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ABSTRACT 

Background: Muscle fatigue is the progressive reduction in a muscle's ability to contract and exert 

force when performing a sustained task. Muscle fatigue may prevent the task from being complete 

and increase the risk of injury. Eventually, the performance of individuals during athletic activities 

can be limited due to fatigue. Individuals typically have to rely on their own perception of muscle 

fatigue and often report this to their trainer subjectively. Fatigue onset may occur differently from 

day to day due to the factors such as dehydration and electrolyte balance. As a result, constant 

vigilance is required to optimize exertion levels completing a task. Obtaining a balance between 

enhancing performance and preventing injury is essential in planning the desired exercise and 

training program for a specific activity. A wearable device to detect muscle fatigue in real-time 

can help define training strategies for optimal test-specific activities and exercises. 

Objective: The overall objective of this thesis was to develop a model using machine learning that 

can be embedded in a wearable device to detect muscle fatigue in real-time based on the sEMG 

data associated with a sustained single 80% maximum voluntary contraction (MVC). 

Five specific objectives were undertaken sequentially to accomplish the overall objective. The 

individual specific objectives included:  1) To conduct a scoping review to identify all machine 

learning algorithms that are potentially capable of detecting muscle fatigue in a real-time and 

computationally adaptable to be embedded in a wearable device, 2)  To extract features from the 

previously recorded sEMG data, and select the most promising features that are associated with a 

pattern of fatigue, 3) To evaluate the performance of the algorithms selected in Objective 1 using 

the extracted features identified in Objective 2,  4) To then select the most promising algorithm 
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based its accuracy in classifying fatigue state, and 5) To develop a model using the identified ML 

algorithm that has the potential to be embedded in a wearable device. 

Methods: To address our first objective, a scoping review involving six different electronic 

databases was undertaken, where a total of 67 studies were included. 

To address objectives 2-5, an sEMG dataset from 100 participants who performed a sustained 

single 80% MVC was evaluated. The Fast Fourier Transform was used to estimate the power 

spectrum. Several frequency and time domain features (RMS, IEMG, Power, Median and Mean 

Frequency) from the sEMG signal were extracted. The Neighbourhood Component Analysis 

(NCA) was applied to select promising features. After training each algorithm utilizing selected 

features, their performance in fatigue classification was evaluated. The most promising algorithm 

was selected to develop our proposed model based on the classification performance and 

adaptability to integrate the algorithm in a wearable device. 

Finally, a new model was developed, and its potential to be embedded in a wearable device 

detecting muscle fatigue in real-time was assessed. 

Results: The scoping review suggested four potential algorithms (LDA, LR, SVMs, and 

Ensemble) that had the potential to be integrated into a wearable device with the goal of fatigue 

detection in real-time.  

From the extracted sEMG features, NCA selected 14 features that were used to train the ML 

algorithm. Comparing the performance of each algorithm with selected features, the proposed 

OSVM model achieved the highest classification accuracy of 99.2% with a sensitivity of 99% and 

specificity of 99.2%. The area under the curve (AUC) for both fatigue and non-fatigue conditions 
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achieved a maximum unity of 1.00.  Further testing of the trained model with new data 

demonstrated a 100% fatigue classification accuracy, an outstanding performance in the current 

literature. Additionally, our developed OSVM model showed a 92% fatigue classification accuracy 

when using only the 5 most prominent features. 

Conclusion: This research represents a comprehensive automated method where the developed 

model can be used in the laboratory setting as well as a wearable device to detect muscle fatigue 

in real-time during a sustained single isometric task. Furthermore, the features reduction 

mechanism facilitates the model to perform adaptively on the criteria of fatigue forecasting time 

and performance accuracy. Based on the technical requirements, the model is suitable for 

embedding into the ‘Raspberry Pi Zero-W’ microcontroller. Deploying into the microcontroller, it 

is possible to be used as a wearable device to detect muscle in real-time.   

 

Keywords: Surface EMG, MVC, Muscle fatigue, Algorithm, Feature extraction and selection, 

Model, Wearable device, Real-time.  
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CHAPTER 1: GENERAL OVERVIEW OF THE THESIS 

1.1: Introduction 

Muscle fatigue is a non-specific symptom experienced by people in everyday life and an exercise-

induced common physiological phenomenon associated with several health conditions (Wan et al., 

2017). Recent advances in physiological research have increased the understanding of how 

muscle-intensive activities and strenuous exercises cause a deterioration in performance, identified 

as fatigue (Allen & Westerblad, 2001; Kumar et al., 2003), which leads to a reduction in muscle 

contraction and a decrease in force production (Bilgin et al., 2015; Koutsos et al., 2016; Wu et al., 

2016). Fatigue is manifested as a state of exhaustion when completing strenuous voluntary, 

physical tasks.  

 

 

 

 

 

 

 

 

Figure 1.1: Different types of exercises and activities causing muscle fatigue (Google photos) 
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Physical exercises and activities are beneficial to health. However, activities like construction 

work, wheelchair propulsion, running, weightlifting, cycling, and physical workouts can result in 

muscle fatigue that reduces the endurance of the individual (Al-Mulla & Sepulveda, 2010; Kumar 

et al., 2003).  Under these stressful and heavy work conditions, muscle fatigue can be dangerous 

(Mitra & Cumming, 2017), causing significant injuries and work-related disorders (Caffier et al., 

1993). Fatigue is mainly measured as a reduction in maximal force generated during a muscle 

contraction (Wan et al., 2017; Wu et al., 2016). It is challenging to determine a fatigue threshold 

for an individual due to the heterogeneity of muscle properties and functional capacities from one 

person to another (Al-Mulla et al., 2011b; Kumar et al., 2003). Failure to detect muscle fatigue 

may result in pain and overuse injuries, placing a financial burden on the family and society (Al-

Mulla et al., 2011a; Kumar et al., 2003; O’Sullivan et al., 2018; Qi et al., 2011). 

Objectively in the laboratory and clinic, several techniques are used to determine muscle fatigue 

for a client (Kumar et al., 2003). One of the most reliable methods currently used to detect fatigue 

in the laboratory is to analyze blood lactate (Cifrek et al., 2009). However, this does not provide 

any site-specific measure of fatigue but a global one instead and cannot be measured in real-time 

(Cifrek et al., 2009). The skeletal muscle in the human body is subject to voluntary control.  

Recordings of the electrical activity of skeletal muscle are referred to as electromyography (EMG) 

and are used by clinicians to analyze the human body's skeletal muscle activity in the clinic (Kumar 

et al., 2003).  EMG can be recorded invasively using a fine wire electrode inserted through the 

skin and placed intramuscularly with a needle. Alternatively, EMG can be recorded from the skin 

surface non-invasively, referred to as surface EMG (sEMG) (Kumar et al., 2003). Needle EMG 

provides excellent localization of muscle fibres' electrical activity compared to the surface EMG, 

where signals from nearby co-contracting muscles can complicate the interpretation of the signal. 
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One of the limitations is that needle electrodes have to be inserted by a qualified clinician and are 

subject to breaking during intense activity, leaving the wire in the muscle. This is not an acceptable 

risk other than for physiological research or specific clinical diagnostic procedures.  Therefore, 

needle EMG is not well-suited for everyday use (Qi et al., 2019). 

For more than 40 years, surface electromyography (sEMG) signals have been used to detect and 

analyze muscle fatigue (Lindstrom & Magnusson, 1977). The sEMG records continuous 

physiological changes in muscle activities during fatigue, and therefore, it is a useful tool for 

assessing muscular function (Wu et al., 2016; Yang et al., 2014). Using signal processing, it is 

possible to investigate muscular functions during fatigue, enabling it to draw the relationship 

between the sEMG signal and the mechanical force produced by the subject. Furthermore, EMG 

sensors are relatively inexpensive and can be easily placed on various body muscles, making them 

suitable for wearable real-time applications (Al-Mulla et al., 2011a). 

With the advent of readily available signal conditioning technologies, the sEMG sensor can be 

used straightforwardly to record the EMG signal during activities in daily living, along with 

exercise and training sessions. Processing the sEMG data in real-time has the potential to 

automatically alert the individuals as fatigue occurs, perhaps enabling them to titrate their effort to 

complete the task safely. However, at present, individuals generally have to rely on their own 

perception of muscle fatigue which does not provide the objective data needed to predict whether 

the task can be completed successfully (Al-Mulla et al., 2011a; Kumar et al., 2003). Obtaining the 

balance between enhancing performance and preventing injury can help plan exercise and training 

programs applicable for a specific task (O’Sullivan et al., 2018).  Determination of the dose-

response to exercise is usually determined by measuring optimal rest periods. This enables exercise 

and training sessions to be designed as efficiently and effectively as possible without suffering 
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diminishing returns or injury (Cifrek et al., 2009; Vigotsky et al., 2018). Exercise participants can 

be enabled to define their limits during training and exercise sessions to prevent injury (Al-Mulla 

et al., 2011a; O’Sullivan et al., 2018). To define the limit for optimal test-specific activities and 

exercises, we propose that a real-time muscle fatigue system would be preferable to current post-

processing systems (Enoka & Duchateau, 2008; Ibitoye et al., 2014; Qi, 2009; Toledo-Peral et al., 

2018). A real-time system automating the early detection of fatigue has the potential to provide 

the visual feedback of fatigue conditions to the end-users directly during activities and training 

sessions (Al-Mulla et al., 2011a). Therefore, a method for real-time modelling of fatigue is needed 

to facilitate the development of a wearable device for health and rehabilitation research and for 

consumer applications where clients can be enabled to track their limits during activities.  

Numerous strategies have been developed to quantify muscle fatigue comprehensively by 

processing the sEMG signal. Most of these techniques are have applied post-processing analysis 

rather than in real-time (Al-Mulla et al., 2011a; Kumar et al., 2003; Qi et al., 2020). In fact, more 

sophisticated analysis techniques, along with Wavelet and Principal Component Analysis, have 

been developed by our RRL Lab at the University of Alberta for detecting muscle fatigue using 

offline analysis (Qi, 2009; Qi et al., 2019, 2020). However, these techniques are highly 

computationally demanding. In addition, they require laboratory analysis to be conducted post-hoc 

rather than in real-time. Conjointly, these methods necessitate a more powerful processor and a 

longer running time than can currently be achieved with microcontrollers. In contrast, fatigue is 

an instantaneous time-varying non-linear phenomenon. Therefore, these models are not suitable 

for detecting muscle fatigue in real-time since a faster response model is desired (Clancy et al., 

2008; Madeleine et al., 2002; Taylor et al., 1997).  
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With technological advancement, wearable devices have been extensively used in diverse fields, 

particularly from the healthcare sector to the rehabilitation area, to monitor patient's health and 

welfare to prevent injuries (Al-Mulla et al., 2011a). 

 

Figure 1.2: A wearable device is adjustable to fit the body (Image: Google) 

 

Recent research demonstrates that people are increasingly inclined to use body-worn devices to 

monitor the state of their bodies while engaging in physical exercise (Al-Mulla et al., 2011a). 

Although research on muscle fatigue has been advancing for several decades, the development of 

a wearable device has been elusive. The demand for a wearable device is highly significant for the 

disciplines such as ergonomics and prosthetics, human-computer interactions, sports injuries and 

performance, rehabilitation like spinal-cord injury, paraplegia, cerebral palsy, low back pain, 

shoulder and neck pain,  arthritis, stroke recovery and so on (Al-Mulla et al., 2011a; Koutsos, 

2017; O’Sullivan et al., 2018). Furthermore, wearable devices are also used to facilitate Virtual 

Health assessments where the information on muscle fatigue status could be used to assess patients 

  
 

https://www.google.com/search?rlz=1C1CHBF_enCA926CA926&biw=1920&bih=969&sxsrf=ALeKk00EerasmXkjuodUhZMFM3NVuCMv6A:1621890841999&q=arthritis&spell=1&sa=X&ved=2ahUKEwiemIGcnuPwAhXyOn0KHYErBaQQBSgAegQIARAx
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in remote settings (Seshadri et al., 2020). These application areas motivate the development of a 

real-time wearable device to detect fatigue while performing physical activities.  

The purpose of this research is to develop a model using a machine learning algorithm to detect 

muscle fatigue in real-time from the sEMG signal during a sustained single maximum voluntary 

contraction and to recommend a wearable system using a current embedded device. Significantly 

this system can be applied in clinical and consumer applications to monitor fatigue in real-time, 

mainly to prevent work-related injury (Al-Mulla et al., 2011a). 

1.2: Research Question 

To develop a wearable device, a trained ML model is necessary. However, there is no evidence of 

an automated model in the literature currently used to detect fatigue in real-time. Therefore, this 

research problem motivates us to develop an automated model using machine learning embedded 

in a wearable device. As a result, the following research question has driven the research to 

overcome the literature gap.  

Is it possible to detect muscle fatigue in biceps brachii from sEMG data associated with a 

sustained single 80% maximum voluntary contraction (MVC) incorporating a machine learning 

algorithm in real-time? 

1.3: Purpose Statement 

The purpose statement of this research is to develop a model using machine learning that is 

intended to be embedded in a wearable device to detect muscle fatigue based on the sEMG data 

associated with a sustained single 80% maximum voluntary contraction (MVC). 
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1.4: Objectives 

The objectives of this research project are as following: 

1) To conduct a scoping review to identify all machine learning algorithms that are potentially 

capable of detecting muscle fatigue in real-time and computationally adaptable to be 

embedded in a wearable device. 

2) To extract features from the previously recorded sEMG data during a sustained single 80% 

MVC and select the most promising features that are associated with a pattern of fatigue. 

3) To evaluate the performance of the selected algorithms in Objective 1 using the features 

identified in Objective 2. 

4) To select the most promising algorithm based on its classification accuracy on fatigue state. 

5) To develop a model using the promising ML algorithm that has the potential to be 

embedded in a wearable device to detect muscle fatigue based on the sEMG data associated 

with a sustained single 80% MVC. 

1.5: Muscle Contraction 

Different skeletal muscle tissue is subjected to voluntary control, which investigates muscle fatigue 

(Al-Mulla et al., 2011a).  Skeletal muscle tissue comprises large cells called muscle fibres (Engel 

& Warmolts, 2015).  A motor unit (MU) comprises a single motor neuron in the spinal cord and 

all of the muscle fibres it controls (Al-Mulla et al., 2011b). During contraction, the elastic tissue 

named epimysium covers the muscle and holds upon it for large force generation (Koutsos, 2017). 

Similarly, the endomysium envelops and strengthens each muscle fibres cell.  Myofibrils are the 

muscle fibres that contain cylinders of muscle proteins to allow the muscle to contract, shown in 

Figure 1.3.  Myofibrils comprise two major protein filaments: actin and myosin (Koutsos, 2017; 
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Koutsos et al., 2016; Qi et al., 2019). The myosin protein filament is thick compared to the thin 

protein filaments of actin. Figure 1.3 was taken from (Koutsos, 2017).  

 

 

 

 

 

 

Z-disk shown in Figure 1.3 is the connective structure positioned at the end of the filaments 

repeating mold. T-tubules are likely to run along the Z-disk (Koutsos, 2017; Koutsos et al., 2016). 

T-tubules are also part of the cell membrane called the sarcolemma, which expands inside the 

fibres. A membrane called the sarcoplasmic reticulum runs along the fibre axis and between the 

T-tubules, storing and freeing the calcium ions (Ca2+) that trigger muscle contraction. 

During muscle, relaxed conditions, the protein filaments actin and myosin are blocked by other 

protein filaments troponin and tropomyosin (Koutsos, 2017; Koutsos et al., 2016).   An electrical 

current is passed through the nerve throughout muscle contractions, known as an action potential 

(AP) (Al-Mulla et al., 2011b).  The AP reaches the muscle cell through the sarcolemma and then 

through the T-tubules into the myofibrils (Koutsos, 2017). After that, the AP triggers the 

sarcoplasmic reticulum releasing calcium ions in the cytoplasm protein filaments area. Calcium 

ions bind to troponin-tropomyosin molecules, changing their shape and causing them to shift away 

Figure 1.3: Muscle anatomy along with motor neuron, motor unit, muscle fibres, and associated muscles cells  
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from actin filaments. As a result, myosin and actin are free to bond with one another, resulting in 

contraction. Figure 1.4 was taken from Koutsos et al. (Koutsos, 2017). 

 

 

 

 

 

 

At that time, AP is passed, and the calcium ion closes the gate from the cytoplasm. As a result, 

tropomyosin-troponin returns to the normal state and holds the myosin-actin proteins, and the 

muscle relaxes. For muscle contraction and relaxation, energy is required, and adenosine 

triphosphate (ATP) supplies the energy to muscles.  Mitochondria contain inside the muscle fibres 

cells where ATP is produced. This how ATP is used to contract muscles and relax to a normal 

state.  

1.6: Types of Contraction 

There are different types of muscle contractions. Based on changing the muscle length during 

contractions, they are commonly isotonic and isometric contractions.  

1.6.1: Isotonic Contraction 

The isotonic contraction can be categorized into eccentric and concentric contraction. 

Figure 1.4: Muscle contraction and relaxation 
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Eccentric Contraction: The eccentric contraction is a muscular contraction in which the muscle 

length increases (Medicine LibreTexts, n.d.). An eccentric contraction results in muscle extension 

as the muscle continues to generate force.  Figure 1.5 and Figure 1.6 were taken from (Medicine 

LibreTexts, n.d.). 

 

 

Concentric Contraction: In concentric contraction, the length of the muscle shortens while 

generating force to overcome resistance.  

1.6.2: Isometric Contraction 

The type of contraction in which the muscle length remains unchanged, but the load on the muscle 

can be varied. Isometric contractions, unlike isotonic contractions, produce force without 

increasing the muscle's length (Medicine LibreTexts, n.d.). shown in Figure 1.6. The following 

figure was taken from (Medicine LibreTexts, n.d.). 

A) Eccentric Contraction 

 
B) Concentric Contraction 

 
 

Figure 1.5: Isotonic contraction  
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The sustained single isometric test is a type of test in which participants try to maintain the load 

during the cycle of exhaustion until it hits its entire state and then releases it. The individuals in 

the test held weight in their dominant hand, and the sEMG sensor was placed on the biceps brachii 

muscle to record the EMG signal. The participants were advised to go up to 80% maximum 

voluntary contraction (MVC). Research has revealed that the biceps brachii muscles have a more 

comprehensive recruitment range of up to 80% MVC, and force increment is mainly handled by 

recruiting more motor units till 80% MVC (Esposito et al., 1996).  

1.7: What is Muscle Fatigue 

The muscle fibres cell membrane named sarcolemma is semi-permeable (Koutsos, 2017). The 

membrane pumps Na+ out of the cell and K+ into the cell while the muscle is relaxed (Koutsos, 

2017; Seunggu, 2017). As a result, Na+ and K+ ions concentrations outside and within the fibres 

cell have risen. Since ions have a voltage, the difference in their concentration creates an AP 

gradient. Resting potential is formed by an ionic balance between a muscle cell's inner and outer 

parts (-70 to -90 mV) (Koutsos, 2017; Qi et al., 2011). With neurotransmitters, a chemical stimulus, 

the membrane's permeability to Na+ neighbouring rises and rushes into the cell. Due to the 

increment of  Na+ ions, the membrane potential crossed the threshold level and increased to +30 

Figure 1.6: Isometric contraction 
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mV. In the meantime, the shift of the membrane voltage to zero triggers the opening of K+ 

channels (Barbero et al., 2012), causing the release of potassium ions shown in Figure 1.7 

(Koutsos, 2017).   

 

 

 

 

 

 

Because the outflow of positive charges cancels out the potential increase caused by the entry of 

sodium ions, the membrane voltage begins to drop toward zero (Barbero et al., 2012; Koutsos, 

2017; Qi et al., 2019). As a result, Na+ channels start to close, and membrane potential drops even 

further, returning to the resting potential. Therefore, based on the sliding filaments model, the 

muscle contraction and relaxations cycle begins when the membrane threshold is exceeded.  

This depolarization wave propagates along the surface of the muscle fibres (Koutsos et al., 2016; 

Pilarski et al., 2013). It causes calcium ions to be released into the intracellular space, causing the 

muscle cell to shorten (Jawadwala, 2012). This impulse excitation is known as AP of muscle fibres. 

When a MU fires, an AP is sent to the muscle evoked in all of the MU's innervated muscle fibres 

through a motor neuron. EMG monitors the motor unit action potential (MUAP), which is the 

outcome of all this electrical activity (Al-Mulla et al., 2011b).  

Figure 1.7: Moto unit action potential from Koutsos et al. 
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As soon as there is a surge of Na+ into the cell after a muscle contraction, the cell depolarizes, and 

when there is a rush of K+ out, the cell repolarizes (Koutsos, 2017). The exercises or activities that 

are short with high intensity cause a large amount of K+  in the extracellular membrane. When AP 

propagates down the t-tubules, it accumulates more K+  ions where t-tubules reside. As a result, 

the propagation of AP to the sarcolemma fails, which causes a decrease of Ca+ ions from the 

sarcoplasmic reticulum; therefore, no initiation of muscle contraction can happen within the 

muscle fibres the muscle fatigue. Finally, it is concluded that muscle fatigue has occurred when 

there is the accumulation of a large amount of K+ ions in the extracellular membrane.  

1.8: Detection of Fatigue 

Muscle fatigue has no physically quantitative value. To ascertain fatigue is challenging, as no 

universal index exists for fatigue. Most of the time, the maximum voluntary contraction force 

while performing a task is used to detect the intensity level of fatigue. However, it is recommended 

to detect fatigue in real-time by analyzing the progressive changes in the muscle fibres activation, 

sEMG amplitude, and sEMG spectral estimation. As a result, the time and frequency domain 

characteristics of the sEMG signal are considered for real-time fatigue detection. Skeletal muscle 

tissue consists of large cells called the muscle fibres, categorized depending on the speed of 

contractile twitch (Al-Mulla et al., 2011b; Al-Mulla & Sepulveda, 2010). Therefore, all muscle 

tissues are a mixture of both fast-twitch and slow-twitch fibres (CLA: Pathophysiology, n.d.). The 

fast-twitch fibres can generate higher forces, contract faster, and have a higher anaerobic capability 

(Koutsos, 2017). On the other hand, the slow-twitch fibres produce force slowly and sustain 

contractions for more extended periods with aerobic capacity. Koutsos et al. depicted the following 

power spectrum shown in Figure 1.8 during isometric contraction for non-fatigued and fatigue 

states. Figure 1.8 was taken from Koutsos et al. (Koutsos, 2017). 
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The recruitment of MUAP increases during fatigue and the fast-twitch fibres fatigue first,  while 

the slow-twitch fibres remain, and tension drops off (O’Sullivan et al., 2018; Qi et al., 2011). From 

the power spectrum shown in Figure 1.8, it is evident that the sEMG signal has a lower magnitude 

and higher frequencies at the beginning of the test. In contrast, as the muscle fatigues, the sEMG 

power spectrum transitions to higher amplitudes and lower frequencies (Georgiou & Koutsos, 

2017; Mitra & Cumming, 2017). For isometric contraction, the power spectrum of the sEMG 

signal moved to lower frequencies during fatigue, and the magnitude of the sEMG signal increased 

(Al-Mulla et al., 2011b; Koutsos, 2017; Mitra & Cumming, 2017). 

