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Abstract

A general model was derived to find a set of optimal family
contributions within a single cycle of selection from populations
with a strictly hierarchical structure. The model maximized
genetic gain at restricted selection proportion and group
coancestry, or minimized group coancestry at restricted selec-
tion proportion and genetic gain. Populations generated from
single-pair/open-pollinated and nested mating designs, as
special cases of hierarchical populations, were considered in
order to exemplify optimal selection through numerical anal-
yses and simulations. Numerical analyses were made with the
assumption that family numbers were finite, while family sizes
were infinitely large. Monte Carlo simulations generated
breeding populations of finite family number and size. The con-
tribution of a full-sib family was a function of within-family
variation, the breeding values of the different types of families
involved, and the constraints considered in optimization.
Results concerning the optimal solutions were discussed in
terms of selection intensity, group coancestry, heritability and
gain.

Key words: Breeding population, optimal selection, family contributions,
gain, group coancestry, effective size.

Introduction

Selection to improve mass performance involves two basic
considerations. The first is how best to increase the expected
genetic gain in the breeding population; various selection
methods for this purpose have been proposed (e.g. FALCONER
and MAcCKAY, 1996). Genetic gain increases when information
on relatives is used to identify individuals with the highest
breeding values (LusH, 1947, OsBORNE, 1957, HENDERSON,
1984; FALCONER and MAckAY, 1996). It is well established that
BLUP is the best selection method in a single cycle of selection.

The second consideration is the increase in the level of group
coancestry (COCKERHAM, 1967; hereafter, referred to as coances-

Silvae Genetica 49, 6 (2000)

try for short unless otherwise noted) in the breeding popula-
tion. This increase can hinder the realization of the expected
gain in production populations and of the long-term breeding
goals due to increased probability of inbreeding (depression)
and the reduction of genetic variation for further selection.
This issue is of particular significance for outcrossing species
like forest trees. It is inevitable that selection increases coances-
try or reduces genetic variability (BULMER, 1971; BURROWS,
1984; SANTIAGO and CABALLERO, 1995; WEI, 1995). In fact, the
maximum gain by using BLUP is obtained at the expense of
available genctic variances for later generations of breeding.
There are selection methods that result in low or minimum
coancestry. For instance, within-family selection leads to mini-
mum coancestry (e.g. WEI, 1995; WEI and LINDGREN, 1995). In
addition to gain and coancestry, selection intensity is also often
considered as an important factor in selection.

There are many studies on the effects of selection on genetic
gain or coancestry alone (e.g. LusH, 1947; OsBORNE, 1957;
ROBERTSON, 1970; BUuLMER, 1971; JAMES, 1972; BURROWS, 1984,
SANTIAGO and CABALLERO, 1995). Most of the practical applica-
tions of selection emphasized gain but gave little or no atten-
tion to the resultant increase in coancestry. Only recently have
some studies compared selection alternatives, and developed
selection methodology, to take account of both gain and coances-
try (Toro and PEREZ-ENCISO, 1990; QUINTON et al., 1992; WRAY
and GoODDARD, 1994; WEI, 1995; WEI and LINDGREN, 1995;
BRISBANE and GIBSON, 1995; VILLANUEVA and WOOLLIAMS, 1997;
MEUWISSEN, 1997; RosvALL and ANDERSSON, 1999). Coancestry
consideration differs from situation to situation (e.g. among
species). A method that allows breeders effectively and flexibly
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tion, 1602-3, Emperor Group Centre, 288 Hennessy Road, Wanchai,
Hong Hong. Tel. 852-2893-9880; Fax: 852-2892-2661; Email: runpeng-
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to compromise expected gain with coancestry seems more
allround, powerful and appealing than those methods that
either maximize gain or minimize coancestry alone.

As regards coancestry or inbreeding for one or multiple gen-
erations of breeding goals, different selection procedures have
been proposed to improve gain. These include: selection com-
bining restrictions on family contributions (e.g. TorO and
PEREZ-ENCICO, 1990; BRISHANE and GIBSON, 1995; WEI, 1995);
an index selection with variable weights given to between-
family and within-family information (e.g. TORO and PEREz-
ENcico, 1990; WEL, 1995; VILLANUEVA and WooLiams, 1997);
selection with constraint on inbreeding rather than on selection
intensity (QUINTON et al., 1992; WEI, 1995; VILLANUEVA and
WooLLiams, 1997); selection on a criterion obtained by the line-
ar composition of breeding value and the average relationship
of the individual with other selections or estimate of inbreeding
rate between the neighboring generations (e.g. WRAY and Gob-
DARD, 1994; BRISBANE and GIBSON, 1995; LINDGREN and MULLIN,
1997). All these alternatives could flexibly compromise gain
and coancestry, and it seems more logical to combine both
breeding value and coancestry into a single selection criterion
(WrAY and GODDARD, 1994; BrisBant and GIBSON, 1995). How-
ever, there is no theoretical proof that maximum gain is attain-
ed at a certain level of coancestry or at a certain generation
amongst multiple generations.

MEUWISSEN (1997) published a dynamic selection procedure
that maximizes the genetic merit of the selected parents while
restricting their average relationship. GRUNDY et al. (1998)
further improved this procedure by modifying the numerator
relationship matrix. The algorithm combines one-generation’s
selection, unequal mating and offspring numbers into a single
solution a priori, which may be difficult in many breeding
programs, particularly for tree species. A conventional method
is that parents (selections) equally contribute to the offspring
population from which selections are made as the parents of
the next generation. Allowing for selection intensity, gain and
effective family number, LINDGREN et al. (1993) and WEI and
LINDGREN (1995) derived the optimal selection method appro-
priate for unrelated families of uniform but infinitely large
sizes. This method ensures that maximum gain is achieved at a
pre-set selection intensity and effective family number, or
maximum effective family number is achieved at a pre-set
selection of intensity and gain. This study attempts to develop
optimal selection applicable to finite breeding populations of
unrelated families and related families with a hierarchical
structure. Family sizes are balanced. The constrained factors
are either selection intensity and coancestry, or selection inten-
sity and genetic gain. A single cycle of selection is considered.

