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ABSTRACT

The Landau - Ginzburg free energy expansion of the superconducting order
parameter in the presence of a magnetic vector potential has been used as a basis for the
analysis of magnetic field penetration in superconductors. Several specific cases have
been examined in one and two dimensions in order to solve the complicated system of
coupled nonlinear partial differential equations that describe interactions between the
magnetic field and superconducting charge density. Exact solutions are found at the
critical temperature, while accurate series expansions are used close to it. Oscillatory
damped profiles of the magnetic field penetration are found. In addition, periodic
patterns of magnetic induction and a phase - shifted superconducting charge density are
obtained. Other approximate methods were used to examine the behavior of the
superconducting system for arbitrary temperatures below the critical temperature. For
two dimensions, two types of solutions were obtained; vortices which exist below the
critical temperature and spirals which exist at the critical temperature. In two
dimensions, the symmetries that were considered so as to reduced the equations to
nonlinear ordinary differential equations gave us in some cases, equations which have no
known analytical solutions. A method was developed to find analytical sclutions to some
of these equations which are of the particular form; " + A(f)f’ + B(f)(f')? + C(f) = 0.
The method consists of converting the ordinary differential equation into a system of
coupled algebraic equations which in principal can be solved using a symbolic solver
program on a computer. Aiso, solutions were found for seven special cases, one of which
is the solutions to the nonlinear ordinary differential equation; £ + B(f)(f')* + C(f) = 0.
Several examples of the method are given as a demonstration of the power of the method.
The last part consists of investigating a generalized Hamiltonian of two interacting quasi -
particles. The method of coherent structures is developed for systems with two different
types of interacting particles. The general formalism is worked out leading to coupled
field equations relevant for all three combinations of quantum statistics. The Frohlich
Hamiltonian for electron - phonon coupling in metals is analyzed as an example.
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CHAPTER 1: INTRODUCTION

In the past decade, there has been much advancement in the study of nonlinear
systems. This work will focus on applying this to a couple of models that have been of
importance in physics in the past. ‘The first model which will be analyzed is the Landau-
Ginzburg phencmenological model for superconductors with a magnetic field. The
model was very successful in describing the change in thermodynamical quantities at the
phase transition in conventional superconductors. The second model that will be
analyzed is the Frohlich Hamiltonian which also was important in the understanding of
low temperature superconductors. The Frohlich Hamiltonian is a simplified model of
free electrons interacting with phonons in 2 metal. Cooper pairs are the singlet state
formed by electrons that are bound together by phonons and so this critical state should
be present in the Fohlich Hamiltonian. If one uses a unitary transformation to decouple
the electrons and phonons to first order in the Frohlich Hamiltonian, then one obtains a
simplified version of the BCS model. However, one can show that the superconducting
state is obtainable from the Fishlich Hamiltonian from a different approach, which shall
be done in chapter four. The third chapter is mathematical and deals with a method for
solving autonomous nonlinear ordinary differential equations. This chapter is necessary,
since the work that will be done with both the Landau - Ginzburg model and the Frohlich
Hamiltonian, will lead to nonlinear differential equations which need to be solved. The

Landau - Ginzburg model shall be analyzed in chapter two.

Chapter two is a nonlinear study of the Landau - Ginzburg phenomenological
model for superconductors with the presence of a magnetic field. The introduction
section of this chapter gives a brief review of what has been done in the past using this
model. Section II gives the equations of state that result from the minimization of the
Landau - Ginzburg free energy functional. The section also shows the relationships

between the physical quantities that are of interest such as the magnetic field, the



superconducting current density and the superconducuung artit vE10CIty. il Snowu o

noied that the Landau - Ginzbuig model basically consisis of cxpanding the frec energy
functional in terms of an order parameter which in this case is the modulus squared of a
complex field, and also terms consisting of the gradient of the order parameter. The order
parameter is a quantity that is introduced to explain the change in thermodynamical
quantities at a phase transition and as such, this means that our model is valid only near
the critical temperature. We use this fact to realize that we can find solutions at the
critical temperature and then perturb around the critical temperature. In this model one of
the parameters vanishes at the critical temperature and so it is used as the expansion
coefficient of the solutions about the critical temperature. In the third section, three
different sets of solutions are found in one dimension and then expanded below the
critical temperature. Also, in section IIL, a numerical plot of the full equations of state is
presented so as to test the validity of this type of expansion. Section IV is basically an
extension of the work which has been done in the past, where the effects of the magnetic
field upon the superconducting charge are neglected. For type I superconductors where
the magnetic field can not penetrate into the superconductor except for a very small
distance or in type 1 superconductors where the superconducting current is basically
constant, then this approximation is reasonably good. The fourth section is divided into
three parts, the first of which discusses the approximation and the trivial solutions for the
equations of state. The second part deals with a wealth of solutions; however, more
approximations are necessary. Even with these approximations, the solutions which will
be obtained are in good agreement with what one would expect. There is however, one
set of solutions that will be obtained without further approximations. In the third part,
some exact solutions are found using only the initial approximation of neglecting the

effects of the magnetic field upon the superconducting charge.

Up to this point, we bave been dealing exclusively with one dimensional solutions

for the equations of state and now in section five of chapter two, the focus will be on



quasi-two dimensional solutions. The method used 10 SOIVE tNE SQUATIONS UL SWIC 1 LS
section will be the same as that in section ili, an ¢xpaision about ihc critica! temperature.
The section is broken into two parts, the first of which is called vortices. In this part, only
radial symmetry in cylindrical coordinates will be considered so as to obtain nonlinear
ordinary differential equations for the equations of state. Magnetic vortex solutions for
small radial distances will be found in contrast to past attempts which only gave
asymptotic solutions or solutions obtained from linearization of the equations. Some very
good results for two dimensional solutions will be obtained, showing the interaction
between the magnetic field and the superconducting charge in a more realistic system
than the one dimensional solutions. The second part will use the spiral symmetry to
reduce the equations of state to coupled nonlinear ordinary differential equations,
however, it is necessary to introduce the approximation that small radial distances from
the core (origin) are required. Again, some very interesting two dimensional solutions

will be found.

The sixth section of chapter two deals with a unique approximation to simplify the
coupled nonlinear partial differential equations. Essentially, the dependent variables will
be rescaled so as to be able to solve one of dependent functions in terms of the other
dependent function. This will leave only one equation to solve, which will turn out to be
the cubic nonlinear Klein - Gordon cquation in three dimensional space. Analytical
solutions to this equation are discussed and their meaning for the physical parameters.
Section VII discusses and reviews ihe results that will be obtained in chapter two. Three
appendices are enclosed: the first looks at decoupling the two equations of state in such a
way as to give more solutions for section three. The second appendix simply lists the
differential equations that the Jacobi elliptic functions satisfy. The final appendix shows

a couple of ways in which the two coupled equations of state in one dimension can be

decoupled exactly.



Chapter three is a continuation of chapter two. In section V of chapter two when
tooking for vortices, autonomous noniinear ordinary dificreniial cquaiions were obiained
that have no known analytical solutions. In an effort 1o obtain analytical solutions to
these equations, a method is developed for finding some analytical solutions to these
equations. The introduction in section I discusses some of the previous work along these
lines. The second section shows seven special cases of solutions and also discusses the
method of reducing the differential equation into a system of algebraic equations. With
the improvement of symbolic solvers for computers over recent years, this becomes very
desirable. It is also discovered that for one of the special cases, elliptic integrals are a
subclass of the resulting integral solution. In section three, further detail on the reduction
of the nonlinear ordinary differential equation to a system of algebraic equations is
discussed. In this section, it is shown that by one reduction, exponential solutions are
obtained and by another reduction, Jacobi elliptic functions are obtained as solutions.
Section IV of chapter three looks at a few physical examples where the algebraic method

and the special cases are applicable. Section V summarizes the results of this chapter.

Chapter four deals with coupled systems at the microscopic level. The
introduction in section I discusses some of the previous work done in this area, giving the
historical background. Section II starts by looking at a generic second quantized
Hamiltonian for two interacting types of particles. The section goes on to find the
Heisenberg equations of motion for each possibie statistics that the particles can cbey:
Boson - Boson interactions, indistinguishable Fermion - Fermion interactions,
distinguishable Fermion - Fermion interactions, and Fermion - Boson interactions. The
section also discusses the methodology where the coefficients are expanded in a Taylor
series near some critical point in momentum space and aiso field operators are intrcduced
which have a plane wave basxs This leads to two coupled generalized nonlinear
Schrodinger equations and which are assumed to be classical to zeroth order. Also, in

section IT it will be shown that the equations of motion for the classical ficlds are



cquivalent to those obtained from a Landau - Ginzburg type Hamiltonian density. In
section II1, the classical field equations for the distinguishabie Fermion - Fermion casc
will be discussed and some solutions to these equations are obtained. Section IV is a
second example, but instead deals with the case of interacting Bosons and Fermions. The
specific system in this case is that of interacting electrons and phonons in a metal as
described by the Frohlich Hamiltonian. The fourth section is divided into three parts, the
first of which is a discussion on the general background information of the Frohlich
Hamiltonian and also the resulting classical field equations that will be obtained. In the
second part, the equations of motion when the coupling coefficient is a constant will be
discussed. In this part, the solutions to the classical equations of motion are found which
permit the formation of Cooper pairs and thus lead to superconductivity. The third part is
an extension of the second part, except that now the coupling coefficient between the
electrons and the phonons is considered to have aq dependence which will lead to extra
terms in the equations of motion. This part however, leads to implicit solutions in the
form of an indefinite integral which in general can not be solved, but for special cases the
integral can be done and then the solution can be inverted. However, there is much
information that can be gained from the integral without actually solving it, which will be
discussed. In this part solutions for free electrons scattering off the phonons and
solutions for Cooper pair formation are found. The fifth section closes chapter four by

summarizing the resul‘s and discussing further applications for the method discussed.

The last chapter, namely, chapter five gives some concluding remarks and a
summary of the resuits found in chapters two through four. It also points out possible

avenues where this work can be extended.



CHAPTER 2: MAGNETIC FIELD PENETRATION IN
SUPERCONDUCTORS USING THE LANDAU - GINZBURG MODEL'’

SECTION I: INTRODUCTION

Models of a Landau-Ginzburg (LG) type have played a central role in modern
theories of phase transitions!) and, in particular, in theorics of superconductivity?).
Despite the powerful predictive properties of these models, they were often considered to
be of little relevance due to their phenomenological development. This was despite the
fact that in 1959, Gor'kov3) established a connection between the microscopic BCS
theory of superconductivity and the LG model. Recently, using an entirely different
approach, a direct link has been established between an effective microscopic second
quantized Hamiltonian describing .zieracting electrons in a phonon field and the order
parameter picture in the LG theory?. Thus, although apparently phenomenological, such
models do contain the basic physical notions required to understand and adequately
desczibe superconductivity. The equations of state, obtained from a LG model, are highly
nonlinear, and when applied to standard superconductors, with long range order in the
superconducting state and a fairly long coberence length, it is conventional to rely heavily
on solutions in which the modulus squared of the order parameter is a constant. For low
temperature superconductors, this approximation in many instances is not a bad one, and
such phenomena as penetration deptt ' the critical current as a function of temperature
are correctly predicted. However, > type of approximation predicts, for example,
critical exponents which may differ significantly from those resulting from
renormalization group studiesS), where fluctuations are incorporated correctly. In the
high temperature superconductors, where coherence lengths on the order of 20 - 30 Ain

the a-b plane are much shorter than those of conventional superconductors, magnetic

* A version of this chapter has been published. K. Vos, J. M. Dixon, and J. A. Tuszyfiski. Physical
Review B 44. 11933 - 11950 (1991).



ficlds penetrate much farther into the superconductor, and furthermore, penetration depth
measurements6) appear to show a temperature dependence which is inconsistent with the
standard form for ordinary superconductors. Thus models relying on constant order

parameter modulus solutions are inadequate.

In the presence of an external magnetic field, the LG free energy density is given
byi»2
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where f is the free energy density of the normal phase, e* is the effective charge, m* is

the effective mass, and A is the vector potential. Usually, the order parameter Y is

identified with the (complex) wave function of a Cooper pair, so that n,(r) = |‘I"|2 is the

local density of superconducting charges. Conventionally, all the parameters of the

theory, apart from a, for which a=2a,(T-T,) following Landau, are temperature
independent. Both the complex order parameter W and the vector potential A are a priori

independent quantities, so that a subsequent minimization of the free energy functional
3
F={dx f (21.2)

should be carried out using the variational principle applied with respect to both these
quantities separately. The result of such a procedure is the following set of two coupled
nonlinear differential equations!)-2), where A and ¥ are the dependent variables and the

spatial coordinates are the independent variables:
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and
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The constant solutions of equation (2.1.4) are easiest to find and they are, for T> T,

I¥)* =0, (2.1.5)

while, for T< T,
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when the vector potential is ignored in equation (2.1.4). This yields the scaling of n, as

n, < (T -T,). It then follows from equation (2.1.3) that

h
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where A g = (m*c?/ 4x(e*)’n,)"? is the characteristic LG penetration depth, which,
because of its dependence on n, =|J?, varies with temperature in a standard way!) as

Ag =|T- Tcl'm. Equation (2.1.7) describes an isotropic penetration depth, so that the

magnetic field h is exponentially damped to zero as it penetrates the sample.

Another easily tractable case is that of zero magnetic field. Defining a reduced

superconducting order parameter

A W
W —,
w_ (2.1.8)
reduces the problem in one dimension to solving the equation
2 2@{y A A3
__}..'___‘_i__lf___ + Y- (1p) =0. (2.1.9)
2m* |a} dx

This form introduces, in a natural way, the LG coherence length, § ¢ describing the
length over which spatial variation of the order parameter exists and is defined by

h2
2 ot - -1
(D=3 (T-T,) (2.1.10)




The combined presence of the order parameter ¥(x) and the vector potential A(X) makes
the problem much more difficuit to treat, but approximaie caicuiations have boei dOue in

the past1):8). An important characteristic quantity is the ratio of the two characteristic

lengths, i.c.,

(2.1.11)

Depending on the value of xig, superconductivity can be divided into two distinct
classes. For xj g < 1A/2 pure superconductors are designated type I, otherwise they are

designated type II ("dirty" superconductors).

It was shown long ago by Abrikosov®) that the LG equations of state for
superconductivity possess vortex solutions. Conservation laws governing the topological
charges, which are a measure of magnetic flux quantization in type II superconductors,
ensure their stability. Such vortices are two dimensional examples of solitons, which in
turn are often the solutions of nonlinear equations. All these factors strongly suggest that
an attempt should be made to solve the nonlinear LG equations of state in the presence of
a magnetic field without using a constant modulus and making use of the powerful

techniques which are now available for solving ronlinear equations.

In this chapter, we examine the LG equations for superconductors subjected to
external magnetic fields and/or trapped magnetic fields, going significantly beyond
previous lincarization attempts. Under special conditions (e.g., the immediate vicinity of
T = T,) exact solutions of these nonlinear equations will be found. These will be
subsequently used as a starting point for approximate calculations involving series
expansions. Another approach will be to postulate a special ansaze whereby nonlinear

coupled equations may be effectively separated and solved independently.



of state that result from the ininimization of the Landau - Ginzburg free energy
functional. The section also shows the relauionships between ke physical quantiics that
are of interest such as the magnetic field, the superconducting current density and the
superconducting drift velocity. In the third scction, three different sets of solutions are
found in one dimension at the critical temperature and then expanded below the critical
temperature. Also, in section IH, a numerical plot of the full equations of state is
presented so as to test the validity of this type of expansion. Section IV is basically an
extension of the work which has been done in the past, where the effects of the magnetic
field upon the superconducting charge are neglected. The fourth section is divided into
three parts, the first of which discusses the approximation and the trivial solutions for the
equations of state. The second part deals with a2 wealth of solutions, however, more
approximations are necessary except for one of the nontrivial solutions which can be
solved without further approximations. Even with these approximations, the solutions
which will be obtained are in good agreement with what one would expect. In the third
part, some exact solutions are found using only the initial approximation of neglecting the
effects of the magnetic field upon the superconducting charge. In section five, the focus
will be on quasi-two dimensional solutions. The method used to solve the equations of
state in this section will be the same as that in section III, an expansion about the critical
temperature. The section is broken into two parts, the first of which is called vortices. In
this part, only radial symmetry in cylindrical coordinates will be considered so as to
obtain nonlinear ordinary differential equations for the equations of state. Magnetic
vortex solutions for small radial distances will be found in contrast to past attempts which
only gave asymptotic solutions or solutions obtained from linearization of the equations
of state. Some very good results for two dimensional solutions will be obtained, showing
the interaction between the magnetic field and the superconducting charge density in a

more realistic system than the one dimensional solutions. The second part will use the



equations, however, it is necessary to introduce the approximation that small radial
disiances from the core (origin) are required. Again, some very interesting two
dimensional solutions will be found. The sixth section deals with an unique
approximation to simplify the coupled nonlinear partial differential equations.
Essentially, the dependent variables will be rescaled so as to be able to solve one of
dependent functions in terms of the other dependent function. This will leave only one
equation to solve, which will turn out to be the cubic nonlinear Klein - Gordon equation
in three dimensional space. Analytical solutions to this equation are discussed and their
meaning for the physical parameters. There are also three appendices: the first looks at
decoupling the two equations of state in such a way as to give more solutions for section
three. The second appendix lists the differential equations that the Jacobi elliptic
functions satisfy. The final appendix shows a couple of ways in which the two coupled

equations of state in one dimension can be decoupled exactly.
SECTION II: LG FREE ENERGY AND ITS MINIMIZATION

In the presence of a vector potential A, minimization of the free energy functional
with respect to both A and W leads to the coupled equations (2.1.3) and (2.1.4), which we
now intend to simplify. First, we represent the complex order parameier in the modulus

argument form:
¥ =1 exp(i)-

Equations (2.1.3) and (2.1.4) then become the following three coupled equations for the
real functions, the vector potential A, the order parameter envelope 1, and the order

parameter phase x:

&
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and
Ve {qz(:—:A - vx) } - 0. 2.2.3)

From equations (2.2.1) through (2.2.3) we can relate the vector potential A and the phase
x to the physical quantities that we are interested in, namely, the magnetic ticld h, the

superconducting current density j,, and the drift velocity of superconducting charges v
where we have used equation (2.2.1) to obtain the following relationship:

E*-A-V -m*cVxh —m"‘j_,—m“v
hc X= Zmhe* n, he*n, H ° @24

Now, if we suppose that [(e*/Ac)A - V] = u, which represents a scaled velocity field (see

equation (2.2.4)) of the superconducting charge density, then equations (2.2.1) through
(2.2.3) become

Vx(qu)+—£E-*l—nu 0, (2.2.5)
*a b
V%—n{z‘:z $ 2y +of}-o, 226)
and
ve[wu]-o0. (2.2.7)

Note that equation (2.2.7) represents a continuity equation for the superconducting
current density, and it is automatically satisfied by equation (2.2.5). To solve the

remaining two equations, (i.e., equations (2.2.5) and (2.2.6)) exactly is extremely



good approximation.
SECTION IIl: PROXIMITY OF THE CRITICAL TEMPERATURE

In this section we shall approach the magnetic field penetration problem described
by equations (2.2.5) and (2.2.6) by considering the temperature to be close to the critical
iemperature T,, so that the coefficient a is negligibly small. Thus our objective here will
be to establish whether there exist special types of charge distribution and magnetic field
patterns which are characteristic of the vicinity of the critical point. Since the

relationships under study may possess scale invariance at T = T, where a = 0, different

types of solutions are expected to occur at criticality, First, let us simplify the equations

by setting
a_zx::a’ -Z:Zb,mdy=i§l(;‘i—§i, (2.3.1)
so that equations (2.2.5) and (2.2.6) may be rewritten more compactly as
Vx(Vxu)+yn‘u=0, 2.3.2)
v -n(a+pn? +juf’)=0. (23.3)

Note that the LG coherence length &; g = Ia[lfz, so that in this section we are dealing

with a very large LG coherence length. Concentrating on the one dimensional case where
1n = n(x) and u = u(x), we immediately obtain that the x component of the scaled velocity

u, = 0 and that the remaining two components u  and u; are both proportional to some

function u. This then reduces the problem to the following system of coupled ordinary
differential equations (ODE's)
d%u

Gy @3.4)
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S =B ), (2.3.5)
It should be noted that when y = 28 > 0 and a < 0 or when y = 8, then equations (2.3.4)
and (2.3.5) are of the Pzainlevé-type. For a brief discussion of the Painlevé test, see
section I of chapter three and also the properties of Painlevé-type equations. Also,
references which give a more detailed discussion can be found there. As can been seen

by the constraints on the parameters, these cases are very specialized and so we will not

look for their solutions here.

We have made numerous attempts at solving these two coupled equations by
postulating that u be some a priori unknown function of n (see Appendix A). All these

attempts led to inconsistencies except when we assume a linear relationship between the

order parameter's envelope 1) and the scaled velocity u:

[l

n= Y-ﬁ. (2.3.6)

However, this demands that a = 0, i.e., it is valid only at the critical point T = T..
Furthermore, for the order parameter n and scaled velocity u 15 be real, we have to have y
> B, which implies the following constraint on b, namely,

2

b<2xlSm| ifme>0 (2.3.7)
S 2% — ,if m* 0. .

