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ABSTRACT

Generalized deterministic, mathematical models depicting the dynamics of
cancer and normal cells under chemotherapy and adoptive cancer (cellular) im-
munotherapy (ACI) are formulated and analyzed using the techniques of linearized
stability, persistence theory, Floquet theory, Liapunov stability, Hopf-Andronov-
Poincaré bifurcations and implicit function theory. The models incorporate most
of the physiological features of tumor-normal cell interactions such as competi-
tion, existence of threshold carrying capacities, and therapy induced destruction
of normal and cancer cells. Specific numerical examples are given to illustrate the
associated therapy-induced dynamics.

Explicit mathematical criteria are formulated for persistence of disease, local
and global existence of clinically preferred tumor-extinction rest points or periodic
orbits, as well as the associated criteria for therapeutic failure for piece-wise con-
tinuous (periodic) and constant drug administration.

Numerical examples and computer simulations and the associated graphs
are exhibited for various clinically plausible parametric configurations.

The results and theorems involving the models are much more general and in
most cases represents new results in mathematical modelling of cancer chemother-
apy and immunotherapy. The numerical simulation results illustrate the clinically
observed therapeutic profiles in chemotherapy and immunotherapy. The theorems
present some attempt to find quantitative criteria for success and failure of therapy

and could be utilized by clinical oncologists.
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CHAPTER 1

INTRODUCTION

1.1. Mathematical Modelling and Pathological Processes

Bio-medically, a person can be defined as a cellular configuration of matter,
endowed with a unique morphologic, pathologic, genetic and physiologic paramet-
ric configuration. This dynamic parametric configuration characterizes the state
of health and well being of a person. There exist in the human physiologic sys-
tem certain units such as enzymes, hormones, growth factors and other regulatory
mechanisms in addition to the immune system which constitute the intrinsic de-
fense network against bacterial and viral pathogens and also against the onset of
carcinogenesis [14]. Nevertheless, a person may eventually succumb to the on-
slaught of disease pathogens and cancer and consequently become temporarily
or permanently incapacitated, due to the circumvention of the immune defense

mechanisms and the body’s other regulatory mechanisms.

The restoration to the disease-free state of a cancer patient can be accom-
plished by surgery, chemotherapy, immunotherapy, phototherapy and other treat-
ment modalities [14]. Apart from surgery, which relies mostly on the accuracy of
the x-rays and other imaging techniques, the other treatment modalities including
chemotherapy and immunotherapy rely on accurate staging of the tumor, the dy-
namical properties of the tumor, the kinetics of tumor-host-drug interactions and
the optimal administration of the anti-cancer drugs.

Clinically it is observed that every pathological process, including carcino-
genesis, possesses a time evolution profile. Thus, if the kinetic parameters char-

acterizing a pathological process such as cancer can be determined accurately, it
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will be possible in principle to establish quantitative therapeutic criteria depicting
the prognosis or outcome of therapy. Since therapy may perturb and alter the
initial pathological parametric configuration of the cancer cells, it may be prudent
to use mathematical modelling and analysis to provide (i) a more rational basis
for the design and optimal administration of the anti-cancer drugs; and (ii) make
quantitative predictions as regards the dynamic evolution of the disease, the do-
main of therapeutic efficacy of the drug; and (iii) determine the general prognosis
of the cancer based on the initial data and the clinical (pathological) parametric
configuration of the cancer patient and the pharmacodynamics of the anti-cancer
drug. In particular, the knowledge of the cancer persistence criteria and other
evolutionary parameters and periodic fluctuations in the therapy-induced cancer
dynamics will enable the medical oncologist to make rational decisions as regards
the choice and implementation of drug therapy based on the mathematical relation
between the dynamical variables involved in the progression of disease.

The advent of state-of-art experimental equipment and the desire to obtain
quantitative therapeutic criteria have made mathematical modelling an important
part of clinical cancer research. But the extreme complexity of physiological and
pathological processes and the lack of reliable kinetic stoichiometry at the cellular
levels compel most mathematical modellers to construct phenomenological models.
These type of models possess a degree of realism which is subject to contemporary
clinical data and knowledge and provide qualitative results and predictions. The
use of computer simulations is now an accepted and important tool in the mod-
elling of bio-medical systems including cancer dynamics. The simulations allow
both the mathematicians and the medical oncologist to observe model behavior
graphically and under a range of ‘user-friendly’ conditions. Mathematical models
could be deterministic or stochastic. Basically, the two approaches describe the

2



same basic dynamics. Stochastic modelling is used if there is randomness or uncer-
tainty about the evolutionary process. But if there is abundance of experimental
kinetic data and established physiological pathways and mechanisms on a given
pathological process, it is possible to use deterministic modelling techniques. A
non-stochastic model may be more tractable and much easier to simulate under
various parametric configurations as compared to their stochastic analogs. The
output from & deterministic model can be predicted completely if the input pa-
rameters and the initial states of the model are known. But a stochastic model in
a given initial state will respond to a given input parametric configuration by pro-
ducing a range or a distribution of output variables. Many repetitions are required
to determine the stochastic output adequately. In this thesis, deterministic mod-
elling will be used to describe cancer chemotherapy and immunotherapy. However,
stochastic modelling may be more effective in certain areas of cancer research such
as the process of carcinogenesis and cancer drug resistance [22,28,44], as well as

cancer cell proliferation [13].

1.2. Cancer: Carcinogenesis, Chemotherapy and Immunotherapy

Cancer is a malignant disease in which certain cells originating from various
anatomic regions, proliferate in disregard to the growth regulatory mechanisms
of the body. The cancerous cells biotransform to stages of greater malignancy,
characterized by oncogene activation/mutation, heterogeneity, invasiveness and

metastasis [14].

Carcinogenesis is a multistage process: (i) initiation, (ii) promotion, (iii) lo-
cal cancer (cancer in situ), (iv) invasion/angiogenesis, (v) metastasis [14]. The

initiating agents consist of chemical carcinogens, viruses, radiation, ultraviolet
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light exposure, DNA replication errors, stress and certain unknown factors. The
application of the carcinogen (cancer-producing agent), does not lead to immedi-
ate production of a cancerous tumor. Initiation, which is the primary and essential
step in the process, is very rapid, but once the initial change has taken place, the
initiated cells may persist for a considerable time, perhaps even the life span of
the person unless acted upon by promoting agents. The promoters include inflam-
mation, specific promoters, hormones etc. [14]. Tumor metastasis is the major
practical problem and a common cause of death due to failure of therapy. Metas-
tasis is the process by which tumors invade the surrounding tissues. They may
grow out of the organ in which they originally arise and enter into surrounding
tissues.

Conceptually, cancerous tumor growth can be considered as having an avas-
cular phase and a vascular phase. During the avascular phase, the tumor is of such
a size that the surface to volume ratio of the spheroid is adequate for diffusion of
nutrients and oxygen, and consequently there is rapid exponential growth. During
the later stages of avascular growth, the tumor growth decelerates and at a certain
critical cell number, the growth levels off into a plateau as cellular proliferation is
balanced by cell death, and necrosis due to lack of oxygen and nutrients [44]. A
state of dormancy occurs unless the tumor acquires new blood vessels by a process
called vascularization and tumor angiogenesis.

Tumor angiogenesis enables an aggregate of tumor cells to expand beyond the
maximal three dimensional size restraints imposed by space, nutrients and oxygen
diffusion requirements. The primary tumor may then metastasize into other or-
gans of the human anatomy forming secondary tumors. After neo-vascularization
the primary tumor may again undergo exponential growth unless it encounters
limitations. Thus realistic tumor growth may be a cascade of exponential growths
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interspaced with deceleratory periods or dormant growth. However many other
realistic growth scenarios are possible such as modelled by Cox et al. [22]. But gen-
erally logistic growth or Gompertz tumor growth profiles are the most frequently
used models to depict tumor growth.

In general, any cellular transformation or growth characterized by invasive-
ness, heterogeneity, metastasis, oncogene activation, and most times greater ma-
lignancy, is called neoplasia [14]. Hence cancer is sometimes called a neoplastic
disease. The term tumor which denotes swelling is commonly used to refer to a
neoplasm whilst cancer is a generic term for malignant neoplasms. A malignant
tumor or cancer is a configuration of neoplastic cells in an anatomic organ or
tissue such that these cancer cells differ from normal cells (non-cancer cells) in
histopathologic, morphologic, immunologic and cyto-kinetic characteristics.

Except for cancer of the skin which is the most common and also the most
curable of human cancers, 75% of all cancers in humans in the United States
occur in only 10 anatomic sites. These are the colon and rectum, breast, lung
and bronchus, prostrate, uterus, lymph organs, bladder, stomach, blood and pan-
creas [14]. Some of the ethiologic agents according to epidemiological study are
oncogenic viruses, chemical carcinogens, harmful radiation exposure and genetic
predisposition [14].

In cancer treatment today, four major approaches can be used in efforts to
obtain long-term periods of disease-free remission. These treatment types include
surgery, radio therapy, chemotherapy and immunotherapy. For certain types of
cancerous tumors, some form of ‘cure’ can be obtained through surgical debulking
of the tumor followed by local radiotherapy. These combined procedures are effec-
tive unless the tumor cells are disseminated into other organs such as the lungs,

central nervous system and other vital organs by metastasis. In such instances,
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the only treatment modalities with potential capabilities for eradicating the micro-
metastasis or secondary neoplasia are chemotherapy and immunotherapy.
Chemotherapy gained prominence in the late 1960s and 1970s due to the
initial success of certain anti-cancer drugs [44,22]. But the initial optimism was
abated when it was observed that therapeutic failure invariably results unless
optimal drug strategies are developed. Furthermore, even with combinations of
anti-cancer drugs using very efficient drug delivery systems, there exists a finite
time-domain of therapeutic efficacy of the drug, after which the cancer returns
causing death. However, certain cancers can still be controlled using chemotherapy
under optimal drug administration, following surgery or bone marrow transplants.
There have been several mathematical models formulated to describe both
stochastic and deterministic aspects of cancer chemotherapy. These include those
contained in Lecture Note in Biomathematics 40, Springer-Verlag: edited by
Eisen, M. Other models include those by Gatenby [21] who studied some in-
teresting aspects of cancer and normal cells dynamics using the isocline-arrow
techniques to investigate a Lotka-Volterra type model. Panetta [36], also studied
pulse chemotherapy for a similar Lotka-Volterra semi-dynamical system.
Immunotherapy and gene therapy are becoming established anti-cancer treat-
ment modalities. One of the relatively effective immunotherapeutic techniques
is Adoptive Cancer (cellular) Immunotherapy. This technique is pioneered by
Rosenberg and colleagues at the National Cancer Institute. Adoptive Cancer Im-
munotherapy (ACI) is used for particularly human solid tumors. It involves the
retransfer into a patient of tumor killing lymphocytes which had been previously
extracted and potentially incubated with growth factor interleukin-2. If the can-
cer cells in the patient are immunogenic, the ACI procedure produces clinically

observable tumor remission for a finite non-zero time duration. This procedure
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is extremely toxic and harmful to normal cells in the person. The therapy of a
non-immunogenic tumor can be performed by tactically coating the surface of the
tumor with tumor associated antigens and later targeting the tumor with mono-
clonal antibodies for these antigens carrying the chemotherapy or immunotherapy
agent [14].

In the past, many mathematical models have been formulated to illustrate
the humoral immune response involving antigens and antibodies. These include the
works by Bell [5], Pimbley [38,39], Merril [34], Waltman and Butz [45], Freedman
and Gatica [18]. Mathematical models describing the cellular immune response
during the growth of cancer cells have also been formulated. These include models
by Grossman and Berke [23], Merril [81], Albert, Freedman and Perelson [1].

1.3. Mathematical Preliminaries: Basic Definitions and Standard

Theorems

In this section of the introduction we shall list all basic definitions and stan-
dard theorems which will be encountered in the forthcoming chapters.

1.3.1. Definitions of basic concepts
In this subsection we shall present the definitions of some basic concepts

and parameters which will later be used in theorems or proofs of theorems in the

forthcoming chapters.
Dy : Acyclicity [cf. 10]

Consider the system

= F(:z:) (1.1)

z(to) = zo



where zo € IR}, F:C(R%,IR")— IR", T={zeR"*z:>0, 1<i<n}
and IR? = c£IR? denotes the closure of IRT.

Let M; and M; be critical points (rest points) or invariant sets on the
boundary of IR}, denoted by JIR%.

Let O(z) denote the orbit of a point z € SIR? such that

a(z) =M; and w(z)= My, (1.2)

respectively the alpha and omega limit sets of z.
Then M; is said to be connected or chained to Ma,. This is depicted

symbolically by
M1 — Mz, (1.3)

Let S denote the set of rest points or invariant sets of (1.1) as defined by:
S ={M;,Ma,..., M.} (1.4)

If for all cyclic permutations of ¢ and all M; € § with i= (1,2,3,...,n) we

have
Mi =5 M1 - Mo — oo = My H M, (1.5)
then the system (1.1) is said to be acyclic.

D : Dissipativity [cf. 10,20]

Consider system (1.1) and let

z(t) = {z:(t) s (1.6)
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Then the system describing the evolution of z(t) is called dissipative if
limsup [|z(¢)| < L, (1.7)
t—ro0

where L is a positive constant. In particular, the trajectories of the system are
asymptotically uniformly bounded. In other words, there is a compact neighbor-
hood

B cIR? (1.8)

such that for sufficiently large T = T'(to, zo)
z(t)eIB forall t>T (1.9)

where z(t) is any solution of (1.1) such that
z(to) =z0 in IRZ. (1.10)
For dissipative systems, the existence of an equilibrium in the interior of IR%,

denoted by int IR%, is a consequence of uniform persistence [9,10].

D3 : Hyperbolicity [cf. 9,10]

Let E(zo) € IR} such that F(E(zo)) =0 for system (1.1). Then E(zo)
is a rest point of system (1.1).

The linearization of (1.1) in the neighborhood of E(zo) gives the equation:

£ = DF(E(zo))é
£(to) = &o, (é(g Iii):t } (1.11)

where Jp(z,) = DF(E(z0)) is the Jacobian matrix of the linearization (via a

9



Taylor series expansion around E(zo)). In particular Jg(sz,) is defined as:

9F (z) 8F(z)
8z, ce 8z,
JE(zo) = DF(E(z0)) = : (1.12)
8F,(z; 8Fn(z)
oz v 8zn z=E(z0).

The eigenvalues of Jg(z,) are defined by the set
O’(Jg(zo)) = {/\il det (JE(zo) - /\In) =0, i1=1,... ,n}. (1.13)

Respectively, the rest point E(zg) or periodic orbit z = 1(t) is called hyperbolic
if the eigenvalues corresponding to Jg(z,) or the Floquet multipliers for #(t) are
such that they have non-zero real parts. Furthermore, let o(Jg(z,)) contain n

eigenvalues. Then

(i) E(zo) is a hyperbolic saddle orbit if there exist some A; € 0(Jg(z,)) Wwith
Re \; > 0 and also some Aj € 0(Jg(z,)) such that Re A; < 0, for
i,j €{1,2,...,n}, bui there exist no Az such that Re Az =0.

(i) E(zo) is a hyperbolic sink if for all \; € 0(Jg(z,)) We have Re A; < 0,

i€{L,2,...,n}.
(ii) E(zo) is a hyperbolic source if for all A; € o(JEg(zo)), we have Re A; >0,
ie€{l1,2,...,n}.

Dy : Isolatedness

Theorem 1.1. Consider system (1.1) and let F(z) be analytic and let E;(z;)
for i ={0,1,...,n} denote the rest points of (1.1). Then a sufficient condition
for Eo(zo) to be isolated, is that the Jacobian matrix due to linearization of
(1.1) in the neighborhood of Egy(zo), denoted by Jgq(zo), is such that Jg(z,)
is non-singular.

10



Proof. Since F(z) is analytic, we can use a Taylor series expansion in the neigh-
borhood of Ey(ze). Thus
F(:z:) = F(Eo(xo)) + JEo(a:o) (:z: - Eo(xo))

+0(|z — Eo(zo)|?). (1.14)
But F(Eo(zo)) =0 and so

F(z) = JEy(z0) * ( — Z0) + O(|z — Eo(z0)[?). (1.15)

Any other rest point in the neighborhood of Eg(zo) must satisfy the relation
(1.15). Since F(E:(z;)) =0 for any other rest point as well as Eqo(zo), it implies

that any other rest point E;(z:), i# 0 must satisfy the criterion.
JEo(zo) - (Ei(z:) — Eo(zo)) =0, i#0. (1.16)

But Jgy(z,) is non-singular by hypothesis. Hence E;(z;) = Eo(zo), implying
that Eo(zo) is isolated. (This condition is sufficient but not necessary.)

In the results presented in the forthcoming chapters, isolatedness (and acyclic-
ity) will be guaranteed by the hyperbolicity and global asymptotic stability require-

ments for the rest points in their respective two or three dimensional subspaces.
Dg : Persistence [cf. 9,10,16,17]

Consider system (1.1) and let

z(t) = {z:() et

11



Then z; is said to persist if
zi(t)>0, t>0 and hggf zi(t) > 0.
Further, the persistence is said to be uniform, if
36>0, 3 litn_n.;lgfzi(t) >4

independent of z;(0).

System (1.1) is said to persist (uniformly) if each component z;, i =
{1,...,n} persists (uniformly).

In particular, while persistence of (1.1) corresponds to global survival of all

zi, @ ={l,...,n}, non persistence corresponds to (local) extinction of at least

one component,

Dg : Liapunov functions and negative definiteness

Consider system (1.1) such that
FeC(R:,IR*), zelR"

Let G be any neighborhood in IR}. Then V is a Liapunov function for (1.1)
on G if

(i) V eC(IR?,IR) and bounded below
(i) V(%) =0, where F(Z)=0, (Z isa rest point of (1.1) <= z =173).

(i) 3 an >0, 3 V(z)>0 whenever z € B,(Z), = #Z, where
By(z) ={z € R%||lz - z|| <n}.

(iv) V <0 along the solution trajectories of (1.1)

12



(v) V(z) = oo if either z; — o0, or [[z| — 0 or z — JIR%}, [26,41].

Remark 1.2.
a. The requirements (ii) and (iii) of D6 imply that V is positive definite.
b. For global asymptotic stability, we require V(z) < 0.
c. If V and —V are positive definite (V negative definite), with respect to
Z, then Z is globally asymptotically stable.

Now, V can be written in the form

V = XTAX = (AX, X) (1.17)

1 — T3
X=
In—ZIn

and A(z,Z) is a n X n symmetric matrix over IR, given by the expression

ai . Qin
Alz,z) =1 ... .
anl + e ann

In particular, V is negative definite if A(z,Z) is negative definite.

where

Let Dy denote the sequence of (leading) principal minors of the matrix A.

In particular,
a1 a12
Dy =ay, D; = )
a1 Q22
a1 a2 43 ar a2 ... Qin
D3=]ax a2 a3 |,....Dn=1]an a2 ... a2
(1.18)
aszy asz2 ass Qnl Gp2 ... Gnn

13



Theorem 1.2 [cf. Gantmacher [19]]. The quadratic form A(z,Z) and conse-
quently, V = XTAX is negative definite if and only if the following inequalities
hold:

D, <0, D;>0, D;<0,...,(-1)*D, >0. (1.19)

Theorem 1.3 [cf. Bellman [7]]. A necessary and sufficient condition for the
quadratic form A(z,Z) to be negative definite is that all the characteristic roots

(eigenvalues) of A(z,z) be negative or have negative real parts.

For the mechanics of construction of Liapunov functions for mathematical
biology problems see Freedman [16], Shukla and Dubey [42], and Copasso and
Forte [11].

1.3.2. Standard theorems
In this subsection, we present some theorems which will be used in the

forthcoming chapters.

T: : Bendixon’s Negative Criterion/Bendixson-du Lac Theorem:

Theorem 1.3. Consider the system

z1 = Fi(z1, z2)
(1.20)
& = Fa(z1, 22)

on a simply connected domain G C IR®. Suppose

() Fi,Fs,e€ CYG,IR) such that Fi,F, have continuous first partial deriva-

. 8F, OF
tives -+, 372 on G.

14



(ii) 98 4 8 4oes not change sign on G, and does not vanish identically in
1 3

any open subset of G.

Then there are no non-trivial closed paths (periodic solutions, limit cycles)
in G [8].

Theorem 1.4. Suppose,
i) B(z,z:) € CY{G,IR)
(11) -8—2-1' [F1($1,$2)B($1,$2)] + 6;?:2 [F2($1,22)3($1,$2)] (1.21)

does not change sign or vanish identically on any open subset of the simply

connected domain G.

then there are no closed orbits (periodic solutions, limit cycles) lying entirely in
G [8].

T, : The Butler-McGehee Lemma [cf. 9,16,17]

Theorem 1.5. Let P be an isolated hyperbolic closed invariant set with W+ (P)
and W—(P) its strong stable and unstable manifolds, respectively. Further, let
P € Q, where Q) is the omega limit set of some orbit.

Then either (i) Q@ = P or (ii) WH(P)\{P} and W—(P)\{P} both are
non-empty and there exists Qt € WH(P)\{P} and Q= € W—(P)\{P} such
that Q* €Q and Q~ € Q.

Remark 1.4. Persistence is equivalent to any orbit initiating in the interior of IR}

not having any omega limit points on the boundary.
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T3 : Brouwer Fixed Point Theorem [cf. 8,48]

Theorem 1.6. Let G be a simply connected planar open domain and T be a
topological mapping of G into itself. If G is sense-preserving and there exists a

point zo € G and a subsequence of the successive images

21 =Txg, z2=Tz1,....Zn =TZn_1 (1.22)

which converge to a point in G, then T has a fixed point in G.

Ty : Floquet Multipliers Theory

Consider the non-autonomous system

z= F(t,z) ‘
R+ = [0, c0)
2(to) = o, } (1.23)
z, o € IR™, F € C'(R4 x IR, IR™)
F(t+w,z)= F(t,z). J

Let ¥ = (¢1,...,0n) be a given periodic orbit or limit cycle of (1.23). Let the

Jacobian matrix of linearization of (1.23) about % be given by

Jy =DF(%)
mi1 Min
= : =M = {mij}h1<i, j<n (1.24)
mMmnp1 ... Mnpn

such that Jy is locally integrable.
The Floquet multipliers are the eigenvalues of X(w), where X;;(t) solves

X =M@®Xt), X0O0)=I (1.25)
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Xu) ... Xln(t)>. (1.26)

where X(t) = (X
a(t) ... Xan(t)

In general this is a tedious computation and sometimes only estimates are possible,
unless the matrix Jy; and consequently X(¢) has some zeroes.

Consider the following examples:

Example 1.1. Let
miy miz2 M3
J¢ = 0 mao2 0 . (127)

m3y MmM32 TM33

Then
X)) Xia(t) Xas(t)
xe)=| 0 Xu@® 0o |. (1.28)
Xa1(t) Xaa(t) Xas(t)
By inspection,

Xéj = Mmoo Xaj (1.29)

Xo;(0)=1I, j=1,2,3.

Then one Floquet multiplier of (1.27) is given by

maozdt

Example 1.2. Let

m21 Ma2

Ty = (mu 0 ) . (1.29)
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Then the Floquet multipliers are

pr= efo‘" mypdt and p2 = efo‘" mgzd‘t.

Theorem 1.7. Consider the system

i(t) = A(t)z }

2(t) = o, (1.30)

where A(t) = Jy is a locally integrable n X n matrix such that
At +w) = A(2).

Let p; denote the i** Floquet multiplier. Then,

(i) All solutions z(t) of (1.30) satisfy z(t) - 0 as t — oo if [ps| < 1,
i={1,...,n}, in which case z =(t) is asymptotically stable in the sense
of Liapunov.

(ii) Some solution of (1.30) is a non-trivial w-periodic solution if and only if
p1 =1 for some i€ {1,...,n}.

(iii) If however, |pj|>1 forsome j € {l1,2,...,n}, then z =1(t) is unstable.

T, : Hopf-Andronov-Poincare Bifurcation Theorem [cf. 24,39]

Theorem 1.8. Let

t=F(z,p), (u Iis a bifurcation parameter)
:D(to) =9 (1.31)
zeIR®, u€elRP, F € C"(IR" x IR?,IR™).
Suppose
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(i) FeC', r>5 on some sufficiently large open set G containing the
equilibrium, (z,u) = (zo, po) = IP,, where zo is an isolated rest point of
F(z, p).

(i) F(z,u) =0 for some curve z ==z(u) with z(u) € n(zo, o), a neighbor-
hood of (zo,u0) on G.