Basic Assumptions and Model Development

A breeding population of N individuals has a hierarchical
structure of families. There are totally & types of families. A
family type (sib type) is identified by the coefficient (r;) of the
genetic relatedness between the members belongmg to the
family. Let r, r,..r, rank from low to high, indicating that
family members become closely related as r. increases. An
individual can be a member of different types of families at the
same time. For instance, it will be a member of a full-sib family
in which it has the same father and mother as other members,
and also a member of a half-sib family in which all members
have one common parent. The phenotype, x,,; ., of an indi-
vidual can be written as the sum of the population mean (u),
the independent variables (ay Gy @y;9; 4 corresponding to
the respective classes of families and its deviation (ay,y, 4.,
from the family mean of the kth type of family (full-sib):
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where the first number j(=1, 2,..k) of the subscript ji
(=1i, 24,...,ki) denotes the family type to which the individual
belongs, and the two together denote the rank of the family
within that type of family (j=1, 2,...,k), or the rank of an indi-
vidual within a family of the kth type (j=(k+1)). The combina-
tions of different ji explain that the specific family or indi-
vidual may be lower in the hierarchical structure than are
other family types with lower r values. For instance, the sub-
script, 1i2i..ji, means that family 172:..ji is also the member of
family 1i, 21, ..., or (j-1)i in the respective types.

The value of a family variable (a9, ;) 1s its family mean
(phenotype) minus the average of all families in the same fami-
ly type, except for the first type of families (a,), that are
obtained by subtracting the population mean (x) from the fami-
ly means. For example, in a population produced by mating
each of n, male parents to a different set of n, female parents,
a,=F,-n auzl_F F, and @, 00 =500, F' where F, and F are
the respectlve means of half-sib and full sib famlhes There-
fore, all independent variables, @i i (j=1,2,...,k, (k+1)), have
zero mean. Rank families or individuals within the kth type
of families with their values decreasing when the subscripts
are high, e.g. the best family or individual with subscript
.41 (=1,...k) or ...(k+1)1. The meanings of these subscripts will
be the same in other situations unless otherwise stated.

The total phenotypic variance, 62, is the sum of family vari-
ances 0'21., J<k) of different family types, and within family
variance (6%, ) of family type k:

2 2 2
ol=0t 4Ottt O bt Ot Oy (D)

Total variance and the family components are observed para-
meters of a population. An individual performance is decided
by genetic and environmental factors as measured by the re-
spective variance components. Small and additive effects are
exclusively assumed for all genes. The relative effect of the
genetic element is described by individual heritability, A%, the
ratio of genetic variance to the total variance. The family vari-
ance of any type of family can be further decomposed into the
respective genetic and environmental components, and the
genetic effects can thus be expressed by the respective family
heritabilities, i.e. A%, h2, ..., A2 for family types with r; from low
to high. Heritability within the kth family (the (k+1)th vari-
able) is denoted by 22, ..

Taking all parts of the phenotypic value into the account, the
best estimate of an individual’s breeding value or genetic value
is given by the multiple regression equation: @)

i k41yr = alihl2 + ‘11:'21‘}’2Z LT alizi...jihlz’ +ot al?zt..,/a'hz + aliZi“.(kH)fh(ZkH) .

Family heritabilities (A%, A%, ..., k%) and within family herit-
ability (R%, .1, are, therefore, deﬁned as the partial regression
coefficients. A number (n) of superior individuals will be select-
ed. Let Ry i denote the number of selections contributed by

family 1i2i..ji, then we have: @

ZZ"'Z"IHL.J& = ZZ"'Z”I:‘Zi...(k—K)i == ZZ”IZZ:‘ = Z”u =n,

where different ¥’s imply different number of summands.
Genetic gain (AG) under selection is estimated by averaging
the breeding values of selections, which can be written as the
sum of the components contributed by different family types
and within full-sib family deviations:



AG = E(guzf...(kn)x')
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1
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where @,y =@y, g, Ms e the mean of the ay,, .4,
variable upward truncated, or the mean deviation from a,,, ,;
of ., ,. selections.

Assume that all individuals in the population are non-
inbred. For each individual within a group of n selections,
there are n possible pair combinations of relationships includ-
ing self-pairing. The relationships among selections are: 0.5
for an individual self-pairing, 0.5 r; with any of its
(nh.mﬁ-1)—(numu+l)i-1) sibs of the jth-type family with j<k, 0.5 r,
with its n,,; ,.-1 sibs in the kth-type family, and zero with n-n;
other unrelated individuals. The mean contribution to the
group coancestry (COCKERHAM, 1967) by the 1:i2i...(k+1)ith
selection is therefore

0.5

St (ka)i

expressed in terms of family contributions, n . ,., which in
turn decide the contributions of other types of families (eq. 4).
Therefore, the problem of optimization is to find a set of family
contributions (n,, ,.) that maximize genetic gain (eq. 5) under
the constraints

(10)

where s is the size of family 1i2i...ki. In operation, n, and C, are
specified in advance as constant numbers. Trying equlvalently
to minimize -AG and rewriting the constraint 0<n,, ,<s as -

©)

n=n;, C=C,, and 0<n;p;. k<S,

ki

:_n—[l +n {(n” —1)=(my —1)} +r {(n,m -1)- (nmm)} +o.+

Fk-1) {(nlili..,(k—l)i - 1) - (”n’zi..Ja' - 1)} +n ("1;2;...1:; - 1)]

= 220k —1)+

(’k = r(k-l))(”mf..,ki ’1)}“ s

depending on family contributions, n,,,, , Averaging over all n
selections, the group coancestry of the whole selected popula-
tion is

C_.