Looking for solutions at the critical temperature, we shall find three different sets
of solutions for equations (2.3.4) and (2.3.5) when a = 0. The first set of solutions that
was found is for the assumption given in equation (2.3.6). The other two sets were found
when one of the dependent variables was set to zero. It should be noted that these three

sets of solutions do not cover all possible solutions to equations (2.3.4) and (2.3.5) since



gives two. At this point we wish to digress and comment on the physical possibility of a
negative effective mass. In conventional studies of LG iree cneigics, a negative
coefficient of the gradient term has been customarily disallowed bccause of a seemingly
unbounded energy of the corresponding order parameter solutions. However, there exist
indications that such a conclusion may be premature. A number of arguments can be put
forward, indeed, to justify a physical relevance of the negative mass situation. First, as
outlined in reference 7, the elliptic cn solutions that arise from solving the coriesponding
LG equations are themselves not divergent. Second!0), a linear stability analysis shows
that these solutions are stable with respect to perturbations. The question of the lower
limit of the energy spectrum can be answered in a positive way by introducing a cutoff on
the wavelength of these periodic solutions due to inherent lattice periodicity. As a
continuum model, LG theory does not exhibit discrete transiational symmetries typical of
the underlying crystal structure. Thus a reintroduction of a natural period is fully justified
even if it is done by hand. The net result of such a procedure will be a restoration of the
lower bound of energy. Furthermore, a more elegant way of accomplishing the same
result can be obtained by continuing the free energy expansion in gradient terms beyond
the Ginzburg term | VW%, This procedure has been attempted beforell), and the inclusion
of |[VW¥* or (V2¥)?, in the free energy density, leads invariably to a desired stabilization
with the selection of a parti.alar wave vector (and thus periodicity) comresponding to a
functional minimum. It is interesting to note, in this context, that such terms arise
naturally in a first principles approach from a fundamental microscopic basis®. This,
therefore, leads us to admit both m* > 0 and m* < O as physically viable options. With
the requirements of equation (2.3.7) satisfied, the resultant equation for u takes the elliptic

form of;

du _yuw (2.3.8)



given by
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where T, and x, are arbitrary constants of integration. The period of this solution is

4K1/vN2)| v [”
ﬁo h'—BI ’

where K(1#/2) is the complete zlliptic integral of the first kind.

In order to extend the validity of the solution below T = T_, we bave carried out a

perturbation expansion in powers of a, which, when written in matrix notation, takes the

form

(:) “2“(:) (2.3.10)

where u, and m, are nth-order corrections to the scaled velocity u and the order
parameter envelope 1, which appears in equations (2.3.4) and (2.3.5). The zeroth, first,

and second order equations for this type of expansion are as follows:

d%u
ek A U (2.3.11)
dzno 2 2
o2 No(u; +BM.), (2.3.12)

2I.l
dx; =¥ (M, +2u,7)y), (2.3.13)
dz'rh 2 2

- no + 2‘rlououl + (uo + 3&"0)“1’ (2'3'14)

dx?
d’u, 2 2
axz Y[“o'h + 2Ny Uy + 21N, + nouz]’ (2.3.15)
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This perturbative procedure can be extended to higher orders and is very tedious but
algorithmic. It should be pointed out that all the nonlinearity is contained in the zeroth
order equations (2.3.11) and (2.3.12) and in higher orders, for example, equations (2.3.13)
and (2.3.14), they are all linear and their coefficients are dependent only on the solutions
of the lower order equations. The first order corrections for the solution in equation

(2.3.9) can be conveniently written as the following rapidly convergent series:
U)o 3( Co.0 ) ( €20 ) ( %) (2.3.17)
- + + , .
(nl) D= no {no Cl,n c3.n no cS,u
where m, is defined by

ful

Ly g (2.3.18)

and u, is given in equation (2.3.9). In equation (2.3.17) the constants C,, and c,, satisfy
the recurrence relationship i *he particular solution, which can be found in a
straightforward manner and ... other set of four constants satisfy the recurrence
rciationship for the homogeneous coupled equations. However, an easier way of solving

the uations for first order corrections is by changing the independent and dependent

variables, thus by letting:

y = cn® [ﬁo(x — Xo); ’;@E%l , (2.3.19)

u = uy(y), (2.3.20)

and



m = (v - By 12R(@y), (2.3.21)

along with equations (2.3.9) and (2.3.18), then our first order corrections (i.e. equations

(2.3.13) and (2.3.14)) become;

" 3_5y R
yd-yu, + Yu +514 i o, (2-3.22)
and
3-5y) Y+2, Y-8 y-B
1-y)R" + =——22R! R + = 0.
y(1-y)R" + 2 YTy M ay Nt Sy (2.3.23)

These two linear ODE’s can be decoupled by the following transformation; u; = T + S
and R =T - (1 - BA)S, which gives us;

- 28 - -
ya-ypys+3=Vg , B-¥g, __¥Y-B

-0
4 8y Bu,B-21)y" (23.29)
and
3-5y 3 y-B
1-y)T" + —=T +=T- = 0.
yA-NT +—==T"+2 0.6 277" (2.3.25)

Equations (2.3.24) and (2.3.25) are hypergeometric equations and their solutions are
found to be;

8 ’ ] ’2’4,

3,6 -2v) > 7|
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For the particular solutions given in equations (2.3.26) and (2.3.27), we had to let T —

y3/AT" and S — y3/4S°, and then we introduced a power series which leads to

hypergeometric recurrence relationships. Now combining equations (2.3.9), (2.3.26), and

(2.3.27) gives us the solutions for u and 1 to first order. Thus, the solutions for the

superconduciing charge density (ns = [¥[2) and the magnitude of the magnetic field h are;

n- S {1+ e [T+(%—1‘)S}+O(a2)} @328)

o Fict3 ’M(i—ﬁ {1 day>* [dT dS} ola 2)} (2.3.29)
e Y2(v-8) 0, |dy

where y is given by equation (2.3.19). If we ignore the homogeneous solutions to the

and

first order corrections (i.e. ¢1 = ¢z =c¢3 =c4 = 0) and we letx =X, +:—x- Y';F ,
Uo
An2 hmca [ Wl .
n=—-=2,and h= — , then equations (2.3.28) and (2.3.29) become;
Y-8 e \2(v-B)

-y B e 0 ) ()
7
4

(2-3.30)
g fy I=ZT+16B/y 7+/-7+16/y 3 ,y\H
ok 8 ’ 8 '2°37)
and
a(y -B)y>* 5 7 _ y-28
(2.3.31)
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and (2.3.31) are plotted in figures II-1 through II-3. Figure II-1 was plotted with a = 0
and over half a period (i.e. X going from 0 to 2 x[1/¥/2]). This figure shows the
physically correct picture of the magnetic field being phase shifted from the condensate
density by a quarter period. It is also clear from figure II-1 that the magnetic field has a
larger domain at which it is a maximum as compared to the condensate density. Figure
II-2 is a plot of equation (2.3.30) with a = 0 (the thin line) and the thick line corresponds
to i to first order. We see that with the dropping of the temperature, that the magnitude
increases at the centers of nucleation, and a pushing out into the regions that were in the
normal state. From figure II-3 we have plotted equation (2.3.31) with the thin line being
the zeroth order magnetic field and the thick line being the magnetic field to first order. It
should be noted, that for figures II-1 through II-3, the choice of a and § were arbitrary

and do not represent any real physical system.

0.5 1 1.5 2 2.5 3 3.5

Figure II-1: Plot of equations (2.3.30) and (2.3.31) to zeroth order in a with

the thin line corresponding to superconducting charge density and
the thick line corresponding to the magnetic field.
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e of the magnetic field penetration into the
superconducting sample in the regions of vanishing condensate density n,, whiie
complete expulsion of the magnetic field i occurs in regions saturated with the
superconducting order parameter. We see that the region over which the magnetic field is
a maximum stays unchanged as we start to drop the temperature, but the drop off to zero
becomes steeper giving the plot more of a rectangular form. On the other hand, the
change in the superconducting charge density is more dramatic than that of the magnetic
field. However, we do expect that the farther we are from the critical temperature, the
more the magnetic field will become a spike. Finally, it should be emphasized that the
correction terms revealed by equation (2.3.17) are premultiplied by a factor proportional

to (T —Tc) and therefore are very accurate in the immediate vicinity of the critical

temperature.

0.5 1 1.5 2 2.5 3 3.5

Figure II-2: Plot of the superconducting charge density as given by equation
(2.3.30) where the thin line corresponds to the zeroth order
solution and the thick line corresponds to the solution to first order
in a.
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Ve can, however, find limiting solutions

not unique and that other relationshins do exi
to the above equations which simplify the two nonlinear equations (2.3.11) and (2.3.12).
The first one applies to the case of weak effects due to the magnetic field penetration, and
hence we set u, = 0. Therefore, equations (2.3.12) through (2.3.14) become

d’n,

3
v 118 (2.3.32)
2
‘;;; =2y, (2.3.33)

and

(2.3.34)

PO 1 PRSI e

0 9.5 1 1.5 2

Figure II-3: Plot of the magnetic field as given by equation (2.3.31) where the
thin line corresponds to the zeroth order solution and the thick line
corresponds to the solution to first order in a.
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It is clear that the only nonsingular solution for equation (2.3.32) exists for § < 0 and is

given by equation (2.3.9) except with different coefficients;

N =7, cn(?lo(x —~ X, )\/ﬂ 7%} . (2-3.35)
If wc let
y = cn*! T (x - xo B L) (2-3.36)
\ NP2 )

in a similar manner to equation (2.3.19) then our first order equatioas (i.e. equatjons

(2.3.33) and (2.3.34)) become;

y(1- y)uln +3 —45y ul' + -8%‘11 =0 (23.37)
and

ya-ym, +3 —45" n + %m + 55?;'_"" =0. (2-3.38)

The solutions to equations (2.3.37) and (2.3.38) are easily found to be (see equations

(2.3.24) and (2.3.25)):
" = c, 21,111 ++f1+8y /6’1-,/1+8v /lS;_3_;y\ . 2.3.39)
8 8 2
(3+1+8y /P 3-+/1+8y/B 5
1/4 F .
Gy oI Py ’ Py ’4’)'}
and
y>* 1.7 1/4 15
vy zFl(l,z;;;y) +Cyfl-y +C,y zFl(L—z;;;Y)- (2-3.40)

Thus, our solutions for the superconducting charge density ns and the magnetic field h to

first order are;
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b ety [Bli=y) [-2eyt [ (9+41+5 9-4fi+§ 7 )

e 2 3 0 8 T s ’4”')+
F/3+ 1+5 3-1+% 5\ 21-1)y
Ca2924 3 > 8 ,Z y) +'——5— (2.3.41)
/11+\/1+‘;;' 11— 1+p 9 V|
2 L 3Z:YJ o »
and
2 7
n, = M.y + —= ayzF (1, y)+2c3anoy“41/1 y +
3P 4’4 (2.3.42)
20,07y "2 P - 7523y

where y is given by equation (2.3.36). If we make a change to the dependent and
independent variables in a similar manner as for the previous solutions, then we let

n =07 and x = X, +:7Xi;l. In figure II-4, we have plotted equations {2.3.42) and
o

(2.3.41) with these substitntions forfi and X. The value of B was taken to be the same #s

that used in figures II-1 through II-3. In figure II-4, we have chosen c; through c4 so that

fi vanishes when h is a maximum and h vanishes when fi is a maximum.

The second limiting case is for large magnetic field penetration into the sampic,

and hence in this case we take 1, = O (normal phase) as the starting point, so that

equations (2.3.11), (2.3.13), (2.3.14), (2.3.15), and (2.3.16) become

d%u
2 =0, 2.3.43
dx2 ( )
d?u,
=0, 2.3.44
dx2 ( )
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d2
.a_x'_;!_ = u’n,, (2.3.45)
d%u
T~ o (2.3.46)
and
d*n, 2
d=? Th[l + 2“0“1] + UgT),- (2.3.47)

The solutions to these equations are straightforward and can be written down

immediately as

u, =Cc_X+c, (2.3.48)
U, = C,X +Cy, (2.3.49)
u’ ul 2.3.50
= |“o| C4I§ z:'; + csK§ ’2—6;' s (2.3.50)
and
Uy = CeX +¢; + ¥ fdy [ dz uy(2mi (@) (2.3.51)

We have not bothered to write down the solution for 1) since we are only interested in
the solution for the magnetic field h and the superconducting charge density ng to second
order in a and 132 will not contribute to the solution until the a3 term in the solution for
the superconducting charge density. These results clearly show that the magnetic field is
constant up to first order and does not start to fluctuate spatially until second order. This
follows from the fact that h is proportional to a spatial derivative of u and u is a linear

function of x. Therefore, c, is proportional to the critical magnetic field h_. Since the

modified Bessel functions are monotonically decreasing and increasing functions this
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leads to either a clustering of electrons at the boundaries (i.e. surface superconductivity)

or a clustering of electrons at the core. Thus we can write the solutions for the
superconducting charge density and the magnetic field as;

2

2 2
n =a?uglc,l, o +c.K o (2.3.52)
#\ 2¢, *\ 2¢,
and
_ 2, hc 2
b =h, + o’y — fdy u,(NEG), (2.3.53)

. hic
where hg is defined as; h, = ?{co +ac, + azcﬁ} .

0.5

Figure I1-4: Plot of the superconducting charge density represented by the thin
line and the magnetic field represented by the thick line, as given
by equations (2.3.42) and (2.3.41) respectively.

The solutions given by equations (2.3.52) and (2.3.53) are plotted in figure II-5 for an

arbitrary choice of the parameters and the boundary conditions. For figure II-5, we define
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- h CoX+C
h = — and X = —2——xt
hc vZCO

along the boundaries with a -mall dip in the magnetic field also occurring at the

. As can be seen from figure [I-5, the superconducting charge is

boundaries.

To sumniarize the results of this section, close to the critical temperature T,

perturbative approaches starting from particular nonlinear solutions (and not linearization
schemes) appear o be quite successful as they lead to physically plausible behavior of the
magnetic field penetration into the regions free of the superconducting charges and,
conversely, field expulsion in the regions occupied by superconducting charges. We
were able to obtain three exact solutions valid at the critical temperature, two of which
were in the form of periodically modulated elliptic functions with the magnetic field and
the superconducting charge density phase shifted. The third solution describes surface

superconductivity with the bulk of the sample residing in the normal phase.

b |

0.8
0.6
0.4
0.2
...‘4 _‘2 0 2 4 *

Figure II-5: Plot of the superconducting charge density represented by the thin
line and the magnetic field represented by the thick line, as given
by equations (2.3.52) and (2.3.53) respectively.
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The first two pericdic solutions appear, on a macroscopic scale, to be in a ncrmal

phase if the net effect was observed at the critical temperature (@ = 0). As the
temperature is lowered below the critical temperature, a gradual overlap between
neighboring maxima develops as a result of firsi and higher order corrections. This may
not be clear from figures II-2 through II-4, since for these figures we either ignored the
homogeneous solution for the first order corrections (see figures II-2 and II-3) or we had
chosen the boundary condition so that the superconducting charge density vanished when
the magnetic field was a maximum. If we had not done this we would obtain an overlap
between the nucleation centers of the superconducting charge. For example, in equation
(2.3.27), we have the term c3vI-y whick for c3 = 0 and a = O, then the superconducting
charge density would be nonzero for all space (within the boundaries). Another
interesting effect caused by the homogeneous solutions for the first order corrections in
equations (2.3.26) and (2.3.27) is that depending on the boundary conditions, the
magnetic field and the superconducting charge density can be asymmetricai. To illustrate
this, we shall show a numerical plot of this effect as shown in figure II-6 and also, show
the individual contributions of each of the homogeneous solutions as given in equations
(2.3.26) and (2.3.27) by figures I-7 and II-8. For figure II-6, we started with equations
(2.3.4) and (2.3.5) and then rewrote them in terms of the magnetic field h and the
superconducting charge density ns, (see equations (2.4.1) and (2.4.2) in the next section,)
and after rescaling the dependent and indepeadent variables we numerically plotted the
full equations. In figure II-6, we see the asymmetrical peaks in the magnetic field and the
superconducting charge density, but periodic symmeiry is also evident in the figure. In
figures II-7 and II-8, we see that the c1 term and the c3 term are the ones that contribute to
making the superconducting charge desasity nonzero throughout the sample, but it is the
¢ and c4 terms that generate the asymmetrical features as shows: 5y the numerical plot in

figure II-6. Considering the fact that equations (2.3.26) and (2.3.27) are only to first
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order and the fact that they can pr ‘uce figure II-6 quite closely, which is the numerical

plot of the full equations, shows the accuracy of our expansion.

Figure II-6: Numerical plot of equations (2.4.1) and (2.4.2) for the magnetic
field (thick line) and the charge density (thin line).

Figure II-7: Plot of equation (2.3.26), where the thick line represents the ¢ term
and the thin line represents the c;.



Figure II-8: Plot of equation (2.3.27), where the thick line represents the c4 term

and the thin line represents the c3 term, while we have ignored the
nonhomogeneous solutic.

SECTION IV: NEGLECTING THE EFFECTS OF THE MAGNETIC FIELD
UPON THE SUPERCONDUCTING CHARGE DENSITY

A. General Comments

The approximate treatment of the penetration depth problem in this section
consists in making use of the exact expressions for ihe order parameter envelope 1)
obtained in the absence of the magnetic field. This means, physically, that either the
current {magnetic field) is very weak or that the superconducting phase is very strongly
developed so that it is oniv slightly affected by the presence of a moderate strength
current (field). For this we shall wiite the equations (2.2.1) and (2.2.2) in terms of the
magnetic fieid h and superconducting caarge density n,:

V’h Vn x(Vxh)
n 2

~yh=0 (2.4.1)



and

- 47e* hn,

2
Vin _ %9_._)2— _2n, {50' ot (E‘E(_V_"_h_)) } -0, 2.4.2)

where a = Zm*a/ﬁz, B = Zm*b/ftz, and y = 4Jt(e*)2/(m*c2). The following Maxwell's

equation must be satisfied as well:
Veh=0. (2.4.3)

Under the above approximation, equation (2.3.3) becomes

Vn, _(ny 2n_{a +8n, + { m* 3. } }- 0 (249

2n e“hn,

and is independent of the imagnetic field with the superconducting current density j,
considered to be either zero or a nonzero constant to zeroth order. In the first instance we
shall discuss the influence of the constant current density j, on the constant solutions.
This means that the superconducting charge density n, = 1)? saussfies the cubic equation

3 2 m* . ?
Bn> +an’ +{ J'} =0. (2.4.5)

e*h

Note that if j2 < jZ = —8(e*)?a> / (27m* b?), then we have three real and unequal roots in
equation (2.4.5), whereas if j° = j2, then all the roots are real and two of the roois are
equal. Otherwise, if jZ > j2, then there is only one real roct. The equality given above
gives a possible criterion for the critical current and shows that the sgu:are of the critical
curreni is proportional to the cube power of the critical temperature; i.e., j, scales as
(T - T,.)*?, which is a standard relationship. For a more detailed discussion of this
derivation, the reader is referred to reference 7. In the limit of j, — 0, we recover the

standard resuit for n,(T) as outlined in the Introduction of this chapter.
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B. Approximate Treatment
When constant solutions are physically inappropriate, for example, because of the
very short coherence length, as is the case with high temperature superconductors, we
need to look at the nonconstant solutions and to do this we shall assume that h « h(x)y
and n, = n,(x) for convenience, where the superconducting charge density n_ is taken to

be the solution of the equation?) (2.4.4), so that equation (2.4.1) becomes

dzhaldu,dh+hn ” 46
dx* n, dx dx V- (2.4.6)

Equation (2.4.6) can be rewritten as

d*h +h
ds2 -'n_'s (2-4.7)

where an independent variable has been introduced as s = f dxn, and n, is one of the

solutions of equation (2.4.4) as given in the paper by Tuszyiski and Dixon?). Looking at
equation (2.4.7) we see that the effective mass m* under these approximations must be
greater than zero since -y/ng acts like an cffective potential in a classical Hamiltonian with
zero energy and we want the magnetic field and superconducting charge to be mutually
repulsive so that we need y > 0, which implies that m* > 0. This means that for scme of
the solutions presented later in this section the nonlinearity coefficient b will necessarily
be taken to be negative. There are two cases that have been studied in that paper?), and
they are: (i) when the current is zero and (ii) when it is a nonzero constant. However, we
shall treat these conditions on the current as being approximate, which can be further
improved by perturbative methods. In the following we use am, sn, cn, and dn to denote
the Jacobian elliptic functions. Appendix B lists the differential equations satisfied by
these functions. Also, we denote the elliptic integral of the first kind by K and the elliptic

integral of the second kind by E14). The nonsingular solutions that were found?)
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(excluding the constant solutions) will be discussed in conjunction with Table I-1. We

have represented the charge density as

n, = A +BG(Z,k), (2.4.8)

where the constants A and B depend on the particular case given in Table II-1 and the
reduced spatial variable Z is also given in Table II-1. The Jacobi modulus k is related to

the form of the quartic polynomial

2a
O - - =+ ko, (2.4.9)

where k, is an integration constant.