(iii) The Jacobian matrix J, = D F(zo,u0) has a pair of complex conjugate

eigenvalues A and X such that

Ap) = ap) +iB(u), Ap)eC”

where
a. B(po) >0
b. a(ue) =0

c. 4= [ReA(po)] =/ (uo) #0 (Transversality criterion)
where IP,—,, is asymptotically stable.

(iv) The remaining n — 2 eigenvalues of J, = D F(zo,p) have non-zero

(preferably negative) real parts.

Then, Pu—n, = (zo,o) is a bifurcation point of the equilibrium, z = zo,
leading to a limit cycle for some small values of p # po. If ;> po the bifurcation
issupercritical and if p < po, then the bifurcation is subcritical. If the bifurcation
is all at u = po, there is a centre around = = zo and infinitely many neutrally

stable concentric closed (periodic) orbits surrounding z = zo.
Ts : The Implicit Function Theorem [cf. 40,43]

Theorem 1.9. Suppose f:IR™ — IR™ is continuously differentiable in an open
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set containing (zo,y0) and f(zo,%) =0. Let M be the m x m matrix such
that

M = (Dnyjf*(20)), i<i, j<m.

If det M # 0, there is an open set A C R containing zo and an open set
B Cc IR™ containing yo, with the following property: for each z € A thereis a
unique g(z) € B such that f(z,g(z)) =0. The function g is differentiable.

Theorem 1.10. Assume that U c IR™ x IR* is an open set and F : U — IR*
is a CT function for some r > 1. Represent a point p€ U by p= (z,y) with
z€IR" and y € IRF and the coordinate functions of F by f;,

Fz(fla'“rfk)-

Assume that for some (zo,%) €U

(2 (@o,30)) (1.32)

dy; 1<i, j<k

is an invertible k x k matrix (non-zero determinant). Let C = F(zo,70) € IR*.
Then there is an open set V containing zo, and an open set W containing yo

with Vx W c U. Thereisa CT function h:V — W such that

h(zo) =yo and

F(z,h(z)) =C forall z€V.

Further, for each z € V, h(z) is the unique y € W such that F(z,y) =C.
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Ts : LaSalle’s Invariance Principle and ODEs [41,37]

Consider system (1.1). Let f:IR? — IR™ satisfy a local Lipschitz condi-
tion.

Let G c IR? be any open set. Define a Liapunov function V' on G such
that V:G cIR} — IR"™.

Theorem 1.11. Suppose

(i) V is C' on G and bounded below.

(i) llzlligoo V(z) = oo.
(iii) V(z) <0 for every z € G along the solution trajectories of (1.1).
(iv) E={z € G\V(z) =0} along the solution trajectories of (1.1).

(v) M is the largest invariant subset of E.

Then all solutions of (1.1) are bounded on IRy = [0,00) and tend towards M,
and consequently M is globally asymptotically stable.

Remark 1.5. In many instances, the set M is determined as the rest point of

(1.1). Further, if V is chosen so that V is continuouson G, then E is closed.

Ty : The Loziinski Matrix Measure and Stability [25]
Consider the system

& = F(t,z), z(to) =20 } (1.33)
F e C(Ry x R*,IR)

Define DF(E(zo)) = A(t) as the Jacobian matrix due to linearization of (1.33)
in the neighborhood of the rest point E(zo).
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Define the Loziinski Matrix measure u(A) as follows:

p(4) = h]im ﬂﬁ_ﬁ‘i__]‘. (1.34)

—~ 0t h

where u(A) exists as a finite number for every A € M,. Let A € C(IR4, M)

where M, is the set of n X n matrices.

Theorem 1.12. Consider the system
z(t) = A(t)z (1.35)

where A = {aij(t)}1<i, j<n € C(R+, My). Let
@ llzl =5 e

(@) [l All= sup |ax] \ (1.36)

(iii) p(a)=sup [Reas+ 3 [ajl].
i ki

/

I

(a) htxg’gfj;u.( — A(s))ds = —oo then (1.35) is unstable,

(b) limsup [ u(A(s))ds < +oco then (1.35) is stable,

(c) t_ltJE:l: Js 1(A(s))ds = —oo, then (1.35) is asymptotically stable,

(d) w(A(t) <0, t>0, then (1.35) is uniformly stable,

(e) there exists v > 0, such that w(A(t)) < —-r, t >0, then (1.35) is uni-

formly asymptotically stable.

Remark 1.5. For other possible expressions for (1.36) see Kartsatos [25].

Ts : Massera’s Theorem [cf. V.A. Pliss, Nonlocal Problems of the Theory of
Oscillations, Academic Press, New York, 1966, p. 156]
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Theorem 1.18. Consider the system

z=F(t,z), Ft+w,z)=F(tz)

x(to) = Iy,
z,zo € RZ, F € C1(IR?,IR?).

If all solutions are bounded, then there exists a periodic solution of the system

with period w.

To : The Poincaré-Bendixson Theorem

Theorem 1.14. Consider the system

z = F(z),

zeR?, f:CYR?R?).

Let M be a positively invariant region for the vector field (of the system), con-
taining a finite number of fixed points. Let p € M, and consider the w-limit set
of p denoted by w(p). Then one of the following possibilities holds:

i) w(p) is a fixed point (rest, critical equilibrium point)
ii) w(p) is a closed orbit
iii) w(p) consists of a finite number of fixed points pi,...,pn and orbits 7
with the alpha limit set and omega limit set of ~ being such that a(y) = p:

and w(y) = pj.

In particular if M contains no fixed points (critical points), then it contains a
limit cycle.
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Tio : The Routh-Hurwitz Criterion [3,12]

Consider the autonomous system
z = F(z)
z€R" F:C(R"IR").

Let A= DF(E(zo)) be the n x n matrix of linearization of the system around
the fixed point E(zo), leading to the system

£=4¢ £0)=éo. (1.36)
Construct the characteristic polynomial equation p(A, 4) =0 where

p(\, A) = det (4~ Al) (1.37)

=2 + g A a2 -+ a.

Define k matrices as follows

aj 1 0
ai 1
Hy =(a1), Hy= , Hz=1]as a2 a
az az
as a4 as
a 1 0 0 0
as a2 a1 1 0
H; = as aq as as ... 0 ,
azj—1 QG2j—2 0@2j—-3 Q2j—4 --- G@Gj
a1 1 0 o 0
a a a1 ... 0
He=| . . .
0 0 0 R /4
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where the (£,m) term in the matrix Hj is

(i) age—m for 0<2£—m<k
(i) 1 for 26—m
(i) O for 26—m or 26> k+m.

Theorem 1.15. The eigenvalues of (1.36) or (1.37) have negative real parts and
consequently, the equilibrium E(zo) is locally asymptotically stable if and only
if

det H; >0 (i=1,2,...,k).

In particular for k =2,3,4, the criteria reduce to:

k=2:a1>0, a>0
k=3:a4,>0, a3>0, ayas >a3

k=4:a1>0, az>0, a4>0,

and ajazaz > a} + alas.

1.4. Epilogue to the Introduction

It is emphasized that the notion to formulate mathematical models to study,
analyze and predict the qualitative characteristics of human pathological pro-
cesses is not a new venture. Euler and von Neumann did some work in physiol-
ogy and neurobiology respectively. Cardiac conductions were studied by Mobitz,
van der Pol, van der Mark, Wiener, and Rosenblueth during a period spanning

1920-1940.
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In the forthcoming chapters generalized mathematical models will be con-
structed to study the cytokinetics of cancer and normal cells under chemotherapy
and immunotherapy.

The mathematical models and computer simulations will not be structured
to study chaos or fractals associated with certain cellular parametric configurations
of neoplastic processes under chemotherapy or immunotherapy. The research on
chaotic behavior of the models will be a future project. It must be emphasized
that chaotic dynamics is an essential feature of cancer therapy and some treatment
anomalies and periodic spontaneous cancer remissions or repopulations may be
characteristic features of such processes. The study of such phenomena under the
topic “Dynamical Diseases” has been done over the years by Mackey, [29,30,31,32].

The chapters are structured such that Chapter 2 deals with cancer chemother-
apy. Sufficient criteria is obtained for the persistence of cancer, extinction of cancer
cells and confinement of the cancer cells below a non-lethal threshold. Such clinical
details are discussed in a model constructed by the author in [35]. In Chapter 3,
mathematical models for cancer immunotherapy involving adoptively transferred
immune cells or lymphocytes will be presented. Criteria for therapeutic success
and failure will be discussed. In Chapter 4, the bio-clinical interpretations, impli-
cations and predictions of the models will be presented. As well, possible directions
for future research will be given. Numerical examples will be used to illustrate
results and will be done throughout the thesis. Our models will describe a tumor
which remains localized and engages in competition with normal cells. The tu-
mor can kill a patient without metastasizing: eg. cancers of the brain, liver and

leukaemias.
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CHAPTER 2

A MATHEMATICAL MODEL
OF CANCER TREATMENT BY CHEMOTHERAPY

2.1. Introduction

The ultimate role of mathematical modelling in cancer chemotherapy is to
provide a basis for chemotherapy regimes and to make qualitative predictions
about the dynamic evolution of the disease based on the cytokinetic parameters
of the tumor/patient and the drug parametric configuration. Models for cancer
chemotherapy can be deterministic or stochastic and at the same time can be
cell cycle specific or non-specific. Cell cycle specific models have been developed
and mathematically analysed in [3,12-16,20-21]. Cell cycle independent cancer
cytokinetic chemotherapy models can be found in [7,21,22].

The deterministic theory of cancer cell dynamics and chemotherapy presup-
poses that the population sizes of normal and cancer cells are large enough to be
described by continuous variables which are not affected by random cellular fluc-
tuations. In this paper, cell-cycle independent cytokinetic cancer chemotherapy
models are developed. The main thrust of this chapter is to model the interactions
between normal cells, cancer cells and a chemotherapy agent in a confined area
§2.2, under a single chemotherapy injection §2,3, continuous chemotherapy §2.4,
and periodic chemotherapy introductions §2.5. In each case, we determined the
equilibria and discussed their stabilities.
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A simplified version of such models was considered in [11], who used Lotka-
Volterra dynamics to model the competition between normal and cancer cells. A

competitive model with periodic inputs was also considered in [17].

2.2. The Model

We take as our model of cancer treatment by chemotherapy a system of three
ordinary differential equations of “ecological type”, where z;(t) represents the
concentration of normal cells, z3(t) the concentration of cancer cells, and y(t)
the concentration of chemotherapy agent in the affected region at time ¢ > 0.
We think of z; and z2 as competing for nutrient, oxygen, etc. and we think of
y as a predator capable of destroying both z; and z2, but selectively is more

lethal to zs.

We suppose that the normal and cancer cells are in a state of competition
when the chemotherapy agent is introduced into the body at time ¢ =0, and that
the chemotherapy agent takes time T to reach the affected tissues. We further
suppose that the cancer is concentrated in a fixed region of the body. The case

where the cancer is metastasize to other parts of the body is left to future work.

The model then takes the form

&) = Bi(z1) — D1(z1) — 12241 (21, 22) — p1(21) R (¥) (2.1a)
o = Ba(x2) — Da2(72) — Z1Z262(21, T2) — P2(T2)h(v) (2.1b)
. 0, 0Lt<rT
v= { (,0(3:1,.’172, y;t)s T S ts (210)
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:1:1(0) = z10 > 0, .’1:2(0) =z99 > 0.

Here, "= %, Bi(z:) and D;i(z:) are the birth and death rates respectively
of the_ normal and cancer cells, g;(z1,z2) is the respective competition func-
tion, pi(z;) is the “predator functional response” or cell-killing rate per agent
of the chemotherapy, h(y) = u(y)H(t — 7), where H(¢) is the Heaviside unit
step function, and u(y) is the density dependent chemotherapy effect. Finally
©(z1,T2,¥,t) is the rule which governs the concentration of chemotherapy agent
in the affected region. Clearly it depends on the injection strategy, and the body’s
reaction to the agent both before and after reaching the affected region.

Specifically we assume the following properties for the defined functions.

There exists K; > 0 such that B;(K;) = D:(K:) and BI(K:) < Di(K:),
i=1,2. Further, Ba(z)> Bi(z).

The above conditions imply that both normal cells and cancer cells can

grow to their carrying capacities in the absence of other factors, but that cancer

in general tend to grow more rapidly.

(H2): qi(z1,z2) >0, 2% >0, z>0, 4,j=1,2

ox;

(H3): p:(0) =0, pi(z:) > 0. Further pj(z) > pi(z) due to the selectivity of

33



the chemotherapy agent.

(H4): u»(0)=0, u'(y)> 0. Further yli_{%o u(y) =7 < o0.

The existence of % is due to empirical observations of the effect of body

enzymes on chemotherapy agents, [1,6,19, pp. 213-227].

We assume that the chemotherapy agent is initially injected at time ¢t =0
and initially reaches the affected region at time 7, hence the form of equation
(2.1c). The function @(z1,%2,¥,t) represents the rate of change of chemotherapy
agent after time 7. We consider three strategies for chemotherapy treatment: I,

a short infusion over time o > 0 : II, a continuous constant infusion: III, a

periodically varying infusion.

According to the three above mentioned strategies, the function ¢ takes

the following forms:

be " — [y + mpr(z1) + mep2(z2)]R(y), T<i<T+o0,
L o(z1,z2,9,t) =

—[v + mp1(z1) + n2p2 (z2)]R(v), T+o<t.

I: o(z1, z2,9,t) = 6~ — [y + mp1(z1) + mep2(z2)]R(y), T <t
L o(z1, z2,v,t) = F(t —7)0e %" — [y + mp1(z1) + mep2(z2)|R(v), T<4,

— where f(t +w) = f(t), for some w >0 (the period).



Model (2.1) is analyzed throughout the remainder of this paper. However,
before doing so, we need to consider the interaction of normal and cancer cells,

when there is no treatment. This is done in the next section.

2.3. The No Treatment Case

In this section we consider the case where there is no treatment for the

cancer, i.e. § =0, y =0 forall £> 0. Our model then takes the form

:i:1 = B1(z1) - D1 (2:1) - $1$2Q1(.‘B1, 232) (2.28.)

:i?z = BQ(.TQ) - Dz(zz) — T1Z2q2 (.'81, .'1?2), (22b)

with z1(0) >0, z2(0)>0. (Note that & is the dose.)

The equilibria are (0,0), (K1,0), (0, K2), and possibly (Z1,Z2). It is well
known [2,9] that the dynamics of this system are trivial, i.e. all solutions approach
an equilibrium. We assume that the dynamics are such that z; always wins in
competition with z; (or there is no need for treatment). Hence in this case

(Z1,%2) does not exist, and (0, K2) is a global attractor.

Computing the variational matrix of system (2.2) about (0, K32) gives that
the eigenvalues are A; = Bj(K») — Dj(K2) <0 and X2 = Bj(0) — Di(0) —
K2q1(0, K3). Hence the condition that (0, K2) is a local attractor is that

B1(0) — D}(0) — K2q1(0, K2) < 0. (2.3)
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Hence if (2.3) is satisfied and the additional hypothesis that the system

Bi(z1) — Di(z1) — 2172q1 (%1, 22) =0
(2.4)
Bjy(z2) — Da(z2) — T172g2(Z1,22) = 0

has no positive solutions, then by the trivial dynamics of competitive systems,
(0,K2) is a global attractor. We assume that this is so in the remainder of the

paper.

2.4. The Single Treatment Case

In this section we consider the case where @(z1,z2,¥,t) is given by L. Then

for t > 7+ 0, equation (2.1c) becomes

¥ = —[y + mp1(z1) + mp2(z2)Ju(y) <0, (2.5)

and since there are no positive steady states, tli1£1° y(t) =0 and so the equilibrium

(0, K»,0) is a global attractor.

Note that if instead of a single treatment, a finite number of discrete treat-

ments are given, the net results are the same for this model.

2.5. The Continuous Treatment Case

Here we consider the case where chemotherapy is applied continuously. In

this case @(z1,Z2,9,t) is given by II and equation (2.1c) for ¢ > 7 is given by

§ = 6e7*" — [y + mpi(21) + mep2(z2)|u(y). (2.6)
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Then the equilibria for system (2.1) are as follows
E(Ov Oy g)a El(alx 0: @\1)) EZ(Oa 32’ §2) and E‘(x;y :B;, y‘)v
where 7 = is the positive solution of h(y) =~v~16e™*", providing it exists.

In order for E; to exist, the algebraic system

Bi(z1) — D1(z1) — pr(z1)uly) =0

(2.7)
be*" — [y + mpr(z1)]u(y) =0
must have a positive solution. From u(y) = Wj;%:_(;ﬁ , this reduces to
é Ll
Bi(z1) — Di(z1) = — Py(21) (2.8)

¥+ mpi(z1)

We write this as ¢(z1) = ¥(z1).

Since ¢(0) = p(K;) =0 and ¢(z;) >0 for 0 < z; < K3, and since
¥(0) =0, %(z1) >0 for z; >0, there will be a positive intersection of the curves
z=p(z;) and z=1(z,) provided ¥'(0) < ¢'(0). But ¢'(0) =vyée~*"p;(0)
and ¢’(0) = B{(0) — D{(0). Hence we assume that

y~*8e™*7p}(0) < B1(0) — D1(0), (2.9)

which guarantees that E, exists. If we wish E’l to be unique, we further assume
that z = p(z;) isconcave down, i.e. that B"(z1)~D"(z:) <0 for 0 <z < K.

The above is illustrated in Fig. 2.1.

Note that if (2.9) is violated, it is still possible for E; to exist, but no easily
stated sufficient condition is available.
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Similarly, Fp exists if

4~ 18e~*7p4(0) < B3(0) — D5 (0). (2.10)

We note that from a biological standpoint, neither E nor B> can occur,
for in either case, there are no healthy cells left (presumably death has occurred

or surgery has removed the organ in question).

Before discussing the existence question for E*, the interior equilibrium, we
analyze the stability of the boundary equilibria. The variational matrix M (z1,z2,¥)

is of the form M(z1,Z2,y) = [mij(z1,22,¥)]sx3 Where

my = Bi(z1) — Di(z1) — T1Z2q12, (21, 22) — z2q1(z1, 22) — P1(21)u()
Mi2 = —Z1T2q12, (T1, T2) — 141(T1, T2)

m1s = —p1(z1)u’ (v)

Moy = —Z1Z2G2z, (T1, T2) — T2¢2(Z1, T2)

Mo = Bh(z2) — Dy(x2) — T1Z2q2z, (T1, Z2) — T1q2(Z1, Z2) — pa(22)u(y)
Moz = —pa(z2)u’ (y)

mg1 = —mpy(z1)u(y)

M3z = —12p5(T2)u(y)

ma3 = —[y + mpr(z1) + m2p2(z2) I (%) (2.11)
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Figure 2.1

Existence of Ey. Solid line: z = ¢(z1), dashed line: z= ¥(z1).
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Letting the variational matrices about 'Eo,ﬁl and Ez be M, ﬁl and

]ng, respectively, we get that

-1 (0)u(3)
w=| ,  BO-DO
—p,(0)u(3)
| ~mp(0)u@) —mp(0)u@) —v(@).
'1_(2()5:)5('%(31) —%11(51,0) mE)G)
7 ) B;(0) - D4(0) )
~Z1¢2(Z1,0) — P2 (0)u(H1)
| —mph (T )u(@r) 15 (0)u(7h) —by + mp (Z1) W' (71)
- B(0)~ D) . . -
—Z2q1(0,%2) — p1(0)u(32)
Wom | BE-DE) 5008 -m@E@®)
| —mp (0)u(3R) —meph(Z2)u(@) —[y +nep2(Z2) W/ (%2) ]

From the above we can conclude the following:

(i) I B;(0) — D;(0) — pi(0)u(@) <0 and B4(0) — D5(0) — p2(0ju(y) <O, then
the chemotherapy agent kills all cells including the normal cells.

(ii) Suppose that at least

1(0) = D1(0) — ;1 (0)u(@) > O, (2.12)

so that the normal cells can possibly survive. Consider E:. The eigenvalues of
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El are given by
A = B3(0) — D3(0) — Z142(%1,0) — v (0)u(#1)

and the solutions of

=0,

)
det ,\I—[jl :2}

{1

where,
&1 = B}(%1) — D\ (%1) - P4 (Z1)u(@r)
G2 = —p1(31)d/(§1) <0
by = —mp(Z1)u(@r) <0

bor = —y +mp (@)l (71) <O.

This leads to the characteristic equation

A2 — (B + Bao) A + (€11 8p2 — 12821) =0,

1~ -1 [= = =~
or )\=§(E11+£22):t§ \/(511—522)2'*‘4312321'

These latter eigenvalues are clearly real. Writing them as

1~ ~ 1 [7 = ==
A=3 (£11 +€22) £ 3 \/(511 + £32)? — 4(L11€22 — £12821) ,
we see that they are both negative if and only if

011 <0, and  Z118a2 > f128o1. (2.13)
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We now wish to examine criteria for there to be no limit cycles in the z;—y,

plane.

System (2.1) in the continuous treatment case, restricted to the z;—y plane

takes the form

£y = Bi(z1) — Di(z1) — p1(z1)u(y) = f1(21,9)

§ = 6e*" — [y + mp1(z1)]u(®) = g1(z1,9).
Using Dulac’s negative criterion (Andronov et al., 1973, p. 413) we define
5] -1 d -1
D(z1,9) = 3 [p1(z1) 7 fr(z1, )] + 5y [p1(z1) ™" 91(z1,9)]-

Then

Bi(z1) — Dl(z:1)] _ ['7+171P1(2:1)] 2 (y). (2.14)

d
Deny) = (7 o) (1)

Cleary D(z;,y) <0 for z;,y >0 if ﬂ%&——(—;?)‘nl is a decreasing function of
z;. This would be the case if the cancer interactions were modeled by B (z1) -
Di(z1) = z1g1(z1) where gi(z1) decreases and pi(z1) = kiz1 or pi(z1) =k
[20, pp. 185-187, 21, pp. 152-156], orif e.g. g(z1) = 1—bzs, pi(z1) = ;P , ab>

1.

In any of the above cases, or more generally if D(z1,y) <0 for z3,y >0,

then there are no periodic solutions in the z; —y plane for system (2.14).

Similar mathematical statements may be said about the corresponding sys-

tem in the zo —y plane.



The final analysis in the z; — z2 plane will involve criteria for E, to be
globally asymptotically stable. For this purpose we utilize the Liapunov function

1

1 ~
5 k1z§ + 3 k2 (y — y1)27 (2.15)

~ ~ T1
V(z1,22,9) =21 —Z1—Z1én 7 +

where ki, ko >0 may be chosen later. Taking the derivative along solutions we

get
V(z1, 22,9) = (21 — T1)[01(z1) — Z2q1(Z1, 72) — r1(z1)u(y)]
+ k123[g2(z2) — T1g2(Z1, Z2) — r2(z2)u(y)] (2.16)

+ ka(y = 51) [0 — (v + mzrri(z1) + mazora(z2))u@)],

where we have set

B:(z:) — Di(z:) = z:g:(z:)

(2.17)
pi(z:) = ziri(z:), i=1,2.
We note that g;(z;) and r;(z;) are well defined, and that
9:(0)>0, gi(z:)<0, r;(0)=0. (2.18)

After some algebraic manipulations and utilizing the definition of z; and

71, we may obtain that

V(-'Dh z2,y) = anz1 — 31)2 + 2a12(z1 — 1) z2 + 2a13(z1 — 71)(¥y — ¥1)
(2.19)

+ agox2 + 2a0372(y — T1) +ass(v — 71)?,
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where

_ 91(z1) —r(z1)u(@n)

aii
I —I1

1 1 ki [Z102(Z1, 22) — 2192(21, 22) ]2
a1z =~z @1(z1,22) + 3 1[F102(31 2_3?12( 1, T2) ]2

%n(m) [u(7r) — g(y)] + 1 ko [Z171(Z1) — z171(21)]
-

a = -
N y 2 11— % (2.20)

ago = kl[gz(zz) - §1Q2(§1, 32) - r2(z2)u(§/\1)1

az3 = k1zara(z2) [u@;)__;:(y)] — kamera(z2)u(y)
o = ka[be*" — (v + mZ1m1(Z1))u(y)]
8= v— '

We first note that since u(y) is an increasing function, then a3z < 0.
However, it does not follows automatically that a;; <0 and/or a2 <0 unless

r1(z) and/or ro(z2) are nondecreasing functions, which in general may not be

the case.

From the above, we have the following result.

Theorem 2.1. Let the a;;(Z1,%2,y) be defined by (2.20). Let a;; <0 and
azo < 0 hold Then if ki > 0 and k; > 0 can be chosen so that the ma-
trix A(z1,%2,9) 2 (a:j(21,22,7)) 5,5 I negative definite, it follows that E, is

globally asymptotically stable.

