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Abstract

This thesis is concerned with the design and implementation of a distributed
simulation testbed for queueing networks. A distributed simulator was im-
plemented using the simulation package LANSF. Two implementations were
made. The first implementation corresponds to the Chandy and Misra
paradigm for distributed simulation. The second implementation presents a
new distributed algorithm that introduces the novel concept of a two-colored
NULL message.

In the experiments, 18 different network topologies were investigated and
simulation experiments were carried out on a MIPS M/1000 machine running
UMIPS-BSD. Different varyirng factors were taken into considerc*tn for the
experiments: inter-arrival time, processing delay, communication delay and
nuriber of messages transmitted.

The results of both implementations were compared with other stud-
ies using the following performance metrics: speedup, degree of parallelism

achieved and null/real messages transmission ratio.



The simulation experiments demonstrated that the performance of the
considered distributed simulation algorithm is sensitive to the structure of the
topology being simulated and some factors characterizing the traffic intensity.

A characterization of this sensivity is presented.
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Chapter 1

Introduction

1.1 Motivation

Simulation plays a strategic role in many fields today. Most of the products
we use every day, have been designed with the help of simulation techniques.
The understanding of complex phenomena such as weather forecasting or oil
reservoir modeling is possible through the use of simulation programs.
Analytical modeling can be used to study the behavior of physical sys-
tems. However, a model constructed and analyzed with analytical methods
is usually a simplified one in order to make it tractable. The other system
modeling technique is called simulation. Simulation is more flexible than an-
alytical modeling. The majority of interesting problems today are tractable

by simulation only.



Simulation can take two approaches: the traditional approach is called
sequential simulation and the newer approach is known as distributed simu-
lation. The idea of distributed simulation was first proposed in 1977 by K. M.
Chandy at the University of Waterloo, and was also proposed independently
by R. E. Bryant [Bry77].

What is distributed simulation? It is a technique used to simulate a

physical system and consists of three components (see Figure 1.1).

IMPLEMENTATION

i

LOGICAL SYSTEM

!

PHYSICAL SYSTEM

Figure 1.1: Components of distributed simulation

A physical system is defined by a set of components. For example, in a
car wash, the arriving cars, and the car wash machine are the components.
These components are known as physical processes (PPs).

Once the PPs have been identified in the physical system, a mapping

operation has to be performed. We map the physical system into a logical

(8]



system. The logical system decomposes the physical system into autonomous
processes that communicate via message passing. These autonomous pro-
cesses are called logical processes (LPs). The idea is that each LP will be
simulated by a different processor. There are different types of LPs as we
will define in Chapter 2.

The implementation component is a simulation program that, based on
the logical system, reflects the essential features of the physical system. The
simulation program can run in a uniprocessor or in a parallel computer as
long as the language allows inter-process communication [Mis86).

The main problems with distributed simulation are avoiding deadlock
and insuring that causality constraints are not violated. Chandy and Misra
[CM79] proposed an algorithm to solve these two problems. The algorithm
uses NULL messages and is described in detail in Chapter 3.

The use of NULL messages causes overhead in the system being simu-
lated. In Chapter 4 we introduce a new algorithm that requires additional
information to be encoded in a message. The goal of the new algorithm is to
reduce the number of NULL messages transmitted in the network. The main
questions this thesis investigates are: What kind of networks are suitable
for simulation in a distributed environment within the deadlock avoidance
paradigm? Can we improve the speed of the sequential simulation algorithm

by distributing tasks among different processors?



1.2 Thesis Objectives and Outline

This work is about the design and implementation of a distributed simulation
testbed of queueing networks. We are interested in decomposing a given
system into subsystems and simulating each subsystem in a single processor.
There are very few empirical studies related to distributed simulation [Lak87,
RF87, Sam85, Fuj88, Won88].

In this thesis, we report on experiments in which different factors that

affect the performance of the distributed simulation approach varied:

o Topologies of the simulated system
o Inter-arrival time of transactions
o Processing delay

¢ Communication delay

The simulation techniques are compared with respect to the following

measures:

e Speedup
o Degree of Parallelism

¢ Number of NULL messages transmitted



A distributed simulator was implemented using the simulation package
LANSF [GR88¢] to find out about the relationship among the factors men-
tioned above.

The outline of this thesis is as follows. In Chapter 2 we present a survey of
simulation techniques. We discuss the sequential simulation algorithm and a
basic distributed scheme. A brief survey of distributed simulation strategies
is also included.

Chapter 3 contains a description of the deadlock avoidance paradigm for
distributed simulation proposed by Chandy and Misra.

Chapter 4 introduces a new distributed algorithm: two-colored NULL
messages. We define what changes have to be made to the Chandy and
Misra algorithm presented in Chapter 3.

Chapter 5 describes the implementation details considered for the dis-
tributed simulator. We present a brief introduction to LANSF and provide
an operational description of the different LPs implemented under LANSF.

Chapter 6 presents the results obtained for the two distributed simulation
methods of Chapter 3 and Chapter 4. Eighteen different topologies were
studied. To make the comparisons easier, we took many topologies from
existing literature [Lak87, RMMS8].

The last chapter summarizes the results obtained frevn the simulation
experiments and presents some directions of future research for distributed

simulation.



Chapter 2

Distributed Simulation

2.1 Introduction

This chapter presents a survey of simulation techniques. We also discuss
how a sequential simulation differs from a distributed one. The general in-
formation is given in section 2.2. Section 2.3 describes the algorithm used in
sequential simulation. Section 2.4 presents a basic distributed scheme found
in most distributed simulation strategies. Section 2.5 provides a brief survey

of distributed simulation techniques.



2.2 What is Simulation ?

A simulation program is a model of a physical system. A model has to
reflect the essential featur.s of interest of the physical system. An example
of such a physical system could be an assembly line in a manufacturing plant
or a computer communications network.

A simulation model can be used to predict how the physical system be-

haves under different working conditions.

2.2.1 System Modeling and Analysis

The methods widely used for system modeling and analysis are analytic mod-
eling and simulation. When the physical system to be investigated is not
very complex, analytic modeling can be used effectively. However, this ap-
proach is limited, because a number of restrictions have to be satisfied to

keep the ~ndel mathematically tractable. On the other hand, in principle,

simula - ~lel a physical system as closely as required.
The . - very detailed simulation models is that they are com-
putational;_ -usive. For example, simulation of complex VLSI digital

circuits for logic verification and fault analysis consume months of machine
time [FWW&g4].
Models of many interesting physical systems are analytically intractable

and simulation seems to be the only viable alternative to study these systems.



2.2.2 Simulation Methodology

A simulation methodology is needed to study the behaviour of a system. In

a major.gy of cases, the user of a simulation program is also the simulation

designe - and :ften also the implementer. The current trend is that the user

Oi awiii. . .on program is a professional with functional expertise in the area

being studied [MP86].

The simulation methodology described in [MP86] and [Nan84] consists of

the following phases :

1.

o

Problem definition
Analysis of the system to be simulated and a statement of the objectives

of the model.

Construction of a simulation model

This model should reflect the principal features of the system.

Data collection
This is needed to validate the model and to use the model for experi-

mentation.

Implementation of a simulation program
This phase not only includes the coding of the program, but also the
design and implementation of the user interface, the output reports,

and the file or data base structure to be used.

%



5. Integration and test
This phase combines the software units and verifies that they work as

specified in the design.

6. Validation
The last phase verifies that the behavior of the constructed simulator

mimics, as closely as required, the system being modeled.

2.2.3 Classification of Simulations

Simulations can be classified into two different groups: discrete event simu-
lations and continuous event simulation [Kum86]. These approaches differ
in their definition of how state transitions occur in time. A state transition is
a change in the state of the model. In a discrete event simulation transitions
occur at discrete points in time. Conversely, in a continuous event simulation
model transitions occur “all of the time” and usually the system is described
by a set of differential equations. In both cases multiple transitions may
occur at the same instant in time. We will only consider discrete models in

the sequel.



2.3 Sequential Simulation

Traditional simulation has an inherently sequential nature. A variable clock
determines the time up to which the physical system has been simulated
[Mis86]. An event list is maintained; it contains the events to be processed
by the simulator. The events are ordered according to their non-decreasing
time of occurrence. The sequential simulation algorithm works as follows:
the head of the event list is removed, the event simulated and the simulation
clock is updated, increasing the simulated time. This may cause new events
to be added to the event list. Only the first item from the event list is
removed in each iteration of the algorithm. It may be seen as a disadvantage
because it is not possible to partition the event list and perform a concurrent
execution on a multicomputer network. We will see in the next sections how
the event list can be “distributed” in order to exploit the benefits of parallel
processing.

The implementation of the event list affects the performance of the se-
quential simulation approach. McCormac and Sargent [MSS81] performed an
empirical study of 12 different algorithms for managing the event queue in
discrete event simulations. The algorithms showed performance to be de-
pendent on the physical system being modeled. For example, in models of
telecommunication systems, the runtime ratio between different algorithms

can differ as much as 5:1 [Hen83]. Empirical evidence suggests that splay

10



trees are one of the best approaches for implementing an event list [Jon86].
A survey of sequential simulation languages can be found in [Fra77] and

[Mis86].

2.4 Distributed Simulation

2.4.1 The Causality Principle

Consider a physical system such as the car wash in Figure 2.1.

|Bh IAE—D v?g‘é‘H ———»Cb

lDb |ch——-> VS,Q?H —»[:5

Figure 2.1: A physical system

When a car arrives, it waits in line until the car ahead has been washed.
If the car wash is not servicing any car, then the car that arrives is serviced
immediately.

Physical systems always obey the causality principle : the future can
not affect the past. For example, in Figure 2.1 car B can not be serviced

before car A. Car B depends on car A, but car A does not depend on car

11



B. Causality imposes a partial ordering of events in the physical system. In
other words, the cause must always precede the effect. Events that have no
dependencies do not have to occur at any specific order in time. Then, we
have a partial ordering of events caused by the causality principle.

In sequential simulation, causality is accomplished by maintaining a pri-
ority queue of events. The event with the smallest timestamp is removed frum
the queue, simulated, and as a result, new events may have to be scheduled.
These events are inserted in the event queue according to their time of occur-
rence. However, if we would like to run a simulation on multiple processors,
insuring that causality constraints are not violated is a more difficult task.
Many events are scheduled and executed in parallel. This is one of the core

problems in distributed simulation.

2.4.2 A Basic Scheme for Distributed Simulation

The sequential nature of {raditional simulation imposes a limitation on the
study of complex systems: computational requirements are too costly. How
can we improve the speed of the sequential simulation algorithm? Several
techniques have been proposed: vectorization techniques [CB83], dedicated
processors to perform specific simulation functions [Com84], execution of
parallel independent replications on separate processors [Bil85, Hei88], and

the development of parallel algorithms on a multicomputer network. To



benefit from the parallel algorithms, the physical system has to be:

1. Decomposed into autonomous processes that communicate only via

message passingl.
2. Simulate each subsystem on a different processor.

This technique is called distributed simulation [Mis86)] and the set of com-
municating processes performing the simulation is called a distributed simu-
lator.