TABLE II-1. Superconducting charge density forms corresponding to the nonsingular
solutions of equation (2.4.4) for a variety of conditions.

Case A B G y/ K2 8 J, Conditions
1 o m s B m >00  nm<m,
n2(x_xo E n,

2 2 2 <0 O eC
2 0 m cn ]“gl 2 2 n; n,
X—X + -
( o 2(711 |712| ) 7]12 ‘*'Iﬂziz
2 2 2 <0 O
3 0 M do >N,
' (x_xo)rh\ﬂ% 1- 12-}
L
4 € C;—cC, sn’ B c,-c; >0 =0 ¢ >c,zn>c,
(x'-xo (01-'%) 01—03

2

- 0 =0
5 ¢ c,—c, sa’ _ [ c—-c, < C,>n=Cy>C4
(x xo)\, 2(03 1) C, —Cs
6 ¢ c,-c, tanh? ! >0 #0 ¢ =c,zn>c
1 ©276 (x - X, _g_(cz_cl) 3=




34
The coefficient ¢, c,, and ¢, appearing in Table II-1 are defined through the cubic

polynomial;

* 322
m J,

2a
(8, = &, Xa, = ¢;)®, = &) = ol + {007 +kan, — s

(2.4.10)
The first three solutions in Tabte II-1 are valid for the case with no superconducting
currents and the rest have a nonzero constant current. The first five solutions in Table -
1 are oscillatory, and their period of spatial oscillation is uniquely determined by the

value k. In the limit when k — 1, the period tends to infinity and cases 2 atx’ 3 become

sech2 whereas cases 1, 4, and 5 go into case 6 with an appropriate change of constants.

In equation (2.4.7) we have defined an independent variable s as an indefinite

space integral over the superconducting charge density n,. Table II-2 lists the results of

this type of integration for the cases given in Table II-1. Note that the variable Z is

expressed in terms of n,, where A, A;, and A, are given in columns for each case.

TABLE II-2. Expressions for s = f dxng which were obtained using the results for ng
from Table II-1.

Case s Ao Ay Az Z L2
1 Atllg'z (F1Z;k]- E[Z;k]) o m nz % s :l %‘h’—
) A;:; ~(E[Z:k]- G-KDHFZ:k) O MW %{nlz +ln2|2] cos™ Tn\!,' 0 :llflzi
3 %E(Z; k) o W m I%' Sin_l\[gf’& —-E%

4 A, [(, x2A, R— €3 Cp=C3 ,g o — sin! [BamAo L2753
Azkz{(l' A )Hz’k] E[Z’k]} (c1-¢3) A € -C3

2
5 same as 4 c "Bl; int [BmA, 9102

6 A +A, l1+4Z] A g o<, |[B D -A,
— -1} -1z S(c2-)
24, [1-vZ Az‘/_ 2 A

A ol
7 “1\Nh-Z 0 m P —£ 1
Az Hnl 1
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The squared elliptic modulus k? is also provided for each solution in Table II-2 except in
case 6, where k is 1 when taking the limit in cases 1, 4, and 5 given in Table II-1. The

expressions for s in Table II-2 give us an implicit form for n, in terms of s which we need

to substitute into equation (2.4.7). It should be noted that in case 3 in Table II-2 when k

— 0, we obtain the special case of n, equal to -a/b, which is our standard solution as

outlined in the introduction of this chapter. For cases 1, 2, 4, and 5 in Table II-1 when k
— 0, we obtain trigonometric functions instead of elliptic functions, however, the

coefficient vanishes, which means that ng goes to a constant or to zero. When k — 1,

cases 1, 4, and 5 degenerate into the form given in case 6 with appropriate changes in the

constants A_, A,, and A,. Similarly, examples 2 and 3, in the limit k — 1, transform

into the situation as given in case 7.

The only nontrivial solution that can be inverted to obtain n, as a function of s, in

equation (2.4.7), without approximations, is given by case 7 in Table II-2, which results

in;

R, =A - Q—%:iz, (2.4.11)
so that equation (Z.4.7) becomes

d’h ___vAb (2.4.12)

ds® A2 -A%?

Equation (2.4.12) is solved in terms of the variable s, which we then convert back to our

original independent variablex, so that we cbtain;

h = sech(A,x){ AP} Jtanh(A %)} + BQ} |tanh(A,x)}, 2.4.13)
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2

1 1

where p = —E:t z-y{%} - Also, A and B are constants satisfying the boundary
2

conditions. In equation (2.4.13), P; and Q denote the associated Legendre functions of

the first and second kind respectively. This solution corresponds to the limit of k — 1 in

both cases 2 and 3 of Table II-1. In cases 2 and 3 when k —> 1, we have N2 = 0 and the

other constant from equation (2.4.9) is 1 =V-2a/b along with k2 = 0 in equation (2.4.9).

The signs of our three parameters in this case are: a > 0, b < 0, and m* > 0. Writing our

solutions for the superconducting charge density ns and the magnetic field h in terms of

our original parameters, we obtain;

n, = :?-sechz((x - xo)@) (2419

and

+

h= sech((x - xo)ﬁi’?){A P! tanh((x - xo)\/—zfn:)
tanh((x - xo)-\/?) }

2
¢ 3
where p = —-% * \l% - -7—523( :;*hc) . Pnysically, we can interpret this sech like solution

(2.4.15)
BQ,

=4

as indicating a localized cluster of superconducting electrons along the x axis. It can be
noted that this may be a picture describing a two dimensional superconductor. The effect
of the Legendre function modulation on the sech "bump" is to decrease markedly its

amplitude in the region where the superconducting order parameter is a maximum. If we

A

let n, = —

and x = X + then in figure I1-9 we have plotted equations (2.4.14)

2am*

and (2.4.15) using X, fi, and h. Figure II-9 clearly shows the nucleation of the
superconducting charge density. The constants A and B were chosen so that the magnetic

field h vanishes at X = 0 for a specific u which we have chosen to be -1/4.
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Figure II-9: Plot of the superconducting charge density represented by the thin
line and the magnetic field represented by the thick line, as given
by equations (2.4.14) and (2.4.15) respectively.

Next we wish to look at the other cases and siuce they can not be inverted exactly,

we will approximate the relationship between n, and s for small values of the
superconducting charge density n,. The first case we consider is case 6 from Table II-2,
here we obtain, approximately,

2

A,,+A,(-A-ﬁ) Lif Ay =0,
- Ao/ (2.4.16)
’ 3As .
Al(—) Lif Ay = 0.
Al

The solution of equation (2.4.7) in this instance takes the form

’ Agq® J,,;fh\ Jlf;él\ A
e A, {blP..Uq Ao)+b2Qqu Ao)} »if Ay =0, @417

laf"*[b51,/.(89%) + b,K,,,(59%)] ,if Ag =0,



(98]
co

where I, and K, , refer to modified Bessel functions and

YA,
4 Ag > (2.4.18)

q = tanh(Ax), and §° =

2
Withp.=—-1—= l+ 20A, .
2 4 A

Now, we wish to write the solution in terms of our original parameters and to do

this we must look at each case that is applicable separately. That is we need to look at
cases 1, 4, 5, and 6 in Table II-1 with k — 1 in cases 1, 4, and 5. Starting with case 1 in
Table II-1 (with k — 1), we obtain the following constraints on the parameters: a< 0, b >

G, m* > 0, and js = O, so that the superconducting charge density ng and the magnetic field

h become;

n, = :gaqz (2.4.19)
and
h = |q|3'2[b31 ‘}(&12) + b4K%(5q2 )]’ (2.4.20)

— 2
[-am* v-am*
where q = tanh{(x - xo) 7 } and 82 = %{ 'R } . By introducing x = ——;m—(x-xo)

m*c
and fi = -bng/a, we can plot equations (2.4.19) and (2.4.20) in figure I1-10 for an arbitrary
choice of boundary ccnditions. The solutions given by equations (2.4.19) and (2.4.20)
show the coherence length and penetration depth quite clearly. We see that the coherence
length is given by E = £ (-am*)"1/2 which is V2 larger than the standard definition for the
coherence length as discussed in section I. The penetration depth on the other hand is
proportional to the inverse of 6. The larger & becomes the faster the magnetic field drops
to zero (see figure II-10), but since O is a dimensionless parameter, it is probably

proportional to the ratio of the coherence length and the penetration depth. If this ratio is
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exactly equal to d then the penetration depth A is E/5 or (bm*c2/(2n(e*)?|a|))!/2, which is

V2 times larger than the penetration depth that was defined in section I and crresponds

to the V2 that the coherence length is larger.

1

Figure II-10: Plot of the superconducting charge density represented by the thin
line and the magnetic ficld represented by the thick line, as given
by equations (2.4.19) and (2.4.20) respectively.

For case 4 from Table II-1, it is equivalent to case 6 from Table II-1 whenk — 1
and with the change c; <> c3. In this situation the parameters satisfy the following
inequalities; a < 0, b > 0, and m* > 0. We also obtain a relationship a relationship
between the current and the integration constant kz which is;

2(c"‘)2 3/2

:2 3 2 2 2

i -m[& - 9ab’k, - (42 - 3b%k, ) }

By demanding js real and ns > O, we obtain the inequality 1 < (b/a)?k2 < 4/3. The
equality 4/3 leads to ng being a constant which is not of much interest and the equality of

1 leads to the same solutions as given by case 1 of Table II-1 and thus are given by
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equations (2.4.19) and (2.4.20). Recall also figure I1-10 which plots this set of solutions

and the currext js is zero. For kp between these values, the current js is real and ng is
positive and real, however, the solution for the magnitude of the magnetic field, i.e. the
associated Legendre polynomials have pure imaginary arguments and thus are not
allowed. Thus, the only solutions of interest is when k2 = (a/b)? and the solutions are

given by equations (2.4.19) and (2.4.20).

We have one last case to look at and that is case 5 when k — 1. For this case, our
parameters satisfy the following inequalities; a > 0, b < 0, and m* > 9. The
superconducting current js has the same form as given just above, which means that it is
real only for kp = 0 which gives js =0. Upon substitution of these values into the

solutions for ng and h, we obtain equations (2.4.14) and (2.4.15) as our solutions with the

2
only change being the value of p = —% * \/—i- + %{?::Z} ,» with the corresponding plot

of the solutions given by figure II-9. This concludes the limiting cases for k — 0 and 1,

however, as of yet we have not done an analysis for arbitrary k.
C. Exact solutions of equation (2.4.7)

In order to generate solutions of equation (2-4.7), we first substitute n, = n)* in

equation (2.4.4). When this equation describes a one dimensional situation, it can then be

integrated once and rewritten in terms of n, again to yield

‘ 2 -2 )
(%3'-) - 4nf{a + Ezg'- - —J%J\ +4b_n,, (2.4.21)
x £ ]

where j? is defined by j? =(m*j, /he*)’. Differentiating equation (2.4.21) once

produces

d’n,
i n,(4a+38n,) + 2b,. (2.4.22)
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We will consider the case where b, = 0 for convenience and the magnetic field h is along

the z axis, so that h = h(n,)Z. Under these circumstances, equation (2.4.1) then becomes:

=2 2 :2
n? + 2% 52 -ﬂ‘-’-lii—l;+ o, 2 ][ dh _ Y8, .o. (2.4.23)
B B jdn’ |2 Pnfdn, 2B

Equation (2.4.23) can be solved exactly for two special cases and also the recurrence

relationships for the general case will be given below.

1: B = j, = 0; no currents or cubic nonlinearity

The magnetic field for this situation takes the following form when a > 0:

h = h_+/n, {do Iy ”% +d,K, ”Z } (2.4.24)

Here, h_,d_,and d, are constants and I, and K, are modified Bessel functions.
Although K, diverges near the origin, the 1/n, prefactor ensures that the solutions are
nonsingular. The case when a < 0 leads to imaginary values of n, and thus was dropped

as unphysical. The solution for the superconducting charge density ns, from equation

(2.4.21) is;
n, = exp[=2va(x - x,)} (2.4.25)

Figure II-11 illustrates the form of the solutions as given by equations (2.4.24) and
(2.4.25). Again, we see that (o)"1/2 is proportional to the coherence length :n agreement
with the definition in section I and from equation (2.4.24) we see that the penetration
depth is proportional to (y/a)-1/2 which has the same temperature dependence as the

penetration depth as given in section L
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Figure II-11: Piot of the magnetic field represented by the thick line and the
superconducting charge density represented by the thin line, as
given by equations (2.4.24) and (2.4.25) respectively.

2: j, = 0; no currents

Tor this case, equation (2.4.23) becomes

g 2
nln +22|d0 o, dh yh_, (2.4.26)
T+ g [an? T 2dn, 2

On making the substitutions h = -(2a/)q @ andn, = -(2a/B)q in equation (2.4.26), we
find

d’w Sq\dew 1y _
q(]'_q)dq2+(2'2)dq m{z zﬁ} 0. (2.4.27)

Equation (2.4.27) is an example of Gauss' hypergeometric equation, the solution of which

is
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YC, 3 Y 1 3 Y 1 L8
a l - F - e Ty . T —"",
W= {C°+Zﬁ( nlq] )} 1(4+\l2[3+16 2 JZB 1659 "
yo [lim 9 + + —-—+—— l— 1 12+s3+sq
2ﬁs—»—1as 16" 4

Thus, our solutions for the superconducting charge density and the magnetic field are as

(2.4.28)

follows:

n, - 224 (2.4.29)
g

and

—20q 3 lim 4
h = —,= ;2
B {c" ( \j 6’4 d 16 q) A 1as

(2.4.30)
. 3, L L
{(s+1)q ’FZ(LS+Z+\/25+16’S \/;ﬁ+16 s+1’s+2q)}}
where
q- sechz[(x-xo)\/al ifa>0and <O. (2.4.31)
sec’{(x—x,W=a]if o <Oand§ >0

In the special case wiere the cuily bracket in equation (2.4.27) vanishes or

2

b= 2::{ het } , (2.4.32)

m*c

the solution for the magnetic field h, as given by equation (2.4.30), reduces to the form;

- dI(\/E(x ~Xo)+ sinh -Zdi(x ~ x°)]), if >0

- =204 | (2.4.33)

do + d{ﬁ(x ~x,)+ Siu{zv’:i(x — %o ]) if <0

.
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If we introduce X = \/—(;(x-xo) and fi = q, then plotting equations (2.4.29) and (2.4.33) for

a > 0, we obtain figure II-12. We have plotted equation (2.4.33) instead of equation
(2.4.30) since the important term has the coefficient ¢ and is very difficult to obtain a
closed form expression. However as can be seen from figure II-12, equation (2.4.33) is a
good substitute even though it is for a specific value of b. It is interesting to note that the
magnetic field has an initial hump at X =~ 1.25 and then decays to its asymptotic value as &
— oo. The hump is due to the expulsion of the field at the origin and the field is

circumventing the region at the core.

1.2}

Figure II-12: Plot of the superconducting charge density represented by the thin
line and the magnetic field represented by the thick line, as given

by equations (2.4.29) and (2.4.33) respectively, for a >0 and <
0.

3: The general case

For this situation we use a power series solution for the magnetic field h, given
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on

h=AQ*+Aq*+ Z(Aqu +B, )g*, (2.4.34)

where the recurrence formulas for the Ax’s and By’s are given by;

e, {6-3/2+5k/2-k%} e (k1)
A - 3 k-3t Ze o A t
J k(k + 2) ii(k+ 2)
by(k + 1)k —1/2) (2-4-35)
= A, ., k=3
4i7k(k + 2)
and
e {6-21/2+13k/2-k? -
. ™ u{ .2/ } Bk-3 + E_“(§_3)Bk_2 +
h k(k - 2) K
by(k — 1)k = 5/2) (2-4.36)
> B,,, k=3 ,
4j%k(k - 2)

bA,
127

2
where Ag and B» are arbitrary, A = , Az = éi’—{eu + 3b; }, and Bg =B1 =0.

A 2562

The parameters and the independent variable are related to those given at the beginning of
the section as follows: eg =1 ifa>0and gg =-1ifx <0, d =y/(28), by = -ZBbosa(a)'Z,
y =V |d] x, and ng = -2aq(y)/p where q(y) saiisfies the following first order differential

equation;
(q') = 4e.q*(1~ q) + byq - 4. (2.4.37)

As can be seen, the recursion relationships given by equations (2.4.35) and
(2.4.36) do not apply when the current is zero and so when the current is zero, the power

series solution and the recursion relationships become;

«©

6e_A
h= Bo + Aoq312 _ __#)_qsn + Z(Aquz + Bk)qk, (2.4.38)
1 -
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ae (k2 -3k/2+1/2-8)A,_, - (kK* -1/ 1A, )

A -
. bk(k +3/2)

k=2, (2.4.39)

and

B, - ae,{(k? -9k /2 +5-8)B, , - (k—1)(k - 2)B,..}

. (2.4.40)
bk(k-3/2) k=2

Comparing equations (2.4.35) and (2.4.36) with equations (2.4.39) and (2.4.40), we see
that there is no continuous way in which to go from a constant current to a zero current.

This is also true for b; when the current is zero but not when the current is a nonzero

constant.

In all three cases, the region of validity of the obtained solutions must be
determined by first checking that they indeed satisfy equation (2.4.21) and second by
finding the parameter ranges for which the Maxwell equation j = (¢/4x)V x h holds, i.c.,

where h' = (4:/c)j, ~ constant and in cases (i) and (ii) the constant is identically zero.

This is 2lso true for part B.

To summarize the results of this section, a number of interesting resuits were
obtained based on the assumption that the magnetic ficld may have a relatively small
influence on the order parameter, provided h is small enough. An approximate treatment
was presented where a linear ODE for the magnetic field was derived with a new
independent variable representing an integral transform of the superconducting charge
density. Using order parameter patterns found earlier in reference 7, in the absence of
magnetic fields, analytical forms for the reduced variable s and the effective potential in
the equation for the magnetic field were obtained. In several special cases, closed form
results for the magnetic field were derived while the remaining cases are tractable

numerically. In section IV C an analysis was provided which relies on particular exact
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solutions for superconducting charge density n,, and the resultant forms for the magnetic

field h were listed for two special cases. A solution in the general case was also given in
the form of a power series and its recursion relationships. Also, in this section, the
penetration depth and tl.e coherence length that were given in section I come out quite
naturally. This is not surprising since previous work also ignored the effects of the
magnetic field upon the superconducting charge density, but they then went on to

linearize or consider the superconducting charge density a constant.
SECTION V: TWO DIMENSIONS; VORTICES AND SPIRALS
A. Vortices

In part A of this section we shall Iook at the equations in cylindrical coordinates,
but shall assume that all dependent variables are functions of only the radial component

and that the scaled velocity is given by u =~ u(r)(f:, so that equations (2.2.5) and (2.2.6)

become
d [1d(ru) 2
SSELCOHNTN @5
1d/ dn
?EF("&}_) -n(a+pn’+u?) =0. (2.5.2)

If we let u = f/r, n = g/r, and 12 = R, then our equations become;

d*f  yg’f

=i, (2.5.3)
dz

£ ke an o) es

Now, if we consider the temperature to be close to the critical temperature T = T_, so that

we can again use the procedure outlined in section III and assume that the function f and

g can be expanded in the power series



(;) - 2“(;) (2.5.5)

then equations (2.5.3) and (2.5.4) become, up to second order,

d’f,  ygif,

dR? ~ 4RZ’ &9

d2 o go 2 2

dR2 - "4—R—2(f° -1+ ﬁgo)’ (2'5'7)

d?f

e 4}'{2 [82, + 2fog,8, ) (25.8)

g _ & Qff, +R)+-2L_(f2_14 38g%) (2.5.9)

dR? " 4R? e 4R®"° > '

d’f Y

EE% =- Zl'{—z{fo[Zgogz + gf] +2f,g,8, + fzgg}’ (2.5.10)
and

d2 .

52 Rgzz - _4gR°2 2 £,+£2) + z—%;(ZfofﬁRH}Bgogl) + 4g1§2 (£3-1438g2). (2.5.11)

There are two simple sets of solutions which can be extracted from equations (2.5.6) and
(2.5.7). The first set is obtained by setting f, = 0 and then calculating the corresponding
8, and subsequent higher order corrections in f and g. The second set is found by

assuming that g, = O and repeating the above procedure for f, and higher order

corrections in f and g, i.e., in equations (2.5.7) through (2.5.11).

