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Abstract

Energy harvesting techniques, which exploit ambient energy to power com-

munications devices, have gained increased attention in recent years. Such

techniques have emerged as a promising solution for energy-constrained wireless

networks, with possible applications in the future Internet of things. The focus

of this thesis is on multi-carrier wireless energy harvesting networks (WEHNs)

where users adopt a harvest-then-transmit protocol to communicate with an ac-

cess point. For such networks, we study the subchannel assignment and power

allocation at the users to maximize the common rate and sum rate considering

the effect of channel fading and path loss on the signals. Both common rate

and sum rate optimization problems result in a non-convex mixed binary op-

timization formulation without a known systematic solution to the best of our

knowledge. That being said, we propose multiple heuristic suboptimal solu-

tions for the rate optimization problems providing different trade-offs between

computational complexity and performance. The performance of the proposed

solutions are evaluated under several WEHN setups through computer simula-

tions.
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“Information is the resolution of uncertainty.”

Claude E. Shannon



Contents

1 Introduction 1

2 System Model and Problem Statement 5

2.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Achievable Data Rates . . . . . . . . . . . . . . . . . . . 7

2.1.2 Achievable Data Rate Optimization . . . . . . . . . . . . 8

3 Sum Rate Maximization 10

3.1 Maximum Gain Assignment . . . . . . . . . . . . . . . . . . . . 10

3.2 Balanced Maximum Gain Assignment . . . . . . . . . . . . . . . 11

3.3 Partial Sum Rate Incremental Assignment . . . . . . . . . . . . 13

3.4 Full Rate Incremental Assignment . . . . . . . . . . . . . . . . . 13

3.5 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 Common Rate Maximization 20

4.1 Individual Maximum Gain Assignment . . . . . . . . . . . . . . 20

4.2 Incremental Common Rate Improvement . . . . . . . . . . . . . 22

4.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . 22

5 Conclusion and Future Work 28

iv



List of Figures

2.1 AWEHN with wireless energy transfer in the downlink and wire-

less information transmission in the uplink. . . . . . . . . . . . . 6

3.1 Achievable sum rate for different subchannel assignment ap-

proaches when PAP = 10 dBW. . . . . . . . . . . . . . . . . . . 16

3.2 Achievable sum rate for different subchannel assignment ap-

proaches when PAP = 30 dBW. . . . . . . . . . . . . . . . . . . 17

3.3 Number of unused subchannels when PAP = 10 dBW. . . . . . . 18

3.4 Number of unused subchannels when PAP = 30 dBW. . . . . . . 19

4.1 Achievable common rate for different subchannel assignment ap-

proaches when PAP = 10 dBW. . . . . . . . . . . . . . . . . . . 24

4.2 Achievable common rate for different subchannel assignment ap-

proaches when PAP = 30 dBW. . . . . . . . . . . . . . . . . . . 25

4.3 Number of unused subchannels when PAP = 10 dBW. . . . . . . 26

4.4 Number of unused subchannels when PAP = 30 dBW. . . . . . . 27

v



List of Symbols

Symbol Definition . . . . . . . . . . . . . . . . . . . . . . . First Use

K Number of users . . . . . . . . . . . . . . . . . . . . 5

PAP AP’s energy signal power . . . . . . . . . . . . . . . . 5

ak Power gain of the downlink channel to user k . . . . 5

uk User k . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Pk User k’s harvested power . . . . . . . . . . . . . . . . 6

