
i

OPENFLOW BASED VIDEO-ON-DEMAND
CACHING SOLUTION

ii

Openflow based video-on-demand caching solution

By

Adebakin Funmilola Halimat

Department of Computer

University of Alberta

A project submitted to the faculty of the University of Alberta in partial fulfilment

of the requirements for the degree of

Master of Science in internetworking

Edmonton, Alberta

2016

Approved by

Academic Advisor

iii

ABSTRACT

The efficiency of video content delivery is and would continually be a pressing issue as regards

the growth in modern day internet except better measures are taken. For the past decade, the

internet has taking measures in supporting the distribution of video content. Globally, the

internet traffic was a little above 50% in the year 2012, and a prediction was made that the

traffic would increase up to 69% in the year 2017. Traditionally, the storage of web content s

are forwarded to the web or cache servers but in recent times, better measure are taken by

caching the video inside the network and using openflow to coordinate caching decisions in the

network.

Video on Demand service makes it possible for individual to gain access to video contents at a

time after the initial broadcast was made available. On the other hand, when the delivery of

huge content is made through unicast flow, ignoring the fact that similar transmission were

made earlier, the availability of network is of great challenge. For these reasons, the Software

Defined Networking (SDN) and its protocol called the OpenFlow were introduced in other to

reduce the impacts made by the constant repeat in the delivery of similar content previously

requested over the network and at the same time, reducing the cost of delivery.

To solve the problem of the delivery and the distribution of video content over the network, an

architecture that is capable of making optimum path selection at the same time utilizing the

global network view was introduced and this is called an OpenFlow Based Video on Demand

Caching Solution.

OpenFlow is the only non-proprietary, general purpose protocol for programming the

forwarding plane of SDN switches. Openflow defines the communications protocol between the

control and data planes. It is based on an Ethernet switch, with an internal flow table, and a

standardized interface to add and remove flow entries. In this project we take advantage of

openflow and propose an efficient openflow based video on demand caching solution. This

proposed openflow based solution dynamically reconstructs the previous methods of caching a

video content to the web or cache server by doing an in network caching and bring these

content to the closest nodes which enables for efficient delivery to the users.

iv

We implemented a resource efficient Video on demand caching solution on an openflow

controller. This solution contains video on demand sever, openflow switch, openflow controller

(Floodlight), openflow video on demand caching (opencache) controller, database (MongoDB),

a switch and openflow video on demand caching (opencache) node. To authenticate the

proposed video on demand caching solution, we constructed a virtual network topology using

the mininet network emulator. We also used the Floodlight controller and deployed the

proposed solution to it. This experiment shows that using the openflow protocol with the

multicast scheme to protect network resource, giving the users maximum quality of experience.

v

Table of Contents
1. Introduction .. 1

1.1 Background ... 1

1.2 Description of Problem ... 4

1.3 Project Goals and Approach.. 4

1.4 Project Outline .. 5

2. RELATED WORKS ... 6

2.1 Peer to Peer Networking ... 6

2.2 Multicast ... 6

2.3 Cache and Proxy .. 7

2.4 Content Delivery Network .. 8

2.5 Software Defined Networking and OpenFlow .. 9

3. OPENFLOW BASED VIDEO ON DEMAND CACHING NETWORK ARCHITECTURE 16

3.1 Design .. 16

4. OpenFlow based Video on demand Caching Core Entities ... 20

4.1 OpenCache Controller ... 20

4.1.1 Handling Request For Content of Interest .. 20

4.1.2 Implementing Caching .. 22

4.1.3 Managing Caching Resources ... 22

4.2 OpenCache Node .. 23

4.2.1 Cache-miss Scenario ... 24

4.2.2 Cache-hit Scenario .. 25

4.2.3 Non-Caching Scenario ... 26

5. SIMULATIONS AND RESULTS ... 28

5.1 CONTROLLER ... 28

5.2 NETWORK EMULATOR .. 29

5.3 NETWORK SETUP .. 29

5.4 NETWORK TOPOLOGY ... 29

5.5 EXPERIMENTS AND RESULTS... 32

5.5.1 Scenario 1- screenshot of instance to declare caching ... 32

5.5.2 Scenario 2- Screenshot of Cache-hit ... 32

5.5.3 Scenario 2- Screenshot of Cache-miss .. 33

vi

5.5.4 Scenario 2- Screenshot of no-caching ... 34

6. CONCLUSION AND FUTURE WORK ... 35

6.1 CONCLUSION ... 35

6.2 FUTURE WORK .. 36

REFERENCES .. 37

vii

TABLE OF FIGURES
Figure 1 Global consumer internet traffic in Petabytes per month. SOURCE: [8] .. 2

Figure 2 Mobile consumer internet traffic in Exabyte per month. SOURCE: [8] .. 2

Figure 3 - The SDN System Architecture SOURCE: ONF .. 10

Figure 4 - OpenFlow switch components. Source: [20] .. 12

Figure 5 - Simplified Simulation Topology .. 18

Figure 6 - Declaring Content of Interest as Cacheable ... 21

Figure 7 - Removal of Cached Content ... 23

Figure 8 - A Cache-miss Scenario .. 25

Figure 9 - A Cache-hit Scenario ... 26

Figure 10 - Non-Caching Scenario ... 27

Figure 11 - Detailed Simulation Topology ... 30

Figure 12 - Activity Diagram For Network Administrator ... 31

Figure 13 - Activity Diagram .. 31

Figure 14 - screenshot of instance to declare caching .. 32

Figure 15 - Screenshot of Cache-hit .. 32

Figure 16 - Screenshot of Cache-miss (i) ... 33

Figure 17 - Screenshot of Cache-miss (ii) .. 33

Figure 18 - Screenshot of no-caching (i) ... 34

Figure 19 - Screenshot of no-caching (ii) .. 34

LIST OF TABLE

Table 1 - Group Table Entries for OpenFlow 1.1 and later versions ... 14

1

1. Introduction

This chapter provides a brief introduction to Video on Demand, Software defined network

(SDN), and the OpenFlow protocol. It also presents the motivation and problem statement.

Then it presents research goals and its proposed solution.

1.1 Background

The popularity of video streaming in recent have experienced very rapid growth whether

live streaming or on-demand via a wired or mobile end device. Figure 1 and 2 shows the

global and mobile consumer internet traffic respectively [4]. There has been a persistent

rate in the increase of the demand for network bandwidth. This is as a result of constant

arrival of “killer applications” e.g. peer-to-peer file sharing application, video on demand

services, as well as the increase in the popularity of network-hungry end devices [5].

According to Cisco Visual Networking Index (VNI) Global Mobile Data Traffic Forecast, the

global internet video traffic accounted for 57% of all consumer internet traffic and

predictions have it that in 2017, internet traffic would increase up to 69% [4, 6, 7]. For

mobile devices, similar predictions have been made that video in the year 2018, would have

an overall mobile video traffic of approximately 69% [5, 8]. Video-on-demand has gained so

much popularity that there is continual increase in traffic, consumer video-on-demand

(VoD) traffic has been predicted to nearly double by 2020. The amount of VoD traffic in

2020 will be equivalent to 7.2 billion DVDs per month [6]. High Definition (HD) traffic has by

far surpassed the Standard Definition (SD) traffic, and this makes HD the standard video

quality level for video consumers. It is undeniable that high quality online streaming has

become an essential to the everyday life of a consumer [4].

2

Figure 1 Global consumer internet traffic in Petabytes per month. SOURCE: [8]

Figure 2 Mobile consumer internet traffic in Exabyte per month. SOURCE: [8]

With VoD services, users are allowed to select and watch video content when they choose

rather than having to watch it at the time of its initial broadcast [9]. The VoD service is

becoming a dominant service in the telecommunication market and with the explosive

increase in demand and popularity in the quality of video content, a disturbing challenge to

the underlying network infrastructure is becoming evident. Network has to transfer an

enormous amount of data to the end user and this has to be done in a little time frame. The

quality of video content will continue to increase and this would continually be the trend as

3

we move from HD to Ultra HD and 3D video as the thirst of more quality video can never at

least for now be quenched.