In the first case, i.c. setting f_ = 0, equations (2.5.7) through (2.5.11) become

d2 {+] O

dlfz - fRz B2 -1), (2.5.12)
d*f

ol @19
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d’g _ 8 , -1
ARZ ~ 4R 4R2 ~=-(3pg> - 1), (2.5.149)
d?f
O %Rz(ﬂlgogl +£,80), (2.5.15)
and
d2
2.5 Rz (R +3g.g, 2-1). (2.5.16)

T O

To satisfy equation (2.5.12) we can use two constant solutions for g, as follows: g, =0

and g, =1/ JE . Choosing g, = 0, we obtain the solutions for the first order corrections,

since f, =Oand g, = -i—l%lz-, in a straightforward manner as follows:

f,=cR+c (2.5.17)
and

g: = VR[c, In(R) +c,]. (2.5.18)

As a result, we can calculate the corresponding order parameter 1} and the scaled velocity

u, recalling that R=r2, as follows;

n- % - of2¢, In(r) + ¢, (2.5.19)
and

- % - 2eor® +c,] (2.5.20)

Thus, our solutions in terms of the magnetic field h and the superconducting charge
density ng are;

e* df 2e*c.a

h - ——
hcerdr hc (2.5.21)
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and

n, = (%) 2012[2c2 In(r) + c,]a. (2.5.22)

In order to justify physically the coexistence of a constant magnetic field with the order

parameter field, n) in equation (2.5.19), it is necessary to demand that the radius is near r

=~ exp[-c3i. - 22)] or else we need to set c; = 0 and cg =~ O so that we obtain magnetic

expulsion by the superconducting charge.

The other constant solution for gg is (8)-1/2 and substituting this into equations

(2.5.13) and (2.5.14) we obtain;

d’f, Y
= ——1 .5.23
dR2 46R2 1 (2 2 )
and
d281 1 &
- . 2.5.24
dR®> ~ 4JBR ' 2RZ ( )

These equations have the solutions;

£, = cRUVTTAY2Z | gl-ETR)2 (2.5.25)

and

1+ R
g, = CzR( Bz caR(l—»/?)/z - 2.526)

Thus, the magnetic ficld h and the superconducting charge density ng to first order are;

herdr  Fc Vi /B

L. —qi{co(uy’l-» Y /I3)r""""“'1 + c‘(l_ ity /B)} (2.5.27)

and
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n, - (—%—)2 - L%:ﬂ + %%{czr‘ﬁ“1 + -l-_l%ﬁ-} (2.5.28)
It can be seen from equations (2.5.27) and (2.5.28) that the general solution is divergent
at both the origin and at infinity and thus we need specific boundary conditions so as to
elimipate the divergent terms. The singularities at the origin do not really exist and
would be eliminated by taking the full solutions for the superconducting charge density
and the magnetic field into account and just not to order a. The solutions given by
equations (2.5.27) and (2.5.28) are plotted in figure II-13, where we have chosen an

arbitrary set of boundary conditions.

1»

Figure II-13: Piot of the magnetic field represented by the thick line and the
sunerconducting charge density represented by the thin line, as
given by equations (2.5.27) and (2.5.28) respectively.

In order to obtain nonconstant charge and field distributions, f_, remaining zero,
we can reanalyze the system of equations {2.5.12) through (2.5.16) by substituting g, =
w /\/E and R = exp(¥), whereby equation (2.5.12) becomes



52

d’w do o 2
-—+—(1- = 0. o
oF  dy + 4( @) (2.5.29)

Equation (2.5.29) is in the form of the unforced Duffing equation!). Unfortunately, to

the best of our knowledge, no analytical solutions to this equation arc known except the

constantones w =0, w =1, and w = -1.

If equation (2.5.29) had the term 2w/9 instead of w/4 then it would be of the
Painlevé-type which can be solved exactly. However, there are methods of
approximation that give zzalytical solutions which are good in the region of validity
applicable for thut approximation. We now will solve equation (2.5.29) using two
different approximation methods. The first approach is to linearize equation (2.5.29)
around the constant solutions. This gives us asymptotic solutions which are valid for %
— +c0. The second approach is to use a multiple-scale expansion around ¥ = 0 and since
we shall only do the expansion to first order, the range of validity is up to x ~ O(36). In
terms of our original independent variable, this range is €18 < r < €18, where we have
recalled the fact that r2 = R = eX. Thus, the first approach of linearizing equation (2.5.29)
about a constant solution leads to;

AR

, s
_“_Z__i+£1__i‘”_ﬂ -0, (2.5.30)
dx® dy 4

where @ = wg + @1 and wg is one of the constant solutions mentioned above. Equation

(2.5.30) is easily solved to give us;

X(1443 X143
:1+clci(+ )+czez( ),wo =],

®= (2.5.31)

x
(:2(c1 + czx), @, = 0.

We sce that the linearization of equation (2.5.29) is not bounded in general for both y —

=oo, but can be may bounded in one of the limits. The solution for gg is;
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1443 213
=1+ clc2 >} czez‘ ), w, = x1,

Lo — (2-5.32)
T c1 + czx), w, = 0.

and consequently the order parameter envelope behaves, asymptotically, as
2

1
N 1 (z;_'_clrﬁ +r%,) , @, = 11,. (2.5.33)

B (c, +2c,njf)’, @y =0

From equation (2.5.33), we see that the superconducting charge density is singular at the
origin for wg = +1 and for wg = 0 if cz = 0. Also, for wg = 0 when ¢3 = 0, the solutions
for g are constants. When r — oo, the solution for g wili go either to zero or “blow up”,
except for wg = 0 = c which remains a constant that can be nonzero. Furthermore, from

equation (2.5.8) we deduce that the form of the first order correction for f is as follows:

+Cl'\h_§

, w,=zxl,c,=Cc, =0

(Zr(l-nr):Q Y \ (Zr(h-ﬁ)IZ cY \
{ T3 }+c4Kk1+\,§ B} wy=x}c =0

{1- 45)/2 («-3)2
/2r [—'+c‘ (Zr czy\}mo-:ch-O

(2.5.34)

Wi
{cslzw’ +c K, Ave,r }v Wy =Cy =0,

where p = -—T 1 : Y and q=— 4_ " . This gives for the magnetic field;
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= TR €= =0

h=——

2.5.35
o ( )

. 2 c,Y 2 c,Y
where p and q are given above. Also, A = L and B= 2. It
pandqarcg 1+3V B 1—43\} B

is clear from the solution for the magnetic field given by cquation (2.5.35) that the c4

- gives a magnetic vortex whereas, the c3 term gives a nucleation center of
= -iperconducting charge surrounded by a magnetic field. Also, if we compare the solution
for the magnetic field in equation (2.5.35) when wg = U with the standard single vortex
solution to the London equationsi®), i.e., h(r) = (®@_/ (27A°))K (1 / A), we see that the
solutions are basically identical when c3 = 0 except that the divergence at the origin is at

a slizkily different rate with Ko going as a logarithm.

Tlie second approach that we shall use to solve equation (2.5.29) is the multiple-
scale expansion and noting that the term o with a coefficient of 2/9 instead of 1/4 gives

an exactly solvable equation and so by letting w = 2F, then equation (2.5.29) becomes;

2
aF & 28 P ieF-o, (2.5.36)
dy* dy 9
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where £ = 1/36. Thus, introducing an expansion in ¥ = Fg + eF1 + €2F3 + ... and also

_q_-.-é—+e—a—+...givcsustoﬁrstorder;
dx az, at,
d2Fo_dFo+2Fo_F3_0
de2 dr, 9 °
and
2
&K AR (2 aele 2 fi 2 1p g,
dtz dr, |9 at, at,

(2.5.37)

(2.5.38)

Note that the t1 solution for Fg is not really needed in this case since there is no secular

terms in equation (2.5.38), however, it can be used to eliminate the right hand side of

equation (2.5.38) so that we only have a linear homogeneous equation for the first order

corrections. The solution to equation (2.5.37) has to constants of integration which are

functions of T; and then we set the right hand side of equation (2.5.38) to zero to solve for

1.

Note that when we convert back to %, we have tg = and t1 = &¢). We have not

solved for €1 yet but will now give the solution for equation (2.5 7 and will ignore

equation (2.5.38). Equation (2.5.37) can be transformed into an elliptic aquation by the
transformation Fq = eX3G(eX/3)/3 so that the G satisfies G = G3 or (G')2 = G4/2 - cp and

gives the following real solutions for the order parameter envelope ;

NN

cnzl(zco)lu(rz/s +c ﬁ);(z)-1/2];

2

(oa)

.\/_——2-c—osnz[2 (_ 2¢, )1/4 (cl . rzis(z)-uz )' (2)-1/2] .

L

1+ cn’lz(-zco )“ 4 (c, « 12P(2)2 );(2)-1/2]

Co>0

3Co

co=0

<0

(2.5.39)



56
where we have used the relationship <%/2 =, so as to write equation (2.5.39) in terms of

our original independent variable.

The solutions given in equation (2.5.39) shows a damped oscillatory behavior
which are illustrated in figures I1-14 through II-16. This is in agreement with numerical
studies!?) of equation (2.5.29) which shows that damped oscillatory functions o(R) can
be found as solutions, and depending on the initial conditions, they may asymptotically
tend to any of the constant solutions above. Note that by ‘damped oscillatory behavior’,
we mean a pertodic function which decays to some constant value asymptotically and
becomes no longer periodic. Also, as was mentioned above, the range of validity for this
solution is €18 < r < €18, however, the closer one is to r = 1, the more accurate the

solution is for equation (2.5.29).

1r¢

s N . r
0 10 20 30 40

Figure I1-14: The superconducting charge density as given by equation (2.5.39)
with cg > 0.

Figure II-14 is from equation (2.5.39) with cg > 0 and clearly shows the multiple

singularities. If this was the complete solution, these singularities would have a finite
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fimit. However, it does show some interesting results. First we see that the

superconducting charge density is asymptotically going to zero with a periodic oscillation
and with a period that grows with the distance from the core. Second we can also state
that the magnitude of the magnetic field is periodic and grows asymptotically to some

value with the peaks in the magnitude occurring at the minimums for ng.

1r

"

0 2 4 6 8 10

!

Figure II-15: The superconducting charge density as given by equation (2.5.39)
withcg=0.

Figure II-15 corresponds to the solution in equation (2.5.39) withco=0and is a
damped solution with the nucleation of the superconducting charge at the origin but with

no periodicity.

The only solution in equation (2.5.39) that can be nonsingular at the origin is for
co < 0, which we have plotted in figure II-16. This figure clearly shows ihe damped
oscillatory behavior of the solution. Again, we can see from figure II-16 that the period
of oscillation grows with the distance from the core. At this stage v.'¢ have not yet

analyzed the correction terms for the superconducting charge density or the magnetic
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field. However, from the solution for the condensate density as illustrated by figure II-16

we can infer that the magnitude of the magnetic field has a peak at the origin and is

oscillatory with each peak growing to some asymptotic value away from the core.

1

0 5 10 15 20 25 30 35

Figure II-16: The superconducting charge density as given by equation (2.5.39)
with cg < 0.

In the second case we start by puttag g, = 0, so that equation (2.5.6) and

cquations (2.5.8) through (2.5.11) become:

:;f; -0, (2.5.40)
:;f; -0, (2.5.41)
%;_52; - Zg}{_z_(fz ~1), (2.5.42)
%%f_g S (2.5.43)

and
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d%g
- Borg R+ Bhal-n. (2.5.44)

Equations (2.5.40) and (2.5.41) are straight forward to solve and thus we obtain;
fo=coR+c, (2.5.45)
and
f,=c,R+c.. (2.5.46)

which can be substituted into equations (2.5.42) through (2.5.44). To avoic singularities

at the origin for the magnetic field, we assume ¢, = ¢; = 0. For convergence, it is

required that ¢, > a c,. Hence equations (2.5.42) through (2.5.44) become

d’g, _& f.2_1

e & f2_ L1 5.47

i - ot} @547)

d%f 2 _ _& 2 (2'5 48)

aR® T aRE .
and

d’g, &, 1,82 1

IRz gl{ 2 * IR }+ 2 {co X } (2.5.49)
Equation (2.5.47) can be solved to give the analytical form for g;, namely,

R
g =VR {0410(%—) + csKo( C;R) } (2.5.50)

where I, and K, are modified Bessel functions. As a consequence, the order parameter
envelope 1, for small r, can be approximated as;

~2

n=- aczlo(g‘l;i) o ac,{l + -1"—;4‘ +} (2.5.51)
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Hence the corresponding correlation length is E = w/Z/c; . On the other hand, the

magnetic field to first order does not depend on the radius r, however, solving equation

(2.5.48) and then calculating the corresponding magnetic field h yields

hw by — hr*+..., (2.5.52)

with the corresponding penetration length given by A =~ 1/ ‘Vm .
The full solutions for both the magnetic field and the superconducting charge density to
second order (a?) is;

e* df 26* a‘ C 2 C R c R 2
h-g(;d—r-—}-i:{co +ac, + 0’y + Z 0 de{c4Io(—“’2—-) 2 )} } (2.5.53)

and

2 2

n, = (%) - az{c4lo(9—"§) +csKo(%B-)} . (2.5.54)

We have plotted equations (2.5.53) and (2.5.54) in figures II-17, 11-18, and II-19
with different boundary conditions. For figure II-17, we have at the origin a nucleation of
superconducting charge with a surrounding magnetic field. Figure II-18 illustrates a
magnetic vortex, where the structure of the vortex is highly dependent upon the boundary
conditions. The shape of the magnitude of the vortex can vary from being a semi-
hemisphere to cylindrical in shape. Figure II-19 is the equivalent of figure II-18 with the
boundary conditions changed slightly to give a more rounded top to the vortex. It should
be noted that the larger the radius of the vortex, the more cylindrical its shape which is
expected since the surrounding superconducting charge penetrates into less of the

magnetic fields’ vortex.

This case, therefore, indicates a much slower decay of the magnetic field as it

penetrates the sample associated with a greatly reduced superconducting charge density,
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in striking contrast to the previously discussed case. Thus we have shown in this

subsection that quasi two dimensional cylindrically symmetric solutions to the magnetic

ficld penetration problem in a superconductor can be found.

Figure I1I-17: Plot of the magnetic field represented by the thick line and the
superconducting charge density represented by the thin line, as
given by equations (2.5.53) and (2.5.54) respectively, with ¢4 = 0.

Of course, the existence of vortices was known long time ago9:18), but virtually
the only information about their structure was related to the asymptotic behavior as r —»
o, Here we have shown that close to the critical temperature some closed form
approximate solutions can be found which may be nonsingular and accurate perturbation
expansions can be performed away from the critical temperature. Valuable information
about the dominant behavior of both the order parameter envelope 1} and the magnetic

field h in the vicinity of the vortex core has been obtained in two particular cases.
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0 0.5 1 1.5 2 3.5 3

Figure II-18: Plot of the magnetic field represented by the thick line and the
superconducting charge density represented by the thin line, as
given by equatica: {2.5.53) and (2.5.54) respectively, with cs = 0.

B. Spirals

Next, we shall look at the possibility of the existence of spiral solutions. Based on
the fact that certain nonlinear partial equations12) (PDE's) possess spiral solutions when
scaling symmetry is present, we have anticipated such an eventuality in our case of the
system of coupled PDE's, equations (2.2.5) through (2.2.7). We expect this type of
solution to occur only under very specific circumstances, and as we shail see, this
corresponds physically to either creation or destruction of vortex like structures. This
therefore suggests that spiral solutions may be metastable. We now proceed to

demonstrate the form of these solutions and the conditions required for their existence.

Beginning with equation (2.2.7), we intend to find the order parameter envelope 1
and the scaled velocity vector u which would satisfy equations (2.2.5) through (2.2.7) and

would depend on a spiral type symmetry variable, which is postulated in the form
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Q=B In(r)+ ¢, (2.5.55)

where simultaneously the order parameter is sought as

K@

r

n (2.5.56)

Figure 1I-19: Three dimensional representation of the magnetic field as given by
equation (2.5.53) withcs = 0.

The scaled velocity vector u is expected to have both radial and azimuthal components,

u=ru +éu,. (2.5.57)

Thus, equation (2.2.7) becomes
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df gu, du
= Ly—2 u =0

2
¥(B,,ur 4 u")dQ +T x o . . (2.5.58)

A simple way of satisfying equation (2.5.58) without it any way affecting the form of f is

to put

u, = _%:. (2.5.59)
and

rg;—r' + %l:;’ ~-u_=0. (2.5.60)

Using the method of Lagrangel9), the solution to equations (2.5.59) and (2.5.60) is
straightforward and fouad to be ¥(Q,u, /1) = 0, where ¥ is an arbitrary function. In

particular, this coul¢ be written as u, = rF(Q), where at this point F is an arbitrary

function. It is easy to demonstrate ihat the associated magnetic fieid k can be expressed

&

h=-’?3(qu)=i£3{2F+{Bo+wl- il
c* e* L

dF | (2.5.61)
B, j 402 )'r

Now we must satisfy equations (2.2.9) and (2.2.10), which may be written in the form of

two coupled ODE's:
(B + 1)33i _2B, M tlar —14pe2 @B 1) r°F (2.5.62)
¢ dQ? °dQ ¢ B2
and
2
(B + 1):—01-; +2B, %g = yf2F. (2.5.63)



nonlinear PDE’s to ODE’s. However, as can be seen in equation (2.5.62), there stiil
remains one _ ‘he old indepcndent variables, namely r, which it =0t allowed for a true
reduction. This problem however, can be circumvented by doing the analysis close to the
origin so that 4 ~ 0. Also, we need to eliminate the term ar? which can be done either by
constraining ourselves even closer to the origin so that r2 = 0 or we can look for solutions
at the critical temperature and then do an expansion in a similar to section three. Once
this is done, we can then perturb about the solutions to add corrections to minimize the

approximations. Under this approximation, equation (2.5.63) is unchanged, but equation

(2.5.62) becomes
, d?f df
(B2+1) o7~ Begg f[1-p£>]-o0. (2.5.64)

Now, if we rescale the independent and dependent variables according 10 Q >t Qand

— v f, then equation (2.5.64) takes the form

2
:Qt; + Ed(fs +0f +ef=0. (2.5.65)

where ¢ = -1 for positive p and € = 1 for negative § and also 8° = (B} +1)/(4B2), T =
[Bﬁ +1]/(—2Bo), and v = xl/,/ézﬂ. This is again a standard classical anharmonic
oscillator equation with dissipation (the unforced Duffing equation) and is of the same

form as equation (2.5.37) except that the dissipation term has the opposite sign and the

coefficient of f is arbitrary. Note that equation (2.5.65) is of the Painlevé-type when 62 =
2/9. For this value of 8, equation (2.5.65) can be transformed into an elliptic equation
which can be solved exactly. These solutions are given below under the subheadings:
kink solutions and elliptic like solutions. Thus, tue solutions are found in the same way
as those for equation (2.5.37). Although a complete set of solutions to this equation for

arbitrary coefficients is, to the best of our knowledge, niot available at present, some exact



value of B, it can thus be chosen to correspond to those values for which we know the
exact solution. Also, there are some special solutions for unspecified values of B.. In

the following, we list some specific solutions of equation (2.5.65).
1. Constant Solutions
Constant solutions are f = 0, and if € = -1, f = =|9}.

2. Kink Solutions

Kink solutions exist when € = -1 and 8% = 2/9 and the solutions take the form
Q\ 3317
f=Jc ex (—) N 2.5.66
{cl P 3 _\/-2-} ( )
which interpolates betweca f =0 and f = +/2/3 as Q — 0 and Q —» - o, respectively. If

€ = 1 then the solution becomes complex and is not allowed.

Now, from the approximation that the radius is very small, the solution to
equation (2.5.62) implies that Q is essentially given by Bgln|f, which dominates the ¢
term. Taking this into account and dropping ¢ along with the fact that for 62 = 2/9
implies that Bg = =i3, gives us the following solution for the superconductin
density;

2
1. e I
Hifer = I}

5. (2.5.67)

The solution given by equation (2.5.67) is represented by figure I1-20 below. We
sec that we have a singularity at the origin ar:d going to zero asymptotically. Comparing
the solutions under the spiral symmetry with those in the vortex subsection, the solutions

are similar but the powers of r are different. This is also true for the next case.
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Figere II-28: Plot of the superconducting charge density as given by equation

(2.5.67).
3. Elliptic like Solations

For 8% = 2/9, equation (2.5.65) has been recently analyzed20) and a set of
solutions in terms of elliptic functions has been found similar io those in equation

(2.5.39), namely for € = -1;

( 1/4

(2¢ )

-ar3 Icn[(Zco (Ve +e-0/3);(2)-;,2]|’ 0
174} f 1/4 -Q/3\. (9)-1/2 . (2.5.68)

(-2::0) EELZ(_ZC"')/ (‘t/—icl.*e Q ),(2) ,]_l o

‘ Vl +Cn2[2(—2c0)‘/4( V2, +c-013);(2)-1/2]

>0

Before finding the superconducting charge density, it should be noted that for 62 = 2/9
implies that Bg = =i3, Q = -3(3 In 1 = i¢)/4 ~ In(r9/4) since r =~ 0, and ns =

3f2(Q)(r\/ 2|6|)-1. Thus, the superconducting charge density is as follows;



2¢,
PH Vi 314 = >0
1 cn l(2c0) (V2¢, +17°)5(2) J

n, = Zﬁlqr \/-:QEESPZK_ZCO)xn(ﬁCI + r3/4);(2)—1/2_'l ]
[ 1+cn2l2(_2c°)1/¢(ﬁcl +r3/4);(2)_1ﬂ » €

(2.5.69)

0

The solutions are similar to those given in the vortex subsection, but the power of r is
different. The two solutions given by equation (2.5.69) are represented in figures II-21
and Ii-22. Compared with figures II-15 and II-17 respectively, we see that the
oscillations are more closely packed together in figures i1-21 and 11-22, which is due to

the radius r having a power of 3/4 instead of 2/3 as is the case in equation (2.5.37).

p
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r

Figure I1-21: Plot of the superconducting charge density as given by equation
(2.5.69) withcg > 0.

