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Abstract

With the dramatically rising traffic congestion issue, people are suffering the

loss of working hours, increase in traffic accidents and pollution around the

world. In Canada, drivers in the major cities were estimated to lose over 50

working hours per year in congestion during 2022, and in the US, it has cost

more than 300 billion for the government to tackle the congestion issue. In

recent decades, the unprecedented development in connected and automated

vehicles (CAVs), coupled with the advancement of 5G and mobile edge com-

puting (MEC), has brought profound changes to deal with the traffic conges-

tion challenges. By enabling timely data exchange between vehicles and in-

frastructures, CAVs provide new possibilities for better demand management,

more efficient and practical real-time traffic control.

In light of the anticipated emergence of CAVs, the research in this dis-

sertation aims to improve the traffic system by developing intelligent traffic

control strategies, real-time vehicle guidance, and appropriate demand man-

agement measures. The overarching goal is to enhance traffic efficiency to

reduce congestion and improve traffic mobility, especially for the urban arteri-

als considering the existence of traffic signals. To achieve this goal, the whole

research is structured into four key components:

The first part focuses on developing a joint dynamic route guidance and

signal control (DRG-SC) model for urban arterial traffic networks, which serves

as a robust linkage that effectively connects demand modeling with traffic

control. In this model, the real-time location and velocity data of CAVs as
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well as the signal timing plan of intersections will be utilized to capture the

interaction between signal control and vehicle routing. The vehicle routing

plan will be optimized by considering the signal delays at each intersection,

and the signal timing plans will be updated based on the real-time traffic

volume resulting from routing. The joint model utilizes a closed-loop control

framework, which is more effective than open-loop control and can significantly

reduce travel time.

As a continuation of the first part of the research and considering that gen-

erating solutions from such a centralized model is computationally intensive,

the second part of the research presented a distributed dynamic route guid-

ance algorithm that utilizes local intersections’ information only but generates

globally optimized results for the whole traffic network with the support of

the MEC technology. The algorithm is derived from the backpressure routing

control and the result suggested that the control effectiveness was much better

than the dynamic shortest path (DSP) while close to the dynamic system op-

timal (DSO) traffic assignment. More importantly, the algorithm was verified

to be effective in reducing communication and computation cost.

In the third part, grounded on the prior research of traffic demand modeling

in the first part, two strategies were proposed to better manage the CAV

dedicated lane (CAV-DL) in a mixed traffic environment to improve capacity

utilization. The CAV-DL is designed to physically separate the CAVs and

Human Driving Vehicles (HDVs) to maximize the benefit of CAVs. However,

the CAV-DL may be underutilized especially when the penetration rate of

CAVs is low. To address this issue, in the first strategy, a dynamic right-of-

way allocation method is adopted to allow HDVs to use the CAV-DLs when

the lanes are relatively vacant. The second strategy designs tolling policies

based on economic theory to explore the best demand distribution and further

balance the travel time on the general lanes and CAV-DLs. Both methods
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were proven to be effective in better-utilizing road capacity and improving

traffic mobility.

The last part of the research focused on using CAV technology to promote

electric vehicles (EVs), and a traffic environment with connected and auto-

mated electric vehicles (CAEVs) is assumed. In alignment with dual-carbon

policies, encompassing carbon neutrality and carbon peaking, the promotion

of EVs stands out as a prominent and transformative trend in the future of

transportation. Following the similar closed-loop control logic developed in

the first part, the work in this part tries to reach a trade-off between the

energy consumption and the total travel time of CAEVs. By simultaneously

optimizing the trajectory of the vehicles as well as the signal timing plans, the

result effectively shows how CAV technology can help improve the travel and

energy efficiency of EVs.

Overall, the research presented in the dissertation covers real-time traf-

fic control and urban arterial demand management in the CAV environment.

The models and algorithms presented herein can effectively improve traffic

efficiency. The results in this dissertation contribute to the CAV-related stud-

ies methodologically which provide insights into realizing a sustainable and

efficient traffic system in the near future.

iv



Preface

All the contents (except Introduction, Literature Review, and Conclusion

Chapters) presented in the dissertation have been published or accepted in

peer-reviewed journals or presented at conferences in the areas of transporta-

tion engineering. The list of published, accepted, or presented articles related

to the dissertation is as follows:

1. Refereed journal papers

• H. Chen and T. Qiu*: Distributed Dynamic Route Guidance and Signal

Control for Mobile Edge Computing-Enhanced Connected Vehicle En-

vironment, IEEE Transactions on Intelligent Transportation Systems,

vol. 23, no. 8, pp. 12251-12262, Aug. 2022, doi: 10.1109/TITS.202

1.3111855.

• H. Chen, F. Wu, K. Hou, and T. Qiu*: Backpressure-Based Distributed

Dynamic Route Control for Connected and Automated Vehicles, IEEE

Transactions on Intelligent Transportation Systems, vol. 23, no. 11, pp.

20953-20964, Nov. 2022, doi: 10.1109/TITS.2022.3170788.

• H. Chen, F. Wu, K. Hou, and T. Qiu*: Leveraging Dynamic Right-of-

Way Allocation and Tolling Policy for CAV Dedicated Lane Management

to Promote CAV and Improve Mobility, IEEE Transactions on Intelli-

gent Transportation Systems, doi: 10.1109/TITS.2023.3347392 (Early

Access).

• H. Chen, F. Wu, and T. Qiu*: Achieving Energy-Efficient and Travel

Time-Optimized Trajectory and Signal Control for Future CAEVs, IEEE

v



Transactions on Intelligent Transportation Systems (Accepted and in

publication).

2. Refereed conference papers

• H. Chen and T. Qiu*: Distributed Joint Dynamic Route Guidance and

Signal Control for Mobile Edge Computing-Enhanced Connected Vehicle

Environment. The Transportation Research Board (TRB) 100th Annual

Meeting, 2021.

• H. Chen, F. Wu, K. Hou, and T. Qiu*: A Distributed Backpressure-

based Dynamic Route Control Method for Connected and Autonomous

Vehicles. The Transportation Research Board (TRB) 101th Annual

Meeting, 2022.

vi



Acknowledgements

I would like to thank all those who have offered me patient, enthusiastic, and

selfless support throughout my Ph.D. journey.

Firstly, I would like to express my profound gratitude to my supervisor,

Prof. Tony Qiu, for his invaluable guidance and unwavering support. Prof.

Qiu’s passion for exploring new ideas and rigorous attitude to research have

inspired me a lot. His expertise and dedication have consistently pushed me

to strive for excellence in my work. I am truly fortunate to have had the

opportunity to learn from him and be guided by his wisdom and patience.

I would also like to extend my heartfelt appreciation to Dr. Tae J. Kown,

Dr. Stephen Wong, and Dr. Amy Kim for their invaluable contributions

as members of my supervisory committee. Their professional expertise and

insightful suggestions have played a pivotal role in shaping the development

of my dissertation. Thanks Dr. Jinfeng Liu, Dr. Ehsan Hashemi, Dr. Tae J.

Kwon, and Dr. Stephen Wong for participating in my candidacy exam, and

Dr. Jing (Peter) Jin, Dr. Randy Goebel, Dr. Tae J. Kown, and Dr. Stephen

Wong being my defense examiners. Their meticulous review of my thesis

and thoughtful feedback have been instrumental in enhancing the quality and

depth of my research.

My sincere thanks also go to all the group members in the Centre for

Smart Transportation and the friends I have met in class: Siqi Yan, Gary

Zhang, Haibo Cui, Lucas and Mohammed Ahmed. Particularly thanks go to

Fan Wu, Kaizhe Hou, Dr. Can Zhang, and Shuoyan Xu for their exceptional

support and friendship. Their insightful discussions, and willingness to help

have made my Ph.D. journey truly remarkable and colorful. Thanks Nicole

Aubin, Dr. Sharon Harper, and Danielle Upshall for their support in enhancing

vii



the writing quality of my research articles.

Lastly, I would like to express my deepest and sincerest gratitude to my

parents, my younger brother and my beloved husband, Cheng Xue. I am truly

fortunate to have such incredible individuals in my life, who have stood by my

side, providing unwavering support, and reminding me of my strength and re-

silience. Their unconditional love and encouragement have been instrumental

in shaping my journey, and I am forever grateful for their presence in my life.

viii



Contents

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Related Technologies . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Connected and Automated Vehicle (CAV) . . . . . . . 2
1.2.2 Mobile Edge Computing (MEC) . . . . . . . . . . . . . 4
1.2.3 Electric Vehicles (EVs) . . . . . . . . . . . . . . . . . . 6

1.3 Research Motivations . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Research Scopes . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.5 Research Objectives and Tasks . . . . . . . . . . . . . . . . . . 10
1.6 Dissertation Organization . . . . . . . . . . . . . . . . . . . . 13
1.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Literature Review 16
2.1 Dynamic Route Control . . . . . . . . . . . . . . . . . . . . . 17
2.2 Dynamic Traffic Assignment . . . . . . . . . . . . . . . . . . . 19
2.3 Dynamic Routing Considering Signal Control . . . . . . . . . 20
2.4 Distributed Route Control . . . . . . . . . . . . . . . . . . . . 22
2.5 CAV Dedicated Lane Design and Management . . . . . . . . 24
2.6 Economic Measure-based Traffic Demand Management . . . . 26
2.7 Electric Vehicle Technology and Control . . . . . . . . . . . . 28
2.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 Joint Dynamic Route Guidance and Signal Control for CAVs 32
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2.1 Overall Framework and Data Flow . . . . . . . . . . . 36
3.2.2 Joint Dynamic Route Guidance and Signal Control For-

mulation . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2.3 Embedded Signal Control Strategy . . . . . . . . . . . 41
3.2.4 Algorithm Solving Procedure . . . . . . . . . . . . . . 43

3.3 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.3.1 Simulation Settings . . . . . . . . . . . . . . . . . . . . 45
3.3.2 Overall Control Performance . . . . . . . . . . . . . . . 47
3.3.3 Specific Signal Control Analysis . . . . . . . . . . . . . 49
3.3.4 Re-routing Analysis . . . . . . . . . . . . . . . . . . . . 50
3.3.5 Computation Time Analysis . . . . . . . . . . . . . . . 53

3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4 Distributed Back-Pressure Routing for CAVs 56
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2.1 Network Model . . . . . . . . . . . . . . . . . . . . . . 62

ix



4.2.2 Original Back-Pressure (OBP) Routing Algorithm . . . 62
4.2.3 Modified Back-Pressure Routing Algorithm (MBP) . . 63
4.2.4 Modified Back-Pressure Routing Algorithm with Con-

gestion Identification (MBP+CI) . . . . . . . . . . . . 64
4.2.5 Dynamic Shortest Path (DSP) and Dynamic System Op-

timal Assignment (DSO) . . . . . . . . . . . . . . . . 64
4.3 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.3.1 Testing Network . . . . . . . . . . . . . . . . . . . . . 66
4.3.2 Overall Performance . . . . . . . . . . . . . . . . . . . 67
4.3.3 MFD Analysis . . . . . . . . . . . . . . . . . . . . . . . 70
4.3.4 Queueing Analysis and Congestion Pattern Visualization 71
4.3.5 Sensitivity Analysis of Parameter α . . . . . . . . . . . 72
4.3.6 Communication and Computation Cost . . . . . . . . 74
4.3.7 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5 Leveraging Dynamic Right-of-Way Allocation and Tolling Pol-
icy for CAV Dedicated Lane Management 79
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.2.1 Problem Formulation . . . . . . . . . . . . . . . . . . . 83
5.2.2 Dynamic Right-of-way Allocation . . . . . . . . . . . . 86
5.2.3 Tolling . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.3 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.3.1 Simulation Design . . . . . . . . . . . . . . . . . . . . . 89
5.3.2 The Performance of Deploying CAV-DLs . . . . . . . . 91
5.3.3 CAV-DLs Utilization Rate Analysis . . . . . . . . . . . 93
5.3.4 Tolling Strategy Analysis . . . . . . . . . . . . . . . . . 94
5.3.5 Overall Performance of Different Control Methods . . . 97

5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6 Achieving Energy-Efficient and Travel Time-Optimized Tra-
jectory and Signal Control for Future CAEVs 100
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.2.1 Energy Consumption Estimation Model . . . . . . . . 110
6.2.2 Energy and Travel Time Optimization Model . . . . . 111
6.2.3 Simplified Trajectory Control . . . . . . . . . . . . . . 114
6.2.4 Signal Timing Control . . . . . . . . . . . . . . . . . . 117

6.3 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
6.3.1 Simulation Settings . . . . . . . . . . . . . . . . . . . . 118
6.3.2 Overall Performance Comparison . . . . . . . . . . . . 119
6.3.3 Number of Stops Analysis . . . . . . . . . . . . . . . . 121
6.3.4 Trajectory Analysis . . . . . . . . . . . . . . . . . . . . 122
6.3.5 Signal Timing Plans . . . . . . . . . . . . . . . . . . . 124
6.3.6 Capability for real-time application . . . . . . . . . . . 124

6.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

7 Conclusions and Future Extensions 128
7.1 Dissertation Contribution . . . . . . . . . . . . . . . . . . . . 130
7.2 Limitations and Future Extensions . . . . . . . . . . . . . . . 132

References 135

x



List of Tables

2.1 Well-known DTA-based studies . . . . . . . . . . . . . . . . . 20

3.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2 Problem solving procedure . . . . . . . . . . . . . . . . . . . . 44
3.3 Simulation settings . . . . . . . . . . . . . . . . . . . . . . . . 46
3.4 System TTT of different compliance rate . . . . . . . . . . . . 52
3.5 Computation time comparison of distributed and centralized

method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.6 Time cost for parallel computing in Python . . . . . . . . . . 54

4.1 Comparison of BP utilized in different applications . . . . . . 59
4.2 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.3 Procedure for the MBP+CI algorithm . . . . . . . . . . . . . 65
4.4 Performance of different control strategies . . . . . . . . . . . 69
4.5 Execution time of different algorithms . . . . . . . . . . . . . . 75

5.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.2 Simulation parameter settings . . . . . . . . . . . . . . . . . . 90
5.3 Average toll for HDVs traveling within the network. . . . . . . 97

6.1 Representative studies of signal control and trajectory optimiza-
tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.2 Summary of state-of-the-art energy consumption estimation mod-
els . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.3 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.4 Parameter explanation and value based on the 2011 Nissan Leaf 110
6.5 Performance indicators for different scenarios . . . . . . . . . . 120
6.6 Summary of state-of-the-art energy consumption estimation mod-

els . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

xi



List of Figures

1.1 SAE classification: Levels of automation [6] . . . . . . . . . . 3
1.2 Communication and computation framework in the CAV envi-

ronment (a) Cloud-based framework (b) MEC-based framework 4
1.3 Detailed illustration of CAV environment with MEC . . . . . 5
1.4 Interconnectedness of the tasks in the dissertation . . . . . . 12
1.5 Overview of the research structure in the dissertation . . . . . 14

2.1 Illustration of CAV dedicated lane . . . . . . . . . . . . . . . . 25

3.1 (a) 2 by 2 Road network (b) Space-time diagram illustrating
different route strategies . . . . . . . . . . . . . . . . . . . . . 33

3.2 Data communication, processing, and computing procedure for
DRG-SC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3 Quadratic fitting of derivative for link marginal time . . . . . . 41
3.4 A four-phase diagram. . . . . . . . . . . . . . . . . . . . . . . 42
3.5 Simulation network. . . . . . . . . . . . . . . . . . . . . . . . . 45
3.6 Demand loading profile (a) Loading uniformly (b) Loading with

a peak period. . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.7 Performance of different control strategies: (a) Average depar-

ture delay (b)Average travel speed (c) Average waiting time
(d)Average travel time . . . . . . . . . . . . . . . . . . . . . . 47

3.8 Number of vehicles on lanes: (a) FSC-only in peak600 (b) FSC-
only in peak2400 (c) FSC-only in peak5400 (d) ASC in peak600
(e) ASC in peak2400 (f) ASC in peak5400 . . . . . . . . . . . 49

3.9 Trajectories on one congested lane as an example: (a)FSC case
(b)ASC case . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.10 (a) Distribution of re-routing frequency under SO-ASC (b) Av-
erage travel length comparison of UO-ASC and SO-ASC . . . 51

4.1 Testing network 1 and demand profile . . . . . . . . . . . . . . 66
4.2 Testing network 2-Edmonton downtown area . . . . . . . . . . 68
4.3 Relationship between network production and accumulation . 70
4.4 Vehicle queueing for different demand levels and congestion

heatmap under different control . . . . . . . . . . . . . . . . . 72
4.5 Average travel time with different values (a) Demand level 1-

600 Vehicles (b) Demand level 2-2,400 Vehicles (c) Demand level
3-5,400 Vehicles . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.6 Time cost comparison of different DRC strategies to be applied
in a real CAV environment . . . . . . . . . . . . . . . . . . . . 76

xii



5.1 Fundamental diagram in a mixed traffic environment under dif-
ferent PR cases (**Parameter settings: Free flow speed is 14
m/s, vehicle length is 5 meters, reaction time of CAVs and
HDVs are 0.5s and 1.0s respectively). . . . . . . . . . . . . . 80

5.2 Testing network and intersection layout. . . . . . . . . . . . . 90
5.3 Examples of the turning movement data (a)Peak hour and (b)non-

peak hour. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.4 ATT of the network with and without CAV-DLs (a) ATT of

CAVs and HDVs separately in non-peak hour (b) ATT of CAVs
and HDVs separately in peak hour (c) ATT of all vehicles . . 92

5.5 Example of traffic flow prediction (a)Traffic flow value (b)Relative
errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.6 Effective green utilization rate (a)0.2 PR (b) 0.4 PR (c)0.6 PR
(d) 0.8 PR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.7 ATT and travel time difference on CAV-DL and GL (a) Peak
hour (b) non-peak hour . . . . . . . . . . . . . . . . . . . . . . 95

5.8 Example of toll rate distribution in different PR cases (a)Peak
hour (b)Non-peak hour . . . . . . . . . . . . . . . . . . . . . 96

5.9 Performance comparison of different strategies (a) Non-peak
hour (b) Peak hour . . . . . . . . . . . . . . . . . . . . . . . . 98

6.1 Vehicle energy economy at different speeds ([207]). . . . . . . . 101
6.2 Space-time diagram. (a) The trajectory of HDEVs (b) Smoothed

trajectory of CAEVs. . . . . . . . . . . . . . . . . . . . . . . . 112
6.3 Illustration on trajectory control (a)Arrive on red (b)Arrive on

green. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
6.4 The closed-loop trajectory and signal control framework . . . 117
6.5 Testing corridor: Jasper Avenue. . . . . . . . . . . . . . . . . 118
6.6 TTT and AEC comparison in different scenarios (a)Peak hour

(b)Non-peak hour. . . . . . . . . . . . . . . . . . . . . . . . . 121
6.7 Number of stops in different scenarios (a)Peak-HDEVs (b)Peak-

CAEVs-SC (c)Peak CAEVs SC-TC (d)Non-peak-HDEVs (e)Non-
peak-CAEVs-SC (f)Non-peak-CAEVs-SC-TC. . . . . . . . . . 122

6.8 Eastbound vehicle trajectories in different scenarios (a)HDEVs
(b)CAEVs-SC (c)CAEVs-SC-TC (d)Zoomed-in trajectories for
comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6.9 Signal timing plans in different scenarios. . . . . . . . . . . . . 124

7.1 Recap of the core chapters in this dissertation. . . . . . . . . . 129

xiii



List of Abbreviations

ACC Adaptive Cruise Control

ADD Average Departure Delay

ADAS Advanced Driver Assistance Systems

AEC Average Energy Consumption

AET Algorithm Execution Time

ALT Average Travel Length

API Application Programming Interface

AS Average Speed

ASC Adaptive Signal Control

ATT Average Travel Time

AWT Average Waiting Time

BP BackPressure

BPR The Bureau of Public Roads function

BSM Basic Safety Message

CACC Cooperative Adaptive Cruise Control

CAEVs Connected Automated Electric Vehicles

CAEV SC Connected Automated Electric Vehicle with Signal Con-
trol

CAEV SC TC Connected Automated Electric Vehicle with Signal Con-
trol and Trajectory Control

CAV Connected Automated Vehicle

CAV-DL CAV-Dedicated Lane

CCT Centralized Computation Time

CEVs Connected Electric Vehicles

C-V2X Cellular Vehicle-to-everything

xiv



CSUT Connection Set Up Time

CTM Cell Transmission Model

DCT Distributed Computation Time

DRC Dynamic Route Control

DRG Dynamic Route Guidance

DUE Dynamic User Equilibrium

DSRC Dedicated Short-Range Communication

DSP Dynamic Shortest Path

DSO Dynamic System Optimal

DTA Dynamic Traffic Assignment

EV Electric Vehicle

EPA Environmental Protection Agency

ETSI European Telecommunications Standards Institute

FSC Fixed Signal Control

GHG Green House Gas

GLs General Lanes

GSM Golden Search Method

HDEVs Human Driving Electric Vehicles

HDV Human Driving Vehicle

HOT High Occupancy Toll

HOV High Occupancy Vehicle

IBL Intermittent Bus Lane

IDTT Input Data Transmission Time

I2I Infrastructure to Infrastructure

LTE Long-Term Evolution

MBP Modified BackPressure

MBP+CI Modified BackPressure with Congestion Identification

MEC Mobile Edge Computing

MFD Macroscopic Fundamental Diagram

MILP Mixed-Integer Linear Programming

xv



NEMA National Electrical Manufacturers Association

OBU On-Board Unit

OBP Original BackPressure

OD Origin and Destination

ODTT Output Data Transmission Time

PEV Plug-in Electric Vehicle

PR Penetration Rate

PQ Point Queue

RRI Road Risk Index

RSU Road-Side Unit

SAE Society of Automobile Engineers

SNMS Sensor Network with Mobile Stations

SPaT Signal Phase, and Timing data

SOC State of Charge

SQ Spatial Queue

SUMO Simulation of Urban Mobility

TEC Total Energy Consumption

TMC Traffic Management Center

TTT Total Travel Time

TOP Time for Other Process

TVN Total Vehicle Number

VANET Vehicular Ad hoc NETwork

VSP Vehicle Specific Power

V2C2V Vehicle to Cloud to Vehicle

V2V Vehicle to Vehicle

V2I Vehicle to Infrastructure

VT-CPEM The Virginia Tech Comprehensive Power-based EV En-
ergy Consumption Model

VT-CPPM The Virginia Tech Comprehensive Power-based PHEV
Model

3GPP The 3rd Generation Partnership Project

xvi



Chapter 1

Introduction

1.1 Background

As early as 2009, IBM launched the “IBM Smarter Cities Challenge” to pro-

mote economic growth, social harmony, and sustainable development for urban

cities. The goal is to provide a more convenient, efficient, and flexible lifestyle

for citizens to save money and resources [1]. Nowadays, with the population

explosion, urban areas all over the world have suffered severe traffic congestion

which has given rise to the number of accidents, traveling costs on the road,

and pollution. The United States Environmental Protection Agency (EPA)

reports that transportation-related greenhouse gas (GHG) emissions currently

contribute to approximately 27% of total U.S. GHG emissions, with estimates

projecting a rise to 37% by 2035, making it the largest contributor to GHG

emissions [2]. In Canada, the severity of congestion is also notable, leading to

an estimated loss of 54 working hours per year for drivers in the major cities

(INRIX 2022 Global Traffic Scorecard). These hours, which could be spent

productively, are instead wasted in gridlock, affecting productivity, work-life

balance, and overall quality of life.

As an essential component within the framework of a smart city, smart

traffic is dedicated to enhancing the quality of people’s daily commutes by mit-

igating congestion, prioritizing safety, and addressing environmental concerns.

Over the past few decades, the remarkable advancements in internet technol-

ogy and data science have ushered in profound transformations in the auto-

motive industry. The emergence of connected and automated vehicle (CAV),
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electric vehicle (EV), as well as the rapid progress in mobile edge computing

(MEC) has unlocked the potential to realize the vision of smart traffic.

The pivotal challenge for the next generation of intelligent transportation

systems lies in seamlessly integrating these innovative technologies into con-

ventional transportation networks and assessing the resulting shifts in traffic

patterns and behaviors. Embracing innovative technologies holds the promise

of significant advancements, but their true potential can only be harnessed

through astute integration. Achieving sustainable growth relies on the strate-

gic fusion of these technologies. By designing and implementing more effective

demand management and control strategies, the benefits of these new tech-

nologies can be maximized, reduce congestion-related costs, and ultimately

contribute to a more prosperous and sustainable urban landscape.

1.2 Related Technologies

1.2.1 Connected and Automated Vehicle (CAV)

CAVs have been developing rapidly due to the advancements in manufacturing

and information technologies [3]. Perception, communication, and computa-

tion are the three basic functions that make CAVs promising in shaping the

future of travel.

In 2011, the Dedicated Short-Range Communication (DSRC) was announced

by the US Department of Transportation (US DOT) to support the CAV com-

munications. However, the low scalability is the main drawback of DSRC

where the protocol is unable to provide the necessary time-probabilistic char-

acteristics in dense traffic [4]. Moreover, the transmission distance of DSRC

is relatively short and the signal is easy to be blocked by the buildings or

surrounding objects.

In addition to DSRC, the Long-Term Evolution (LTE)-based technology

is another promising communication solution, which can provide both low

latency and high throughputs. The cellular vehicle-to-everything (i.e., C-V2X)

concept was introduced by the 3rd Generation Partnership Project (3GPP) in

LTE since Release 14 [5]. The C-V2X technology empowered by 5G makes
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the real-time information exchange between vehicle to vehicle (V2V), vehicle

to infrastructure (V2I), infrastructure to infrastructure (I2I), or any other

communicating entities more rapid and effective.

Figure 1.1: SAE classification: Levels of automation [6]

According to the SAE international classification of CAVs [6], there are six

levels of automation. The highest level of CAVs can even operate and interact

with traffic dynamically with little or no driver intervention or attentiveness

[7]. Basic Advanced Driver Assistance Systems (ADAS) at Level 0 are com-

monplace in most modern vehicles. Contemporary vehicles are now equipped

with a minimum of one Level 1 ADAS. Moving up the autonomy scale, Level 2

automated features have become commercially available in a variety of vehicles,

including those manufactured by Audi, Tesla, GM (Cadillac), Lexus, Porsche,

Daimler, BMW, and Volvo. Technically feasible Level 3 automated vehicles

are also ready for deployment, pending commercialization while aligning with

legislative requirements [8]. On the frontier of CAV development, the exper-

imental programs for Levels 4 and 5 autonomy are experiencing tremendous

growth, with commercial deployment becoming increasingly feasible from a

technological standpoint [9]. Waymo, a leading driverless vehicle development

company, has successfully introduced Level 4 self-driving taxis onto public

roads. Notably, this company conducted extensive testing of its automated

taxis in Arizona, covering over a year and surpassing 10 million miles. The

features of these driverless taxis include the ability to safely bring the vehicle

3



to a stop in the event of system failures, enhancing the overall safety and re-

liability of CAVs. The features of the future CAVs will enable them to have

great potential in reducing traffic accidents, improving safety, and mitigating

traffic congestion.