{n + "12”11 n; -

n “”1)(”1{2:_1)"'--"*'('}'_

7'2 -4 )Z anﬂf(nlﬂf - 1) +...

r(j—l) X’ll:'Zi,.,jz‘ - 1)+ .
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+
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If self-pairing is excluded, the average coancestry of the select-
ed group is

C*=%{O.5+(n -1)c}. (8)

Effective population size of the selected population is therefore
defined as

N, _05,
C

&)

which summarizes the status of the breeding population after
selection in comparison with an ideal population (BURROWS,
1984; FALCONER and Mackay, 1996; NorroN and ALSPACH, 1996;
LINDGREN and MULLIN, 1998).

Equations 5 and.7 hold for any kind of selection. They also
show that a selection solution or decision by any means can be

Ny 150 and n . ,-s<0, we defines the LAGRANGE function as
follows
(i
“AG""{l(” n )+’7'z C- C ZZ 27’1.2. ECTTH In)+

”1121 K S)’

Z Z 277nzz

where A, Ay, Vi, 3 and 7, 4. are the LAGRANGE multipliers.
Let n,,, ,. be the optimal solution. The KUHN-TUCKER theorem
(LUENBERGER, 1989) asserts that there are real constants A,
and Ay, ¥y;9; ;20 and vy, 20 such that

oL

OMpar. s

=0, 71;'2::../0‘(‘ nh’z:‘,‘.ki) =0, M. (nlx'2x'u.k:' - S) =0.
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Considering the situations with O<n . ,.<s where y,,,. ,.=0
and 7, ,,=0, respectively, we get
(12)
aL d
= -aG+ 4(n~n )+ a(C-C.)

Oy i My

1 2 2 2 2
= —;{ah'hl iy * ot Ay P+ f(”uzi..,k.')h(m)}*' A+

A

2 {rl”h‘ + (rz —h )"1.'2.' +.o..t (rk - r(k-l))nlni“,ki - 0-5’}}

3

=0

where #(n,, ) derived from dln, ,aly Vo, ;) is the
truncation point above which n,,. ,. top-ranking individuals
are selected. Selection based on eq. 12 is referred to as optimal
selection. When y,.,, ,>0 and 7, ,.=0 then n, ,.=0; when
Ny 120 and v, =0, 7y, ,.=s. Clearly 0 and s are the both
limits of n,,,, ;. It should be noted that using C* instead of C,
and minimizing C or C* with constraint on gain (AG) instead of
C or C¥ in eq. 10 gives the same selection model as eq. 12.
Family contributions, n;,, ,, which could be obtained from
eq. 12, are functions of the independent variables or breeding
values (a,,,, J.hi) corresponding to the respective types of fami-

3

lies. They differ with families for a given family type. The
model in eq. 12 exhibits complexity in giving optimal solutions.
We will instantiate the model by considering unrelated and
related families, which are the special cases of hierarchical
populations.

Examples
Single-Pair [ Open-Pollinated and Nested Mating Design

Generally, eq. 12 may apply to any population with a strictly
hierarchical structure involving different types (totally %) of sib
relationships or families. To illustrate and exemplify the
results above, we consider populations produced by using open-
pollinated, single-pair and nested mating. Open-pollinated
families can be seen as the special case of nested mating in
which each female parent has many randomly sampled male
partners but only female parents are identified. All parents
used to generate these populations are unrelated. For popula-
tions of open-pollinated or single-pair families, there are m,
unrelated families, each of s members. This is the simplest
situation in breeding. Populations produced by nested mating
have m, male parents, and m, female parents as the partners
of each male parent. Therefore, there are m, unrelated half-sib
families and m m, full-sib families. Parameters needed for
making optimal selection from these two kinds of populations
are formulated in table 1.

Table 1. — Formulations for calculations of important parameters for populations under single-pair/open-
pollinated and hierarchical mating design, respectively (¢f. OSBORNE, 1957; FALCONER and MACKAY, 1996).

Finite m,, (m,) and s

Infinite s

Single-pair/open-pollinated mating

k=1
rn=0.50r0.25

Xy = G+ Ay

o= 0',2 + aé]

ol = b+ rh*(s=D}/s

ohy =’ (l-nh*)s=1/s

W= L+ r(s - D}/ {L+ R (s~ 1)}

Yy =k (1—r)/(1—rh*)

k=1
rn=050r0.25

Xigye = Qs T Ay

o’ =0 +op,
a,ll — O‘zrihz
: 2 2
o5 =0 (1-1rh7)

B =1
hiy =R =n)(1-rh*)

(2)

Hierarchical nested mating

k=2

n=0.257 =05

Xiisy = @ + G + Gy

ol =0} + 0, + o

ol = a1+ B {r,(mys — 1) —rs(m, — 1)}1/(m,s)
o7 = (my —){1+ k*(r5 — )} /(m,s)

0'(23) =0t (l-rE)(s-1)/s

B =R (L+ nmys + rs — R) {1+ B2 (nmys + 15 — 1)}
R =R+ rs—r)/{1+ k(rs—n)}

hiy = B (=) /(1= r,h®)

k=2

rn=025r=05

Xzt = Gt Qg T Qs

o’ = ol +o0; +oh

ol =o'k {rymy - r(my = 1)}/ m,
of = o'rhi(m, - 1)/m,

oy = (l=rh’)

ht=1

K =1

B = R (1=n) (1~ rh?)
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Selection When Family Sizes Are Infinite

Infinite or even large family size (s) is not realistic in prac-
tice. However, the results of selection based on this assumption
would provide general profiles of the relationships amongst
concerned factors, thereby providing a better understanding of
a selection model. In addition, the consequences of selection are
good approximations of those results taken from populations
with large enough family size.

