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Abstract

The turbulent structures of Taylor-Couette (T-C) flow of a Polyacrylamide (PAM) solution

(200 and 400 ppm) is experimentally investigated and compared with the same flow with

water at Re = 1.50 × 104, to understand the effect of nonlinear shear-thinning viscosity on

the flow regime, in terms of turbulence statistics, coherent structures, turbulence production,

and viscous dissipation. The turbulent Taylor-Couette (TTC) flow regime is achieved and

driven by inner cylinder rotation (outer cylinder stays stationary). Velocity measurements

are conducted by employing Stereoscopic-Particle Image Velocimetry (SPIV) to obtain three

velocity components within a rectangular field of view (FOV) in radial-axial (r− z) (merid-

ional) plane, and the torque acted on the inner cylinder is recorded to obtain skin friction

coefficient Cf,l.

The torque measurements show that with the addition of shear-thinning polymer, 41%

and 52% drag reduction is achieved for 200 ppm and 400 ppm solutions both under Re =

1.50 × 104, respectively. The velocity measurement of the in-plane velocity shows that the

motions of non-Newtonian Taylor vortices are more flexible compared to the Newtonian case

in both the axial and radial direction induced by the shear-thinning effect. The turbulence

statistics show that wall-normal (r) and spanwise (z) Reynolds normal stresses are signif-

icantly attenuated and smeared out across the bulk domain as the concentration of shear-

thinning polymers increases. The radial jet (both inner and outer jets) intensity is reduced

with the addition of shear-thinning polymer. Snapshot Proper Orthogonal Decomposition

(POD) of in-plane velocity fluctuations field shows that vortical-shape fluctuations are the

dominant energetic structures for both Newtonian and non-Newtonian T-C flows that sta-

tistically contribute to most of the turbulence kinetic energy (TKE) for both Newtonian and
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non-Newtonian fluids. The shear layer structure changes due to the shear-thinning effect,

which is reflected by the second POD mode. The Snapshot POD of the azimuthal veloc-

ity fluctuation field captures energetic structures at locations where turbulence is generated

and the shear-thinning effect is pronounced. With the addition of shear-thinning polymer,

the energetic structures are compressed closer to the wall, and the bulk flow becomes less

important in terms of contributing to turbulence production.

The spatial correlation analysis of the in-plane velocity fluctuations shows that the shear-

thinning polymer enhances the space correlation compared to the Newtonian fluid. Anti-

correlation is found more pronounced than the Newtonian case in the axial direction, which

leads to a reduced magnitude of axial integral lengthscale L33. The 2D energy spectrum

shows that the Kolmogorov -5/3 law does not hold for T-C turbulence for both Newtonian

and non-Newtonian fluids. Non-Newtonian energy spectrum based on radial and azimuthal

fluctuations shows an increased importance of large-scale structures and a decreased im-

portance of motions at small lengthscales in terms of energy containment. The dissipation

spectrum shows increased contribution for dissipation at smaller lengthscales as concentra-

tion increases.
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Chapter 1

Introduction

1.1 Motivation

Shear-thinning polymers can modify turbulent flow patterns and exhibit a strong influence on

changing turbulent structures. These properties can be tailored in engineering applications.

Numerous studies have demonstrated that the addition of polymers alters the near-wall

flow structures and statistics in wall-bounded flows(Housiadas and Beris 2003; Warholic et

al. 2001) . This modification leads to various physical phenomena, including drag reduction

(Mohammadtabar et al. 2017), decrease in cavitation intensity (Azadi 2023), transition delay

to turbulence (Rudman and Blackburn 2012), and decrease in total turbulent dissipation

(Singh et al. 2017). Therefore, understanding polymeric flow behaviors under turbulent

conditions can contribute to more efficient processes and economic energy consumption.

Taylor-Couette turbulence of high Re has been extensively studied for Newtonian fluids

(Berghout et al. 2020; Grossmann et al. 2016; Huisman et al. 2012, 2013b; Ostilla-Mónico et

al. 2014). The investigation of shear-thinning Taylor-Couette turbulence, especially at high

Reynolds numbers in the turbulent Taylor-Couette (TTC) regime, remains under-explored.

Existing experimental investigations of shear-thinning Taylor-Couette flow has only covered

a relatively low Reynolds number range from 0-1000 (Cagney and Balabani 2019; Elçiçek and

Güzel 2020) encompassing circular Couette flow, Taylor-Vortex flow, and wavy vortex flow

regimes. Information regarding the effects of polymer additives on the turbulent Taylor-

Couette (TTC) regime, characterized by a high rate of angular momentum transfer and
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strong dissipation is still lacking. Additionally, while some research has delved into turbulent

structures in the TTC regime (Dong 2007; Krygier et al. 2021; Mart́ınez-Arias et al. 2014),

there is no available information examining the nonlinear shear-thinning viscosity effects of

polymers on coherent structures in the TTC regime, making this study novel.

The Taylor-Couette geometry was chosen based on the following factors: (a) Rich turbu-

lent flow structures including Taylor vortices and radial jets exist in the r− z direction. (b)

Taylor-Couette flow geometry is a special case of wall-bounded flows where the curvature ef-

fect influences the distribution of statistics in the radial (wall-normal) direction. In a laminar

flow case, a classical Newtonian plane Couette flow shows linear distribution of velocity, i.e.,

constant shear rate. However, the curvature effect of T-C geometry with Newtonian fluids

results in an increasing concave-up azimuthal velocity from inner to outer cylinder, with a

higher shear rate close to the inner cylinder and a lower shear rate close to the outer cylinder.

From this perspective, the curvature effect acts in the same direction as the shear-thinning

effect close to the inner cylinder wall.

Taylor-Couette flows, like other wall-bounded flows, share similarities with channel flows.

Numerous studies on polymeric channel flows focus on near-wall turbulent statistics. For sta-

tionary flat wall-bounded turbulence for polymeric flows, it is widely accepted that polymer

additives can reduce the wall-normal and spanwise velocity fluctuation as well as Reynolds

shear stresses (Kim et al. 2007; Min et al. 2003; Mitishita et al. 2023; Mohammadtabar et

al. 2017; Procaccia et al. 2008; Rudd 1972; Thirumalai and Bhattacharjee 1996; Tieder-

man 1990; White and Mungal 2008; Willmarth and Wei 1987; Zadrazil et al. 2012). It was

observed that in turbulent flows of polymeric solutions, positive and negative second-order

covariance ⟨uv⟩t were found, a term considered the source of production of turbulence ki-

netic energy in the Newtonian case, which stays mostly negative. This finding highlights

the decreased importance of production by the wall (Warholic et al. 2001), It is argued that

at maximum drag reduction (MDR), the wall does not produce turbulence (Warholic et al.

1999). Conversely, in Taylor-Couette flow turbulence, the rotation of the inner cylinder is a

source of turbulent production and sustains constant energy input, which distinguishes this
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as a study of forced turbulence, as opposed to free-decaying turbulence. Thus, it is plausible

to postulate that in turbulent T-C polymeric flows, the coherent structures in the bulk flow

will differ in terms of energy and dissipation distribution at different length scales.

1.2 Taylor-Couette Flow

Taylor-Couette (T-C) apparatus is a fundamental flow configuration that has been widely

investigated in fluid dynamics (Akonur and Lueptow 2003; Huisman et al. 2012, 2013a;

Schrimpf et al. 2021). It consists of two independently rotating cylinders where the flow is

confined in between the annulus space (Grossmann et al. 2016). A schematic of the Taylor-

Couette apparatus is shown in Figure 1.1, where r is the radial direction, θ is the azimuthal

direction and z indicates axial direction.

Figure 1.1: Schematic of Taylor-Couette flows and secondary vortices in the meridional
plane.

T-C apparatus has been used in a variety of research interests, e.g., viscosity measurement

3



(Couette 1890), linear and non-linear hydrodynamic instabilities (Andereck et al. 1986; Di

Prima and Swinney 1981; Taylor 1923) , transitions (Coles 1965; Topayev et al. 2022),

steady and unsteady flow states and turbulence (Akonur and Lueptow 2003; Dutcher and

Muller 2009; Grossmann et al. 2016). The behavior and pattern of the flow can vary greatly

depending on multiple factors, including the rotational speed of both cylinders, the properties

of the fluid, radius, and aspect ratio of the setup, which makes this problem complex and

challenging.

1.2.1 Governing Equations

In this thesis, the velocity is defined in the Eulerian perspective. For clarity, symbols that

are used in this thesis strictly follow the below notation. Italic letter denotes scalar quantity,

e.g., U . Italic bold letters represent vectors and tensors (e.g., velocity vector U ). A vector

described in terms of scalar quantity in the three-dimensional space is written in a form:

U = U1e1 +U2e2 +U3e3 , where e is the unit vector, and the subscript i=1,2,3 is the index

of each different direction. In this study, given the Taylor-Couette rig geometry, cylindrical

coordinate system is preferred, where the three-dimensional space is described by radial

distance r, azimuthal angle θ, and height z. Thus the velocity vector can be written as:

U = Urer +Uθeθ +Uzez. The conversion from Cartesian to Cylindrical coordinates is given

in Appendix A.1).

In cylindrical coordinates, a general form of three-dimensional continuity equation is given

by:

∂ρ

∂t
+

1

r

∂ (ρrUr)

∂r
+

1

r

∂ (ρUθ)

∂θ
+

∂ (ρUz)

∂z
= 0. (1.1)

The Navier–Stokes equation in cylindrical coordinates of each direction can be expressed

as follows:

∂Ur

∂t
+

[︃
(U · ∇)Ur −

U2
θ

r

]︃
= −1

ρ

∂p

∂r
+ υ

[︃
∇2Ur −

Ur

r2
− 2

r2
∂Uθ

∂θ

]︃
, (1.2a)
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∂Uθ

∂t
+

[︃
(U · ∇)Uθ +

UrUθ

r

]︃
= − 1

ρr

∂p

∂θ
+ υ

[︃
∇2Uθ −

Uθ

r2
+

2

r2
∂Ur

∂θ

]︃
, (1.2b)

∂Uz

∂t
+ (U · ∇)Uz = −1

ρ

∂p

∂z
+ υ

[︁
∇2Uz

]︁
. (1.2c)

Assumptions can be made to simplify the governing equations under certain circumstances,

e.g., classic Circular Couette flow (CCF) assumes:

• Cylinders are infinitely long,

• Incompressible flow (ρ = uniform, ∂ρ
∂t

= 0),

• Axisymetric (Ur = Uz = 0, Uθ = U(r) , ∂
∂θ

= 0).

In this specific case, given the velocity is only a function of r , U is used interchangeably

with Uθ below.

Under the above assumptions, all the terms in the continuity equation are canceled out,

and the N-S equations in each direction can be reduced respectively to:

dp

dr
=

ρU2

r
, (1.3a)

d2U

dr2
+

1

r

dU

dr
− U

r2
= 0, (1.3b)

∂p

∂z
= 0. (1.3c)

The inner cylinder rotates at a constant angular velocity ωi , and the outer cylinder stays

stationary. Thus the boundary conditions of this problem are:

Uθ|r=ri
= ωiri, (1.4a)

Uθ|r=ro
= 0. (1.4b)
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Thus for circular (infinite-long cylinder) Couette flow, the analytical solution for azimuthal

velocity exists and is given by:

Uθ = U(r) = −r2iωi (r
2
o/r − r)

r2o − r2i
. (1.5)

The torque acted on the inner cylinder could be obtained:

Tz =

∫︂ 2π

0

(τrθ)r=ri
r2i dθ =

4πµr2i r
2
o

r2o − r2i
ωi. (1.6)

An estimation of torque for a finite long cylinder (length of cylinder lc):

Tz =

∫︂ lc

0

dz

∫︂ 2π

0

(τrθ)r=ri
r2i dθ =

4πµr2or
2
i

r2o − r2i
ωilc. (1.7)

Note that Equation 1.7 is valid only for low Reynolds numbers, and the shear stress magni-

tude at the inner cylinder wall could be regarded as everywhere the same.

For Taylor-Couette turbulence, a time-averaged torque ⟨Tz⟩t can be calculated as (Huis-

man et al. 2013b):

⟨Tz⟩t = 2πr2i lcτw,i, (1.8)

where τw,i is the average inner wall shear stress, and lc is the inner cylinder length.

1.2.2 Taylor-Couette Flow of Newtonian Fluids

In the late 18th and early 19th centuries, research was first conducted for Newtonian Taylor-

Couette flow at low Reynolds numbers and onset instabilities. Couette (1890) first built

Taylor-Couette type viscometer to investigate the effect of fluid viscosity on torque mea-

surement. Taylor (1923) studied and reported the linear stability of Taylor-Couette flow

theoretically. This leads to subsequent research on instability theory and generalization of

the famous Rayleigh stability criterion (Esser and Grossmann 1996; Rayleigh 1917), which

states that the T-C flow is linearly stable if the inner cylinder is fixed and the outer cylinder

rotates only. In contrast, in cases where the inner cylinder rotates only and the outer cylin-

der is held stationary, the flow is linearly unstable due to force imbalance between driving
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centrifugal forces and pressure gradient (Grossmann et al. 2016). In the unstable regime of

T-C flow, a variety of flow regimes can be observed, such as Taylor vortices, wavy vortices,

and featureless turbulence (Grossmann et al. 2016; Huisman et al. 2012).

The most frequently used configuration of the Taylor-Couette flow rig is to have the

inner cylinder of radius ri in rotation and the outer cylinder of radius ro remain stationary.

Hereafter discussion is limited to cases where only the inner cylinder rotates. The radius

ratio ηr is defined as:

ηr =
ri
ro

. (1.9)

The gap width between cylinders:

d = ro − ri . (1.10)

The length of the cylinder lc should be much larger than the gap width d to minimize the

end effects from the top and bottom, thus the aspect ratio of the setup ζ is given by:

ζ =
lc
d
. (1.11)

ζ is usually much larger than 1(ζ ≫ 1). The velocity scale can be defined as:

Uref = ωiri . (1.12)

The Reynolds number for Newtonian fluid is defined as:

Re =
ρUrefd

µ
, (1.13)

where ρ is the fluid density, ωi is the angular the velocity of the inner cylinder and µ is the

constant dynamic viscosity of the Newtonian fluid.

Taylor-Couette flow exhibits a variety of flow regimes under different Reynolds numbers.

At sufficiently low Re, Taylor-Couette flow is stable and laminar. The flow is purely ax-

isymmetric and two-dimensional, with both radial velocity and axial velocity component
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being zero (Topayev et al. 2022). This flow state is called Circular Couette Flow (CCF).

As Re is increased, the system tends to be less stable. When Reynolds number is beyond

the first critical value Rec,1, the flow is characterized with stationary toroidal vortices (Tay-

lor rolls/Taylor vortices) distributed along the axial direction (Cagney and Balabani 2019;

Topayev et al. 2022). A pair of Taylor vortices in a vortex cell are counter-rotating and

are separated by radial jets (Topayev et al. 2019). This flow regime is referred to as Taylor

Vortex Flow (TVF). TVF is a time-independent process. As Re is increased further beyond

Rec,2, a second instability shows up resulting in an unsteady flow, with azimuthal travel-

ing waves superimposed on the vortices (Cagney and Balabani 2019; Wereley and Lueptow

1998), which is referred to as Wavy Vortex Flow (WVF). This flow regime can be visually

confirmed by a stack of closed cell vortices that undulate with identical phase (Akonur and

Lueptow 2003; Wereley and Lueptow 1998). Wavy vortices were observed to have both axial

and radial motions by PIV experiment(Wereley and Lueptow 1998). It was found that in

the Wavy Vortex Flow (WWV) regime, the strongest component velocity is in the azimuthal

direction, the axial and radial velocities are more than an order of magnitude less than

the maximum azimuthal velocity. This flow regime is characterized by a single temporal

frequency and wavelength (Cagney and Balabani 2019). Keep increasing Re leads to more

instabilities getting into the system, and the flow is characterized by the presence of two

modulated waves with different rotation frequency (Akonur and Lueptow 2003; Andereck et

al. 1986; Brandstater and Swinney 1987; Shaw et al. 1982). The subsequent increase of Re

leads to the Turbulent Taylor Vortex flow (TTV).

The Reynolds number discussed above is limited in the range that is less than the esti-

mation of the onset of turbulence Re ∼ 1000 (Brandstater and Swinney 1987; Lathrop et al.

1992). High Re number Taylor-Couette turbulence has been explored in the last few decades.

Global response parameters of Taylor-Couette system (e.g., dimensionless torque G, Taylor

number Ta, angular velocity flux Jω, and Nusselt number Nuω, etc.) are defined and studied.

Efforts to find the dependence between parameters are made by many researchers (Gross-

mann et al. 2016; Lathrop et al. 1992). Lathrop et al. (1992) studied Reynolds numbers
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ranging over 800 < Re < 1.23 × 106 and the experimental results showed that there is no

fixed power law for torque scaling with Reynolds number. This conclusion is also verified

and reported by other researchers (Eckhardt et al. 2007; Lewis and Swinney 1999; Van Gils

et al. 2011). Van Gils et al. (2011) experimentally investigated strong turbulent regimes at

Rei = 2× 106 and found a universal scaling law between dimensionless torque G and Taylor

number. Nusselt number Nuω, which is defined to characterize the relative ratio of the tur-

bulent angular velocity Jω and its laminar case Jω
lam (Bodenschatz et al. 2000), is found to

be dependent with Ta. This is the most relevant relationship that has been found between

global responses (Van Gils et al. 2011).

Numerical simulation research has also provided insights into understanding the complex

behavior of the flow. Numerical study of Taylor-Couette flow has its particular advantage

in terms of visualization in T-C study, for it is not limited by the curved surface of the flow

rig, which causes light distortion and refraction.

A substantial quantity of numerical simulation work has provided visual observation of

Taylor vortices in a variety of flow states, from TVF to turbulent flow (Andereck et al.

1986; Coles 1965; Parker and Merati 1996). Thus Taylor vortices are believed to exist

and remain visible in a wide range of Re, the Taylor vortices are considered the primary

coherent structures in T-C turbulence. An interesting result by Dong (2007) with 3D direct

numerical simulation (DNS) showed the existence of Taylor vortices underlying turbulent

fluctuations at a very high Re = 8000. Parker and Merati (1996) reported Taylor vortex

motion at even higher Re = 73000. Ostilla-Mónico et al. (2014) investigated the Taylor-

Couette turbulence by using DNS up to inner cylinder Reynolds numbers of Rei = 105.

Taylor number was defined as Ta = 1/4σ (ro − ri)
2 (ro + ri)

2 ω2
i ν

−2, where σ is a geometrical

Prandtl number that is dependent on the individual apparatus used. It was shown that at

relatively small Taylor numbers (Ta ∼ 106), Taylor vortices are developed. They are the

dominant coherent structures occupying the gap. The length scale of the coherent structures

decreases as increasing Ta (Grossmann et al. 2016; Ostilla-Mónico et al. 2014), and small-

scale coherent motion becomes more significant and is observed to co-exist with large-scale
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coherent structures (Barcilon and Brindley 1984). The small-scale coherent structures are

referred to as Görtler vortices (GV) (Dong 2007), which occurs only at the near wall region

with a much smaller lengthscale (Bilson and Bremhorst 2007).

The boundary layer also changes as Re or Ta varies. Under Ta = 3 × 106, the classical

regime of turbulence is obtained, where turbulence starts to develop in the bulk at length-

scales between the Kolmogorov and the integral scale and larger. Meanwhile laminar type

of boundary layers (BLs), also known as Prandtl-Blasius BLs, is developed at the inner and

outer cylinders (Huisman et al. 2013b). If Ta exceeds the critical value Ta∗ (Ta∗ ≈ 3 × 108

for ηr = 0.71), the boundary layer is sheared strongly and becomes turbulent boundary

layer, i.e., Prandtl–von Karman boundary layer. This regime is referred to as the ultimate

turbulence regime (Huisman et al. 2012). In a recent study by Huisman et al. (2013b) who

investigated the properties of turbulent logarithmic boundary layers at Re up to 2 × 106

(ultimate turbulence regime), it was found that the mean azimuthal velocity Uθ profile of

turbulent boundary layer can be fitted by the von Kármán log law of wall:

U+
θ

(︁
r+

)︁
= κ−1 log r+ +B, (1.14)

where r+ is the dimensionless distance against the wall, B is the logarithmic intercept,

and κ is von Kármán constant which is dependent on Taylor number Ta. For Ta is large

enough, κ was found close to 0.4 which is the classic fitting constant for fully developed

turbulence. This conclusion coincides with previous investigation by Lathrop et al. (1992),

who concluded that the boundary layer turbulence of T-C flow shares similarity with flat

wall boundary layer turbulence.

1.2.3 Taylor-Couette Flow of Shear-thinning Fluids

A unique Reynolds number for a given flow situation requires a constant and uniform vis-

cosity, which does not exist for non-Newtonian fluids. Different definitions of the effective

Reynolds number have been used (Agbessi et al. 2015; Cagney and Balabani 2019; Elçiçek

and Güzel 2020; Topayev et al. 2019). The most common definition of Reynolds number for
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the non-Newtonian fluid is based on the nominal shear rate γ̇nom :

γ̇nom =
ωiri
d

, (1.15)

which leads to the definition of nominal Reynolds number:

Renom =
ρωirid

µ|γ̇=γ̇nom

. (1.16)

Note in the present study, the above definition of Reynolds number is adopted for non-

Newtonian fluids, and Re is used interchangeably with Renom for non-Newtonian fluids.

Another definition of Reynolds number Recw could defined based on inner wall shear

viscosity µ|r=ri
, as shown in Equation 1.17 below:

Recw =
ρωirid

µ|r=ri

. (1.17)

Based on this definition, it is observed that shear-thinning effects delays the appearance

of the Taylor vortices for all radius ratio ηr, which is attributed to the energy exchange

reduction between base and perturbation (Alibenyahia et al. 2012).

A major difference between Newtonian and shear-thinning Taylor-Couette flow is the vis-

cosity stratification in the spatial domain prior to the onset of secondary flow. This leads

to different velocity profiles and flow patterns. Shear-thinning fluids, in general, are found

to modify several aspects of Taylor-Couette turbulence: flow regimes, transition, velocity

distribution, as well as the size, locations, and vorticity magnitude of Taylor vortices. Exper-

imentally, Escudier et al. (1995b) found that the transition from CCF to TVF of Newtonian

fluids is an abrupt process that could be identified, whereas the transition from CCF to TVF

of non-Newtonian fluid is a gradual process, which is reflected by the observation of a slow

and steady increment of the radial velocity component. Elçiçek and Güzel (2020) discussed

the shear-thinning flow structures under a variety of Recw ≈ 100 − 1000. Interestingly, two

additional non-axisymmetric flow states, namely spiral vortex flow (SVF) and ribbons (RIB)

are found between CCF and TVF states, whereas the wavy vortex flow (WVF) is bypassed in
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the transition from Taylor Vortex Flow (TVF) to Modulated Wavy Vortex Flow (MWVF).

The result also shows that the magnitude of mean radial velocity of the inward jets is less

than the amplitude of the outward jets. This conclusion is also reported by other researchers

(Cagney and Balabani 2019; Nemri et al. 2016; Wereley and Lueptow 1998).

Newtonian and non-Newtonian Taylor-Couette flows have been compared and interesting

phenomena have been observed. Cagney and Balabani (2019) investigated a wide range of

Re from 150− 1000 with a combination of planar PIV and flow visualization technique, the

findings showed that compared to a Newtonian fluid, shear-thinning behavior was linked to

an expansion of vortex wavelength (Bahrani et al. 2015), reduction of vorticity and strength

of outward jet. This observation is coincident with DNS studies of wall-bounded homoge-

neous, isotropic turbulence (Pandit et al. 2009; Perlekar et al. 2006). Vortex drift along

axial direction was observed specifically in shear-thinning cases, however, no axial drift was

observed in Newtonian case (Cagney and Balabani 2019; Elçiçek and Güzel 2020; Escudier et

al. 1995b; Topayev et al. 2019). Escudier et al. (1995a) investigated the Taylor-Couette flow

of shear-thinning fluid with xanthan gum solution at a concentration of 1500 ppm (parts per

million) and the aqueous solution of Laponite. It was found that shear-thinning effects cause

the vortex eye to move significantly in the radial direction. Taylor vortices in shear-thinning

fluids distribute asymmetrically in a vortex pair both radially and axially. Due to the larger

shear-thinning effects (lower effective viscosity) occur at the inner cylinder, the vortices tend

to locate closer to the near wall region of the inner cylinder in radial direction (Agbessi et

al. 2015). Similarly, in the axial direction, the vorticity was found to concentrate closer to

the radial outward jet where the shear rate is higher (Cagney and Balabani 2019).