1.2.2 Mobile Edge Computing (MEC)

On the other hand, the breakthrough in MEC development creates the capabil-

ity of placing data storage and computation sources at the network edge, which

greatly reduces end-to-end delay [10]. Fig.1.2 compares the conventional cloud-

Figure 1.2: Communication and computation framework in the CAV environment (a) Cloud-
based framework (b) MEC-based framework

based (Fig.1.2 [a]) and the emerging MEC-based (Fig.1.2 [b]) data-processing

and control framework. In the cloud-based framework, data from CAVs was

sent directly to the remote Traffic Management Center (TMC), and the cloud

service at the TMC will aggregate data, solve the corresponding control prob-

lems, and forward the instructions back to vehicles. The cloud-based paradigm

provides global optimal solutions and is more suitable for complex centralized
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control which does not require a prompt response. On the contrary, in the

MEC-based framework, part of the cloud service was moved to the network

edge next to vehicles. Although not as powerful as it is in the TMC, the ser-

vice at the MEC can also handle large amounts of data, execute optimization

algorithms, and help CAVs make decisions. Due to the short communication

distance, the timely solution from the MEC can be better applied to real-

time cases that have strict requirements for response time. In addition, the

MEC-based framework is flexibly scalable to support distributed control.

The detailed MEC-enabled CAV environment is drawn in Fig.1.3 which can

be generally divided into three layers: vehicles as the user layer, infrastructures

as the MEC layer, and the TMC as the cloud layer [11]. The V2V, V2I, and I2I

Figure 1.3: Detailed illustration of CAV environment with MEC

wireless communication technology as well as some fiber connections enable

the three layers to “talk” with each other. The computational capability of

vehicles is allowed by the On-Board Unit (OBU) to tackle some simple tasks.

As for the MEC layer, the Road-side Unit (RSU) which is distributed along

the road can act as the edge server. In addition, the edge server can also be

formed by a certain demand of computation resources aggregated in a regional

computer lab. Nevertheless, no matter which kind of strategies are utilized to

deploy the edge servers, they are located close to vehicles. The information
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from the vehicles or the edge servers can also be uploaded to the cloud layer.

Accordingly, taking advantage of the three layers, diverse use cases are properly

sustained in the MEC-enabled CAV environment, contributing significantly to

the enhancement of CAV technology.

1.2.3 Electric Vehicles (EVs)

EVs are vehicles powered by batteries with zero operational emissions, con-

tributing to a cleaner and greener transportation system. In recent decades,

mounting concerns about the environmental repercussions of gasoline-powered

vehicles and the rising cost of oil have ignited interest in EVs [12]. Beyond

their environmental advantages, EVs can also result in substantial driving cost

savings for individuals. According to a 2020 Consumer Report [13], EVs can

help save about 60% each year on fuel costs compared to gasoline-powered

vehicles.

Due to the benefits of EVs, many countries have drawn ambitious roadmaps

to promote their adoption. Such as Sweden, China, and in particular, Norway.

In 2021, 65% of the new private cars in Norway were EVs and this number

has grown at an average annual rate of more than 60%, which is one of the

fastest transition regions in the world [14]. The EV market has displayed con-

tinuous growth and is projected to maintain its rapid momentum throughout

the upcoming decade.

While EVs may offer lower operational costs over time due to reduced

maintenance and energy costs, the initial purchase price can be a significant

deterrent for many consumers. Efforts to address this concern involve advance-

ments in battery technology to reduce manufacturing costs and government

incentives that aim to make EVs more financially appealing to consumers.

Additionally, range anxiety and charge anxiety are also two main issues that

hinder widespread EV adoption.

The current body of literature on EVs reflects a comprehensive exploration

of various facets within the realm of electric mobility. Researchers have delved

into diverse aspects, including charging infrastructure design, innovations in

fast charging technologies, and the formulation of algorithms focused on min-
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imizing energy consumption during EV operation. These studies collectively

contribute to the understanding and advancement of electric mobility, address-

ing key challenges and paving the way for a more sustainable transportation

future.

However, the transformative potential of CAV technology on EVs also re-

mains an area ripe for deeper investigation and exploration. The integration of

CAVs has the potential to shape the way people perceive and utilize EVs. The

combined CAV technology creates possibilities to optimize energy consump-

tion, enhance charging efficiency, and contribute to the overall integration of

electric mobility into smart and connected transportation ecosystems.

1.3 Research Motivations

Amid the swift and relentless progress of these technologies, dedicated re-

searchers and specialists have embarked on harnessing their benefits to create

a greener and more efficient traffic ecosystem. This endeavor has led to the

creation of an array of innovative traffic control methodologies, such as dy-

namic route control (DRC), adaptive cruise control (ACC), and adaptive signal

control (ASC). Simultaneously, in the pursuit of propelling greener and more

intelligent transportation, profound examinations into traffic management tac-

tics and concomitant policies have taken center stage, all aimed at fostering

the integration of CAVs to improve traffic efficiency. In the exploration of this

area, there remain several unresolved issues and challenges, which are outlined

below:

1) Limited data source for describing the traffic dynamics: Before

the emergence of CAV technologies, the bedrock of traffic management and

control relied heavily on data obtained from loop detectors and video cameras.

However, these data sources suffered from a limited refresh rate, impeding the

precise real-time tracking of vehicle locations. Despite ongoing endeavors to

develop algorithms tailored to CAVs, the input data driving these algorithms

still hinges on static information. Therefore, the resultant control strategies

find themselves ill-equipped to flexibly accommodate the ever-evolving traffic
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dynamics.

2) Overlook on the interaction between traffic control and de-

mand management: As vehicles navigate arterial roads, the predominant

component of their waiting time stems from the delays incurred while idling

at red signals. These delays invariably contribute to the overall travel cost

within vehicle routing. Additionally, the chosen route of vehicles significantly

shapes the distribution of demand across the network, thereby exerting a piv-

otal influence on the parameters driving signal control inputs. Regrettably,

the critical interplay between signal control dynamics and vehicle routing con-

siderations has largely been overlooked in conventional routing strategies and

signal timing plans.

3) Selfish driving behavior hinders the achievement of system

optimal (SO) state: Commonplace strategies employed by popular route

planning software, such as Google Maps and Waze, deliver navigation services

that primarily adhere to the user-equilibrium (UE) principle, neglecting the in-

tricate interactions with fellow vehicles. This method often leads to a scenario

where vehicles sharing identical origins and destinations (OD) are consistently

directed onto the same shortest route. Unfortunately, within road networks

grappling with elevated demand levels, this approach can inadvertently gen-

erate an imbalanced demand distribution across the network, thereby causing

emergent congestion hotspots.

4) High computation and communication cost for obtaining so-

lutions from the centralized model: The DRC problem for a large-scale

traffic network is usually formulated as complex non-linear programming mod-

els that are cost-intensive to solve. Further amplifying the complexity, these

models require access to traffic information of the entire network—the data

across all network links need to be continually updated to the processing cen-

ter. This data, hailing from both vehicle sources and intersections, necessitates

transmission to the TMC for processing. Regrettably, this mode of data pro-

cessing and computation is ensnared in substantial communication latency,

primarily because the TMC is often geographically distant from the vehicles.

However, the CAV combined with MEC technology provides potential new
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ideas for solving this issue by generating distributed solutions.

5) Low capacity utilization rate of CAV dedicated lanes (CAV-

DLs) in a mixed traffic environment: In the early stages of implement-

ing CAV technology, there should be a mixed traffic environment with both

CAVs and HDVs for a long time. To make CAVs not impacted by the HDVs,

the CAV-DLs were proposed to be deployed to physically separate CAVs and

HDVs. However, in scenarios where the prevalence of CAVs remains modest,

the optimal utilization of CAV-DLs could falter, potentially resulting in un-

derutilized lanes and an inefficient allocation of road capacity. This particular

challenge underscores the need to formulate strategies that can enhance the

effective deployment and management of CAV-DLs, particularly in contexts

where CAV penetration remains relatively low.

6) The trade-off between energy consumption and total travel

times of EVs: While EVs boast zero emissions, it is important to note that

their energy consumption tends to rise as average speeds increase. Conse-

quently, attempts to reduce energy consumption may inadvertently result in

reduced speed and longer travel time. Balancing the competing objectives

of reducing energy consumption and travel time has been a topic that has re-

ceived limited attention in existing studies. However, a ray of promise emerges

in the form of CAVs, poised to bridge this gap. By enabling communication,

the trajectory of the EVs can be controlled based on the most updated traffic

information to avoid stops and reduce both energy and travel time.

1.4 Research Scopes

To address the issues mentioned above, the dissertation will specifically ex-

plore the traffic demand management and control problems with CAVs in an

urban arterial network, including the DRC, ASC, trajectory control, flow, and

capacity management. The research scopes are listed below:

1) This research focuses on urban arterials, taking into account the pres-

ence of intersections and the impact of signal timing control strategies. Traffic

signals play a pivotal role in urban traffic systems, and their effective design
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can significantly enhance traffic flow and mobility. Since the research specifi-

cally concentrates on urban arterials, it may not capture the full complexity of

traffic dynamics in other types of roadways (e.g., local roads, and freeways).

2) The whole study models the macroscopic-level traffic behavior with

simplified microscopic-level driving dynamics. In our traffic flow model, vehi-

cles are considered homogeneous, with no intricate descriptions of their driving

characteristics. This approach treats all vehicles equally when conducting net-

work modeling, and it might overlook crucial individual vehicle characteristics

and behaviors.

3) The primary objective of this dissertation is to enhance traffic effi-

ciency, and improve traffic mobility. The investigation of traffic safety falls

outside its scope. Consequently, safety-focused strategies have not been in-

cluded in the dissertation. In the real-world deployment of CAVs, safety issues

should be incorporated.

4) This dissertation relies on simulation techniques rather than real-

world field testing. Analyzing traffic behavior with CAVs in actual traffic

conditions poses significant complexities and inefficiencies. Additionally, the

limited availability of a sufficient number of CAVs hinders the feasibility of

real-world verification. It is essential to have such testing to ensure the perfor-

mance of the proposed methods when the real-world CAV testing environment

becomes available.

5) The information provided by CAVs was assumed to be accurate. The

potential challenges in communication systems were not considered, such as

packet loss or communication interference. Instances where CAVs may not

establish reliable connections with each other should be included in future

research.

1.5 Research Objectives and Tasks

Within the research scope, the overall objective of this research is to improve

traffic efficiency through traffic control and demand management by leveraging

the benefits of CAV technology. The specific objectives are listed below:
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1) Describe the traffic dynamics in a CAV environment: Character-

ize the intricate traffic dynamics while formulating the DRC model, leveraging

the wealth of real-time, high-resolution, and spatial-temporal data readily ac-

cessible within the CAV environment (e.g., Basic Safety Message [BSM], Signal

Phase, and Timing data [SPaT]).

2) Capture the interaction between demand management and

traffic control: Introduce a novel, integrated framework that melds the do-

mains of joint demand modeling and traffic control specifically tailored for

CAVs. Central to this model is its ability to capture the intricate interplay

between signal control dynamics and vehicle routing decisions. The model

should include real-time delay caused by signal control when computing the

link cost and aggregate vehicles’ routing plan to obtain the dynamic demand

for adaptive signal control.

3) Achieve a system optimal traffic state: Investigate the dynamic

system optimal (DSO) assignment apart from the dynamic user equilibrium

(DUE) assignment and address the system performance besides the individual

vehicles’ benefit.

4) Reduce communication and computation cost: Develop a dis-

tributed routing strategy that only relies on local intersections’ information

and can be directly deployed to the MEC-enabled CAVs. The strategy should

be effective in communication and computation, and the control performance

is supposed to be as good as global optimization.

5) Improve capacity utilization in a mixed traffic environment:

Propose appropriate CAV-DL management strategies to improve the utiliza-

tion rate of the road capacity in a mixed traffic environment, and promote

CAVs, especially when the penetration rate of CAVs is low.

6) Explore the benefits of CAVs on EVs: Investigate if CAV tech-

nology can help EVs balance the energy consumption and total travel time.

Develop trajectory and signal control strategy to save both energy and travel

time.

To attain the objectives mentioned above, four key tasks were determined:

Task 1: Model the connections between demand management and traffic
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Figure 1.4: Interconnectedness of the tasks in the dissertation

12



control by proposing a joint route control and signal optimization model.

Task 2: Develop a distributed route control algorithm to address the issue

of high computation cost in task 1.

Task 3: Propose demand management methods for CAV-DL management,

and improve the utilization rate of road capacity from both technique and

policy point of view.

Task 4: Leveraging the capability of CAVs to realize a compromise of

energy consumption and total travel time for EVs.

The interconnection of the four tasks is visually depicted in Fig. 1.4, where

subtasks within each primary task are elucidated, showcasing their intricate

relationships. The closed-loop framework, initially established in Task 1, ex-

tends its relevance to Task 4, ensuring a consistent and coherent approach.

Additionally, Task 2 serves as a natural extension of Task 1, introducing a dis-

tributed architectural perspective for the centralized model outlined in Task 1.

As for the demand modeling introduced in Task 1, it finds practical application

in Task 3, where it underpins demand management strategies. In summary,

the essence of this dissertation revolves around the creation of models and

algorithms, all directed toward the overarching goal of enhancing urban traffic

efficiency.

1.6 Dissertation Organization

The dissertation encompasses a total of seven chapters, and Fig. 1.5 provides

an overview of the whole thesis structure. Chapter 1 introduces the back-

ground and research motivations by summarizing the challenges and opportu-

nities. This chapter also outlines the research scope and objectives. Following

that, Chapter 2 provides a comprehensive literature review of related work

pinpointing and summarizing the existing research lacunae. Chapters 3 and 4

are both for DRC problems of CAVs, where Chapter 3 introduces joint DRC

and signal control algorithms, followed by Chapter 4’s concentrated emphasis

on the architecture of distributed routing strategies. The vital role of 5G and

MEC is elaborated. Chapter 5 delineates strategies governing the manage-
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Figure 1.5: Overview of the research structure in the dissertation

ment of CAV-DLs, casting light on tolling policies as a pivotal component.

Chapter 6 investigates the energy consumption problem of EVs and gives the

approach of balancing energy consumption and total travel time by leverag-

ing CAV technology. The limitations of this research and the future work are

discussed in Chapter 7.

1.7 Conclusions

This chapter initiates the research by outlining the research background, mo-

tivations, scopes, objectives, and essential concepts to assist in traversing

through this dissertation. The challenges and remaining issues in related re-
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search fields were briefly summarized which helped to set up the research

goals. In essence, this chapter functions as a linchpin, seamlessly bridging

the introductory concepts with the forthcoming comprehensive elucidation of

methodologies. As we delve deeper into the subsequent chapters, this connec-

tion ensures a coherent narrative flow, allowing for a smooth transition from

conceptual groundwork to the practical intricacies that lie ahead.
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Chapter 2

Literature Review

This chapter summarizes the existing research relevant to traffic management

and control. By undertaking a comprehensive exploration of theories and em-

pirical findings, this literature review illuminates the current state of knowl-

edge in this dynamic field. The chapter not only synthesizes existing research

but also identifies gaps, trends, and potential areas for further investigation,

thereby establishing the foundation for the subsequent analyses and discus-

sions.

The chapter commences with the DRC problem, subsequently investigating

the Dynamic Traffic Assignment (DTA) models—an instrumental framework

underpinning solutions to the DRC problem. This segues into an exposition

on studies encompassing the intersection of dynamic routing and signal con-

trol, exploring analyses within both conventional vehicle and CAV contexts.

Following that, a comprehensive synthesis of research centered on the explo-

ration of distributed routing strategies is presented. Upon completing the

introduction of DRC-related studies, attention shifts to the context of CAV-

DL management in the mixed traffic environment. Additionally, the chapter

expounds upon economic measures for traffic demand management, such as

tolling. Subsequently, the focus broadens to research related to EVs with clar-

ifying the control algorithms related (e.g., trajectory control, speed guidance).
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2.1 Dynamic Route Control

The DRC problem has been studied extensively over the past decades and

plays an important role in improving network efficiency [15]. Current DRC

studies can be generally categorized into two main types.

In the first category, the distinct variations in vehicles’ travel behaviors

are not counted. This type of study involves aggregating vehicles that share

identical Origin and Destination (OD) into a single traffic stream when formu-

lating routing strategies. This perspective primarily aligns with the vantage

point of traffic operators, with its theoretical foundation rooted in DTA [16].

Within this framework, traffic phenomena and their evolutions are incorpo-

rated through traffic flow theories, dynamically determining the traffic flow

on each link. The overarching aim is to steer the network towards a state of

equilibrium or system optimality.

Most of the DRC studies belong to the first category which can be traced

back to early navigation systems that relied on static maps. As early as 1984,

Mahmassani and Herman [17] explored the DRC problem aiming at achieving

an equilibrium state of the network while considering the vehicles’ departure

time choice. Watling et al. [18] further extended the discourse by providing

an overview of the modeling issues that need to be considered when dealing

with the DRC problems. As the field progressed, studies like Nie and Wu

[19] worked on the shortest path problem considering on-time arrival proba-

bility using a more detailed analytical model. There are also studies [20] on

route guidance problems in large-scale networks utilizing the characteristics of

the Macroscopic Fundamental Diagram (MFD) which provides an aggregated

model of urban traffic dynamics linking network production and density, of-

fers a new generation of real-time DRC strategies. More related studies will

be reviewed in the following section with the summary of the DTA models.

The second category of DRC research embraces a perspective that acknowl-

edges the inherent heterogeneity among vehicles. This paradigm recognizes the

significance of personalized travel habits and distinctive requirements. These

studies pivot from the standpoint of individual vehicles and prioritize fur-
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nishing route guidance that not only benefits but also aligns with the unique

preferences of each vehicle. In the background of burgeoning CAV technology,

vehicles assume a proactive role in shaping their trips. This active partic-

ipation is realized through multifaceted communication channels. Vehicles

communicate their preferences directly to the TMC, allowing for the trans-

mission of real-time road conditions—encompassing factors such as accidents,

congestion, and road surface quality. These dynamic inputs empower the gen-

eration of adaptive routing strategies that fluidly respond to evolving road

conditions, thereby facilitating a personalized navigation experience for each

vehicle [21]–[23].

Li et al. [24] summarized multiple properties of the road and adopted the

Polychromatic Sets theory for planning dynamic user-centric routes. Vehicles

then select a route based on the priority level of these properties. Delling

et al. [25] also considered several natural metrics including the shortest dis-

tance, walking, biking, avoid U-turns and left-turns when providing the route

service. Cui et al. [26] inferred the vehicles’ preferences by analyzing their

historical traveling trajectory data and recommended the route based on the

inferred preference. Li et al. [27] focused on safety-based route planning by

exploiting the vehicle-to-cloud-to-vehicle (V2C2V) connectivity. Instead of us-

ing only travel time as the cost, they have established the time and road risk

index (RRI) which further considers the number of accidents, and the weather

conditions as metrics. Abdelrahman et al. [28] proposed a real-time route

planning method utilizing sensing and computing capabilities in both vehi-

cles and infrastructures. The road surface quality is collected dynamically,

which together with the driver’s personalized skillfulness is used in the route

planning. This framework is tested and verified through a case study of a

real driving scenario, which suggests that the presented framework can make

a good complement to the conventional route planning systems to provide a

customized routing strategy for distinguished travelers.
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2.2 Dynamic Traffic Assignment

DTA is an important component within the scope of DRC, especially served

as the fundation of the first category of DRC study. It is typically developed

based on Wardrop’s first and second principles [29], which are also famously

known as the user equilibrium (UE) and system optimal (SO) principles re-

spectively. Under the UE principle, the travel cost between the same OD

is equal and minimal. In contrast, the SO principle pursues the best per-

formance of the network through the cooperation between vehicles. The UE

and SO principles are extended to dynamic user equilibrium (DUE) [17] and

dynamic system optimal (DSO) [30] when the traffic dynamics are described

and applied to conduct the traffic assignment. Szeto and Wong [31] provided

a comprehensive review of DTA studies which classified the current research

from diverse aspects and summarized current challenges and future directions

for DTA studies.

Early DTA studies [32], [33] focused on traffic modeling and solution tech-

niques. Later on, Ran and Boyce [34], Boyce. et al. [35] systematically

addressed the analytical DTA formulation with a variational inequality ap-

proach. Following their studies, a series of research [36]–[38] discussed the

properties of DTA and applied it in different control scenarios. Similarly, in

analytical DTA models, different traffic flow models were applied in modeling

vehicles’ travel behavior, ranging from microscopic to the macroscopic level.

Another branch of DTA studies is simulation-based DTA which emphasizes

more on the traffic flow characteristics. The traffic evolution is dynamically

described in corresponding simulation tools to compute optimal routing strat-

egy and these routing strategies are applied to the simulation again to show

the results of traffic assignment. Well-known simulation-based DTA tools in-

clude: TRANSIMS [39], PARAMICS [40], DYNASMART [41], DynaMIT [42],

and CONTRAM [43]. Table 2.1 reviews some well-known DTA-based studies

which are classified according to their belonging category, the embedded travel

choice model, queueing model, flow model, and decision variable. These stud-

ies provide a comprehensive understanding of the principle of DTA models.
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Table 2.1: Well-known DTA-based studies

Papers Category Travel
choice

Queueing
modeling

Embedded flow model Decision
variable

Yagar [44] Analytical
model

DUE Physical
queue

Macroscopic traffic
flow model

Link flow

Szeto et al.
[45]

Analytical
model

DUE and
Departure
time choice

Physical
queue

Cell-based formulation Cell occu-
pancy

Lo et al.
[46]

Analytical
model

DUE Physical
queue

Cell transmission
model

Cell occu-
pancy

Long et al.
[47]

Analytical
model

DUE and
Departure
time choice

Point
queue

Link transmission
model, link perfor-
mance function

Link flow

Peeta et al.
[48]

Simulation-
based
model

DUE and
DSO

Physical
queue

Macroscopic traffic
flow model

Route
flow

Tong et al.
[49]

Simulation-
based
model

Predictive
DUE

Physical
queue

Macroscopic traffic
flow model

Link flow

Szeto [50] Simulation-
based
model

DUE Physical
queue

Lagged cell transmis-
sion model

Cell occu-
pancy

Ben-Akiva
et al. [51]

Simulation-
based
model

DUE-based
route con-
trol; lane
control

Physical
queue

Microscopic traffic flow
model

Link flow

2.3 Dynamic Routing Considering Signal Con-

trol

In the realm of urban arterials, the cost of travel along a given route is notably

shaped by the delays incurred at intersections due to signal control. Concomi-

tantly, the distribution of traffic flow across these routes plays a pivotal role

in influencing the parameters for signal control optimization. Harnessing the

gravity of this interplay, numerous scholars have passionately devoted their

efforts to unveiling the intricate dynamics between traffic routing and signal

controls within the context of urban arterial roads. Allsop [52], [53] appears

to be the first one to focus on the dynamics between traffic signal control and
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vehicle routing. Following that, Vuren et al. [54] also explored the best way

to connect routing strategies and signal timing plans. However, these studies

considered the signal control to be fixed and then solved the traffic assignment

problem, or they used the signal control parameters as the decision variables

with a fixed traffic assignment model. None of them considered the issue of

optimizing traffic flow distribution and signal timing jointly. To fill this gap,

later on, Yang and Yagar [55], and also Gartner [56] combined route control

and signal control together, formulating a corresponding mathematical model

to tackle the joint control problem. Under their scheme, an effective signal

control strategy is provided to facilitate the movement of vehicles, and routes

for vehicles are planned by considering the signal impacts. However, with-

out real-time road traffic information, their model is based on experience or

historical information that are static results and inconsistent with reality.

A major step forward for the joint control problem has come with the de-

velopment of CAV technology. Within this context, Chai et.al, [15] proposed

a dynamic shortest path (DSP) algorithm in a VANET (Vehicular Ad hoc

network) based on the travel cost that is updated every second, and the signal

control delay was formulated as part of the link travel cost. By combining

the DSP algorithm with different signal control methods, the system’s total

travel time could be reduced. Another attempt comes from Li et al. [57] who

formulated the joint control problem using a mixed-integer linear program-

ming (MILP) model. A space-phase-time network is proposed to integrate

both micro-level signal phasing plan and macro-level vehicle routing behavior.

Although the method appropriately addressed the interaction between vehi-

cle routing and signal control, it cannot give an intuitive description of the

traffic state evolution and traffic phenomena. Other typical methods to make

up for this shortcoming are based on traffic flow models, among which the

Point-queue (PQ) [58], Spatial-queue (SQ) [59], and Cell transmission model

(CTM) [60], [61] are the most popular approaches. Compared to the delay

function and the link performance function (e.g., BPR function), the PQ, SQ,

and CTM can better describe the features of different traffic states.

The PQ model assumes that the queue is formed at one point without a
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specific physical length, which can simplify the model but is not consistent with

reality. In the SQ model, queues are always growing up at jam density, while

in CTM, queues will propagate at a shockwave speed given by the correspond-

ing fundamental diagram [60], [61]. More variables and constraints in CTM

generate more accurate results, and many papers have proved the applicability

of CTM in solving traffic flow problems. Ziliaskopoulos [62] formulated the

system optimal dynamic traffic assignment (SO-DTA) model based on CTM

and provided linear relaxation for solving this model. Lo [63]–[65] transformed

the basic CTM by adding a signal control constraint, thereby achieving the

joint optimization of flow distribution and signal timing. Moreover, a CTM-

based MILP model that considers enhanced signal control has been developed

by Lin and Wang [66]. Wu [67] solved the route-based signal control problem

by using a heuristic algorithm. However, when the path selection behavior of

travelers and signal control parameters undergo significant changes, the sta-

bility of the heuristic algorithm’s solution to the optimal route selection is

compromised. Given the intricacies of the problem formulation and the mul-

titude of constraints involved, resolving the joint control problem remains a

formidable challenge.

2.4 Distributed Route Control

The literature discussed above adopted a centralized manner for solving the

DRC problem which suffers from two intrinsic problems. First is scalability:

since the models are complex, the TMC must perform intensive computation

to obtain the solution, thus it is hard to be applied in large-scale networks.

The second is timeliness: the global information (data for all links of a stud-

ied route) needs to be processed in the remote TMC to find the optimal route

which costs a large amount of time in communication and may generate an un-

timely solution. Considering the drawback of the centralized methods, studies

began to focus on the distributed DRC approaches, and they can be divided

into three types.

The first type focused on the cooperative multi-agent-based route design
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[68]–[70]. The routing strategy utilizes an agent-based distributed hierarchy

where the vehicles negotiate with each other to determine the optimal depar-

ture time and route as well as to increase the chance of arriving on time. For

example, Claes et al. [71] presented a decentralized approach for anticipatory

vehicle routing using multi-agent systems. Vehicles’ behavior is described by

the ant-like agent to detect congestion and predict travel costs for re-routing.

Their multi-agent routing method indicates a considerable performance gain

compared to the TMC-based centralized routing strategy. Similarly, Wedde

et al. [72] proposed a distributed and self-adaptive route guidance approach

inspired by the honey bee foraging behavior, and the presented algorithm out-

performs the dynamic shortest path in terms of travel time and congestion

avoidance.

The second type of distributed routing study mainly relies on communica-

tion technologies. Guha and Chen [73] leveraged a multi-hop vehicular network

to gather local information; this information will be broadcast to vehicles to

determine the shortest travel route locally. Faez and Khanjary [74] developed a

distributed dynamic route guidance system based on the Sensor Network with

Mobile Stations (SNMS). These sensors are deployed along the street to collect

local data, estimate the travel time, and send it to mobile phones or vehicles

for route optimization. Pan et al. [75] designed a distributed traffic re-routing

system called DIVERT which offloads a large part of re-routing computation

to vehicles and the vehicles exchange messages over vehicular ad hoc networks.

Although the performance of re-routing in their system is slightly inferior to

the centralized model, the user’s privacy is significantly increased.