N Number of frequency subchannels . . . . . . . . . . . 6

An Set of subchannels assigned to user n . . . . . . . . . 6

xk,n Transmit signal of user k on subchannel n . . . . . . 7

hk,n Power gain of subchannel n for user k . . . . . . . . 7

nAP,n Receiver noise at AP over sunchannel n . . . . . . . 7

Rk,n Data rate of user k on subchannel n . . . . . . . . . 7

Pk,n Power of user k on subchannel n . . . . . . . . . . . 7

Rk Data rate of user k at AP . . . . . . . . . . . . . . . 7

vi



Rs Sum rate of the system . . . . . . . . . . . . . . . . . 7

Rc Common rate of the system . . . . . . . . . . . . . . 8

vii



Chapter 1

Introduction

Future wireless networks hold the promise of providing a host of useful ser-

vices ranging from traffic control [1] and structural health monitoring [2] to

smart cities [3], farming [4], and patient tracking [5]. Such a broad range

of applications will be made possible via a ubiquitous set of wireless devices

equipped with different sensing, computation, and communication abilities. To

assure the omnipresence of the network, these devices are often mobile or well-

spread over a large area forcing them to rely on batteries as their source of

power. However, the power constraint at the devices could potentially limit

the applicability scope of the network as batteries’ need for frequent charging

or replacement is costly or infeasible, compromising the network functionality.

To address the devices’ power constraint, in addition to developing more

energy-efficient transmission techniques [6], an increasing attention has been

paid to developing energy harvesting technologies in recent years. Such tech-

nologies harvest the ambient energy of the environment to charge the devices’

batteries. There are a variety of energy harvesting technologies that can be

leveraged to charge battery-powered devices. Examples are miniature ther-

moelectric generators that convert the body heat to electricity [7], bimorph

piezoelectric generators for exploiting vibrational energy [7], and circuits for

harvesting radio frequency (RF) signals.
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Among these technologies, harvesting RF signals, also known as wireless

energy harvesting (WEH), is of special interest as RF signals can be purpose-

fully and directionally sent to the devices to charge their batteries. Further,

many RF sources, e.g. on the air TV or wireless cellular signals, are readily

available in the environment making WEH even more appealing.

Owing to their potential, application of WEH technologies has been ex-

plored in the 5G [8], wireless sensor networks [9], and the future Internet of

things (IoT) networks [10]. More specifically, improved energy efficiency with

the help of WEH technologies, which could potentially prolong the devices

lifetime by a factor of ten, has been foreseen for 5G networks. IoT networks

are also a major beneficiary of WEH technologies as their long-term and self-

sustainable operation, directly affected by the devices lifetime, are key to their

success.

To effectively exploit the limited harvested power in a wireless energy har-

vesting network (WEHN), optimizing the network resource allocation is of great

importance [11, 12, 13]. The optimization includes different aspects of the net-

work, for instance the power harvesting schedule, transmit power allocation,

and subchannel assignment in multi-carrier WEHNs. In the following, some of

these studies are reviewed.

Authors in [14] introduce harvest-then-transmit protocol where the users

(devices) first harvest the energy during a fraction, say T , of the total harvesting

and communication time, and then transmit their data during the remaining

fraction, i.e. 1 − T , of the time. Then, assuming Rayleigh fading, the outage

probability of the system is minimized via optimizing T . For the harvest-

then-transmit protocol, [15] finds the optimal value of T that maximizes the

sum throughput of the network when users apply time division multiple access

(TDMA) in the uplink.

In addition to optimizing the energy harvesting and transmission schedul-

ing, majority of studies have looked into the optimal power allocation for
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WEHNs. For instance, [16] studies the optimal power allocation to maxi-

mize throughput considering the channel conditions and time-varying energy

sources. Ding et al. [17] focus on an energy harvesting cooperative network

where the relay harvests its transmit power from its received signals. Then,

power allocation to transmit the messages of source-destination pairs is per-

formed at the relay to minimize the outage probability. The optimal power

allocation analysis is extended to cooperative networks where both relay and

source nodes harvest wireless energy in [18]. Optimal energy harvesting strate-

gies for distributing cellular data via a wireless-powered collaborative mobile

cloud are studied in [11]. More specifically, the authors investigate the optimal

scheduling of the data offloading and radio resources, including power alloca-

tion, in order to maximize energy efficiency as well as fairness among mobile

users.

Some studies have gone one step further and jointly optimize multiple net-

work resources in a WEHN. For instance, a joint power and time allocation to

maximize the throughput of a TDMA-based WEHN is performed in [19]. The

optimization is done under an average transmit power and maximum transmit

power constraint at the access point (AP). Another example is [20] where joint

power and time resource allocation is performed to maximize the sum rate of

a TDMA-based network.