The distribution of live content which has to do with the streaming of live data to users has

to be done simultaneously, which enables it to exploit multicast mechanism that provides

such simultaneous delivery [4]. For VoD requests, the reverse is the case. VoD requests

must be handled individually and this leads to an independent media flow in the

distribution network for each user request. For such unicast content delivery paradigm,

huge amount of identical media objects (in the order of gigabytes for each HD film) on the

same network segment is likely to be delivered frequently [4]. For efficient support of video

streaming, the end-to-end capacity of the network must constantly equal the rising number

of the internet video users and the growing recognition of HD content. For these reasons,

Software Defined Networking (SDN) is one of the best solutions for the improvement of

VoD distribution [4].

According to an IEEE international symposium on multimedia paper [1], Software defined

network (SDN) has emerged to be one of the promising solutions. It is an emerging

paradigm in network research and industry areas to deal with the appearing demands for

flexible and agile network control while implementing through open standards [2, 3]. SDN is

defined as an approach to networking in which control plane is decoupled from data plane

and tasks related to control plane are offloaded to separate piece of software called

controller. SDN is claimed to have a more flexibility than the legacy networks and provides

abilities to speed up innovation [2].

SDN has better advantages as compared to the other traditional methods. SDN, as

programmable approach, promises to bring new level of flexibility, control and

management to networking. Also, it has made programmable the network logic at the

controller level which implies that innovations can be introduced and network can be

customized to satisfy organisational needs.

4

OpenFlow is a subset of technologies under the SDN umbrella. It is defined as the

communication protocol between the control plane and the data planes. It is the only non-

proprietary, general purpose protocol for programming the forwarding plane of SDN

switches. OpenFlow allows direct access to the manipulation of the forwarding plane and

defines some of the behavior of the data plane of the network devices. OpenFlow is

considered the as the most successful approach for the realization of SDN. [10, 11]

1.2 Description of Problem

Video on Demand has been gaining popularity over recent years with proliferation of high-

speed networks. Distributed continuous media applications, are expected to provide service

to a large number of clients often geographically dispersed over a metropolitan, country-

wide or even global area. However, when huge content is delivered through independent

unicast flows, naively ignoring that much of it is identical to transmissions hours or days

earlier, network provision is greatly challenged. End-to-end capacity of network

infrastructure must grow continuously to match the increasing number of Internet video

users. The increasing popularity of VoD and especially of HD content worsens this.

A related problem to on-demand video streaming is that of live streaming. Live streaming

accomplishes a similar goal (distributing video or other content to large number of people)

but does not have the requirement that the user be able to skip to arbitrary points in the

stream (for example, in the future). However, this is what this project tackles: the ability of

clients to exchange pieces from anywhere in the file with high throughput, great quality of

experience and good video quality.

1.3 Project Goals and Approach

In view of the problem encountered with VoD, for this project, we propose an efficient

OpenFlow based in network caching. We enumerate our project goals to solve the current

5

VoD issues and some brief explanation on the proposed approach to achieve our goals. The

project goals of our proposed solution are as follows:

 Propose an OpenFlow based Video On Demand Caching Solution

 reduces the distribution load from VoD content provider and all the transient networks

along the path of the VoD server to the end-user

 implementation of the proposed solution as an openflow application

 transparently caching the content closer to the user, OpenFlow based VoD caching

solution, aims at minimize the distance between the VoD streaming and the user which

in return, provides great improvements to the quality of experience of the end user, as

the streaming application observes higher throughput, less latency and smaller start up

and buffering times.

 Validate our proposed solution by deploying the application into an emulated network.

1.4 Project Outline

The organisation of this project is as follow: Chapter 2 is the literature review of several

related works on networking solution for video streaming such as content delivery network,

Multicast, Peer-to-Peer, cache and proxy, software defined network, and openflow

technologies. Chapter 3 is the openflow based Video on demand Caching Network

Architecture. It focuses on discussing the design of the openflow based VoD caching

solution, its entities and where they are placed on the network. Chapter 4 is openflow

based Video on demand Caching Core Entities. It describes the main entities of the

openflow based VoD caching solution and also interfaces designed for intercommunication

between the openflow based VoD caching entities. Chapter 5 is for simulations and results

and finally chapter 6 for conclusion and future work.

6

2. RELATED WORKS

The attention of the research community has been managed to be captured by the

popularity of video streaming over the network, coupled with the consumer’s requirement

for high quality video content and high Quality of Experience. Over the years, other

solutions have been proposed to solve the problems of video streaming whether live or on-

demand and all these proposed solutions comes with pros and cons. In this section, we

would discourse how SDN can provide a better solution and improve the problems of video

streaming as compared to other solutions.

2.1 Peer to Peer Networking

The participation of an end user and their willingness to share their network resources and

limited storage space is highly independent on the efficient performance of a peer to peer

based networking solution for on demand video streaming. Peer to Peer sends video

contents close to end users and can deliver on demand/live video streaming to end users.

This is because end users can share their limited network resources for a short period of

time. In the case of peer to peer, VoD streaming timeframe for end users cannot be dictated

which could be between the period of days, months or even years which reduces the

efficiency of peer to peer [4]. Also, Peer to peer does not guarantee VoD streaming quality

because of how it joins and leaves the network at will. The distributed nature of peer to

peer brings lack of centralized control especially for authentication, accounting and most

importantly, security. For these reasons, content providers and network administrators are

discouraged from making informed decisions and service they may provide, using

distributed technique, and intelligent caching [4, 13]

2.2 Multicast

Multicast streaming is a one-to-many relationship between a Media server and the clients

receiving the stream. Using the multicast stream, the server streams to a multicast IP

7

address on the network, and all clients receive the same stream by subscribing to the IP

address. Content can be delivered as a multicast stream only from a broadcast publishing

point. Also, the network routers must be multicast-enabled, meaning that they can transmit

class-D IP addresses. If the network routers are not multicast-enabled, contents can still be

delivered as a multicast stream over the local segment of your local area network [14]. In

the case of VoD, it is something different entirely for reasons that end users could request

video contents anytime after the content was made available. Related works that has made

efforts to use multicast to improve the efficiency of VoD distribution, encounters different

difficulties such as modifying multicast and regular network traffic in other for them to

coexist, speeding up or slowing down the client's viewing rate, reserving a portion of the

client's bandwidth. These solutions are not good enough and are not efficient for the

distribution of VoD contents [4, 14].

2.3 Cache and Proxy

Cache and proxy approach focuses on delivering content to users locally by making

provisions for additional network and storage support. M Cha et Al., demonstrates benefits

of caching a content on a static cache with long term popular video, focusing on YouTube

contents as an example, has determined that there could be an approximate 51% cache-hit

ratio [15]. Also, M. Chesire et Al., made comparable demonstration of benefits where a

caching policy with an expiration of two hours yields an aggregated request and byte hit

rate of 24% using cache storage which is 2% in size of the overall transferred data [16].

Static web contents are the most common example of a cache and proxy server. For this

reason, existing solutions are not usually optimized for bandwidth, high storage, and the

demanding video delivery requirement such as the ability to skip to a certain part of the

video stream. Cache and Proxy approach makes provision for little flexibility and

configuration changes as regards the contents that can be cached and their caching policies,

8

which gives the network administrator little control over their network. This therefore, is a

weak approach for VoD content delivery [4].

