
State Construction in Reinforcement Learning

by

Banafsheh Rafiee

A thesis submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Department of Computing Science

University of Alberta

c© Banafsheh Rafiee, 2024



Abstract

In reinforcement learning, the notion of state plays a central role. A reinforce-

ment learning agent requires the state to evaluate its current situation, select

actions, and construct a model of the environment. In the classic setting, it

is assumed that the environment provides the agent with the state. However,

in most cases of interest, the information received from the environment only

provides partial information about the state of the environment.

Ideally, the agent would construct the state directly from the data stream

of its interaction with the environment. The prevalent approach to state con-

struction is to train a large neural network with backpropagation and repre-

senting the state as the hidden state of recurrent neural networks or the last

hidden layer of feed-forward networks. Building upon this approach, the ex-

isting solution methods have made a lot of progress. However, they remain

limited due to several reasons such as the problem of loss of plasticity in neural

networks.

The first contribution of this thesis is the proposal of three diagnostic

benchmarks inspired by animal learning for studying state construction. The

diagnostic benchmarks have a simple setting: there are only a few signals

to make predictions about. However, they are complicated because complex

computational models are required to solve them. The proposed benchmarks

include knobs for controlling the level of difficulty of the problem.

The second contribution of this thesis is empirical. We conduct a com-

prehensive empirical study of the prominent recurrent learning methods, illu-
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minating some of the limitations of existing solution methods. The empirical

study suggests that: 1) None of the methods are fully satisfactory. 2) Re-

current neural networks (RNNs) can be expensive in terms of memory and

computation. 3) RNNs trained with truncated backpropagation through time

are sensitive to the truncation parameter. 4) Augmenting RNNs with stimu-

lating traces of the observation signals can make T-BPTT less sensitive to the

truncation parameter.

The third contribution of the thesis is on the topic of auxiliary task dis-

covery. Learning about tasks auxiliary to the main task of maximizing the

sum of discounted rewards can assist state construction. It would be appeal-

ing if the agent could discover useful auxiliary tasks automatically. In this

work, we propose a method for auxiliary task discovery based on the idea of

generate-and-test. Our proposed method continually generates auxiliary tasks,

evaluates them, and replaces the useless auxiliary tasks with newly generated

ones. We show the efficacy of the proposed method empirically.

iii



Preface

Many parts of this thesis were published and co-authored.

Much of what is presented in Chapter 3, 4, and 5 are based on a paper pub-

lished at the Adaptive Behavior journal (Rafiee et al., 2022). The results on

transformer models are, however, new and were not included in the Adaptive

Behavior paper. I was involved in all steps of this research including design-

ing and running experiments, implementing algorithmic ideas, and writing the

paper. My co-authors were also involved in different parts of the project. Za-

heer Abbas, Sina Ghiassian, and Raksha Kumaraswamy took part in running

experiments as well as writing the paper. Adam White had a significant role

in designing and analyzing the experiments. Rich Sutton and Elliot Ludvig

contributed to designing experiments using their expertise in animal learning.

Chapter 6 is based on a published paper (Rafiee et al., 2023). I was involved

in all parts of this research including the algorithmic and experimental aspects

as well as the paper write-up. My co-authors contributed to different aspects of

the paper. Rich Sutton had a major contribution to the design of the proposed

algorithm. Adam White significantly contributed to the design and analysis

of the experiments.

iv



To my parents

v



Broch is an inspiration to us not only because of what he accomplished, but

also because of all that he aimed at and could not attain.

– Milan Kundera.

vi



Acknowledgements

I would like to express my sincere appreciation for my supervisor, Rich Sutton,

whose guidance has been essential throughout my PhD. Rich stands out as

more than just a scientist; he is a profound thinker. He has taught me to be

ambitious and strive for excellence.

I would like to thank my supervisor, Adam White, for his support and

encouragement. From my first collaboration with him as a Master student,

he has been actively involved, supporting me in all parts of the projects. He

taught me to embrace disappointing results as opportunities for growth. I am

grateful for his impactful mentorship.

I am grateful to the members of my examining committee, Aaron Courville,

Levi Lelis, and Dale Schuurmans for the insightful discussions and useful feed-

back during the defense.

I want to express my thanks to my coauthors, Zaheer Abbas, Raksha Ku-

maraswamy, Elliot Ludvig, Jun Jin, and Jun Luo for their contributions to the

works included in this thesis.

I would like to thank all the members of RLAI especially Khurram Javed

and Esraa Elelimy for all the useful discussions and all that I learned from

them.

Finally, I would like to thank Sina Ghiassian for all his support both in

work and in life during my PhD.

vii



Contents

1 Introduction 1
1.1 The state update function . . . . . . . . . . . . . . . . . . . . 2
1.2 Objective and approach . . . . . . . . . . . . . . . . . . . . . 3
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background on Reinforcement Learning 7
2.1 Online multi-step prediction and control . . . . . . . . . . . . 7
2.2 Temporal-difference learning . . . . . . . . . . . . . . . . . . . 9
2.3 General value functions and nexting predictions . . . . . . . . 10
2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Diagnostic Benchmarks for State Construction 12
3.1 Diagnostic benchmarks . . . . . . . . . . . . . . . . . . . . . . 12
3.2 Animal learning . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 The trace conditioning benchmark . . . . . . . . . . . . . . . . 14
3.4 The noisy patterning benchmark . . . . . . . . . . . . . . . . 20
3.5 The trace patterning benchmark . . . . . . . . . . . . . . . . . 22
3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 Methods for State Construction 24
4.1 Recurrent neural networks . . . . . . . . . . . . . . . . . . . . 24
4.2 Transformers . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.3 Partially Observable Markov Decision Processes . . . . . . . . 27
4.4 Predictive state representations . . . . . . . . . . . . . . . . . 28
4.5 Generate-and-test . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.6 Neural networks with external memory . . . . . . . . . . . . . 30
4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5 Empirical Study of Prominent Recurrent Learning Methods
on the Diagnostic Benchmarks 31
5.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.2 The trace conditioning benchmark . . . . . . . . . . . . . . . . 33
5.3 The noisy patterning benchmark . . . . . . . . . . . . . . . . 38
5.4 The trace patterning benchmark . . . . . . . . . . . . . . . . . 41
5.5 Combining stimulating traces with RNNs . . . . . . . . . . . . 44
5.6 Results for the GPT model . . . . . . . . . . . . . . . . . . . . 48
5.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6 Auxiliary Task Discovery Through Generate and Test 53
6.1 Auxiliary tasks . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.2 Auxiliary task discovery through generate-and-test . . . . . . 55
6.3 The proposed tester . . . . . . . . . . . . . . . . . . . . . . . . 56
6.4 The random generator . . . . . . . . . . . . . . . . . . . . . . 59

viii



6.5 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . 60
6.6 Evaluating the proposed tester . . . . . . . . . . . . . . . . . . 61
6.7 Evaluating the generate-and-test method . . . . . . . . . . . . 64
6.8 The feature-attainment generator . . . . . . . . . . . . . . . . 67
6.9 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.10 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

7 Conclusion 73
7.1 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . 74
7.2 Closing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

ix



List of Tables

5.1 Parameter sweeps for the three benchmarks. . . . . . . . . . . 34

x



List of Figures

3.1 Eyeblink conditioning. After many pairings of the tone with the
puff of air, the rabbit learns to close its inner eyelid (nictating
membrane) before the puff of air is presented. . . . . . . . . . 15

3.2 An example of learned predictions in the trace conditioning
benchmark. The return is the target of prediction. Rows 4
and 5 show predictions using the presence and microstimulus
representations after 200,000 time steps learning. Microstim-
ulus successfully predicted the US, matching the return. The
presence representation failed to predict the US as it did not
have any active features during the trace interval. The predic-
tions never go to zero like the return because all representations
use a bias feature and even after 200,000 steps the predictions
continue to update. . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3 The stimulus representation for the tile-coded traces, micro
stimulus, and presence representations. The presence repre-
sentation does not have any active features during the trace
interval. The tile-coded traces and microstimulus, however, rep-
resent the trace interval through multiple active features. This
figure is adapted from Ludvig et al. (2012). . . . . . . . . . . 19

3.4 Example trials for noisy patterning in the case of 8 CSs, 8 ac-
tivation patterns, 10 distractors, and 10 percent noise. The 8
activation patterns are shown on the right. 10100110 is one
of the activation patterns. In the example trial on the left, the
pattern of the CSs matches 10100110 and the US gets activated
as a result. In the example trial on the right, however, the pat-
tern of the CSs does not match any of the activation patterns
resulting in the US remaining 0. . . . . . . . . . . . . . . . . . 21

5.1 The interaction between ISI and truncation level in the trace
conditioning benchmark for fixed representations: tile-coded
traces (TCT), microstimulus (MS), and echo state network (ESN).
Each subplot corresponds to one setting of short, medium, and
long ISI. A mini picture of the CS and US timings is included in
the upper left subplot. The y-axis is the MSRE. Lower is better.
The results are calculated over 2 million steps and averaged over
30 runs. (Standard error bars are plotted but in some cases are
not visible due to being small). The error level for the presence
representation is plotted in each subplot as a dotted line for
comparison. In the short setting, all methods performed well.
Microstimulus and tile-coded traces performed well across all
settings. The performance of the echo state network, however,
deteriorated as ISI got larger. . . . . . . . . . . . . . . . . . . 35

xi



5.2 The interaction between ISI and truncation level in the trace
conditioning benchmark for representations learned by T-BPTT
and RTRL. Each subplot corresponds to one setting of ISI. In
each subplot, multiple bars are plotted for Vanilla RNN, LSTM,
and GRU. For each architecture, the left four bars correspond
to T-BPTT with different truncation levels and the right bar
corresponds to RTRL. The y-axis is the MSRE with lower bet-
ter. The results are calculated over 2 million steps and averaged
over 30 runs. Standard error bars are included in the plot. With
short ISI all methods performed well and the T-BPTT based
methods worked with all T ’s. In the medium setting, basic
RNNs performed poorly, and LSTMs and GRUs required trun-
cation at or greater than expected ISI (20) to perform well. In
the long setting, none of the T-BPTT based methods performed
well, even with T greater than expected ISI. Across all three
problem settings, RTRL-based LSTMs achieved a low level of
error. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.3 The noisy patterning benchmark with varying difficulty lev-
els. The 4 bar plots show the MSRE of Vanilla-RNN, GRU,
and LSTM trained with T-BPTT as well as the MSRE of echo
state network for three different configurations of the problem:
easy, medium, and hard. The results are for 2 million steps of
training and averaged over 30 runs. The standard error bars are
included. There was a consistent drop in performance, across
all methods, from the easy setting to the hard one. . . . . . . 39

5.4 Example prediction profile plots for the noisy patterning bench-
mark in the medium setting and hard setting. Unlike Figure 3.4
where all the CSs and distractors were shown, in this figure only
two of the CSs and distractors are shown as examples. In both
cases, an activation pattern occurred as a result of which the
US got activated. In the medium setting, LSTM prediction
matched the return. In the hard setting, however, LSTM did
not predict the US accurately. . . . . . . . . . . . . . . . . . . 40

5.5 The performance of LSTM trained by T-BPTT in the noisy
patterning benchmark. The performance of LSTM degraded
as the number of distractors and activation patterns increased. 40

5.6 The impact of truncation level in the trace patterning bench-
mark for fixed representations. We used the exact same scheme
as Figure 5.1 to visualize the performance in the trace pattern-
ing benchmark. Each plot corresponds to one setting of short,
medium, and long ISI. Each bar reports the MSRE averaged
over 30 runs. All methods were trained for 5 million steps. All
fixed representations performed poorly. Tile-coded traces and
microstimulus independently represent each input (not combi-
nations) and thus cannot learn accurate predictions. . . . . . 42

xii



5.7 The impact of truncation level in the trace patterning bench-
mark for representations learned by T-BPTT and RTRL. Each
subplot corresponds to one setting of short, medium, and long
ISI and includes the error for Vanilla-RNN, LSTM, and GRU.
For each architecture, multiple bars are shown with the left
four bars corresponding to T-BPTT with different T ’s and the
right bar corresponding to RTRL. The results are calculated
over 5 million steps and averaged over 30 runs. Similar to
the trace conditioning benchmark, the T-BPTT based meth-
ods showed sensitivity to the truncation parameter. The use
of RTRL always improved performance; however, except for
ISI∼10 no methods performed well: they all reached a level of
error close to the fixed representations in Figure 5.6. . . . . . 43

5.8 Example prediction profile plots for LSTM in the trace pat-
terning benchmark in the the case of an expected ISI 10 and
30. LSTM was trained with T-BPTT and a truncation length
of 40. Only two of the CS and distractors are shown as exam-
ples. In both cases, an activation pattern occurred as a result
of which the US got activated. In the the case of expected ISI
of 10, LSTM prediction resembled the return. In the case of
longer ISI with the expectation of 30, however, LSTM did not
predict the US accurately. . . . . . . . . . . . . . . . . . . . . 44

5.9 Results for combining stimulating traces with RNNs in the
trace conditioning benchmark. We used the exact same scheme
as Figure 5.2. Darker colors denote the combination of stimulat-
ing traces with the recurrent methods and lighter shades denote
the recurrent methods. Each bar reports the MSRE averaged
over 30 runs. The methods were trained for 2 million steps.
The error bars denote the standard errors. Adding stimulat-
ing traces to the input of the Vanilla-RNN, GRU, and LSTM
improved their performance in both T-BPTT and RTRL cases
and made them less sensitive to the truncation length in the
case of training with T-BPTT. . . . . . . . . . . . . . . . . . 45

5.10 Results for combining stimulating traces with RNNs in the
trace patterning benchmark. The naming conventions ex-
actly match Figure 5.9, as does the general conclusion that
stimulating traces improved performance but less so than in
the trace conditioning benchmark. . . . . . . . . . . . . . . . 46

5.11 A block in the minGPT model consists of an attention module,
layer normalizations, residual connections, and a multi-layer
feedforward network. . . . . . . . . . . . . . . . . . . . . . . 49

5.12 Results for minGPT in the trace patterning benchmark with
ISI 30. The results for Vanilla-RNN, LSTM, and GRU trained
with T-BPTT for T = 40 with and without stimulating traces
are shown in light and dark shades. MinGPT achieved a lower
level of error compared to the recurrent methods and a higher
level of error compared to the recurrent methods augmented
with stimulating traces. . . . . . . . . . . . . . . . . . . . . . 50

5.13 The run time of LSTM trained with T-BPTT and minGPT as
a function of the length of the temporal association when ran
for 10, 000 time steps. LSTM’s run time increased linearly with
the length of the temporal association whereas minGPT’s run
time approached a quadratic trend. . . . . . . . . . . . . . . 50

xiii



6.1 The forward pass, backward pass for the main task, and back-
ward pass for auxiliary task 1 when using the Master-User strat-
egy for learning auxiliary tasks alongside the main task. All
features are used by all tasks in the forward pass but only mod-
ified through the gradient backpropagated from one task. The
dotted arrows show stop-gradient connections. The gradients
do not go back any further from these connections. When using
the Master-User strategy, it is clear which auxiliary task was
responsible for inducing which feature. . . . . . . . . . . . . . 57