The conditions of this theorem are very difficult to satisfy. But then, they

correspond to the case where the cancer is completely destroyed, which is also a

rare occurrence.



We may now address the question of an interior equilibrium in z; — 22—y

space.

Suppose that the z; —y and z2 —y planes do not contain nontrivial

periodic solutions. Suppose further that

5(0) — D5(0) — Z142(Z1, 0) — P2 (0)u(®r) > 0 (2.21e)
1(0) — D1(0) — Z2q1(0, T2) — P1(0)u(z2) > 0 (2.21b)

hold, and that E, and E, are asymptotically stable in their planes. Then by
the techniques in [10}, the system is persistent, and hence by the results in [4], the
system is uniformly persistent and E* exists. The stability of E* is given by

the eigenvalues of M*, which are in general not computable in terms of tractable

expressions.

However, in the case that E* is asymptotically stable for low values of z3,
that case would corresond to the situation where the cancer is controlled at an

acceptable low level.

2.6. The Periodic Treatment Case

In this section we consider model (2.1) where (z1,Z2,¥,t) is given by case

III, i.e.
o(z1, 22,4, t) = Ft —7)0e™F — [y + mip1(z1) + mep2(22)R(y), T <t (2.22)

where 0 < f(t+w) = f(t) € C[0,00) for some w >0 and f(t) >0 on a set of
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positive measure.

We first consider the existence and stability of periodic solutions in the z;—y
plane and then obtain criteria for the persistence and extinction of the cancer cells.
2.6.1. The z; —y plane

We first show that under a mild assumption, all solutions initiating in the

z; —y plane are bounded and enter an attracting set in finite time.

In the z; —y plane, system (2.1c) becomes

& = B1(z1) — D1(z1) — p1(z1)u(v), z1(0) = z10
(2.23)
g=ft—7)oe™* — [y +mpi(z)lu(@), v0)=wo, t27
and let 0<m < f(t) < M.
Lemma 2.2. Assume that
~T > Mée™*" (2.24)
holds, where T = tlilg u(y). Then
(i) z1(t) € max (K1, Z10), ¥(t) < max (7,40), where ¥ is such that
yu(7) = Mée " (2.25)

46



(i) h::r-l‘iljp (z1(t),¥(t)) € A where

A={(z1,y): 0<z1 < K1, 0<y <7}

Assume that the treatment begins at t =0 and here yo > 0.

Proof. If z10 =0, then :Bl(t) =0, If 210> 0, then 1 < Bl(zl) —Dl(x1),
and so by standard comparison theory, since B;(K1) = D;(K;) and Bi(z;) <
Di(z1) for z1 > K1, we have that z;(t) < max (K1, Z10). Further, since £, <0

for z; > K, we get that limsupz;(t) < Ki.
t—o0

Now

g = f(t—1)6e™* — [y + mp1(z1)]u(y)

< Mée * —yu(y).

Hence by (2.25) and standard comparison theory, y(t) < max(7,y0) and when

y =7, then § <0, we get that limsupy(t) <, and thus the lemma is proved.
t—oo

O

The above show that all solutions initiating in the positive octant are eventu-
ally uniformally bounded (and hence system 2.23 is dissipative) and so all solutions
are continuable for positive t. Hence by Massera’s theorem [18] and the fact that

system 2.23 has no equilibria, we have shown the following.

Theorem 2.3. If inequality (2.24) holds, then there exists a nonnegative periodic
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solution of (2.23) of period w.

Unfortunately, by the same token, the equation
g = f(t—7)6e™ —yu(y) (2.26)

has a periodic solution, y = %o(t), %o(t+w) = %o(t) and so the periodic solution
of (2.23) found by Theorem 2.3 could be (0,%0(t)), which is not interior to the

(z1—y) plane.
We now show that o(t) is unique.

Theorem 2.4. Let y:(t), y2(t), be periodic solutions of period w of (2.26) such
that y:(7) =%o(7), i=1,2. Then wn(t) =y2(?).

Proof, Let y(t) = w1(t) — v2(t). Then 3(t) = v(u(y2) — u(y1)) and y(t) =
v ff (u(y2) —u(y1))dt. Since u(y:) is differentiable (and hence Lipschitzian) there
exists L > 0 such that |u(y2)—u(¥1)| < Liy1—y2|. Hence [y(t)| < 'yf: L|y(s)|ds,
and so by Gronwall’s inequality, y(t) =0.

a

Having established the above, we can now formulate criteria for there to

exist (and not to exist) an interior (to the z; —y plane) periodic solution.

Theorem 2.5. Define po = 2 [ w(%o(s))ds, where vo is the unique nontrival
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w periodic solution of (2.26). Let

v& max [Bi(z1)— Dyi(z1) — pi(z1)u(B)), (2.27)

0<z; <Ky
= i t). :
where S t%]zbo( ). Then
(i) If po > E%@, then the w-periodic solution (0,%0(t)) of (2.23) is
asymptotically stable.

(ii) If in addition v <O, then (0,%o(t)) is globally asymptotically stable.

Proof of (i). The Jacobian matrix due to linearization about (0,%o) is

1(0) — D1(0) — p1(0)u (o) 0

My = , = .
o = Jr(0,%0) [ — 7 (0)utho) i (2h0)

The Floquet multipliers are

PR 4 HORHO R AORCHION

and
oy = e~ Jo' 1’ (Wo(8))ds  where (¢0(3)) >0

which implies that |p2| < 1.

Hence (0,%0) is locally asymptotically stable if

[ 1B10) = Di(0) 1 Opu(obo(a))lds <O, (2.28)
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and unstable if

/: (B (0) ~ D}(0) — 2, (0)u(to(s))lds > 0. (2.29)

However (2.28) and (2.29) can be written as

B1(0) — D1(0)

7.0) = stability (2.30)

1

to < B (OZ)J,_(-O)DII(O) = (0,%9) is unstable. (2.31)
1

Proof of (ii). Let F(z1) = Bi(z1) — D1(z1) —p1(z1)u(B). Then F € C([0,w] x

[0,K1,Ry) and F(0) = 0. Clearly v as defined in (6.6) satisfies
v= max F'(z;). Then
z1€[0,K1]

£1 = Bi(z1) — D1(z1) — pr(z1)u(y)
< F(z1)

A< Fla) z1 € (0, K]
T T

Hence z; < z10€”*.
If v<0 then lim z;(¢t)=0.
t— 400

Hence all solutions initiating in the interior approach the y-axis, and so

50



approach (0, %o(t)).
O

We now wish to obtain criteria for there to exist an interior periodic solution.

We first show that if uo <0, then zi0 > 0= 36 > 03 limsup z1(t) = 0.
t—00

To see this consider the system linearized about z1 =0, y =10 (t). Then

the linearized system can be written as

4 = [B}(0) — D1 (0) — 71 (0)(vbo(t)) v
w = —mph (0)u(Yo(t))v — 1’ (%o(t))w.
Hence v(t) = voelBi (0)-D{ (eg=7i (D fo “(""’(’))d". We are given that Bj(0) —

D’ (0) > 0. Henceif po <0, by standard persistence theory {4,10] this statement
1

holds true.

We then reexamine Theorem (2.3) for large ¢t > 0 in the region z1 >0,

y > 0. Then Massera’s Theorem gives a nontrivial positive periodic solution.

By the above we have shown the following corollary.

Corollary 2.6. Let (2.24) and po < O hold. Then there exists a nontrivial

w-periodic solution lying in the region {(z1,9):0<z: LK1, O0<y< 7}

We have now established the existence of a positive periodic solution interior
to the positive quadrant of the z; —y plane. Mathematically we could also

establish such a periodic solution in the zz—y plane in an entirely similar manner,
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but physiologically, an organ containing only cancer cells and no normal cells

means that the organism no longer exists.

At this time, we wish to discuss the stability of the periodic solution found
above. In order to do this, we recall the definition of Lozinskii measure [5, p. 41]

which in the case of a 2 x 2 matrix (ai;) is

p(4) = max {a11 + |a21|, a22 + |a12(}.

Theorem 2.7. Let
fi(t) 2 max{Bj(p1(t) + D1 (¥1(t))
(2.32)
+ (m — D (p1(8))u(® @), by + (m — Dpr (o1 ()’ (# () }5

where (p1(t),¥(t)) is the periodic solution found by Theorem 2.5.

@) I [, &(s)ds=—oo, then (p1(t),¥(t)) is asymptotically stable.

(i) If fi(t) < —a <0, then (p1(t),¥(t)) is uniformly asymptotically stable.

Proof. Let A(t) be the Jacobian matrix of system (2.23) about (p1(t), ¥ (2)).
Then
A(t) = (aij(t)) where

an(t) = B} (e1(t)) — Di(¢1(®)) — P () u(®(D)

a12(t) = —p1 (1 (®)) ' (¥(t))
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a21(t) = —mzh (e (1))u(¥(2))

a2 (t) = —ly + mp1 (1)) [’ (% (2))-

Then the function [(t) defined by (2.32) is just the Lozinskii measure,
u(A(t)). The theorem then follows from the stability criteria of [5, p. 59].

In the following corollary, we give explicit criteria for p(A()) <0 and
therefore for (p1(£),%(t)) to be uniformly asymptotically stable.

Corollary 2.8. Define Z; = sup {z: : Bi(z1) = Di(z1)}. Assume the following
hold:

(H): m <1, 71 < gi(t) < Ky, u'(y) > uf (where up is a positive con-
stant), v < (1 — m)p1(Z1). Define § = min 1B} (1 (%)) — Di(er®)I-
Then p(A(t)) =E(t) < —a <0.

Proof. Since m; <1 and ¢i(t) > %1, then

B! (1) — Dl (1) + (m — 1)ph (p1)u(®) < Bi(w1) — Di(p1) < —B.

Further, [v+ (71— 1)p1(01)] < [y +(m —1)p1(21)] < 0 since v < (1 —n)p1(Z0)-
Hence [y+ (m — V)pi(p)lw'@®) <[y + (m —1)m (Z1)]up < 0. Therefore, taking
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a = min {B, [F+ (m — 1)p1(Z1)uo}, the corollary is proved.

2.6.2. z; —z2 —y space

We now consider the dynamics of chemotherapy agent interaction with both
normal and cancer cells. Our first result gives criteria for the cancer to be com-
pletely eliminated from the site under consideration. Since physiologically this
is not the most likely outcome, the mathematical criteria are fairly restrictive,

as expected. For easy reference in this section, we repeat system (2.1) with

o(t, z1,Z2,y) given by (2.22) for t>7:

£, = Bi(z1) — D1(z1) — 2122q1 (21, Z2) — p1(z1)u(¥) (2.332)
#9 = Ba(z2) — D2(z2) — 122¢2(Z1, Z2) — p2(z2)u(y) (2.33b)
y=f({t— )8 — [y + mpi(z1) + nep2(z2)]u(v). (2.33)

Theorem 2.9. Let ¢,7,7 be such that

oy <uly) <Ty, oF > Mée ", (2.34)

holds for 0 <y <9y. Let

T = max (Bj(z)— Di(zz)), HO=__min 75 (z2)-

0<z3<K3 0<z2<K3
mée "o e T
Let U= prres 2 v, where 0<m < f(t) <M. Thenif T-IU<

0, z2(t) —0 as t— oo
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Proof. From (2.33c) and (2.34) we have that
mbe=*" — [y + mp1 (K1) + mp2(K2)Joy < § < Mbe™ ™ —yay.

Since y(r) =0, for t> T we obtain by Kanke’s comparison theorem

m‘se—kr —kT
<y<™e,

v + mp1 (K1) + mp2(K2)[e a

ie. U<u(y) < Mde ™.
From (2.33b), we have that
&2 < Ba(z2) — Da(z2) — pa(z2)u(¥)
< Ba(z2) — Da(z2) — p2(z2)U = F(22).

But F(0) =0, and F'(z2) = Bj(z2) — D5(z2) — ph(z2)U < T -OU <0, and

so za(t) — 0 as t— oco.

In an analogous manner, the following theorem may be proved.

Theorem 2.10. Let Te = esr:g?Kg (Bh(z2) — Di(z2)), IO, = Esir;igxng(zg).

Then if T. —ILLU <0, limsupza(t) <e.
t—o00

Note that L. is a nonincreasing function of £ whereas II_ is a nonde-
creasing function of e.
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This last theorem gives a criterion for the control of the cancer cells, ie. a
criterion to eventually force the cancer level to below a prescribed level. From
another point of view, for a given f(t), the value of & such that T, — O .U =0

is an upper limit to the level of eventual cancer concentration.

Our next goal is to obtain criteria for the existence of a periodic solution in
11 — 2z —y space. Of course if the hypotheses of Theorem 2.10 are satisfied, this
periodic solution will have only small values of z, for small € > 0.

The results here depend on the ability of the solution (¢1(2),0, ¢(t))T to

change stability. Hence we require the following lemma.

For convenience of notation, let
Ba(z2) = bgz(xz) (2.35)

and

g(t,b) = bB5(0) — D4(0) — 1(£)a2(#1(£),0)  — pa(O)u(¥(2))-

Lemma 2.11. Let (cpl(t), 0,¢(t))T be the periodic solution in the z1—y plane
found in Theorem 2.5 and assume [;° Fi(t)dt = —oo. Then this periodic solution

is asymptotically stable (resp. unstable) if

/“ o(t,b)dt <0 (resp. > 0).

0

Proof. If one computed the variational matrix about this periodic solution, one
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gets from [5° fi(t)dt = —oo, that it is stable in the z1—y plane. The second row
of this matrix has a nonzero term only in the 22 spot, and it is g(t,b). Hence
the Floquet multiplier corresponding to the z; direction is elo’ 9(tb)dt giving

the theorem.

Note that g(t,0) <0, whereas g(t,+o0) = +oo. Hence fo g(t,b)dt can
be both negative and positive for various b. Further, since g(t,b) is a strictly

increasing function of b, there exists a unique bg such that

/w g(t, bo)dt = 0. (2.36)
1]

The technique used in establishing criteria for the existence of a three-
dimensional positive periodic solution is to bifurcate from the planar periodic so-
lution to the interior, with b as the bifurcation parameter. As b passes through
bo, since the planar solution loses its stability, one would expect under the right

circumstances for a bifurcation into a stable interior periodic solution.

Unfortunately, the criteria for this to occur are very complicated and en-
compass several cases to consider involving critical cases of the implicit function
theorem. We discuss these in some detail in the Appendix. However, for the
reader not interested in the gruesome details, we hereby state that criteria do

exist guaranteeing such a positive periodic solution.

As to the stability of this solution, it involves a further degree of difficulty

and is not discussed here.
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2.7. Numerical Examples

In this section we describe some examples to illustrate some of our results. In
the first two examples there is a linear dependence on , whereas in the next four
examples, there is a Michaelis-Menten dependence on y. In either case, parameter
values are chosen to illustrate the mathematical results, and may not correspond

to any actual medical possibility.

2.7.1. Examples 1-2 (Adjuvant chemotherapy)

In this section, both examples will be of the form

s 2

T} = @1171 — Q12Z7 — Q13T1T2 — Q14T1Y

. 2

19 = G21Z2 — A22T3 — G23T1T2 — G24T2Y (2.37)

g = aaf(t) — (ass + azaT1 + azsT2)y.

Example 1. In this example we set

a1y = 3.645, ap = .0025, aiz = .0025, aiq = .00807
ag1 = 6.405, agp =.008, as3 =.00075, az4 = .00985

a3z =4500, a3z = .02, azq = .125, azs= 225, f(t) =1.
The initial conditions are 10 = 1000, z20 = 200, % =0.

This example represents a constant input of chemotherapy agent. Very
quickly normel cells, cancer cells and the chemotheraphy agent go to a steady
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state (see Fig. 2.2).

Example 2. The constant and initial conditions are the same as in Example 1.

However in this example, f(£) is a periodic function, f(t)=5+35 sin 3 t.

The solution rapidly approaches a periodic function (seé Fig. 2.3) which
looks to be globally stable.

2.7.2. Examples 3-6. In this subsection all examples are of the form

. 2 a14T1Y
T1 = a1z — a127] — a13T172 —

14y
. 2 a24ZT2yY
Io = Q21Z2 — Q22Z5 — A23T1T2 —

1+y

§ = azf(t) — (ass + azqT1 + a35%2) 1 :j_y .

Example 3. In this example the coefficients are

a1y = 3.645, ajp = .0025, a3 =.00235, a4 = .00807
a; = 6.405, agz = .008, a23 =.00075, ao4 = .01985,

.5225,

az = 450, asz3z = .02, az4 = .4125, ass

0.

z10 = 1000, z20 = 200, Yo

In this example f(t) =1 is the constant input. All solutions rapidly approach a

constant steady state (see Fig. 2.4).
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Example 4. Here, f(t) is a periodic function of period 2 such that

1, 0<t<.5
ORS
0, 5<t<2.

All solutions rapidly approach a steady state which is periodic in z; with

small amplitude and constant in z; (see Fig. 2.5). The value of the constants are

a1 = 1.98, a2 = .005, aiz = .0055, Q14 = .00025,

a1 = 2.5, age = .05, arz3 = .005, a4 = .25

az = 800, a33 .45, a34 1.25, aszs = 2.25.

I
e

The initial conditions are zi1p = 1000, =20 = 100, o

Example 5. In this example

a1 = 198, a2 = 005, aiz = 085, aiq = .07,

az1 = 3.5, a2 = .008, ag3 = .01, a24 = .085,

asz = 1140, ass .05, agzgq = .45, ass = 9.

Here f(t) is a periodic function similar to the last example, but with period 3
1, 0<t<.5
such that f(t) = {

0, 5 '<' : ; 3. Initial conditions are zip = 1000, 20 =
15, wo = 0. From Fig. 2.6, one can see that the cancer takes over, i.e. it ap-

proaches a period function of high values whereas the normal cells are driven

extinct.
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Periodic chemotheraphy input with Michaelis-Menton uptake.
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Example 6. All constants and f(¢) are as in Example 5, except for z20 = 14.
Now z; approaches a steady state with the cancer cells going extinct. Note the

periodic accumulation of chemotherapy agent (see Fig. 2.7).

2.8. Conclusions

In this paper we have proposed & model of chemotheraphy on cancer cells in
competition with normal cells, consisting of three interacting ordinary differential
equations. We have analyzed the solutions for various types of chemostat inputs
including a finite number of constant inputs, a sustained constant input, and

sustained periodic inputs.

Our models show that the following scenarios are possible: cancer causes the
normal cells to go extinct (presumably resulting in death); cancer cells go extinct;
cancer cells kept at a low level; all cells approach a steady state which is high for
the cancer cells; all cells and chemotherapy approach periodic oscillations.

An interesting case is shown in comparing Examples 5 and 6. The examples
are idential except for the cancer cell starting values. In the latter case, with
To0 = 14, the cancer is driven to extinction whereas in the former the cancer
drives the normal cells to extinction with z9 = 15. This shows that outcomes
could be very sensitive on cancer values immediately before treatment, which

means early detection and treatment may be instrumental to survival.
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2.9. Appendix

In this appendix we indicate the process leading to a bifurcation of the
planar periodic solution (1(t),0,%(t)) of system (2.33) into an interior periodic
solution. The idea is to set up a period time map and use the implicit function

theorem to establish a second periodic solution.

Step 1. First we define Ba(z2) and the constant b by Ba(z2) = bBa(z2). b
will be our bifurcation parameter. Under the assumption that (i1 (t), 0,¢(t))T

is a periodic solution of period w of (2.33), we define
g(t,b) = bB3(0) — D5(0) — ¢1(t)a2 (1 (£), 0) — 2 (0)u(¥(®)) (2.38)
and

8(t) = (2(t), 0,%(t))"- (2.39)

Then computing the variational matrix M about &(t), we get

M(2@) =

bBi_zl(E:)l)(t;) f (Ilzg((% §t)) —oa(p1®),0)  —p(PO)V(¥()

0 g(t,b) 0
—moh (pr1®)u(@®) ~mph0)u((®) ~b +mpi (1)l (#(2))

From M(&(t)) we see that if [j g(t,b)dt <O (resp. > 0) then there is
local stability (resp. instability) in the z» direction. Bifurcation will occur if by
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changing b, the system loses stability.

Step 2. We now move the periodic solution ®(t) to the origin by a change of
variables and then separate off the linear part of the resulting system.

Let
wy =z —p1(t), w2 =22, z=y—9P(). (2.40)

This results in the system

iy = By (w1 +p1(t)) — Bi(p1(t)) — Di(wr +¢1(t)) + Di(e1(2)
— (w1 + o1 (t) ) waqr (w1 + p1(2), wo)
— p (w1 +o1())u(z + ¥ () + P11 (®))u(¥(t)

= O (t, wy, wo, 2, b). (2.41)

wp = bBa(ws) — Da(wa) — (w1 + 01(2))wage (w1 + 1 (t), w2)
— pa(w2)u(z +¥(t))

= eg(t, w1, W2, 2, b)

z=—fy +mp (w1 +@1(t)) + m2p2 (w2)]u(z + (¢))
+ [y + vipr o1 ()]u(¥(t))

= O3 (¢, wy, we, 2, b).
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(0,0, 0)T isa periodic solution

Note that ei(t,0,0,0,b) —0 andso Eo=

of system (2.40).
= M(8®) = (a:5(2), let ¥ = (wl,wg,z)T, 8= (61,92,63)7'
b)—A(t)u- Then N(t,0,b) = e(t,0,0,0,b)—-O =0,

can be written as

Let A()
and N(t, % b) = o(t, w1, W2s %

%% (t,0,b) = Alt) — Alt) =0 Hence system (2.41)

i=Alu+N (t,u,b) (2.42)
where N(t, 4 p) is nonlinear in u.
Step 3. First note that by & result of Poincaré (see [8]) if the system
(2.43)

o= A(t)u

w, then system (2.42) has @ unique periodic
an be no bifurcation.

al solutions of period

has no pontrivi
thereC

solution of period W, and since Eo issuch a solution,

Hence we assume
as one or more non-trivial periodic solutions of period w.

(H): System (2.43) b

In prepa.ra.’cion for bifurcation using the implicit function theorerm, note that
b) > 0. Further, 9%(,%’9)- = B'©0) >0 Hence there

g(t,0) < o while lim q(t,
b—co

:que bo >0 such that f: g(t, bo)dt =0.

= b — bo.
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,€,€) be that solution of (2.42) such that u(0,€,€) = £. Note

Step 4. Let u(t
that u(t,0,0)= 0. Define the yector function F(£,€) by

F(E, E) = u(w, &i 5) - &' (244)

g) =0 can be solved for £ as @ function of € such that

If the equation F(¢&,
found a periodic solution.

lim £(g) =0, then We will have

e—0

Now F(0,0) = u(w,0,0) = 0. Fe(0,0) = ue(@,0,0) — I. But ue(t,€,€)

satisfies

e = A(t)ue + Na(t, u, b)ue, ue(0,6,8) = I

Hence at § = 0, e=0, we get

ug = A(t)‘U:g + Nu(t, 0, bo ) ue ug(O, 0,0) = I,

or

‘llllg = A(t)'U{, UE(0,0,0) =1

since N is noplinear in .

.43) such that v(0) =I.

Let U(t) be that fundamental matrix solution of (2

Then
FE(OsO) = \p(w) -1,

t Fe(0,0) = 0. Hence we are in the

and by hypothesis (H), we obtain that de
required singular case of the implicit function theorem.
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ute Fe(0,0)- Fe(€,€) = ue(w, :€) Now ue(t,&:€)

We will also need to comp
satisfies
e = At)ue + Nu(t, v, b)ue + Np(t,u, b), ue(0,6,6) = 0.
At E=¢e=0, ue(t, 0 0) satisfies
ie = Alt)ue ¥ Ns(t,0, bo): 1¢(0,0,0) = 0.
Hence
(2.45)

ue(t,0,0) = u(t) /t \Il(s)"lNz,(s,O,bo)ds
0

and so
£.(0,0) = ¥() /“ (s)~ No(s,0,b0)ds:
0

Note that Ni(s,0,b0) = (o, EQ(O),O)T s a constant vector.

Step 5. Here we discuss the first of three generic cases.

Case (i): F£(0,0) = 0, Fe(0,0)= 0.
g) begins with quadratic of higher terms. We begin by

In this case, F(&,
defining the vector n by
£=me (2.46)
and setting
e#0

o) {5-21?(7;5, £)s
7,€) =
1 Fee (0,00 + Fee(0,0)n+ 3 F.e(0,0);
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In order to solve G(n,€) =0 for n as a function of &, we first must find a vector
1o such that G(mp,0) =0, ie.