A natural way of mapping a physical system—or queueing network—into
a distributed simulator is to have a 1-1 correspondence between a process
and a single physical server—the physical server includes the associated input
queue. Each physical process is modeled by a logical process. The logical
processes are interconnected according to the topology of the physical system
being simulated.

The following kinds of logical processes are commonly used: source, delay,
branch, merge, and sink processes (Figure 2.2).

The function performed by each of these process types is as follows:

o The source process generates jobs with an arrival rate and distribution

which reflects the properties of the physical system.

!The communication could be performed through the use of shared variables, too.
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source delay

~ <

merge sink

Figure 2.2: Basic logical processes

¢ The delay process receives a job, simulates a finite service time, and
outputs a new job. The distribution of the service time is dependent

on the physical server the delay node is modeling.

o The branch process selects one of the several output links to transmit

the job.

o The merge process receives several input jobs, selects the one with the
smallest timestamp, and outputs a new job. This process waits until

all the input links have received jobs before performing the selection.

o The sink process receives jobs only.

The events of the physical system are modeled as transmissions of mes-

sages in the logical system. For example, jobs will enter the system from a
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source process according to certain distribution of arrivals. These jobs (mes-
sages) will be received by other servers, get processed, and transmitted to
other servers in the system. Finally, a job will leave the system when it is
sent to a sink process (see Figure 2.3 ).

Each message is a pair of the form (¢,m). The first element, ¢, is a
timestamp indicating the time when a message was sent. The second element,
m, codes the information carried by the message. In Figure 2.3 (Tb, Mb)
represents the arrival of car b and (Ta, Ma) represents the departure of car
a from the car wash. Propagation delays can always be modeled by adding

more delay nodes, or by changing the job duration value.

CAR
b b > WASH '.

[> (Tb, Mb) O (Ta, Ma) Q

source server sink

Figure 2.3: A physical system mapped into a logical system

Now, we define a basic scheme for distributed simulation that underlies

most of the simulation schemes proposed in the literature [Lak87]. The pro-
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cessors in the distributed system repeat the cycle defined in Figure 2.4.

WHILE termination criterion is not met DO
WAIT until a message is received on all
input lines
SIMULATE the service for the earliest job
COLLECT statistics
OUTPUT message(s) in output line(s)
ENDWHILE

- — —— - — - - Y T S - - - - -

Figure 2.4: Basic algorithm for a single process in a distributed simulation

2.4.3 Global Clocks vs Distributed Clocks

It is natural to partition the system and map each physical process into a
logical process. However, mapping the physical time to logical timestamps
is more difficult.

In sequential simulation, time is simulated by a global clock. Causal-
ity constraints are not violated since events are processed according to their
timestamp. The next event to be processed is the one with the smallest
timestamp. This serialization has to be eliminated if we want to take advan-
tage of parallel processing. Events that do not depend on each other can be
executed concurrently.

How can we replace the global clock by a distributed one? There are

two approaches to this problem. The first approach is called time driven
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simulation. A global clock is used to advance one tick in every step, and all
events scheduled at that time are simulated. This approach is practical in
situations where the number of events per unit of simulated time is high.

The second approach is the so—called event driven method. Each logical
process has its own local clock. The local clocks are advanced to simulate
events in the physical system. Clocks in different processes may differ at
any point of simulation. The fundamental problem with this approach is
to ensure that causality constraints are not violated. We can consider each
process as a subsystem that has local causality constraints. Each logical
process inputs timestamped messages from other neighboring processes. If
messages arriving from these processes are processed in increasing timestamp
order, then the local causality constraint will never be violated.

Communication between processes is done exclusively through times-
tamped messages. Processes do not share any variables. The causality
constraint problem is solved if each process guarantees not to violate the
local causality constraint [RF87]. When a process has a message to be pro-
cessed, it has to decide if it needs to wait for other messages, on the other
input links. It compares the timestamp from all the messages and picks the
smallest one. This is needed to ensure that messages are processed in the
correct order.

The problem with the basic scheme of Figure 2.4 is that it may deadlock,

as we show in the following modified example taken from [CHM79]. Consider
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the distributed system depicted in Figure 2.5.

Suppose that messages from the source are transmitted every 5 time units
and that they follow the ABD path. When a delay node receives a message,
it simulates a job of 1 second duration. We will assume the propagation
delay to be 0. The communication protocol used by the processes works as
follows: a message is transmitted only if the sender is ready to transmit and
the receiver is ready to receive a message. We assume that channels do not

have buffers.
¢ Step a. The source process sends the first message: (5,m1).

o Step b. Process A receives (5,ml); this message is transmitted to

process B.

¢ Step c. The source process generates a second message: (10,m2);

process B simulates one unit of time and outputs (6,m1) to process D.

o Step d. (10,m2) is transmitted to process B. We notice that process

D can not process (6,m1), since it has to have messages on both input

links.

o Step e. The source process generates a third message: (15,m3). How-
ever, process A can not send (15,m3) to process B. Process B is not
ready to receive a message. Because messages will never flow through

process C, process D will be waiting forever. Process B will be waiting



for D to be ready to receive, and process A will be waiting for B to be
ready to receive. The source is unable to send messages to process A,
because process A will never be ready to receive. The simulator will
not be able to advance and deadlock results. If we change the protocol
when the incomming messages are buffered, there will be no deadlock

but the memory requirement will be very high.

Several distributed simulation strategies have been proposed to solve
the core problems of causality constraints and deadlock resolution as

we will explain in the following section.
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(10;m2)
(15,m3)

Figure 2.5: A distributed system that deadlocks



2.5 Overview of Distributed Simulation
Strategies

The idea of distributed simulation was initially proposed by Chandy in 1977
in a series of lectures at the University of Waterloo, and was also proposed
independently by R. E. Bryant [Bry77]. Bryant’s work assumes an infinite
buffer simulation model.

Chandy and Misra [CM79, CHMT79) proposed a deadlock avoidance ap-
proach based on NULL messages to prevent deadlock. The major drawback
of this technique is the overhead produced by the transmission of NULL
messages. This scheme will be described in detail in the following chapter.

Chandy and Misra’s ideas were significantly developed and extended by
e Computer and Communication Networks Group at the University of
Waterloo: Peacock, Manning and Wong [PWM79, PMW80] proposed algo-
rithms for event-driven simulation with a network of processors. Examples of
these algorithms are the virtual ring algorithm and the link-time algorithm.
These algorithms use a central controller to broadcast a signal to every other
component, in order to indicate the end of a simulation interval.

Holmes [Hol78] designed parallel algorithms for discrete event simulations
of feedforward networks using probe messages. Probe messages were sent out
to collect status information of processes and detect a deadlock situation. He

suggests a method for allocating processors to servers, in order to optimize
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processor utilization.

Seetha Lakshmi’s [Lak87] performance study uses Chandy and Misra’s
deadlock avoidance scheme with the introduction of limited in size buffers
on each communication line between processors. We will make a comparison
with this study in Chapter 6.

In 1981, Chandy and Misra [CM81] proposed another distributed scheme
for deadlock detection and recovery. A distributed algorithm proposed by
Dijkstra and Scholten [DS80] is used as the basis for deadlock detection.
The distributed simulator is allowed to deadlock using this technique. Sep-
arate mechanisms are needed to identify and break the deadlock situation.
The strategy is composed of a sequence of parallel steps : 1) Simulate until
deadlock. 2) Detect the deadlock. 3) Resolve the deadlock and return to
step 1. There is a central controlle. process who manages the transition from
one phase to the next.

Jefferson and Sowizral [Jef85, JS85] proposed the Time Warp strat-
egy. This scheme is more liberal thian the previous conservative approaches.
Processes are allowed to advance local clocks as rapidly as possible. When
the causality principle is violated, i.e. an error does happen, the processes
roll back their computations to a point in simulated time before the error.
Processes continue computations until an error is detected again. Lavenberg
[LMS83], Samadi [Sam85], and Wong [Wen88] reported performance studies

“of this method.

N
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Kumar [Kum86] suggests a new scheme to simulate feedforward networks
and offers efficient algorithms for the related problems of termination de-
tection and sequential simulation, based on Chandy and Misra’s work. The
emphasis in Kumar’s work is on reducing the overhead produced by NULL
messages. An analytic method to predict the performance of the algorithm
is presented and verified via simulation,

Reed, Malony and McCreedie [Ree85, RMMS88] provide an empirical
study of data, measuring the performance of specific implementations of
Chandy and Misra’s deadlock avoidance and deadlock detection and recov-
ery schemes. The study was performed in a shared memory environment
and concluded that the conservaiive approaches performed poorly for dif-
ferent network topologies, with the exception of tandem networks. Tandem
networks are a set of processors connected in a pipeline fashion (see Figure
2.6). These results however are not surprising, accessing the shared memory

was a bottleneck.

>—O—O—0—

Figure 2.6: A tandem network

Lubachevsky [Lub88] presents a new distributed algorithm to simulate

asynchronous multiple loop networks. The algorithm achieves substantial
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speed-ups compared to the sequential simulation algorithm in simulating a
toroidal network: 16 times faster using 25 processing elements (PEs) on a
shared memory MIMD computer, and 1900 times faster using 2'* PEs on a
SIMD computer.

A good survey of distributed simulation, can be found in [Mis86] and

[Kau88).



Chapter 3

Avoiding Deadlock in

Distributed Simulation

3.1 Introduction

This chapter presents a detailed descrip. : of the deadlock avoidance
paradigm for distributed simulation. The algorithm was first proposed by
Chandy and Misra [CM79].

This chapter is organized in 7 sections. Section 3.2 contains the assump-
tions to consider for the behavior of the logical processes and the parallel
computer used. Section 3.3 introduces the notation that will be used in de-
scribing the algorithm. In section 3.4 we present the operational details of

the three phases that compose the algorithm: selection phase, computation
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phase and the input/output phase. Section 3.5 defines the notation used in
parallel programs. In section 3.6 we use this notation along with pseudocode
to specify the operation of the basic logical processes: delay, branch and
merge. Section 3.7 explains how the interconnection between processes takes
place in the logical system and presents Hoare’s synchronous protocol as the

communication protocol used by the logical processes.

3.2 Assumptions

We start by giving an informal - «ription of the algorithm. A more detailed
description follows in the next sections.

In the previous chapter we presented an example that deadlocked (see
Figure 2.5). How can process D continue processing messages if it has to
have messages or all incoming input lines and one input line is starved? The
solution is to send a NULL message from process A to process C. When
process A—-a branch process— receives a message, the message is serviced,
and a new message is output to process B. Now, we require that, besides this
message, another message is sent to process C, a NULL message. This NULL
message contains the same timestamp as the real message sent to process B.

NULL messages are needed to avoid deadlock. Process D will be able to



process messages without having to wait forever on both of its input links.

(11,NULL)

[

Figure 3.1: A distributed system without deadlock
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NULL messages are not a part of the physical system, but they are needed
to keep the logical processes working. Figure 3.1 shows the steps required to
send NULL messages in the distributed system.

In the discussion that follows, we consider the following assumptions:

¢ Messages sent from one process to another arrive in the same order as

they were sent.

e Messages are transmitted through the network without error. In other

words, retransmissions are never required.

® A process sends timestamped messages to neighboring processes. These

timestamps form a nondecreasing sequence.