6.2 A: The four-rooms environment with the subgoals correspond-
ing to the good and bad hand-designed auxiliary tasks shown
in red and blue respectively. B: Hallway auxiliary tasks im-
proved the performance in terms of learning speed. The corner
auxiliary tasks made learning slower in the early episodes. C:
The proposed tester evaluated the hand-designed auxiliary tasks
well, giving higher utility to the hallway auxiliary tasks. The
results are averaged over 30 runs and the shaded regions depict
the standard error. . . . . . . . . . . . . . . . . . . . . . . . . 62

6.3 The tester gave higher scores to the auxiliary tasks with sub-
goals in the top right and bottom right rooms as shown in the
bottom right subplot. The auxiliary tasks from the top right
and bottom right rooms accelerated learning and were indeed
more useful as shown in the bottom left subplot. . . . . . . . 64

6.4 The learning curves for the proposed generate-and-test method
(green), the baseline with no auxiliary tasks (orange), and the
baseline with fixed random auxiliary tasks (black). The results
are averaged over 30 runs and the shaded regions depict the
standard error. The proposed generate-and-test method im-
proved over the baseline with no auxiliary tasks. Generate-and-
test also outperformed the baseline with fixed random auxiliary
tasks. Fixed random auxiliary tasks also resulted in perfor-
mance gain over the baseline with no auxiliary tasks. . . . . . 66

6.5 Example discovered auxiliary tasks in the three environments.
Generate-and-test discovered reasonably good auxiliary tasks:
in the gridworld environments, the subgoals corresponding to
the discovered auxiliary tasks were close to the goal states. In
the pinball environment, the discovered auxiliary tasks were
more concentrated in the central areas. . . . . . . . . . . . . . 68

6.6 The learning curves for the proposed generate-and-test method
with the feature-attainment generator (lime green) and the base-
line with no auxiliary tasks (orange). The results are averaged
over 30 runs and the shaded regions depict the standard er-
ror. The proposed generate-and-test method with the feature-
attainment generator improved over the baseline with no aux-
iliary tasks. The random generator resulted in faster learning
compared to the feature-attainment generator. However, the
feature-attainment is potentially more scalable than the ran-
dom generator. . . . . . . . . . . . . . . . . . . . . . . . . . . 69

xiv



Chapter 1

Introduction

A central notion in reinforcement learning is the notion of state. A rein-

forcement learning agent learns to maximize the sum of future rewards while

continually interacting with its environment. At each time step, the environ-

ment is in a state, the agent takes an action, the environment in turn emits

a reward and transitions to the next state. The agent requires the state for

all of its activities: for action selection, for evaluating how good its current

situation is, and for constructing a model of its environment.

In the classic setting of reinforcement learning, it is assumed that the agent

has access to the state of the environment. In most cases of interest, however,

the information received from the environment only provides partial informa-

tion about the environment state. These cases are known as the case of partial

observability. Even in cases where the agent fully observes the environment

state, the environment state could be arbitrarily large, and a nontrivial map-

ping from the environment state to the state representation is required.

It would be appealing if the agent could construct the state directly from

the information provided by the environment. Automating the construction

of the state is in line with the long standing goal of building agents capable

of learning directly from the data stream of experience. Moreover, developing

agents that can construct the state directly from the data would significantly

enhance the generality and applicability of reinforcement learning.

In order to generalize to the setting where the agent is responsible for

constructing the state, we assume that the environment only provides obser-
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vations and not the environment state. More specifically, at every time step t,

the agent receives observation ot ∈ Rd which does not necessarily capture the

current state of the environment. The agent has to construct its own state,

called the agent state, from the history of observations and actions where the

state is a compact summary of the history that is sufficient for predicting the

future.

1.1 The state update function

A computationally appealing approach to constructing the agent state is to

construct it recursively from the previous agent state:

St+1=̇u(St, At, Ot+1)

where u is called the state update function. The state update function covers

the case of full observability as well. It is assumed in that case that the

information in Ot+1 is sufficient for forming the agent state and St and At are

no longer required.

There is a large body of work on state construction each with its own devel-

opment of the state update function. Some theoretical approaches include the

works on partially observable Markov decision processes (POMDP), predic-

tive state representations, and Observable Operator Models (Monahan,1982;

Littman, Sutton, and Singh, 2001; Thon, 2017). The more common approach

to state construction is to train a sufficiently large neural network with back-

propagation. In this case, the state is represented either as the hidden state of

a recurrent neural network (RNN) or as the last hidden layer of a feed-forward

network. While the existing solution methods have hints to the final solution,

they are not fully satisfactory due to several reasons such as the problem of

loss of plasticity in neural networks (Dohare et al., 2023). We will discuss

some of the existing methods in more detail in Chapter 4.
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1.2 Objective and approach

This thesis aims to answer the following question:

How well do current state construction solution methods perform and how

can they be improved?

To tackle this question, we take an empirical approach. Conducting an em-

pirical study of the existing solution methods requires suitable benchmarks.

We believe that there is no satisfactory benchmark for studying the problem of

state construction in isolation without the need for addressing other confound-

ing factors such as exploration in reinforcement learning. As a first step, we

design diagnostic benchmarks for studying the solution methods for state con-

struction. Diagnostic benchmarks are simple issue-oriented benchmarks that

illuminate the fundamental limitations of the existing methods. We design

the benchmarks such that they include knobs to control the level of difficulty

of the problem. The proposed benchmarks can facilitate research on state

construction enabling researchers to quickly evaluate new ideas.

Note that our proposed benchmarks are different from time series forecast-

ing benchmarks (e.g. the M-Competitions by Makridakis et al. (1982)) in that

our focus is on the problem of multi-step prediction. Multi-step predictions

are different from time series forecasting problems in that they are predic-

tions about the discounted sum of future observations as opposed to the next

observation itself. Multi-step predictions enable a class of solutions called

temporal-difference learning that are efficient because they have a recursive

form and can be answered independent of span.

To pursue our goal of understanding how well the current state construction

methods perform, we study them empirically on the proposed benchmarks. For

the empirical study, we are interested in gaining a more granular understanding

of how the methods perform. We will explore questions such as to what extent

they fail or succeed, and how their performance changes as a function of their

key hyper-parameters.

Another topic that we explore is the effect of auxiliary tasks on state con-

struction. State construction can be assisted by learning about prediction and
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control tasks auxiliary to the main task of maximizing the sum of discounted

rewards while sharing the state representation. These tasks, called auxiliary

tasks, exert pressure on the lower layers of the neural network during training,

yielding agents that can learn faster (Mirowski et al., 2016; Shelhamer et al.,

2016), produce better final performance (Jaderberg et al., 2016), and at times

transfer to other related problems (Wang et al., 2022). A common view is

that the positive influence of auxiliary tasks is related to the emergence of

good internal representations that are shared for learning the main task and

the auxiliary tasks. This positive influence is called the auxiliary effect.

To improve the auxiliary effect on state construction, we explore the topic

of auxiliary task discovery. It would be appealing if the agent could automat-

ically discover useful auxiliary tasks for itself over time. Relying on human

experts for designing auxiliary tasks is not ideal because it is challenging to

know what auxiliary tasks will be useful in advance. Moreover, the usefulness

of auxiliary tasks might change over the course of learning.

Despite significant interest, the problem of auxiliary task discovery is rather

unexplored with only a few existing solution methods that discover auxiliary

tasks systematically. This dissertation presents a new method for auxiliary

task discovery based on the idea of generate-and-test.

1.3 Contributions

This thesis includes three main contributions:

Diagnostic benchmarks for state construction (Chapter 3)

We designed three diagnostic benchmarks inspired by animal learning exper-

iments. The first benchmark, trace conditioning, requires an agent to predict

a distal stimulus from a previously observed cue, just as a rabbit predicts an

air puff based on a tone. The challenge here is representational: how does the

agent bridge the gap between the tone and the air puff in a way that is not

specific to the particular arrangement or timing of the stimuli? (Ludvig et

al., 2012; Sutton and Barto, 2018) The second benchmark, noisy patterning,
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is inspired by biconditional patterning experiments (Mackintosh, 1974; Harris

et al., 2008). This benchmark tests the agent’s ability to determine which

configuration of the observation signals to pay attention to, in the presence of

noise and distracting stimuli. Finally, the third benchmark, trace patterning,

combines trace conditioning and noisy patterning and requires the agent to

simultaneously discover the relevant observation signals and build their tem-

poral representations. The trace patterning benchmark is more complicated

than the sum of trace conditioning and noisy patterning as it requires temporal

representations of the configurations of the observation signals. These bench-

marks are useful diagnostic tools for assessing methods for state construction.

Empirical Study of prominent recurrent learning methods on the

diagnostic benchmarks (Chapter 5)

We used the proposed diagnostic benchmarks to conduct a comprehensive em-

pirical study of prominent recurrent learning methods, including Long Short-

Term Memory (LSTM) (Hochreiter and Schmidhuber, 1997) and Gated Re-

current Units (GRU) (Cho et al., 2014). We combined these methods with

training algorithms of Truncated Back-prop Through Time (T-BPTT) (Williams

and Peng, 1990) and Real Time Recurrent Learning (RTRL) (Williams and

Zisper, 1989). We systematically investigated each method’s performance as

we varied the key problem parameters. We also introduced a simple input

augmentation scheme based on memory traces, improving both T-BPTT and

RTRL based methods. In total, the results showed that the proposed diagnos-

tic benchmarks can effectively isolate the limitations of the current training

methods and help stimulate research in online representation learning. The in-

sights gained from the experiments include: 1) Recurrent learning algorithms

can simultaneously learn the temporal associations and handle nonlinearities;

however, they can be expensive in computational and memory requirements.

2) The performance of recurrent learning algorithms trained with T-BPTT is

highly sensitive to the truncation parameter, requiring much more computa-

tion for learning longer dependencies.
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Auxiliary task discovery through generate-and-test (Chapter 6)

We propose an auxiliary task discovery algorithm based on the generate-and-

test idea. The idea of generate-and-test has been originally studied in the

context of representation learning where a set of features is produced by a

random generator and evaluated using a tester (Mahmood and Sutton, 2013).

High-utility features are retained and used by the base learning system while

low utility features are replaced by newly generated features. We use a similar

idea for auxiliary task discovery where the agent continually generates new

auxiliary tasks, retains the high-utility ones, and replaces the auxiliary tasks

with low-utility. We show the efficacy of the proposed method empirically.
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Chapter 2

Background on Reinforcement
Learning

This chapter sets the context for understanding the rest of the thesis by pro-

viding a background on reinforcement learning and the associated terminology

and notation.

2.1 Online multi-step prediction and control

We consider the interaction of an agent with its environment as formalized by

Markov Decision Processes (MDPs) for discrete time steps. At each time step

t, the environment is in a state St ∈ S, the agent performs an action At ∈ A,

the environment in turn emits a reward Rt+1 ∈ R ⊂ R, and transitions to the

next state St+1.

The next state and reward are determined according to the transition dy-

namics of the MDP p(s′, r|s, a):

p(s′, r|s, a)=̇ Pr{St+1 = s′, Rt+1 = r|St = s, at = a}

defined for all s, s′ ∈ S, a ∈ A, and r ∈ R.

The agent selects action according to a policy π : S × A → [0, 1] where∑
a∈A π(s, a) = 1, ∀s ∈ S.

We consider the problems of prediction and control. For the prediction

problem, the goal of the agent is to approximate the expected return for a

given policy π defined as:

7



Gt
.
= Rt+1 + γRt+2 + γ2Rt+3 + γ3Rt+4 + . . .

=
∞∑
k=0

γkRt+k+1

(2.1)

where γ ∈ [0, 1) is the discount factor.

The expected return starting from each state following a policy forms a

function referred to as the value function and defined as:

vπ(s)
.
= Eπ[Gt|St = s]

The predictions associated with this notion of a value function are referred

to as multi-step predictions as they look at multiple steps into the future as

opposed to just the immediate next step.

These predictions can be learned online, that is updated at every time step,

and independent of span (van Hasselt and Sutton, 2015) due to the recursive

form of return:

Gt = Rt+1 + γGt+1

This is done using temporal-difference learning methods which we will dis-

cuss in the following section.

In the control setting, the goal of the agent is to find the optimal policy

instead of estimating the value function for a given policy. The optimal policy

is the policy that maximizes the expected return and is denoted by π∗. In this

setting, it is common to use state-action value functions:

qπ(s, a)
.
= Eπ[Gt|St = s, At = a]

The difference between the value functions and state-action value functions

is that for the latter the expectation is conditioned on the state and the action

whereas for the former the expectation is only conditioned on the state.

The action-value function corresponding to the optimal policy is called the

optimal action-value function and is denoted by q∗:

q∗(s, a)=̇maxπqπ(s, a)
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2.2 Temporal-difference learning

To estimate the value function, it is common to use semi-gradient temporal-

difference learning (Sutton, 1988). More specifically, TD(0) is used to learn a

parametric approximation v̂(s; w) by updating a vector of parameters w ∈ Rd

as follows:

wt+1 ← wt + αδt∇wv̂(St;w) (2.2)

where α denotes the step-size parameter and ∇wv̂(St; w) is the gradient of the

value function with respect to the parameters wt. δt denotes the TD error:

δt=̇Rt+1 + γv̂(St+1; wt)− v̂(St; wt)

The value function can be parameterized linearly as v̂(St; wt) = w>t xt with

xt ∈ Rd denoting the feature vector. In that case, ∇wv̂(St; w) = xt.

Alternatively, the value function can be approximated by a neural network

in which case ∇wv̂(St; w) is calculated using backpropagation.

For the control setting, to estimate the state-action value functions, the

control variant of TD(0), Q-learning (Watkins and Dayan, 1992) is commonly

used. The update rule for Q-learning is similar to that of TD(0); however,

q̂(St, At,w) is used instead of v̂(St,w) and the TD error is defined as:

δt=̇Rt+1 + γmaxaq̂(St+1, a; wt)− q̂(St, At; wt)

where the action with the highest value is used for forming the target of learn-

ing.

Q-learning is commonly integrated with the epsilon-greedy policy for ac-

tion selection. In the epsilon-greedy policy, the optimal action is selected with

1−ε probability, and with probability ε one of the actions is selected uniformly

randomly. Here, ε can be used to control the exploration-exploitation tradeoff.

Note that in Q-learning, the policy for which the action-value function is esti-

mated is the greedy policy whereas the policy that is used for action selection

is the epsilon-greedy policy.
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When the policy being learned about is different from the policy used for

action selection, learning is called off-policy. The policy being learned is called

the target policy and the policy used for action selection is called the behavior

policy. Off-policy learning makes it possible to learn about multiple target

policies in parallel while behaving according to a single behavior policy. Off-

policy learning also facilitates the learning of general value functions which we

will discuss in the next section.

2.3 General value functions and nexting pre-

dictions

General value functions or GVFs are value functions with a generalized notion

of target and termination (Sutton et al., 2011). More specifically, a GVF can

be written as the expectation of the discounted sum of any signal of interest

given that a specific policy is followed:

vπ,γ,c(s)
.
= Eπ[

∞∑
k=0

(
k∏
j=1

γ(St+j))c(St+k+1)|St = s, At:∞ ∼ π]

where the signal of interest is denoted by c and referred to as the cumulant or

pseudo reward. π is the target policy and γ sets the temporal horizon of the

prediction and is referred to as the continuation function.

General state-action value function qπ,γ,c(s, a) can be defined similarly with

the difference that the expectation is conditioned on At = a as well as St = s.

GVFs can also be extended to a case where there are no actions or policies.