1 1
§ Fgg(o, 0)773 + Ffe(ov 0)770 + 5 Fee(0, 0) = 0. (2.47)

Computing the second derivative, in a similar manner as the above, we get
Fee(0,0) = ¥ () f T(5) " N (5, 0, bo) ¥~ (5)%ds
0

Fee(0,0) = ¥ (W) /: T (5) N (5, 0, bo) ¢ (5, 0, O)ie (5, 0, 0)dis s

Fee(0,0) = U(w) /: T () Nuu(s, 0, bo)ue (s, 0, 0)2ds.

Note that Fe. is a vector, Fge isa 3 x 3 matrix and Fg isa 3x3x3 tensor.
Hence (2.48) is equivalent to solving three quadratic equations in three unknowns

(the components of 7). It can have up to nine distinct solutions.

If (2.48) has no real solution then £ cannot be solved for e. Hence we make

the following assumption.
(H2): Equation (2.48) has at least one real distinct solution 7jo.

With assumption (H2) we get that G(ro,0) = 0. Now we compute Gy (170, 0)
and Ge(no,0).

. Fe(mnoe, e
Gn(mo, 0) = lim _e_(ﬂo___) = Fee(0,0)m0 + Fee(0,0)

.m0 - iy & (£22)

73



= }, Em Fe(ﬂos, 5)170 +Fg(1’05, E)
3 e—0 52

which in light of (H2) gives
1
Ge(m0,0) = 3 Freee(0,0)m3 + Feee (0, 0)m3

1
+ FEee(O, 0)770 + '3‘Fese(0, 0):

where these derivatives are computed similar to the second derivatives.

(H3): Hence if det Gy (m0,0) # 0, we can solve for 7 as a function of &, i.e.

n = 1o — Gn(0,0) ™ Ge(0, 0)€ + 0(€);

or

€ = noe — Gn (Mo, 0)" Ge(n0,0)€* + o(e?). (2.49)

Step 6. Since u(t,€,€) is a periodic perturbation of ®(t), then wi(t,&,€) and

z(t,€,€) are positive for € sufficiently small.

With respect to wg, we note that u(t,,€) can be written as
u(t, €,€) = u(t, 0, 0) + ue(t,0,0)6 + ue(t, 0,0)e + H.O.T.

¢
= O(t)[mo + / (s)~1(0, B4(0), 0)  dsle +ofe)

0

= x(t)e + of€)-
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Hence for w; > 0 for € > 0, we require that the middle component of x(t) be

positive, 0 <t < w.

Step 7.

Case (ii): F¢(0,0) =0, F.(0,0) # 0. In this case we assume that there exists
n > 2 such that det (Fgn(0,0)) # 0. To illustrate the technique, assume n = 2.

First we set € =72 and
H(¢, 1) =F(¢,12%). (2.50)

Then as before, we set £ =ne and define

H(ne, )2, e#0

J(n,€) = { . \ . (2.51)
2 H&(O, 0)77 + H{-,—(O, 0)77 +3 HTT(O’ 0)1 e =0,

where here
Hee(0,0) = Fe(0,0)
H¢-(0,0) =0 (2.52)

H..(0,0) =2F.(0,0).
Hence as in Step 5, one requires a real distinct solution to the system

Fee(0,0)7% + 2F,(0,0) = 0. (2.53)

2

If such a real solution, 79, does not exist, then instead of € = 7°, one can

try € =—72 and that may work, otherwise no bifurcation occurs.
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If no exists (in which case there are two or no branches for £ as a function

of €) the rest proceeds as in Steps 5 and 6.

Step 8. Case (i), det (F¢(0,0)) =0, F¢(0,0) # 0. This case is somewhat
complicated. First by a linear change of variables, we assume that Fg(0,0) isin
Jordan canonical form with all zero eigenvalues on the upper left on the diago-
nal. We then define all rows which consist only of zero to be the singular rows
and all such columns to be the ezceptional columns. Then if F(€,¢) is broken
into singular and nonsingular parts, F, and F respectively, and £ into excep-
tional and nonexceptional components, & and E respectively, one can see that

det (F£(0,0)) #0.

Hence f(&, €) can be solved for £ as a function of & and e. We then
substitute into F,(€,€), giving a system of the form F,(&,&) = 0, where now
F,e.(0,0) = 0. Then we proceed as in Steps 5 and 6, or Step 7. See (8] for complete
details of this technique.
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CHAPTER 3

A MATHEMATICAL MODEL
OF CANCER TREATMENT BY IMMUNOTHERAPY

In this chapter, a detailed mathematical study of cancer immunotherapy will be
presented. In the succeeding sections, we will discuss the general principles of
cancer immunotherapy §3.1, §3.2, the model equations and hypotheses §3.3, and
mathematical analyses of the model equations with regard to dissipativity, bound-
edness of solutions, invariance of non-negativity §3.4, nature of equilibria §3.5,
persistence, extinction and global stability §3.6 and §3.7. In §3.8 we do a bifurca-

tion analysis and in §3.9 we examine a criteria for total cure.

3.1. The Immune System and Cancer

When cancer cells proliferate to a detectable threshold number in a given
physiological space of the human anatomy, the body’s own natural immune system
is triggered into a search-and-destroy mode. The spontaneous immune response is
possible if the cancer cells possess distinctive surface markers called Tumor Specific
Antigens. Tumor cells which possess such antigens are called immunogenic cancers,
[14,3,19,29,30]. The immune response against cancer cells can be categorized into

two types: the cellular and the humoral immune response.

The cellular natural immune response is provided by (i) Lymphocytes (i) Lym-
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phokines/cytokines and (iii) Antigen-presenting cells.

The effector Lymphocytes which are involved in anti-cancer mechanisms
are T cells, NK cells, LAK cells and K cells. The Lymphokines or cytokines
are biological response modifiers or growth-stimulating substances biosynthesized
by certain immune cells. These include the interleukins and the interferons. In
particular, interleukin-2 (IL-2) is biosynthesized by an antigen-sensitized subset
of the T-cells called Helper T cells. Interleukin-2 is responsible for stimulating
antigen sensitized NK cells, cytotoxic T-cells and LAK cells to develop into mature
anti-cancer effector lymphocytes and also provides the growth stimulus for these
lymphocytes to proliferate into a high enough cell number capable of mounting
an effective attack against the cancer cells. The Antigen Presenting Cells include
Macrophages and Dendritic cells. These cells are responsible for presenting cancer
antigens to the T cells such as to trigger the immune response. The detailed
description of the morphology and roles of the lymphocytes, lymphokines and
antigen-presenting cells can be obtained from the following references: [19,29,30].

The Humoral Immune response to cancer is provided by

(i) B-lymphocytes and

(ii) Immunoglobulins/Antibodies.

There exists a mechanism in which both cellular and humoral responses cooperate
in providing an anti-cancer activity. This mechanism is called Antibody Dependent
Cancer Cell Destruction: cf. [3,19,30], and it involves K and NK cells as well as
interleukin-2 and immunoglobulin-G.
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The cellular response is the most prolific against most cancers and usually

the first line of action. The basic steps involved in a cellular immune response are

listed as follows:

S1:

S2 .

83 :

S4

S5 .

Cancer cells develop in a given physiological space of the human anatomy.

The cancer cells could be immunogenic or non-immunogenic.

The cancer cells subvent the immuno-surveillance activity provided by NK

cells (which can kill cancer cells whether immunogenic or not).

The cancer cells proliferate above the subclinical threshold of 103 cells
and reach 10° cells which is the x-ray detectable threshold. Some cancer
cells might have metastasized to other physiological regions of the human

anatomy.

The antigen presenting cells, particularly macrophages, encounter the can-
cer cells. They internalize the cancer cells, dissolve them into fragments
called epitopes. These epitopes bear the cancer associated antigens. The
macrophages then exhibit the cancer antigens on their surfaces and circulate
into the vicinity of T cells (particularly helper T cells) and mechanistically

present these cancer antigens to them, cf. [19,30].

The antigen-sensitized helper T cells then release the immuno-stimulatory
growth substance called interleukin-2. This lymphokine, IL-2, then stimu-
lates the cancer killing subset of the T cells called the cytotoxic T cells, to
mature and proliferate. In particular, the IL-2 also enhances the proliferation
of NK and LAK cells.
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S6 -

The activated lymphocytes (LAK, T, NK cells) then engage in a search-and-

destroy anti-cancer activity.

The process of natural immune attack against immunogenic cancers is not al-

ways sustainable nor eventually successful and can always be terminated or down-

graded due to one or all of the following reasons: cf. [20,29,30,33].

T :

T &

T3 :

T4 .

The initial numbers of the cancer-killing lymphocytes at the time of tumor
diagnosis or initiation of therapy are insignificant and easily overwhelmed

by the rapidly proliferating tumor cells.

The cancer cells eventually evade the immune recognition mechanism by
shedding, altering or re-distributing its surface tumor associated antigens,

cf. [29,30]. The ‘stealth’ tumor then becomes non-immunogenic.

Some of the shedded tumor antigens and receptors bind to form circulating
immune complexes which interact destructively with the surface receptors on
the cancer cells and thereby effectively block the cancer-killing lymphocytes

from getting access to the cancer cells [33].

Cancer cells release inhibitory substances which effectively reduce the ther-

apeutic efficacy of the cancer-killing lymphocytes, cf. [29].

In view of the processes 7, —r4 it is observed by clinical investigators and med-

ical oncologists that the natural immune system cannot provide a sustained and

therapeutically successful anti-cancer attack, cf. (3,29,30].
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Further research by clinical oncologists including those at the National Can-
cer Institute led to the development of several techniques and methodologies to
enhance the natural immune response against cancer. Some of these novel ap-

proaches include, cf. [3,10,13,14,27,28]
(i) non-specific cancer immunotherapy
(ii) specific passive cancer immunotherapy (adoptive cancer immunotherapy)

(iii) specific active cancer immunotherapy

(iv) gene therapy of cancer

(v) monoclonal antibody mediated anti-tumor immunization of host via induc-

tion of idiotype-anti-idiotypic immune network.

In the next subsection we shall present an elaborate clinical description of
Adoptive Cancer Immunotherapy (ACI) and construct a plausible mathematical
model depicting the procedure. The choice of ACI is based on its current status as
the most clinically successful and promising during clinical trials and applications
to advanced cancers (2,11,12,15,16,25].

3.2. Clinical Principles of Adoptive Cancer Immunotherapy

Adoptive cancer immunotherapy is a relatively new immunotherapeutic modal-
ity for treating advanced and metastatically disseminated human solid tumors,
cf. [11,12,22,24,25,26,28]. It involves the use of tumor-killing lymphocytes and
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lymphokines such as natural or cloned interleukin-2 (n-IL-2, or r-IL-2), natural
killer (NK) cells, tumor infiltrating lymphocytes (TIL), interferon — v activated
killer monocytes (AKM) and lymphokine activated killer cells (LAK).

The mathematical models will be based on LAK ACI using interleukin-2.
The use of LAK and IL-2 therapy has been given prominence due to the work of
S.A. Rosenberg and colleagues at the National Cancer Institute, cf. [24,25,26,28].
In LAK ACI, the LAK precursor mononuclear lympthocytes are clinically ex-
tracted from the cancer patients’ body by a process called cytapheresis. The LAK
cells are then incubated (outside the patient’s body for at least 48 hours) using
high dose interleukin-2. Two phenotypes of LAK cells are called NK-LAK or A-
LAK and T-LAK depending on their precursors are produced. The NK-LAK cells
have been used for adoptive immunotherapy of metastatic cancers, cf. [11,12,22].
T-LAK cells have also been used in adoptive immunotherapy of ovarian cancer
and malignant brain tumors [15,22]. In LAK ACI, the LAK cells are incubated
with high dose IL-2 until the number of LAK cells is of the order of 107 — 108
cells. They are then re-transfused by intravenous injection infusion into the pa-
tient in addition to continuous infusion of IL-2 in the order of 10° units/m?/day
or 10%units/kg/day of rIL-2, cf. [22,28].

3.3. The Mathematical Model of ACI for Solid Tumors

In this subsection, the mathematical model for ACI will be presented.



Notation:

b 75 i

Ig *

Q1:

Q2 :

Sy

The concentration of normal/non-cancer cells in the physiologic space or

organ of the human anatomy where cancer cells are localized.

The concentration of cancer cells in a given physiologic space or organ of the

human anatomy.

: The concentration of cancer-killing lymphocyte binding sites such as LAK

cells in the neighborhood of the cancer cells and normal cells.

: The concentration of lymphokine (eg. IL-2) in the neighborhood of the

cancer cells and normal cells.

The rate of external (adoptive) intravenous re-infusion of lymphocyte (LAK

cells) into the cancer patient.

The rate of external (adoptive) intravenous re-infusion of lymphokines (IL-2)

into the cancer patient.

The rate of internal production of lymphocytes (LAK cells).

: The rate of internal production of lymphokines (IL-2).

The model equations are as follows:

&, = B1(z1) — D1(z1) — z122q1 (21, Z2)

zy = Ba(z2) — D2(22) — z122¢2(21, Z2) — h(z2, W)
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W =51 +@Q1 —arer(w) + f(w, z) — Bh(z2, w)
z2 =52+ Q2 —azes(z) —nf(w, z)

zi(to) =70 >0, i=1,2

w(te) = wg > 0

z(to) =20 >0 (3.0)

where

f(w, 2) is the rate of lymphocyte (LAK) proliferation due to induction by
lymphokine (IL-2),

h(z2,w) is the rate of cancer cell destruction by (cancer killing) lympho-

cytes,

e;(w), ez(z) are the rates of degradation or elimination of lymphocytes
(LAK) or lymphokine (IL-2) respectively,

1,8 are constants depicting binding stoichiometry,

o; are elimination coefficients.

We shall assume that @Q; > S; are such that the process relies solely on the
rate of adoptive transfer of LAK cells and IL-2. Then S; is negligible and will
subsequently be omitted. Furthermore, the toxicity to normal cells is assumed to

be minimal and hence not represented in the models. This can be achieved in

practice by use of low dose IL-2, cf. [2,22,23].
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Thus the final form of the model equations are:

£; = Bi(z1) — D1(z1) — z122q1 (21, 22)
o = Ba(z2) — D2 (z2) — 312202(21, 22) — h(z2, w)
W = Q1 — are1(w) + f(w, z) — Bh(z2, w)
2= Q2 — azez(2) — nf(w, 2)
z:i(to) =zi0 20 for i=1,2

w(to) =wo 20, 2z(to) =20 =0. (3.0a)

The following additional hypotheses are assumed to hold:

IP; : The initial conditions are such that (zi9, Z20, wo, 20) € ]ﬁi

P;: (a) f(w,z) € Cl(IR+ x Ry, Ry)
®) fu(w,2)>0, w>0, z>0
() f:(w,2)>0, w>0, z>0
(d) f(0,2)=0, f(w,0)=0.

IP3: (a) h(z2,w) € C*(R+ x Ry, Ry)
(b) hz,(z2,w) >0, z2>0, w>0
(¢) hy(z2,w) >0, z2>0, w>0
(d) hw(O,w)=0, w>0
(e) hy(0,w)#0, w>0
() h(0O,w)=0, h(z2,0)=0.
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(Some plausible expressions for h(z2,w) include: (i) 22 - b—:&_‘”; and

.. c1z3
(11) cz+cs:21qw )

IPy: (a) & € CH(IR4,IR)
(b) e(0)=0
(¢) €(w)>0, w>0
(d) €(z)>0, z>0.

3.4. Boundedness, Invariance of Non-Negativity, and Dissipativity

In this subsection, we shall show that the model equations are bounded, pos-
itively (non-negatively) invariant with respect to a region in IR}, and dissipative.

Theorem 3.0. Let IB be the region defined as

0<z; LK), 0<z2 £ Ky,
B = ¢ (z1,z2,w,2) € RL OSwS—%,Wbere 01<0 %, (3.1)

0525%, where 6, >0

Then

(i) IB is positively invariant.

(ii) All solutions of (3.0) with initial values in mi are eventually uniformly

bounded and are attracted into the region IB.

(iii) The system (3.0) is dissipative.
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Proof. Let 10 > 0. Consider

£1 = Bi(z1) — D1i(z1) — 12201 (21, Z2)

= 1; < Bi(z1) — D1(z1).

But there exists K; such that B;(K;) = D;(K;) by hypothesis. Thus

z,(t) < max(Ki, Z10)-
Note that z; <0 for z; > K and hence

liﬁilpzl(t) < Kj;.
For
£z = Ba(z2) — D2(z2) — Z12292(%1, T2) — h(Z2, ),

a similar analysis gives

z2(t) < max(Kp, Z20)

and

lim sup z2(t) < Ko.
t—oo

Now consider

W= Q@ — are1(w) + f(w, 2) — Bh(z2, w)

= < Q1 + f(w, 2) — are1(w)
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= w<@Q+w wr’ri%:l%f(w,z) —wal,f%%el(w)

where
f(w,2) = wf(w,2)
e1(w) = wey(w).
Now
w<@QrL+w Juax, {wniaenx%f(w z) — alir}:_i%'é'l(w)}.
Let

w ZEIB {wm;aEJI(B f(w T 15%11% €1 (w)} (32)

‘We shall henceforth assume that

Inax flw,z) < min & (w)

and consequently §; < 0. Then w < — %1 + woe®tt. Thus
Q1
w < max , W
= ( A °)

= limsupw < ——4—, &6 <0, w=>0. (3.3)

]
t—co 61

Similarly we consider the z equation:
2= Qq — aze2(2) — nf(w, z)
=< Qz - 0262(2)
<Q2—azz- Bglgeg(z)
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where e2(z) = z - €2(2).
We shall henceforth assume that
02 = iréilg'é'g(z) > 0. (3.4)
Then z < % + zge~%2t. Thus z < max(%"'— ,29) and

limsupz < ==. (3.5)

3.5. The Equilibria: Existence and Local Stability

The equilibria of system (3.0) are obtained by solving the system of isocline
equations
Bi(z1) — D1(z1) — 2172¢1(Z1,22) =0
Ba(z2) — D2(22) — 2122¢2(Z1,72) =0
Q1 — ajey (w) + f(w, z) — Bh(z2,w) =0
Q2 — aze2(z) —nf(w,z) =0 (3.6)
subject to the hypothesis Al and IP; — IPs.
The possible equilibria are of the form:

(1) EO (07 01 '3-” %)
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(]i) Ey (51 ,0,%,%)

(ﬁi) E2(01 521 {E: E)

(iv) Es(zi,z3,w*,z"%).

(3.7)

The existence and local stability of the prospective equilibria are analysed as

follows:

Existence and local stability of Eq (0,0, w, 2)

The system of equations (3.0) is restricted to IR {,. This leads to the system

W= Q1+ f(w, z) —are;(w)
2 = Q2 — azez(2) —nf(w,2)
w(0) =wo >0, z(0)=2 =>0.

Theorem 3.1. Let

L; = max_ f(w,z) >0

w,z€IB

Ly = w?znén]B [a1 min e1(w), ag ]zlélrg.Cg(Z)] >0.

Then

Q1+ Q2 z (n— 1)L.1 + (wo + 20)e~ L2t
2

(w+2) <

and

limsup (w + 2) < Qt+Q=n=Dk .
t—r00 L2
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Proof. Using the system of equations (3.8) we obtain the differential equation:

(w+z) =Q1+ Q2 + f(w, z) — nf(w, 2) — c1e1(w) — aze2(2)
S@Q1+@2+(1 —n)wniae‘)ﬁa f(w,2) —mw%é&w) - azzféilggz(z)

< Q1+ Q2 — (n— DIy — (w+2) ity or mini(w), azmip?a()]

and

Q1+Q2—(n—-1)L;
Lo

(w+2)< + (wg + 29)e~ L2t

and hence

limsup (w+2) < Q1+Q2;(17-—1)L1 .
t—oco 2

Lemma 3.0. Suppose there exists (w,2) € R}, such that
N, 1 0
Q1 —ajer(w) + -ﬁ-(Qz —azep(z)) =0

as t — oo. Then Ey(0,0, w, %) exists.

Proof. By equating the right side of system (3.8) to zero, we have the two surfaces:

I':Q1—aei(w)+ f(w,z)=0

rz M Q2 - azez(z) —nf(w,z) = 0.

We have shown by Theorem 3.1 that system (3.8) is dissipative under the stated
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conditions, of the theorem. Now
aje;(w) — Q1 = f(w, z)
(@2 - azes(2) = f(w, 2).

Then

arer(w) ~Q = % (Q2 — azea(z))
= emer(w) = Q1 ~ (2 - azea(s)) =0
= Q1 —arer(w) + % (Q2 — azes(2)) = 0.
The lemma now follows immediately.

O

We now discuss the (local) linearized stability of system (3.0) restricted to
a neighborhood of the equilibrium Eg(0, 0, w, 32)

The Jacobian matrix due to the linearization of (3.0) about an arbitrary
equilibrium E(z;,z2,w,z) € R4 is given by
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JE(zl,:g,w,t) =

Bi(z1) — Di(z1)

—Z24q1 (31, -'1?2)

—ZT2q2 (-‘51, 32)

—Z1T2q1,z, (3?1, -’32)

—Z122492,z, (-’1?1, 22)

—2141(111, -'82)
—Z1Z2q1 2, (1, T2)

2(z2) — Da(z2)
'-581Q2(-’B1, :122)
—Z2T142,z, (2? 1, 22)
_h:l:g (IQ: w)

—ﬂhzg (3:2 3 w)
0

—hy(z2, w)

Folw2) = Fhu(z ) 1 ()

—aze) (w)
—nfw(w, 2)

—apeh(2)
—77fz (Z’! z) )

(3.11)

Using hypotheses Al and P, — Ps, the Jacobian matrix due to linearization

of (3.0) about the rest point FEo(0,0, w,2) is given by the expression:

B}(0) 0
-D1(0)
. BiO)-D4O)
_htn (01 &’)
JEo(o 0,9,2) =
Y 0 —Bhg, (0, w)
0

0

fulw,2)

—a €} (w)

—ﬂfw (&1 %)

Henceforth we let Ms, define the matrix:

M22=(

Ful®,2) — el (1)

—”Ifw (toua %)
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—a€) (2) —nfz (‘a’, %)

0
f-(w,2)
—aaeh(z)
—ﬂfz(a’,f’-) )
(3.12)
) . (3.13)



The eigenvalues of J are given by

E0(0,0,,2)
A =B{(0) = Di(0), Az =B3(0) — D3(0) — hz, (0, ) (3.14)
and the eigenvalues of M,, are given by
o(My2) = {)i| det (M22 —AI) =0, i = 3,4}

= {,\1|/\2 — (trace Mzz)/\ +det Mz =0, i=3, 4}'
(3.15)

By the Routh-Hurwitz criteria, the eigenvalues of Mpj2 have negative real parts,
i.e. Reo(M22) <0, ie. if —Trace M2 >0, and det Mz > 0.

Theorem 3.2. If

(i) Bi(0)-Di(0)<0
(i) B2(0) — D3(0) — hz,(0,%) <0 and
(iii) Trace Moy < 0 with det Mz > O, then the rest point E¢(0,0,w,2) is

locally asymptotically stable.

Proof. The proof is by inspection of the eigenvalues of the Jacobian matrix for
Eo(0,0,m,2) and the qualitative theory of differential equations, cf. [5,6,7,8].

Theorem 3.3. Suppose

() Bi1(0)-D1(0)>0
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(i) B4(0) — D4(0) — heyp(0,w) >0 and

(111) Trace Moo <0 with det My, > 0.

Then the rest point Eg(0,0,w,2) is a hyperbolic saddle and is repelling in both
z1 and z» directions locally. In particular, the dimensions of the stable manifold
W+ and unstable manifold W~ are given respectively by

Dim W+ (Eq(0,0,w,2)) =2, DimW~(E(0,0,,2)) =2.

Proof. This result follows directly from inspection of the eigenvalues of the Jaco-
bian matrix for Eo(0,0,w,2) and examples from Freedman and Mathsen [6].

Remark $.1. Clinically the rest point Eo(0,0,w,2) is not therapeutically feasible
and highly unstable.

Existence and local stability analysis of E;[Z;,0,w,Z]

Consider system (3.0) restricted to IR¥ ,,. as represented by:

£; = Bi(z1) — Di(z1)
W =Q;—aer(w) + f(w, 2)
z = Qs — azez(2) — nf(w, 2)
z21(0) =21020, 2(0)=2>0, w(0)=we=>0.

(3.16)

The possible equilibria in IR+, ,,, are E, [0,w,Z] and E, [Z1,@,Z]. In par-
ticular the existence of E[Z1,%,Z] (which will be shown by persistence analysis)
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will imply the existence of FE;[Z1,0,w,Z}.