When € = 1, the cg < O solution is pure imaginary, but for ¢y > 0 we obtain the

foilowing solution for f;



(e e0 | soe, v ey, 125027 | 2.5.70)
3 V 1+ cnz[c! + C-QB,\/P(:: /2; (2)—1/2]'

This gives us the following solution for the superconducting charge density;

1 |2¢, Sn:'l-cl + r”‘JE;/z . (2)—1/2']

n (2.5.71)

< 28IV r 1+ cx»lz'.cl +4\fc, /2; (2)’”2].

0 2 4 5 8 10
Figure I1-22: Plot of the superconducting charge density as given by equation
(2.5.69) with cp < 0.

The solution given in equation (2.5.71) is identical to the one given in equation (2.5.71)
when ¢ < 0 and is also represented by the solution plotted into figure II-22. Since we
had to approximate our equations for small r to find solutions, we see that they are very
similar to those found in the vortex solution, supporting the idea that vortices break up at
the critical temperature through a type of spiral formation. This hypothesis can probably
not be verified since it occurs right at the critical temperature and thermal fluctuations

would destroy any uniform constant temperature.



Finally, when 1 is close t0 a constant solution, say, f=f_. wecanputf=f + x

with X smali. Equation (2.5.65) then becomes, linearizing around fo;

dzi dx
o ta0*t (0% +3efH)x = 0. (2.5.72)

where fg = 0, 6 if € = -1 or just 0 if € = 1. The solution of this equation are well known

and take the form

£(Q) = exp(-g) C, cos(g\/’Z()z——;) + Czsin(%w/Zf’z———l), if f, =0,

2 clcxp(Qv862 ) + czexp(:-zg—\/%z + 1), if £y = 6.

(2.5.73)

The superconducting charge density that corresponds to the solution given in equation

(2.5.73) is

'r””zexp _® l /48 nr+-2))—c
28,57 )1 T ar 462 B } 2

{ r_—— 2
1 smk (lnr-&-——;))} 2, =0, e
Rl E

ot e )

2 ¢
1f0 + V% exp( 4B c, pxpk Ty ——;

2
+czcxp(:_.%§2i(ln r+ %—))}} , fo = £0.
L 9/

It should be noted that in cquation (2.5.74), we have included ¢ in the expression for the

superconducting charge density even though it must be remembered that this is a small

correction to the In r which is the more dominate.
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e 1.2-2 compounds provide magnetic field nrofiles as a function of depth
which are reminiscent of our elliptic solutions in two dimensions. Among them we find
profiles with a simple peak in the center as well as some with two peaks of slightly
different heights, as might be expected from the generalized Emden equation which

would be applicable in this case22).

In this section we have concentrated on two dimensional structures involving the
coupled superconducting charge density and magnetic vector potential fields. The first
type of pattern studied, i.e., vortices, were known to exist for a long time, but we have
gone significantlv beyond the asymptotic behavior known earlier and found functional
forms which - " 1allr exact at the critical iempe.aiure and can be accurately extended
below the cri.. . .emperature in a recursive manner. A less well known type of solution
to the magnetic field penetration problem in superconductors is spirals. It appears that

spirals may exist only in the immediate vicinity of the critical point, and they seem to be

related to the creation and destruction of cylindrical vortices.
SECTION VI: MODERATE FIELDS AND CHARGE DENSITIES

In this section we intend to present a different approach to solving equations

(2.4.1) and (2.4.2) which applies to moderate values of the magnetic field h and the

superconducting charge density n,. In this section we take the magnetic field to be;
h=Hw, (2.6.1)

where H is a constant and w is 2 vector function with its norm bounded through, |w} < 1.

The superconducting charge density is to be taken as;

n, = Ns = Nt? = 1%, (2.6.2)
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charge densitv and |s| < 1. In order to simplify the form of the equations, the following

scaling is introduced for the independent variable:

\/Y—N : (2.6.3)

As a result, the following set of coupled differential equations is obtained for equations

(2.4.1) and (2.4.2):

w+V’x‘[V:w}-O, (2.6.4)
l

and

vV'%

m*? cit H? (V = 2
- a+ . -~ +bBNi" =0, 2.6.5
2mh%e? N{ gaN } (265
where V' denotes the gradient operator with respect to the primed coordinates. From the

fact that the magnetic field and superconducting charge density are mutually exclusive

and that s and w are bounded by unity, we have that | s w | << 1, so that equation (2.6.4;
becornes

V' x (V' xw)—-Y-Ex(V' XW)=-SW. (2.6.6)
s
Since in most applications, the magnetic field is taken to be along only one spatial

coordinate, then sw becomes a scalar which is equivalent to the norm |sw| and thus we

can approximate the right hand side of equation (2.6.6) as zero. It is easy to see that the

solution to equation (2.6.6) is
V' xwe As, (2.6.7)

where A is a constant vector. Substituting equation (2.£.7) into equation (2.6.5) gives an

equation strictly in terms of t as the only dependent variable. The rcosultant equation takes
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space, ie
V'% = t(A + Bt?), (2.6.8)

where the constant coefficients A and B are

2
*
A = {Z%f;%} [8xNa + A?H?) (2.6.9)
JT {
and
- 2
B-_2 [Tl (2-6.10)
2r | he*

One can therefore define a modified LG coherence length by analogy with E;,; of

equation (2.1.10) as
Es (T, H) -IAI"”-

Note that the values of the amplitudes of the field H and charge distribution N can be

adjusted arbitrarily to the boundary condition of the problem. The sign of the coefficient
A dcpends in a direct way on the temperature through a = a'(T - T_), so that A = 0 when

T=T = T,—A’H?/(8nNa') and A > O for T>T,, while A < 0 for T<T,. From
these relationships we can deduce that an approximate form of the phase coexistence line
is

A’H?
T =T (@) ~- £
(FD A8) 8aNa'

(2.6.11)

If A and N are only are only weakly temperature dependent, this expression represents the

well known parabolic down turned plot for T (H) vs H. Whereas the weak temperature

dependence of A and N may be justified for standard superconductors, it does not appear



1o be vala 1or jigh ‘1, materials. 1he value ot N is expected to be sensitive to the doping

faic a3 Wil a3 1o dipend 5irGhgly Oh (4 - L) Al iliis siigs we can oily specuiaic thai
the temperature dependence of A and i« might provide an cxplanation of the two
interesting features occurring in H_(T) plots for high T_ superconductors, i.c., for a
gradual drop off close to the critical temperature and a stecep upturn close to zero

Kelvin22),

Inverting the relationship in equation (2.6.11) to find H_ as a function of

temperature T such that the point trace the phase boundary, we obtain

- N(TYT (0)- T) .
H =8 (2.6.12)

We now postulate an empirical dependence of N and |A| on temperature to be of the

general forms
N(T) = Ny (T, (0) - T)* (2.6.13)

and

A=Ay + 0 AT, (2.6.14)

where N, i, and A, are parameters to be adjusted to experiment. The form of N is
consistent with its expected behavior ciose to criticality. It is also expected that, as T —
0 K, the value of A decreases to A, ensuring an upturn in H_(T) in agreement with
experimental results. The slope of H_(T) close to absolute zero now depends crucially
on the value of u and, under normal circumstances, is alwsvs negative. In the other
extreme limit, i.e., T — T_(0), we obtain a predominanily linear approach to the

temperature axis provided p = 1/2. In order to recover the standard form
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it is sufficient to assume that

N e|T - T |and A < (T +T.)™.

It is very interesting to note that equation (2.6.8) has been the subject of a recent
extensive investigationl2) using a sophisticated mathematical technique, namely, the
symmetry reduction method. Here we only briefly summarize the results of this analysis.
If A = O, there can only be three general types of solutions to equation (2.6.8): (i) quasi-
linear, where t = t(x,) and x, may be x, y, or z; (ii) cylindrical, where t = t(r), with r =

1/xf + xf, where x; and x; are any two of (x, y, z); and (iii) spherical, where t = t(r) and

r=+x2+y?+22.

In cases (ii) and (iii), equation (2.6.8) reduces to an Emden equation23) with its
localized and damped oscillatory solutions. On the other hand, when A = O identically, a
scale invariance symmetry is present and new types of solutions are admitted in addition
to cases (i) through (iii), including spiral structures with t = t(§,), where g, = arctan(y/x)

+ a In(r) and hyperboloidal waves with t = t(E,), where E = x> + y2 - 22

T  most
common solutions, however, are quasi-linear ones, which take the form of elliptic waves.

In this case equation (2.6.8) can be integrated once to give

1/dt)2 A2 Bt
- +

1
1 C, = ~p(1), 2.6.15
7\ ax 2 t 4 TCo=5PM) (26:15)

where C_ is an integration constant. All of the solutions to equation (2.6.15) are listed

and discussed in reference 12, but we shall just draw the attention of the reader to the

following classes of nonsingular solutions.



(a) Constant solutions t = Q or t = (-A/B)” 2, representing the normal and

superconducting phases, respectively.

(b) Localized solutions occur when A <0Oand C, = Az/(4B). They are given by
(= /:_{‘: ltanh( X' ,:é)i (2.6.16)
B 2

They represent an expulsion of the superconducting charge from a region near the center
of a magnetic vortex at x' = 0. Thus, the solutions for the magneiic field and the

superconducting charge density are;

- HA-\;—ZA {x,\/-; _tanh(x, ———2&)}+cl (2.6.17)
and
n, = —AN tanhz(x' —'f‘-). (2.6.18)
B 2

Equations (2.6.17) and (2.6.18) are represented by the curves plotted in figure I1-23. In
figure II-23, we obtain the expected behavior between the superconducting charge density
and the magnetic field with the magnetic field expelled from the superconducting region.

There is however a problem with the magnetic field in that it diverges as x — xo and
thus we expect the solutions to become less accurate the farther we are from the origin,

dependirg of course on the bou~dary conditions of the system.

(c) Periodic solutions may only occur when A < 0, and they are given by

t=it sn( t, X’ J—g, k)l, (2.6.19)
I

where the Jacobi modulus k =|t, / t,| and the symbols ¢, and t, denote the two real roots

of the polynomial p(t) = (B/2Xt* — t?)(t* ~ t3) such that |t,| >|t,]. Note that0 <k <1,



and as k — 0O, sn(*) — sin(®), while as k — 1, sn(*) — tanh(*). These solutions form
periodic arrangements of "downward spikes" in the superconducting charge density along
the x-axis. Thus, from equation (2.6.19), the magnetic field h and the superconducting

charge density ng are;

2
o HAG /% {xrtz,/_:i ) E(am(x'tm,g),k) } ‘e, (2.6.20)
2

and

n, = Ntfsnz(tz x'VE:-_, k). (2.6.21)

Figure II-23: Plot of the magnetic field represented by the thick line and the
superconducting charge density represented by the thin line, as
given by equations (2.6.17) and (2.6.18) respectively.

The solutions given in equations (2.6.20) and (2.6.21) are represented in figure II-24 and

again show the proper behavior between the maguetic field and the superconducting



charge density. However, as with the previous case the magnetic field diverges as x —

=00 and thus boundary conditions are needed.

Figure I1-24: Plot of the magnetic field represented by the thick line and the
superconducting charge density represented by the thin line, as
given by equations (2.6.20) and (2.6.21) respectively.

If we allow the coefficient B to be negative, then two additional types of elliptic

waves and one solitary wave will be added to this list, i.e., we have the following.

(d) Cnoidal waves:

t=|t; cn(x'v:—ﬁh;;tﬂ- k)l

where t, is real, t, is imaginary, and L? = /(17 -i3). These solutions appear to

(2.6.22)

-

represent a modulated superconductin. phase with intermittent gaps in the
superconducting order parameter which 2r= much broader than the "spikes" in (¢). For

this case, the solutions for the magnetic {icld h and the superconducting charge density ns

are,;
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b= ngtf —B(tf— tﬁE(am[ x d:}é(—tl;;ti))k) —(1-K?)x Lee (26.23)

and

— i 2 — 21 a
n, = Ntfcn{x'\[ B t; " , k) . (2.6.24)
The solutions given by equations (2.6.23) and (2.6.24) have been ploited in figure 11-25.
Even though figure II-25 shows an agreement with what we cxpect, for generic boundary

conditions it does not, since the magnetic field is divergent when x” — xo0 and thus

special boundary conditions are needed.

0.25 0.5 0.75 1 1.25 1.5 1.75

Figure II-25: Plot of the magnetic ficld represented by the thick line and the
superconducting charge density represented by the thin line, as
given by equations (2.6.23) and (2.6.24) respectively.
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(e) Dnoidal waves:

,tzdn( tzx’1,:§§, k)l, (2.6.25)

where k = (1 —t? /t2)"/?, and these waves can be interpreted as small spatially periodic

t =

fluctuations of the superconducting order parameter envelope. For this case, the magnetic

field h and thne superconducting charge density ng become;

h = HAt,, ’—E—E{am(x'tn’:—l}—),k} +C, (2.6.26)
-B 2

and

n, - thdn2(t2x' 2213, k). (2.6.27)
The solutions for the magnetic field and the superconducting charge density, given by
equations (2.6.26) and (2.6.27) are represented in figure I1-26. The superconducting
charge density is nonzero for all x, except when k — 1 and dn becomes a sech function
which vanishes only at infinity. Thus the superconducting charge density is a well
behaved periodic function, however, the magnetic field is a divergent function as can be
seen in figure II-26 and does not seem to be dependent upon the form or value of the
superconducting charge density. The only reasonable value for the magnetic field in this

case seems to be zero.

(f) Solitary waves in the form of a bump:

t= ‘tlsech( tlx’\lzz-—ﬁ)‘, (2.6.28)

This solution can be found as a limiting case of {(d) with only a single domain of

superconductivity nucleatit:g cut of a normal background. This gives a simplified version
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for the magnetic field h and the super-onducting charge density ng as given by equations

(2.6.23) and (2.6.24) in the following form;

h = HAt,, /‘—};" tanh{x'tn ,% } +¢ (2.6.29)

and

n, = Nt? sech2(t1x’."-—§§). (2.6.30)

The solutions for the magnetic field and the superconducting charge density as given by
equations (2.6.29) and (2.6.30) are represented in figure I1-27. We see froni figure I1-27
that the solutions are well behaved for all x and give results as we have expected with a

nucleation center of superconducting charge and surrounded by a magnetic field.
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Figure H-26: Plot of the magnetic field represented by the thick line and the
superconducting charge density represented by the thin line, as
given by equations (2.6.26) and (2.6.27) respecitively.
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Figure II-27: Plot of the magnetic field represented by the thick line and the
superconducting charge density represented by the thin line, as
given by equations (2.6.29) and (2.6.30) respectively.

SECTION VII: SUMMARY AND CONCLUSION

In this chapter, we have investigated solutions to the equations of state describing
magnetic field penetration in a LG superconductor. Following the minimization
procedure, three approximate but very accurate approaches have been presented. In the
third section, three different sets of solutions in one dimension at the critical temperature
were found and then these solutions were expanded below the critical temperature. The
first set of solutions obtained gave a periodically fluctuating solution for the
superconducting charge density and also a periodic solution for the magnetic field but
shifted by a quarter of a period relative to the superconducting charge density. The first
order corrections for just below the critical temperature were also found. The solutions
for the homogeneous first order equations provide a wealth of possibilities for change in
the sclutions as the temperature is lowered. The particular solution for the first order

corrections without the homogeneous solutions provided us with the expected behavior in
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the magnetic field and the superconducting charge density by increasing the range over

which superconducting charge density is dominant and decreasing the range vver which
the magnetic field is dominant. The inclusion of the homogeneous solutions would be
necessary to fit the solutions to the bovndary conditions. The second set of solutions are
similar to the first set. Both the magnetic field and the superconducting charge density
are periodic and shifted by a quarter of a period relative to each other. The main
difference between this set of solutions and the first set is that the magnetic field vanishes
at the critical iemperature and thus represents trapped flux with no external magnetic field
present. The third set of solutions found in section three represent an extreme case in
which the magnetic field is so strong it ha< just about driven the superconductor into the
normal phase. This leaves only the surface of the material superconducting and the rest
of the material in the normal phase. At the end of section three a numerical plot of the
full equations was presented so as to test how accurate the expansion was for this model.
Even though it was not explicitly shown to be true, the first set of solutions and to a
slightly lesser degree, the second set of solutions can replicate the numericai plot to very
good agreement. This means that even though the solutions are only to first order in the
parameter «, the series converges very fast giving us good results to work with. In the
fourth section, the effects of the magnetic field upon the superconducting charge is
neglected. By treating the superconducting current density as a constant, the effects of
the magnetic field upon the superconducting charge density are ignored. The equation
describing the superconducting charge density under this approximation has been
previously analyzed. By simplifying the equation describing the magnetic field, a new
independent variable was obtained which is the indefinite integral of the superconducting
charge density. In the second part of this section, besides the trivial solution and the
standard sclution where the superconducting charge density is taken to be a constant, one
further solution was obtained where no further approximations were needed. The

solution corresponds to the superconducting charge density being a sech? solution, which
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would correspond to a superconducting plane. The rest of the solutions for the

superconducting charge density led to very complicated indefinite integrals which needed
to be approximated further in order to solve the equation for the magpetic field. A few of
tke limiting cases were considered and even though these were limiting cases and
required further approximations, they did provide solutions that were physically cormrect.
The last part of section four dealt with looking at the equation for the magnetic field from
a different point of view. This method gave solutions for the magnetic field and the
superconducting charge density for two special cases and also we obtained recursion
relationships for ihe general solution The first special case was when there was no cubic
nonlinearity and no supercenducting current density and the second special case was
when there was just no superconducting current density. In sections three and four, only
one dimensional symmetry was discussed and so in section five the equations of state
with a cylindrical symmetry was considered. The method used to solve the equations of
state in this section was the same as that in section III, an expansion about the critical
temperature. Section five contained two parts, the first was called vortices and the second
spirals. The first part of section five considered the magnetic field and the
superconducting charge density to have only radial dependence. The vortex ~rt of this
section led to many interesting solutions some of which were very singular and others
that appear to have applications to magnetic ficld penetration in high temperature
superconductors. Some of the obtained solutions included a solution for the magnetic
field close to the core of a magnetic vortex and a solution of damped periodic rings of
superconducting charge density to mention a couple. The spiral part of section five gave
solutions that were similar to those obtained in the vortex part. For the spiral part of the
section, it was assumed that the magnetic field and the superconducting charge density
were both functions of an independent variable that leads to spiral solutions. For this
part, to simplify the equations, the radial distance from the core was assumed to be small

so that the In(r) in the spiral symmetry is dominate. As in the vortex part of section five,
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many solutions were obtained, some of which were kink solutions and damped periodic

solutions. The sixth section dealt with rescaling the magnetic field and the
superconducting charge density in order to validate an approximation where the magnetic
field is written as a function of the superconducting charge density and thus decoupled
the two equations. The decoupling gave ~ single equation which was the cubic nonlinear
Klein - Gordon equation which has bxn studied in the past. These solutions were
reviewed in section six as were the corresponding magnetic field and superconducting
charge density that resalted from these solutions. For nontrivial solutions, there were five
sets of solutions found for the magnetic field and the superconducting charge density.
Even though the solutions found were physically acceptable for specific boundary
conditions, the generic solutions appeared to be unphysical, with the magnetic field being

unbounded in most of the cases. There were a few cases ihat gave well behaved solutions

for the generic case.
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CHAPTER 3: A METHOD FOR FINDING ANALYTICAL SOLUTIONS TO
SOME NONLINEAR DIFFERENTIAL EQUATIONS OF DISSIPATIVE
CRITICAL DYNAMICS®

SECTION I: INTRODUCTION

Much of the mathematical difficulty related to solving the problems of modern
many-body physics is due to the fact that the resultant nonlinear differential equations are
often very difficult to treat, especially when dissipative effects are present. Unlike the
linear formalism of classical electrodynamics and quantum mechanics, nonlinear physics
as yet has not developed a systematic and consistent mathematical approach. The
nonlinear differential equations that are often found in the descriptions (for example in
the kinetics of critical systems) possess many interesting properties (e.g. solitons, limit
cycles, instabilities, chaotic behavior, etc.) but are also much more poorly understood
than their linear counterparts. For example, unless an ordinary differential equation

(ODE) satisfies a so-called Painlevé propertyl), the hope of finding analytical solutions to

it is virtually nonexistent2-5.6,78),

At this point, we shall briefly look at the Painleve property and the Painlev &
test49:10), There are different types of singularities that the solutions to differential
equations may possess, namely; poles, branch points, and essential singularities. The
equations that are of the Painlevé-type are those equations which have nonmovable
singularities except the poles. Note that a movable singularity is one which depends upon
the constants of integration and thus change when the boundary and/or initial conditions
change. For second order ordinary differential equations, there are fifty different types of
equations that are of the Painlevé-type and are listed by Ince4). The solutions to Painlevé-

type equations can be written in terms of elementary functions, elliptic functions or in

* A version of this chapter has been accepted for publication. K Vos and J. A. Tuszyfiski. 1992. Physical
Review Al
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terms of the six Painleé transcendentals. The Painlevé test for second order differential

equations of degree one (i.e. f* = F(f", {, x)) need the function F to be rational in f” and f,
and also we need the independent variable x to be analytical. If the ordinary differential
equation is of this form then there are three steps involved in the Painlew test. The first
part is to obtain the leading term in a Laurent series and find the lowest power possible
for (x - xg). For this part we want the power to be a negative integer so that we obtain a
pole. The second part of the test is to look at the resonance, which .is the power of the
first term after the leading term. For exampie, if p is the power of the leading term and is
a negative integer then in the second term we have (x - xg)P*T where r is our resonance.
The second part of the test is past if r is a positive integer. The last part of the test with
finding the expansion coefficients in terms of the integration constants and is achieved by
introducing the expansion a(x - xg)P*r + Ef‘___lak(x - xg)P+k. It should be pointed out that
some equations with essential singularities will pass this test while not being of the

Painlevé-type since this is a necessary condition, it is not a sufficient condition.