2.4 Content Delivery Network

 A content delivery network (CDN) is a large network of distributed servers that deliver web

pages and other Web content to a user based on the geographic locations of the user, the

origin of the webpage and a content delivery server. For websites that have global reach,

and websites with high traffic, CDN provides an effective service for the speedy delivery of

their contents. The speed of CDN content is dependent on the closeness of the CDN server

to the user's geographical location. CDNs also provide protection from large surges in traffic

[12]. From a content provider's perspective, CDNs are an efficient distribution and cost

effective solution. However, from a consumer ISP's perspective, CDNs do not lessen the

bandwidth utilisation on middle or last mile connections, as multiple requests for the same

video content will create an equal amount of flows serving the same amount of content to

end-users. Also, despite the fact that CDNs deploy their servers worldwide, it is unrealistic

to expect them to deploy in all ISP networks or last mile environment. The inability to truly

reach out to last mile environments has also been recognised by CDNs themselves [4].

M. Zhao et Al. [13] proposed a CDN-P2P based solution which addresses the problem and

reduces the maintenance and administrative cost of CDN’s inability to reach out to last

miles environment. This proposed solution complements CDN services by pushing the

content closer to the end user. However, this solution has some disadvantages of the peer

to peer networking which requires users to download and install software which takes up

the user’s storage space and uploading resources. For these reasons, a more flexible,

configurable and transparent in network caching service which is closer to the user, would

complement CDN and in fact benefit last mile environment [4].

9

2.5 Software Defined Networking and OpenFlow

The growth of data centers has brought Software Defined Networking (SDN) to the

forefront. SDN is an umbrella term encompassing several kinds of network technology

aimed at making the network as flexible and agile as the virtualized server and storage

infrastructure of the modern data center [17].According to Open Network Foundation

(ONF), SDN is an emerging network architecture where network control is decoupled from

forwarding functions enabling the network control to become directly programmable. This

migration of control, formerly tightly bound in individual network devices, into accessible

computing devices enables the underlying infrastructure to be abstracted for applications

and network services, which can treat the network as a logical or virtual entity [18].The goal

of SDN is to enable network administrators and engineers respond quickly to changing

business requirements. Network administrator can quickly and easily make and push traffic

decisions from a centralized control console without having to touch switches on the

network, and can deliver services to wherever they are needed in the network, disregarding

the specific devices a server or other device is connected to. The key technologies are

functional separation, network virtualization and automation through programmability [17].

The most common currently used protocol by SDN to facilitate the communication between

the controller and the switches is the OpenFlow.

Figure 3 depicts a logical view of the SDN architecture. In software-based SDN controllers,

network intelligence is (logically) centralized which maintains a global view of the network.

For this reason, the network appears as a single, logical switch to the application and policy

engine.

10

Figure 3 - The SDN System Architecture SOURCE: ONF

The SDN architecture above comprises of three layers as seen on Figure 3. First we have the

Application Layer. The application layer contains network applications that can introduce

new network features, such as security, forwarding schemes or assist the control layer in

the network configuration. Network intelligence is logically centralized in DN controllers,

which maintain a global view of the network. As a result, the network appears to the

application and policy engines as a single, logical switch. In the application layer lies the

Business application. The business application refers to applications that are directly

consumable by end users. Possibilities include video conferencing, supply chain

management and customer relationship management [19].On the second layer we have the

Control layer. The control layer also known as the forward plane makes use of the

information provided by the forwarding layer and defines routing and network operation. In

the control layer lies the Network services. The network service refers to functionality that

allows business applications to perform securely and efficiently. Possibilities include a wide

range of L4 – L7 functionality including ADCs, WOCs and security capabilities such as

firewalls, IDS/IPS and DDoS protection [19]. The last layer is the infrastructure layer. The

infrastructure layer which is also referred to as the data layer comprises of the network

forwarding elements.

11

Enterprises and Carriers with SDN gain vendor-independent control over the entire network

from a single logical point, which greatly simplifies the network design and operation. SDN

also greatly simplifies the network devices themselves, since they no longer need to

understand and process thousands of protocol standards but merely accept instructions

from the SDN controllers. Perhaps most importantly, network operators and administrators

can programmatically configure this simplified network abstraction rather than having to

hand-code tens of thousands of lines of configuration scattered among thousands of

devices [18].

OpenFlow is an emerging technology with potentials to increase the value of data center

services dramatically. Implementing OpenFlow can provide network administrators with

greater control over their resources, integrated network and server management, and an

open management interface for routers and switches [20]. OpenFlow is a standard

communications interface defined between the control and forwarding layers of an SDN

architecture. OpenFlow allows direct access to and manipulation of the forwarding plane of

network devices such as switches and routers, both physical and virtual [18].

No other standard protocol does what OpenFlow does, and a protocol like OpenFlow is

needed to move network control out of the networking switches to logically centralized

control software. The OpenFlow protocol is implemented on both sides of the interface

between network infrastructure devices and the SDN control software. OpenFlow uses the

concept of flows to identify network traffic based on pre-defined match rules that can be

statically or dynamically programmed by the SDN control software. It also allows IT to

define how traffic should flow through network devices based on parameters such as usage

patterns, applications, and cloud resources. Since OpenFlow allows the network to be

programmed on a per-flow basis, OpenFlow-based SDN architecture provides extremely

granular control, enabling the network to respond to real-time changes at the application,

user, and session levels [18].

12

Figure 4 - OpenFlow switch components. Source: [20]

OpenFlow controller is an application that manages flow control in SDN environment [21].

OpenFlow controller can be compared to an operating system (OS) as it acts as an OS for

the network. The controller is a passage for communication between applications and

devices.

An OpenFlow switch consists of three parts as illustrated in Figure 4 [20]:

i. One or more flow tables and group table that performs packet lookups, tells

the switch how to process each data flow by associating an action with each

flow table entry

ii. A secure channel Connects the switch to a remote control processor

(called the Controller) allowing commands and packets to be sent

between the controllers and the switch

iii. An OpenFlow protocol, which provides an open, standardized interface for

the controller to communicate with the switch

13

The OpenFlow Protocol allows entries in the Flow Table to be defined by a server external

to the switch, which creates the potential to unify server and network device management.

The OpenFlow Protocol allows entries in the Flow Table to be defined by a server external

to the switch, which creates the potential to unify server and network device management.

Protocol is implemented on both sides of the interface between network infrastructure

devices and the SDN control software. OpenFlow uses the concept of flows to identify

network traffic based on pre-defined match rules that can be statically or dynamically

programmed by the SDN control software. Using this protocol, a controller can make

changes to a flow table (either by adding, deleting, or updating the table) reactively and

proactively. Implementation is based on the application programming interface (API), which

allows the flow table to be modified which representing a switch's forwarding decision [10,

18, 20].

Packets processed by the forwarder are compared with entries in the Flow table. For every

packet matched the flow entry received by the forwarder, the appropriate actions (forward,

drop, etc.) will be taken. Flow entries may forward packets to one or more OpenFlow ports.

If no match entry is found, the switch sends the packet to the controller then the controller

determines how to handle the packets and adds additional flow entries to the flow table on

the switch.

The emergence of openflow has brought about the birth of so many openflow controllers,

some of which includes opendaylight (ODL), Floodlight, Trema, Beacon, Ryu, NOX,JASON,

NodeFlow, Ovs-Controller, and POX. Floodlight Controller is an SDN Controller offered by

Big Switch Networks that works with the OpenFlow protocol to orchestrate traffic flows in a

software-defined networking (SDN) environment. It is an enterprise-class, Apache-licensed,

Java-based OpenFlow Controller. Floodlight is developed by an open community of

developers. It is simple to build and run. For this project implementation, we chose to use

Floodlight OpenFlow controller because of some of its features which are as following; It

offers a module loading system that make it simple to extend and enhance, Easy to set up

with minimal dependencies, Supports a broad range of virtual- and physical- OpenFlow

switches, Can handle mixed OpenFlow and non-OpenFlow networks; it can manage multiple

14

“islands” of OpenFlow hardware switches, designed to be high-performance; is

multithreaded from the ground up [22].