Using methods similar to the previous subsection, we can conclude that

E1[0,%,7] exists in —Iﬁ:wz if there exists W,z such that

Q1 — are1(@) + % (Q2 — azeq(Z)) =0.

We now linearize system (3.16) in the neighborhood of E;[0,%,%]. This

procedure leads to the result:
¢ = DF(E,(0,@,%))¢ (3.17)

where DF(E,(0,%,%)) is the Jacobian matrix of the linearization and given by:

B} (0) — D;(0) 0 0
DF(E1(0,%,%)) = 0 Fu(@,Z) — a1€; (D) f-(w,z
0 —Nfw (W, Z) —aze5(Z) — nf:(w, zZ)

(3.18)
The eigenvalues of DF(E1(0,%,%)) are given by

AL = B{(0) - D)(0) and

O'(Mzz) = {/\,-Idet (M22 —/\I) =0,1=2, 3}

where M, is defined as in (3.13), with (w,z) replaced by (@,%). Note that
Re)s <0 and Re)l3 <0 if Trace My <0 and det Mo > 0.
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Theorem 3.3. The rest point E; 0,wz]eRY,,, is

(i) A hyperbolic saddle if
A1 = B4(0) - D}(0) > 0

and Trace My < 0 with det M, > 0. In particular El[O, W, Z| isrepelling

in the z;-direction,
(ii) a hyperbolic source if
A1 = Bj(0)-Dj(0)>0
and Re \; >0fori=2,3,
(iii) asymptotically stable (sink) if

A1 = B1(0) — D{(0) <0

and Trace My <0 with det My > 0.

Proof. Similar to those of the previous subsection.

O
Definition 3.0. Aset A C S is a strong attractor with respect to S if
limsup p(u(t), A) =0, (3.19)
t—oo
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where u(t) is an orbit such that u(tg) C S and p is the Euclidean distance
function.

Lemma 3.1. The invariance box

‘A'l = {(z11w7z) eIRi-wzlo S z S Kl, 0 S. w S —&, 0 S z _<_ _Q_2} (3.20)
! o1 02

where
61 = max {max f(w, z) — &y min & (w)} < 0
w,z w,z w
52 = Q2 miné'g(z) >0
z
is a strong attractor set with respect to IRY ...

Proof. The proof is done using standard comparison theorems as in the previous

subsections.

Remark 3.2. Since A; is a strong attractor, it implies that all solutions of (3.16)
with initial conditions in ﬁ:lm are dissipative, uniformly bounded, and eventu-

ally enter the region A;.
Theorem 8.4 Existence of E)[Z1,0,w,z]. Suppose

(i) Lemma 3.1 holds.

(i) E:(0,,%) isa unique hyperbolic rest point in IR} . and repelling locally
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in the z; direction, cf. (Theorem 3.3(i)).

(ii) No periodic nor homo/heteroclinic orbits exist in the planes of R, .,

(ST (B.(0) - D’ (0))dt > 0).

Then
Iitmglfxl (t) >0,
htmougf w(t) > 0,

liminf z(¢t) > 0.

t—o0

In particular, the subsystem in ﬁilwz exhibits uniform persistence and conse-

quently, the rest point E;[Z;,0,w,Z] exists.
Proof. The proof follows from the definition of uniform persistence by Butler et al.
[1], Freedman and Rai [5,8].

The Jacobian matrix due to linearization around the rest point FE,[Z1,0,w, Z]

and using hypotheses H1-H4, and P, — Ps and expression (3.11) is given by

[ —BiD/i](_?%z) —Elql (51, O) 0 0
B;(0) — D3(0)
0 —Z1492(Z1,0) 0 0
JE (7,053 = . —hz, (0, w)
0 _ﬁhzz (0’ w) _f;’f:;’(g) -fz (w’ z)
0 0 —nfuw(w, z) -—:;}i?%v(;zz);)
- ) (3.21)

101



The corresponding eigenvalues of the Jacobian matrix for E;[Z1,0,%,Z] are given

by:

A1 = B1(%1) - D1(Z1)

Az = é(o) - Dé(o) - EIQ2(5511 0) - hzz (Or ‘L_U')
and Az, Ay which belong to the set
0’(M22 = {/\ilz\z - ('Ii'a.ce M22)/\ +det Mo = 0}

where Mo, is defined by (3.13).

Theorem 3.5. Let

(i) B3(0) — D5(0) — Z192(z1,0) — ks, (0,@) > 0
(i) Bi(z1)—Di(z1) <0

(111) Trace Mo, <0 and det My > 0.
Then the equilibrium FE,[%,,0,%,Z] is a hyperbolic saddle point and repelling in
the zo-direction locally. In particular, the stable manifold, W+ (E,(%1,0,,z))

is the z, —w — z space and the unstable manifold W~ (E1(%1,0,W,%)) is the

Zg-direction, with Dim W—(E;) = 1.

102



Theorem 3.6. The rest point E;[Z1,0,w, %] is locally asymptotically stable (hy-
perbolic smk) if Bé(O) —'Dé (0) —T1q2 (5'1, 0) —hzg (0, w) <0, Bi(fl) —D’(?fl) <0
and Trace Mz, <0 with det Ms2 > 0.

The proofs of Theorems 3.5 and 3.6 follow from an inspection of the Jacobian
matrix of linearization in the neighborhood of Ej(Z1,0, %, Z] and using the Routh-

Hurwitz criteria.

The existence and stability of E»[0,Z;,, 2]
We now establish criteria for the existence and stability of the rest point
E»[0, %2, W, 2].

When system (3.0) is restricted to IR%,,. weobtain the following subsys-

tem:
&9 = Ba(z2) — Da(z2) — h(z2, w)
W =Q; —aqer(w) + f(w,z) — Bh(z2,w)
2 = Q2 — azez(z) —nf(w,2)
22(0) = 220 =0, w(0)=wo =0, 2(0) =20 2 0.

(3.22)

The possible equilibria corresponding to the system (3.22) are in R,

(i) E2[0,@,7] end

(i) B2, 2.

Using the arguments from Lemma 3.0 we can conclude that the rest point E [0, @, Z]
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exists if there exist (,Z) such that
- 1 "
Q1 — arer (W) + a (Q2 — a2e2(2)) =0

as t — oc.

The existence of Eg[&?g, w,z] and hence FE,[0,Z»,w,Zz] will be established

similar to the previous subsection using persistence analyses.

The Jacobian matrix DF(E:[0,#,%]) due to linearization of (3.22) in the
neighborhood of E,[0,,3] in IR?, . satisfies the ordinary differential equation

n = DF(Ex[0,@,%])n (3-23)

where
- B4(0) — D4(0) '
2 by (0, ) 0 0
DF(E;[0,@,2)) = | —Bhe,(0,) ;j:;‘{;ﬁ{’g f:(B,3)
~ N —0265(2)
R TACX

(3.24)

The hypotheses H1-H4 and P, — P; are again used in the computation of the

entries of the Jacobian matrix together with expression (3.11).
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The eigenvalues of DF(E [0,,2]) are given by

A1 = B3(0) — D5(0) — b=, (0, w)

and Ag,A3 € O’(Mzz).

Theorem 3.7. The rest point F[0,%,%] of (3.22) is such that

(i) E'g[O, #@,%] is a hyperbolic saddle point (repelling, in the z,-direction) if
2 (0) — D4(0) — hz,(0,@) >0 and Trace Mz <0 with det Moz > 0.

(i) E,[0,#,%] is a hyperbolic source if B3(0) — D5(0) — hyy(0,w) > 0 and
ReX: >0, i=2,3.

(iii) E, [0,,%] is a hyperbolic sink and hence locally asymptotically stable if
B4(0) — D4(0) — hz,(0,@) <0 and Trace Mz <0 with det Moz > 0.

Proof These result follow immediately from inspection of the Jacobian matrix due
to linearization of (3.22) around EZ[O, #©,%] and applying the qualitative theory

of ordinary differential equations.

Lemma 3.2. The (non-negatively) invariant set

A2={(z2,w,z) eR} ,.0<z: <Ky, 05w_<_——Q—1, 052593} (3.25)
3 1 o2
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where 61 and J: are defined as in (3.2) and (3.4) respectively, is a strong attrac-
tor with respect to solutions initiating from intIR} . with non-negative initial

conditions.

Proof. Similar to the previous subsection proof for the invariant set .A;.

Remark 8.8. Since the compact set A; is a strong attractor, it therefore means
that, all solutions of (3.22) with initial conditions in int IR}, . are dissipative,
uniformly bounded, and eventually enter the region As.

Theorem 3.8 Existence of E»|[0,Z2,w,z]. Suppose

(i) Lemma 3.2 holds.

(i) E2[0,,%] is a unique hyperbolic saddle repelling in the z, direction of
IR,,. (cf Theorem 3.7(i)).

(iii) There are no periodic nor homo/hetero-clinic trajectories in the planes of

R +
IR::ng

( /0 T[Bé(o) — D%(0) — hz, (0, w)]dt > o).

Then the subsystem (3.22) exhibits uniform persistence and the interior equilib-
rium E(%,,®,7] existsin RZ,,, and consequently E[0,%2,,3] exists.
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Proof. The proof is similar to that for the existence of F;[%1,0,%,Z] in Sec-

tion 3.3.2.

We now perform the linearized stability analyses for the rest point F»[0, Z,, W, Z].

The Jacobian matrix due to linearization of system 3.22 in the neighborhood of

E,[0,%,,w,%] is given by the expression:

IEs(0,22,8,5] =

BO-DO o
~Z2¢1(0, Z2)
B3 (z2) — D3(z2)

o~ —hy(Z2, W
—hz, (%2, ©) (Z2, W)

fuw(®,2) ~ on €} (@)
—.Bhw(:?% '&7)

_T’f w (‘&71 2)

_£2Q2 (01 £2)
0 —Bhz, (Z2, W)

0 0

The eigenvalues of Jg,0,z,,5,5] are given by
A1 = B1(0) ~ D{(0) — 7241 (0, %2)

-and  A2,A3,A\q € O’(M33).

In particular M3z is the matrix defined by
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—a265(2)
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( B2(%2) — D (22) —hy(ZT2, D) 0 )

—ligzq (821 ﬁ)
o —azeh(2)
\ 0 “fe@2) e %)

mi1 M2 M3
=i | M21 M2z Ma3

mg31 M3z M3z

(3.27)
Now
O’(M33) = p(/\, M33) = det [M33 - /\.[3]
={MA3+TAZ+ @A +383 =0, i =2,3,4} (3.28)
where
@) = —(Trace M3s3) = —(fM11 + a2 + Mis3)
m32 ™MmM33 mg31 mMm33 m21 M22
@3 = — det Mags. (3.29)

Lemma 3.3. The eigenvalues of M3; have negative real parts if

'&1>O, a3 >0 and a1a2 > as.

Proof. The proof uses the Routh-Hurwitz criterion.
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Theorem 3.9. Let

(i) B}(0)— Dji(0) —Z2q1(0,Z2) >0

(li) a; >0, a3z >0 and 6182 > as.

Then E,[0,Z,,,Z2] is a hyperbolic saddle point and repelling in the z,-direction.
In particular, the stable manifold W+ (E) is the z2 —w — z space and the
unstable manifold W—(E,) is the z-direction, such that Dim W¥(E;) = 3
and Dim W—(Ez) = 1.

Theorem 3.10. E:[0,%,, @, %] is locally asymptotically stable (hyperbolic sink)
if

(i) B{(0)— Di(0) —22¢1(0,72) <0 and

(i) @ >0, @3>0, @d2 >az hold concurrently.

The proofs of Theorems 3.9 and 3.10 follow directly from linearized stability

analysis and application of the Routh-Hurwitz criteria.

Remark 8.4. The equilibrium E,[0, %2, @, 2] corresponds to the scenario in which
the normal cells in the cancer-affected tissue or organ are all destroyed. This will
eventuelly lead to the demise of the cancer patient unless a transplant of a new

organ is implemented. Thus E2[0,Z2,®,Z] is highly clinically unstable.

109



Existence of Fj[z},z3,w*,z"]

In this section, we shall establish sufficient conditions for the existence of a

positive interior equilibrium FEj3[x},z3,w*,2*]. This will be done by showing that

the system (3.0) is uniformly persistent, cf. Freedman and Rai [5,8], Freedman and

Waltman [9].

To show uniform persistence in IR} . .. we must assume or verify the

following hypotheses for system (3.0).

Hy :

H1:

All dynamics are trivial on IR}, ., ...

All invariant sets (equilibria/rest points) are hyperbolic and isolated.

: No invariant sets on IR .. ,. are asymptotically stable.

: If an equilibrium exists in the interior of any 3-dimensional subspace of

R it must be globally asymptotically stable with respect to orbits

Xizwz?

initiating in that interior.

: If M is an invariant set on dIR}, ..., and W¥(M) is its strong stable

manifold, then

W*(M) N int IRz, z,0z = 0. (3.30)

: The given system of differential equations is dissipative and eventually uni-

formly bounded for ¢ € IRy with respect to a strong (compact) attractor
set.
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Hg : All invariant sets are acyclic.

Remark 8.5. H, — Hs gives persistence and Hg is required for uniform persis-

tence.

3.6. Global Asymptotic Stability of E,[Z;,,Z]

In this subsection criteria for the global asymptotic stability of F;[Z1,0,%,Z]
with respect to solutions initiating in int IR}, ,, will be established.

In IR} . we choose the Liapunov function,

V(zi,w,2) =21 —Z1 —T1én % + % ki(w —w)* + % ko(z —Z)? (3.31)
1

where ki€ IRy for i=1,2.
The derivative of (3.31) along the solution curves of (3.16) in IRf, . is

given by the expression:

V = (z1 —Z1)g1(z1)
+ ki (w —B)[Q1 — arex(w) + f(w, 2)]

+ k2(z — 2)[Q2 — aze2(z) —nf(w, 2)] (3.32)

where we set

Bi(z:) — Di(z:) = zigi(zi), i=1,2. (3.33)
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Thus

V = (z1 —Z1)g1(z1)

+ ky(w — W)y [er (@) — er(w)] + k1 (w — B)[f (w, 2) — f(W,Z)]

+ ko(z — Z)az[e2(Z) — e2(2)] + k2 (z — 2)n(f (@, 2) — f(w,2)].

V1 V1 =21 —T1
Let X =1 v such that vo=w—w and set
v3 vY3=2—2

g ‘I 2 3
ann =234, a2=0, awz=0
= [er(w)—ei (@)]
a2 = —kio1 “o,

-

Qo3 = kl m%zL:é_)(M —_ nk2 [.f(wy(zu)fé()'ﬁ,z)]

_ [e2(z)—ea(Z)]
a3z = —kaap

(z—2) : /

Thus

/ 2
V= 0.111]% + azg‘v% + a23v2U3 + Q33V3

1 1
= 0.111.’% + -2- ajaviv2 + -2- a13viv3

1 1
+ 3 a12v1v2 + G2V2V2 + 3 Q23V2V3

1 1
+ 5 a13v1v3 + -2- Q23V273 + a.3311§

where a@;; = aj; with @12 =a13 =0.
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But

V=XTAX =XTA X = (AX, X) (3.37)
where
an % Q12 % a13
A= % a1z Q22 % a23 . (3.38)

3813 a3 ag
In particular, A is symmetric and real such that A4 = 1 (A4 + A*) where ¢

denotes transpose.

Lemma 3.4 Negative Definiteness of V .

(i) V is negative if XTAX is negative definite.
(i) XTAX is negative if A is negative definite.

(iii) A is negative definite if the (eigenvalues) zeros of the polynomial

P\ A) =det(A—AI,) =0

have negative real parts.

A complete discussion and proofs of the lemma can be found in references

[4,18].
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Lemma 3.5 [Frobenius 1876]). Let

X=17%3}, XT=($1,:B2,$3,...,.’Bn)€IRn.

Let A be a symmetric n x n matrix over IR. Then the real quadratic form
XT AX is negative definiteif A is negative definite. In particular, a necessary and
sufficient condition for the real, symmetric matrix A to be negative definite is that
the principal minors of A, starting with that of the first order, be alternatively

negative and positive.

The discussion of Lemma. 3.5 is found in Howard Eves book, cf. [4]. We now

state additional hypotheses.

Py: Let V=XTAX, A= {aij}nxn where A is a real symmetric n X n
matrix. Then the a;;’s are such that
(i) e € C'(Ry x Ry x Ry, R)
(ii) 111:% aij exist as a finite number, where T is rest point

(iii) the a;; are bounded.

114



Let the matrix A be given as in (3.38). Then

p(\, A) = det (A - AI)

=X+ A+ T+ T3 =0 (3.39)
where
m; = — trace A = —(a11 + az2 + az3)
an % a12 an % a3 @22 % az3
Ty = det . + det . +det
2@12 a22 2013 @33 3823 as3
m3 = — det A.

These reduce with a3 =a13 =0 to:

my = —(a11 + a2 + a33)
T2 = @11822 + @11a33 + 622033 — § @33 (3.40)

T3 = a11(az2a33 — § a33).

Hence by the Routh-Hurwitz criterion and Lemma 3.4(iii), the matrix A is neg-
ative definite if

my >0, M3 >0 and 7T > M3, (341)
A refinement of the criteria (3.41) leads to the following theorem:

Theorem 8.11. The rest point E[%,%,%] € IR? . is globally asymptotically

stable with respect to solutions trajectories initiating from int Iﬁ;’,’lwz if

(i) 211 <0, ax< 0, azz3 <0 and
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(il) ao2a33 — %a%;; > 0.

In an alternative approach, using Frobenius Theorem, we see that the leading

principal minors of A are

a1 3a12
a1y, det 1 , and det A.
z012 Q22
Thus A is negative definite if
1
a1 Q12
a1 <0, det [1 J >0 (3.42)

3Q12 a22

and let A <0, by Lemma 3.5.

Since aj2 = a;3 =0, we arrive at refined criteria for the negative definite-

ness of A as:

(i) a < 0, a2 <0, a33<0 and } (3.43)

(ii) aozass — 3a3; > 0.

This agrees with Theorem 3.11.

Global asymptotic stability of E;[Z,, @, 3]

In this subsection criteria for global asymptotic stability of the 3-dimensional
equilibrium E, [Z2, @, %] or equivalently E,[0,Z,,®,2] with respect to solutions
initiating from intIRZ, . will be established.
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We consider the subsystem (3.22) and choose the Liapunov function:

V=x2—&:‘2—532£n%+%k2(w—z’u‘)2+%k3(z—2‘)2. (3.44)
2
Let
h(z2,w) = z2h ,w) and
{ (22, w) = z2h (22, v) (3.45)
hi(z2,w) = wha(z2, w).

Then using (3.33) and (3.43) we have:

V = (z2 — 22)[g2(z2) — ha(z2, w)]
-+ kz(‘w -_ 'ﬂ?)[Q1 - 0161(112) + f(w, Z) - ,Bh(xz, w)]

+ k3(z — 2)[Q2 — azea(z) — nf (w, 2)]. (3.46)

Simplifying (3.44) leads to

V = (22 — Z2)g2(z2) — (32 — Z2) [wha(2, w) — Dha(z2, D)]
— (29 — W2 )Wha(z2, W)
+ ke (w — D)o (e1(D) — ex(w))] + k2 (w — D) f (w, 2) — £(@,Z)]
+ Bka(w — W)[R(Z2, W) — h(z2, w)]
+ ka(z — 2)[aa(e2(2) — e2(2))] + kan(z — 2)[F (@, 2) - f(w, 2)].

(3.47)
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V3 2—3

. U1 To — :?2
Wenowset V=XTBX with X=|v, | =| w—# | where

by bz 3bis
B=]1bs b2 1bo with b3 = b3 = 0. (3.48)
bis 1boz  bas

[N

Note that b;j =bj;. Thus B is a real and symmetric 3 x 3 matrix, such that

B == (B +BY).

Do =

In particular the b;;’s are defined as

bu = 92(332) - ﬁhz (Zz, 117)

wha(z2, w) — Wha(z2, W) h(Z2, W) — h(z2, w)]

b2 =bg; = — k —
12 = ba; (w =) + Bk2 (22 — 22)
bz =b3; =0
b2 = koo [el(zvu)) : :'51)(1”)]
bas = kaceg L2 (2 — ;")’(z)] . (3.49)
. . . b1 %512
The leading principal minors of B are b;;, det 1 b, , and det B.
7 012 2
By Frobenius’ Theorem, B will be negative definite 12f
b <0, et | 22|50
11 <0, de )
b2 b2 (3.50)
and detB <0.

But b3 = b3z =0 and hence (3.50) simplifies the criteria:
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(i) b11<0, be<0, bz <0, b12<0,
(ﬁ) b11b22 - i’b%z > O, (351)
(].11) boobaz — al-b%3 > 0.

This leads to the following theorem:

Theorem 3.12. The rest point Fs[%,, @,%] € IR},,. isglobally asymptotically

stable with respect to solution trajectories initiating from int R}, if

(i) b11 <0, b2 <0, b33 <0, b2 <0 and
(i) birbeg — 3%, >0

(1].1) 622b33 - % 653 > 0.

Global asymptotic stability of Eo[0,0,w,z] in IR,
Consider system (3.0) restricted to IR}, as depicted by equations (3.16).

We have shown that the 2-dimensional equilibrium Eg[®,2] and conse-
quently Ej,|0,0, w, 2] exists if Lemma 3.0 holds. In this subsection we shall es-

tablish criteria for the global asymptotic stability of Eg[0, 0, w, %] with respect to

solutions emanating from the interior of R %,.

Let G be a neighborhood of any point in IRf,. We choose the Liapunov
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function V' such that:
1 o o
V= 3 a(w—-w)?+ ez —2)> (3.52)

Note that

(i) V is positive definite with respect to Fo[0,0,w,2] in IR,.
() Vooo as w?+22 >
(iii) V is a Liapunov function for (3.16) in G

(iv) V eC’(IR3,IR) and is bounded below.

Now
V =c1(w—w)i+ ez — 2] (3.53)

along the solutions trajectories of (3.1). From (3.53) we obtain the expression

V =ci(w—0)[Q1 — are1(w) + f(w, 2)]

+ ca(z — 2)[Q2 — azea(2) ~ nf (w, 2)] (3.54)
or

V =c1(w— w)[are1(@) — f(w,2) — aer(w) + F(w, 2)]
+co(z — %)[01232 (%) + nf(ﬁz, z) - azez(2) — nf(w, 2)]
= aner(w — w)[er () — ex(w)] + c1(w — w)[f (w, z) — f(w, 2)]
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+anc(z — 2)[e2(2) ~ e2(2)] +me2(z — 2)[f (@, 2) — f(w, 2)].

(3.55)
In particular,
V=XTCX where X= (”‘) = (""2")
v2 z—2z
where
‘11 %612
C=1, (3.56)
3Cl12  C22
and
C11 = —(x1C€1 L?l_(.(t%”):_gg(ﬂn 3
Ci2=co1=¢1 LLQ"_:E%(&&H —ncy I (w,;j:é%w,z)] b (3.57)
Coo = —Q2C2 Iﬂ%}:;%” . )
Define
- + Ql Q2
Ao—{(w,z) €R,.[0sws<-—3=, 0<z< 2,6 <0,5>0 (3.58)
1 2
where 0; and d are as defined by expressions (3.2) and (3.4).
We now define the sets
51 ={(w,2) € AgN intR,|V(w,z) = 0} (3.59)
S2 ={(w,z) € nt R}, |w =w, z=2}. (3.60)
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By inspection, we see immediately that

51 = Sg.

Now define the set E as follows:

E = {(w,2) e R} |V =0} NG (3.61)

Then the largest invariant setin E is Eo(0,0,w,z) restricted to IR%,.

Hence by LaSalle’s Invariant Principle, cf. [17.18,21], we conclude that Eo [171, 2]
or consequently Eo[0, 0, w, %] is globally asymptotically stable with respect to so-
lutions initiating from intIR}, if the matrix C is negative definite.

Theorem 3.13. The equilibrium Eg(0,0, w, %) € R}, is globally asymptoti-

cally stable with respect to solution trajectories emanating from int IR, if
(i) ci1 < 0, 2 <0 and

(ll) C11C22 — % 6%2 > 0.