O<tg<ip<...<tg < Z

We are simulating the system for a period of time [0, Z], where Z is

referred to as the termination time.

o All computation occurs as the result of processing a received message.
There are no “magic” processes which spontaneously generate messages

—aside from the source process.

e Some time must elapse after a process sends one message before it sends

another one on the same line.

tp—tre1>€ for k=2,..., K

[
o



® The output of a process at time ¢ depends solely upon the messages

received by the process at or before t.

3.3 Notation

We present the notation used to dcscribe the algorithm:

e We are interested in simulating a physical system composed of pro-

cesses. Such processes are called physical processes (PP).

e The physical system is mapped into a logical system. Each PP is

mapped to a logical process LP.

e Interactions between processes in the physical system are modeled as
the transmissions of messages in the logical system. LPs transmit mes-
sages that are tuples of the form (t,m). The first element, ¢, is the
timestamp of the message; the second element is the actual message or

it is a special message denoted as the NULL message.

® TINy; is defined as the channel clock value for the last message re-
ceived from LP; by LP;. TOUT;; is the channel clock value for the last
message transmitted by LP; to LP;. The channel clock value indicates
the time up to which the logical processes have simulated interactions

between the corresponding physical processes.



e T; is the clock value of LP; and is defined as

T; =min (TINy, TOUT}).

a,k
T; reflects the time up to which LP; has simulated PP;.

o L;;(t) is the lookahead function for communications between LP; and
LP;. When LP; receives a message, it has to predict when this message
will be output. The process has to determine the timestamp of the
next message to be sent to LP;, assuming it has received all incoming

messages with timestamp of ¢ or less.

o LINKCLOCK;; is a variable associated with the link between LP;
and LP;; its value indicates a lower bound on the timestamp of any
future message that can be transmitted over the link. LINCLOCK;;

is defined as
LINI&’CLOCI{;jzijxl TIN,; + L,-j(mkin TIN;).

LP; can determine all messages transmitted to LP; up to time

INKCLOCK;;. TOUT;; is updated whenever a message is trans-
mitted from LP; to LP;. LINKCLOCK;; is affected when a message
is received by LP;.



The processors in the logical system repeat the following cycle, composed
of three phases described in detail below, until the termination criterion is

met :

1. Selection Phase. Selects input and output links on which I/O op-
erations will be carried out in parallel. NEXT; is defined as the set
of processors on which LP; is to perform the I/O operations. NEXT;

may contain input lines and/or output lines.

v

Computation Phase. For each output link in NEXT;, determine
the next message to be sent on that link. The next message can be a
rea] message modeling au interaction in the physical system or a NULL

message, required to avoid deadlock.

3. I/O Phase. Perform the input/output operations for all links in

NEXT:.

3.4 Phases of the Algorithm

The Chandy and Misra algorithm is correct, deadlock free, and terminates

properly [CMT79]. Each of the phases is explained now in detail.
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3.4.1 The Selection Phase

LP; selects the set of input and output links in NEXT; on which the I/O

operations will be performed next.
NEXT; = {k | TINy = T;}u{j | TOUT;; = T,ALINKCLOCK;; > TOUT4%j}.

NEXT; contains all input and output links of LP; whose clock value
equals the clock value of LP,. NEXT; is defined in such a way that after
the I/O operations are computed, the clock value of LP; increases to the

minimum value between TINy; and TOUT;;.

3.4.2 The Computation Phase

The computation phase decides what messages will be sent on each output
link in NEXT;. If NEXT; contains only input links, then LP; does not
perform computations in this phase. The selection phase specifies that all
messages with timestamp LINK CLOCK;; or less can be computed without

any additional input. Two possible cases exist :

1. If PP, sends a message to PP; in the
time interval (TOUT;;, LINKCLOCK;;], then send a message from
LP; to LP;.

2. If no messages are sent from PP, to PP; in the interval

(TOUT;;, LINKCLOCK;j), send a NULL message with timestamp



LINKCLOCK;;.

3.4.3 The I/O Phase

Input/Output operations can be performed concurrently on all links in
NEXT:. The channel clock value for the links is updated for each message
received or transmitted. The clock value for LP; is updated to the minimum

channel clock value for LP;.

3.4.4 Injtialization

At the beginning, the following variables are set tc 0: The channel clock value
(TINy; and TOUT}), the process clock (T;) and the variable associated
with each link, LINKCLOCK;;. The distributed simulator starts with the
selection phase. The source process begins generating messages immediately.
Also, delay processes are required to send a NULL message at the beginning.
This is needed to avoid deadlock if the topology contains feedback or cycles.
Logical processes do not have knowledge about the topology they belong to,

and it is necessary to send this NULL message.

3.4.5 Termination

The LPs repeat the three phases, selection, computation and I/O operations

aslong as T; < Z. Z is defined as the termination time. If a process generates
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a message with a timestamp greater than Z, the message is replaced by the

tuple (Z, NULL).

3.5 Notations for Distributed Programs

In this section we present the notation used to describe the operation of the
logical processes. A distributed program is a collection of LPs that commu:ni-
cate only through messages and there are no global or shared variables. There
is no central process to control or synchronize other processes. We present
the SEND and RECEIVE commands based on Lakshmi’s work [Lak87] and
Hoare’s CSP input and output commands [Hoa78]. By using these two com-
mands we define a parallel operation for a distributed program. The internal
operation of a LP is defined by a code composed of SEND, RECEIVE, par-

allel and sequential commands.

3.5.1 SEND Command

Interactions in the physical system are modeled as the transmission of mes-
sages in the logical system. For example, consider when a car arrives at the
car wash of Figure 2.1. This interaction is modeled by the source process as
the transmission of a message containing the time of car’s arrival. When a
process needs to transmit a message, the command SEND—defined in the

LP’s internal code—will be used to accomplish this action. To specify that
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LP; needs to send a message to LP; we use:

SEND (j, message)

The SEND command has two arguments. The first argument is the name
of the process that will receive the message (process j); the second argument

— messag — is : tuple of the form (¢,m) as described earlier.

3.5.2 RECEIVE Command

On the other side of the commuiiication channel we have the RECEIVE

command:
RECEIVE (i, message)

If LP; wants to receive a message from LP;, it will have to issue the pre-
vious command. We require that the execution of the RECEIVE command
by LP; will be successful enly if LP; issues the corresponding SEND com-
mand. The same applies for the SEND command: the respective RECEIVE
command has to be issued. More details of the communication protocel will

be given in section 3.7.

3.5.3 Parallel Command

A basic operation in a distributed program is a parallel command. A parallel

command is a collection of commands, which may be executed in any order.
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We consider only RECEIVE or SEND commands as the constituents of the
parallel command we will use for the description of our distributed programs.
Merge processes have to input messages from two or more sources; this input
operation can be performed by the use of a parallel command. Consider that

LP; has to input messages from LP; and LP;. This operation is described

by:
[RECEIVE (i, message) || RECEIVE (3, message)]

The execution of the parallel command will be completed when all the

constituent commands are completed.

3.6 Types of Processes

Based on the parallel command and the SEND and RECEIVE commands, we
specify the operation for the basic processes : delay, branch and merge. These
basic processes are sufficient to model any physical system by a distributed

simulation scheme.

3.6.1 Delay Process

A delay process has an input and output link. It models a single server in
the physical system (see Figure 3.2).

The following variables are associated with the delay process:
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event queue

Q TIN Delay TOUT ,@
k Process

Figure 3.2: A delay process

e T is the process clock value. It indicates the time up to which the

logical process has simulated the physical process.

e TIN is the timestamp of the last message received by the process. The

last message can be a real message or a NULL message.

e TOUT is the timestamp of the last message transmitted by the pro-

cess.

¢ event queue. Each delay process has a local event queue. Messages
are stored in this local list and then transmitted at a later time. The
original Chandy and Misra algorithm does not require an event queue
in a delay process. The implementation by Lakshmi [Lak87] uses a
counter to keep track of the number of real messages received; this is
the reason why the algorithm requires a bounded amount of memory.
However, there are physical systems in which the jobs contain informa-

tion required to make a decision at a certain point in time; the only

37



way of having this information is to store the job in the event queue.

e service time. It is the simulated time the process spends with each

message.

The operation of the algorithm for the delay process is as follows:

1.

o

During the initialization step, all the variables maintained by the pro-
cess are set to 0. A NULL message is initially sent at the beginning b;V
LP; to prevent a deadlock if the topology contains cycles. This NULL
message is not needed if the topology is classified as a feedforward
topology!. We assume that processes do not have knowledge of the
topology they belong to. Also, TOUT is updated to the value of ser-
vice time. If service time is 5 time units, then the message (5, NULL)
is sent at the beginning. We notice that this message is not sent in
the physical system, but it is required to avoid deadlock. Message (5,
NULL) announces the absence of messages to neighbor LP; up to time

5.

After the initialization procedure is completed, the process loops in
a cycle until the termination criterion is met. During this loop, three

different conditions are tested (see Figure 3.3):

1A feedforward topology is a network that contains no directed cycles.



DELAY ::

{

’Initialization
T := 0;
TIN := 0;
TOUT := 0;
predicted_time := 0;
event_queue := empty;

'Send first NULL message
SEND(service_time, NULL);
TOUT := service_time;

'Perform loop until termination condition is met
while T < Z do
in case of :
(TIN < TOUT) : INPUT
(TIN > TOUT) : OUTPUT
(TIN = TOUT) : [INPUT || GUTPUT]
endcase;
T := min (TIN, TOUT);
endwhile;

Figure 3.3: Algorithm for delay process

¢ TIN < TOUT. This condition means that an inputl operation is
performed. When LP; receives a message from LP;, the message
can be a NULL message or a reéal message. If the message is a
NULL message, the timestamp is updated with the value of TIN +
service-time, and the message is inserted in the local event queue.

H the message airiving is a real message, the predicted time for
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this message will depen i on ::s timestamp and the value of the
predicted time for the last message (Figure 3.4). This is required

to model the physical system correctly.

INPUT ::
{
RECEIVE(k, (TIN, m));
if (m = NULL) then insert(TIN + service_time, NULL);
else
if (predicted_time < TIN) {
insert(TIN + service_time , m);
predicted_time := TIN + service_time;
} else {
insert(predicted_time + service_time, m);
predicted_time := predicted_time + service_time;

Figure 3.4: Algorithm for INPUT operation

e TIN > TOUT. When this condition is true an output operation is
executed. When LP; has to output a message, it searches through
the event queue for a real message. If there are no real messages,
the last message in the event queue is sent and the previous mes-

sages are ignored (see Figure 3.5).

e TIN = TOUT. This condition states an input and output oper-
ation. When the process has to perform input and output opera-

tions, the two previous operations are executed.
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OUTPUT ::
{

repeat
next_message := delete(event_queue);
until (next_message = last) or (next_message = real);

SEND(j, next_message);

Figure 3.5: Algorithm for OUTPUT operation

3.6.2 Branch Process

A branch process has one input link and two or more output links. We will
explain the algorithm for the case of two output links, but it is straightforward

to generalize the approach for more links.