1.3 Polymers and Polymeric Flows

Polymeric fluids are widely used in various industrial processes due to their unique properties

such as elasticity and non-Newtonian behavior Fried (2014). The engineering applications

of polymers and polymeric flows are numerous and diverse, such as in the design of pipelines

for transporting crude oil or natural gas (Al Christopher et al. 2021). The use of polymeric
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solutions in pipeline transportation can reduce the drag and energy losses associated with

turbulent flow, leading to more efficient and cost-effective transport (Dimitropoulos et al.

1998; Kim et al. 2007; Sureshkumar et al. 1997). In addition to pipeline transportation,

polymeric solutions are used in the design of medical devices, such as catheters and stents

(Annabi et al. 2013; Astaneh et al. 2009), where the viscoelastic properties of the fluid

can be tailored to achieve specific mechanical properties. Polymeric solutions are also used

in the production of food and consumer products, where the rheological properties of the

fluid can be adjusted to improve product quality and consistency while using edible or

consumable additive polymers. Overall, the presence of polymers can significantly alter

the flow characteristics, leading to complex phenomena such as drag reduction (Housiadas

and Beris 2003; Thirumalai and Bhattacharjee 1996), turbulence modulation or control (De

Angelis et al. 2005; Fu and Kawaguchi 2013), and flow instability (Graham 2004; Samanta

et al. 2013).

1.3.1 Classification of Polymers and Polymer Solutions

The classification of polymers could be based on their molecular structure, thermal processing

behavior, chemical resistance, and mechanism of polymerization (Fried 2014).

Based on the molecular structure, polymers can be divided into two primary categories:

flexible or rigid polymers (Afshari et al. 2008). Flexible polymers are characterized by

molecular structures that allow for significant conformational changes in response to external

stimuli, such as temperature (Schnurr et al. 1997) or shear (LeDuc et al. 1999; Lee et al.

2008). Mechanical degradation could occur for flexible polymers when they are subjected to

mechanical stresses such as stretching, compression, and bending, which is a major concern

in engineering applications (Azadi and Nobes 2022; Mitishita et al. 2023; Pereira et al. 2013).

These motions can cause changes in the molecular weight structure of polymers, leading to a

reduction in the mechanical properties and performance over time (Abdel-Alim and Hamielec

1973). Rigid polymers are long-chain molecules that resist deformation under flow conditions

due to their high tensile strength and stiffness. They are less prone to mechanical degradation
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compared to flexible polymers (Mitishita et al. 2023). Most biopolymers, e.g., xanthan gum

(XG) (Pereira et al. 2013; Rochefort and Middleman 1987), diutan gum (Santos et al. 2020),

starch, cellulose nanocrystals, pineapple fibers (Bhambri et al. 2017) and glycogen have rigid

structure and are classified as rigid polymers.

Polymer solutions can be classified into two categories in terms of rheological behavior:

Newtonian and non-Newtonian behavior. Newtonian behavior refers to the behavior of fluids

that exhibit a constant viscosity regardless of the applied stress or shear rate. In contrast,

non-Newtonian behavior refers to fluids that exhibit a changing viscosity as a function of

shear stress or shear rate. Non-Newtonian fluids can exhibit more complex and interesting

behavior compared to Newtonian fluids and are often used in various industrial applications.

However, the complexity of the fluid behavior in non-Newtonian flow can also make it more

difficult to analyze and predict. The biggest challenge characterizing flows with fluids of

variable viscosity is that universal Reynolds number scaling is not possible.

1.3.2 Viscoelasticity

Polymers exhibit both viscous and elastic behavior. Viscous behavior refers to the resistance

to deformation, and elastic behavior refers to the ability to deform and return to the original

shape once the force is removed. When polymer is added to a liquid, the polymer chains

undergo conformational changes and begin to unravel and entangle with each other. The

entangled polymer network gives rise to both viscous and elastic properties in the solution.

The viscosity is due to the resistance of the polymer chains sliding past each other, while

the elasticity results from the ability of the entangled chains to spring back to their original

positions when deformed. Polymers can also be classified into shear-thinning and shear-

thickening fluids, whose viscosity reduces or increases under applied stress or strain rate.

These behaviors make polymeric solutions useful in various applications, such as in the

petroleum industry for enhanced oil recovery, as thickeners in food products, and in cosmetics

and pharmaceuticals (Herth et al. 2000).
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1.3.3 Drag Reduction

One reason that polymers received great attention is the phenomenon of drag reduction

(DR) in turbulent flows (White and Mungal 2008). A small quantity of polymer additives

can lead to a significant decrease in energy dissipation and friction loss in turbulent flows

(Dimitropoulos et al. 1998; Min et al. 2003; Virk 1975; Xi 2019). Virk (1975) found that

the addition of small amounts of polymers resulted in significant drag reduction in pipe

flow turbulence, with a maximum reduction of 80% observed, and maximum drag reduction

(MDR) asymptote was first proposed to illustrate the observation that skin friction has

converged to a level lying between the magnitudes of Newtonian laminar flow and turbulence.

Interestingly, drag reduction is a phenomenon that only occurs in turbulence. It is argued

that turbulence induces significant increase in extensional viscosity which is necessary for

the occurrence of drag reduction (Dimitropoulos et al. 1998).

Abundant studies are available that investigated the effect of polymer on drag reduc-

tion and turbulent structures. Mohammadtabar et al. (2017) investigated the turbulent

structures in a channel flow at Re = 7200 by using xanthan gum solutions at different con-

centrations from 75-125 ppm. Xanthan gum solutions are shear thinning but their apparent

viscosity increases with increasing xanthan gum concentration. It was found that as the

concentration of polymer increases, the boundary layer moves further away from the wall,

and at MDR, wall-normal Reynolds stresses and Reynolds shear stresses are significantly

attenuated. Sureshkumar et al. (1997) used direct numerical simulation to investigate the

effects of polymers on turbulent drag reduction in a channel flow, and it was shown that the

effect of drag reduction is associated with a decrease in the streamwise vorticity fluctuations

and an increase in the streak spacing within the buffer layer. This result is also reported by

other researchers (Mohammadtabar et al. 2017; Nieuwstadt and Den Toonder 2001; Tieder-

man 1990). Kim et al. (2007) studied the near-wall turbulent structures in fully-developed

turbulent channel flow with polymers. It was found that as Weissenberg number We (ratio

of the polymer relaxation time to the flow time scale) increases (indicative of an increase in
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DR), the root mean square (r.m.s.) of the streamwise velocity fluctuations decrease at very

near wall region (around 0 < y+ < 20) but increases further away from the wall (y+ ≥ 20).

However, the r.m.s. of the wall-normal and spanwise direction velocity fluctuations decrease

throughout the entire channel. This coincides with previous experimental results (Luchik

and Tiederman 1988). It was also found that the addition of polymers results in a reduction

of turbulence kinetic energy production and dissipation across the channel (Dimitropoulos

et al. 1998).

The research in the discussion above has provided numerical and experimental support

to the understanding of drag reduction mechanisms. Several kinds of DR mechanisms have

been reported. A possible mechanism responsible for DR is the viscous theory (Lumley

1969), which suggested that turbulent structures are suppressed as the polymer molecules

are stretched, leading to an increase in extensional viscosity, which ultimately results in

drag reduction. It is observed that increasing extensional viscosity leads to dampening

small-scale eddies and inhibits the production of vortices (Thais et al. 2010). Dimitropoulos

et al. (1998) investigated the streamwise vorticity in a turbulent viscoelastic channel flow.

Reduction of streamwise vorticity was found to be due to the enhancement of extensional

viscosity. This is consistent with the proposed viscous theory. Another mechanism to explain

DR is elastic theory (De Gennes 1986), which postulates that the presence of polymers

introduces a remarkable effect on decreasing the turbulent velocity fluctuations at small

scales. This phenomenon arises due to the inherent elasticity of the polymer flows, which

plays a crucial role in dampening the turbulence. As turbulent motion occurs at increasingly

smaller scales, the flexible nature of the polymers allows them to interact with the turbulent

eddies, absorbing some of the energy and dissipating it in the process. Consequently, this

polymer-induced damping effect leads to a smoother and more subdued turbulence behavior

at the smaller scales compared to scenarios without polymer presence. Turbulent energy is

stored as elastic energy in partially stretched polymers, the elastic energy gets accumulated

at the very near wall region, and transported and released in the buffer layer and log layer

(Min et al. 2003). In elastic theory, it is argued that the elasticity effect is dominant, whereas
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the increase in the extensional viscosity is insignificant to DR.

1.3.4 Turbulent Polymeric Boundary Layer

For Newtonian fully developed turbulence, the law of the wall and log law scaling is given

for mean wall-parallel velocity which is valid in viscous sublayer and logarithmic layer re-

spectively:

U+ = y+, y+ < 5, (1.18)

U+ =
1

κ
ln y+ +B, y+ > 30, (1.19)

where and κ is von Kármán constant, B is the logarithmic intercept. It was found κ = 0.4

and B = 5 for a fully developed channel flow (Kim et al. 1987).

Despite different proposed mechanisms for drag reduction, in polymeric turbulence, the

thickness of the boundary layer was found to be larger than Newtonian flows. Virk and

Smith (1970) and Virk (1975) determined the mean wall-parallel velocity profile of drag-

reduced polymer flows. Drag-reduced scaling law was proposed and the boundary layer was

divided into three wall-normal zones: viscous sublayer, elastic (interactive) sublayer, and

Newtonian (log-law) plug zones. A schematic is shown in Figure 1.2 below with adding data

from several researchers (Azadi 2023; Rollin and Seyer 1972; Rudd 1972; Virk 1975).

Virk and Smith (1970) proposed the ultimate mean velocity profile at theoretical maxi-

mum drag reduction that a polymeric flow could reach Virk’s MDR asymptote:

U+ = 11.7 ln(y+)− 17.0, y+ > 30. (1.20)

From Figure 1.2, it can be observed that experimental data within the linear viscous sublayer

coincides with the law of the wall. The velocity profile started to deviate from the intersection

point of Newtonian log law and Newtonian law of the wall. The dimensionless distance of the

intersection point to the wall is y+ = 11.45. The interactive sublayer is thickened compared to
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Figure 1.2: Plot of mean velocity profiles of turbulent polymeric flows.

the Newtonian log law and the mean velocity profile showed a larger slope, which indicates the

logarithmic region is pushed further away. Verk proposed another asymptote to describe the

velocity profile of polymer flows in Newtonian log law plug region by shifting the Newtonian

log law upwards by a constant c+1 , which is the value of intercept of Newtonian’s plug profile

on the y-axis higher than the common Newtonian logarithmic intercept B .

1.4 Ensemble Mean, Fluctuation, and Variances

The ensemble average denotes the arithmetic average of a random variable computed across

N realizations, with each realization is an independent event (George 2013). In turbulence,

the velocity is often described as a random variable and the mean behaviour of velocity is of

interest (Aliabadi 2022). The true ensemble average of velocity is given by:

⟨U⟩ ≡ lim
N→∞

1

N

N∑︂
n=1

Un, (1.21)

18



where ⟨⟩ denotes the expected mean of a random variable, and N is the number of re-

alizations of indepent experiment. The true ensemble mean ⟨U⟩ cannot be obtained, since

infinite number of independent realizations of measurement is unable to achieve experimen-

tally. However, the ensemble average of velocity based on finite number of samples can be

obtained (denoted by ⟨U⟩N) and is often used as an estimator for the true mean. The ⟨U⟩N
is given by:

⟨U⟩N =
1

N

N∑︂
n=1

Un. (1.22)

Alternatively, time averaging technique has been introduced to obtain a mean value for

the estimation of true ensemble average based on finite time range, the mean velocity by

time averaging for a statistically stationary process is given by:

⟨U⟩t ≡
1

T

∫︂ T

0

U(t)dt. (1.23)

In this thesis, the ensemble samples were collected over time physically in one realization,

but the velocity fields were considered independent samples. It has been proven that under

certain conditions, time averaging can be the same as ensemble average (George 2013), as

will be discussed in subsequent chapter.

The fluctuation of velocity based on ensemble average is defined as:

u = U − ⟨U⟩N , (1.24)

The variance of velocity, i.e, the ensemble average of the square of the fluctuation var(U)

or ⟨u2⟩ thus is given by:

⟨︁
u2
⟩︁
= lim

N→∞

1

N

N∑︂
n=1

[Un − ⟨U⟩]2 . (1.25)

An unbiased estimator for variance with finite number of samples adopted in the current

study is given by:
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⟨︁
u2
⟩︁
N
=

1

N − 1

N∑︂
n=1

[Un − ⟨U⟩N ]
2 . (1.26)

1.5 Energy Cascade

The energy cascade refers to turbulence kinetic energy transferred from large scales of motion

to smaller scales in turbulence. Based on Kolmogorov’s hypothesis of local isotropy (Pope

2001), turbulence can be considered statistically isotropic if lengthscale of structures l ≪ l0,

where l0 is the characteristic lengthscale of a flow. A distinctive lengthscale lEI ≈ 1/6l0 was

thus introduced to separate the energy-containing range (where the turbulence is consid-

ered locally anisotropic) and universal equilibrium range (where the turbulence is considered

isotropic). The lengthscale of the energy-containing range is estimated to be in the range of

1/6l0 ≤ l ≤ 6l0, where most of the energy is contained. Universal equilibrium range can be

subdivided further into dissipation range and inertial subrange, with a demarcation length-

scale of lDI . According to Kolmogorov’s second hypothesis, statistics are only dependent on

dissipation rate ε whereas independent of kinematic viscosity ν in the inertial subrange. The

energy spectrum of the inertial subrange is given by the form:

E(κ) = Cε2/3κ−5/3, (1.27)

where E(κ) is energy per wavenumber, C is a dimensionless constant, and ε is the rate of

energy dissipation per unit mass. It is noteworthy to mention that this hypothesis is based

on the assumption that the only relevant parameters in the inertial subrange are ε and k ,

and that the flow is statistically homogeneous and isotropic.

The energy dissipation is the process by which the kinetic energy is dissipated into heat

by viscous effect. The dissipation rate ε is given by:

ε = 2ν ⟨SijSij⟩ , (1.28)
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where ν is the kinematic viscosity, and Sij is the fluctuation of strain rate tensor. Sij is

defined as:

Sij =
1

2

(︃
∂ui

∂xj

+
∂uj

∂xi

)︃
, (1.29)

where ui is the velocity fluctuation component in the i-th direction. The dissipation is related

to the smallest lengthscale of motions in turbulence, known as Kolmogorov scales, which are

defined as:

η =

(︃
ν3

ε

)︃1/4

, (1.30a)

τη =
(︂ν
ε

)︂1/2

, (1.30b)

uη = (νε)1/4, (1.30c)

where η is the lengthscale, τη is the timescale, and uη is the velocity scale of the smallest

eddies where viscous dissipation is dominant.

From the discussion above, it can be seen that turbulence is characterized by different

scales both in time and space. The energy contained at different scales is different. The

velocity spectrum is introduced to describe how the kinetic energy of the flow is distributed

among different scales of motion (Pope 2001). The velocity spectrum is given by:

Φij(κ) =
1

(2π)3

∫︂∫︂∫︂ ∞

−∞
Rij(r)e

−iκ·rdr, (1.31)

where Rij is the two-point correlation that describes the correlation between velocity fluc-

tuations at two points separated by distance r :

Rij(r, t) = ⟨ui(x, t)uj(x+ r, t)⟩ . (1.32)

It can be seen from Equation 1.31 that Φij and Rij form Fourier transform pairs.
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Φij carries directional information since κ is a vector quantity. Since in practice, we might

be more interested in how much energy is distributed at each scale but not in the direction the

energy is flowing, the energy spectrum was introduced to remove the directional information:

E(κ) =

∫︂∫︂∫︂ ∞

−∞

1

2
Φii(κ)δ(|κ| − κ)dκ, (1.33)

where δ is Dirac delta function, and κ is an independent variable defined as the norm of

vector κ:

κ = ∥κ∥ . (1.34)

The dissipation rate is given by:

ε =

∫︂ ∞

0

D(κ)dκ, (1.35)

where D(κ) is the dissipation spectrum that describes how energy dissipation is distributed

among different lengthscales:

D(κ) = 2νκ2E(κ). (1.36)

1.6 Application of Proper Orthogonal Decomposition

in Turbulence

Proper Orthogonal Decomposition (POD) is a technique that aims to identify and represent

the coherent structures that dominate the energy content of turbulent flows. The POD

can be seen as similar to Fourier decomposition, which represents a function as a linear

combination of orthogonal sinusoidal functions. The POD, however, does not use a fixed set

of basis functions, but rather adapts them to the data, such that they optimally capture the

variance or energy of the data (Brunton and Kutz 2022), so they are like a spatial principle

component of variance analysis.
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Lumley (1967) first introduced POD and related it to the analysis of turbulent flows. The

advantage of POD is that it is available for highly non-linear dynamic systems, and is able

to extract the shape of dominant features from the system. Fundamentally, this method is

able to decompose non-homogeneous fluctuation fields, such as fluctuating velocity, pressure

or vorticity fields, into a set of orthogonal empirical functions, i.e., POD modes. These

POD modes are usually associated with the fluctuation patterns that correspond to the

coherent structures that contribute to most of the energy in the flow. For example, when

applying POD to the velocity fluctuation field, the resulting POD modes provide optimal

decomposition in terms of turbulence kinetic energy (TKE) (Vitkovicova et al. 2020). This

approach enables the concise representation of fluctuating fields as linear combinations in

terms of the most energetic modes. The spatial modes are often interpreted into different

motions in turbulence. In wall-bounded flows, POD is applied to identify wall-attached POD

eddies and wall-detached POD eddies, which are the prime statistical representations of eddy

motions near the wall (Wang et al. 2022a; Wang et al. 2022b). In the turbulent boundary

layers study, the first mode captures ejection or sweep motion, and the second mode captures

the shear-layer structures (Mohammadtabar et al. 2017).

POD application to turbulent flows primarily highlights the dominance of the first few

modes, corresponding to large-scale coherent structures (Khan et al. 2021; Muralidhar et

al. 2019; Smith et al. 2005; Wu et al. 2019). POD orders the principle components of the

velocity fluctuations in descending order, into shapes which cover the contributions to the

total fluctuation field. Usually, the first several modes will describe the vast majority of the

energy in the fluctuation field, thus for most of the cases, the energy convergence is fast.

However, some exceptions to this tendency are reported in the literature. Rovira et al. (2021)

performed POD on large eddy simulations of counter-flowing jets and the result shows that

more than 50 modes are needed to capture 70% of the turbulence kinetic energy. Kostas et

al. (2005) attributed the poor convergence to the large variety of scales in turbulence. For

flow with a wide variety of lengthscales, it will take more modes to capture and reconstruct

the features.
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In summary, the POD has been applied to various types of turbulent flows, such as

channel flows, boundary layers, wakes, jets, mixing layers, and bluff body flows, etc. POD

has also been combined with other methods, such as Galerkin projection (Hijazi et al. 2023),

balanced truncation (Rowley 2005), dynamic mode decomposition(DMD) (Wu et al. 2019),

and machine learning, to enhance its performance and capabilities. POD remains one of the

most widely used and powerful methods for the analysis and modeling of turbulent flows,

and continues to inspire new developments and applications in fluid dynamics.

1.7 Stereoscopic PIV Measurement Technique

Stereoscopic Particle Image Velocimetry (Stereo-PIV/SPIV) is an advanced optical tech-

nique for non-intrusive, quantitative measurement of fluid flow velocity fields in three di-

mensions (Prasad 2000). It provides a more comprehensive and accurate understanding of

the flow behavior compared to traditional two-dimensional (planar) PIV techniques. Stereo-

PIV configuration consists of two cameras focusing on a single object plane. Three velocity

components in total can be obtained (two in-plane components and one out-of-plane compo-

nent). The two velocity components within the object plane (laser plane) are referred to as

in-plane velocity components. It has been found that in-plane components are biased when

using a single camera (planar-PIV) configuration due to perspective errors, which are not

present in a Stereo-PIV configuration Kähler (2004). Particle images are captured simultane-

ously from two different viewing directions, and the out-of-plane velocity component can be

reconstructed based on the disparity in what cameras capture from two viewing perspectives.

Stereo-PIV configuration can be classified based on the camera position relative to the

light sheet (Kähler 2004). Backward Forward-scattering is an SPIV configuration in which

one camera captures the light that is scattered forwardly, while the other camera captures the

light that is scattered backwardly. Following the same concept, there are Forward Forward

and Backward Backward-scattering arrangements.

On top of the classification above, the arrangements of Stereo-PIV could be classified

into the translation method and angular displacement method based on the relative angle
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between the lens plane and object plane. With the translation method, the light-sheet plane,

the main plane of the lens, and the image plane are all parallel to each other. The translation

method offers a constant magnification across the field of view and ensures particles are in

focus, but it has limitations in angular aperture and modulation transfer function, which

lead to a limited FOV (Raffel et al. 1998).

The angular displacement method performs better with larger stereo opening angles and

has a better modulation transfer function, however it has a varying magnification and per-

spective distortions which will require additional calibration (Kähler 2004). Typically, the

angular displacement method is more often implemented in experiments; this allows for

larger FOV. The object plane, lens plane, and image plane for each camera need to be set

to converge to a single line of intersection, which is referred to as the Scheimpflug criterion

(Hinsch 1995; Raffel et al. 1998; Royer and Stanislas 1996). Scheimpflug adapters are used

in this configuration which allows tilting the the camera lens relative to the camera body

with an angle to adjust the plane of focus back to the object plane. In the experiment, this

will lead to a larger focused range so that all dots on the calibration target can be adjusted

in focus. For SPIV calibration, small apertures are typically preferred to have a larger depth

of field (Prasad and Jensen 1995).

1.8 Objectives and Hypothesis

The present study aims to investigate and characterize turbulent structures of shear-thinning

polymers in a Tayor-Couette flow geometry and examine different nonlinear shear-thinning

viscosity effects on turbulent statistics, energy spectra, and coherent motions under the same

Re compared to the Newtonian fluid. Several hypotheses are made below:

It was hypothesized that (1) shear-thinning polymers could change the turbulent struc-

tures in the bulk flow in the Taylor-Couette annulus, which leads to changes in turbulent

statistics, (2) the nonlinear effects induced by the viscosity of the non-Newtonian fluid alters

the flow regimes and reshaped the evolving vortical structures, (3) shear-thinning polymers

could affect the coherent motions and structures of T-C turbulence, and (4) shear-thinning
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polymers could affect the turbulence kinetic energy transport in terms of energy containment

and dissipation rate, and therefore change the energy cascade.

The main objectives of the research were to (1) to develop an experimental T-C setup

which could obtain a dataset of two dimensional - three components (2D-3C) turbulent

velocity fields of high accuracy, (2) to investigate the different nonlinear shear-thinning

viscosity effect on turbulent structures, and (3) to elucidate the shear-thinning effects in

terms of TKE and dissipation distribution at different lengthscales.

1.9 Thesis Outline

This thesis comprises 5 Chapters and 4 Appendices which are organized as follows:

Chapter 1 provides a literature review of Newtonian and non-Newtonian Taylor-Couette

flow turbulence, and the background knowledge including the mathematical and experimen-

tal tools for turbulence investigations.

Chapter 2 provides a detailed overview of the Taylor-Couette apparatus, including the

components of the designed T-C flow rig, SPIV configuration, and optical imaging settings.

The accuracy and uncertainty analysis of the measurements are conducted and explained in

detail.

Chapter 3 provides an analysis of the nonlinear effect of shear-thinning turbulence in sev-

eral aspects including the turbulent statistics, structures related to drag reduction, primary

spatial structures of modes from POD, turbulence isotropy, energy cascade, and dissipation

contributions at different lengthscales.

Chapter 4 provides a concise discussion of the results and justification of the analysis.

Chapter 5 provides a summary of the conclusions and the primary findings of the current

research.

Chapter 6 provides a discussion about the experiment limitation, potential future work

and the challenges.
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Chapter 2

Experimental Setup And
Methodology

2.1 Overview

The experimental investigations and visualization of turbulent Taylor-Couette flow are con-

ducted in this section. A detailed overview of the T-C flow apparatus, including its compo-

nents and dimension specifications, is provided. The Stereoscopic Particle Image Velocimetry

(SPIV) configuration serves as the imaging approach. The optical settings of the SPIV setup

are elaborated upon, covering aspects such as field of view (FOV) selection, camera arrange-

ments, PIV seeding guidelines, and calibration procedures to ensure precise measurement of

fluid velocities. Furthermore, the preparation procedure for Polyacrylamide (PAM) solution

is outlined. The Carreau-Yasuda viscosity model is employed for modeling shear-thinning

viscosity behavior. Additionally, the accuracy and error analysis of the SPIV measurements,

along with post-processing steps, are detailed. This comprehensive overview establishes the

groundwork for subsequent sections, where the experimental results and findings concerning

turbulent Taylor-Couette flow dynamics are discussed.