OpenFlow Specification 1.1 version and later, OpenFlow introduces a new feature that

supports more complex forwarding behaviors which are possibly applied to a set of flows

and this is called Group Table. Group table contains group entries (as shown on Table 1) and

each entry contains a list of action buckets. Action in one or more buckets is applied to

packet sent to the group [10]. A group entry may be performed if a flow table entry uses

appropriate instruction that refers to its group identifier. Sometimes, multiple flow table

entries can point to the same group identifier; in this case, the group table entry is

performed for multiple flows. Group table entry contains a group type, a counter field and

field for actions buckets [10]. The Counters are used for collecting statistics about packets

that are processed by this group. A single action bucket contains a set of actions that may

be executed, depending on the group type. There are possibly multiple action buckets for a

group table entry. The group types define which of them are applied. There are four group

types in group table including all, select, indirect and fast failover [10].

Group Identifier Group Type Counters Actions Buckets

Table 1 - Group Table Entries for OpenFlow 1.1 and later versions

For enterprises and carriers alike, SDN makes it possible for the network to be a competitive

differentiator, not just an unavoidable cost center. OpenFlow-based SDN technologies allow

IT to address the high bandwidth, dynamic nature of today’s applications, adapt the

network to ever-changing business needs, and significantly reduce operations and

management complexity [18].

Some of the benefits that enterprises and carriers can achieve through an OpenFlow-based

SDN architecture are [18]:

 Centralized control of multi-vendor environments: SDN control software can

control any OpenFlow-enabled network device from any vendor, including

15

switches, routers, and virtual switches. Rather than having to manage groups of

devices from individual vendors, IT can use SDN-based orchestration and

management tools to quickly deploy, configure, and update devices across the

entire network.

 Complexity Reduction through automation: OpenFlow-based SDN offers a

flexible network automation and management framework, which makes it

possible to develop tools that automate many management tasks that are

done manually today. These automation tools will reduce operational

overhead, decrease network instability introduced by operator error, and

support emerging IT-as-a-Service and self-service provisioning models.

 Increased network reliability and security: SDN makes it possible for IT to

define high-level configuration and policy statements, which are then

translated down to the infrastructure via OpenFlow., Ensured access control,

traffic engineering, quality of service, security, and other policies are enforced

consistently across the wired and wireless network infrastructures because

SDN controllers provide complete visibility and control over the network.

 Better user experience: By centralizing network control and making state

information available to higher-level applications, an SDN infrastructure can

better adapt to dynamic user needs.

For this project, our in-network caching service uses OpenFlow to dynamically cache and

distribute media content within a network in a highly efficient, vendor-agnostic and

transparent manner. The transparency aimed to be achieved through the use of SDN is

particularly important as no end-client applications or media delivery services have to be

updated.

16

3. OPENFLOW BASED VIDEO ON DEMAND CACHING NETWORK

ARCHITECTURE

For this section, the description of our openflow based VoD caching solution is discussed. It

discusses the design of the openflow based VoD caching solution, its entities and where

they are placed on the network.

3.1 Design

Openflow based VoD caching offers a powerful interface that provides "cache" as a service.

This interface is not intrinsically linked to a particular type of content (i.e. it is content-

agnostic), or to a specific hardware or software implementation. The control and decision of

what content should be cached is made by the network administrator, who now has the

ability to optimise his network's utilisation and external link usage. This can be achieved by

enabling in-network caching for specific content via OpenCache’s designated interfaces.

Openflow based VoD caching exposes these interfaces through powerful and flexible HTTP-

RPC web services with JSON, which allow VoD content to be cached closer to the end-user.

This placement of cached content also increases the user’s quality of experience when

streaming it. Given appropriate SLAs, OpenCache's interface could also be used by content

providers (e.g. CDNs) to declare their content as cacheable on last mile environments,

without having to physically deploy and administer their own caching hardware. [4]

The functionalities of the entities involved in the openflow based VoD caching are carefully

revised and also renamed to match their new functionality and interfaces extension. From

my design point of view, openflow based VoD caching architecture includes the following

components (Figures 5).

1. OpenFlow Switch: OpenFlow switch is a software program or hardware device that

consists of a flow table, which performs packet lookup and forwarding, and a secure

channel to an external controller in a software-defined networking (SDN) environment [24,

25]. OpenFlow switches are either based on the OpenFlow protocol or compatible with it. It

17

communicates with the Video-on-Demand (VoD) Server, the openflow based VoD caching

(opencache) Nodes, and the OpenFlow Controller.

2. Video-on-Demand (VoD) Server: A VOD server (video-on-demand server) is a specialized

server that delivers video content such as movies and television shows over the internet, in

response to requests from users with internet-connected devices such as PCs, tablets, or

smart phones [26]. In this case of my scenario, the VoD server was placed on the internet

with an IP reachable address as shown in figures 5.

3. OpenFlow Controller: An OpenFlow Controller is a type of SDN Controller that uses the

OpenFlow Protocol. An SDN Controller is the strategic point in software-defined network

(SDN). An OpenFlow Controller uses the OpenFlow protocol to connect and configure the

network devices (routers, switches, etc.) to determine the best path for application traffic

[27]. For an openflow based video on demand caching solution, there are varieties of

controller to choose from for implementation. Some of which includes POX, NOX, Floodlight

etc. For this project's openflow video on demand caching solution scenario, I have chosen to

use the Floodlight Openflow Controller for its performance and robustness. The controller

behaves as a standard L2 Learning Switch: instructing the switch to forward packets based

upon a learned MAC-to-port pairing.

4 OpenFlow based VoD caching (opencache) Controller: The Opencache Controller is the

orchestrator of the VoD caching and distribution functionalities

5. OpenFlow based VoD caching (opencache) Node: The Opencache Node(s) are

essentially the cache entities of our VoD in-network caching service

6. Non-Openflow Switch: is a computer networking device that connects devices together

on a computer network by using packet switching to receive, process, and forward data to

the destination device.

7. Database: This database is used for maintaining a list of all the video assets that have

been requested for caching and the ones that have already been cached. Openflow based

VoD caching uses mongoDB [mongoDB] , due to its open-source, document based and

18

NoSQL nature. MongoDB offers great benefits compared to database systems, such as fast

in-place updates, scalability, flexible aggregation and data processing, full index support and

replication and high availability. The OCC regularly updates the information that mongoDB

stores using the pymongo python library [mongoDB-PY] [4].

Figure 5 - Simplified Simulation Topology

A single, widely reachable Opencache controller would be able to coordinate caching

amongst a number of opencache node instances (i.e. caches). We created simulation

topology in Mininet to meet our scenario. A user, a VOD, a OpenFlow switch, and OCN are

in Mininet as a single node in the simulated environment.). It is important to note that it is

not a requirement that OpenFlow be deployed throughout the network; the connecting

network hardware could also be entirely non-OpenFlow. The only specific OpenFlow switch

requirement is at the last hop, closest to the user. The Opencache node is connected to the

outside of simulation to the main computer through a simulated switch but without

OpenFlow capability. The main computer has OCC, database and OpenFlow controller. The

OpenFlow controller also has a special connection to OpenFlow switch inside the simulated

environment. Deployment of an OCN instance on the same VM as the end-user clients

would offer the lowest latency and fastest response time, and thus ensure higher quality of

19

experience for the end-users. However, generally speaking, the use of multiple OCNs at

different points in a network (e.g. attached to aggregation switches in an enterprise or

University campus network) is also entirely feasible. In fact, a hierarchical approach has the

potential to provide further benefits if a greater proportion of requests can be fulfilled

without leaving the LAN.