1.9: Dissertation Format 

The chapters in this thesis are arranged in chronological order, and each section builds on the 

research that has been done to address each of these specific goals.  

A general overview of the thesis was presented in Chapter 1, where the introduction of the thesis, 

research question, the purpose of the research, research objectives were mentioned. In addition, 

Figure 1.8: The power spectrum of the sEMG signal during static isometric contraction – beginning and 

fatigue conditions 
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muscle contraction, the definition of muscle fatigue, how fatigue occurs and can be detected, all 

of the related terminologies about muscle fatigue were described in this section briefly.  

To fulfill Objective 1, a scoping review was conducted and described in Chapter 2. The 

methodology of the scoping review, result analysis of the review, the number of selected papers, 

list of promising algorithms, literature review on wearable devices, and direction to real-time 

muscle fatigue research mechanism were discussed in Chapter 2. 

Chapter 3 illustrates how Objectives 2 to 4 were accomplished. Likewise, Chapter 3 reports on the 

performance of the algorithms identified in the Scoping Review when applied to a database of 

sustained contractions for 100 healthy participants.  An ML model was also trained on the database 

of sEMG signals demonstrating its potential for use in a real-time system and comparing it to those 

from the Scoping Review. Chapter 3 also explains the feature extraction and selection process 

from the sEMG signal, the trend of the features, results, the performance of the selected machine 

learning algorithms, evaluation metrics, and identifies the most promising algorithm for real-time 

fatigue detection and training for embedding in a wearable device. 

Chapter 4 summarizes the findings from the Scoping Review and the ML model, demonstrating 

the potential of the model that was developed in this study for use in a wearable device.  It 

highlights the contributions of the novel approach proposed in this master’s thesis 

and finally provides future directions for this work. 
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CHAPTER 2: CAN AN ALGORITHM BE APPLIED TO IDENTIFY 

MUSCLE FATIGUE FROM SURFACE EMG SIGNALS IN REAL-

TIME? ― A SCOPING REVIEW 

Abstract 

Background: Wearable devices have been used widely in the healthcare sector to monitor patient 

health and avoid injury. A wearable device that can provide an indication of muscle fatigue in real-

time would not only improve health and reduce injury, but it is also highly desirable for both 

biomedical research and consumer applications. To develop a wearable device detecting muscle 

fatigue, an algorithm able to process non-linear EMG signals in real-time is required  

Objectives: The objectives of this scoping review included: 1) To review the literature and identify 

the existing algorithms that have been used for detecting muscle fatigue based on sEMG signals 

obtained from dynamic, repetitive, or single voluntary muscle contractions, 2) To determine if 

algorithms exist that are capable of detecting muscle fatigue and their accuracy in detecting fatigue 

in real-time, and 3) To assess is these algorithms are adaptable for integration into a wearable 

device. 

Methods: Six electronic databases were systematically searched (Scopus, Web of Science, 

PubMed, IEEE Xplore, IET Digital Library, and Google Scholar). Our search terms included titles 

and keywords relevant to muscle fatigue, algorithm, method, ML, DL, sEMG, real-time, wearable, 

detection. Inclusion criteria for selected studies included that they were published in English,  that 

the described algorithms be used for detecting muscle fatigue from surface EMG signals during 

different contractions and that the papers were published between January 2005 to February 2021. 
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Results: The search identified a total of 1213 articles. After applying the inclusion criteria, 67 

papers were included in the study and their data were extracted. From these papers, 4 algorithms 

met the pre-defined criteria for potential inclusion in a wearable device. Further, 4 studies of the 

included studies attempted to develop a wearable device; however, no wearable device reported in 

the literature is currently able to detect muscle fatigue in real-time in a clinical setting. 

Conclusion: This review has suggested four ML algorithms that have the potential to be included 

in wearable devices. As a result, we recommend that further research be performed to assess these 

algorithms for their ability to classify fatigue states within the boundaries of a wearable device. 

Keywords: Muscle fatigue, Surface EMG, Wearable device, Algorithm, Real-time.
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2.1: Introduction 

Muscle fatigue occurs when muscles can no longer contract or exert force effectively even while 

the work in progress endures (Al-Mulla et al., 2011a; Kumar et al., 2003). Fatigue eventually 

prevents sustained work from being completed (Al-Mulla et al., 2011b). During exercise and 

training programs, it is crucial to balance improving performance and preventing injury (Cifrek et 

al., 2009).  

Surface Electromyography (sEMG) is a method of measuring the electrical activity of muscle 

fibres during contractions (Lindstrom & Magnusson, 1977; Moniri et al., 2021) and can be used 

to investigate muscle fatigue. The sEMG sensors are easy to place on various muscles and 

relatively inexpensive, making them ideal for wearable real-time tracking (Al-Mulla et al., 2011a).  

 However, muscle fatigue is a complex physiological phenomenon. To detect muscle fatigue using 

the sEMG method, an algorithm is required to process the sEMG signal and provide an indicator 

of fatigue. An algorithm is a set of instructions programmed to accomplish a particular task to 

generate precise outputs, without human intervention, within a defined computing time limit 

(Moschovakis, 2001). Efforts to develop standalone algorithms for real-time monitoring are 

increasing (Cifrek et al., 2009); however, their adaptiveness and potential to accurately detect 

fatigue and use in wearable technology have not yet been well established. This apparent 

knowledge gap inspired this scoping review to investigate the current effectiveness of existing 

algorithms to detect muscle fatigue during various contractions and activities. 

This scoping review aims to provide a comprehensive literature review identifying the state of the 

art of algorithms methods used to detect muscle fatigue during activities or physical exercise. In 
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the literature, this review's results could help to develop a wearable device capable of detecting 

muscle fatigue while exercising in real-time in the coming days. 

2.2: Methods 

2.2.1: Overview 

A scoping review is an acceptable methodology for broadly exploring the contemporary literature 

on a specific research problem (Daudt et al., 2013). Specifically, a scoping review is a literature 

synthesis architecture that maps available literature on a selected topic (Arksey & O’Malley, 2005; 

Daudt et al., 2013; Jun et al., 2020). The review's significance is identifying key concepts and 

accessible evidence, searching for, and analyzing the research gaps on a particular problem (Munn 

et al., 2018). Subsequently, a scoping review was undertaken to identify the available algorithms 

used for detecting muscle fatigue processing surface EMG (sEMG) signals during different 

activities. The methodological procedure for the scoping review was followed according to Arksey 

et al. (Arksey & O’Malley, 2005). The primary goal was to discover what has been achieved to 

assess muscle fatigue and identify potential algorithms for a real-time wearable system. 

2.2.2: Research Question 

The well-known and established scoping review methodology (Arksey & O’Malley, 2005) was 

applied to list and coordinate the essential information to guide the current body of the literature. 

To undertake the scoping review, the following research question was developed: “Can an 

algorithm be applied to identify muscle fatigue from  sEMG signals in real-time?" 
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2.2.3: Scoping Review Objectives 

1. To review the literature and identify the existing algorithms that have been used for 

detecting muscle fatigue based on sEMG signals obtained from dynamic, repetitive, or 

single voluntary muscle contractions. 

2. To determine if there are algorithms capable of detecting muscle fatigue in real-time and 

whether these algorithms are accurate at detecting fatigue. 

3. To assess the suitability of these algorithms for wearable devices. 

2.2.4: Reviewed Literature  

The methodology of Arksey & O’Malley (2005) was used to conduct an extensive literature search 

strategy based on the research question. In its continuity, the PRISMA (Preferred Reporting Items 

for Systematic Reviews and Meta-analyses) and, in particular, the expansion for Scoping Reviews 

(PRISMA-ScR) protocol was consistently followed throughout the review (Arksey & O’Malley, 

2005). With the growing number of articles being published on this topic, we considered it more 

appropriate to examine the various databases' studies. As a result, six (6) different electronic 

databases were selected for systematically recognized specific published articles about the subject.  

The electronic databases were Scopus, Web of Science, PubMed, IEEE Xplore, IET Digital 

Library, and Google Scholar. The literature search lasted from September 2020 to February 2021. 

2.2.5: Search Parameters 

For the exploration of the update to date algorithms currently used in the literature for detecting 

muscle fatigue processing surface EMG signals during different types of activities, including 

sports and rehabilitation, Search words using combinations of logical operators "AND" and "OR" 

were used to pull published papers from electronic databases. Different subject headings, MeSH 
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terms particular to each database, and a mixture of keywords and associated key phrases pertaining 

to the detection of muscular tiredness were included in the search string. The search terms were 

described broadly in the Appendix A section. The search period was restricted to January 2005 to 

February 2020, so as not to consider obsolete algorithms. The search string was reviewed by the 

librarian (Liz Dennett) of the University of Alberta. 

2.2.6: Studies Selection Process 

The study selection procedures of Arksey (2005) were used to select the specific studies: firstly, 

the research questions were created, and then the search string was formulated based on the 

research question. One researcher (MMI) performed the database search and the initial duplicate 

elimination. After that, two independent researchers (MMI and HA) read the nominated abstracts 

of all articles for evaluating with the Inclusion and Exclusion criteria. In case of any dissatisfaction, 

the paper was reviewed by the third senior researcher (GK). When the senior researcher agreed to 

include the paper, the paper was accepted for the data extraction step.  

Inclusion Criteria: 

1. Studies included at least one algorithm that has used for: 

a. Detecting muscle fatigue during dynamic, repetitive, single voluntary contraction or 

related activities based on the surface EMG signal. 

b. The activities are rehabilitation activities or sports activities related.  

c. The algorithm was used, at least in a laboratory environment. 

2. The real-time muscle fatigue detection system used surface EMG signals. 
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3. Studies were published in peer-reviewed journals or conference proceedings and made 

available in complete form through electronic abstract database systems. 

4. Research articles published in the English language. 

5. Published between January 2005 to February 2021. 

Exclusion Criteria: 

1. Studies that did not use any types of algorithms for detecting muscle fatigue 

2. Studies that included systems for detecting mental fatigue, or muscle fatigue in animals. 

3. The studies that used other non-invasive techniques i.e., image processing, photonics, 

plasma optics, and etc. other than surface EMG based biosignals methods. 

4. Studies that included algorithm for detecting fatigue using needle EMG (fine wire), blood 

lactate or other invasive techniques.  

5. Abstracts or journal articles and papers that were not available to access in full. 

6. Research and studies published in review articles and journals, book chapters, published 

books, news reports, magazines, newspapers and discussion articles, Masters or Ph.D. 

dissertations. 

7. Abstracts or journal articles and papers that were published before 2005. 

8. If the studies did not mention enough information about methodology and result section 

regarding detection of muscle fatigue. 
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Scoping Review Prisma Flow Diagram:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: PRISMA flow chart of the Scoping review. 
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2.2.7: Study Selection Reliability & Bias Control 

Selection using a combination of engineering and health science electronic databases was expected 

to improve reliability and reduce source publication bias in this scoping review. The first 

consistency filter to ensure a certain level of methodological rigour included papers in abstract 

digital systems at the scientific level. Any non-English language papers were excluded from our 

study. We included two researchers for the title, and abstract evaluation eliminates bias. If there 

were any disagreements, our third senior researcher reviewed and analyzed the entire report, 

reducing bias. 

2.2.8: Data Extraction and Bibliometric Indicators 

At the outset of data extraction, the senior researchers (GK & MFP) notified the other researcher 

(MMI) how to retrieve data from the paper in a scoping review. The senior researchers (GK & 

MFP) resolved any disagreement concerning data extraction and advised which information should 

be stored in the Excel file. After completing the data extraction of the selected papers by the 

researcher (MMI), the data extraction master file was thoroughly checked by the other researcher 

(HA) independently.  The extracted data from each included studies contained: i) Authors name 

and publication year, ii) Types of published articles (whether Journal or Conference papers) and 

quartile, iii) Objectives of the study, iv) Name of the algorithm used and goals of the algorithm, v) 

indicators of fatigue mentioned, vii) Types of contractions or activities and its environment, viii) 

Name of the surface EMG sensor used and protocol of the sensor, ix)  EMG signal pre-processing 

data (Filter, Amplifier, and Sampling frequency), x) Name of the software and hardware tools 

used, xi) Sample Size and gender with weight, xii) The medical condition of the participants, xiii) 

Ground truth, and xiv) System accuracy along with sensitivity, specificity, precision, and 

resolution.  
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2.3: Results Analysis 

2.3.1: Data Overview 

This scoping review literature search strategy identified overall 1213 articles in six different 

databases. A total of 565 duplicated abstracts were removed, whereas 677 studies were selected 

for abstract reading. After reading the detailed abstract and applying the Inclusion & Exclusion 

criteria, 112 papers were screened for a full reading. After applying the Inclusion & Exclusion 

criteria to the 112 articles, a total of 67 papers were selected for data extraction. Among the 45 

excluded studies, there were 5 repeated studies, 19 studies did not mention any algorithm, a total 

of 6 studies indicated altered mechanism rather than sEMG, there was no information to extract in 

7 studies, 4 articles were published in other languages, total 4 studies are book chapters, and 1 

study was unavailable in online. The PRISMA flow diagram in Fig. 2.1 depicts the detailed overall 

study overview of included studies. Later, 67 papers’ data was extracted in an Excel file in a tabular 

format.  

2.3.2: Research Trend and Quartile of studies  

This scoping review clearly shows the yearly research advancement on muscle fatigue. As the 

included studies were considered before 2005, the bar chart demonstrated the development of the 

research through each year among the extracted studies. Figure 2.2 shows the performance stattics 

of included studies. 
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The result shows that as technology has advanced, research in this area has increased. The total 

number of journal articles (47) is greater than the conference proceedings (20). Statistics indicate 

that the majority of journals were published in high-impact factor journals. Among the included 

journal articles, 24 (51.06%) studies were published in the Q1 quartile journals. Total 18 (38.19%) 

articles were published in the Q2 quartile journals. Only 3 studies were published in the Q3 quartile 

journal, whereas 2 studies reported the Q4 quartile journal. The quality of muscle fatigue 

publications is high and increasing yearly.  

2.3.3: EMG Sensor 

In total, 61 out of 67 of the included studies mentioned the details of the sensors used. Six studies 

did not report any sensor details for recording the EMG signal. Most of the sensors used were 

electrodes. Analyzing the statistical data from the sensors used, the scoping review shows that 

about 37% use Ag/Cl electrodes (S. H. Liu et al., 2019; Moniri et al., 2021; Phinyomark et al., 

2018; Zhao et al., 2020), 20% Bagnoli Delsys sensors (Pilarski et al., 2013; Qi, 2009; Qi et al., 

2011, 2012, 2019) and the rest of the studies reported other sensors like bipolar surface EMG, 

strain gauge, Myogrip dynamometer and Myon. Very recent studies mentioned Trigno Hybrid 

Figure 2.2: Research trend of muscle fatigue yearly based on the included studies. 
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Sensors (Q. Liu et al., 2021; Wu et al., 2016; Yang et al., 2014) for the data acquisition. The 

reported sensors are mainly bipolar sensors, and very few are monopolar electrodes (Hotta & Ito, 

2013; G. Zhang et al., 2018). 

2.3.4: sEMG Signal Conditioning (Filter, Sampling Frequency, Amplifier)  

Among the total 67 included studies, about 51 studies referenced the use of filters for signal 

conditioning. Most of the filters used in the included studies were bandpass filters. A total of 37 

(55.22%) studies reported a bandpass filter, either Butterworth or Bessel filter and 14.82% of 

studies reported notch filter. Five studies also mentioned the use of low-pass filters (Kahl & 

Hofmann, 2016; Moniri et al., 2021; Nagai, 2017; Rong et al., 2013; Yochum et al., 2012),  and 

total 3 studies reported high pass filters (Hegedus et al., 2020; Q. Liu et al., 2021; Moniri et al., 

2021). The passband frequency of the filters varies for different criteria; for example, the lower 

pass frequency varies between 1-20 Hz, and the high pass frequency varies between 450-500Hz. 

The most common format of using bandpass filters based on their passband is 1-500Hz, 5-500Hz 

and 20-500Hz. In 2 studies, the passband frequency was used to 20-100Hz (Jordanic & 

Magjarevic, 2012; G. Zhang et al., 2018). Kumar et al. (2003) used the passband frequency to 5Hz-

2kHz, and Dayan et al. (2012) reported 10Hz-10kHz as the passband used band-rejection range 

for the notch filter 10-50Hz.  

Another essential task in signal conditioning is signal amplification. Among 67 papers, a total of 

51 papers mentioned the use of signal amplification features. Two studies reported  AD620 

Instrumentation Amplifiers (Jamaluddin et al., 2019; S. H. Liu et al., 2020), whereas 6 studies used 

sensors built-in sEMG amplifiers. Dayan et al. (2012) reported the use of a bio-potential amplifier. 

The commonly used amplification factor for amplifying the sEMG signal is 1000; Also the study 
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(Al-Mulla et al., 2011a) reported an amplification factor of 330 for sEMG and 270 for goniometer, 

and the differential gain is  2500 (Moniri et al., 2021).  

For sampling frequency, a total of 27 studies reported sampling frequency 1000 Hz. In 2 studies, 

the EMG signal was sampled at 2048 Hz (De Rocha et al., 2018; G. Zhang et al., 2018). The range 

of the sampling frequency varies from 1000 Hz to 4000 Hz among the included studies. 

2.3.5: Sensor Placement 

The EMG sensor is placed on various parts of the body to capture surface EMG signals from 

different skeletal muscles. A total of 38 studies ( which is 56.71% of included studies) reported 

that the sensor was placed on the biceps brachii muscles to record the sEMG signal. Four studies 

reported combining hand and shoulder muscles shown in Table 2.3 for recording EMG signals. 

Seven studies mentioned different finger and hand muscles for EMG recording. On the other hand, 

17 studies used various lower extremities especially leg muscles, for recording the EMG signal.  

Table 2.1: Placement of EMG sensor on the human body 

Muscle Type 

Total 

Included 

Studies 

Biceps Brachii (BB) 38 

AD, PM, BB, TB, UT, MD, and PD 04 

Carpi Ulnaris, Flexor carpi Radialis (FCR), Extensor Carpi Radialis Longus (ECRL), Extensor Digitorum (ED), and 

Extensor Carpi Radialis Brevis (ECRB) 
07 

Gastrocnemius 03 

Rectus Femoris (RF), Vastus Lateralis (VL) 03 

RF, Biceps Femoris (BF), Tibialis Anterior (TA), Vastus Medialis (VM), and Gastrocnemius 07 

Tibialis Anterior (TA), Lateral Gastrocnemius (LG), Medial Gastrocnemius (MG) and Soleus (SO) 02 

Trunk Muscle: Latissimus Dorsi (LD), Longissimus, Iliocostalis, Multifidus, Rectus Abdominis (RA), Internal and 

External Obliques (IEO) 
01 

Gluteus Maximus (GLTMAX), Gluteus Medius (GLTMED), Tensor Fascia Lattae (TFL), Rectus Femoris (RFEM), 
Vastus Medius (VMED), Vastus Lateralis (VL), Long Head of Biceps Femoris (BFEM), Semitendinosus (STEN), 

Tibialis Anterior (TA), Medial Gastrocnemius (MGAS), Lateral Gastrocnemius (LGAS), and the soleus (SOL) 

01 
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2.3.6: Types of Muscle Contraction and Environments 

Table 2.2 shows the summary of different contractions along with the activity characteristics 

mentioned in the included studies. In addition, Table 2.3 demonstrates the detailed contractions 

characteristics with the specific studies. Among the included studies, 25 (37.31%) reported 

isometric contraction. The isometric contraction was performed through various activities, 

including biceps curl on the Preacher machine, dumbbell movement and lifting, and a new type of 

environment notified about the Biodex system (Al-Mulla et al., 2011a; Smale et al., 2016; Wu et 

al., 2016). The maximum isometric voluntary contraction varies from 5% to 90% MVC in the 

included studies. 

Alternatively, 15 studies reported performing dynamic contractions mentioning futsal activities, 

factory work, wheelchair propulsion and bicycling with 80% MVC. For isotonic contractions, 3 

studies stated bicycle exercise, grip strength movement activities. Alongside, 1 study reported 

static contraction, and 1 study mentioned static & dynamic contraction describing seated dumbbell 

lifting and cycling. A total of 8 (10.11%) studies articulated repetitive activities (running, cycling, 

and wheelchair propulsion). Finally, 6 (8.90%) studies described voluntary contractions, including 

finger movement, sitting in a neutral position, and gripping the hand activities. 

Table 2.2: Different types of muscle contractions and activities 

Types of 

Contract

ions 

Isometric 

5% to 90% 

MIVC 

Isotonic 

Isokinetic 

Dynamic 

80% MVC 

Isometric & 

Dynamic 
Static 

Static & 

Dynamic 
Repetitive Voluntary 

Different 

Activities 

Biceps curl on 

Preacher 
Machine 

Bicycle 

Trainer, 

Giant 

Taiwan 

Futsal Weightlifting 

Dum

bbell 

in 
seate

d 

positi
on 

Static: 
Held a 

load with 

elbow 
fixed 

position 

 
Dynamic: 

Cycling 

Running 
Finger 

movement 

Dumbbell 

lifting 

Bicycle 

Trainer, 

Giant 
Taiwan 

Factory work 
Curl exercise 
on Preacher 

Machine 

Wheelchair 
sitting on a 
comfortable 

 

Wrist attached 

to rope & belt 

of weight 
 

Grip 
strength 

 

Curl Machine Dumbbell Bicycle 

sitting 

position 

 

Biodex 
system 

Wheelchair 

Propulsion 

and Bicycling 

Pulling 

loadcell-

80%MIVC 

Pedaling 
Hand 

gripping 
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2.3.7: Fatigue Feature Vector 

In the total included studies, there were reports of different fatigue features. Remarkably, 27 

studies reported a combination of time and frequency domain fatigue indicators. Time-domain 

fatigue features were included in the 15 studies, whereas frequency domain only features were 

reported in 20 studies. Five studies followed the time-frequency characteristics of the EMG signal 

to detect fatigue. The most promising research for the detection of muscular fatigue was the study 

of (Wu et al., 2016) where three different classes of fatigue were defined: static fatigue, local 

fatigue, and dynamic fatigue. Static fatigue was recognized using three feature vectors (RMS, 

IEMG), (RMS, IEMG, Wavelet Energy (WE)), and (RMS, IEMG, WE, and ERHL). The local 

fatigue was identified using a sample set of feature vectors (MPF, MDF). Five kinds of feature 

combination (RMS, IEMG, MIF, WE, and ERHL) was used to detect dynamic fatigue. Therefore, 

it is apparent that a range of features is required for identifying static fatigue accurately. Table 2.3 

demonstrated most of the features of the EMG signal that are used for detecting muscle fatigue in 

the included studies.  