2.2 T-C Flow Apparatus

The Taylor-Couette apparatus employed in the present experiments is shown in Figure 2.1

below. It mainly consists of components as follows: i) T-C chamber, ii) High-speed cameras

and lasers iii) DC Motor and iv) Torque Sensor.
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Figure 2.1: Annotated schematic of Taylor-Couette apparatus.

The T-C chamber consisted of two end plates at the top and bottom and two coaxial

independent cylinders. Both cylinders were made of cast acrylic, whose clarity allows for

clear visualization. The total inner cylinder length is lc = 270.0mm and the radius of

outer cylinder is ro = 79.4mm and it stays stationary. The inner cylinder has a radius

ri = 60.3mm, corresponding to the gap width between cylinders d = 19.1mm, radius ratio

ηr = ri/ro = 0.76, and aspect ratio ζ = lc/d = 14.1. In T-C study, fluid flow is almost

inevitably influenced by the presence of the end walls, which is referred to as end effects

(Coles and Van Atta 1966; Hollerbach and Fournier 2004). It is argued that end effects come

from two major aspects: the limitation of finite span and bottom secondary flow (Wiswell et

al. 2023). Secondary flow could have important end effects, especially for a small aspect ratio
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apparatus ηr of order 10 and less (Burin et al. 2006). In the present study, two bowl-shape

spacers are designed and put between the inner cylinder and the top and bottom plates to

decrease the effect of secondary flow from top and bottom. The region of interest is chosen

to be located at the midplane between the top and bottom plates, and the distance from the

region of interest to the end plates is 115.0 mm ≫ d = 19.1mm to minimize the end effects.

The inner cylinder was hollow and interference fitted onto a drive rotary shaft. Two

shaft collars were fixed onto the shaft at the top and bottom of the inner cylinder to ensure

no axial displacement of the inner cylinder. Two high-load (1338 kg radial dynamic load

capacity) sealed ball bearings were used and interference fitted in the top and bottom plates.

To prevent leakage of fluids, two spring-loaded Graphite PTFE seals were selected for rod

sealing and were embedded in the top and bottom plates respectively. The inner and outer

cylinders were mounted using tie rods between end plates.

Motor

A ClearPath Integrated Servo Motor (CPM-MCVC-3441S-RLN) with speed control was

used. It allows for a maximum rotational speed of 840 RPM and a peak torque of 13.0 N ·m,

which were large enough to generate turbulence in the T-C system. The motor provides two

options of power supply: DC input and AC input. In this study, DC input was adopted, by

connecting the motor and Teknic IPC-5 power supply. The AC power cable connected the

120V in-wall power and IPC-5. A USB cable connected the Windows PC to the motor to

achieve speed control.

Torque Sensor

Reaction torque sensor (FSH04381-TFF425, FUTEK Advanced Sensor Technology, Inc.)

was selected to obtain the reaction torque of the inner rotational cylinder. The TFF sensor

was bolted down towards the bottom plate, and the top was grabbed onto the motor chamber

that connected to the body of the motor. The torque sensor thus works by measuring the top

twisting of the motor with respect to the fixed bottom plate. The maximum torque capacity
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is 7.06 N ·m. The hysteresis and nonlinearity are all within ±0.2% of rated output. A

USB 220 kit is used to connect the Windows PC to the TFF sensor. A maximum sampling

rate up to 4800 Hz could be obtained. In this study, the Nyquist criterion was satisfied

when collecting torque signals. The sampling rate was adjusted twice as high as the rotation

frequency of the inner cylinder.

Cameras and Lens

Two CCD cameras (ImagerPro X4M, LaVision GmbH) with have a color image sensor with

resolution( h × v ) of 2048 × 2048 pixel. The pixel size ( h × v ) is 7.4 × 7.4 µm2 . Both

ImagerProX 4M cameras were connected to camera controllers from Lavision. The cameras

require a trigger signal for image recording. A programmable timing unit (PTU 9) was

used to generate an accurate camera trigger signal and synchronize the image recording

with laser pulses. BNC cables were used to connect the programmable timing unit (PTU 9)

from the PC to the socket of camera controllers. Nikon 50 mm focal length, 1 : 2 aperture

objective lens were installed on both cameras. Aperture was set to an opening of f/16, and

depth-of-field is set to approximately 4 mm.

Laser and Optics

An Nd: YAG laser (Solo III-15, New Wave Research) was used as the light source, with

15 Hz repetition rate and 532 nm wavelength. The Solo-PIV laser system provides high

energy with a maximum output of 50 mJ. The laser was fired externally and triggered by

PTU unit installed in the PC. An adjustable laser sheet optic was utilized which contains a

combination of cylindrical and spherical lenses to adjust the focal length of the optics.

2.3 Stereo-scopic PIV Configuration

2.3.1 Field of View (FOV)

The size of the FOV was designed to include a pair of vortices. The wavelength of TV

pair λ = 2.29 was used as an estimation in the present study based on experimental results
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(Kataoka et al. 1977), which showed that for a single vortex, the wavelength of vortex in

the axial direction is roughly the same as the gap width d between cylinders. This was also

observed in the present study as will be shown in the subsequent discussion. For Newtonian

fluid measurement, the FOV was accomplished with a pair of Nikon Nikkor 50 mm F/2

lenses and 12 mm extension tubes. The spatial resolution achieved was 37.76 pixel/mm.

The demonstration of FOV is shown in Figure 2.2 below.

Figure 2.2: Schematic of field of view (FOV).

2.3.2 Camera Arrangement

Purely backward-scattering of camera arrangement was employed. In the present study, the

laser wavelength λ = 532 nm and particle diameter dp = 2µm. Given the value dp ≫ λ, pre-

dictions can be made that there will be strong scattering (Mie 1908). However, the intensity

of scattering was not uniform in all directions. The backward-scattering arrangement has

relatively weak scattered light intensity compared to the forward-scattering camera arrange-

ment based on Mie scattering theory (Fischer 2017; Mie 1908). Considering this factor, laser

intensity was adjusted in the experiments to an appropriate level so that the light scattered

back from seeding particles is sufficient and can be captured clearly by both cameras.
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2.3.3 Camera Angle

Reconstruction of the out-of-plane velocity component relies on the perspective disparity

from two viewing directions. The angle between the optical axis of two cameras needs to be

determined to have minimal uncertainty. The opening angle has to be at least larger than 20°

for an accurate reconstruction. It is typical to have an opening angle between cameras from

30 − 120° for a stereo configuration. For a backward forward-scattering configuration, the

uncertainty in measuring the out-of-plane component becomes larger as the opening angle

between the two cameras increases. It can be proven that when the opening angle is equal

to 90°, the uncertainty of all three velocity components is equal and balanced (Prasad 2000;

Raffel et al. 1998) . Mathematically this is true, whereas the overlap of the images captured

by two cameras at this angle was found to be slightly sharp, which might lead to a decrease

in image quality caused by fewer pixels being detected. It is argued that due to fewer pixels

available to calculate the in-plane components that leads to an increase in error estimation,

the optimal camera angle in stereo-PIV is actually closer to ≃ 30° to 35°, indicating the

optimal angle between two cameras would be around 110° − 120° (LaVision 2013).

In the present study, camera opening angles were set to 100°, which is slightly less than

the recommended optimal opening angle. The Scheimpflug adapters were adjusted to have

the lens plane parallel to the window of the reservoir and at the same time, the Scheimpflug

criterion was satisfied.

2.3.4 Reservoir for Refraction Elimination

One of the challenges in the experimental T-C study is optical aberrations due to the re-

fraction effects at the curved surface of the flow rig. A reservoir for refraction reduction was

designed and fitted against the curved surface of the outer cylinder. In this way, the light

scattered from seeding particles goes through the interface close to 90◦. In the present study,

the reservoir was filled with the same liquid as the working fluid in the T-C flow rig. The

undesirable refraction effects were thus reduced.
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2.3.5 Seeding

The PIV measurement technique determines the velocity of fluid flow by following the dis-

placement of seeding particles that are carried by the flow. The instantaneous velocity field

is estimated from a pair of images that are separated by laser pulse △t. As opposed to mea-

suring the fluid velocity directly, the PIV measurement technique is indirect in that what it

calculates is the velocity of the seeding particles (Willert et al. 2007). Thus, the velocity of

particles should be as close to the fluid velocity as possible, so that the motion of particles

can represent the fluid motion. To prevent significant differences between the motion of

the fluid and particles, it is necessary to investigate their physical properties and how they

interact with each other. First, the density of the particle should be neutrally buoyant to

be similar to the density of the particle to avoid body forces creating a difference between

the particle and fluid velocities (Willert et al. 2007). Furthermore, the volumetric popula-

tion of seeding particles should not be too dense or sparse. If the volumetric population of

seeding particles in a PIV experiment is too sparse, it can lead to several issues, e.g., poor

signal-to-noise ratio, incorrect velocity field estimation, and limited spatial resolution for

small scale structures (Adrian and Westerweel 2011). High volumetric population could lead

to particle agglomeration instead of having well-dispersed particles in the flow. Excessive

seeding volumetric population can also cause image saturation, which can result in the loss

of image resolution. Typically it is recommended to have a seeding volumetric population

close to 0.05 particles per pixel (ppp) (LaVision 2013).

The size of the seeding particles needs to be large enough so that the scattered light can

be visible and captured by the cameras. Particle sizes around 2-4 pixels in diameter are

recommended (LaVision 2013). In the present experiment, the diameter of 2 µm glass bead

seeding particles were added to the flow and the light scattered by the seeding particles was

recorded by the cameras. 8-10 particles were achieved per interrogation window to ensure

accuracy for most of the interrogation windows. In the same time, the seeding particles

should be small enough to follow the fluid motion faithfully.
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To verify the tracing accuracy, the Stokes number Stk is introduced:

Stk =
τp
τf
, (2.1)

where τp is the particle’s response time, which is defined as:

τp = d2p
ρp
18µ

, (2.2)

where dp and ρp are the diameter and density of the particle, τf is characteristic time scale

in the flow. In this case τf was taken as the estimated integral timescale as calculated in

Section 3.2. µ was taken as the dynamic viscosity for water solution, and nominal viscosity

for shear-thinning polymers. It is recommended that Stokes number less than 10−1 indicates

an acceptable tracing accuracy (Raffel et al. 1998).

Additionally, the settling velocity Ug is considered to evaluate the source of error induced

by the gravitational forces of seeding particles. The settling velocity is given by:

Ug = d2p
(ρp − ρ)

18µ
g. (2.3)

The Froude number Fr of seeding particle that characterizes the settling of particles in the

flow is given by:

Fr =
Ug

Us

, (2.4)

where Us is the characteristic velocity scale of the flow, it was taken as the linear velocity at

the inner cylinder wall Uθ|r=ri
as shown in Table 2.2. Table 2.1 lists the characteristics of the

seeding particles for each fluid. It can be seen that both Stk and Fr are of infinitesimal orders,

indicating the seeding particles used in the current experiment follow the flow faithfully. The

inertia and settling in the flow are insignificant compared to the characteristic scale of the

flow investigated.

34



Table 2.1: List of dynamic characteristics of the seeding particles under the flow conditions
at Re = 1.50× 104.

Solution µ dp ρp τP τf Ug Stk Fr

(Pa · s) (µm)
(︁
kg/m3

)︁
(s) (s) (m/s)

Water 1.0× 10−3 2 2300 5.1× 10−7 0.48 2.8× 10−6 1.1× 10−6 3.6× 10−6

PAM-200ppm 2.0× 10−3 2 2300 2.6× 10−7 0.24 1.4× 10−6 1.1× 10−6 9.0× 10−6

PAM-400ppm 3.6× 10−3 2 2300 1.4× 10−7 0.13 0.8× 10−6 1.1× 10−6 2.8× 10−6

2.3.6 Particle Image Displacement

The typical particle image displacement rules were proposed in literature (Keane and Adrian

1992; Lu and Sick 2013). A “one-quarter-rule”was suggested for both the in-plane and

out-of-plane velocity components. First, the maximum particle displacement in x (or y)

direction △X(or △Y ) less than 25% of size of the interrogation window DI was suggested,

i.e., △X ≤ 1
4
DI , △Y ≤ 1

4
DI . For example, for a commonly used final interrogation window

size of 32 × 32 pixels, the particle displacement of in-plane components (radial and axial

direction) between two consecutive frames should not exceed 8 pixels, i.e., △X ≤ 8 pixel,

△Y ≤ 8 pixel. It was suggested that normally a 5-pixel shift is preferred (Thielicke and

Sonntag 2021). For the out-of-plane motion, a maximum out-of-plane displacement △Z less

than 25% of light sheet thickness Θ, i.e., △Z ≤ 1
4
Θ.

In each experiment, the duration between the two consecutive laser pulses △t was adjusted

according to the rules mentioned above to ensure accurate spatial resolution while preventing

too many particles with out-of-plane velocity from escaping the light sheet within △t . For

all our experiments, △t was set such that seeding particles would travel less than a quarter

of the light sheet thickness even for the largest expected azimuthal velocity Uθ|r=ri
within

laser pulse. At the same time, 5-pixel in-plane displacement was guaranteed during the

experiment. The △t used in experiments are listed in Table 2.2.
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Table 2.2: List of experimental parameters and optical system properties for SPIV measure-
ment.

Solution Renom ωi Θ Uθ|r=ri
△t 0.25Θ/Uθ|r=ri

(rpm) (mm) (m/s) (µs) (µs)

Water 1.50×104 125 2.5 0.79 350 791.49

PAM-200ppm 1.50×104 250 2.5 1.58 200 395.74

PAM-400ppm 1.50×104 450 2.5 2.84 100 219.86

2.3.7 Calibration

The purpose of calibration is to establish the relationship between the measured pixel dis-

placement and the corresponding physical displacement of seeding particles in the fluid. This

relationship is required to convert the pixel displacements observed in the PIV images into

actual velocities in the fluid. Camera calibration and self-calibration are the main two steps

in this procedure. It is essential to perform a camera calibration before the experiment to

obtain the viewing direction of cameras and the relative location of cameras concerning the

target, which are information for the reconstruction of the velocity. A second calibration

(self-calibration) was employed after the experiment to eliminate the error caused by the

misalignment of the calibration target (Raffel et al. 1998).

Camera Calibration

Camera calibration involves using a customized two-level calibration plate. The calibration

plate was milled with a 5-axis CNC mill (POCKET NC V2-50 CHK, PENTA) of high pre-

cision (6.10 µm resolution in XYZ (translation) axis and 0.01° resolution in A&B (rotation)

axis). The plate was designed to have alternating top and bottom levels. Levels were sep-

arated with a defined separation distance. Dot patterns were milled and equally spaced on

the two levels of planes with specific spacing between the dots. An image of the target is

shown in Figure 2.3 below.

Camera calibration was performed using working fluids to compensate for image distortion

caused by light refraction from the working fluid. A new camera calibration was implemented
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Figure 2.3: Schematic of Calibration Target. The left image shows the dot pattern of the
calibration target. The dark dots are on the top level, and the light grey dots are on the
bottom level. The right image shows the 3D view of the target.

each time the working fluid was changed to ensure consistency in the obtained results with

the current calibration. Lavision LaVision (2013) offers two fit mapping functions: the

camera pinhole model and a 3rd-order polynomial. The pinhole model was utilized to verify

the camera positions and fit parameters (focal length, distance in z, rotation (x, y, z)), and

3rd-order polynomial model was used for camera calibration.

Self-Calibration

Self-calibration allows the correction of misalignment of the calibration target to the plane of

the light sheet. For each experiment, self-calibration is done with 100 stereo particle images

to ensure the quality of self-calibration. The correlation map exhibits peaks that are centered

at zero within each window (LaVision 2013). The width of the peaks in the correlation map

gives a very good estimate of the laser sheet thickness. In the present experiment, the laser

sheet thickness was set to Θ = 2.5 mm.
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2.4 Viscosity Model and Polymer Solutions

2.4.1 Viscosity Model

In this study, turbulent characteristics of Taylor-Couette flow were experimentally inves-

tigated with non-Newtonian polymer solution Polyacrylamide (PAM). PAM is proven to

have dramatic shear thinning behavior for a wide range of concentrations up to 5000 ppm

(Shabaka et al. 2016).

The rheology is described by the Carreau model (Cagney and Balabani 2019):

µ(γ̇) = µ∞ + (µ0 − µ∞) [1 + (λcγ̇)
a]

(n−1)/2
, (2.5)

The non-Newtonian characteristics are described with parameters: µ0 , µ∞ , λc and n. µ0

and µ∞ are the values of dynamic viscosities at zero and infinite shear rates. λc is the

relaxation time of the fluid and n is the flow index (shear thinning fluid, n < 1). γ̇ is the

magnitude of the rate-of-strain tensor, i.e, shear rate. The shear rate is defined as:

γ̇ =
√
2D : D, (2.6)

where D is the strain-rate tensor in convention. D = 1/2
[︁
∇U + (∇U )T

]︁
.

The second invariant of the strain-rate tensor is expressed:

Γ =
1

2
γ̇ : γ̇ =

1

2
γ̇ij γ̇ji, (2.7)

where γ̇ is the rate of strain tensor. γ̇ = ∇U + (∇U )T . The relation between D and γ̇ :

γ̇ = 2D. (2.8)

In Equation 2.7 , the Einstein’s summation convention for repeated indices is used. Since

the rate of strain tensor γ̇ is symmetric, thus:

Γ =
1

2
γ̇ : γ̇ =

1

2
γ̇ij γ̇ji =

1

2
γ̇ij γ̇ij. (2.9)
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The relation between the second invariant of the strain-rate tensor Γ and shear rate γ̇ is:

γ̇ =

√︄
1

2

∑︂
i

∑︂
j

γ̇ij γ̇ji =
√
Γ. (2.10)

2.4.2 Experimental Fluids

Newtonian Fluid Selection

Water was selected as a pure solvent compared to the PAM solutions. The dynamic viscosity

of water is 10−3 Pa · s under 21◦C. The water-glycerol mixture has been proven to maintain

constant viscosity regardless of the applied shear rate (Hanson et al. 2019). Additionally,

80% by volume of glycerol with a high viscosity of 0.086Pa · s was used in stereoscopic

configuration accuracy verification (Volk and Kähler 2018).

Non-Newtonian Fluid Selection

In this study, the same Polyacrylamide (PAM) powders and concentrations of PAM solution

were used similar to the literature (Azadi 2023) to ensure consistency. The parameters of

each solution are listed in Table 2.3. Cp represents concentration of PAM solution, and ρ is

the density of the solution.

Table 2.3: Carreau-Yasuda model parameters for tested solutions. Property of PAM data
comes from (Azadi 2023). Properties of glycerol-water mixtures come from (Volk and Kähler
2018).

Solution Cp ρ µ0 µ∞ λc n a

(ppm) (kg/m3) (Pa · s) (Pa · s) (s)

1 0 997.0 10−3 10−3 - 1 -

2 200 997.2 8.010× 10−3 1.388× 10−3 2.287 0.58 3.523

3 400 997.4 8.395× 10−3 1.525× 10−3 0.164 0.53 0.732

The assumed viscosity versus shear rate γ̇ by the Carreau-Yasuda model was shown in

Figure 2.4.
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Figure 2.4: Plot of Dynamic viscosity versus shear rate. Figure replotted with permission
(Azadi and Nobes 2022).

2.4.3 Preparation Procedure

The preparation procedure follows the literature (Azadi and Nobes 2022). To prepare the

PAM solutions of different concentrations, a high-concentration master solution with a small

volume was prepared, which will be added to different amounts of water later. First, the

precise weighing of the required amount of PAM polymer was carried out with a precision

of ±0.1 mg (Mettler Toledo, AB104-S). The PAM powder and water were gradually added

to a beaker and mixed with a magnetic stirrer mixer to ensure polymers were fully dispersed

and no aggregation of polymer molecules. After 2 hours of continuous mixing, the master

solution was added to an appropriate amount of water to achieve the desired concentration

(200, 400 ppm). A vacuum pump was utilized to eliminate air bubbles present in the solution

which could affect the quality of particle images.
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2.4.4 Post-Processing

The implementation of post-processing of particle images involved the calculation of double

frame vectors. A lengthscale of 8 pixels was chosen for sliding background subtraction. The

intensity of particle images was filtered with a min-max filter, with a 4-pixel lengthscale.

The particle images were cropped by applying square geometric masks for each camera to

define the region of interest Stereo cross-correlation was enabled and a multi-pass (decreasing

size) algorithm was used, with an initial interrogation window size of 48 × 48 pixel and a

final interrogation window size of 24 × 24 pixel with 75% overlap to gain higher spatial

resolution. No weighting function was selected and the square-shaped interrogation window

(aspect ratio of 1:1) was chosen. The final interrogation window size of 24× 24 pixel is able

to offer the true interrogation window size of 0.64× 0.64mm2. A median filter was used for

multi-pass post-processing. It is worth mentioning that 4(2 × 2) interrogation windows are

needed to resolve a vortex (LaVision 2013), thus the size of a perfect circular vortex that

the current resolution is able to resolve is 1.28 × 1.28 mm2.

2.5 SPIV Accuracy and Uncertainty Analysis

The SPIV measurements of the Taylor-Couette flow rig has sources of errors, both random

and systematic, which must be estimated and quantified using uncertainty bounds. These

sources include calibration precision (quality of calibration target, camera positions, etc.),

image distortion arising from refractive index matching quality, light-sheet thickness, and

spatial resolution. Therefore, it was important to scrutinize the reliability of the stereoscopic

velocity measurements. To assess the accuracy of out-of-plane motion, a preliminary test was

conducted under conditions of pure laminar flow, aligning with the methodology proposed

by Ravelet et al. (2010). This approach considered the compounding factors mentioned

above without differentiating them, and a total compounding error could be obtained for

the out-of-plane motion. However, the accuracy of in-plane velocity components is unable

to be verified, since they are extremely close to zero as expected. Following the prescribed
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procedure, measurements were conducted in a laminar flow scenario with the inner cylinder

rotating at a Reynolds number as low as Re ≈ 10, utilizing an 80% by volume glycerol-

water mixture as mentioned previously. In this particular instance, the analytical velocity

field is well-defined, with zero radial and axial velocities (secondary flow), and the azimuthal

velocity was anticipated to be entirely axisymmetric with no axial dependence, as shown in

Equation 1.5. Scaling of coordinates was performed. The radial coordinate was scaled to

a range from 0 (outer cylinder wall) to 1 (inner cylinder wall). The dimensionless radial

coordinate is given by:

r∗ = (ro − r) /d, (2.11)

where d is the gap width.

The axial coordinate was scaled and the dimensionless axial coordinate is given by:

z∗ = z/d, (2.12)

where z is the physical distance of axial length. The result of the measured azimuthal velocity

is shown in Figure 2.5. It can be seen that the result at the bulk is in good agreement with the

analytical solution, with less than 10% of relative error in the region r∗ ∈ (0.2, 1). However

at the outer cylinder wall where r∗ = 0, a strong deviation was observed. In the present

study, the configuration employed was similar to that utilized by Ravelet et al. (2010),

where a strong deviation of measured azimuthal velocity from the theoretical solution near

the cylinder was observed as well. The measurements conducted by Ravelet et al. (2010)

showed reliability on;y within the range of 0.1 ≤ (r − ri) /d ≤ 0.85. The reason given was

due to the refraction close to the curved wall that causes measurement errors. However,

in the present experiment, a refractive index matching reservoir was employed to mitigate

refraction, yet the deviation was still observed. This suggests that refraction might not be

the primary factor contributing to this error. This thesis suggests another potential factor

that is attributed to the inherent mechanism that SPIV relies on a finite-thickness light sheet

to reconstruct the out-of-plane velocity, combined with the cylindrical flow rig used. The

error that arises from the light sheet is typically considered negligible in most cases (if all in-
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Figure 2.5: Plot of Normalized azimuthal velocity profile for Re ≈ 10.

plane motions can be considered identical), but in Taylor-Couette turbulence the light sheet

thickness could affect the accuracy of the near-wall velocity measurement. Since the Taylor-

Couette geometry is cylindrical, the in-plane fluid motions illuminated by the light sheet

can have a discrepancy, and this discrepancy can be non-negligible at the near-wall region.

The cameras can notice this discrepancy from two different orientations. Each camera can

determine an in-plane velocity field, and the out-of-plane velocity is reconstructed based on

the two different in-plane velocity fields (ideally should be the same), which leads to a high

reconstruction uncertainty, especially at the walls. The present study mainly focuses on

regions in the bulk, where the velocity measurements of laminar flow show good agreement

with the theoretical azimuthal velocity profile to guarantee measurement accuracy.
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Chapter 3

Results

3.1 Overview

This chapter discusses the nonlinear effect of shear-thinning polymers on the TTC regime.