Even when we fix our attention on equations with a single dependent variable (for
single component critical systems, for example), the situation looks rather grim since
most of the multidimensional (in terms of independent variables, i.e. space-time)
symmetry reduction analyses for physically relevant partial differential equations (PDE's)
result in non-Painlevé ODE's. However, many of those reductions lead to autonomous

ODE's which quite often take the form

2 2
952+A(f)—(‘;—f+ B(f)(%f—) +C(f) = 0. (G.1.1)

This could be broadly classified as an anharmonic oscillator equation with both linear and
quadratic friction (or dissipation) terms. Thus, it could also apply to a number of
physically interesting cases of multistable systems with velocity-dependent friction terms.

In particular, kink and nucleation center dynamicsil) falls in this category. In terms of
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possible physical applications a recent example involves single-mode wave propagation

in a Kerr dielectric guide when higher-order nonlinearities are accounted forl2) and thus
applies to optical solitons in fibers. It is interesting to note that reductions of particular
PDE's to this form can be found in the multidimensional time-dependent Landau-
Ginzburg equationS) (for spatial-only, traveling-wave and spiral-type solutions), the
nonlinear Schrédinger equation?) (for traveling waves), and the nonlinear Klein-Gordon
equation®) (for a host of symmetry variables, including degenerate ones). It has also been
recently demonstrated13) that the celebrated Emden equation (for spherical and

cylindrical patterns in critical dynamics) can be transformed to

£ + £(by + b,f) + byf(f — £, Xf - 1,) =0 3.1.2)

which is also a special case of equation (3.1.1). A very interesting result has been
published14) not long ago in connection with a transition from discrete lattice equations to
continuum. This procedure has been shown to generate higher order friction terms

yielding an equation of the form
£+ N8+ Ay () + u(f) = 0, (3.1.3)

which is also a special case of equation (3.1.1). Thus, we conclude that this class of
ODE's appears quite prominently in both dissipative critical dynamics and in conservative

multidimsensional critical s.ysiems possessing special symmetry properties.

Our motivation in the present chapter is to study equation (3.1.1) and seek
analytical ways of finding its solutions even if they turn out to be special ones only. The
approach that will be presented is a systematic one and is a significant generalization of
the one proposed in a recent paper by Otwinrowski et all5) who developed an ansatze

approach to solving a generalized anharmonic oscillator equation with linear dissipation,

i.e.
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£ 4+ A £ + C(f) = 0, (3.1.4)

where C(f) is a polynomial in f. Their basic assumption was to seck solutions to equation

(3.1.4) and which also satisfy simultaneously the first order ODE

' = D(f), (3.1.5)

where D(f) is 4 priori unknown., Our method goes a significant step beyond ibe one given
by Otwinowski et all5) in both the scope of applications and the form of solutions. Theirs

succeeds in finding only localized kink and bump solutions while ours will not be limited

this way.

In what is to follow, we shall present a technique by which analytical solutions to
equation (3.1.1) can be obtained. First, we shall look at some special cases when two of
the functions in equation (3.1.1) A(f), B(f), and C(f) are arbitrary functions and the third
one is a specific function of f and shail give the solutions to these special cases. Second,
we will look at the case when A(f), B(f), and C(f) are polynomials in f with constant
coefficients. In Section II we define a new function D(f) as the indefinite integral of B(f)
(i.e. D(f) = fdf B(f)). Throughout the following discussion, we shail consider A(f) = 0 in
equation (3.1.1) except for special case 1 in section II which gives the general solution to

equation (3.1.1) in principle, when A(f) = 0.

This chapter is organized as follows. The second section shows seven special
cases of solutions and also discusses the method of reducing the differential equation into
a system of algebrzaic equations. It is also discovered that for one of the special cases,
elliptic integrals are a subclass of the resulting integral solution. In section three, further
details on the reduction of the nonlinear ordinary differential equation to a system of
algebraic equations is discussed. In this section, it is shown that by one reduction,

exponential solutions are obtained and by another reduction, Jacobi elliptic functions are
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obtained as solutions. Section IV looks at a few physical examples where the algebraic

method and the special cases are applicable. Conclusions and an outlook for future

generalizations close the chapter.
SECTION II: THE METHOD AND ITS SPECIAL CASES

In order to find special analytical solutions of equation (3.1.1) we make the

following transformation

R(z)
f o —2
) (3.2.1)

Also, we define the new independent variable z through

T
‘" u((?)' (G22)

The primary motivation for this type of transformation comes from equation (2.5.29)
which is not of the Painlew-type and we had originally tried the anatze ®” = A + Bo +
Cw2 which lead to inconsistancies in the three parameters. Thus, I felt that the
introduction of more parameters might circumvent this difficulty. The introduction of a
new dependent variable brought in a significantly larger number parameters where it was

hoped that a solution for the parameters without inconsistencies would be found.

From equations (3.2.1) and (3.2.2), we find that:

fl
- o5 (3.2.3)
and
£ = < {USVT + {USV - (SU" + 25U)V ]}
us ’ (3.2.9)

where V = R'S - RS". Since the independent variable is transformed through equation

(3.2.2) and the dependent one is assumed quite general in equation (3.2.3) our ansatze is
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much more general than that of equation (3.1.5) as postulated by Otwinowski et all3).

Substitution into equation (3.1.1) leads to

T R\ TV
T USV+HUSV' - (SU' + 25UV ]} + Al =
7l +1 (sU+ 250V} A(5) 5z + 3.25)

2v ;2 :
o2 (D)o
S/ U°S S

The method we propose to coasider relies on analyzing and solving equation (3.2.5)
instead of equation (3.1.1). This can be done quite readily for some special cases listed

below. In these special cases, we let

dz dz

T2 exp[— fax B(x)] ~ S exp[-D(D)], (3.2.6)
where

D(f) = f‘dx B(x). G.27)

is the indefinite integral of B(f). Thus, equations (3.2.5) ar+! [3.0.2) become respectively;

%‘fl - {A(D) + C(f)ePU}ePU? (3.2.8)

and

t—t, = J“dx ePOU(x), (3.2.9)

where the variable t is our original independent variable. Clearly, solving equations
(3.2.8) and (3.2.9) is equivalent to solving equation (3.1.1). There are seven special cases

that solve equations (3.2.8) and (3.2.9), which are as follows:
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Special Case 1
Here A(f) = 0. In this case, equation (3.1.1) takes the form
£ + BEXE')’ + C() = 0. (3.2.10)

Clearly, the corresponding solution given in Table ITI-1 is only formal since the integrals
in general cannot be done. In fact the elliptic integrals satisfy an equation which is a

special subcase of equation (3.2.10).

There is some information that can be gained without specifying what B(f) and
C(f) are. To do this we consider the classical Hamiltonian H = (df/dt)2 + V(f) where in

this special case the corresponding potential is given by

V(£) = 2¢72P® fdx C(x)e?P™. (G.2.11)

For periodic solutions to exist we need bounded solutions which means that V(f) has to
have at least one local minimum. Also, for the system to have a separatrix, V(f) needs to

have a local maximum along with the local minimum. Thus,

dV s, 1 x
Ff‘l - 0= C(f,) - 2B(£,)e @ [ dx C(x)e™™ (3.2.12)
fufy *

and

d3v dc| 2C(f,) dB
——-l -2 - —-i . 3.2.13
df? |, Tdfley, B(f,) dfley, ( )

Clearly, the first derivative of the coefficient B plays a very important role in shifting a
local maximum to a local minimum and vice versa. Also, B itself causes a shifting in the
location of the local extrema. We shall now consider a simple example by noting that

when B = 0 and C = f, then we have periodic solutions so that when B = 0 and C= -f, then
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there are no periodic solutions. If we now consider the case B = b/f and C = -f, then we

do obtain periodic solutions when b < -1 and no periodic solutions for b = -1. Since

Special Case 1 covers all cases when A(f) = 0, we will consider A(f) = O in the rest of the
chapter.

Special Case 1T
Here, C(f) = 0 ard consequently, equation (3.1.1) takes the form
£ + A(Df + B(EXf')? = 0. (3.2.19)
Also, the corresponding potential here is
2
V() = e-2°<f>{ fax A(x)eD(")} . (3.2.15)
Special Case IIl

In this case we assume that A(f) = C(f) eP(®, and thus equation (3.1.1) becomes
£ + A(DE + BEXE')? + A(f)exp[-D(£)] = 0. (3.2.16)

In this case, the formula for its solution shown in Tab:. ITI-1 needs to be inverted before
we can substitute for U in equation (3.2.9). However, depending on what the integral on
the left hand side of this equation is, it may be easier to take f as a function of U and then
replace the integrand in equation (3.2.9) with the appropriate integral in U. Once this
integral is solved, one may be able to inveri equation (3.2.9) so as to obtain U as a

function of t and thus obtain f as a function of t.

A simple approximation is to assume 1/U =~ O so that we can expand the logarithm

to obtain
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D(x)
-1, f'dx \/ 7 < p— (3.2.17)
-2( dy A(y)e"®’
which has the potential
V(f) = -2¢7%0 (dy A(y)e””. (3.2.18)

Special Case IV
Here, we take

A= U - {-2fay e capperpeo} .

In this case, equation (3.1.1) becomes an integro-differential equation of the form

4 : f + B(EXE')? + C(f) = O. (3.2.19)
\-2f4y L+ C)e"1e™

Also, the corresponding potential is
V() = 2e72PO dx[1+ C(x)eD(") ]CD(x) . (3.2.20)
Special Case V

Here,

1
Cf) = —— = —dvy[A D(y)1eD(y)
1) ) y[A(y) +e™]e

In this case, equation (3.1.1) is

£ + AMDE + BEXE'Y - [dy[AQ) +e*VJe” = 0. (3.2.21)
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The potential in this case is

2

V() = —e20O { fax[AG) + eD(")]eD(")}

(3.2.22)

Special Case VI

Here, we assume that

PO U:f) or B(f) - ﬁ% %‘-f{ - —A®) - C(D),
and, as a result we can generalize this condition some what so that we obtain

f=cqt + fo. (3.2.23)
In this case, equation (3.1.1) becomes

£+ AMDE + BEXE') — c,A(f) - cgB(f) = C. (3.2.24)

This is a trivial situation and is not of much interest.
Special Case VII
Here, A(f) = constant (a) and C(f) = e'P(®. Also, equation (3.1.1) becomes
f” + af’ + B(f)(f")? + exp[-D(f)] = 0. (3.2.25)

In this case, we see from Table III-1 that the indefinite integral must be determined before
we can write f as an explicit function of the independent variable t. This can not always

be done since for a general D(f), the integral can not be solved.
For this special case, we have two simple examples;

@) Let B(f) = b/f so that eP(® = {4 and thus our differential equation becomes;
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£ +af” +b(f)2/f+ £ =0

and the solution is found from Table IIi-1 to be;

1-a(t-t,)—et)
exp(co + a( :Z ¢ ), b=-1,
f= 1 ( —a(t-ts) /B
(b+1)l/(b+1){co + '—d‘t_toz—c } R b=-~-1
a

(ii) For this example, our differential equation becomes;
£ + af” + b tanh(f) (£)2 + (sech ) = 0

and the solution for is found from Table III-1 to be;

(1n]F(t) + VFE() + 1|, b=1
mlt* Jflsn(u,k)dn(u,k]l’ b _%

cn?(u,k) |

F(t)

In tan(—z—-) , b= 1
1.hFol o,
2 “|1 Z F(t)l

where we have chosen four specific values for b. Also, F(t) = cg +a-2(1 - e-a(t-tp)) - a-1(t
-10), u = F()A/2, and k2 = 1/2.

Table II-1 gives the form of the equation and its corresponding solution. The
solutions are written as indefinite integrals and thus the constants of integration must not
be forgotten since this significantly changes the form of the solution. These integrals in
general cannot be solved analytically as can be seen in case I which contains the elliptic
equations as a special subcase. Cases II through VII are very particular cases but may be

of interest in special applications in physics. In case VII, we have only one general
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function B(f), while C(f) is related to B(f) and A(f) is a constant. In the next section we

develop a general approach to analyzing and solving equation (3.1.1).

The results of this section are summarized in table I1I-1 below:

TABLE HI-1: Special cases of Equation (3.1.1).

Case Equation Solution
£ cD(!)
I £+ B (£)2 + C(f) = 0 t—to-fdx
\/ ~2fdy C(y)e?™”
D™
o "+ A F + B 2=0 t—to-—fdx
fdy A(y)e"®
m " + A(DF + B(D(f-)z + A(f) exp[-D(D)] =0 t—1t, -fdx cD(x)U(X), where
ffdx ePIA(X) = 1n|1 + %‘ - %
£ - BEXEY=-CO) | 1=ty = fl L
+ + = - —tg = f{dx
v \/ ~2f {1 + C(x)eP® X ° \[ ~2fyf1 + C(y)eP® P
) D(x)
£ + A(D)E + BEXE')? - [dx] A(x) + PP [eP® =0 ¢ _t, m - fdx c :
\'% f x[ ]c o ." FY[A(S') + eD(y)]er)(y)
\2 £ + A(E)E' + B(EXE')? - CoA(f) - 2B(f) = U [ =cot+fy
- - _ e %t-to)
v f"+af’ +B(f)(f’)2 +e—D(f) =0 deCD(‘) «cy +1 ait tolz [~

a

e—a—

SECTION III: A GENERAL ANALYSIS

This section deals with cases that do not fall in Section II and where A(f), B(f),
and C(f) are ratios of polynomials in f with no explicit dependence on the independent
variable t. We shall denote P(t; k) as representing a polynomial in the variable t to order
k (i.e. po + pit + p2t2 + ... + ptk). Then, A(f), B(f) and C(f) can be represented as

AE) _ P(Eo)

AD=%,® " PEay

(3.3.1)

B,(f) _ P(EB)
BO= 5.0 " PEBy) @3.2)




100
and

G _Piix)
C,()  P(fix,) (3.3.3)

C()

Thus, equation (3.1.1) can be written as follows

2

2
Eo(f)%gf + Ao(f)%f— + Bo(f)(%%) +Cy(f)=0, (3.3.4)

where Eo(f) = P(f; &5), Ao(D) = P(£; 00), Bo() = P(£; Bo), Co(f) = P(£ %o)-

The purpose of this section is to reduce the problem of solving the nonlinear
ordinary differential equation into an equivalent form of solving a known differential
equation and a system of nonlinear algebraic equations. This is more desirable since the
algebraic system is easier to solve using symbolic solver programs that are available on
computers. We can accomplish this objective by introducing a new dependent variable
and transforming equation (3.1.1) into a polynomial in the new dependent variable. Thus,
for the polynomial to be zero, we must demand that each coefficient of each power of the
new dependent variable is zero. This will produce a certain number of parameters and a
certain number of coefficients which become our algebraic equations. Now, if we

.:ssume that

£ R@z) _ P(z;x) and dz
S(z) P(zx) dt

= T(z) = P(z;n),

then equatior (3.3.4) becomes
F,.(z2)+F,(2) F,(2) F,(2) F,z
d ;.,,+32( 2, S:fn? + 33(4) + §f) -0, (3.3.5)
where

F,(2)= Eo( %) S®TA(SV’ ~ S'V) = P[z;(, + 3) + 20— 4], (3.3.6)
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F,(z) = Eo(%)S“TV(ST' —S'T) = P[z;(g, + 3)x + 20 — 4], G.3.7)
Fy(z) = Ao(}g)s"“TV = P[z;(a, + 2)x +n - 2], (3.3.8)
Fu(@)= By 5 )S*T2V? = PIzi(B, + 4)x + 20 - 4], (3.3.9)
Fy(2) = Co(% §* = P[z;xox ], (3.3.10)
and
dR_. _dS

V(z) = —S-R—.
@ . dz (3.3.11)

The primes in equations (3.3.6) and (3.3.7) represent differentiation with respect

to z. The F;(2) and F5(z) terms in equation (3.3.5) arise from " in equation (3.3.4), the
F3(z) term comes from Ay(Df, the F4(z) term comes from B, (f)(f')2, and the F5(z) term
comes from C,(f). As can be seen, the power n in each term of equation (3.3.5) appears
as n-2 or 2n-4 and thus can be eliminated by choosing n=2. This corresponds to T(z)
being a quadratic which means that along with solving the system of algebraic equations,
we have to solve the following first order ordinary differential equation on the

independent variable

dz 2

P AT T,z°, (3.3.12)
and since the coefficients are complex constants in general, this leads to hyperbolic
and/or trigonometric solutions. It should be noted that the definitions of F;(z) and Fy(z)
are not completely true and that they are polynomials P[z; (3+¢,)x + 2n - 3]. However,
the coefficient of 2(3+€0)X+28-3 contains n-2 as a factor after F;(z) and F,(2) have been
added together and thus cancel when n=2. The n=2 requirement can also be interpreted

as the square root of a quartic polynomial which changes equation (3.3.12) into an elliptic
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differential equation. However, F3(2) gives rise to an extra square root, which would

have to be eliminated. To eliminate the square root, we have two choices, one is to have
A(f) = 0 or else to place F3(z) on the right hand side of equation (3.3.5) and square both
sides. For A{f) = 0, all we need to do is use case I in table II-1 and thus this procedure is
not necessary. The alternative of squaring both sides to eliminate the square root shall be
considered later on and at present we will consider T(z) as given in equation (3.3.12). It
should be noted that one could extend this argument to a polynomial of order 2n taken to
the (1/n)th power. However, this is impractical at this stage since the reduction is
intended to obtain solvable first order differential equations. This extension also includes
the z{3+€0)X+20-3 (o1 which in this case has the coefficient n/l - 2 where n is the order of
the polynomial and 1/1 is the power of the polynomial which is again climinated by
choosing n=2l. Multiplying equation (3.3.5) by S(z) to the highest power in the
denominator will make each of the five terms a polynomial to the same order as the other
four. Of course, we want to have at least as mapy parameters as there are algebraic
cquations. This is obtained by restricting what X is since from R we have X+1
parameters and the same from S. We also obtain 3 parameters from T(z) for a total of

2K +5 parameters.

Table -2 gives for each case the maximum order for each of the polynomials of
A, B,, C,, and E,,. This table also gives K which is the maximum order that R and S can
assume. Also, table IlI-2 contains two distinct classes, those when B(f) = 0 (cases 1
through 9) and the cases when B(f) = 0. It is clear from the conditions on K that there is
always a solution even if it is just the trivial solution X = 0. This means that by equating
parameters to zero, iic number of equations are reduced faster than the number of
parameters. It should alzso be noted that since f is the ratio of R and S, that for x at its
maximwz velue, cne of tic parameters must necessarily be arbitrary and therefore this

implies that we have one cquation too many. This problem can be circumvented either
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by the fact that not all of the equations may be independent or if they are, we will need at

least one of the parameters set to zero.

TABLE HI-2: Reduction to algebraic equations for ¢xponential solutions.

Case K o | Bo | % € # of algebraic equations B{)
1 <4 =<1 =0 <3 =0 3K +1 =0
J§ | <2 <2 =0 <4 =1 4K +1 =0
oI =1 <4 = =6 =3 6K +1 =0
|\ <4 =1 =0 =3 =0 3x+1 =0
\' <2 =2 =0 <4 =<1 4K +1 =0
V1 <1 =4 =0 § =6 <3 6K + 1 =0
Vi <4 s1 =0 =3 © =0 3 +1 =0
vim | s2 | s2! =0]-41=<1 4 + 1 =0
IX <1 <4 = =6 =3 6K + 1 =0
X <2 =2 = =4 =1 4 +1 ()
X1 s1 <4 =2 =6 =3 6K + 1 =0
X11 <2 <2 =0 <4 =<1 4K + 1 =0

X s1 <4 <2 <6 =3 6K + 1 = 0

X1V =2 =2 = =4 =1 4 + 1 =0
XV <1 =4 <2 =6 =3 6K +1 >0

XV1 =2 =2 = <4 <1 4 + 1 =0

XVl <1 <4 <2 <6 =3 6K + 1 =0

As mentioned above, we shall nov Jiscuss the case when n = 4. The reduction

leads to elliptic differential equation of the form

%f- = T(2) = [Ty + 7,2 +7,2° +T,2° +T,2°, (3.3.13)

instead of equation (3.3.12). The cases that are possible appear in Table I11-3.