Optimal selection applied to populations of full-sib or half-sib
family (unrelated) that are infinite in number and size has
been well-formulated and studied in WEL and LINDGREN (1995).
In this study, we focus on selection from populations with a
nested structure (k=2) and assume infinite family size (s) but
finite family numbers (for both m, and m,). Instead of n,, or
ny,9;» the proportion (p,; or p,,,.) of the selected individuals from
a family is used, that is, p,,=n,,/m,s or p,,,=n,,,/s. The overall
selected proportion of the initial population is P=n/N=Xp,/m,
=XEp ., /(m,m,). Accordingly, the proportion (w,; or w, ) of the
selected individuals from a family to the selected population
w=n,/n=p, f(m P) or w,,=n./n=p;,/(mm,P) so that
Ew, =2%w, ., =1. Genetic gain for eq. 5 with k=2 can be re-
written in the form, (13)

AG = ZZWIIZI (al:hl + al,z,hz + am,hé)) = .—}..-_....

m,m, P
Zzpnz. (ahhl + iy + auz:h(a))
Then, egs. 7 and 8 with k=2 converge at
C=05% we+(r-r)Y S Wiy f=
B prsf + - mzzp.z,-}.

The selection model expressed in eq. 12 is rewritten as

(14)
0.5
mmP)

(15)

- mm, P4, - ){’i’”zPu‘ + (’z - ’i)pn’zi} =0,

_h
(’”xmzp
which is always true since O<p,,,<1. We know that p ,—1 as
Up ) =02, Pjp=0 a8 Upyyy) —eo, and p,,,=0.5 as t(p,;,)=0. It
can easily be proven that when both A, and A, have zero values
P=X¥p,,/(m m,)=0.5, which could, in fact, be extended to gener-
al situations, that is, P=XX..5p, . ,/(l_lm )=0.5.

There is no analytical solution for both A, and A, at constrain-
ed selection proportion (P) and coancestry (C) For a given pair
of &, and A, there exists an optimal solution. Therefore, a ,trial
and crror” method could be employed to search for p,, and p,,,.
when A, and %, are given, and in turn to search for A, and 2,
when P and C or N, are specified. In this study we used the
Golden Ratio Method (RApe and WESTERGREN, 1990). Both p
and p,,; have values between 0 and 1. Given X, and A,, a pre-
set value of p,, denoted by p,, leads to a sole set of p,,. that in
turn results in a new value of p ,, denoted by p,,. Try different
values of p,;, from 0 to 1 until 5,, = p,, then 5, and the corre-
sponding set of p,.,. are the final solutions, or optimal family
contributions.

2 2 2
agh! + @k +H P by

Selection from Finite Populations
When there is only one family type (k=1), eq. 12 reduces to

aht +1(n; )l —ni -0.57)=0, (16)

which is similar to the expression given by LINDGREN et al.
(1993) and Wl and LINDGREN (1995). As #(n,,) is the truncation
point corresponding to n,;, family contributions (n ;) are solely
decided by family performances. Using nested mating to pro-
duce populations, there are two types (k=2) of families, half-sib
and full-sib, and eq. 12 becomes

- i?’z—(rlnl?
n

)

a11h12 + au‘zl'hzz + f(nlili)hu) nh - {r”h (rz - rl)”lizi -0.5r, } =0.

The truncation points, #(n,;,), correspond to full-sib family
contributions, n . It is clear that full-sib family contributions
(n,,,,) are proportional to half-sib family breeding value (ahh )
and full-sib family breeding value (a,,,A2) if A, and A, are con-

stant.

1i2i

There are s+1 possibilities, that is, 0, 1, 2,....;s, for the con-
tribution (n,; or n,,.) of a full-sib family with s members, each
corresponding to a specific truncation point, #(n;) or t(n,), in
the present situations. Strictly, an optimum solution of selec-
tion should have an n,, and/or n,,, together with an exact
truncation point which satisfies eqs. 16 or 17. In practice, it is
difficult because of the discontinuity of n; or n,,, and the pos-
sible random error associated with a;,; or @ ;,; 4., the within-
family deviations. To simplify optimal selection, it is reasonable
to approximate the truncation point by

ng, ifn,>0

ifn, =0

Di2)g: 4=

Hny) =
: 2a|1’(2)l

(18)

= Qyoy2»
when unrelated families are considered, or
if n, >0

. 2
if m, =0

= Myaps

Ai2iyer 9 (19)

Hpr) =
20,000 — Qs

1i2i(3)1 1i2i(3)2°

when related families are considered. The optimal solution at

pre-set A, and &, is thus approximated by a pair of n, and t(n ;)

or n,, and #(n ., ) that minimizes

{anh +t(n1.)h(2)} ni, - ﬂ?(rnh 0'5"1*

or

{auhn + ahz:hz + f("l.zl)ha)} nA, "%‘{"1”1; + (rz )’luz, 0. Srz‘l’

As there is a relationship between the truncation point and
contribution of a finite family, this algorithm, which is similar
to MEUWISSEN (1997), should be superior to the one that direct-
ly rounds the on-integer values of optimal solutions.

There are explicit solutions of n,, when there is only one type
of families, or k=1. However, the solutions of n,,,, are implicit
when k=2 because of the unknown n; in eq. 17. A search for n;
is necessary before solving n,, with this procedure.