Experimental results of three velocity components were obtained from SPIV measurement

of Taylor-Couette turbulence at Re = 1.50 × 104 for water, PAM-200 ppm, and PAM-400

ppm solutions. Turbulent statistics from SPIV measurements were used to demonstrate and

verify the statistical convergence of the flow. Instantaneous and ensemble-averaged velocity

and vorticity of water and PAM-200 ppm solutions in the r− z directions were calculated to

investigate Newtonian and non-Newtonian secondary vortical structures. Turbulent statis-

tics including Reynolds normal and shear stresses were investigated and discussed. Locations

and sizes of secondary Taylor vortices were obtained by using the Γ1 and Γ2 vortex iden-

tification algorithm, respectively. The statistics and distributions of vortex cores in space

were discussed. To get a better understanding of the vortical structures of the turbulent

Taylor vortices (TTV) regime and the spatial organizations, snapshot Proper Orthogonal

Decomposition (POD) was implemented. The energetic modes and the energy distribution

associated with the modes are discussed. Two spatial correlations in the r and z directions

were investigated by calculating the two-point correlation of velocity fluctuations. Two di-

mensional energy and dissipation spectra for three solutions were calculated and discussed

to understand the energy and dissipation distribution under different shear-thinning effects.
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3.2 Statistical Convergence

Statistical convergence refers to the point at which the statistical properties of the measured

velocity field become consistent and stable In practice, statistical convergence is typically

assessed by analyzing the convergence of statistical moments of the velocity field (Ullum et

al. 1998; Westerweel 1997). This section is divided mainly into two subsections that discuss

the estimation of the time span and the number of samples necessary to achieve statistical

convergence.

3.2.1 Estimation of Time Span

Turbulent statistics (first and second-order statistics) were computed based on the averaging

of the instantaneous velocity. This study introduces two different turbulent fluctuations

based on two different averaging, as defined by Smith and Townsend (1982). The fluctuation

u that is defined merely based on the ensemble average was adopted as shown in Equation

1.24. This fluctuation u represents the fluctuation resulting from turbulence.

Besides, another definition of fluctuation u
′
is introduced based on both ensemble and

axial averaging:

u
′
= U − ⟨U⟩z,N , (3.1)

where u
′
represents the velocity fluctuation in time (due to turbulence) combined with the

local deviation away from the axially averaged mean TV motion. This definition is slightly

different compared to literature (Bilson and Bremhorst 2007) wherein the velocity com-

ponents are spatially averaged over the azimuthal direction as well. Pirro and Quadrio

(2008) studied turbulent Taylor-Couette regime at Re = 10500 by DNS technique assuming

two spatially homogeneous directions (axial and azimuthal direction) for simplification and

computational efficiency and the results have been validated by previous simulation and ex-

periments. Given the assumption of Taylor-Couette turbulence can be considered spatially

homogeneous in the azimuthal direction, the discrepancy between these two averaging can
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almost be neglected (Errante et al. 2024).

Turbulent flows are characterized by velocity fluctuations over a range of length and

time scales (Pope 2001). To characterize these fluctuations faithfully as an ergodic process,

the PIV system must acquire velocity data over a sufficiently long time span. Insufficient

measurement duration leads to ensemble averages which are not representative of the entire

population of data.

Determination of the optimal time span for investigating turbulent Taylor-Couette flow re-

lies on certain premises to simplify the analysis. First, Taylor-Couette turbulence is assumed

to be statistically stationary, indicating that all multi-time statistics remain invariant under a

shift in time (Pope 2001). This assumption facilitates the characterization of Taylor-Couette

turbulence as a stochastic process, which is available to be explored through an examination

of multi-time statistics. To guarantee the statistical stationarity, the Taylor-Couette flow rig

was operated with the flow before data collection to ensure the turbulence was fully devel-

oped, allowing the system to reach a statistically stationary state. Second, it is presumed

that Taylor-Couette turbulence can attain an ergodic state. Under the assumption of statis-

tically stationary flows, ergodicity denotes the equivalence between the statistical properties

of a true ensemble average and the time average over an extended duration (Aubinet et al.

2012). To achieve ergodicity, the selected time span T needs to be an order of magnitude

larger than the integral timescale, which can be estimated prior to the experiment. In this

study, the estimated integral timescale is taken by the time for the inner cylinder to complete

one revolution (Bilson and Bremhorst 2007):

τ̄ est =
2π

ωi

. (3.2)

The time span T for each experiment lasted over 10 minutes which is significantly greater

than the integral timescale, indicating the condition of the ergodicity hypothesis was satisfied.

Ensemble averaging was performed over the entire span of the process which was separated

by a timescale τe slightly greater than the estimated integral timescale τ̄ est, e.g., for water

at Re = 1.50 × 104, τe = 3/f ≥ τ̄ est , where f is the image acquisition rate of cameras to
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acquire velocity fields. f = 5 Hz for all cases.

3.2.2 Estimation of Number of Samples

To obtain accurate ensemble-averaged results using PIV, it is important to determine the

necessary number of PIV recordings needed. This determination involves finding a balance

between the relatively short time required to take PIV recordings and the time required

to maintain constant external experimental conditions (Raffel et al. 1998). If too few PIV

recordings are taken, the resulting data may not be representative of the overall flow behavior.

On the other hand, taking too many PIV recordings may be time-consuming and may result

in changes to the external experimental conditions, e.g., changes in temperature or fluid

properties (especially for shear-thinning fluids), which can impact the accuracy of the data.

In this study, the square of variability was utilized to measure the rate of convergence to

obtain the number of samples necessary to achieve a desired accuracy level of statistical

convergence (George 2013). The variability of the estimator for mean, variance, and cross-

variance of velocity were investigated.

Variability of estimator for mean The number of samples N needed based on the mean

is given by (George 2013):

N =
1

ϵ2UN

(︃
σU

⟨U⟩

)︃2

, (3.3)

where U is instantaneous velocity signal, ⟨U⟩ denotes the true mean velocity, and σU de-

notes the standard deviation of a velocity signal. σU/ ⟨U⟩ indicates the ensemble relative

fluctuation level. Huisman et al. (2013b) investigated the strong T-C turbulence with Re

varies from 2.5× 104 to 1.5× 106, the results showed that the maximum fluctuation level of

azimuthal velocity is around 10%. The ensemble relative fluctuation level of this study was

based on this value to get an estimation of the samples needed. Thus the minimum number

of independent samples has to satisfy N ≥ 100 to obtain statistical convergence of mean

value within an accuracy tolerance of 1% (ϵUN
= 0.01).
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Variability of estimator for variance The number of samples N needed based on vari-

ance is given by:

ϵ2varN =
1

N

(︃
⟨(U − ⟨U⟩)4⟩
[var{U}]2

− 1

)︃
, (3.4)

where ⟨(U − ⟨U⟩)4⟩ is the 4th order central moment, and ⟨(U − ⟨U⟩)4⟩ /[var{U}]2 is the

kurtosis of random variable U . It is necessary to know the statistical distribution of the

random variable U in T-C turbulence to determine the value of the kurtosis. Huisman et al.

(2013a) investigated Newtonian turbulent statistics of T-C flow with Re = 1.38 × 106 and

found that the probability density function of azimuthal velocity behaves like Gaussian and

its kurtosis value is close to 3. Here, the assumption was made that the velocity signal U is

a random variable that follows a Gaussian distribution, whose kurtosis value is strictly equal

to 3. With this assumption, the number of realizations N needed is given by:

N =
2

ϵ2varN
. (3.5)

If the variability accuracy ϵvarN was specified to be 5%, the number of samples N has to

satisfy N ≥ 800 images. In the present study, N = 3000 was chosen for cases whose

ωi ≤ 250 rpm and N = 5000 for ωi = 450 rpm, It can be seen that more than sufficient

samples are collected to satisfy the variability of accuracy and further ensure the reliability

of the statistical convergence.

Table 3.1 summarizes the estimated integral timescale τ̄ est, timescale τe used for ensemble

average, image acquisition rate f , overall time span T and number of pairs of images N .

First and second-order statistics were inspected to demonstrate the statistical convergence

at Re = 1.50 × 104, which are based on the ensemble average and space-ensemble average

mentioned previously. For ensemble average, a single-point ensemble mean ⟨Ui⟩N /Uref and

variance ⟨u2
i ⟩N /U2

ref were computed at the midpoint P ((ro + ri) /2, z/2) within the field of

view. For space-ensemble average, axial and ensemble-averaged statistics ⟨Ui⟩z,N /Uref and⟨︁
u

′2
i

⟩︁
z,N

/U2
ref at midline r = (ro + ri) /2 were inspected. Figure 3.1 to Figure 3.3 show the
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Table 3.1: List of experimental parameters of number of samples and number of images in
each experiment.

Solution Re ωi τ̄ est τe f T N

(rpm) (s) (s) (Hz) (min)

Water 15000 125 0.48 0.6 5 10 3000

PAM-200ppm 15000 250 0.24 0.4 5 10 3000

PAM-400ppm 15000 450 0.13 0.2 5 16.7 5000

variability of statistics for three different fluids under Re = 1.50 × 104. It can be seen that

all statistics converge after 3000 samples, indicating an appropriate time span T selection.

Figure 3.2a and Figure 3.3a show that with the addition of polymers, the ensemble mean

of radial velocity ⟨Ur⟩N /Uref is significantly reduced. Figure 3.3a demonstrates a notable

increase in the second-order statistics of
⟨︁
u

′2
i

⟩︁
z,N

/U2
ref for PAM-400 ppm compared to pure

water in Figure 3.1b and PAM-200 ppm in Figure 3.2b. This increase can be attributed to

the stronger axial motion of Taylor vortices as the concentration of polymer increases.
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(a) (b)

Figure 3.1: Variability of statistics for water at Re = 1.50 × 104. (a) Mean statistics based
on ensemble average and axial-ensemble average. (b) Variance statistics based on ensemble
average and axial-ensemble average.

(a) (b)

Figure 3.2: Variability of statistics for PAM-200ppm at Re = 1.50× 104. (a) Mean statistics
based on ensemble average and axial-ensemble average. (b) Variance statistics based on
ensemble average and axial-ensemble average.
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(a) (b)

Figure 3.3: Variability of statistics for PAM-400ppm at Re = 1.50× 104. (a) Mean statistics
based on ensemble average and axial-ensemble average. (b) Variance statistics based on
ensemble average and axial-ensemble average.

3.3 Skin Friction and Prandtl-von Kármán Law

A turbulent regime for polymeric flows is usually associated with drag reduction (Moham-

madtabar et al. 2017; Warholic et al. 1999). In Taylor-Couette turbulence, the skin-friction

coefficient is defined as (Srinivasan et al. 2015):

Cf,s =
τw,i

1
2
ρU2

ref

, (3.6)

where τw,i is the average inner wall shear stress.

The average inner wall shear stress in T-C flow is given by: (Huisman et al. 2013b):

τw,i =
⟨Tz⟩t
2πr2i lc

, (3.7)

where Tz is the measured torque.

Another definition of skin coefficient Cf,l was given by Lathrop et al. (1992), and the

relation between Cf,s and Cf,l is shown as (detail derivation see Appendix B.1):
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Cf,l

Cf,s

=
πr2i
d2

. (3.8)

Based on the definition of Cf,l, the relation between Cf,l and Re is given by:

1√︁
Cf,l

= N log10

(︂
Re

√︁
Cf,l

)︂
+M, (3.9)

where M and N are the two fitting coefficients:

N =
(1− η2r) ln 10

ηrκ
√
2π

, M = N

{︃[︃
ln

(︃
1− ηr
1 + ηr

)︃
1

y+0
√
2π

]︃
+ κy+0

}︃
, (3.10)

where κ is the von- Kármán constant, and y+0 is the dimensionless distance of the viscous

sublayer from the wall. The equation 3.9 is referred to as the Prandtl-von Kármán equation

which works for Taylor-Couette turbulence.

Figure 3.4: Plot of skin friction coefficient vs Re.

Figure 3.4 shows the skin friction factor Cf,l versus Re. It can be seen that the friction

factor for water is in agreement with the fitted Prandtl-Kármán equation where the fitting

coefficients M = 3.218 and N = −1.276. The von Kármán constant κ = 0.4 and y+0 = 5.

The obtained Cf,l for water, PAM-200 ppm, and PAM-400 ppm is 0.36, 0.21 and 0.17,

52



respectively. The error bar of water shows a 14% difference with the theoretical Newtonian

Prandtl-von Kármán law.

The percentage of drag reduction DR% is defined as:

DR =
Cf,l−water − Cf,l−PAM

Cf,l−water

× 100%. (3.11)

The drag reduction for PAM-200 ppm is DR ∼ 41%, and for PAM-400 ppm is DR ∼

52%. Overall it can be seen that the addition of polymers increases the percentage of drag

reduction, which can be attributed to the reduction of Reynolds shear stresses at the wall

(Warholic et al. 1999).

3.4 Observations of Instantaneous and Mean Taylor

Vortices

Instantaneous in-plane velocity fields using streamlines U (Ur, Uz) and the ensemble-averaged

velocity field ⟨U (Ur, Uz)⟩N of water at Re = 1.50× 104 are shown in Figure 3.5 below.

Figure 3.5a and 3.5b shows two instantaneous snapshots of the turbulent Taylor-Couette

regime. A pair of counter-rotating Taylor vortices are observed, which are the primary

vortex structures in the flow. A smaller vortex is identified close to the outer cylinder in

Figure 3.5a, positioned between the two primary Taylor vortices. Earlier observations made

by Barcilon and Brindley (1984), who noted the existence of smaller-scale coherent motions

in high Reynolds number Taylor-Couette turbulence, called Görtler vortices. Bilson and

Bremhorst (2007) used direct numerical simulation (DNS) and detected a pair of secondary

vortex motions of a smaller scale alongside the primary Taylor Vortex (TV) motions at

Re = 3200. The emergence of smaller-scale vortices is attributed to the shear occurring

between the primary vortex motions.

Figure 3.5c shows that the mean vortex centre is situated at around r∗ = 0.5. It can be

seen that the primary Taylor vortex motions remain whereas the small-scale vortex motion is

averaged out. Compared with the mean Taylor vortices, it can be found that instantaneous
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(a) (b) (c)

Figure 3.5: Plot of streamlines of turbulent Taylor-Couette vortical structures for water at
Re = 1.50 × 104. (a-b) Streamlines of instantaneous velocity U (Ur, Uz). (c) Streamlines of
ensemble-averaged velocity ⟨U (Ur, Uz)⟩N .

Taylor vortices have both radial and axial motions.

Instantaneous and ensemble-averaged velocity fields of PAM-200ppm at Re = 1.50× 104

are presented in Figure 3.6. It can be seen that the instantaneous positions of vortices do

not match the mean vortex location, and a pronounced axial displacement of vortex centres

is found. Thus it is reasonable to postulate that secondary vortices display considerable

deformation and meandering. Figure 3.6c shows that the mean vortex cores are positioned

closer to the inner cylinder wall. This aligns with earlier findings reported in the literature for

T-C flow with shear-thinning polymers at a lower Reynolds number (Cagney and Balabani

2019; Topayev et al. 2019).

Figure 3.7a to 3.7c show three instantaneous in-plane velocity fields U (Ur, Uz) of PAM-400

ppm at Re = 1.50× 104. Vortical structures of different length scales are shown to undergo
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(a) (b) (c)

Figure 3.6: Plot of streamlines of Taylor-Couette vortical structures for PAM-200 ppm at
Re = 1.50 × 104. (a-b) Streamlines of instantaneous velocity. (c) Streamlines of ensemble-
averaged velocity ⟨U (Ur, Uz)⟩N .

deformation with different patterns in time. These secondary vortices exhibit dynamic be-

havior of continuously stretching and shrinking in size, which can be related to the elastic

characteristics of PAM solution and the non-linear effects induced by the varying viscosity of

the shear-thinning fluid. It is also noticed that the number of vortices increases for PAM-400

ppm compared to the other two cases. The reason is that due to the shear-thinning effect,

the jet between two neighboring vortices induces a sharper shear rate. It is already known

that shear is essential for vortex formation. This leads to the vortices tend to get closer

to the radial jet, which eventually leads to more compacted distribution of vortices within

the FOV. Since the shear is more concentrated for high shear-thinning concentration, the

large-scale vortex deformation is easier. It can be concluded that at this concentration the

non-linearity of the viscosity effect alters the flow regimes and reshapes the evolving vortical
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(a) (b) (c)

Figure 3.7: Plot of streamlines of turbulent Taylor-Couette vortical structures for PAM-
400ppm at Re = 1.50× 104. (a-c) Streamlines of instantaneous velocity U (Ur, Uz).

structures, leading to deformation for large-scale structures over time.
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3.5 Turbulence Statistics

3.5.1 Radial and Axial Fluctuation Statistics

The second-order statistics of variance and covariance of velocity fluctuation was investigated.

The Reynolds stress tensor with a constant density is given by the form:

τij = ⟨uiuj⟩N , i, j = 1, 2, 3. (3.12)

The two in-plane velocity fluctuations ⟨u2
r⟩N /U2

ref and ⟨u2
z⟩N /U2

ref , which corresponds to

the radial and axial components of Reynolds normal stresses, were investigated for three

solutions as shown in Figure 3.8 to 3.10.

(a) (b)

Figure 3.8: Plot of second order statistics of water at Re = 1.50 × 104. (a) Contour of
variances of radial velocity ⟨u2

r⟩N /U2
ref .(b) Contour of variances of axial velocity ⟨u2

z⟩N /U2
ref .

Figure 3.8a shows the distributions ⟨u2
r⟩N /U2

ref of water. It can be seen that most of the
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variances occur at locations close to the radial jets and the inner cylinder wall. The radial

jet flow structures resemble the free jet flow turbulent structures, where the velocity at the

centreline reaches its maximum due to the highest kinetic energy at the centre. The velocity

decreases rapidly as moves away from the centerline, and thus leads to the formation of a

shear layer around the jet (Pope 2001). It has been found that the shear layer is important

in terms of contributing to turbulence production (Johansson et al. 1991; Rogers and Moin

1987). Also, it is found that the magnitude of variances is larger at the outer jet region

(z∗ = 0.25) than the inner jet (z∗ = 1.40). This coincides with the previous finding that the

outer jet has larger momentum since it brings high-momentum fluid from the inner cylinder.

Thus the jet intensity is greater than the inner jet, and therefore generates stronger shear

around.

Figure 3.8a shows that at the axial location where the maximum mean radial velocity

occurs, the variance of radial velocity is relatively small compared to its adjacent regions

axially. The distribution of ⟨u2
z⟩N /U2

ref is shown in Figure 3.8b. The regions highlighted

are where strong oscillations of axial velocity occur. The separation and convergence of

radial jets at the vortex boundaries causes a large magnitude of variance of axial velocity

⟨u2
z⟩N /U2

ref .

Figure 3.9a shows the radial variance distributions ⟨u2
r⟩N /U2

ref of PAM-200 ppm. It can be

seen that most of the radial velocity variances are concentrated against the inner cylinder,

and are also found to reach the local maximum in the bulk flow. The magnitude of the

variances is mitigated and smeared out compared to the Newtonian case. Figure 3.9b show

the distribution of axial variance ⟨u2
z⟩N /U2

ref of PAM-200 ppm solution. The axial variances

are mostly concentrated near the wall as well. Since the radial jet separates into two streams

flowing in two opposite directions along the z-direction when it is close to the wall, and

usually the jet separation leads to a large variance of axial velocity. Similarly, the location

where the borders of two vortices converge together close to the wall has large magnitude of

axial velocity variance. From Figure 3.9b, it can be seen that the separation and convergence

motions close to the wall can still be captured, but the magnitude is reduced compared to
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(a) (b)

Figure 3.9: Plot of second-order statistics of PAM-200 ppm at Re = 1.50×104. (a) Contour of
variances of radial velocity ⟨u2

r⟩N /U2
ref . (b) Contour of variances of axial velocity ⟨u2

z⟩N /U2
ref .

the Newtonian case.

Figure 3.10a shows the distributions ⟨u2
r⟩N /U2

ref of PAM-400 ppm. Similar to PAM-200

ppm, the radial velocity variance is concentrated against the inner cylinder. Figure 3.10b

shows that the axial velocity variance ⟨u2
z⟩N /U2

ref is mitigated further compared to PAM-200

ppm and is smeared out in the axial direction. This aligns with the previous findings that

shear-thinning polymer decreases the wall-normal (r) and spanwise (z) turbulence intensities

in wall-bounded flows (Zadrazil et al. 2012). Besides, it is interesting to notice that the

contour lines are almost straight in the z direction, indicating both these two 2nd order central

moments are almost invariant under a shift in the axial direction. This suggests the shear-

thinning effect increases the statistical homogeneity in the axial direction in T-C turbulence
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(a) (b)

Figure 3.10: Plot of second-order statistics of PAM-400 ppm at Re = 1.50 × 104. (a)
Contour of variances of radial velocity ⟨u2

r⟩N /U2
ref .(b) Contour of variances of axial velocity

⟨u2
z⟩N /U2

ref .

and makes the secondary flow behave like ‘laminar’. The observations above coincide with

the previous findings that shear-thinning polymer is able to compact the shear effect into

smaller volumes in the axial direction, and under the influence of secondary vortices, the

shear gets spread axially and leads to a statistically homogeneous state of turbulence in

the axial direction. However, along the radial direction, the statistics are observed not

homogeneous due to the inherent nature of the existence of shear in T-C turbulence in the

radial direction.

3.5.2 Reynolds Shear Stress Statistics

There are three combinations of Reynolds shear stresses τij, namely ⟨uruθ⟩N , ⟨uruz⟩N and

⟨uθuz⟩N in T-C cylindrical coordinates. In a wall-bounded turbulence, the production term
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that describes the generation of turbulence kinetic energy can be expressed as:

Pk = −ρ ⟨uiuj⟩
∂Ui

∂xj

. (3.13)

It can be seen that the shear stresses are closely related to turbulence production. It is

worth mentioning that in most of the wall-bounded flows where the walls are stationary,

and under the effect of a boundary layer profile, the covariance of velocity (Reynolds shear

stress) formed by streamwise and wall-normal fluctuation components is negative, as shown

in Figure 3.11a. In Taylor-Couette flows, the production is generated by the inner cylinder,

thus the covariance formed by streamwise and wall-normal fluctuation components is positive

as shown in Figure 3.11b.

(a) (b)

Figure 3.11: Schematic of demonstration of the sign of uiuj in streamwise-wall-normal di-
rection. (a) stationary wall-bounded flows (b) moving wall-bounded flows.

Since the gradient of azimuthal velocity along radial direction, i.e., dUθ/dr in T-C flow

always exists, it might be of interest to only investigate the distributions of Reynolds shear

stresses term ⟨uruθ⟩N . Figure 3.12 shows the ⟨uruθ⟩N for water, PAM-200 ppm, and PAM-

400 ppm. For water, it can be seen that ⟨uruθ⟩N is mostly concentrated close to the inner

wall and at the region where borders of neighboring vortices merge. Two local maximums

of ⟨uruθ⟩N can be found adjacent to the jet. PAM-200 ppm shows a similar pattern, the

magnitude of ⟨uruθ⟩N is reduced, and only one local maximum is observed. PAM-400 ppm

shows the Reynolds shear stress distribution is mainly concentrated at the inner cylinder

wall and gradually reduces towards the outer cylinder.
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(a) (b) (c)

Figure 3.12: Plot of statistics ⟨uruθ⟩N in the r − z plane for (a) water, (b) PAM-200 ppm,
and (c) PAM-400 ppm.

Figure 3.13 shows the fluctuation statistics uruθ in the r − z plane for water, PAM-

200ppm, and PAM-400ppm. Regions for which uruθ is greater than ⟨uruθ⟩N is denoted by

the enclosed contours (for ur < 0 the region is enclosed with solid lines, and for ur > 0 the

region is enclosed with dashed lines). The statistics uruθ > ⟨uruθ⟩N can be appreciated as

the structures that actively contribute to the production of turbulence (Warholic et al. 2001).

These structures with high momentum transfer the kinetic energy with fluid regions of low

kinetic energy. It can be seen that for water in Figure 3.13a, the structures mainly responsible

for turbulence generation are mostly concentrated at the inner wall and around the jets.

These are also the regions where more shear occurs. The structures in the central region are

relatively large in size. Distinct features could be found by comparing Newtonian and non-

Newtonian solutions. Figure 3.13b shows for 200 ppm, a few bulk structures are observed

in the middle. The number of small-scale structures is significantly reduced compared to
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Newtonian in the central region. As the concentration increases, PAM-400 ppm similarly

shows a reduced number of small-scale structures, which indicates the activity of turbulent

production by small-scale structures is dampened induced by the shear-thinning polymer.

The distribution of large structures becomes more irregular in space, that they can be more

concentrated and sparsed as shown in Figure 3.13c.

(a) (b) (c)

Figure 3.13: Plot of example of fluctuation statistics uruθ in the r − z plane for (a) water,
(b) PAM-200ppm, and (c) PAM-400ppm. Regions that uruθ is greater than ⟨uruθ⟩N is
highlighted(for ur < 0 the region is enclosed with solid lines, and for ur > 0 the region is
enclosed with dashed lines).