(1-p)

Figure 3.6: A branch process

In Figure 3.6 LP; is the process from where branch process j can receive

messages. LP; can output messages to L Py and LP,. When a message arrives,



the branch process generates a random number 0 < p < 1. The output links
have associated probatilities, p and (1 — p), respectively. Depending on the
random number generated, one of the two output links is selected as the
one that will transmit the original message received. The original message
received can be a real message or a NULL message. When a message is sent on
one link, the other output link will transmit a NULL message with the same
timestamp as the original message. The timestamp is not modified because
there is no processing performed by the branch process. Figure 3.7 shows
the algorithm for the branch process. Notice that in general, the routing
need not be based on a random number, it can depend on the information

contained by the received message.

BRANCH ::
{

’Perform loop forever

repeat
RECEIVE(i, (TIN, m));
output_link := random(0,1);
if (output_link <= p) [SEND(k, (TIN, m)) |} SEND(1, (TIN, NULL)];
else [SEND(1, (TIN, m)) || SEND(k, (TIN, NULL)];
forever;

}

Figure 3.7: Algorithm for branch process



3.6.3 Merge Process

A merge process receives messages on two or more input links and transmits

messages on a single output link (see Figure 3.8).

(TINi, Mi)

Merge
Process

J

(TINk, MK)
Figure 3.8: A merge process

Initially, merge process j issues a parallel command to receive messages
on both input ports. When the parallel command is completed, that is, when
messages have arrived on both input ports, their timestamps are compared.
The message with the smallest timestamp is transmitted (SEND) and a re-
quest to input another message (RECEIVE) is issued for the respective link.
When the timestamps of both messages are equal, we have to know if the
messages are real or NULL messages. If one or both of the messages are
NULL messages, then only one is sent. When both are real messages, then
one message is transmitted after the other, and a request to RECEIVE mes-
sages on the input links is performed. As in the case for the branch process,
it is straightforward to adapt the algorithm for more than two input links

(see Figure 3.9).
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In the previous chapter we mentioned that ensuring that the causality
constraints are not violated is one of the core problems in distributed sim-
ulation. The merge process has to compare both timestamps on incoming
messages to ensure that the sequence of transmitted messages matches the

chronological order of the corresponding interactions in the physical system.

MERGE ::
{
[RECEIVE(i, (TINi, Mi)) || RECEIVE(k, (TINk, Mk))];
'Perform loop forever
repeat
in case of :
(TINi < TINk) : SEND(1, (TINi, Mi));
RECEIVE(i, (TINi, Mi));
(TINi > TINk) : SEND(k, (TINk, Mk));
RECEIVE(k, (TINk, Mk));

(TINi = TINk) : if (Mi = NULL) SEND(1, (TINk, Mk));
else
i (Mk = NULL) SEND(1, (TINi, Mi));
¢lse {
SEND(1, (TINi, Mi));
SEND(1, (TINk, Mk));
}
[RECEIVE(i, (TINi, Mi)) || RECEIVE(k, (TINk, Mk))];
endcase;
forever;

}

Figure 3.9: Algorithm for merge process



3.7 Interconnection of Logical Processes

There is no processing performed by merge and branch processes. The func-
tion of these processes is to provide routing functions only. The interconnec-
tion of logical processes is dependent on the physical topology that is being

simulated. For example, consider the assembly line depicted in Figure 3.10.

Figure 3.10: An assembly line

Each of the servers (A, B, C and D) in the assembly line will be simulated
by a delay process in the logical system. When one of the servers outputs
jobs to more than one server, then we will have to introduce a branch process.
Also, when one of the servers has multiple inputs, a merge process will be
needed. The corresponding logical system is shown in Figure 3.11.

The communication protocol used by the logical processes is based on
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Figure 3.11: A logical assembly line

a very simple protocol proposed by Hoare [Hoa78]: a message is sent from
process 1 to process j if and only if process i is ready to send the message and
process j is ready to receive it.

When a pair of processes want to communicate, they have to issue a SEND
or RECEIVE command. However, it may happen that one of the processes
issued the SEND command, and the other process is busy performing a
computation. This is an example of a blocked process. Also, we can have
the situation in which a process is ready to RECEIVE, but the other process
has not issued the SEND command. In this case, we say that the process is

starved.
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Chapter 4

A New Algorithm:
Two-Colored NULL-Messages

4.1 In#roduction

We int">duce a new distributed algorithm for simulation of queueing sys-
tems #m this chapter. It is based on a method proposed by Gburzynski and
Rudmicki [GR88a] and Chandy and Mism’s conservative approach [CMT9].
Thewew algorithm has been simplified-fsom its original version [GR88a)] and
extended to handle multiple source piocesses. This chapter is organized as
follows. Section 4.2 describes th@ main disadvantage in Chandy and Misra’s
approach by means of ah example. In section 4.3 we present the operation of

the new algorithm based on a two-colored NULL-message. Sections 4.4 and



4.5 present the changes required by merge and delay processes in the new

algorithm.

4.2 Disadvantage of NULL Messages

We have seen that NULL messages are required to avoid deadlock. However,
the processing of NULL messages causes overhead in the simulation system.

Consider the logical system in Figure 4.1.

(100, m1) {1,NULL)
S

Figure 4.1: A logical system

Assume that the source sends messages every 100 time units, and that
process B spends 1 time unit with every message received. During the initial-
ization step, process B sends the message (1, NULL) to process C. The source
process sends (100, ml). Prosess C receives the message (1, NULL) which
in turn is transmitted on brth of the output links. Messages are propagated
as we can see in Figure 4.2.

Process A has to compare the timestamps of incoming messages as men-

tioned in the previous chapter. Message (1, NULL) is selected and transmit-
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(1, NULL)

(100, m1) (1, NULL)
>

Figure 4.2: Message propagation

ted due to its lesser timestamp. By looking at this specific topology. we can
see that 100 NULL messages will be required just to process (100, m1l). The
logical system remains idle for a long time, waiting for specific conditions to
happen. In this case, merge process A has to process the message with the
smallest timestamp. The flow of global time is fimulsied through the use
of NULL messages. Process A has no means cf knowing that there are no
real messages in the system, and that (100, m1) could be processed safely,
without violating causality constraints. How can we advance the local clock

in a LP without violating causality constraints?

4.3 Using Two-Colored NULL-Messages

We propose the use of Two-Colored NULL-Messages as the solution to the
problem mentioned above. We will use the Chandy and Misra algorithm with

NULL messages, and additionally introduce a special kind of NULL message
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called Two-Colored NULL-Message'. A 2cNULL message has the following

components:
(black-time, 2cNULL, gray-time, owner)

o black-time. It is the value of the ¢ component in the tuple (t,m) used
in the original algorithm. That is, the time up to which the logical

system has simulated the physical channel.
o 2cNULL. Identifies the special message.

e gray-time. It is a predicted time, that according to certain conditions,

will allow a merge process in a cycle, to increase the local clock time.

e owner. It is the identity of the process that originally sends the
2cNULL message. Only merge processes are allowed to create and

be owners of 2cNULL messages.

The difference between the new distributed algorithm and the Chandy
and Misra strategy resides in encoding the last two items mentioned above—
gray-time and owner— as additional information in a message. In the last
example, we required 100 NULL messages to process one real message. In
Figure 4.3, consider that process A instead of sending (1, NULL) sends the
following 2cNULL message: (1, 2cNULL, 100, A).

1We will use the term 2¢NULL for short.
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(100, m1)
A

(1, 2cNULL, 100, A)

Figure 4.3: Merge process sending a 2cNULL message

The additional information sent is the gray-time and the owner. The
gray-time is a forecasted time that will allow a merge process, under certain
conditions, to select from the two input messages the one with the greatest
timestamp, transmit this message, and increase its local clock safely.

In Figure 4.3 the input link for process B is open since TIN = 0 (no
message has been received by process B) and the output link is closed: TIN
= 1 (the last message transmitted by process B had a timestamp of 1).
Process B receives the 2cNULL and TIN is updated to a value of 1. Because
TIN = TOUT, the output link for process B is open and process B outputs
a 2cNULL message to process C, increasing the timestamp to two units of
time (see Figure 4.4).

Process C accepts (2, 2<NULL, 100, A) and sends this 2NULL message
to process A and the sink (see Figure 4.5).

Process A can safely transmit (100, m1) now without having to process

100 NULL messages. It knows that the 2cNULL has returned and that there
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(2, 2cNULL, 100, A)

(100, m1) i
>

Figure 4.4: Delay process sending a 2cNULL message

2cNULL, 100, A)

@
l (2, 2cNULL, 100, A)
A

[ (100, m1) e

Figure 4.5: Branch process sending a 2NULL message

are no messages with temestamps < 100. It is a required condition that the
LP has to be the father of the 2NULL message, in order to send (100, ml).
The algorithm takes advantage of knowledge of global time by encoding the
gray-time in the message. Gray-time notifies the merge process, that only
NULL messages are traveling in a cycle, and that it can safely process the
message on the other input line, without having to wait for additional inputs.

The new algorithm modifies the behavior of merge and delay processes
only. Branch, source, and sink processes behave as in the original Chandy

and Misra approach. The purpose of the colored messages is to reduce the

(%4

[V



53

namber of NULL messages transmitted in topologies that contain cycles.
By reducing the number of NULL messages, it is expected to improve the

performance of the distributed simulation method.

4.4 Merge Process

The modified algorithm for the merge process follows. The notation is as in

Figure 3.8.

MERGE ::
{
[RECEIVE(i, (TINi, m)) || RECEIVE(k, (TINk, m))];
repeat
in case of :
(TINi < TINK) :

IF (Mi = NULL) {
gray_time := TINk;
SEND(1. (TINi, 2cNULL, gray_time, MERGEj));
RECEIVE(i, (TINi, Mi));

} else {

S S —— . ——— - D S W W s ki T s W T o -

-  —  — — — —— - —— - - = -

if (Mi=2cNULL) & (owner=MERGEj) & (TINk=GRAY_TIMEi) {
SEND(1, (TINk, m));
(RECEIVE(i, (TINi, Mi)) || RECEIVE(k, (TINk, Mk))];
} else {

. - - — - —— — ————— - - —— - - -
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if (Mi=2cNULL) & (GRAY_TIMEi > TINk) & (owner <> MERGEj)
SEND(1, (TINi, 2cNULL, TINk, MERGEj));
else
SEND(L, (TINi, Mi));

RECEIVE(i, (TINi, Mi);

}

(TINi > TINk) : { symmetric to TINi < TINk }

(TINi = TINk) :

if (Mi = real) & (Mk = real) {
SEND(Z, (TINi, Mi));
SEND(1, (TINk, Mk));

} else

if (Mi = real) & (Mk = NULL or Mk = 2<NULL)
SEND(1, (TINi, Mi)):
else

- ———— - - - — - — - _ - - -y -

if (Mk = real) & (Mi = NULL or Mi = 2cNULL)
SEND(1, (TINk, Mk));
else

e - — - — — — . —— — - - -

if (Mi = 2cNULL) SEND(1, (TINi, Mi);
else
if (Mk = 2cNULL) SEND(1, (TINk,Mk));
else



SEND(1, (TINi, Mi));

(RECEIVE(i, (TINi, Mi)) || RECEIVE(k, (TINk, Mk))];
endcase;
repeat
if ((Mi = NULL) or (Mi = 2cNULL)) and (TINi <= TOUT)
RECEIVE(i, (TINi, Mi)
else
if ((Mk = NULL) or (Mk = 2cNULL)) and (TINk <= TOUT)
RECEIVE(k, (TINk, Mk)
else
if (Mi = real) and (Ti = TOUT) SEND(1, (TINi, Mi))
RECEIVE(i, (TINi, Mi);
else
if (Mk = real) and (Tk = TOUT) SEND(1, (TINk, Mk))
RECEIVE(k, (TINk, Mk);
until (TIN of message received > TOUT)
forever;

}

If the LP is in a cycle, then it receives messages in both input links and

then tests for three conditions?:

1. TIN; < TIN,. A merge process is the only process capable of creat-
ing a 2cNULL message. If the message received from LP; is a NULL
message, then a 2cNULL is sent. The encoded gray-time is equal to

the timestamp of the message received from LP,. This is a forecasted

*See Figure 3.8 for the description of notation
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time, whose purpose is to advance the LP’s local clock. A request to

RECEIVE a message from LP; is issued.

