 2.4).

This theory was generalized subsegquently to include the effects of
inertial coupling between phases and thermo-mechanical coupling (de
la Cruz and Spanos, 1989a). The macroscopic equations contain the
basic component material parameters and a set of macroscopic
parameters which describe average properties of the medium.
(permeability K, porosity n, inter-component conduction coefficient v,
induced mass coefficient p;; and two parameters Js and 8¢ determined
from the combined effect of dilations and the change in relative
proportions of the phases).

An alternate method of analyzing attenuation of seismic waves is
obtained by assuming rocks behave as linear viscoelastic solids
(Gordon and Davies, 1968; Walsh, 1968). In order for this type of

analysis to be valid one must assume that the effect on the elastic



waves by macroscopic motions of the fluid are minor, which
necessitates a low porosity and permeability (Spencer, 1979). In
viscoelastic solids the shear and bulk moduli are complex and
frequency dependent. The actual forms of the moduli for two-phase
systems are determined by simple models consisting of discrete
spring and dash pot elements linked in parallel (Kelvin-Voigt model)
or in series (Maxwell model). This type of analysis incorporates
attenuation: however, it does not appear to contain the needed
dependence on the component material properties. Therefore, it
would be difficult to associate changes in wave character to changes of
the component materials.

The objective of this work is to solve the system of equations,
derived by de la Cruz and Spanos (1989a), which describes seismic
wave propagation in porous media. A numerical approach is used and
the algorithm will be verified in the solid and fluid limiting cases.
Numerical calculations will be used to illustrate the importance and
physical limits of the various macroscopic empirical parameters. The
phase velocity and attenuation of seismic waves will be calculated for
several models: air filled silica sand, water filled silica sand, bitumen
filled silica sand, asthenosphere (LVZ) and the core-mantle transition
zone (D") in order to illustrate the importance of different component
materials on the various waves. Furthermore, the importance of
thermo-mechanical coupling for the various physical situations will be

examined.



2. THEORY

The model considered for wave propagation by de la Cruz and
Spanos (1985, 1989a) consists of an elastic matrix containing pores of
random sizes, shapes and orientations which are filled with a
compressible viscous fluid. A gross description of the physical system,
at a scale much larger than the largest pore size, is obtained by
averaging over solid motions, solid temperatures, fluid motions, fluid
temperatures and the coupling at the fluid-solid interfaces. The
approach is based upon the mathematical techniques of volume
averaging (Whitaker, 1966, 1969) aided by physical arguments and
order of magnitude considerations. Using volume averaging will place
an upper limit on the frequency of disturbance which can be described
by the developed system of equations. In the development, the
constraint of linearity in both displacements and velocities plays a
prominent role. This means that any motion is regarded as a small

deviation from the static and uniform unperturbed configuration.
2.1 MICROSCOPIC OR PORE-SCALE EQUATIONS

Firstly, each component at the pore-scale is characterized by well
established equations, which are referred to here as microscopic
equations (Landau and Lifshitz, 1975a, b). The fluid parameters and
variables are denoted by using a subscript or superscript f and those of
the solid by the subscript or superscript s.

Inside the compressible viscous fluid the equation of motion is



given by the Navier - Stokes equation;

3 lpevl) ,

5 dk (p(&k+pfv,vk cifk)=0 (1)

where

v , ovf g ovi 0
Six= M axk dxy 3ax[8 (2)

is the viscosity stress tensor with the effects of bulk viscosity being
neglected. The parameters pf. Py, Hf and v{ represents the mass
density, pressure, viscosity and velocity respectively. The subscripts i,
k, [, take values x, y, z and a sum over repeated indices (except f and s)
is implied in all equations. ik is the Kronecker delta function. The

equation of continuity for the fluid is given as
§§§+V-(pfvf)=0 (3)

To include thermo-mechanical coupling we need the energy equation

(linearized in v) for the fluid and is given as
S | vtys|=
ps Tt st—+v-VS —V-(KfVT) (4)

where Tf (X, t) is the actual temperature, and where (Tf - Tq) is
treated as a first order quantity. Tq is the ambient temperature, S is
the entropy per unit mass and Kf is the thermal conductivity of the
fluid. Substituting the thermodynamic relation



des=c{,de-%§afdpf. (5)

where clf, is the specific heat of the fluid at constant pressure and O is

the thermal expansion of the fluid, yields

prch %;It‘_f - Tfaf%pt-f- + vf-[pm{,VTf - Tfaprf] -V{(xVT)=0 (6)

Restricting the analysis to cases where the unperturbed configurations
correspond to zero velocity, uniform temperature To, uniform

pressure pg and porosity Mo, (6) becomes

prf, -aal} - Tfaf%;—f- - V-(KfVTf) =0 (7)

where the coefficients of the derivatives can be taken to be the

unperturbed values.
Inside the elastic solid the equation of motion is given by

32 uf aGsk
L Ui = Uik 8
s 2 o (8)

where
o} = -Ks0is (Ts 'TO) Jix + Ksuf, 8k + 214 ‘ufk - %—U?[Si k) -podixk  (9)

is the stress tensor. The parameters ps, Uy , Kg, s and O are the
mass density, displacement vector, bulk modulus, shear modulus and



thermal expansion coefficient. Tg and pg are the unperturbed

temperature and unperturbed pressure of the static configuration. Also
uf = %( ufy + u§; ) + 2nd order in us (10)

where the commas denote partial differentiation with respect to
space.

The linearized equation of heat transfer in the solid is

oT
S S
P 5

S
+ 0K T a(Vatll ) - KSVZTS =0 (11)

where ¢ is the specific heat at constant volume and Xg is the thermal
conductivity of the solid.

The interactions between the components are controlled by the
pore-scale interfaces, at which the following boundary conditions are

assumed. The mechanical boundary conditions are no-slip

vi= ga!ti (12)
and continuity of stress
-pifti + Of KN = O KNk (13)

where nj is the normal vector.

The thermal boundary condition is
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KfVTf = KSVTS ( 1 4)

The next step is to reformulate the problem at a larger or macroscopic

scale.
2.2 VOLUME AVERAGING

The principle objective in reformulating the problem at a larger
scale is to filter out the over abundance of physical detail at the pore-
scale in such a manner that no specific reference to pore-scale
motions remains. To qo this de la Cruz and Spanos (1985, 1989a)
applied an averaging procedqure, called volume averaging, pioneered by
Hubbard (1956), Whitaker (1966, 1969) and Slattery (1969).

In the volume averaging procedure one constructs regions V in the
porous medium of identjcal shapes, volumes, orientations and ascribes
an average value for physical quantities within the volume V to a point
x which uniquely defines V. For example, de la Cruz and Spanos
(1983) assume V to be spheres and each V is specified uniquely by the
centre of the sphere %, Also by choosing spheres the problem of
orientation is avoided. If we assume Gg (%) to be a physical quantity of
the fluid and that Gf (¥) equals zero everywhere outside the fluid the

volume average of Gf over any region V is defined as
Gy = -Lf Ge(x)dV (15)
v v

where (Gy) is a function of the center of the volume elements.

If one assumes the center of the volume element is within the solid



11

and plot (Gf) as a function of the radius of the volume V one might
obtain a curve similar to figure 1 (Whitaker, 1969).

Since the center of the volume V was assumed to be in the solid
then (Gf) is zero at the origin. As one starts increasing the volume size,
portions of the fluid are contained within the volume, and (Gr)
increases from zero through fluctuations due to random distribution of
fluid at the pore-scale. For values of V larger than V* the pore-scale
variations are smoothed out, and therefore a restriction that V > V* is
imposed.

As one moves the volume element to different locations in the
porous mediura, (Gf) becomes a continuous function of x. However, for
values of V larger than V* the function (Gf) is independent of V. A
precise value for V* cannot be determined, but one can assume that it
must be orders of magnitude larger than the pore-scale. However, if
the structures are much larger than the volume element,V*, the
appropriate macroscopic boundary conditions (de la Cruz and Spanos,

1989b) must be used.

T

0.0 v*

Size of volume V

Figure 1 Dependence of average on averaging volume.



12

A related quantity G is defined as

Gt =1 | Gex)dV (16)
V¢ v

where Vyis the volume of fluid is the volume V. This is related to (Gf)

as iollows
Gr =1 (Gy (17)
n
where 1} is the porosity of the medium.
In the development of the average equations one will be dealing
with gradients and time derivatives of such quantities. Slattery (1969)

and Whitaker (1969) developed the following relationships between

the averages of derivatives and the derivatives of averages

faindV=a;f Gde+J Gm; dA (18)
\Y A Afs

and

fa;Gde=a;f Gde-f Grvn dA (19)
v v Afg

Here Agg refers to the area of the fluid-solid interfaces, n is the unit
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normal on those interfaces directed towards the solid, and v is the
velocity of the fluid-solid interface element. If the porous medium can
be characterized by its average quantities then it is said to behave as a
macroscopically homogeneous and isotropic media.

If one is to describe some process in the porous medium, say the
propagation of a wave, then a lower bound on the scale at which
deformations are described must be imposed. As the frequency of
disturbance is increased the amount of pore-scale detail in the
macroscopic description must also be increased. However, for a
"homogeneous" medium, provided one deals with wavelengths much

larger than the pore-scale, the equations are scale independent.
2.3 MACROSCOPIC EQUATIONS

The volume average procedure used in reformulation of the
microscopic equations is illustrated by taking the volume average of

the continuity equation for the fluid (3):

1 Q‘?—%V- f}dV:O (20)
L | 1% viprns
v

Applying identities (18) and (19) yields

a1 1 == |1 f
9 dv|- HdA +-2- e\
" vapf VLf pev N axilv VPfV

+—\1,—f prvini dA =0
Afs

(21)
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The integrals over the fluid - solid surface cancel and rewriting (21)

using (15) and (16) we obtain

: (gtﬁ ) 4 vapwt=0 (22)

Now assuming that the perturbation is a small deviation from the

unperturbed configuration and using the following notation
pr=pf +pf (23)
n=mno+n’ (24)

where p? and 7)o are the unperturbed values, (22) is rewritten as

’aQE[T“’p? +nopc+ o]+ VT [nopf + mops +m'pfl=0  (25)

Assuming the unperturbed fluid velocity is zero makes v [ the
perturbation in fluid velocity. Hence the unperturbed continuity,

equation retaining only first order quantities, (25) simplifies to

%[no?wn’p?] + V- [Finepf]=0. (26)

Dividing (26) by noP?
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9N, Pl vz
at[no+p9]+Vv =0 (27)

yields the macroscopic continuity equation for the fluid, an expression
obtained by de la Cruz and Spanos (1985).

Following a similar procedure de la Cruz and Spanos (1989a)
developed the following system of macroscopic equations (see de la
Cruz and Spanos, 1989a) for details.

The equations of motion are

ovli_ o= 2t lv(vet)] _HMoff 5
pT fo+ut{Vv +3V(Vv )} ——K—(v vs)

a3 (28)
P12 O(xf s
* Mo atv v )
and
2_
ps a Ug = KSV (V'ﬁs) - KS Vn + IJ-S [Vzﬁ's + _]'_V (V-ﬁs)] +
2 1-10 3 (29)
) —
By (gf.vs). L2 9 (FE.¥9) -Ko, VT,
K1 -no) 1-mp ot

where K is the permeability of the porous matrix and p2 is the
induced mass coefficient. These parameters must be determined
experimentally and are scalar quantities for a macroscopically
isotropic and homogeneous medium.

The heat equations for the coupled continua are

pfclf,-aa—’I;{-Toaf%%t-Kf Vsz+%(Tf-TS)=O (30)
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and

ps Cs aTs TOKS sl:_l_ al] aV US} K V2T

ot 1-1o ot ot (31)
- X (T¢-T=0
1-mo
where y is inter- component conduction coefficient .
The pressure equations are derived as follows
K¢ at oa T ot
and
L -V + 20y o (T - T (33)
K, (Ps- po) = $ 1-10 s( s 0)

Rewriting (27) one obtains the equation of continuity for the fluid

as

_a§_ Qﬂ =0 (34)

1.9p¢ 1
p? Mo

and a similar analysis for the solid component yields

Pe-p8) m-M0, v, (35)
pf 1-mo

In the previous eight macroscopic equations there are the following
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nine variables; Tf, fs. s, v Ps. Pr. Ps. Pr and 1. Therefore we need an
additional equation for completeness. de la Cruz and Spanos (1989a)
adopted the following relation

%%: 8, V V. - 5 V- (36)

where & and 8¢ are dimensionless empirical parameters. It describes
the interaction between the dilatation of the individual phases and the
change in relative proportions of the phases. The time or frequency
dependence of the right hand side of (36) is contained in the Vv
and V-V terms.