The third type of research was inspired by the distributed backpressure

(BP) principle. The BP algorithm was initially developed by Tassiulas and

Ephremides [76] for scheduling the data packets in wireless communication

networks and it was widely utilized [77]–[79] to reduce network congestion and

improve throughput by pushing data packets to more vacant links. The idea

of BP appropriately fits the motivation of mitigating traffic congestion using

effective routing strategies. Nevertheless, it hasn’t been adapted to the road

traffic network until Varaiya [80], [81] first utilized it to deal with the traffic
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signal control problem. Following this work, numerous researchers studied the

traffic signal optimization method based on the BP mechanism [82]–[86], and

it has become popular in tackling road traffic problems. Among the BP-based

DRC studies, Zhang et al. [87] proposed a routing probability calculation

model by defining the pressure with considering the trade-off between vehicles’

satisfaction and the traffic load. Taale et al. [88] presented a weighted average

pressure function that combines the pressure of the first link, the whole route,

and the user preference to make re-routing decisions. Kampen [89] synopti-

cally discussed the feasibility and challenges of applying BP to solve the DRC

problem. The distributed BP-based method is verified to be effective in re-

ducing traffic congestion. Aligned with the second task of the dissertation, the

BP-based method can be appropriately applied to guide the traffic to realize an

effective distributed route control. Nonetheless, the conventional BP method

relies on the disparity in queue length between upstream and downstream links

to determine pressure. The embedded point queue and assumption of infinite

capacity, however, lack practicality. Consequently, this dissertation will rectify

this limitation by introducing an enhanced BP function.

2.5 CAV Dedicated Lane Design and Manage-

ment

The above sections focused on the discussion of vehicle route control. However,

to alleviate traffic congestion through the implementation of CAV technology,

it is crucial to go beyond merely controlling CAV behavior. In essence, CAVs

have the potential to enhance road capacity utilization by minimizing the

distance between vehicles through optimized car-following strategies. Never-

theless, in a mixed traffic environment, the advantage has been compromised

in consideration of the driving behavior of HDVs.

Inspired by one of the most successful lane management methods: High-

occupancy-vehicle (HOV) lane [90], the CAV dedicated lanes (CAV-DLs) were

proposed to solve the above issue. The goal of setting CAV-DLs is to physi-

cally separate CAVs and HDVs. Meanwhile, a range of technologies including

24



Figure 2.1: Illustration of CAV dedicated lane

cameras and sensors would enable CAVs to operate more smoothly to ulti-

mately facilitate faster, more accessible mobility for all [91]. The CAV-DLs

(as shown in Fig. 2.1) simplify the driving scenario since limited lane chang-

ing will reduce the perception and calculation tasks at both vehicle and road

ends, reduce hardware costs, and as a result promote the adoption of CAVs.

However, it occupies the existing road capacities and impacts the mobility of

HDVs. The CAV-DLs may waste the road capacity and even worse, the overall

system performance, especially in low penetration rate cases. To determine

the most effective approach for deploying CAV-DLs, a series of studies focused

on exploring the optimal design of the CAV-DLs over the network [92]–[96],

and the benefits of separating CAVs and HDVs were properly proven.

Madadi et al. [97] formulated a bi-level network design problem based on

the Amsterdam metropolitan region where the upper level finds the best infras-

tructure configuration and the lower level includes the travelers’ response to

new network topologies. The results suggested that CAV-DLs were more ben-

eficial after 30% CAV penetration rate (PR). Hamad and Alozi [98] compared

the network performance with shared and dedicated lanes, and the findings

also indicated that the network improvement is more evident at higher PR.

When the PR of CAV is relatively low, the road capacity would be substan-

tially wasted, since the CAVs are not likely to fully utilize these laneways.

25



Furthermore, Razmi Rad et al. [99] studied the impact of CAV-DLs on the

driving behavior of HDVs. Although the dedicated lane can improve efficiency

by providing more possibilities for platooning, implementing such a lane will

affect human drivers and significantly sacrifice HDVs’ benefits.

For this reason, appropriately managing the right-of-way for CAV-DLs is

critical. Some researchers suggested activating the CAV-DLs flexibly by allow-

ing them to operate as general lanes (GLs) during non-peak hours [100]. This

is a good way to reduce the waste of underutilized road capacity. However,

Chan and Shaheen [101] demonstrated that even if the dedicated lane was only

available in peak hours, the capacity is still typically not reached. Later on, in

the dedicated bus lane management, Viegas and Lu [102] proposed the Inter-

mittent Bus Lane (IBL) to dynamically adjust the right-of-way for dedicated

lanes according to the real-time arrival of buses. If there is no bus occupy-

ing the dedicated lane, it will be available to the general traffic. The IBL

scheme can significantly improve the utilization rate of the dedicated bus lane

and ultimately improve the mobility of the whole traffic network. Founded

on this, Eichler and Daganzo [103] improved the concept of IBL and further

formulated this problem to optimize roadway capacity utilization. Similarly,

the CAV-DL management can draw on the experience of such an approach.

Indeed, effectively managing CAV-DLs involves the fundamental task of over-

seeing and controlling traffic flow, a domain inherently encapsulated within

the realm of traffic demand management. Inspired by the exisiting dedicated

lane management strategies, the dissertation will propose a realistic dynamic

right-of-way allocation method based on real-time traffic prediction to address

the above issues.

2.6 Economic Measure-based Traffic Demand

Management

The economic measure-based traffic demand management serves as an effective

way to regulate traffic flow and mitigate traffic congestion. The principle of

economic measure-based traffic demand management is to treat the road space
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as a common commodity, and travelers use it by paying toll or trading with

each other. Existing popular economic measure-based policies include price

instruments and quantity instruments [104].

Among those instruments, road pricing has received far more attention than

quantity control in both theory and practice, which has already been deployed

in cities such as Singapore, London, and California, and has proven to be

effective in alleviating traffic congestion. There are also many studies focused

on congestion price [105]–[107], where vehicles using the congested road links

will pay a toll to achieve the best system performance, and the toll is usually

calculated based on the marginal travel cost. Congestion pricing is commonly

structured as either a zone or cordon system, and alternatively, it can be

applied based on the distance traveled within a designated area. However, a

significant challenge arises as this approach tends to disproportionately burden

certain drivers, particularly those lacking access to dependable public transit

or alternative modes of transportation.

The plate-number-based rationing strategy is one of the typical quantity

instruments, which restrict vehicles’ access to the road according to their plate

number [108], [109]. Nevertheless, this policy was proven to lead to an increase

in vehicle numbers and induced a change towards older and cheaper vehicles

which bring more pollution and safety concerns [110].

The limitations of congestion price and plate-number-based rationing strat-

egy stimulated the idea of a tradable credit scheme, which has been extensively

studied in recent decades [104], [111]–[114]. The tradable credit scheme dis-

tributes a certain number of credits to vehicles for free and predetermines the

charge of credits for each roadway link. Each credit has a price, and these

credits can be traded freely between travelers. In this case, travelers can have

a better balance between travel time and money, and the benefit of different

types of vehicles can be guaranteed.

In the realm of CAVs, a range of economic-measure-based management ap-

proaches can be implemented. These methods serve the purpose of incentiviz-

ing CAV adoption, shaping policies, and enhancing the management of CAV

technology. For the CAV-DLs management, these economic-measure-based
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approaches are appropriate and have the potential to improve the utilization

rate of road capacity. As such, the dissertation will look specifically at using

economic measures to regulate traffic considering the existence of CAV-DLs.

2.7 Electric Vehicle Technology and Control

The above studies focused on improving traffic efficiency considering the exis-

tence of traditional gasoline-based vehicles. Recently, given the pressing con-

cerns of the greenhouse effect and global warming, the electrification of trans-

portation stands as a pivotal element within the realm of smart transportation.

It plays a vital role in fostering environmentally friendly transportation and

contributing to the development of sustainable, green cities. In the coming

years, EVs may have a very important role in Smart cities, along with shared

mobility, public transport, etc. EVs have various advantages over traditional

cars, such as [115]:

(1) Zero emissions: EVs stand out as vehicles with zero operational emis-

sions, making them an environmentally conscious choice. Additionally, their

manufacturing processes prioritize environmental sustainability.

(2) Cost: EVs offer economic benefits in multiple ways. Their streamlined

design results in fewer engine components, translating to lower maintenance

costs. Moreover, the operational expenses of EVs are notably lower than those

of traditional gasoline vehicles. Additionally, the cost per kilometer for energy

is significantly reduced with EVs.

(3) Simplicity: EVs feature simplified and compact engine designs. These

engines operate without the need for a cooling circuit, and they eliminate the

necessity for components like gearshifts and clutches that contribute to engine

noise. This streamlined design enhances efficiency and minimizes unnecessary

complexities.

(4) Comfort: Choosing EVs ensures a more comfortable travel experience,

thanks to the absence of vibrations and engine noise. This creates a serene

environment for passengers, promoting a more enjoyable and peaceful journey.

Due to the potential of EVs to improve energy security and protect the
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environment, countries all over the world are actively promoting the adoption

of them using various incentive programs [116]. These programs are proven

to be effective in some countries (e.g., Norway and China), and the growing

adoption of EVs illustrates a trend of future greener and cleaner traffic systems.

Addressing traffic control challenges associated with EVs, various studies

have delved into regulating EV car-following behavior to enhance energy effi-

ciency. For instance, Yang [117] developed an optimal velocity model that not

only reduces energy consumption but also stabilizes the flow of vehicles. Li et

al. [118] introduced a sophisticated vehicle-following driving model and pro-

posed periodic control measures to minimize fuel consumption effectively. Ad-

ditionally, researchers have proposed energy control strategies for automated

car-following scenarios [119]. Determining the appropriate velocity, as well as

optimizing acceleration and deceleration patterns, has emerged as a critical as-

pect of EV control [120]. Interestingly, a report on EVs [121], highlights that

EV drivers tend to prefer driving at lower speeds in urban arterials to conserve

energy. However, it’s important to note that maintaining a consistently low

driving speed can lead to increased travel time, potentially conflicting with

the primary goal of efficient travel. Balancing these factors is essential when

developing traffic control strategies for EVs.

The current trend in the transportation system showcases a swift transi-

tion towards the adoption of CAVs. Among these, the Connected Automated

Electric Vehicles (CAEVs) are poised to be pivotal in the burgeoning revo-

lution towards sustainable, low-carbon mobility. Their potential to achieve

substantial reductions in GHG emissions positions them at the forefront of

this rapid transformation in transportation. CAEVs hold significant promise

for operating with enhanced vehicle efficiency, particularly when charged us-

ing renewable energy sources. This strategic approach not only contributes

significantly to reducing emissions but also diminishes our reliance on fossil

fuels, marking a critical step towards a more sustainable future. In such a

circumstance, utilizing the CAEV technology is a potential solution to real-

ize the trade-off between energy consumption and travel time for EVs, and

the dissertation will explore more efficient strategies to address the mentioned
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research gaps.

2.8 Conclusions

This chapter embarks on a comprehensive exploration of various research do-

mains encompassing the intricate landscape of DRC, DTA, joint route and

signal control, CAV-DLs, CAEVs, and the relentless evolution of transporta-

tion systems.

A thorough review of state-of-the-art studies reveals a compelling need for

more efficient and pragmatic DRC strategies, despite the substantial body

of work in recent years. In the context of joint routing and signal control,

it is evident that most studies have employed simplified signal timing plans,

overlooking the nuanced aspects of realistic phase sequences and duration con-

straints. The dissertation aims to rectify this by integrating simulation-based

DTA models to capture the intricacies of traffic dynamics.

Additionally, within the realm of distributed DRC, it becomes apparent

that prior studies lack comprehensive insights into the algorithmic processes

and fail to present the exact computational costs involved. The dissertation

aims to shed light on the performance of distributed DRC, evaluating its effi-

cacy and computational complexity, particularly in its applicability within the

MEC-enhanced CAV environment.

In the context of traffic demand management based on economic measures,

a key challenge lies in designing the optimal toll structure, especially in mixed

traffic scenarios comprising both CAVs and HDVs. Considering the research

gap in capacity and demand management in traffic environments involving

CAVs, the research will place a special emphasis on traffic networks featuring

CAV-DLs, and design-related lane management approaches and policies.

Lastly, based on the literature review on the behavior of CAEVs, a critical

gap exists in formulating a refined driving strategy that strikes a balance

between reducing energy consumption and total travel time. Studies trying to

regulate the CAEVs’ behavior with respect to the existence of CAV technology

are lacking. The dissertation will endeavor to enhance this aspect and develop
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better trajectory and signal control strategies. In the upcoming chapters, each

of these research topics will be meticulously examined, unveiling innovative

models and algorithms in a comprehensive manner.
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Chapter 3

Joint Dynamic Route Guidance
and Signal Control for CAVs

3.1 Introduction

The space-time diagram is one of the most intuitive methods to describe ve-

hicles’ travel information (e.g., route, departure time, arrival time, delay, and

speed). In a dynamically changing traffic network, travel plans based on expe-

rienced travel time are usually more efficient than those based on instantaneous

travel time. Fig. 3.1(a) is a 2 by 2 road network and Fig. 3.1(b) displays the

trajectories of four vehicles (indicated by different colors) running in this net-

work. The red line and light green line represent two vehicles starting from

node 1 and going to node 8. Their departure time is the same but they choose

two different routes and arrive at their destination at different times. The

blue line and the dark green line describe two vehicles going from node 3 to

node 7. They are selecting the same route. Due to the different departure

times, the traffic conditions they have encountered are varied; the delay for

the blue vehicle at the intersection is much longer than that of the dark green.

Consequently, despite the blue vehicle departures earlier, they arrive at the

destination at the same time. (Here, d, dd, da, dw represents total delay, de-

celeration delay, acceleration delay, and waiting delay respectively). Notably,

an equitable route control strategy considering the real-time road and traffic

signal control information is pivotal in aiding vehicles to make efficient travel

decisions.
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Figure 3.1: (a) 2 by 2 Road network (b) Space-time diagram illustrating different route
strategies

Inspired by the importance of joint dynamic route guidance and signal

control (DRG-SC), Karoonsoontawong and Waller [122], Chen and Hu[123]

solved route guidance and signal optimization using a complex centralized

mathematical bi-level model. Ceylan and Bell [124], Teklu et al. [125], and Sun

et al.[126] also adopted the centralized mode to simultaneously solve the DRG-

SC problem. These studies, although, with varying mathematical formations,

the model is usually non-convex and the solution is obtained using heuristic

algorithms, the resulting computation cost is pretty high even with a powerful

computer server. Other centralized analyses [127] for the DRG-SC problem

are also limited to a small network, the real-time application in the larger

networks stays unsolved.

The most distinguished feature between CAVs and conventional cars is that

the operation of CAVs is highly dependent on real-time, accurate instructions

from traffic control or management centers. For that reason, the weakness of

the centralized framework in dealing with such a complex problem is in plain

sight. Benefiting from the 5G and MEC technology, it becomes increasingly

practicable to build a distributed control framework to deal with the DRG-SC
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problem for CAVs.

Many studies channeled their efforts towards single distributed SC [128]–

[131] or distributed DRG [71], [72], [132], [133], but there remains space for

exploring efficient approaches for distributed DRG-SC in large traffic net-

works. In these limited studies, Yu et al. [134] tested the performance of

a route guidance strategy integrated with several signal control methods, us-

ing a simulation-based model developed in the traffic software PARAMICS.

Chai et al. [15] also simulated a CV environment using SUMO [135] and OM-

NET++ [136] to combine the shortest path algorithm with adaptive signal

control. Li et al. [137] developed a mathematical optimization model by us-

ing a space-time diagram to find the time-dependent solution for simultaneous

routing and signal control. Although they stated that the proposed method

can be applied to a distributed framework, the detailed processing flow was

not adequately described. Moreover, the role of MEC in such a distributed

framework needs further investigation.

Additionally, before a sufficiently developed CAV environment can be made

available in reality, testing the related algorithms in a similar simulation en-

vironment is essential. In recent decades, simulation techniques have been

extensively adopted to evaluate and compare the operational performance of

new alternative strategies [134], [138]–[140]. The simulation-based methods

are realistic since they stress the prevailing situations and are able to describe

the dynamically changing traffic conditions. Thus, the result can always shed

some light on how a specific control measure performs in the real world. For

that reason, the study in this dissertation revolves around simulation-based

techniques. In general, this chapter has investigated all of the research gaps

mentioned above with the following contributions:

I. A complete distributed data processing, information communication, and

transmission procedure for conducting DRG-SC in the MEC-enabled CAV

environment is designed: To the best of our knowledge, this is the first time the

exact tasks of vehicles, infrastructures, and TMC are presented towards solving

a DRG-SC problem. The pivotal position of MEC is particularly explained

and hence generates fresh insight into how it will promote the CAVs’ intelligent
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operation and control.

II. A novel DRG-SC model that aims at improving network efficiency is

developed: Different from the conventional methods that formulate the DRG-

SC problem into a mathematical model and then solve it by optimization

algorithms, the route strategy in our paper is distributed at the level of indi-

vidual vehicles and the signal control is distributed at the level of intersections.

Vehicles select the user-optimal (UO) or system-optimal (SO) targeted route

first, and subsequently enhance the network performance by cooperating with

other vehicles. When computing travel time for routes, the proposed model

addresses the crucial impact of intersection delay caused by signal control on

vehicles’ routing plans which is not specifically deliberated even in the most

popular route planner, Google Maps [141]. Moreover, the relationship between

travel time and traffic volume is identified by a simulation manner rather than

a simplified link performance function. The proposed signal control strategy

also keeps vehicles’ routing plan and waiting time in view so that the timing

plan is more accurate and effectual.

III. The study has probed into the computation time for the proposed

method and verified its benefit in ameliorating computation efficiency in the

case study. Since the presented method allows to be implemented in a par-

allel manner, which can further accelerate the distributed process. A pre-

liminary test was conducted using different numbers of computer server cores

with adopting the parallel computing technique. The result demonstrated the

potential of the developed method to be applied in real-world cases.

3.2 Methodology

This section elaborates the method for conducting the DRG-SC with present-

ing the detailed route and signal control strategies. Table 3.1 lists the notations

for all parameters, sets and variables used in this chapter.
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Table 3.1: Notations

Parameters

τ Step size (Time duration for each
step)

k Index of time step

t Index of time interval (k = t/τ) f Index of vehicles

La Length of link a i Index of current intersection

m Index of upstream intersection of in-
tersection i

n Index of downstream intersections of
intersection i

li(m,n)Link serving vehicles coming from
intersection m, arrives at intersec-
tion i and goes to intersection n

Ni(m,n)Number of vehicles on link li(m,n)

Gmin Minimum green time for each phase Gmax Maximum green time for each phase

Tpt
i

Time duration for phase p of inter-
section i at time interval t

Tf Total study time horizon

Sets

R Set of routes for OD pair od A Set of all travel links

O Set of all origins D Set of all destinations

N Set of all nodes I Set of all intersections

F Set of all vehicles Ωi Set of all phases of intersection i

Variables

T t
a Experienced travel time on link a at

time interval t
xt
a Time dependent vehicle number on

link a at time interval t

fr,t
od Time dependent traffic flow on route

r of the OD pair od at time interval
t

f t
od Time dependent traffic demand of

OD pair od at time interval t

δaod Link-route incidence (0-1 variable) xt−1
a Time dependent vehicle number on

link a at time interval t− 1
et−1
a Time dependent vehicle number en-

tering link a at time interval t− 1
lt−1
a Time dependent vehicle number

leaving link a at time interval t− 1
vta Space mean speed of link a during

time interval t
T r,t
a Time-dependent average travel time

on link a during time interval t
φt
a,i Delay of intersection i on link a in

time interval t
T t
o,d Shortest route travel time of OD

pair od in time interval t
pti Current phase for time interval t of

intersection i
Gpt

i
Green split of phase p at intersection
i in time interval t

3.2.1 Overall Framework and Data Flow

The complete data communication, processing, and computing procedure for

the proposed DRG-SC framework are shown in Fig. 3.2. The basic data is the

immediately accessible fixed data set, while some flexible data is acquired by

further processing or computing. From the vehicle unit, we can obtain BSM

data that includes real-time vehicle speed and location information. This

data will be sent to the infrastructure and, based on real-time speed data,

the RSU installed within the infrastructure will compute the average travel
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Figure 3.2: Data communication, processing, and computing procedure for DRG-SC

time for links. Also, it can aggregate and predict the number of vehicles

using location data. In terms of the infrastructure, the basic data that can

be obtained from the RSU is SPaT data, used to compute intersection delay.

The experienced travel time is then calculated at the infrastructure by adding

intersection delay and average travel time on links. Further, the marginal

travel time can be computed when combining the experienced travel time with

vehicle count information. After that, all RSUs will send both experienced

travel time and marginal travel time information to the TMC, the TMC will

gradually depict and gather the information for the whole network and send

it back to the RSU, and then the RSU will broadcast it to every vehicle

within its communication range. After these steps, the information on the

whole network will be now available in TMC, RSU, and vehicle units. With

the required data ready, the RSU will perform the ASC algorithm, and each

vehicle unit will perform re-routing algorithms. With such a data processing

flow, the TMC, RSU, and vehicle unit each need only tackle a relatively small

piece of the work.
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3.2.2 Joint Dynamic Route Guidance and Signal Con-
trol Formulation

The DRG strategy can be given by solving the DTA based model. The well-

known DTA models include UO-DTA and SO-DTA, which can be formulated

as follows. The corresponding objective function is described by Eq. (3.1)

and Eq. (3.2) with corresponding constraints in Eq. (3.3)-Eq. (3.7). Eq.

(3.3) requires the summation of all time-dependent route flow of the OD pair

equals to the OD demand, Eq. (3.4) gives the relationship between time-

dependent route flow f r,t
od and link flow xt

a through the 0-1 variable δaod, Eq.

(3.5) states that the time-dependent travel time on link a is a function of the

time-dependent traffic flow, Eq. (3.6) ensures the conservation law, and Eq.

(3.7) guarantees the non-negative characteristics.

min Z(X) =
∑
a∈A

xt
a∫

0

T t
a(w)dw (UO−DTA) (3.1)

min Z(X) =
∑
a∈A

∑
t∈Tf

xt
aT

t
a(x

t
a) (SO−DTA) (3.2)

∑
r

∑
f r,t
od = f t

od, ∀r ∈ R, o ∈ O, d ∈ D, t = 1, 2, ......, Tf (3.3)∑
o

∑
d

∑
r δ

r,a
od · f r,t

od =xt
a, ∀r ∈ R, o ∈ O,

d ∈ D, a ∈ A, t = 1, 2, ......, Tf
(3.4)

T t
a(x

t
a) = F (xt

a), ∀a ∈ A, t = 1, 2, ......, Tf (3.5)

xt
a = xt−1

a + et−1
a − lt−1

a , ∀a ∈ A, t = 1, 2, ......, Tf (3.6)

f r,t
od , x

t
a, T

t
a ≥ 0, ∀a ∈ A, t = 1, 2, ......, Tf (3.7)

Analytical DTA models are difficult to be solved and converged when ap-

plied in large traffic networks. Moreover, Eq. (3.5) is usually approximated

using simplified link performance functions (e.g. The Bureau of Public Roads

(BPR) function) that are impractical and often lead to unrealistic results.

Therefore, this study develops a simulation-based method that can acquire

the accurate travel time and vehicle number on links directly from the sim-

ulation instead of using the empirical link performance function. When the

network reaches a UO condition, all vehicles should be on the shortest travel
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time route and no vehicle can make improvement by switching to another

route. Similarly, when all vehicles are on the shortest marginal travel time

route, the network will reach an SO condition. In the proposed simulation-

based model, vehicles will first select the minimum time-dependent travel time

route or marginal travel time route and then cooperate to reach either a UO

or SO state.

To find the shortest route, the first step is to calculate the experienced

travel time. Here, the intersection delay was addressed as a portion of the

travel time. Then, it consists of three parts: free flow travel time, delay caused

by congestion, and intersection delay caused by the signal control. In the CAV

environment, the vehicle speed information is updated at a high frequency;

thus, the calculation for real-time space mean speed on links is straightforward.

When using the real-time speed information to calculate average travel time,

the delay caused by congestion has already been included. So, the experienced

travel time in the CAV environment only consists of two parts: average travel

time computed by space mean speed and the intersection delay.

The time-dependent space mean speed as the average of the mean speed

of all CAVs over the link at an instant of time k within a time interval t can

be calculated by Eq. (3.8). The average travel time is then computed (Eq.

(3.9)) using the length of a link divided by the time-dependent space mean

speed. The experienced time-dependent travel time T t
a is the summation of

average travel time T r,t
a on the link and the delay φt

a,i of the downstream

intersection, decided by the exact signal control strategies (Eq. (3.10)). With

these equations, the experienced dynamic shortest route travel time between

an OD pair at time interval t is sought using Eq. (3.11) where g is the successor

node of origin node, and the predecessor node of h.

vta =

∑
t/τ

∑xka
f=1

vkf,a

xka


t/τ

∀f ∈ F ; a ∈ A; k = 1, ......, t/τ ; t = 1, 2, ......, Tf

(3.8)

T r,t
a = La/v

t
a, ∀a ∈ A; r ∈ R; t = 1, 2, ......, Tf (3.9)

T t
a = T r,t

a + φt
a,i, ∀a ∈ A; r ∈ R; i ∈ I; t = 1, 2, ......, Tf (3.10)
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T t
O,D = min

∑
a∈A

Tf∑
t=1

T t
a = min{T t

O,g +
D∑

h=1

Tf∑
t=1

T t
g,h},

∀a ∈ A; g, h ∈ N ; t = 1, 2, ......, Tf

(3.11)

The route marginal travel time refers to the change on route travel time

with a unit change of the number of vehicles. It is calculated by taking the

deviation of travel time over vehicle numbers as shown in Eq. (3.12). Here,

T t
a(x

t
a) + xt

a · (∂T t
a(x

t
a)/∂x

t
a) represents the link marginal travel time. In this

equation, in order to compute ∂T t
a(x

t
a)/∂x

t
a, the relationship of link flow and

link travel time needs to be known in advance. However, there’s no known

adequately accurate analytical function to capture the relationship. When

the vehicle number is lower than link occupancy, the value of ∂T t
a(x

t
a)/∂x

t
a is

0 and the marginal travel time equals the free flow travel time. In conges-

tion cases, the time-dependence of the derivative is assumed to be caused by

’time-varying’ link performance function, and this link performance function

changes over time. The travel time can be significantly different, although the

vehicle number on link is the same because it depends on the real-time queuing

condition.

∂Z(X)

∂fr,t
od

=
∑

∂Z
∂xt

a

∂xt
a

∂fr,t
od

=
∑

∂
∂xt

a
[
∑
a

xt
a · T t

a(x
t
a)] · δ

a,r
od

= [T t
a(x

t
a) + xt

a ·
∂T t

a(x
t
a)

∂xt
a

] · δa,rod

(3.12)

T t
a(x

t
a) = α · (xt

a)
2 + β · (xt

a) + γ (3.13)

In the proposed simulation-based model, an approximation approach is

used which assumes that during a small-time interval, three consecutive points

are on the same link performance curve (as shown in Fig. 3.3). Thereby, a

quadratic fitting (Eq. (3.13)), where α, β, γ are corresponding coefficients) is

utilized to capture the relationship between travel time and vehicle number.

In adopting this approach, we need to pay attention to the selection of time

interval. If the time interval chosen is too small, the curve is not stable; if it is

too large, the interval cannot describe the current time-dependent relationship

accurately. Peeta and Mahmassani [48] have analyzed how to choose the time

interval to solve the stability problem in detail. Interested readers are referred

to their work.
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Figure 3.3: Quadratic fitting of derivative for link marginal time .