3.6 Radial Jet Instability

Taylor vortices are situated between radial jets, and the instabilities and motions of the radial

jets have a significant influence on the shape and positions of the vortices. An examination

of radial jet motion and intensity to demonstrate the temporal evolution of radial velocity
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was performed. The spatial average of the radial velocity, denoted as ⟨Ur⟩r, was obtained

by averaging radial velocity Ur in the radial direction.

(a)

(b)

(c)

Figure 3.14: Plot of time evolution of radially-averaged quantity ⟨Ur⟩r at Re = 1.50 × 104.
(a)Water. (b)PAM-200 ppm. (c)PAM-400 ppm .

The temporal evolution of the averaged radial velocity of three fluids under the same

Reynolds number Re = 1.50 × 104 is shown in Figure 3.14. For the purpose of comparison,
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the same length of 3000 radially-averaged instantaneous snapshots of ⟨Ur⟩r are presented

with an entire time span of 600 s. It can be seen that despite under the same nominal

Re, the variations of ⟨Ur⟩r are quite different. For water solution, an inward jet and two

outward jets are captured. They all show a strong jet intensity. PAM-200 ppm solution

exhibits reduced jet intensity compared to the Newtonian case, The PAM-400 ppm case

demonstrates a strong turbulent motion in the r− z direction, with attenuated jet intensity.

It can be concluded that within the turbulent Taylor-Couette regime and under the current

definition of Re, an increase in the nonlinear viscosity effect results in reduced jet intensity

and more complex flow regimes.

3.7 Vorticity Magnitude

The vorticity magnitude was investigated for the mean flow of water and PAM-200 ppm

solutions. The vorticity vector can be calculated by taking the curl of the velocity vector:

ω = ∇×U . (3.14)

The θ-direction vorticity component is expressed as shown below:

ωθ =
∂Ur

∂z
− ∂Uz

∂r
. (3.15)

The ensemble-averaged azimuthal vorticity ⟨ωθ⟩N is calculated:

⟨ωθ⟩N =
∂ ⟨Ur⟩N

∂z
− ∂ ⟨Uz⟩N

∂r
. (3.16)

Figure 3.15 shows the ⟨ωθ⟩N distribution for both water and PAM-200 ppm solution at

Re = 1.50× 104. ⟨ωθ⟩N was normalized by the angular velocity of the inner cylinder ωi.

Observations reveal distinctions in normalized azimuthal vorticity magnitudes between

Newtonian and shear-thinning fluids at Re = 1.50 × 104. The Newtonian fluid exhibits a

greater vorticity magnitude in the regions where the mean Taylor vortices are located, con-

trasting with a significant reduction in the azimuthal vorticity ωθ for the PAM-200 ppm
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(a) (b)

Figure 3.15: Plot of contour of ensemble-averaged azimuthal vorticity ⟨ωθ⟩N distribution.
(a) Water, Re = 1.50× 104. (b) PAM-200 ppm, Re = 1.50× 104.

solution. This suggests the capacity of shear-thinning fluids to mitigate the secondary vor-

ticity associated with secondary flows. The results show that rheological properties of fluids

are important in influencing the dynamics of vortical structures, with shear-thinning char-

acteristics contributing to the attenuation of secondary flow vorticity.

Furthermore, it is noteworthy that, even in the presence of Taylor-Couette vortices, the

highest magnitude of vorticity in the azimuthal direction is not observed at the vortex centre

but instead occurs at the regions close to the wall of inner and outer cylinders where there

is substantial turbulence production. Consequently, the maximum azimuthal vorticity is

located close to the walls of both the inner and outer cylinders. The spatial distribution of

vortices challenges the applicability of the maximum vorticity method for vortex detection in

this context. Therefore, alternative criteria, namely the Γ1 and Γ2 criterion, were adopted,

as elaborated in the subsequent section.
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3.8 Vortex Centre Location, Core Size and Circulation

In turbulent Taylor-Couette flow, the vortex centre and core sizes are constantly changing

over time. The characterization of Taylor vortices, including their locations and sizes, is

pivotal for comprehending the dynamic nature of vortex motion. A vortex detection algo-

rithm based on Γ1 and Γ2 criterion was implemented. following the study by Graftieaux et

al. (2001). This vortex identification approach involves vortex centre location detection and

vortex core size detection, respectively based on the scalar quantity Γ1 and Γ2. This vortex

detection approach has the advantage of eliminating the small-scale turbulent intermittency

which is superimposed on the large-scale vortices, and has been proven robust in various

vortex detection applications (De Gregorio and Visingardi 2020). This vortex identification

algorithm was implemented to the entire datasets of instantaneous in-plane velocity fields to

get the ensemble vortices information.

3.8.1 Vortex Centre location

The vortex centre detection is based on scalar quantity Γ1 which is given by (Graftieaux et

al. 2001):

Γ1(P ) =
1

S

∫︂∫︂
S

sin(θM)dS, (3.17)

where P is a center point located within the region of measurement. S is a rectangular

domain of a certain size where P is centered. θM is the angle between radius vector
−−→
PM

and any arbitrary velocity vector
−→
UM inside domain S. Thus:

sin(θM) =

⃦⃦⃦−−→
PM ×

−→
UM

⃦⃦⃦
⃦⃦⃦−−→
PM

⃦⃦⃦ ⃦⃦⃦−→
UM

⃦⃦⃦ , (3.18)

where symbol × represents the cross product, and ∥·∥ represents the magnitude (or Euclidean

norm) of the vector.

From Equation 3.17 it can be seen that Γ1 is bounded by 1. For an ideal circular vortex,

Γ1 = 1 if P is at the vortex centre and the radius vector
−−→
PM is perpendicular to all the

67



velocity vectors
−→
UM .

Computationally Equation 3.17 is computed by:

Γ1(P ) =
1

N

∑︂
S

⃦⃦⃦−−→
PM ×

−→
UM

⃦⃦⃦
⃦⃦⃦−−→
PM

⃦⃦⃦ ⃦⃦⃦−→
UM

⃦⃦⃦ , (3.19)

where N is the number of points within domain S. A threshold of Γ1 > 0.9 was set as a

prescreen condition to define a vortex, and vortex core was defined to be the local maximum

of Γ1 (Graftieaux et al. 2001). It has been found that the value of N can be extremely useful

for removing fine-scale fluctuations and make Γ1 an integral quantity, which helps remove

noise and increase the accuracy of vortex detection (Graftieaux et al. 2001).

The algorithm successfully identified vortex centre locations of all instantaneous velocity

fields over the entire time span. The number of vortices detected per instantaneous snapshot

differed for water, PAM-200 ppm, and PAM-400 ppm solutions, with values of 2.3, 2.4, and

3.9, respectively. This suggests that for Newtonian solutions, the primary vortex motion is

Taylor vortices, whereas for non-Newtonian fluid, the large-scale vortices undergo deforma-

tion and are broken up into smaller structures induced by the shear-thinning effect, which

leads to a higher average number of vortices per frame detected.

The scatter plot of vortex centres for Newtonian and non-Newtonian solutions are shown in

Figure 3.16a-3.16c below. Kernel probability density estimate was used for scatter points of

vortex centres to indicate regions of higher probability density in space. This method assigns

a probability density to each data point and smooths them to get a continuous surface of

probability density, allowing for emphasis of areas with higher vortex centre concentrations.

Figure 3.16a shows the distribution of vortex centres of water. It can be seen that vortex

centres are dominantly concentrated in three distinct regions: two within the Taylor vortex

cells and one positioned at the jet location near the outer cylinder wall. The primary vortices

show relatively fixed locations of distribution, which is attributed to the finite length of the

apparatus and the boundary conditions imposed by the top and bottom plates. The vortex

centres that cluster at the jet corresponds to the previously mentioned smaller vortices, whose
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emergence is attributed to the shear between the primary motions. The spatial distribution

of vortex centres for the primary Taylor vortices is noted to center around the ensemble-mean

vortex centre locations. Each distribution exhibits an elliptical spatial distribution for both

Taylor vortices captured as shown in Figure 3.16a, with a longer axis in the z direction and

a comparatively shorter one in the r direction. This observation suggests a higher degree of

freedom in the axial motions of the Taylor vortices. The long axis for the upper vortex is

slightly tilted, whereas the lower one is more perpendicular, indicating motions of these two

neighboring Taylor vortices are not identical and mirrored about the jet. The two primary

vortex centre regions are clearly separated, indicating vortices do not trespass over the radial

jet. Due to the end effect of boundary conditions by the top and bottom plates as well as

the inner and outer cylinder walls, the observed Taylor vortices meander a little, but their

large sizes lock them in place because of the apparatus geometry.

For PAM-200 ppm, Figure 3.16b shows that the distribution of vortex centres is mainly

concentrated in the central region and forms a long thin distribution along the axial direction.

Here the radial jet intensity is lower than for Newtonian flow. This causes the partition

effect of the radial jet for neighboring Taylor vortices is reduced, giving them more ability to

meander and not create a repeatable core anchored in one place. Thus, the motion between

neighboring vortices is less restricted, and so the vortex centre distribution smears out the

border of neighboring vortices as shown in Figure 3.16b.

For PAM-400 ppm, a wider distribution in both radial and axial direction is observed,

indicating even more stochastic movement of the vortex cores; this is induced by the shear-

thinning effect.

3.8.2 Vortex Core Size

Instantaneous vortex core size was determined by Γ2, which is another scalar quantity based

on Γ1 but considering an extra convection velocity UP (Graftieaux et al. 2001) to account

for the effects of fluid motion or convection on the vortex characteristics. Vortices in fluid

dynamics are often influenced by the flow field, the convection velocity represents the speed
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(a) (b) (c)

Figure 3.16: Plot of scatter of spatial distributions of vortex centre locations at Re = 1.50×
104. The scatter of vortex centre locations is colored by Kernel probability density estimate.
The triangles indicate the ensemble-mean vortex centre locations. (a) Water. (b) PAM-200
ppm. (c) PAM-400 ppm.

at which the vortices are being transported by the overall flow. Γ2 is given by:

Γ2(P ) =
1

S

∫︂∫︂
S

⃦⃦⃦−−→
PM ×

(︂−→
UM −

−→
UP

)︂⃦⃦⃦
⃦⃦⃦−−→
PM

⃦⃦⃦ ⃦⃦⃦(︂−→
UM −

−→
UP

)︂⃦⃦⃦dS, (3.20)

where the local convection velocity
−→
UP is computed by averaging the surrounding velocity

vector within domain S:

−→
UP =

1

S

∫︂∫︂
S

UdS. (3.21)

It has been shown that Γ2 is a local scalar quantity that only depends on local strain rate

Dij and rotation Ωij , which are the symmetric and anti-symmetric parts of the velocity

gradient tensor (Graftieaux et al. 2001). It is found that if |Ω/D| > 1, the flow is dominant

by the rotation, and |Γ2| > 2/π (Graftieaux et al. 2001), which defines the vortex core size.
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(a) (b)

Figure 3.17: Plot of the probability density function of vortex core sizes. (a) Lognormal
probability density function (PDF) of vortex sizes. (b) Lognormal probability cumulative
density function (CDF) of vortex core sizes.

Figure 3.17 shows the fitted lognormal distribution and cumulative density distribution

of vortex core sizes for the three fluids. A lognormal distribution function was used to

fit the data. Vortex core size SV found by the algorithm was normalized by the square of

characteristic lengthscale l0. l0 was selected as the gap width d, i.e., l0 = d = 19.1 mm. Table

3.2 summarizes the mean and standard deviation of distributions for three fluids. PAM-200

ppm shows almost the same mean size and standard deviation of vortex centres. PAM-400

ppm solution exhibits a decrease in mean vortex core size and a larger standard deviation

compared to water.

Table 3.2: Mean and standard deviation of vortex core sizes for three fluids.

Water PAM-200 ppm PAM-400 ppm

(mm2) (mm2) (mm2)

µ 3.127 3.522 1.819

σ 0.763 0.764 1.094
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3.8.3 Circulation

The circulation of a vortex ΓS is defined (Davidson 2015):

ΓS =

∮︂
C

U · dl, (3.22)

where C is a curve that encircles the vortex determined by the threshold of |Γ2| > 2/π.

According to Stokes’ theorem, the line integral of velocity is equal to the surface integral of

the curl of U over the surface S that C encircles:

ΓS =

∫︂∫︂
S

ωθ · dS, (3.23)

and the discretized form of Equation 3.23 used for numerical computation is given by:

ΓS =
N∑︂
i=1

M∑︂
j=1

ωθ(i, j)× dS, (3.24)

where ωθ is the azimuthal vorticity value at position (i, j) within the vortex area, N and

M are the dimensions of the vorticity field matrix, and dS is the differential area. So

computationally, it is summing up the vorticity values within the vortex region and then

multiplying by the differential area to obtain the circulation. Figure 3.18 shows the his-

togram distribution of the magnitude of circulation for water, PAM-200 ppm and PAM-

400 ppm. It can be seen that the distribution for all three solutions is roughly symmetric

about ΓS = 0, meaning the probability of clockwise and counterclockwise rotating vortices

occurring are close within the FOV. For water, the circulation is mainly concentrated at

3 × 10−4 m2/s < |Γs| < 1.5 × 10−3 m2/s. This range of circulation can be considered as

the range where Taylor vortex circulation mostly concentrated. The percentage of vortices

with the circulation within this range is 28.8%. PAM-200 ppm shows a similar trend of

distribution of ΓS, however, the percentage of vortices within the same range of circulation

is reduced to 23.8%. PAM-400 ppm shows that the mean circulation is reduced significantly,

besides, the percentage of vortices within the same range of circulation is reduced to 17.0%.
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The distribution of PAM-200 ppm in the middle looks like a linear combination of Figure

3.18(a) and Figure 3.18(c).

Overall, it can be concluded that the addition of shear-shearing polymer tends to reduce

the proportion of circulation of Taylor vortices compared to Newtonian flow.

Figure 3.18: Probability density histogram of the magnitude of circulation for (a) water. (b)
PAM-200 ppm. (c) PAM-400 ppm.

3.9 Spatial Organization of Energetic Modes

In this study, proper Orthogonal Decomposition (POD) was implemented to understand the

spatial coherent structures. POD is a dimensionality reduction technique widely used in

various fields, including fluid dynamics, structural mechanics, image processing, and data

analysis. POD is a mathematical tool that aims to extract the dominant modes or patterns

from a dataset, reducing its complexity while preserving its essential features (Brunton and

Kutz 2022). Proper Orthogonal Decomposition exists for any given matrix. The decompo-

sition is based on the singular value decomposition (SVD), which can be performed on any

matrix, square or rectangular.

POD is able to decompose the data matrix into orthogonal basis sets and their corre-

sponding temporal coefficients. This decomposition results in the extraction of dominant

eigenmodes and their corresponding temporal coefficients as shown below (Sirovich 1987):
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u(x, t) =
N∑︂
k=1

ak(t)ϕk(x), (3.25)

where u(x, t) is the velocity fluctuation, a(t) is temporal coefficient, and ϕ(x) is spatial mode

matrix. ϕ(x) is a basis set that contains a collection of spatial modes, i.e., eigenmodes.

They represent the most significant variations within the data. These modes are essentially

a set of orthogonal vectors that capture the primary patterns in the data. The basis vectors

are ordered hierarchically by importance, with the first mode capturing the most significant

variation, the second mode capturing the second-most significant variation, and so on. The

‘importance’ is reflected by the magnitude of the eigenvalue. Each mode can be thought of

as a spatial shape that characterizes how the flow evolves in space. Lumley (1967) proposed

that spatial modes signify coherent structures and the first mode that captures the most of

the turbulence kinetic energy often reveals the large coherent structures in the flow.

Snap-shot POD (Sirovich 1987) was implemented to obtain the spatial modes and their

corresponding energy and temporal coefficients. Snap-shot POD is a more computationally

efficient method compared to the standard Singular Value Decomposition (SVD). The mean

of the velocity data was subtracted from each column of the data matrix and a velocity

fluctuation field D over time could be obtained:

D = [u1u2 . . .uM ] , (3.26)

where ui indicates the ith instantaneous velocity fluctuation field in time which contains

several velocity directions that are shaped into a single column. By subtracting the mean

flow, the data was centered and bias was removed, ensuring that the modes capture variations

around the mean. Covariance matrix was computed as:

C =
1

M
DTD. (3.27)

The jth spatial POD mode was calculated as:
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ϕj =

M∑︁
m=1

Am,jum⃦⃦⃦⃦
M∑︁

m=1

Am,jum

⃦⃦⃦⃦ , j = 1, 2, ..., r, (3.28)

where Aj is the jth left eigenvector of covariance matrix C, and r is the rank of velocity

fluctuation matrix D, i.e, r = rank(D). Am,j denotes the mth component of the eigenvector

Aj . ∥·∥ denotes Euclidean norm. It is worth mentioning that ϕj is an eigenvector with a

unit length after the normalization, i.e., ϕj = (ϕj,r, ϕj,θ, ϕj,z), and
⃦⃦
ϕj

⃦⃦
= 1.

3.9.1 Spatial Modes Based on In-plane Velocities

In this section, the two in-plane velocity fluctuation components ur and uz were incorporated

into covariance matrix to understand the coherent turbulent structures in r − z plane.

The first three dominant modes for water at Re = 1.50 × 104 are shown in Figure 3.19

and 3.20 below. Notably, the eigenvectors in the first mode exhibit vortical shape structures.

These energetic structures have a circular, vortical shape but do not meet the definition of a

vortex. It can be appreciated that these vortical-shape energetic structures are the shape of

turbulent fluctuations that statistically contribute to most of the turbulence kinetic energy

(TKE) (Kostas et al. 2005). These vortical structures of velocity fluctuations show a phase

lag of π/2 in axial direction compared to the spatial location of mean Taylor vortices as

shown in Figure 3.5c. The mean flow is related to this POD mode. It has been proven that

in the case of implementing the POD without subtracting the ensemble mean, the first mode

is an excellent estimate of the flow pattern of the ensemble average (El-Adawy et al. 2018).

Thus the mean Taylor vortices are the structures of ‘0’ mode revealed using POD (or mode

1 if the mean was not subtracted before forming the covariance matrix). It can be concluded

that the mean kinetic energy is mainly representative of the mean Taylor vortex structures,

and the TKE is mainly comprised of the vortex-shaped structures shown in the vector plot

in Figure 3.20. The two different structures are all circular-shaped, with a phase lag of π/2

in the axial direction.
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(a) (b) (c)

Figure 3.19: Plot of spatial modes of radial velocity fluctuation of water at Re = 1.5× 104.
(a) mode 1. (b) mode 2. (c) mode 3. The vector shows ϕj(ϕj,r, ϕj,z) and background shows
the value of ϕj,r.

The first mode based on the radial velocity for water in Figure 3.19a shows the large-

scale coherent structure clusters. As seen, two primary clusters of radial fluctuation are

observed. It can be appreciated that these clusters represent regions where radial fluctuations

contribute to most of the TKE. The regions where observed clusters match the spatial

position of mean Taylor vortices are seen in Figure 3.5c. Additionally, for the dominant

mode(first mode), the radial fluctuation pattern shows an opposite sign in a pair of cells.

However, It should be noted that the mode only shows the shape of spatial structures and

the true direction of fluctuation is dependent on the sign of the temporal coefficient a1(t)

(Mohammadtabar et al. 2017). It can be concluded that the region of mean Taylor vortices

(a counter-rotating pair is where radial fluctuation mainly contributes to TKE, however, the

fluctuation direction in each vortex cell is opposite to the other in a statistical sense.

The first mode based on the axial velocity for water is shown in Figure 3.20a. It can be
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(a) (b) (c)

Figure 3.20: Plot of spatial modes of axial velocity fluctuation of water at Re = 1.5 × 104.
(a) mode 1. (b) mode 2. (c) mode 3. The vector shows ϕj(ϕj,r, ϕj,z) and background shows
the value of ϕj,z.

found that those highlighted regions are located close to the boundaries, and it can be appre-

ciated that the first mode captures the convergence and separation motions of Taylor vortices

at radial jets near the boundaries, which coincides with the axial velocity variance distri-

bution discussed previously. The combination of the radial and axial fluctuation motions

directly results in the formation of energetic vortex-shaped structures that are responsible

for TKE, which eventually leads to the formation of turbulent Taylor vortices.

The second mode based on the radial velocity for water captures the dominant structures

that are subjected to shear for Newtonian fluid. Figure 3.21 shows an example of the instan-

taneous radial velocity field and the POD reconstruction by just using the second spatial

mode. It is apparent that the structures within the second mode were situated between

the regions characterized by high radial velocity fluctuation magnitude. Notably, structures

lying between velocity fluctuations of the same direction yield a positive radial eigenvector,
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(a) (b)

Figure 3.21: Plot of demonstration of the second mode structure. (a) An instantaneous
radial velocity fluctuation (b) Reconstruction of the radial velocity component by using only
the second mode.

while those between fluctuations of opposite directions result in a negative eigenvector value.

Specifically, this structure is the jet between Taylor vortices in the present case. A relevant

observation from Mohammadtabar et al. (2017), who proposed that the second mode of a

wall-bounded channel flow bears resemblance to shear layer structures. These results fur-

ther reinforce the significance of the second mode in capturing shear-related phenomena in

Newtonian turbulent shear flows.

Figure 3.22 and 3.23 show the first 3 dominant modes for PAM-200 ppm solution at

Re = 1.50× 104 based on radial and axial velocity, respectively. The first mode still exhibits

a pattern of vortical shape. It is striking to notice that the structures of axial motion in

Figure 3.23 extend longer axially compared to water in both modes 1 and 2. This indicates

a stronger axial variance of axial motion induced by the nonlinear viscosity effect. The

convergence and separation motions can still be observed but are less intense compared to
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the Newtonian case.

(a) (b) (c)

Figure 3.22: Plot of spatial modes of radial velocity fluctuation of PAM-200 ppm solution
at Re = 1.50 × 104. (a) mode 1. (b) mode 2. (c) mode 3. The vector shows ϕj(ϕj,r, ϕj,z)
and background shows the value of ϕj,r.

The first 3 dominant modes for PAM-400 ppm solution based on radial velocity and axial

velocity fluctuation at Re = 1.50× 104 are shown in Figure 3.24 and Figure 3.25. It can be

observed that for the Newtonian solution in Figure 3.20, from mode 2 and onwards, the size

of energetic structures of different signs are different. This is related to shear effect. However,

for shear-thinning fluids, pronounced size change in the energetic structures starts from mode

3 as shown in Figure 3.24c. This could be appreciated as the decrease of importance of shear

structures in the bulk in terms of TKE contributions. This coincides with the findings

previously that the turbulent production is mitigated as the increase in the concentration of

shear-thinning polymer.

Generally, the spatial modes of both Newtonian and non-Newtonian fluids exhibit a

comparable distribution for the first mode, despite the nonlinear viscosity effects of non-
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(a) (b) (c)

Figure 3.23: Plot of spatial modes of axial velocity fluctuation of PAM-200 ppm solution at
Re = 1.50 × 104. (a) mode 1. (b) mode 2. (c) mode 3. The vector shows ϕj(ϕj,r, ϕj,z) and
background shows the value of ϕj,z .

Newtonian fluids. Vortex-shaped structures are observed in the first mode for all cases. For

the spatial modes based on radial velocity, both Newtonian and non-Newtonian fluids exhibit

one column of vertical distribution of structures, with the number of structures increasing

as the mode number rises.

The spatial modes associated with axial velocity mainly display two columns of structures

aligned along the axial direction. For mode 1, the spacing between two neighboring structures

vertically is the size of the coherent structures (Gul et al. 2018). It can be seen that the

axial mode structures of non-Newtonian fluids are smoother compared to the Newtonian

case. This can be attributed to shear-thinning fluid dampening the wall-normal and axial

fluctuations near the wall.

Figure 3.26 illustrates the singular values σr and cumulative energy associated with the

first r modes. In turbulent Taylor-Couette flow regimes for both Newtonian and non-

80



(a) (b) (c)

Figure 3.24: Plot of spatial of radial velocity fluctuation of PAM-400 ppm solution at Re =
1.50 × 104. (a) mode 1. (b) mode 2. (c) mode 3. The vector shows ϕj(ϕj,r, ϕj,z) and
background shows the value of ϕj,r.

Newtonian fluids, it is observed that the mode of energy is relatively low for all cases.

Specifically, the first mode contributes to less than 25% of the total TKE for all cases, as

depicted in Figure 3.26b, and to reconstruct up to 75% of the total energy, 103 modes, 32

modes, and 122 modes are needed. This phenomenon of slow convergence of mode energy

is attributed to the lower turbulence kinetic energy of secondary flows in comparison to the

mean kinetic energy of secondary flow, with the majority of the energy residing in the mean

flow (0 mode). It is also related to the range of lengthscales of turbulence. A large variety

of scales usually leads to more modes to reach the same cumulative energy level.