We use this form of GVFs in our first and second contributions. In this case,

the value function is defined as:

vγ,c(s)
.
= E[

∞∑
k=0

(
k∏
j=1

γ(St+j))c(St+k+1)|St = s] (2.3)

Predictions corresponding to general value functions are sometimes called

nexting predictions (Modayil et al., 2014).
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2.4 Summary

In this chapter, we presented the background for reinforcement learning and

explained concepts such as online multi-step prediction and control, temporal-

difference learning, off-policy learning, GVFs, and nexting predictions.
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Chapter 3

Diagnostic Benchmarks for
State Construction

This chapter presents the first contribution of this thesis that is the proposal of

three diagnostic benchmarks for state construction inspired by animal learning

experiments. As mentioned in Chapter 1, state construction is an important

challenge for enhancing the generality and applicability of reinforcement learn-

ing. Making progress on this challenge requires suitable benchmarks to enable

the evaluation of existing solution methods as well as novel ideas.

In a sense, this contribution is the key contribution of the thesis as it

provides the foundation for the next contribution which is an empirical study

of state construction solution methods on the proposed benchmarks. This

contribution was completed by my co-authors and me and is published in

the Adaptive Behavior journal (Rafiee et al., 2022). The source code for

the benchmarks is available at https://github.com/banafsheh-rafiee/Classical-

conditioning-benchmarks-for-state-construction.

3.1 Diagnostic benchmarks

To make progress on the problem of state construction in reinforcement learn-

ing, there is a need for suitable benchmarks. The existing benchmarks in

reinforcement learning are mostly based on the fully observable setting. The

Arcade Learning Environment (ALE) exhibits minor partial observability, but

frame-stacking can be used to construct a state that can achieve good perfor-
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mance (Bellmare et al., 2013; Machado et al., 2018). OpenAI-Gym (Brock-

man et al., 2016) and MuJoCo (Todorov et al., 2012) offer a wide variety of

tasks inspired by problems in robotics that are partially observable when using

only visual inputs. However, the focus is mostly on continuous actions and

high-dimensional inputs from joint angles and velocities. The DeepMind Lab

contains several 3D simulation problems inspired by experiments in neuro-

science (Beattie et al., 2016; Wayne et al., 2018). Researchers have used these

problems to benchmark large-scale learning systems; unfortunately, such ex-

periments require several billion steps of interaction and cloud-scale compute

(Beattie et al., 2016; Wayne et al., 2018; Pariotto et al., 2020; Fortunato et

al., 2019; Espeholt et al., 2018).

Diagnostic benchmarks serve different purposes than large-scale challenge

problems. Diagnostic benchmarks are simple issue-oriented problems that il-

luminate the fundamental limitations of the existing methods. For example,

the eight-state Black and White problem highlights the need for tracking in

partially observable problems (Sutton et al., 2007), and DeepSea highlights

how dithering exploration can be arbitrarily inefficient even in a grid world

(Osband et al., 2019). Such diagnostic benchmarks isolate specific algorith-

mic issues, and progress on these problems represents progress on the specific

issues.

Additionally, if a diagnostic benchmark has small compute requirements,

then researchers can quickly evaluate new ideas and avoid the additional en-

gineering complexity required to build high-performance, state-of-the-art ar-

chitectures. Large problems often require complex architectures that can be

difficult to analyze, and small implementation details can lead to incorrect

conclusions (Engstrom et al., 2019; Tucker et al., 2018). Rigorous statistical

analysis, experiment repetition, and ablations can be challenging in large-

scale benchmarks because of the excessive computational requirements (see

Machado et al. (2018); Henderson et al. (2018); Colas et al. (2018)).

13



3.2 Animal learning

We used ideas from animal learning experiments to design diagnostic bench-

marks for state construction. Animals also have to do state construction. The

study of multi-step prediction learning in the face of partial observability dates

back to the origins of classical conditioning. Pavlov was perhaps the first to

observe that animals form predictive relationships between sensory cues while

training dogs to associate the sound of a metronome with the presentation

of food (Pavlov, 1927). The animal uses the sound of a metronome (which

is never associated with food in nature) to predict when the food will arrive,

inducing a hardwired behavioral response.

The ability of animals to learn the predictive relationship between stimuli

is critical for survival. These responses could be preparatory like a dog’s

salivation before food presentation or protective in case of anticipating danger

like blinking to protect the eyes.

The study of prediction, timing, and memory in natural systems remains

of chief interest to those who wish to replicate it in artificial systems. Re-

searchers from the animal learning field have conducted careful experiments

and investigated issues that have received little attention in computer science

such as the temporal relationship of events. The animal learning experiments

are also of interest because they have a simple setting: there are only a few

signals that the animal has to make predictions about. However, they are

complicated in the sense that complex computational models are required to

solve them.

3.3 The trace conditioning benchmark

Our first diagnostic benchmark is inspired by classical conditioning experi-

ments of the name trace conditioning. In trace conditioning, two stimuli are

presented to the animal in sequence as shown in Figure 3.1. First, a condi-

tioned stimulus or CS (the predictive trigger) which usually takes the form of

a light or tone, is presented to the animal. Then an unconditioned stimulus
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(US), such as a puff of air to the animal’s eye, is presented which generates a

behavioral response called the unconditioned response (UR)—the rabbit closes

its inner eyelid. After enough pairings of the CS and US, the animal produces

a conditioned response (e.g., closing the inner eyelid) after the CS—behaving

in advance of the US.

This arrangement is interesting because there is a gap, called the trace

interval, between the offset of the CS and the onset of the US where no stimuli

are presented. Empirically we can only reliably measure the strength and

timing of the animal’s anticipatory behavior: the muscles controlling the inner

eyelid. However, the common view is that the animal is making a multi-step

prediction of the US triggered by the onset of the CS that grows in strength

closer to the onset of the US (Schneiderman 1966; Sutton and Barto 1990,

2018), similar to the conditioned response in Figure 3.1.

Tone

CS

US

Airpuff

Trial 1

Trial N

Eye-muscle
Movement 

UR

CR

Figure 3.1: Eyeblink conditioning. After many pairings of the tone with the
puff of air, the rabbit learns to close its inner eyelid (nictating membrane)
before the puff of air is presented.

The mystery for both animal learning and artificial intelligence (AI) is how

the agent fills the gap. No stimuli occur during the gap and yet the prediction

of the US rises on each time step. There must be some temporal generalization

of the stimuli occurring inside the animal.

Additionally, what is the form of the prediction being made, and what al-

gorithm is used to update it? Previous work has suggested that the predictions

resemble discounted returns used in reinforcement learning (Dickinson 1980;
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Wagner 1978), sometimes called nexting predictions (Modayil et al., 2014),

which can be learned using temporal difference learning and eligibility traces

(i.e., TD(λ)). Indeed, it has been shown that the TD-model of classical condi-

tioning emulate several phenomena observed in animals (Ludvig et al., 2012;

Ludvig et al., 2008; Sutton and Barto 1990).

On the question of representation or agent state, the answer is less clear.

TD-models can generate predictions consistent with the animal data, but only

if the state representation fills the gap between the CS and US in the right way

(Ludvig et al. 2012, 2009; Williams et al., 2017). A flag indicating the CS just

happened, called the presence representation, will not induce predictions that

increase over time, and a clock that keeps precise track of time is biologically

unrealistic (Ludvig et al, 2012). Hand-designed temporal representations do

reproduce the animal data well (Ludvig et al., 2012, 2008, 2009; Williams et

al., 2017), but their generality remains unclear. Ideally, the learning system

could discover for itself how to represent different stimuli over time in a way

that (1) is useful across a variety of prediction tasks, and (2) requires compu-

tation and storage independent of the size of the trace interval. Animals do

require more training to learn trace conditioning tasks with longer and longer

trace intervals, but there is no evidence that the update mechanisms or rep-

resentations fundamentally change as a function of the trace interval (Howard

and Eichenbaum 2013).

We designed a benchmark inspired by trace conditioning experiments and

refer to it as the trace conditioning benchmark. The trace conditioning bench-

mark consists of a sequence of trials, each of which consists of a number of

discrete time steps. Each trial starts with the onset of the CS ∈ {0, 1} which

lasts for 4 time steps and is followed by a long gap, and then the US ∈ {0, 1}

which lasts for 2 time steps. The time from the CS onset to the US onset

is called the inter-stimulus interval or ISI ∈ N . We designed the benchmark

such that the ISI is uniformly distributed between L− L
3

and L+ L
3

where L is

the benchmark parameter used to control the benchmark’s level of difficulty.

More specifically, ISI ∼ U(L − L
3
, L + L

3
) where U denotes the discrete uni-

form distribution. The time from the US onset to the start of the next trial is
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called the inter-trial interval (ITI) which is uniformly distributed between 80

and 120.

We also include several binary distractor stimuli that do not contain any

information about the US. The distractors are drawn from a Poisson distribu-

tion with different frequencies and each lasts for 4 time steps. The frequency

varies from distractor to distractor. One distractor occurs on average every

10 steps, another every 20 steps, and so on, up to one distractor that occurs

every 100 steps on average. Note that they also occur during the ITI.

To formulate the problem of predicting the US, we used multi-step predic-

tions of the US. More specifically, we used nexting predictions as defined in

Equation 2.3 in Chapter 2 where the cumulant is the US and γ is set according

to the ISI: γ = 1− 1
E(ISI) . This allows the time horizon of the return to match

the ISI.

Figure 3.2 provides an example trial including the CS, US, and return for

a case where ISI is uniformly distributed between 7 and 13. Note that as

shown in Figure 3.2, the return reaches its maximum value just before the US

onset and steps downward after. This happens because the discounted sum of

future USs is maximal just before the US onset. This temporal profile is con-

sistent with previous work on Nexting (Modayil et al, 2014) and computational

modeling in animal learning (Ludvig et al, 2012).

To understand why this problem could be challenging for a learning system,

consider learning to predict using the presence representation. In the presence

feature representation, the components are one-to-one with the stimuli. More

specifically, the presence feature representation is in form of a vector xt =

(x1t , x
2
t , . . . , x

n
t , 1)> where n is the number of stimuli and the last feature is a

bias feature. xit is one if the ith stimulus is present on time step t and zero

otherwise. The presence feature corresponding to the CS is active during the

CS activation as shown in Figure 3.3. However, during the trace interval,

between the offset of the CS and the onset of the US, no feature is active (only

the bias feature, which has a small weight associated with it is active) and

therefore, the trace interval is not represented by the presence representation.

As a result, as shown in Figure 3.2, the presence representation has a close to
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US

Learned prediction, presence representation

Learned prediction, Microstimulus representation

Return

CS

ISI

Time step

trace interval
1

0

1

0

2

0

2

0

2

0

Figure 3.2: An example of learned predictions in the trace conditioning
benchmark. The return is the target of prediction. Rows 4 and 5 show pre-
dictions using the presence and microstimulus representations after 200,000
time steps learning. Microstimulus successfully predicted the US, matching
the return. The presence representation failed to predict the US as it did not
have any active features during the trace interval. The predictions never go
to zero like the return because all representations use a bias feature and even
after 200,000 steps the predictions continue to update.

zero prediction during the trace interval.

To understand what a good prediction looks like, consider the predictions

made by the microstimulus representation (Figure 3.2). The microstimulus

representation was initially presented in prior work on computational modeling

of classical conditioning (Ludvig et al., 2012, 2008; Hull 1939). Microstimulus

forms an exponentially-weighted decaying memory of stimuli, or stimulating

trace,1 and then applies a non-linear mapping to produce the representation.

Each component of stimulating trace, yt, corresponds to one component of the

stimuli and is set to 1 at the onset of the corresponding stimulus and decays

1A stimulating trace of the stimuli is different from the eligibility traces (Sutton and
Barto, 2018). Eligibility traces are part of the update mechanism and does not impact the
representational capacity. Mozer was the first to investigate stimulating traces as input to
neural network representation learning (Mozer 1989).
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Figure 3.3: The stimulus representation for the tile-coded traces, micro stimu-
lus, and presence representations. The presence representation does not have
any active features during the trace interval. The tile-coded traces and micros-
timulus, however, represent the trace interval through multiple active features.
This figure is adapted from Ludvig et al. (2012).

immediately after the stimulus onset following:

yt+1 = τyt

where 0 < τ < 1 is the decay parameter. Note that the stimulating trace yt

also includes one component corresponding to the US.

Each component of the stimulating trace, yit, is then coarse coded using k

overlapping Gaussian basis functions resulting in k features:

fj(y
i
t) =

1√
2π
exp(−(yit − µj)2

2σ2
)× yit

where µj and σ are the mean and width of the basis functions. The mean of

the basis functions are spaced linearly: µj = j
k

where k is the total number of

basis functions.

Another representation similar to microstimulus is tile-coded traces which

uses tile coding (Sutton and Barto, 2018) to coarse code the stimulating traces.

Tile coding works by applying a number of overlapping grids on the input
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called tilings. In the case of tile coding, the quality of the representation

depends on both the tile coding parameters and the exponential decay rate of

the stimulating traces.

Figure 3.3 shows the CS representation made by the microstimulus and

tile-coded traces representations. During the empty gap between the CS offset

and the US onset, the microstimulus and tile-coded traces representations have

active features constructed from the stimulating trace of the CS. As a result,

they successfully associate the CS with the US, matching the return. See the

predictions for the microstimulus representation in Figure 3.2.

3.4 The noisy patterning benchmark

Our second benchmark, the noisy patterning benchmark, is related to posi-

tive/negative patterning and biconditional patterning in psychology (Harris

et al., 2008). It considers a situation where non-linear combinations of CSs

activate the US. In negative patterning, each CS in isolation activates the US

but their combination does not.

Interestingly, these problems correspond to logical operations like XOR,

which are famously unsolvable by single-layer neural networks. While neural

networks with more than one layer can easily learn patterning problems like

XOR, some of the approaches considered in this work, such as microstimulus,

fail to solve them. To make the benchmark more challenging we designed the

benchmark such that multiple configurations of the CSs activate the US and

added distractors and noise.

This benchmark includes n CSs and one US. There are k configurations of

the CSs that activate the US. We refer to these configurations as activation

patterns. Each activation pattern includes n/2 activated CSs and n/2 non-

activated CSs which are picked randomly at the beginning and kept fixed

throughout the experiment. We designed the benchmark such that in half of

the trials, one of the activation patterns occurs. Each trial starts with the

CSs getting a value of 0 or 1. If the value of the CSs matches an activation

pattern, the US becomes 1 in 4 time steps. Therefore, ISI equals 4. In contrast
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Figure 3.4: Example trials for noisy patterning in the case of 8 CSs, 8 activation
patterns, 10 distractors, and 10 percent noise. The 8 activation patterns are
shown on the right. 10100110 is one of the activation patterns. In the example
trial on the left, the pattern of the CSs matches 10100110 and the US gets
activated as a result. In the example trial on the right, however, the pattern
of the CSs does not match any of the activation patterns resulting in the US
remaining 0.

to the trace conditioning benchmark, the ISI is fixed. Similar to the trace

conditioning benchmark, the ITI is uniformly distributed between 80 and 120.

The benchmark also includes m distractors, which occur at the same time

as the CSs but do not contribute to the US activation. We also added noise

such that in x percent of the trials, an activation pattern occurs but the US

remains 0, or a non-activating pattern occurs and the US gets activated. γ is

set to 1− 1
ISI

= 0.75.