3.2.3 Embedded Signal Control Strategy

An ASC strategy that considers the influence of vehicles’ waiting time and

routing plan is developed for this study. For the ASC, the number of vehicles

on links for the upcoming time interval is the most critical input. Accordingly,

the method to predict the vehicle number will be explained first.

Define li(m,n) to represent the link serving vehicles coming from inter-

section m, arriving at intersection i, and going to intersection n. Ni(m,n)

represents the corresponding number of vehicles on link li(m,n). Then, the

number of vehicles that will arrive at intersection i before the start of next

time interval t+ 1 can be computed in four parts (Eq. (3.14)).

1) Ni[(m,n), t]: Number of vehicles already arrived at intersection i on the

link li(m,n) at the start of the time interval t (obtained via V2I communication

by analyzing the real-time location of vehicles);

2) Nri[(m,n), t]: Number of vehicles running on the link li(m,n) at the

start of the time interval t and will arrive intersection i before t + 1 (relying

on V2I communication by analyzing the real-time vehicle speed and location);

3) Nci[(m,n), t]: Number of vehicles from neighboring intersections within

time interval t and arrive intersection i before t+1 (based on I2I communica-
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Figure 3.4: A four-phase diagram.

tion to get vehicle number from adjacent intersections and also from vehicles’

routing plan to determine vehicles’ next travel link);

4) Ndi[(m,n), t]: Number of vehicles leaving from intersection i through

the link li(m,n) within time interval t (depend on V2I communication by

analyzing real-time vehicle speed and location; also relies on signal control

strategies).

Ni[(m,n), t+ 1] = Ni[(m,n), t] +Nri[(m,n), t]
+Nci[(m,n), t]−Ndi[(m,n), t]

(3.14)

A four-phase, eight-movement phase plan is utilized in this study. The Na-

tional Electrical Manufacturers Association (NEMA) phase sequence is adopted

to label the eight movements that are divided to four groups, each correspond-

ing to one phase (Fig. 3.4). The detailed explanation for the signal control

variables is as follows:

Offset: As signal coordination is not the focus of this study, so it hasn’t

been defined as a variable but is included with a predefined fixed value;

Cycle length: Different from the traditional cycle length definition, the

cycle length in this study has no fixed value and changes flexibly to the phase

split;

Phase sequence: The movement with the longest vehicle waiting time or the

highest predicted number of vehicles will be chosen as the next phase. To be

more specifically, in Eq. (3.15), pt,WT
i,max implies the phase serving vehicles with

the longest waiting time in intersection i, at time interval t, and MAXWT

means the predefined maximum waiting time. In order to ensure vehicles on
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links with relatively low volume are passable, it is necessary to first record

vehicles’ waiting times on all links (right-turn not included) and then compare

to find the one with the longest waiting time. If the longest vehicle waiting

time is larger than the pre-defined threshold (MAXWT ), the phase serving

these vehicles should be selected as next phase. Otherwise, movement with

the highest predicted number of vehicles pt,Ni

i,max will be set as next phase.

pt+1
i =

{
pt,WT
i,max, if longest waiting time ≥ MAX WT

pt,Ni

i,max, if longest waiting time < MAX WT
(3.15)

Phase split: Phase split depends on the chosen time interval. It is also

different from the traditional split definition that equals to the summation

of the time interval from the ‘green to red’ phase status, as shown in Eq.

(3.16). Also, the green time for each phase is constrained by the minimum

and maximum green (Eq. (3.17)).

Gpti
=

∑
t∈T

pt
i

t (3.16)

Gt
min ≤ Gpti

≤ Gt
max (3.17)

3.2.4 Algorithm Solving Procedure

The detailed problem-solving procedure is shown in Table 3.2. First, SUMO

simulates the traffic to generate vehicle trajectories with the initial informa-

tion. Then, Python can compute the experienced travel time and marginal

travel time for vehicles to seek their optimal route using the Dijkstra algorithm

[142]. Moreover, the traffic signal controller combines the newly updated traf-

fic information to adjust the signal timing plan. At this step, the travel time

is also renovated. Subsequently, the classical Golden Search Method (GSM)

[143] is applied to do several iterations until the algorithm converges to an

equilibrium state.
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Table 3.2: Problem solving procedure

Step Initial Input: Signal Timing Plan (Cycle length, phase sequence, split); Net-
work Parameters (Topology, free flow speed, capacity); OD information (De-
mand, origin and destination)

1 SUMO simulator: Generate vehicle trajectories

For all intersection i, link a and vehicle f :

2 Compute: vta , T r,t
a , φt

a,i

3 Then, calculate experience travel time T t
a

4 Aggregate all vehicles’ routing plan;

Predict vehicle number of next step:

Ni[(m,n), t+1] = Ni[(m,n), t]+Nri[(m,n), t]+Nci[(m,n), t]−Ndi[(m,n), t]

5 Quadratic fitting to derivative and compute link marginal time

T t
a(x

t
a) = α · (xt

a)
2 + β · (xt

a) + γ

6 Search the shortest route by Dijsktra

7 Vehicles Re-route to corresponding route

8 Update link occupancy xt
a

If vehicle’s longest waiting time ≥MAXWT :

pti = pt,WT
i,max

Else:

pti = argmax
pt
i∈Ωi,Gt

min≤t≤Gt
max

{Ni[(m,n), t+ 1]}

End:

9 Update pt+1
i , Gpt+1

i

10 Recompute T t+1
a , yield auxiliary variable link flow: yt+1

a

11 Apply GSM, Set xt+1
a = (1− θ)xt

a + θyta, θ= 0.618

12 Test convergence,
∣∣xt

a−xt−1
a

∣∣ /xt−1
a ≤ ε, otherwise, go to step 2

End
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3.3 Case Study

3.3.1 Simulation Settings

This section evaluates the effect of the proposed method via a case study on a

signalized three-by-four traffic network (Fig. 3.5). This network is effective as

all the intersections are signalized and it provides sufficient alternative routes

for dynamic routing. The other detailed simulation settings are illustrated in

Table 3.3.

Figure 3.5: Simulation network.

The microscopic traffic simulation tool SUMO [135] was used to simulate

the traffic. Python was integrated to implement the proposed model and con-

trol strategies. The online interaction between SUMO and Python was realized

by the SUMO application programming interface (API) TraCI which allows the

real-time data exchange and implementation of an up-to-date control strategy.

In the simulation, the demand loading pattern is a key factor influencing

the results. In this study, two kinds of loading profiles were considered (Fig.

3.6): one loaded uniformly and the other loaded with a peak period. Vehicles

were loaded every five minutes with the first five minutes as the start-up time

to ensure the network was reasonably occupied. Although the testing net-

work was symmetric, the OD distribution was asymmetric to ensure different

flow patterns on links. What’s more, three different levels of demand (Free

flow: 600 tagged vehicles, Moderately congested: 2400 tagged vehicles, and
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Table 3.3: Simulation settings

Network information

(3*4 grid network; 12 intersections; 26 nodes, 62
links)

Number of lanes Each approach has 3 lanes (one
LT, one Through, one RT, 186
in total)

Length of each link 300m

Maximum speed (free flow speed) 14m/s(50km/h)

Simulation Parameters

Simulation time step 1s

Signal timing updating interval every 10 s

Vehicle re-routing interval Every 180s (3minutes)

Total simulation time horizon 4500s (ensure all vehicles leave
the network)

Maximum waiting time 36s

Signal Control Parameters

Min/Max Green for each phase 6s/30s

Figure 3.6: Demand loading profile (a) Loading uniformly (b) Loading with a peak period.
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Congested: 5400 tagged vehicles) were tested. Five different control scenarios

were considered in this study. FSC-Only used a simple FSC strategy without

considering re-routing possibilities, and this was used as a comparison bench-

mark to test the performance of other control strategies. The FSC timing plan

was estimated according to the simulated volume with a cycle length set to

be 90s. For left-turn movements, the green time was 15s, and through move-

ments were 24s, followed by a clearance time of 3s for each phase. UO and SO

targeted re-routing were combined with FSC and ASC (that are: UO-FSC,

SO-FSC, UO-ASC, and SO-ASC).

3.3.2 Overall Control Performance

The results of different control strategies are illustrated in Fig. 3.7. Four

performance metrics (average departure delay, average travel speed, average

waiting time, and average travel time) were calculated respectively. In general,

Figure 3.7: Performance of different control strategies: (a) Average departure delay
(b)Average travel speed (c) Average waiting time (d)Average travel time

SO-ASC outperformed other control strategies in all performance metrics. The
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benefits are especially prominent in high-demand cases. (e.g., in the Peak 5400

demand, the average waiting time for SO-ASC was 80.87s, only about 33% of

the 241.35s for FSC-Only control).

Effect of demand loading pattern:

For the two kinds of demand loading patterns, the performance was inferior

when loading vehicles with a peak period, despite loading the same number of

vehicles. Because when there is a peak period, the congestion level can become

very high in a short period.

Effect of signal control strategies:

We can see that ASC consistently had lower departure delay, waiting time,

travel time, and higher travel speed than FSC (by comparing the performance

of UO-ASC to UO-FSC or SO-ASC to SO-FSC), because when the demand

level is low, the corresponding congestion level will be low, and the FSC strat-

egy may cause unnecessary waiting time. While in higher demand level con-

ditions, the FSC cannot provide enough green time for the required traffic

movement, thus causing longer queues.

Effect of route guidance strategies:

By comparing the results of UO-FSC to SO-FSC or UO-ASC to SO-ASC,

it is apparent that the SO-based route guidance strategy demonstrated better

system performance than the UO-based strategy. In low demand level (600

vehicles), UO- and SO-based strategies performed similarly, because when the

congestion level was low, the travel time on the link approximately equaled

free-flow travel time, and the resulting optimal route was the initial shortest

static route. Along with the increased demand level, the benefit of SO re-

routing became evident since it may have guided some vehicles towards longer

routes, thereby reducing congestion.

There is also another interesting discovery, see Fig. 3.7 (c), the waiting

time reduction brought by adopting SO re-routing over UO re-routing is more

evident in the FSC control scenario than that of the ASC control scenario.

(e.g., in peak5400 demand level, the relative improvement is 52.12s and 7.57s

respectively). A similar phenomenon can be noticed in the average travel time

shown in Fig. 3.7 (d). This phenomenon can be explained because when
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utilizing ASC strategy, the congestion has already been mitigated to some

extent by signal control, and the travel time difference between alternative

routes is smaller than in the FSC case. This discovery also indicates that the

innovative signal control has a latent force in leading the network to the SO

state.

3.3.3 Specific Signal Control Analysis

To show the superiority of the proposed ASC over the FSC strategy, Fig. 3.8

has drawn the number of vehicles on all the lanes during the whole simulation

for peak600, peak2400, and peak5400 demand level respectively (the results

of loading uniformly gives a similar conclusion). The number of vehicles on

Figure 3.8: Number of vehicles on lanes: (a) FSC-only in peak600 (b) FSC-only in peak2400
(c) FSC-only in peak5400 (d) ASC in peak600 (e) ASC in peak2400 (f) ASC in peak5400

the lane was aggregated by 10s. If the vehicle cannot leave the lane within

the first 10s interval, as a result, it will be counted repeatedly in the next

10s interval. Therefore, the higher the number is, the longer the delay it will

reflect. Fig. 3.8(a), (b), and (c) indicate the FSC-only case, while (d), (e),

and (f) refer to the ASC case. At a low demand level (i.e., peak 600), there is

no significant difference between FSC-only and ASC. However, the number of

vehicles is much lower with the ASC strategy when the demand level increases,

especially at the peak 5400 demand level.
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To specifically analyze the effectiveness of ASC, Fig. 3.9 gives the trajecto-

ries of vehicles on one of the most congested lanes during the peak period for

peak 5400 demand level. For the FSC case, the dissipation of vehicles strictly

follows the fixed ‘red’ to ‘green’ change, which usually leads to long queues

in high-demand cases. In contrast, the proposed ASC strategy could more

flexibly adjust the green split and change the phase sequence to the approach

with heavier traffic demand. Thus, it’s obvious that trajectories in ASC are

more dispersed than those in FSC because once a certain number of vehicles

are accumulated on the line, they will be served at once instead of waiting for

the fixed green to come. This phenomenon also demonstrates the considerable

capability of the proposed ASC strategy in reducing delays in congestion cases.

Figure 3.9: Trajectories on one congested lane as an example: (a)FSC case (b)ASC case

3.3.4 Re-routing Analysis

Vehicles were rerouted during the simulation time horizon. Fig. 3.10(a) shows

the distribution of vehicles’ re-routing frequency under the SO-ASC control

strategy. For some vehicles, the optimal route is always the initial route, so
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Figure 3.10: (a) Distribution of re-routing frequency under SO-ASC (b) Average travel
length comparison of UO-ASC and SO-ASC

they have never re-routed. However, this percentage decreased from almost

90% in demand Uniform 600 to around 50% in demand Peak 5400. With

the increase in demand level, the proportion of vehicles re-routed more than

once began to increase, allowing higher utilization of the roadway capacity in

more congested cases. Fig. 3.10(b) compares the average travel length of UO-

ASC and SO-ASC control strategies. The average travel length rose with the

increase in demand. In addition, the average travel length under the SO route

guidance strategy was longer than UO because more vehicles were guided to

longer routes to reduce the system’s total travel time.
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In a real CAV environment, if the compliance rate of vehicles to the pro-

vided route strategy is 100%, there is a greater possibility of realizing the SO

condition. However, individual vehicles usually prefer switching to the short-

est route without considering the behavior of other vehicles. This is more

consistent with the UO-based re-routing. Thus, the study hereby define the

compliance rate for vehicles’ re-routing behaviors as the percentage of vehicles

adopting the SO-targeted strategy. For instance, when the compliance rate

equaled 20%, then 20% of vehicles adopted the shortest marginal travel time

route. The remaining 80% followed the shortest travel time route. Then, the

results of a complete UO or SO strategy are more like providing a lower and

upper boundary. Table 3.4 compares the network performance by calculating

the total travel time (TTT) of the whole network with respect to the com-

pliance rate as it increased from 0% to 100%. The embedded signal control

strategy was ASC.

Table 3.4: System TTT of different compliance rate

Compliance
Rate

0%(h) 20%(h) 40%(h) 60%(h) 80%(h) 100%(h)

Uniform 600 22.08 22.12 22.06 22.06 21.88 21.82

Peak 600 22.60 22.54 22.33 22.29 22.27 22.24

Uniform 2400 100.03 99.83 98.12 97.64 97.09 96.31

Peak 2400 105.18 104.27 103.68 102.45 101.66 101.26

Uniform 5400 247.04 243.88 242.95 240.97 240.65 240.04

Peak 5400 264.86 261.93 258.04 253.43 248.69 247.86

In low demand levels (600 vehicles), it seems the change in compliance

rate did not make a significant difference to TTT, due to UO and SO equiva-

lence when congestion levels are low. However, in higher demand levels (2400

vehicles and especially with 5400 vehicles), the benefit of the SO re-routing,

coupled with the increase of vehicles’ compliance rate, in reducing TTT was

observable. There was a significant improvement when the compliance rate in-

creased from 40% to 60% in Peak 5400 demand level, while the improvement

from 80% to 100% when the compliance rate reached 80% is relatively smaller.
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3.3.5 Computation Time Analysis

In this section, the computational cost of the proposed distributed method in

dealing with the SO-ASC control under different demand levels were presented.

The experiment was carried out on a laptop computer with an Intel 2.80 GHz

CPU and 16GB memory. First, the result was compared with several state-

of-the-art studies (See Table 3.5) to highlight the effectiveness of the method

in saving computation time. Second, since the proposed method allows to be

implemented in a parallel manner, which can further reduce the computation

time, we also performed a preliminary test using multiprocessing-based par-

allelism with different number of computer server cores (shown in Table 3.6).

Table 3.5: Computation time comparison of distributed and centralized method

Network size Simulation
Method

CCT(s) DCT(s) ∆
CT

Reference

56 intersections,
194 links

Cell Trans-
mission
Model

13,320 1,980 85% Adacher and Tiri-
olo [144]

2 intersections, 7
links

Cell Trans-
mission
Model

334 (10 it-
erations)

11 97% Mehrabipour and
Hajbabaie [145]

N/A (150
iterations)

195 >100%

15 intersections, 36
links

link-node
model

500 300 40% Chow et al .[146]

*CCT is for Centralized Computation Time, DCT is for Distributed Computation Time,
∆CT=(CCT-DCT)/CCT which represents for percentage that has been improved with the distributed
method, N/A means Not Available to find the optimal solution.

For the literature listed in Table 3.5, all of the distributed methods out-

perform the centralized methods significantly in computation time, including

Chow et al. [146] who conducted their study on a network with 15 signalized

intersections, comparable to our case study network size (12 intersections).

Their centralized method required 500s and the distributed method required

300s. There is no doubt that if we utilized a centralized model to conduct our

study, the computation time would exceed 500s. After all, Chow et al. [146]

only dealt with signal parameters optimization while we further coped with

the more complex dynamic route guidance. However, our method only takes
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Table 3.6: Time cost for parallel computing in Python

Number
of Cores

Computation
Time(s)

Peak 600 Uniform
600

Peak
2400

Uniform
2400

Peak
5400

Uniform
5400

1 131.81 131.64 181.41 166.67 343.35 267.28

2 105.68 104.23 136.77 117.46 301.27 224.67

3 89.39 92.39 112.63 95.38 238.76 177.24

4 53.44 50.44 108.35 85.13 196.37 129.03

Percentage

1 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

2 80.17% 79.18% 75.39% 70.47% 87.74% 84.06%

3 67.82% 70.18% 62.09% 57.23% 69.54% 66.31%

4 40.54% 38.32% 59.73% 51.08% 57.19% 48.28%

343.35s even in the highest simulated demand level (See Table 3.6 in peak5400

case when number of cores=1). What is more, the computation time for the

whole distributed process indeed decreases in tandem with an increase in the

number of cores, as is illustrated in Table 3.6. It can also be inferred that

when a computer server with more powerful computing capability is adopted,

more time will be saved.

3.4 Conclusions

The study in this chapter contributed to the overall state-of-art by propos-

ing a simulation-based DRG-SC method. Unlike the single centralized control

system applied in most of the literature, the computational efficiency gained is

more favorable and practically suitable in the application of large traffic net-

works. The developed model captured the natural relationship between DRG

and SC, which has been overlooked in previous research. More importantly,

the division and cooperation of work for the vehicle unit, infrastructure, and

TMC described in this chapter can be easily transferred to similar distributed

control problems. The overall study clarifies how MEC technology can make

progress on the traffic operation and control problems for CAVs.

Firstly, for dynamic routing, the UO and SO targeted strategy were inves-
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tigated that represented the system’s achievable long-term performance and

upper bound best performance respectively. The model looked into the de-

lay caused by signal control to compute the travel time more precisely. From

the case study, vehicles were noticed to re-route more frequently under higher

demand cases. Moreover, the ‘compliance rate’ was defined to discuss the sys-

tem performance, and as expected, it surpassed when more vehicles selected

the SO-based routes; Secondly, since the proposed ASC strategy considered

both vehicles’ maximum waiting time and routing plans to decide the exact

phase split and sequence, it was particularly effective in reducing delay and

improving throughput. Finally, according to the computation time testing re-

sult, the capabilities of the distributed framework in enhancing computation

efficiency is notable, which yet confirmed the necessity of disposing MEC in a

CAV environment.

Looking ahead, an essential component to be considered is travel time pre-

diction. With predicted travel time information, vehicles can avoid congestion

by responding in advance, thereby improving system performance coopera-

tively instead of reactively on real-time information only.
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Chapter 4

Distributed Back-Pressure
Routing for CAVs

4.1 Introduction

As introduced in Chapter 3, Existing DRC solutions usually derive from a DUE

or DSO model. DUE focuses on benefiting individual vehicles by guiding them

to the shortest route using the Dynamic Shortest Path (DSP) algorithm. In

practice, the DSP is widely utilized in popular route planners such as Google

Maps and Waze. In research, the DSP is also applied in extensive papers

for designing effective DRC strategies [15], [147], [148]. For instance, Chai et

al. [15] proposed a dynamic traffic routing algorithm for CAVs that seeks the

shortest path by looking up a real-time updating cost table. The researchers

consider the impact of signal control, and their algorithm significantly reduces

the average delay when tested in a simulated network. Mahajan et al. [149]

designed a user equilibrium-routing strategy for CAVs by conducting a multi-

agent control. Individual vehicles are smart enough to ‘talk’ with each other,

anticipate future traffic dynamics, and make decisions. This study predicts

travel time using neural networks, and vehicles choose the most beneficial

route based on the predicted travel time. Since these studies characterize

CAVs as selfish travelers without considering the behavior of others, they

direct all vehicles with the same OD to the same shortest route. As a result,

the solution based on DSP often results in unbalanced density over the network

which may instead cause new congestion, especially in higher-demand cases.
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Different from the DUE-based principle, the DSO assigns vehicles to routes

that can achieve the best performance of the whole system where some vehicles

may sacrifice to go to longer routes. This benefit of the DSO’s better system

performance is entirely achievable by CAVs when they travel cooperatively

and follow strictly the given instructions, thus attracting the interest of traf-

fic management and control agencies. Research inspired by the idea of DSO

[150]–[152] is supported by the postulation that all CAVs will adopt the DRC

strategy given by the system to achieve the best network performance. With

this potential, Bagloee et al. [150] formulated a mathematical DRC model for

mixed-traffic conditions where the non-CAVs travel along the shortest route

and all CAVs follow the system’s optimal route. Their model outperforms the

single DUE-based model with respect to vehicles’ average travel time. Du et

al. [132] also proposed a coordinated online in-vehicle routing mechanism that

balances DUE and DSO by information perturbation. Both systems and indi-

vidual vehicles can benefit from the strategy even when vehicles make selfish

route choices. Despite achieving excellent network performance, the problem

in these DSO-based studies is formulated as complex non-linear programming

models that are complicated to solve and costly to converge. For this reason,

the DSO-based model has not been broadly applied in real-time CAV control

cases so far.

As a matter of fact, both the DUE and the DSO models are solved in

a centralized manner. In other words, the real-time information of all links

over the network is required to update the travel cost for the studied route.

That real-time data gathered from CAVs and intersections is sent to the cloud

(i.e., TMC) to be processed, and the TMC is generally located far away from

vehicles. Therefore, this type of centralized data processing framework costs

significant amounts of communication time [153], which compromises the per-

formance of the real-time route control.

The potential problems of centralized methods motivated the emergence

of distributed DRC approaches. The MEC architecture introduced by the

European Telecommunications Standards Institute (ETSI) has undoubtedly

given rise to the possibility of a more efficient distributed DRC algorithm [154].
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With increasing data storage, privacy concerns, and the need to reduce end-

to-end delay and improve control performance, distributed DRC supported by

the MEC framework is increasingly considered the better choice for CAVs.

However, despite the aforementioned advantages, the computational capa-

bility of the MEC is not as powerful as that of the TMC [141]. And, unlike

the TMC which maintains global information of the whole network, only lo-

cal information is available at the MEC. Considering such circumstances, a

distributed DRC method that possesses low computational complexity and

exploits only local information should be developed. Coincidently, the back-

pressure (BP)-based principle appropriately fits the needs.

As introduced in chapter 2, the BP algorithm was initially developed by

Tassiulas and Ephremides [76] for scheduling the data packets in wireless com-

munication networks and it was widely utilized in the packet routing control

[155], [156] to reduce the network congestion and improve throughput. The

principle of BP is to define a function to measure the degree of occupation and

direct data packets to those more vacant links. The algorithm incorporates the

features of both distributed and feedback control, simple but flexible, making

it also popular to be applied in many control systems (e.g., Piping systems

and road traffic systems).

For the road traffic system, the BP has also gained attention in vehicle

routing [87], joint signal control and routing problems [86], [89]. Representative

studies applying the BP principle were summarized in Table 4.1, where the

embedded network model, BP function, control effectiveness, and drawbacks

were presented.

From the Table, most of the existing BP-based studies defined the BP

function based on queue length. As a result, issues arise as the queues at each

node need to be separated for different turning movements, and the embed-

ded point queue model assumes an unrealistically infinite capacity of links.

Thus, queue length-based BP application although can maximize the network

throughput and stabilize the queue, may lead to traffic conservation failures

and congestion propagation. To avoid the infinite queue length assumption,

researchers further proposed travel time, virtual queue length, etc. as BP
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Table 4.1: Comparison of BP utilized in different applications

Control ob-
jective

Embedded
model

BP function Effectiveness (Y) and
drawback (N)

Paper

Packet routing
control

Graph-based
network model

Packet queue
length

(Y)Maximizes throughput
and stabilizes queues

Tassiulas and
Ephremides
[76]

(N)Point queue assump-
tion and the queuing sys-
tem requires to be synchro-
nized

Packet routing
control

Graph-based
network model

Packet queue
length

(Y)Minimizes path length
between origin and desti-
nation

Ying et al.
[155]

(N)Point queue assump-
tion and increased delay
under light traffic

Packet routing
control

Graph-based
network model

Link transmis-
sion rates

(Y)Reduces average packet
delay especially for heavy
traffic

Gao et al. [156]

(N)Increases delay under
light traffic

Signal timing
control

Store-and-
Forward Model

Queue length (Y)Maximizes network
throughput, stablizes
queues

Varaiya [80]

(N) Unrealistic infinite ca-
pacity assumption

Kouvelas et al.
[83]

Signal timing
control

Cell-based flow
model

Estimted queue
length

(Y)Better than adaptive
control even with only 10%
penetration rate of CVs

Li et al. [157]

(N)Performance is limited
by the control frequency

Signal timing
control

VISSIM-based
simulation
model

Cyclic and
non-cyclic
based queue
length

(Y)Outperforms the actu-
ated signal control

Sun and Yin
[84]

(N)Point queue assump-
tion

Signal timing
control

AIMSUN-based
simulation
model

Travel time (Y)More effective than
queue length-based BP
control, especially for
avoiding spillback phe-
nomena

Mercader et al.
[158]

(N)Lead to reduced aver-
age speed

Signal timing
control with
adaptive rout-
ing

VISSIM-based
simulation
model

Virtual queue
length

(Y)Shows good control
performance in congested
case

Zaidi et al. [86]

(N)Point queue assump-
tion and poor performance
in light traffic

Signal timing
control with
adaptive rout-
ing

DSMART-based
simulation
model

Queue length
and Travel
time

(Y)Combined link and
route pressure for signal
control and routing respec-
tively

Kampen [89]

(N)Poor performance in
light traffic

Vehicle route
control

Discrete traffic
flow model

Queue length (Y)Considering individual
satisfaction while aiming to
achieve better system per-
formance

Zhang et al.
[87]

(N)Limited demand pro-
files were tested
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functions (Mercader et al. [158], Zaidi et al. [86], Kampen [89]), and the re-

sults turned out to be more effective and realistic when compared with those

using queue length only. These BP functions can help to evenly distribute

the demand among the links and improve network mobility. However, most of

them were only effective in congested cases while showing poor performance

in light traffic cases. To address the above issues, this chapter contributed in

the following aspects:

I. A novel BP-based routing algorithm was proposed to deliver scalable

and responsive DRC strategies: The proposed algorithm only relies on the

real-time upstream and downstream traffic information as input so that it can

be solved at the network edges without the data transmitted to the cloud. The

communication latency and computing cost were significantly reduced, which

is highly suitable for the MEC-enabled CAV controls.