Joint power and subchannel allocation for a multi-carrier WEHN is explored

in [21]. For this, the authors consider a WEHN where a user harvests its en-

ergy from an energy AP and transmits its data to another AP, called data

AP. Further, it is assumed that the links between the user and both APs are

time varying and the user applies orthogonal frequency division multiplexing

(OFDM) to combat with the fluctuations in the channel condition. Assuming

full channel state information (CSI) knowledge at the user and APs, an algo-

rithm for joint subchannel and power allocation is proposed. In another study

[22], joint power and subchannel allocation is studied for a WEHN with full
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duplex hybrid AP, meaning that the AP can simultaneously transmit energy

signal and receive data signals. For this, the authors consider two different sce-

narios to maximize the network sum rate: perfect self-interference cancellation

(SIC), where the hybrid AP fully eliminates its self-interference, and imperfect

SIC. It is shown that the sum rate maximization problem for both scenarios

is non-convex making the problem very complicated. Nevertheless, the au-

thors propose a Lagrange duality method and an iterative algorithm based on

projected gradient to solve for perfect and imperfect SIC scenarios respectively.

In this thesis, we further extend the existing results on the joint subchannel

and power allocation for multi-carrier WEHNs. More specifically, we consider

a network setup where the users harvest the energy from the signals and com-

municate to a hybrid AP. The channel quality between the AP and the users

on both uplink and downlink is affected by fading and path loss necessitating

careful subchannel and power allocation to gain the best performance out of

the network. For this setup, we focus on optimal power and subchannel alloca-

tion to achieve the maximum sum rate and common rate in the system. Both

optimization problems are non-convex and have a mixed binary optimization

form. There is no systematic known solution for either of these problems to the

best of our knowledge, and thus, we focuses on developing heuristic sub-optimal

solutions for them.

The reminder of this thesis is organized as follows: The system model and

the formal definition of the studied sum rate and common rate maximization

problems are presented in Chapter 2. We present several suboptimal solutions

for the sum rate maximization and common rate maximization problems in

Chapter 3 and Chapter 4, respectively. Chapter 5 concludes this thesis and

discusses ideas for future research directions.
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Chapter 2

System Model and Problem

Statement

In this chapter, we first describe the system model in detail. Then, we formu-

late the sum rate and common rate maximization problems for a multi-carrier

WEHN [23].

2.1 System Model

Here, we consider a WEHN consisting of K single-antenna energy-harvesting

devices (users), namely u1, u2, . . . , uK , that want to communicate their data

to a single-antenna access point (AP). Users adopt a harvest-then-transmit

protocol [15] where they first harvest power from the AP’s energy signal in

the downlink and then transmit their message to the AP through the uplink

channel (Figure 2.1).

To transmit energy to the users via RF signals, the AP first sends an

arbitrary complex random signal xAP with power PAP to the users. The

power gain of the downlink channel from the AP to an arbitrary user uk,

k ∈ K = {1, 2, . . . , K}, is denoted by ak. This gain incorporates both the

wireless channel gain as well as the power harvesting efficiency at uk. Now,
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Figure 2.1: A WEHN with wireless energy transfer in the downlink and wireless
information transmission in the uplink.

assuming that the receiver noise power at uk is significantly smaller than PAP,

the harvested power at the user is

Pk = akPAP. (2.1)

After harvesting the power from the AP signal, users enter the data trans-

mission mode. To mitigate the wireless fading effect, users employ a multi-

carrier transmission scheme, e.g. orthogonal frequency division multiplexing

(OFDM) [23], in the uplink phase1. For this, the uplink transmission band-

width is divided into N equal-size frequency subchannels. Then, a subchannel

assignment strategy is used to assign the subchannels to the users where each

subchannel is assigned to only one user to ensure the interference-free uplink

transmissions. In the following, we denote the set of subchannels that are as-

signed to un by An. If an arbitrary subchannel n ∈ N = {1, 2, . . . , N} is

1Note that uplink and downlink frequency bands are different to prevent interference.
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assigned to uk, the received signal from uk at the AP over this subchannel is

yAP,n =
√

hk,nxk,n + nAP,n (2.2)

where xk,n is the transmit signal of uk over subchannel n. Further, hk,n

represents the power gain of the link and nAP,n is the receiver additive white

Gaussian noise with zero mean and unit power.