Proof. The proof follows from computing the leading principal minors of (3.56)
and using the Frobenius Theorem, cf. Lemma 3.5 or alternatively by means of

Lemma 3.4.
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3.7. Persistence, Uniform Persistence and Existence of Ej[z},z3,w?*,z*]

In this subsection we shall present results on persistence, uniform persistence
and finally give sufficient criteria for the existence of a positive interior equilibrium

E3[z3,z3, w*, 2*].
Theorem 3.14. Assume (3.0) is such that
(i) FEo(0,0,w,2) is a hyperbolic saddle and repelling in the z; and z; direc-
tions locally (cf. Theorem 3.3)

(i) E1(Z1,0,%,%Z) is a hyperbolic saddle and repelling in the z, direction
locally (cf. Theorem 3.7)

(i) FE2(0,Z,,®,2) isa hyperbolic saddle and repelling in the z-direction lo-
cally (cf. Theorem 3.9)

(iv) system (3.0) is dissipative and solutions initiating in intIR¥ . . are even-

tually uniformly bounded (cf. Theorem 3.0)

(v) theegquilibria Eo(0,0,w,2), Ei(%1,0,%,%) and E3[0,%,,,%] areglobally
asymptotically stable with respect to R},, IR}, and IR},,. respec-
tively, cf. [Theorems 3.13, 3.11, 3.12].

Then system (3.0) exhibits (robust) persistence.

Proof. The proof will be done using the Butler-McGehee Lemma (see Chapter 1).
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Let

B= {(zl,xg,w, z)eRY . ,.10 <z <K;, 0<z: <K,

Ql Q2 4
—_—— L 2L 2=
0<w< 61,0_z_62}CIR+

where 01, and &2 are as defined by (3.2).

We have shown in Theorem 3.0 that IB is positively invariant and any

solution of (3.0) initiating at a point in IB C IR} is eventually bounded.

But Eo = Eo(0,0,w,2), Ey = Ei(%1,0,%,%) and E; = E»[0,%,,, 2] are
the only compact invariant sets on 8IRY. Let M = Ej[z},z3,w*,z*] be such

that M € int IR%.

The proof is completed by showing that no point Q; € IR belongs to
(M). The proof is divided into five steps.

Step 1: We show that:
Eo ¢ Q(M).

Suppose Egp € Q(M). Since Ey is hyperbolic, Eg # Q(M). By the Butler-
McGehee Lemma, there exists a point QF € W+(Ep)\{Eo}) such that QF €
Q(M). But W*(Eo)Nn(IR:\{Eo}) =0. This contradicts the positive invariance
property of IB C IR{. Thus E; ¢ Q(M).

Step 2. We show that:

E, ¢ Q(M).
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If E; € Q(M), then there exists a point Qf € W+(E;)\{E1} such that
QT € Q(M) by the Butler-McGehee Lemma. But W+(E;) N (int R}) = 0
and Fi[Z%,,0,w,z] is globally asymptotically stable with respect to IRZ,,,.. This
implies that the closure of the orbit W‘{) through Q7 either contains Eg or
is unbounded. This is a contradiction. Hence E; ¢ Q(M).

Step 3. We show that:

E, ¢ Q(M).

The proof is similar to Step 2.

Step 4. We show that:
dRL NQ(M) = 0.

Suppose IR NQ(M) #0. Let Q € JIRL and Q € Q(M). Then, the closure of
the orbit through @, i.e. O(Q) must either contain FEg, E;, E2 or is unbounded.

This gives a contradiction.

Step 5. Thus we see that if Ey is unstable then
W*(Eo)N (IRil{Eo}) ={.
Also, we deduce that if E; is unstable, then

W*(E,) N(intIR{) =0

W= (B1) N (RU\RY) # 0.
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Similarly if E, is unstable, then

WH(Ez)N(intRY) =0

W= (E1) N (R*\IRY) # 0

and the persistence result follows since Q(M ) must be in infIR4,

Remark 3.3. The global asymptotic stability of the equilibria Eo, E,, and E,
with respect to IR, Rt . and IRY, .. respectively, implies that the bound-

ary flow is isolated and acyclic with respect to C.

Theorem 3.15. Let the conditions of Theorem 3.14 hold. Then system (3.0)
exhibits uniform persistence. In particular, a positive interior equilibrium of the

form E3[z},z3,w*,z*] exists.

Proof. T he results follow directly from the results obtained [1].

3.8. Hopf-Andronov-Poincaré Bifurcation

In this section, the Hopf-Andronov-Poincaré bifurcation, cf. Wiggins [31],
will be performed on the system of equations (3.0) with bifurcation parameter
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4. In particular the parameter u is chosen such that the activation-proliferation
function f is a function of x. The system of equations now takes the form:

z; = Bi(z1) — Di(z1) — z122q1(21, 2) )
Ip = Ba(x2) — Ba(z2) — z122q2(Z1, Z2) — h(z2, w)

W = Q1 — are1(w) + f(w, z; ) — Bh(z2, w)

. ) (3.62)
2 =Qq — azez(z) —nf (w, z; 1)
z1(0) =210 >0, z2(0) =220 >0
w(0) =we >0, 2z(0)=2z>0. J
System (3.62) can be recast into the form
z = F(z; u) (3.63)
2:(0) =9
Ty
where z € Rt = | %2
z

p € IR! is the bifurcation parameter. F(z,u) isa CT (r > 5) function

on an open set in IR* x IR!. Let

IPy. = [EO(Oa Oa al’ %; u)1 EI(Els 01 w,z; ”’)a

E2(0, %2, @, 2 p), Ba(z1, 23, w*, 2"; )] (3.64)
be the set of rest (fixed) points of (3.62) such that
F(P,)=0 forsome uelR!

on a sufficiently large open set G containing each member of IP,,.
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The linear vector field obtained by linearizing (3.6 2) about any u is given
by

£ =DF(P,)¢, §€RR".
We are interested in studying how the orbit structure near IP, changes as p is
varied.
IP1o : [The Technicality Criterion]
Let
d
= [fuw(w, z; ) = nfz(w,z;1)] > 0 (3.65)

for p=po at (w,z) = W,2).

Theorem 3.16. Suppose Theorems 3.3 and 3.9 hold. Then Hopf bifurcation

cannot occur at Ey and Es.

Proof. This follows from the fact that when Theorems 3.3 and 3.9 hold respectively
then Ep and E» are hyperbolic saddle points and their stable manifolds lie along

an axis.

Next we have to compute stability criteria for E;[Z:,0,w,z,u] and

E3[z},z3, w*, 2%, u] and then vary u in order to obtain the desired Hopf bifur-

128



cation for =17 and p=1v, around E; and E, respectively.

Hopf bifurcation analysis for E;[Z:,0,w,Z, 4]

Let

Jp(Pl) = DF(EI(-fl: O,E,'Z,/L)

_ (Anl) 0 Sy (0 —Bhay(0,w)
<Zn(n) Zzz(m)’ An() (0 0 )

where
y i [ B{ (Z1) — D}(z1) ~Z141(%1,0) }
| 0 B}(0) — D4(0) — Z142(Z1, 0) — hay (0, w)
T [ fu(W, % 1) — a1}, (T) f2(@,Z; 1) }
* | —nfu(T,Z5 ) —a2eh(2) —nfa(@ Zp) |

The eigenvalues of J,(P;) are

A1 = Bi(Z1) - Di(%1)

A2 = B3(0) — D3(0) — Z142(%1, 0) — b, (0, w) (3.66)

and the solution of

p(A,Z22) = det IZ22 —AlL|=0

=)\ - (’Ii'ace 71.22))\ + deth = 0. (3.67)
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Let A34 = {A|p(\, A22) =0}. Then

[’I‘ra.ce _A-22 + \/(Tra.ce 222)2 — 4 det 222 ]. (3.68)

N =

Azq =

Theorem 3.17. The Jacobian matrix J,(IP;) has two negative real roots and

two purely imaginary roots if the following criteria hold concurrently

(i) A =Bi@1)-Di(zZ1) <0
(i) A2 = B3(0) - D5(0) — %192 (Z1,0) - hz, (0, w)
(iii) there exists a pu=v; with Trace Ay =0

(iV) detZzz >0 with A3,A4 € im C.

Thus ch; [Re /\i(V1)] > 0.

Proof. The proof follows directly from inspecting equations (3.66) and (3.68).
Re \; = % Trace 222 for i =3,4. But

Trace Az; = fu(W,Z; 1) — c1€)(w) — x2e3(Z) — 1f=(T, Z; p)-
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Thus

szZ [Re A:] = [Re % N
= Edﬁ [ fuw(@, Z; 1) — a1€] (T) — €y (Z) — f-(T, Z; u)],:u1
_ % [fu(@.2:0) — eni (@) — eah(@) - nfe(@, 7o)
= fun(@,Z; 1) = Nf2u (@, Z01) > 0 (3.69)
by IPi.
O

Theorem 3.18. Suppose

(i) Tr Ay =0 for some v; € R,

(ii) Technicality criterion Pig holds i.e.

fup (@, Z;v1) —0fzu(W,Z;01) > 0

(i) Ay =Bi(zZ1)— Di(Z1) <0
A2 = B3(0) — D3(0) — Z142(%1,0) < 0.

Then Hopf bifurcation occurs at p = v, for the equilibrium E,(Z:,0,w,Z) for
system (3.62).
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Theorem 3.19. There is a Hopf bifurcation for system (3.62) as p passes
through p = v, emanating from the steady state E,[Z;,0,W,Z] leading to
periodic solutions for either p, > v, (super-critical bifurcation), or p < 1y

(sub-critical-bifurcation) or at p = v;.

Now, consider the steady state Es[z},z3,w"*,z*]. The Jacobian matrix cor-

responding to S, = E[z},z3, w*, 2z*,u] is given by

newpage J,(S,) =
I , -
1(z1) — Di(z1) _
e L RS
—Z1Z2q1,z, (T1, Z2) FATh
Bj(z2) — Dy (z2(z2)
—Z2¢2(z1, Z2) ~2192(Z1, Z2) —ho (T2, w) 0
_ —$1$2Q2,z1($1a$2) _zlx2Q2,::2(21,-732) Wi
- —h;,(ZQ,‘w)
fw(w,t)
0 _:thz (121 w) —alcll(w) fz (wa Hy Z)
—Bhw(z2, w)
0 0 —Nfw(w, u, z) —ea(2)
5 M wit: By ~nfz(w, u,t) |

'ah aiz 0 0 T
_ a1 a3 a3 O (3.70)
0 a33 a3; a3,

L 0 0 (123 024 .1
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The characteristic equation corresponding to J,(S,) is given by

(A, Ju(S,)) = det |Ju(P2) — M| =0

In particular, the a},

aly
det

) s
2Q12

a3
+ det

% ass
aiy
%aiz
%afs

ay

+ det | 3al3

) P
2214

ay =det J,(S,.).

= A +aiX® +asA? + a3\ +af =0.

) P
2212
*®
G20

1 »
2Q23

*
Q33

%0'12

azo

ol
%afs
a3s

)
2043

*® L 3 E *
—(ai; + a3; + a3z +aly)

al
+ det
1, =
2213
a.
-+ det 1 23
2024
1,.*
3Q13
%033 +det
E
Q33
) P
214
2a3, | + det
Q34

1=1,2,3,4 are given by

) . )
5213 a;; 3Q14
+ det )

L ] L ] -
Q33 2Q14 Qg4
1.» . 1 »
2Q24 +det Q33 3Q34

. 1 s -
Q44 2Q34 Qqq

* 1 = 1 =»

a;; 3@12 3Q14

1 = » 1%

3Q21 Qoo  5Q24

) P 1l -

3014 3024 Q44

* 1,.» ) PR
Q22 3QG23 3Q24
1 = - ) P
2Q23 A3z 30a34
1l = l,.% »

3024 5043 Q44

(3.71)

By the Routh-Hurwitz criteria, necessary and sufficient conditions for all the
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roots of p(A, J.(S.)) =0 to have negative real parts are

R;. a1>0, a3>0, a;>0

and Rz. alaja} > (a3)® +(a})%a].

Now in order to have Hopf bifurcation, we must violate either R; and R,.

Py;. Suppose each a; >0 for i=1,2,3,4 such that

(i) a3a3—a} >0 and

(i) Ry is violated such that

ajajai = (a3)° + (a})’e
*\2
> aya; = (a3.) +aja; > a}

Lemma 3.5. Let

(i) Each a; >0 for i=1,2,3,4.
(i) a3aj—al>0

(iii) condition R, be violated.

Then p(A,J.(Su)) =0 can be factored into the form

A2+ k)(A+k)A+k3), k>0, i=1,23,4
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where

aj = kaks

a§ = kzks + kl

a3 = k1(k2 + k3) r (3.73)

- -
ks = 4%
aza*3—ajy J

In particular, the spectrum of J,(S,) is given by

0(Ju(Sn)) = {ivki, —ivki, —ka, —ks} (3.74)

Thus under the conditions of the lemma, p(A,J.(S.)) has two pure imag-

inary roots for some value of u say u = vs.

For p € (v —e,12 +¢€), the characteristic equation p(}, J.(S,)) cannot

have real positive roots.
But for u € (v — €,v2 +¢€), the roots are in general of the form

A (p) = a(p) +iB(k)
A2(p) = a(u) — iB(k)
As(p) =—k2 #0
() = —ks #0.

(3.75)

We now apply Hopf’s transversality criterion to p(A, Jyu (S,‘)) in order to obtain
the required conditions for Hopf bifurcation to occur for this system. Hopf’s
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transversality criterion [cf. Theorem 1.5, Chapter 1.0] is given by

d)\;

a—]ﬁ‘:u2 #£0 for j=1,2. (3.76)

Re |

Now substituting Aj(u) = a(u) +i8(u) into
PN Tu(P2)) = A +afX3 + a3 2 +ajd +af =0 (3.77)

and computing the derivatives with respect to u, we obtain:

olale? - %) —2a%] + i’ [B(c? — B2) + 2220 .
—48'[B(c? — 57) + 202 ] + i [a(e? — £°) — 2a°]
+d, [a(a? — B2) — 2a82] + id} [B(a® — B?) + 2028
+3ca1(a? — B?) + id/6a
—66'aBa; + i3a16'(a® — 5?)
+ah(a? — B?) + i208ah + 2azad’ + 12020/
—B'a22B + i2a2cf3' + aaly + ifa
+d/az + ia3f’ +ajy =0. J

> (3.78)

Comparing the real and imaginary parts we have

A(p)e! (n) — B(p)B'(n) + C(u) =0
B(u)o! (u) + A(p)B' (1) + D(u) =0 (3.79)

_where

A(p) = 4a(a?® — B%) — 822 + 3a;(c® — %) + 2a2a + ay

B(u) = 46(c? — %) + 80* B + 6afa; + 2228
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C(p) = aile(a® — ) — 200°] + a3(a® — %) + aaj + af

D(p) = d{[B(c?® — £°) + 28] + 200d}, + Bas.

Thus

dA;j

Re (3],

=a'(1/2)
—C(p) —B(u)
_ *|-D() A |
ot ‘Am) —B(u)

det

B(u) A(p)

(AC + BD)
= |, 0 (3.80)

B=v2

since

A(2)C(v2) + B(v2) D(1n) # 0. (3.81)

Theorem 3.20. Suppose

(i) System (3.22) is uniformly persistent.
(i) E*=[z},z5,w*, 2"] exists.

(iii) Lemma 4.0 holds.

Then system 3.22 exhibits a (small amplitude) Hopf-Andronov-Poincaré bifurca-
tion in the first orthant, leading to a family of periodic solutions that bifurcate
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from E* for suitable values of u in the neighborhood of u = v».

Remark 3.5. It has been established that system (3.0) has solutions which are
eventually bounded in the future. Also the equilibrium F»[0,z2,w,z2] is con-
strained as a hyperbolic saddle point. Furthermore, Theorems 3.19 and 3.20
establish 4 = v; and g = v, as two bifurcation values. In particular, a
periodic solution bifurcates from FEi[z,0,w,z] when pu passes through u;.
We denote Sy = [z1(t,v1), z2(2, 1), w(t, v1), 2(¢, v1)]. Another periodic solution
Sz = [z2(t, 12), z2(t, 1a), w(t, 1), 2(¢, v2)] bifurcates from E* when u passing

through vs.

Theorems 3.16 - 3.21 imply that during adoptive cancer immunotherapy as
described in this chapter, it is possible under the specified criteria, that Hopf bi-
furcations occurs from the clinically preferred steady state E;[Z;,0,%,Z] leading
to periodic orbits. This phenomenon complicates the nature and outcome of ther-
apy as a second subsequent bifurcation may lead to periodic orbits near the less

preferred rest point E*[z},z},w*, 2]

Remark 8.6. Theorems 3.14 and 3.15 imply that the normal cells and cancer cells
persist under continuous infusion of LAK cells and interleukin-2. Thus the therapy
is unable to annihilate the cancer cells but is able to control the lethal proliferation

of the cancer cells.

If the cancer cell number during therapy is either below the detection thresh-

old of 10° cells or the subclinical threshold of 103 cells, then the outcome of
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the therapy may be declared a ‘partial’ therapeutic success. The only problem
associated with this result is that therapy must be continued indefinately and the

cancer cell number must be preferably subclinical.

However the much preferred objective of cancer immunotherapy is the total
annihilation of the cancer cells. This will require that the rest point E;[Z1,0,, 2]
be globally asymptotically stable with respect to solutions initiating from int IR, z,uw:.
The required criteria for this condition of ‘total cure’, will be established in the

next section.

3.9. Criteria for a ‘Total Cure’

In this section, necessary and sufficient criteria for total or absolute elimi-
nation of all cancer cells will be derived. Usually during cancer therapy the time
domain of therapeutic efficacy of the anti-cancer drug is very restricted and the
cancer cells eventually repopulate leading to the death of the patient. In such
scenarios, the rest point E)[T1,0,W,Z] is locally asymptotically stable during

therapy and eventually becomes unstable during the repopulation of cancer cells.

In order to obtain the conditions for ‘total cure’, we must, by means of
a Liapunov function, establish criteria for global asymptotic stability of the rest

point E;[Z;,0,%,Z].
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3.6.1. Global asymptotic stability of F;[Z;,0,w,z] with respect

to RY, ...
We choose the Liapunov function
— T 1 —\2 1 -2
V=zx -7 —zlén(i—) +k1x2+§k2(w—w) +§k3(z—z) . (3.83)
1

The derivative of (3.83) along the solution trajectories of (3.0) and using (3.45)

leads to the following algebraic equations:

V = (z1 — T1)[91(z1) — Z2q1 (1, 72)]
+ k1z2[g2(z2) — z192(21, T2) — Ri(z2, w)]
+ ko(w — @) [Q1 ~ arer(w) + f(w, 2) — fh(zz, w)]

+ k3(z — 2)[Q2 — ane2(z) — nf (w, 2)). (3.84)

V = (21 = Z1)g1(21) — (21 — Z1) 221 (21, 72)
+ k122002 (22) — Z12 (%1, T2) — k1T2[wha (22, w) — Tha(zs, )]
— k1 2Ty (22, )
+ arkz(w - 3)[e1(@) — e1(w)] + k2 (w — W) [f(w, 2) — £(w,2)]
— Bk (w — W)zo[whe (22, w) — Who(z2,W)] — Bk2(w — W)z2h2 (22, 0)

+ agks(z — Z)[e2(Z) — e2(2)] + nka(z — 2)[f (@,2) — f(w,2)]. (3.85)
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Now

V =XTDx (3.86)

U1 Ty —T1
v z
X=]|21= 2 _
V3 w—w
V4 z2—Z

and D is a real symmetric matrix such that

where

D = {dij}1<i,j<4

and
91(-‘81)
dy = ———
YTz —7)
di2 = —q1(z1, 72)
d13 =0
d14 = 0

doy = [9(z2) — F1q2(Z1, 22)] — k1 Wha (22, D)
]

-k [‘wh2 (:Z:Q, w) — Why (.‘172 , ‘l_U')]

dos = — — Bkoha(z2, T)
— Bkawhz(z2, w) — Wha (z2, W)]

dszs = —arkzle1(w) — e;(W))

o= B D@D )16

dis = —azks[ex(2) — ea(Z)]- (3.87)
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The explicit form of matrix D is as given by (3.88).

di1
1
3d12
1
3d13

1
3d1q

1
3d12
da2

1
3d23

1
3d24

1
3d13
1
3d23
ds3

22d34

3014
3daq
1d3q
daq

(3.88)

Theorem 3.21. The matrix D and consequently the quadratic form (3.86) is

negative definite if the following criteria hold:

Dy =dn <0,

din1
Dy =det .
2d12
di1
D3 =det %dm
3d13
di1
3d12

D4 =det .
3d13

1
7414

1
5d13
1

d33
1di3
3d23
da3

1
5d34

<0

1
zd14
1

3024
1
5daq

das

> 0. (3.89)

Proof. The proof follows directly from Frobenius’ Theorem, and the Hermiticity

of D.

We then have the following theorem:

Theorem 3.22. Let Ei[Z1,0,W,Z] denote the cancer-free equilibrium for the
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cancer immunotherapy system (3.0). Then E1[%:1,0,w,Z] is globally asymptoti-
cally stable or equivalently, there is total annihilation of the cancer cells, if condi-
tions (3.89) of Theorem 3.21 are satisfied.

Remark 3.7. If the persistence criteria specified in Theorems 3.14 and 3.15 are
violated, then either the cancer cells or normal cells, but most likely the normal
cells of the afflicted organ, will be outcompeted and annihilated by the cancer

cells, if the therapy is ineffective.

It is possible also, that the normal cell density in the organ may fluctuate
periodically or chaotically before eventual extinction, according to the principles

of Dynamical Disease as mentioned in the introduction.

On the other hand if the adoptively transferred lymphocytes (LAK cells)
and lymphokines (IL-2) are very potent and therapeutically efficacious, then the

cancer cells may be driven to extinction if persistence fails.

Criteria for extinction of normal cells

In this subsection, we shall derive sufficient conditions for the extinction of
the normal cells in the afflicted anatomical organ and in the case of extinction,
the probable consequent death of the cancer patient. This will be done by using

a Liapunov function to provide criteria for the rest point FE3[0,Z,,Zz] to be
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globally asymptotically stable and hence unique. We choose the Liapunov function
V' as given by (3.90):

V=ciz1+z7 — T2 —zon =
T2

+ %Q (w—B)? + _—;-03 (z— 322 (3.90)

The derivative of (3,90) along the solution curves of (3.0) is given by the equation:

V=ciz + (le—le Ty + co(w — W) + c3(z — 2)z (3.91)
2

= 011:1[91(3:1) — z2q1(z1, 22)]
+ (22 — %2)[92(22) — 2141 (1, 22) — h1(z2, w)]
+ c2(w — @) [Q1 — euer(w) + f(w, 2) ~ Bh(z2, w)]

+ c3(z ~ 2)[Q2 — anez(2) — nf(w, 2)]. (3.92)

We then use (3.45) and the equilibrium algebraic expressions and tacit re-

arrangement to obtain a modified form of V as follows:

V = azigi(z1) — aiziraqi (21, 22) — $2a1(31, 22)] — 121%2q1 (21, 52)
+ (21 = T2)g2(22) — (22 ~ £2) 7101 (21, 22)
~ (z2 — B2)[wha(z2, w) — Bho(z2, )] — (z2 — F2)Bha(z2, D)
+o(w — D)e[e1 (@) — e1(w)] + c2(w — B)B[A(Z1, @) — h(z2, w)]

+ c2(w — D) [f (w, 2) - f(@, 2)]
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+ cs(z — Z)azlea(2) —e2(2)] + cs(z — 2lf (@, ) — £ (w, 2)]-

(3.93)
Now
V=XTEX (3.94)
where
(Y |
z2 — T
Xx=|2|=|2"2
v3 w—w
vy z—Z
E is a symmetric 4 X 4 matrix over IR and E = {eij}1<ij<a With
€11 %612 %613 %614
1 1 1
5€12 €22 3€23 €24
E=|"? . X , (3.95)
3€13 3€23 €33 3634
1 1

1
€14 3€24 73€34 €44

and
V= 61111% + e12v1v2 + €13V173 + €14U1U4
+ ezgv«:‘: + e93UU3 + €24V2U4 + egs'vg
2
+ e34v3V4 + €440y,
where

— 61[.91(.'1:1) - 5241(21,52)]
z1

€11

—c1[zaq1(z1, 22) — Z2q1(21,%2)]
(z2 — 22)

€12 = - ¢I1(581, -‘82)
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613=0

[g2(z2) — Wha(z2, W)]

ez = e
_ [wha(m,w) = Bha(22,8)] |, _ ; W2, @) — h(as, w)]
T (w— @) e B
€33 = —ce [81 ('lU) —€1 (ﬁ)
(w — @)

€34 = =2 Lf (w,( ?_‘5’ (@,2)] c3n [f (w,(2 : ;;\ ()1'17, z)]
ny = — 5392 [e2(2) — e2(2)]

a (z—2) ' (3.96)

Theorem 3.23. The real symmetric matrix E and consequently the quadratic
form (3.94) is negative definite if the following criteria hold for the leading principal

minor matrices E;, i={1,2,3,4}:

Ei=e;1 <0
1
€11 3€12
E; =det .
2€12 €22

€11 €12 3€13
E3 =det -21;612 €22 2€23 <0

1
€13 €23 €33

1 1 1
€11 3€12 €13 7€14
2€12 €22 %ezs %624
E; =det 1 1 1 > 0. (397)
3€13 3€23 €333€34
1 1 1 1
32€14 3624 5€34 5€44
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Proof. The proof follows directly from the Frobenius Theorem and the fact that
E is a real symmetric matrix and consequently Hermitian [E = (E*)T].