When a 2cNULL message arrives from LP;, if merge process j owns
the message and the gray-time is equal to the timestamp of Mj, that
is TIN,, then the merge process is able to advance the flow of global
physical time by sending message M, without further delay. The merge

process requests a RECEIVE on both input ports.

If message M; does not belong to any of the above cases, then the
message with the smallest timestamp is transmitted and a request to

RECEIVE from LP; is scheduled.

TIN; > TIN,. Operates in a symmetric fashion to TIN; < TIN.
TIN; = TIN,. When the timestamps of both messages are the same
and they are real messages, one message is sent after the other.

Real messages have precedence over NULL and 2cNULL messages. Be-

cause the timestamps are the same, the real message is sent.

2cNULL messages have higher priority over NULL messages. This is
due to the fact that a 2cNULL message will help to reduce the trans-
mission of NULL messages. When there is a 2cNULL message and a

NULL message, the 2cNULL is transmitted.

When both input messages are NULL messages, then only one of them
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is transmitted. For all of these cases a request to RECEIVE on both

input ports is scheduled.

After the first two messages are received and one or both of them are sent,
the algorithm compares the timestamps of incoming messages against TOUT,
the timestamp of the last message sent. If the incoming message is 2cNULL
and its timestamp is less than or equal to the last messag:-* ras:smitted, then
we can receive a new message. But, if the received message is real and it has
the same timestamp as the last message transmitted, then this message is

sent and a RECEIVE for another message is scheduled.

4.5 Delay Process

The only change in the delay process is in the INPUT operation (see Figure
4.6).

When the delay process receives a 2cNULL message a new black time is
computed. If this time is greater or equal than the gray time, the 2¢NULL
message is no longer needed and a NULL message is inserted in the local
event list. If the new black time is less than the gray time, then the 2cNULL

message is inserted instead.
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INPUT ::
{
RECEIVE(k, (TIN, m));
if (m = NULL) then insert(TIN + service_time, NULL)

else
if (m = 2cNULL) then {
new_black_time := black_time + service_time;

if (new_black_time >= gray_time) insert(new_black_time, NULL)
else insert(new_black_time, m, gray_time, owner) ;
} else
if (predicted_time < TIN) {
insert (TIN + service_time , m);

predicted_time := TIN + service_time;

} else {
insert(predicted_time + service_time, m);
predicted_time := predicted_time + service_time;

¥

Figure 4.6: New algorithm for INPUT operation

4.6 Correctness of the Algorithm

We present an informal discussion of the correctness of the 2cNULL algo-
rithm. We will discuss the changes required in a merge process since this is
the only process that advances its clock in a different way than in Chandy
and Misra’s algorithm.

For non-feedback topologies the 2cNULL algorithm can be used. If the
non-feedback topology contains a merge process, then this merge process will

send a 2cNULL message at a certain time during the simulation. However,

[$4]
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feedback path
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Figure 4.7: A feedback topology

because the topology does not have feedback, the 2cNULL will never return
to its owner. The overhead produced by the 2cNULL is negligible, since we
only add, as additional information, the owner and the gray-time. There
is basically no difference, if the 2cNULL algorithm or Chandy and Misra’s
algorithm is used for non-feedback topologies.

Suppose we have a feedback topology with one cycle, one merge process,
and a single source process. LP; is the merge process connected to the
feedback path. Consider a certain point in time up to which LP; has not
sent a 2cNULL message. We assume that messages received from links Lo
and L, arrive with monotonically increasing timestamps (see Figure 4.7).

One of the input ports receives a message, (71, A1), from Lg and the other
input port receives a message (;,m;) from L,. Notice that the contents of M,
and m; may correspond to a real message or to a NULL message. Depending
on the types of messages received on Lo and L, we have to consider the cases

in Table 4.1.

59



Case I Lo Ll
1 Real Real
2 Real | NULL
3 NULL | Real
4 NULL | NULL

Table 4.1: Cases to consider for Ly and L,

Case 1. Ly = real and L, = real.
In this case the "ZcNULL algorithm operates as the original Chandy

and Misra algorithm.

Case 2. [y =realand L, = NULL.

Depending on the values of 7, and ¢, we have three different cases.

1. Case 2.1 (¢, > 7y).
If t; > 71 then message (11, M,) is transmitted. LP; requests
another message from Ly. The algorithm operates as the Chandy
and Misra algorithm.

2. Case 2.2. (t; = ny).
Because both timestamps have the same value, the real message is
transmitted and the NULL message discarded. Two new messages
are RECEIVED on links Lo and L,—the algorithm operates like

Chandy and Misra’s algorithm.

3. Case 2.3 (t; < 7).
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In this case, we send a 2cNULL message with gray-time = 7,
and owner = LP;, that is, (¢1, 2NULL, 7, LP;). Up to this
point in time, we are sure that histories on all links are chrono-
logical according to [CM79], since thus far we have followed
their algorithm. We want to prove that if the 2NULL message
(t1,2¢NULL, 7, LP;) retures to LP; on link L, and the message
on link Ly is still (7, M;), *1ien we can advance LP:’s clock value
to 71, and LP; will not receiv- a non-2cNULL message with t-value
< n. If LP; receives message: with t-value < 71, these messages
will be non-real messages only (NULLs or 2cNULLs). The con-
ditions required to advance LP;’s clock value to 7, are specified

as:

(11, M1) on Lo (4.1)
(t3,2¢NULL,7,LP;) on L, (4.2)

In (4.2) ¢} > t;. ¢, is the black-time of the first 2cNULL sent by
LP;. The 2cNULL has passed through one or more delay processes
and it has increased its black-time to a value of .

Consider what happens after (¢;, 2NULL, =, LPF;) is sent, link
Lo is closed and messages can only arrive on link L;. LP; can

receive on link L, three kinds of messages: a real message, a NULL
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message or a 2cNULL message.

(a) A Real message.

This situation is covered by cases 1 and 3.

(b) A NULL message.

This situation is covered by cases 2 and 4.

(c) A 2¢NULL message.

We have two situations for this case depending on the condi-

tions (4.1) and (4.2).

i.

il.

Conditions (4.1) and (4.2) are true.

When conditions (4.1) and (4.2) held, we can advance
LP;’s clock value to 7. (¢, 2cNULL, 7, LP;) is the first
2cNULL sent and has returned to LP;. LPFP; can safely
transmit (71, M) and two new messages are RECEIVED
on links Ly and L,. If the first 2cNULL message returns
to LP; it is impossible that there exists a non-2cNULL
message with t-value < 7 in the cycle—since we assume

there is only one merge process and one source process.

Conditions (4.1) or (4.2) is false.
During the time ({;, 2c<NULL, LP;,, 7;) has been trav-
elling in the cycle, Ly has been closed and LP; had to

process NULL or real messages on link L;. If NULL mes-



sages were processed, LP; transmitted them as 2cNULL
messages. If (7, My) was transmitted, then any 2cNULL
messages with black-time = 7; arriving on link L, will not
satisfy condition (4.1). We have to flush out these mes-
sages by issuing RECEIVE commands on input link L,.
If the 2cNULL messages increase their black-time up to or
beyond their gray-time, these 2cNULL messages will be
converted into NULL messages. For these “new” NULL
messages, their timestamps are > 7, and the condition
that LP, will not receive a non-2¢NULL message with

t-value < 7 still holds.

Case 3. Lo = NULL and L; = real.
This case is different from case 2. We have (T1, NULL) on link Lg
and (¢;,m;) on link L;. We will send the following 2cNULL message:
(71, 2¢NULL, ¢,, LP;). Link L, is closed and messages will arrive
on link Lo only. Because we have only one cycle in the topology, all
2cNULL messages transmitted will have their timestamp beyond ¢,
when arriving at link L,. In this type of situation, the 2cNULL message

never returns to LP,,

Case 4. [, = NULL and L, = NULL.

Depending on the values of 7; and ¢; we have to consider three cases.
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Figure 4.8: A feedback topology with multiple cycles

1. m <t.
We have the same situation as for case 3 explained before with

the exception that the message on link L, is NULL.

o

= ty.
Since the timestamps are equal, only one of the NULL messages

is sent. We operate as in the Chandy and Misra algorithm.
3. 1> 1.
The operation performed for this case is like in 2.3 except that we

have a NULL message on link Lo.

What does happen if there are more cycles in the topology? Consider the

topology in Figure 4.8.
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LP, has two input messages: (f;, NULL) and (71, M;). Suppose that
t; < 1. LP; sends a 2cNULL message: (¢, 2cNULL, 7, LP;). When the
2cNULL is passing through the cycles, at some point in time, it will have
to enter a merge process LP; (i = 2,3,...,n). Before relaying the 2cNULL,

LP; has to compare it to the message sitting on the other input link.

o<t (4.3)
1 < i (44)

If conditions (4.3) and (4.4) are true then, the 2cNULL can be relayed by
LP;. t; is the timestamp of the other input message that the merge process
has received. Condition (4.3) states that we are sending the message wiih
the smallest timestamp. In addition, condition (4.4) forces the algorithm
not to violate causality constraints. If condition (4.4) is false, it means that
LP; will propose a new 2cNULL message: (tj, 2NULL, ¢;, LP;). If the
first 2cNULL sent by LP, returns, and conditions (4.1) and (4.2) hold, then
we can advance LP;’s clock value to ;. No LP; in any cycle had a better

proposal for the black-time.
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Chapter 5

Implementation

5.1 Introduction

This chapter presents the implementation details of the distributed simulator
built to measure the performance of the algorithms presented in chapters 3
and 4. Section 5.2 introduces LANSF, a simulation package used for the
implementation of the distributed simulator. Sections 5.3 to 5.6 explain the
detailed operation of each of the logical processes implemented as LANSF

processes.
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5.2 LANSF: A Simulation Package

The simulation package LANSF (Local Area Network Simulation Facility)
was developed at the University of Alberta by Gburzyriski and Rudnicki
[GR88c]. The original idea behind LANSF was to have a tool for investi-
gating MAC-level protocols for local area networks. LANSF can be used to
“model most physical systems in which communication is the most critical
issue” [GR88c]. Furthermore, LANSF has evolved and now can be used to
describe the behavior of different systems: long-haul networks, distributed
computer architectures, bus-type networks, protocols and distribured data
bases [GR88d, GR87, GR88b)].