II. Different from most BP-based applications, in the proposed algorithm, a

new BP function was defined to avoid the unrealistic point queue assumption:

Instead of using queue length, the ratio between real-time link density and jam

density was utilized to calculate the BP. Furthermore, the proposed method

pre-identifies the congestion degree of the network to determine whether re-

routing is necessary which helps to improve the control effectiveness of the

algorithm in low-demand cases.

III. The proposed algorithm performs better than DSP and can even com-

pete with DSO in congested cases but the computational cost is far below

the DSO: Verified by case studies, the presented algorithm outperforms DSP

in average travel time, waiting time, etc. while can get a close performance

of the system optimal state generated by the centralized DSO control. The

developed algorithm is not intricate but effective, which is of great practical

significance.
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Table 4.2: Notations

N Set of all nodes

L Set of all links

R Set of all routes

F Set of all vehicles

I Set of all signalized intersections

Ωq Set of all traffic streams

M Set of all movements

τ Time duration of each time interval

T Maximum time horizon

Γ−1
ij Set of predecessor links of link ij

Γij Set of successor links of link ij

qtij Flow on link ij during time interval t

ρtij Density on link ij during time interval t

vtij Average Speed on link ij during time interval t

Lij Length of link ij

qin,ij
t Inflow of link ij during time interval t

qout,ij
t Outflow of link ij during time interval t

γmi
t Turning ratios in the predecessor intersection m of intersection i

Qij
q,t The queue length for flow q on the upstream link ij within the time

interval t
Qjl

q,t The queue length for flow q on the downstream link jl within the time
interval t

BP[ij,jl]
q,t Backpressure of flow q going from ij to jl in time interval t

qt
∗

[ij,jl] Traffic stream with the highest backpressure

wt
[ij,jl]

The weight of movement going from link ij to link jl in time interval t

rt∗f The optimal route (link set) for vehicle f in time interval t

ρij
jam Jam density of link ij

P t
[ij,jl] Routing probability for movement from ij to jl in time interval t

ξtij Binary variable, describing whether re-routing is conducted for vehicles
on link ij in time interval t

xtij Real-time vehicle number on link ij in time interval t

xmax,ij The maximum vehicle number the link ij can bear

α The proportion of the link to be occupied, α ∈ [0, 1]
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4.2 Methodology

4.2.1 Network Model

Define an arterial traffic network as a directed graph G = (N,L), where N

is the set of nodes and L is the set of directed links. A directed link from

node i to node j is represented by (ij ∈ L ); vehicles with the same OD

constitute a traffic flow q, and the OD pair of flow q is denoted by (o(q), d(q)),

where o(q), d(q) ∈ N . Eq. (4.1) describes the fundamental flow-density-speed

relationship which ensures the flow qij
t on a particular link ij during time

interval t equals the product of time-dependent density ρij
t and speed vij

t

on link ij (t=1,2,. . . . . . ,T . T is the maximum time horizon). Eq. (4.2)

describes the flow conservation law, where Lij is the length of link ij. Lijρij
t

represents the total vehicle number on the lane during time interval t. It is an

iterative variable which equals the summation of the number of vehicles on the

lane during the last time interval t− 1 and the difference between inflow and

outflow accumulated during the time duration τ of each interval. In addition,

the inflow should be part of the flow from its upstream links as shown in Eq.

(4.3) where γmi
t is the turning ratios in the predecessor intersections, and m is

the index of the predecessor node of node i. The notations used in this section

were given in Table 4.2.

qij
t = ρij

t · vij t, ∀ij ∈ L; t = 1, 2, ......, T (4.1)

Lijρij
t = Lijρij

t−1 + [qin,ij
t − qout,ij

t] · τ,
∀ij ∈ L; t = 1, 2, ......, T

(4.2)

qin,ij
t = γmi

t
∑

mi∈Γ−1
ij

qout,mi
t, ∀ij ∈ L, t = 1, 2, ......, T (4.3)

4.2.2 Original Back-Pressure (OBP) Routing Algorithm

To explain the OBP routing algorithm, let Qij
q,t be the queue length for flow

q on the link ij within the time interval t, and Qjl
q,t be the queue length for

the same flow q on its downstream link jl within the time interval t. From

Athanasopoulou’s work [77], the original back pressure of movement from link
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ij to link jl is defined as (Eq. (4.4)):

BP[ij,jl]
q,t = Qij

q,t −Qjl
q,t, ∀ij, jl ∈ L; t = 1, 2, ......, T (4.4)

Use qt
∗

[ij,jl] to denote the traffic stream with the highest backpressure, where

Ωq is the set of all traffic streams:

qt
∗

[ij,jl] = argmax
q∈Ωq

{Qij
q,t −Qjl

q,t},

∀ij, jl ∈ L; t = 1, 2, ......, T
(4.5)

Then, the weight assigned for this stream qt
∗

[ij,jl] is:

w[ij,jl]
t = max{[Qij

qt
[ij,jl]

∗
,t −Qjl

qt
[ij,jl]

∗
,t], 0},

∀ij, jl ∈ L; t = 1, 2, ......, T
(4.6)

A route is composed by a set of links that can be activated simultaneously.

The optimal route (link set) for vehicle f during time interval t, rt
∗

f is derived

from the following equation, where R is the set of all candidate routes.

rt
∗

f = argmax
r∈R

∑
(ij,jl)∈r

w[ij,jl],f
t,

∀ij, jl ∈ L; f ∈ F ; t = 1, 2, ......, T
(4.7)

4.2.3 Modified Back-Pressure Routing Algorithm (MBP)

Considering the disadvantages of the OBP based on queue length, the study

proposed to define BP using the difference of the squared ratio of density and

jam density of two adjacent links (Eq. (4.8)). This ratio can appropriately

describe the degree of occupation for links and the square puts additional

weight on links near jam conditions.

BP[ij,jl]
t =

[
ρij

t

ρijjam

]2
−
[

ρjl
t

ρjljam

]2
,

∀ij, jl ∈ L; t = 1, 2, ......, T
(4.8)

Then, the weight of the traffic flow going from link ij to link jl changed

accordingly:

w[ij,jl]
t = max

{[
ρij

t

ρijjam

]2
−
[

ρjl
t

ρjljam

]2
, 0

}
,

∀ij, jl ∈ L; t = 1, 2, ......, T
(4.9)

Additionally, the routing probability is adaptively updated by the multinomial

logit model (Eq. (4.10)) rather than allowing all the vehicles to choose the
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link with the highest BP.

P[ij,jl]
t =

ew[ij,jl]
t∑

[ij,jl]∈M
ew[ij,jl]

t ,∀ij, jl ∈ L; t = 1, 2, ......, T (4.10)

4.2.4 Modified Back-Pressure Routing Algorithm with
Congestion Identification (MBP+CI)

According to the calculation above, the probability of vehicles being routed

to links with higher pressure is always greater than those with lower pressure.

When the link congestion level is low, the algorithm may cause unnecessarily

longer routes. In fact, the best route for vehicles should initially be the static

shortest route during cases without congestion. For that reason, a binary

variable ξij
t is adopted to determine whether to carry out the MBP re-routing

control. At every time interval, the real-time traffic state is acquired and,

only when the obtained number of vehicles on the link exceeds a particular

threshold, the re-routing process is conducted. Here, the threshold was defined

as α multiplied by xmax,ij, the maximum vehicle number the link can bear, as

shown in Eq. (4.12), where the value of α ranges from 0 to 1, representing the

proportion of the link to be occupied.

ξij
t =

{
0, xij

t < xthreshold,ij

1, xij
t ≥ xthreshold,ij

,

∀ij ∈ L; t = 1, 2, ......, T
(4.11)

xthreshold,ij = α · xmax,ij, α ∈ [0, 1]; ij ∈ L; (4.12)

The procedure of the MBP+CI algorithm is summarized in Table 4.3.

4.2.5 Dynamic Shortest Path (DSP) and Dynamic Sys-
tem Optimal Assignment (DSO)

The DSP and DSO control serve as comparison benchmarks. In this chapter,

the average travel time on links is calculated using the link length divided by

the real-time mean speed. Additionally, apart from the average travel time

on links, the delay at intersections caused by the signal control was particu-

larly considered. Then, the route with the shortest travel time for a traffic
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Table 4.3: Procedure for the MBP+CI algorithm

Input Network topology, demand, signal control parameters; The number
of vehicles on adjacent links of intersection i; The set of all candi-
date routes of each specific vehicle f ;

Output The routing probability P[ij,jl]
t

Step 1 Get the set of downstream links of the current link ij, Γij

Step 2 Get the subset of Γij as SΓij , where the candidate routes of vehicle
f are included;

For jl ∈ SΓij:

Step 3 Get the real-time vehicle number xij
t , the density ρij

t, ρjl
t on

links;

If ξij
t = 0, xij

t ≤ xthreshold:

Step 4 Keep the original route of vehicles;

Else:

Step 5 Calculate the pressure BP[ij,jl]
t between link ij and link jl;

Step 6 Determine the weights:

w[ij,jl]
t = max

{[
ρij

t

ρijjam

]2
−
[

ρjl
t

ρjljam

]2
, 0

}
Step 7 Calculate the routing probability P[ij,jl]

t;

Step 8 Choose the next link based on P[ij,jl]
t;

End

End

stream can be searched by the Dijkstra algorithm. The analytical DSO model

is hard to solve, and in our study, the DSO was formulated and solved in a

simulation-based manner. A quadratic fitting was utilized to find the relation-

ship between travel time and traffic volume, and the shortest marginal travel

time was derived based on this relationship as introduced in chapter 3. After

that, the shortest marginal travel time route is searched for solving the DSO.

Details for the formulation and solution of both DSP and DSO can be found

in [37], [38].
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4.3 Case Study

The algorithm was tested in SUMO and during the simulation, the re-routing

policies were updated every 90s. During each interval, Python acquired the

real-time data from SUMO to process and solve the corresponding DRC model

to find the next optimal link to go. The solution was conversely imposed on

the vehicles to change their route, and this procedure was repeated until all

vehicles left the network.

4.3.1 Testing Network

Two networks were simulated to evaluate the effectiveness of the proposed

algorithm.

Figure 4.1: Testing network 1 and demand profile

1) Testing network 1: A three-by-four grid network (Fig. 4.1 (a)) with 12

signalized intersections (as illustrated in Fig. 4.1 (b)) served as testing network

66



1. There were 62 links in total, with a speed limit of 50km/h and each link was

300 meters long. Moreover, each link had three lanes for left-turn, through

and right-turn movements, respectively. The signal timing plan was fixed and

determined in advance according to the demand.

Three different demand levels were tested, as outlined in Fig. 4.1(c). The

demand was loaded in the first simulation hour, during which the vehicles

were generated every five minutes. What is more, there was a five-minute

warm-up duration before the start, and a particular demand of vehicles was

fed to the simulation so that the network could be reasonably occupied. Then,

600, 2,400, and 5,400 tagged vehicles were loaded for demand levels 1, 2, and

3 corresponding to free flow, moderately occupied and congested road traffic

conditions. The distribution of the OD demand was asymmetrically generated

over the network so that the flow patterns were different for distinguished

links.

2) Testing network 2: The larger and more complex downtown area of Ed-

monton, Canada was utilized as the testing network 2 (as shown in Fig. 4.2)

which provides enough routing possibilities for further verifying the algorithm

performance. The detailed information (e.g., number of lanes, lane length,

speed limit, type of control for intersections) was built according to the field

condition. Most of the link length is less than 150 meters and there are 234

links and 79 nodes in total where 43 nodes were controlled by a signal. Simi-

larly, three demand levels were tested still correspond to free-flow, moderately

occupied, and congested networks with 3,000 vehicles, 9,000 vehicles, and 12,

000 vehicles loaded for demand levels 1, 2, and 3. The demand loading pattern

and re-route settings were similar to that in testing network 1.

4.3.2 Overall Performance

In the simulation, four different control strategies (i.e., the DSP, DSO, MBP

and MBP+CI) were compared, and the corresponding results were discussed.

For the MBP+CI control, the α was set to 0.5, and the sensitivity analysis of

the α value will be given at the end of this Section. As outlined in Table 4.4,

four performance metrics, including vehicles’ Average Waiting Time (AWT),
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Figure 4.2: Testing network 2-Edmonton downtown area

Average Travel Time (ATT), Average Departure Delay (ADD) and Average

Speed (AS), were adopted to measure the effectiveness of these methods. AWT

and ATT were defined as standard, while ADD represented the time difference

between the vehicle’s scheduled departure time and its real departure time. AS

only counted the speed values larger than zero. As expected, when the network

was less congested, the value of AWT, ATT and ADD would decrease while

the value of AS would increase.

In Table 4.4, the effectiveness of the control methods was represented by

the number of stars, with one being the worst and five being the best. No

matter for testing network 1 or network 2, in demand level 1, the perfor-

mances of the DSO and DSP are close in value since, in free-flow cases, the

dynamic shortest path or dynamic marginal shortest path is the same as the

static shortest path. However, the performance deteriorated when the MBP

was applied. All four metrics worsened compared to those with DSP control.

Basically, the MBP algorithm is a greedy searching algorithm because it only

considers the first link of the route when computing the BP. In free-flow con-

ditions, the network performance can be good enough when vehicles follow the

pre-defined static shortest path, and almost no congested links can be further

improved by re-routing. In this case, applying the MBP algorithm may in-
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Table 4.4: Performance of different control strategies

AWT (s) ATT (s) ADD (s) AS
(km/h)

Effective-
ness

DSP 92.11 226.15 6.17 36.79 ****
Testing Demand Level 1 MBP 127.93 297.17 6.19 36.54 *
Network (Free flow) MBP+CI 92.15 229.42 6.18 36.65 **
1 DSO 89.36 207.77 6.17 36.82 *****

DSP 169.54 325.67 14.28 29.77 *
Demand Level 2 MBP 159.21 309.32 14.22 30.68 **
(Moderately Occu-
pied)

MBP+CI 121.40 253.29 14.15 33.49 ***

DSO 100.48 214.93 14.06 35.11 *****

DSP 530.45 736.07 24.62 19.84 *
Demand Level 3 MBP 305.82 458.57 21.74 26.71 ***
(Congested) MBP+CI 163.82 300.67 21.08 29.84 ****

DSO 149.34 271.00 21.34 33.34 *****

DSP 65.42 188.25 4.56 36.84 ****
Testing Demand Level 1 MBP 77.64 198.59 6.37 36.16 *
Network (Free flow) MBP+CI 72.42 191.23 5.48 36.46 **
2 DSO 60.73 177.75 4.25 36.91 *****

DSP 275.81 443.78 13.37 30.04 *
Demand Level 2 MBP 206.59 331.95 11.38 31.85 **
(Moderately Occu-
pied)

MBP+CI 164.72 298.66 10.92 32.74 ***

DSO 112.04 222.49 8.77 33.15 *****

DSP 623.59 802.89 22.74 20.12 *
Demand Level 3 MBP 347.13 548.95 15.22 21.49 ***
(Congested) MBP+CI 329.26 502.37 14.47 23.06 ****

DSO 265.64 398.20 13.53 24.33 *****

stead guide some vehicles to unnecessarily longer routes and result in inferior

network performance. Thus, although the proposed MBP+CI algorithm still

demonstrated poorer performance than the DSP, it performed better than the

MBP because the added constraint that only when the link was identified as

congested, the re-routing process was conducted.

The situation has changed in higher demand cases (demand level 2 and

especially demand level 3). The DSP algorithm was no longer as effective as

it was in free-flow conditions. Both MBP and MBP+CI outperformed the

DSP. In demand level 3, when the whole network is congested, the superi-

ority of the MBP+CI is more pronounced, with significant improvement on

all performance metrics, becoming even comparable to the DSO. This level of

performance also indicates the potential of the proposed method to achieve

system optimal with local information.

To further explore the algorithm performance, the Macroscopic Fundamen-

tal Diagram (MFD) analysis and the Queuing analysis were also conducted

where the testing network 1 was chosen as an example.
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4.3.3 MFD Analysis

The MFD was initially formalized by Daganzo [159] describing the relationship

between the aggregated flow along all the links in the network (i.e., production

or flow) and the total number of vehicles in the network (i.e., accumulation

or density). The MFD can considerably relieve the understanding of complex

traffic phenomena and is thus widely adopted to analyze diverse traffic control

measures [160]. Fig. 4.3 draws the relationship between the network pro-

duction and accumulation for different demand levels and control scenarios.

From the scatter plot of demand level 1 in Fig. 4.3(a), although these dots

Figure 4.3: Relationship between network production and accumulation

are spread out within a certain region, they are sparse in higher-density places

while dense in lower-density regions. There is little difference between the

MFD of different control methods, and none of them has a congested branch.

However, in demand level 2, an inverse-U shape of MFD was obtained; A con-

gested branch appeared when the DSP control was applied but disappeared
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for the other three control strategies. Furthermore, the performance of the

other three methods also seems similar.

In demand level 3, in addition to the scatter plot, the line chart was also

given in Fig. 4.3(d) to better illustrate the MFD patterns. Under this demand

level, the other three control methods possessed a congested branch other than

for the DSO control. Moreover, the network production was consistently higher

during the onset of congestion than during the dissipation of congestion. In

other words, the relationship between network production and accumulation

exhibits prominent clockwise hysteresis loops. This phenomenon is caused

by the uneven demand distribution and the naturally occurring instabilities

when the network is congested [161]. Yet, the critical density evidently moves

to the left (i.e., lower value) region when the MBP and MBP+CI methods

were applied compared to the DSP, demonstrating a decrease of congestion on

the links. As for the network outflow, the critical point for demand levels 2

and 3 had a comparable value at around 400 veh/h/lane. However, it is noted

that the value in demand level 1 was much lower than the other two demand

levels which is caused by the under-utilization of the road capacity in free-flow

conditions.

4.3.4 Queueing Analysis and Congestion Pattern Visu-
alization

Fig. 4.4 illustrates the evolution of average queue length and congestion

heatmap under different control methods. In all three demand levels, the

queue length value changed principally according to the demand loading pro-

file. However, the figures demonstrate a periodic increase and decrease trend

with the drastic ups and downs for demand levels 1 and 2. This phenomenon

is because most of the queues that accumulated during the red signal can be

discharged during the following green, and new vehicles can enter the lane

in the next time interval. Nonetheless, the line becomes smoother in demand

level 3 since only a few queued vehicles can be served within each time interval.

The congestion pattern of the network under demand level 3 with different

control methods was also visualized in Fig. 4.4(d). The average volume under
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Figure 4.4: Vehicle queueing for different demand levels and congestion heatmap under
different control

each control strategy was adopted as weight to draw the congestion heatmap.

The network under the DSO routing strategy is unimpeded. Moreover, since

the proposed MBP and MBP+CI routing algorithm can not only push vehi-

cles toward less congested links but also keep vehicles from moving to those

congested links, the traffic flow under the BP-based methods demonstrates a

more uniform pattern than under the DSP control.

4.3.5 Sensitivity Analysis of Parameter α

As stated in Section 4.2, the drawback of the MBP algorithm is that some

vehicles may be guided to unnecessarily longer routes especially when they

are traveling on uncongested links. Hence, the improvement of the MBP+CI

algorithm over the MBP algorithm is clarified here, i.e., the MBP algorithm
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will only be applied provided that the number of vehicles on the link exceeds

the threshold. In Eq. (4.12), the MBP+CI algorithm is equivalent to the MBP

when α = 0, since the number of vehicles on links will always be larger than

or equal to 0 ( xij
t ≥ 0 always holds). Along with the increase of α , the MBP

algorithm will be specifically applied to links with a certain number of vehicles

that exceeds the threshold, while for those with a vehicle number lower than

the threshold, the re-routing process will not be applied, and consequently,

the vehicles will obey the initially static shortest path.

To investigate the impact of α on the control performance, the ATT was

calculated in testing network 1 under MBP+CI control using different α values.

The results were compared with the other three control methods and illustrated

in Fig. 4.5.

In demand level 1 (Fig. 4.5(a)), the free flow case, the MBP, and MBP+CI

control were worse than the DSP and DSO control. Essentially, since there’s

no congestion happening, the static shortest path is sufficient for achieving the

best system performance. In this case, the static shortest path, the DSP, or

even the DSO shows comparable control effectiveness. However, when applying

MBP+CI, with the increase of α , the ATT was reduced compared with MBP

because many unnecessary re-routing has been avoided. That is why we can

see a decreasing trend of the ATT in Fig. 4.5(a) from α = 0 to α = 0.6. When

α > 0.6, since only very few links can reach the re-routing threshold, most

of the vehicles will not be re-routed but just obey the static shortest path,

resulting in a very close ATT value with the DSP control.

For the moderately occupied case in demand level 2 (Fig. 4.5(b)), when

the value of α is relatively low (≤ 0.5), the MBP+CI can also reduce the ATT

compared with the MBP control. However, when α ≥ 0.6, the ATT begins to

increase since the high threshold limited many vehicles to be re-routed. When

α ≥ 0.8, the performance was even worse than the DSP control since most of

the vehicles hadn’t been re-routed. This is different from the free flow case.

When the network is moderately occupied, if no re-routing was conducted,

vehicles obeying the static shortest path will fail to adapt to the real-time

traffic condition and lead to higher travel time.
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Figure 4.5: Average travel time with different values (a) Demand level 1-600 Vehicles (b)
Demand level 2-2,400 Vehicles (c) Demand level 3-5,400 Vehicles

In demand level 3 (Fig. 4.5(c)), the congested case, the overall trend is

similar to that in demand level 2. Nevertheless, in such a congested case, the

performance of the MBP+CI is better than the DSP until α ≥ 0.9. That is

because most of the links were occupied to a higher extent, when α = 0.7 or

α = 0.8, a majority of the vehicles can still be effectively re-routed.

Overall, to guarantee the MBP+CI control performance, the value of α

cannot be too small or too large. Although in different demand cases, the

best value of α is different ( α ≥ 0.5 for demand level 1; 0.3 ≤ α ≤ 0.5

in demand level 2; 0.3 ≤ α ≤ 0.6 in demand level 3), a value of 0.5 or 0.6

is generally a good choice. In specifc networks, the best value of α can be

designed according to the exact demand level and demand loading patterns.

With an appropriate design of the α value, the proposed algorithm can always

generate a good control performance using local information to compete with

the DSO control.

4.3.6 Communication and Computation Cost

Having presented the performance of the proposed method in mitigating traffic

congestion and improving efficiency, this Section discusses the related commu-

nication and computation costs of these methods to determine the feasibility

of applying the proposed approach to the MEC-enabled CAV environment.

First, the Time-Complexity, which describes the computer time it takes

to run the algorithm, was analyzed for all methods. The complexity of DSP

is O(N2, F, T ) , where N is the number of nodes over the network, F is the
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number of vehicles and T is the total number of control intervals. The DSO

is more complex than the DSP since it considers the converged case. The

complexity of the DSO is O(N2, F, T, I), where I represents the number of

iterations. It is apparent that when the traffic demand (F ) becomes higher

and the network becomes larger (N), the computation complexity of both the

DSP and DSO would increase exponentially and be difficult to solve within a

polynomial-time range. For the MBP and MBP+CI, on the other hand, the

corresponding algorithm complexity is O(N,F, T ), which is a linear operation

and can be solved rapidly even in large networks. Table 4.5 illustrated the

algorithm execution time of different methods. It is obvious that the MBP

and MBP+CI outperformed the other two algorithms.

Table 4.5: Execution time of different algorithms

DSP[s] DSO[s] MBP[s] MBP+CI[s]

Testing
network 1

Demand level 1 13.77 18.58 12.40 12.57

Demand level 2 42.02 95.29 22.32 26.97

Demand level 3 143.74 511.59 34.72 42.47

Testing
network 2

Demand level 1 155.76 170.72 149.12 153.46

Demand level 2 428.11 569.22 198.77 216.83

Demand level 3 635.58 1467.04 237.03 244.68

In a real CAV environment, a successful control process includes model

calculation and solution communication. The radar chart in Fig. 4.6 compares

the total time cost for a complete process using the four different control

methods. The time is divided into five parts:

1) Connection set up time (CSUT): CSUT is the preparation time before

control commences ensuring all the necessary utilities are successfully con-

nected. This time cost is low, and it is the same for all the control methods.

2) Input data transmission time (IDTT): IDTT represents the time to

transfer the original data precepted by the CAVs to the computing server.

The DSP and the DSO require the data for the whole network to search for

the optimal route. Thus, data from all CAVs must be sent to the TMC for

processing, with a significantly high time cost. The MBP and MBP+CI require
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Figure 4.6: Time cost comparison of different DRC strategies to be applied in a real CAV
environment

only upstream and downstream information, and the MEC manages the input

data. The resulting IDTT for the MBP and MBP+CI would be notably lower

than the DSP and DSO.

3) Algorithm execution time (AET): AET represents the time needed to

execute the corresponding algorithms that generate output when the input

data is ready. This is the time illustrated in Table 4.5. It is worth noting that

since the MBP and MBP+CI algorithms are designed in a distributed manner,

the computation tasks can be divided and run in parallel by several servers

similar to the comparision in the last Chapter, which can further reduce the

AET for MBP and MBP+CI.

4) Output data transmission time (ODTT): ODTT is similar to IDTT,

which is the time to communicate the output DRC strategy to CAVs. The

MBP and MBP+CI that are solved at the MEC are still dominant for the

ODTT.

5) Time for other processes (TOP): TOP is the time for any other necessary

processes. This time cost is also low and the same for all the control methods.
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4.3.7 Scalability

In general, the scalability of a control method is determined by the input data

collection and the algorithm solving manner. For centralized DRC methods,

the input data of the entire network needs to be sent to the TMC, and the

algorithm can only be executed with all these data ready. In addition, as

analyzed above, the computational cost has an exponential relationship with

the vehicle number and the network scale. As a result, they cannot even find

a feasible solution within a polynomial-time range when applied to a large

network. In this case, the scalability is very low.

Different from the centralized DRC approaches, the proposed method in

this Chapter applied a distributed manner for both collecting data and solving

the DRC problem, and the distributed control manner is inherently scalable.

The scalability of our method mainly depends on the definition of the BP func-

tion. To analyze from Eq. (4.8), the calculation of the BP only related to the

real-time density of the studied intersection and its downstream intersections,

and the routing strategy was directly determined by the BP value. In other

words, the solution of the routing strategy can be independently obtained from

the MEC server at each intersection with the data from neighboring intersec-

tions. Therefore, the data processing and computation are independent of the

network scale, and the scalability of the proposed method is in plain sight.

4.4 Conclusions

This chapter developed a novel distributed DRC algorithm that can be appro-

priately applied to the MEC-enhanced CAV environment based on the idea of

BP routing. The algorithm aims to provide CAVs with reliable and prompt

routing advice to achieve more efficient traffic circulation. Unlike the tradi-

tional DSP or DSO routing strategies, the algorithm relies on local information

only. It identifies congestion and computes the routing probability according

to the pressure calculated by real-time traffic density.