Table 2.3: A list of features used for forecasting muscle fatigue 

Time domain feature Frequency domain feature Time-Frequency domain feature 

Average Power, Simple square 

integral (SSI), ARV, MAV, RMS, 
IEMG, ZC (Peak & Spike counting), 

Waveform length, Slop Sign change, 

Sample Entropy, Mean absolute 
value, Mean absolute value slope, 

Variance, Mean variance, Willison 

amplitude, Amplitude of the first 
burst, Log detector, 

MF, MPF, MDF, SMR, Mean Power, Standard 

deviation, Maximum-to-minimum drop in power 
density ratio, Frequency ratio, Peak to Peak frequency, 

Power Spectrum, Power spectrum ratio, Spectral 

moment, Signal to noise ratio, Variance of Central 
frequency, Energy ratio of all high frequency and low 

frequency (ERHL), EMG Intensity, Frequency 

decomposition, Spectral Correlation Density (SCD), 
Increased Average Ratio (IAR), 

ISE (Inst. Spectral Entropy), IMF, 

IMDF, IMFB, AIF, WIRM1551*, 
MIF, IE, IMF1, Total power (TTP), 

WCZ (Weighted cumulative Zero 

crossing estimator), WCM (Weighted 
cumulative Median Frequency 

estimator), WCR, (Weighted 

cumulative Root Mean Square 
estimator) 

ARV=Average rectified value, RMS=Root mean square, IEMG=Integrated EMG, ZC=Zero Crossing, MF=Mean Frequency, MPF=Mean Power 

Frequency, MDF=Median frequency, IMF=Instantaneous mean frequency, IMDF=Instantaneous median frequency, IE= Instantaneous energy, IMFB= 

Instantaneous mean frequency band, MIF=Mean instantaneous frequency, IMF1= Intrinsic component of EMG signal, AIF= Average instantaneous value, 

*WIRM1551 means the wavelet ratio between moment 1 at scale 5 and moment 5 at scale 1 based on the discrete wavelet transform. 

2.3.8: Index of Muscle Fatigue 

Fatigue index is the degree of fatigue intensity to real-world fashion where common people can 

surely be able to perceive and define their limit during training or exercise. Among 67 included 
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studies, 64 papers reported either non-fatigue or fatigue state. On the other hand, Al-Mulla et al. 

(2011a) presented three categories of fatigue labelled as non-fatigued, transition-to-fatigue, and 

fatigue state (Al-Mulla et al., 2011a). The study (Chen et al., 2014) mentioned the Borg scale to 

quantify the intensity of exercise where each subject was asked to rate the perceived exertion 

during exercise and translate the perception into a numeric value. To translate fatigue index, the 

study (S. H. Liu et al., 2019) reported a fatigue index formula mentioned in the Appendix C 

2.3.9: Sample Size, Age, and Medical Condition of Participants in included Studies 

A total of 66 selected studies reported participant information from experimentation. Only 1 study 

did not report any information about the participants. Among the included studies, 833 participants  

(male-668 and female-165) volunteered for the muscle fatigue research. However, no research has 

been done to see how fatigue levels differ between men and women. Qi et al. (2020) reported the 

participants' medical condition where people with spinal cord injury (SCI) participated in the 

experiment. A total of 10 participants (Male-7, Female-3) with SCI took part in the test. The overall 

age of the participant with SCI was under 18 and over 50 years. Approximately every aged 

population took part in the test except children. So, there is a gap in the literature of the participants' 

muscle fatigue research with different neuromuscular disorders and how fatigue affects them early 

enough. 

2.3.10: Algorithms based Method used for Detection of Fatigue in Literature 

Table 2.4 shows that a total of 13 (19.40%) studies reported Wavelet Transform (WT) directly for 

the identification of muscle fatigue. WT supports a wide range of standardized mother wavelet 

functions. Four different types of WTs were reported in the included 13 studies. Continuous 

Wavelet Transform (CWT) was reported in the 4 studies (Smale et al., 2016; Soo et al., 2008; 
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Yochum et al., 2010, 2012). Regular WT was used for the 6 studies (Beck et al., 2014; Duan et al., 

2020; Fidalgo-Herrera et al., 2021; Kahl & Hofmann, 2016; Nagai, 2017). Also, Discrete Wavelet 

Transform (DWT) was applied in 1 study (G. Zhang et al., 2018). Both CWT and DWT were also 

deployed in 1 study (Hari et al., 2020). Another type of WT, named Tunable Q-Wavelet Transform 

(TQWT), was also reported in the study (Hari et al., 2021).  

Maximum 22 (32.83%) studies reported the combination of FT, WT, ML and DL method (listed 

in Table 2.4) to detect muscle fatigue. The combination of FT, WT with ML or  DL method is the 

automated approach for the detection of muscle fatigue. Either Fourier Transform (Fast Fourier 

Transform) or Wavelet Transform were used to extract frequency domain features.  Based on the 

features, ML and DL algorithms were trained to detect fatigue. Among different ML algorithms, 

fuzzy-LDA with FFT was reports in 2 studies (Al-Mulla et al., 2011a; Al-Mulla & Sepulveda, 

2010) and presented 90.7%  maximum fatigue classification. These studies reported that a real-

time wearable system was developed using the LDA with FFT for the detection of fatigue.  

Correspondingly total of 7 studies reported the Support vector machine (SVM) algorithm (Table 

2.4). However, they used different optimizers for SVM. Two study fuzzy optimizer for SVM 

(Karthick et al., 2018; Wu et al., 2016). The bacteria foraging base high computational optimizer 

was also reported in the study (Wu et al., 2016) . Q. liu et al. (2021a) reported an improved whale 

optimization algorithm (WOA) for optimizing the SVM technique. The WOA-SVM and BF-SVM 

require high processing memory; therefore, they could be used to develop a laboratory based 

automated system using a parallel processor. However, they are computationally challenging for 

integration into a wearable device. Besides, the regular SVM with a simpler optimizer can be used 

to be embedded in a wearable device. 
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Karthick et al. (2018) applied Logistic Regression (LR) and Ensemble method with the FFT. Two 

methods were found to have real-time implications, according to the study. 

The combination of WT and PCA reported 5 studies (Chowdhury & Reaz, 2015; Moniri et al., 

2021; Qi, 2009; Qi et al., 2011, 2020). Besides, more robust but high computational demanding 

algorithms like the ANN and CNN were reported in four studies (Fu et al., 2019; Kumar et al., 

2003; MacIsaac et al., 2006; Rogers & MacIsaac, 2013).  

Only Fast Fourier Transform (FFT) is used in 7 studies detecting fatigue based on frequency 

domain features of EMG signal.  FFT and WT were also used in 4 studies for analyzing the 

frequency spectrum of EMG signal (Cao et al., 2007; Chowdhury et al., 2015; De Rocha et al., 

2018; Rezki et al., 2017).  Jero and Ramakrishnan (2019) proposed Hilbert Huang Transform 

(HHT) algorithm that extracts frequency domain features vector from EMG signal.  

In 2 studies, Empirical Mode Decomposition (EMD) was used (S. H. Liu et al., 2019, 2020), and 

4 studies reported HHT-EMD based hybrid algorithm. However, real-time implementation of WT, 

HHT, EMD  into a wearable device is still challenging due to the small processing memory. 
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Table 2.4: Detailed scenario of the algorithm’s method in the included studies 

List of Algorithms 

Type of 

Muscle 

Contraction 

Indicators of Fatigue Accuracy 
Software/Hardw

are 
Ground Truth 

Wavelet 

Transform 

(WT) 

CWT (Continuous Wavelet Transform) 

(Rogers & MacIsaac, 2013; Soo et al., 
2008; Yochum et al., 2010, 2012) 

Dynamic, 

Isometric 
IMF, RMS, MDF, M-wave NR 

MATLAB, 

Visual-3D, 

LabView 
NIDaq Module 

(NI) 

NR 

DWT (Discrete Wavelet Transform) (G. 
Zhang et al., 2018) 

Isometric, 
50% MVC 

Power Spectrum, Increased 

Average Ratio (IAR), Trigger 

Pattern Index (TPI) 

NR NR NR 

Wavelet (WT) 

(Beck et al., 2014; Duan et al., 2020; 

Fidalgo-Herrera et al., 2021; Kahl & 
Hofmann, 2016; Nagai, 2017) 

Isometric, 

Repetitive, 

Dynamic 

MF, MDF, Scalet wavelet, 

Center frequency, wavelet 
intensity pattern (WIP), Ratio 

of normalized intensities. 

0.95 MATLAB ANOVA Analysis 

 

 
 

Isometric 

60%MVC 

 

MF, Spectral moments ratio 
(SMR), 

Fuzzy approximate entropy 

(fApEn) and Recurrence 
quantification analysis 

(RQADET), Fuzzy approximate 

entropy (fApEn) 

NR R-Studio NR 

Dynamic 

Wavelet Spectrum, 

Borg Rating of Perceived 

Exertion Scale 

NR MATLAB Statistical Analysis 

CWT, SWT 

(Hari et al., 2020) 
Isometric 

Mean and Standard 
Deviation (SD) and CV, SVD 

maximum singular value, SVD 

entropy 

NR NR NR 

TQWT (Tunable Q-Wavelet Transform) 

(Hari et al., 2021) 
Isometric 

RMS, Mean Absolute Value 

(MAV), Variance (VAR), and 
Integrated EMG (IEMG) 

NR NR NR 

FT + WT + 

 Machine 

& Deep 

learning 

Fuzzy, Linear Discriminant Analysis 
(LDA) 

(Al-Mulla et al., 2011a; Al-Mulla & 

Sepulveda, 2010) 

Isometric 

30% MVC 

IMDF, Total EMG band power, 

Elbow Angle, Arm Oscillation 

 

 

LDA=90.3% 
sensitivity= 

overall delay 7.4 s 

MATLAB 

SunSpot 
Microcontroller 

Offline Computer-
based measurement 

LR=84.8% 

NN=80.4% 
Fuzzy KNN=82.6% 

OCAT 

Approach=89.1 
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List of Algorithms 

Type of 

Muscle 

Contraction 

Indicators of Fatigue Accuracy 
Software/Hardw

are 
Ground Truth 

OGD (Online Gradient Descent), 
Discrete Fourier Transform (DFT) 

(Gokcesu et al., 2018) 

Dynamic MDF, MNF, ZCR NR SPSS NR 

Naïve Bayes 
(Jamaluddin et al., 2019) 

Repetitive MAV, MNF, MDF, RMS 0.98 NR NR 

Predictive Machine learning 
(Pilarski et al., 2013) 

Dynamic 

Smart wheel data, Time-to-

Fatigue (TTF), Absolute 

prediction error 

NR MATLAB 
Smart Wheel data 

self-reported fatigue 

FFT 

PCA 

(Moniri et al., 2021) 

Dynamic RMS, MF, MDF NR MATLAB NR 

Support Vector Machine (SVM), WOA 

(improved whale optimization 
algorithm) 

DE (Differential evolution) 

(Q. Liu et al., 2021) 

Isometric 

Average rectified value (ARV), 

IEMG, IMF, IMDB, SMR, 
Band spectral entropy (BE), 

Lempel-Ziv 
complexity (LZC) 

 

average accuracy 
of 85.50% in 

ankle dorsiflexion 
(DF) and 84.75% 

in ankle 

plantarflexion 
(PF) 

Statistical 

Analysis tools 
NR 

FFT, PCA, SVM 
(Chowdhury et al., 2019) 

Isometric 

MAV, SSC, IEMG), Simple 

square integral (SSI), VAR, 

RMS, 

WL, Log detector (LOG), ZC, 

V-order 2 (V2), sample entropy 

(SampEn), MDF, MF, Average 
instantaneous value (AIF), 

Total power (TTP) and Mean 

Power 

FD set: 86.76%, 

error: 13.24%, 

TD set: 92.65%, 
error:7.35, 

Compound 

feature set: 
92.65%, error: 

7.35%, Time-

frequency domain 
feature set: 

94.12%, error: 

5.88% 

MATLAB NR 

LMS (Least Mean Square), NLMS 

(Normalized LMS), GNGD 
(Generalized Normalized Gradient 

Descent), AP (Affine Projection), CNN, 

(Moniri et al., 2021) 

Isometric 

 
RMS, IEMG, ZC, MF, MDF NR NR 

Significance 

Wilcoxon signed-

rank test 
with Bonferroni 

correction (p < 

0:01). 
 

KNN 

(Bukhari et al., 2020) 

Isometric & 

Dynamic 
NR 

40% for ISO 
73% for ECC and 

80% for CON 

MATLAB NR 
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List of Algorithms 

Type of 

Muscle 

Contraction 

Indicators of Fatigue Accuracy 
Software/Hardw

are 
Ground Truth 

BF (Bacterial Foraging), PBSO, 

FSVCM (Fuzzy support vector 
classification machine), DWT, FFT, 

EEMD-HT (Ensemble Empirical Mode 

Decomposition Hilbert transform 
(Wu et al., 2016) 

Isometric 

60% MVC 

RMS, IEMG, MPF, MDF, MIF, 
Wavelet Entropy (WE), Energy 

ratio of all high frequency and 

low frequency (ERHL) 

Static Fatigue 

SVCM= 86.36% 
PSO-

SVCM=91.91% 

FSVCM = 
91.91% 

BF-FSVCM= 

91.91% 
BF-PSO-

FSVCM=95.45% 

Local Fatigue 

SVCM= 75% 

PSO-

SVCM=85.77% 
FSVCM = 

80.65% 

BF-FSVCM= 
88.64% 

BF-PSO-

FSVCM=93.18% 
Dynamic Fatigue 

SVCM= 86.36% 
PSO-

SVCM=90.91% 

FSVCM = 
89.66% 

BF-FSVCM= 

93.1% 
BF-PSO-

FSVCM=96.55% 

MATLAB Statistical analysis 

FFT, GA (Genetic algorithm), 

BPSO (Binary particle swarm 

optimization, 
Naïve Bayes, LR, Ensemble, 

SVM, Random Forest, Rotation Forest 

(Karthick et al., 2018) 

Dynamic 

MDF, MF, NSM, Concentration 

measure, Spectral entropy, 
Renyi entropy, SVD based 

entropy, 

Mean,Variance,Skewness, 
Kurtosis, Cofficient of 

Variannce (CoV) 

Overall, 91.39% 

LR = 85% 

Ensemble=90% 

NR Statistical analysis 

Welch Method,  ANN, 
Backpropagation, Logistic Regression, 

Ensemble,  

(Rogers & MacIsaac, 2013) 

Isometric, 

Repetitive 
Dynamic 

Generalized mapping index 

(GMI), PCA Theta (Q) Score, 
MDF 

NR 
MATLAB, NI-

DAQ 

Off-line.                                       
(mean ± std.dev.): 

PCA: (12.6 ± 5.6), 

GMI: (11.5 ± 5.4), 
NSM: (10.3 ± 5.4), 

WI: (8.9 ± 4.6), HE: 

(8.0 ± 3.3) 
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List of Algorithms 

Type of 

Muscle 

Contraction 

Indicators of Fatigue Accuracy 
Software/Hardw

are 
Ground Truth 

PCA, Wavelet 

(Qi et al., 2011, 2012, 2020) 

Isometric, 
Isotonic 

 

EMG Total Intensity, MF, 

Wavelet Center Frequency, PCI 

and PCII loading scores Theta 
(θ), MU 

NR Mathematica 6.0 ANOVA, ANCOVA 

Wavelet, ANN 

(Kumar et al., 2003) 
Dynamic 

MUAP, Frequency 

decomposition 
NR MATLAB NR 

CWT, Transfer Learning (AlexNet, and 

ResNet-18)  CNN-LSTM 
(Nahid et al., 2020) 

Voluntary Time-Frequency representation 

CNN-LSTM 

for UCI Dataset 

99.72% 
For Khusaba 

dataset 99.83% 

MATLAB NR 

GA, Pseudo-wavelet function 
(R. et al., 2012) 

Isometric and 
dynamic 

Wavelet decomposition 87.90 % 
Computer, Data 

logger 
NR 

DWT, Pbest (Personal best), PBPSO 

(Particle binary particle swarm 
optimization), BPSO (Binary particle 

swarm optimization), GA, MBTGA 

(modified binary tree growth algorithm), 
BDE (Binary differential evolution) 

(Too et al., 2019) 

Voluntary 

MAV, WL, RMS, Maximum 

fractal length, and Average 

power 

85.20% MATLAB NR 

Wavelet, Backpropagation, NN, SVM, 

GA-SVM 

(Rong et al., 2013) 

Voluntary 

EMG Spectral intensity, Energy 

Analysis, High and low 
frequency power, and MDF, 

MF 

97.3% with 

seven-fold cross-

validation 

NR NR 

Wavelet, CNN, SVM, PBSO, 

(Wang et al., 2020) 
Repetitive 

RMS, IEMG, MPF, MDF, and 

Band Spectral Entropy 

CNN 80.33% 

SVM 86.69% 

Portable 

gas analyzer 

(K4b2 Cosmed, 
Rome, Italy) 

 

NR 

Standalone 

ML 

 

ANN (Artificial Neural Network), RBN 

(Radial Basis Network), GRN (General 
Regression network) 

(MacIsaac et al., 2006) 

Static & 
Dynamic 

MAV, Zero Crossings (ZC), 

Slope sign changes (SSC), and 

Wavelength (WL). 

ANN=70% 
MATLAB, 

Microsystems 
NR 

EMD 
Empirical Mode Decomposition (EMD) 

(S. H. Liu et al., 2019, 2020) 

Isotonic & 

Isokinetic 

IMF1 (Intrinsic component of 

EMG signal), MDF 
NR 

MATLAB, 

Microcontroller 
 

MCU computed 

MDF (IMF1) was 

compared with 
offline computer 

system 
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List of Algorithms 

Type of 

Muscle 

Contraction 

Indicators of Fatigue Accuracy 
Software/Hardw

are 
Ground Truth 

EMD, FFT 

(Yang et al., 2014) 
Isometric 

RMS, IEMG, MF, MDF, IMF, 

EMG Power 
NR MATLAB FFT & ANOVA 

EMD  

& 

 WT 

EMD, WT 

(Chowdhury et al., 2014; Chowdhury & 
Reaz, 2015) 

Repetitive RMS, IAV and AIF NR MATLAB NR 

EMD, HT, LR 

(Xie & Wang, 2006) 
isometric MF NR MATLAB Statistical analysis 

HHT 
Hilbert Huang Transform (HHT) 

(Jero & Ramakrishnan, 2019) 

Isometric & 

Dynamic 

IF, IA, HMS, Shannon entropy 

(ShEn), 

Renyi entropy (ReEn), Tsallis 
entropy (TsEn), Approximate 

entropy (ApEn), Sample 

entropy (SamEn) and 
Conditional 

entropy (CndEn)  

NR 
Statistical analysis 

BIOPAC system 
t-test 

HHT  

& 

EMD 

HHT EMD 
(K. Li et al., 2012; Peng et al., 2006; 

Srhoj-Egekher et al., 2011; Xie & 

Wang, 2006) 

Isometric,  

Dynamic,  
80% MVC 

MF, Initial force proportion 
(IFP), Force output (FO), 

Relative force output (RFO), 

IE, IF, MDF 

NR 

MATLAB,  

SPSS,  
ME3000P2 

CoV 
HHT 0.0061 

AR 0.0407 

WT 0.1190    24 
Anova, t-test, 

Kolmogorov-smirov 

test. 26 

Polynomial 

Chirplet 

Transform 

Polynomial Chirplet Transform  
(Ghosh & Swaminathan, 2017) 

Isometric 
IMF, IMDF, ISE (Inst. Spectral 

Entropy) 
NR 

MATLAB 

Biopac MP36 data 

acquisition system                                         

NR 

FFT 

FFT 
(Fu et al., 2019; Han, 2017; Hotta & Ito, 

2013; Nagai, 2017) 

Static 
Concentric 

Isometric 

90% MVC  
Dynamic 

5% MVC 

MPF, MF, MDF 

Error of 
MATLAB 

processing result 

and DSP 
processing result 

is 0 0.000002 Hz 

MATLAB,  
DSP Kit 

TMS320C6748 

Regression  

MPF compared 
MATLAB  

Pearson correlation 

coefficient 

SCD (Cyclostationarity), FFT 

(Karthick et al., 2016) 
Isometric 

Spectral Correlation Density 
(SCD), Cyclostationarity 

property of sEMG 

NR MATLAB NR 

Short Term Fourier Transform (STFT) 

(Ming et al., 2014; Subasi & Kiymik, 

2010) 

Isometric MDF, MF 

MLPNN=90%  

STFT = 87.5% 
SPWVD = 89% 

CWT = 89%   69 

MATLAB NR 

FFT 

(Dayan et al., 2012) 

Isometric 

 

MDF, Peak and Spike Counting 

of EMG signal 

RF: r2 for PC and 
SC 0.9275 and 

0.9235 

MATLAB, 

Digital 
Comparator 

Asynchronous 

Counter 

NR 
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List of Algorithms 

Type of 

Muscle 

Contraction 

Indicators of Fatigue Accuracy 
Software/Hardw

are 
Ground Truth 

VL: r2 for PC and 

SC 0.9567 and 
0.9581 

FFT 

(Chang et al., 2016) 

Isometric 
90% MVC 

 

Mean Amplitude of EMG, 

RMS, MDF 
NR 

MATLAB 

SPSS 

Pearson correlation 
coefficient, r=0.74: 

p<0.001 

FFT  

&  

Wavelet 

FFT, DWT 

(Chowdhury et al., 2015) 
Dynamic 

Spectral analysis, power of 

different frequency bands 

(mean power values, grand 
mean power) 

NR 

MATLAB, 

Channels portable 

SEMG system 

(Noraxon Inc., 

Arizona, USA), 

 
 

NR 

FFT, Wavelet 
(De Rocha et al., 2018) 

Isometric & 
Dynamic 

ZCR, MDF, WCZ (Weighted 

cumulative Zero crossing 
estimator), WCM (Weighted 

cumulative Median Frequency 

estimator), WCR, (Weighted 
cumulative Root Mean Square 

estimator) 

NR NR Statistical analysis 

FT, CWT, Cyclostationarity 
(Cao et al., 2007) 

Isometric & 
Dynamic 

MF, Energy (En), IE, IMF, SC 
(Spectral coherence). 