In LANSF, a physical system is de: tibed as a collection of processes.
These processes communicate with each other through the use of messages
and signals. A logical process (LP) is described by a set of local processes. Lo-
cal processes can communicate with each other and with external processes.
The local processes perform different functions: reception of a message, trans-
raission of a message, computations, etc. For example, the logical system for
the car wash in Figure 2.3 can be described by the set of processes depicted
in Figure 5.1.

Process A performs the function of the source process; it has a local pro-
cess called transmitter that generates messages (cars) according to a certain

distribution. Process B simulates the server process {car wash) and has two
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Source: A Server: B Sink: C

® © ®

Figure 5.1: A set of LANSF processes

local processes, a transmitter (T) and a receiver (R). T «.i w0 rocess in
B receives the messages (cars) sent by process A, these mrssagoe ¢ present
events that are simulated, and then the transmitter sends the appropriate
messages to process C. Process C simulates the sink process. It only has a
receiver process that inputs messages from the transmitter in process B.

Communication between receivers and transmitters is synchronized by
the use of signals. When a transmitter needs to send a message to a receiver
it issues a signal. The receiver gets this signal and replies back with another
signal to the transmitter. The transmitter accepts this last signal and then
transmits the message safely. Our goal is to mode! a logical system as a set of
cooperating LANSF processes. This is the way Hoare’s syrchronous protocol
[Hoa78] is implemented under LANSF.

An input data file is used to define the network configuration of a logical
system. A program in C language has to be implemented to describe the

operation of the processes. LANSF processes can accurately model the logical



processes with as much detail as required.

A number of tools is provided to express a protocol and test different
conditions in the communication environment. The system reads the input
data file definition and creates the required processes. The processes start
generating messages and simulating the behavior defined in their code. A
global clock keeps track of the simulated time until the termination conditions
are met.

A report containing statistics of the simulated topology is output at the
end of the simulation run.

An extensive description of the LANSF system can be found in [GR88Db)].

5.3 Delay Process

A delay process is composed of three local processes: a receiver process, a
controller process and a transmitter process (see Figurc 5.2).
The controller process performs a loop verifying which cne of the three

conditions defined in section 3.6.1 of Chapter 3 is true:

® TIN < TOUT. When the delay process has to perform an input oper-
ation, the controller process notifies the receiver process with a signal.

The receiver process requests a message from the neighbor! process by

A neighbor process is the process from where a receiver process receives essages
from, or a transmitter process sends messages to.
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Figure 5.2: Local processes of delay process

issuing a signal, too. When the message arrives, the local event list is
updated and a signal is sent to the controller. Upon reception of t
signal, the controller checks again which condition is true and sigials

the respective process(es).

TIN > TOUT. This condition states that an output operation is
required. The controller process wakes up the transmitter process by
sending a signal. The transmitter process updates the local event list
according to the algorithm of Figure 3.5 in Chapter 3, and signals
the next neighbor process that a message is ready to be sent. The
transmitter waits until receiving a signal from a neighbor process before
sending a message. If the transmitter already received a signal from a

neighbor process, the message is sent immediately. After the message
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Figure 5.3: Local processes of branch process
is sent, the transmitter issues a signal to the controller.

e TIN = TOUT. When input and output operations are needed, the
two scenarios described above occur. The controller waits until the
two signals from: the receiver and transmitter arrive, in order to decide

which condition is true, and sends a signal to the respective process(es).

5.4 Branch Process

A branch process has four internal processes: a receiver, a controller and two

transmitters (see Figure 5.3).
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e RECEIVER. In order to receive a message, the receiver sends a signal
to a neighbor process. When the message is received, the receiver
issues a signal to the controller to notify that a message is ready to be
transmitted. The receiver waits until the controller acknowledges with

a signal that the message has been sent and the receiver can request to

RECEIVE another message.

CONTROLLER. The controller randomly selects one of the trans-
mitters. The selected transmitter is notified via a signal, that should
send the message. The other transmitter(s) receives a signal request-
ing to send a NULL message(s). The controller waits for = number of
signals, where 7 is the total number of transmitters. When all signals

arrive, the controller signals the receiver to continue receiving messages.

TRANSMITTERS. When the transmitter receives a signal from the
controller, it sends a signal to a neighbor process to indicate that a
message is ready to SEND. When the transmitter receives a signal
acknowledging that the neighbor process is ready, it sends the message.

After this operation, it notifies the controller with a signal.

-]
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Figure 5.4: Local processes of merge process
5.5 Merge Process

A merge process is compesed of two receivers and one transmitter (sce Figure
5.4).

Once a receiver has accepted a message, it signals the transmitter that a
new message has arrived. The transmitter maintains a count of the number
of signals that it has received from the receivers. This is needed because the
merge process has to compare the timestamps of all input. messages. When
the number of signals received by the transmitter matches the number of
receivers, the transmitter follows the algorithm described in Figure 3.9 to
decide which message to SEND. Depending on the situation, the transmitter
sends one of the messages and then issues a signal to one or more of the

receivers. The receivers wait for this signal. When the signal arrives, they
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Figure 5.5: Local processes of buffer process

can request to receive more messages.

5.6 Buffer Process

A buffer process contains a receiver process, a transmitter process and a local
event list (see Figure 5.5).

Buffer processes are optional and they are located between two basic LPs
to help improve the operation of the algorithm. The operation of the buffer
process is similar to the classical consumer/producer buffer [BS83|.

Every time a message arrives at the receiver, the new message is added
to the local event list. The receiver will request to RECEIVE a message only
if there are buffers available, otherwise the receiver will be blocked until one

entry in the local event list becomes available. Also, the receiver will signal



the transmitter when a message arrives, so the transmitter would be able
to SEND the message. On the other hand, the transmitter may receive a
request from a neighbor process to SEND a message. If the local event list is
empty, then the transmitter will have to wait until a message arrives. Every
time the transmitter deletes a message from the local event list, a signal is

sent to the receiver because the receiver may be blocked.
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Chapter 6

Experimental Results

6.1 Introduction

In this chapter we present the results obtained from the evaluation of the
Chandy and Misra approach and the 2cNULL distributed algerithm. Sec-
tion 6.2 describes the experimental methodology used for the experiments.
Section 6.3 explains the results generated {rom the simulations by showing
different performance metrics such as speedup, degree of parallelism achieved,

and null/real messages transmission ratio.
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6.2 The Experiments

In this section we describe the set of experiments carried out to evaluate the
performance of the distributed simulation strategies explained ir Chapters
3 and 4. We took into consideration different factors: network topology,

inter-arrival time of messages, and processing/communication cost ratio.

6.2.1 Network Topologies
The set of network topologies! consisted of 18 different cases:

e Tandem Networks. Five topologies were considered with different
numbers of delay nodes: 1 up to five nodes (see Figure A.1 in Appendix

A).

¢ Feedforward Networks. A feedforward network is a generalization
of a tandem network; besides having delay nodes, it also has branch
and merge nodes, but not directed cycles. We studied nine different

topologies (see Figures A.2 to A.10 in Appendix A).

¢ Feedback Networks. In this network category four different topolo-
gies were considered: two general feedback topologies, a central server
network and a cluster network (see Figures A.11 to A.14 in Appendix

A).

"The examples were taken from [Lak87] and [RMMSS].
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6.2.2 IART and d/bm Ratio

We consider the following mix of inter-arrival times (IART') of mesSages from
source processes, the processing time in a delay node (d), and the processing

time in branch (b) and merge (m) nodes. We will call this quantity the d/bm

ratio.

r— al times
: 30

129
~ts

3066

Ta IJbm ratios

In the first row.of Table 6.1 6 corresponds to physical delay. For exam-
ple, if d = 6 and a delay process receives its first real message, (5, m;) at
sinﬁulation time 100, it will output the message (11, m,) at simulation time
106. We have a 1-1 correspondence between the delay time units and the
simulator time units. Merge and br;mCh nodes are needed to per%rm routing
operations, but they incur a nominal delay when doing so. A delay of 2 units
of time will be used for b and m; this delay does not have a counterpart in
the physical system, it is the time a branch or a merge process requires to
execute its internal code. We are assuming that the communication delay
between processes is 0. Since some time must elapse before one message is

sent after another, an inter-packet spacing of 2 units of time was used in

=~
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all the experiments. We will keep fixed the communication delay (c) in the
simulator and végy the processing delay (d) in the physical system. We have

three cases to considei:

d>c
d>>c

Previous studies [Lak87, RMMS88] have not taken into consideration that

one of these three scewarios is likely to happen in any distributed system.

6.2.3 Performance Metrics

The experiments were carried out on a MIPS M/1000 machine running
UMIPS-BSD, and the algerithms were implemented using the simulation
package LANSF [GR88c]. Each experiment simulated the transmission of
1000 messages.

For each of the topologies severai tiial suns were performed for each of the
combinations of d/bm ratio and IART. Different seeds for the random number
generator (for the branch processes) were used and the results were obtained
by averaging. To give accurate results, 5% confidenice intervals [MS88] were

computed for each one of the performance metrics: mean speedup (5), mean
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degree of parallelism (D) and mean NULL/real transmission ratio (V):

2

5 + 1.96¢=
n
2
D + 1.96<
n

_ 82
N + 1.964/—
n

where s? is the sample variance obtained from the simulations for the respec-
tive performance metric and n is the total number of independent simulation
runs. Because the data generated by the experiments is large, we are includ-
ing only the worst and best cases for the confidence intervals. By inspecting
tables 6.2, 6.3, and 6.4, we can verify that most of the experimental data is
in the 95% accuracy range.

Now, we define each of the performance metrics of interest.

1. Speedup. It is defined as,

T
p=:L
SP= 7

where T} and Ty are the execution times for one and N processors. The
execution time for one processor corresponds to the execution time of
the sequential simulation algorithm. We used the method proposed
by Lakshmi [Lak87] to compute T;. Suppose we know the number of

messages transmitted by each node at the end of the simulation. If we



— = — T

S N D ]
Topology Best | Worst | Best | Worst | Best | Worst
Feedforwardl | 0.47 1.8 0.01 | 0.19 14 (438
Feedforward2 | 0.38 3.56 0.05 | 0.42 1.68 | 5.52
Feedforward3 | 0.42 256 |[0.20 |1.40 |0.79 |4.42
Feedforward4 | 0.01 0.15 0.01 | 0.07 0.04 | 2.45
Feedforward5 { 0.01 [0.59 ]0.02 {035 |0.35|5.74
Feedforward6 | 0.0002 | 0.13 0.04 | 0.27 0.12 | 5.71
Feedforward7 | 0.06 2.25 0.09 | 8.14 0.09 | 6.42
Feedforward8 | 0.01 0.53 0.01 | 0.18 0.23 | 6.49
Feedforward9 | 0.002 | 1.13 0.15 | 0.54 0.13 | 5.50

Table 6.2: Ranges for the confidence intervals of feedforward networks in %
of the mean value (Chandy and Misra algorithm)

multiply the number of real messages by the node’s processing delay,
for every node in the topology, and add these numbers, we will compute

the value for Ty. S is the mean SP computed for three simulation runs.