The previous set of equations can now be reduced by subsequent
substitutions. Substituting (32) and (36) into the fluid equation of
motion (28) yields

- _
(T vt Ko - kT
ot (37)
20! 1V( aﬁ)] Befo (gt ) Plz__( )
“f[V o dt K atu * ’

The solid equation of motion (29) is reformulated as follows using (36)

s
ps 2 =KV (V- ITKEV[GsV-ﬁs - 8;V-ui] +

at
og 4 Ly (V) + —Benb 9 e 38
us[Vus+3 ( "s)]+1<(1-no)at(" ) - (38)

2 —
P12 O (51 g9) Ky VT,
1-mo ot
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The fluid heat equation (30) is recast in the following form by
substituting (32)

oT, A v _ _
(Pf cf - Toafsz) a—tf- Toot Kfa-[- Vaf- ﬁ%(SSV-u $-0Vu f)]

—_ _ (39)
-foZTf+1_]YO-(Tf-Ts)=o

It should be noted that the coefficient of the first term is the

definition of the heat capacity at constant volume (Zemansky, 19£7)

2
of =cf - —L—Tongf (40)

Since cf can never be a negative quantity, physical parameter sets

must comply with the following constraint

2
4> Toofks )

Using (36) the solid heat equation (31) is rewritten as follows

oT. (s v = .\ oV,
s91s _ 1 . - &:V-ur | - §
P o8 =5 ToKots| 5 58V T - 80V -0 ) =5 (42)
"Ks V2Ts“ 'Y (Tf"Ts)=O
1-mo

Equations (37), (38), (39) and (42) form a complete set of

equations describing the macroscopic motion of a porous medium

saturated with viscous compressible fluid. The variables are i g, U g, T s
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and ;ff denote the average solid displacement, average fluid
displacement, average solid temperature and average fluid

temperature.
2.4 COMPARISON WITH BIOT'S THEORY

The theory developed by de la Cruz and Spanos (1989a) should be
equivalent to the Biot theory (1956a) if the same assumptions are
applied. Biot's theory is obtained using macroscopic energy arguments
and phenomenological arguments about the macroscopic effects of
fluid motions whereas the de la Cruz-Spanos theory originates from
specific pore-scale assumptions. However, in both theories the sole
attenuation mechanism is due to fluid motions. Since Biot's theory
assumes that the fluid motions can be described adequately by Darcy's
equation, the attenuation of the wave will be due to momentum loss
due to viscous drag of fluid relative to the solid. Therefore the main
underlying assumption that would enable one to equate these theories
is that the attenuation occurs solely due to the Darcian resistance.
Therefore, one must assume that viscous dissipation within the fluid
or the Brinkman term and thermo-mechanical coupling are
unimportant processes, for the two theories to be equivalent.

The main purpose of comparing the two theories is first as a
consistency check and secondly to be able to use the large body of
knowledge associated with the Biot theory. This is of importance in
determining estimates of empirical parameters, especially 35 an &y, in
the de la Cruz Spanos theory.

The relationship in notation between Biot's work and the de la Cruz
- Spanos theory is presented in table 1.
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Biot de la Cruz and Spanos
u Ug
v o
p n
k K
U Mg
P Pg

Table 1 Relationship in notation between the Biot and
de la Cruz - Spanos theory

Biot's (1956a) two equations of motion in terms of de la Cruz and

Spanos(1985) notation are

—322 (p11us + prouf) = N VZus + V[(A +N)V-us + Q V-uf]
t
(43)
um? 9
+ B 9 (yf _ys
K at(“ u’)

and

2
-aa—;- (p1zus + pzouf) = V[ Q V-us + R V-uf] - ‘%L %(“f -u) (24)

where pi1, P12 and p22 are "mass coefficients” which can be related to

the component densities by



pu+pi2=(1-n)ps (45)

and
P22 +P12=T Pt (46)
The parameters A, N, Q and R are Biot's macroscopic elastic

coefficients. If we recast (43) and (44) using relationship (45) and
(46) respectively one obtains;

(1-m) psgiz us = N V2us + V(A +N) V-us + Q V-uf]
t
(47)
wen® 9 (uf_us)o 32 (uf-
+ B = (uf-ue)-p,) 32 (uf-w
ot?
and
npfiai uf=V[QV-uS+RV-uf]- pm? i(uf-us)
ot K ot (48)

aZ
+p12 = (uf - ws)
252

Assuming that (47) and (48) are identical to (38) and (37)
respectively, then one may equate coefficients and the results are

presented in table 2

21
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Biot de la Cruz and Spanos

p12 P12

Q K 8s

R MoK - K¢ ¢

N (1 - Mo) s

A (1-mo) KS'KSSS'%(I - o) M

Table 2 Comparison of coefficients for the Biot (1956a) theory
and the de la Cruz - Spanos theory (1989a).

In addition, Q and R must satisfy
K¢Q + Ks R =m0 K¢ K (49)
which is equivalent to the relation (de la Cruz and Spanos, 1989a)

(50)

2|
]
alte

This final constraint (50) makes the form of the two sets of equations
identical and thus the basic physical assumptions in the two theories

appear to coincide when this constraint is imposed.
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2.5 ROTATIONAL WAVES

Consider the propagation of a rotational wave by taking the curl of
the system of equations (37), (38), (39) and (42). Introducing the
following symbols

Q= Vxaf (51)
and
Q. =Vxus (52)
the equations of motion are
a2gf= VZQEE-P_NQQ . P2 & (g .
Pe—g MV = Q- Q)+ atz(Qf Q) (53)

aZQs 20 Efﬂo
Ps = s V- Qg + (Qf' Q) -

ot? K(l - o) at (54)
_b12 ( £~ Q)
(1-n0) a2 ;
and the heat equations are
T = Y[ T
fOf _ AT - Tl =
L KeV Te+ 35 (Te-Tg)=0 (55)

Pscva—aT‘s' ‘stsz '—Y'—(Tf Ts) 0 (56)
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The equations of motion (53) and (54) are not coupled to the heat
equations (55) and (56). This indicates that thermo-mechanical
coupling does nct affect the rotational waves.

The combination of (53) and (54) describe the motion of a
rotational wave as observed at the macroscopic scale. Considering a
plane wave , of the form ei(kx - o), propagating in the x-direction with

a component along the z-direction only, (53) and (54) become

pe 02 + iopg K2 + io (M0 +iol2 )l o
%+ %]

Mo (57)
-io (M0 4 ief2 0 =
1(0{K -H(DTIO}QS 0
and
2y k24 10ON0 (WMo . ;P12
[psm Us k +1-110(K +1a,n0 HQS 58
R LU ) (umo +impu) Qf =0
1-mo ' K Mo

Equating the determinant of coefficients to zero, one obtains a

dispersion relationship of the form
AK*+BK +C=0 (59)

where

A =g Ur (60)
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2
B="—lsy‘Kﬂ9-im(ust+ Zal -”S"“)-wz(urps-—”f&) (61)

K(l’nO) Mo (1-1‘]0)
2
C = i03p¢p _mz(ufpsno+ KPMo )-im( P12pPf +PIZPS) (62)
PRk TR (1-mg) C((-mg T Mo

This dispersion relation yields two distinct physical solutions, and is
the same as the one presented by de la Cruz and Spanos {1985) but
with the addition of a term to account for relative acceleration
between the fluid and solid components. It should be emphasized that
thermo-mechanical effects do not affect these waves. Numerical
examples illustrating the importance of relative acceleration will be

presented later.

2.6 DILATATIONAL WAVES

The description of dilatational waves is obtained by taking the
divergence of (37), (38), (39) and (42). Introducing the following

notation

gr= Vg (63)

and

85 = V'ﬁs (64)

the equations of motion are
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) _
o 3_?;_f - -Vz[ Kot - %Ef (8t - S¢er) + Keote (T - To)]
ot (65)

206, 1 v(v.Oe)| BMod o ey, P29 o
Hlf[v at+3v(V at)] K at(sf )+ Mo 52 (85 - &)

2
pS 9—82—3 = KSVZES = T—I'(J—- V2 (8583 -« 8f£f) + i usvzes
ot o (66)

_ WM 9 e oy P2 O (er-£)- KeooV2T
K(l-ngat ) 1- 11oat(f o - KoV

and the heat equations are

pe cf It _Toake L ['8f - {Bses - i) + 0‘fff] -

ot _at B (67)
mV”l‘ﬁ%(Tf - Ts) =0
Ps €$ %I‘_ - TooKs — [-es + ——{Sses Sfef)]
(68)

- ks V2T, - 1 -YT]o (Tf - Ts) =0

If we assume a plane wave propagating in the x-direction with a
component in the z-direction only , ei(kx - ot) one constructs a system
of four equations with Tg, Tf, € &f, @ and k as variables. To obtain the
dispersion relation (w vs k) one must equate the determinant of
coefficients to zero.

The set of equations may be written in matrix form as follows



An AzA1i3 Au &
Az A Az Ay Es
A3 A Asz Ay Tg-To
Ayl App Az Aus Ts - To

and the determinant as

det

where

=(p.. P12 2-( -K_f§)2 4o a2 4o
Al (pf TIO)(O Kt o k+31mufk +1m—K—

A Az A Au
At A Az Au|_g
Az A3 A3z Au
Ag Asr Agz Agg

2
App=- Kf?s 12 i Mo , ©%P12

Ul K

A = - Kogk?

Aiuy=0

Mo

A21=-——§——K Sf k2-i0)

pmg . %1

1-10 K(1-no) 1-mo

A22=(ps-—9—1-2——)(02-(Ks l<-5—5-3-)k2- %},lsk2+i

1-mo

Ay =0

1-mo

© Llfﬂ92
K(t-no)
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(69)

(70)

(71)

(72)

(73)

(74)

(75)

(76)

(77)
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Az = K05k (78)

Ag = iCOToCXfo(T?——g- -1 ) (79)
_ _ i00TooKds

A3 o (80)

A33=im(Toa%Kf-pr£)+ka2+ﬁ'-Y6 (81)
= . X

Az o (82)

Agp = _ ioToosKO¢ (83)

1-mo
Agp = io)ToasKs( & 1 ) (84)
1-mp
A4z =- v (85)
1-mg
Ass = - 10ps €§ + K K+ (8€)
1-mp

Due to the complexity of this determinant an algebraic solution was
determined using Mathematica™ . However the algebraic result was
very elusive and not physically transparent. Therefore, a numerical
solution with numerical consistency checks, in various limiting cases,

will be studied.



3. NUMERICAL SOLUTION

The numerical solution was programmed in FORTRANVS and
executed on the University of Alberta mainframe computer. For the
rotational waves, an algebraic solution for the equations of motion was
determined yielding a dispersion relation (59). Therefore, the
purpose of the numerical analysis is to illustrate the effects of the
various component parameters and pi2 on the phase velocity and
attenuation of the rotational waves. The dilatational wave solution is
much more complex. The terms in the determinant (70) are
polynomials in » and k and therefore a method of solution based on a

cofactor expansion is utilized to obtain the dispersion relationship.

3.1 METHOD OF SOLUTION

The method of obtaining a solution for the dilatational waves is
structured on the cofactor expansions of determinants (Campbell,
1977). The determinant of any square matrix can be cofactored into a
series of two by two minor determinants by subsequent expansion
about given rows or columns. The solution of a two by two
determinant is simply the difference of the product of the diagonal
elements. The program simply inverts the procedure used to cofactor
a four by four determinant using multi-dimensional arrays (see figure
2) to store the coefficients of w and k of the respective polynomial
entries (71-86). The end solution is an array containing numerical

values of the coefficients in the dispersion relation.
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| The input consists of the physical
parameters of each component, five
empirical parameters and the frequency.

FNDAK calculates the matrix coefficients
(eq. 68-83) for a given w and stores the
results in a multi-dimensional array,
FNDAK AK(i,j,]), where i denotes the matrix row, j
denotes the matrix column, and 1 denotes
the exponent of k.

FND2K uses AK(i,j,}) as input and calculates
solutions to individual 2X2 determinants.
FND2K These solutions are polynomials in k and the
coefficients are stored in an array D2K(i,j)
where i corresponds to a particular
determinant and j corresponds to

the power of k.

FND4K uses D2K(i,j) as input and calculates
the final solution or dispersion relation for a
given w and is an eighth order polynomial. Th:
coefficients are stored in POLYK(i), and i
denotes the power in k.

@ POLYK(i) is returned to the main program.

Figure 2 Procedure and array assignment for the numerical
calculation of the dispersion relation for dilatational

waves.

FND4K

30
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From this point on, the solution is similar for both dilatation and
rotational waves. For a given « the polynomial in k is determined.
The roots to this polynomial are computed using a Newton-Raphson
technique and are further refined using a secant method. In the case
of the rotational waves and the non-thermal dilatational waves two
roots exist, thereby implying the presence of two rotational and two
dilational waves. When thermo-mechanical coupling is included four
roots exist, suggesting the presence of four dilational waves. Two of
these waves are primarily mechanical in nature whereas the other two
are primarily thermal. These four waves should converge to two
waves, ie first and second sound, in the solid or fluid limits. The
rotational solution remains unchanged due to thermo-mechanical

cocupling.
3.2 EMPIRICAL PARAMETERS

The theory developed by de la Cruz and Spanos (1989a) contains
five empirical parameters. They are permeability (K), induced mass
coefficient (p12), solid compliance factor (0s), fluid compliance factor
(89 and the inter-component heat conduction coefficient (y). Ideally
these parameters should be determined through some independent
experiments. However, the objective of the next several sections is to
show explicitly how these empirical parameters enter the theory,
place physical constraints, based on analytic and numerical
calculations, on the parameters and determine their regime of

importance.
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3.2.1 Permeability (K)

Permeability is a parameter used to quantify the resistance to flow
of a fluid through a porous medium. It is a function of the size,
orientation, distribution, and connectivity of the pores. This
parameter is not unique to this theory, but has been introduced

previously in Darcy's equation,
q=:K (Vp - pc 8) (87)

which is based on a classical experiment performed by Darcy (1856).
The fluid pressure is denoted by p and has units Pa, | is the fluid
viscosity in Pa s, q is the Darcy velocity in m/s, pr is the density of the
fluid in kg/m3, g is the acceleration due to gravity in m/s2, and K is
the permeability in m2. There are several methods of measuring
permeability based on different forms of Darcy's equation. Most are
performed by flowing a fluid of known viscosity through a porous
medium at a specified pressure gradient and measuring the flow rate.
Utilizing these measured values and the above equation one can
calculate the permeability of the medium.