2.1.1 Achievable Data Rates

Using the received signal model in (2.2), one can find the received data rate at

the AP from uk on subchannel n as[24]:

Rk,n =
1

N
log2 (1 + hk,nPk,n) (2.3)

where Pk,n is the transmit power of uk on subchannel n, i.e. Pk,n = E[x2
k,n].

Here we assume that the background noise has unit power, and the total band-

width of all the subchannels is normalized to one. As a result, the overall

received data rate from uk at the AP is

Rk =
N
∑

n=1

Rk,n =
1

N
log2

(

N
∏

n=1

(1 + hk,nPk,n)

)

. (2.4)

Note that here, if a subchannel, say subchannel n′, is not assigned to uk, Pk,n′ =

0 meaning that Rk,n′ = 0.

Now that we have defined the individual user data rates, we introduce two

important data rate measures of the network, namely sum rate and common

rate. The sum rate of the network represents the cumulative data rate perfor-

mance of the system and is defined as

Rs =
K
∑

k=1

Rk. (2.5)
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On the other hand, common rate reflects the bottleneck of the data rate per-

formance which is

Rc = min
k∈K

Rk. (2.6)

2.1.2 Achievable Data Rate Optimization

The aforementioned data rates are important measures of the network’s through-

put performance. As a result, it is desired to maximize Rs or Rc so that the

best performance is achieved given the limited network resources. Note that by

maximizing Rc, we attempt at simultaneously improving the quality of service

(QoS) for all users. On the other hand, Rs maximization aims to improve the

performance of the network as a whole even at the price of sacrificing the QoS

of some of the users.

To maximize the data rates, the subchannel assignment as well as the users

power allocation on each subchannel are the optimization parameters. That

said, one can formulate a joint optimization problem to maximize the sum rate

as follows:

max
xk,n,Pk,n

k∈K,n∈N

1

N

K
∑

k=1

N
∑

n=1

log2 (1 + xk,nhk,nPk,n) , (2.7a)

N
∑

n=1

Pk,n = akPAP ∀k ∈ K, (2.7b)

K
∑

k=1

xk,n = 1 ∀n ∈ N , (2.7c)

xk,n ∈ {0, 1} ∀k ∈ K, n ∈ N . (2.7d)

In (2.7), xk,ns are binary variables specifying how the subchannels are assigned.

More specifically, xk,n = 1 means that subchannel n is assigned to user k and

xk,n = 0 otherwise. Further, the constraint in (2.7b) makes sure that the

transmit power of the users is not more than their harvested power while (2.7c)

guarantees that each subchannel is assigned to only one user.
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Similarly, the common rate maximization problem for the aforementioned

WEHN is formally defined as:

max
xk,n,Pk,n

k∈K,n∈N

min
k∈K

1

N

N
∑

n=1

log2 (1 + xk,nhk,nPk,n) , (2.8a)

N
∑

n=1

Pk,n = akPAP ∀k ∈ K, (2.8b)

K
∑

k=1

xk,n = 1 ∀n ∈ N , (2.8c)

xk,n ∈ {0, 1} ∀k ∈ K, n ∈ N . (2.8d)

Both of the above optimization problems are mixed binary continuous opti-

mization problems where the subchannel assignment and user power allocation

are jointly optimized. To the best of our knowledge, there is no systematic

solution for the optimization problems in (2.7) and (2.8). In the rest of this

thesis, we propose heuristic iterative sub-optimal solutions for (2.7) and (2.7).

In the following chapters, we discuss these proposed solutions in more detail.
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Chapter 3

Sum Rate Maximization

In this chapter, we propose several suboptimal solutions for sum rate the sum

rate optimization problem in (2.7). The performance of these approaches are

then compared through computer simulations.

Before presenting these approaches, we introduce a matrix GGG = [gk,n]K×N

whose elements are defined as

gk,n = akhk,n, ∀k ∈ K, n ∈ N . (3.1)

The physical interpretation of gk,n is the end-to-end power gain of subchannel

n if user k allocates all of its power to this subchannel. In the rest of this

chapter, GGG is used to explain the proposed solutions.