NR 
Statistical 
software 

NR 

STFT, Wavelet 
(Rezki et al., 2017) 

Voluntary 
Amplitude, Mexican hat and 

Haar scale. 
NR Arduino Card NR 

Hybrid 

Algorithm 

OCEEMD (optimized complementary 

ensemble empirical mode 
decomposition), 

LSMI (least-squares mutual 

information), 
CQPSO (chaotic quantum particle 

swarm optimization), 

(Z. Li et al., 2020) 

Repetitive 

multi-scale envelope spectral 
entropy (MSESEn), root mean 

square error 

(RMSE), the number of IMF 
components, and the standard 

deviation of the amplitude ratio 

NR NR 
fast Fourier 

transform (FFT) 

FES (Functional Electrical Simulation, 
selective interpolated CEEMDAN with 

logistic regression (SICEEMDAN-LR) 

(Zhou et al., 2020) 

Isometric IMF, M-wave NR MATLAB NR 
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2.3.11: Performance Qualities and Ground Truth 

Table 2.4 represents the detailed summary of performance qualities with the ground truth of the 

listed algorithm reported in the included studies.  

Overall, the standalone use of FT, WT, EMD, and HHT methods does not offer an automated 

fatigue detection approach. As a result, fatigue detection, in this case, is determined by expert 

clinicians or trained researchers who can interpret the results from analyzing the sEMG signal 

using these algorithms. 

To validate the WT, FFT, EMD, and HHT frequency-based analysis performance, a couple of 

statistical techniques along with t-test, Chi-square test, ANOVA, ANCOVA, F-max, Wilcoxon 

test, Pearson coefficient test, regression analysis was reported shown in Table 2.4.  

The automated fatigue detection approach requires the combined use of FT, WT, HHT, and ICA 

with the ML and DL algorithm. Different approaches based on ML showed satisfactory 

classification accuracy. Among the ML techniques listed, LDA showed maximum classification 

accuracy and was close to 90.3% (Al-Mulla et al., 2011a; Al-Mulla & Sepulveda, 2010) when 

implemented in real-time. LDA was therefore identified as one of the promising algorithms for the 

real-time detection of muscle fatigue. 

The standard SVM algorithm with FFT achieved a maximum average accuracy of 85.50% in ankle 

dorsiflexion (DF) and 84.75% in ankle plantarflexion (PF) (Q. Liu et al., 2021), where adding 

other algorithms or optimization techniques improves the classification accuracy.  For example, 

PCA with SVM attains a classification accuracy of 86.76% when using the frequency domain 

features set and 92.65% for the combination of time and frequency features set  (Chowdhury et 

al., 2019). The Fuzzy SVM shows the maximum classification accuracy is 91.91% with the time 
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and frequency domain features (Wu et al., 2016).  An algorithm like the KNN attains 73% for 

eccentric and 80% for concentric contractions. In parallel, genetic algorithms with binary particle 

swarm optimization and naive bias achieve 91.39% of overall classification accuracy.  

In addition, two other real-time algorithms showed promise. The LR achieved an accuracy rate of 

up to 85%, and the Ensemble showed maximum accuracy of 90%. 

Considering only time domain features, the ANN achieved maximum accuracy of 70%, and the 

CNN attained 80.33% accuracy. However, the ANN and CNN are very unlikely to be embedded 

in a wearable device due to their sizeable computational requirement. 

The performance of the ML algorithms was validated mainly by either the confusion matrix or 

cross-validation techniques. In addition, a single ML algorithm’s performance was checked by 

other ML algorithms and statistical analysis. For instance, the LDA performance was compared 

with the LR, NN, Fuzzy KNN, and OCAT approach (Al-Mulla et al., 2011a), where the LDA 

shows superior performance.  

2.3.12: Wearable System in the Literature 

Currently, 4 studies among 67 included studies attempted to model real-time wearable muscle 

fatigue detection systems.  

The study (Dayan et al., 2012) conducted a feasibility study of monitoring muscle fatigue using 

peak counting (PC) and spike counting (SC) of EMG signal instead of median frequency. 

However, with only one feature (MDF or PC/SC, or IMDF ), the fatigue detection model failed to 

achieve acceptable clinical accuracy. 
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An FFT based real-time monitoring of muscle activity during cycling was reported (Chen et al., 

2014). The study demonstrated graphical results in real-time in the LabView. However, an expert 

clinician or therapist is required to interpret the results to detect fatigue.  Moreover, the study 

recommended using FFT to detect muscle fatigue in a wearable device but did report any 

mechanism for implementation in real-time. 

An EMG Patch was developed for the real-time monitoring of muscle fatigue during cyclic 

exercise using a microcontroller unit applying an EMD algorithm (S. H. Liu et al., 2019). However, 

the device was designed to forecast muscle fatigue based on only IMDF features. The study did 

not report any classification or validation performance. Single feature IMDF generates oscillatory 

output and goes beyond the fatigue spectral frequency region. As a result, it is not very likely to 

forecast consistent results with satisfactory accuracy using only IMDF features.  

Correspondingly, a microcontroller based autonomous system using fuzzy-LDA was built to 

predict muscle fatigue in BB muscles for 30% MVC (Al-Mulla et al., 2011a). the classification 

accuracy was reported at 90.7%. Red LED light was turned on when the transition-to-fatigue 

occurred, and blue light turned on meant non-fatigue. The elbow angle, arm oscillation, power, 

and IMDF were used as features. The elbow angle and hand oscillation are entirely subjective 

measures and remain error bias. However, the elbow angle and hand oscillation vary drastically 

from contraction to contraction and are not appropriate for all contractions.  

There is a very likely gap in the literature that can be filled by developing a wearable device that 

can detect muscle fatigue in real-time and apply it. 
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2.4: Discussion 

This scoping review aimed to search comprehensively in the current literature to uncover state of 

the art for algorithms used to train models to detect muscle fatigue from the sEMG signal during 

exercise or physical activities. The scoping review suggested 4 algorithms that have the potential 

to train models to be embedded in a wearable device. Wearable devices have had a significant 

impact in the fields of rehabilitation research, health science and sports research. However, based 

on the result of the scoping review, we did not find any wearable devices in the literature that are 

currently being used for detecting muscle fatigue in real-time.  

One of the outcomes of this scoping review is that before constructing any automated real-time 

system, it is critical to train algorithms utilizing fatigue features from large enough datasets to 

avoid overtraining. Most of the studies reported extracting both time and frequency domain 

features from the sEMG signal. Algorithms that trained models using both time and frequency 

domain features simultaneously had greater accuracy than models that were simply trained on only 

time, or frequency domain features alone, as shown in Table 2.4.  

A promising algorithm method is recommended based on the adaptability to deploy in an 

embedded device and the performance of the algorithm’s methods portrayed in Table 2.4.  

The scoping review determined that the FFT, HHT, WT, ICA, and EMD are currently used 

algorithms to analyze the frequency spectrum of the sEMG signal. However, these algorithms are 

not readily implemented in a wearable device since they require the trained eye of a specialist to 

predict fatigue using these techniques (Wu et al., 2016).  

Al-Mulla et al. (Al-Mulla et al., 2011a) developed an autonomous system for detecting muscular 

fatigue with a combination of fuzzy and LDA algorithms embedded into a microcontroller. The 
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LDA showed a maximum of 90.3% accuracy. LDA is computationally light and compatible with 

embedding in a wearable device. Therefore, LDA  is considered one of the potential algorithms to 

train models that could be embedded into a wearable device.  

The study (Karthick et al., 2018) suggests that the LR and Ensemble algorithm could be embedded 

in a wearable device. The study reported the performance accuracy of two algorithms (LR=85% 

and Ensemble = 90%) that results are acceptable to use in practice.  The LR is light and low-

computational demanding model included in the list of algorithms that may be used with wearable 

devices. The Ensemble ML algorithm requires a medium processing compared with LDA, LR and 

SVM. However, Ensemble shows superior performance most often in the complex classification 

problem. Therefore, Ensemble can be used to justify its performance in detecting fatigue in real-

time. 

A fuzzy support vector classifier machine algorithm (FSVCM) combined with FT and WT, was 

proposed and showed 89.66% classification accuracy (Wu et al., 2016). The study was conducted 

to classify muscle fatigue, but not in a real-time fashion. However, the study suggested that the 

SVM model together with FT is potentially feasible to be embedded in a wearable device. It is also 

concluded that the SVM would be one of the promising algorithms to develop a real-time model 

that can be embedded into a wearable device.   

The CNN, WOA, and Naïve Bayes also demonstrated superior training and testing accuracy 

described in (Q. Liu et al., 2021). However, these algorithms have a multi-layer network and 

required high computational time. These algorithms could be suitable to develop for fatigue 

detection models but require a high processing laboratory setup and are therefore not feasible to 

embed into a wearable device. 
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Although muscle fatigue research has been conducted for a couple of decades, there is no evidence 

from the literature of an automated real-time fatigue model embedded in a wearable device. 

Accordingly, the recommendation of this scoping review, it is that the LDA, LR, SVM, and 

Ensemble have the potential to be embedded in a wearable device.  

2.4.1: Research Approach for Real-Time Wearable Device 

The sEMG signal is a time-varying and non-linear signal. Without time and frequency-domain 

analysis to extract features as input to models, it is unlikely to detect muscle fatigue precisely (Wu 

et al., 2016).  In addition, the review revealed that algorithms that were trained on both time and 

frequency domain features simultaneously were more accurate. As a result, it is clear that muscle 

fatigue models require both time and frequency domain feature vectors to provide adequate 

accuracy.  

The outcome of this scoping review recommends considering three steps to develop a model that 

can detect muscle fatigue in real-time which is compatible with and embedded in a wearable 

device:  

i) To decompose EMG signal using various signal processing techniques. 

ii) To extract features from the decomposed EMG signal. 

iii) To train ML algorithm classifier using the extracted features, then validated and tested 

with new EMG data. 

To Decompose EMG Signal: It has already been established that the EMG signal contains both 

time and frequency domain features. The result of this review suggested that Wavelet Transform 

(WT), Hilbert Huang transforms (HHT-EMD), Fourier transform (FT), and Independent 
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Component Analysis (ICA) are the most widely used tools for extracting frequency domain 

features from EMG signals. However, except for the FFT, all three methods are highly 

computationally complex systems. No wearable devices can handle these methods due to low 

memory size, power consumption, number of iterations, clock frequency and limited parallel 

processing capability. Therefore, one of the significant challenges of this research is to extract time 

and frequency domain features from the EMG signal and to process them simultaneously.  

To extract frequency domain features, the sEMG signal needs to be converted into the frequency 

domain. FFT typically requires 16 KB (S. H. Liu et al., 2019) while processing which is feasible 

for deployment in the flash memory of embedded devices. Fourier Transform based techniques 

can undoubtedly convert the sEMG signal into the frequency domain and estimate the power 

spectrum. Contrarily, less processing is required for extracting time domain features compared to 

the frequency domain. 

To Extract Features from the Decomposed EMG signal: After decomposition, the features of 

the EMG signal will be extracted. The time domain features can be extracted directly with less 

processing of the EMG signal. Therefore, the process to calculate time domain features is a little 

faster than frequency domain calculation. 

However, the extraction of frequency domain features takes some time. The power spectrum can 

be estimated to extract the features. Chapter 3 discusses which features were selected in this 

research. 

Adding so many features creates a computation burden for the processor. The challenge is to 

achieve the smallest number of features that will capture the required patterns in the data. The 

feature selection approach was undertaken to select the most relevant features describing fatigue 
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patterns and remove unneeded or redundant features. As this is a trial-and-error approach, some 

features will be added or subtracted during the experimental analysis. 

Train the Classifier and Extract Unknown Signal: The ML classifier is trained based on the 

extracted features to classify muscle fatigue on the unknown EMG signal in this stage.  

This review suggested some algorithms that are suitable to use a real-time wearable device. The 

anticipating algorithms are: i) LDA, iii) SVM, iii) LR and iv) Ensemble. 

Recent research shows that these algorithms have the potential to be embedded in a wearable 

device. As a result, these algorithms must be optimized to reduce dimension, making light and 

compatible models for the deployment in a wearable device.  

It is a strong belief that this approach will help to develop a robust wearable system that can detect 

muscular fatigue for a large group of people in real-time. 

2.4.2: Study Limitations 

We must keep in mind that this scoping review has some limitations because we have only been 

able to collect studies that employ algorithms to determine muscle fatigue, not other types of 

indicators. The papers were extracted based on the six databases ,as a result, it may create bias. 

The selection of the databases did not follow any scientific methodology rather the researcher’s 

empirical knowledge. Studies included in this review were only published in the English language. 

The studies were included that have been published between January 1, 2005, to January 1, 2020. 

On the contrary, within the literature search interval, the earliest articles are likely outdated because 

of technological advancement.  
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2.5: Conclusion 

The purpose of this scoping review was to identify algorithms that could be applied to detect 

muscle fatigue in real-time and compatible with deploying it in a wearable device. However, 

despite the inclusion of 67 studies, it was still found that the limitations in the algorithms reported 

would not meet our pre-defined criteria. We conclude that the technology readiness level of an 

automated system using ML algorithms is still low. However, this review has suggested four ML 

algorithms that have the potential to be used to train models that can be embedded to create a 

wearable device. Primary research with adequate size datasets to avoid overtraining is required to 

assess these algorithms and select the optimal model for muscle fatigue studies. It is concluded 

that there is no wearable device in the current literature that can detect muscle fatigue in real-time 

as well as be acceptable to the clinical setting. In addition, the challenge of integrating these 

selected algorithms into wearable devices remains unclear. Therefore, this review advocated to 

alleviate the research to develop a wearable device using the potential algorithms for detecting 

muscle fatigue in real-time.  
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CHAPTER 3: DEVELOPMENT AND VALIDATION OF A MODEL 

TO DETECT MUSCLE FATIGUE BASED ON sEMG DATA 

ASSOCIATED WITH A SUSTAINED SINGLE 80% MVC 

Abstract 

Background: Muscle fatigue impairs the muscle’s ability to contract and exert force and 

eventually leads to complete loss of function, preventing a task from being finished. A balance 

between optimizing performance and preventing injury is critical in designing fitness programs to 

improve strength and endurance. To define the maximum limit for optimal test-specific activities 

and exercises, it is desirable to develop a wearable system to detect muscle fatigue in real-time.  

Objectives: The objectives of this research were: 1)  To extract features from the previously 

recorded sEMG data during a sustained single 80% MVC and select the most promising features 

associated with fatigue, 2) Utilizing the features identified in Objective 1 to evaluate the 

performance of the algorithms identified in the scoping review,  3) To select the most promising 

machine learning algorithm based on the classification performance of fatigue state and 4) To 

develop a model that has the potential to be embedded in a wearable device. 

Methods: Different features were extracted from the sEMG signal in the time and frequency 

domains during sustained single 80% maximum voluntary contraction (MVC). To extract 

frequency domain features, power spectrum of the sEMG signal was estimated using the Fast 

Fourier Transform. Then, to eliminate the unnecessary features, the NCA feature reduction tool 

was used. Next, each algorithm (recommendation of the scoping review) was tested to evaluate its 

performance with the selected features. Finally, based on the performance of fatigue classification 

and adaptiveness to a wearable device, the most promising algorithm was selected for developing 

the proposed model.  
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Result: The NCA selected 14 significant features from 35 features extracted from the sEMG 

signals. Using 14 features, the OSVM algorithm outperformed other algorithms with respect to 

fatigue classification accuracy. The proposed OSVM algorithm achieved 99.2% overall 

classification accuracy with a sensitivity of 99% and a specificity of 99.2%. Testing with a new 

dataset, the model showed 100% fatigue classification accuracy and is excellent performance 

among the existing muscle fatigue research. With a reduced feature set of the 5 most prominent 

features, the OSVM model achieved a maximum of 92% fatigue classification accuracy. 

Conclusion: The specifications for a suitable microcontroller capable of implementing the model 

are summarized and indicated that a wearable device using our model is feasible. 

Keywords: Surface EMG, MVC, Muscle fatigue, Feature extraction, Feature selection, Model, 

Wearable device, Real-time.
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3.1: Introduction 

Wearable devices have been extensively used in diverse fields, particularly the healthcare sector 

to the rehabilitation area and the Olympic event, to monitor patients’ health and welfare and to 

prevent injuries (Al-Mulla et al., 2011a; S. H. Liu et al., 2019). Recent research demonstrates that 

people are increasingly willing to use body-worn devices to monitor their health status while 

engaging in physical exercise (S. H. Liu et al., 2019). Although research on muscle fatigue has 

been advancing for several decades, an accurate wearable device has not been reduced to practice. 

A wearable device is highly desirable for use in ergonomics and prosthetics, human-computer 

interactions, sports injuries and performance, rehabilitation like spinal-cord injury, paraplegia, 

cerebral palsy, low back pain, shoulder and neck pain,  arthritis, stroke recovery and so on (Al-

Mulla et al., 2011a; Koutsos, 2017; Koutsos et al., 2016; O’Sullivan et al., 2018; Qi et al., 2011). 

Muscle fatigue reduces muscles’ ability to contract and exert force overtime during a sustained 

task (Wan et al., 2017). If muscle fatigue is not managed carefully, there is a risk of injury (Al-

Mulla et al., 2011b). Currently, individuals generally have to rely on their perception of muscle 

fatigue during exercise (Al-Mulla et al., 2011a). A quantitative approach has the potential to 

manage available muscle capacity to complete a task safely and to an optimal level of performance. 

In addition, clients can use the information to define their limits using the wearable device during 

training and exercise sessions to prevent injury. 

Wearable devices are widely used to predict health statuses, such as monitoring respiration, blood 

pressure, pulse rate, and body temperature. In these examples, the data sampling rates required are 

relatively slow (10-20 Hz) (Dias & Cunha, 2018) compared to sEMG signals which are typically 

1000 Hz per muscle (Qi et al., 2011). In addition, the models needed to detect muscle fatigue are 

https://www.google.com/search?rlz=1C1CHBF_enCA926CA926&biw=1920&bih=969&sxsrf=ALeKk00EerasmXkjuodUhZMFM3NVuCMv6A:1621890841999&q=arthritis&spell=1&sa=X&ved=2ahUKEwiemIGcnuPwAhXyOn0KHYErBaQQBSgAegQIARAx
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computationally more complex that most other physiological signals. These two factors in 

combination create a significant technological challenge when designing a wearable muscle 

fatigue sensor. This necessitates the development of efficient models to match the available lean 

computational resources of modern wearable devices. 

3.1.1: Relevant Literature 

There are a few literatures that attempts to develop a wearable device sEMG-based fatigue sensor. 

Chen et al. (2014) developed an FFT-based real-time method for detecting muscle fatigue while 

cycling and displayed graphical findings in LabView (a desktop application). Fatigue was detected 

by trained-eye observation based on the displayed spectrum in LabVIEW (Chen et al., 2014). The 

study suggested the use of  FFT to detect muscle fatigue in a wearable device but did not reduce it 

to practice.  

The study (S. H. Liu et al., 2019) reported an EMG Patch that was developed for real-time 

monitoring of muscle fatigue during cyclic exercise using a microcontroller unit. The empirical 

mode decomposition (EMD) algorithm was applied to measure the instantaneous median 

frequency (IMDF) as fatigue indicator. The EMD is a very complex algorithm to embed in 

controller. Instead, only a small portion of the EMD algorithm called the first intrinsic mode 

function (IMF1) was embedded in a microcontroller to measure IMDF. No validation or accuracy 

was reported in the study. This study only reported the difference between the calculated IMDF in 

the microcontroller and measured in a computer system (post-processing or offline approach). Wu 

et al. (2016) stated that single feature IMDF does not have the capability to detect the occurrence 

of fatigue that is clinically acceptable.   The authors in study (Wu et al., 2016) argued that IMDF 

becomes very high and even assumes negative values that bear no relationship to the real the real 

world data collected. Very often IMDF is oscillatory and extends beyond spectral range of the 
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sEMG signal. To overcome the limitation of IMDF frequency, it is essential to utilize multiple 

features while developing a wearable device for fatigue pattern. 

Al-Mulla et al. (2011a) developed a microcontroller based wearable device to detect muscle 

fatigue in BB muscles for the 30% MVC. Only five  participants volunteered in the experiment. A 

fuzzy classifier is used to set the boundaries for labelling the sEMG signals based on manual input 

two main kinematic criteria: elbow angle and hand oscillation obtained by a goniometer. The 

elbow angle, hand oscillation, total EMG power, and IMDF were used for fatigue features. 

However, from contraction to contraction, the elbow angle and hand oscillation differ dramatically 

and not applicable for every contraction. The study reported two states of  EMG signal: non-fatigue 

and transition-to-fatigue state. The fuzzy-LDA based system was capable of predicting the onset 

of fatigue with an average error of 7.4 seconds of five participants. The overall classification 

accuracy of the LDA algorithm was reported as 90.3%. The system was capable of alerting the 

user in a simple way by turning on the LED light as a fatigue indicator. The elbow angle and hand 

oscillation which is entirely subjective measures and remains error bias.  

Finally, there are sufficient gaps in the current literature for developing a wearable device that can 

be used to detect muscle fatigue in real-time as well as acceptable to the clinical setting. This 

research gap identified an opportunity for developing a real-time wearable device to detect fatigue. 

The main objective of this research is to develop a model using machine learning that can be used 

to deploy in a wearable device to detect muscle fatigue in real-time from the sEMG signal during 

a sustained single 80% MVC. An accurate, well-designed wearable device could be applied in 

clinical and consumer applications to monitor fatigue in real-time helping to prevent work-related 

injuries. 
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3.2: Methodology 

3.2.1: General Overview: The Process of Developing a Model using Machine Learning 

Algorithm. 

The block diagram presented in Figure 3.1 shows the overall process of developing a model using 

an ML algorithm. The early phase is known as the data collection step, where raw EMG signal 

was recorded from biceps brachii muscle during static isometric voluntary contraction. 