The permeability enters this theory through a physical argument to
obtain a solution to a set of surface integrals. When the fluid equation

of motion is volume averaged one obtains a surface integral of the form

lf [(p¢ - po) 8ik - o) i dA (88)
V Agf
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and the respective surface integral for the solid is

lf [ po B + o] nx dA (89)
\Y%
Ast
These integrals are opposites of each other and describe the force per
unit volume exerted by one continua on the other across the interfaces
due to any motion.

If one simplifies the analysis by de la Cruz and Spanos (1983), for
two phase flow in a porous medium to account for only one fluid, (26}

can be recast as follows
—%,—j [(p¢ - po) Sk - oif) nk dA =70 (Vpe- pr @) (90)
Agf

Darcy's equation (87) is also a valid description for steady-state, single
phase flow, and knowing that the Darcy velocity is equal to the
porosity times the velocity at the interface, (90) becomes

2
if [(pe - po) i - o] mc dA = - 0EE (91)
\Y% K

At
In this analysis there is an added complexity. One must allow for
motion of the solid, which was not considered by de la Cruz and
Spanos (1983). If one uses Stokes flow as an analogous situation then

it is clear that (91) must be of the following form
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2
if [P - Po) Bik - oif | nic dA = - O (¥ ;) (92)
V Asf K

where K is a scalar quantity, as long as the volume elements are
assumed large enough that the porous medium is macroscopically

homogeneous and isotropic.
Physically, (92) represents the momentum transfer between the

fluid and solid across the solid-fluid interfaces during wave
propagation. This is a significant attenuation mechanism which is
known as Darcian resistance. It is dependent on the relative solid-
fluid velocity and is therefore also dependent on the relative phase
angles. It becomes the dominant attenuation mechanism at low
viscosities.

The effect of permeability, K, on the phase velocity and attenuation
is determined numerically for a water filled silica sand. The physical
parameters for water (Childs, 1939; Weast, 1969) and the properties
of a silica sand (Kappelmeyer and Haenel, 1974; Clark, 1966:
Forsythe, 1959) are summarized in table 3. As one decreases the
permeability it increases the coefficient in (92) therefore increasing
the attenuation of the 1st P-wave (figure 3). However, it also changes
the phase angle (figure 4) and relative magnitude (figure 5) between
the solid and fluid velocities. In the extreme case where this effect
(reduced value of Vi- Vg) overshadows the increased value of the
coefficient we observe the maximum attenuation. The attenuation of
the 1st S wave (figure 6) exhibits a similar dependence on

permeability as the 1st P wave. The phase velocity of the 1st P wave
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Property Symbol (units) Value
temperature To (°C) 2.0 x 101
porosity Mo 3.0x 101
permeability 1 K (m2) 1.0 x 10-11
solid density ps (kg/m3) 2.65 x 103
fluid density pr (kg/m3) 1.0x 103
shear modulus Us (Pa) 1.5 x 109
fluid viscosity K (Pa-s) 1.0 x 10-3
solid bulk modulus K; (Pa) 3.5 x 1010
fluid bulk modulus K¢ (Pa) 2.14 x 109
solid thermal expansion os (K 3.00 x 10-6
fluid thermal expansion of (K1) 1.50 x 104
solid heat capacity cs (I/(kg-°K)) 7.25 x 102
fluid heat capacity b U/(kg-°K)) 4.18 x 103
solid thermal conductivity  Ks (J/(m-s-°K)) 1.50 x 100
fluid thermal conductivity  X¢ (J/(m-s-°K)) 5.98 x 10-1
induced mass coefficient? p12 (kg/m3) 0.00 x 100
solid compliance factor! ds 4.44 x 101
fluid compliance factor! OS¢ 2.71 x 102
conduction coefficient! Y (/(m3-5-°K)) 2.50 x 107

1 - further discussion of these parameters in this section

Table 3 Physical properties properties of water and silica

sand and the associated empirical parameters.



w Non Thermal Solution

Attenuation vs Log (K) vs f

Figure 3 1st P-wave; Attenuation vs. log(K) vs. frequency.

lSL E—WAVE Non Thermai Solution

Phase Angie vs Log (K) vs t

Figure 4 1st P-wave; Phase angle vs. log(K) vs. frequency.
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l_s_L_E"_WAKE_ Non Thermai Solution

Log (K) vs ¢

vs

Relative Magnitude

Figure 5 1st P-wave; Relative magnitude vs. log(K) vs. frequency.

-W

Attenuation vs Log (K) vs f

Figure 6 lst S-wave: Attenuation vs. log(K) vs. frequency.
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(figure 7) and the 1st S-wave (figure 8) decreases with a decrease in
permeability. The decrease in velocities is due to the interactions
with the 2nd P-wave and 2nd S wave respectively.

In reducing the permeability to the zero limit and keeping the
porosity constant one is essentially confining the individual pcres such
that the fluid is no longer a continuous medium. In this limit there
should exist only one P wave and one S wave which reflects the
convergence of the 1st and 2nd P wave and the lst and 2nd S wave
respectively. Support for only one P wave is evident by the zero phase
angle (figure 4) and unity of relative magnitudes (figure 5) at very low
permeabilities. The graphs of the 2nd P wave attenuation (figure 9)
and phase velocity (figure 10) as a function of permeability conclusively
show that this wave vanishes at low permeabilities.

In summary, permeability is an empirical parameter which can be
measured by an independent experiment in the laboratory. Due to the
assumptions used in the development of this theory, it is a scalar
quantity but it need not be. Numerical study illustrates that
permeability has a very small effect on the phase velocity of the 1st P-
wave and 1lst S-wave. However, there is a significant effect on the
attenuation of these waves , within the seismic frequency range, for

the particular situation studied.



ISL E-!!AVEZ Non Thermal Solution

Phase Velocity vs Log (K) vs f

Figure 7 1st P-wave; Phase velocity vs. log(K) vs. frequency.

1st S-WAVE:

Phase Velocity vs Log (K) vs t

Figure 8 lst S-wave: Phase velocity vs. log(K) vs. frequency.
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and_E_-ﬂAyE_ Non Thermal Solution

Attenuation vs Log (K) vs f

Figure 9 2nd P-wave; Attenuation vs. log(K) vs. frequency.

gnd_PLW_AXE_ Non Thermai Solut.on

Phase Velocity vs Log (K) vs f

Figure 10 2nd P-wave; Phase velocity vs. log(K) vs. frequency.
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3.2.2 Induced Mass Ceefficient (p;2)

In the previous description of momentum transfer across the solid-
fluid boundary one obtains (92) under the assumption of steady flow.
However, when a wave is propagating through a porous medium,
inertial coupling between phases will exist. de la Cruz and Spanos
(1989a) argue that inertial coupling can be accounted for by an extra

term that is proportional to the relative acceleration.
P12 %(Vf - ) (93)

They have used the symbol pj2 because when comparison with Biot's
(1956a) theory is meaningful {cf 2.3) it is exactly the induced mass
coefficient, p:>, of Biot.

Landau and Lifshitz (1975a) derived an expression for pi; based on
a model of a rigid sphere oscillating in an incompressible perfect fluid.
This discussion yields an upper bound for pj2, namely p12<0 which is
determined by the directions of the applied faces and should therefore
extend to more general cases. Berryman (1983) utilizes an approach

similar to Landau and Lifshitz to arrive at the following expression:

p1z =-(a- 1)mops (94)

for a model consisting of glass beads and helium gas. The coefficient,

., is restricted to be greater than unity and depends on the topology
of the interconnected pore spaces. It is important to note that it is
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straightforward to construct a gedanken experiment in which the
roles of the fluid and solid are interchanged (a highly viscous fluid and
a solid with a zero shear modulus). However, since equation (94) does
not reflect this inherent symmetry it is unlikely it can be used for
highly viscous fluids with a finite bulk modulus. Eastwood et al. (1990)
conclude that a more general form for p2 is required which may
depend on ps, ps. Ki Ks, M. Of and &5, and which incorporates the
inherent symmetry.

The effect of the induced mass coefficient, pj2, on the phase
velocity and attenuation is determined for a water filled silica sand.
The limits on pj2 values used are p;2=0.0 and pj2= - No Pr. Choosing
P12= - Mo Pr is a common expression used for pj2 in the literature
(Eastwood et al., 1990).

The phase velocity of the 1st P-wave (figure 11), 1st S-wave (figure
12), 2nd P-wave (figure 13) and the 2nd S-wave (figure 14) decreases
with a decreasing p)2. However, these changes are very small and are
only evident when the frequencies are larger than about 104hz. Also
at these higher frequencies the phase velocity becomes frequency
dependent.

The attenuation of the 1lst P-wave (figure 15), 1st S-wave (figure
16), and 2nd P-wave (figure 17) decreases with decreasing pi2, but is
analogous to the velocity data. The changes only occur when the
frequency is about 10%hz or larger. The 2nd S-wave attenuation
(figure 18) is very large and increases with decreasing pi; for
frequencies larger than 104hz.

Similar results were observed in the study by Eastwood et al.
(1990). They also investigated an oil filled silica sand, and reported

that the frequency before p2 is important becomes much larger.



|§l E—WAVEI Non Thermal Solution

Phase Velocity vs Log (f) vs p,,

Figure 11 1st P-wave: Phase velocity vs. log(f) vs.p12.

ist S-WAVE:

Chase Velocity vs Log (f) vs Pz

Figure 12 1st S-wave: Phase velocity vs. log(f) vs.pi2.
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Phcse Velocity vs Log (f) vs p,,
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Figure 13 2nd P-wave: Phase velocity vs. log(f) vs. pi2.

2nd S-WAVE:

Phase Velocity vs Log (f) vs p,,

Figure 14 2nd S-wave: Phase velocity vs. log(f) s pi2.
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Attenuction vs Log (f) vs p,,

Figure 15 1st P-wave; Attenuation vs. log(f) vs. pi2.

1st S-WAVE:

Attenuation vs Log (f) vs p,,

Figure 16 1st S-wave: Attenuation vs. log(f) vs. p12.
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Attenuation vs Log (f) vs p,,

Figure 17 2nd P-wave: Attenuation vs. log(f) vs. p;2

gnd S—WAVE:

Attenuation vs Log (f) vs p,,

Figure 18 2nd S-wave: Attenuation vs. log(f) vs. p12
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The general result observed is that pj2 can affect the phase velocity
(very small) and the attenuation of P and S-waves. However, these
changes occur at frequencies in excess of 10%hz for a water filled
silica sand and at larger values for an oil filled silica sand. Therefore it
can be concluded that pj2 is an unimportant parameter when dealing
with seismic waves.

A point of interest is that, if pi2 is unimportant in the seismic
frequency range and can be neglected, the S-wave solution obtained
from the de la Cruz and Spanos (1989a) theory has only one empirical
parameter, the permeability (K). This parameter was discussed in the
previous section and there exists methods for measuring this
parameter independently. Therefore, the resulting phase velocities
and attenuation for the S-waves calculated using this theory are

dependent only on the physical parameters of component materials.
3.2.3 Solid compliance factor (5 and fluid compliance factor (51)

In order to obtain a complete set of equations describing the
propagation of a dilatational wave de la Cruz and Spanos (1989a)

adopted relation (36)

%: 5, V-V, - & V¥

where 8 and &; are dimensionless empirical parameters. This
dynamic relation is constructed at the macroscale since porosity is a
macroscopic variable with no pore-scale meaning. If we consider a

wave of the form e-i® then equation (36) can be written as
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N-No=08 V-us- 8 V-u (95)

which appears to define the change in porosity, within a volume
element, as the difference in the product of ds and the fractional
change in volume of the solid and &; and the fractional change in
volume of the fluid. The fractional change in volume of the solid is
basically the dilatation due to the wave but the fractional change in
volume of the fluid is the dilatation of the fluid and flow of the fluid in
or out of the volume element.

A previous comparison with Biot's theory (1956a) provided a

correlation between coefficients (cf table 2) and the additional

constraint (50)

ol
]
Gl

for the two theories to describe equivalent physical systems. This
constraint (50) specifies uniquely one empirical parameter in terms of
the other. Using this relationship (50) de la Cruz and Spanos (1989a)
considered the case where the two average pressures, Ps and pg, are

regarded as approximately equal. Neglecting thermal effects in (32)

an

and (33) they obtain a relationship for 5 but with the following

definite expressions for §s and ¢

8 = 110(1 N ﬂo) , (96)

Kf[m + —1 - TIO}
Kf Ks
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5= — oL -T0 (97)

i KS[HQ+ 1-7o “0}
Kf Ks

A numerical analysis illustrating the significance of s and &; was
carried out using the parameters for a water filled silica sand. There
was a restriction imposed in the plot routines, which stipulates that
adjacent points of opposite sign not be connected. Therefore,
unconnected regions represent domains of attenuation or phase
velocities of opposite sign. The attenuation as a function of ds and &
for 100 hz 1st P wave (figure 19) and a 100 hz 2nd P wave (tigure 20)
exhibits regions of positive and negative attenuations. Since negative
attenuations are unphysical, the boundaries of such regions must
represent a physical limit on the chosen combination of ds and Oy for
the given parameter set. The projection of these boundaries onto the
8--8¢ plane (figure 21) confines the region where physical
combinations of 8 and &¢ exist and is indicated by the shaded region.
The two strongest constraints on ds and §s are observed in the 1lst P
wave solution. Also relationship (50) obtained from comparison with
the Biot theory is not a sufficient condition for physical solutions to
exist.