Two example trials for a case with 8 CSs, 8 activation patterns, 10 distrac-

tors, and 10 percent noise are shown in Figure 3.4. In the example on the left,

21



the pattern of the CSs matches one of the 8 activation patterns. Therefore,

the US gets activated. In the example on the right, however, the pattern of

the CSs does not match any of the activation patterns. As a result, the US

remains 0.

Just as we can control the difficulty level of the trace conditioning bench-

mark by changing, for example, the ISI, we can control the difficulty level of the

noisy patterning benchmark by changing the key problem parameters — the

number of CSs, the number of activation patterns, the number of distractors,

and the level of noise.

3.5 The trace patterning benchmark

Our third benchmark is a combination of the first two and we refer to it as

the trace patterning benchmark. In this benchmark, we put together the chal-

lenge of bridging the temporal gap between the stimuli, as posed by the trace

conditioning benchmark, and the challenge of recognizing important patterns

and disregarding distractors, as formulated in the noisy patterning benchmark.

For a learner to do well on this benchmark, it has to both fill the trace interval

and construct non-linear representations of the CSs.

In the trace patterning benchmark, the level of difficulty can be controlled

by the ISI as well as the number of CSs, the number of activation patterns, the

number of distractors, and the level of noise. In our empirical study, we use

the trace patterning benchmark examining the effect of the ISI while keeping

the rest of the benchmark’s parameters fixed: 8 CSs, 8 activation patterns, 10

distractors, and 10% noise.

3.6 Conclusion

To effectively address the challenge of state construction, suitable benchmarks

are required to evaluate the existing solution methods as well as novel ideas.

In this chapter, we presented three diagnostic benchmarks for state construc-

tion inspired by animal learning. The proposed benchmarks are appealing for

several reasons:
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1. They are lightweight, facilitating experiment repetition and statistical

analysis.

2. They are issue-oriented allowing us to study the fundamental issues

within state construction in isolation.

3. They incorporate knobs to control the benchmark’s level of difficulty.

Other researchers have also felt the appeal of the proposed benchmarks and

used them in their experiments (Elelimy 2023; Javed et al., 2023; Samani and

Sutton 2021).

In Chapter 5, we will use the proposed benchmarks to conduct an empirical

study of prominent solution methods for state construction.
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Chapter 4

Methods for State Construction

One of the goals of this dissertation is to answer the question of how well

existing solution methods to state construction perform. To achieve this goal,

this dissertation contributes diagnostic benchmarks for state construction pre-

sented in Chapter 3 and presents an empirical study of prominent solution

methods on the proposed benchmarks in Chapter 5. This chapter surveys

existing solution methods for state construction and discusses which of the

methods we include in and leave out of the empirical study and why.

As mentioned in Chapter 1, state construction is defined as the construction

of the agent state directly from the information provided by the environment.

An approach to constructing the state is to use the state-update function which

is computationally appealing due to its recursive form. The challenge of state

construction is an old challenge dating back to the original work on Partially

Observable Markov Decision Processes in 1960. Since then there has been a

substantial amount of work each with its own development of the state update

function. We will discuss some of these approaches in the next sections.

4.1 Recurrent neural networks

A common approach to state construction is to represent the agent state using

the hidden state of recurrent neural networks (RNN) and update the agent

state in a recurrent manner (Elman, 1990). In this case, the state-update

function would be the RNN.

The internal weights of RNNs could be kept fixed or learned through gradi-
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ent descent. RNNs with fixed randomly initialized internal weights are called

echo state networks or ESNs (Jaeger 2001). In this case, the state-update

function is a fixed function of the data stream.

The internal weights of RNNs can also be learned through gradient descent.

To compute the gradient with respect to the weights of RNNs, backpropaga-

tion through time or BPTT is commonly used (Robinson and Fallside, 1987;

(Werbos, 1988). In BPTT, backpropagation is run on the RNN unrolled in

time. BPTT requires the network activations to be stored from the beginning

of time and is expensive in terms of computation and memory. To address this

issue, truncated backpropagation through time (T-BPTT) was introduced in

which the computational graph is truncated T steps back in time (Williams and

Peng 1990). The truncation length presents a trade-off. If the truncation win-

dow is short, long temporal dependencies cannot be learned as most recurrent

neural networks cannot learn temporal relationships longer than T (Williams

and Peng 1990). If the truncation window is long, the computation and mem-

ory costs will be high as they grow with T . Moreover, a recurrent network

with a long truncation window is prone to the problem of vanishing/exploding

gradients similar to that of a deep network. More complex recurrent archi-

tectures have been introduced to address the problem of vanishing/exploding

gradients such as LSTM (Hochreiter and Schmidhuber, 1997) and GRU (Cho

et al., 2014) which incorporate gating techniques.

An alternative to T-BPTT is real-time recurrent-learning or RTRL which

itself computes an approximation of the true gradient. In RTRL, the gradient

is computed recursively without the need for unrolling and storing the previ-

ous network activations. For a fully connected network, RTRL requires quartic

computation in the number of hidden states per step which makes online im-

plementation with even modestly sized networks challenging (Williams and

Zipser 1989). Approximations of RTRL such as Unbiased Online Recurrent

Optimization (UORO) (Tallec and Ollivier 2018), synthetic gradient methods

(Jaderberg et al., 2017), and SnAp (Menick et al. 2020) approximate the

gradient back in time. These approximate methods are either extremely high

variance or significantly biased.
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We included recurrent neural networks trained with gradient descent in

our empirical study. Neural networks trained with gradient descent are per-

haps the most successful approach to state construction. These methods are

appealing for several reasons. They have made the construction of the state

automatic and tailored to the task at hand. They also scale relatively well

with computation. Finally, they do not need to have access to the underlying

transition model of the environment. These characteristics make them suitable

for the benchmarks proposed in the previous chapter.

While neural networks trained with gradient descent have hints to the final

solution, they are not fully satisfactory. They are not suitable for continual

learning: the ability of the network to learn deteriorates over time (Dohare,

Mahmood, and Sutton 2021). Moreover, as discussed earlier, the existing

methods for computing the gradient in recurrent neural networks are expensive

in terms of computation and memory. The limitations of this class of methods

motivate the need for additional analysis, one instance of which is presented

in this thesis.

4.2 Transformers

An alternative to RNNs is the transformer model (Vaswani et al., 2017) which

consist of attention mechanisms combined with a feed-forward neural network.

Attention mechanisms identify which parts of a sequence are more important

and produce a representation of each element in the sequence based on its

degree of importance.

Transformers are commonly viewed as being more effective than RNNs due

to their ability to handle long temporal associations and their scalability with

computational resources which allows the use of large models. However, their

computational requirements increase quadratically with the span of temporal

dependencies.

Note that transformers are not an instantiation of the state-update func-

tion because they do not update the state recursively from the previous state.

Instead, to handle partial observability, they stack sequences of past observa-
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tions. The length of the sequence fed into transformers is referred to as the

context length.

The best way to use transformers for the multistep prediction and control

problems is still evolving (Parisotto et al., 2020; Parisotto and Salakhutdinov

2021; Loynd et al., 2020; Chen et al., 2021; Janner et al., 2021). Chen et al.

(2021) and Janner et al. (2021) use transformers in the offline reinforcement

learning setting where transformers are used to imitate offline data. Parisotto

et al. (2020) and Parisotto and Salakhutdinov (2021) stack long sequences of

past observations in order to learn long temporal dependencies.

We included transformers trained with backpropagation in our empirical

study as they have recently achieved remarkable results in sequence modeling

tasks.

4.3 Partially Observable Markov Decision Pro-

cesses

The problem of state construction dates back to the introduction of Partially

Observable Markov Decision Processes or POMDPs. POMDPs are the ex-

tension of Markov Decision Processes to the case of partial observability. In

POMDPs, the environment state is referred to as the latent state and is never

observed by the agent. Instead, the agent maintains a belief about the possi-

ble state of the environment. More specifically, the agent state is defined as

a distribution over the environment state and referred to as the belief state.

The belief state is incrementally updated using Bayes’ rule assuming having

access to the transition probability of the environment state (Monahan,1982).

POMDPs have had several significant applications. However, their ap-

plicability has remained limited for several reasons. First, the belief state

is grounded in the environment state which is not directly observable by the

agent. Second, the agent has to know the transition model for the environment

state which in many cases is not plausible. Third, the belief state update is

computationally expensive as it requires computation quadratic in the number

of environment states. Finally, exact POMDP planning is intractable even for
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problems with modest size.

We did not include POMDPs in our empirical study as they assume having

access to the dynamics of the underlying latent state which does not apply to

the animal learning benchmarks proposed in Chapter 3.

4.4 Predictive state representations

In predictive state representations or PSRs, the state is represented as a vec-

tor of predictions about the stream of observations and actions. Similar to

POMDPs, the state is updated using Bayes’ rule (Littman, Sutton, and Singh,

2001). Unlike the belief state in POMDPs, however, in PSRs the state is

grounded in the stream of observations and actions which is directly observ-

able by the agent.

In PSRs, a test is defined as a sequence of observations and actions. The

outcome of a test is defined as the probability of the test happening given the

data stream up to the current time step. If the outcome of all possible tests

is known by the agent, the agent knows everything there is to know about

the system. The set of tests sufficient for knowing the outcome of all tests is

referred to as core tests. This set of tests is linearly independent and can be

linearly combined to produce the outcome of any test. The state is defined as

the probability of the core tests given the history.

There is a large body of work related to the idea of predictive state rep-

resentations. Observable operator models (OOMs), a predecessor of PSRs,

introduced the idea of predictions as state for the first time (Jaeger, 2000);

PSRs can be thought of as the extension of OOMs to the control setting.

Rudary and Singh (2003) extended PSRs to the nonlinear case. Transformed

predictive state representations (TPSRs) use principle component analysis to

discover a minimal set of core tests (Rosencrantz et al., 2004). Temporal-

difference networks extended PSRs to include compositional and temporally

abstract predictions (Sutton, Rafols, and Koop, 2005).

We excluded PSRs from our empirical study as learning the state in PSRs

requires complicated training algorithms. Moreover, using PSRs requires the
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discovery of the core tests which we do not readily have access to in the animal

learning benchmarks.

4.5 Generate-and-test

The problem of state construction can be viewed as one of feature finding such

that the underlying system performs well where features are elements of the

state representation, such as hidden units in neural networks. Many of the

approaches to state construction discussed so far perform feature finding from

the stream of data. Perhaps the most successful methods within this group are

neural networks trained with gradient descent. We can think of large neural

networks trained with gradient descent as performing a massive parallel search

in feature space (Frankle and Carbin, 2018).

Neural networks trained with gradient descent are specifically developed

for settings where learning happens once on a large dataset as opposed to

settings where there is an unending stream of data from which the agent has to

continually learn (Dohare et al., 2023). More specifically, they greatly depend

on the randomness in the weight initialization to find good features. Once

exposed to new data, neural networks trained with gradient descent tend to

forget what they have learned previously (McCloskey and Cohen, 1989; French

1999). More importantly, they tend to lose their ability to learn from new data

(Dohare et al., 2023).

A promising approach to address the issues of forgetting and loss of plas-

ticity is to continually inject randomness in feature search as done in a class of

methods known as generate-and-test. Generate-and-test methods search for

good features by continually generating new features, testing them, and re-

placing the useless ones with newly generated features (Mahmood and Sutton

2013; Samani and Sutton, 2021; Dohare et al., 2023; Shah 2023; Elsayed and

Mahmood, 2023). This class of methods is specifically suitable for continual

learning as they do not suffer from the problem of loss of plasticity as in Neural

networks trained with gradient descent.

The idea of generate-and-test is orthogonal to gradient descent and can be

29



combined with it. In fact, the combination of generate-and-test with gradient

descent has produced promising results in classification and regression tasks

(Dohare et al., 2023).

We did not include generate-and-test methods in our empirical study.

While the generate-and-test approach exhibits a lot of promise, it is not yet

fully developed for partial observability. The third contribution of this thesis,

however, is inspired by the idea of generate-and-test.

4.6 Neural networks with external memory

There is a class of neural networks that incorporate an external memory com-

ponent. One example of neural networks with external memory is Neural

Turing Mechin and its extensions (Graves et al., 2014; Graves et al., 2016;

Wayne et al., 2018). This approach includes methods that learn memory op-

erations resembling memory operations of a conventional computer through

gradient-descent and from data.

Other external memory approaches include those equipped with an episodic

memory system. These methods aim to rapidly learn from highly rewarding

situations using the data stored in the episodic memory (Blundell et al., 2016;

Pritzel et al., 2017). These methods search for past successful experiences

stored in the replay buffer using nearest-neighbours non-parametric model

(Blundell et al., 2016) or attention mechanisms (Pritzel et al., 2017).

We excluded neural networks with external memory from our empirical

study. Although these approaches have shown promise in certain problems,

we decided to focus on more widely used methods with more straightforward

implementations such as recurrent neural networks and transformers.

4.7 Summary

This chapter discussed solution methods for state construction including the

methods that we included and left out of the empirical study. Chapter 5 will

present the result of a systematic study of some of these methods highlighting

their strengths and weaknesses.
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Chapter 5

Empirical Study of Prominent
Recurrent Learning Methods on
the Diagnostic Benchmarks

As mentioned in the introduction, this thesis aims to answer the question of

how well current state construction solution methods perform. To address this

question, this thesis provides diagnostic benchmarks and an empirical study

of existing state construction methods on the proposed benchmarks. The

diagnostic benchmarks were presented in Chapter 3. This chapter presents the

empirical study of state construction methods on the diagnostic benchmarks

with a focus on prominent recurrent learning methods.

This contribution has the most immediate contribution to the goal of gain-

ing a better understanding of the problem of state construction and the ex-

isting solution methods because it provides a comprehensive set of results on

the existing solution methods through a systematic study. The major results

from this study are presented in the Adaptive Behavior journal in 2022.

In this chapter, we systematically study each method’s performance as we

vary the benchmarks’ difficulty using key benchmark parameters. Also, as a

minor contribution, we introduce a simple input augmentation scheme based

on memory traces which improves the studied recurrent learning methods.

This empirical study is a step toward identifying the limitations of prominent

recurrent learning systems and designing new methods.
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5.1 Methods

As mentioned in Chapter 4, there is a large body of work on state construction.

Some of the approaches to state construction were discussed in Chapter 4. For

the empirical study, we focused on neural networks trained with backpropaga-

tion. As discussed in Chapter 4, neural networks trained with backpropagation

are appealing because they have made the construction of the state automatic

and scale well as more computational resources are provided.

The first group of methods that we considered includes recurrent learning

architectures combined with T-BPTT or RTRL for computing the gradient of

the value function with respect to the network’s weights. Within this group,

the first recurrent architecture that we considered is Vanilla-RNN chosen for

its simplicity. Additionally, we included LSTM and GRU architectures due

to their ability to address the problem of vanishing/exploding gradients often

encountered when using Vanilla-RNNs.

We followed standard practice in implementing recurrent neural networks

trained with T-BPTT and RTRL. For T-BPTT with truncation length T , at

each time step t, we unroll the RNN for T steps. We copy the value of the

hidden state of the RNN at time t−T−1 from the forward pass at the previous

time step to form the initial hidden state, xt−T−1, in the current forward pass.

Then we pass the observation sequence ot−T , ...,ot to the network one by one.