The 7, the contribution of half-sib family 1i, is the sum of
the n,,. over full-sib families Within the 1ith half-sib family,
and is distributed over integers 0,1 min(mys,n). Given a y
denoted by 7,;, we can obtain a set of N9, Which sum to 7. For
each 7, there is a corresponding #,,. At pre-set A, and k try
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all, i.e. 1+min(m,s,n), possibilities of n,. The optimal solution
can be approximated by the 7,, that is equal to or has the mini-
mum distance with the corresponding #,;. A similar “trial and
error” method as above described for infinite family size can be
used to find the values for A, and A, when P and C are specified
(note that, for a finite population, a specified C value may not
be realized, rather, a value closest to it would be obtained). The
same procedure can be extended to other types of breeding
populations having a hierarchical structure. However, it be-
comes difficult when more family types are involved.

Results

Normal distribution is further assumed for the average per-
formances of all types of families and the within-family devia-
tions of full-sib families. Population mean (u) is set to zero.
Numerical and simulation results are demonstrated for un-
related families (k=1) and related families generated by a
nested-mating (k=2). Numerical results for unrelated families
of infinite large sizes are detailed in WEI and LINDGREN (1995).
Thus, optimal selection is only applied to populations of in-
finitely large family size (s) produced by using nested mating
design. Variables for family means are mimicked by order sta-
tistics, and within-family deviations have continuous values.
Optimal family contributions are illustrated in figure 1 for a
mating involving 40 male parents (m ) and 40 female partners
(m,) for each of them. Expected gains at given selected propor-
tion and coancestry are given in table 2 for a mating with m,=5
and m,=4.

Monte Carlo simulation is performed for optimal selection
from populations of finite family sizes. ROSVALL and ANDERSSON
(1999) suggested group merit selection to maximize the select-
ed population’s merit that takes gain and relatedness into
account (WRAY and GODDARD, 1994; BRISBANE and GIBSON,
1995). For comparison, an algorithm for group merit selection
developed by LINDGREN and MULLIN (1997), which will be referr-
ed to as L & M algorithm, is included in the simulation. Family

means and within-family deviations are generated at given
population structure (unrelated families or related families
generated using nested mating), A% m,, m,, and s. Only full
sibs (r,=0.5) are considered for unrelated families. In a simulat-
ed population, selection is conducted for the same selected
number (n) and for a variety of selection decisions (varying A,
and A, values and gain and coancestry level). At a pre-set A, a
value can be found for A,, which corresponds to n. The value of
Ay will vary over repeated populations. Simulations are repeat-
ed 50 times. Averaging over simulations, gain and group coan-
cestry and their respective variation coefficients are calculated
for unrelated families (Table 3) and for related families
(Table 9).

Unlike classical selection methods that lead to a single solu-
tion, optimal selection in eq. 12 provides a series of solutions
(Figure 1; Tables 2, 3 and 4). Given selection proportion, opti-
mal solutions are confined to a domain of coancestry with both
limits corresponding to combined-index and within-family
selection, respectively (WEI and LINDGREN, 1995). Combined-
index selection yields the high limit, while within-family selec-
tion combines the low limit. The high limit varies with popula-
tions of the same family number and size because of sampling
errors, while the low limit is constant (results not shown, WEI
and LINDGREN, 1995). When family size (s) is infinitely large,
the number of optimal solutions is infinite. In practice, the
number is limited because the combinations of selections are
countable, and it is always smaller in number than these possi-
ble combinations.

Optimal family contribution following selection is a non-line-
ar function of the mean performances or breeding values of
half-sib and full-sib family (Figure 1). Generally, increase in
family breeding values leads to increase in family contribu-
tions. The magnitude of the change relies on family types and
the values of A, and A, that decide the constraints, P and C.
Given P, low A, drives family contributions to be more differen-
tial, indicating an increase in C and also in AG. Low A, at cer-

Table 2. — Expected gain (AG) for optimal selection at given selection proportion and coancestry
from a population produced using hierarchical mating (m =5, m,=4 and s64).

Heritability (h%)
P N,(C) 0.01 0.10 025 0.50 0.75 1.0
0.001  5(0.10) 0.0969 0.4070 0,7937 14109 2.0811  2.8739
10(0.05)  0.0713 03355 0.6944 12951 19676 2.7782
0.010 6(0.0874) 00874 03503 0.6653 1.1566 1.6832  2.3015
10(0.05) 0.0674 02962 05925 1.0764 16105 2.2489
0.100 9(0.0556) 0.0667 0.2534 0.4663 0.7904 1.1333  1.5336
13(0.0385) 0.0456 0.1977 03932 07118 10631  1.4833
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Table 3. — Estimated gain ()G) and realized average coancestry (C) and their respective variation coefficients
(CV) following optimal and group merit selection from simulated populations of 20 full-sib unrelated fami-
lies for two family sizes (s), one selected number (n=40), two heritabilities (A%) and four specified effective
population sizes (V). Effective population size (N,) realized in selection is given by 0.5/C.