The study investigated the performance of the proposed algorithm through

case studies conducted in SUMO. The proposed algorithm outperformed the
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DSP for improving traffic efficiency, especially in higher demand cases. The

MFD was applied to analyze and help understand the network performance

under different control strategies. The result demonstrated that the proposed

algorithm can effectively mitigate congestion, as illustrated by the dots in the

MFD moving from the high-density region to the low-density region. Although

the performance of the proposed distributed algorithm is not as good as the

centralized method, the gap between the MBP+CI and the DSO is relatively

small. However, the proposed method’s reduced communication and com-

putation cost over the DSO more than compensates. Overall, the proposed

distributed DRC method turns a global routing decision into a set of local

decisions, and the whole research work showcases the potential of distributed

DRC algorithms to be deployed within a real MEC environment.
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Chapter 5

Leveraging Dynamic
Right-of-Way Allocation and
Tolling Policy for CAV
Dedicated Lane Management

5.1 Introduction

As mentioned in Chapter 2, the technology of CAV has achieved remarkable

milestones [162]. The CAV technology has gained strong momentum due to its

potential benefits in improving traffic safety and efficiency [163]. The reliable

wireless communication between CAVs enables them to operate safely with

a shorter headway among two consecutive vehicles, thus increasing average

speed, saving energy, and reducing emissions.

A great number of publications have studied the impact of CAVs on the

road or intersection capacity using either analytical or simulation models [164]–

[166]. Among these, Levin and Boyles [166] have developed a multi-class car-

following model that has been widely utilized in the studies of road capacity

analysis under a mixed traffic environment. Based on their model, the funda-

mental diagram under different CAV penetration rate (PR) cases is drawn and

illustrated in Fig. 5.1. The figure has demonstrated that the road capacity

and wave speed can be significantly enhanced along with the increase of CAV

PR.

The potential benefits of CAV have attracted researchers not only in the
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Figure 5.1: Fundamental diagram in a mixed traffic environment under different PR cases
(**Parameter settings: Free flow speed is 14 m/s, vehicle length is 5 meters, reaction time
of CAVs and HDVs are 0.5s and 1.0s respectively).

academy but also in industry. Several internet enterprises and automakers

(e.g., Google, Baidu, Audi, Ford, etc.) have been actively launching and

testing their CAV prototypes. Furthermore, many countries all over the world

have legalized the testing of CAVs on public roads. However, in the early

stage of the CAV deployment, the CAV, and HDVs will coexist for a long time

[167]. This mixed traffic environment in the transition period makes it hard

for CAVs to give full play to their advantages. The reduced headway of CAVs

is usually limited by the longer reaction time of HDVs which is a knotty but

inevitable problem.

As introduced in Chapter 2, the CAV dedicated lanes (CAV-DLs) were

proposed to solve the above issue which tries to physically separate CAVs

and HDVs and achieve the goal of improving the road capacity utilization.

However, according to the literature review, most existing research on CAV-

DLs’ management stays more at the theoretical level, and only a few of them

have presented a detailed control strategy.

Jiang and Shang [168] proposed a dynamic CAV-DLs allocation method

with the joint optimization of signal timing and vehicle trajectory. The CAV-

DLs will be utilized as GLs when they are vacant, and the GLs can also be

turned into CAV-DLs when there are fewer HDVs but more CAVs. The idea

is innovative but hard to implement since the operation of CAV-DLs requires

support from specific communication and computation equipment that may

not be installed in the GLs. Shao et al. [169] developed a more sophisticated
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CAV-DLs control model that optimized the utilization of the CAV-DLs. The

control strategy was highly dependent on the accurate monitoring of the lane

occupancy rate. Although their simulation results appropriately demonstrated

the effectiveness of their control model, the real-time prediction of the CAV

occupancy on the dedicated lanes was not sufficiently described.

As a matter of fact, to improve efficiency and promote the adoption of

CAVs, efforts on both the technical level and policy levels are of critical im-

portance. Another efficient lane management approach is invigorated from

the economics, which maximizes the network performance through road pric-

ing policy. In general, the first type of pricing strategy was developed upon

the fundamental economic principle of marginal cost, where the tolling rate

on the road would be equal to the marginal travel cost caused by the new unit

of traffic flow [170], [171]. The second type of tolling method charges travelers

only on some restricted links or zones to realize certain objectives [172] (e.g.,

ensure equity [91], minimize emission [173], maximize revenue [174]). The sec-

ond type of tolling policy was more practical and easier to deploy. Principally,

the toll policy for mixed traffic with CAV-DLs is to grant free access to CAVs

for traveling on the dedicated lanes while allowing HDVs to use the dedicated

lanes by paying a toll. These tolls can serve as revenue and be split between

companies and the city. In this regard, the tolls will aid in funding the in-

frastructures and incentivizing users to shift to CAVs which should eventually

help to reduce emissions and improve mobility.

The idea of CAV toll lanes is derived from the HOV and HOT (High-

occupancy-toll) lanes [175]–[177]. Motivated by this concept, Liu and Song

[163] established a bi-level optimization model for the CAV toll lane deploy-

ment and solved the optimal toll value for HDVs on each dedicated lane. The

results based on two simulated networks illustrated that the system’s perfor-

mance can be significantly improved through the deployment of a CAV toll

lane. Based on the CAV toll lane proposed by Liu and Song [163], Wang et al.

[178] further designed the optimal toll rate for HDV flows with an improved

mixed traffic flow model. Although the analytical model developed in their

study captures the elasticity of the traffic demand for vehicles in response to
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the tolls, the optimization process is far from practical application due to its

high complexity.

To briefly summarize, although the CAV-DLs management strategy has

attracted many researchers, the fine-grained prediction of real-time CAV oc-

cupancy on the dedicated lane was not well addressed in the state-of-art lit-

erature. Accurate prediction of the capacity utilization on the CAV-DLs is

necessary to further improve the effectiveness of the dynamic allocation al-

gorithm. Moreover, for the CAV-DLs tolling policy, the toll rate stays the

same for each dedicated lane whenever the HDVs enter, which cannot be flex-

ibly adjusted according to the real-time congestion conditions. Furthermore,

a systematic analysis and comparison of the advantages and disadvantages

of different lane management strategies as well as their implementation rules

were lacking. As such, this chapter contributes in threefold:

I. A dynamic right-of-way allocation approach is proposed to improve the

capacity utilization rate of the CAV-DLs. The traffic flow on the dedicated lane

during each cycle is predicted by a Kalman Filter-based [179]–[181] method,

which can help better determine the lane occupancy in the next time interval

and further enhance the control effectiveness.

II. A dynamic tolling strategy has been designed to allow HDVs to use

the CAV-DLs. Different from existing tolling schemes, the toll rate here is

calculated in real-time and changes accordingly with the travel time difference

between the CAV-DLs and the GLs. The tolling rule is more realistic and

straightforward to implement.

III. The two proposed lane management strategies can tremendously im-

prove traffic efficiency, especially in low PR cases, and they can be easily ap-

plied to any other network. The strengths and weaknesses of the two schemes

are comprehensively compared and analyzed, with suggestions given from both

the technical and policy implementation points of view. The contents pre-

sented herein can benefit both traffic policymakers and practitioners in pro-

moting the adoption of CAVs.
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5.2 Methodology

5.2.1 Problem Formulation

This section introduces the mathematical formulation of the proposed CAV-

DLs management problem, with the primary objective of minimizing the total

travel time through optimized traffic flow on both CAV-DLs and GLs. To

reach the goal, two specific strategies were elaborated: Dynamic Right-of-Way

Allocation and Tolling. The Dynamic Right-of-Way Allocation method is ini-

tially presented, starting with an explanation of its fundamental rules. Sub-

sequently, a Kalman-filter-based estimation model is described, which plays a

crucial role in predicting traffic flow to determine the right-of-way. The second

strategy, Tolling, is then elaborated upon. The procedures for computing the

tolling are outlined, providing insights into how this approach complements

the overall management strategy. Related notations used in this chapter were

given in Table 5.1.

To present the model, firstly, an arterial traffic network was defined as

G = (N,A), where N is the set of nodes and A is the set of directed links.

A directed link is formed by CAV-DLs and GLs, where the set of CAV-DLs

is denoted as A , and the set of GLs is defined as Ã, satisfying A + Ã = A;

Vehicles with the same OD constitute a traffic flow q, and the OD pair w of

flow q is represented by qw(w ∈ W ). The objective function is formulated in

Eq. (5.1), which equals the summation of travel time on both CAV-DLs and

GLs.

minF (X) =
∑
a∈A

ta(xa)xa +
∑
ã∈Ã

tã(xã)xã , (a ∈ A, ã ∈ Ã) (5.1)

Eq. (5.2) denotes the travel cost on lane a. V OTm represents the value of

time for different types of vehicles, m is the vehicle type, ta is the travel time on

lane a which is a function of the lane flow xa, and τm,a is the toll on the CAV-

DLs. By multiplying the V OTm with the travel time, the unit of travel time

and toll are converted to both be in dollars. This allows them to have the same

unit and order of magnitude, enabling straightforward addition. For CAVs,
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Table 5.1: Notations

N Set of all nodes

A Set of all links

W Set of all OD pairs

A Set of CAV-DLs

Ã Set of GLs

R Set of all routes

Tk Set of study time intervals

q Flow index

w OD pair index

a Lane index

m Vehicle type index

r Route index

τm,a The toll for vehicle type m on lane a

xa Traffic flow on lane a

ta(xa) Travel time on lane a

δra Binary variable, describing whether link a is on route r

fr,w
m Path flow on a specific route r for the OD pair w, vehicle type m

Cr,w
m Minimum travel cost for a specific route r for the OD pair w, vehicle type m

qw The flow of OD pair w

xw
a,m Flow from OD pair w for vehicle type m on lane a

pka The effective utilization rate of the green time on CAV-DL a at the kth cycle

qka Traffic flow on the dedicated lane a at the kth cycle

hk
a Saturated headway of lane a at the kth cycle

gka The green time of the phase corresponds to lane a in the kth cycle

AIka CAV-DL right-of-way allocation index

αk Kalman filter modeling parameter

ωk White observation noise at time interval k

φk−1 White modeling noise at time interval k − 1

Xk State vector at time interval k

Qk State transition matrix at time interval k

Zk Observational vector at time interval k

Hk Relevance matrix at time interval k

X̂k Predicted value of Xk

P̂k Predicted error matrix at time interval k

Dk Process noise covariance at time interval k

Kk The Kalman gain at time interval k

Rk Measurement noise covariance at time interval k

ta Travel time on CAV-DLs

tã Travel time on GLs

τa,ṽ(n) The toll for vehicle ṽ using CAV-DL
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the value of τm,a would be 0, and for HDVs, the value would be determined

dynamically using the method introduced in the following sections. In Eq.

(5.3), δra is a 0-1 variable, representing the relationship between route and

lane. If the lane is included in the route, the value of δra will be 1, otherwise,

the value will be 0. Cr,w
m means the minimum travel cost, and f r,w

m denotes the

route flow on a specific route r for the OD pair w. Eq. (5.3) represents the

user equilibrium condition, and means that all vehicles from OD pair w, with

type m using the path r will have the same and minimum travel cost Cr,w
m .

For paths with higher travel costs, the flow will be zero.

C = V OTm · ta(xa) + τm,a

(m = CAV s,HDV s; a ∈ A,∀r ∈ R,w ∈ W )
(5.2)


∑
a∈A

((V OTm · ta(xa) + τm,a) · δra) = Cr,w
m , f r,w

m > 0

f r,w
m = 0,

{∑
a∈A

((V OTm · ta(xa) + τm,a) · δra)− Cr,w
m

}
> 0

(m = CAV s,HDV s; a ∈ A, ∀r ∈ R,w ∈ W )

(5.3)

Eq. (5.4) is the flow conservation constraint, ensuring the summation of

all path flow is equal to the total demand. Eq. (5.5) is the path and link flow

incident relationship, and Eq. (5.6) makes sure the summation of lane flow

equals link flow. Eq. (5.7) guarantees the flow of the two types of vehicles

equal to the link flow and Eq. (5.8) is the non-negative constraint for these

variables.

∑
r

f r,w
m = qwm, (m = CAV s,HDV s; r ∈ R,w ∈ W ) (5.4)

∑
r,w

f r,w
m δra = xw

a,m, (m = CAV s,HDV s; r ∈ R,w ∈ W ) (5.5)

xw
a,m + xw

ã,m = xw
a,m,

(a ∈ A, ã ∈ Ã, a ∈ A,m = CAV s,HDV s;w ∈ W )
(5.6)∑

m

xw
a,m = xw

a , (m = CAV s,HDV s;w ∈ W ) (5.7)

f r,w
m , xw

a , x
w
a,m, x

w
a,m, x

w
ã,m ≥ 0,

(a ∈ A, ã ∈ Ã, a ∈ A, m = CAV s,HDV s; r ∈ R,w ∈ W )
(5.8)
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5.2.2 Dynamic Right-of-way Allocation

Basic Rules

To achieve the objective of minimizing travel time and determine the traffic

flow of different vehicle types on the CAV-DLs and GLs, the first method is to

dynamically allocate the right-of-way on the CAV-DLs. In this approach, the

effective utilization rate of the CAV-DLs should be determined first which is

equivalent to the effective utilization rate of the green time on that lane [168].

It is calculated in Eq. (5.9), where qka(a ∈ A, k ∈ [1, Tk]) is the traffic flow on

the dedicated lane a at the kth cycle, hk
a is the saturated headway of lane a,

and gka is the green time of the phase corresponds to the dedicated lane in the

kth cycle.

pka = qkah
k
a/g

k
a (5.9)

Then, the dedicated lane Allocation Index (AIka ) can be expressed as Eq.

(5.10):

AIka =

{
GLs, if pka ∈ [0, ε]
CAV −DLs, otherwise

(5.10)

From the literature [182], the lanes are determined to be not fully utilized

if the saturation occupancy is lower than 0.6. Therefore, it is rational to set

ε = 0.6 because the effective utilization rate of the green time is equivalent

to the saturation occupancy. If pka ∈ [0, 0.6], it is necessary to grant access to

HDVs to the CAV-DLs, and the traffic flow will be redistributed according to

the traffic assignment model (Eq. (5.11)).

f r,w
HDV

∀r∈CAV−DLs

=

{
By assignment model, if AIka = GLs,
0, otherwise

(5.11)

Kalman Filter-based traffic flow prediction

The traffic flow qka(a ∈ A) on the lane is important for predicting the effective

utilization rate of the green time on CAV-DLs. It changes constantly over time

but is not a strict function of time, so the prediction of qka is a typical time

series analysis problem. The Kalman Filter can be selected here to properly

and effectively handle the short-term time-series traffic flow prediction [133].

Based on the modeling equation and estimation objective, the state function
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can be flexibly developed to achieve the optimum prediction of the required

information with guaranteed accuracy under the unknown statistical noise and

other inaccuracies [183]. In the study, the value of qka is calculated by a linear

function of the set of traffic volumes on the lane as shown in Eq. (5.12), which

concisely describes the system behavior with fairly good performance.

qk+1
a = αk

0x
k
a + αk−1

1 xk−1
a + ωk (5.12)

xk
a , xk−1

a represents the traffic flow on the lane a at time interval k and

k− 1. αk
0 and αk−1

1 are corresponding parameters, ωk is the white observation

noise. To convert Eq. (5.12) to the standard form of Kalman Filter, Let Xk =

(αk
0, α

k−1
1 )T , Hk = (xk

a, x
k−1
a ), Zk = qk+1

a so that Eq. (5.12) be transformed

into Eq. (5.13) and (5.14):

Xk = QkXk−1 + φk−1 (5.13)

Zk = HkXk + ωk (5.14)

where Xk is a state vector at time k, and Qk is a state transition matrix.

Zk, Hk, φk−1 is the observational vector, the relevance matrix and the white

modeling noise respectively.

Based on the converted form of the equation, the predicted value X̂k can

be calculated by Eq. (5.15), and the auto-covariance matrix for the predictive

state variables P̂k can be calculated by Eq. (5.16), where Dk−1 is the auto-

covariance matrix for modeling bias.

X̂k = QkXk−1 (5.15)

P̂k = Qk−1P̂k−1(Qk−1)T +Dk−1 (5.16)

Then, the optimal Kalman gain Kk is determined by Eq. (5.17), and the

optimal filtering estimate vector Xk can be obtained by Eq. (5.18), where Rk

is auto-covariance matrix for measurement noise.

Kk = P̂k(Hk)T [HkPk(Ĥk)T +Rk]−1 (5.17)

Xk = X̂k +Kk(Zk −HkX̂k) (5.18)
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To apply the Kalman Filter for prediction, the first step is to initialize all

necessary variables. Typically, a larger Rk and Dk imply a stronger variation

due to measurement noise and modeling mismatch respectively. In our case

study, the initial value ofRk, Dk and P0 can be set as diagonal matrixes, where

Rk = diag(0.001, 0.001), Dk= diag(0.001, 0.001), P0 = diag(0.001, 0.001), and

X0 was set as a zero vector. These settings are able to make sure the conver-

gence of the estimation process is asymptotically stable [184], i.e., the eigenval-

ues of the closed-loop estimation matrix are all within the discrete z-domain

[185]. After that, the filter error Pk is updated by Eq. (5.19), and q̂a
k+1 can

be predicted by Eq. (5.20).

Pk = (I−KkHk)P̂k (5.19)

q̂a
k+1 = HkXk (5.20)

5.2.3 Tolling

The second strategy is tolling which allows HDVs to reduce their travel time

by paying money. When the travel time of CAV-DLs is lower than the GLs,

HDVs are possible to change to the CAV-DLs. Based on the user equilibrium

theory, after the HDVs used the CAV-DLs, the travel time difference between

the GLs and the CAV-DLs will be afforded by the HDVs. In this way, the total

travel costs (including travel time and toll) on the CAV-DL and its paired GL

will be identical, which makes sure all vehicles are on the shortest travel cost

route and the network is in an equilibrium state. This strategy can not only

reduce the travel time of HDVs but also improve the capacity utilization rate

of the CAV-DLs. The step-by-step procedures for conducting the tolling are

described below:

Step 1: At each time step n, acquire the travel time ta(n) (a ∈ A),

tã(n) (ã ∈ Ã), as well as the set of vehicle ID (VCAV , VHDV ) on the CAV-DLs

and GLs.

Step 2: At the time step when HDVs enter the intersection, compare ta(n)

and tã(n), if: tã(n) > ta(n) and tã(n) − ta(n) ≥ σ (σ is set to be 5 seconds
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in this study, since the lane-changing durations are on average of 5 seconds

[186]), HDVs are allowed to use the CAV-DLs.

Step 3: Run the simulation and let the HDV (ṽ ∈ VHDV ) change its

traveling lane from GLs to CAV-DLs.

Step 4: Calculate the toll for HDV traveling on the CAV-DLs using Eq.

(5.21).

τa,ṽ(n) = V OTHDV [tã(n)− ta(n+ 1)] (5.21)

Step 5: Update the travel time on all lanes and compare tã(n) with ta(n).

Step 6: If tã(n) ≤ ta(n) or tã(n) − ta(n) < σ, Stop. Otherwise, repeat

Step 1 to Step 3.

5.3 Case Study

The performance of the proposed methods was evaluated by conducting a

case study. Although the phased deployment of CAV technology is already

in progress, building new CAV-DLs has many technical issues and economic

concerns. Converting the existing lanes (e.g., Bus dedicated lane, HOV lane,

GLs) into the CAV-DLs is more practical. In addition, in the early stages,

instead of deploying the CAV-DLs all over the network, it is more realistic to

implement them in some selected corridors. The likely setup will consist of

sensors and roadside units (RSUs) along the corridor to track which vehicles

are using the laneway. There will also be some sort of mobile edge computing

(MEC) platform to enable monitoring and coordination of the vehicles and

signal controllers. The RSUs collect CAVs’ real-time travel information by

communicating with the onboard units (OBUs), and the information will be

further processed at the local MEC. Subsequently, the MEC will solve the op-

timization model, generate corresponding control strategies, and give feedback

to the RSUs and OBUs.

5.3.1 Simulation Design

The network of the downtown area of the City of Edmonton, Canada (Fig.

5.2(a)) was simulated (Fig. 5.2(b)) in the discrete-event traffic simulation tool
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Figure 5.2: Testing network and intersection layout.

- SUMO [135] to assess the effectiveness of the proposed strategies. As stated,

two corridors are selected to deploy the CAV-DLs, that are 109 Street and

Jasper Avenue (represented by blue lines in Fig. 5.2(a)) since they are the

two main corridors with the busiest traffic within the network. The detailed

simulation parameters were given in Table 5.2. The geometry, including the

Table 5.2: Simulation parameter settings

Parameters Value

Total simulation time horizon (s) 5,400

Number of CAV-DLs 32

Number of intersections 41

Simulation time step (s) 1

Traffic flow prediction time interval (s) Each cycle

Lane length (m) 100/200/600

Maximum Speed (m/s) 13.89

Average vehicle length (m) 5

Saturation headway between CAV and CAV (s) 0.5

Saturation headway between HDV and CAV (s) 1.0

Saturation headway between HDV and HDV (s) 2.0

Cycle length (varying in intersections) (s) 90/110

Green time duration (varying in intersections) (s) Field/optimized

number of lanes, lane length as well as speed limit for the network were set

according to the field conditions, and the rest of the important parameters were

defined according to the relevant literature [187], [188]. Fig. 5.2(c) illustrates

the detailed layout of the simulated intersection. For each direction, there are

three lanes in total. The lane on the far left was designed as a CAV-DL, it

allows both left turn and through CAVs, and the lane in the middle also allows

left turn and through movement but for HDVs. For those CAVs that need a
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right turn, they will share the right turn lane with the HDVs.

Two time periods of traffic demand, including peak and non-peak hours

were tested, with the CAV PR ranging from 0.1 to 1.0. The peak-hour and

non-peak hour volumes were obtained from the City of Edmonton using the

turning movement data of each intersection (see examples in Fig. 5.3). For

the signal control strategy, CAVs on the CAV-DLs are given precedence over

HDVs to avoid conflict. That is, the West-East left-turn and going straight

CAVs on the CAV-DLs share the first phase to go through the intersection,

followed by left-turn and going straight HDVs on the GLs, and the right-turn

and going straight HDVs will leave at last. After vehicles in the west-east

direction complete their movement, the vehicles in the North-South direction

will start to move.

Figure 5.3: Examples of the turning movement data (a)Peak hour and (b)non-peak hour.

5.3.2 The Performance of Deploying CAV-DLs

Similarly, the real-time traffic scenario is simulated in SUMO according to

the given demand, and Python was integrated to deal with the control algo-

rithms. The information exchange and control strategy implementation be-

tween SUMO and Python was executed by the SUMO application program-

ming interface (API) TraCI [189]. Python acquired the real-time data from

SUMO at every simulation time step, and the traffic flow prediction on the
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CAV-DLs was performed for each cycle, based on which the dynamic alloca-

tion of the right-of-way was conducted. The right-of-way for the dedicated

lanes can be changed in SUMO with the optimized results from Python. Like-

wise, the toll is calculated in Python, following which the tolling strategy will

be imposed on vehicles by SUMO. These procedures were repeated until all

vehicles leave the network.

Before evaluating the effectiveness of the proposed methods, the perfor-

mance of deploying the CAV-DLs was assessed. Fig. 5.4 demonstrates the

network performance with and without CAV-DLs in peak and non-peak hours

respectively following the rules below:

Only CAVs are permitted to utilize the CAV-DLs while HDVs can only use

GLs. CAVs with right movements can use GLs, otherwise use CAV-DLs.

Figure 5.4: ATT of the network with and without CAV-DLs (a) ATT of CAVs and HDVs
separately in non-peak hour (b) ATT of CAVs and HDVs separately in peak hour (c) ATT
of all vehicles

Fig. 5.4(a) presents the average travel time (ATT) for CAVs and HDVs

separately, although the ATT of CAVs is slightly lower than HDVs, they have

not shown a significant difference if there is no dedicated lane. However,

the ATT of CAVs is much lower than HDVs when the dedicated lane was

implemented. Similar trends can be observed in the peak-hour scenarios in Fig.

5.4(b). This distinguished difference between the ATT of CAVs and HDVs will

potentially attract more HDVs to upgrade to CAVs. Fig. 5.4(c) demonstrates

the ATT for all vehicles. For the case in peak hour and PR is lower than 0.3,

the dedicated lane resulted in higher travel time, while in non-peak hour, the

network performance is worse even when the PR reaches 0.4. This phenomenon

92



also suggested the necessity of imposing an effective control strategy to manage

the CAV-DLs for improving the system performance, especially in low PR

cases.

5.3.3 CAV-DLs Utilization Rate Analysis

In the dynamic right-of-way allocation strategy, when the green utilization

rate is lower than 0.6, the lane was supposed to be not fully utilized and the

HDVs will be allowed to the CAV-DLs. To forecast the utilization rate on the

CAV-DLs, the traffic flow during green was predicted by the Kalman Filter-

based method. The prediction time interval varies for different lanes, which is

determined by the cycle length of the downstream intersections, and the traffic

flow was predicted for each CAV-DL during every cycle. Fig. 5.5 illustrates

the prediction accuracy and relative errors using a selected lane as an example.

The number of vehicles departing during green was predicted and compared

with the simulated results, and the relative prediction errors are within 20%.

It can also be noticed that most of the errors are within 10%.

Figure 5.5: Example of traffic flow prediction (a)Traffic flow value (b)Relative errors

Based on the predicted traffic flow, we can determine for each dedicated

lane whether the HDVs were allowed to use it during each cycle. Fig. 5.6

displays the effective green utilization rate of the CAV-DL under different

PR cases in the peak hour. The x-axis represents the cycle, and the y-axis

93



Figure 5.6: Effective green utilization rate (a)0.2 PR (b) 0.4 PR (c)0.6 PR (d) 0.8 PR

represents each dedicated lane. The light orange color is defined to represent

the case when the green utilization rate is lower than 0.6, which means the

CAV-DL can be converted to GL and HDVs are allowed to use it. For those

with a value greater than 0.6, the darker the color, the larger the value. Based

on the figure, it can be concluded that a greater number of lanes are being

converted to GLs in lower PR cases. (e.g., there are more than 70% of lanes

that allow HDVs in the 0.2 PR case).

5.3.4 Tolling Strategy Analysis

Fig. 5.7 demonstrates the ATT and travel time difference between CAV-DL

and GL on a link with a length of 100 meters under different PR. In low PR

cases, the traffic condition on the CAV-DL is free flow and the travel time is

low no matter in peak or non-peak hours. However, the GL is very congested

with much higher travel time, which lasts until the PR reaches 0.8 in peak
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Figure 5.7: ATT and travel time difference on CAV-DL and GL (a) Peak hour (b) non-peak
hour

τa,ṽ(n) =

 $0.1 CAD, tã(n)− ta(n+ 1) < 10s
$0.0089 CAD ∗ [tã(n)− ta(n+ 1)], 10s ≤ tã(n)− ta(n+ 1) < 180s
$1.6 CAD, tã(n)− ta(n+ 1) ≥ 180s

(5.22)

hour and 0.7 in non-peak hour. In other words, the ATT on the CAV-DL is

consistently lower than GL, and HDVs can change to the dedicated lane to

reduce the travel time by paying a toll. In higher PR cases, the travel time on

CAV-DL will exceed the GL, and HDVs don’t have to change lanes.

According to the Canadian Income Survey released by Statistics Canada,

the Canadian average after-tax income was $66,800 CAD in 2020 [190]. With

the assumption of working time to be 260 days per year and 8 hours per day,

the VOT for people in Canada is approximately $32.12 CAD/hr (i.e., $0.0089

CAD/s). According to the defined value of VOT, the toll was determined

as shown in Eq. (5.22). The minimum toll for HDVs using the CAV-DLs is

$0.1 CAD when the travel time difference between the CAV-DL and the GL is

less than 10 seconds (i.e., the Lower limit for the toll). When the travel time

difference is larger than or equal to 10 seconds but less than 180 seconds, the

charge will maintain a linear relationship with the travel time difference, and

an extra $0.0089 CAD will be charged for every one seconds’ increase. Then,

for a travel time difference larger than 180 seconds, the charge will be $1.6
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Figure 5.8: Example of toll rate distribution in different PR cases (a)Peak hour (b)Non-peak
hour

CAD (i.e., the Upper limit for the toll).