20

4. OpenFlow based Video on demand Caching Core Entities

This section describes the main entities of the openflow based VoD caching solution which

are the openflow based VoD caching (opencache) controller and the openflow based VoD

caching (opencache) node and explains their extended functionalities. Also, in this section,

we describe the interfaces designed for intercommunication between the openflow based

VoD caching entities with the help of openflow for an overall efficient and transparent in-

network caching of video assets.

4.1 OpenCache Controller

The OpenCache Controller is the main orchestrator of the in-network caching functionality

that openflow based VoD caching provides, and implements some fundamental

functionalities that will be described.

4.1.1 Handling Request For Content of Interest

The Opencache controller receives requests for content of interest that should be cached in

the network's opencache nodes (Figure 7). A network administrator starts caching the video

on demand server content using Software defined networking. The network administrator

instructs the Opencache controller to cache any new video being requested from the user

to a video on demand server. The network administrator sends an IP address of the video

on demand server to the Opencache controller as a parameter of which the video on

demand should be cached.

The Opencache controller processes these instructions and saves the IP address to its

database. The Opencache controller tells Opencache node to prepare and cache any

request redirected to it.

Opencache node prepares a dedicated caching processor and dedicated port for receiving

the request. Then, the Opencache node tells the Opencache controller that it is ready and

sends Opencache controller the TCP port number it will receive the request on that is

redirected to it.

21

The Opencache controller receives the port number information then orders the OpenFlow

controller to redirect any traffic flow from user to the video on demand server in the

OpenFlow switch to be redirected to Opencache node and the dedicated port.

The OpenFlow controller does the following. It installs flow rule into the OpenFlow switch as

follows:

1. If a user requests any packet on the network and has its destination is the video on

demand server, the packet should be redirected to the Opencache node and then it

rewrites the IP header of the packet to be destination of the Opencache node with the

dedicated port number in the Opencache node.

2. If any packet on the network is from Opencache node to user, before the packet is been

forwarded to the user, it rewrites the packet header of IP address to be the source from

video on demand server and port 80, as such, the user thinks the packet came from

video on demand server when it receives the packet.

Figure 6 - Declaring Content of Interest as Cacheable

22

4.1.2 Implementing Caching

Since the Opencache controller is the orchestrator of the in-network caching functionality, it

is the central entity that is responsible to implement the caching logic. The caching logic

essentially dictates what content should be cached and where (i.e. to which Opencache

node) at each point in time. The main goal and advantage of Openflow based video on

demand caching is to be able to provide (through its Opencache controller) centrally

controlled caching and allow the network administrator to program and deploy his caching

logic at will. The implementation of a caching logic could be based on the specific

parameters that a network administrator wants to optimise in his network. For example, an

administrator could program the caching logic to minimise the streaming latency of

recorded video lectures on a University's network, or to implement the pre-caching of

popular content closer to end-users overnight, when the network is underutilised. It is

important to note the ease and speed at which the network administrator can actually

implement the caching logic with the use of OpenFlow in OpenCache [4].

4.1.3 Managing Caching Resources

The responsibility of Opencache controller is to manage the available Opencache nodes'

resources in the network. This includes two important functionalities. The first one concerns

the ability to understand the status of the OCNs (if they are online or offline) and the

second one concerns the propagation of the caching decisions to the OCNs.

An important part of the caching resource management is to be able to handle the addition

and removal of caches in a network dynamically. For this reason, the Opencache controller

exposes three methods (namely hello, keep-alive and goodbye) that allow the

communication of the Opencache controller with a number of Opencache nodes. When an

Opencache node is added to the network, it invokes the hello method to let the Opencache

controller know that it is now available on the network. In turn, the Opencache controller

replies with a node-id that is assigned to this particular Opencache node. From that point

on, the Opencache node periodically sends a keep-alive message telling it that it is still in

the network and functioning properly. If the Opencache controller does not receive a keep-

23

alive message from an Opencache node, then it assumes that the Opencache node is not

reachable, which could be a result of network congestion or because it has been taken

offline. Consequently, the OCC will remove the “unreachable' Opencache node from the list

of caching resources that it has at its disposal. Figure 8 illustrates with a sequence diagram

the removal of a cached content.

Figure 7 - Removal of Cached Content

4.2 OpenCache Node

The OpenCache Node is responsible for caching the appropriate video content, and

delivering it to users if they request it. When the OpenCache Node comes online in a

network, it communicates with the OpenCache controller using the hello method and

makes its resources available to it [4].

24

4.2.1 Cache-miss Scenario

In the cache-miss scenario as illustrated on figure 9, a video is delivered to the user by

OpenCache Node after it forwards the requests to Video on Demand Server and caches the

video for future use. First, a user sends a request to get a video in Video on Demand Server.

The OpenFlow switch checks this request and finds it match one of their flow rules which

are destination IP address to Video on Demand Server and port is 80. The switch, then,

rewrites the header of IP on this package request to be the destination to IP of OpenCache

Node and transmission control protocol (TCP) port number dedicated for this Video on

Demand Server request. Then, the switch sends it to OpenCache Node.

OpenCache Node checks this request and if it does not find that OpenCache Node has

cached the video being requested, the OpenCache Node request Video on Demand Server

to get this video. The Video on Demand Server delivers to the OpenCache Node then the

OpenCache Node caches this video and sends the video to the user via the OpenFlow

switch.

OpenFlow switch checks the packets of this video and the packets match one of its flow

rules. So, the switch rewrites the IP header of these packets to be the source IP address of

the IP address of Video on Demand Server and port 80. The switch then sends these

packets containing requested video to the user. The User receives the video thinking it is

directly from Video on Demand Server meanwhile, the video is being cached first in

OpenCache Node.

25

Figure 8 - A Cache-miss Scenario

4.2.2 Cache-hit Scenario

In the cache hit as illustrated in figure 10, a video delivers to the user directly using their

cached video. Similar to what have been done in the cache-miss scenario, first, a user sends

a request to get a video in Video on Demand Server. The OpenFlow switch checks this

request and find it match one of their flow rules which are destination IP address to Video

on Demand Server and port is HTTP. OpenFlow switch, then, rewrites the header of IP on

this package request to be the destination to IP of OpenCache Node and TCP port number

dedicated for this Video on Demand Server request. Then, the switch sends the request

packet to OpenCache Node. OpenCache Node check this request and finds that the

OpenCache Node has cached the video being requested. Instead of requesting the Video on

Demand Server again, OpenCache Node directly delivers the cached video to the user via

OpenFlow switch.

OpenFlow switch checks the packets of this video and the packets match one of its flow

rules. So, the switch rewrites the IP header of these packets to be the source IP address is IP

address of Video on Demand Server and port 80. The switch sends these packets containing

26

requested video to the user. The user receives the video as if it is from Video on Demand

Server meanwhile it is the cached video of from OpenCache Node.

Figure 9 - A Cache-hit Scenario

4.2.3 Non-Caching Scenario

For a Non-Caching Scenario as illustrated in figure 11, it follows the everyday pattern of how

the internet behaves normally. The user requests to Video on Demand Server for a video.

The Video on Demand Server delivers the video to the user.

27

Figure 10 - Non-Caching Scenario

28

5. SIMULATIONS AND RESULTS

5.1 CONTROLLER

The first part of our experiment is determining what type of controller to use for the

implementation. There are different known controllers available. The one that is used in our

solution is POX Floodlight Openflow Controller. Floodlight Openflow Controller is an SDN

Controller offered by Big Switch Networks that works with the OpenFlow protocol to

orchestrate traffic flows in a software-defined networking (SDN) environment. It is an

enterprise-class, Apache-licensed, Java-based OpenFlow Controller. Floodlight is developed

by an open community of developers. It is simple to build and run. For this project

implementation, we chose to use Floodlight OpenFlow controller because of some of its

features which are as following; It offers a module loading system that make it simple to

extend and enhance, Easy to set up with minimal dependencies, Supports a broad range of

virtual- and physical- OpenFlow switches, Can handle mixed OpenFlow and non-OpenFlow

networks; it can manage multiple “islands” of OpenFlow hardware switches, designed to be

high-performance; is multithreaded from the ground up [22].