The raw data was processed and conditioned in the signal grooming stage. In the grooming stage, 

the dataset of brief period and did not represent any fatigue were removed. After that, the sEMG 

signal was conditioned in the same stage.  

After grooming the captured raw sEMG signal, the next stage was the feature extraction. Feature 

extraction was a crucial part of the workflow (Wu et al., 2016). Subsequently, the feature selection 

technique was applied to select the most prominent features that follow the fatigue pattern. Feature 

selection is essential to avoid irrelevant features reducing the computational burden to the system.  

Following that, ML algorithms (selected in Chapter 2) were trained using a database of sEMG 

signals to evaluate their performance and select the most promising algorithm for modelling sEMG 

to detect fatigue in real-time. The most promising algorithm was required to demonstrate excellent 

performance accuracy and suitability for embedding in a wearable device. The rest of the section 

of this chapter provides detailed information about each stage.  
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3.2.2: Participants’ Information 

The participants' data were previously collected as part of an sEMG data bank at the Rehabilitation 

Robotics Laboratory (RRL), Edmonton Clinic Health Academy at the University of Alberta. The 

study that collected the data and its use for the development of models for fatigue detection was 

approved by the University of Alberta Research and Ethics Management Committee 

(Pro00063851, 2016). A total of 100 participants participated in the test. Each participant was 

informed about the study and took written consent before the trial. All participants were asked to 

complete the PARQ+ before testing (Cifrek et al., 2009; O’Sullivan et al., 2018). A total of 100 

healthy participants volunteered in this study (the number of male n = 50, female n = 50, age 18-

75). The sEMG data included equal numbers of males and females, thus guaranteeing gender 

equality. The participants were free of neuromuscular disease and any upper extremity injury 

within the past year (O’Sullivan et al., 2018). 

Figure 3.1:Architectural framework for developing a Model using ML algorithm to detect fatigue. 
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3.2.3: sEMG Recording and Data Collection 

Each participant performed a single thirty-minute session in the RRL Lab using the Delsys Bagnoli 

EMG system (Massachusetts, USA). A single session consisted of a maximum voluntary 

contraction test followed by a single sustained isometric contraction at 80% of the participant's 

MVC, held until fatigue. The study (Cifrek et al., 2009) report recommended procedures for 

measuring fatigue systematically. Participants were provided with a visual analogue feedback of 

the force they were generating using a force-transducer that was integrated into the data acquisition 

system. They were asked to exert a maximum force to define the MVC.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: Isometric single sustained maximum voluntary contraction test (Photo: RRL Lab). 
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Figure 3.3:Bagnoli™ Surface EMG Sensor (Photo: BagnoliTM website) 

Then for the sEMG data collection to fatigue test, they were asked to maintain the force as close 

to 80% of their MVC as possible. Participants used their dominant arm for the contractions. EMG 

recordings were collected using DE 3.1 Bagnoli Double Differential surface electrodes placed on 

the skin overlying the belly of the biceps brachii (BB) muscle (O’Sullivan et al., 2018; Qi et al., 

2020)  parallel with the direction of the BB muscle fibres. Superior to the antecubital fossa, a 

reference electrode was placed on the anterior side of the non-dominant arm (O’Sullivan et al., 

2018).  The bandwidth of the EMG sensor is specified as 20-460/Hz while being sampled at 1000 

Hz. The following information is considered as a recommended configuration for obtaining muscle 

activity information. 

3.2.4: Data Grooming 

Removal of Outliers from the Dataset: All 100 participants were asked to sustain the 80% MVC 

force until they could no longer do so, and this was defined as the point of fatigue. Four participants 

stopped the test after a very short time and were not considered to have fatigued but very likely 

stopped due to discomfort in applying the 80% force. Consequently, we applied statistical analysis 

to exclude the lower test duration subjects from the entire dataset. The Stem-and-Leaf method was 

used to choose the outliers with the lowest value. A total of 4 participants' data were omitted from 

the study since their test length was less than 19 seconds. 
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Movement Artifacts and Noise Removal: The sEMG signal captured from human muscle is 

unavoidably contaminated by the noise that originates in the amplification circuit (known as 

thermal noise), at the electrode-skin interface, due to crosstalk between neighbouring muscles and 

other peripheral sources (De Luca et al., 2010; Qi et al., 2011). These noise sources interact when 

Figure 3.4: Steam-and-Leaf plot for removing lower value outlier data from the 100 participants data. 
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a sensor is attached to the skin and form the baseline noise detected while capturing EMG signal 

from the muscle. The crosstalk can be reduced by careful sensor positioning and managing the 

contraction task to reduce co-contractions. Movement artifacts originate at the electrode-skin 

interface. They occur when the muscle beneath the skin moves, and the force impulse passes causes 

relative movement between the electrode-skin-muscle interface. Movement artifacts tend to 

contaminate the low-frequency part of EMG spectra and can be removed by applying a high pass 

filter only transmitting signal frequencies greater than 20 Hz.   

Given the goal of developing a wearable real-time sensor, complex-filter circuits would add to the 

system's complexity and computational demand. All electronic circuits that employ AD converters 

must employ a low pass antialiasing filter to remove signals above the sampling frequency. This 

can be implemented in hardware.  To remove the low frequency movement artifacts however we 

chose not to use a 20 Hz high pass filter preferring to test how the real-time system operates with 

the raw sEMG signal and allowing the ML model to eliminate the movement artifacts. We used a 

completely new method to eliminate movement artifacts and high-frequency harmonic elements, 

adding novelty to this study. 

In the first step of signal conditioning, we cleaned all data by statistically removing artifact spikes 

and outliers using the filling outlier’s technique. This technique was implemented in the MATLAB 

environment to find and fill the outliers. A value that is more than three scaled median absolute 

deviations (MAD) from the median is considered an outlier. The outliers were filled with the 

nearest median of the time-series EMG data.  The MATLAB function used can be readily deployed 

in a microcontroller environment if necessary. 
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Detrending was used to remove the low frequency power contribution in the frequency domain 

(Elipot & Gille, 2009). Detrending produces straightforward spectra that focusing on the 

physiological components in the signal. For our study, we used the 2nd order detrend function to 

remove the quadratic trend of the EMG signal so that it could maintain original physiological 

information.  

As an afterthought, we applied a different strategy to remove the low-frequency components due 

to the motion artifacts and high-frequency harmonic components in the spectrum. The study (Qi, 

2009) suggested that the low-frequency components added to the EMG spectrum are less than 20 

Hz due to movement artifacts. Furthermore, the authors in (Naeije & Zorn, 1982) stated no fatigue 

information in the EMG spectrum beyond the 150 Hz frequencies for isometric contraction. Based 

on the previous literature recommendation, we used a sorting function that captures frequencies 

between the ranges from 20 to 150 Hz and eliminated the rest of the frequencies. For the remainder 

of our research, frequencies in the range of 20 Hz to 150 Hz were used to remove artifacts and 

harmonic components. 
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Figure 3.5: The sEMG signal before and after clearing the outliers. 

3.2.5: Extraction of Features to be Used by Algorithm 

The extraction of features is a crucial step in the study of muscle fatigue. Extracted features are 

used to train ML algorithms to depict and classify muscle fatigue effectively and intuitively. The 

muscle activity during fatigue is reflected by various features in the sEMG signal, as indicated in  

previous studies. The feature characteristics of an EMG signal are divided into two categories 

include: time and frequency domain characteristics. To detect fatigue accurately for the acceptance 

of clinical setting, it is essential to extract both time and frequency domain features simultaneously, 

as suggested by the coping review in chapter 2. 

To extract features from a captured sEMG signal, we divided the entire signal into different epochs, 

with some epochs containing the non-fatigued portion of the EMG signal and other epochs 

covering the EMG signal with the fatigue portion. The concept of epoch analyzing EMG signal 

for fatigue shows superior performance than the time window technique because our participants 
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sustained their contractions for widely varying lengths of time to reach the fatigue state. Research 

has shown that window size significantly affects characteristic frequencies of the power spectrum 

(Waly et al., 1996).  The study (Luebke et al., 2010) reported that the size of the time window used 

to extract features from EMG signals caused errors in the calculated power spectrum parameters 

(Waly et al., 1996). The authors in the study (Waly et al., 1996) investigated that by using window 

size to analyze EMG signal, the frequencies are overestimated, especially in the mid-range of the 

power spectrum. The mid-range frequencies in the spectrum carry the fatigue information of the 

EMG signal. This effect is evident in calculating median frequency, which is one of the critical 

parameters for indicating fatigue. Unlike the time window technique, the epoch technique solves 

the frequency overestimation dilemma and inconsistency assumptions for fatigue forecasting. The 

effectiveness of two different numbers of epochs (5 and 10) for detecting muscular fatigue using 

the ML method was also investigated in this study. In this study the entire EMG signal was divided 

into epochs, with the first epoch representing the EMG signal at the start of the test.  

Features Extraction in Time Domain: Time-domain (TD) features often characterize 

fluctuations in EMG magnitude over the entire duration of contractions. TD features of EMG 

amplitude during isometric voluntary contractions are critical for carrying fatigue information. TD 

features can be derived and extracted directly from the raw EMG signal (Phinyomark et al., 2013). 

As a result, extracting and implementing the TD features require low computational requirements.  

IEMG: The IEMG (Integrated EMG) considers time-domain attributes of the sEMG signal as a 

fatigue indicator. The mathematical definition of IEMG is the integral of the absolute value of the 

raw EMG signal (Yang et al., 2014).  To extract the IEMG function, divide the EMG signal into 

different epochs and measure the region under the curve of the rectified EMG signal. The 

mathematical expression of the IEMG signal is denoted as 
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Where 𝐸𝑖 represents the sEMG sequence of each epoch within the length of N. 

Normalized IEMG: Normalized IEMG depicts the variation of EMG signal from the beginning 

of the test to the fatigue state. The IEMG of the first epoch reflects the progression of the MVC 

test’s beginning state hence 𝐼𝐸𝑀𝐺𝐸𝑝𝑜𝑐ℎ 𝐹𝑖𝑟𝑠𝑡 is used to normalize the IEMG of every updated 

epoch.  

 

IEMG Trend: The IEMG trend indicates how the EMG trend varies from the start of the test to 

the progression of fatigue. 

 

RMS: The root mean square (RMS) amplitude is related to motor unit recruitment and muscle 

contraction. The magnitude of RMS changes with the recruitment of muscle fibres. RMS is 

calculated in each epoch with the following formula 

      Where 𝐸𝑖 represents the sEMG sequence of each epoch within the length of N 

Normalized RMS: The RMS of the first epoch reflects the progression of the MVC test’s 

beginning state hence 𝑅𝑀𝑆𝐸𝑝𝑜𝑐ℎ 𝐹𝑖𝑟𝑠𝑡 is used to normalize the RMS of every updated epoch. The 

normalized RMS is calculated as follows. 

 𝐼𝐸𝑀𝐺 =  
1

𝑁
∑|𝐸𝑖|

𝑁

𝑖=1

 (3.1) 

 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝐼𝐸𝑀𝐺 =
𝐼𝐸𝑀𝐺𝐸𝑝𝑜𝑐ℎ 𝑛𝑒𝑤 − 𝐼𝐸𝑀𝐺𝐸𝑝𝑜𝑐ℎ 𝐹𝑖𝑟𝑠𝑡

𝐼𝐸𝑀𝐺𝐸𝑝𝑜𝑐ℎ 𝐹𝑖𝑟𝑠𝑡
 (3.2) 

 𝐼𝐸𝑀𝐺 𝑇𝑟𝑒𝑛𝑑 = 𝐼𝐸𝑀𝐺𝐸𝑝𝑜𝑐ℎ 𝑁𝑒𝑤 − 𝐼𝐸𝑀𝐺𝐸𝑝𝑜𝑐ℎ 𝑂𝑙𝑑 (3.3) 

 𝑅𝑀𝑆 = √ 
1

𝑁
∑ 𝐸𝑖

2

𝑁

𝑖=1

 (3.4) 



64 

 

 

RMS Trend: The RMS trend indicates variation of RMS value from the start of the test to the 

progression of fatigue. 

 

Average Force: sEMG sensor also provides force data during the whole contraction periods. The 

average force magnitude of each epoch is a way to observe the changes of force magnitude during 

non-fatigue and fatigue states. 

the symbol  𝐸𝑓𝑜𝑟𝑐𝑒 represents the force signal within the length of N in each epoch. 

Features Extraction in Frequency Domain: The frequency domain (FD) feature extraction 

technique is an exceptionally attractive tool for muscle fatigue research. FD features are often 

derived from the statistical properties of the power spectrum of the EMG signal (Moniri et al., 

2021).  

Power Spectrum: Because of the nonlinearity and time-variability of the EMG signal, a power 

spectrum in the frequency domain is a popular method for obtaining detailed information about 

muscle activity during fatigue. A Fourier transform-based approach is used to generate the power 

spectrum of an EMG signal. The power spectrum was estimated by considering the real-part of the 

Fast Fourier Transform. The power spectrum can be used to extract a large number of features that 

exhibit a nominal relationship to the onset of fatigue  

 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑅𝑀𝑆 =
𝑅𝑀𝑆𝐸𝑝𝑜𝑐ℎ 𝑛𝑒𝑤 − 𝑅𝑀𝑆𝐸𝑝𝑜𝑐ℎ 𝐹𝑖𝑟𝑠𝑡

𝑅𝑀𝑆𝐸𝑝𝑜𝑐ℎ 𝐹𝑖𝑟𝑠𝑡
 (3.5) 

 𝑅𝑀𝑆 𝑇𝑟𝑒𝑛𝑑 = 𝑅𝑀𝑆𝐸𝑝𝑜𝑐ℎ 𝑁𝑒𝑤 − 𝑅𝑀𝑆𝐸𝑝𝑜𝑐ℎ 𝑂𝑙𝑑 (3.6) 

 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐹𝑜𝑟𝑐𝑒 =
1

𝑁
∑ 𝐸𝑓𝑜𝑟𝑐𝑒

𝑁

𝑖=1

 (3.7) 
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Mean Frequency: Mean frequency (MF) is calculated from the power spectrum analysis of the 

sEMG signal. The mean frequency in the frequency domain is the frequency at which the average 

power in the spectrum was reached for each epoch or time interval.  

             

Where P(Fm) is the power spectrum calculated using Fourier Transform with signal frequency Fm, 

and Nf,  is the Nyquist range in the power spectrum.  

 𝑀𝐹 =
∑ 𝐹𝑚.  𝑃(𝐹𝑚)

𝑁𝑓

𝑚=1

∑ 𝑃(𝐹𝑚)
𝑁𝑓

𝑚=1

 (3.8) 

Figure 3.6: EMG power spectrum for five epochs technique during static isometric MVC. 
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Median Frequency: The Frequency at which total power reaches a maximum of 50% is called 

the median frequency (MDF) (Yang et al., 2014). The MDF divides the power spectrum into two 

equal halves of the total spectrum. 

Median frequency can be calculated from the time-series signal using sampling frequency. The  

MDF can also be measured from the power spectrum analysis. We used both techniques to 

calculated MDF.   

Instantaneous Frequency: The instantaneous frequency (IF) represents each frequency 

component added to the EMG signal at each period.  The instantaneous frequency is calculated 

through the following equation 

           

The idea of instantaneous frequency shows which frequency components are added to the EMG 

power spectrum at each time in the frequency domain. Frequency components added due to 

movement artifacts and surrounding noise can be differentiated using the IF technique. For 

instance, when the frequency pattern of a specific application and muscle fatigue research is 

established, IF is very powerful to trace that previously identified pattern.  

Instantaneous Mean and Median Frequency: Based on the protocols widely reported in the 

literature,  the instantaneous mean and median frequencies were measured within the ranges from 

20 to 150 Hz. 

 
𝑀𝐷𝐹 = ∑ 𝑃(𝐹𝑚) = ∑ 𝑃(𝐹𝑀𝐷𝐹) =

1

2

𝑁𝑓

𝑚=𝑀𝐷𝐹

𝑀𝐷𝐹

𝑚=1

∑ 𝑃(𝐹𝑚)

𝑁𝑓

𝑚=1

 
(3.9) 

 𝐼𝐹 = ∑ 𝑃(𝐹𝑚)

𝑁𝑓

0

 (3.10) 
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Peak’s Prominence: The definition and concepts of the peak’s prominence were taken from the 

MATLAB library. The prominence of a peak refers to how noticeable a peak’s amplitude is relative 

to other neighboring peaks. A low, isolated peak may be more conspicuous than a higher peak 

surrounded by other large peaks. 

 

 

 

 

 

 

 

 

Based on the prominence measure, the top five peaks were selected as extracted features. The top 

five most prominent peaks were measured for each epoch and tabulated in the feature dataset 

Peak’s Width: The width of the peaks is thought to play a crucial role as a fatigue feature. The 

half-power width of the sEMG signals associated with fast-twitch and slow-twitch fibres are more 

may differ from peaks arising in the spectrum that are associated with artifacts or unwanted noise. 

Recent research has shown that during fatigue, the width of the slow-twitch fibres peaks is 

considerably larger (65 to 70 % ) than the width of the non-fatigue state. In brief, the greater the 

width peaks are associated with contributions from both fast-twitch or slow-twitch fibres peaks 

whereas narrower width peaks are more likely to be associated with the fatigue state where the fast 

twitch fibers are no longer active. 

Figure 3.7: Prominence and width of peaks for epoch 1 
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Peak’s Frequency: At the beginning of the contraction, the EMG power spectrum exhibits two 

dominant peaks in the frequency domain associated with the activity of both the fast-twitch and 

slow-twitch fibres activation. But when fatigue occurs, only slow-twitch fibres peak remains in 

the spectrum. 

 

 

 

 

 

 

Peak’s Power: The prominence of the five highest peaks were sorted for each epoch of the EMG 

signal. Following that, the power of five peaks was determined for each epoch and stored in the 

feature table for training the machine learning model. 

3.2.6: Selection of Algorithm to Generate a Model 

We conducted a comprehensive scoping review described in Chapter 2 to find the potential ML 

algorithms developing our proposed model. Based on the scoping review, four potential machine 

learning algorithms were selected that have ultimately potential to be deployed into a wearable 

device to detect muscle fatigue in real-time. These ML algorithms selected were: 

 

Figure 3.8: Illustration of slow-twitch and fast-twitch fibres peaks. 
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In order to select the most promising algorithm for the development of the model to detect muscle 

fatigue, each ML algorithm were applied to the sEMG dataset to train a model incorporating the 

features defined above. Their performance was then evaluated by applying the model to test data 

selected randomly from sEMG signals produced by the 96 participants.   The following describes 

the functioning of each algorithm when integrated into the MATLAB  Machine Learning 

development system.  

 LDA: LDA is a supervised-based ML algorithm that shows superior performance over principal 

component analysis (PCA) (Nugent et al., 2020). LDA is very light-resource and compact ML 

algorithm. The following linear transformation function manifests the classification where the 

LDA maps the data feature vector X (Al-Mulla et al., 2011a): 

here, 𝑊0 and 𝑊𝑇 are determined by maximizing the ratio of between-class variance to 

within-class variance guarantee maximal separability (Al-Mulla & Sepulveda, 2010; Fisher, 

1936). Using the formula, at least two or more classes of features can be extracted. We presented 

two classes here non-fatigue and fatigue. After classifying two classes correctly, we will add the 

fatigue class in our final documentation.  

The signal will be classified based on the above logic (Al-Mulla et al., 2011a). 

A. Linear Discriminant Analysis (LDA) 

B. Logistics Regression (LR) 

C. Optimized Ensemble  

D. Support Vector Machines (SVMs) 

 𝑌 = 𝑊0 + 𝑊𝑇𝑋 = ∑ 𝑊𝑖
𝑇𝑋𝑖 + 𝑊0

𝑁

𝑖=1
 (3.11) 

   

 𝑋 = {
𝑁𝑜𝑛 − 𝐹𝑎𝑡𝑖𝑔𝑢𝑒                                             𝑖𝑓     𝑌 < 0
𝐹𝑎𝑡𝑖𝑔𝑢𝑒                                                          𝑖𝑓     𝑌 > 0

} (3.12) 
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LR: Unlike linear regression (that requires a numerical dependent variable or output), logistic 

regression produces a binary output. A logistic function can map any value to an ‘S’ shaped curve 

whose extreme points are either 0 or 1. The following equation represents a logistic function, 

where X is a numeric value. 

 

Figure 3.9: Logistic function for LR model. 

 

Below is an example of a logistic regression equation, 

 

or 

Where, 𝑦 is predicted output, 𝑊0 is bias or intercept term and 𝑊1 is coefficient for a single input 

value. The coefficients 𝑊0 and 𝑊1 are learnt from training data. Nonetheless, Logistic regression 

is a linear method where predictions are transformed using a logistic function. 

 𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 =
1

(1 + 𝑒−𝑋)
 (3.13) 

 𝑌 =
𝑒(𝑊0+𝑊1∗𝑋)

1 + 𝑒(𝑊0+𝑊1∗𝑋)
 (3.14) 

 𝑃(𝑋) =
𝑒(𝑊0+𝑊1∗𝑋)

1 + 𝑒(𝑊0+𝑊1∗𝑋)
 (3.15) 
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For the classification of fatigue and non-fatigue from the new sample dataset, a threshold is 

required by the LR algorithm. The default threshold is 0.5 probability, but it can be adjusted based 

on if necessary. If a threshold or predicted probability is established such that P(X) > 0.5 or some 

other threshold, 𝑦 = 1 and y=0 otherwise, then a classification algorithm can be established. For 

instance, in classifying an EMG signal as non-fatigue or fatigue, it can be established from LR that 

if x represents the input feature of a cell, then. 

for P(fatigue) > threshold, 𝑦 = 1, Hence the EMG signal is fatigue 

and 

for, P(fatigue| X) < threshold , 𝑦 = 0, Hence the EMG signal is non-fatigue. 

Optimized Ensemble: Ensemble learning is a particular type of machine learning paradigm where 

multiple models are trained to solve the same problem and combined to get better results (Anwar 

et al., 2014; Rocca, 2021; L. Zhang et al., 2019). In the optimized ensemble, there are four different 

algorithms commonly used: Bagging, GentleBoost, LogitBoost, Adaboost, RusBoost. We used the 

Bagging model for the optimized ensemble as other studies have shown comparatively better 

performance for datasets similar to sEMG.  

Bagging is the homogeneous learner, learns independently from each other in parallel and combine. 

The model is defined by Lévesque et al. (Lévesque et al., 2016) for classification samples.  