Optimal selection

Group merit selection

s B Ne v cicv
25 0.077/0.026 0.0200/0.004
24 0,084/0.023  0,0205/0.007
Ol ) 01030016 00227/0.009
20 0.114/0.016 0.0248/0.009
’ 25 0.186/0,023  0,0200/0.005.
24 0.203/0.030 0.0205/0.007
0.23 22 0.238/0.019  0.0223/0.012
20 0.265/0.020 0,0247/0.012
23 0.157/0.021 0.0214/0.007
20 0.203/0.018 0.0247/0.012
Sl 17 024200029 0.0290/0010
. 14 0.276/0.053 0,0352/0.011
23 03380020 0.0215/0.007
0ps 20 04160017 0.02480.010
17 0.484/0,023 0.0290/0.011
14 0.545/0,042 0,0352/0.012

N, GV v Ne
25.03 0.077/0.024  0,0200/0.003 25.02
24,36 0.084/0.024  0.0206/0.006 24.30
22.06 0.102/0.017 0.0227/0.009 22.05
20.18 0.114/0,017 0.0248/0.009 20.17
25.04 0.187/0.020  0.0200/0.003 25.02
24,36 0.203/0.022  0,0205/0.007 24.35
22.38 0.239/0.018  0.0224/0.008 22.32
20.21 0.266/0.020  0,0248/0,012 20.19
23.36 0.157/0,022  0,0214/0.008 23.35
20.22 0.201/0.020  0,0248/0.010 20.20
17.22 0.240/0.027 0.0291/0,010 17,20
14,19 0,274/0,052  0.0352/0.012 14.22
23,29 0.337/0.022  0.0215/0.007 23.30
20.19 0,413/0.019  0.0247/0.013 20.22
17.24 0.481/0,022 0.0291/0.011 17.19
14,22 0.542/0,040 0.0352/0.012 14.20

0 /
a. AR5, A0, P=,0872, 4G=661, ] =50.28

b. 47-.2, 4,72x10°, P=,0676, 4G=583, N,=131,01
. A =8, A72x10°, P=,0033, 4G=1 P14, N,=32,93

0.8+

0.6

0,41

Family contribution (P yz)

Figure 1. — Tllustration of family contributions (p,,,) against family
performances for three different selection schemes (denoted by a, b
and ¢, respectively) from a population generated by mating each of 40
male parents to 40 female parents (nested mating). Individual herit-
ability (h?) of the character concerned is 0.25.

tain A, largely increases P and N, but decreases AG. The distri-
bution of family contributions over families can be very differ-
ent between half-sib and full-sib families. To increase gain

without changing P much, selection could focus on families
with higher ranking in both half-sib and full-sib family perform-
ances (e.g. a in Figure I). The most effective way to increase N,
is to keep family contributions uniform over half-sib families
(e.g. b in Figure 1). The distribution over full-sib families would
not matter much.

Tables 2 demonstrates the relationship between heritability
(h?), selection intensity (P), group coancestry (C) and genetic
gain (AG). As expected, AG increases as h? increases, selection
becomes intensive with low P, and C increases or N, decreases
(also see Tables 3 and 4). Genetic gain is high if A? is high.
Given P and C, AG seems linearly proportional to A2 It is also
shown from table 2 that an intensive selection may yield both
higher AG and N, (lower C) than a weak selection, especially
when A? is relatively high. A set of A, and A, decides an optimal
solution with certain P, C and AG. Given P and A,, A,, C and
AG vary over replicated populations (Tables 3 and 4), implying
the influences of population random processes. The coefficients
(CV) of variation trend to increase as AG and C increase. At the
low limit of C, CV for C is 0 or the distribution of selections
among families is constant over populations, regardless of h?
and AG.

Optimal selection procedure developed in this study and
L & M algorithm (LINDGREN and MULLIN, 1997) yield the same
or almost the same AG given P and N’, (Tables 3 and 4). For
most of situations (repeated simulations) and solutions, both
methods are identical (results not shown). The trivial devia-
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Table 4. — Estimated gain ()G) and realized average coancestry (C) and their respective variation coefficients
(CV) following optimal and group merit selection from simulated populations derived from a nested mating
(m,=5, m,=4) for two family sizes (s), one selected number (n=40), two heritabilities (2%) and four specified
effective population sizes (V). Effective population size (N) realized in selection is given by 0.5/C.

Optimal selection

Group merit selection

s KN,

YG/CV cicv

13 0.070/0.030  0.0383/0.002

12 0.099/0.025 0.0412/0.008

0! 11 0.116/0.019 0.0448/0.009
10 0.129/0.015 0.0493/0.012

’ 13 0.173/0.033  0.0384/0.002
12 0.233/0.022  0.0412/0.006
%21 o2e70.018 0.0448/0.011
10 0.288/0.015  0.0493/0.013

13 0.147/0.035 0,0384/0.003

12 0.199/0.023  0.0413/0.006
o 0.233/0.024  0.0449/0,009
% 10 0.261/0.020 0.0494/0.012
13 0.350/0.028  0.0384/0.002

s 12 0.440/0.018  0.0413/0.00
11 0.495/0.020 0.0447/0.009

10 0,544/0.017  0.0496/0.009

N, YG/CV ccy N.
13.04 0.071/0.029  0.0384/0.002 13.02
12.13 0.100/0.020  0.0413/0.007 12.10
1117 0.116/0.019  0.0448/0.009 11.16
10.14 0.125/0.016  0.0493/0.010 10.14
13.03 0.174/0.030  0,0384/0.002 13.02
12,14 0.234/0.018  0.0413/0.007 12.11
11.15 0.267/0.013  0.04495/0.008 11.14
10.13 0.288/0.016  0.0492/0.013 10.16
13.03 0.148/0.029 0.0384/0.001 13.01
12.12 0.200/0.019  0.0413/0.004 12.09
11,14 0.234/0.019  0.0450/0.006 11.12
10,12 0.261/0.019  0,0495/0.010 10.11
13.03 0.351/0,025  0.0384/0,001 13,02
12.11 0.440/0,019  0.0413/0.005 12,10
11.19 0.496/0.019  0.0448/0.005 11.15
10.08 0.544/0,018  0.0496/0.008 10.08

tions seem random and negligible. The results, in addition
to examining selection based on eq. 12, indirectly verify that
L & M algorithm yields optimal solutions or excellent approxi-
mations to optimal solutions.