For entirety, some other controllers must be cited. POX controller provides a framework for

communicating with SDN switches using either the OpenFlow or OVSDB protocol. It has a

high-level SDN API including a queriable topology graph and support for virtualization.

Developers can use POX to create an SDN controller using the Python programming

language. It is a popular tool for teaching about and researching software defined networks

and network applications programming [23, 28]. Beacon is another Java-based controller,

open-source, which has high throughput and low latency [29]. OpenDaylight controller is

the most latter addition to Openflow controllers. OpenDaylight announced its first release:

Hydrogen. It was the first simultaneous release of OpenDaylight and features three

different editions to help users get started: the Base Edition, the Virtualization Edition, and

the Service Provider Edition [30].

29

5.2 NETWORK EMULATOR

Mininet is the network emulator that we used in our work for running the experiments. It is

the standard network emulation tool that can be used for SDN. Network namespace gives

personal processes with their own network interfaces, routing tables and Address ARP

tables. Mininet takes advantage of this feature of the kernel. It uses process-based

virtualization to run hosts and switches on a single operating system (OS) kernel. Large

networks (up to 4096 host on a single operating system) with different topologies can be

tested and emulated. It is commonly achievable to develop a Mininet network simulates a

hardware network, or a hardware network that simulates a Mininet network, and to

compute the same application and binary code on either platforms [31].

5.3 NETWORK SETUP

This experiment was done on a HP ProBook 4430s laptop with an Intel(R) Core(TM) i5-

2450M CPU 2.50GHz Processor, 2.50GHz of power, 4GB of RAM. The Operating system is

Linux Lubuntu 14.0.4 and Mininet Version 2.2.1 was run native on Windows 7. Mininet 2.2.1

supports openflow 1.3.

5.4 NETWORK TOPOLOGY

We created simulation topology in Mininet to meet our scenario. A user, a VOD, a

OpenFlow switch, and OCN are in the Mininet as a single node in the simulated

environment. Meanwhile, the OCN is connected to the outside of simulation to the main

computer through a simulated switch but without OpenFlow capability. The main computer

has OCC, database and OpenFlow controller. The OpenFlow controller also has a special

connection to OpenFlow switch inside the simulated environment.

30

Figure 11 - Detailed Simulation Topology

In our implementation code, we write the code using Python and Bash. We also write a

simulation code for Mininet containing the topology of our scenario. The code also invokes

and reuses several open source code libraries such as floodlight, Opencache, flask, pymongo

and several other libraries. The Opencache library is modified to fit current compatibility

and to fixing several bugs. We also write several codes to run the scenario. More detailed is

explained in table of code and folder. The activities diagram explains which code are

executing by which action for the scenario.

31

Figure 12 - Activity Diagram For Network Administrator

Figure 13 - Activity Diagram

32

5.5 EXPERIMENTS AND RESULTS

5.5.1 Scenario 1- screenshot of instance to declare caching

Figure 14 - screenshot of instance to declare caching

5.5.2 Scenario 2- Screenshot of Cache-hit

Figure 15 - Screenshot of Cache-hit

33

5.5.3 Scenario 2- Screenshot of Cache-miss

Figure 16 - Screenshot of Cache-miss (i)

Figure 17 - Screenshot of Cache-miss (ii)

34

5.5.4 Scenario 2- Screenshot of no-caching

Figure 18 - Screenshot of no-caching (i)

Figure 19 - Screenshot of no-caching (ii)

35

6. CONCLUSION AND FUTURE WORK

This chapter presents the summary of the project, discusses future work.

6.1 CONCLUSION

In this deliverable, OpenFlow based Video on Demand caching solution was described as

being designed and implemented for multi-site operation. OpenFlow based Video on

Demand caching solution is determined to bring an efficient, transparent and highly

configurable caching service for Video on Demand content and address the underlying

challenge that the network faces when the same video files are streamed to end-users

repeatedly using independent unicast flows. Also, we augmented OpenCache’s functionality

to handle the addition and removal of multiple caches and also added functionality to pre-

cache and load-balance multiple caches’ contents.

OpenFlow based Video on Demand caching solution aims to provide the following key

benefits;

 Provision of cache as a service by offering an interface to declare cacheable

content of interest in an open, highly configurable and flexible manner.

 It supports centrally controlled caching that provides the forum for many

additional services to be programmed on top of it with ease (e.g. load balancing,

pre-caching)

 It is easily deployable in a production network; there are no changes required in

the underlying delivery video mechanisms and all existing hardware and

software can be retained.

 It is fully transparent to the end-user. The user does not need to install any extra

software, or have to sacrifice any of his local network or storage resources to

stream video content with high efficiency, which other technology requires.

 It provides caching very close to the user that allows the external link usage to

get reduced and the overall network utilisation to be improved as end-user

requests will now be served locally. However, since the content is served locally,

the video client will observe higher throughput, lower latency, higher video

36

quality and smaller start up and buffering times, eventually leading to higher

quality of experience for the end-user.

6.2 FUTURE WORK

As part of our future work, we plan to improve OpenFlow based Video on Demand caching

solution by exploring the cache placement problem in conjunction with different caching

policies. We hope to identify the beneficial position of being in close proximity to end-users

whilst maximising the use of the caching resources. In addition, we plan to extend

OpenFlow based Video on Demand caching functionality and evaluate it further in different

environments and against other commercial or research based caching services.

37

REFERENCES

[1] Is-Haka Mkwawa, Alcardo Alex Barakabitze and Lingfen Sun “Video Quality Management

over the Software Defined Network” 2016

[2] “Software Defined Networking” https://www.opennetworking.org/sdn-resources/sdn-

definition

[3] W.Braun and M Menth “Software Defined Networking Using OpenFlow: Protocols,

Applications and Architecture Design Choices”, Future Internet, 12 May, 2014

[4] Panagiotis Georgopoulos, Matthew Broadbent, and Nicholace Race “Open Call

Deliverable OCC-DS2.1 Design of a Multi-site OpenFlow-assisted Video-on-Demand

Distribution Architecture (CEOVDS)” 20 May, 2014

[5] Ting Li, Nathanael Van Vorst, Rong Rong, and Jason Liu “Simulation Studies of Openflow-

Based In-Network Caching Strategies” 11 January, 2017

[6] The Zettabyte Era – Trends and Analysis, Technical report, CISCO, 2012.

[7] Visual Networking Index: Forecast and Methodology, 2012-2017. Technical report,

CISCO, May 2013

[8] Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2013-2018.

Technical report, CISCO, February 2014

[9] W.Simpson and H.Greefied, “IPTV and Internet Video: Expanding the Reach of Television

Broadcasting”, Focal Press, UK, 2009

[10] Bernard Niyonteze”Provider-side VoD Content Delivery Using Openflow

Multicast” 30 June, 2014

[11] Paul Goransson and Chuck Black, "Software Defined Networks - A

Comprehensive Approach" June, 2014

https://www.opennetworking.org/sdn-resources/sdn-definition
https://www.opennetworking.org/sdn-resources/sdn-definition

38

[12] Vangie Beal "CDN - Content Delivery Network"

http://www.webopedia.com/TERM/C/CDN.html

[13] M. Zhao, P. Aditya, A. Chen, Y. Lin, A. Haeberlen, P. Druschel, B. Maggs, B.