Based on the tolling rule, Fig. 5.8 indicates the distribution of the toll

for all lanes in a certain time step for both peak and non-peak hours. In

low PR cases, for example, when PR=0.1, the travel time on the GL is much

longer than the CAV-DL. As a result, a majority of HDVs can change their

travel lane from the GL to the CAV-DL. However, in the meanwhile, due to

the significant difference between the travel time of GL and CAV-DL, the toll

with a higher value will take a larger proportion. On the contrary, in higher

PR cases, since the CAV-DL is much more congested than the GL, the travel
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time on the CAV-DL is higher than the GL. Consequently, only a very small

proportion of CAV-DLs will allow HDVs to use with a much lower toll value.

This is the reason why over 85% of CAV-DLs in peak hour and over 90% in

non-peak hour have a toll of less than $0.1 CAD in 0.9 PR cases.

Table 5.3 further presented the average toll that an HDV needs to pay when

traveling within the network under different PR cases. When PR=0.1, in the

non-peak hour, HDVs pay $3.63 CAD on average to travel on the dedicated

lane for reducing travel time during their whole trip, while the CAV-DLs charge

more on HDVs in the peak hour than in non-peak hour due to the higher

demand, with a toll to be $5.55 CAD. Nevertheless, along with the increase in

PR, the toll will decrease. When the PR reaches 0.6, the toll for the non-peak

hour is only $0.57 CAD, and in higher PR cases, since the volume of CAVs is

high enough to sufficiently utilize the dedicated lane, the toll strategy is not

applicable anymore.

Table 5.3: Average toll for HDVs traveling within the network.

PR 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Toll Non-
peak

3.63 3.04 2.68 1.82 0.68 0.57 N/A N/A N/A

($CAD) Peak 5.55 4.11 2.99 2.35 2.24 1.98 0.59 N/A N/A

5.3.5 Overall Performance of Different Control Meth-
ods

Lastly, the overall effectiveness of the proposed two methods [a).The dynamic

right-of-way allocation, b).Tolling ] was compared with the two benchmarks

[c). Without CAV-DLs, d). With CAV-DLs ].

In the non-peak hour, the ATT of the two proposed control methods

presents a similar value, with the tolling slightly better than the dynamic

right-of-way allocation, and both notably outperformed the With CAV-DLs.

Along with the increase of the PR, deploying the CAV-DLs started express

strength in terms of reduced travel time. When PR>= 0.4, theWith CAV-DLs

displayed a remarkable reduction in ATT compared to the Without CAV-DLs

condition. At the same time, the ATT resulted from the dynamic right-of-way
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Figure 5.9: Performance comparison of different strategies (a) Non-peak hour (b) Peak hour

allocation and tolling also outperformed the Without CAV-DLs strategy (Fig.

5.9(a)).

Similar results can be observed in peak hour, with the effectiveness of

different strategies being noticed more clearly (Fig. 5.9(b)). In low PR cases

(<= 0.3), tolling is the best strategy with the lowest ATT value, and both

tolling and dynamic right-of-way allocation were better than the other two

strategies. For 0.3<PR<=0.6, the ATT of tolling surpassed the dynamic right-

of-way allocation, with the dynamic right-of-way allocation being the best

among the four schemes. When PR>=0.7, deploying the CAV-DLs has good

potency, and the proposed two methods also show comparable effectiveness.

In general, when the PR of CAVs is high enough, network efficiency can

be significantly improved by deploying the CAV-DLs, and no additional lane

management measures are required. In Low PR cases, tolling is the best

approach in reducing travel time because the strategy allows more HDVs to

use the CAV-DLs. From the users’ point of view, when the PR is higher, the

toll will be lower. Therefore, applying such a strategy to promote the adoption

of CAVs can also benefit HDVs. However, in practical cases, to ensure the

feasibility of the tolling policy, further investigation into the exact money to

charge and drivers’ willingness to pay is necessary. The dynamic right-of-

way allocation is more flexible in operation with relatively good effectiveness.
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However, it relies on the accurate prediction of effective lane utilization rate.

Overall, the two proposed strategies are both suitable to be implemented in

either low PR or high PR cases, and they are feasible to be applied in other

traffic networks.

5.4 Conclusions

This chapter proposed two innovative approaches for CAV-DL management to

promote the CAVs and improve traffic efficiency. The two goals were realized

by dynamically allocating the right-of-way for CAV-DLs or tolling. Based on

the prediction of the effective green utilization rate on the CAV-DL, the first

strategy allows HDVs to use the lanes when they are predicted to be relatively

vacant, and the second approach gives HDVs access to the CAV-DLs whenever

essential by charging a fee.

The strategies were evaluated through a case study based on the Edmonton

downtown area. Principally, both methods were efficacious in reducing travel

time, and the results indicated that both dynamic right-of-way allocation and

tolling outperformed the two benchmarks in low PR cases and had similar

control effectiveness with implementing CAV-DLs in higher PR cases. What’s

more, the toll value that HDVs should pay in different PR cases was also given.

They pay less in high PR cases, which may potentially stimulate more HDVs

to shift to CAVs. The feasibility of implementing the proposed methods has

also been compared and discussed. In general, tolling is slightly better in re-

ducing travel time, while the dynamic right-of-way allocation is more flexible

without the potential trepidation of drivers’ compliance. Overall, the study in

this chapter reveals the possibility of enhancing network efficiency through ap-

propriate lane management strategies in the mixed traffic environment, which

can bring some inspiration to policymakers and practitioners.
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Chapter 6

Achieving Energy-Efficient and
Travel Time-Optimized
Trajectory and Signal Control
for Future CAEVs

6.1 Introduction

EVs are on the horizon due to their potential benefits in reducing travel costs

and emissions. However, despite the potential benefits of EVs, there are still

significant segments of the population who are reluctant to embrace them. In

certain countries, the market penetration rate for EVs remains relatively low,

even if several types of subsidies and privileges were given by the government

to stimulate the purchase of EVs, especially in cities with extreme weather

conditions (e.g., Edmonton, Canada where the average winter temperature

drops to -20 degrees Celsius). In such harsh climates, the energy consumption

of EVs increases significantly, and the range of EVs can decrease by up to

30% in freezing temperatures [191]. In such a circumstance, two primary

concerns, namely charge anxiety (i.e., the worry about the accessibility of

charging infrastructure) and range anxiety (i.e., the fear of running out of

electricity before reaching a charging station) [192], [193] have impeded the

widespread EV adoption.

On one hand, the limitations of current battery technology have resulted in

low battery efficiency [194]. On the other hand, the lack of adequate charging
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infrastructure can lead to longer waiting times or the need to travel greater

distances in search of a charging station. To address these technical challenges,

electrical engineers are dedicating their efforts to improving motor efficiency

for better conversion of electrical energy into kinetic energy [195]–[197], while

others are focused on advancing fast charging technologies [196], [198]. From

the perspective of traffic engineers, their efforts can be categorized into three

types. The first type involves assessing and developing relevant traffic policies

for the electrification of vehicles, both in the short and long term [14], [199]–

[201]. The second type focuses on the deployment of charging infrastructure,

including optimizing the location and allocation of EV charging stations [202],

[203], while the last type seeks better traffic management and control strategies

to save energy [204]–[206]. The majority of current EV-related research has

primarily concentrated on the first two categories, with limited attention given

to the third type.

In this context, this chapter focuses on studying EV energy-saving problems

from the perspective of traffic control, addressing the third type of investiga-

tion. As shown in Fig. 6.1, He and Wu [207] compared the fuel economy of a

conventional gasoline passenger car with that of the Tesla Roadster.

Figure 6.1: Vehicle energy economy at different speeds ([207]).

The results indicate that the gasoline car achieves its highest fuel efficiency

at around 45 mph (72.42 km/h). However, the Tesla Roadster demonstrates

its optimal energy consumption at a relatively low speed of 15 mph (24.14
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km/h). Similar findings have been observed in other studies as well [208],

[209]. These results suggest that, unlike traditional gasoline-powered vehicles,

EVs tend to exhibit better energy efficiency when driving at lower speeds.

While lower driving speeds may reduce energy consumption, they also result

in longer travel time. Additionally, the use of vehicle accessories such as the

air conditioning system can contribute to increased energy consumption as

travel time prolongs. However, travel time is the most important concern for

most commuters [210] as the primary objective of travel is to reach the desti-

nation as soon as possible. Therefore, it is essential to consider the trade-off

between energy consumption and total travel time to realize both traffic and

energy efficiency. In the limited research concerning EV controls, the objec-

tives were generally either aimed at enhancing traffic efficiency or reducing

energy consumption, but seldom did these approaches integrate both goals.

Furthermore, the data used for controlling EV trajectories primarily relied on

static loop detectors or video cameras which offered limited accuracy and low

updating frequency. Consequently, the generated control strategies could not

be promptly applied, compromising their effectiveness.

It was not until the advent of CAV technology that these challenges began

to be effectively addressed. Being able to communicate with each other as well

as all connected entities in the traffic environment through V2V and V2I in

real-time, abundant traffic information will be available on both the vehicle

and infrastructure side. Moreover, onboard or edge computing devices enable

simple data processing and algorithm solving, empowering vehicles to receive

immediate action plans based on the most up-to-date traffic information [162].

The speed and acceleration rate of EVs can be dynamically adjusted according

to the signal timing parameters, and the signal timing plan can also be opti-

mized based on the updated EV trajectories. The EVs can also communicate

and cooperate with each other to form platoons which will further generate

smoother trajectories. The combined CAV and EV technology provides the

possibility to realize the goal of effectively balancing energy consumption and

total travel time by signal control and trajectory optimization. With the in-

creasing need to enhance both travel and energy efficiency, it is not difficult to
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see that connected and automated electrical vehicles will secure a substantial

market share in future traffic systems [211], [212].

Leveraging the advantages of CAV technology, a substantial body of liter-

ature has delved into the realms of signal control and trajectory optimization,

encompassing both traditional gasoline-based vehicles and EVs [213]–[217].

Table 6.1 offers a comprehensive summary of these seminal studies, shedding

light on the methodologies employed and providing insights into their effective-

ness and limitations. Within this array of research, the primary objectives are

enhancing traffic efficiency, minimizing energy consumption, mitigating safety

issues, and optimizing the synergy between energy and traffic efficiency. In

general, all the listed studies utilized the feature of CAVs for communication

to obtain the most up-to-date traffic information to optimize the related vari-

ables. The Cooperative Adaptive Cruise Control (CACC) strategy along with

signal control and speed guidance, has been pivotal in the pursuit of energy

reduction and throughput improvement. These studies employ a spectrum

of techniques, encompassing both AI-driven approaches [218] and analytical-

model-based techniques [204], [217]. Based on the Table, it’s apparent that

although different control goals are achieved with the pros and cons of the

methods, the common issue was the lack of discussion for the models’ capa-

bility of being applied to real-time cases which is critical in the context of

CAVs.
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For estimating the energy consumption, various approaches that have evolved

over the decades, conveniently categorized in Table 6.2. These approaches fall

into distinct classes: Forward models, Powertrain-based models, Backward

models, Data-based models, and rule-based models. Data-based models are

typically reliant on empirical data without generalization. Rule-based mod-

els, while straightforward, face challenges when extending their applicability

to macroscopic scales and integrating them into traffic control systems. For-

ward models, such as ADVISOR [223], are computationally intensive since

they model more detailed vehicle components (e.g., engines, transmissions,

and wheels). Moreover, these models use drivers’ commands as input, making

it challenging to integrate them with traffic simulations [224]. What’s worse,

some of the models rely heavily on the efficiency map, which is often undis-

closed and unavailable. In contrast, backward models utilize vehicle speed,

acceleration, and some other relevant parameters as input, making them more

suitable for coupling with traffic simulations. Representative backward energy

consumption estimation models include VT-CPPM (Virginia Tech Compre-

hensive Power-based PHEV Model) [225] and VT-CPEM (Virginia Tech com-

prehensive Power-based Electric Vehicle Energy Consumption Model) [226],

[227]. Among these models, VT-CPEM stands out as a highly-resolved power-

based model that has demonstrated superior accuracy compared to other mod-

els [228].
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Among the above discussed literatures, Zhang et al. [214] developed a

two-stage decision-making framework. This framework relied on an efficiency

map of EVs, enabling the determination of a safety region in the initial stage,

followed by the search for optimal energy efficiency within that region during

the second stage. Despite that, the approach heavily relies on the availabil-

ity of the efficiency map, which is typically undisclosed and kept confidential

by automakers. To circumvent the reliance on the efficiency map, Pace et

al. [217] employed the widely used VT-CPEM model [226], which calculates

energy consumption at the link level while accurately considering the regener-

ative braking. A cell transmission model (CTM) was incorporated to capture

traffic flow propagation, enabling the determination of total travel time across

the entire network. Both total travel time and energy consumption were op-

timized as objectives in their study, but the method is limited to a very small

and simple network due to the complexity and numerous variables involved

in the CTM flow model. Li et al. [204] also conducted a study on the eco-

driving system in the vehicle-to-everything (V2X) environment considering the

mixed traffic of connected EVs (CEVs) and non-connected EVs (Non-CEVs).

They constructed an optimization model that regulated vehicle speeds and

signal timing plans at intersections, resulting in improved mobility and re-

duced energy. The study also examined network performance at various CEV

penetration rates. However, the proposed non-linear and complex mathemat-

ical model was solved using heuristic algorithms, which incurred significant

computation time and did not cater to real-time conditions.

Based on the discussion above, this chapter makes the following key con-

tributions:

I. A thorough comparison of energy and traffic efficiency metrics has been

conducted between human-driving electric vehicles (HDEVs) and CAEVs.

This analysis provides readers with a comprehensive understanding of the per-

formance differences of EVs with and without connectivity and automation.

II. An integrated energy consumption and total travel time optimization

model was proposed to find a trade-off between the two parts. The objectives

are achieved through the optimization of CAEVs’ trajectories as well as the sig-

107



nal timing plans. The CAEVs are equipped with a CACC car-following model,

which enhances traffic efficiency by regulating the traffic stream. Moreover,

an accurate energy consumption computation method was employed, utilizing

meticulously calibrated parameters derived from the work of Pace et al. [217].

III. Based on this optimization model, a simplified control method was

further derived that eliminates the need for complex heuristic algorithms, en-

suring a more efficient and effective solution. The computation time of the

proposed method was verified to be applicable to real-time conditions.

6.2 Methodology

The study aims to achieve a trade-off between the energy consumption and to-

tal travel time of EVs by controlling vehicles’ trajectory and intersection signal

timing plans. Accordingly, this section will first present an accurate energy

consumption estimation model, then introduce the formulated optimization

problem and the simplified control strategies for both EVs and intersection

signal controllers. All the notations used in this chapter can be found in Table

6.3.

The assumptions adopted in this study include the following:

1. The CAEVs in the study are 100% connected so that they can talk with

each other as well as with the infrastructure (i.e., 100% valid V2V and V2I

communication).

2. The communication was considered accurate and timely. i.e., the com-

munication delay and mechanical reaction time were not considered.

3. For the different testing scenarios, the control variable method was

adopted in computing the energy consumption of EVs. i.e., The various factors

such as driving behavior, road smoothness, weather conditions, tire pressure,

vehicle shape, and aerodynamic resistance of the exterior are assumed to be

the same in different testing scenarios. Only the trajectory and speed profile

were set as control variables.

4. The value of acceleration and deceleration rate were assumed to be

constant with the value coming from literature.
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Table 6.3: Notations

I Set of all lanes

ta Time of arrival

Va Speed of arrival

a Acceleration rate

a Decceleration rate

Vd1 Desired speed for the first stage

Vd2 Desired speed for the second stage

Ti Travel time on lane i

t1 The start time of trajectory control

tid Departure time of the vehicle on lane i

tia Arrival time of the vehicle on lane i

dmin Minimum decceleration rate

dmax Maximum decceleration rate

amin Minimum acceleration rate

amax Maximum acceleration rate

Vmin Minimum speed

Vf Maximum speed/Free flow speed

t0 The time at which the vehicle trajectories start to be controlled

L The distance from the next intersection when the vehicle trajectories
start to be controlled

V0 Initial speed of the targeted vehicle

τ Reaction time

Ni Number of vehicles in front of the target vehicle

h Headway

k Control gain or feedback gain, distinguished by the subscripts

ai,k Acceleration rate for the ith vehicle at time step k

ei,k Gap error for the ith vehicle at time step k

Gpi
k Green time for phase piduring the kth cycle

Gpmin
i

k Required minimum green for each phase

te Green extension

Npi
k Vehicle number to serve for phase piduring the kth cycle

Gpmax
i

k Required maximum green for each phase
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6.2.1 Energy Consumption Estimation Model

The VT-CPEM model was utilized for estimating the energy consumption

in this Chapter. It enables the estimation of instantaneous power, energy

consumption, and the state of charge (SOC) of the battery given the value

of speed, acceleration, and various road characteristics. Initially, the power

at the wheels Pw(t) is computed using Eq. (6.1), where v(t) represents the

speed of vehicles and a(t) = dv(t)/dt is the acceleration rate of the vehicle.

For a better understanding, please refer to Table 6.4 for an explanation of the

parameters used. The values of these parameters were obtained from [217],

[226] based on the 2011 Nissan leaf as a reference.

Table 6.4: Parameter explanation and value based on the 2011 Nissan Leaf

Para-
meter

Description Value Unit

m Vehicle mass 1521 [kg]

g The gravitational acceleration 9.8066 [m/s2]

θ Road grade 0

Cr Rolling resistance parameters based on different
road surface types

1.75

c1 Rolling resistance parameters based on different
road conditions

0.0328

c2 Rolling resistance parameters based on vehicle tire
types

4.575

ρAir Air mass density 1.2256 [kg/m3]

Af The frontal area of the vehicle 2.3316 [m2]

CD The aerodynamic drag coefficient of the vehicle 0.28

ηDL Driveline efficiency 0.969

ηEM The efficiency of the electric motor 0.979

ηBAT Battery efficiency 0.955

ηRB(t) Regenerative braking energy efficiency (the value is
computed by Eq. (3))

α A parameter in the exponential relationship 0.079

Pw(t) = [ma(t) +mg · cos(θ) · Cr

1000
(c1v(t) + c2)

+ 1
2
ρAirAfCDv

2(t) +mg · sin(θ)] · v(t) (6.1)

Once the power at the wheels Pw(t) is obtained, the power at the electric

motor PT (t) can be computed using Eq. (6.2), considering the driveline effi-
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ciency ηDL , the efficiency of the electric motor ηEM , and the efficiency of the

battery ηBAT . When the EV is in traction mode, the energy flows from the

motor to the wheels, and the power at the wheel is assumed to be positive

(PW (t) ≥ 0 ). Conversely, in the regenerative braking mode, the energy flows

from the wheels to the motor, causing the power at the wheels to be negative

(PW (t) < 0). In this scenario, the regenerative braking efficiency ηRB(t) should

be considered. The calculation of ηRB(t) can be performed using Eq. (6.3),

where α is a parameter that can be calibrated using real EV driving data.

PT (t) =


PW (t)

ηDL·ηEM ·ηBAT
, if PW (t) ≥ 0

PW (t) · (ηDL · ηEM · ηBAT ) · ηRB(t),
if PW (t) < 0

(6.2)

ηRB(t) =

{
e−

α
|a(t)| , if a(t) < 0

0, if a(t) ≥ 0
(6.3)

Given the value of the above parameters, it is possible to compute energy

consumption [kWh/km] by Eq. (6.4). Here x is the distance traveled in [km].

EC

[
kW · h
km

]
=

1

3600 · 1000

∫ t

0

PT (t)dt ·
1

x
(6.4)

6.2.2 Energy and Travel Time Optimization Model

Utilizing the calibrated VT-CPEM model, the energy consumption of vehicles

can be accurately estimated. Different from the HDEVs, CAEVs have the ad-

vantage of real-time trajectory and signal timing data availability which allows

for dynamic adjustment of their speed and acceleration rates. As illustrated

in Fig. 6.2, HDEVs (Fig. 6.2(a)) typically come to a complete stop, forming

queues during the red signal, and then dissipate once the signal turns green.

This stop-and-go behavior creates shockwaves and results in increased energy

and travel time loss due to abrupt acceleration and deceleration. In this con-

text, a smoother trajectory should be designed to reduce the number of stops

by taking advantage of connectivity and automation (Fig. 6.2(b)).

In time instant ta, when a CAEV approaches the intersection at a speed

of Va and encounters a red signal, trajectory control will be conducted. The

goal is to minimize energy consumption and total travel time which is shown
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Figure 6.2: Space-time diagram. (a) The trajectory of HDEVs (b) Smoothed trajectory of
CAEVs.

in Eq. (6.5). The calculation of energy consumption will be divided into three

stages. In the first stage, the CAEV decelerates at a rate of d to reach the

desired speed Vd1, then during the second stage, it maintains a constant speed

from t1 to t2. In the third stage, it accelerates at a rate of a to reach Vd2

from t2 to t3. In the first and third stages, the control variables include speed,

deceleration/acceleration rate, and time duration, while in the second stage,

the only variable is time duration, with the acceleration rate set to zero and

the speed maintained at a stable level. The total travel time for a CAEV on

all lanes is computed by
∑
i∈I

Ti ( i ∈ I represents the lane index) with Ti given

by Eq. (6.6), where the tdi and tai are the departure and arrival times of the

vehicle on lane i.

To ensure feasibility and safety, for CAEV driving on a specific lane, sev-

eral constraints need to be considered, as outlined in Eq. (6.7) to Eq. (6.14).

These constraints include physical time constraints (Eq. (6.7)), minimum and

maximum acceleration/deceleration limits (Eq. (6.8) to Eq. (6.9)), minimum

and maximum speed limits (Eq. (6.10) to Eq. (6.11)), and kinematic con-

straints (Eq. (6.12) to Eq. (6.13)). In Eq. (6.5) and Eq. (6.14), Vf is the

free flow speed and x represents the distance from the vehicle being controlled

until it leaves the intersection.
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min {EC, TTT}

= min

{∫ t

0
PT (t)dt · 1

x
,
∑
i∈I

Ti

}

= min


[ ∫ t1

ta
PT (V (d, t), d)dt+∫ t2

t1
PT (Vd1, 0)dt+

∫ t3
t2

PT (V (a, t), a)dt

]
· 1
x
,∑

i∈I
Ti


(6.5)

Ti = tdi − tai (6.6)

ta ≤ t1 ≤ t2 ≤ t3 (6.7)

dmin ≤ d ≤ dmax (6.8)

amin ≤ a ≤ amax (6.9)

0 ≤ Vd1 ≤ Vf (6.10)

0 ≤ Vd2 ≤ Vf (6.11)

Va + d(t1 − ta) = Vd1 (6.12)

Vd1 + a(t3 − t2) = Vd2 (6.13)

Vata +
1

2
d(t1 − ta)

2 + Vd1(t2 − t1) + Vd1t2 +
1

2
a(t3 − t2)

2 = x (6.14)

By solving the optimization model, the value of the control variables (e.g.,

speed, acceleration/deceleration rate) can be obtained. However, this ap-

proach is non-trivial since the model optimizes for a single vehicle only. For a

network with high demand, the requirement for computation hardware will be

high and it is time-consuming to obtain the solution for all vehicles simultane-

ously. Even when using vectors to represent the variables, generating timely

solutions becomes unfeasible and thus impractical for applying the optimiza-

tion technique in real-time. To overcome these limitations while maintaining

the same objective, the optimization model was simplified, which is introduced

in the subsequent section.
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6.2.3 Simplified Trajectory Control

As depicted in Fig. 6.3, two main scenarios, ”arrive on red” and ”arrive on

green,” are typically encountered when a vehicle approaches an intersection

[233]. The two scenarios were discussed separately. In the first scenario,

vehicles that arrive on red are advised to decelerate to save energy, and they

will keep a constant speed until the next green starts (Fig. 6.3 (a)). However,

for those arriving on the green, the vehicle will be guided to accelerate within

the remaining green time to avoid stopping (Fig. 6.3 (b)).

Figure 6.3: Illustration on trajectory control (a)Arrive on red (b)Arrive on green.

In Fig. 6.3, t0 is the time at which the vehicle trajectories start to be

controlled. At this point, the CAEVs have an initial speed of V0 and are

positioned L meters away from the next intersection. t1 − t0 = τ represents

the reaction time. After which, from t1 to t2, the vehicles will either decelerate

or accelerate to the desired speed Vd and they will leave the intersection at the

time td.

Through the mathematical process, the relationships between these time

instants were established in Eq. (6.15). Additionally, Eq. (6.16) serves as a

criterion to determine whether it is necessary for the vehicle trajectory to be

controlled, while Eq. (6.17) represents the kinematic formulation. Eq. (6.18)

plays a critical role in ensuring that the departure time of the target vehicle

is larger than the queue dissipating time. To estimate the dissipation time,

it is assumed that the first vehicle in the queue can exit the intersection at
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the start of the green signal in the next cycle. Utilizing CAV technology, the

number of vehicles in front of the target vehicle, denoted as Ni, can be easily

determined. By multiplying Ni by the headway h, the time it takes for the

front vehicles to leave the intersection can be estimated (Eq. (6.19)). Finally,

Eq. (6.20) was derived to determine the desired speed.

td − t2 = td − t0 − τ − (t2 − t1) (6.15)

V0 >
L

td − t0
(6.16)

t2 − t1 = (V0 − Vd
′
)/d (6.17)

td − t0 ≥ tdissipation (6.18)

tdissipation = tφc

remain,red +Ni · h (6.19)

Vd
′
=d[(V0

d
+ t0 + τ − td)+√

(V0

d
+ t0 + τ − td)

2 − V0
2

d2
+ 2

d
(L− V0τ)]

(6.20)

Similar to the decelerating scenario, vehicles arriving on the green are sug-

gested to accelerate. To determine the desired speed in this situation, formu-

lations were derived from Eq. (6.21) to Eq. (6.24). However, it is important

to note that the desired speed cannot exceed the free flow speed for both de-

celerating and accelerating cases. This restriction is established in Eq. (6.25)

to ensure that the desired speed remains within a realistic and safe range.

V0 ≤
L

td − t0
(6.21)

t2 − t1 = (Vd
′ − V0)/a (6.22)

td − t0 ≥ tφc

remain,green (6.23)

Vd
′
= a[(V0

a
+ td − t0 − τ)+√

(V0

a
+ td − t0 − τ)

2 − V0
2

a2
+ 2

a
(L− V0τ)]

(6.24)

Vd = min{Vf , Vd
′ } (6.25)

In the decelerating scenario, the trajectory control strategy can be applied

to all CAEVs entering the intersection, as decelerating is not constrained by

the leading vehicle. On the contrary, for the accelerating scenario, the be-

havior of the following vehicle will be confined by the leading vehicle. In this
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case, the accelerating strategy is applied exclusively to the leading vehicle,

while a Cooperative Adaptive Cruise Control (CACC) strategy is employed

for the following vehicles. This approach ensures coordinated and cooperative

movement among the vehicles, with the leading vehicle setting the pace and

the following vehicles adjusting their speeds accordingly.