After passing each observation, ok where t − T ≤ k ≤ t, we compute the

corresponding hidden state, xk, using the preceding hidden state, xk−1, and

the observation ok, and compute the value function, v̂k. This results in a

sequence of hidden states xt−T, ...,xt, and a sequence of value predictions

v̂t−T , ..., v̂t. After computing the value predictions v̂t−T , ..., v̂t, we use them as

a mini-batch to update the parameters of the network using backpropagation.

For RTRL, on the other hand, we do not do unrolling. Instead, we update

the parameters throughout the training sequence on every time step, while

carrying forward a stale Jacobian that tracks sensitivity to the old parameters

(See Menick et al, 2022).

We also experimented with a group of methods with fixed representations
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as baselines including the microstimulus and tile-coded traces representations

(discussed in Chapter 3) and echo state networks (Jaeger 2001) in which the

representation is constructed using a large recurrent neural network with fixed

randomly initialized internal weights as discussed in Chapter 4. We believe

that microstimulus and tile-coded traces are useful baselines to include due

to their simplicity. Moreover, the effectiveness of microstimulus in has been

shown in prior computational modeling work of classical conditioning (Ludvig

et al., 2012, 2008).

The last group of methods that we explored is the combination of attention

mechanisms with feed-forward neural networks, known as transformers. Trans-

former models have gained remarkable results in sequence modeling tasks. It

is worthwhile to examine their performance on our proposed benchmarks. We

specifically used a GPT model (Radford et al., 2018). The details of the GPT

model and the results can be found in Section 5.6

For each of these representations, we used semi-gradient TD(λ) and ADAM

optimizer (Kingma and Ba 2014). To evaluate the performance, we computed

the Mean Squared Return Error (MSRE):

MSRE =
T∑
t

(v̂(St,wt)−Gt)
2

where T is the total number of time steps.

For each diagnostic benchmark, we studied the performance of each method

as we varied the key problem parameters. For the trace conditioning and

trace patterning benchmarks, we studied the effect of the ISI. For the noisy

patterning benchmark, we studied the effect of the number of CSs, the number

of activation patterns, the number of distractors, and the level of noise

5.2 The trace conditioning benchmark

We studied the effect of the ISI on the performance of the baseline represen-

tation methods considering three cases: 1) short: ISI uniformly distributed

between 7 and 13, 2) medium: ISI uniformly distributed between 14 and 26,
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Problem
Representation

Method
Number of
Tiles/RBFs

Hidden

Layer
Size

Truncation
Length

Step-size

Trace Conditioning
and

Trace Patterning

Presence - - -

3e-6, 1e-5,
3e-5,1e-4,
3e-4, 1e-3

Microstimulus 4, 8, 16, 32 - -
Tile-coded-traces 2, 4, 8, 16 - -
Vanilla-RNN - 10, 20, 40 5, 10, 20, 40

GRU - 10, 20, 40 5, 10, 20, 40
LSTM - 10, 20, 40 5, 10, 20, 40
ESN - - -

Noisy Patterning

Presence - - -
Vanilla-RNN - 10, 20, 40 5

GRU - 10, 20, 40 5
LSTM - 10, 20, 40 5
ESN - - -

Table 5.1: Parameter sweeps for the three benchmarks.

and 3) long: ISI uniformly distributed between 20 and 40, with expected ISI

equal to 10, 20, 30 for the 3 settings respectively.

We swept over the parameters of each representation method. See Table

5.1. The parameter sweeps included the step-size for all the methods, the

number of Tile/RBFs for tile-coded-traces/microstimulus, the hidden layer

size for the RNNs and echo state network, and the spectral radius, input

scaling, and internal connections density for the echo state network. For tile-

coded traces, we used 2 tilings and for microstimulus, we set the standard

deviation of the RBFs to 0.8. For RNNs trained with T-BPTT, we swept over

T-BPTT truncation length. For all RNNs, one hidden layer was used.

We ran each method with each of its parameter settings for 5 runs and 2

million time steps. We then computed MSRE averaged over the 5 runs and

selected the parameter setting that resulted in the lowest level of MSRE. After

optimizing the parameters, we ran each method with its best parameter setting

for 30 runs and averaged the result. We calculated standard errors for each

method to measure how far the sample means are from the true population

means. We then plotted the MSRE averaged over 30 runs and standard error

bars with non overlapping standard error bars for two methods suggesting

significant difference in their performance.

Figure 5.1 shows MSRE for fixed representations for short, medium, and

long ISI. The y-axis is MSRE averaged over 30 runs. The level of error for the

presence representation is shown with a dotted grey line for comparison.
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Figure 5.1: The interaction between ISI and truncation level in the trace
conditioning benchmark for fixed representations: tile-coded traces (TCT),
microstimulus (MS), and echo state network (ESN). Each subplot corresponds
to one setting of short, medium, and long ISI. A mini picture of the CS and US
timings is included in the upper left subplot. The y-axis is the MSRE. Lower
is better. The results are calculated over 2 million steps and averaged over 30
runs. (Standard error bars are plotted but in some cases are not visible due
to being small). The error level for the presence representation is plotted in
each subplot as a dotted line for comparison. In the short setting, all methods
performed well. Microstimulus and tile-coded traces performed well across all
settings. The performance of the echo state network, however, deteriorated as
ISI got larger.

The expert designed fixed representations of microstimulus and tile-coded

traces performed well across all ISI settings; however, the echo state network

failed to capture longer temporal dependencies. In the short setting, all fixed

representations performed well. As ISI got larger, the echo state network per-

formed worse and approached the level of error of the presence representation.

This is likely due to the fact that echo state networks trade-off prediction
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accuracy for computation.

Figure 5.2 shows MSRE for representations learned by T-BPTT and RTRL

for short, medium, and long ISI. In each subplot, multiple bars are shown for

each of Vanilla RNN, LSTM, and GRU architectures. For each architecture,

the four left bars correspond to T-BPTT with T = 5, T = 10, T = 20, and

T = 40. The right bar corresponds to the result for RTRL.

In the short setting, the representations learned by both T-BPTT and

RTRL performed well for all architectures, reaching a much lower level of

error compared to the presence representation.

RNNs trained with T-BPTT were sensitive to the length of the truncation

window, and the sensitivity became more pronounced as ISI got larger (Figure

5.2). To better understand this, let us contrast the performance of T-BPTT

with that of the RTRL variants, which are roughly equivalent to T-BPTT

for T = ∞ (since when T = ∞, T-BPTT computes the gradient all the way

back in time, resulting in a gradient roughly the same as the one computed by

RTRL). In the medium setting, the T-BPTT variants for LSTMs and GRUs

performed similarly to the RTRL counterparts only when the truncation win-

dow was greater than or equal to 20 – the expected ISI (Figure 5.2, top right

subplot). This effect was even stronger in the long setting (Figure 5.2, bottom

subplot). This result is one example of the efficacy of the trace condition-

ing benchmark as a diagnostic benchmark — it clearly isolates the trade-off

introduced by the T-BPTT algorithm.

There was a significant drop in the performance of Vanilla RNNs as we

increased the expected ISI and a larger truncation window did not help im-

prove performance much. This is likely due to the vanishing gradient problem

(Hochreiter et al., 2001). Vanilla RNN trained with RTRL also failed to cap-

ture longer dependencies. This is in contrast to the LSTM and GRU variants

trained with RTRL.

Our results suggest that further algorithmic improvements are required for

solving the trace conditioning problem. While the expert designed fixed repre-

sentations perform robustly across all ISI settings, they do not automatically

discover useful features and thus are not scalable. RTRL also performs well
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Figure 5.2: The interaction between ISI and truncation level in the trace
conditioning benchmark for representations learned by T-BPTT and RTRL.
Each subplot corresponds to one setting of ISI. In each subplot, multiple bars
are plotted for Vanilla RNN, LSTM, and GRU. For each architecture, the left
four bars correspond to T-BPTT with different truncation levels and the right
bar corresponds to RTRL. The y-axis is the MSRE with lower better. The
results are calculated over 2 million steps and averaged over 30 runs. Standard
error bars are included in the plot. With short ISI all methods performed well
and the T-BPTT based methods worked with all T ’s. In the medium setting,
basic RNNs performed poorly, and LSTMs and GRUs required truncation at or
greater than expected ISI (20) to perform well. In the long setting, none of the
T-BPTT based methods performed well, even with T greater than expected
ISI. Across all three problem settings, RTRL-based LSTMs achieved a low
level of error.

in all cases; however, it is not computationally feasible. Finally, T-BPTT’s

performance is highly sensitive to the truncation parameter, requiring much

more computation for learning longer temporal dependencies. Later we will
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discuss a simple algorithm that we tried to improve performance.

5.3 The noisy patterning benchmark

Just as we can control the difficulty level of the trace conditioning benchmark

by changing, for example, the ISI, we can also control the difficulty level of the

noisy patterning benchmark by changing the key problem parameters — the

number of CSs, the number of activation patterns, the number of distractors,

and the level of noise. Using this flexibility, we experimented with the noisy

patterning benchmark in two ways. First, we evaluated echo state network and

several T-BPTT variants with truncation length 5 on three different levels of

difficulty that we refer to as easy, medium, and hard.

We did not experiment with RTRL because with small ISI (= 4), T-BPTT

with T = 5 performs as well as the idealized RTRL baseline. We also did not

experiment with tile-coded traces and microstimulus because they indepen-

dently represent each input and cannot predict patterns of CSs as they are

combined with linear function approximation.

There was a consistent drop in performance, across all methods, as the level

of difficulty was increased (Figure 5.3). Echo state network performed worse

than all three recurrent variants trained with T-BPTT in all three configura-

tions of the problem. This is likely due to the fact that echo state network’s

representation, which is randomly determined and fixed at the beginning of

learning, is not suitable for capturing the activation patterns.

Example LSTM prediction profile plots for the noisy patterning benchmark

are provided in Figure 5.4 for the medium and hard levels of difficulty. We

are only showing 2 of the CSs and 2 of the distractors as examples. In both

examples, an activation pattern occurred and the US got activated (i.e., the US

activation was not due to noise). In the medium setting, LSTM successfully

predicted the US, matching the return after the onset of the CS. However, in

the hard setting, there was a mismatch between LSTM’s prediction and the

return.

To further highlight the configurability of the noisy patterning benchmark,

38



Easy
6 CSs, 4 activaton patterns,

0 distractors, 0% noise
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Figure 5.3: The noisy patterning benchmark with varying difficulty levels.
The 4 bar plots show the MSRE of Vanilla-RNN, GRU, and LSTM trained
with T-BPTT as well as the MSRE of echo state network for three different
configurations of the problem: easy, medium, and hard. The results are for 2
million steps of training and averaged over 30 runs. The standard error bars
are included. There was a consistent drop in performance, across all methods,
from the easy setting to the hard one.
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Figure 5.4: Example prediction profile plots for the noisy patterning bench-
mark in the medium setting and hard setting. Unlike Figure 3.4 where all the
CSs and distractors were shown, in this figure only two of the CSs and distrac-
tors are shown as examples. In both cases, an activation pattern occurred as a
result of which the US got activated. In the medium setting, LSTM prediction
matched the return. In the hard setting, however, LSTM did not predict the
US accurately.
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Figure 5.5: The performance of LSTM trained by T-BPTT in the noisy pat-
terning benchmark. The performance of LSTM degraded as the number of
distractors and activation patterns increased.
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we evaluated the T-BPTT variant of LSTM across two dimensions: the number

of activation patterns and the number of distractors. The results, presented

as a heatmap of MSRE in Figure 5.5, show that the performance deteriorated

as we made the problem more difficult across either dimension.

Taken together, these results demonstrate that the noisy patterning bench-

mark can be useful for systematically studying the scaling properties of the

algorithms in isolation from the temporal dimension, by simply increasing the

number of signals from half a dozen to tens of thousands.

5.4 The trace patterning benchmark

Similar to our experiments on the trace conditioning benchmark, we evaluated

the baseline methods as we increased the ISI while keeping the rest of the

problem parameters fixed (8 CSs, 8 activation patterns, 10 distractors, and

10% noise). The results for fixed representations and representations learned

by T-BPTT and RTRL are provided in Figure 5.6 and 5.7 respectively.

The fixed representations performed poorly in all cases of short, medium,

and long ISI, and their performance got worse as ISI got larger (Figure 5.6).

The expert designed fixed representations of microstimulus and tile-coded

traces independently represent each input (and not their combinations) and

thus cannot learn accurate predictions; contextualizing the failure of the echo

state network in this problem.

The T-BPTT algorithms showed sensitivity to the length of the truncation

window (Figure 5.7). This is consistent with the findings from the trace con-

ditioning experiments. One key difference, however, is that longer truncation

parameters for the LSTM and GRU variants did not help as much as in the

trace conditioning benchmark. Moreover, in contrast to the trace conditioning

benchmark, the performance of the idealized RTRL baselines for the LSTM

and GRU variants got worse considerably as we increased the ISI.

Example prediction plots for LSTM trained with T-BPTT are shown in

Figure 5.8 in the case of expected ISI of 10 and 30. In both cases, a truncation

length of 40 was used. While LSTM prediction profiles resemble the return in
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Figure 5.6: The impact of truncation level in the trace patterning bench-
mark for fixed representations. We used the exact same scheme as Figure 5.1
to visualize the performance in the trace patterning benchmark. Each plot
corresponds to one setting of short, medium, and long ISI. Each bar reports
the MSRE averaged over 30 runs. All methods were trained for 5 million steps.
All fixed representations performed poorly. Tile-coded traces and microstim-
ulus independently represent each input (not combinations) and thus cannot
learn accurate predictions.
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Figure 5.7: The impact of truncation level in the trace patterning bench-
mark for representations learned by T-BPTT and RTRL. Each subplot corre-
sponds to one setting of short, medium, and long ISI and includes the error
for Vanilla-RNN, LSTM, and GRU. For each architecture, multiple bars are
shown with the left four bars corresponding to T-BPTT with different T ’s and
the right bar corresponding to RTRL. The results are calculated over 5 million
steps and averaged over 30 runs. Similar to the trace conditioning benchmark,
the T-BPTT based methods showed sensitivity to the truncation parameter.
The use of RTRL always improved performance; however, except for ISI∼10
no methods performed well: they all reached a level of error close to the fixed
representations in Figure 5.6.
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Figure 5.8: Example prediction profile plots for LSTM in the trace pattern-
ing benchmark in the the case of an expected ISI 10 and 30. LSTM was
trained with T-BPTT and a truncation length of 40. Only two of the CS
and distractors are shown as examples. In both cases, an activation pattern
occurred as a result of which the US got activated. In the the case of expected
ISI of 10, LSTM prediction resembled the return. In the case of longer ISI
with the expectation of 30, however, LSTM did not predict the US accurately.

the case of expected ISI of 10, they fail to match the return in the case of the

expected ISI of 30.

This result emphasizes the difficulty of the trace patterning benchmark —

the tested recurrent networks struggle to achieve low error, even when they

have access to better gradient approximations, as in the case of training with

RTRL.