Further study indicates that the constraints on ds and d¢ discussed
above are not affected by thermo-mechanical coupling. Comparing the
attenuation as a function of 8 and 8¢ for a 5000 hz 1st P wave {figure
22) and a 5000 hz 2nd P wave (figure 23) with the 100 hz solution
(figures 19 and 20) it is apparent that the constraint common to both

the 1st and 2nd P waves is frequency dependent. However, the
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Figure 19 1st P-wave @ 100 hz; Attenuation vs. & vs.df

_2nd E—WAVE Non Thermai Soiut.on

Attenuct.on vs 0, vs 0,

Figure 20 2nd P-wave @ 100 hz: Attenuation vs. O vs.O¢
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Water and Silica Sand
Physical Constraints Derived from

Attenuation Data
1.0
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Fluid Compliance Factor

Figure 21 Projection of the constraints on the 8 and d¢ plane. The
line originating at the origin with positive slope is the line
representing s and &¢ values which concur with the Biot theory {cf
equation (50)}.
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1§t E— “ AVE Non Thermal Soiution

Attenuction vs §, vs 4,

Figure 22 1st P-wave @ 500C hz; Attenuation vs. & vs. O

2nd P—WAVE: Non Thermai Solution

Attenuation vs 6, vs G

Figure 23 2nd P-wave @ 5000 hz; Attenuation vs. 8 vs. O
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strongest constraints confining 05 and 0 are frequency independent.

Remaining within the physical region defined by the lst P wave
constraints and increasing the parameter 8s and & being calculated
using constraint (50j, causes a decrease in the 1st P wave phase
velocity independent of frequency (figure 24). Increasing the
parameter &g also causes a decrease in attenuation independent of
frequency (figure 25). The parameter ds has a negligible effect on the
2nd P wave phase velocity (figure 26) and attenuation (figure 27) for
this parameter set.

Numerical studies have constrained ds and ¢ to a narrow range of
values on the basis that the theory yield solutions for waves with
positive attenuation. However, these constraints may not necessarily
be the strongest constraints. It has been illustrated that 85 and & have
an effect on the phase velocity and attenuation of the P-waves within
the seismic frequency range. They do not have any effect on the S-
waves. Several definite expressions for ds and 6; have been derived
under particular assumptions. However, there is a great need for

independent experiments which can measure 8 and S
3.2.4 Intercomponent Conduction Coefficient () .

The intercomponent conduction coefficient is introduced when de
la Cruz and Spanos (1989a) explicitly take into account thermo-
mechanical coupling. The physical argument for its introduction is
very similar to that for the permeability aside from the fact that it
deals with heat conduction rather than momentum sransfer across the

solid-fluid interfaces.



]§t E—WA y E: Non Thermal Soiut.on

Phcse Velocity, vs f vs &,

Figure 24 1st P-wave: Phase velocity vs. 85 vs. frequency

ISt E—WA y E: Non Thermal Soiution

Attenucton vs f vs §,

Figure 25 lst P-wave; Attenuation vs. ds vs. frequency
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Phese Veiocity vs f vs &,

Figure 26 2nd P-wave: Phase velocity vs. d; vs. frequency

M Non Thermai Solution

Attenuaton vs f ovs &,

Figure 27 2nd P-wave: Attenuation vs. 8 vs. frequency
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When the equations describing the thermodynamics of the
compone 'ts (fluid and solid) are volue averaged de la Cruz and

Spanos obtain a pair of surface integrals. For the fluid the surface

integral is
f ke VTe-d A (98)
Afs

and owing to the heat boundary condition (14) the surface integral for

the solid is

f ks VT -d A (99)
Afs

These two integrals are equal and opposite and represent the heat
transfer from one component to the other across the microscopic
interfaces. It is discussed by de la Cruz and Spanos (1989a) that these

heat exchange terms between components should vanish if’ and only if

the macroscopic component temperatures are equal (T f='—l:s). It is
therefore argued by de la Cruz and Spanos (1989a) that these terms

may be represented by a first order scalar proportional to (Ts - —T—f) and

therefore they obtain

f KfVTf‘dK='Y(Ts-:I:f) (100)
Afs

where 7Y is the positive empirical parameter. The heat transfer,
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between components, represented by this term should contribute to
the attenuation of the dilatational waves. Y may be approximated as

follows (de la Cruz and Spanos, 1989a)

~ KA = X 101
v < g (101)

where ¥ is some average thermal conductivity, A is the area of the
microscopic interfaces within volume element V and [ is a
characteristic microscopic length.

When heat conduction is a "slow process”, under certain conditions
the local temperatures will be equal (Ts =Tf). Let f! =-2m£ be the

period of disturbance then
2220t (102)

For the temperatures to be equalized through conduction one must

have
AT =|T. - Ty (103)

Substituting into the fluid heat equation (30) and neglecting the two

middle terms, one finds

Pfclf:ﬂol—ij:l—sz'Yﬁs-'fA (104)

and for the solid
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Pscs(l-no)Hs—'If-"*Yl—fs-ffl (105)

o1
1

A general estimate of the frequency below which there will be
equality of local temperatures can be determined by cancelling li - -’Ffl

from the equations and is

o =~ 2%Y (106)

where pc is some average heat capacity per unit volume.

The changes in attenuation (figure 28) of the lst P-wave, for a
water filled silica sand, due to Y can be explained using a similar
argument as was previously used for permeability. However, this
situation consists ¢t a transfer of energy (heat) from one component to

the other across the microscopic boundaries. If the heat is

transferred from the solid to the fluid, ie fs>Tf, it will promote
motion in the fluid due to the thermal expansion. This added motion
of the fluid will therefore create a larger attenuation. Therefore as one
increases Yy the attenuation increases but as Y increases the minimum
frequency needed to equalize the component temperatures increases
and can be approximated by (106). As the component temperatures
approach each other it is obvious that ﬁs - Tfl — 0. There will exist a
value for ¥ at a given frequency such that the value of (fs - T{) will
overshadow the iriportance of Y. At this point one observes a

maximum in the attenuation. Further increases in Y make (i - T{)
approach zero and will cause the clange in attenuation due to the

transfer of heat to decrease. The phase velocity (figure 29) also



IS! E— !! AVE: Tnermai Soiction

Attencation vs f vs Log ()

Figure 28 Ist P-wave: Attenuation vs. log(y) vs. frequency

l§t E—WAVE: Thermai Soiut.or

Phase Veiocity vs  vs Log (})

Figure 29 1st P-wave; Phase velocity vs. log(y) vs. frequency
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exhibits a very small change with changes in ¥. This change is due to
the interaction with the associated thermal wave.

Intercomponent heat conduction is present only when thermo-
mechanical coupling is included and induces significant changes in
attenuation of the lst P-wave within the seismic frequency range. It
can be approximated by (101) and becomes more important for small
pore sizes. The frequency at which the equality of component
temperatures exists depends on Y . No independent experiment for

measuring this parameter exists at this time.
3.3 LIMITING CAEES

The solution for waves propagating in an elastic solid or a
compressible viscous fluid have been developed and are well
establishcd in the literature. The range of applicability of the de la
Cruz - Spanos theory is illustrated by subjecting the theory to
constraints indicative of such solid and fluid limits. These limiting
cases also serve as numerical consistency checks on the computer

algorithm.

3.3.1 Solid Limit.

The solid or elastic limit is obtained by equating the porosity of the
porous medium to zero. In doing so, one must also consider the
change in permeability, K, induced mass coefficient, pj2., and the
intercomponent conduction coefficient, y. As 11 — 0 the permeability

must also tend to zero. The induced mass coefficient, P12, was shown
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previously to be unimportant in the seismic frequency range and is
therefore set to zero. An approximation for the intercomponent
conduction coefficient, Yy, was determined (cf. 3.2.4) and is dependent
on the amount of solid - fluid interface and therefore as | — 0 the
amount of solid - fluid interface must also go to zero. Hence, as
porosity goes to zero the intércomponent conduction coefficient, v,
must also go to zero.

Subjecting the macroscopic equations (37,38,39,42) to such a limit
(n=0) , one can show algebraically that the fluid equations vanish and

the solid equations become

. _
m%?=KﬂWﬁQ+mW%ﬁ%VWE)-&%VR (107)
t [8

and

av‘ﬁs

pS C\sla—T§‘+ TOKsas - Ks VZTS =0 (iC’b)

dat

which are simply the equation of motion and equation of heat transfer
in an elastic solid. For a wave propagating in an elastic solid (ignoring
thermo-mechanical coupling), explicit expressions for the phase
velocity of the mechanical and thermal waves can be obtained. For the

mechanical P wave the velocity is calculated as

Ks + 4 1t
Vps = ——3——ps (109)

and for the mechanical S wave it is
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vss=1/—p—is (110)

The phase velocity of the thermal wave is represented (Chadwick,

1970) as

20 (111)

vs -
thermal = p )
S

and the attenuation per meter as

étlslemal=/\/£'§'(§—m (112)
S

Using the physical parameters of a silica sand the calculated phase
velocities for the mechanical motions are v 5=3736 m/s and V=752
m/s a2nd the attenuation of these waves is zero. The phase velocity and
attenuation of the thermal wave is V§ema = 3.1 x 102 m/s and € thermal
= 2.0 x 104 m-1, respectively.

If one now includes the effect of heat conduction, ie. thermo-
mechanical coupling, then there should be transfer between heat
energy and mechanical energy associated with compressions and
extensions of the medium. The compressed part becomes hot which
leads to heat flow into the extended region. As a consequence this
results in damping or attenuation of the waves. Furthermore, through
thermal expansion, the temperature distribution will induce
mechanical motions. If heat conduction is described as a wave
propagation phenomenon (Achenbach, 1973), there will exist two P

waves referred to as first and second sound. An analytic solution to
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this coupled thermoelastic problem was determined by Chadwick
(1960). Assuming a plane wave he obtained explicit expressions for
the phase velocity and attenuation of the the two P waves, namely first

and second sound. The phase velocities are represented by

vip=vi[l+ —E (113)
¥ P[ 2(1+x2)]
and
vip=vi ()t [1- 201 (114)
2(1+%3)
and the attenuations ( § ) are given by
Sp=w | _EXT (115)
S vi [2(1+x2)]
and
Sp= @ (L [14 EL-2) (116)
S v1§(2x) [ 2(1+ %%
where
2 5
m*:&i)_igi&’_ (117)
S
xz_QL. (118)
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and

2
e=_9KiaZ Ty (119)
(Ks‘*'g-us) Ps C¥

v is the mechanical wave velocity when thermo-mechanical coupling
is ignored and is calculated using expression (109).

The speed of the fast wave front is greater than the larger of the
mechanical, vg, or thermal, Vjema Wave velocity calculated when
thermo-mechanical coupling is ignored. The speed of the slow wave is
less than the smaller of the mechanical, V}S;, or thermal, Vjerma Wave
velocity. The attenuation of the first sound (115) is an increasing
function of the reduced frequency, ¥, and will reach a finite value at
frequencies approaching the characteristic value ®* (Chadwick, 1960).

Expression (119) defines a dimensionless thermoelastic coupling

constant and in most applications of thermoelasticity it will be a small

vs
number. For _Lerém_l <Y1 + € the slow wave is essentially thermal and
Vp

S
the fast wave is mechanical. For &%ﬂ> Y1+¢€ the opposite is the
vp

case and the slow and fast waves are essentially mechanical and
thermal respectively (Achenback, 1973).

Using the parameters of a silica sand ( at a frequency of 100 hz) the
fast wave will be the mechanical wave and the slow will be essentially

the thermal wave. The phase velocity and attenuation of the fast wave,
calculated using expressions (113) and (115), are Vslp = 3755 m/s and

&slp = 3.0 x 10-14 m-1, The phase velocity and attenuation of the
thermal wave, calculated using (114) and (116), are Vszp = 3.10 x 10-2
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m/s and £%p = 2.0 x 104 m-1 respectively.

When thermo-mechanical coupling is included in the wave
description for a porous medium (de 1:. Cruz and Spanos, 1989a) the
theory predicts four P waves. However, in the limiting case of an
elastic solid two of these waves should vanish and the resulting waves
should be the first and second sound discussed previously. The results
of the numerical solution for the de la Cruz - Spanos (1989a) theory
(with thermo-mechanical coupling included) is in agreement with the
work of Chadwick (1960) and Achenbach (1973).