The CACC car-following model been adopted in this chapter is built upon

the research of Milanés et al. and Xiao et al. [234]–[236]. The model is

categorized into three distinct modes: (i) cruising control mode, (ii) gap control

mode, and (iii) gap-closing control mode. The cruising mode aims to eliminate

the deviation between the vehicle speed and the desired speed which is given

as Eq. (6.26). In this equation, k is the control gain to determine the rate of

speed error for ai,k which is the acceleration rate for the ith vehicle at time

step k. vdes is the desired speed and vi,k−1 indicates the speed of the ith vehicle

at time step k − 1. In the gap control mode, the acceleration ai,k is modelled

as a second-order transfer function as given by Eq. (6.27). ei,k is the gap error

for vehicle i at time step k. k1, k2 are feedback gains, and vi−1,k−1 − vi,k−1

represents a speed difference with the preceding vehicle. As for the gap-closing

mode, it is derived by tuning the parameters of the gap-control mode. In Eq.

(6.28), ėi,k−1 is the derivative of the gap deviation (ei,k−1) which is used to

modify the gap error. The detailed model explanation, as well as the specific

values of the controlling and feedback gains (i.e., k, k1, k2, kp, kd ) can be found

in [235].

The CACC allows vehicles to form platoons by maintaining small inter-

vehicle gaps and operating at a consistent speed and enabling smooth and

coordinated acceleration and deceleration among vehicles in a platoon. This

cooperative behavior helps to minimize unnecessary speed changes and harsh

braking, which potentially reduces energy consumption and total travel time.

ai,k = k · (vdes − vi,k−1) (6.26)

ai,k = k1 · ei,k + k2 · (vi−1,k−1 − vi,k−1) (6.27)

vi,k = vi,k−1 + kp · ei,k−1 + kd · ėi,k−1 (6.28)
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After determining the desired speed, deceleration/acceleration rate, and

time duration, the corresponding energy consumption can be computed using

Eq. (6.29).

EC =
∫ t

0
PT (t)dt · 1

L

=

[ ∫ t1
t0

PT (V0, 0)dt+∫ t2
t1

PT (V (d, 0), d)dt+
∫ td
t2

PT (Vd, 0)dt

]
· 1
L

(6.29)

6.2.4 Signal Timing Control

To achieve the objective of reducing energy consumption and total travel time,

the signal timing plan will be controlled in a more intelligent way rather than

utilizing a fixed-time control strategy. It will follow an actuated control prin-

ciple leveraging the capabilities of CAVs. The following Fig. 6.4 illustrates

the closed-loop control framework for the proposed trajectory and signal con-

trol strategy. As shown in the figure, with the initial traffic parameters as

input, the traffic can be simulated, then the vehicle trajectories can be opti-

mized based on the signal timing plan (by V2I communication). Additionally,

vehicles will form platoons using CACC (based on V2V). After the trajec-

tory control being applied to all vehicles, their traveling speed will be changed

which results in a new traffic flow pattern within each cycle. Based on the up-

dated flow distribution, the signal timing plan was again optimized utilizing

the aggregate traffic volume in each approach.

Figure 6.4: The closed-loop trajectory and signal control framework

Eq. (6.30) gives the way to calculate the green time, where Gpmin
i

k is the

required minimum green for each phase (set to be 5s in this study), te is the

green extension (set to be 3s in this study), and Npi
k is the vehicle number
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to be served for phase pi during the kth controlling cycle. The green for each

phase is constrained to the minimum and maximum green as shown in Eq.

(6.31). The simplified trajectory and signal control strategy can be generated

quickly to sufficiently meet the requirement of real-time control.

Gpi
k = Gpmin

i

k + te ·Npi
k (6.30)

Gpmin
i

k ≤ Gpi
k ≤ Gpmax

i

k (6.31)

6.3 Case Study

6.3.1 Simulation Settings

In this section, a corridor comprising eight intersections along Jasper Avenue

in the downtown area of the City of Edmonton, Canada (Fig. 6.5) was selected

to test the proposed method. The selected site begins at the intersection of

112 Street @ Jasper Avenue and extends to 105 Street @ Jasper Avenue. The

corridor is approximately 850 meters long, with a speed limit of 50 km/h, which

is also considered the free-flow speed for this study. The corridor’s geometry

and the number of lanes were accurately represented in the simulation, based

on real-world field information.

Figure 6.5: Testing corridor: Jasper Avenue.

Both peak and non-peak hour traffic demands were tested, with the traffic

movement data of each intersection obtained from the City of Edmonton. The

initial fixed signal timing plans were also obtained from the field, with the
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cycle length of some intersections being 90 seconds and the others being 110

seconds. The intersection layout is shown in Fig. 6.5 where the permitted

left-turn phase was adopted and there is no exclusive left-turn lane designed

to maximize the road capacity utilization.

According to previous studies, the reaction time of individual drivers typ-

ically falls within the range of 1.0 to 2.0 seconds, with a probability of 99.5%.

To ensure both safety and comfort, it is reasonable to assume an average accel-

eration rate of 1.4 m/s² and a deceleration rate of -2.0 m/s² [233]. Additionally,

a reaction time of 1.0 seconds was assumed for the CAEVs, aligning with the

lower end of the typical range observed in driver behavior. The simulation was

conducted with a time step of one second, and the overall simulation duration

was set to 5,400 seconds for the peak hour and 4,200 seconds for the non-peak

hour. These time durations ensure that all vehicles within the simulation com-

plete their trips and exit the simulation successfully. In the case study, three

different scenarios were tested and compared:

(i) All vehicles are HDEVs without any trajectory control, and the inter-

section timing plans were fixed. For the HDEVs, the embedded car-following

model is the Intelligent Driver Model (IDM) [237];

(ii) All vehicles are CAEVs, and the embedded car-following model is

CACC where vehicles will communicate and cooperate to maintain a smaller

inter-vehicle gap and achieve a more stable traffic flow. At the same time, the

signal timing plan will be in an actuated controlling mode.

(iii) All vehicles are CAEVs with CACC and the proposed trajectory con-

trol. Real-time communication between vehicles and infrastructure allowed

for the exchange of information. The vehicle trajectories were actively con-

trolled every 10 seconds, and the signal timing plan was updated based on

the latest traffic information. For all three scenarios, the energy and traffic

efficiency-based metrics will be calculated.

6.3.2 Overall Performance Comparison

This section presents the findings of the case study conducted in various scenar-

ios to evaluate the efficacy of the proposed method in enhancing overall system
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performance and balancing traffic and energy efficiency. Table 6.5 showcases

the values of the overall performance indicators which are calculated based on

the parameters of a 2011 Nissan Leaf.

Table 6.5: Performance indicators for different scenarios

Control
Method

TTT
(s)

AWT
(s)

AS
(km/h)

TEC
(kWh)

AEC
(kWh/
100km)

Summary

Peak HDEVs 982,125.76 65.60 24.41 901.96 19.52 Min EC

(TVN=9,076) CAEVs SC 583,360.81 10.96 31.57 1,122.11 24.29 Min TTT

(ATL=509.27) CAEVs SC TC 601,553.65 17.40 30.24 962.76 20.84 Trade-off

Non-Peak HDEVs 405,477.92 17.52 30.74 604.71 20.13 Min EC

(TVN=5,927) CAEVs SC 339,199.84 5.72 34.34 721.07 23.80 Min TTT

(ATL=506.95) CAEVs SC TC 345,250.71 11.53 33.48 614.63 20.63 Trade-off

*TVN: Total Vehicle Number(veh); ATL: Average Travel Length(m); TTT: Total Travel Time(s); AWT:
Average Waiting Time(s); AS: Average Speed (m/s); TEC: Total Energy Consumption (kWh); AEC:
Average Energy Consumption per Vehicle per 100km (kWh/100km).

As shown in the Table, regardless of peak or non-peak hours, the first

scenario where all vehicles are HDEVs exhibits significantly higher TTT and

AWT compared to the other two scenarios with CAEVs. However, the TEC

and AEC of the network are lower. Referring to Fig. 6.1 in the introduction,

the optimal speed for achieving the lowest energy consumption is approxi-

mately 24.14 km/h, which explains why the first scenario exhibits the highest

total travel time while generating the lowest energy consumption.

In the second scenario, the CACC car-following model was implemented

for all CAEVs, enabling vehicles to form platoons with reduced inter-vehicle

distances and reaction time. This tight coupling among CAEVs significantly

enhances the capacity of the roadway. Additionally, the green time dynami-

cally adjusts based on the number of approaching vehicles, providing greater

flexibility with reduced total travel time and improved average speed. How-

ever, the increase in average speed leads to a higher energy consumption, and

the energy consumption increment resulting from the speed increase outweighs

the energy consumption reduction due to reduced travel time. Consequently,

the TEC and AEC is higher than in the first scenario.

In the third scenario, to achieve a balance between energy consumption

and total travel time, additional trajectory control is implemented on the base

of the second scenario. This control aims to ensure a smoother trajectory
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while reducing travel time. By incorporating this control logic, the third sce-

nario reaches a compromise between energy consumption and total travel time,

resulting in lower energy consumption compared to the second scenario and

lower total travel time compared to the first scenario.

Fig. 6.6 further analyzes the value of TTT and AEC in the three scenarios,

and the study particularly focus on the second and third scenarios, where the

impact of the proposed trajectory control on the performance of CAEVs can

be explicitly investigated. In comparison to the second scenario, where all ve-

hicles are CAEVs without trajectory control (CAEVs SC), the third scenario,

which incorporates the proposed trajectory control (CAEVs SC TC), shows a

noteworthy decrease of 14.20% in AEC (Fig. 6.6 (a)), despite a slight increase

of 3.12% in TTT. Similarly, Fig. 6.6 (b) confirms this trend, despite the non-

peak hour case shows a slightly smaller magnitude of increase and decrease

compared to the peak hour condition.

Figure 6.6: TTT and AEC comparison in different scenarios (a)Peak hour (b)Non-peak
hour.

These findings further support the conclusion that the application of the

proposed trajectory control method can achieve a balance between energy and

travel efficiency, resulting in reduced energy consumption without significantly

sacrificing travel time, during both peak and non-peak hours.

6.3.3 Number of Stops Analysis

Fig. 6.7 presents the frequency distribution histogram depicting the number of

stops for vehicles. The index, comprising maximum, minimum, average, and

median values, was calculated to further analyze the data. Notably, the median

remains consistent across all scenarios, with a value of 1.0. However, there are
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Figure 6.7: Number of stops in different scenarios (a)Peak-HDEVs (b)Peak-CAEVs-
SC (c)Peak CAEVs SC-TC (d)Non-peak-HDEVs (e)Non-peak-CAEVs-SC (f)Non-peak-
CAEVs-SC-TC.

variations in the average values observed under different circumstances. The

proposed control method yields significant reductions in the number of stops

for vehicles. In peak hour conditions, the average number of stops decreases

to 1.48, while during non-peak hours, it decreases to 1.34.

Moreover, the proposed method (i.e., CAEVs-SC-TC) results in a distribu-

tion that is predominantly concentrated in the region characterized by smaller

values. This indicates that the combined approach of trajectory and signal con-

trol effectively reduces the occurrence of frequent stops, leading to smoother

vehicle movements and less start-up loss.

6.3.4 Trajectory Analysis

The time-space diagram presented in Fig. 6.8 illustrates the trajectories of

vehicles heading eastbound during the peak hour.

In Fig. 6.8(a), a prominent observation is the occurrence of a shockwave,

resulting in the blockage of numerous vehicles at intersections, particularly

at 110 St @ Jasper Ave, 109 St @ Jasper Ave, and 108 St @ Jasper Ave.

This congestion leads to long queues and extended waiting times for vehicles.

However, a notable improvement can be observed in Fig. 6.8(b) when HDEVs

are replaced with CAEVs. Due to the applied CACC car-following model and
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Figure 6.8: Eastbound vehicle trajectories in different scenarios (a)HDEVs (b)CAEVs-SC
(c)CAEVs-SC-TC (d)Zoomed-in trajectories for comparison.

actuated signal control, the traffic stream is more stable and there are fewer

queues. Nevertheless, it is important to note that in Fig. 6.8(b), the decel-

eration and acceleration rates change sharply because of the reduced reaction

time and headway between the CAEVs. In Fig. 6.8(c), similar to Fig. 6.8(b),

the queues dissipate efficiently. Furthermore, benefiting from the proposed

trajectory control, most vehicles can go through the intersection during the

green time. To provide a more detailed analysis of the trajectories, Fig. 6.8(d)

offers zoomed-in images for a clearer view. In these images, the red lines

depict trajectories without control while the blue lines represent trajectories

with control. It is evident from the figure that the blue lines effectively avoid

unnecessary stops, showcasing a considerably smooth pattern which is crucial

in reducing energy consumption.

Overall, the comparison between the different scenarios in Fig. 6.8 high-

lights the advantages of employing the CAEVs-SC-TC control strategy, as it

leads to faster queue dissipation and smoother trajectories.
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6.3.5 Signal Timing Plans

In Fig. 6.9, the signal timing plans for each intersection in different scenarios

were presented. In the first scenario, where all vehicles are HDEVs, a fixed

signal timing plan is employed. Six intersections have a cycle length of 90

seconds, while two intersections have a cycle length of 110 seconds. The du-

ration of the green time is indicated in the figure. However, in the other two

scenarios, the signal timing adapts dynamically to real-time traffic conditions.

The green duration adjusts based on the changing number of vehicles in each

lane. This flexible and actuated control approach increases the opportunity

for vehicles to pass through intersections during the green phase. As a result,

it significantly enhances traffic efficiency and allows for improved traffic flow.

Figure 6.9: Signal timing plans in different scenarios.

6.3.6 Capability for real-time application

Typically, problems related to signal control and traffic optimization were

solved by heuristic algorithms, such as the Genetic algorithm (GA) [126] and

particle swarm optimization (PSO) algorithm [238]. To obtain a more robust
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solution, Li et al. [204] further combined both GA and PSO. However, GA

and PSO typically express the following drawbacks:

Computational Complexity: Both GA and PSO can be computationally

intensive. The selection, crossover, and mutation operations for GA can re-

quire a substantial number of computational resources. Similarly, the PSO

requires several rounds of iterations before finding the optimal solution.

Parameter Tuning: The performance of GA and PSO is sensitive to the

choice of parameters. GA often requires careful tuning of parameters such

as population size, mutation rate, and crossover rate to achieve good perfor-

mance. This tuning process can be time-consuming and may not guarantee

optimal results for all problem domains. Finding the right parameter values

for PSO for a specific problem can also be challenging.

Scalability Issues: Both GA and PSOmay struggle to handle high-dimensional

search spaces efficiently, as the probability of finding good solutions decreases

with increasing dimensionality.

Table 6.6 displays the computation time of the proposed method which is

significantly lower than those GA and PSO-based methods in solving similar

optimization problems. According to the recommendations from some key

organizations, such as ETSI and 5GAA, most of the use cases (e.g., green

light optimized speed advisory (GLOSA)) in the CAV environment requires

an end-to-end delay that is lower than 100ms, which includes both commu-

nication and computation time [239], [240]. To conclude from the Table, it’s

apparent that the computation time for those utilizing a heuristic algorithm

is too long compared to the required millisecond scale, which cannot fulfill

the requirement of dynamic control in a CAV environment. Furthermore, the

solving time increases significantly with the increased intersection numbers,

vehicle numbers, and network scale. It’s hard to get the optimal solution, let

alone a real-time application.

In contrast, the proposed method does not rely on any heuristic solving

algorithm and only requires simple numerical operations which can save a lot

of computational effort. In addition, the proposed method can be solved in a

distributed framework, which enables generating the solution for all vehicles
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Table 6.6: Summary of state-of-the-art energy consumption estimation models

Problem Method Network
Scale

Computational
CPU Time

Remark Can be
used in
Real-
time?

Reference

Route and
Signal
Timing
Optimiza-
tion

GA 10 intersec-
tions

10s/vehicle Time increases
with vehicle and
network scale.

NO Sun et al.
[126]

Signal
Timing
Optimiza-
tion

PSO 20 intersec-
tions

3.18s/vehicle Time increases
with vehicle and
network scale.

NO Garcia-
Nieto et
al. [238]

Trajectory
and Signal
Timing
Optimiza-
tion

The
pro-
posed
method

8 intersec-
tions

12ms/vehicle The solution for
all individuals can
be obtained simul-
taneously.
Computation time
does not increase
with number of ve-
hicle

YES This dis-
sertation

simultaneously. Therefore, the solving time will not increase along with the

increase of network scale and demand level.

6.4 Conclusions

This chapter presents a novel trajectory and signal control method that aims

to strike a balance between reducing energy consumption and minimizing total

travel time with the future existence of CAEVs. Initially, the VT-CPEMmodel

was utilized to compute the energy consumption to achieve a more accurate

estimation. Then, a CACC algorithm was employed for CAEVs to simulate

their car-following behavior and regulate the traffic. By implementing CACC,

the total travel time was significantly reduced, and the average speed increased

substantially. However, it was observed that the increased speed resulted in

higher energy consumption, which outweighed the energy saved from reduced

total travel time.

To address this issue, a trajectory control method was further imposed on

CAEVs when they entered the intersections. They are suggested to either

decelerate during the remaining red time or accelerate in the remaining green,

and the desired speed was calculated based on the signal timing information.

Moreover, an actuated signal control strategy was incorporated to dynamically
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update the signal timing plan based on the latest trajectories. By carefully

avoiding abrupt stops and ensuring a continuous flow, the proposed method

provides a smoother trajectory while saving travel time.

The effectiveness of the proposed method was thoroughly assessed through

a comprehensive case study conducted on a corridor located in Edmonton,

Canada. Utilizing the simulation techniques, both peak and non-peak hour

demands were tested. The analysis of key performance indicators, includ-

ing TEC, AEC, TTT, ATT and the number of stops, unequivocally demon-

strated the ability of the proposed method to enhance traffic efficiency while

concurrently reducing energy consumption. Compared with existing complex

optimization-based approaches, the proposed method is of practical real-time

applicability and the findings of this study suggest the potential of achieving a

greener and more efficient traffic curriculum, particularly with the anticipated

emergence of CAEVs.

However, it is important to note that in this study, certain assumptions

were made regarding the deceleration and acceleration rates, which may not

always align with real-world scenarios. As part of the ongoing research, it is

necessary to consider the deceleration and acceleration rates as variables to

explore optimal values that better reflect real-world driving conditions.
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Chapter 7

Conclusions and Future
Extensions

As urban cities worldwide grapple with burgeoning populations, traffic conges-

tion, and environmental concerns, the integration of CAV and EV technology

within the framework of a Smart City offers a beacon of hope for sustainable

urban development. These interconnected elements promise not only to shape

the way we commute but also to address critical issues of energy efficiency,

reduced emissions, and enhanced mobility within our urban environments. In

this exploration, the dissertation delves into the intricate interplay between

CAVs, EVs, and the Smart City concept, illuminating the pathways by which

these technologies are reshaping our urban ecosystems.

This research predominantly tackles challenges in urban arterial traffic de-

mand management and control, with a specific focus on enhancing traffic effi-

ciency through the incorporation of CAV technology. The dissertation intro-

duces innovative models and algorithms pertaining to vehicle routing, signal

timing optimization, CAV-DL management, and vehicle trajectory control.

Fig. 7.1 succinctly recaps the research content of the core chapters in this

dissertation as well as their interconnectedness.

(1) Firstly, the dissertation centered on the integration of adaptive signal

control mechanisms with dynamic routing. By describing the traffic dynamics

with CAVs, the proposed framework captured the interaction between traffic

control and demand management using a closed-loop control framework which

can realize a UO or SO traffic state.
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Figure 7.1: Recap of the core chapters in this dissertation.

(2) Secondly, the dissertation explored the implementation of a distributed

routing control structure, designed to seamlessly mesh with MEC and 5G in-

frastructure, providing a more holistic solution for CAV traffic management.

The proposed backpressure-based routing algorithm can not only improve traf-

fic efficiency but also reduce communication and computation time when com-

pared with the DSP and DSO control.

(3) Thirdly, in pursuit of advancing CAV adoption, the dissertation ex-

tended its efforts to encompass the design and implementation policies for

CAV-DLs. Two methods, namely dynamic right-of-way allocation and tolling

were presented and these methods enhanced the utilization of urban roadway

capacities.

(4) Lastly, in response to the evolving landscape of EVs and the impera-

tive to cultivate green and intelligent cities, the dissertation proposed a novel

trajectory and signal control method combining the features of CAVs and

EVs. The proposed method successfully reached a trade-off between energy
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consumption and total travel time of EVs.

7.1 Dissertation Contribution

Each chapter of the dissertation, although centered on distinct research con-

tent, enriched the existing literature by introducing innovative ideas, method-

ologies, and problem-solving algorithms. The control and management strate-

gies derived from this research can offer valuable guidance and shed some light

on the practical implementation of CAV technologies. The detailed contribu-

tions of the four main tasks in this dissertation can be encapsulated as follows.

The first task focused on joint routing and signal control (chap-

ter 3): This chapter proposed a DRG-SC model to improve traffic efficiency.

Initially, it charted the design of a comprehensive data processing, informa-

tion communication, and transmission protocol for executing DRG-SC within

the context of the MEC-enabled CAV environment. A detailed description of

the roles of vehicles, infrastructure, and the MEC was presented which can

help practitioners to test the algorithm in corresponding use cases. Subse-

quently, this chapter formulated a DRG-SC model to capture the interaction

between routing and signal control. Diverging from traditional approaches

that frame the DRG-SC issue as a mathematical optimization problem, the

approach decentralized the route strategy, empowering individual vehicles to

select either UO or SO route. The model also incorporated the critical impact

of intersection delay, a facet often overlooked even by the most popular route

planners such as Google Maps. Lastly, this chapter specifically discussed com-

putation time, probing the efficiency of the proposed method across varying

core configurations through the lens of parallel computing techniques. The

result advances the quantitative understanding of a distributed framework in

ameliorating computation efficiency.

The second task focused on the distributed DRC problem (chap-

ter 4): This chapter discussed the limitations of two widely used algorithms,

namely DSP and DSO, employed for addressing the DRC problem. Both DSP

and DSO necessitate complete information about the entire traffic network to
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generate a routing solution, incurring significant communication costs. Fur-

thermore, DSO is usually complex to solve and may not offer timely solutions

in a CAV environment. In response to this challenge, firstly, a distributed

backpressure-based routing algorithm was proposed, and the backpressure

routing was designed to provide scalable DRC strategies utilizing only local

information. Then, the backpressure mechanism in the proposed strategy was

defined as the difference in the squared ratio of link density and jam density

between two adjacent links which avoids the unrealistic point queue assump-

tion in the original backpressure routing algorithm. Lastly, the performance

of the proposed method was rigorously evaluated by conducting a compara-

tive analysis against the DSP and DSO control. This evaluation encompasses

a comprehensive exploration of control effectiveness, algorithmic complexity,

and computation time. The performance of the proposed method is better

than the DSP and can even compute with the DSO, while the communica-

tion and computation time is far below the DSP and the DSO. As such, the

proposed method can be appropriately applied to the MEC-enabled CAVs.

The third task focused on CAV-DLs management (chapter 5):

This chapter explored the way to better manage road capacity and promote

CAVs, considering the existence of CAV-DLs. Firstly, two approaches are pro-

posed to reach the goal, including dynamic right-of-way allocation and tolling.

The dynamic right-of-way allocation was achieved by monitoring the capacity

utilization rate of the CAV-DLs. The CAV occupancy on the dedicated lane

was predicted using the Kalman Filter method, and the CAV-DLs can be used

as GLs when they are vacant. In the second approach, a dynamic tolling ap-

proach has been designed to allow HDVs to use the CAV-DLs. Different from

existing tolling strategies, the toll rate is calculated in real time and changes

with the travel time difference between the CAV-DLs and the GLs. Then, the

strengths and weaknesses of the two lane management strategies were com-

pared and analyzed. Lastly, suggestions were given from both the technical

and policy implementation points of view. The contents presented in this

chapter can benefit both traffic policymakers and practitioners in designing

and making the regulations for the utilization of CAV-DLs.
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The fourth task focused on the trajectory and signal control for

CAEVs (chapter 6): Considering the great possibility of CAEVs being ap-

plied in the future, this chapter explored the benefits of CAVs on EVs. Firstly,

this chapter conducted a thorough comparison of energy and traffic efficiency

metrics between HDEVs and CAEVs. This analysis provides readers with

a comprehensive understanding of the performance differences of EVs with

and without connectivity and automation. Secondly, a mathematical model

designed to minimize energy consumption and total travel time through the

optimization of CAEVs’ trajectories was proposed. The model employs a more

accurate energy consumption computation method, utilizing meticulously cal-

ibrated parameters. Based on this optimization model, a simplified control

method that eliminates the need for complex heuristic algorithms was further

derived, ensuring a more efficient and effective solution. Lastly, the chapter

strikes a balance between reducing energy consumption and optimizing travel

time. The work in this chapter provides insight into how to exploit CAV

technology to promote and benefit EVs.

7.2 Limitations and Future Extensions

Although the research made some valuable contributions to the body of knowl-

edge, there are some limitations and possibilities for future extensions. In

general, the research within this dissertation, in its current form, lacks consid-

eration for pedestrians and other traffic modes, leaving out crucial elements

of real-world traffic dynamics. Furthermore, the validation process primar-

ily relies on traffic simulations, which, although valuable, may not faithfully

replicate the complexities of real-world conditions. To bolster the credibility

of the findings, the integration of field tests is strongly recommended in fu-

ture work. These on-road assessments could offer a more precise gauge of how

the proposed method functions in practical, real-world scenarios. To look at

specifically on each chapter, the limitations and future work were summarized

below:

(1) For solving the DRG-SC problem, the study operated under the as-
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sumption of 100% accurate communication without incorporating any com-

munication latency. In future work, an essential component to be considered

is to integrate the network simulator (e.g. OMNET++) to simulate commu-

nication in a CAV network. It enables the assignment of different weights for

the latency of data transmission at different communication levels (local or

networkwide), facilitating a quantitative assessment of the impact of latency

on control strategies.

(2) In future work, a valuable extension for the route guidance would be to

provide customized navigation services to CAVs according to their preferences.

Other route properties will be considered in addition to the travel time. For

example, the toll status, the road types (freeway or arterial), and the number

of turns (left turn and U-turn) can be included as new metrics when designing

the routing strategy. This type of personalized routing service would be more

attractive for highly intelligent CAVs. What’s more, the collectors and local

roads were not considered in the route guidance problem, which connects di-

rectly from traveler’s home to the main roads. It’s necessary to incorporate

them in the route planning and try to deliver “door to door” route service to

the road users.

(3) In the CAV-DL management, a more detailed investigation on the

value of headway for CAVs and HDVs should be conducted, since it is the key

factor determining the capacity utilization rate at the intersections. Although

the qualitative analysis results will be similar, distinct headway values will

result in different quantitative control effectiveness. In addition, the travelers’

income level may impact their acceptance of the toll rate and thus influence

the enforceability of the tolling policy. Therefore, a valuable extension for this

study may focus on the classification of the value of VOT for different income

groups and designate different toll rates for different groups.

(4) In the trajectory and signal control for CAEVs, it is necessary to cal-

ibrate the energy consumption estimation model for EVs using realistic field-

collected data, especially considering the weather impacts. By incorporating

actual data into the model, the precision can be improved, and its validity

in practical applications will be ensured. In the signal control, although the
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actuated control strategy was utilized to dynamically change the timing plan,

the signal coordination was not included. The optimization for the offset of

the intersections along the corridor can further improve traffic efficiency, and

a novel signal control strategy designed especially for CACC vehicles would

be beneficial.
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