The first few modes typically describe turbulent flow structures of large-scale energetic

structures where shear is generated. The lengthscales of structures decrease as the mode

number increases. Examination of Figure 3.26b reveals that PAM-200 ppm requires the

fewest number of modes to describe large-scale structures. A possible reason that a local

81



(a) (b) (c)

Figure 3.25: Plot of spatial modes of axial velocity fluctuation of PAM-400 ppm solution at
Re = 1.50 × 104. (a) mode 1. (b) mode 2. (c) mode 3. The vector shows ϕj(ϕj,r, ϕj,z) and
background shows the value of ϕj,z.

maximum of PAM additive occurs is that the axial motion of Taylor vortices at 200 ppm is

important. The velocity fluctuation matrix D which was provided into the POD algorithm

represents turbulence fluctuation that the axial motions were not separated out, i.e, this

part of motion was maintained within the data of fluctuation matrix. It can be seen that

in Figure 3.23a and 3.23b, a longer axial velocity fluctuation pattern is observed for mode

1 and 2 compared to water and PAM-400 ppm which can be caused by the axial movement

of Taylor vortices. Additionally, due to the shear-thinning effect, the small-scale fluctuation

components are dampened, and TKE tends to be contributed by larger structures. PAM-200

ppm also contains a great proportion of large-scale structures over time. These combining

effects lead to the fewest modes of TKE reconstruction for PAM-200 ppm.

For PAM-400 ppm, due to the stronger nonlinear viscosity effect, the secondary vortices

tend to have a wider span of lengthscales which leads to a dispersion of total energy across
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(a) (b)

Figure 3.26: Plot of singular values and cumulative energy as a function of mode number.
(a) Singular values σr. (b) Cumulative energy in first r modes.

all modes, and thus the most number of modes is needed to reconstruct the same level of

TKE (Kostas et al. 2005).
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3.9.2 Spatial Modes Based on Azimuthal Velocity

As discussed, the previous investigations were based on the in-plane velocity fluctuations,

and the results of the first mode is relatively less distinctive between Newtonian and non-

Newtonian solutions since vortex-shaped energetic structures remain the same for all cases.

In this study, snapshot Proper Orthogonal Decomposition (POD) was implemented on the

azimuthal fluctuation component. As previously mentioned, spatial modes are proven effec-

tive in capturing regions that contribute to TKE. It is also known that TKE is significantly

influenced by regions subjected to shear or velocity gradients. Thus it can be hypothesized

that the first few spatial modes can capture the most important shear flow structures., i.e.,

regions subjected to strong shear. For non-Newtonian fluid, regions that are subjected to

strong shear should exhibit a pronounced shear-thinning effect(fluid viscosity becomes lower

and moves actively). Thus it can be postulated that the region given by POD mode should

be located mainly close to the wall where the shear rate is large.

For Newtonian fluid, Akonur and Lueptow (2003) showed that the azimuthal velocity in a

wavy Taylor-Couette turbulence presents a jet-like velocity profile where at the outer/inner

jet, the azimuthal velocity reaches the local maximum. Strong gradients were found adjacent

to the jet and at both cylinder walls, thus these locations can be identified by POD modes in

the Newtonian case. Figure 3.27 shows the first spatial mode of azimuthal velocity fluctuation

for three fluids. In the case of water, as shown in Figure 3.27a, the highlighted areas are

predominantly situated at near-wall regions and regions adjacent to the radial jet location as

expected. A demarcation line in Figure 3.27a can be seen between the structures, indicating

the position of the maximum mean azimuthal velocity in the inner jet. The structures show

an increasing inclination angle with the outer wall as moving axially toward the inner cylinder

and eventually becoming perpendicular to the wall. As the solution concentration increases

to 200 ppm, the highlighted regions distribute against both the inner and outer cylinder walls.

A striking feature of Figure 3.27b when compared with Figure 3.27a is that the inclination

angle of the highlighted structures becomes smaller, and the structures tend to stay closer
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to the wall, as would be expected due to the shear-thinning viscosity effect. Figure 3.27c for

400 ppm shows that the dominant regions are completely adjacent and parallel to the inner

and outer cylinder walls. This means The distribution of the azimuthal Reynolds normal

stresses is compressed towards the inner and outer wall where the shear is generated as

the concentration increases. Overall the observation aligns with the understanding that the

first POD mode of azimuthal velocity fluctuation effectively illustrates the regions where the

shear effect is pronounced (i.e., where TKE is generated). For non-Newtonian fluid, regions

where the shear-thinning effect is prominent are identified.

(a) (b) (c)

Figure 3.27: Plot of spatial mode 1 of azimuthal velocity fluctuation of different fluids at
Re = 1.50× 104. (a) Water. (b) PAM-200 ppm. (c) PAM-400 ppm. The background shows
the value of ϕj,θ.

3.10 Two-Point Correlation

Two-point correlation function provides a statistical measure of the relationship between two

points within the turbulent flow field. This analysis helps understand the spatial coherence,
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lengthscales of eddies, and interdependence of fluid properties at different positions. The

two-point correlation function is given by Pope (2001) as shown in Equation 3.29 below:

Rij(r, t) = ⟨ui(x, t)uj(x+ r, t)⟩ , (3.29)

where r represent the vector displacement between location of interest x and x+r. Under

the assumption of statistical stationarity:

Rij(r, t) = Rij(r). (3.30)

Rij(r, t) was normalized by the square root of variance at point x and x + r , the nor-

malized two-point correction R̃ij(r) is given by (Ghaemi and Scarano 2013):

R̃ij(r) =
⟨ui(x)uj(x+ r)⟩√︂
⟨u2

i (x)⟩
⟨︁
u2
j(x+ r)

⟩︁ , i, j = 1, 2, 3. (3.31)

The two in-plane velocity fluctuation components ur and uz were used to obtain spatial

correlation R̃11 and R̃33 to investigate the coherence of these fluctuations in r and z direction.

Figure 3.28 to Figure 3.30 show the contours of R̃11, R̃13 and R̃33 for water, PAM-200 ppm

and PAM-400 ppm respectively based on an example reference point at r∗ = 0.5 and z∗ = 1.4.

It can be seen that with the addition of polymer, the area of spatial correlation R̃11 and R̃13

are significantly increased compared to Newtonian solution. This finding aligns with previous

Reynolds stress analyses, as shown in Figures 3.8 to 3.10, indicating that the addition of

shear-thinning polymers tends to promote statistical homogeneity in T-C turbulent flows in

the axial direction. The two-point correlation function quantifies the statistical relationship

between two points in a flow field as a function of the distance between them. It can be

postulated that the correlation between the two points separated by a certain distance in

the axial direction would be higher compared to a less homogeneous flow. This is because

in a homogeneous flow, there are no spatial gradients in any averaged quantity, meaning the

statistics of the turbulent flow is not a function of space (Chen 2019). In contrast, in less
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homogeneous flows, the presence of spatial gradients can introduce anisotropies, affecting

the two-point correlations.

(a) (b) (c)

Figure 3.28: Plot of contours of two-point correlation of water based on an example reference
point at r∗ = 0.5 and z∗ = 1.4. (a) Contour of R̃11. (b) Contour of R̃13. (c) Contour of R̃33.

Integral lengthscale in radial and axial directions were calculated. The integral lengthscale

characterizes the range of motion in which coherent structures are significant in the turbulent

flow.

The integral lengthscales in radial direction can be defined as (Pope 2001) :

L11(x, t) =
1

R11(0, x, t)

∫︂ ∞

0

R11(e1r, x, t)dr. (3.32)

L11 can be expressed in terms of normalized two-point correlation R̃11:

L11(x, t) =

∫︂ ∞

0

R̃11(e1r, x, t)dr. (3.33)

Similarly, the integral lengthscale in the axial direction can be defined as :
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(a) (b) (c)

Figure 3.29: Plot of contours of two-point correlation of PAM-200 ppm based on an example
reference point at r∗ = 0.5 and z∗ = 1.4. (a) Contour of R11. (b) Contour of R13. (c)
Contour of R33.

L33(x, t) =

∫︂ ∞

0

R̃33(e3r, x, t)dr. (3.34)

Figure 3.31 shows the normalized two-point correlation R̃11 and R̃33. The integral length-

scale L11 and L33 refer to the area enclosed by the auto-correlation function curve with

horizontal axis. As seen, under the same Re at the point in question, increasing the PAM

concentration results in a greater L11 in radial direction, though this relationship is not

strictly monotonic. Specifically, PAM-200 ppm exhibits the largest L11. This coincides with

the conclusion from POD analysis and the findings from vortex size distribution that at

PAM-200 ppm concentration, a large proportion of large-scale structures still existed, and

thus within the large structures the two-point correlation can still be strong. Figure 3.31b

shows the distribution of lengthscale L33 in z direction, again based on the example reference

point at r∗ = 0.5 and z∗ = 1.4. From previous POD mode analysis of axial fluctuation mode

as shown in Figure 3.19b, it can be postulated that if two-point correlation of radial fluctu-
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(a) (b) (c)

Figure 3.30: Plot of contours of two-point correlation of PAM-400 ppm based on an example
reference point at r∗ = 0.5 and z∗ = 1.4. (a) Contour of R11. (b) Contour of R13. (c)
Contour of R33.

ation were conducted between two neighboring vortices, the value of the correlation would

likely be negative. Similarly, if two-point correlation of axial fluctuation were conducted

between points at the jet locations close to the wall (e.g., r∗ = 0.2, z∗ = 0.4 and z∗ = 0.25),

the two-point correlation value would likely be negative. In the present study, the example

reference point at r∗ = 0.5 and z∗ = 1.4 selected was an effort to avoid regions that show

a clear correlation relationship caused by the influence of the wall. r∗ = 0.5 is very little

affected by the wall which can be speculated in the first axial fluctuation POD modes for all

the fluids, and it can show how the vortices are distributed in the axial direction.

A consistent decrease in L33 is found along the axial direction as the concentration in-

creases. Interestingly, it is also noticed that for non-Newtonian fluids, a relatively pronounced

negative two-point correlation R̃33 is observed whereas this is not found in Newtonian case.

It is important to note that even with anti-correlation, it is still a correlation present, albeit

negative. Anti-correlation reduces the integral lengthscale value, but it provides information
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(a) (b)

Figure 3.31: Plot of distribution of normalized two-point correlation in radial and axial
direction at reference point r∗ = 0.5, z∗ = 1.4. (a) R̃11 distribution in r direction. (b) R̃33

distribution in z direction.

about the scale over which the correlation structure significantly affects the flow dynamics.

For Newtonian fluid, it is noticed that z∗ = 0−1.4 is a range that starts from the inner jet

and extends slightly beyond one vortex cell length in the axial direction. For shear-thinning

fluids at 400 ppm, due to the shear-thinning effect, the Taylor vortices tend to concentrate

and compactly distribute within the FOV, and z∗ = 0 − 1.4 has covered a range that is

much greater than the size of non-Newtonian Taylor vortex cell in the axial direction, i.e.,

z∗ = 0−1.4 covers several vortices. Therefore, the sign of the two-point correlation statistics

changes when transitioning from one vortex to another with an opposite rotation direction. It

can be concluded that the negative two-point correlation R̃33 of PAM indicates the presence

of compacted smaller-scale counter-rotating vortex pairs induced by the shear-thinning effect.

To better evaluate the non-linear viscosity effect on the lengthscale and isotropy of tur-

bulence, a rectangular grid (3 × 5) of points was inspected in the flow field. The radial

locations are r∗ = 0.30, 0.50, 0.70 and axial locations are z∗ = 0.52, 0.96, 1.40, 1.84, 2.28.

Integral lengthscale L11 and L33 were obtained for each point by trapezoidal integration.
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The obtained lengthscales were averaged over the 15 points. The relative ratio of averaged

lengthscale L33/L11 for three fluids was investigated. For isotropic turbulence, the turbulent

properties are the same in all directions, thus L33/L11 = 1. The integral lengthscale L11 and

L33 found for three solutions are listed in Table 3.3 below.

Table 3.3: List of integral lengthscales of L11 and L33 for three solutions.

water PAM-200 ppm PAM-400 ppm

L11 0.20d 0.34d 0.26d

L33 0.23d 0.21d 0.17d

Figure 3.32 shows the relative ratio of L33/L11 for three different fluids at Re = 1.50×104.

For water, L33/L11 = 1.08, indicating that the integral lengthscale for water in r and z

direction are close, and the flow state is close to isotropic flow. For PAM-200 ppm, a

reduction in L33/L11 = 0.60 was observed, suggesting a strong anisotropic turbulent flow

regime. This could be attributed to an extension of radial integral lengthscale whereas a

reduction in axial lengthscale compared to water. For PAM-400 ppm, L33/L11 = 0.76. By

comparing to PAM-200 ppm in Table 3.3, it can be seen that both L11 and L33 are reduced,

which could be attributed to the larger proportion of smaller sizes of the vortices. In general,

it can be seen that in the turbulent Taylor vortex regime, with the addition of shear-thinning

polymer, a larger radial integral lengthscale in the radial direction and a decreased integral

lengthscale (extended space correlation due to anti-correlation) in the axial direction were

found.

91



Figure 3.32: Plot of ratio of ratio of integral lengthscale L33/L11 of water, PAM-200 ppm,
and PAM-400 ppm.

3.11 Energy and Dissipation Spectrum

The turbulence kinetic energy (TKE) spectrum of in-plane velocity fluctuations based on

the centre point of interest within the domain was investigated for the three fluids under the

same Re. The energy spectrum shows the distributions of turbulence kinetic energy versus

wavenumber. The initial step involves acquiring the velocity spectrum tensor, denoted as

Φij(κ, t). Φij(κ, t) is the Fourier transform of the two-point correlation (Pope 2001) :

Φij(κ, t) =
1

(2π)2

∫︂∫︂ ∞

−∞
e−iκ·rRij(r, t)dr, (3.35)

where Φij(κ, t) represents the contribution to the covariance ⟨uiuj⟩ of velocity modes with

wavenumber κ, and Rij(r, t) is the two-point correlation mentioned in Equation 3.29.

For a statistically stationary flow:

Rij(r, t) = ⟨ui(x)uj(x+ r)⟩ . (3.36)
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The turbulence kinetic energy spectrum is shown as:

E(κ) ≡
∫︂∫︂

1

2
Φii(κ)δ(|κ| − κ)dκ. (3.37)

The vector length of κ is calculated by the Euclidean norm of the radial and axial com-

ponents:

∥κ∥ =
√︁

κ2
r + κ2

z. (3.38)

where κr represents the radial wavenumber, and κz represents the axial wavenumber.

Given that the spatial resolution of cameras are equal in the r and z directions, the largest

value of κr should be equal to that of κz. In practice, the value of the energy is calculated

as:

E(κ) =
1

2

n∑︂
i=1

∫︂∫︂
κ=|κ|

Φi,i(κ)dκ. (3.39)

3.11.1 Energy Spectrum Based on Radial and Axial Velocity Fluc-
tuation

In the present study, the characteristic lengthscale of the geometry l0 was selected as the

gap width d, i.e., l0 = d = 19.1 mm. The corresponding wavenumber is κ0 = 2π/l0 =

329.0 m−1. Based on Kolmogorov’s first similarity hypothesis, a distinction is made between

the energy-containing range and the inertial subrange This is denoted by the characteristic

lengthscale lEI , and it was determined to be approximately 1/6 of the characteristic length

scale of the geometry l0, i.e., lEI = 1/6l0 (Pope 2001). Here lEI = 3.2 × 10−3 m, and the

corresponding wavenumber λEI = 2π/lEI = 1963.5 m−1. The ensemble-averaged turbulence

kinetic energy (TKE) spectrum was determined through the computation of the spectrum

for each instantaneous velocity field. Subsequently, these individual spectra were averaged

over time to obtain the ensemble-averaged TKE spectrum. To prevent aliasing, the Nyquist

sampling criterion was ensured throughout the calculation process.
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Figure 3.33 shows the energy spectrum based on in-plane velocity fluctuations for three

solutions. Energy cascade was observed in the spectrum as wavenumber κ increases. En-

ergy is transferred from larger scales to smaller scales through this process. This process

holds true for both Newtonian and non-Newtonian fluids, that the majority of turbulence

kinetic energy (TKE) resides within the energy-containing range. All the profiles within

the inertial subrange do not follow the Kolmogorov scaling law with slope of −5/3. Inter-

estingly, in Taylor-Couette turbulence, no scaling law was observed in frequency spectral

density (Huisman et al. 2013a; Lewis and Swinney 1999). This aligns with the understand-

ing that Taylor-Couette flow is inherently anisotropic, with the presence of a mean shear

flow between the inner and outer cylinders. This anisotropy can lead to deviations from the

isotropic assumptions made in the Kolmogorov theory. Additionally, in Taylor-Couette tur-

bulence, large-scale coherent structures in T-C turbulence can influence the energy cascade

and the scaling of the energy spectrum at the inertial subrange.

(a) (b) (c)

Figure 3.33: Plot of turbulence kinetic energy spectrum over wavenumber with solutions
under Re = 1.50× 104. (a) Water. (b) PAM-200 ppm. (c) PAM-400 ppm.

The ensemble-averaged energy spectrum of water at Re = 1.50 × 104 is shown in Figure

3.33. A plateau-like behavior was observed in the energy-containing range, however, this is

not observed for non-Newtonian cases in Figure 3.33b and 3.33c. As seen, the flat segment
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of the plateau reduced as increasing the concentration of polymers. This indicates that in

Newtonian T-C turbulence, there exist large-scale structures with a relatively wide span

of lengthscales that contribute to the same TKE level. The presence of PAM implies that

the polymer changes the turbulent cascade process by facilitating the energy transfer at

large-scale structures within the energy-containing range.

For non-Newtonian solutions, an increase in concentration results in higher TKE at small

lengthscales, accompanied by more pronounced oscillations compared to the Newtonian case.

This behavior is likely attributed to the transition into the dissipative range as approaching

the smallest scales in the turbulence spectrum, where the effects of viscosity become domi-

nant. In this range, energy is dissipated as heat, and the fluctuations are influenced by the

molecular viscosity of the fluid which leads to intense and oscillatory fluctuations associated

with dissipative processes.

3.11.2 Energy Spectrum Based on Radial and Azimuthal Fluctu-
ation

Radial and azimuthal velocity fluctuations are of interest since the contribution to the pro-

duction of turbulence. The spectral density function based on radial and azimuthal velocity

fluctuation is denoted by E12(k), with unit of m3s−2. The energy spectrum was normalized by

the total sum of k−1 ⟨u2
r(r, z)⟩

−1/2
N ⟨u2

θ(r, z)⟩
−1/2
N in FOV, where ⟨u2

r(r, z)⟩
−1/2
N ⟨u2

θ(r, z)⟩
−1/2
N is

the product of the root mean square of the two velocity fluctuations. The obtained quantity

is denoted by kẼ12(k), which is dimensionless. The normalized spectral density function was

plotted for three fluids as shown in Figure 3.34. It shows that the addition of shear-thinning

polymer concentration increases the importance of large-scale structures and decreases the

importance of small-scale structures in terms of energy containment.

3.11.3 Dissipation Spectrum

For Newtonian fluid, the dissipation density function D(k) can be calculated as D(κ) =

2νκ2E(κ). It is worth mentioning that the dissipation term was originally derived from
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(a) (b) (c)

Figure 3.34: Plot of normalized energy spectrum based on radial and azimuthal fluctuation
over wavenumber with three solutions under Re = 1.50×104. (a) Water. (b) PAM-200 ppm.
(c) PAM-400 ppm.

the Newtonian turbulent kinetic energy equation (Pope 2001). However, for non-Newtonian

fluid, there is no expression available for the dissipation term due to a lack of knowledge

in non-Newtonian viscosity modeling. Singh et al. (2017) investigated the influence of the

shear-thinning effect in pipe turbulence, where the power-law model was implemented for

viscosity modeling, and it was found that an additional term of dissipation arises from

viscosity fluctuations which eventually result in a net viscous dissipation. The present study

calculated the dissipation spectrum for non-Newtonian fluid based on the same concept as

the Newtonian fluid for simplicity.

Figure 3.35 illustrates the in-plane dissipation spectrum of three solutions. As seen,

the dissipation per wavenumber increases across all length scales as the concentration of

polymer increases. This increase can be attributed to the acceleration of rotation speed with

increasing polymer concentration, necessitating a corresponding increase in dissipation to

balance the increased production.

Furthermore, a slower reduction of dissipation rate after the peak is observed as the con-

centration increases, indicating a more pronounced dissipation at smaller lengthscales. The
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(a) (b) (c)

Figure 3.35: Plot of turbulent dissipation spectrum k2E13(k) over wavenumber with solutions
under Re = 1.50 × 104. (a) Water. (b) PAM-200 ppm. (c) PAM-400ppm. The dashed line
shows the cumulative dissipation percentage over the wavenumber.

cumulative dissipation analysis reveals that as the polymer concentration increases, smaller-

scale eddies contribute more to dissipation, while dissipation by larger eddies decreases.
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Chapter 4

Discussion

Statistical measurements of non-Newtonian shear-thinning turbulent Taylor-Couette flows

are characterized by a sharper shear rate compacted closer to the inner cylinder regions

due to the shear-thinning effect, with less active fluids occupying the bulk domain. The

resulting change of secondary flow structure distributions and turbulence statistics has been

investigated under the same nominal Reynolds number at Re = 1.50 × 104 and Newtonian

fluid as comparison.

Newtonian fluid of turbulent Taylor-Couette flow at Re = 1.50 × 104 still shows the

existence of large-scale Taylor vortices. A pair of counter-rotating turbulent Taylor vortices

are captured, with a relatively high-speed radial jet flow between them. The regions adjacent

to the jet show large magnitude of variance of radial velocity ⟨u2
r⟩N /U2

ref whereas regions near

the vortex centres show a small magnitude of ⟨u2
r⟩N /U2

ref . For Reynolds shear stress ⟨uruθ⟩N ,

a non-uniform distribution is observed along the axial direction as well, which is attributed

to the non-homogeneous distribution of velocity gradient in space. The varying magnitudes

of Reynolds stresses across space result in non-statistically homogeneous turbulent flows.

Newtonian Taylor vortices are found relatively stationary in space, which is attributed to

the finite apparatus length. Within the finite length, Taylor rolls are arranged next to each

other along the axial direction, and as a result, the Taylor rolls are locked because of the

end boundary conditions.

Non-newtonian fluids show structural differences compared to the Newtonian fluid. Ob-

98



servations of instantaneous in-plane velocity structures show the existence of non-Newtonian

vortices. The vortices are moving more freely compared to the Newtonian case and exhibit

stronger vortex deformation. The reason is that due to the shear-thinning effect, the Tay-

lor vortices do not sense much constraints from the wall compared to the Newtonian case.

The T-C instability from the inner cylinder wall which is responsible for the Taylor vortices

generation has to go through areas where viscosity gradually increases before reaching the

outer wall in non-Newtonian case. The region in the bulk where viscosity gradually increases

serves as a buffer zone where turbulence kinetic energy carried by high-momentum fluids is

absorbed. Statistical analysis shows that both radial and axial velocity fluctuations are at-

tenuated in the bulk flow and result in a decreased magnitude of Reynolds normal (variances

of radial and axial velocity) and shear stresses (covariance of radial and azimuthal velocity).

It is also noticed that the stresses are smeared out across the domain and tend to be more

uniformly distributed in the axial direction. As the concentration increases to 400 ppm, vari-

ances of radial velocity ⟨u2
r⟩N /U2

ref and axial velocity ⟨u2
z⟩N /U2

ref are further decreased and

show a statistically homogeneous turbulence in the axial direction, which can be considered

as an indicator of minimal wall influence from the top and bottom boundary conditions.

Similarly, the radial jet (both inner and outer jets) intensity is reduced with the addition

of shear-thinning polymer. The radial jets that carry fluids with high-momentum kinetic

energy get attenuated at a higher rate as moving to the other side of the cylinder wall due

to the shear-thinning effect. The Taylor vortex cell is formed between a pair of jets that

shoot in opposite radial directions. The reduced intensity of radial jets leads to a decreased

partition effect of the jet for separating vortices, which enables non-Newtonian vortices to

move with higher freedom in the axial direction. The reduced jet intensity also causes a

reduction of shear, which eventually causes a decreased magnitude of ensemble-averaged

azimuthal vorticity compared to the Newtonian case.

Interesting observations are made in the energetic structures of POD analysis. It has been

found that the mean flow of Taylor-vortex structures (’0’ mode of POD) are the energetic

structures that contribute to the kinetic energy. Here the energetic structures responsible
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for TKE are discussed for Newtonian and non-Newtonian cases. It was found that despite

the differences in turbulent structures as discussed, the dominant in-plane energetic mode

structures that statistically contribute to TKE remain a vortical shape for both Newtonian

and non-Newtonian fluids. For water, the dominant energetic structure shows a π/2 phase lag

in space compared to the mean flow (‘0’ mode). The radial velocity fluctuation responsible for

TKE is mainly captured within Taylor vortices and the axial fluctuation responsible for TKE

is mainly captured close to the wall, where the boundary of the vortices merge and separate.