In can be shown algebraically that the de la Cruz - Spanos (1985,
1989a) theory simplifys to the elastic limit. When thermo-mechanical
coupling is included the theory predicts the two P waves commonly
referred to as first and second sound. These represent a modified
elastic wave and a modified thermal wave associated with the energy

transfer due to thermal conduction.
3.3.2 Fluid Limit

The fluid limit is obtained by equating the porosity of the porous
medium to one. In doing so, one must again consider the change in
permeability, K, induced mass coefficient, pi12. and the
intercomponent conduction coefficient, ¥. As T — 1 the permeability
must go to infinity. The induced mass coefficient, pi2, was shown
previously to be unimportant in the seismic frequency range and is
once again set to zero. An approximation for the intercomponent
conduction coefficient, y, (cf. 3.2) was determined which is
dependent on the amount of solid - fluid intexface. Hence, as porosity

J
goes to one the intercomponent conduction ~oefficient, ¥, must go to
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zero.
Equating the porosity to one (n=1) in the macroscopic equations
(37.38,39,42), one can algebraically show that the solid equations

vanish and the fluid equation of motion is

2+ f
pfa-alzl = [-KfV.ﬁf+Kfafo]+ﬂf[Vza(-;lt +§V( aaut ” 120
t

and the equation of heat transfer is
(prp To(fof)——+To(1foaa vVaf-x ViT; =0 (121)

These ~re simply the equations for a viscous compressible fluid.
Unlike erfect fluids, a viscous fluid can sustain both dilatational and
rotational waves. Also, due to internal friction, a part of the
mechanical energy is converted to heat thereby attenuating the wave.
The solution for waves propagating in a viscous compressible fluid is
presented by Bhatia and Singh (1986). The phase velocity of the P

wave is given by

vi=1/ %{i (122)

and the attenuation per meter is

gf=_F (123)
2 V§ Qy

where
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£
m‘,:P__flP_ (124)
illf
3

is known as the viscosity relaxation frequency. In order for the above

expression for phase velocity and attenuation to be valid,

6"3;« 1. (125)

It is important to note that for highly viscous fluids, ie. larger values

of lf, ®y will become smaller such that condition (125) is no longer

satisfied at particular frequencies. The results obtained using the

Navier - Stokes equation (120) will not be correct, therefore condition

(125) is a built in limitation for the Navier - Stokes equation (Bhatia
and Singh. 1986).

Considering the rotational motion or vorticity of a viscous fluid gives
rise to shear waves which are usually known as viscous waves (Bhatia
and Singh, 1986). Taking the curl of the Navier - Stokes equation
(120) and assuming a plane wave the velocities of propagation and

attenuations are

vi=q/ 2@ (126)

and

§Sf=1/_—gf“m (127)
£
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indicating that these viscous waves are dispersive and very highly

attenuated. However, for fluids of high viscosity they will be less

damped and propagate at higher velocity.
The phase velocity of the thermal wave, without thermo-mec:: :nical

coupling, travelling in viscous compressible fluid is denoted by

vtﬁlennal = r\/ 2 Ki® (128)
prch - Too#Ks

and attenuation per meter is

glhermal \/(pfvP-Toa ) (17

2 K¢

Using the physical parameters for water, the -alculated phase
velocity and attenuation for the P wave is v =1462.873 m/s and
£f=8.407 x 1011 m"1 . The phase velocity and attenuation of the
viscous wave is v = 3.5449 x 102 m/s and & = 1.77245 x 104 m-!
respectively. The phase velocity and attenuation of the thermal wave

2 m/s and Efema = 4.7 x 104 m-l. The latter

is Viema = 1.34 x 10
two waves are very highly attenuatei and would probably not be
observed in most physical situations.

Including thermo-mechanical coupling in the analysis will not affect
the S wave. However there will now exist two P wavcs, first and
second sound, and the previously described P wave should be altered
due to energy transfer by thermal conduction. Solving the coupled
differential equations (120 and 121) one obtains the following

expressions for the phase velocity and attenuation of the pseudo-



mechanical .vave

(vip) =7 (v
and

ef, - 2me? | wily-l)oel

aodv 2p0chviPvls

and for the pseudo-thermal wave

and

where
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(130)

(131)

(1321

(133)

(134)

is the ratio of heat capacities. The attenuation due to heat conduction

in solids will be less than for fluids since Yiq < Yiuiq (Bhatia and Singh,

1986). The attenuation of 1st P wave (131) is the sum of attenuation

due to viscosity (123) and attenuation due to thermal conduction and

is called classical absorption (Bhatia and Singh, 1986). Once again

using parameters indicative of water one can calculate the phase



70

velocities and attenuations for the two P waves. The phase velocities
are v{p= 1465.35 m/s, v§p= 1.34081x10°2 m/s and the attenuations
are Elp= 8.41019x107!! m-1 and Ebp= 4.68611x10% m-1 for the
pseudo-mechanical wave and pseudo-thermal wave, respectively,
assuming a frequency of 100 hz. The phase velocity of the first sound
v‘{ p and attenuation éﬁp are stightly greater than the respective phase
velocity vpf and attenuation épf calculated wiihout themno-mechanical

coupling as is expected.
3.3.3 Numerical Ciiculation of Limits.

in performing the numerical calculations for the soiid and fluid
limiting cases the induced mass coefficient, pi2, is set to zerc since it
was shown previously to be unimportant in the seismic frequency
range. The intercomponent conduction coefficient, ¥, is set to be very
small ( order of 10 -15) since it is dependen: «:: the amount of solid -
fluid interface whit becomes non-existent in the solid and fluid

limits. The solid, ... and fluid, &f, compliance factors describe the

change in relative proportions of the constituent materials to the
change volume of these materials, therefore, in the solid limits these
parameters should tend to zero and are given small values of the order
of 10 10, Hence, with the above mentioned constraints and the
propertie:, of water and silica sand the phase velocities and
attenuations of the P and S waves are calculated as functions of
porosity and permeability. It is important to recognize that the de la
Cruz-Spanos theory predicts two P and two S waves without thermo-

mechanical coupling and four P waves and two S wave when thermo-
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mechanical coupling is included.

The phase velocity (figure 30) of the lst P swie is illustrated as a
function of porecsity and permeability, calcuiated without thermo-
mechanical coupling. The phase velocity of the 2nd P wave is shown
in figure 31. This 2nd P wave is not the pseudo-thermal wave (
second sound) described previously, since thermo-mechanical
coupling is not included in this calculation. It is the other mechanical
wave present due to the interaction of the fluid and solid continuums.
If one now chooses values of permeability and porosity indicative of the
solid and fluid limits one observes that the 1st P wave velocity tends to
the phase velocity calculated for the elastic limit, wh™ereas the 2nd P-
wave phase veiocity tends to the phase velocity calculated in the fluid
limit. Therefore, one sees that the rumerical the solution becomes
decoupled in these limits and the lst P wave represents the solid
limit and the 2nd P wave represents the fluid limit. The attenuation of
the 1st and 2nd P waves behave similarly.

The phase velocity of the 1st S (figure 32) and 2nd S (figure 33)
behave in a similar fashion. For values of porosity and permeability
characteristic of the solid and fluid limits the phase velocity of the 1st
S wave is equal the shear wave velocity propagating in an elastic solid
with the properties of silica sand. The 2nd S wave phase velocity is
very close to zero since it is basically the viscous wave propagating in
the fluid which in this case is water.

When thermo-mechanical coupling is included analogous character
of the phase velocity and attenuation of the of the was is observed.
The numerically calculated values of the phase velocity and attenuation
of the S waves and P waves (both mechanical and thermal) are in

agreement with the values calculated in the solid (cf. 3.31) and fluid



lst E—WAVE Non Thermal Solution

Phase Velocity vs 71 vs Log (K)

oo

#igure 30 lst P wave; Phase velocity vs. poresity vs. permeability,
illustrating the c2nonverger:ce of the numerical solution
in the solid and fluid limits.

2and P —WAVE: Non Thermal Solution

Phase Velocity vs 7 vs Log (K)

Figure 31 2nd P wave; Phase velocity vs. porosity vs. permeability,
illustrating the convergence of the numerical solution
in the solid and fluid limits.
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1st S—-WAVE:

Phose Velocity vs 7N vs log (K)

Figure 32 1st S wave; Phase velocity vs. porosity vs. permeability.
illustrating th: convergence of the numerical solution
in the soiid a:: fluid limits,

Phase Velocity vs n vs Log (K)

Figure 33 2nd S wave; Phase velocity vs. porosity vs. permeability,
illustrating the convergence of the numerical solution
in the solid and fluid limits.
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(cf. 3.32) limits. The decoupling of the numerical solution in the
limits still exists.

The adopted method of solution based on the cofactor expansion
becomes decoupled in the solid and fluid limits. However, it is
important that one specify proper functional forms for the empirical
parameters .vhen constructing such limiting cases. Values of phase
velocity and attenuation calculated using the numerical algorithm and
algebraic expressions are in good agreement for both the solid and
fluid limit. When thermc-mechanical coupling is included the theory
preinte two dilational waves in these limits commoniy known as first

d sound. The S wave or viscous wave and the 2nd P-wave
. - sound) have very low propagation velocities and high
attenuations. Thesc waves would not bc detected for this given case;
however, there importance might be visible due to their coupling

effect with the observed waves propagatiizg in a porous medium.



4, ASE STUDIES

Seismic studies are used extensively to image s.cuctures beneath
the earth's surface. Hydrogeologists and engineers use seismic
techniques to define near surface features needed in groundwater
exploration and geotechnical investigations. They are used extensively
bv the petroleum industry for the delineation of features which could
be indicative of possible oil or gas reservoirs and more recently in
monitoring recovery techniques used in heavy oil reservoirs. They are
also used for exploring the deep interior of the earth by interpretation
of global seismic events such as ezrthquakes or large explosions.

The theory commonly usc:! s the modelling of seismic data is
based on the fundamental assuizng:in that the encompassing material
is a perfectly elastic solid. However, it is evident that this assumption
is not valid for the majority of materials within the earth. For instance
the near surface material, studied by hydrogeologists and engineers, is
better characterized as a porous matrix whose pores are primarily
saturated with air and water above the water table and fully saturated
with water below the water table. Also peuvieum reservoirs can be
more accurately modelled using a porous medium. In this case the
pores are filled hv various saturations of gas, oil and water. The
composition and characteristics of materials within the deep earth is a
topic of present day research. The solids may not behave elastically,
but in a plastic or viscoelastic fashion and the fluids may or may not
behave as Newtonian fluids. Although the theory discussed here does
not account for such behavior, the presence of fluids within a solid

matrix may help explain observed anomalies within the deep earth
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(e.g. low velocity zone). The change in physical character, such as
viscosity, of the fluid within the solid matrix may have a significant
effect on the seismic signal, for example attenuation. Conventional
elastic theory cannot account for such changes. However, these
deviations could be of major importance when seismic techniques are
used as a monitoring tool.

The application of the de la Cruz - Spanos theory to several physical
situations related to various disciplines will be compared with
prediciions obtained from conventional elastic theory. Furthermore, a
comparison of the de la Cruz - Spanos theory with and without

thermo-mechanical coupling will be examined.
4,1 AIR FILLED SILICA SAND

This model consists of a porous elastic matrix fully saturated with
air. This type of model may be used for near surface layers, if one can
neglect any water saturation. It is also a possible model for natural gas
reservoirs assuming the in-situ properties of the gas are similar to air.
The physical parameters for air are readily available (Weast, 1969;
Childs, 1939) and are presented along with the associated empirical
parameters in table 4. Values for the empirical parameters are such
that they obey previously discussed restrictions which are necessary
for the solution to yield physically consistent rzsults. The solid is
assumed to have the properties of a silica sand (Kappelmeyer and
Haenel, 1974; Clark, 1966; Forsythe, 1959) and are listed in table 3.
In all the models discussed in this work the sand grains will not be
allowed to slip relative to each other. This assumption has been
shown by a number of authors to be fully justified since grain slippage

results in nonlinear wave propagation (Mindlin and Dersiewicz, 1953;
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Knopnfif 2nd McDonald, 1960; White, 1966; Walsh, ' %¢.5; Mavko, 1979)
while zxperimental evidence, at least in the presence of fluids with
viscosities indicative of water and light oil, indicates that at seismic

strains, attenuation is dominated by linear processes (Pandit and
Savage, 1973; Brennan and Stacey, 1977).

Property Symbol Value
temperature To 2.00 x 101
porosity Mo 3.00 x 10-1
permeability K 1.00 x 10-11
fluid density pf 1.21 x 100
fluid viscosity T 1.82 x 10-5
fluid bulk modulus K¢ .00 x 104
fluid thermal expansion Of 3.43 x 10-3
fluid heat capacity ch 1.00 x 103
fluid thermal conductivity Ks 2.52 x 10-2
induced mass coefficient P12 0.00 % 17
solid compliance factor s 3.70 x 10-1
fluid compliance factor ¢ 9.51 x 10-7
conduction coefficient Y 5.00 x 107

Table 4 Properties of air and the associated empirical paramaters

The phase velocity and attenuation of dilatational and rotational waves
were calculated previously for the elasic limit (c.f. 3.3.1). In the case
considered here, the porosity is assumed to be 30%.