2. Degree of Parallelism. It is defined as the fraction of time n proces-

sors are busy.

time n processors are busy
DP =

stmulation time

This metric has a direct relationship with speedup. If the speedup is
good, then we will observe a good degree of parallelism too. D is the

mean DP computed for three simulation runs.

3. NULL/Real Transmission Ratio. It is defined as,
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S N D
Topology Best | Worst | Best | Worst | Best | Worst

Feedbackl 0.24 | 2.4 0.20 |6.42 0.30 | 6.97

Feedback2 0.06 | 3.94 0.007 | 0.82 0.07 | 5.77
Cluster 0.49 | 640 |0.03 |6.49 0.29 | 5.97

Central Server J.IS 2.36 0.07 | 6.19 0.18 | 7.38

Table 6.3: Ranges for the confidence intervals of feedback networks in % of
the mean value (Chandy and Misra algorithm)

S N D
Topology Best | Worst | Best | Worst | Best | Worst
Feedbackl 0.53 | 3.71 0.29 | 3.7 2.09 | 6.12
Feedback2 0.02 | 3.94 0.10 | 0.69 0.7 5.7
Cluster 0.64 | 2.48 0.2 4.7 0.76 | 7.3
Central Server | 0.05 | 3.87 0.27 | 2.49 0.20 | 5.06

Table 6.4: Ranges for the confidence intervals of feedback networks in % of
the mean value (2cNULL algorithm)

number of NULL messages transmitted
number of real messages transmitted

NRTR =

and measures the overhead caused by NULL messages in the distributed

algorithms. N is the mean NRT R computed for three simulation runs.
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6.3 The Results

The results obtained by running the distributed simulator with the mix of
IART and d/bm ratios of Table 6.1 are presented here. We start with the
rvesults for tandem netwarks, followed hy feedforward topologies and conclude
with the feedback topologies.

The reader is referred to Appendix B that contains the performance charts
for the topologies mentioned above. The performance charts showing the
degree of parallelism (DP) contain different inter-arrival times and d/bm
ratios. The following table explains the meaning of the notation found in the

z axis of the DP charts.

symbol | IART | d/bm
Aa 1
Ab 7 6/2
Ac 50
Ad 7
Ae | 21 | 20/2
Af 150
Ag | 200
Ah | 601 |600/2
Ai 3000

Table 6.5: Description of notation for DP charts



6.3.1 Tandem Networks

The results for the speedup of tandem networks are shown in Figures B.1,
B.2, and B.3. The three Figures show a linear speedup except for the lowest
inter-arrival time. When the inter-arrival time has a2 minimum value, in this
case 1, 7 and 200, the speedup has a sublinear behavior. Looking at the three
d/bm ratios in Figures B.1 to B.3 for the case of ‘A = 1,7 and 200, we observe
that the speedup gained is about the same for the 6/2 and 20/2 ratios. The
next ratio, 600/2, increases the speedup very little. As the IART increases,
the speedup obtained by the topology is better, too. The idyeal value for the
speedup is equal to the number of delay nodes in the topology, but this value
is achievable only for the 600/2 ratio (for A = 601 and 3000).

Figures B.4 to B.8 show the degree of parallelism obtained for each tan-
dem topology. The charts show that as the IART increases in each d/bm
ratio, the parallelism achieved increases, yielding a better speedup. For ex-
ample, in Figure B.8 when the d/bm ratio is 200/2 (Ag), the topology is
only able to have 40% of the time four processors active. But, when the
d/bm ratio increases to 600/2 or 3000/2, then the network operates all the
five processors in parallel almost 100% of the time. The reader is encour-
aged to inspect the other performance charts and find that similar results are
obtained for the other tandem networks. In all topologies, there is a lower

bound at which, the degree of parallelism has a certain value, which can be
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increased by increasing the value of the d/bm ratio.

The communication protocol has to follow the inter-packet spacing rules.
That is, when a message is sent, two units of time have to elapse before
sending the next message. In Figures B.4 to B.8 the percentage of idle time
decreases as the IART increases in each of the d/bm ratios. Consider the
performance chart of Figure B.6. When the d/bm ratio is 6/2 and the IART
= 1 (Aa), ™% of the time the topology is idle. If we increase the IART to 7
(Ab), the topology is no longer idle; 45% of the time two processors are active
and 55% of the time three processors work concurrently. A similar scenario
happens for the other two ratios: by increasing the IART the topology is
idle lesser time and is able to perform more operations in parallel. The
inter-packet spacing time accounts for a big percentage of the time for this
topology. As the number of nodes increases (Figures B.5 to B.8), the inter-
packet spacing is distributed over more delay nodes and the topology is able
to perform more concurrent operations.

Reed [RMMS8S] states that “in a tandem network all nodes are always
active”, but the DP charts show that sometimes the nodes are idle as much
as 30% of the time (see Figure B.4). By inspecting the DP charts for tandem
networks we observe that if we increase the IART, then more nodes become
active during the simulation.

Lakshmi [Lak87] found that “an ideal speedup fi.ior of N seems to be

achievable”, but charts B.1 to B.3 show that the speedup is dependent on the



IART and the d/bm ratio. The only case when we obtained a speedup factor
of N was for the 600/2 ratio. In the experiments performed by Lakshmi
[Lak87] the value used for the d/bm ratio was 3/1. We used a multiple of
3/1, that is, 6/2, and found that a factor of ~#N/2 is possible for an IART of
1, and a factor of ~0.9N for the IARTs of 7 and 50. The speedups obtained
for 6/2 and A=1 were: 0.92, 1.16, 1.66, 2.16 and 2.66.; for 6/2 and A =7 or
50 were: 1.14, 1.97, 2.81, 3.70 and 4.55.

NULL messages produce a negligible overhead, since only one NULL mes-
sage is sent at the beginning by each delay nede during the operation of the
algorithm. The 2cNULL algorithm could be used to simulate feedforward
topologies. However, because there are no merge nodes in a tandem net-
work, a 2NULL message would never be sent. In this case, both algorithms

have the same performance.

6.3.2 Feedforward Networks

In the topologies depicted in Figures A.2 to A.10 the probability associated
with a branch process is 0.5 {or each output link (all branch processes in feed-
forward networks have only 2 output links). Also, there is a buffer process
between every basic LP with capacity for 10 messages. Nine different topolo-
gies were studied under this category and Figures B.9 to B.26 summarize the

results.
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The speedups obtained for the feedforward topologies are sublinear in the
number of processors. The DP charts show that delay nodes never achieve full
parallelism. For example, in some topologies (Figures B.18, B.20, B.24, B.26)
all delay nodes never work in parallel for all the combinations of IART and
d/bm ratios. The DP chart for topology Feedforward5 in Figure B.18 shows
that a maximum of four processors—the topology has five processors— are
active only 5% of the time; the results for topology Feedforward6 in Figure
B.20 show that only 5 out of 6 processors are active less than 5% of the
time. The maximum degree of parallelism achieved is 85% for the topology
Feedforward1l (Figure B.10). In general, feedforward topologies have a better
speedup as the inter-arrival time increases in each of the three d/bm ratios:
6/2, 20/2 and 600/2.

Feedforward networks have branch nodes and require the sending of
NULL messages to avoid deadlock. Merge, branch znd delay nodes have
to process NULL messages with the result that the processing of real mes-
sages is delayed. Also, merge nodes have to wait for all input messages,
before sending a message to the next neighboring process. This affects the
performance of the algorithm and as a result, the speedup degrades.

Lakshmi [Lak87] found that “changes in the service rate does not have
any effect on the turnaround time . Unfortunately, she does not show the
experiments performed to support this conclusion. In all the feed/orward

topologies simulated —except for the topology Feedforward3 —we found that
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the d/bm ratio has a direct effect on the speedup: as the d/bm ratio goes up,
the speedup goes up too. Also, because the speedup improves as the d/bm
ratio increases, we are effectively reducing the overhead of the simulation
algorithm.

The results frorr - ' {RMMS8S] are very close to what we found in our
simulations. Reed a.  ,erformed experiments to see the effect of clustering
several nodes in a processor: the simulation experiments concluded that the

speedup decreases as more nodes were clustered in a single processor.

6.3.3 General Feedback Networks

The two general feedback topologies have very close performance. In the
three d/bm ratios, the topologies behave different from the feedforward net-
works: the speedup decreases as the IART increases (see Figures B.27 and
B.29). For some IART' (50 and 150) the speedup decreases up to 80%. The
reason for this decrease is that the number of NULL messages processed in-
creases to huge numbers (see Figures B.43 and B.45). In Figure B.43 we
notice that for Ac, the number of NULL messages was 108,436; in Figure
B.45 the number of NULL messages increases even more for Ac: 206,807.
When the IART is high, we have a lot of NULL messages travelling in the
network. Nodes keep processing NULL messages in order to advince their

clocks. The nodes in the topology do not know that only NULL messages
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are present and that merge processes could advance their clocks.

The 2cNULL algorithm was evaluated to verify that it reduces the over-
head produced by the processing of NULL messages. Figures B.35 and B.37
show the increase in speedup gained using the 2cNULL algorithm. The
number of NULL messages processed is reduced for the three d/bm ratios,
especially when the IART is high: 50 (Ac), 150 (Af), and 3000 (Ai). See
Figures B.44 and B.46. In Figure B.44 Ac decreases the number of NULL
messages transmitted from 108,436 to 17,047; Af reduces the number from
31,844 to 17,047; and Ai reduces the number of NULL messages from 34,464
to 17,409.

The reduction in NULL messages yields a better degree of parallelism.
Comparing Figures B.28 versus B.36 and B.30 versus B.38 we observe that
the idle time spent during the simulation is reduced by 20% for some IARTs.

Even though the 2cNULL algorithm increases the speedup for some
IARTS, the speedup gained is not spectacular. Figures B.36 and B.38 show
that all delay nodes never work concurrently and that most of the time 1
or 2 nodes work in parallel during the simulation (topology Feedbackl has 4
delay nodes and topology feedback2 has 5 delay nodes).

The study performed by Reed [RMM88] concludes that the speedup ob-
tained by the distributed algorithm is dependent on the population of real
messages in the topology. As the IART increases, we have less real mes-

sages present in the system and the number of NULL messages increases
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tremendously. The speedup is reduced because the network has to process a
big number of NULL messages. This is congruent with the results we have

obtained.

6.3.4 Cluster Network

The cluster network performed badly as the IART increased for all the dfbm
ratios (see Figure B.31). As in the general feedback topologies, the number
of NULL messages processed increased to a big number, more than 200,000
(see Figure B.49) for a simulation run of only 1000 messages. In fact, for the
IART of 50, the network is idle 90% of the simulation time. The topology has
8 delay LPs, but the DP chart (see Figure B.32) shows that only a maximum
of 5 LPs achieve full parallelism only 5% of the simulation time.

Looking at Figure B.32 we notice that as the IART increases, less pro-
cessors are able to work concurrently. The same situation occurs with the
2cNULL algorithm in Figure B.40. However, the 2cNULL algorithm im-
proves the speedup for all d/bm ratios when the IART is high. The speedup
goes from 0.18 to 0.26 for Ac, from 0.36 to 0.44 for Af, and from 0.96 to
1.04 for Ai. Also, the number of NULL messages is reduced for the following
cases: Ac (from 247,690 to 160,675), Af (from 219,571 to 166,232), and Ai
(from 135,443 to 125,442).