5.5 Combining stimulating traces with RNNs

Our experimental results highlight the limitations of the current learning meth-

ods. While the linear trace-based methods successfully bridge the temporal

gap in the trace conditioning benchmark, their performance deteriorates when

we introduce nonlinearities in the trace patterning benchmark. On the other

hand, recurrent learning algorithms can simultaneously bridge the temporal

gap and handle nonlinearities, but they can be expensive in computational

and memory requirements
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Figure 5.9: Results for combining stimulating traces with RNNs in the trace
conditioning benchmark. We used the exact same scheme as Figure 5.2.
Darker colors denote the combination of stimulating traces with the recurrent
methods and lighter shades denote the recurrent methods. Each bar reports
the MSRE averaged over 30 runs. The methods were trained for 2 million steps.
The error bars denote the standard errors. Adding stimulating traces to the
input of the Vanilla-RNN, GRU, and LSTM improved their performance in
both T-BPTT and RTRL cases and made them less sensitive to the truncation
length in the case of training with T-BPTT.
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Figure 5.10: Results for combining stimulating traces with RNNs in the trace
patterning benchmark. The naming conventions exactly match Figure 5.9,
as does the general conclusion that stimulating traces improved performance
but less so than in the trace conditioning benchmark.
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In the case of T-BPTT, the memory requirements of RNNs grow linearly

with the length of the truncation window, and learning long-term dependen-

cies, as in the trace conditioning benchmark, requires a comparably long trun-

cation window. In the case of RTRL, the computational complexity of RNNs

grows quartically in the size of the hidden state, and learning patterns from a

large number of signals, as in the noisy patterning quartically, requires a large

hidden state. Ideally, we need training methods that scale well in computation

and memory simultaneously.

As an example, we present a simple approach that scales well in computa-

tion and memory. We augment the RNNs with the stimulating memory traces

of the observation. In particular, we feed an exponentially decaying trace of

each stimulus, as described in tile-coded traces and microstimulus, as part of

the input observation to the recurrent network.

Figure 5.9 and 5.10 show the effect of augmenting the RNNs with the

stimulating memory traces of the observation respectively in the trace condi-

tioning and trace patterning benchmarks. The results for RNNs fed with only

the observation are also included in lighter shades for comparison.

When trained with T-BPTT, feeding the RNNs with stimulating traces

significantly improved the performance for the Vanilla RNN, LSTM, and GRU

variants in the trace conditioning benchmark. Moreover, it made the T-BPTT

variants robust to the truncation length, achieving a similar level of error for

all T ’s. This effect was more pronounced in the long setting (Figure 5.9).

The reduced sensitivity of the T-BPTT variants to the truncation parameter

suggests that feeding RNNs with stimulating traces enables them to achieve

the same level of error with less computation.

When trained with RTRL, feeding the RNNs with stimulating traces helped

improve the performance (Figure 5.9). The improvement was larger for Vanilla

RNN than for the LSTM and GRU variants.

In the trace patterning benchmark, feeding the RNNs with the stimulating

traces improved performance in both T-BPTT and RTRL variants but less so

than in the trace conditioning benchmark.

While the space of ideas for fruitfully combining memory traces and RNNs
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needs further investigation, this result shows how the proposed diagnostic

benchmarks can help us search for general and scalable ideas for the online

prediction problem.

5.6 Results for the GPT model

In this section, we provide the result of training a transformer model on the

long setting of the trace patterning benchmark. Transformers have achieved

remarkable results in sequence modeling tasks. It is commonly believed that

their success is due to their ability to scale with computational resources

through the use of large models. It would be interesting to see how they

perform on our benchmark and how their computational expenses increase as

we increase the difficulty of the benchmarks.

We used a GPT-style transformer, called minGPT1, which includes blocks

consisting of a multi-head attention module, layer normalizations, residual

connections, and a feedforward network. See Figure 5.12. We set the number

of blocks to one. At each time step, we stack the last k observations where k

is referred to as the context length in transformers. Before passing the stack

of observations to the block, we fed it into a perceptron with one layer and

tanh nonlinearity. We then fed the output of the perceptron to the block. We

used a context length of 40 because in the long setting of the trace patterning

benchmark the ISI could be as large as 40. We used an embedding size of 64

and 4 heads for the multi-head attention module.

We ran minGPT for 5 runs and 5 million steps with different values for

the step-size: {10−7, 3−6, 10−6, 3−5, 10−5, 3−4, 10−4, 3−3}. We then computed

MSRE averaged over the 5 runs and picked the step-size that resulted in the

lowest MSRE. Next, we ran minGPT with the best step-size for 30 runs and

averaged MSRE.

Figure 5.12 shows the MSRE for the minGPT model. We have included the

MSRE achieved by Vanilla-RNN, LSTM, and GRU trained with T-BPTT for

T = 40 as well. Vanilla-RNN, LSTM, and GRU augmented with stimulating

1https://github.com/karpathy/minGPT
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Figure 5.11: A block in the minGPT model consists of an attention mod-
ule, layer normalizations, residual connections, and a multi-layer feedforward
network.

traces are shown in darker shades. MinGPT achieved a lower level of error

compared to the recurrent methods and a higher level of error compared to

the recurrent methods augmented with stimulating traces.

While minGPT achieves a lower level of error compared to the RNN ar-

chitectures trained with T-BPTT, its computational requirements increases

quadratically with the length of the temporal association due to incorporating

an attention module. To compare LSTM trained with T-BPTT with minGPT

in terms of their computational requirements, we ran them for 10, 000 time

steps for temporal associations of length 8, 32, 128, 512 and computed the run

times for 10 independent runs. We used a hidden layer size of 64 for LSTM and

an embedding size 64 for minGPT. The truncation parameter for LSTM and

the context length for minGPT were set equal to the length of the temporal

association.

Figure 5.13 shows how the run time of LSTM and minGPT changes as a

function of the length of the temporal association. LSTM’s run time increased

linearly with the length of the temporal association whereas minGPT’s run
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Figure 5.13: The run time of LSTM trained with T-BPTT and minGPT as a
function of the length of the temporal association when ran for 10, 000 time
steps. LSTM’s run time increased linearly with the length of the temporal
association whereas minGPT’s run time approached a quadratic trend.
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time increased more rapidly than linearly, approaching a quadratic trend. The

computational data provided here, though empirically derived and specific to

the implementations of the two methods, align with analytical expectations.

Based on this result, minGPT used much more computation in order to achieve

a lower level of error than LSTM.

5.7 Conclusions

The empirical study presented in this chapter together with the proposed

benchmarks presented in Chapter 3 concludes the first major part of the thesis.

Our empirical study suggests that the proposed benchmarks can be used to

isolate and investigate fundamental challenges in state construction.

Our empirical study provided a granular understanding of prominent solu-

tion methods with a focus on recurrent learning architectures:

1. In the trace conditioning benchmark, vanilla RNN could not handle long

temporal dependencies.

2. In the trace conditioning benchmark, gated architectures of LSTM and

GRU exhibited significant sensitivity to the truncation parameter and

did not perform as well as RTRL variants.

3. In the trace patterning experiments, all recurrent methods struggled

when confronted with the combination of long temporal dependencies

and the need to extract configuration patterns.

4. Feeding stimulating traces to RNNs trained with both T-BPTT and

RTRL enhanced their performance and reduced the sensitivity of the

T-BPTT variants to the truncation parameter.

5. MinGPT reached a lower level of error compared to the recurrent meth-

ods trained with T-BPTT. However, it required more computational re-

sources and its computational requirements increased more rapidly with

the length of the temporal association.
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This thesis investigated methods whose computational complexity grows

linearly or quadratically with the length of the temporal association. However,

more stringent computational restrictions might be useful for future work.

Many RL algorithms, like TD, can make and update long-horizon predictions

with computation significantly less than the length of the prediction’s horizon

(van Hasselt and Sutton, 2015). This might also be possible in representation

learning. Can the agent construct representations capable of overcoming de-

pendencies back in time with computation and storage less than the length of

the gap? While recurrent learning algorithms based solely on T-BPTT do not

meet this requirement, our results show that some combination of stimulating

traces and recurrent architectures may reduce the agent’s dependency on the

truncation level.

Moreover, there is a discrepancy between the speed of learning for natural

and artificial systems; while animals learn eyeblink conditioning in about a few

hundred trials, our baseline methods require thousands of trials to learn the

task. Future research should investigate reasonable computational restrictions

if we hope to discover representations as efficient as those used by animals.
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Chapter 6

Auxiliary Task Discovery
Through Generate and Test

This chapter presents the third contribution of this thesis which is a new

method for auxiliary task discovery. Auxiliary tasks are prediction or control

tasks auxiliary to the main task of maximizing the discounted sum of rewards.

They can support the learning of the main task in several ways including by

assisting state construction or exploration. This chapter presents a method

for discovering auxiliary tasks that would assist state construction.

The third contribution is different from the first two contributions in that

it presents a novel solution method whereas the previous contributions were

mostly about existing solution methods. While the first two contributions

presented comprehensive results by systematically studying different solution

methods, the conclusions from the third contribution is more speculative as

the approaches to the problem of auxiliary task discovery are still evolving.

In a sense, the contribution presented in this chapter has the highest poten-

tial to impact the field because it tackles a relatively unexplored but important

problem. There are only a few existing solution methods in the literature that

discover auxiliary tasks systematically.

6.1 Auxiliary tasks

As mentioned earlier, auxiliary tasks are prediction and control tasks about

signals other than the long-term reward. Learning auxiliary tasks can po-
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tentially assist the learning of the main task in several ways. The ability to

predict and control different aspects of the environment can constitute a form

of environment model (Sutton and Barto, 2018). Solving auxiliary tasks would

result in options or temporally extended actions that could then be used for

exploration or for constructing option models (Sutton et al., 2023). Finally,

learning about auxiliary tasks can assist state construction.

There are several ways in which learning about auxiliary tasks can assist

state construction. The agent state can be represented in terms of auxiliary

tasks about the data stream as in predictive state representation (Littman,

Sutton, and Singh, 2001). Predictions learned for auxiliary tasks can also be

fed to the state update function (Ma 2020). Auxiliary tasks can also assist

state construction by shaping the representation shared between the main task

and the auxiliary tasks. For the rest of this chapter, we will focus on this last

approach.

To share the representation between the main task and the auxiliary tasks,

multi-headed neural networks are used where the last hidden layer acts as

the state representation (Jaderberg et al., 2016). In this setting, each head

corresponds to either the main task or one of the auxiliary tasks. The errors

propagated from all heads make changes to the shared representation.

A common view is that auxiliary tasks can speed up learning the main task

because they may be easier to learn and may require some of the same repre-

sentation that is required for learning the main task (Jaderberg et al., 2016;

Shelhamer et al., 2016; Mirowski et al., 2016). In environments with sparse

reward structures, auxiliary tasks provide instantaneous targets for shaping

the representation in the absence of reward. Auxiliary tasks can also arguably

function as regularizers, improving the generalization and avoiding represen-

tation overfitting in RL (Dabney et al., 2020).

Auxiliary tasks could be posed by the agent. The problem of enabling

agents to discover useful auxiliary tasks is referred to as the problem of aux-

iliary task discovery. Relying on human experts for designing auxiliary tasks

is not ideal because it is challenging to know what auxiliary tasks will be

useful in advance. Moreover, the results on hand-designed auxiliary tasks
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are mixed: in some cases, auxiliary tasks result in substantial performance

gain over the baselines whereas in other cases they achieve marginal improve-

ments (Jaderberg et al., 2016) or even harm the performance (Shelhamer et

al., 2016). Finally, the usefulness of auxiliary tasks might change over the

course of learning.

Recently, there has been some progress in answering the question of what

makes useful auxiliary tasks. Dabney et al. (2020) argue that learning about

the value improvement path constitutes useful auxiliary tasks where the value

improvement path is the sequence of value functions produced by the policy

improvement process in RL. The usefulness of auxiliary tasks has been con-

nected to how well the gradient direction proposed by them is aligned with the

gradient direction of the main task (Lin et al., 2019; Du et al., 2020). Wang et

al. (2022) investigated how different auxiliary tasks affect the properties of the

representation learned by a DQN system with numerous auxiliary tasks when

transferring from one task to another. While these works give hints to what

constitutes useful auxiliary tasks, they do not provide a complete solution to

the problem of auxiliary task discovery.

We explore a generate-and-test approach for auxiliary task discovery. The

proposed generate-and-test method continually generates auxiliary tasks, eval-

uates them, and replaces those recognized to be least useful. This algorithm

is the first instance of an auxiliary task discovery method based on the idea of

generate-and-test. In the next sections, we will develop the generate-and-test

method and show its effectiveness empirically.

6.2 Auxiliary task discovery through generate-

and-test

The proposed method for auxiliary task discovery is based on a class of al-

gorithms called generate-and-test. Generate-and-test was originally proposed

as an approach to representation learning or feature finding where new fea-

tures are continually generated using a generator, evaluated using a tester,

and replaced if recognized as useless. (See Chapter 4.) This idea has a long
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history in supervised learning (Sutton and Whitehead 1993; Mahmood and

Sutton, 2013), and can even be combined with backprop (Dohare et al., 2023).

The same basic structure can be applied to auxiliary task discovery, which we

explain next.

We use generate-and-test for discovering and retaining auxiliary tasks that

induce a representation useful for learning the main task. Our proposed

generate-and-test method consists of a generator and a tester. The genera-

tor generates new auxiliary tasks and the tester evaluates the auxiliary tasks.

The auxiliary tasks that are assessed as useful are retained while the auxiliary

tasks that are assessed to be useless are replaced by newly generated auxiliary

tasks. The newly generated auxiliary tasks will most likely have low utility.

To prevent the replacement of newly generated auxiliary tasks, we calculate

the number of steps since their generation and refer to that as their age. An

auxiliary task can only be replaced if its age is bigger than some age threshold.

Every T time steps, some ratio of the auxiliary tasks gets replaced. We re-

fer to T as the replacement cycle and denote the replacement ratio by ρ. The

pseudo-code for the proposed generate-and-test method is shown in Algorithm

1.

Note that the proposed method does not generate-and-test on features but

on auxiliary tasks. It, however, does assess the utility of features and derives

the utility of the auxiliary tasks from the utility of the features that they

induced. We will explain this in more detail in the next section.

6.3 The proposed tester

We propose a tester that evaluates the auxiliary tasks based on how useful the

features induced by them are for the main task. It is challenging to recognize

which auxiliary tasks induce useful representations. Our proposed tester does

this in two phases. First, it evaluates how good each feature is based on how

much it contributes to the approximation of the main task action-value func-

tion. Here we define the features to be the output of the neural network’s last

hidden layer after applying the activation function. Next, the tester identifies

56



input

main task
action-value 
function

aux task 1
action-value 
function

aux task 2
action-value 
function

.

.

.

.

.

.

features

.

.

.
.
.
.

main task backprop path

input

main task
action-value 
function

aux task 1
action-value 
function

aux task 2
action-value 
function

.

.

.

.

.

.

.

.

.

features

.

.

.

aux task 1 backprop path

input

main task
action-value 
function

aux task 1
action-value 
function

aux task 2
action-value 
function

.

.

.

.

.

.

.

.

.

.

.

.

features

.

.