 

 

 

  (3.16) 

  
 

(3.17) 
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The advantages of bagging are that they demonstrate parallelization capabilities. Since the various 

versions are fitted separately, extensive parallelization techniques may be used if required. The 

procedure for ensemble method is followed by the  Lévesque et al. (Lévesque et al., 2016) 

 

 

 

 

 

 

There are a few options for aggregating the bagging models that were fitted in parallel (Lévesque 

et al., 2016; Qi et al., 2011; Rocca, 2021). For specific classification problems, the class outputted 

by each model can be thought of as a selection vote, and the ensemble model returns the class that 

receives the bulk of the selection votes, also known as hard voting (Lévesque et al., 2016). It is also 

possible to average the percentages of each class returned by all the models and hold the class with 

the highest average likelihood (this is known as soft voting) (Rocca, 2021; L. Zhang et al., 2019). 

SVM: Support vector machine (SVM) is the  most popular and widely used machine learning 

Algorithm (Patel, 2017).   SVM is a set of supervised learning techniques used extensively for 

classification problems.   SVM is one of Vapnik's most robust prediction methods (Boser et al., 

1992; Cortes & Vapnik, 1995).  The definition and mathematical illustrations of the SVM model 

were acquired from Brownlee's book of machine learning (Brownlee, 2019). The numeric input 

variables (X) data features or vectors (all columns) form an n-dimensional space. A hyperplane 

splits the input variable space (Brownlee, 2019). In SVM, a hyperplane is selected to best separate 

Optimized Ensemble procedure 
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the points in the input variable space by their class, either non-fatigue or fatigue class. These 

classes are also known as class 0 or class 1.  

 

Figure 3.10: Maximum-margin hyperplane for an SVM trained with samples from two classes. Samples on the 

margin are called the support vectors (Image: Wikipedia). 

It can be visualized as a line in two dimensions, and it is speculated that all the input points are 

separated by the line (Brownlee, 2019). For instances: 

Where the coefficients ((𝑊1 and 𝑊2) that determine the slope of the line and the intercept 

(𝑊0) are found by the learning algorithm, and 𝑋1 and 𝑋2 are assumed to be the two input variables 

for illustration purposes (Brownlee, 2019).   Based on the outcomes returned by the formula, the 

point belongs to either fatigue or non-fatigue class. 

SVM Kernels: In practice, the SVM method is implemented using a kernel function. It is 

mandatory to define kernel function before initialization and to train the model. The inner products 

of the vectors equation for predicting a new input using the dot product between the input  𝑋1, and 

each support vector (𝑋𝑖) is measured as follows (Brownlee, 2019): 

 𝑊0 + (𝑊1 × 𝑋1) + (𝑊2 × 𝑋2) = 0 (3.18) 
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This equation is used to measure the inner products of a new input vector (𝑋) 

with all support vectors in training data. The coefficients 𝑊0and 𝑎𝑖 (for each input) can be 

predicted  from the training data by the learning algorithm.  

Three different types of kernel functions are commonly used for the SVM classification problem. 

The kernel defines the similarity or a distance measure between new data and the support 

vectors. 

 

For the polynomial kernel, the degree, d, must be defined to the learning algorithm during the 

training session. This kernel also allows curved lines in the input space.  

Like the polynomial kernel degree function, the gamma is needed to be defined during the training 

session. The gamma parameter lies between  0 < gamma <1  (Brownlee, 2019). 

The kernel functions along with the polynomial and radial kernel transform the input vector or 

feature vector space into higher dimensions based on the nature of the sample problem is called 

the kernel trick.  

Optimized SVM: The optimized SVM searches for the coefficients of the hyperplane, preparing 

best fitting the SVM model. The most suitable coefficients for fitting the SVM are searched 

through the iteration process in the optimized SVM classifier. After several iterations, the 

 𝐹(𝑋) = 𝑊0 + ∑ 𝑎𝑖 × (𝑋 × 𝑋𝑖)

𝑛

𝑖=1

 (3.19) 

   

 𝐿𝑖𝑛𝑒𝑎𝑟 𝑘𝑒𝑟𝑛𝑒𝑙,    𝐾(𝑋, 𝑋𝑖) = ∑(𝑋 × 𝑋𝑖) (3.20) 

 𝑃𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙 𝑘𝑒𝑟𝑛𝑒𝑙,    𝐾(𝑋, 𝑋𝑖) = 1 + ∑(𝑋 × 𝑋𝑖)
𝑑 (3.21) 

 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 𝑜𝑟 𝑅𝑎𝑑𝑖𝑎𝑙 𝑘𝑒𝑟𝑛𝑒𝑙,    𝐾(𝑋, 𝑋𝑖) = 𝑒−𝑔𝑎𝑚𝑚𝑎×∑(𝑋−𝑋𝑖
2) (3.22) 
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algorithm automatically settles down to stabilize the coefficients by altering linear, polynomial, or 

radial kernel function (Brownlee, 2019).  The whole process is continued by iteratively predicting 

the output and updating weights, slightly adjusting the desired classification results.  

Depending on the output result, two distinct updating techniques are applied. If the output value is 

more than 1, the training pattern was probably not a support vector. This indicates that the instance 

was not directly engaged in the output calculation, in which case the weights are reduced slightly: 

 

Where 𝐵 is the weight that is being updated (such as (𝑊1 or (𝑊2), on the other hand,  𝑛 is the 

current updated iteration step. When an output is less than 1, then it is anticipated that the training 

sample is a support vector and must be updated to explain the data better. 

 

Similarly,  𝐵 is the weight that is being updated, n is the current iteration, and lambda is a 

parameter to the learning algorithm. The lambda is a learning parameter that is often set to 

small values such as 0.0001 or less. The procedure is continued until the error rate reaches a desired 

level, or until a large, defined number of iterations have been completed. Learning rates that are 

lower frequently need significantly longer training periods. The number of iterations in this 

learning process is a disadvantage. 

Based on the MATLAB suggestion, the Bayesian optimizer applies this optimization classification 

to the positions of points from a Gaussian mixture model.  In the optimization, an SVM classifier 

classifies data by finding the best hyperplane that separates data points of one class from those of 

 𝑂𝑢𝑡𝑝𝑢𝑡 = 𝑌 × (𝑊1 × 𝑋1) + (𝑊2 × 𝑋2) (3.23) 

   

 𝐵 = (1 −
1

𝑛
) × 𝐵 (3.24) 

 𝐵 = (1 −
1

𝑛
) × 𝐵 +

1

𝑙𝑎𝑚𝑏𝑑𝑎 × 𝑛
× (𝑌 × 𝑋) (3.25) 
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the other class based on the kernel trick (linear, polynomial, or radial kernel). The best hyperplane 

for an SVM means the one with the most significant margin between the two classes (Hastie et al., 

2009). Margin means the maximal width of the slab parallel to the hyperplane that has no interior 

data points. The model will pick the best model by several iterations based on the best output 

fitting. In this research, the performance of the SVM with each three-kernel function tested and 

evaluated. 

3.2.7: Training, Validation and Testing of Selected Algorithms 

To develop a model that can be embedded in a wearable device to detect fatigue during a sustained 

single 80% MVC, the most promising algorithm needs to be selected based on its performance 

accuracy using the values obtained for the features (inputs to the model).  

To evaluate performance accuracy, all of the selected algorithms were trained using features-

extracted from the dataset. No single machine learning algorithm performs better for every 

problem. The challenge is to identify the best algorithm for the specific problem by trial-and-error 

comparing the performance of each algorithm. 

We developed and implemented the training paradigm of all algorithms in both MATLAB and 

Python environments. Before training, we randomized the entire dataset into training, validation, 

and testing sets. The optimal ratio for dividing the dataset into training, validation, and testing is 

as follows.    

Training=70% 

Validation=15% 

Testing=15% 



77 

 

Validation of Each Algorithm: Validation accuracy is one of the most significant performance 

metrics for selecting a promising algorithm (Suhm, 2021). To check the performance metrics, each 

algorithm was trained on the entire dataset, including the training and validation data. We used k-

fold cross-validation for validating the training accuracy of each algorithm on the training and 

validation dataset. The k-fold cross-validation is a popular technique for investigating ML 

algorithms' performance in such kind of moderate-size dataset (Total 480 observations). In k-fold 

cross-validation, we tested the validation performance of each algorithm on different value of K. 

However, the k=5 technique has been fitted well among other folds. As a result, a 5-folds cross-

validation technique was applied to evaluate the validation accuracy of all selected ML algorithms 

on the classification of fatigue.  

Firstly, we represented a single algorithm's validation and testing performance in detail in the result 

section. Therefore, the performance was illustrated comprehensively of the algorithms that 

obtained the highest validation and testing accuracy for classifying fatigue from the sEMG signal. 

The total number of observation tables, confusion matrix, ROC curve, classification error plot, 

overall accuracy were shown thoroughly in the result section. Finally, we added an evaluation 

Table 3.2 showing the validation and testing performance of each algorithm. 

Testing of Each Algorithm: After training each algorithm on the dataset for classification of 

muscle fatigue and validating the performance of each, it is time to test how each algorithm 

performs on the utterly new dataset. To test the performance of each algorithm, we inputted a new 

testing dataset. The dataset is entirely unknown to the algorithms and was not used for training 

purposes. A total of 15% of the data was used as a testing dataset. Similar to the validation stage, 

the detailed performance of a single algorithm was represented in the result section. The model 

acquired high testing accuracy was shown in detail. The testing performance of that algorithm, 
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including the total observations table, confusion matrix, ROC curve for fatigue and non-fatigue 

conditions, were shown in the result section. After that, the testing performance of each algorithm 

was listed in Table 3.2. 

Based on the validation and testing accuracy of each algorithm as well as its adaptiveness in the 

embedded devices, are the significant consideration to select a most promising algorithm. The 

proposed model will be developed using the most promising algorithm. Therefore, the developed 

model can be embedded in a wearable device to detect in real-time during isometric voluntary 

contraction. 

3.2.8: Selection Procedure of the Most Promising Algorithm and Development of the Model: 

Firstly, we trained each algorithm using all of the 35 features extracted from the sEMG signal. 

However, in practice it is challenging to process 35 features using current embedded devices.  

At the same time, not all features are equally important for determining fatigue. Furthermore, 

having too many features increases the computing complexity of wearable devices and leads to 

overfitting (Suhm, 2021). The feature selection approach was undertaken to select the most 

relevant features describing fatigue patterns and remove unnecessary or redundant features. As a 

result, it is essential to select the most relevant features that shape a fatigue pattern.  

Currently, stepwise regression, PCA, are decision trees, are primarily used to select features. But 

these models are too computationally large for deployment in an embedded device. So instead, we 

applied Neighbourhood Component Analysis (NCA) technique to select the most relevant features 

that contributed to following the fatigue pattern. NCA is an automated method for selecting a small 

subset of features that hold the most crucial information for fatigue classification while reducing 

redundancy among the features chosen. The principle of the NCA algorithm was described in 
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(Kavya et al., 2020). Because of the suitability of NCA to the embedded devices, it is called the 

embedded feature selection model. 

NCA picked total 14 features out of 35 features. Using the 14 features, each algorithm trained and 

tested. After training, the performance of each algorithm was validated. The classification 

performance of each algorithm depends on the validation and testing accuracy of fatigue 

classification. 

To select the most promising algorithm based on the fatigue classification performance and 

adaptability to a wearable device, a criteria table was created. Table 3.4 shows the selection criteria 

for a promising algorithm. The selection criteria includes fatigue prediction speed, training speed, 

memory usage, general assessment to the application problems, and fatigue classification 

performance. Based on Table 3.3, the OSVM is the most promising algorithm for developing our 

proposed model embedding in a wearable device to detect fatigue during a sustained isometric 

contraction. 

In addition, the 14 features also create computation complexity to most of the embedded device 

for processing and detecting fatigue in real-time. Therefore,  the performance of the OSVM based 

model again tested with most 5, 3, and 1 feature. Table 3.4 described the performance of the current 

model with reduced numbers of features. 

3.3: Results 

3.3.1: Identifying the Primary Feature Set 

Hypothesis about IEMG and RMS Magnitude during Fatigue: After close observations of the 

magnitude of IEMG and RMS on all participants' data, we investigated the magnitude changes of 

these two features during fatigue. 
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Changes of IEMG during Fatigue:  We investigated how the magnitude of IEMG changes from 

non-fatigue state to fatigue state. The IEMG variation during non-fatigue and fatigue state was 

hypothesized after thoroughly observing the  100 participants' data. 

A)  

 

 

 

 

 

 

 

 

 

B)  
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C)  

 

 

  

 

 

 

 

 

 

Figure 3.11 shows the changes of magnitude of IEMG vs epoch for three different maps. The 

IEMG variation demonstrates the increment of EMG magnitude from epoch 1 to epoch 5. For each 

case, epoch 5 contains the fatigue signal. Obviously, the magnitude of IEMG is increment during 

the progression of the test and in the fatigue state. Figure 3.11 (A) is the individual IEMG plot 

concerning the epoch. Figure 3.11 (B) is the bar plot of each of the participants’ IEMG on each 

epoch and depicts the increasing trend of IEMG magnitude during the progression of the fatigue. 

The average IEMG on each epoch of all 96 participants was shown in Figure 3.11 (C) as a scatter 

plot. The scatter plot also shows the increasing trend of IEMG for sustained isometric maximum 

voluntary contraction.  We conducted a paired-sample t-test shown in Figure 3.12 to validate our 

hypothesis of increment of IEMG magnitude during fatigue. 

 

 

Figure 3.11: A) showed how the magnitude of IEMG changes on each Epoch for one participant data, B) Bar plot of 

all 96 participants IEMG on each Epoch, C) Scatter plot of all 96 participants Average IEMG by each Epoch. 
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In the paired-sample test, IEMG_5 is the magnitude of IEMG for epoch 5, which is also the fatigue 

epoch. And the rest of the symbols denote accordingly. The significance level of the test statistics 

for IEMG_5 and IEMG_2, alongside the difference of IEMG_5 and IEMG_3, is extreme for both 

cases compared to the critical value (p=0.05). As a result, the null hypothesis is rejected, and there 

is a significant difference in the IEMG magnitude between epoch 2 and epoch 3. The result 

concluded that the magnitude of IEMG is increasing in the progression of the test. Epoch 1 

indicates the beginning of the test where movement artifacts affect the magnitude, so we are not 

interested in epoch 1 IEMG. Further,  the statistical significance level of the IEMG difference 

between epoch 5 and epoch 4 is less than the critical value; hence there is no significant difference 

between these two epochs' IEMG magnitude. Consequently, the IEMG magnitudes of epochs 4 

and 5 are nearly equal and greater than the IEMG magnitude of epoch 3. Finally, the following 

hypothesis is concluded for IEMG magnitude while fatigued. 

Figure 3.12: Paired-Sample t-test for observing the significant incremental of IEMG magnitude during fatigue state. 
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“For a single sustained static isometric maximum voluntary contraction, the magnitude of the 

IEMG increases in the progression of the test until fatigue state before the participants give up 

the test”.  

Changes of the RMS during Fatigue: The root means square (RMS) magnitude of the EMG 

signal is also a significant feature in the time domain. As the RMS magnitude is carefully observed 

at each epoch of all 96 participants’ data, it is apparent that the RMS magnitude increases when 

the test progresses and up to the fatigue state. 

A)  
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B)  

 

 

 

 

 

 

 

 

 

 

C)  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.13: A) showed how the magnitude of RMS changes on each Epoch for one participant data, B) Bar 

plot of all 96 participants RMS on each Epoch, C) Scatter plot of all 96 participants Average RMS by each 

Epoch. 
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The significance difference level between epoch RMS_5 and the other four epochs RMS was 

measured using a paired-sample t-test. The statistical significance of the difference between 

RMS_5 with RMS_1, RMS_2, RMS_3 is extreme for every three cases compared to the critical 

value (p=0.05). As a result, the null hypothesis is rejected, and there is a significant difference in 

the RMS_5 magnitude with RMS_1, RMS_2, and RMS_3. It is determined that the magnitude of 

RMS is increasing in the progression of the test. We did not find any statistically significant 

difference between RMS_5 and RMS_4. Epoch 5 is the fatigue signal, and the participant did not 

carry the test any longer in this epoch where EMG fell zero levels. As a consequence, the RMS 

magnitudes of epochs 5 and 4 are nearly equal and are greater than the RMS magnitude of epoch 

3. Finally, the following hypothesis is concluded for the RMS magnitude while fatigued. 

Figure 3.14: Paired-Sample t-test for observing the significant incremental of RMS magnitude during fatigue state. 
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“For a single sustained static isometric maximum voluntary contraction, the magnitude of the 

RMS increases in the progression of the test until fatigue state before the participants give up 

the test”.  

Pattern of Time Domain Features During Fatigue: We paid more attention to all possible time 

and frequency domain features that could aid muscle fatigue research in developing a robust real-

time wearable device. Owing to the larger dataset, the population samples for the sEMG-based 

muscle fatigue study will be followed by our experimental findings. 

Analogous to the IEMG and RMS features, the changes of the normalized IEMG and RMS as well 

as the trend of IEMG and RMS demonstrated in Figure 3.15, are valuable characteristics and highly 

correlated. The magnitude of the EMG changes in the fatigue state; hence, RMS and IEMG also 

change. As a consequence, these characteristics measurements can be used to describe the fatigue 

state in detail. Figure 3.15 shows the rising and falling nature of the EMG magnitude during the 

whole test session. The average force signal likewise displays the alternating behaviour and the 

magnitude of the EMG and the force signal, increasing  

at the beginning of the test, the rate of the motor unit recruitment increases to maintain the required 

force, similarly, as a result the EMG amplitude rises abruptly. However, the motor unit recruitment 

continues up to 80% MVC for biceps brachii muscle. Subsequently, there is no recruitment of 

motor unit after 80% MVC, and fatigue occurs, which declines the EMG signal and force 

magnitude immediately. the individual can be no longer able to sustain the task and quickly 

abandons. 

  Despite exerting maximum effort, the person could not sustain the test. It is concluded that the 

magnitude trend of the IEMG and RMS increases up to the cession of the test by the individuals. 
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Pattern of Frequency Domain Features During Fatigue  

Instantaneous frequency: Instantaneous frequency (IF) can be observed in the time domain. For 

each time interval, it displays the frequency components that add to the signal. A specialist can 

diagnose fatigue conditions by observing IF frequencies using current knowledge. IF aids in the 

rapid modelling of an individual's non-fatigue range and MVC amount that the user can lift. In 

addition, it can facilitate measuring the instantaneous mean and median frequency. Besides, the 

average of the IF depicts the fatiguing nature as the mean and median frequency does.  

  

 

 

 

 

 
 

Figure 3.15: TD features for fatigue indicators and represented the changes of the pattern from beginning of the 

test to the fatigue state. 
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Mean frequency: The mean frequency is one of the dominant features of fatigue forecasting in 

the frequency domain. The plot of the instantaneous mean frequency (IMF) and epoch mean 

frequency (MF) reveals the shift of the power spectrum to the lower frequency components during 

fatigue. Epoch 5 is the fatigue state of the EMG signal. Both IMF and MF decline in the epoch 5 

positions. During contraction, the slow-twitch fibres contribute to low-frequency components that 

range from 20 to 60 Hz. In contrast, the fast-twitch fibres are the high-frequency components and 

range from 60 to 120 Hz. Throughout the beginning of the test, both fibres remain hences increase 

 

 
 

Figure 3.16: A) Moving Average of instantaneous frequency, B) Average of 100 samples 
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the mean frequency, but only slow-twitch fibres sustain the test and decreses the mean frequency 

at the fatigue state.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Median Frequency: Resembling the mean frequency, median frequency is the most used feature 

in the literature as an indicator of fatigue. The instantaneous median frequency (IMDF) and epoch 

median frequency (MDF) simultaneously shows the declining trend in the fatigue condition shown 

in Figure 3.20  A) and B). it is well-established that biceps brachii muscles have a wide range of 

motor unit recruitment up to 80% MVC (Orizio et al., 2003; Qi et al., 2011). Slow fibres in the 

biceps brachii are mainly recruited below 25% MVC, and they contribute low-frequency 

 
 

 
 

Figure 3.17: A)  Trend of instantaneous mean frequency, B) Trend of epoch mean frequency 

30
35
40
45
50
55
60
65
70
75
80
85

1 2 3 4 5

In
st

an
ta

n
eo

u
s 

M
ea

n
 F

re
q

u
en

cy
 

(H
z)

Epoch

A) Trend of Instantaneous Mean Frequency

40

45

50

55

60

65

70

75

80

1 2 3 4 5

M
ea

n
 F

re
q

u
en

cy
 (

H
z)

Epoch

B) Trend of Epoch Mean Frequency of EMG signal



90 

 

components to the power spectrum. The fast fibres motor units are rapidly recruited up to 60% - 

80% MVC and increases the frequency in the spectrum for isometric contraction. On the contrary,  

increasing the firing rate of active motor units is commonly believed to be responsible for a forced 

rise above this stage (Orizio et al., 2003; Qi et al., 2011). As fast-twitch fibres fatigue first,  while 

the slow-twitch fibres remain, the power spectrum shifted to the lower frequency components. As 

a result, the IMDF and MDF both reduce fatigue conditions.  

  

 
 

 
 

Figure 3.18: A)  Trend of instantaneous median frequency, B) Trend of epoch median frequency 
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Figure 3.19 depicts a clear demonstration of how the IMDF characteristics change as a result of 

fatigue. The scatter plot of instantaneous median frequencies for fatigue and non-fatigue conditions 

for 96 participants is seen below. Both frequency components transferred to lower components 

during fatigue, while higher frequencies suggest a non-fatigue state. In the fatigue state, the IMDF 

varies from 35 to 63 Hz, which is the slow fibres recruitment range, and in the no-fatigue state, it 

ranges from 65 to 90 Hz. At the beginning of the test, all together, fast, and slow fibres contribute 

to sustaining the task or load and the power spectrum shifts to a higher frequency region. However, 

only slow fibres remain to sustain the task when fatigue occurs, and the power spectrum steps 

down to the lower region. The scatter plot shows that the median frequency decline in the fatigue 

condition and power spectrum changes to lower frequency components.  