In the three dfm ratios, the 2cNULL algorithm performed the same as
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the Chandy and Misra approach, for the first two IARTs. The reason for
this behavior is explained by the actions performed by the delay process
(see Figure 4.6). When a delay node receives a 2cNULL message, the black-
time is increased. If the black-time > gray-time, then the 2cNULL message
becomes a NULL message. When the 2cNULL message has to pass through
many nodes or the IART is low, then 2cNULL messages will be converted
into NULL messages and the speedup obtained will be like in the Chandy
and Misra technique.

Reed [RF87] found very similar results with this topology; his study shows
that as the IART decreases, the number of NULL messages decreases signif-
icantly (see Figures B.49 and B.50). For example, for the 6/2 ratio in Figure
B.49, the number of NULL messages goes from 247,690 (Ac) to 13,962 (Aa);
for the 20/2 ratio the number of NULLs ranges between 219,571 (Af) and
22,861 (Ad); and for the 600/2 ratio the number of NULL messages varies
between 135,443 (Ai) and 13,153 (Ag). In addition, a big overhead is pro-
duced by NULL messages in order to avoid deadlock, causing the speedup to
drop considerably (see Figures B.31 and B.39).

6.3.5 Central Server Network

This network category had a behavior close to that of the other feedback

topologies. As the IART increases, the speedup obtained decreases rapidly
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(see Figure B.33).

In Figure B.34 we can observe that the number of processors working in
parallel decreases, as the IART increases. Most of the time one processor is
active. When we have 2 processors working in parallel, the topology is idle
between 50% and 60% for the 6/2 ratio, and 20% to 70% for the 20/2 ratio.
For the 600/2 ratio the percentage of idle time is low, less than 5%, but only
one processor is active most of the time (A = 21).

The 2cNULL algorithm was effective in improving the speedup for Ac
(from 0.18 to 0.38) and Af (from 0.39 to 0.6). (See Figures B.33 and B.41).
For these two cases, the 2cNULL algorithm reduced the percentage of idle
time: from 90% to 79% for Ac, and from 68% to 51% for Af, (see Figures
B.34 and B.42) The number of NULL messages transmitted was also reduced
for Ac (from 92,379 to 26139) and for Af (from 80,425 to 26,493). (see Figures
B.47 and B.48).

For the 2cNULL algorithm, this topology showed the problem we de-
scribed before: for low IARTS, 2cNULL messages are converted into NULL
messages, and the topology can not take advantage of the algorithm. F ig-
ure B.41 shows the speedup obtained with the 2cN ULL algorithm. For low
IARTS, the speedup obtained is the same as the speedup gained with the
Chandy and Misra approach (see Figures B.33 and B.41).

In [RF87] Reed reports that as the population in the network increases,

the speedup decreases. This result parallels with our findings. We have
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shown that as the IART increases, the number of NULL messages increases
too, and as a consequence, the speedup degrades. The same applies for
the 2cNULL algorithm, except that we can have some improvements in the

speedup gained.

6.4 Remarks on the Operation of the
2cNULL Algorithm

The following remarks apply to the feedback topologies we conside: 4 in our
simulation experiments: general feedback networks, cluster network and cen-
tral server network. There are two situations in which the 2NULL algorithm

switches to operate »s the Chandy and Misra algorithm.

1. black-time > gray-time.

We will use the diagram depicted in Figure 6.1.

2cNULL NULL
>4 >
] ] ] |
0 black-time gray-time z

Figure 6.1: Relation between black-time and gray-time

When we have a 2cNULL message, its t-value or black-time, increases as

the message traverses the network. However, if #he black-time increases
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up to or beyond the gray-time value, the 2cNULL is converted into a
NULL message. When this situation occurs, the 2cNULL algorithm

does not help in reducing the number of NULL messages transmitted.

2. The other situation occurs when the algorithm tries to increase the
LP;’s clock to the channel clock value of the link connected to the

feedback path. Suppose we have a feedback topology (see Figure 6.2).

(20, m1)

Ny SED

Figure 6.2: Increasing merge’s clock value

The merge process in Figure 6.2 will send a 2cNULL with a gray-time of
20 because it wants to increase the merge’s clock value up to 20. We notice
that the channel clock value on the feedback path is 20; this means that any
2cNULL sent by the merge process will increase its black-time beyond 20.
Because the gray-time is 20, the 2cNULL messages will be transformed into

NULL messages.
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Chapter 7

Conclusions

7.1 Summary of Results

In this thesis we have studied the design and implementation of a distributed
simulation method for queueing networks. The method is known as the
Chandy and Misra paradigm for distributed simulation. It consists of trans-
forming a system of physical processes (PPs) into a network of logical pro-
cesses (LPs). LPs perform different functions. There are five different types
of processes that can model any physical system: source, delay, branch, merge
and sink.

The core problems in distributed simulation are avoiding deadlock and
ensuring that causality constraints are not violated. Tt e Chandy and Misra

approach uses NULL messages to avoid deadlock. LPs perform specific func-
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tions to simulate correctly the physical system given, i.e. waiting until all
input messages have arrived and selecting the message with the smallest
timestamp. The network composed of LPs repeats three phases—selection,
computation and I/O operations— until a termination time Z is reached.

The major drawback of the Chandy and Misra technique is the overhead
produced by NULL messages. A new distributed algorithm is presented to
overcome this problem. It introduces the novel concept of a two-colored
NULL message. The new algorithm takes advantage of knowledge of global
time by encoding additional information in a message. The two methods
were implemented using the simulation package LANSF [GR88c]. Each of
the five basic LPs was implemented as a LANSF process, which in turn,
is composed of several local processes. The 2¢NULL method changes the
operation of only two basic LPs: merge and delay.

The performance evaluation study of the two implementations was car-
ried out on a MIPS m/1000 machine running UMIPS-BSD. The set of test
cases consisted of 18 network topologies. The performance metrics examined
included: speedup, degree of parallelism achieved and null/real messages
transmission ratio.

The simulations showed that the performance of the distributed simula-
tion algorithms is sensitive to the structure of of the topology being simu-
lated. This is consistent with the results reported by Wong [Won88], Reed
[RMM88], Fujimoto [Fuj88] and Lakshmi [Lak87].
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Tandem networks showed the best performance of all topologies consid-
ered. As the inter-arrival time (IART) increases, the speedup obtained by
the topology is better. As a consequence, the degree of parallelism improves
when the number of delay nodes increases in the topology. Also, the percent-
age of idle time decreases when the physical delay (d) increases in the d/br
ratio.

The speedup found in feedforward networks was not satisfactory. In all
the experiments performed, all delay nodes in the topology never achieved
full parallelism. A general behavior in these networks is that the speedup
increases as the IART increases for the three d/bm ratios. The overhead pro-
duced by the processing of NULL messages is noticeable since the speedups
obtained were sublinear in the number of processors.

In all feedback topologies (gereral feedback networks, cluster network and
central server network) the speedup was poor. Feedback topologies have to
process a tremendous number of NULL messages. When the IART increases,
the speedup decreases precipitously (up to 80% or 90%), becausc the network
is saturated with NULL messages. The 2cNULL algorithm was effective in
improving the speedup for some cases. The new algorithm performs as well or
better than the original Chandy and Misra approach. The improvement was
considerably better for two cases: the cluster network improved the speedup
44% (from 0.18 to 0.26 for Ac) and the central server network improved the

speedup in 111% (from 0.18 to 0.38 for Ac), and 65% (from 0.39 to 0.6 for
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Af).

The studies performed by Wong [Won88], Reed [RMMSS8], Fujimoto
[Fuj88] and Lakshmi [Lak87] found that certain topologies are suitable for
distributed simulation, with the exception of feedback topologies.

To conclude, we have demonstrated that the IART, processing delay
and network topology affect the performance of the distributed simulation
method and we took into account factors not presented in other works. Fur-
thermore, we have presented a new algorithm that improves the performance

of the distributed simulation method when the topology contains cycles.

7.2 Future Research

The future research directions of distributed simulation can be extended in a
number of areas. Our work has considered a good number of test cases, but
it is not exhaustive. There is a need to consider a wider variety of topologies.

The mapping operation described in the Introduction (see Figure 1.1)
has to be considered with more detail in future work. We considered a 1-1
mapping between PPs and LPs. However, we could cluster more than one
PP in a single LP. Heuristics that perform clustering decisions are need=d
and simulation is required to verify if the heuristics show improvements in
the performance of the distributed simulation method.

Finally, we considered that LPs do not have a knowledge of the underlying
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queueing domain. If a LP knows more about the topology it belongs to, it
could make decisions that could improve the performance of the distributed

simulation strategy used.
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Appendix A

Network Topologies
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Figure A.1: Tandem Networks
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Figure A.2: Network Topology Feedforwardl

Figure A.3: Network Topology Feedforward2

Figure A.4: Network Topology Feedforward3

Figure A.5: Network Topology Feedforward4
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Figure A.6: Network Topology Feedforward5

Figure A.7: Network Topology Feedforward6

S W

Figure A.8: Network Topology Feedforward7
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Figure A.9: Network Topology Feedforward8
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Figure A.10: Network Topology Feedforward9
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Figure A.11: Network Topology Feedbackl
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Figure A.12: Network Topology Feedback2
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Figure A.14: Network Topology Central Server




Appendix B
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Figure B.2: Speedup Tandem Networks (20/2)
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126



Speedup

Simulation Time

3 3
E . A=1
E H A=7
2 4 B a-50
] A=7
] O a=21
] ‘B A=150
] B 4-200
13 A=601
] A A=3000
0
Inter-arrival Time
Figure B.27: Speedup Topology Feedbackl
100
% 7
80 i / % //
' 0O 4Proc
! i ¢ B 2Proc
40 ] : 1 Proc
ol B de
2 L A
0 B

Aa Ab Ac Ad Ae Af Ag Ah Ai
Inter-arrival Time
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Figure B.40: Degree of Parallelism Topology Cluster (2cNULL)
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Figure B.42: Degree of Parallelism Topology Central Server (2cNULL)
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Figure B.44: Null/Real Transmissions Topology Feedbackl (2cNULL)
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Figure B.46: Null/Real Transmissions Topology Feedback2 (2cNULL)
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200000
[
e
S
[
2 .
E
AN
8
= 100000
L d
o
Ty
5 ]
L
£
3
=

Figure B.48:

il Wrls

2 Vi

Aa Ab Ac Ad aAe Af Ag Ah Ai
Inter-arrival Time

Null/Real Transmissions Topology Central Server (2NULL)

Real
B Nuli

137



300000
]
[
o 4 e
r A S - [——
2 . B
g 200000 -
[ =
e
- 1 e OB =
° 100000 -
L
[
£
E 00 1 somil oo 2 m
FE e 1 [
z ,,,,,,,,,,,,,,,,,

Aa Ab Ac Ad Ae Af Ag Ah
inter-arrival Time

Figure B.49: Null/Real Transmissions Topology Cluster
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Figure B.50: Null/Real Transmissions Topology Cluster (2cNULL)
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