The results of the preceding theorem leads to the following theorem which is
the manifestation of therapeutic failure of the anti-cancer immunotherapy drugs

(LAK and IL-2).

Theorem 3.24. Suppose the criteria (3.97) of Theorem 3.23 hold. Then clini-
cally the cancer immunotherapy drug protocol will be strongly non-efficacious and
eventually the normal cells in the afflicted organ will be annihilated, leading to

probable death of the cancer patient.

Remark 8.8. During the clinical administration of LAK and IL-2, it is therapeu-
tically prudent to use continuous infusions interspaced with days of no infusions
[cf. 28]. This will enable the patient’s physiological system to recover from drug
toxicities and associated “therapeutic stress”. The advantages of such procedure
may be circumvented by the phenomenon of repopulations of the tumor by drug-
resistant cancer cells. In the next subsection, we shall analyse the local stability
of periodic infusion of LAK and IL-2. The phenomenom of drug resistance and
optimal therapy policies will not be addressed in this thesis but deferred to future

research.
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Periodic treatment case

We now consider the treatment scenario in which the LAK and IL-2 are
given by periodic adoptive transfusions. The input functions @(t) and Q2(t)
are in the form of Heaviside-type step functions with equal or unequal dose rates

of period w.

Let IB,, be the Banach space of real valued, continuous w-periodic func-

tions of a real variable t.

Consider the periodic system

&1 = Bi(z1) — D1(z1) — 212201 (%1, Z2) )
&3 = Ba(z2) — D2(z2) — z12292(21, 22) — h(z2, W)
W= Q1(t) — are(w) + f(w, z) — Bh(z2, w)

z = Q2(t) — azez(z) — nf(w,2)

Q1(t) = Q:1(t +w) > (3.98)
Q2(t) = Q2(t +w)
z1(to) = Z10
z2(t0) = Z20
w(to) = wo
z(to) = 20 y

We make the following assumptions:

al. Ql,Qz € IB’W

a2. The system (3.98) in IRY ., has a positive w-periodic solution ® such
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that

0<® =& = (%,@,32) € B3,

23. Let Q* denote an open set in IR}. Then (0,%0) € Q* forall ¢ € [0, 00).

The assumptions al - a3 imply the existence of a non-trivial w-periodic

solution (z2,®) = (0, %) on the boundary of the positive cone in IB,, x IB3,.

a4. The solution & = &y is such that Po is non-critical. This implies that
all the Floquet exponents of the linearization of (3.98) in IR . in the

neighborhood of &, have non-zero real parts.
a5. System (3.98) satisfies the invariance of non-negativity criteria.

Let us define 02 (®,) as follows:

Q4 (Bo) = {(22, ®) € By x BY|(z2(2), B(t) + Bo(t)) € Wt for all £}, (3.99)

The assumption a5 implies that Q3 (®,) is an open set in 1B, x IB3 which
contains (0, $o(t)).

The Jacobian matrix due to linearization of (3.98) in the neighborhood of
the periodic orbit (0,®¢(t)) is given by the expression
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[ Bi(Z1) ]

~Dj(%1) —Z1q1(Z1,0) 0 0
2(0) — D2(0)
0 —EIQZ (':Eh 0) 0 0
J(O, @0) = _hzz (0’ ﬁj)
_ ~ fuw(W, 2) ~
0 Bhz, (O: w) _ale/1 (D) fz('w, )
o ma —c2gh(D)
|0 0 @3 _pp (@2 |
(3.100)
In computing J(0,®,) we made use of assumption a2. Note that
P = Bg(t) = (5:'1(t), ib'(t),%'(t)).
Let the Floquet multipliers of (3.100) be p;, ¢={1,2,3,4}. Then,
L= eJo’ Bi(@Ei(z)—D1(Z1(s))
p2 = eJo’ B3(0)—D3(0)—%142(%1,0)—h=, (0,) (3.101)
and p3,p4 are Floquet multipliers of the matrix
Mo = (fw(iv',i) - o1} () £:(@,2) )
—Nfw (ﬂi, z) —023’2 (ﬂi) -nf: (ﬂiv 2)

= {Mi;() h<ii<2 - (3.102)

In particular, the matrix (3.101) corresponds to the Jacobian matrix of lin-
earization of (3.98) in IR, in the neighborhood of (@(t),Z(¢)).
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We define the following with respect to the matrix M(¢) :

=l = sup |z¢|
k
1 (#)l] = sup > Ima

p(M(t)) = sup {Re Mik + Z Im,kl} (3.103)
k ik

The Lozinski matrix measure of M (t) takes the simplified form

u(M(t)) = sup {m11 + |ma2i1|, maz + |mi2|}.

Theorem 3.25. Let

A(t) £ max {(n + 1) fu(@(£), 2()) — arel (@(2)),

(1 = m)f2(w(2), 2(¢)) — c2e2(2(2))} (3.104)

where (w(t),Z(t)) is the periodic orbit specified by assumption a2.

IF g(M(t)) < —a, a >0, then (i(t),#(t)) is uniformly asymptotically
stable and consequently the Floquet multipliers p3,pqs of M(t), are such that

loil <1, i=3,4.

Proof. The function (M (t)) defined by (3.104) is the simplified form of the
Lozinskii matrix measure u(M(t)). The theorem therefore follows from Lozinskii

matrix stability criteria and Floquet theory discussed in Chapter 1.
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Remark 8.9. If n > 1 and aqej(@(t)) > (m + 1) fw(w(t), Z(t)), then the a in
Theorem 3.25 exists.

Theorem 3.26. Suppose

@) Jo'[Bi(Z1(s)) — Di(31(s))lds < 0
(i) Jo'[B2(0) — D5(0) — Z1(s)g2(Z1(s), 0) — hz, (0, W(s))lds < 0.

(iii) The conditions of Theorem 3.25 hold.

Then the periodic solution (0,®o(t)) is locally uniformly asymptotically stable.

Proof. The hypotheses (i), (i) and (iii) imply that |p:i| <1, i=1,2,3,4. Hence
the result follows from Floquet theory.

Remark 3.10. Theorem 3.26 conveys the idea that during the periodic adoptive
transfer of LAK and IL-2 into the cancer patient, it is possible, in principle, to
destroy all the cancer cells within a restricted (finite) time domain of therapeutic
efficacy of drug. But on the global time scale, the prospect of a ‘total cure’
cannot be guaranteed because bifurcations of the periodic orbit (0, $¢(t)) may
occur, leading to the re-emergence of the cancer as the (interior) periodic branch
(z2,%(t)) manifests. This type of bifurcations from periodic orbits have been

studied by several authors.
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3.10. Examples on Cancer Treatment Using ACI Protocol

In this subsection, we shall use a specific example to illustrate the math-
ematical principles underlying the therapeutic efficacy of Adoptive Cancer Im-
munotherapy (ACI). Let us make the following choice for the general functions
B:, D;, i=1,2; f(w,z); h(z2,w); e1(w), e2(z) and qi(z1,z2).

Let the functions be as specified below.

e1. Bi(z1)—Di(z1) £ a11z1 —a12z3 (a:; are positive constants). This is the

logistic function for normal cell growth.

€. Bz(xz) - Dg(:l:g) 4 1%1,;1&;?5 — boazs .

This is a clinically-based tumor growth model postulated by Piantadosi (1985),

Comp. Biomed. Res. 18, page 220. Here, b;; are positive constants.

b bygzow
€3. h(xz,‘lU)—T_f_i—zz_*_—J.

This form of tumoricidal function is discussed by Merril [20].
es. flw,z) & 4382 ¢, >0

This form is chosen by examining the bioclinical data presented in [12,28,19,24].

aia if i=1

es. qi(z1,2) 4 { by if Q=2 where ai3,be3 € IR,
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ex(z) = koz

€s. el(w)=k1’lU}’ ki,ko € Ry .

This drug elimination/degradation is assumed to be linear first order kinetics.

Using the hypotheses e; —es, the cancer immunotherapy system equations

(3.0) take the following form:

1 = @11T1 — Q12T — G13T1Z2

fo = —CWZ2_ __ - — buuzw
T2 = i — boaxy — baszozy — TRRL

. . ClaW2z __ _clazaw
w=Q1—cuw+ T - it

:=Qp —dyz— 42z > (3.105)

where di2 =c127, c¢13 =Bb4, c11 = k1o,

di1 = koarg

and zi(to) = Ti0, Z2(f0) =Z20, w(to) =wo, 2(ta) = 2o. )

The analysis of (3.105) when @;,Q: are non-periodic

We now discuss system (3.105) under the scenario in which the infusion

functions are constant and continuous.

We define the invariant box IB as follows:

B ={(z1,22,u,2) R4 [0Sz < K1, 0L <K,

Q1 Q-
— — < —_
0Lw< 5, 0_z<62}

where
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b —
) Ki=21, Ko="3" with bus1

a2’ b22

(i) & ={ci2—cu} Wwith e;2 <en (3.106)

(ill) 62 = d11.

By Theorem 3.0, IB is positively invariant and all solutions of (3.105) with
initial values in ﬁi‘ are eventually uniformly bounded and are attracted into the

region IB.
Let

— (51143% — i ey ) (3.107)

Mo =
2 — d12Z —dy; — 2T
1+Z 11 (1+2)

Theorem 3.27. The clinically desirable rest point E,[Z,,0,%,Z] exists uniquely

if the following criteria hold:

(i) Definitions (3.106) hold.

(i) @13 >0, Trace Maz <0, and det Mg > 0.

Proof. The proof follows directly from Lemma 3.1 and along the same lines as
Theorem 3.4. (Note that (Z1,%,Z) can be explicitly computed by setting the
right hand side of (3.105) to zero and solving numerically.)

Remark 8.11. The existence of the rest point E;[Z1,0,%,Z] is an essential prog-

nicator of a favorable therapeutic outcome. If E,[%1,0,%,%] does not exist, then
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the patient is non-responsive to therapy. But the existence must be followed by
local as well as global asymptotic stability to spell a much better prognosis for the

patient.

Theorem 3.28. The clinically desired rest point E;[Z1,0,%, %] is locally asymp-
totically stable (hyperbolic sink) if the following criteria hold.

(1) b11—51—%|2;% <0

(11) a11 — 201271 <0

(iii) trace Moy <0 and det Ma > 0.

Proof. The proof follows directly from definitions (3.106) and Theorem 3.6.

We shall now give necessary and sufficient conditions for the global asymp-
totic stability of the clinically desired rest point, FEi[Z:1,0,%,Z]. These criteria
will specify the conditions for a ‘total cure’ of the cancer — a scenario in which all

cancer cells are annihilated.

We choose the Liapunov function V' as given by (3.83)
| — Z1 1 —\2 1 -2
V=x1—xl—xlﬂn(a)+k122+-2-kg(w—w) +§k3(z—z).

Then the derivative of V along the solution curves of (3.105) satisfies equation

156



(3.108).

V=XTDX (3.108)
where
m r1—7T)
X=|%|=] *_
U3 w—w
U4 22—z

and D is a real symmetric matrix such that D = {d;;}1<i j<a Where d;; have

the following definitions:

5 (011 - 01221)

di; =
11 (xl _ .51)
diz = -1
213 = 0
314 = 0
E _ —k[l-l:‘:’:c:lj-w - 1+u;c;-:§’-ﬁ] _ ﬁk2613
8= (w — o) 1+z+®@
weys wey3
—’BkQ[l +zo4+w 14z +E]
233 = —a1k2k1 [w - E]
i k [ e — clg?] _ "k3(c1+u;z - c14t-uzz]
a4 = (z—-72) (w — W)
244 = —a2k3k2[z - 7]. (3.109)

Theorem 3.29. The clinically desired rest point E,(Z1,0, W, Z] is globally asymp-
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totically stable if the following criteria hold:

(i) zu <0
din Ldie
@ det | 27 >0
3d12  da2
duy  idix Ldis
(iii) det |idi2 doa 2d2s| <O
3dis 3daz  das
dy  idip idis 3dis
Idio dye  ides 3dod
Gv) det |20 2 T 2o (3.110)
1diz Zds dsz  3da4
ldia 3doy idsq  das

Proof. The proof follows directly from Frobenius Theorem and Hermiticity of D.

The analysis of (3.105) when @,,Q: are periodic

Most often, the rate of infusion of LAK and IL-2 as defined by the function
@1 and @Q; respectively is done by a periodic process of continuous infusions
interspaced by recuperative time intervals. We shall give criteria under which the
clinically preferred periodic orbit (0,®o(t) is locally uniformly asymptotically
stable. Note that (0,®,(t)) corresponds to the scenario in which cancer cells are

extinguished as defined by a2 [(0, ®o(t) = (0, Z1(t), W(t), Z(¢))].
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Theorem 3.30. Suppose

(i) f:[au - 20.1251(8)](18 <0

(@) fo i —Zi(s) — b2z %%]ds <0
(iii) max{(n+ L)ci2 rff(z% —c1,(1—-n) (f—f,fgi((t% —dn} <-a, a>0.

Then the clinically preferred periodic orbit (0, ®¢(t)) is uniformly asymptotically

stable.

Proof. The proof follows from the use of the Lozinskii matrix measure and stability,

and Floquet theory as explained in Chapter 1 and employed in Theorem 3.25.

a

3.11. Numerical Examples

In this section, we describe some numerical examples to illustrate some of
our results. In all examples, the normal cells’ growth is described by the logistic
equations whereas the tumor cell growth is depicted by the Cox et al. model. The

model equations for ACI now assume the form:

(%] = an1T) — a123% — a13Z122

s . _biyza - - —TW
Ty = [Pp2- —baozs — bosz1%2 — bas H

{ w=coufilt)—cuw+tc2 5= — 13 T
z = co2f29t) —duz —di2 7=
\ T10 = 1000, Tog = 200, Wo = 0, 20 = 0.
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The tumor growth parameters b1, bi2,b22 are assigned the numerical values ex-
tracted from Cox et al. 1980: Comp. Biomed. Res., 13, pp. 437-448. On the
otherhand, the normal cell growth parameters aii,a12,a13 as well as the other

model parameters are assigned values obtained by computer simulations.

In the first two there is a constant infusion LAK and IL2 cells, whereas int

he next three examples the infusion is periodic.

Example 3.1. In this example, we set

a1; = 4.455, @12 = 0.0000250, a3 = 0.00325
by = 0.5768, bia = 0.00008043, boy = 0.19735
boz = 0.000075,  bog = 0.000015

c11 = 0.3135, c12 = 0.00225, c13 = 0.455
dy; = 0.2145, dio = 0.3225

cor = 100,000 fi(t)=1

Cor2 = 10, 000 fz(t) =1.

The computer simulations were performed for ¢ € [0,100] days.
The low initial value of z;5 = 1000, assumes that the patient has undergone

surgery or radiotherapy prior to the chemotherapy.
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This example represents high dose constant infusion ACI therapy. The graph

of the numerical solutions for t € [0,100], are exhibited in Figure 3.1. A summary

of the results is presented as follows:

i)

(i)

(ii)

The cancer cells are annihilated by the time ¢t < 5 days. If such a model
represents chemotherapy of the residual tumor for a cancer bearing patient
just after surgical debulking of the tumor, then the outcome of the sequential

surgery-chemotherapy treatment is favorable.

The normal cells z; repopulate by proliferating rapidly to the carrying ca-
pacity of K) = 180,000 cells from an initial tumor constrained cell number

of Tio0 = 1000.
The pharmacodynamic time profile of the (toxic) IL-2 is such that it is

totally washed out of the cancer afflicted organ and possibly the patient’s

physiological system by ¢ < 20 days.
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Example 3.2. In this example, the coefficients are given by the following:

a1; = 7.00, a2 = 0.0000245, a3 =0.000741974
b11 = 0.5768, b12 = 0.00008043, b2 = 0.19735

b2z = 0.0000012175,  beq = 0.00000015

11 = 0.3235, c12 = 0.00225, c13 = 0.455
dy1 = 0.1145, dy2 = 0.008225

co1 = 100, 000, L) =1

co2 = 10,000, L) =1.

The computer simulations were performed for t € [0,300] days.

This example also depicts a case of high dose constant infusion ACI therapy.
The graph of the numerical solutions for ¢ € [0,300] are exhibited in Figure 3.2.

A brief summary of the results is as follows:

(1) The normal cells are annihilated within ¢ < 120 days. This is an example
of global asymptotic stability of the rest point FE»[0, T2, @,2] which depicts
therapeutic failure,

(ii) The cancer cells repopulated by proliferating from z29 = 200 cells to the
lethal carrying capacity of K, = 21,500 cells within 120 days.
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Example 3.3. In this example, we assign the following values to the model

coefficients:
a1 = 4.65929, a1z = 0.0000152, a1z = 0.001394325
b11 =0.5768, b2 = 0.00008043, by =0.19735

b2z = 0.00000131305, b4 = 0.000018015

c11 = 0.3135, ci2 = 0.00225, c13 = 0.455
d11 = 0.12145, d12 = 0.013225
co1 = 1000, coz = 100

fit) = f2(t) = f(t) = f(t +10.5) ie. (period = 10.5 days)

o: (duration of infusion) = 5.5 days

Ac: (interval between successive infusions) = 5 days.

In particular for one cycle of infusions, fi(t) and f2(t) have the forms:

0 t<O0
fi=fo=ft)=<{1 0<t<55
0 5.5<t<105.

This example depicts the case of low dose constant piecewise continuous (or peri-
odic) ACI therapy which is usually the most preferred clinical approach in order
to minimize the toxicity of LAK and IL-2.

165



The graph of the numerical solutions for ¢ € [0,200] is presented in Fig-

ure 3.3. A brief summary of the simulation results are the following:

(i) The therapy was effective for the time duration 0 <t < 130 days. The time
set Ts = [0,130) is called the time domain of therapeutic efficacy of ACL.

(ii) Under the given clinical parametric configuration, the cancer cells eventually
drove the normal cells to extinction as a consequence of an oscillatory de-
crease in the number of LAK cells. This event depicts the scerario in which
the clinical oncologist suddenly discovers a lethal repopulation of the tumor
in a patient whose cancer has been kept at the subclinical threshold, for
almost 4 months.
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Example 3.4. In this example, the model coefficients are assigned the following
values:

a1 = 3.9455, a12 = 0.000027805, a13 = 0.001394325

b1; = 0.5768, bi2 = 0.00008043, b2 =0.19735

bos = 0.000013975, boq = 0.0015

Ci1 = 03135, Ci2 = 0.00225, Cizg = 0.455
di11 = 0.12145, d12 = 0.013225
co1 = 1000, co2 = 100

f1®) = f2(t) = f(t) = f(¢ + 10.5).

In particular, fi,f2 o, Ac are as defined in Example 3.

This example depicts the case of low dose periodic (constant piecewise contin-
uous) ACI therapy. The graph of numerical solutions for ¢ € [0,200] is displayed
in Figure 3.4. The results of the computer simulations are summarized as follows:

(i) The therapy is successful and the cancer cells are annihilated at ¢ < 5 days.
(ii) The normal cells in the afflicted organ, repopulate to the carrying capacity

of Ki = 145,000 cells.
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Example 3.5. In this final example, the model coefficients are assigned the

following values:
a1 = 4.65929, a12 = 0.00001520, a13 =0.000139
by; = 0.5768, b2 = 0.00008043, bop = 0.19735,

b2z = 0.0000001243934, bgq = 0.00001185,
c11 = 0.3135, c12 = 0.00225, c13 = 0.455

di1 = 0.12145, d12 = 0.013225.

The values of co1,co2,0, Ao, f1(t) and fo(t) are as defined in the previous ex-

ample.

This example depicts a special case of periodic ACI in which the cancer cells

and normal cells co-exist for the therapeutic time duration of ¢ € [0,1000] days.

The results of the computer simulations are depicted in Figure 3.5.
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3.12. Discussion and Conclusions

In the preceeding subsections we used mathematical models to discuss the
cancer immunotherapy regimen called Adoptive Cancer (cellular) Immunotherapy
(ACI). We employed the mathematical tools of differential analysis, persistence
theory, Hopf-Andronov-Poincaré bifurcation, and linear systems theory to give

generalized criteria for the therapeutic efficacy of ACL

When the input functions @; and Q. are constant and continuous, we
derived criteria for the existence, local stability and global asymptotic stability of
the clinically preferred rest point FEi[Z,0,w,z]. When E;[%1,0,w,Z%] does not

exist, then the patient has persistent cancer.

We established the circumstances under which FE;[%1,0,%,Z] exists but
is unstable, and also criteria for the existence of a positive interior rest point
E*[z},z3,w*,2*]. If the value of z3 is below the subclinical threshold of 103
cells or for the worst case scenario between 10° and 10° cells, E*[z}, z3, w", z*]
may persist. But clinically these criteria for the existence of E*[z],z3,w*, 2*] are

too stringent and can hardly be attained in a human cancer patient.

When periodic infusions are used, Theorem 3.25 and later Theorem 3.30 give
criteria for local uniform asymptotic stability of the clinically preferred periodic
orbit (0, %) = (0, %, @w(t), 2(¢)).

Complications in therapy always occur. Some of these could be explained
by the phenomena of chaos and dynamical diseases. In Theorems 3.18 - 3.20,

we presented generalized criteria for Hopf bifurcation to occur at E,[Z1,0,%,Z]
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leading to periodic orbits. These ramifications pose complications for the cancer
patient and the clinical oncologists. We presented theoretical criteria under which
a second bifurcation occurs leading to a family of periodic solutions from the

interior equilibrium E[z, z3, w*, z*].

The criteria presented in the preceeding subsections could serve as guidance
for the clinical oncologist in such a way that the clinicians could choose their
treatment protocols in such a manner to make either E4[%1,0,%,Z] or (0, $o(t))

globally asymptotically stable.
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CHAPTER 4
DISCUSSION AND FUTURE RESEARCH

In this final chapter of the thesis we shall present a general review of the
results obtained in the previous chapters. Further, we shall discuss the rationale
and the method for a combined chemotherapy and immunotherapy model. Fu-
ture extensions of the model equations to include diffusive aspects of lymphocyte
transport and kinetics will also be discussed. Other future research involving op-
timal control and scheduling of chemotherapy and immunotherapy agents as well
as modelling therapeutic complications such as drug resistance in chemotherapy;

metastasis and angiogenesis during therapy will be outlined.

4.1. Review of Results

In this section, we shall review the most significant results obtained in the

preceeding two chapters.

4.1.1. Review of cancer chemotherapy

In Chapter 2, we have shown that the single treatment case is futile and

in particular, if y(t) denotes the instantaneous concentration of chemotherapy
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agent in the cancer patient, then
Hm y(t) =0, Am z2 (t) = Kz, tll.% z1(t) = 0. (4.1)

Consequently the equilibrium (0, K»,0) is a global attractor. Thus the cancer
will eventually proliferate to its carrying capacity of K, which is of the order of
10'2 cells, while the normal (healthy) cells in the afflicted organ are annihilated. If
a finite sequence of (single) discrete treatments are administered, the therapeutic
outcome could be the same unless the intervals between successive drug applica-
tions are strategically adjusted to be infinitesimally small or optimally to ensure a
sustainable intratumoral concentration. In these adjustments to sustainable blood
and intra-tumoral drug concentrations, it will be prudent to use the continuous

treatment case.

In the continuous treatment case, the anti-cancer drug is administered con-

tinuously by intravenous transfusion. The desired disease-free equilibrium,

E (Z1,0,%1) is guaranteed to exist uniquely if

{ v lée~*pi(0) < Bi(0) —Di(0)
Bi’(:lh) - Ml(xl) <0 for 0<z; <Kj;.

(4.2)

It will be emphasized that even if (4.2) is violated, it might be possible under

certain clinical conditions of therapy to ensure the existence of Ej(%1,0,%1).