 
 

Figure 3.19: Instantaneous median frequencies of all 96 participants and clear indicated the ranges of 

the instantaneous median frequencies for fatigue and non-fatigue state. 
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Peak frequencies vs mean & median frequencies 

 

  A) 

 
B)  
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We sorted five peaks' frequencies for each epoch according to the peak's prominence as a fatigue 

function of the EMG signal in our experiment. There is almost certainly a connection between 

each peak frequency and the mean and median frequency. Among others, peak_frequency_1 has 

the strongest association with the mean and median frequency. The correlation coefficient between 

peak_frequency_1 and median frequency is nearly 50%, indicating that peak_frequency_1 

matches median frequency in at least 50% of cases. Furthermore, there is an approximately 40% 

C)  

 
D) 

 
Figure 3.20: Correlation between A) Peak_frequency_1 vs Epoch median frequency, B) Peak_frequency_2 

vs Epoch median frequency, C)  Peak_frequency_1 vs Instantaneous median frequency, and D)  

Peak_frequency_1 vs Epoch mean frequency for all 96 participants. 
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correlation coefficient with the mean frequency. Definitively, among the other peaks’ frequencies, 

peak_frequency_1 is suggested as the most prevalent attribute as a measure of fatigue.  

Aggregated Power Spectrum from the Date of All 96 Participants: After classifying the fatigue 

samples using the current model, we plotted the power of all 96 participants from the recorded 

sEMG signals during non-fatigue and fatigue conditions. The motion of this analysis is to observe 

what happens in power inserted by individuals during non-fatigue and fatigue conditions. The 

orange curve shows the aggregated power for all 96 participants during fatigue state; in contrast, 

blue depicts the aggregated power for non-fatigue conditions. 

 

 

 

 

 

 

 

 

Figure 3.21 indicates that the total power during the fatigue is more compared to the non-fatigue 

power, but there is no work done in the fatigue state. As a result, individuals exert more energy 

Figure 3.21: Aggregated power spectrum plot for 96 participants during non-fatigue and fatigue condition 
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during fatigue than the amount of power required to complete the job. However, the same task can 

be completed by exerting less energy in the non-fatigue state. 

3.3.2: Relative Contributions of Inputs from Training Data and Features Selection 

NCA technique shows the most relevant features describing the fatigue. Only 14 features out of 

35 features contributed mostly to the output. These features were used to train the selected ML 

algorithms. Among the selected features, the IEMG, RMS, median and mean frequency, 

instantaneous median frequency, peak frequency 1 contribute significant weight for forecasting 

fatigue. 

 

 

 

 

 

 

 

 

 

 

Figure 3.22: Importance matrix plot of the NCA model and portrayed the weight importance of the 

selected features in the development of the final predictive classification model. 
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3.3.3: Validation and Testing Performance of Algorithm 

We evaluated the performance of each algorithm for the classification of muscle fatigue in real-

time on our dataset. An example of the information provided by the classifier is given in Table 3.1. 

Table 3.1: Optimized SVM (OSVM) Classifier 

 

 

 

 

 

 

 

 

Validation Performance of OSVM: 

The validation results suggest that the classifier’s training accuracy is 99.2% for the OSVM 

classifier, which is an outstanding performance. 

 

Validation performance: Overall accuracy = 99.2%, sensitivity = 99%, specificity = 99.2%, and 

AUC for fatigue and non-fatigue condition = 1.00. 

 

 

 

Model Type 

 
Model name: Optimized SVM 

Optimization hyperparameters 

Kernel function: Linear 

Box constraint level: 90.8455 

Standardized data: true 

Kernel scale: 1 

Iteration: 30 
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A) Total observations table 

 

 

B) Confusion matrix 

 

 
 
 
 
 

C) Fatigue ROC 

 

 

D) Non-Fatigue ROC 
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Overall classification accuracy = 99.2% 

The true positive rate (TRP) is the fatigue classification rate of 99%, whereas the false-negative 

rate (FNR) is only 1%.  

To explore the tradeoff between different kinds of misclassification, we use a total observation 

table and a confusion matrix. The total number of observations table shows that out of 96 fatigue 

samples, the OSVM classifier misclassified only 1 (One) sample, which is the clinically acceptable 

range to implement this system in the clinic for real-time detection of fatigue. The confusion matrix 

represents that the OSVM classifier can accurately identify the fatigue samples up to 99%. The 

classification accuracy of non-fatigue samples slightly higher (99.2%) because of the imbalance 

between the non-fatigue and fatigue samples. The non-fatigue samples are four times higher than 

the fatigue samples. To enhance performance for classification problems in imbalance conditions, 

 

E) Minimum classification error 

 

 
 

Figure 3.23: Validation performance of optimized SVM classifier: A) Total number of observations table, B) 

Confusion matrix of the trained model, C) ROC curve for fatigue condition, D) ROC curve for non-fatigue, 

and E) Minimum classification error of the optimized SVM model. 
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we optimize the bias and misclassification-cost of the classifier by tuning hyperparameters to 

minimize the misclassification of fatigue samples. For this current classifier, only a 0.2% accuracy 

imbalance can be acceptable.  

The receiver operating characteristics (ROC) curve is 0.99 for both conditions, whereas the area 

under the curve (AUC) is maximum (1.00).  The AUC value represents the classifier's overall 

consistency for sample classification. The larger the area under the curve, the better the classifier's 

accuracy and minimum the classification error. Figure 3.23 (E)  represented the trained 

classification error of the OSVM classifier based on the current optimizer. The model 

automatically chooses hyperparameter values that minimize the upper confidence interval of the 

classification error with the iterations. The OSVM classifier gained the highest accuracy with a 

linear kernel function. 

Testing performance of the OSVM:  The TRP for fatigue classification is 100% and FNR is zero 

for this classifier. The result is very promising.  

The OSVM classifier’s classification performance with the new dataset is exceptional, where it 

can detect all fatigue samples precisely with 100% accuracy for fatigue classification. The total 

observation table shows that the OSVM model classified all of the fatigue samples perfectly. The 

model detected all of 15 fatigue trails correctly as fatigue samples during testing with new data. 

Testing performance: overall accuracy = 99%, sensitivity (TPR) = 100%, specificity  = 98.2%, 

and AUC for fatigue and non-fatigue classification =1.00. 
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  A) Total number of observations table 

 

 

B) Confusion matrix 
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The classification rate for non-fatigue is 98.2% of the current model. Only 1 non-fatigue sample 

was misclassified as a fatigue sample; however, we will double-check the sample with an expert 

clinician for further evidence at the time of the clinical application. The OSVM overall testing 

C) Fatigue ROC curve 

 

 

D) Non-Fatigue ROC Curve 

 

 
 

Figure 3.24: Test performance of optimized SVM classifier: A) Total number of 

observations table, B) Confusion matrix of the trained model, C) ROC curve for 

fatigue condition, and D) ROC curve for non-fatigue 
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accuracy achieves up to 99%, denotes excellent generalization and convergence to the problem 

classification. For the classification of fatigue samples in real-time, the ROC curve reached the 

maximum region, and AUC is gained to 1.00 (unity). The testing results demonstrate that this 

OSVM algorithm can perfectly classify fatigue samples from the new sEMG data. 
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Classification Performance of Each ML Algorithm with Different Epochs Approach 

Table 3.2: Classification performance of the selected ML models with different epochs system 

 

No. 

of 

Epo

ch 

Fati

gue 

Epo

ch 

ML 

Model 

Validation Performance Test Performance 

Fatigue Case Non-Fatigue Case Model 

Validation 

Accuracy 

Fatigue Case Non-Fatigue Case Model 

Test 

Accuracy TPR 

(%) 

FNR 

(%) 
AUC-F 

TNR 

(%) 

FPR 

(%) 
AUC-NF 

TPR 

(%) 

FNR 

(%) 
AUC-F 

TNR 

(%) 

FPR 

(%) 

AUC-

NF 

5 5th 

LDA 89 11 0.94 96 4 0.98 95% 95 5 0.99 98 2 0.99 97.8% 

SVMsa 96 4 0.99 98 2 0.99 98 97 3 1.00 98 2 1.00 98.7% 

OSVM 99 1 1.00 99.2 0.8 1.00 99.2% 100 0 1.00 98.2 1.8 1.00 99% 

LR 81.5 18.5 0.89 98.8 1.2 0.89 95.3% 97 3 0.98 93.0 7 0.98 94.4% 

Optimized 

Ensemble 
93.9 6.1 0.94 90.3 9.7 0.94 90.7% 96 4 0.97 96.6 3.4 0.98 97.2% 

5 

4th 

and 

5th 

LDA 78.5 21.5 0.87 75.8 24.2 0.87 76.9% 80 20 0.89 78.6 21.4 0.89 79.2% 

SVMsa 73.3 26.7 0.90 88.1 11.9 0.90 82.2% 93.3 6.7 0.96 73.7 26.3 0.96 77.8% 

OSVM 73.3 26.7 0.90 88.1 11.9 0.90 82.2% 94 6 0.96 82.1 17.9 0.96 79.2% 

LR 70.3 29.7 0.87 81.7 20.9 0.87 80.8% 70 30 0.89 89.3 10.7 0.89 81.2% 

Optimized 

Ensemble 
87.8 12.2 0.87 76.2 23.8 0.87 80.8% 80 20 0.86 71.4 28.6 0.86 75% 

10 

8th, 

9th, 

and 

10th 

LDA 73 27 0.88 86.7 13.3 0.88 79% 80 20 0.90 89 11 0.90 78.5% 

SVMsa 75 25 0.87 87 13 0.87 80% 85 15 0.95 93 7 0.95 85% 

OSVM 80 20 0.92 90 10 0.92 87% 87 13 0.97 94 6 0.97 90% 

LR 65 35 0.83 83.9 16.1 0.83 76.1% 63.8 36.2 0.79 80.2 19.8 0.79 73.6% 

Optimized 

Ensemble 
70.6 29.4 0.83 82.4 17.6 0.83 77.7% 55.2 77.9 0.76 77.9 22.1 0.76 68.8% 

10 

6th 

to 

10th 

LDA 94.5 5.5 0.96 79.5 20.5 0.96 88.5% 95.4 4.6 0.98 87.7 12.3 0.98 92.4% 

SVMsa 96.1 3.9 0.97 85.3 14.7 0.97 91.8% 96.6 3.4 0.98 93 7 0.98 95.1% 

OSVM 97.3 2.7 0.99 94.5 5.5 0.99 96.2% 95.4 4.6 0.99 94.7 5.3 0.99 95.1% 

LR 91.2 8.8 0.92 93 7 0.92 91.9% 95.4 4.6 0.99 96.5 3.5 0.99 95.8% 

Optimized 

Ensemble 
98.4 1.6 0.99 95.4 4.6 0.99 97.2% 97 3 0.99 98 2 0.99 99% 

 a= SVM with polynomial and radial kernel 
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Each of the ML classifiers’ performance index was mapped in Table 3.2 for 5 and 10 epochs.  

During the training session of the ML algorithms, it is also crucial to check the algorithm’s 

performance for different epoch numbers. It is essential to train the classifier for both the 5 and 10 

epoch cases to determine which classifier obtains the highest accuracy for which case. The 

technical feasibility of the five epochs case showed the highest performance.  

Table 3.2 shows both the validation and testing performance of each algorithm classifier. The SVM 

classifier presented here is based on the non-linear polynomial and radial kernel, whereas OSVM 

performs based on the linear kernel function. Table 3.2 shows that the classification accuracy of 

the OSVM classifier outperforms regular SVM.  

 Unlike the OSVM, the performance of the ensemble algorithm is not consistent for the two epoch 

cases. The LDA and LR algorithm achieved overall accuracy up to 97.8% and 95.1%, respectively. 

However, the fatigue classification rate (TPR) of the OSVM is higher than other algorithms. 

Therefore, based on the comparison Table 3.3, the OSVM classifier shows the highest overall 

performance for fatigue classification. 

3.3.4: Selection of the Most Promising Algorithm for  Developing the Proposed  Model 

A requirement was that the proposed model be embedded in a wearable device to detect fatigue in 

real-time. The most promising algorithm can be selected based on two primary criteria: 

(i) Adaptability to be embedded in a wearable device 

(ii) exhibit superior fatigue classification performance. 

Table 3.3 was included to evaluate each algorithm's performance on the aforementioned two 

criteria. 
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The MATLAB Research Team identified five distinct properties for justifying the adaptiveness of 

an algorithm in a wearable device (Suhm, 2021). The characteristics properties are prediction 

speed, training time, required memory, tuning or level of adjustment, and adaptability to the 

problem applications. Table 3.3 depicts performance of each algorithm on these properties as well 

as fatigue classification accuracy. Instead of overall accuracy, each algorithm’s fatigue 

classification accuracy is significant for the identification of muscle fatigue research.  

Table 3.3: Criteria for selection of the most promising algorithm for the sEMG based fatigue prediction 

 

Notably, the OSVM is trained based on the linear kernel. However, the SVM is trained with two 

non-linear kernels: polynomial and radial kernels, separately. In both cases, the SVM produced 

the same results. 

For LDA, LR, and OSVM, the features of fatigue prediction speed, training speed, memory 

allocation, and tuning are nearly identical. The  LDA and LR  work both well for simple linear 

Algorithm 

Adaptability to a Wearable Device 
Algorithm 

Performance 

Fatigue 

Prediction 

Speed 

Training 

Speed 

Memory 

Usage 

Required 

Tuning 

General Assessment 

(Adaptability to 

problems) 

Fatigue 

Classification 

Accuracy  

 (TPR) % 

LDA Fast Fast Small Minimal 

Good for small problems 

with linear decision 

boundaries. But fails in 

non-linear applications 

like muscle fatigue. 

95 

LR Fast Fast Small Minimal 

Good with less 

classification level either 

two (0, 1) binary 

classifiers 

97 

Ensemble Moderate Slow 

Varies 

(Problem 

complexity) 

Some 

High accuracy and good 

performance for small- to 

medium-sized datasets 
96 

SVM 

(Polynomial, 

Radial 

kernel) 

Slow Slow Medium Some 

Good for many binary 

problems, and handles 

high-dimensional data 

well 

 

97 

OSVM 

(Linear 

kernel) 

Fast Fast Small Minimal 

Excellent performance on 

both small and large 

dataset. Popular classifier 
100 
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problems where the number of classification level in the data are two or fewer. However, they 

often fail to perform in a non-linear system like fatigue classification problem. Additionally, as 

compared to OSVM, the fatigue classification accuracy of these two algorithms is lower. 

Therefore, LDA and LR will not be suitable for muscle fatigue research associated with an 

isometric contraction.  

The Ensemble can handle high-dimensional data and complex issues, but it demands a lot of 

memory and processing time. In addition, the performance accuracy of the ensemble algorithm is 

not consistent and lower. 

Similarly, SVMs based on polynomial and radial kernels require much memory and are sluggish. 

The Ensemble and  SVMs with polynomial and radial kernels increase the computational burden 

to a wearable device for the fatigue classification problem.  

To conclude, the OSVM is the most promising algorithm for our proposed muscle fatigue research. 

Therefore, the OSVM is used to develop a model embedding in a wearable device to detect muscle 

fatigue in real-time based on sEMG data associated with a sustained single 80% MVC. 

3.3.5: Performance of the OSVM with Reduced Features 

One of the challenges of the current embedded devices is to lower computational power and require 

less memory for processing. Larger numbers of features increase the computational burden. 

Therefore, it is vital to reduce features that are either redundant or not contributing significantly to 

the predictive performance of the model, in order to achieve faster processing.  

In the validation state, the fatigue classification accuracy of the OSVM is outstanding and reaches 

99% shown in Table 3.4, with the selected 14 features. The fatigue classification accuracy achieved 
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100% when testing with test dataset mentioned in Table 3.2. The results we obtained achieved  the 

highest performance accuracy for the classification of muscle fatigue in the literature, and with a 

large diverse dataset.  

To reduce the computation overhead of 14 features, we tested the performance of the OSVM model 

with the most promising 5, 3, and then only 1 feature. The reduced number of features will enhance 

the processing time for fatigue prediction significantly. Some muscle fatigue applications, such as 

prosthesis and driver fatigue during driving, need a requires faster response. 

Table 3.4: Performance comparison of the median frequency with our proposed selected features technique 

 

 

 

 

 

 

 

Algorithm No. of Features Validation Performance of Classifier 

OSVM 

Total 14 features selected by 

NCA 

TRP (%) = 99 

FNR (%) = 1 

AUC-F = 1.00 

Overall Accuracy = 99.2% 

5 

(IEMG, RMS, IMDF, MF, MDF) 

TRP (%) = 92 

FNR (%) = 8 

AUC-F = 0.92 

Overall Accuracy = 90% 

3 

(IEMG, MDF, IMDF) 

TRP (%) = 85 

FNR (%) = 15 

AUC-F = 0.85 

Overall Accuracy = 85% 

MDF 

TRP (%) = 83 

FNR (%) = 17 

AUC-F = 0.83 

Overall Accuracy = 81% 
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With the 5 features (IEMG, RMS, IMDF, MF, MDF), the model is able to detect muscle fatigue 

with at least 92% accuracy. This result is likely to be satisfactory in clinical settings. Furthermore, 

the processing time will be half that required with 14 features.  

Using the 3 most promising features (IEMG, MDF, IMDF), the classifier achieved 85% fatigue 

classification accuracy. Additionally, we investigated the fatigue classification accuracy utilizing 

only the median frequency feature and subsequently, the OSVM achieved 83% overall validation 

accuracy. Table 3.3 shows how performance accuracy changes with the number of features. Figure 

3.24 indicates the trend of the ROC curve with the different number of selected features. 

Figure 3.25: Performance of the classifier with different features (No. of features vs ROC curve for fatigue state) 
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3.3.6: Development of the Proposed Model 

The OSVM algorithm shows outstanding performance for classifying muscle fatigue in real-time 

and is adaptable to be embedded in a wearable device.   

To prepare and develop the final application model for deployment, C code is generated from the 

model by performing the following steps: 

(i) To save the trained model as a compact model 

(ii) To launch MATLAB Coder for C-code generation. 

(iii)  To create an entry point function that takes raw sensor data as input and classifies the 

raw sEMG data into fatigue or non-fatigue state in real-time. 

The output of the final model can be displayed in a dashboard or mobile app.  

3.3.7: Computational Requirements of the Model 

One of the novelties of this research is that this model can used in the laboratory setting and at the 

same time can be used as a compact model with same performance and accuracy. Using the 

MATLAB C Coder tool, the OSVM based model was exported as a compact model. Now, the 

final model is ready to deploy in a wearable device. The challenge of the current wearable devices 

that they possess less memory, clock frequency, and processing power. The OSVM gained 100% 

fatigue classification accuracy during the testing phase with 14 features for our current model. We 

developed the compact model using these 14 features. 

We used Fourier Transform for power spectrum, Detrend for removing noises, remove outliers 

using default function, OSVM based final model and 14 features. The size of the RAM depends 

on all of those functions, tools, and properties.  
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The sEMG sampling frequency = 1000 Hz 

The processing interval of EMG signal = 10 seconds each epoch 

Timestamp for each epoch = 4 Bytes  

For FFT = 1024*log22048 ≅ 16 KB 

Overall, Detrend  and Outlier removal function requires maximum = 2 KB 

For Compact model of SVM = 31058 bytes ≅ 32 KB 

Overall utilities and function libraries = 32 KB 

We need  = (1000 × 10 × 2 × 4) = 80  KB memory for storing 10 seconds of data each time. 

Total RAM requirement for the entire processing = 80 + 16 + 2 + 32 + 32 = 162 KB 

ARM-based wearable microcontrollers have RAM capacity up to 32 KB, so ARM-

microcontrollers will not be suitable for the deployment of this model. 

However, ‘Raspberry Pi Zero W’ is a wearable microcontroller with 512 MB RAM and a clock 

frequency of 1 GHz. Due to its high clock frequency, it has a higher processing capability. The 

detailed specifications of Pi zero are given in Appendix B.  

As a result, our current model can be embedded in a ‘Raspberry Pi Zero W’ device. The Pi Zero 

W is very compact and so it is aesthetically feasible and attractive as a wearable device. Therefore, 

this study suggested to embed the model in a ‘Pi Zero W’ device to make a wearable device. 
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Parallel processing is available in an 8-core Parallax microcontroller unit (MCU) and is used for 

processing very high dimensional data including arrays. This type of MCU unit maybe indicated 

for faster response fatigue classification applications like Olympic weightlifting, and prosthetics 

applications for real-time operation.  

3.4: Discussion 

3.4.1: Summary and Strength of the Research 

This research presents a comprehensive method for detecting muscle fatigue in real-time 

applications where the model is intended to be embedded in a wearable device. The feature 

extraction, features selection, development of a real-time model using ML algorithm, and 

deployment in an embedded, wearable device, are the novelty of this research. In this research 

project, we used 96 participants' fatigue data which is considerably larger than previously 

published models.  

A limitation of previous studies is that they do not represent a diverse population of users  

(Häkkinen & Komi, 1983; Komi & Tesch, 1979; Q. Liu et al., 2021; Moniri et al., 2021; 

Phinyomark et al., 2013, 2018; Qi et al., 2011; Wu et al., 2016; Yang et al., 2014). and the model 

becomes overfitted. A fundamental practice in computing science is to avoid over-training ML 

models on small amounts of data (Pham & Triantaphyllou, 2008). The relatively large dataset was 

used in this study was less susceptible to these concerns, but even so would be more valuable if a 

larger dataset is generated. 

Figure 3.18 and Figure 3.19 show how the MF, MDF, IMDF change during fatigue and non-fatigue 

conditions. At the beginning of the test, the IMDF increase from 65 to 90 Hz. The reason is that at 

the beginning of the test, both fast and slow fibres contribute to sustaining the task and the power 
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spectrum moves to a higher frequency region. The IMDF drops from 63 to 35 Hz in the fatigue 

condition shown in Figure 3.19, as the slow fibres recruitment become the dominant influence. 

The fast-twitch fibres fatigue first when fatigue occurs,  while the slow-twitch fibres remain. Then 

the force drops off and the test ends. Consequently, MF, MDF, and IMDF reduce abruptly to the 

lower range. For the sustained task, the magnitude of the sEMG signal increases during the fatigue 

condition while the frequency reduces.  

3.4.2: Predictive Performance of the Model.   

The OSVM shows the highest classification accuracy in both validation and testing phase. Trained 

with 14 selected features, the overall validation accuracy of the proposed OSVM model showed 

99.2% correct classification on all samples. The sensitivity of the current model for fatigue 

classification rate is 99% and specificity is obtained 99.2%. Furthermore, during testing with new 

data, the current model classified fatigue sample 100% accurately (sensitivity). The OSVM model 

has proven that the ability to classify fatigue samples successfully. In both validation and testing 

conditions, the AUC of the current model perfectly gained unity (1.00) and is the excellent 

performance of the model. The sensitivity or fatigue classification rate of the OSVM model 

achieved 92% with the most promising 5 features. With the reduced number of features, the fatigue 

prediction and processing time of the controller changes enormously in real-time application.  