Tables 3 and 4 also provide a comparison of single-pair and
nested mating in term of AG and C or N,. For both of mating
designs, full-sib family number is the same. The selected num-
ber (n,) is chosen so that the next generation of breeding popu-
lations with the same full-sib family number can be generated
for the respective mating designs. Thus, the comparison is
made at the same level of heritability, full-sib family number
and size, and total population size. There appears to be no
advantage to having a more complicated mating design in the
present situation. The coancestry range with single-pair is nar-
rower and lower than it is with the nested-mating design. No
significant difference in gain range is shown between the two
mating designs. Indeed, nested mating is much worse in terms
of gain, given family size and heritability, and at a similar level
of coancestry (Tables 3 and 4).

Discussion

A selection can always be expressed as a set of family contri-
butions. Selection model developed in eq. 12 exhibits an im-
plicit and complicated relationship of family contributions
(ny;9; 4) With the breeding values of all types of families involv-
ed, the corresponding truncation points, Lagrange multipliers,
and the contributions of families at lower levels (j<k). For given
constraints, say, on P and C, multifold iterative techniques
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have to be employed in numerical computation for searching
for 4, and X,, truncation points and, then, family contributions,
especially when % increases. The model in eq. 12 involves only
two LAGRANGE multipliers, &, and A,, regardless of & values. If
more constraints are superimposed, such as on the contribu-
tions of certain family types, then more multipliers will be
involved.

Optimal selection results in a range of solutions that corre-
spond to sets of selection intensity (P), gain (AG) and average
coancestry (C). A solution guarantees that no other sets of
Ty 4 €Xist which could results in higher AG at given P and C
or lower C at given P and AG. Classical selection methods pro-
vide a single choice with specified values of AG and C when P
is set, but either AG, C or both of the two may be far from
desired (BULMER, 1971; BURROWS, 1984; FALCONER and MACKAY,
1996; WeI and LINDGREN, 1995). Optimal selection is, therefore,
flexible. If the interaction of AG and C is known, then a single
solution that further optimizes breeding objectives with speci-
fied values of P, AG and C could be found (LINDGREN et al.,
1993; WET and LINDGREN, 1995).

Wer and LINDGREN (1995) concluded that combined-
index/BLUP and within-family selection are the two special
cases of optimal selection. Within-family selection combines a
low limit of C, and combined-index selection yields the global
maximum of AG that is obtained at 4,=0 or when constraint on
C in eq. 10 is released. By using eq. 12, family selection is also
an extreme case of giving a high limit of C. Combined-index
selection always produces C in between both limits. They



further concluded, however, that optimal solutions between
family selection and combined-index selection should not be
treated as optimum, since superior selection solutions that
yield both higher AG and lower C always exit. Obviously, in
lieu it is more natural to view selection based on combined-
index or BLUP (HENDERsSON, 1984) as the high limit of C in
optimal selection, thus, 1,20 (WE1 and LINDGREN, 1995). This
conclusion should hold for any type of breeding populations.

Family contributions corresponding to different types of
families are simply related by eq. 4, and the optimal contribu-
tions (n,y, ,) of the kth type of families decide the contribu-
tions of other types of families. Given constraints on P and C,
N9 4 eXclusively depend on within full-sib family deviations
and on the breeding values of the different types of families.
They are also functions of the constraints imposed. At high C
or A, close to 0 and if P is not high (e.g. P<0.01), then n,,, , are
high for few families with high breeding values of all types of
families involved but are low for most of the families with
relatively low breeding values (Figure I). The difference de-
clines when C decreases, and vanishes at low limit of C. In
other words, weak restriction on C (low A,) means intense use
of between-family variation, while enhanced restriction on C
(high A,) forces selection to be close to within-family selection.
The distribution of the n,,, . can be very different over differ-
ent types of families. For £ dimensions of families, reducing
difference in n; over the first type of families is most important
for controlling coancestry.

Genetic gain following optimal selection depends on the
choice of P and C. It is higher with lower P and higher C.
Investigations have contributed to the relationship between P
and AG for long-term individual selection without considering
Cor N, (e.g. ROBERTSON, 1970; JAMES, 1972). As P is a measure
of census population size, N, is probably more relevant to AG
obtained in long-term breeding programs (QUINTON et al., 1992;
WrAY and GODDARD, 1994; BRISBANE and GIBSON, 1995; SANTIAGO
and CABALLERO, 1995). Taking both census and effective popu-
lation size into account would probably give a better under-
standing of selection mechanisms in breeding programs.
Optimal selection maximizes AG at given P and N, for a single
generation of breeding, and is likely to perform best in the
multi-generation evolution of breeding as well, if the same con-
straints (e.g. N, mating method and ratio, P and N,) are con-
sidered. Yet, more studies are needed in order to truly unveil
the relationship of P, AG and N, over a time horizon.

Genetic gain is a function of heritability. In general, gain is
approximately linear to heritability for all optimal solutions
(Wil and LINDGREN, 1995; Table 2). A high limit of C is lower
with higher h? due to the decreasing use of sibs information.
This suggests that a small gain is obtained with high coances-
try at low A2, whereas a substantial gain is obtained with low
coancestry at high 2% (WEI and LINDGREN, 1995; Tables 3 and
4).