It is possible for two values of B (Z1,0,71) to exist if the following criteria

hold:

{ v~ 16e~*"p} (0) > B1(0) — D/(0)
(4.3)

_ 1{z1 Je—k?]
osrgagcm [Bi(z1) — Di(z1)] > OS%%KI [1+mm(=15 ’
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If two values of E; (Z1,0,71) exist, then a phase space separatrix will demarcate
the dynamics in their neighborhoods. It is possible that if (4.3) hold, one of the
two values of E, (Z1,0,71) may be more therapeutically favorable than the other,
and that clinical manifestations in the patient will enable the clinician to make

the desirable choice.

The instantaneous blood or intra-tumoral concentration of the continuously-
transfused anti-cancer drug must be adjusted optimally to prevent the annihilation

of all cells including normal cells. We have shown that if

(4.4)

{ B1(0) - D1(0) — p1(0)u(y) <0 }
and  B3(0) — D3(0) —p2(0)u(@) <0

holds, then the patient will be severely incapacitated, as the anti-cancer drug kills
the tumor as well as obliterates all the healthy cells in the afflicted organ.

The criteria for the global asymptotic stability of Ey (Z1,0,7], the most
desired therapeutic outcome, may be very stringent and clinically hard to achieve.
We presented alternate criteria for eradication of tumor cells as well as keeping

the tumor cell concentration under a subclinical threshold. In particular, if

T-OU<O )
where oy <u(y) <TGy
a7 > Mée %™ on [0,7],
and T = max (Bj(z2) — Dj(z2)) > (4.5)
[0,K3]
— 1 /
O= min, P;(z2)
mé —k-rz
U= mmm(K:Hmm(K:)]? , O<msf)<M.)

then, the cancer cells (z2) are eventually annihilated. While these criteria are
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less mathematically restrictive the clinical effects of therapy on normal cells (z;)
is not explicitly exhibited.

On the former criteria for global asymptotic stability of B [Z1,0,9] during
continuous input chemotherapy, we must state that it may be possible for the
clinician to therapeutically manipulate the treatment protocol so as to ensure

total eradication of tumor cells while protecting normal cells.

We have demonstrated mathematically that if

fe _Heg <0
= _ , _
where I'. = [Ien[af-.‘:] (Bs(z2) Dj(z2)) (4.6)

Il = mi :
o, [gl}gzl]p’z(mz)

Then the cancer cells are kept at a very small concentration which may be well

below the subclinical level.

In analysing the model equations for the no treatment case, we have shown
that the equilibrium (0, K3) is globally asymptotically stable under the conditions
of competitive exclusion. The cancer cells have a higher proliferative potential
and by means of aggressive angiogenesis and neo-vascularization, out competes
the normal cells to death. In particular, the dynamics of untreated cancer cells is
such that

{ B3(0) — D53(0) — D1g2(K1,0) >0 @7

B1(0) — D1(0) — K2q1(0, K3) <O
The criteria (4.7) depict a lack of persistence in IRf,,,, non-existence of a positive
interior equilibrium and the consequent extinction of all normal cells in the afflicted

organ.
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In order to curtail the toxic consequences of continuous intravenous infusion
therapy, it may be clinically advantageous to use optimal, periodic short duration

infusions. We presented local criteria for the existence of a periodic solution in

ﬁjw space and provided conditions under which this periodic solutions bifurcates
into R¥ This bifurcation provides a complication of therapy and the clinical

T1Z2Y°

oncologist who desires global stability of the periodic orbit (z1(%),0,(¢)) must
avoid such bifurcation by judicious choice of an optimal therapeutic protocol.

4.1.2. Review of cancer immunotherapy

Using the mathematical model (3.0) and associated assumptions, definitions,
and hypotheses we presented several criteria for the local asymptotic stability of
the clinically desired equilibrium F[Z;,0,%,Z]. Such criteria include:

( B{(xl) —Di(zl) <0

B5(0) — D5y(0) — z1g92(1,0) — g, (0,w) <O
<
Trace M22 <0

4.7)

These are general criteria which must be evaluated for specific tumors with

specified B;, D;,q; and h. Specific examples were presented in Chapter 3.

On the other hand, we showed that the equilibrium in which tumor cells
obliterate normal cells, i.e. FE»[0,Z2, @, whz] will be unstable if the following

criterion

B1(0) — D1(0) = 221(0,%2) > 0 (4.8)
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holds. The local stability or the global stability of E[0, Z2,,2] depicts the most

disastrous outcome of cancer therapy and is least desired.

Usually piece-wise continuous intravenous transfusions are used for adminis-
tration of LAK cells and II.-2 into the cancer patients. These processes may lead
to the existence of periodic levels of LAK and IL-2 in the physiologic system of
the patient. The consequences of the periodic fluctuations may complicate the
outcome of therapy. We used Floquet Theory to obtain the criteria under which
the desired periodic solution (0,%g) will be locally asymptotically stable. Using
the Lozinski Matrix Measure, it was possible to obtain alternate criteria for local

asymptotic stability of (0,®g). Such criteria are given by (4.9).

max {p11} <0
max {pe2 + |p12| + |P32|} < O
max {ps3 + |pa3|} <0

max {pss + |P3al} <0 (4.9)
where

pu = By (z1(t)) — D1(z1(2))

P22 = B5(0) — D5(0) — z1(t) g2 (z1(2), 0) — hz, (0, w(t))
Pry = —z(t)q1(21(2),0)

P32 = —Bhe, (0, w(t))

pss = fu(w(t), 2(t)) — are1(w(t)) — Bhu(0, w(t))
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D34 = .fz (w(t)a Z(t))
P43 = —Nfuw (w(t)! z(t) )
Pas = —e3(2(t)) —nf (w(?)) (4.10)

with all other p;; =0. (4.11)
Criteria (4.9) must be evaluated for any given tumor and drug protocol.

The criteria presented for global asymptotic stability of E,[Z;,0,,%] are
very stringent and the clinical oncologist by prudent choice of therapy conditions
may manipulate the constants associated with the Liapunov functions in such a
way as to ensure total annihilation of all cancer cells. This may not be always
feasible for certain cancers at advanced stages of growth or within certain locations

in the human anatomy.

We also stated conditions under which Hopf- Andronov-Poincaré bifurcations
occur at the clinically desired equilibrium F;[%,0,W,z] leading to undesired
complications of therapy. We have shown that this occurs when the following

criteria hold for a bifurcation parameter u =v; :

& fu(w, 2 p) = nf2(w,z;4)] > 0 (4.12)
Bi(z1) — Di(z1) <0

2(0) ‘IDQ(O) —Z1¢2(71,0) <0 } (4.13)

Trace Ao =0 with det Az; > 0. (4.14)

183



4.2. A Mathematical Model for Chemo-Immunotherapy

In this section we shall give a preview of a proposed future project presenting
a combined model for cancer chemotherapy and immunotherapy. The motivation
for this approach comes from clinical research. Goldfarb et al. [7] have demon-
strated that chemo-immunotherapy with NK-LAK cells and IL-2 plus anti-cancer
drugs may be more effective then adoptive immunotherapy alone. They provided
clinical evidence to the fact that chemo-immunotherapy is able to eradicate dissem-
inated micro-metastasis of the tumor. They solved the problem of compounded
drug toxicity by covalently conjugating the chemotherapy agent Doxorubicin to
the IL-2 activated NK-LAK cells using a membrane-binding lipophilic dye called
Zyn-Linkers, [7]. Since NK-LAK cells selectively accumulate within tumor metas-
tasis, this process does not lead to systemic distribution and dissipation of the
chemotherapy agent except within the cancerous metastasis. Thus the chemother-
apy induced killing of normal cells is minimal. The proposed model equations take

the form:

&1 = Bi(z1) — D1(z1) — z122q1 (21, Z2) — p1(z1)u(y)

&2 = B2(z2) — Da2(z2) — z1Z2q2(%1, T2) — p2(z2)u(y) — h(z2, w)

0 t<T
v=1{ Soft—T)e ™ — [y +uip(z1) + vopa(z2)july) T<t<T+o0
—fy + vip1(z1) + vap2(22)Ju(y) t>T+0

w= Q1 + f(w, 2) — Bh(z2, w) — are1(w)
z2=Q2 —nf(w, z) — azez(2) (4.15)

zl(to) = z10 2> 0, w(te) =wg =0
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z2(to) = z20 > 0, z(to) =20 >0

y(to) =30 =0.

The functions B;, D;, Q;, P;, h,e;, f, are as defined in preceeding chapters.

The possible equilibria are of the form

Es=10,0,9,w,2],
Ef = [?Eh Os @\9 ﬁ;: 2]
Eg = [07523 _y-a E;E]

E$ = [z],z3,w*, 2"].

The local linearized stability of the model equations (4.15) in a neighbor-
bood of the equilibria Ef, i=0,1,2,3 would be analyzed using the techniques
exhibited in the thesis.

We propose to investigate the existence of periodic orbits and limit cycles
under clinically plausible parametric configurations. Numerical analyses of the
results and computer simulations will be performed to illustrate the practical dy-

namics of such a combined model.

We hope to obtain criteria for Hopf bifurcations and possibly Crandal-
Rabinowitz [5] bifurcations form eigenvalues of the system equations. We would
also hope to give estimates on the existence region for small-parameter periodic

solutions of the system equations as described by Freedman [6].
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4.3. Other Future Research Projects

In this subsection we shall discuss some research projects which we propose

to undertake in the future.

4.3.1. Diffusion models for chemotherapy and immunotherapy

In Adoptive Cancer Immunotherapy (ACI) there is some suggestion that the
inclusion of diffusion terms in the model equations is appropriate [8,9]. We will be
interested in mathematical modelling such a system and carrying out linearized
stability and bifurcation analysis. Similar considerations also hold for chemother-
apy in which it may be appropriate to include a diffusion term for drug transport
into the tumor. The model equations for chemotherapy and immunotherapy may
take the following forms: Let ! be an open set in IR® with boundary &5.
The outward normal derivative on 9 is denoted by %. We shall denote the

Laplacian operator by A, where

_e L ¢
~oxZ T oxz T axz

A (4.16)

X = (Xl,Xz,Xs) EIRS.

Let d;, i=1,2, where d; > 0 for all i, denote the diffusion coefficients.

Then the reaction-diffusion type model equations for ACI is depicted by the

following system:

9z

5 = Bl (371) - D1 (31) - $1$2Q1($1, 32)
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o
™2 = Ba(z2) — D2(z2) — 2221 ¢2(21, 22) — h(z2, w)

ot

ow

57 = “Aw+Q1 + f(w, 2) — fh(z2,w) — arex(w)

% = & Az +Q; — nf(w, z) — azea(2). (4.17)

The initial conditions are given by

:Bl(X, 0) =.’B10(X), 22(X, 0) =.’1:20(X)
w(X,0) = wo(X), z2(X,0) = z0(X) (4.18)
X = (Xl, Xg,Xs) € N.

The Dirichlet boundary conditions
(z1,Z2,w,2) = (7‘10,7‘20,1’30,7‘40) on 9N xIR,, (4.19)

or the Neumann boundary conditions

(32:1 Oz, Bw 0z

an' on’ on' %) = (z10, 520,530,540) on 90 xRy, (4.20)

will be used. The choices for i, si0, ¢=1,2,3,4 will be such as to reflect on

the nature physiological processes involved.

The goals of the research project will include the following:

R(i) Obtain conditions for local and global existence of solutions to (4.17) in a

suitably chosen Banach space.

R(it) Study the effect of metastasis on therapy. In this regard, the choices of i

and s;0, i=1,2,3,4 such that r;0 > 0 and s;0 = (O, 320,330,840) with
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20 >0, s30 >0, s40>0 may be considered.
R(i#i) Determine criteria for boundedness, and invariance of system (4.17).

R(iv) To investigate the existence and nature of eigenvalues and periodic solutions
using theorems on linearized stability for partial differential equations and

Green’s functions and boundary value theory for each of the stated boundary

conditions.

The reaction-diffusion equations for continuous infusion cancer chemother-

apy is formulated along similar arguments and take the form:

3
_a’?ti = B1(z1) — Di(z1) — z1Z2q1 (21, 22) — p1(z1)u(y)
8:1:2
5 = Bz(z2) — Da(z2) — z22192(Z1, 22) — p2(z2)u(y)
By 0 t<T
% = D14y +dof(t —n)e™ — [y + vipi(z1) + vapa(22)u()
TSI<T+o0 (4.21)

where D; > 0 is the diffusion constant.

The Dirichlet boundary conditions are

(21, 22,9) = (P10, P20, P30) on 9N x Ry (4.22)
and the Neumann boundary conditions are

0z Oz Bw Oz
(75{’ 8n’ o’ 6n)

= (K10, k20,k30) on N x IR, . (4.23)
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Metastatic spread of cancer can be investigated by the choice ko: = (0, koo, k3o)

where k20 >0, k3o >0. The research goals are as depicted by R(i — iv).

4.3.2. Mathematical modeling of drug resistance

The therapeutic failure of an anti-cancer agent may be attributed to several

reasons including the following:

F(3)

F (i)

F (i)

F(i)

The heterogeneity and consequent differential sensitivities of the hetero-
geneous cancer subpopulations are such that the drug destroys only the
drug-sensitive cancer cells leaving the non-drug-sensitive cancer cells to re-

populate the tumor.

The anti-cancer drug is degraded metabolically at such a rate that the op-
timal concentration in the tumor is not attained. This process may be me-
diated by enzymes. Another possibility is enzyme mediated decrease in
diffusion of drugs into the tumor cells.

Non-optimal drug administration in which the time interval between succes-
sive continuous drug infusions are not prudently chosen such that the tumor
cells have sufficient time to recuperate and repopulate the tumor.

Aggressive proliferation, angiogenesis and neo-vascularization of the tumor
enables cancer cells to survive therapy. In this case, drugs such as Angio-
statin which impedes neo-vascularization may be effective. Another scenario

will be the possibility of the tumor carrying capacity K> being monotonic
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or oscillating with time.

In the future we propose to formulate and investigate mathematical models
depicting most or all of the aspects described by F(i —iv). Let r(¢) denote the
instantaneous concentration of drug-induced therapy resistant cancer cells. Then a
prototype mathematical model for drug resistance is given by the following system

of ordinary differential equations:

&1 = B1(z1) — D1(z1) — 21Z2q12(21, T2) — 217 @1+ (21, 7) — p1(21)u(w)

&y = Ba(z2) — Da(z2) — T1Z2¢21(Z1, T2) — Targer(z2, r) — p2(z2)u(y)

— pa(z2)(u(y)

T = kpa(z2)u(y) — z17¢r, (z1,7) — T27gr, (22, 7)

0 t<T
doe ™ " f(t-) — (v + vipi(z1) + vopa(z2)

+ v3p3(z2))u(y), T<t<T+0
—(v+nip1(z1) + vapa(z2))u(y), t27+0

T1(to) = %1020, z2(to) =22>0, r(tg) =70=0

y(to) =yo =0. (4.24)

(v is the drug degradation constant, k is the drug resistant cancer cell prolifer-

ation constant).

In the prototype model (4.24), the term p3(z2)u(y) depicts the rate at

which the drug resistance sub-population of cancer cells is generated.

We shall investigate the following scenarios associated with drug resistance.
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Q

22 = Ba(z2) — Da(z;) — z27192(1, Z2) — h(z2, w)

= d1Aw + Q1 + f(w, z) — Bh(z2, w) — a1e1(w)

d2 Az + Q2 — nf(w, z) — azea(z).

e 9/ ¥

The initial conditions are given by

x]_(X, 0) = :B]_o(X), .’Bz(X, 0) = .’Dzo(X)
w(X,0) = we(X), z(X,0) = zo(X)
X = (X]_, Xz,Xs) € .

The Dirichlet boundary conditions

(z1,z2,w,2) = (T10,720,T30,T40) on O xR,

or the Neumann boundary conditions

(6:1:1 Oz Ow Oz

By %,%,§)=($10,820,330,340) on 0N xIR,,

(4.17)

(4.18)

(4.19)

(4.20)

will be used. The choices for 7iq, si0, ¢=1,2,3,4 will be such as to reflect on

the nature physiological processes involved.

The goals of the research project will include the following:

R(i) Obtain conditions for local and global existence of solutions to (4.17) in a

suitably chosen Banach space.

R(#1) Study the effect of metastasis on therapy. In this regard, the choices of i

and si, i=1,2,3,4 such that r;0 >0 and s = (0, 520, 530, 540) With
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S20 >0, s30 >0, s40 >0 may be considered.

R(#i3) Determine criteria for boundedness, and invariance of system (4.17).

R(iv) To investigate the existence and nature of eigenvalues and periodic solutions
using theorems on linearized stability for partial differential equations and
Green’s functions and boundary value theory for each of the stated boundary

conditions.

The reaction-diffusion equations for continuous infusion cancer chemother-

apy is formulated along similar arguments and take the form:

7,
S = Bi(@1) = Di(e1) — 212201 (21, 32) — pa(a1)u(y)
8:1:2
5 = D2(22) — Da2(22) — 222192(%1, 22) — pa(z2)u(y)
By 0 t<T
- =4 DiAy+8of(t —T)e™* — Iy + vipi(z1) + vap2(z2) [u(¥)
ot 4.21)
TL<t<T+o0o (4.
where D; >0 is the diffusion constant.
The Dirichlet boundary conditions are
(xls z2, y) = (p101p207p30) on aQ X ]R‘+ (4‘22)
and the Neumann boundary conditions are
0z, Ozz Ow 0Oz\ _
( 2, 2, ?in') = (k10, k20,k30) on O x IRy . (4.23)

188



Metastatic spread of cancer can be investigated by the choice ko: = (0, k2o, k30)

where kzo >0, k3o >0. The research goals are as depicted by R(i — v).

4.3.2. Mathematical modeling of drug resistance

The therapeutic failure of an anti-cancer agent may be attributed to several

reasons including the following:

F(i)

F(4)

F(iid)

F(iv)

The heterogeneity and consequent differential sensitivities of the hetero-
geneous cancer subpopulations are such that the drug destroys only the
drug-sensitive cancer cells leaving the non-drug-sensitive cancer cells to re-

populate the tumor.

The anti-cancer drug is degraded metabolically at such a rate that the op-
timal concentration in the tumor is not attained. This process may be me-
diated by enzymes. Another possibility is enzyme mediated decrease in
diffusion of drugs into the tumor cells.

Non-optimal drug administration in which the time interval between succes-
sive continuous drug infusions are not prudently chosen such that the tumor
cells have sufficient time to recuperate and repopulate the tumor.

Aggressive proliferation, angiogenesis and neo-vascularization of the tumor
enables cancer cells to survive therapy. In this case, drugs such as Angio-
statin which impedes neo-vascularization may be effective. Another scenario

will be the possibility of the tumor carrying capacity K, being monotonic
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or oscillating with time.

In the future we propose to formulate and investigate mathematical models
depicting most or all of the aspects described by F(i—iv). Let r(¢) denote the
instantaneous concentration of drug-induced therapy resistant cancer cells. Then a
prototype mathematical model for drug resistance is given by the following system

of ordinary differential equations:

Z1 = B1(z1) — D1(z1) — z1Z2q12(1, T2) — Z17q1- (21, 7) — P1(Z1)u(y)

£2 = Ba(z2) — D2(z2) — Z122¢21(Z1, T2) — T27q2r (T2, T) — p2(z2)u(y)

— p3(z2)(u(y)

F = kpa(z2)u(y) — 217¢r, (Z1,T) — Z27qr, (T2, 7)

0 t<T
_ ) %eT* f(tr) — (v +vaipr(z1) + vop2(22)
+ v3p3(z2) Ju(y), r<t<T40
—(v + vip1(z1) + vap2(22))u(y), t27+0

z1(to) =210 20, z2(to) =2220, r(te)=ro=0
y(to) =40 =0. (4.24)

(v is the drug degradation constant, k is the drug resistant cancer cell prolifer-

ation constant).

In the prototype model (4.24), the term p3(z2)u(y) depicts the rate at

which the drug resistance sub-population of cancer cells is generated.

We shall investigate the following scenarios associated with drug resistance.
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(i) r outcompetes both z; and z-.
(i) v> max [boe™* T f(t —1)]
(iii) Ba2(z2) — D2(z2) = z2g2(z2, K(t)) where

02(z2, Ka(t)) € CYRy x Ry ,IR]

p

o

0<k:<Ky(t)<Ky<oo, telR,

2(0, K2(t)) >0, §2 <0, $% >0, g(Ka(t),K2(t)) =0

Oz,

o

d. K,(t) #0 eventually as t — oo.

d-. htmmeg(t) = k2, limsup K>(t) = Ko.
—+00 t—o0

4.3.3. Optimal control of cancer chemotherapy

The importance of the choice of optimal drug administration prctocol in
cancer chemotherapy have been emphasized and investigated by several authors

including Bellman et al. {2], Murray [10], Swan [11], Coldman and Boldrini [4].

We will investigate and try to find optimal control policies for the cancer
chemotherapy models presented in the preceeding chapters. Some previous in-
vestigators chose drug kinetics which may not describe all the features associated
with cancer chemotherapy. These simplified choices compromise the applicability
of the mathematical derived optimal policies to real life problems associated with

cancer.

We shall try to choose model functions and parametric configurations which
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are close to clinical reality. Some of the optimal control problems we shall attempt

to solve, include the following.

Problem 1.

Let:
i. L(v) denote the specific drug concentration in cancer cells and normal
(healthy) cells,

ii. U(t) denote the control, i.e. the rate at which (low dose) anti-cancer drug

is piece-wise continuously transfused into the cancer patient,
iii. [0,T] be the treatment interval,
iv. ng = 10° be the subclinical cancer cells’ number,

v. mnig be the threshold normal cell number required for survival and regen-

eration of the anatomic organ of the body in which the cancer cells are

localized.

Consider the model equations:

&1 = B1(z1) — Di(z1) — Z122q1(21, 22) — p1(z1)L(v)
&g = Ba(z2) — Da(z2) — 222102(21, 22) — po(z2)L(v)

b = Soe FTU(t) — (v + mpr(21) + m2p2(z2)) L(v)
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31(1‘.‘0) =Z10, I2 (to) = Z9g, ‘v(to) = 1g. (4.25)

Then the optimal control problem 1.A is defined as follows:

T
minimize J; = — /0 [B1(z1) — D1(z1) — z122q1(Z1, 22) — pr(z1) L(v)]Pdt

and

T
maximize J, = / [B2(z2) — Da(z2) — z122g2(Z1, 22) — po(z2) L(v)%dt
0
subject to (4.25) and the following constraints:

np <z:1(t) < K;

0< :L‘g(t) < n2g (4:.26)
where U(t) € [0,u,]Vt € [0,T]
Um = r{zgg.g}c U(t).

In order to ensure that the control lies in the specified time domain, we shall

investigate a refinement of problem 1A as defined in problem 1B:

Let T, T 'be fixed with T < T. Define the function A(t) :

1 if 0St<T
h(t)={ . (4.27)



T
Minimize J; = —/0 h(t)[B1(z1) — D1(z1) — 2122¢1 (21, z2) — prz1) L(v)]dt
and

T
minimize J2 = A h(t)[Bg(:BQ) - D2(z2) bt .’121.’122Q2(121, 2:2) —pg(.'l:g)L(‘v)th

subject to:

nie < z1(t) < Ki
0 < z2(t) < ngo

Ut) € [0,um], Vte[0,T)

Remark. The optimal control problems described in 1A and 1B are multi criterion
optimization problems. It may be noted that minimization of one performance
criterion may alter or affect the other criterion in a contradictory way; and there
may not exist a unique optimal control. One way of resolving this impasse is to
use the Pareto version of Pontryagin’s Maximum Principle as established by Yu
and Leitmann [12]. This technique have been applied by several authors including
Murray [10], Swan [11] and Costa and Boldrini [4].

We then formulate problem 1C as follows:

For each pair of real numbers (p,q) satisfying 0 <p, ¢<1 and p+q=1,
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define,
Jpg = pJ2 + ¢J1
BV[0,tf]: Class of bounded variation functions

defined on [0, ¢f].

_ u € BV[0,ts], 0<U(t) <tum
Alty) - {Vte [0,].

Find a time 0 <t} < +oo and a BV0,t}] function,

U:0,t}] - IR

such that 0 < U*(t) < u, and in such a way that it will be the optimal drug

concentration in the sense that
Jpq(u(-),t}) = min {Jpg(u,ts), U € A(ts), Vit > 0}
where J; and Jo are as defined respectively in problems 1A and 1B.

This optimal control problem may be solved for several possibilities such as:

Remark 4.1. It may be possible that some of the optimal control problems de-
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scribed may lead to criteria which will be difficult to implement by the clinical
oncologist. We shall also investigate the possibility of using the techniques of
Dynamic Programming and Bellman’s Optimally Criteria on Sequential Optimal-

ization, cf. [1]. Similar problems will be investigated for cancer immunotherapy.

a
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