3.4.3: Model Performance with Previous Literature 

The performance of the OSVM model is highest and outstanding compared to the other studies in 

the previous literature. Table 3.5 depicts the performance comparison of the OSVM with other 

studies. 
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Table 3.5: Performance comparison of our proposed model with previous studies 

Directed studies Model Classification Performance Real-Time Approach 

Al Mulla et al. (20111)  LDA = 90.3% Yes 

Wu et al. (2015)  BF-PSO-FSVCM = 96.55% 
Real-time but Not feasible 

for wearable 

Liu et al. (2019)  
EMD model but did not report any 

accuracy 
Yes 

Moniri et al. (2020) CNN = 82.8% Not feasible for wearable 

Our proposed system OSVM = 99.2% 
For real-time and 

wearable 

 

LDA model shows good performance up to 90.3%. However, the study was conducted based on 5 

participants data (Al-Mulla et al., 2011a). As a result, in our large dataset with 96 participants, the 

LDA fails to outperform the performance accuracy of the OSVM model. Indeed, LDA works well 

for small data and more straightforward problems but fails to conclude and is overfitted in non-

linear problems. 

The Bacterial Foraging Optimization (BFO) based PSO-FSVCM model recommended in the study 

(Wu et al., 2016) achieved excellent accuracy up to 96.55%, which is less than the classification 

rate of our proposed OSVM model. At the same time, the BFO model requires large computational 

memory and processing time. However, the method is still challenging for implementing in a 

laboratory setting to forecast fatigue in real-time. Besides, it is not feasible to deploy in a wearable 

device. 

Therefore, it is obvious that the performance of the proposed OSVM model is higher than any 

other studies in the literature. As a result, it is concluded that the OSVM model has the potential 

to be used in real-time for the fatigue classification application and the model can be utilized to 

generate a model to detect muscle fatigue in a wearable device. 
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3.5: Conclusion 

In this proposed research, we developed a comprehensive method for predicting muscle fatigue in 

real-time applications, with the model designed to be deployed in a wearable device.  The 

feasibility of embedding this model in a suitable microcontroller based on its technical features 

has been measured.  Our research has demonstrated the possibility of implementing this model in 

a wearable device for detecting muscle fatigue with exceptional accuracy in the clinical setting. 
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CHAPTER 4: THESIS DISCUSSION AND CONCLUSION 

4.1: Discussion 

4.1.1: General Overview 

Muscle fatigue adversely impacts individuals with several health conditions in daily life and 

reduces the ability of muscles to contract and exert force overtime during a sustained task (Wan et 

al., 2017). Muscle fatigue manifests itself as a state of exhaustion, affecting a person’s ability to 

perform voluntary tasks such as those in the workplace or prolonged strenuous exercise or activity 

(Al-Mulla et al., 2011a; Dayan et al., 2012; Kumar et al., 2003). At present, individuals generally 

have to rely on their own perception of muscle fatigue which can be inaccurate and unreliable. 

From the Olympic event to the rehabilitation area, obtaining the balance between enhancing 

performance and preventing injury is a large part of planning the training applicable to undertake 

a specific competitive task. Detecting fatigue during exercise in real-time allows individuals to 

ascertain their limit before progression of the fatigue and prevents injury (Kumar et al., 2003). A 

wearable device could provide valuable fatigue feedback directly to individuals during exercises, 

activities, and training sessions. Although muscle fatigue research has been conducted for more 

than 40 years, most methods for detecting fatigue require post-processing and have not been 

applied in real-time (Lindstrom & Magnusson, 1977). Therefore, there is a significant deficit in 

the literature to indicate how to detect muscle fatigue using a wearable device in real-time. 

The primary motivation of this project was to develop a model that could be embedded in a 

wearable device to detect muscle fatigue in real-time while performing sustained tasks. To develop 

a model for a wearable device, a ML based algorithm is required that has high adaptiveness in 

embedded devices; however, current wearable devices have limited memory size, low 
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computational power, and lower clock frequencies. Consequently, the challenge in developing a 

fatigue detecting wearable is to find a potential algorithm that could work within these 

computational limits.  

4.1.2: Summary of Most Relevant Findings from the Scoping Review 

Following that, we conducted a scoping review to see whether any potential algorithms or wearable 

systems existed in the current literature—the scoping review identified a total of 67 studies that 

reported numerous algorithms techniques for detecting muscle fatigue.  

However, most of the techniques were utilized to detect fatigue during post-processing. Very few 

algorithms identified could be used to develop an automated fatigue detection system in a wearable 

device.  

Among the 67 included studies, a total of 27 studies reported the FT (7), WT(13), ICA(1), HHT(6) 

methods that were used to decompose the EMG signal into the frequency domain. The WT, ICA, 

HHT are the time-frequency analysis tools, and FT is the frequency analysis method. Besides, the 

HHT and EMD are technically linked with each other where the HHT is the mother tool, and the 

EMD is the revised version of HHT. The FT, HHT, WT, and ICA are not automated methods for 

detecting muscle fatigue in real-time. Instead, they could be used to extract features from the EMG 

signal to train an automated fatigue detection model. An expert clinician or trained person is 

required to analyze fatigue when these methods are used. However, all these methods are reliable 

tools to decompose the EMG signal and provides detailed frequency information. These methods 

are robust tools to convert the EMG signal into the frequency domain. The WT, HHT, and ICA 

algorithms can be used to extract time-frequency domain features simultaneously. Unfortunately, 

these methods need more computational memory and processing time, making them the least likely 
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to be deployed in a wearable device. Aside from providing frequency domain information, the FFT 

is technically feasible for use in a wearable device. 

Operating in the time domain, prior research of five different time domain characteristics showed 

the ANN attained a maximum accuracy of 70% (MacIsaac et al., 2006). This research was carried 

out in 2006, and we were unable to locate any further studies that focused solely on time domain 

aspects. The processing of time domain features is relatively faster than frequency domain features 

(Phinyomark et al., 2013). However, because of the random and non-linear fluctuation of the 

amplitude of the EMG signal in the time domain, it is unlikely to attain sufficient accuracy using 

time domain features solely. Furthermore, the ANN-based system shows more robust performance 

in noisy signals and might be automated in laboratory settings with high processor hardware to 

identify fatigue in real-time. Nevertheless, given its multilayer perceptron and computational 

weight,  the ANN is unlikely to be technically practical for integrating the current wearable 

devices. 

A total of 22 studies reported the combination of FT, WT, HHT, ICA with the ML and DL method 

to detect muscle fatigue. In this approach, either the Fourier Transform (Fast Fourier Transform) 

or Wavelet Transform and HHT were used to extract frequency domain features. Then, based on 

the identified features, ML and DL algorithms were trained to detect fatigue. Among different ML 

algorithms for identifying fatigue,  t5rained on both time and frequency domain features, the ML 

methods show superior fatigue classification performance than other methods. For example, The 

BF-PSO-FSVCM algorithm with a combination of FFT, HHT, WT achieved high fatigue 

classification accuracy (BF-PSO-FSVCM = 96.55% with WT) (Wu et al., 2016) yet. However, the 

BF-PSO-FSVCM with WT, HHT is technically unlikely to be applied in a wearable device. 

Moreover, the scoping review recommended that the LDA, LR, SVM, and Ensemble algorithms 
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using the FT technique have the potential to be embedded in a wearable device to detect muscle 

fatigue in real-time. 

According to the scoping review, the muscle fatigue detection systems have obtained maximal 

fatigue classification accuracy by incorporating both time and frequency domain features, rather 

than employing only time or frequency domain features. Furthermore, the review suggested the 

four most promising algorithms that could provide the potential to embed in a wearable device. 

The scoping review investigated that only 4 studies attempted to develop a wearable device for 

detecting fatigue in real-time. However, the four studies that were undertaken were mainly 

feasibility analyses rather than the development of a wearable device: no performance matrix or 

validation study was reported in the 4 studies. In addition, the technology readiness level is inferior 

and most unlikely to reach a satisfactory conclusion. Furthermore, there was no indication of 

clinical acceptance of those wearable devices mentioned in the 4 included studies. Consequently, 

we did not find any ML model currently available to be embedded in a wearable. Most 

significantly,  based on the scoping review, there is no wearable device currently used to detect 

fatigue in real-time. However, the scoping review demonstrates that the demand for wearable 

devices in sports, rehabilitation, and health applications is rising to detect muscle fatigue in real-

time during performing activities. Therefore, the scoping review recommends conducting research 

for developing a wearable device to detect muscle fatigue in real-time. 
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4.1.3: Summary of the Substantial Findings from the Development and Validation of the 

Model 

This research presents comprehensive methods for detecting muscle fatigue in real-time during a 

sustained single 80% MVC test. The significant steps for the development of the real-time muscle 

fatigue detection system included sEMG signal grooming, feature extraction, feature selection, 

trained the selected algorithms utilizing the above features, selecting the most promising algorithm 

and validating its performance, and then the development of the wearable model, with the 

assessment of the technical potential of the model. This is a novel research investigation. 

We extracted 35 features from the previously recorded sEMG data and evaluated the contribution 

of each feature in forecasting muscle fatigue in a real-time fashion. The NCA tool was then used 

to choose the most relevant features, removing any that were redundant or did not provide 

meaningful fatigue information. As a result, the NCA picked 14 most promising features out of 35 

features.  

During the feature’s analysis stage, we observed notable characteristics of the sEMG signal during 

fatigue conditions. For a sustained single isometric maximum voluntary contraction, the magnitude 

of the EMG signal increases during the fatigue state. As a result, the magnitude of IEMG and RMS 

also increases. However, the power spectrum of the sEMG signal transferred to lower frequency 

components for the duration of fatigue. Consequently, median, mean, and instantaneous median 

frequencies reduce. However, the frequencies were higher values in the non-fatigue state.  Figure 

3.19 shows instantaneous median frequencies from the higher frequency range to the lower 

frequency range. In the fatigue state, the IMDF varies from 35 to 63 Hz, which is the slow fibres 
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recruitment range, and in the non-fatigue state, it ranges from 65 to 90 Hz. As a result, it is 

concluded that for the sustained single isometric MVC, as the muscle fatigues, the sEMG signal 

transitions to the higher magnitude, and the frequency component changes to lower frequencies. 

As a result, the total power exerted by the individuals to sustain the task increases in the fatigue 

condition compared to the normal state. However, the work performed is most likely less than the 

amount of work done in a normal state with less exertional power. 

Considering the recommendation of the scoping review, the classification performance of the 

LDA, LR, SVM and Ensemble algorithms was evaluated. Both the LR and LDA achieved 

acceptable fatigue classification accuracy. Furthermore, the LDA and LR are lightweight 

algorithms with a quicker processing time. However, these algorithms failed to complete during 

the processing of large amounts of real-time data with the different sEMG features. Similarly, the 

performance of the Ensemble method was not consistent in our fatigue classification task. In 

addition, the Ensemble algorithm requires a medium amount of memory and processing time. 

Comparably, the regular SVM with a polynomial or a radial kernel requires more significant 

processing and forecasting time.  

By contrast, linear kernel SVM has a quicker processing time and uses less computing memory. 

Significantly, our proposed OSVM model is trained on a linear kernel and outperformed previous 

techniques. The proposed OSVM model shows a maximum of 99.2 % overall classification 

accuracy with the selected 14 features by the NCA.  In the validation stage, the sensitivity of the 

OSVM is 99%, and the specificity of the model is 99.2%.  Testing with new data showed our 

model having 100%  (sensitivity) fatigue classification accuracy.  
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Compared to the other studies in the muscle fatigue research, our developed OSVM model 

achieved maximum outstanding classification accuracy. Additionally, the model obtained 92% 

fatigue classification accuracy with the 5 (five) most prevalent features.  The fatigue forecasting 

speed of the model with 5 features was boosted by more than double compared to processing time 

with 14 features; however, the model's classification performance with 5 features remains 

promising and clinically acceptable. Additionally, this proposed OSVM model can be used to 

detect muscle fatigue in a laboratory setting using routine hardware. We assessed the technical 

requirement of this model to be embedded in the embedded devices. Therefore, the proposed 

model is technically able to be embedded in a wearable device.  

4.1.4: Limitation of This Research 

There are some limitations of this research. The limitations are following: 

i) The model developed is based only on sEMG data recorded from the biceps brachii 

muscle during static sustained single isometric contraction.  

ii) Only two classification states were used in the study: fatigue and non-fatigue. We  did 

not identify the progression of the fatigue state by recording perceived exercise 

reported by the participant. It is essential to identify the onset of fatigue to define the 

maximum range of training sessions. Time of the onset of fatigue will help precisely to 

determine the optimal exercise and train period without progression of fatigue. 

iii) To achieve maximum fatigue classification accuracy, the processing time of the model 

likely needs to be higher. 
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4.1.5: Future Research 

This research suggests that future research should be conducted to build a practical wearable device 

using the proposed model. Therefore, the following research is recommended with the following 

specific aims: 

i) Immediate research is needed to embed the model in a wearable device and validate its 

real-time performance. 

ii) Future research is required to evaluate how the model works to function the number of 

sEMG signal features. 

iii) Defining a universal fatigue index during the wearable application is necessary, making 

it easily interpreted by non-expert users. Furthermore, it is desirable to create this 

fatigue index rather than predict the binary fatigue state. 

iv) Research is required to design this model as an easy-to-use, aesthetically pleasing 

wearable product that can be used in the market. 

4.1.6: Clinical Implications of This Research For Neuro-degenerative Conditions 

The proposed machine learning (ML) model was developed based on the sEMG data recorded 

from 100 participants, all of whom were free of neuromuscular disease and any upper extremity 

injury within the past year. Subsequently, certain clinical conditions such as spinal cord injury 

(SCI) and muscular dystrophy create neuromuscular changes that would exclude the use of the ML 

model developed in this study to assess muscle fatigue for them.  In the case of SCI, the damage 

to the spinal cord prevents neurological control of muscles, and so contractions that do occur are 

usually the result of spasticity (Adams & Hicks, 2005).  In muscular dystrophy, muscle mass is 

gradually lost due to protein deficiency associated with a genetic mutation (Lovering et al., 2005). . 
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Therefore, the ML model developed in this study is unlikely to be applicable to neurodegenerative 

conditions such as muscular dystrophy. However, a similar approach, but explicitly using 

data acquired from people with these conditions, could provide an effective and sensitive way to 

measure the progression of the disease and the effectiveness of treatments. 

4.1.7: Fatigue and Injury 

Muscle fatigue often causes direct or indirect injury, including musculoskeletal and strain injuries 

in athletes and similarly non-athletes while performing different tasks in everyday life (Slobounov, 

2008). Specifically, muscular fatigue is also common in heavy work environments, and there is 

extensive evidence that prolonged low-level contractions induce muscle fatigue that can be 

harmful (Wan et al., 2017).  

Fatigue in the trunk muscles is one of the causes of low back pain (LBP), which is one of the 

leading causes of disability worldwide, impacting more than 500 million people at any given 

moment (Moniri et al., 2021).   

When playing soccer games and other similar competitive team sports, continuous dynamic 

contractions reduce dynamic control due to fatigue (Pinniger et al., 2000). In addition, when the 

muscles of the lower limbs are fatigued, the loss of muscle strength increases the risk of hamstring 

injury (Cohen et al., 2015). 

The study (Khal et al., 2020) proposed that fatigue-induced changes in the lower trapezius might 

put the infraspinatus at risk of damage. They found that muscle fatigue in the glenohumeral 

external rotation can also lead to shoulder injuries. In endurance sports, such a marathon running, 

when fatigue sets in the proper alignment of the joint can be compromised.  This increases 
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potentially damaging loading of the cartilage and ligaments, which, if sustained over many races 

and training sessions, can result in osteoarthritis. 

Construction workers are at risk of physical strain and muscle fatigue, increasing the risk of 

musculoskeletal injuries (Anwer et al., 2020) worldwide. The Transportation Safety Board (TSB) 

of Canada has reported that Canadians are experiencing unprecedented levels of workplace fatigue, 

60% of which is attributed to muscular fatigue (Dawson et al., 2015; Statistics-Canada, n.d.). They 

suggest that a real-time wearable device has the potential to automatically alert the individuals as 

fatigue occurs while performing tasks and will help to prevent work-related injuries.  

4.1.8: Detection of the Onset of Fatigue 

The ML based model developed in this study was intended to classify the sEMG signal associated 

with a sustained contraction into fatigue and non-fatigue states.  However, fatigue occurs 

progressively and therefore, in the context of predictive model development should ideally be 

considered to be continuous.  However, the sEMG dataset available for this study was intended to 

demonstrate proof of concept, only accommodating two conditions reported by the participant: 

1. Non-fatigue state at the start of the test 

2. End-stage fatigue when the participant can no longer sustain the 80% MVC 

Recent research by Qi et al. (2012) in our lab has shown that the Borg Rating of Perceived Exertion 

(RPE) scale (Williams, 2017) can be used to correlate sEMG parameters with the subjective 

assessment of the level of fatigue. For future studies, this subjective measurement would enhance 

the practical usefulness of ML fatigue prediction models. Previous studies have reported fatigue 

classification accuracy ranges from 68 to 78% by utilizing a single feature (e.g. median frequency 

of the power spectrum) of the sEMG signal (Elshafei & Shihab, 2021; Wu et al., 2016). Our study 
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set out to determine if ML models which combine multiple features extracted from the sEMG 

signal could improve on previous fatigue classification accuracy results of single variable studies. 

The goal was to train a model to increase fatigue classification accuracy to levels that would be 

more acceptable for clinical interpretation.  One of the strengths of ML modelling is its ability to 

combine input parameters and relate them non-linearly, thereby optimizing the predictive power 

of the model.  Furthermore, the computational requirements of ML models have the potential to 

embed the model into wearable, real-time sensors, which increases the usefulness in clinical and 

sports performance applications. 

The model developed in this study achieved 100% fatigue classification accuracy when utilizing 

14 features and 92% for 5 features; both are clinically acceptable results (Suhm, 2021). Thus, we 

concluded that OSVM is an adaptive algorithm that works well for training models to detect end-

stage muscle fatigue. The performance accuracy of the model was shown to be effective in 

detecting the end-stage fatigue state for a relatively large and diverse cohort of healthy participants 

when performing a single, sustained 80% maximum voluntary contraction. 

4.2: Impact of the Proposed Research 

Currently, there is no wearable device that can detect muscle fatigue in real-time accurately and 

precisely for large groups of people in sports, rehabilitation, and health applications. Therefore, 

the wearable system to monitor muscle fatigue in real-time is highly desirable for human-computer 

interactions, prosthetics, occupational science, ergonomics, rehabilitation, biomedical and 

kinesiology research. This research is the very first developed ML model that can be used to detect 

muscle fatigue in real-time precisely, and the model can be incorporated in a wearable device. 

Using the wearable device, an athlete may decide their race strategy by tracking the level of muscle 

fatigue in the coming days. By developing a wearable device using this developed model, 
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researchers and therapists could measure fatigue in real-time. Remarkably, the system will also 

help clinicians decide optimal test limits and calculate test periods for clients during training and 

exercise sessions toward injury prevention in various settings (e.g., sport, occupation). 

4.3: Conclusion 

First and foremost, this research represents a comprehensive method to detect muscle fatigue in 

real-time during a sustained single isometric task. The trained model can be used in the laboratory 

setting as well as a wearable device to detect muscle fatigue in real-time. The features reduction 

mechanism facilitates the model to perform adaptively based on the task’s performance 

requirement and the system’s response requirement. This automated model can classify fatigue 

samples with exceptional accuracy in real-time, which is clinically acceptable for consumer 

applications. Machine learning has real potential for developing a wearable device to detect muscle 

fatigue in real-time. Therefore, this research demonstrated that we can generate an effective 

machine learning model to detect muscle fatigue in real-time, and it is deployable in a wearable 

device. Based on the evaluation in this thesis, the proposed model has the potential to be embedded 

in a low-cost microcontroller such as the “Raspberry Pi Zero W”. It is most likely to conclude that 

that embedding this model in a wearable device system will contribute to preventing injury in the 

coming days. 
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 APPENDIX A: SEARCH PARAMETERS 

 

Search Criteria and Search string 

sEMG  Electromyography 

Electromyogram 

electromyogram 

surface electromyography 

sEMG 

EMG 

SEMG 

electromyo* 

 

Muscle fatigue 

Muscle fatigue 

muscle fatigue 

fatigue 

fatigue* 

Activity or exercise exercises 

exercise 

exercise* 

training 

activity 

activit* 

activities 

physical activities 

physical activity 

dynamic contraction 

dynamic contractions 

dynamic contraction* 

contraction 

contract** 

repetitive exercise 

repetitive 

repetitive training 

repetitive  

Detection identification 

diagnosis 

assesses 

assessment 

quantify 

analysis 

detect 

detection 

record 

recognition 
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forecast 

prediction 

determine* 

Non-invasive non-invasive 

non-invasively 

non-invasiv* 

noninvasive 

noinvas* 

Wearable autonomous 

auto* 

real-time 

real time 

automatic 

standalone 

 

 

 

 

 

 

 

 

 



151 

 

APPENDIX B: TECHNICAL SPECIFICATIONS OF PI ZERO W 

 Pi zero w: (Pi Zero official website) 
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APPENDIX C: INDEX OF MUSCLE FATIGUE  

 

Liu et al. (2019) introduced a fatigue index reporting a formula. The level of fatigue is given below: 

𝐿𝑒𝑣𝑒𝑙𝑀𝑢𝑠𝑐𝑙𝑒_𝐹𝑎𝑡𝑖𝑔𝑢𝑒 = [
𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒−𝑀𝐹𝑎𝑣𝑒𝑟𝑎𝑔𝑒

𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒
× 100]10 

According to the equation, the average of the first MDF values would be the baseline, and an 

average of the other MDF values was used to calculate the level of fatigue. If the average value of 

the MDF was more significant than the baseline value, then the average MDF is replaced with the 

baseline value. 
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APPENDIX D: POWER SPECTRUM OF THE sEMG SIGNAL 

WITH DETREND 

 

 

Figure 2: the power spectrum of the EMG signal with and without Detrend. 
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APPENDIX E: NECESSARY CODE  

Code for selected algorithms. 
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Code for aggregated power spectrum plot 
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 APPENDIX F: PARTICIPANT CONSENT FORM AND STUDY 

PROTOCOL 
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Study protocol 
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