3.1 Maximum Gain Assignment

In this approach, the subchannel assignment and the user power allocation are

done completely in a separate manner. This means that first subchannels are

assigned to the users and then power allocation is performed. An arbitrary

subchannel, say subchannel n, is assigned to the user who has the largest end-

to-end power gain on the subchannel. To be more specific, subchannel n is

10



assigned to ui where

i = argmax
k∈K

gk,n. (3.2)

Such a subchannel assignment is based on the intuition that assigning sub-

channel n to the user with the largest channel gain on it will possibly result

in the maximum contribution to the sum rate from this subchannel. When all

channels are assigned according to (3.2), the transmit power of each user over

its assigned subchannels is then determined according to water filling which

can achieve the maximal rate of the user given the assigned subchannels. [25].

The pseudocode of the maximum gain assignment approach is presented in

Algorithm 1.

Algorithm 1 Maximum gain assignment algorithm.

Ak ← ∅, ∀k ∈ K
for n ∈ N do

i = argmax
k∈K

gk,n

Ai ← Ai ∪ {n}

for k ∈ K do

Do water filling for uk given Ak

3.2 Balanced Maximum Gain Assignment

One disadvantage of the previous solution is that it may assign all or a large

majority of subchannels to a small group of users. In an extreme case, all

subchannels may be assigned to a user, say uk, whose end-to-end gain, e.g.

gk,n, is larger than other users over all subchannels. After performing the power

allocation, uk, however, may end up allocating only a very small or even no

power to some of these subchannels. This means that some of the subchannels,

which could be assigned to other users for increasing the sum rate, are wasted.

To compensate for this disadvantage of the maximum gain subchannel as-

signment, we suggest another approach that still has a low complexity, through
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decoupling the subchannel assignment and power allocation, yet tries to assign

the subchannels between the users in a more balanced way. For this purpose,

we start by assigning the subchannel who has the strongest end-to-end channel

gain, i.e. the maximum of GGG’s elements. To be more specific, the strongest

subchannel, namely subchannel j, is assigned to user i where

(i, j) = argmax
(k,n): k∈K,n∈N

gk,n. (3.3)

Now, we mark the ith row and jth column of GGG as tabu1 row and column. In

the next step, the non-tabu subchannel with the strongest end-to-end gain is

assigned to the user that has the strongest gain over it. This procedure contin-

ues until each user is assigned a subchannel. If there are still subchannels left,

i.e. K < N , we first reset the set of tabu rows and proceed with the subchannel

assignment over non-tabu subchannels. After assigning all subchannels, users

allocate their power according to water filling algorithm.

The balanced maximum gain assignment is presented in Algorithm 2. Here,

Tu and Ts represent the set of tabu users (rows) and tabu subchannels (columns)

respectively.

Algorithm 2 Balanced maximum gain assignment algorithm.

1: Ak ← ∅, ∀k ∈ K
2: Tu, Ts ← ∅

3: while Ts 6= N do

4: (i, j) = argmax
(k,n): k∈K\Tr,n∈N\Tc

gk,n

5: Ai ← Ai ∪ {j}
6: Tu ← Tu ∪ {i}, Ts ← Ts ∪ {j}
7: if Tu = K then

8: Tu ← ∅

9: for k ∈ K do

10: Do water filling for uk given Ak

1Inspired by tabu search algorithm [26].
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3.3 Partial Sum Rate Incremental Assignment

Both of the previous approaches fully decouple the subchannel assignment and

power allocation. While it has been compensated for to some extent in Algo-

rithm 2, such decoupling has the risk of wasting the subchannels after perform-

ing power allocation. To address this shortcoming of the previous approaches,

we present another suboptimal solution for the sum rate optimization prob-

lem that incorporates the subchannel power allocation into the subchannel

assignment. This is done through a greedy algorithm where for assigning each

new subchannel, a power allocation for all previously assigned subchannels is

needed. At each iteration of the greedy algorithm, the goal is to assign a new

subchannel in a way that the maximum increase in the sum rate is achieved.