.
.
.
.

stop gradient
 connections

forward pass

backward pass

Figure 6.1: The forward pass, backward pass for the main task, and backward
pass for auxiliary task 1 when using the Master-User strategy for learning
auxiliary tasks alongside the main task. All features are used by all tasks in
the forward pass but only modified through the gradient backpropagated from
one task. The dotted arrows show stop-gradient connections. The gradients do
not go back any further from these connections. When using the Master-User
strategy, it is clear which auxiliary task was responsible for inducing which
feature.
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Algorithm 1 Generate-and-test for auxiliary task discovery

1: Input: number of auxiliary tasks n, age threshold µ, replacement cycle
T , replacement ratio ρ

2: Initialization:
3: generate n auxiliary tasks using the generator
4: randomly initialize the base learning network
5: set age ai for each auxiliary task to zero
6: for Every time step do
7: do a DQN step to update the base learning network
8: Increase ai by one for i = 1, . . . , n
9: update the utility of all auxiliary tasks using the tester

10: for Every T time steps do
11: Find nρ auxiliary tasks with the lowest utilities such that ai > µ
12: replace the nρ auxiliary tasks with new auxiliary tasks generated
13: by the generator
14: reinitialize the input and output weights of the features induced by
15: the nρ auxiliary tasks
16: reset ai to zero for the nρ auxiliary tasks
17: end for
18: end for

which auxiliary task was responsible for shaping which features.

Let us first consider the problem of recognizing which auxiliary tasks get

credit for shaping which features. When following the standard practice of

jointly learning the main task and the auxiliary tasks, recognizing which fea-

ture was influenced the most by which auxiliary task is challenging. This is

because all features are jointly shaped by all the tasks, both auxiliary and

main. To address this issue, we use a strategy for learning the representation

where all features are used by all tasks in the forward pass; however, each

feature is only modified through the gradient backpropagated from one task.

See Figure 6.1. This learning strategy is similar to the Master-User algorithm

proposed for continual recurrent learning (Javed et al., 2023). Therefore, we

refer to this learning strategy as the Master-User strategy. When using the

Master-User strategy, it is clear which auxiliary task was responsible for in-

ducing which feature.

Next, we require a measure of feature usefulness. To assess each feature,

the proposed tester looks at the magnitude of the outgoing weights from the
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feature to the main task action-value function for all actions. The greater the

magnitude is, the more important the feature is. The tester also considers the

trace of the magnitude of each feature: the greater the trace of the feature

is, the more it contributes to the approximation of the main task action-value

function. The magnitude of the weights times the trace of the magnitude of

the feature represents how much the feature contributes to the approximation

of the main task action-value function. Therefore, the utility of feature k is

defined as:

uk = f̄k ×
∑
a

|wmain
ka | (6.1)

where the utility of feature k is denoted by uk. w
main
ka is the output weight

from feature k to the main action-value function for action a. f̄k is a trace of

feature k defined as:

f̄k ← (1− τ)f̄k + τfk (6.2)

where fk is the value of feature k at the current time step and 0 < τ < 1 is the

trace parameter. This assessment method is similar to what has been used in

generate-and-testing on features (Mahmood and Sutton, 2013).

After assessing the utility of the features, the utility of each auxiliary task

is set to the sum of the utility of the features shaped by it:

u(auxi) =
∑
k∈F i

uk

where F i are the features shaped by auxiliary task i.

6.4 The random generator

We combined the proposed tester with a simple generator that randomly gen-

erates auxiliary tasks. The auxiliary tasks are formulated as subgoal-reaching

GVFs where the continuation function returns 0 at the subgoals and 1 else-

where. (See Chapter 2 for an explanation of GVFs.) The cumulant is −1

everywhere and the policy is greedy.
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The subgoals are uniformly randomly selected from the observation space,

meaning the agent is learning many policies to reach different parts of the

observation space in addition to solving the main task.

6.5 Experimental setup

In this section, we provide empirical results supporting the efficacy of the

proposed generate-and-test method for auxiliary task discovery. We include

results on two gridworld environments: four-rooms and maze. We also in-

clude results on the pinball environment (Konidaris and Barto, 2009), which

is widely used in skill chaining, option discovery, and recently model-based

planning (Lo et al., 2022). We chose these environments so that we could

easily visualize the discovered auxiliary tasks and easily design good and bad

auxiliary tasks as baselines. All environments are episodic.

In the gridworld environments, the goal is to learn the shortest path from

the start state to the goal. The start and goal states are denoted by S and G

respectively in Figure 6.2 and 6.4. At each cell, four actions are available: up,

down, left, and right. There is some degree of stochasticity when transitioning

from one state to another: with probability 0.5 the agent will transition in

the same direction as the selected action, otherwise, it will transition in one

of the remaining directions with equal probability. The observation space is

described with a one-hot representation with the index corresponding to the

agent’s position being 1. The reward is −1 on each time step.

In the pinball environment, a small ball should be navigated to the goal in

a maze-like environment with simplified ball physics. In Figure 6.4, the pinball

environment is shown with the ball shown by a grey circle. The goal and start

states are denoted by S and G respectively. Collision with the obstacles causes

the ball to bounce. The observation space is continuous and is described by

x, y, ẋ, ẏ. The start location and goal location are at (0.8, 0.5) and (0.1, 0.1)

respectively. The action space includes 5 actions of increasing or decreasing ẋ

or ẏ and no change to ẋ and ẏ. The reward is −1 at each time step. There is

no episode cutoff.
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Note that in the original pinball environment, the agent receives a special

reward of 10, 000 upon arrival at the goal. Instead, we gave a reward of −1

(like every other step) so that the scale of the action-value function for the

main task and the auxiliary tasks would not be too different. When learning

multiple tasks in parallel, the contribution of each task is determined by the

scale of the corresponding value function (Hessel et al., 2019). Therefore, when

the scale of value functions is very different, we would need to scale the reward

of the main task and the cumulants of the auxiliary tasks appropriately. This

issue requires an additional hyper-parameter that would give our method an

advantage if tuned. For this work, we decided to focus on the case where the

scale of the value function for the main task and the auxiliary tasks are similar.

As the base learning system, we used DQN with Adam optimizer which is

a standard choice. We used a neural network with one hidden layer and tanh

activation function. (We used tanh activation function so that the induced

features would be all in the same range of (−1, 1); however, our proposed

tester should work well when other activation functions are used too. This

can be investigated in future work.) For the girdworld environments, the one-

hot observation vector was fed to the neural network. The hidden layer size

for the baseline with no auxiliary task in four-rooms and maze were 50 and

500 respectively. For the pinball environment, the 4-dimensional observation

was normalized and fed to the neural network. The hidden layer size was 500.

The replay buffer size for the four-rooms, maze, and pinball environments were

500, 1000, and 10, 000 respectively. For all environments, we used a batch-size

of 16. The target network update frequency for the gridworld and pinball

environments were set to 100 and 200 respectively. We set all these hyper-

parameters through an informal search, seeking a configuration for the base

learning system that would yield reasonable results.

6.6 Evaluating the proposed tester

To see how well the proposed tester evaluates the auxiliary tasks, we designed

good and bad auxiliary tasks in the four-rooms environment. The hand-

61



designed auxiliary tasks were formulated as subgoal-reaching GVFs with the

good and bad hand-designed auxiliary tasks having hallway and corner sub-

goals respectively. See Figure 6.2. We used the Master-User architecture when

learning the hand-designed auxiliary tasks.
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Figure 6.2: A: The four-rooms environment with the subgoals corresponding
to the good and bad hand-designed auxiliary tasks shown in red and blue
respectively. B: Hallway auxiliary tasks improved the performance in terms
of learning speed. The corner auxiliary tasks made learning slower in the
early episodes. C: The proposed tester evaluated the hand-designed auxiliary
tasks well, giving higher utility to the hallway auxiliary tasks. The results are
averaged over 30 runs and the shaded regions depict the standard error.

When learning the auxiliary tasks alongside the main task using the Master-

User strategy, the gradient backpropagated from the main task only modifies

1
#auxiliary tasks+1

percent of the features. For example, in the case of learning the

hallway auxiliary tasks, there are 2 auxiliary tasks. Therefore, the gradient

backpropagated from the main task only modifies 33.3% of the features.

When including auxiliary tasks, we adjusted the hidden layer size of the

network such that the total number of learnable parameters is roughly equal

across methods. For example, in the four-rooms environment, for the case of
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no auxiliary task there are a total of 49 × 50 + 50 × 4 = 2650 parameters,

with an observation size of (network input size) 49 , hidden layer size of 50,

and 4 actions (network output size). For the baseline with hallway auxiliary

tasks, we used a smaller hidden layer size of 43 so that it results in roughly

the same number of total parameters: 49 × 43 + 43 × 4 × 3 = 2623. In all

the experiments, we kept the number of learnable parameters roughly equal

across methods with and without auxiliary tasks.

The hallway auxiliary tasks improved learning in terms of learning speed

as we expected (Figure 6.2, bottom left graph). The corner auxiliary tasks,

on the other hand, hurt the performance in the early episodes and resulted in

suboptimal performance in comparison to the hallway auxiliary tasks. As we

mentioned earlier, when including auxiliary tasks, we used a smaller hidden

layer size such that the total number of learnable parameters is equal to the

case of no auxiliary tasks. It is interesting that in this environment with such a

small observation space and no partial observability, dedicating a considerable

percentage of the learnable parameters to learning auxiliary tasks can result

in better performance compared to dedicating all the parameters to learning

the main task.

The proposed tester evaluated the hallway and corner auxiliary tasks well,

assigning much higher utility to the hallway auxiliary tasks and clearly indi-

cating the corner tasks are bad (Figure 6.2, bottom right graph). The utility

of all hand-designed auxiliary tasks started around the same point. However,

the utility of the good auxiliary tasks reached a much higher level compared

to the bad auxiliary tasks over time.

We also conducted a more thorough experiment in which we included all

the cells as subgoals. There were a total of 39 subgoals. We used a neural

network with a hidden layer of size 240 so each task would modify 6 features.

We observed that the tester gave higher scores to the auxiliary tasks with

subgoals in the top right and bottom right rooms, that is subgoals closer to

the goal state (Figure 6.3, bottom right).

To test whether the auxiliary tasks with subgoals closer to the goal state

are indeed more useful auxiliary tasks in four-rooms, we conducted another
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Figure 6.3: The tester gave higher scores to the auxiliary tasks with subgoals
in the top right and bottom right rooms as shown in the bottom right subplot.
The auxiliary tasks from the top right and bottom right rooms accelerated
learning and were indeed more useful as shown in the bottom left subplot.

experiment where we considered auxiliary tasks with subgoals from each room

separately and compared the result with the baseline with no auxiliary tasks.

More specifically, to evaluate the subgoals from each room, in each run, we

picked 5 subgoals from that room uniformly randomly and learned the corre-

sponding auxiliary tasks alongside the main task. We did this so the number

of auxiliary tasks from each room would be the same. We observed that the

auxiliary tasks from the top right and bottom right rooms accelerated learning

and were indeed more useful (Figure 6.3, bottom left).

6.7 Evaluating the generate-and-test method

In this section, we provide the result of combining the base learning system

with the proposed generate-and-test method. The generate-and-test method

uses the combination of the random generator and our proposed tester. The

random generator produces subgoal-reaching auxiliary tasks with the subgoals

randomly picked from the observation space. More specifically, in the grid-

world environments, the subgoals are cells in the grid. In the pinball environ-
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ment, the subgoals are determined by (x, y) and once the ball is within radius

0.035 of a subgoal, it is assumed that the agent has reached the subgoal.

We included two baselines for comparison which included the base learn-

ing system with no auxiliary tasks and fixed random auxiliary tasks. All the

auxiliary tasks were in the form of subgoal-reaching tasks. For the fixed ran-

dom auxiliary tasks, the subgoals were randomly picked from the observation

space and kept fixed throughout learning. The number of auxiliary tasks for

the baseline with fixed random auxiliary tasks was set equal to the number of

auxiliary tasks for the generate-and-test method.

We systematically swept the step-size parameter and report the perfor-

mance of the best to ensure a fair comparison. To do so, we ran the base-

line with no auxiliary tasks with different values of the step-size for 10 runs.

We used the step-size that resulted in the lowest final error (last 10 percent

episodes) and reran the baseline with the best step-size for 30 runs to get the

final results. We repeated this process for all methods. For four-rooms, maze,

and pinball the sweep over the step-sizes included {0.000625, 0.0025, 0.01, 0.04},

{0.00025, 0.001, 0.004}, and {0.00125, 0.0025, 0.005, 0.01, 0.02}.

The generate-and-test method has hyper-parameters of its own: 1) number

of auxiliary tasks 2) age threshold 3) replacement cycle 4) replacement ratio 5)

trace parameter. We set these hyper-parameters through an informal search.

For the gridworld environments, we used 5 auxiliary tasks, an age threshold

of 0, a replacement cycle of 500 steps, a replacement ratio of 0.2, and a trace

parameter 0.05. For the pinball environment, we used 4 auxiliary tasks, an age

threshold of 0, a replacement cycle of 500 steps, a replacement ratio of 0.25,

and a trace parameter 0.01.

First, let us take a look at the learning curves for the four-rooms environ-

ment shown in Figure 6.4. The proposed generate-and-test method improved

over the baseline with no auxiliary tasks bridging the gap between the base-

line with no auxiliary tasks and the baseline with hallway auxiliary tasks.

Note that generate-and-test is slower than the baseline with hallway auxiliary

tasks. This is because generate-and-test is searching the space of auxiliary

tasks, starting with random ones, testing them, and retaining those recog-
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Figure 6.4: The learning curves for the proposed generate-and-test method
(green), the baseline with no auxiliary tasks (orange), and the baseline with
fixed random auxiliary tasks (black). The results are averaged over 30 runs and
the shaded regions depict the standard error. The proposed generate-and-test
method improved over the baseline with no auxiliary tasks. Generate-and-
test also outperformed the baseline with fixed random auxiliary tasks. Fixed
random auxiliary tasks also resulted in performance gain over the baseline
with no auxiliary tasks.
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nized as useful whereas the baseline with hallway auxiliary tasks starts with

reasonably good auxiliary tasks from the beginning. The generate-and-test

method outperformed the baseline with no auxiliary tasks in the maze and

pinball environments as well (Figure 6.4).

Generate-and-test also outperformed the baseline with fixed random aux-

iliary tasks in all three environments. This suggests that the choice of the

auxiliary tasks was important and generate-and-test discovered and retained

useful auxiliary tasks.

Interestingly, the fixed random auxiliary tasks resulted in significant per-

formance gain over the baseline with no auxiliary tasks in the gridworld en-

vironments (Figure 6.4). This is in line with the findings from the literature

suggesting that random GVFs can form good auxiliary tasks for reinforcement

learning (Zheng et al., 2021). In the pinball environment, however, the per-

formance gain for the fixed random auxiliary tasks was small. This could be

because the number of random auxiliary tasks is only 4 which is relatively

small for the pinball environment.

The auxiliary tasks discovered and retained by generate-and-test are shown

in Figure 6.5. To plot the discovered auxiliary tasks, we ran the generate-and-

test method for 30 runs and stored the auxiliary tasks that were retained. The

green squares correspond to the discovered auxiliary tasks in the gridworld

environments. Darker green indicates that the cell was chosen as a subgoal in

many runs.

For the pinball environment, the discovered auxiliary tasks are shown in

green circles. In the gridworld environments, the subgoals corresponding to

the discovered auxiliary tasks were close to the goal states. In the pinball

environment, the discovered auxiliary tasks were more concentrated in the

central areas—reasonable way-points on the path to the goal.

6.8 The feature-attainment generator

In this section, we propose and investigate a new auxiliary task generator that

has better scaling potential compared to the random generator. While the
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Figure 6.5: Example discovered auxiliary tasks in the three environments.
Generate-and-test discovered reasonably good auxiliary tasks: in the grid-
world environments, the subgoals corresponding to the discovered auxiliary
tasks were close to the goal states. In the pinball environment, the discovered
auxiliary tasks were more concentrated in the central areas.

random subgoal-reaching generator worked well in our experiments, it may not

be feasible in cases with a large observation space where the space of possible

subgoals is large. To improve the scalability of our generate-and-test method,

we propose that the discovery method searches in the space of auxiliary tasks

that are about features rather than searching in the space of auxiliary tasks

that are about the input observations.