Tables 3 and 4 imply that mating design for parents has an
effect on the consequences of optimal selection. The objective of
a complicated design like nested mating is to enrich knowledge
on the genetic composition of a population in question, to
improve gain by using more genetic information in selection
and to use non-additive genetic variation. Divergence appears
when considering C or N,. Given the number (e.g. m,m,) of full-
sib families, a simple mating design can be more efficient than
a complicated one in compromising AG and C. The reason for
this has two aspects. First, C following selection mainly
depends on the number (m,) and contributions (r;,) of families
at the lowest value of sib relatedness, that is, r,. C increases
rapidly when m, decreases and n,; diverge (Figure I). A compli-

cated design produces fewer m, families than a simple one, 5
half-sib versus 20 full-sib families in tables 3 and 4. Second,
the weighted selection differential corresponding to the family
component decreases with small parent numbers (both m, and
m, in Tables 3 and 4), a decrease which contributes the main
component of AG at C not close to the low limit. Selection is
supposed to be more efficient in AG when more sib information
is included. However, the increase may not supplement the loss
caused by reduction in the selection differential. If the restric-
tion on the number of full-sib families (e.g. m ;m,) is released,
and other restrictions (e.g. N and P or their combinations) are
invoked in lieu, then the conclusions would certainly be dif-
ferent. More treatments are needed to cover the effects of
variations in mating design, and family numbers and sizes.

L & M algorithm screens the individuals with the highest
merit one by one (either added or subtracted) by imposing a
penalty due to increase in relatedness/coancestry on the selec-
tion criterion (breeding value) (WRAY and GODDARD, 1994; Bris-
BANE and GIBSON, 1995; LINDGREN and MULLIN, 1997; ROSVALL
and ANDERSSON, 1999). It is not theoretically or experimentally
proved that the group merit or genetic gain by this algorithm is
maximized given selection intensity and coancestry. Simulation
results in this study show that L. & M algorithm is always opti-
mal or very close to optimal. There are other existing search
methods for the integer solutions of group merit selection (e.g.
WRrAY and GODDARD, 1994; BRISBANE and GIBSON, 1995; ANDERS-
SON et al., 1999). However, no mathematical evidence exists
that these methods lead to highest group merit at given selec-
tion proportion and coancestry.

Monoecious populations, balanced family size (s) and mating
rate (;m,) are considered in selection model development and in
numerical calculations or simulations. These constraints can
easily be released with minor or without modifications of the
selection model by eq. 12. For doecious species like animal
species, optimal selection can separately be performed to the
male and female populations as long as selection number (n),
mating rate and respective C are set. Optimal selection could
also be used to attain optimal n and mating ratio at constrain-
ed C in a way that is similar to the treatments by VILLANUEvVA
and WooLLiaMS (1997) and MEUWISSEN (1997). If family size is
unbalanced, an adjusted size over all families is needed to
obtain estimates of genetic parameters involved in selection.
For family 1i2i...ki with size s ,,, ,;, the contribution should be
confined to [0, s,,,, ,.1 instead of [0, s1 in selection. In theory,
the selection model by eq. 12 can be applied to any breeding
population with a hierarchical structure (k<2). In practice, the
most possible situations are k=1, 2 and 3.
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Summary

Mutations in two independent genes causing chlorophyll
deficiency (chll and chi2) were identified in two Eucalyptus
globulus trees from remnant native forest. In each tree the pro-
portion of albino progeny, following selfing, was found to be
consistent with the segregation of a single gene. One of these
genes (chll) was found to be linked to the isozyme locus Gpi-2.
The frequencies of the mutants were monitored in open-
pollinated seed progeny and, from this, outcrossing rates were
calculated. The rate of outerossing in the chlI mutant tree was
also determined using a multi-locus, maximum likelihood esti-
mation based on three isozyme loci, this agreed closely with the
chl1 single locus estimate. This result highlights a role for rare,
easily scored, mutants in seed orchards, where they can be
utilized to monitor selfing rates.

Key words: outcrossing, selfing, albino, eucalypt, seed orchard.

Introduction

High levels of deleterious recessive mutations may accumu-
late, particularly in outbreeding species (BYERS and WALLER,
1999). Such alleles are exposed upon inbreeding, and abnormal
phenotypes have been reported for many forest tree taxa (e.g.
FRANKLIN, 1970; ELDRIDGE, 1970). The expression of these
recessive mutations is believed to be the main cause of inbreed-
ing depression in forest tree species (LEDIG, 1986), including
eucalypts (GRIFFIN, MORAN and Fripp, 1987; JAMES and
KENNINGTON, 1993; HARDNER and PoTTs, 1995). There are some
reports of abnormal seedling phenotypes in eucalypts which
are believed to be due to single recessive genes (ELDRIDGE,
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1970; HonasoN, 1976; Ports, 1990; Ports and JORDAN, 1994).
However, the genetic control of these abnormal phenotypes has
been studied in very few cases as a result of long generation
time and poor seed set following selfing. Such traits are of
interest in forestry because easily scored mutants, controlled
by single genes expressed at the seedling stage, allow a simple
and cost-effective way to monitor outcrossing rates in open-
pollinated seed (e.g. ELDRIDGE, 1970; HODGSON, 1976; PoTTs,
1990).

During germination of E. globulus open-pollinated seed, two
unrelated native trees were each found to produce some
progeny that lacked chlorophyll (C. M. HARDNER, unpublished
data). Both trees produced albinos that were discernable at the
cotyledon stage and, initially, albino and non-albino phenotypes
were equally vigorous. The albinos, however, were never observ-
ed to produce leaves and died a few weeks after germination.
In one case (513) the albinos were yellow, and in the other (309)
they were more pink, presumably the result of differing levels
of anthocyanin. The aim of this study was to determine the
genetic control of these albino phenotypes in E. globulus and to
test their use in monitoring outcrossing rates.

Materials and Methods

The two trees described above (tree numbers 309 and 513)
are located in southern Tasmania and are separated by a
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