First, we start from an arbitrary subchannel, say subchannel n. Then,

we find the user that gives the highest sum rate if only this subchannel was

used. This is equivalent to picking the user that has the largest gk,n for k ∈

K. To continue, we pick another subchannel and assign it to the user that

gives the maximum increase in the sum rate considering the first subchannel

assignment. The subchannel assignments continue in the same fashion so that

each subchannel is assigned to the user that produces the largest increase in the

sum rate considering all previous subchannel assignments. The pseudocode of

this approach is presented in Algorithm 3. In this algorithm, Rs(k, n) represent

the sum rate of the system assuming subchannel n is assigned to user k given all

previous subchannel assignments. Here, the subchannel assignment and power

allocation for all users and subchannels finish at the same time.

3.4 Full Rate Incremental Assignment

The order of picking the subchannels to be assigned affects the output sum

rate of the partial sum rate incremental subchannel assignment. While picking

subchannels could be done randomly, picking them smartly could result in a

13



Algorithm 3 Partial rate incremental assignment algorithm.

1: Ak ← ∅, ∀k ∈ K
2: Tc ← ∅

3: while Tc 6= N do

4: Pick a subchannel n ∈ N − Tc
5: i = argmax

k∈K
Rs(k, n)

6: Tc ← Tc ∪ {n}
7: Ai ← Ai ∪ {n}

higher sum rate. For this purpose, we present another subchannel and power

allocation strategy called full sum rate incremental subchannel assignment.

In this approach, at each iteration of the algorithm, the subchannel that re-

sults in the maximum sum rate increase is selected. For this, all the unassigned

subchannels are first scanned at each iteration. The scan of each subchannel

consists of evaluating the sum rate increase for all users by doing the power

allocation and sum rate calculation for each user considering all previous sub-

channel assignments. After scanning all unassigned subchannels, the subchan-

nel and its associated user for the maximum sum rate increase are identified.

The pseudocode of this approach is presented in Algorithm 4. Similar to par-

tial sum rate incremental approach, both subchannel assignment and power

allocation are finished at the same time.

Algorithm 4 Full rate incremental assignment algorithm.

1: Ak ← ∅, ∀k ∈ K
2: Tc ← ∅

3: while Tc 6= N do

4: (i, j) = argmax
(k,n): k∈K,n∈N\Tc

Rs(k, n)

5: Tc ← Tc ∪ {j}
6: Ai ← Ai ∪ {j}

14



3.5 Simulation Results

In this section, we compare the sum rate performance of the aforementioned

subchannel assignment approaches. For this, we consider a WEHN where the

users have different distance from the access point. More specifically, the dis-

tance of an arbitrary user i from the access point follows a uniform distribution

with a support over [1, 2). To account for the pass loss, we assume that the

harvested power at the users is inversely proportional to their squared distance

from the AP. Further, we consider a non-light-of-sight environment. and thus,

the effect of the multipath fading on the channel gain the effect of the multi-

path fading on the channel gain follows a Rayleigh distribution. The following

results are averaged over 100 channel realizations.

The achievable sum rate results for N = 100 sunchannels and different num-

ber of users, when the AP transmit power is PAP = 10 dBW, are presented in

Figure 3.1. In this figure, the x-axis represents the normalized number of users,

i.e. K
N
. As expected, full rate incremental subchannel assignment shows the

best performance followed by partial rate incremental subchannel assignment.

Further, it can be seen that balanced maximum gain assignment outperforms

the plain maximum gain assignment in terms of the sum rate. Overall, the

achievable sum rate expresses an increasing trend over the normalized number

of users.

The achievable sum rate results for N = 100 subchannels and PAP = 30

dBW is presented in Figure 3.2. Again, as expected, full rate incremental and

maximum gain assignment respectively show the best and worst performance

among the aforementioned channel assignments.

We also study the network resources usage efficiency by looking into the

number of subchannels that are actually used in the uplink for data trans-

mission. By this, we mean subchannels that are assigned a non-zero transmit

power at the end of the subchannel assignment and power allocation. The

15
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Figure 3.1: Achievable sum rate for different subchannel assignment approaches
when PAP = 10 dBW.
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Figure 3.3: Number of unused subchannels when PAP = 10 dBW.

subchannel usage results for PAP = 10 dBW is presented in Figure 3.3. As

seen, full rate incremental assignment utilizes almost all of the subchannels to

achieve its superior sum rate performance over other approaches. On the other

hand, at smaller number of users, a significant number of subchannels are left

unused for the other three approaches.