The new generator is based on the idea of feature-attainment recently in-

troduced for option discovery in planning (Sutton et al., 2023). In feature-

attainment auxiliary tasks, the goal is to maximize an individual feature of

interest (or component of the representation layer) which we refer to as the

target feature. For feature-attainment auxiliary tasks, the continuation func-

tion returns 0 when the target feature has its maximum value and 1 otherwise.

Recall that we use tanh activation functions, and thus the maximum value a

feature can take on is one. The cumulant is −1 everywhere and the policy is

greedy.

When generating feature-attainment auxiliary tasks, the question is what

the target features should be. We propose that the generator picks the target

features only from the features induced by the main task. We designed the

generator such that when picking from the features induced by the main task,

it looks at the score of the features calculated according to Equation 6.1 and
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picks the ones with the highest scores. Therefore, the new generate-and-test

method will be searching in the space of auxiliary tasks that are about the

features that 1) contribute the most to the main task action value function 2)

are induced by the main task.
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Figure 6.6: The learning curves for the proposed generate-and-test method
with the feature-attainment generator (lime green) and the baseline with no
auxiliary tasks (orange). The results are averaged over 30 runs and the shaded
regions depict the standard error. The proposed generate-and-test method
with the feature-attainment generator improved over the baseline with no aux-
iliary tasks. The random generator resulted in faster learning compared to the
feature-attainment generator. However, the feature-attainment is potentially
more scalable than the random generator.

We tested the generate-and-test method with the feature-attainment gener-

ator on the three environments. We used 3, 8, 4 auxiliary tasks for four-rooms,

maze, and pinball respectively. For four-rooms and maze, we used a replace-

ment cycle of 2000 steps, a replacement ratio of 0.2, and a trace parameter

0.05. For the pinball environment, we used a replacement cycle of 1000 steps,

a replacement ratio of 0.25, and a trace parameter 0.01.

The generate-and-test method with the feature-attainment generator im-

proved over the baseline with no auxiliary tasks across the three environments

(Figure 6.6). For the first few episodes, the generate-and-test method with
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the feature-attainment generator did not improve over the baseline with no

auxiliary tasks, unlike the variant with the random subgoal-reaching gener-

ator. We speculate that this is because the features are not useful in early

learning and thus the feature attainment auxiliary tasks are somewhat arbi-

trary. With further learning, the features become more relevant to the main

task progressively becoming better auxiliary tasks.

6.9 Related work

Veeriah et al. (2019) proposed a method for auxiliary task discovery using

meta-gradient. Meta-gradient methods are higher-level learning methods that

adapt the meta-parameters of the base learning system, such as step-sizes and

eligibility traces parameters, through gradient descent (Xu et al., 2018). Vee-

riah et al. (2019) applied meta-learning to discovering auxiliary tasks defined

via General Value Functions by adapting the parameters that define the goal

(cumulant) and termination functions via gradient-descent. Their proposed

method considers the consequence of changing the continuation function and

cumulant meta-parameters on the subsequent performance of the agent. Gen-

erally speaking, these meta-learning approaches are notoriously difficult to

tune (Antoniou et al., 2018) and require large amounts of training data and

compute as changing the meta-parameters at a time step affects both the

update to the parameters at the next time step and all future updates.

The meta-learning and generate-and-test approaches explore two completely

different approach to the problem of auxiliary task discovery. Rather than

being viewed as mutually exclusive alternatives, they can be considered as

complementing each other. Meta-learning approaches can be augmented with

generate-and-test mechanisms where auxiliary tasks discovered using generate-

and-test get further refined using meta-learning. Similar ideas have produced

promising results in representation learning where simple generate-and-test

significantly improved classification and regression performance when com-

bined with backpropagation (Dohare et al., 2021). We leave the study of the

comparison and combination of meta-learning approaches with generate-and-
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test mechanisms to future work as such an effort is worthy of an entire study

on its own.

He et al. (2022) have also proposed a method for auxiliary tasks discovery

using an evolutionary search strategy. They consider auxiliary tasks in form of

predictions about the elements of the sequence of states, actions, and rewards

given other elements of the sequence of states, actions, and rewards. He et al.

(2020) used their proposed method to search auxiliary losses over a small set of

environments. Then, they showed the efficacy of the auxiliary loss discovered

over the small set of environments on a wider range of environments. Their

approach diverges from the goal of continually searching for useful auxiliary

losses, instead focusing on identifying a globally effective auxiliary loss.

Other works related to auxiliary task discovery include the works on gen-

eral value function networks (Schlegel et al., 2021) and hindsight experience

replay (Andrychowicz et al., 2017). Schlegel et al. (2021) argue that generate-

and-test is a reasonable avenue for the problem of discovery in general value

function networks. While they do not develop a complete discovery method,

they show that the measure of feature usefulness proposed by Mahmood and

Sutton (2013) is effective in discarding dysfunctional GVFs. Hindsight expe-

rience replay (Andrychowicz et al., 2017) can also be thought of as performing

some form of discovery where the states encountered at the end of episodes

and stored in the replay buffer are used as subgoals.

Finally, a topic closely related to auxiliary task discovery is that of op-

tion discovery. Options are temporally extended actions that also include a

notion of termination (Sutton et al., 1999). Options and auxiliary tasks are

closely related as solving each auxiliary task produces an option. There is a

large body of work on option discovery including discovering options based on

bottleneck states (McGovern and Barto, 2001), from the successor represen-

tation (Ramesh et al., 2019; Machado et al., 2023), by maximizing diversity

(Eysenbach et al., 2018), or by utilizing meta-gradient (Veeriah et al., 2021).

Although, many of the works on option discovery rely on designers’ in-

tuitions regarding what constitutes good options (e.g., bottleneck states, di-

versity), they have hints to general principles for designing agents capable of
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discovering and evaluating options automatically. The general principles un-

derlying some of the option discovery methods could be applied to auxiliary

task discovery, and conversely, insights from auxiliary task discovery could

inform the development of new option discovery approaches.

6.10 Conclusions

This chapter presented a method for discovering auxiliary tasks useful for state

construction. The proposed method is the first instance of an auxiliary task

discovery method based on the idea of generate-and-test. We showed for the

first time that a generate-and-test style search for auxiliary tasks, using a

fairly naive random generator, can be surprisingly effective. Through careful

experimentation, we showed that:

1. The proposed tester reasonably evaluates the auxiliary tasks.

2. The generate-and-test method improves over the baseline with no auxil-

iary tasks.

Despite significant interest, the problem of auxiliary task discovery is still

an open problem. The generate-and-test method proposed in this chapter is a

step toward designing generic methods for auxiliary task discovery. However,

it is by no means the final algorithm for auxiliary task discovery.

The proposed method is limited in various ways. The tester enforces the

use of the Master-User architecture which may not be applicable in deeper

networks. The random generator is not feasible in environments with a big

observation space, such as pixel-based environments. The proposed method

introduces new hyper-parameters and the sensitivity of the method to these

hyper-parameters is not clear yet. There is a big space of ideas to try to

improve both the proposed method and our understanding of it. We will

discuss some of these ideas in the next chapter.

72



Chapter 7

Conclusion

This thesis considered the problem of state construction in reinforcement learn-

ing, that is the problem of designing agents with the ability to construct the

state directly from the sensorimotor data stream. Our objective was to under-

stand how well existing solution methods perform and to improve them. We

took a step toward this objective through three contributions. The first two

contributions focused on the first part of the objective, whihc is to understand

existing solution methods. The third contribution included a new algorithmic

idea for improving upon existing solution methods.

The first contribution of the thesis provided a tool for assessing state con-

struction methods. The tool proposed for assessing state construction meth-

ods consists of a suite of diagnostic benchmarks. We believe that the proposed

benchmarks will help make progress on the problem of state construction by

facilitating the development and evaluation of new ideas. Moreover, their low

computational demand and configurability make them appealing for careful

systematic studies. In our experimental results in the second contribution, we

found the proposed benchmarks effective for isolating and investigating funda-

mental challenges in state construction. The broader community has started

to adopt the benchmarks for testing new ideas (Elelimy 2023; Javed et al.,

2023; Samani and Sutton 2021).

The second contribution of the thesis benchmarked prominent solution

methods for state construction. This part did not involve any major new al-

gorithmic idea. Instead, it provided a comprehensive examination of existing
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solution methods. To benchmark prominent solution methods, we system-

atically studied them on the proposed benchmarks with a focus on recurrent

learning methods. Our empirical results revealed some of the limitations of the

existing solution methods, as discussed in Chapter 5, suggesting that recurrent

architectures trained with backpropagation are highly sensitive to the trunca-

tion parameter requiring much more computation and memory for learning

longer temporal dependencies. This could potentially make recurrent archi-

tectures infeasible for learning long temporal associations, although they have

infinite memory in principle. We were able to reduce the sensitivity of re-

current architectures to the truncation parameters using the simple idea of

feeding stimulating traces to RNNs. Our empirical results also suggested that

transformers can effectively learn temporal associations; however, their com-

putational requirements increase significantly with the length of the temporal

association.

The third contribution of the thesis improved upon existing solution meth-

ods by introducing a new algorithmic idea for auxiliary task discovery. The

new algorithmic idea is a method for discovering auxiliary tasks that would

assist state construction. It is based on the idea of generate-and-test where

auxiliary tasks are continually generated, evaluated, and replaced if recog-

nized to be useless. We showed the efficacy of the proposed discovery method

empirically using fully observable problems.

We did not try the proposed auxiliary task discovery method on the pro-

posed benchmarks because we wanted to focus on the simpler case of full

observability. However, the proposed discovery method could be potentially

tested on the trace-patterning benchmark where there are multiple signals to

make predictions about.

7.1 Future Directions

This section presents a few interesting directions to pursue in the future. The

first future direction is to further investigate RNNs augmented with stimu-

lating traces proposed in Chapter 5. The focus of Chapter 5 was to study
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existing solution methods for state construction. However, as a minor contri-

bution, we also proposed the new algorithmic idea of augmenting RNNs with

stimulating traces. In our experiments on the trace-conditioning and trace-

patterning benchmarks, we observed that augmenting RNNs with stimulating

traces improved their performance and reduced their sensitivity to the trun-

cation parameter. An interesting future direction is to investigate whether

RNNs augmented with simulating traces would be applicable in more complex

partially observable problems.

A second future direction is to propose additional benchmarks building up

on the benchmarks proposed in this thesis. For example, we can extend the

proposed benchmark to the case of non-stationarity where solution methods

would require to do some form of tracking. This can be done by varying the ISI

in trace conditioning and trace patterning or changing the activation patterns

in noisy patterning and trace patterning.

The third future direction, which is the logical next step to the proposal of

non-stationary benchmarks, is to study existing solution methods on them. As

discussed in Section 4, training large neural networks with backpropagation,

which is the prevailing approach to state construction, is not suitable for the

case of continual learning due to the problem of loss of plasticity. It would be

interesting to investigate the problem of loss of plasticity on the benchmarks

that include non-stationarity.

The fourth future direction is to investigate the feature-attainment gen-

erator proposed for auxiliary task discovery in Chapter 6 more thoroughly.

The results presented in Chapter 6 demonstrated that the feature attainment

generator can find useful auxiliary tasks. The next step is to try it in en-

vironments where random generation would be infeasible such as pixel-based

environments. We could also explore reward-respecting feature attainment

subtasks (Sutton et al., 2022), that further promote auxiliary tasks that are

useful for the main task.

The fifth idea for extending the work done in this thesis in a new direction

is to design a new generator for the generate-and-test method. The generator

constitutes an important part of the generate-and-test method. An idea to
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explore for designing the generator is to sample subgoals from what the agent

has already experienced and is stored in the replay buffer. To sample from the

replay buffer, higher priority could be given to subgoals associated with higher

temporal difference errors. The intuition behind this choice is that subgoals

associated with higher temporal difference errors might be more interesting to

learn about. This idea is similar to the idea of hindsight experience replay

(Andrychowicz et al., 2017).

The sixth future direction is to explore new ideas for the tester in the

generate-and-test discovery method. The tester proposed in this thesis evalu-

ates the auxiliary tasks based on how useful the features induced by them are

for the main task. To compute the utility of the features, we considered the

weight magnitude and trace of activation of the feature. There are many other

metrics in the representation learning literature for evaluating features. One

example is the dropout pruner proposed by Shah (2023). The dropout pruner

randomly sets some of the weights of the network to zero and measures how

that affects the performance. This idea could be applied to features as well.

Another metric for feature evaluation is proposed by Elsayed and Mahmood

(2023). One future direction is to incorporate these other feature evaluation

metrics into the proposed auxiliary task discovery method.

The seventh future direction is to remove the requirement of using the

master-user architecture in the proposed generate-and-test method. We pro-

posed to use the master-user architecture in order to identify which auxiliary

task was responsible for inducing each feature. However, the agent may be

able to do credit assignment in a smarter way. For example, it could use the

gradient backpropagated from each auxiliary task to each feature to recognize

which auxiliary task gets credit for inducing which feature. Removing this

constraint would increase the applicability of the generate-and-test method

significantly.

The eighth future direction is to investigate the sensitivity of the proposed

generate-and-test method to its hyper-parameters. The proposed generate-

and-test method introduced a set of new hyper-parameters, such as the re-

placement ratio and replacement time. Systematic studies are required to
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study the method’s sensitivity to these hyper-parameters and to explore ideas

for improving it in case it requires careful tuning of these hyper-parameters.

The ninth direction to pursue is to use the generate-and-test idea for option

discovery. The idea of generate-and-test can be applied to discovering options

or temporally extended actions (Sutton, Precup, and Singh, 1999). To develop

a generate-and-test method for option discovery, we require a generator and a

tester. The tester requires a measure of option usefulness. One such measure

could be how much the discovered options would help exploration. The gener-

ator could generate options using the trajectories in the replay buffer, giving

a higher probability to trajectories that resulted in higher temporal-difference

error, similar to the idea of the hindsight experience replay (Andrychowicz et

al., 2017).

The last idea for future work is to combine meta-learning approaches with

the proposed generate-and-test method. The meta-learning approaches can

be slow due to their computational demand. However, they can be run in the

background to refine the auxiliary tasks discovered by generate-and-test. It

would be interesting to test the combination of meta-learning with generate-

and-test in the three tested environments and see if their combination will

result in discovering good auxiliary tasks, outperforming both approaches in

isolation.

7.2 Closing

The problem of state construction is an old problem with a long history in

control theory, robotics, and machine learning. While a lot of progress has

been made on state construction, there are still fundamental problems that

need to be addressed. We studied some of these issues in this thesis such

as the computational complexity of existing solution methods which grows

linearly or quadratically with the length of temporal associations that they

want to learn. we also alluded to some of the fundamental issues like the

problem of loss of plasticity in continual learning settings.

On the problem of auxiliary task discovery, we only laid out the territory.
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Auxiliary task discovery is certainly a challenging problem with only a few

existing solution methods. We believe that our proposed method is a step

towards designing agents with the ability to pose subproblems for themselves.

The field has only started exploring solution methods for the problem of dis-

covery and our proposed method is by no means the conclusive solution.
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