The phase velocity of the 1st P-wave (figure 34) is frequency



78

independent and is approximately 35% lower than the value calculated
in the elastic limit. This degree of change in phase velocity would be
easily detected in seismic studies. The attenuation of the 1st P-wave
(figure 35) increases with increasing frequency but the magnitude of
the attenuation is small for the frequency range (0 - 200 hz)
considered. The 2nd P-wave exhibits a frequency dependent phase
velocity (figure 36) and attenuation (figure 37). The magnitude of the
phase velocity is small but the attenuation is several orders of
magnitude larger than the 1st P-wave. This wave might be deiected in
a controlled laboratory experiment but is unlikely to be observed in
field data. It is important to point out that this wavs is not the
thermal wave (i.e. second sound) which is described wiien thermo-
mechanical coupling is included in the elastic limit. it is primarily a
mechanical disturbance propagating through the flunl which s
modified by interactions with the solid component. The de i.. Cruz -
Spanos theory does predict two more P-waves, when thermo-
mechanical couplir.g is included, which are analogous to second sound
in the elastic limit. Each thermal wave is associated with one ... the
respective mechanical waves; however, there is ar interaction
between all four P-waves. The attenuation of these latter two P waves
is extremely large (~104 m-l). Thermo-mechanical coupling does
not effect the 1st P wave for the case considered here since the non-
thermal and thermal solutions overlay one another in figures 34 and
35.

The phase velocity of the 1st S-wave (figure 38) is frequency
independent and is equal to the value calcuiated in the elastic limit.
Due to the low viscosity of air, the solid - fluid coupling is almost non-
existent and therefore the fluid effect on the 1st S wave travelling
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Figure 34 1st P-wave; Phase velocity vs. frequency for an air
filled silica sand with 30% porosity. Thermal solution includes

thermomechanical coupling.
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Figure 35 lst P-wave; Attenuation vs. frequency for an air
filled silica sand with 30% porosity. Thermal solution includes
thermomechanica' reupling.
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Figure 36 2nd P-wave; Phase velocity vs. frequency for ~n air
filled silica sand with 30% porosity. Thermal solution includes

thermomechanical coupling.
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Figure 37 2nd P-wave; Attenuation vs. frequency for an air
filled silica sand with 30% porcsity. Thermal solution iiicludes

thermomechanical coupling.

80



780
]
~
g 7701
-8 760 -
©
T
»
g 750 -
=
(™
740 S e s p—p——————— Y
0 U 100 150 200

Xrequency hz

Figure 38 ist S-wave; Phase velocity vs. frequency for an air filled
silica sand with 30% porosity.
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Figure 39 lst S-wave; Attenuation vs. frequency for an air filled
silica sand with 30% porosity.
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primarily in the solid is very small. However the amplitude of such a
wave should be much less in the porous case than in the elastic case.
The attenuation of the 1st S-wave (figure 39) increases with increasing
frequency but the magnitude is small for the frequency range
considered. The 2nd S-wave is mainly a viscous wave altered by
interactions with the solid. It is characterized by a very low phase
velocity and high attenuation (~105 m-1). Although it probably will
never be observed, it is important to know that it might have an effect
on the 1st S wave.

For an air filled silica sand the phase velocities of the 1st P and 1st
S waves are frequency independent for frequencies up to Z00 hz. The
phase velocity of the 1st S wave is the same as calculated in the elastic
cases; however, the amplitude of this wave should be considerably
smaller. The attenuation of the 1st P and lst S waves increases with
increasing frequency, but the magnitudes are small. Thermo-

mechanical coupling is not important for this given parameter set.
4.2 WATER FILLED SILICA SAND

This model is of primary importance in the search for groundwater
aquifers and possibly in the monitoring of water floods for enhanced or
secondary oil recovery techniques. The parameters indicative of this
model were used to illustrate numerical consistencies in limiting
cases as well as discussing empirical parameters and were presented
in table 3. The model is analogous to the air filled model with the
exception that the voids or pores are now fully saturated with water.
Therefore a comparison of the two models should illustrate the effect

of different pore fluids on the propagation of a wave.
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The phase velocity (figure 40) of the 1st P wave is not dependent
on frequencies in the range of 0 to 200 hz. It is approximately 10%
larger than the phase velocity calculated in the air filled case but it is
still much lower than the value calculated in the elastic limit. This
increase in phase velocity as compared to the air filled case is due to
the lower compressibility of water. The presence of water helps
restrict compression of the pores thereby making the porous medium
less compressible and as a consequence the 1st P wave will propagate
at a higher velocity. The attenuation (figure 41) of the 1st P wave is
frequency dependent and is about three orders of magnitude larger
than calculated in the air filled case. This increase in attenuation is
due to the greater transfer of mechanical to thermal energy through
viscous dissipation which is associated with the larger viscosity of
water.

The 2nd P wave, which can be thought of as the mechanical
motions propagating primarily in the fluid but influenced by the solid,
has a larger phase velocity (figure 42) and smaller attenuation (figure
43) as compared to the air filled model. The increased phase velocity
can be accounted for mainly by the lower compressibility of water as
compared to air. The attenuation cannot be explained by changes in
the fluid character alone but one must consider the interaction
between the component materials. Along with the attenuation of the
2nd P wave the difference in phase velocity (figure 44) and attenuation
(figure 45) of 1st S waves determined for the water filled model and
air filled model must also be explained in terms of the solid - fluid
interaction. First, an increase in viscosity increases the coupling
between the solid and fluid components thereby amplifying the
characteristic contribution of that component to the wave. In the case

of the 2nd P wave the
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Figure 40 1st P-wave; Phase velocity vs. frequency for a water
filled silica sand with 30% porosity. Thermal solution includes

thermomechanical coupling.
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Figure 41 1st P-wave; Attenuation vs. frequency for a water

filled silica sand with 30% porosity. Thermal soluticn includes
thermomechanical coupling.
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Figure 42 2nd P-wave; Phase velocity vs. frequency for a water
filled silica sand with 30% porosity. Thermal solution includes

thermomechanical coupling.
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Figure 43 2nd P-wave; Attenuation vs. frequency for a water
filled silica sand with 30% porosity. Thermal solution includes
thermomechanical coupling.
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Figure 44 1st S-wave; Phase velocity vs. frequency for a water filled
silica sand with 30% porosity.
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87

contribution due to the solid is increased thereby reducing the
attenuation. The lst S wave on the other hand has an increased
contribution by the fluid. This contribution can be thought of as a
viscous drag by the fluid onto the solid motion. This influence will
impede the wave thereby decreasing the phase velocity and due to
viscous dissipation will increase the attenuation.

The deviation between the "thermal" and "non thermal" curves in
figure 41 indicates a small increase in attenuation of the lst P wave
when thermo-mechanical coupling is included. Such a small deviation
in attenuation would not be recognizable in seismic investigations.

The increase in viscosity of the pore fluid increases the coupling
between motions in the solid and fluid components. This coupling can
have different effects on the different waves depending on the
component dependence of that wave. When the water filled model is
compared to the air filled model, the phase velocity and attenuation of
the 1st P wave is increased. The phase of the 1st S wave is decreased;
however, its attenuation is increased. It appears that thermo-

mechanical coupling can be neglected for a water filled silica sand.
4.3 BITUMEN FILLED SILICA SAND

Sand deposits which are impregnated with dense, viscous
petroleum are commonly referred to as tar sands (also known as oil
sand and bituminous sands). The largest deposits in the world are
located in the Athabasca area in the northeast part of the province of
Alberta (Baughman, 1978). The depleting reserves of light crude oil
has generated interest in exploitation of these tar sands. Due to the
highly viscous nature, the mobility of the fluid is very low under

ambient reservoir conditions and therefore recovery methods are
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being developed to deal with such problems. Seismic techniques
would be very valuable in the monitoring of these recovery methods
and therefore it is important to investigate the effect such material has
on seismic wave propagation.

Oil sands exist in both consolidated and unconsolidated form,
depending on the degree of cementation. The solid matrix in the
majority of oil sands consists mainly of quartz grains and clay minerals.
The sand grains range downward in size from a maximum diameter of
about 1 mm, however, about 99.9% of the mineral matter is finer than
100 um (Baughman, 1978). The quartz component was found to be
subangular to subrounded with good sorting. The primary cementing
material was found to be calcite (Camp, 1970,1974). The porosity of
selected Athabasca oil sands was measured by Camp (1970,1974) and
has a range of 30 to 40 percent. The permeability ranged from 10~ 14
to 10-12 m2,

The pore fluids consist of bitumen, water, and gas. The gas is
usually air but some test borings in Alberta have reported methane
(Baughman, 1978). Several of the physical and thermal parameters for
bitumen were determined by Camp (1970,1974) using Athabasca tar
sand. The bitumen was removed from core samples using a solvent
extraction technique. There are some problems associated with this
technique. For example, Camp (1970,1974) associates the large
variability in viscosity with small amounts of solvent left in the bitumen
sample or by a small portion of the lighter end fractions of the
bitumen being lost during stripping of the extraction solvent. Many
authors (Dusseault and Morgenstern,1978; Agar, 1984; Agar et al.,
1987) dealing with bulk investigations of tar sands emphasize the

implications of sample disturbance on the stress - strain parameters.
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Therefore, it is possible that laboratory measured properties of
bitumen will be somewhat altered as compared to the in - situ values.
These studies involving the bulk properties are not directly relevant to
this theory, since one needs the physical properties of the individual
component materials.

The model considered here will consist of an elastic matrix having
the properties of silica sand and the pores will be assumed to be fully
saturated with bitumen. The saturations of gas and water will be
assumed negligible. There is some evidence that bitumen exhibits
viscoelastic properties (Dealy, 1980). However, additional
experimental studies are required under in-situ conditions and at the
strain rates involved in seismic wave propagation before including
such effects into seismic studies would be justified.

The physical parameters for the solid component are the same as

for the previous models (c.f. table 3.) and the bitumen parameters and
choice of empirical parameters are listed in table 5.
The phase velocity (figure 46) and attenuation (figure 47) for the 1st P
wave were calculated for a frequency range of 0 to 200 hz with,
"thermal”, and without, "non thermal”, thermo-mechanical coupling.
The phase velocity is less than the value calculated for the water filled
silica sand but greater than the value calculated for the air filled silica
sand. This was expected since the compressibility of bitumen lies
between the compressibility of water and air. The phase velocity is
slightly larger and frequency dependent when thermo-mechanical
coupling is included.

The non-thermal attenuation of the 1st P-wave (figure 47) is about
an order of magnitude larger than determined for the water filled
model. In order to explain this difference in attenuation it is

important to understand which mechanisms are responsible. In the
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Property Symbol Value
temperature To 2.00 x 101
porosity Mo 3.00x 101
permeability K 1.00 x 10-11
fluid density Pf 1.02 x 103
fluid viscosity ih 5.00 x 104
fluid bulk modulus K¢ 4.30 x 108
fluid thermal expansion o 3.40x 1037
fluid heat capacity ch 2.00 x 103
fluid thermal conductivity Kr 1.60 x 10-1
induced mass coefficient P12 0.00 x 100
solid compliance factor s 3.60 x 10°!
fluid compliance factor S¢ 4.41 x 10-3
conduction coefficient Y 5.00 x 108

Table: 5 Properties of bitumen and associated empirical parameters.

de la Cruz - Spanos (1989a) theory there are basically two attenuation
mechanisms. They are "Darcian resistance” and viscous dissipation
within the fluid itself. The "Darcian resistance" is dependent on the
relative motion between the solid and fluid components and is
therefore dependent on the fluid viscosity. A higher viscosity is
responsible for a greater transfer of mechanical to heat energy.
However, it also reduces the relative fluid-solid motion thereby
producing a competing effect. This competing effect has been
observed experimentally as a peak in attenuation as a function of the

product of frequency and pore-fluid viscosity (Jones, 1986, Jones and
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Figure 46 1st P-wave; Phase velocity vs. frequency for a bitumen
filled silica sand with 30% porosity. Thermal solution includes

thermomechanical coupling.
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filled silica sand with 30% porosity. Thermal solution includes
thermomechanical coupling.
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Nur, 1983, Tittmann et al., 1983). At very large viscosities, velocity
gradients in the fluid itself will cause a large transfer in energy while
the "Darcian resistance” will be reduced due to reduction in relative
motion of solid and fluid. Therefore, for very large viscosities the
attenuation mechanism within the fluid itself will dominate; however,
both mechanisms still contribute to the attenuation in all cases. In the
bitumen filled case, viscous dissipation within the fluid itself can be
considered the dominant attenuation mechanism. The attenuation of
the 1st P wave in the bitumen filled silica sand is not only larger than
for the water filled silica sand but is due to a different mechanism.

When thermo-mechanical coupling is included, the attenuation
(figure 47) of the 1lst P-wave increases much more rapidly as a
function of frequency as compared to the non-thermal case. This
increase in attenuation is due to the transfer of heat from the solid to
the fluid components across the pore scale interfaces. This heat is
then converted to mechanical motions through the thermal expansion
of the fluid and since the viscous dissipation within the fluid itself is
the dominating attenuation mechanism it causes a large increase in
attenuation. It is evident from this discussion that thermo-mechanical
coupling may enhance attenuation but is not an important attenuation
mechanism in itself.

The 1st S wave phase velocity (figure 48) and attenuation (figure
49) illustrate similar behavior as predicted by the previous models.
The phase velocity is frequency independent and similar in magnitude
to that calculated for the water filled case. The increase in fluid-soiid
coupling which is associated with an increase in viscosity does not
appear to alter further the phase velocity of the rotational waves. The

attenuation is frequency dependent, increasing in magnitude with
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increasing frequency, and much larger than calculaied in previous
cases. It should be emphasized that thermo-mechanical coupling does
not affect the rotational waves.