Wishon, and M. Ponec “Peer-assisted Content Distribution in Akamai Netsession” , 13th

ACM SIGCOMM IMC 2013, pages 31-42, 2013

[14] Microsoft “Delivering Content as a Multicast Stream”

https://technet.microsoft.com/en-us/library/cc754435(v=ws.11).aspx

[15] Meeyoung Cha, Haewoon Kwak, Pablo Rodriguez, Yong-Yeol Ahn, and Sue Moon

"I Tube, You Tube, Everybody Tubes: Analyzing the World's Largest User Generated

Content Video System" 2007

[16] Maureen Chesire, Alec Wolman, Goeffrey M. Voelker and Henry M. Levy

"Measurement and Analysis of a Streaming-Media Workload" 2001

[17] Software Defined Networking http://searchsdn.techtarget.com/definition/software-

defined-networking-SDN

[18] Open Networking Foundation "Software Defined Networking: The New Norm for

Networks", ONF White Paper, 12 April, 2012

[19] "SDN 101: An Introduction to software defined networking"

https://www.citrix.com/content/dam/citrix/en_us/documents/products-solutions/sdn-

101-an-introduction-to-software-defined-networking.pdf

[20] OpenFlow: The next generation in networking interoperability”, white paper,

May 2011

[21] OpenFlow Controller http://searchsdn.techtarget.com/definition/OpenFlow-

controller

[22] Open-Source software for building Software defined networks

http://www.projectfloodlight.org/floodlight/

http://www.webopedia.com/TERM/C/CDN.html
https://technet.microsoft.com/en-us/library/cc754435(v=ws.11).aspx
http://searchsdn.techtarget.com/definition/software-defined-networking-SDN
http://searchsdn.techtarget.com/definition/software-defined-networking-SDN
https://www.citrix.com/content/dam/citrix/en_us/documents/products-solutions/sdn-101-an-introduction-to-software-defined-networking.pdf
https://www.citrix.com/content/dam/citrix/en_us/documents/products-solutions/sdn-101-an-introduction-to-software-defined-networking.pdf
http://searchsdn.techtarget.com/definition/OpenFlow-controller
http://searchsdn.techtarget.com/definition/OpenFlow-controller
http://www.projectfloodlight.org/floodlight/

39

[23] Guillermo Romero de Tejada Muntaner "Evaluation of OpenFlow Controllers"

October 15, 2012

[24] "OpenFlow Switch Specification", Version 1.0.0 (Wire Protocol 0x01), December 31,

2009. http://archive.openflow.org/documents/openflow-spec-v1.0.0.pdf

[25] "Open Networking Foundation" https://www.opennetworking.org/sdn-openflow-

products

[26] https://www.akamai.com/us/en/resources/vod-server.jsp

[27] https://www.sdxcentral.com/sdn/definitions/sdn-controllers/openflow-controller/

[28] Open-Source Routing and Network Simulation: Using the POX SDN Controller

http://www.brianlinkletter.com/using-the-pox-sdn-controller/

[29] M. McCauley, /, November, 2013 http://www.noxrepo.org

[30]https://www.sdxcentral.com/sdn/resources/sdn-controllers/opendaylight-controller/

[31] http://mininet.org/

http://archive.openflow.org/documents/openflow-spec-v1.0.0.pdf
https://www.opennetworking.org/sdn-openflow-products
https://www.opennetworking.org/sdn-openflow-products
https://www.akamai.com/us/en/resources/vod-server.jsp
https://www.sdxcentral.com/sdn/definitions/sdn-controllers/openflow-controller/
http://www.brianlinkletter.com/using-the-pox-sdn-controller/
http://www.noxrepo.org/
https://www.sdxcentral.com/sdn/resources/sdn-controllers/opendaylight-controller/
http://mininet.org/

40

APPENDIX: SOME OF THE IMPLEMENTATION CODES AND CODES FUNCTIONALITIES

CODE FILES

Code Files Explanations

1-start-controller-

opencache.sh

Starting the opencache controller (OCC) which runs on the

main computer

2-start-opencache-node.sh Starting the opencahe node (OCN) which is run in the

`ocn` node in mininet

3-start-mongodb.sh Starting the database of mongodb for ocn and occ

4-start-floodlight.sh Starting the floodlight OpenFlow controller on the main

computer. It runs floodlight module `webservice` for

connecting with opencache controller and

`forwarding.hub` to make the switch run as normal when

no traffic is redirected to OCN

6-start-console-opencache.sh Starting the console of opencache controller to add and

remove the caching of an IP video-on-demand(VOD) the

opencache

7-start-scenario-mininet.sh Starting the mininet scenario based configuration in

`scenario_topology_open_cache.py`

8-start-client.sh Run by the user inside to simulate the scenario a user

requesting a video to VOD

9-start-httpserver.sh Run inside VOD server to simulate a video-on-demand

functionality

1-start-controller-opencache.sh

#!/usr/bin/env bash

pushd broadbent-opencache/

41

sudo python ./opencache.py -c --config=config/controller.conf

popd

2-start-opencache-node.sh

#!/usr/bin/env bash

mkdir /data

mkdir /data/db/

mongod --quiet --logpath /dev/null &

pushd broadbent-opencache/

python ./opencache.py -n --config=config/node.conf

popd

3-start-mongodb.sh

#!/usr/bin/env bash

mongod --dbpath=/var/lib/mongoDB

4-start-floodlight.sh

#!/usr/bin/env bash

pushd floodlight

java -jar floodlightV1.2.jar -cf floodlight.properties

popd

6-start-console-opencache.sh

#!/usr/bin/env bash

42

python ./broadbent-opencache/console/console.py

7-start-scenario-mininet.sh

#!/usr/bin/env bash

sudo python topology/scenario_topology_open_cache.py

8-start-client.sh

#!/usr/bin/env bash

pushd file_client

wget http://10.0.0.200/sample.mp4

ls

rm sample.mp4

popd

9-start-httpserver.sh

#!/usr/bin/env bash

pushd file_server

python -m SimpleHTTPServer 80

popd

CODE for SCENARIO TOPOLOGY

def scenario_topology_open_cache():

 net = Mininet(topo=None,

 build=False,

43

 ipBase='10.0.0.0/8')

 info('*** Adding controller\n')

 ofc=net.addController(name='ofc', controller=RemoteController,

 ip='127.0.0.1',

 protocol='tcp',

 port=6633)

 info('*** Add switches\n')

 switchlegacy = net.addSwitch('s1', cls=OVSKernelSwitch, failMode='standalone')

 switchOf = net.addSwitch('s2', cls=OVSKernelSwitch, protocols='OpenFlow13' , dpid='1')

 #switchOf = net.addSwitch('s2', cls=OVSKernelSwitch, dpid='1')

 info('*** Add hosts\n')

 user = net.addHost('user', cls=Host, ip='10.0.0.1', defaultRoute=None)

 vod = net.addHost('vod', cls=Host, ip='10.0.0.200', defaultRoute=None) #video on-demand

server

 ocn = net.addHost('ocn', cls=Host, ip='10.0.0.50', defaultRoute="10.0.0.150") #open cache

node

 info('*** Add links\n')

 net.addLink(user, switchOf, port2=1)

 net.addLink(vod, switchOf, port2=2)

 # net.addLink(ocn, switchOf, port2=3)

44

 Link(ocn, switchOf, intfName1='ocn-eth0')

 # net.addLink(ocn, switchlegacy)

 Link(ocn, switchlegacy, intfName1='ocn-eth1')

 ocn.cmd('ifconfig ocn-eth1 10.0.10.50 netmask 255.255.255.0')

 occ = net.addNAT(name="occ", connect=switchlegacy, ip="10.0.10.150")

 info('*** Starting network\n')

 net.build()

 info('*** Starting controllers\n')

 for controller in net.controllers:

 controller.start()

 info('*** Starting switches\n')

 net.get('s1').start([])

 net.get('s2').start([ofc])

 info('*** Post configure switches and hosts\n')

 CLI(net)

 net.stop()

if __name__ == '__main__':

 setLogLevel('info')

 scenario_topology_open_cache()

45

CODE for opencachemongodb.py - Manages the state of the node contents using a MongoDB

TAG = 'state'

class State:

"""Initialise state instance with useful objects.