The second mode of water based on radial fluctuation emphasizes the importance of the

shear-layer structures. The second mode of non-Newtonian fluids shows distinctive energetic

structures in size, which means the non-Newtonian fluids alter the shear distribution in

space.

In T-C turbulent flows, the variance of the azimuthal (streamwise) direction is the strongest

among all three directions. POD was applied over azimuthal velocity fluctuation to capture

most of the variances of azimuthal velocity. For Newtonian fluid, the energetic mode struc-

tures are distributed close to both cylinder walls and adjacent to the jets. This means the

majority of Reynolds normal stress ⟨u2
θ⟩N as a part of TKE is mainly generated close to

the wall and radial jets. The energetic structures are pronounced at the center of the bulk

flow which indicates the non-negligible importance of the bulk flow in the middle. With

the addition of shear-thinning polymer to 200 ppm, the energetic structures start to deviate

from the bulk flow and gradually approach closer to the cylinder walls. This indicates a

decreased importance of the bulk flow in terms of contributing the Reynolds stress ⟨u2
θ⟩N .

This aligns with the previous finding that the radial jet intensity is reduced, and thus less

high momentum fluids can carry the high momentum flux ⟨u2
θ⟩N to the middle. Under this

concentration, the energetic structure that contributes to ⟨u2
θ⟩N mostly at regions where the

azimuthal shear is strong, i.e., close to the cylinder walls. As concentration increases further,

all the energetic structures by POD captured are compacted against the wall where a high

shear rate exists, whereas the bulk flow does not contain any energetic structures, which

indicates the fluctuation of the bulk flow is almost negligible in terms of contributing to
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TKE. This aligns with the heuristic understanding of shear-thinning effects in turbulence.

With the addition of shear-thinning polymer, the turbulence fluctuations in the radial

and axial directions are dampened, and turbulence statistics of the secondary flow tend

towards a more statistically homogeneous state in the axial direction. These effects induced

by the shear-thinning fluid lead to an extended two-point correlation in the axial direction.

Two-point correlation was conducted over a line starting from a selected reference point

to the bottom of the FOV, which travels through a distance roughly equal to the size of

a Newtonian Taylor vortex. Thus for Newtonian fluid, the two-point correlation mostly

remains positive till dropping to around zero. For shear-thinning fluids, due to the shear-

thinning effect, vortices are compressed to a small volume and coexist, and the length of the

line is large enough to cover more than one vortex, which leads to a relatively pronounced

anti-correlation. Due to the anti-correlation, the resulting integral lengthscale L33 decreases

for shear-thinning fluids compared to the Newtonian case.

Observations have been made in this study that in the Newtonian turbulent Taylor-

Couette flow at Re = 1.50 × 104, the large structures of Taylor vortices still exist, which

indicates a spatial non-homogeneous turbulence. The energy spectrum of Newtonian fluid

shows that the -5/3 Kolmogorov law is not applicable, which is valid under the assumption

of homogeneous isotropic turbulence. The non-Newtonian energy spectra for PAM 200 ppm

and 400 ppm are found not to follow the Kolmogorov −5/3 scaling law either.

For all turbulence, it is universal that turbulence dissipation occurs mostly at small length-

scales (high wavenumbers). For non-Newtonian fluid, the viscous effect is pronounced, and

turbulence might dissipate at high wavenumber at a higher rate compared to Newtonian

fluids, The shape of the dissipation spectrum for non-Newtonian fluid at 400 ppm shows

that small lengthscales of turbulence might be more responsible for turbulence dissipation

compared to Newtonian fluids.
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Chapter 5

Conclusion

The experimental investigations of turbulent Taylor-Couette (TTC) flow structures were

conducted for non-Newtonian and Newtonian fluid at Re = 1.50× 104 by using SPIV tech-

nique.

Results show that under the same Re, the skin coefficient Cf,l reduces as the concentration

increases. This is attributed to the reduction of Reynolds shear stresses at the inner cylinder

wall induced by the drag-reducing polymers.

The shear-thinning polymer Polyacrylamide reduces the radial (r) and axial (z) velocity

fluctuation in the bulk flow, which results in a decreased magnitude of Reynolds normal

(variances of radial and axial velocity) and shear stresses (covariance of radial and azimuthal

velocity).

In shear-thinning T-C turbulence, Reynolds stresses are smeared out across the domain

as the concentration increases, and a statistically homogeneous turbulence state in the axial

direction can be achieved, however, turbulence statistics in the radial direction are not

homogeneously distributed due to the mean shear gradient.

The locations of Newtonian Taylor vortices are relatively fixed due to the finite length

of the apparatus and the end boundary conditions, whereas non-Newtonian Taylor vortices

have more flexibility of motion both in the axial and radial direction, which is induced by

the shear-thinning effect.

The in-plane turbulent structures that statistically contribute to most of the TKE remain
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a vortical shape for both Newtonian and non-Newtonian fluids. The second mode of POD

captures the shear layer structures in the Newtonian case, but due to the modification of

shear distribution in the flow by shear-thinning polymers, the second mode of Newtonian

and non-Newtonian show distinct energetic mode structures.

The energetic structures of azimuthal velocity captured by POD are found closely related

to the shear and velocity gradient in space. The first mode of POD of azimuthal velocity

fluctuation effectively captures the regions where the shear effect is pronounced. As the

concentration of polymer increases, the regions subject to shear are more compacted to the

inner and outer cylinder walls due to the shear-thinning effect, and POD mode can capture

this shear-thinning behavior.

The presence of shear-thinning polymer alters both the integral lengthscale and isotropy

of Taylor-Couette turbulence. A non-monotonic behavior of the integral lengthscale L11

in the radial direction was observed, alongside a consistent reduction of the axial integral

lengthscale L33 as the concentration increases. The reduction of the integral lengthscale L33

of non-Newtonian fluid is attributed to the anti-correlation in space. Non-Newtonian fluids

show relatively pronounced anti-correlation in the axial direction due to the more compacted

distribution and coexistence of more than one vortex axially within the inspected FOV in-

duced by the shear-thinning effect. The shear-thinning effect leads to a more statistically

homogeneous turbulence and thus enhances the two-point correlation compared to the New-

tonian fluid.

The 2D energy spectrum reveals that the Kolmogorov -5/3 law does not hold for Taylor-

Couette turbulence, primarily due to its inherent anisotropy. A notable disparity between

Newtonian and non-Newtonian fluids is evident in the energy spectrum based on radial and

azimuthal fluctuations, which shows an increased importance of large-scale structures and

a decreased importance of motions at small lengthscales in terms of energy containment.

Analysis of the dissipation spectrum indicates that the percentage of dissipation rate at

smaller lengthscales increases with the concentration of polymer.
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Chapter 6

Future Work

In recent decades, efforts have been devoted to understanding the shear-thinning effect

on turbulent structures in wall-bounded flows. However, due to the complexity of non-

Newtonian physics, turbulent modeling of non-Newtonian fluids remains extremely challeng-

ing. There is an urgent need for the development of accurate and reliable constitutive models

capable of describing the rheological behavior of non-Newtonian fluids in turbulent flows.

Experimentally, the curved surfaces of Taylor-Couette rigs have posed considerable chal-

lenges, leading to compounding measurement errors, especially near the wall. Therefore,

careful evaluation is essential in the design of experimental flow rigs and velocimetry mea-

surements. A future experimental study focusing on near-wall turbulent structures of shear-

thinning fluids with high accuracy is desired with fine spatial resolution, aiming to elucidate

the turbulence kinetic energy budget near the wall for shear-thinning cases.

Low concentrations of shear-thinning polymeric flows have been extensively investigated,

whereas high concentrations of shear-thinning fluid in Taylor-Couette flows remain relatively

unexplored in terms of structures and turbulent statistics. The high concentration of shear-

thinning polymers presents additional challenges in Taylor-Couette flows, including seeding,

velocimetry measurement, and optical access. It can be postulated that in high-concentration

shear-thinning Taylor-Couette flows, the turbulent Reynolds shear stresses will be greatly

dampened, and the in-plane motions will be further mitigated, leading to higher uncertainties

for 3D velocity reconstruction. These challenges are hoped to be addressed in future research
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efforts to bridge this gap.
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[6] C Al Christopher, Í. G. da Silva, K. D. Pangilinan, Q. Chen, E. B. Caldona, and
R. C. Advincula, “High performance polymers for oil and gas applications,” Reactive
and Functional Polymers, vol. 162, p. 104 878, 2021.

[7] A. A. Aliabadi, “Statistical description of turbulent flows,” in Turbulence: A Funda-
mental Approach for Scientists and Engineers, Springer, 2022, pp. 17–30.

[8] B. Alibenyahia, C. Lemaitre, C. Nouar, and N. Ait-Messaoudene, “Revisiting the
stability of circular couette flow of shear-thinning fluids,” Journal of Non-Newtonian
Fluid Mechanics, vol. 183, pp. 37–51, 2012.

[9] C. D. Andereck, S. Liu, and H. L. Swinney, “Flow regimes in a circular couette
system with independently rotating cylinders,” Journal of Fluid Mechanics, vol. 164,
pp. 155–183, 1986.

[10] N. Annabi et al., “Hydrogel-coated microfluidic channels for cardiomyocyte culture,”
Lab on a Chip, vol. 13, no. 18, pp. 3569–3577, 2013.

[11] R. Astaneh, M. Erfan, H. Moghimi, and H. Mobedi, “Changes in morphology of in situ
forming plga implant prepared by different polymer molecular weight and its effect
on release behavior,” Journal of Pharmaceutical Sciences, vol. 98, no. 1, pp. 135–145,
2009.

[12] M. Aubinet, T. Vesala, and D. Papale, Eddy covariance: a practical guide to measure-
ment and data analysis. Springer Science & Business Media, 2012.

106



[13] R. Azadi, “Experimental investigation of viscoelastic cavitating and turbulent channel
flows subjected to different pressure gradients,” Ph.D. dissertation, 2023.

[14] R. Azadi and D. S. Nobes, “Hydrodynamic cavitation reduction in semidilute turbu-
lent polymer solution flows,” Journal of Fluid Mechanics, vol. 952, A29, 2022.

[15] S. A. Bahrani, C. Nouar, and A. Neveu, “Transition to chaotic taylor-couette flow in
shear-thinning fluids,” in CFM 2015-22ème Congrès Français de Mécanique, AFM,
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Appendix A: Coordinate Conversion

A.1 Cartesian Coordinate System to Cylindrical Co-

ordinate system

The relation between the Cartesian coordinate and the Cylindrical coordinate is given by:

x = r cos θ (A.1)

y = r sin θ (A.2)

z = z (A.3)

The gradient operator on a scalar F :

∇F =
∂F

∂r
er +

1

r

∂F

∂θ
eθ +

∂F

∂z
ez (A.4)

Divergence of a vector f(f = frer + fθeθ + fzez) :

∇ · f =
1

r

∂

∂r
(rfr) +

1

r

∂fθ
∂θ

+
∂fz
∂z

(A.5)

Curl of a vector f(f = frer + fθeθ + fzez) :

∇× f =

(︃
1

r

∂fz
∂θ

− ∂fθ
∂z

)︃
er +

(︃
∂fr
∂z

− ∂fz
∂r

)︃
eθ +

1

r

(︃
∂

∂r
(rfθ)−

∂fr
∂θ

)︃
ez (A.6)

Laplacian of a scalar F :
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Appendix B: Equation Derivations

B.1 Relation between Cf,s and Cf,l

Skin coefficient by Srinivasan et al. (2015) :

Cf,s =
τw,i

1
2
ρU2

ref

. (B.1)

Inner wall shear stress is given by:

τw,i =
⟨T⟩t
2πr2i lc

. (B.2)

Substitute Equation B.2 into Equation B.1:

Cf,s =
⟨T⟩t

ρπr2i lcU
2
ref

. (B.3)

Lathrop et al. (1992) defined skin friction coefficient:

Cf,l =
G

Re2
, (B.4)

where G is dimensionless torque.

The mean torque can be expressed in terms of G:

⟨T ⟩t = ρν2lcG. (B.5)

Substitute Equation B.5 into Equation B.4:

Cf,l =
⟨T⟩t

ρν2lcRe
2 . (B.6)
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The Reynolds number is given by:

Re = ωrri(ro − ri)/ν. (B.7)

Substitute Equation B.7 into Equation B.6:

Cf,l =
⟨T⟩t

ρlcU2
refri(ro − ri)2

. (B.8)

Thus the relation between Cf,l and Cf,s can be obtained:

Cf,l

Cf,s

=
πr2i

(ro − ri)2
. (B.9)
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Appendix C: Matlab Code

C.1 Code for POD Analysis

Listing C.1: Snapshot-POD code
%% POD code

clear all

close all

clc

load ( ’G:\ Water_125RPM_FILE \125 rpm_water\TC_Struct_water_125rpm.mat’ )
temp1 = size (TC( 1 ) .U( : ) , 1 ) ;
wavelength = 2 . 2 0 9 ;
r i = 0 .060325 ;
r o = 0 .079375 ;
d = ( r o − r i )∗10ˆ3 ;
%% resolution calculation

Factor X = ( max (X( : ) ) − min (X( : ) ) ) . / ( size (X,2) −1) ;
x min = 0 ;
y min = 0 ;
x max = 1 ;
y max temp =size (X, 1) ∗Factor X ;
y max = y max temp/(d ) ;
% %% time correlated visulaization

% for i=1:100 %% max 3000

%

% figure (1);

% clf; % clear the figure

% imagesc ([x_min x_max], [y_min y_max],(TC(i).W))

% set(gca ,’YDir ’,’normal ’)

% set(gcf ,’color ’,’w’)

% % axis equal

% % set(gca ,’CLim ’,[min(TC(:).U) max(TC(:).U)])

% colormap(’jet ’);

% h=colorbar

% set(gcf ,’position ’,[200 200 500 800])

% caxis ([0, U_ref ]);

%

% xlabel(gca ,’$r^{*}$’,’FontSize ’,28,’Interpreter ’, ’latex ’)

% ylabel(gca ,’$z^{*}$’,’FontSize ’,28,’Interpreter ’, ’latex ’)

% ylabel(h, ’Instantaneous Velocity , m/s’,’FontSize ’,16,’FontName ’,’Times New Roman ’);

% pause (0.05)

%

% end

%% calculate average and fluctuations

I=size (TC( 1 ) .U, 1 ) ;
J=size (TC( 1 ) .V, 2 ) ;
n snap= 3000 ;
Uinf=1; %%% actual value is 5 m/s
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for i =1: n snap
X Ve l o c i t y t o t a l ( : , i )=1/Uinf .∗ [TC( i ) .U( : ) ; TC( i ) .V( : ) ] ; % generate the data matrix (containing U and V component both)

% X_U(:,i)=[TC(i).U(:)] ; % generate the data matrix U

% X_V(:,i)=[TC(i).V(:)] ; % generate the data matrix V

end

AVG = mean ( X Ve l o c i t y to ta l , 2 ) ;
% AVG_U = mean(X_U ,2);

% AVG_V = mean(X_V ,2);

% AVG=mean(x(1: size(data (1).U(:)) ,1) ,2);

% %% plot mean kinetic energy

% figure

% AVG_field_U = reshape(AVG(1:temp1 , 1),I,J);

% AVG_field_V = reshape(AVG(temp1 +1:end , 1),I,J);

% imagesc ([x_min x_max], [y_min y_max], AVG_field_U .^2+ AVG_field_V .^2) % to illustrate Kinetic energy

% colormap(’jet ’);

% axis equal

%%

% subtracting the mean from each colum of A

for i =1: n snap
% xp(:,i)= X_Velocity_total (:,i)-AVG;

xp ( : , i )=X Ve l o c i t y t o t a l ( : , i ) − AVG;
% xp(:,i) = X_Velocity_total (:,i) ;

end

%% clear vars

c l e a r v a r s −except xp n snap temp1 I J x min x max y min y max AVG
%% POD modes , method of snapshots

C = xp ’∗ xp/n snap ; % The correlation matrix C divided by the number of samples

[ corr U , corr S , corr V ]=svd (C, ” econ ”) ;
u i=xp∗ corr U ; % POD modes

%%%%

%% Ghaemi code

for i =1:size ( co r r S )
u i2 ( : , i )=ui ( : , i ) / ( norm ( u i ( : , i ) , 2 ) ) ;

end

a=ui2 ’∗ xp ; %% amplitudes

% %% Andrew ’s comment 1 on modes

% [U,S,V]=svd(xp , ’econ ’) ;

% % plot my modes

% U_S = U*S;

% figure

%%%%%%%%%%%%%%%%%%%%%%%%%%%

figure

set ( gcf , ’color’ , ’w’ )
%%%%%%%%%%%%

% set number of modes to be investigated

N pod = 6 ;
%% plot spatial modes of U

for i = 1 : N pod
subplot (2 , 3 , i )
mode=i ;
%figure

imagesc ( [ x min x max ] , [ y min y max ] , reshape ( u i2 ( 1 : temp1 , mode ) , I , J ) ) % to illustrate a mode

set ( gca , ’YDir’ , ’normal ’ )
title ( [ ’Mode ’ , num2str (mode ) ] )
colormap ( ’jet’ ) ;
xlabel ( gca , ’$r^{*}$’ , ’FontSize ’ , 28 , ’Interpreter ’ , ’latex’ )
ylabel ( gca , ’$z^{*}$’ , ’FontSize ’ , 28 , ’Interpreter ’ , ’latex’ )
set ( gca , ’FontSize ’ , 28 , ’FontName ’ , ’Times’ ) ;
pbaspect ( [ 1 , 1 . 5 , 1 ] ) ;
set ( gcf , ’color’ , ’w’ )
colorbar

set ( gca , ’CLim’ ,[−10ˆ(−2) 10ˆ( −2)])
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% Set colorbar ticks

colorbar ( ’Ticks’ , [−10ˆ(−2) , 0 , 10ˆ( −2)] , ’TickLabels ’ , {’ -10^{-2}’ , ’0’ , ’10^{ -2}’ } ) ;

% Optional: Set scientific notation for tick labels

h = gca ;
h . YAxis . TickLabelFormat = ’%g’ ;

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%

figure

set ( gcf , ’color’ , ’w’ )
%%%%%%%%%%%%

% set number of modes to be investigated

N pod = 6 ;
%% plot spatial modes of V

for i = 1 : N pod
subplot (2 , 3 , i )
mode=i ;
%figure

imagesc ( [ x min x max ] , [ y min y max ] , reshape ( u i2 ( temp1+1:end , mode ) , I , J ) ) % to illustrate a mode

set ( gca , ’YDir’ , ’normal ’ )
title ( [ ’Mode ’ , num2str (mode ) ] )
colormap ( ’jet’ ) ;
xlabel ( gca , ’$r^{*}$’ , ’FontSize ’ , 28 , ’Interpreter ’ , ’latex’ )
ylabel ( gca , ’$z^{*}$’ , ’FontSize ’ , 28 , ’Interpreter ’ , ’latex’ )
set ( gca , ’FontSize ’ , 28 , ’FontName ’ , ’Times’ ) ;
pbaspect ( [ 1 , 1 . 5 , 1 ] ) ;
set ( gcf , ’color’ , ’w’ )
colorbar

set ( gca , ’CLim’ ,[−10ˆ(−2) 10ˆ( −2)])
% Set colorbar ticks

colorbar ( ’Ticks’ , [−10ˆ(−2) , 0 , 10ˆ( −2)] , ’TickLabels ’ , {’ -10^{-2}’ , ’0’ , ’10^{ -2}’ } ) ;
% Optional: Set scientific notation for tick labels

h = gca ;
h . YAxis . TickLabelFormat = ’%g’ ;
end

%%%%%%%%%%%%%%%%%%%%%%%%%% spatial mode + eigenvector %%%%%%%%%%%%%%%%%%%%%%%

%% Spatial mode + eigenvector plot together

figure

set ( gcf , ’color’ , ’w’ )
%%%%%%%%%%%%

% set number of modes to be investigated

N pod = 6 ;
%% plot spatial modes of U

for i = 1 : N pod
subplot (2 , 3 , i )
mode=i ;
%figure

imagesc ( [ x min x max ] , [ y min y max ] , flipud ( reshape ( u i2 ( 1 : temp1 , mode ) , I , J ) ) ) % to illustrate a mode

set ( gca , ’YDir’ , ’normal ’ )
title ( [ ’Mode ’ , num2str (mode ) ] )
colormap ( ’jet’ ) ;
xlabel ( gca , ’$r^{*}$’ , ’FontSize ’ , 28 , ’Interpreter ’ , ’latex’ )
ylabel ( gca , ’$z^{*}$’ , ’FontSize ’ , 28 , ’Interpreter ’ , ’latex’ )
set ( gca , ’FontSize ’ , 28 , ’FontName ’ , ’Times’ ) ;
pbaspect ( [ 1 , 1 . 5 , 1 ] ) ;
set ( gcf , ’color’ , ’w’ )
colorbar

set ( gca , ’CLim’ ,[−10ˆ(−2) 10ˆ( −2)])
% Set colorbar ticks

colorbar ( ’Ticks’ , [−10ˆ(−2) , 0 , 10ˆ( −2)] , ’TickLabels ’ , {’ -10^{-2}’ , ’0’ , ’10^{ -2}’ } ) ;
% Optional: Set scientific notation for tick labels

h = gca ;
h . YAxis . TickLabelFormat = ’%g’ ;
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hold on

x prime = linspace ( x min , x max , J ) ;
y prime = linspace ( y min , y max , I ) ;
[ X prime , Y prime ] = meshgrid ( x prime , y prime ) ;
Y prime = flipud ( Y prime ) ;
% Create 2D vector plot

f a c t o r = 150 ;
cc1 = f a c t o r .∗ reshape ( u i2 ( 1 : temp1 , mode ) , I , J ) ;
cc2 = f a c t o r .∗ reshape ( u i2 ( temp1+1:end , mode ) , I , J ) ;
% cc2 = zeros(I, J);

quiver ( X prime ( 1 : 1 0 : end , 1 : 1 0 : end ) , Y prime ( 1 : 1 0 : end , 1 : 1 0 : end ) , cc1 ( 1 : 1 0 : end , 1 : 1 0 : end ) , cc2 ( 1 : 1 0 : end , 1 : 1 0 : end ) , ’Color’ , ’k’ ) ;

end

%%

figure

set ( gcf , ’color’ , ’w’ )
%%%%%%%%%%%%

% set number of modes to be investigated

N pod = 6 ;
%% plot spatial modes of V

for i = 1 : N pod
subplot (2 , 3 , i )
mode=i ;
%figure

imagesc ( [ x min x max ] , [ y min y max ] , flipud ( reshape ( u i2 ( temp1+1:end , mode ) , I , J ) ) ) % to illustrate a mode

set ( gca , ’YDir’ , ’normal ’ )
title ( [ ’Mode ’ , num2str (mode ) ] )
colormap ( ’jet’ ) ;
xlabel ( gca , ’$r^{*}$’ , ’FontSize ’ , 28 , ’Interpreter ’ , ’latex’ )
ylabel ( gca , ’$z^{*}$’ , ’FontSize ’ , 28 , ’Interpreter ’ , ’latex’ )
set ( gca , ’FontSize ’ , 28 , ’FontName ’ , ’Times’ ) ;
pbaspect ( [ 1 , 1 . 5 , 1 ] ) ;
set ( gcf , ’color’ , ’w’ )
colorbar

set ( gca , ’CLim’ ,[−10ˆ(−2) 10ˆ( −2)])
% Set colorbar ticks

colorbar ( ’Ticks’ , [−10ˆ(−2) , 0 , 10ˆ( −2)] , ’TickLabels ’ , {’ -10^{-2}’ , ’0’ , ’10^{ -2}’ } ) ;
% Optional: Set scientific notation for tick labels

h = gca ;
h . YAxis . TickLabelFormat = ’%g’ ;
hold on

x prime = linspace ( x min , x max , J ) ;
y prime = linspace ( y min , y max , I ) ;
[ X prime , Y prime ] = meshgrid ( x prime , y prime ) ;
Y prime = flipud ( Y prime ) ;
% Create 2D vector plot

f a c t o r = 150 ;
cc1 = f a c t o r .∗ reshape ( u i2 ( 1 : temp1 , mode ) , I , J ) ;
cc2 = f a c t o r .∗ reshape ( u i2 ( temp1+1:end , mode ) , I , J ) ;
quiver ( X prime ( 1 : 1 0 : end , 1 : 1 0 : end ) , Y prime ( 1 : 1 0 : end , 1 : 1 0 : end ) , cc1 ( 1 : 1 0 : end , 1 : 1 0 : end ) , cc2 ( 1 : 1 0 : end , 1 : 1 0 : end ) , ’Color’ , ’k’ ) ;

end

%% create a 2 * 3 mode distribution for thesis

% control distance btw plots

%

figure

set ( gcf , ’color’ , ’w’ )
%%%%%%%%%%%%

% set number of modes to be investigated

N pod = 6 ;
N pod x = 3 ;
%%

%%
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for i = 1 : N pod
if i <=3

mode=i ;
subplot (2 , 3 , i )
%figure

imagesc ( [ x min x max ] , [ y min y max ] , flipud ( reshape ( u i2 ( 1 : temp1 , mode ) , I , J ) ) ) % to illustrate a mode

else

mode = i − 3 ;
subplot (2 , 3 , i )

imagesc ( [ x min x max ] , [ y min y max ] , flipud ( reshape ( u i2 ( temp1+1:end , mode ) , I , J ) ) ) % to illustrate a mode

end

%figure

set ( gca , ’YDir’ , ’normal ’ )
title ( [ ’Mode ’ , num2str (mode ) ] )
colormap ( ’jet’ ) ;
xlabel ( gca , ’$r^{*}$’ , ’FontSize ’ , 28 , ’Interpreter ’ , ’latex’ )
ylabel ( gca , ’$z^{*}$’ , ’FontSize ’ , 28 , ’Interpreter ’ , ’latex’ )
set ( gca , ’FontSize ’ , 28 , ’FontName ’ , ’Times’ ) ;
pbaspect ( [ 1 , 1 . 5 , 1 ] ) ;
set ( gcf , ’color’ , ’w’ )
colorbar

set ( gca , ’CLim’ ,[−10ˆ(−2) 10ˆ( −2)])
% Set colorbar ticks

colorbar ( ’Ticks’ , [−10ˆ(−2) , 0 , 10ˆ( −2)] , ’TickLabels ’ , {’ -10^{-2}’ , ’0’ , ’10^{ -2}’ } ) ;
% Optional: Set scientific notation for tick labels

h = gca ;
h . YAxis . TickLabelFormat = ’%g’ ;
hold on

x prime = linspace ( x min , x max , J ) ;
y prime = linspace ( y min , y max , I ) ;
[ X prime , Y prime ] = meshgrid ( x prime , y prime ) ;
Y prime = flipud ( Y prime ) ;
% Create 2D vector plot

f a c t o r = 150 ;
cc1 = f a c t o r .∗ reshape ( u i2 ( 1 : temp1 , mode ) , I , J ) ;
cc2 = f a c t o r .∗ reshape ( u i2 ( temp1+1:end , mode ) , I , J ) ;
quiver ( X prime ( 1 : 1 0 : end , 1 : 1 0 : end ) , Y prime ( 1 : 1 0 : end , 1 : 1 0 : end ) , cc1 ( 1 : 1 0 : end , 1 : 1 0 : end ) , cc2 ( 1 : 1 0 : end , 1 : 1 0 : end ) , ’Color’ , ’k’ ) ;
end