Clearly, all seven cases reduce to the same differential equation, which is

d2f JRataf+ a,f? df b, (df)’ , Sotof +Cf2 +cf v e Bt

—_ 0. (3.3.14;
dt? e, +ef dt ey +ef €, +¢,f ( )

dt
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Even though we have not investigated this equation, it would be interesting to see what

type of solutions do arise.

TABLE III-3: Reduction to algebraic equations for elliptic solutions.

Case | x (¢« Bo Xo €0 # of algebraic equations | B(f)
1 <1 <2 =0 =<4 =1 8K +1 =0
II <1 =2 = <4 <1 8K +1 =0
L6 1 <1 <2 = =4 <1 8K +1 =0
IV <1 =2 = <4 =1 8K +1 =0
\4 =1 =2 = <4 <1 8K +1 =0
VI =1 =2 = =4 <1 8K + 1 =0
VII <1 =2 =0 <4 <1 8K +1 =0

The above analysis covers a large class of nonlinear ordinary differential

equations, however, in most cases when transforming to the type of differential equation

as given in equation (3.1.1) there is usually some explicit dependence on the independent

variable still in the equation. Thus, if we were to assume that the coefficient Ay(£t) =

P(f; a,) and similarly for By(f,t), Cy(f,t), and Ey(£t), i.e. the equation would become

nonautonomous, then we can use the method above with the parameters now functions of

t. This, however, will lead io a system of coupled second order differential equations

which are probably not solvable for general functions of t but may be solvable when the

coefficients have a simple dependence on t. Also, equation (3.3.12) now becomes the

generaiized Ricatti equation.
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SECTION IV: EXAMPLES

In this section we wish to demonstrate the power and usefulness of the presented
method on several important physical examples of recent interest. The first example is
that of a damped-driven anharmonic oscillator equation and it falls into the general type
of analysis described in Section III. The second example is concerned with an
anharmonic oscillator equation with quadratic dissipation and it can be analyzed using a
special case given in Section III. The third example is that of a dampe.d-driven Morse
oscillator and it calls for the use of various special cases. It can also be analyzed using
the algebraic method but this has not been done yet. The fourth example studied involves
the equation of motion for interacting q-boson system and it can be integrated implicitly
and analyzed qualitatively. The final part of this section lists a number of other equations

that can be treated with the help of our method and discusses the physical contexts in

which they emerge.

Example 1

As our first illustration of the usefulness of the method, we consider the equation

£ 4 cf’ +¢, +c,f +c,f2+c 2 =0, (3.4.1)

which describes the motion of a classical cubic anharmonic oscillator with dissipation
and in the presence of a bias field (due to ¢1). A particularly important application of this
equation occurs in the studies of the kinetics of phase transitions where, for nonconserved
order parameters 7], the governing equation is the celebrated time-dependent Landau-
Ginzburg equation (TDLG)16)

1 dn

"——-sz P ’ &,
= n+P(M) (34.2)
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where P is a polynomial in 7). Examples of the uses of the TDLG abound in many areas

of physics, chemistry, and biology, with specific applications to liquid crystals1?),
ferroelectrics!®) and structural phase transitions!9). Traveling wave solutions of equation
(3.4.2): n = n(x-vt) obey an equation as given in equation (3.4.1). A very recent group of
interesting physical examples governed by this type of equation arise in the context of
propagating pattern selectionll) with Rayleigh-Benard convection in fluids, solidification
fronts20) and cellular flame fronts being particular realizations in liquid, solid and gas
systems. In addition, chemical kinetics provides additional examples in the case of

reaction-diffusion systems?21).

We should also point out that eGuation (3.4.1) represents the case of a Duffing
oscillator with a constant forcing term and reference 22 maintains that o exact solutions
for it were reported in the literature unless the force is set to zero. At the end of this
subsection we give an explicit analytical formula for a special solution of this equation
with c; = 0. Also, note that important applications of the Duffing oscillator equation

include the formation of laser instabilities23).

Having discussed its importance, we now return to the study of equation (3.4.1).
Using a linear shift operation for f and a scaling of variables we can reduce this equation

to the form
F'+F +a+bF+F> =0. 3.4.3)

A recent paper?) has dealt extensively with this type of equation (for a = 0) including an
up-to-date review of existing literature and we refer the interested reader for details. It
turns out that except for the Painles case of b = 2/9, only trivial (constant) analytical
solutions have been known. By using the method outlined in previous section for
exponential solutions we find that K =< 4. This means that we can have up to 13 coupled

algebraic equations on the polynomial coefficients. It is worth pointing out that for x =0,
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we recover all the trivial solutions. For K = 1, on the other hand, we again obtain the

trivial solutions and, in addition, a nontrivial solution for the following special case of

equation (3.4.3);

F’+F ::——_\/Z

” (1-36g2)+ (—1:-?@—1: -F*=0. (3.4.4)

The obtained solution is given by

N5 1+ C, tanhg(1 - t,)]
Fex-t =42 g{ Cos (= ty)] } (3-4.5)

where Cg and tg are integration constants and the = sign above corresponds to the one in

equation (3.4.4). For [Co} = 1, this solution is singular, while for |[Co|] > 1 it represents a
kink. To the best of our knowledge this solution has not been listed earlier in the
literature. The situation for 2 < k < 4 has not been fully investigated yet but calculations

are underway and will be reported separately.- However, what we do in principle in the

cases when x < 4 is to let

2 3 4
FolotDZ+ 02 + 1,2 +1,2 (3.4.6)
3 Che £
Sp +S,2 +5,Z° +5,2° +8,2"

and

dz
T - T@ =T +z+ 1,2 (3.4.7)

This gives rise to 13 adjustable parameters subject to 13 coupled algebraic equations. For

k=1, wehavesetro=r3=14=82 =83 =54=0.
Example 2

A recent paper!2) demonsitated a very interesting property arising as a result of

applying the continuum limit to the dynamics of anharmoniz lattices. Due to kink-
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fluctuation coupling and trapping which are characteristic for discrete lattices, dissipative

terms appear in the equation of motion which are powers of the field’s time derivative.
Compared to the previous example then the lowest nontrivial term that appears in the
equation of motion due to discreteness is proportional to (mp?. In order to compare the
two distinct situations, we now consider an anharmonic oscillator equation with

quadratic dissipation given by
" + B(f’ +Cf +f> = 0, (3.4.8)

where we have neglected a constant forcing term for simplicity. This is clearly in the

form discussed as Special Case I in Section II. We then readily find that

t—1, = fdx exp[D(x)]{—z [y C(y) cxp[zv(y)]} -, (3.4.9)
where

C(y)=Cy+Yy’, (3.4.10)
and

D(y) = B(y - ¥, )- (3.4.11)

We therefore obtain an implicitly given solution inx the form

~1/2

3 2
=t = fdx{Coc'z"‘ &, € x¥ 3x 3x 3 } , (3.4.12)

with Cg denoting an integration constant. When Co = 0, the integral in equation (3.4.12)

is an elliptic integral.
This can be readily extended to a more general case where

" + B(f')? + C(f) = 0,
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with C(f) being an arbitrary fun.tion of f. Examples could include C being a

trigonometric functicn (sin f or a sin f + b sin 2f fcr sine-Gordon and double-sine Goraon
applications, respectively) or an exponential function for studying a damped Liouville
equation. An implicit form of the solution is then found to be

-1/2

t—t, = fldx{c'za‘ [co -2fdy ezB’C(y)]} . (3.4.13)

It is interesting to note that the equation for local maximum and minimum in the (f’, f)

phase space is
' =C(& -~ b
) - _c]_g_l_) - e280 {co -2 f dx eza"C(X)}, (.4.14)

while in the nondissipative case (B = 0), one obiains;

(f) =co- Zfdx C(x), (3.4.15)

with cg corresponding to a local minimum or maximum when C(f1) = 0. Comparing the
solutions of equation (3.4.13) with those in Example 1 for linear dissipation, we find an
important qualitative difference. Whereas linear dissipation caused all the solutions to be
damped and hence nonperiodic, quadratic dissipation appears to allow periodic solutions
which, in the extreme limit of their period tending to infinity and converge to the

separatrix orbit given by equation (3.4.14).

Example 3
In this subsection we study the so called damped-driven Morse oscillator equation
5i+ou':+6e"‘(1—e“)-—0 -0, (3.4.16)

where Q represents a constant force term and e*(1-e7X) is the Morse potential term. This

equation has recently gained much interest?3) in applications to the modeling of
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vibrational spectra of diatomic molecules. In particular, infrared multiphoton excitation

and dissociation dynamics was studied with its use26) as well as an investigation into the
dissociation of van der Waals complexes undertaken2?). Other applications include laser

isotope separation and stimulated Raman emission modeling.

To solve equation (3.4.16), we first substitute

. f .. fr ()
x=~Inf; x-—rf-; and x-—T+ e (3.4.17)
so that the equation takes the form
1\2
e - L) s ar s at-pria-n-o. (3.4.18)

This equation can be solved using the algebraic method in the previous section, but this

has not been completed as of yet. However, for certain values of a, 8, and Q, equation

(3.4.18) does satisfy some of the special cases as discussed below.
Special case a)
We assume that o = O (no dissipation) and integrate equation (3.4.16) to obtain
dy
t—t, = f .
ﬁ" —fvdz{ﬁc’z(l - c'z) - Q]

which is equivalent to an elliptic integral when Q = 0 (see equation (3.4.18)). If in

(3.4.19)

addition to a = 0, Q = 0 then we find
x = lnft - Cexp{~y=B(t - to)] | (3.4.20)

which is an explicit analytical solution.
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Special case b)

Assuming that Q = 0 but & = 0 and B = 0, we find for = a2

X = lnlC0 ~aft- to)l. (G-4.21)

Special case ¢)

Here, we take a = 0 = g but Q has a specific value, namely Q = = cx\/T[:"S Then

2sinh[ Ay=B(t - to)] (3.4.22)
sinh] Ay/~B(t - to) | Acosh| Ay/-B(t - :0)] ,

= In
|

where A = (1= 4a/\/7ﬁ)1/2 and § < 0 is required. These three solutions were obtained
using the special cases given in section II. From these three special cases, we would

expect exponential solutions for equation (3.4.18) in conjunction with the algebraic

method presented in section HI.

Exampie 4

In a recent paper28), a system of strongly interacting q-bosons was considered

with the characteristic commutation relation for each quasi-particle labeled by k given

below
+ -1+ N
A3 —q 3,3, =q, (3.4.23)
where q is in general a complex number. For the generic Hamiltonian

Hy,=) w33+ Ay a3.373,8, 0 .
off Z ["% 1ad "ad | k;- k1, k<t kel (3'4.24)

describing quasi-particle interactions, the Heisenberg equation of motion can easily be

found for each annihilator. This is then converted to a field equation for
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= e “ra, =ne" 3.4.25
T 2 L= (3.4.25)

represented above in the modulus-argument form. It is subsequently shown that, for a
phase y which is spatially independent, i.e. Vi = V2¢ = 0, and time modulated through
P = vt, the cffective equation of motion for the amplitude n is

Q,Vn+ (R, + MXVn)’ = —Qm - 2,1 — Ivi{(1 + q)exp[(Inq)n?]

(3.4.26)
+q7 -qm%?,

which is a highly nonlinear partial differential equation. However, since in one

dimensional space it is essentially of the form
42 dy\?
._)2, + B(y)(_._y_) + C(y) =0 (3.4.27)
d dx

it can be integrated using our method (see Special Case 1) with

Q, + 82
B(y) ~a,

~£2,C(y) = RHS of equation (3.4.26).

We find its formal solution as

( gaY*stz_\
2q,

n dy e

e = o
\lco ———fdz Q, +Q,2° +
2, @+ gl + (q

It can be demonstrated28) that this type of solution admits solitons.
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Other Examples

We conclude this section by listing several other equations that have recently

appeared in the physicai literature and which can be investigated using the method

proposed in this article.

@) A higher order nonlinear Schridinger equation of the type

g+, = allxplz'lp + az"l’l‘w + ias(‘pl“’lz)x +(ag+ ias)‘p(h’iz)x (3.4.29)

appears in the study of single mode wave propagation in a Kerr dielectric guide with
nonlinear properties!?). Traveling wave solutions will have amplitude equations that
conform with the genperal type in equation (3.1.1)29). This illustrated by taking ¢ =

N (%)ei*®), where § = x + vt, then equation (3.4.29) becomes upon splitting real and

imaginary parts;

Im.: vy +20'¢' +n” = (32, + 2a5 nPny’ (3.4.30)
and

Re.: —wné' +1" —n(¢') = am® +a,n° — a9’ + 22,y (3.4.31)

Equation (3.4.30) can be readly solved for ¢~ as follows;
Co V

' 3a, as) 2
= — =24 502, 4.
e 2+( s 2" (3-4.32)

Upon substitution of equation (3.4.32) into equation (3.4.31) leads to an equatic : of -":¢

form given in equation (3.1.1).

®) The motion of a particle under a potential force and generalized friction was

recently discussed which satisfies the equation30)
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% + xx]° + Bx|x[** = 0, (3.4.33)
which, again, is of the general form in equation (3.1.1).

© Crystal growth dynamics31) has been demonstrated to satisfy two equations,
depending on the regime, one of which falis into our general class (when traveling wave
solutions are sought), i.e. the Kardar-Parisi-Zhang equation

ah

FTRAAALE %(Vh)2 +7n=0, (3-4.34)

wheie h denotes the surface’s height and m is a forcing (or noise) term. If we assume that

h(x + vt) then equation (3.4.34) becomes;

A
vh’ + Vh" + -2—(11')2 +m=0, (3.4.35)

which is a Riccati equation if the forcing term 7 is either a constant or a function of x +

vt. In which case we can linearize equation (3.4.35) by letting h” = 2V (AD1;

” v 4 an
" + —\-,—f * oV 0. (3-4.36)
If on the other hand, 1y is a function of h only, then equation (3.4.35) is of the form given

in cansiion (3.1.1).

We therefore conclude that a very broad range of physical systems satisfy

equations of motion that can ve successfully analyzed using the method outlined in this

chapter.
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SECTION V: CONCLUSION

In this chapter we have focused on a class of autonomous nonlinear differential
equations which can be described as generalizations of the anharmonic osciilator equation
with linear and quadratic dissipation. These types of equations appear frequently in the
descriptions of dynamics of multistable dissipative systems and they also occur as
reduced ODE's for multidimensional PDE's in conservative multistable systems. Physical
examples of relevant systems were given. The method that was proposed in the present
chapter relies on representing the solution as a ratio of polynomials. However, the
independent variable is simultaneously transformed as well, so that it can take a linear,
exponential, trigonometric or hyperbolic form, depending on the case. Several special
types of the investigated class of equations were solved analytically to either explicit or
implicit forms but a general approach has been presented as an algorithm that results in a
system of coupled algebraic equations on the polynomial coefficients in the ansatze.
Finally, several physically interesting particular exampies of both the special cases and
the general method were described showing the power of this way of solving this class of

ordinary differential equations.

A final comment should be made in regard to the question of invertibility for the
solutions derived. The algebraic method gives solutions that are always invertible, the
exponential case leads to hyperbolic functions and/or trigonometric functions while the
elliptic case leads to Jacobi elliptic functions. However, in general, we cannot expect

invertibility to exist for solutions of the special cases.
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CHAPTER 4: FORMATION OF COHERENT STRUCTURES IN SYSTEMS
WITH TWO STRONGLY INTERACTING TYPES OF QUASI- PARTICLES"®

SECTION I: INTRODUCTION

A large variety of condensed matter systems exhibit properties which manifest
underlying interactions between two distinct order parameters. Examples of such
behavior include metamagnetsl), ferroelectric-ferromagnetic systems?), ferroelectric-
piezoelectric crystals3), crystalline-superfluid systems?) as well as orientation-position
ordering phenomena in molecular liquid crystals®). It is well known that an interplay
between two distinct orders may result in critical temperature shifts as well as crossover
phenomena. This can be readily analyzed using the mean field approximation?).
However, a more fundamental microscopic approach to the problem poses a serious
difficulty due to inherent nonlinearities in the description. The objective of the present
paper is to provide an insight into the problem of coupled degrees of freedom using a
recently developed techniqueS.7), which applies to systems composed of a large number
of strongly interacting particles. The method, henceforth referred to as the Method of
Coherent Structures (MCS), is based on a nonlinear analysis of collective modes of
behavior in these many-body systems. The starting point is a generic second-quantized
Hamiltonian which includes both one- and two-body interaction terms. Then,
Heisenberg's equations of motion are calculated for the creation and anmihilation
operators for each quasi-particle. This technique relies on ar expansion of the coupling
coefficients in both one- and two-body terms in a power series about a specifically chosen
point in momentum space (or the space of quantum numbers). Also, quantum fields are
defined, in the standard manner, using a plane wave basis. The definition of the fields

along with the coefficient expansions are then used to convert Heisenberg's equations of

* A version of this chapter has been submitted for publication. K. Vos, J. M. Dixon, and J. A. Tuszyfiski
1992. Physical Review B.
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motion into a coupled system of nonlinear partial differential equations (PDE’s) for the

quantum fields. In order to make the problem tractable, a standard approach in quantum
field theory®9) is then implemented whereby the quantum field is decomposed into its
classical part and a quantum correction. Close to criticality, which is of particular
interest to us, the classical part predominates to a very large degree so that the equations,
although nonlinear, may be first solved for the classical component to a very good
degree of approximation (corrections are of the order of #). This classical envelope
equation is usually solved using recent mathematical discoveries in the area of nonlinear
PDE's10-12). The new powerful mathematical techniques at our disposal allow us, at the
very least, to extract important physical information about the geometry of the system
and sometimes the analytical form of these classical nonlinear fields existing in multi-
dimensional space-time can be determined. Once the stable classical solutions are found
they provide an effective potential in a linear Schrodinger equation for the quantum
oscillations. The presence of bound states is an additioral criterion determining the
stability of the envelope. It should be pointed out in this connection that approaches very
similar in spirit were proposed almost simultaneously by other authors (see e.g. Ref. 13)

and a precise relationship between these methods is to be established in the near future.

Apart from the general framework, several specific physical applications have
been recently worked out with the aim of testing the validity of the method. First, the
BCS Hamiltonian for superconductivity has been used and a careful analysis resulted in a
remarkable confirmation of earlier standard scaling laws for the superconducting current
and energy gapl4). Another application was concerned with the equilibrium phases of
metamagnets, i.e. spin systems with two or more sublattices. Again, an independent
analytical support was provided15) for a numerical form of the phase boundaries between
the three possible ground states16). Further applications are being currently investigated.
In particular, the Haldane gap problem in quantum Heisenberg spin chains and also the

bound states in multielectron atoms are being studied. Another important observation has
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been recently madel?) in connection with the presence of spin degrees of freedom. It was

rigorously demonstrated that the inclusion of spin does not alter the form of the quantum
equations of motion and hence the basic results of the calculations remain valid. What is
affected, however, by the presence of spin is the magnitude of the nonlinear coupling
coefficient when the spin S > % , in which case it becomes multiplied by the spin
degeneracy (2S + 1) (for integer spins only). This may also lend support to the approach
described since the critical temperature will be spin dependent and, for example, for
superfluid 3He and 4He the transition temperature is much higher in the latter case than in
the formerl®). Finally, it may be demonstrated that the form of the nonlinzar field
equations, provided the field is suitably defined, is exactly the same in any orthonormal

basis of states and not just in a plane-wave basis as originally used.

The motivation for this chapter is to extend the MCS beyond a single quasi-
particle type and include another set of degrees of freedom, which may represent either
another subsystem (e.g. heat reservoir) or a different type of quasi-particle (electrons and
phonons, for instance), when the two subsystems are coupled together. This is not an
easy exercise but an important step in the direction towards realistic modeling of complex
many-body systems. In fact, under close scrutiny nearly all many-body structures are
comprised of several distinct subsystems or components. Low temperature
superconductivity, for example, involves electrons and phonons dynamically coupled via
an electron-phonon interaction19). This particular case will be discussed in greater detail
in this chapter in Section IV using the Frohlich Hamiltonian and the MCS as a basis. The
gencral situstion described here is indeed ubiquitous in condensed matter physics with,
for example, various phonon modes interacting amongst themselves and leading to
structural instabilities20). Practically speaking, any combination of two types of
excitationz present in a solid may be described in this way (electron-plasmon, magnon-

phonon, electron-polaron, photon-electron, etc.). This chapter, therefore, addresses the
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very important question of the physical behavior of cross-coupled quasi-particles or

subsystems.