Phase velocity for the other P waves predicted by the de la Cruz -
Spanos (1989a) theory is frequency dependent and is about five orders
of magnitude less than the 1st P wave phase velocity. The attenuation
of the other P waves is of the order of 109 m-1. The extremely large
attenuation and low phase velocity of these waves indicate that they
will not be ohserved.

The phase velocity and attenuation of a wave propagating in a
bitumen filled silica sand are much different than would be expected
in an elastic solid as well as in a water filled silica sand. The phase
velocity of the 1st P wave is usually less; however, the greatest
difference is in the increase in attenuation of this wave. The 1lst S
wave has the same phase velocity for both a bitumen filled silica sand
and a water filled silica sand; however, the attenuation is about five
times larger for the bitumen case. More important is the effect of
thermo-mechanical coupling for a bitumen filled silica sand. Although
its effect on phase velocity is minimal, it has been shown that within
the seismic frequency range it can increase the atteriuation of the 1st

P wave by five times the value calculated without thermal effects.
4.4 STRUCTURES OF THE DEEP EARTH

Observations of records of elastic waves generated by earthquakes
and large explosions provide the main source of information about the
Earth's deep interior. These records contain the movement of the
ground produced by the passing of various elastic waves and are

displayed as a function of time. The travel time depends on how the
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velocities of the different seismic waves change as they pass through
materials having different elastic properties. The velocity generally
increases with depth, however, there are some observations, such as
shadow zones, which can be best explained by layers of lower velocity.
Using an iterative least-squares method (Jeffreys, 1939, 1959) it is
possible to obtain velocity-depth curves from observed data. One of
the first velocity-depth curves (figure 50) was determined by Jeffreys
(1939) for S and P waves.

The attenuation of seismic waves may also provide a possible
techiiique for exploring the internal properties of the Earth {Anderson
and Archambeau, 1964; Knopoff,1964). The intrinsic attenuation is
usually measured by the quality factor Q*, defined as

Q* = 2IE (138)
AE

where AE is the energy dissipated per wave cycle and E is the total
elastic energy of a wave cycle. Assuming a plane wave propagating in
the x-direction with amplitude in the z-direction only, one can rewrite

(138) as

Q* =1L (139)
vE

where £ is the attenuation coefficient and v is the phase velocity at the
frequency f. The attenuation in dry rocks is very small and frequency
independent (Spencer, 1981). Experimental studies have shown,
however, that attenuation is strongly affected by the fluid saturation,
properties of the pore fluid and the frequency (Toksoz et al. 1979;
Spencer, 1981; Winkler and Nur, 1982; Murphy; 1983; Jones and




This figure has been removed because of the
unavailability of copyright permission.

Figure 50 P and S wave velocity distribution in the Earth's
interior (from Bullen,1963).
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Nur, 1983; Tittmann et_al., 1983; Winkler, 1985; Jones, 1986).
Therefore, the attenuation in partially melted rocks, which involves
contributions from both liquid and solid phases, should show such
characteristics (Kampfmann and Berckhemer, 1985; Walsh, 1968;
Anderson and Spetzler, 1970). It is very important to point out that
apparent attenuation measured from records of elastic waves can be
caused by interference effects and scattering from velocity and density
heterogeneities (Jones, 1986). Therefore, it maybe difficult to discern
apparent attenuation from intrinsic attenuation which is discussed
here.

More recently the preliminary reference earth model, PREM, was
developed by Dziewonski and Anderson (1981) by inverting a large set
of P, S and surface wave observations. The attenuation was also taken
into consideration but since published data on attenuation is of variable
quality a small set of data based on measurements by various authors

(Buland et _al., 1979; Geller and Stein, 1979; Stein and Dziewonski,

1980) was used. It was further assumed that the seismic quality factor
is independent of frequency.

Dziewonski and Anderson could not justify the assumption of
isotropy because a large amount of important data could not be fit
adequately with an isotropic Earth model. They therefore adopted
anisotropy and inelastic dispersions as essential complexities for the
depth interval of 25 km to 220 km; however, results for the
"equivalent” isotropic Earth are also present. "Equivalent" means that
the model has approximately the same bulk modulus and shear
modulus as the anisotropic model, not that it provides an equivalent,
or satisfactory, fit to the data (Dziewonski and Anderson, 1981). The

parameters of the final model are presented in Table 6. It contains
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the velocities, density and Q* as a function of radius, where Q,* and
Qx* represent the isotropic dissipation of the shear and compressional
energy, respectively. The parameters listed are valid for a reference
period of 1s. This model divides the Earth into several principal
regions:

1) Ocean layer

2) Upper and lower crust

3) Region above the low velocity zone (LID), considered to be the

main part of the seismic lithosphere.

4) Low velocity zone (LVZ)

5) Transition zone spacing from the LVZ to the 670 km

discontinuity.

6) Lower mantle which is subdivided into three parts

7) Outer core

8) Inner core
which are strongly dependent on the starting model.

The Earth's internal composition is deduced from numerical
calculations of elastic parameters from the given phase velocities and
attenuations. These calculations and final compositions are very
hypothetical and dependent on the theory used. Primarily, elastic
theory is used where the bulk and shear moduli are assumed to be
complex valued in order to account for the attenuation aspect.
Expressions for these moduli are derived using various viscoelastic
models (Gordon and Davis, 1968; Walsh, 1968). The Biot theory could
also be used; however, a clear understanding of Biot's phemenological
parameters in terms of component parameters would be needed. The
de la Cruz-Spanos (1989a) theory is developed in terms of the
component properties and would therefore be very useful in

determining the composition of the Earth's interior.



This table has been removed because of the

unavailability of copyright permission.

Table: 6 The parameters describing the Preliminary Reference Earth Model (PREM)
The variable x is the normalized radius: x=r/a where a=6371 km. The parameters listed
are valid at a reference period of 1 s. The effective isotropic velocities between 24.4 and
220 km can be approximated by Vp=4.1875 + 3.9382x and V$=2.1519 + 2.3481x

(Dziewonski and Anderson, 1981).
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In order to identify the actual materials present one must
incorporate high-temperature, high-pressure experiments as well as
thermodynamical and geochemical constraints, indicative of the
location within the Earth's interior. These types of studies have been
carried out by numerous authors; Ringwood (1970), Kushiro et al.
(1968), Ringwood (1975), Manghnani and Akimoto (1977), and
Manghnani and Syono (1987). From this type of study they conclude
that the crust consists mainly of granitic rocks underlain by more
dense basalt or gabbro. The mantle below the Mohorovicic consists
primarily of dense ultrabasic rock called peridotite. The lower mantle
is believed to consist of perovskite, (Mg, Fe)SiO3. Shock wave and
laser heated diamond anvil experiments on iron appear to indicate
that both densities and bulk moduli in the liquid outer core are less
than those of iron under equivalent conditions (Williams et al., 1987;
Jacobs, 1981). In order to comply with these observations it is
assumed there exists a lighter more compressible element or
compound. There is no firm evidence as to the identity of the light
element in the outer core. It must, however, be reasonably abundant,
miscible with iron and posses chemical properties that would allow it
to enter the core. The prime candidates are silicon and sulphur and
more recently oxygen. The inner core is believed to consist of iron
and nickel.

Major advances in controlled static type experiments have come
about in the past few years due to the advent of the diamond anvil
press and the uniaxial split-sphere multi-anvil press or "Superpress".
These experiments are still limited to pressures of about 25 GPa
which is believed to be indicative of depths of about 700 km.
Simulation of higher pressures and temperatures can be attained using

shock wave experiments; however, these experiments involve
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measurements over very short periods of time and many assumptions
are needed in order to interpret these measurements in terms of
actual mineral composition and structure.

Assembling the seismological and high pressure-temperature
knowledge, various authors have constructed models for the Earth
(Jacobs, 1981). Although these models are somewhat elaborate, one
must remember they contain many uncertainties and assumptions
which still need to be resolved or justified.

Two regions which have received much attention in the recent
literature are the low-velocity layer and the core-mantle boundary.
These two regions exhibit very anomalous seismic behavior such as
negative velocity gradients and very high attenuations. The de la Cruz
-Spanos (1989a) theory will be used to calculate the phase velocities
and intrinsic attenuation for these zones. The available data for the
proposed constituent material in these zones is very sparse, therefore,

the trends of the solutions will be emphasized rather than actual

values.
4.4.1 Asthenosphere, LVZ.

The asthenosphere or low-velocity zone, LVZ, is characterized by
lower velocities and more rapid attenuation of seismic waves than
adjacent regions. The upper boundary is located just beiow the solid
lithosphere at a depth of about 60 km from the continental surface.
The lower boundary is assumed to be at a depth of about 250 km.
Within this zone one observes the maximum decrease in velocity,
about 3 to 5% of the inital velocity, at a depth of about 150 km. The

attenuation increases by a factor of 3 or more (Anderson and Sammis,
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1970). At depths between 150 and 250 km the phase velocity
increases again with depth. The thickness and velocity of the zone
can, to some extent, be traded off against each other so that the
details of this region cannot be unambiguously determined (Anderson
and Sammis, 1970).

Peridotite and eclogite are two principle candidates for the
composition of the asthenosphere. Peridotite is a heavy dark green
igneous rock composed primarily of olivine with pyroxene and/or
amphibole (hornblende) usually present. Eclogite is composed
primarily of pyroxene and a reddish garnet and is more dense than
peridotite. There are favorable arguments for both of these candidates
(Cailleux, 1968); however, a variety of peridotite is regarded as the
most probable composition (Birch, 1970; Lambert and Wyllie,1970;
Anderson and Sammis, 1970; Anderson and Bass, 1986).

Several mechanisms based on the peridotite composition have been
suggested to explain the anomalous velocity gradients and larger
attenuations of seismic waves in the asthenosphere. These include
temperature and pressure effects, with or without relaxation of
elasticity, partial melting, or phase changes associated with the
pressure-temperature environment. Some solutions (Gutenburg, 1959)
of velocity-depth curves are roughly consistent with a homogeneous
layer of peridotite affected only by temperature and pressure.
However, the preferred explanation of more recent velocity-depth
models is based on the presence of a partial melt (Anderson and Bass,
1986). There is some basis for arguing that the temperature in the
upper most asthenosphere (~60 km) would not be sufficient to melt
peridotite and that the presence of small amounts of water is needed
(Lambert and Wyllie, 1970).

The parameters used in the calculation of phase velocity and
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attenuation for the LVZ are presented in table 7. The parameters for
the solid are primarily of forsterite, MgZSiO 4 Very little is known
about the properties of the melt within the LVZ and therefore a large
uncertainty exists in the values presented. The melted zones are
assumed to be pore-like structures of random sizes, shapes and
orientations. The pores are restricted to be interconnected in such a
manner that the assumed permeability is obtained The majority of the
fluid parameters are from Jacoby and Schmeling (1982).

The phase velocity, at 1 hz, (figure 51) of the 1st P wave decreases
with an increase in partial melt. The attenuation (figure 52) increases
with an increase in partial melt. Thermo-mechanical coupling does
not change the phase velocity or attenuation of the 1st P wave. The
presence of a 6% melt produces about a 7% change in the 1st P wave
velocity and a Qk* value of 7856 m-1. The de la Cruz - Spanos (1989a)
theory predicts a much larger effect on the phase velocity and
attenuation than has been quoted previously by other authors ( Birch,
197C, Anderson and Sammis, 1970) for this amount of melt. The
change in phase velocity is in agreement with the PREM model;
however, the Qg* value is about an order of magnitude smaller. The
phase velocity, at a 1 hz frequency, (figure 53) of the 1st S wave
decreases with an increase in partial melt. The attenuation (figure 54)
increases with an increase in partial melt. A 6% melt produces about
a 3% decrease in S wave velocity which is somewhat smaller than
expected. The Qu* value for a 6% melt is about 3494 m-1 which is
considerably larger than is quoted in the PREM model. This
difference can be accounted for easily by the uncertainty in the
determination of the PREM model combined with the uncertainty in
selection of the constituent parameters used in the de la Cruz -Spanos
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Property Symbol Value
temperature To 1.0 x 103
porosity no 5.0 x 10-2
permeability K 1.0 x 1017
solid density Ps 3.5 x 103
fluid density Pf 3.0x 103
shear modulus Ms 7.0 x 1010
fluid viscosity W 1.0 x 108
solid bulk modulus K 1.5 x 1011
fluid bulk modulus K¢ 1.2 x 1010
solid thermal expansion Ol 2.6 x 10-8
fluid thermal expansion o 7 x 105
solid heat capacity c§ 1.2 x 103
fluid heat capacity ch 5.0 x 103
solid thermal conductivity Ks 2.0 x 100
fluid thermal conductivity K¢ 1.2 x 100
induced mass coefficient P12 0.0 x 100
solid compliance factor 35 2.2 x 10-1
fluid compliance factor & 1.8 x 10-2
conduction coefficient Y 1.0 x 108

Table 7 Physical properties properties of the asthenosphere and the

associated empirical parameters.

(1989a) theory.
Further numerical studies, assuming a 5% partial melt, indicate

that the phase velocity of the 1st P wave (figure 55) and 1st S wave
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(figure 57) are frequency independent for frequencies up to 20 hz.
The attenuation of these waves (figures 56,58) increases considerably
with frequency within O to 20 hz. This increase in attenuation is non-
linear; therefore, this theory does not support a frequency
independent Q* which is assumed in the construction of PREM. This
could be another possible explanation for the differences in the
calculated Q@* and PREM.