The subchannel usage results for PAP = 30 dBW are shown in Figure 3.4. In

this case, almost all of the subchannels are used by all subchannel assignment

methods. This results from the fact that users harvest more power compared

to PAP = 10 dBW (on average 100 times more), and hence, are able to allocate

power to more subchannels.
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Chapter 4

Common Rate Maximization

While the goal of the sum rate maximization is to improve the data rate perfor-

mance of the system as a whole, in common rate maximization, the individual

data rate performance of the users are of more importance. For this to happen,

one needs to ensure that all users get access to a fair share of the network

resources. This mostly contradicts with the sum rate maximization approaches

presented in the previous chapter where the users with the strongest channel

are likely to receive most, if not all, the subchannels.

That being said, in the following, we present appropriate approaches for

common rate maximization. The main idea behind all these approaches is to

assign better subchannels to the users that have harvested less energy in the

energy harvesting phase to boost their achievable data rates. Similar to sum

rate, in the following we present approaches where the subchannel assignment

and power allocation are decoupled as well as approaches where they are done

simultaneously.

4.1 Individual Maximum Gain Assignment

In this approach, we first sort the users in terms of their harvested power. As

for each user uk, its harvested power Pk is proportional to ak, which means that
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the users are basically sorted in terms of aks. Without loss of generality, let

us assume that the users are labeled such that a1 ≤ a2 ≤ . . . ≤ aK . Here, u1

determines the bottleneck of the common rate and any improvement in its data

rate directly translates into an increase in the common rate. To compensate

for the lower harvested power by u1 compared to the other users, we assign

the stronger uplink subchannels to it. This is achieved by assigning the best

M subchannels to the user and then we continue by assigning chunks of M

subchannels to the rest of the users.

More specifically, the first best M subchannels are assigned to u1. u2 is the

user with the second lowest harvested power and thus should receive strong

subchannels. That being said, the best M subchannels of the remaining sub-

channels will be assigned to u2. The next set of subchannels will be assigned

to u3 and so on. To ensure that no user remains without being assigned a

subchannel, M is chosen such that 1 ≤ M ≤ ⌊N
K
⌋. If after assigning M sub-

channels to all users, there are still unassigned subchannels left, the algorithm

proceeds by assigning the subchannels to u1 again and continues in the same

fashion.

The pseudo code representation of the individual maximum gain assignment

is outlined in Algorithms 5. Note that the choice of M affects the performance

of this subchannel assignment approach and could be further optimized to reach

the best performance by the system.

Algorithm 5 Individual maximum gain assignment algorithm.

1: Ak ← ∅, ∀k ∈ K
2: k ← 1
3: Tc ← ∅

4: while Tc 6= N do

5: for i ∈ {1, 2, . . . ,M} do
6: j = argmax

n∈N\Tc

hk,n

7: Tc ← Tc ∪ {j}
8: Ak ← Ak ∪ {j}

9: k ← k + 1 mod K
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4.2 Incremental Common Rate Improvement

In this approach, we assign M subchannels to a user at each iteration similar

to the individual maximum gain assignment. However, it is different from indi-

vidual maximum gain assignment in the sense that the subchannel assignment

and power allocation are done simultaneously.

To explain the incremental common rate improvement in more detail, the

approach allocates M subchannels to the user who has the lowest data rate

among the users. To assign the first set of M subchannels when the data

rates of all users are zero, the user who has the least harvested power, i.e.

u1, is selected. To decide on which M subchannels should be assigned to

u1, all possible M -subsets of the subchannels will be tested. The subset that

results in the maximum data rate for u1, considering water filling for the power

allocation, is then selected and assigned to u1. In the next iteration of the

algorithm, the second user with the least harvested power, i.e. u2, is selected

who then receives an M -subset of unassigned subchannels. This continues until

all users are assigned M subchannels.