% set(ha(1:4),’ XTickLabel ’,’’); set(ha ,’YTickLabel ’,’’)

% % Manually adjust the horizontal space between subplots

% subplot(’Position ’, [0.1, 0.1, 0.25, 0.8]); % Adjust the values as needed

% subplot(’Position ’, [0.4, 0.1, 0.25, 0.8]);

% subplot(’Position ’, [0.7, 0.1, 0.25, 0.8]);

%

% % Repeat for the second row

% subplot(’Position ’, [0.1, 0.1, 0.25, 0.4]);

% subplot(’Position ’, [0.4, 0.1, 0.25, 0.4]);

% subplot(’Position ’, [0.7, 0.1, 0.25, 0.4]);

% Show the plot

% Set the horizontal spacing between subplots

% horizontalSpacing = 0.02; % Adjust this value as needed

% Specify the number of rows and columns

% rows = 2;

% cols = 3;

% % Adjust the horizontal spacing between subplots

% hFig = gcf;

% figPos = get(hFig , ’Position ’);

% figPos (3) = figPos (3) - (cols - 1) * horizontalSpacing;

% set(hFig , ’Position ’, figPos );

%% plot them separately

%%

for i = 1 : N pod
if i <=3

mode=i ;
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% subplot (2,3,i)

figure

imagesc ( [ x min x max ] , [ y min y max ] , flipud ( reshape ( u i2 ( 1 : temp1 , mode ) , I , J ) ) ) % to illustrate a mode

else

mode = i − 3 ;
% subplot(2,3,i)

figure

imagesc ( [ x min x max ] , [ y min y max ] , flipud ( reshape ( u i2 ( temp1+1:end , mode ) , I , J ) ) ) % to illustrate a mode

end

%figure

set ( gca , ’YDir’ , ’normal ’ )
title ( [ ’Mode ’ , num2str (mode ) ] )
colormap ( ’jet’ ) ;
xlabel ( gca , ’$r^{*}$’ , ’FontSize ’ , 30 , ’Interpreter ’ , ’latex’ )
ylabel ( gca , ’$z^{*}$’ , ’FontSize ’ , 30 , ’Interpreter ’ , ’latex’ )
set ( gca , ’FontSize ’ , 30 , ’FontName ’ , ’Times’ ) ;
pbaspect ( [ 1 , 1 . 8 , 1 ] ) ;
set ( gcf , ’color’ , ’w’ )
colorbar

set ( gca , ’CLim’ ,[−10ˆ(−2) 10ˆ( −2)])
% Set colorbar ticks

colorbar ( ’Ticks’ , [−10ˆ(−2) , 0 , 10ˆ( −2)] , ’TickLabels ’ , {’ -10^{-2}’ , ’0’ , ’10^{ -2}’ } ) ;
% Optional: Set scientific notation for tick labels

h = gca ;
h . YAxis . TickLabelFormat = ’%g’ ;
hold on

x prime = linspace ( x min , x max , J ) ;
y prime = linspace ( y min , y max , I ) ;
[ X prime , Y prime ] = meshgrid ( x prime , y prime ) ;
Y prime = flipud ( Y prime ) ;
% Create 2D vector plot

f a c t o r = 150 ;
cc1 = f a c t o r .∗ reshape ( u i2 ( 1 : temp1 , mode ) , I , J ) ;
cc2 = f a c t o r .∗ reshape ( u i2 ( temp1+1:end , mode ) , I , J ) ;
quiver ( X prime ( 1 : 1 0 : end , 1 : 1 0 : end ) , Y prime ( 1 : 1 0 : end , 1 : 1 0 : end ) , . . .
cc1 ( 1 : 1 0 : end , 1 : 1 0 : end ) , cc2 ( 1 : 1 0 : end , 1 : 1 0 : end ) , ’Color’ , ’k’ ) ;
end

%% mode energy

t o t ene rgy = sum ( diag ( co r r S ) ) ; %total energy is the sum of all the eigenvalues; eigenvalues are fractions of the total energy enclosed in the flow

for i =1: n snap
mode eng ( i )=co r r S ( i , i )/ t o t ene rgy ;

end

figure ;
plot ( 100 .∗mode eng , ’LineStyle ’ , ’-’ , ’Color’ , ’b’ , ’Marker ’ , ’o’ , ’MarkerFaceColor ’ , [ 0 0 . 4 0 . 7 ] )
axis ( [ 1 10 0 100 ] )
ylabel ( gca , ’Mode Energy , %’ )
xlabel ( gca , ’Mode number ’ )
set ( gca , ’FontSize ’ , 28 , ’FontName ’ , ’Times’ ) ;
set ( gca , ’FontSize ’ , 28 , ’FontName ’ , ’Times’ ) ;
% Set the plot box aspect ratio to 4:3

pbaspect ( [ 4 4 1 ] ) ;
set ( gcf , ’color’ , ’w’ )
legend ( ’Water , Re = 15000 ’ )
% grid on

%% plot out the eigenvalue

for j =1: n snap
Eig eng ( j )=co r r S ( j , j ) ;

end

figure

semilogy ( Eig eng , ’LineStyle ’ , ’-’ , ’Color’ , ’b’ , ’Marker ’ , ’o’ , ’MarkerFaceColor ’ , [ 0 0 . 4 0 . 7 ] )
axis ( [ 0 3000 10ˆ(−5) 1 0 ] )
ylabel ( gca , ’Singular values , $\sigma_{r}$’ , ’Interpreter ’ , ’latex’ )
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xlabel ( gca , ’Mode number , $r$’ , ’Interpreter ’ , ’latex’ )
set ( gca , ’FontSize ’ , 28 , ’FontName ’ , ’Times’ ) ;
set ( gca , ’FontSize ’ , 28 , ’FontName ’ , ’Times’ ) ;
% Set the plot box aspect ratio to 4:3

pbaspect ( [ 4 4 1 ] ) ;
set ( gcf , ’color’ , ’w’ )
legend ( ’Water , Re = 15000 ’ )

%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%% time coefficient

figure

plot ( [ 0 : n snap −1] , a ( 1 , : ) , ’LineWidth ’ , 2 ) ;
xlabel ( ’time [s]’ )
ylabel ( ’time -dependent coefficient ’ )
set ( gca , ’FontSize ’ , 2 8 ) ;
grid on

%% shorter time coefficient plot

figure

plot ( [ 0 : 5 0 ] , a ( 1 , 1 : 5 1 ) , ’LineWidth ’ , 2 ) ;
xlabel ( ’time [s]’ )
ylabel ( ’time -dependent coefficient ’ )
set ( gca , ’FontSize ’ , 2 8 ) ;
grid on

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% reconstruction (ROD)

c l e a r v a r s −except ui2 a xp temp1 x min x max y min y max I J AVG
%% reconstruction

n mode=107;

PHI=ui2 ( : , 1 : n mode ) ;
% PHI=ui2(:,n_mode );

AMP=a ( 1 : n mode , : ) ;
% AMP=a(n_mode ,:);

u t e s t=PHI∗AMP;
%%

%%

% close all

i =15; %% any instanteous time instant

%%

figure

subplot ( 1 , 2 , 1 )
imagesc ( [ x min x max ] , [ y min y max ] , reshape ( xp ( 1 : temp1 , i ) , I , J ) ) % Original fluctuation

set ( gca , ’CLim’ , [ −0.1 0 . 1 ] )
h=colorbar

set ( gca , ’YDir’ , ’normal ’ )
% set(gcf ,’position ’,[200 5 500 650])

colormap ( ’jet’ ) ;
xlabel ( gca , ’$r^{*}$’ , ’FontSize ’ , 28 , ’Interpreter ’ , ’latex’ )
ylabel ( gca , ’$z^{*}$’ , ’FontSize ’ , 28 , ’Interpreter ’ , ’latex’ )
set ( gca , ’FontSize ’ , 28 , ’FontName ’ , ’Times’ ) ;
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pbaspect ( [ 1 , 1 . 5 , 1 ] ) ;
ylabel (h , ’Velocity fluctuation , m/s’ , ’FontSize ’ , 16 , ’FontName ’ , ’Times New Roman’ ) ;

%axis equal

set ( gcf , ’color’ , ’w’ )
subplot ( 1 , 2 , 2 )
imagesc ( [ x min x max ] , [ y min y max ] , reshape ( u t e s t ( 1 : temp1 , i ) , I , J ) ) % to illustrate ROM

set ( gca , ’CLim’ , [ −0.1 0 . 1 ] )
set ( gca , ’YDir’ , ’normal ’ )
h=colorbar

% set(gcf ,’position ’,[200 5 500 600])

colormap ( ’jet’ ) ;
% xlabel(gca ,’$r^{*}$’,’FontSize ’,28,’Interpreter ’, ’latex ’)

% ylabel(gca ,’$z^{*}$’,’FontSize ’,28,’Interpreter ’, ’latex ’)

set ( gca , ’FontSize ’ , 28 , ’FontName ’ , ’Times’ ) ;
pbaspect ( [ 1 , 1 . 5 , 1 ] ) ;
ylabel (h , ’Velocity fluctuation , m/s’ , ’FontSize ’ , 24 , ’FontName ’ , ’Times New Roman’ ) ;
%axis equal

%% visualize reconstruction of a snapshot without adding the average

figure

subplot ( 1 , 2 , 1 )
imagesc ( [ x min x max ] , [ y min y max ] , reshape ( xp ( 1 : temp1 , i ) , I , J ) )

% set(gca ,’CLim ’,[-0.3 0.3])

set ( gca , ’YDir’ , ’normal ’ )
colormap ( ’jet’ ) ;
h=colorbar

% set(gcf ,’position ’,[200 100 800 500])

% set(gcf ,’position ’,[200 120 800 500])

xlabel ( gca , ’$r^{*}$’ , ’FontSize ’ , 28 , ’Interpreter ’ , ’latex’ )
ylabel ( gca , ’$z^{*}$’ , ’FontSize ’ , 28 , ’Interpreter ’ , ’latex’ )
ylabel (h , ’Original Velocity , m/s’ , ’FontSize ’ , 22 , ’FontName ’ , ’Times New Roman’ ) ;
set ( gca , ’FontSize ’ , 22 , ’FontName ’ , ’Times’ ) ;
pbaspect ( [ 1 , 1 . 5 , 1 ] ) ;

% axis equal

figure

imagesc ( [ x min x max ] , [ y min y max ] , . . .
flipud ( reshape ( xp ( 1 : temp1 , 4 00 ) , I , J ) ) ) % Original fluctuation

pbaspect ( [ 1 , 1 . 5 , 1 ] ) ;
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% %% visualization of ROM

% close all

% for i=1:1:100

%

% figure (1);

% set(gcf , ’outerposition ’, get(0, ’screensize ’)) %% maximize the screen

% set(gcf ,’color ’,’w’)

% clf;

%

% subplot (1,2,1)

% imagesc ([x_min x_max], [y_min y_max], reshape(AVG(1: end/2),[I,J]) + reshape(xp(1:temp1 ,i),I,J))

% set(gca ,’CLim ’,[-0.3 0.3])

% set(gca ,’YDir ’,’normal ’)

% colormap(’jet ’);

% h=colorbar

% % set(gcf ,’position ’ ,[200 100 800 500])

% % set(gcf ,’position ’,[200 120 800 500])

% xlabel(gca ,’$r^{*}$’,’FontSize ’,28,’Interpreter ’, ’latex ’)

% ylabel(gca ,’$z^{*}$’,’FontSize ’,28,’Interpreter ’, ’latex ’)

% ylabel(h, ’Original Velocity , m/s’,’FontSize ’,22,’FontName ’,’Times New Roman ’);

% set(gca ,’FontSize ’,22, ’FontName ’, ’Times ’ );

% pbaspect ([1, 2, 1]);

% % axis equal

%

% subplot (1,2,2)

%

% %imagesc(data(i).U)

% imagesc ([x_min x_max], [y_min y_max], reshape(AVG(1: end/2),[I,J])+ reshape(u_test (1:temp1 ,i),I,J))

% % imagesc(reshape(u_test (1: size(data (1).U(:)),i),I,J))

% set(gca ,’CLim ’,[-0.3 0.3])

% h=colorbar

% set(gca ,’YDir ’,’normal ’)

% % set(gcf ,’position ’,[200 120 800 500])

% colormap(’jet ’);

% xlabel(gca ,’$r^{*}$’,’FontSize ’,28,’Interpreter ’, ’latex ’)

% ylabel(gca ,’$z^{*}$’,’FontSize ’,28,’Interpreter ’, ’latex ’)

% ylabel(h, ’Reonstructed Velocity , m/s’,’FontSize ’,22,’FontName ’,’Times New Roman ’);

% pbaspect ([1, 2, 1]);

% set(gca ,’FontSize ’,22, ’FontName ’, ’Times ’ );

% % axis equal

% %pause (0.001)

%

%

%

% % pause (0.02)

%

% end

C.2 Code for Energy Spectrum

Listing C.2: Ensemble-Averaged Energy Spectrum code
clc , clear all ;
close all ;
%% temporal average

% AVG = mean(X_Velocity_total ,2);

AVG U = mean (X U , 2 ) ;
AVG V = mean (X V , 2 ) ;
% AVG=mean(x(1: size(data (1).U(:)) ,1) ,2);

% % spatial average
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% AVG = mean(X_Velocity_total ,2);

% AVG_U = mean(X_U ,1);

% AVG_V = mean(X_V ,1);

% %% spatial averaged operation(comment off if using temporal average)

% AVG_U = repmat(AVG_U , I*J, 1);

% AVG_V = repmat(AVG_V , I*J, 1);

% subtracting the mean from each colum of A (temporal average used)

for i =1: n snap
% xp(:,i)= X_Velocity_total (:,i)-AVG;

xp u ( : , i )=X U( : , i ) − AVG U;
xp v ( : , i )=X V( : , i ) − AVG V;

end

% %% spatial averaged used

% xp_u=X_U - AVG_U;

% xp_v=X_V - AVG_V;

MeanSquare f luct = 1 . / 2 . ∗ ( mean ( xp u . ˆ2 , ’all’ ) + mean ( xp v . ˆ2 , ’all’ ) ) ;

t c . u f l u c t = reshape ( xp u , I , J , n snap ) ;
tc . v f l u c t = reshape ( xp v , I , J , n snap ) ;

[Ny , Nx ] = size (X) ; % Size of the domain

Lx = ( max (X( : ) ) − min (X( : ) ) )∗10ˆ ( −3 ) ; % Size of the domain in meters

Ly = ( max (Y( : ) ) − min (Y( : ) ) )∗10ˆ ( −3 ) ;
dx = Lx/( size (X, 2 ) ) ; % Spatial resolution

kx = (2∗ pi/Lx)∗((−Nx/2 ) : (Nx/2 − 1 ) ) ;
ky = (2∗ pi/Ly)∗((−Ny/2 ) : (Ny/2 − 1 ) ) ;

[ kx , ky ] = meshgrid ( kx , ky ) ;

% Radial wavenumber

% k_radial = sqrt(kx .^2);

k r a d i a l = sqrt ( kx .ˆ2 + ky . ˆ 2 ) ;

%% calculate the average velocity spectra over time

%% clearvars

c l e a r v a r s xp u xp v AVG U AVG V XW X V X U
tic ;
for i = 1 : n snap

% Generate 2D velocity field

U = tc . u f l u c t ( : , : , i ) ;
V = tc . v f l u c t ( : , : , i ) ;

% Compute 2D wavenumber spectra

u f f t = fft2 (U) ;
v f f t = fft2 (V) ;

u f f t s h i f t e d = fftshift ( u f f t ) ;
v f f t s h i f t e d = fftshift ( v f f t ) ;

% Compute the velocity spectrum

% power_spectrum = (abs(u_fft_shifted ).^2 + abs(v_fft_shifted ).^2 )/ (Lx*Ly * Nx*Ny);

power spectrum u = ( abs ( u f f t s h i f t e d ) . ˆ 2 ) / (Lx∗Ly ∗ Nx∗Ny) ;
power spectrum v = ( abs ( v f f t s h i f t e d ) . ˆ 2 ) / (Lx∗Ly ∗ Nx∗Ny) ;
Energy Spectrum = 1 . / 2 . ∗ ( power spectrum u + power spectrum v ) ;

% Sum the velocity spectrum over annular rings to obtain energy spectra

k unique = unique ( k r a d i a l ( : ) ) ;
power spectrum sum = zeros ( size ( k unique ) ) ;
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Energy Spectrum sum = zeros ( size ( k unique ) ) ;

for j = 1 : numel ( k unique )
power spectrum sum ( j ) = sum ( power spectrum u ( k r a d i a l ( : ) == k unique ( j ) ) ) ;
Energy Spectrum sum ( j ) = sum ( Energy Spectrum ( k r a d i a l ( : ) == k unique ( j ) ) ) ;

end

% %% limit my plot

% % plot only 2 to end (reason: log -log)

% k_unique = k_unique (2: end);

% power_spectrum_sum = power_spectrum_sum (2:end);

%% construct stuct matrix containing k and power spectrum

Trans i en t Ve l o c i t ySpec t ra ( : , i ) = ( power spectrum sum ( 2 : end ) ) ’ ;
Trans ient EnergySpectra ( : , i ) = ( Energy Spectrum sum ( 2 : end ) ) ’ ;

end

toc ;

%%

Avg Veloc i tySpectra = mean ( Trans i en t Ve loc i tySpec t ra , 2 ) ;
Avg EnergySpectra = mean ( Trans ient EnergySpectra , 2 ) ;

k unique = k unique ( 2 : end ) ;

%% Nyquest Criterion

% Create a logical index for k_unique < k_max /2

index = k unique < max ( k unique ) . / 2 ;
% index = k_unique <= max(k_unique );

%% Plot the wavenumber spectrum

figure ;
loglog ( k unique ( index ) , Avg Veloc i tySpectra ( index ) , ’o-’ ) ;
% loglog(k_unique(index )./min(k_unique(index)), Avg_VelocitySpectra(index), ’o-’);

pbaspect ( [ 4 4 1 ] ) ;
set ( gcf , ’color’ , ’w’ ) ;
xlabel ( ’Wavenumber (k)’ ) ;
ylabel ( ’Power Spectrum ’ ) ;
% title(’2D Turbulence Energy Spectrum ’);

set ( gca , ’FontSize ’ , 30 , ’FontName ’ , ’Times’ ) ;
set ( gcf , ’color’ , ’w’ )
% grid on;

% %% -5/3 slope

% hold on;

%

% % Calculate the corresponding y-values for the shifted -5/3 slope

% shift_factor = 10^4; % You can adjust this factor to control the vertical shift

% y_slope_shifted = shift_factor * 10.^( -5/3 * log10(k_unique ./min(k_unique )));

%

% % Plot the shifted -5/3 slope

% loglog(k_unique ./min(k_unique), y_slope_shifted , ’--’, ’Color ’, ’r’, ’LineWidth ’, 2);

% xlim ([1 150])

% % Add a legend

% legend(’Data ’, [’-5/3 Slope ’], ...

’Location ’ , [ 0 .592239584419876 0.812819436536942 0.0994791644935806 0 .0835929363811251 ] ) ;
% hold off;

%%%%%%%%%%%%%%%%%%%%%% Energy Spectrum (normalized )// %%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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%%

figure

loglog ( k unique ( index ) , Avg EnergySpectra ( index ) , ’o-’ ) ;
% loglog(k_unique(index )./min(k_unique(index)), ...

Avg EnergySpectra ( index ) , ’o-’ , ’LineWidth ’ , 1 , ’Color’ , ’b’ ) ;
% xlim ([1 10^2])

xlim ( [ 10ˆ2 10ˆ4 ] )
ylim ([10ˆ( −4) 10ˆ4 ] )
pbaspect ( [ 4 4 1 ] ) ;
set ( gcf , ’color’ , ’w’ ) ;
xlabel ( ’$\kappa , m^{-1}$’ , ’Interpreter ’ , ’latex’ ) ;
ylabel ( ’$E(\kappa), m^{2}s^{-2}$ ’ , ’Interpreter ’ , ’latex’ ) ;
xValues = [10ˆ2 305.4415 10ˆ3 1832 .6 1 0 ˆ4 ] ;
% Customize x-axis tick labels

x t i c k s ( xValues ) ;
x t i c k l a b e l s ( {’$10^2$’ , ’$\frac {2\pi}{l_{0}}$’ , ’$10^3$’ , ’$\frac {12\pi}{l_{0}}$’ , ’$10^4$’ } ) ;
set ( gca , ’FontSize ’ , 30 , ’FontName ’ , ’Times’ , ’TickLabelInterpreter ’ , ’latex’ ) ;
set ( gcf , ’color’ , ’w’ )
% grid on;

%% -5/3 slope

hold on ;

% Calculate the corresponding y-values for the shifted -5/3 slope

s h i f t f a c t o r = 2∗10ˆ4; % You can adjust this factor to control the vertical shift

y s l o p e s h i f t e d = s h i f t f a c t o r ∗ 10.ˆ(−5/3 ∗ log10 ( k unique . / min ( k unique ) ) ) ;

% Plot the shifted -5/3 slope

% loglog(k_unique ./min(k_unique), y_slope_shifted , ’-’, ’Color ’, ’r’, ’LineWidth ’, 3);

loglog ( k unique , y s l o p e s h i f t e d , ’-’ , ’Color’ , ’r’ , ’LineWidth ’ , 3 ) ;

% xlim ([1 200])

% Add a legend

legend ( ’PAM -200ppm , Re = 15000 ’ , ’Position ’ , . . .
[ 0 .520208198988503 0.846723899855839 0.184166935356326 0 . 0 490135009167472 ] , . . .

’Interpreter ’ , ’latex’ ) ;

% Create textbox

annotat ion ( ’textbox ’ , . . .
[ 0 . 6 0 1 0.746625129802699 0.0474374999999995 0 . 0 6 12668743509862 ] , . . .
’String ’ ,{ ’ -5/3’ } , . . .
’LineStyle ’ , ’none’ , . . .
’Interpreter ’ , ’latex’ , . . .
’FontSize ’ , 3 0 , . . .
’FontName ’ , ’Times’ , . . .
’FitBoxToText ’ , ’off’ ) ;

hold o f f ;
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Appendix D: Engineering Drawings of
Taylor-Couette Flow Rig
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