The de la Cruz - Spanos (1989a) theory can explain the observed
negative velocity gradients and high attenuation within the LVZ in
terms of a partial melt. The differences in magnitude of the observed
and calculated phase velocity and Q* could be eliminated by varying
the physical parameters of the component materials to obtain a best
fit. However, the frequency dependence of Q* would probably remain.
The de la Cruz (1989a) theory could, however, be used in conjunction
with measured parameters from high pressure experiments to
calculate independently phase velocities and attenuation of waves
propagating in materials of known compositions, temperatures and
pressures. These composition, temperatures and pressures could be

chosen to be indicative of particular locations within the Earth

4.4.2 Core-mantle boundary, D".

The core-mantle boundary (CMB) is the largest discontinuity in
composition and material properties within the Earth. It is located at
a depth of about 2900 km and separates the outer core from the lower
mantle. Shock wave and laser heated diamond anvil experiments on
iron appear to indicate that both densities and bulk moduli in the
liquid outer core are less that those of iron under equivalent

conditions (Williams et al., 1987; Jacobs, 1981). In order to comply
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with these observations it is assumed there exists a lighter more
compressible element or compound. The prime candidates are
silicon, sulphur and more recently oxygen (Ahrens, 1982).
Experiments conducted in a laser heated diamond anvil cell have
recently provided evidence supporting perovskite, (Fe,Mg)SiOg, as the
dominant phase in the lower mantle; however, the relative abundance
of Fe and Mg and presence of other possible phases are not well
resolved (Ahrens and Jeanloz, 1988; Knittle and Jeanloz, 1987; Heinz
and Jeanloz, 1287; Knittle et al., 1986). The properties of the lower

mantle, denoted as the solid component, and the outer core, denoted

as the fluid component, are presented in table 8. The empirical
parameters are calculated such that physical results are obtained.

The large change in material properties between the lower mantle
and outer core is believed to be responsible for transition zones
adjacent to the core-mantle boundary. The lower-most 200-300 km of
the mantle was recognized for a long time to have anomalous seismic
properties and was labeled the D" boundary by Bullen (1949). The D"
region is characterized by a decrease in P and S wave velocities with
depth in radially symmetric earth models such as PREM (see table 6).
Models of the quality factor, Q*, tend to indicate low values in D" as
compared to the rest of the deep mantle (Anderson and Given, 1982).
Young and Lay (1987) review many of the models based on
seismological observations. They conclude that present day
quantitative models are becoming more consistent; however, there is
still no definite model for the D" region.

The two prominent explanatiuns for the observed anomalous
behavior of the D" transition zone are the presence of a chemical

and/or a thermal boundary layer. The large density contrast between



i

the outer core and lower mantle lends strong support for a chemical
boundary layer. Further support is the strength of lateral velocity
gradients and experiments indicating chemical reactivity between
molten iron and perovskite. However, these latter two areas are
rather controversial.

Estimates of the heat flux out of the core indicate that the 200 km
thick D" region at the base of the mantle is a major thermal boundary
layer (Young and Lay, 1987). Stacey and Loper (1983) accredit the
anomalous velocity gradients in radially symmetric earth models to a
thermal boundary layer with an 800 K temperature contrast. Recent
estimates of mean lower mantle adiabats range from 2600 K to 3100 K
(Jeanloz and Morris, 1986) so that any strong temperature increases
in the D" region may approach the solidus of perovskite, leading to the
possibility of the existence of partial melt. More elaborate models
comprised of the superposition of various chemical and thermal
boundaries, at varying scales, have been proposed (Lay, 1989).

An attempt is made at calculating the phase velocity and attenuation
for a simple core-mantle transition zone model using the de la Cruz-
Spanos (1989a) theory. The model consists of an elastic matrix, with
the properties of perovskite, containing zones of partial melt. The
zones of melt are assumed to be of random shapes. sizes and
orientations. There is assumed to be sufficient convection within the
outer core that the melt is a mixture of perovskite melt and outer core
material. Therefore the properties of the fluid within the pores will
be similar to the properties of the liquid outer core. The physical
parameters are presented in table 8.

The phase velocity (figure 59) and attenuation (figure 60) of the 1st
P wave are altered by changes in the degree of partial melt. For a wave

at a frequency of 1 hz the phase velocity decreases linearly with an



Property

temperature

porosity

permeability

solid density

fluid density

shear modulus

fluid viscosity

solid bulk modulus

fluid bulk modulus

solid thermal expansion
fluid thermal expansion
solid heat capacity

fluid heat capacity

solid thermal conductivity
fluid thermal conductivity
induced mass coefficient
solid compliance factor
fluid compliance factor

conduction coefficient

Symbol

P12
ds

Value
3.9x 103
5.0 x 10-2
1.0 x 10-17
5.57 x 103
9.9 x 103
2.9x 1011
1.0 x 106
6.85 x 1011
6.35 x 1011
1.0 x 10-5
8.0 x 106
2.0 x 103
5.0 x 103
4.0 x 100
2.5 x 101
0.0 x 100
3.64 % 10-2
3.38 x 10-2
1.0 x 109

Table 8 Physical properties properties of the core-mantle transition

zone, D", and the associated empirical parameters. The solid is

assumed to be perovskite and the fluid is the molten iron alloy of the

outer core.

increase in partial melt at a rate of about 90 m/s per % partial melt.

The attenuation of the wave increases with an increase in partial melt.

LI =9
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When thermo-mechanical coupling is included, the attenuation
increases much more rapidly. The attenuation calculated with 7%
partial melt is approximately two orders of magnitude greater when
thermo-mechanical coupling is included as compared to the non-
thermal solution. Thermo-mechanical coupling also produces a slight
increase in phase velocity.

The phase velocity (figure 61) and attenuation (figure 62) for the
1st S-wave have a similar dependence on the amount of partial melt as
for the first P-wave. Thermo-mechanical coupling does not affect the
rotational waves. The phase velocity of the 1st S-wave at a frequency
of 1 hz decreases at a rate of about 60 m/s per % partial melt. The
attenuation increases linearly by about two orders of magnitude over a
10% range in partial melt. The Q* value determined in the PREM is
still significantly larger than the value calculated here with a 10 %
partial melt.

The frequency dependence of the 1st P-wave phase velocity and
attenuation is illustrated in figures 63 and 64, respectively, for
frequencies of O to 5 hz. There is assumed to be a 5% partial melt.
The phase velocity is independent of frequency within this range and
the thermal velocity is slightly greater than the non-thermal velocity.
The attenuation due to non-thermal effects increases only slightly as
illustrated by the non-thermal solution. However, when thermo-
mechanical coupling is included the attenuation increases by several
orders of magnitude over the given frequency range. Furthermore, the
increase occurs in a non-linear fashion and a frequency independent
phase velocity indicates that Q* would be a frequency dependent
value. The phase velocity of the 1st S-wave (figure 65) also shows a
frequency independence for frequencies of O to 5 hz. The attenuation

(figure 66) increases in a non-linear fashion with an increase in
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frequency.

If the core-mantle transition zone can be approximated by the given
parameter set, then increases in partial melt or fluid within a solid
framework can account for decreases in phase velocity and Q*. The
phase velocity of both P and S-waves appear to be frequency
independent unlike Q*, which will decrease with increases in
frequency. It is evident that thermo-mechanical coupling will be an
important process and should be considered when seismic
observations are used to investigate this region. However, one should

remember that it affects only the P-waves.



5. CONCLUSIONS

The theory for wave propagation in porous media developed by de
la Cruz and Spanos (1985, 1989a) is based on the fundamental
equations governing each component at the pore scale. Assuming the
structures are much smaller than the wavelength of the disturbance,
the macroscopic equations are obtained by volume averaging the
component equations and appropriate boundary conditions. The
complete set of coupled macroscopic equations contains five empirical
parameters, namely; permeability, K, induced mass coefficient, pi3,
solid compliance factor, s, fluid compliance factor, 8; and the
intercomponent conduction coefficient, Y. When the main underlying
assumptions equating the de la Cruz - Spanos theory and the Biot
(1956a) theory are imposed one obtains an interpretation of Biot's
phenomenological parameters in terms of the pore scale quantities, &
and ;. However, ¢ can be determined uniquely by &5 through (30).

The de la Cruz - Spanos theory predicts two rotational and four
dilatational waves when thermo-mechanical coupling is included. The
rotational waves are unaffected by thermo-mechanical coupling.
Assuming a plane wave, propagating in the x direction with an
amplitude in the z direction only, algebraic expressions for the
dispersion relations were obtained for both rotational and dilatational
waves. However, the dispersion relation for the dilational waves is
very elusive and not physically transparent and therefore a numerical
solution must be used.

The adopted method of solution based on cofactor expansion yields

the correct results in the solid and fluid limits. However it is
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important that one specify proper functional forms for the empirical
parameters when constructing such cases. Values of phase velocity
and attenuation calculated using the numerical algorithm and algebraic
expressions are in good agreement for both the solid and fluid limit.
When thermo-mechanical coupling is included the theory predicts two
dilatational waves in the solid and fluid limits which are commonly
known as first and second sound.

Investigation of empirical parameters using a water filled silica sand
model, illustrates that the permeability, K, has a significant effect on
the attenuation of both rotational and dilational waves within the
seismic frequency range. However, changes in phase velocities can be
neglected for the case studied. The induced mass coefficient, p12, only
becomes important at frequencies in excess of 104 hz and therefore
can be considered unimportant for seismic waves. The solid and fluid
compliance factors (8 and &5) have been constrained to a narrow range
of values. However, values chosen within this range still have an affect
on the phase velocity and attenuation of the dilatational waves.
Furthermore, the relation between 85 and &8¢ derived from a
comparison with Biot's theory (eq. 50) is not a sufficient condition for
physical results to exist. Further work is needed to fully understand
the imporiance of the solid and fluid compliance factors and
significance of the observed constraints. The intercomponent
conduction coefficient, Y, is present only when thermo-mechanical
coupling is included. This thermal empirical parameter, Y, can change
the attenuation of the P waves but has little effect on the phase velocity
for the model considered. The frequency at which component
temperatures are equal (Ts = Tg) is dependent on this parameter.

The character of the seismic waves propagating through porous
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media is dependent on the properties of the fluid and solid
components and the coupling between the two. For an air filled silica
sand the phase velocities of the st P and lst S waves are frequency
independent, for all practical purposes, for frequencies up to 200 hz.
The attenuation of the 1st P and 1st S waves increase with increasing
frequency. The phase velocity of the 1st S wave is the same as
calculated in the elastic case due the small coupling between
components at the pore-scale. However, the amplitude of this wave
should be considerably smaller as compared to the elastic case. This
coupling can have different effects on the differcnt waves depending
on the component dependence of that wave. Increasing the viscosity
of the pore fluid increases the coupling between motions of the solid
and fluid components.

For a water filled silica sand model, the phase velocity and
attenuation of the 1st P wave is larger than values calculated for the air
filled model. The phase of the 1lst S wave decreased and its
attenuation is increased for the water filled model. This is due to the
increased coupling between component material due to the increase
in viscosity. It appears that thermo-mechanical coupling can be
neglected for a water or air filled silica sand.

The phase velocity and attenuation of a wave propagating in a
bitumen filled silica sand are significantly different than is predicted
for an elastic solid or a water filled silica sand. The phase velocity of
the 1st P wave is usually less; however, the greatest difference is in
the increase in attenuation of this wave. The 1st S wave has the same
phase velocity for both a bitumen filled silica sand and a water filled
silica sand however; the attenuation is about five times larger for the

bitumen case. More important is the effect of thermo-mechanical
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coupling for a bitumen filled silica sand. Although its effect on phase
velocity is minimal, it has been shown that within the seismic
frequency range it can increase the attenuation of the lst P wave by
five times the value calculated without thermal effects.

For the above cases, the phase velocities of the 1st S and 1st P
waves are frequency independent within the seismic frequency range.
The attenuation of the 1lst S and P waves is usually a non-linear
function of frequency and can be increased significantly by thermo-
mechanical coupling.

The de la Cruz-Spanos (1989a) theory supports the hypothesis that
the observed negative velocity gradients and high attenuation within
the LVZ are due to the presence of a partial melt. Also if the core-
mantle transition zone can be approximated by the given parameter
set, then increases in partial melt or fluid within a solid framework
can account for decreases in phase velocity and Q*. The phase velocity
of both P and S-waves appear to be frequency independent unlike Q*,
which will decrease with increases in frequency. Thermo-mechanical
coupling is an important process and should be considered when
seismic observations are used to investigate this region. The actual
magnitudes of the observed (PREM) and calculated phase velocity and
Q@* differ. These differences are most likely due to the uncertainty of
the physical parameters of the models and could be eliminated by
varying the physical parameters of the component materials to obtain a
best fit. However, the frequency dependence of Q* would probably
remain. A vast number of high pressure experiments are being
conducted on materials of compositions and at temperatures and
pressures believed to be indicative of particular locations within the

Earth. If one can adapt these experiments to measure the physical
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properties of the constituent materials, then the de la Cruz-Spanos
(1989a) theory could be used to calculated phase velocities and

attenuation of waves propagating within these zones.
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