From this point on, the user with the smallest data rate, i.e. the user im-

posing the bottleneck on the common rate, say uk, is selected at each iteration

of the approach. The next M subchannels are assigned to uk so that it observes

the maximum increase in its data rate considering water filling power alloca-

tion over the new and previously assigned subchannels. The approach contin-

ues assigning subchannels to the users in the same way until all subchannels

are assigned. The pseudocode of the incremental common rate improvement

approach is presented in Algorithm 6.

4.3 Simulation Results

In this section, we compare the sum rate performance of the aforementioned

subchannel assignment approaches. For this, we consider a WEHN with a setup
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Algorithm 6 Incremental improvement algorithm.

1: Ak ← ∅, ∀k ∈ K
2: Tc ← ∅

3: while Tc 6= N do

4: if ∃Ak = ∅ then

5: i = argmin
k∈K,Ak=∅

ak

6: else

7: i = argmin
k∈K

Rk

8: for m ∈ {1, 2, . . . ,M} do
9: j = argmax

n∈N\Tc

Ri

10: Tc ← Tc ∪ {j}
11: Ak ← Ak ∪ {j}

similar to what we considered for our sum rate study.

The achievable common rate results for N = 100 sunchannels and different

number of users, when the AP transmit power is PAP = 10 dBW, are presented

in Figure 4.1. In this case, maximum gain and rate incremental assignments

result in similar common rate performance. This is possibly because of a bot-

tleneck user, i.e. a user with low downlink and/or uplink channel gains, that

limits the common rate regardless of the subchannel assignment strategy.

Similar results are presented for PAP = 30 dBW in Figure 4.2. In this

case, the rate incremental approach provides a noticeable improvement over

the subchannel assignment based on the maximum gain. This is because of the

larger harvested power at the users making the subchannel and power allocation

more relevant to the data rate performance of the network.

We also present the result for the number of unused network subchannels in

Figure 4.3 and Figure 4.4. While the incremental improvement approach may

not provide a significant rate enhancement over the maximum gain assignment,

it achieves similar to even better common rate with using a significantly less

number of subchannels. Hence, it is more efficient in terms of the subchannel

usage.
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Figure 4.3: Number of unused subchannels when PAP = 10 dBW.
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Chapter 5

Conclusion and Future Work

The achievable date rate of a multi-carrier WEHN is directly affected by the

power allocation and subchannel assignment at the users. As a result, the power

allocation and subchannel assignment at the users should be jointly optimized

to reach the highest data rate performance in the network. For this purpose,

we formulated two mixed binary optimization problems to maximize the sum

rate and common rate of a WEHN, respectively. There is no systematic known

solution for either of these problems to the best of our knowledge, and thus,

we focused on developing heuristic suboptimal solutions for them.

To be more specific, we proposed two different sets of iterative subopti-

mal solutions. The first set of solutions were sequential meaning that instead

of directly tackling the difficult joint optimization problems, we solved them

sequentially by performing the subchannel assignment first and then power al-

location later. The second set of solutions were incremental meaning that the

subchannel assignment and power allocation were performed jointly. Simula-

tion results were presented for different network setups to compare the perfor-

mance of both sets of proposed solutions. It was observed that the incremental

solutions result in higher rates for both common rate and sum rate, albeit at

the price of higher computational complexity.

Another observation that we made from the simulation results was that
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some of the assigned subchannels were allocated no power for data transmis-

sions. This is wasteful of network resources as these subchannels could be

assigned to other users to further boost the data rate of the systems. An

approach to tackle this issue is to check for the assigned subchannels whose

assigned power is zero at each iteration and return them back to the pool of

unassigned subchannels. Such study could be considered for future work.

In addition in this work, we assumed that equal time was dedicated for

energy harvesting and data communication at the users. The performance of

the network can be further improved through an adaptive scheduling where the

energy harvesting and communication time slots are assigned according to the

uplink and downlink channel gains. Intuitively, if the downlink channel gains

is relatively smaller than the uplink channel gains, one can assign a longer time

slot for energy harvesting and a shorter time slot for data communication to

improve the achievable data rate. A joint scheduling, sub-channel assignment

and power allocation could be considered as a future research direction to

further enhance the sum rate and common rate of WEHNs.
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