 Instantiated controller and configuration objects are passed for use within this instance.

 Try connecting to the database. Continue to do so until database information is returned

 (and the connection is therefore successful).

 """

 def __init__(self, node):

 self._node = node

 database_test = None

 while (database_test == None):

 try:

 self._client = pymongo.MongoClient(self._node.config['database_host'],

int(self._node.config['database_port']))

 self._database = self._client[self._node.config['database_name']]

 database_test = self._database.command("serverStatus")

 except Exception as e:

46

 self._node.print_warn(TAG, "Could not connect to MongoDB database, retrying in 15

seconds.")

 time.sleep(15)

 def create(self, document):

 # return self._database.content.insert_one(document, upsert=True)

 # print document

 result = self._database.content.insert_one(document)

 # pymongo.MongoClient()[].get_collection().insert()

 return result

 def remove(self, document):

 return self._database.content.remove(document)

 def lookup(self, document):

 result = self._database.content.find(document)

 result_obj = []

 for test in result:

 result_obj.append(test)

 return result_obj

Code for opencachelib.py: Core OpenCache functionality shared between controller and node.

TAG = "lib"

47

def setup_logger(log_path, name, verbosity):

 """Setup logging functionality to both console and a rotating log file."""

 logger = logging.getLogger('opencache')

 logger.setLevel(logging.DEBUG)

 create_directory(log_path)

 try:

 fh = logging.handlers.RotatingFileHandler(log_path + name + ".log",

maxBytes=1073741824)

 except IOError:

 fh = logging.handlers.RotatingFileHandler('node.log', maxBytes=1073741824)

 fh.setLevel(logging.DEBUG)

 ch = logging.StreamHandler()

 ch.setLevel(logging.DEBUG)

 formatter = logging.Formatter('[%(asctime)s][%(levelname)s]%(message)s')

 ch.setFormatter(formatter)

 fh.setFormatter(formatter)

 logger.addHandler(ch)

 logger.addHandler(fh)

 logger.verbosity = verbosity

 return logger

48

def create_directory(path):

 """Create a new directory if it doesn't exist."""

 while not os.path.isdir(path):

 try:

 os.makedirs(path)

 except Exception:

 raise

def delete_directory(path):

 """Removed an existing directory used for storing cached content specific to this HTTP

server's expression."""

 if os.path.isdir(path):

 try:

 shutil.rmtree(path)

 except Exception:

 raise

def expr_split(expr):

 expr_split = expr.split("/", 1)

 root = expr_split[0]

 try:

49

 path = expr_split[1]

 except Exception:

 path = ''

 return root, path

def log_debug(tag, string):

 """Print a formatted error message if verbosity level permits."""

 logger = logging.getLogger('opencache')

 if int(logger.verbosity) >= 4:

 logger.debug("[" + tag + "] " + string)

def log_info(tag, string):

 """Print a formatted information message if verbosity level permits."""

 logger = logging.getLogger('opencache')

 if int(logger.verbosity) >= 3:

 logger.info("[" + tag + "] " + string)

def log_warn(tag, string):

 """Print a formatted warning message if verbosity level permits."""

 logger = logging.getLogger('opencache')

50

 if int(logger.verbosity) >= 2:

 logger.warn("[" + tag + "] " + string)

def log_error(tag, string):

 """Print a formatted error message if verbosity level permits."""

 logger = logging.getLogger('opencache')

 if (logger.verbosity) >= 1:

 logger.error("[" + tag + "] " + string)

def load_config(config, parser):

 """Load configuration settings from the configuration file"""

 for name, value in parser.items('config'):

 config[name] = value

 return config

def do_json_rpc_post(_id, method, host, port, _input=None):

 """Format JSON request as JSON-RPC with HTTP POST."""

 if _input==None:

 try:

 post_data = json.dumps({"id":_id, "method":method, "jsonrpc":"2.0"})

51

 return do_json_post(host=host, port=port, post_data=post_data)

 except Exception as exception:

 log_error(TAG, "Could not encode JSON: %s" % exception)

 else:

 try:

 post_data = json.dumps({"id":_id, "method":method, "params":_input, "jsonrpc":"2.0"})

 return do_json_post(host=host, port=port, post_data=post_data)

 except Exception as exception:

 log_error(TAG, "Could not encode JSON: %s" % exception)

def do_json_rest_post(host, port, _json, path):

 """Format JSON request as REST with HTTP POST."""

 try:

 return do_json_post(host=host, port=port, post_data=_json, path=path)

 except Exception as exception:

 log_error(TAG, "Could not encode JSON: %s" % exception)

def do_json_rest_delete(host, port, _json, path):

 """Format JSON request as REST with HTTP DELETE."""

 conn = httplib.HTTPConnection(host + ':' + port)

52

 conn.request('DELETE', path, _json)

 resp = conn.getresponse()

 content = resp.read()

 return content

def do_json_post(host, port, post_data, path=None):

 """Make a JSON call to given destination."""

 httplib.HTTPConnection._http_vsn = 10

 httplib.HTTPConnection._http_vsn_str = 'HTTP/1.0'

 if path == None:

 url = "http://%s:%s" % (host, port)

 try:

 response_data = urllib2.urlopen(url, post_data, 30).read()

 try:

 response_json = json.loads(response_data)

 return response_json

 except Exception as exception:

 log_error(TAG, "Could not decode JSON from response: %s" % exception)

 except Exception as exception:

 log_error(TAG, "Could not connect to %s:%s: %s" % (host, port, exception))

53

 raise

 else:

 url = "http://%s:%s%s" % (host, port, path)

 try:

 response_data = urllib2.urlopen(url, post_data, 30).read()

 try:

 response_json = json.loads(response_data)

 return response_json

 except Exception as exception:

 log_error(TAG, "Could not decode JSON from response: %s" % exception)

 except IOError as exception:

 log_error(TAG, "Could not connect: %s" % exception)

 raise

def send_json_rpc_result(JSONHandler, request_id, result):

 """Send JSON result message in response to successful call."""

 JSONHandler.send_response(200)

 JSONHandler.send_header("Content-type", 'application/json')

 JSONHandler.end_headers()

 try:

 message = json.dumps({"id":request_id, "result":result, "jsonrpc":"2.0"})

54

 except Exception as exception:

 log_error(TAG, "Could not encode JSON: %s" % exception)

 JSONHandler.wfile.flush()

 JSONHandler.wfile.write(message + '\n\r\n')

 JSONHandler.wfile.flush()

 JSONHandler.wfile.close()

 return

def send_json_rpc_error(JSONHandler, request_id, code, data=None):

 """Send JSON error message in response to failed call."""

 error = {}

 error["code"] = code

 if code == '-32700':

 error["message"] = 'Parse error'

 elif code == '-32600':

 error["message"] = 'Invalid Request'

 elif code == '-32601':

 error["message"] = 'Method not found'

 elif code == '-32602':

 error["message"] = 'Invalid params'

55

 elif code == '-32603':

 error["message"] = 'Internal error'

 JSONHandler.send_response(200)

 JSONHandler.end_headers()

 if data != None:

 error["data"] = str(data)

 message = json.dumps({"id":request_id, "error":error, "jsonrpc":"2.0"})

 JSONHandler.wfile.write(message)

 JSONHandler.wfile.close()

class RemoteProcedureCallError(Exception):

 def __init__(self, data, code):

 self.data = data

 self.code = code

 def __str__(self):

 return repr(self.data)