The rest of the chapter is divided as follows. Section II starts by lcoking at a
generic second quantized Hamiltonian for two interacting types of particles. The section
goes on to find the Heisenberg equations of motion for each possible statistics that the
particles can obey: Boson - Boson interactions, indistinguishable Fermion - Fermion
interactions, distinguishable Fermion - Fermion interactions, and Fermion - Boson
interactions. The section also discusses the methodology where the coefficients are
expanded in a Taylor series near some critical point in momentum space and also field
operators are introduced using a plane wave basis. This leads to two coupled generalized
nonlinear Schriodinger equations and which are assumed to be classical to zeroth crder.
Also, in section II it will be shown that the equations of motion for the classical fields are
equivalent to those obtained from a Landau - Ginzburg type Hamiltonian density.
Section II closes with a brief discussion of the physical interpreiation of these classicatl
solutions. Section III is our first example, the classical field equations for the
distinguishable Fermion - Fermion case will be discussed and some solutions to thesc
equations are obtained. Section IV is our second example which deals with the case ..«
interacting Bosons and Fermions. The snecific system in this case is that of interacting
electrons and phonons in & metal as described by the Fréhlich Hamiltonian. The fourth
section is divided into three parts, the first of which is a discussion of the general
background information of tLe Frohlich Hamiltonian and also the resulting classica! field
equations that will be obtained. In the second part, the equations of motion when the
coupling coefficient is taken only to zeroth order will be discussed. In this part, the
solutions to the classical equations of motion are found which permit the formation of
Cooper pairs and thus leads to superconductivity. The third part is an extension of the
second part, except that now the coupling coefficient between the clectrons and the

phonons is considered to have a q dependence and is expanded to second order, which
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will lead to extra ierms in the equations of motion. This part however, leads to implicit

solutions in the form of an indefinite integral which in general can not be solved, but for
special cases the integral can be done and then the solution can be inverted. However,
there is much information that can be gained from the integral without actually solving it,
which will be discussed. In this part, solutions for free electrons scattering off the
phonons and solutions for Cooper pair formation are found. The fifth section closes the
chapter by summarizing the results and discussing further applications for the method

discussed.
SECTION II: METHODOLOGY

In this section, the MCS is applied to a general Hamiltonian describing many-
particle systems. Here, the entire physical system is divided into two parts, denoted A
and B, with strong interactions within each of the systems and coupling terms between
the two subsystems. The form of the coupling terms in this study is quite general and
includes one- and two-quantum exchanges between systems A and B with associated
second quantized operators (a,a*) and (b,b*), respectively. The model Hamiltonian will

be taken generically as

H = H, + Hp + Hap, 4.2.1)

where
H,, = 2 {Eka;bk + E.kb::ak} + Z {nk,la;albk-l +MNebi 218, +
M.bibﬁlg-.+?~L-ai-|bfbk} + 2 {l"k,l,-b:a; A, 0-m T
oA (4.2.2)
Mirmdta-naiDy + Vi1 mdibiDubiyin + Vi ubia abibia, +

Tt . + +
ak.l,-akbl b-ak+!-- + ak,l.-ak+l—ubllblak} 2

+ ©) +,+ L + hd +
H, - Zwkakak + 264-3&31 Ay Z {sk,lakalak-l +&y Ay 13y ak}’ (4.2.3)
kls
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and

H, = Z Q,bib, + Z Avrabibibobi o + Z {ALbibb, , + A b bib,},  (4.2.4)
kim

where Hy and Hy, are the associated Hamiltonian for the two separate subsystems A and
B, and Hyp, is an operator providing interactions between them. Each of the labels k, 1
and m should denote a set of quantum numbers for a complete set of states. In view of
the fact that spin labels do not alter the form of the MCS equations of motion, provided
the interactions themselves are spin independent, we drop spin labels and use a plane-
wave basis. The interaction terms in Ha and Hp are such that linear momentum is a
conserved quantity so indeed an assumption about the form of interaction has been made,
but this would cover most examples in physics. Note that the interaction Hap has to be
Hermitian and this is reflected in the form of equation (4.2.2). Three-body interchanges
have been specifically excluded, i.e. six-legged operators will not appear in the
Hamiltonian. The reader should not presuppose that in all four cases the form of H as
given in equation (4.2.1) is the same but each particular case will never include terms
which do not appear there. Thus, when we consider individual cases we can drop terms

from equation (4.2.1) as appropriate and do away with the need to have a separate

Hamiltonian in each section.

The first step in this procedure is to calculate the Heisenberg equations of motion
for the ladder operators of the two systems. In general, four cases can be considered
depending on the types of statistics obeyed by the quasi-particles, i.e. 1) Boson-Boson, 2)
indistinguishable Fermion-Fermion, 3) distinguishable Fermion-Fermion and 4) Boson-
Fermion cases. We consider each of these cases in turn as, in general, they lead to

different equations of motion, case three being the simplest and case one with the Boson-

Boson situatios is the most complex.
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Case 1: The Boson-Boson System

For this situation all terms in equations (4.2.1), (4.2.2), (4.2.4) and (4.2.2) are

included. The a and b operators satisfy Bose-Einstein commutation rules, namely

[avai] =8 - [bobi] =0u, - 4.2.5)

[at.a7] =[awa] =[vibi] =[bubi] -0, 4.26)
and

[ai.bi] =[aib ] =[awbi] =[aubi] -0 - @2.7)

We have specifically excluded interactions or terms internal to a subsystem which create
one particle from the vacuum but have aliowed transformation of one particle to another
and two of one type to scatter off another but in the process linear momentum is
conserved. Since there are two-body terms in equation (4.2.2) we include not only
interactions which preserve different particles separately but incorporate terms where, for
example, two B-particles are destroyed, a B-particle is created but an A-particle also
appears to conserve momentum. No processes of the type in which a B-particle is
destroyed at the expense of creating three A-particles have been included, etc.

Employing Heisenberg's equation of motion in the form
it da, =[a,.H], 4.2.8)

we find

ihatan = wuan + 2( fnol)- 6tI(on)ln)al a, Agri-m t Enbn + z{nn.lalbn-l

+1abyad) + A, bl b, +E, B8, + Eneti®) 2aug + El.af.nan} (4.2.9)
+2 {p'l,a,nbl a-an-ﬂ-- + p’:-r-—l,l.-a:albn-r-—l + u:.-.na:+-—n -bl
b;b_a

+yn',__b b b

u+l—- n L1, m a+l-m + an+-—l 1, -b:b n+m —l}
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and

ihatbn = ann + Z(An.l.- + Al.n.- )brb-bnﬂ-- + E:an +2{A’n,lblan—l +

Ani-ab) + Tlo@1800 + Ag by + AL, bib,, + A.l,nbr—nbl}

. . . . . 4.2.10)
+2{Y l,n,-al bgbn-i»l-- + Yn+n-l,l,nb-blan+- -1 + Yl.-.nb b

l+m-g -al

+ + . +
+u'n,l,nal ambn+l—n + al,n,ng‘.' b-an+l-n + al,-.na- -n+lbnal} -

In order to obtain quantum field equations, two quantum fields are defined corresponding

to the two sets of operators as follows

1 .

B(x) = WZ b, exp—ik * x| 4.2.11)
and

‘F(x)=—41—‘7—2 a, exp[~ik* x] @.212)

where V is a volume over which the plane waves are normalized. For completeness we

give the well-known relations

S, emrli(le - ko) xpx =V, (4.2.13)
2 exp[i(r-l’)~k]- Vo(r-r).

(4.2.14)
The procedure outlined earlier67) for a single field is now followed and the coefficients
in each equation of motion are Taylor expanded about a particular point in reciprocal or
quantum number space. It is assumed that there is at least one such "point" which is
common to both subsystems. This point may be chosen as an actual critical point of a
subsystem with coordinates (n,, ko, mo) in "reciprocal” space or it may be a point in a
regime where the system is close to classical from the Correspondence Principle21). As

an example, expanding ® we find
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w, =, + 2 [(n- “z' ALY (42.15)
We expand both w and 2 to second order in deviations from the critical point and assume
the remaining model parameters to be "momentum" independent. For more details of
these expansions, see reference 6. Having made the appropriate Taylor expansions and
defined fields for each subsystem we multiply both sides of equations (4.2.9) and (4.2.10)

by V2exp[-in-r] and then sum over n. We find that
70 W = o W + iw, - V¥ + @, VW + 26 W'PP + E, D + PP +
NO*'YP + X, O D + e P¥ + 26, ' + p O PP + (4.2.16)
2P PR + 7, DD +[a, + o JoBY

where the new parameters are related in an obvious fashion to those in the original

equation, i.e. equation (4.2.9).

In a similar manner we obtain, for the other field @,
ihd @ = Q@ +iQ, - VP + Q, V3P + 2A D OD + EW+ A OY+

ANWD + PP 4 A DD+ 2A, DD + pn FPW + 4.2.17)
2y. 0" DF + y W OB +[a, + o [P OP

It shouid be noted that w; and Q3 in equations (4.2.16) and (4.2.17), respectively,
are written in this form for convenience since in general they are second order tensors and
the Laplacian is replaced by mixed second order derivatives. However, for numerous
physical systems they will reduce to a Laplacian operator due to their inherent spatial
symmetries. These equations, even when treated classically, are extremely difficult to
solve but can be useful when considering specific physical systems. At present we have
not analyzed any physical system which involves a Boson-Boson interaction but hope to

do so in the near future.
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Case 2: Fermion-Fermion, Indistinguishable Particles

As an example of such systems we might imagine two atoms in a solid each with

their own electrons22). As these electrons are indistinguishable, the associated

annihilators and creators satisfy the following commutation rules

[awar ], = 8uss[awa ], =[arar] =0, (4.2.18)

[bu.br] =0.,, [bw:b, ] =[bi.bi ] =0, 4.2.19)
and

[2.67 ], =[awb, ], =[at.b,], =[az.57] ~o0. (4.2.20)

Going through the same procedure as before and noting that €, A, 1), A terms vanish since

charge must be conserved, we find for the equations of motion the following

19, = 0,8, +E,b, + T {60 -8R Jajana,n +

an,l,nb;buan-&l—- - a:u-l—-,-,lb;bnanﬂ-- + Yn,l,-b:bubm»l—- (4'2'21)

_ul,n,nbrananﬂ-- + !":—l-v-,l,na:albn-H- - lj‘:.-,na:—lu--a-bl}'

For the other field annihilator we obtain

ik atbn - ann + E:an + 2 {(An,l,- - Al.ll,- )b:b-bn«’-l—- -
a;b,a - a:.-,na:ﬂn-ub-al + un.l,.a:a-anfl-- - (4'2‘22)

al,n.- 1 “"o“n+l-m
by asuba2y]-

Yi,n,narb-bn+l—- - Y:—I+-,I,-b;blan-l+- + Y:.-,- -n+m U m

To convert equations (4.2.21) and (4.2.22) to field equations of motion we again divide
by vV and an appropriate exponential (see definition of the field operators as given by
equations (4.2.9) and (4.2.10)) to obtain
ihd,¥ = 0 ¥ +iw, - V¥ + 0, VW + 28 W'Y+ E D —n O PP + (4.2.23)
Y. O DD+ [a°+a:]¢‘¢"l’ ,
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since for Fermions 8%}, = -8{%_ so that we obtain 25¢|/¥|>¥, however, there are two
terms in p* that do cancel out. This is obvious since otherwise we would either create or
destroy a particle. For the other field we find

ih,® = Q@ +iQ, - VD + Q,V>D + 2A D' OD + EW+pn WYY -

4.2.24
Y 0P -[a,+o; jurow ¢ )

In equations (4.2.23) and (4.2.24), we have again used the notations w2 and Q2
respectively, to simplify the notation of the second order derivatives as a Laplacian but
can be generalized if need be to give mixed second order derivatives. One of the
examples discussed in the introduction was the interaction between valence elecirons of
two or more atoms or molecules and would fall into this category of indistinguishable
Fermion-Fermion particles. Specific examples of this type of interaction are not being

considered here but will be examined in the future.
Case 3: Fermion-Fermion, Distinguishable Particles

Here, as an example, we might have a plasma made up of elecirons and protons.
Unlike Case 2 here we must pieserve each particle type separately so single annihilators
or creators for either subsystem are not allowed. The second quantized operators here

satisfy

[2a7] = 0u1. 202 ], =[ala7 ], =0, (4.2.25)
and

[bubi ], = 8uss[Bw®i], = [bi.b7], -0, (4.2.26)
but between subsystems they commute (not anti-commute as in Case 2), i.e.

a,.b; ] =[a..b,] =[ai,b,] =[at.bi] =0, 4.2.27)
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For this case g, A, E, 1, v, 1, Y-type interactions are not present. The equations of motion

become;

ihda, = wa, +Eb, + 2{(65,",’_ -8%. )a,*a_a,,,__ + (a +

a,l,m

(4.2.28)

an+l -m,m,1 )b:b-an+l—- }
and

ih atbn = ann + E:an + 2 {(An.l,n - Al.n,- )b:b-b:nl-n +

. (4.2.29)
al,n,-a:b-and-l—- + al,n,ma:ﬂ-- —nb-al}

Thus the field equations for this case become, using equations (4.2.11) and (4.2.12), as

follows:
i79,% = 0, +i0, - V¥ + 0,V*W + 25 ¥PY +[a, +ao o 0w (4.2.30)
and

i73® = Q@ +iQ, - VO + Q,V?® + 24 B* 0P + [, +a] [¥ wo. (4.2.31)

Equations (4.2.30) and (4.2.31) may, at first, appear complicated but some important
information can be gained from them and will be analyzed in Section HL

Case 4: Fermion (a) - Boson (b)

For this particular situation we have in mind the important example of interacting
electrons and phonons. Thus, if we let the a operators represent the Fermions which

satisfy Fermi-Dirac commutation rules
[2w21 ], = 8x, [awa], =[at.at], =0, (4.2.32)

whereas the Boson operators satisfy
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[bu.bi] =8yss[bwbi ] =[b1.07] =0, (4.2.33)
and between subsystems the operators commute so that
[awbi] =[201] =[ai.bi] =[aisby] =0 (4.2.34)

In this case terms of type &, §, p and A must be omitted from the Hamiltonian. This case

is relatively straight forward to derive the equations of motion for the annihilators to give

iﬁatan - mnan + 2(651‘,)!),- - 65.(:\).- )ara-am-l—- + 2 {nn.lalbn—l +

. . (4.2.35)
nl.nb;—nal} + 2 {an,l,-b:bnanﬂ-- +an+--l,l.-b:blan+--l}

and

ihatbn - anu + Z(An,l,- + Al,n,n )brb-bnd—- + E{Au.lblbn—l +

-

An+l,lb:bu+l + A.I,nbltnbl +n:+l,lal+an+l} + 2. {al,n,-a:b-anﬂ—- (4‘2’36)

e +
+al,-,na--u+lb-al} .

The corresponding two field equations are found in the same way as the first three cases
and they are;
i, ¥ = @ W+ iw, - V¥ + 0,V ¥ + 28 W*'WP¥ + n PP + PP +

4.2.3
[ao + a;]tb*qﬁll ¢ 7

and

i3, @ = Q@ +iQ, - VO + Q, VD + 2A ©*OPD + W'V + A P+

(4.2.38)
2K,8°® +[a, + o j¥row.

In all the cases above the equations of motion are of the nonlinear Schrodinger

(NLS) type with additional terms due to the mutual interactions between the fields. First,
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there are cross-terms proportional to @ W as well |©°W and [¥]°®. Secondly, "source”

terms appear proportional to the other field and its squared modulus. The method for
solving these nonlinear coupled differential equations is to first treat the fields as classical

and effectively decouple them by assuming a particular type of analytic orbit in the phase

space given by the general formula
G(@%Y) =0. (4.2.39)

Some commonly used examples of this function involve straight lines, parabolas, ellipses
and hyperbolae but it is not at all guaranteed that any of these approaches will actually
produce analytical results in all the cases considered. Each time a particular orbit is

investigated, compatibility conditions have to be satisfied and for stationary orbits the

condition
aG ziv 2 aG 2IV‘I’|2 (4 240)
FY S ow ’ |

which follows from equation (4.2.39), can be used to effectively decouple the two
equations. Rather than provide an extensive general discussion on the applications of this
general technique we shall refer to reader to the monograph by Rajaraman®) where
several cases have been worked out in detail. A specific example of the Frohlich
Hamiltonian is provided as an illustration in Section IV. It should also be mentioned that,
in addition to these analytical solutions, it is well known that large segments of the phase

space for coupled systems, like the ones discussed in this section, can be filled with

chaotic behavior.

We now wish to note the relationship between the MCS and the Landau-Ginzburg
Theory, where chapter two is an example of the Landau-Ginzburg theory. In the previous

paper on the MCS9) it has been observed that for a single field, the equations of motion
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can be derived via the Euler-Lagrange equations, from a Hamiltonian demnsity of the

Landau-Ginzburg form

Hi = o W' + B, P WY + v, (V) (V). (4.2.41)

It can be readily shown that the corresponding Hamiltonian density in our case of two

coupled fields can also be written within a Landau-Ginzburg formalism as
H = H}; (W, V¥) + Hi; (P, VD) + Hi; (D, P, VO, VT), (4.2.42)

where HZ; is that of equation (4.2.41), H},; is obtained from equation (4.2.41) by
changing W to @ and replacing a by b. The last term in equation (4.2.42) takes the form
(in general)

H, = PP + py( @+ @ NP + |0 (P + 07) + (@70 +

' (4.2.43)
O ) + (DT + OF YU + pgJ0 (2P + P ).

On going to first order in the interaction (the reader should consult the original
MCS papers, references 6 and 7, where the form of H}%, would become modified to
include terms which involve gradient of one field and are proportional to the square or
modulus squared of the other field. Second order corrections will bring in Laplacians of
one field and squares of the other. In specific systems, cubic terms like (CI) + @’ )‘l}’lz
may be excluded on symmetry grounds but often are important and, for example, in an
electron-phonon system, the @ + ®° would denote a phonon field representation of the
lattice displacement and ¥} an electron number density. In Section IV, the example of
the electron-phonon interaction will be considered in more detail making use of the
Frohlich Hamiltonian. The next section, however, deals with the example of coupled

distinguishable Fermion systems.
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Before going on to the examples in section III and IV, we need to look at the

meaning of treating these equations as classical. If we recall that the total number of

particle operator is;

Nop, = Y.k, = [, @ ()F(x) (4.2.44)

so that Nop, acting on a state will give the eigenvalue which is the total number of
particles in that energy level. Therefore, when we do an expansion cf the coefficients in
K space around a particular point kg and taking the field ¥ as classical means that the

modulus squared of the classical field is the classical number density for all the particles

that are near kyg.

SECTION III: SOLUTIONS FOR THE DISTINGUISHABLE FERPMION -
FERMION CASE

We shall now examine case 3 of section II so as to obtain exact solutions to the
system of ecuations of motion for ¥ and @, namely equations (4.2.30) and (4.2.31),
under a certain assumption given later on. It is assumed for simplicity that the coordinate
system is chosen in such a way that , - V¥ = Q, - V® = 0. This can be achieved by
either a convenient rotation of the coordinates and/or the choice of a moving frame of
reference. Before continuing on, it should be pointed out that others have done work on
coupled nonlinear Schrsdinger equations23-28). The time dependence of the two fields is

taken in the form

D=ue®” and Wawe™, (4.3.1)
Then, the two fields are assumed to be linearly dependent, or namely
4.3.2)

OP=AY,
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which transforms equations (4.2.30) and (4.2.31) into two similar equations. This means

that we are assuming that the number density of the two fields are proportional. It should
be noted that for certain values of the parameters, solutions have been found without
making the assumption given in equation (4.3.2) with both one dimensional space
dependence25-27) and two dimensional space dependence28). Since equations (4.2.30)
and (4.2.31) now refer to the same field, compatibility is then required. The equations

take the form

0 = (g + E, )W + @, VP + [2(’)0 + 2o, + g )]‘-IJ*‘P‘P (4.3.3)

and

0= (R + B, )W+ QW +[2A07 + (o1, + 03 ) [ . (4.3.9)

Dividing equation (4.3.3) by w; and equation (4.3.4) by Q2 and comparing corresponding

icrms in the two equations, we obtain the relationships;

Q,(@, + E) = 0,(Q, + E,), (4.3.5)
and

92[260 + )\.z(ao +Q )]- (:oz[ZAok2 + Qg+ o.;]. (4.3.6)
We may solve equation (4.3.5) for E3 to give us

Q
B, = =2(w, +E,) -, @4.3.7)
2

where of course, E is still arbitrary. Solving for A in equation (4.3.6), we obtain

A2 - 22 , (4.3.8)
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The net result is that the two equations in (4.3.3) and (4.3.4) are made compatible and

both become a stationary nonlinear Schrédinger equation with constant coefficients.
There are a number of solutions of this equation which have been thoroughly investigated
in the past. Suffice it to say that, among the spatially inhomogenecus solutions one finds
elliptic waves of several kinds as well as hyperbolic localized solutions and there exist

critical currents above which nonsingular solutions cease to exist29).
SECTION IV: INTERACTING ELECTRONS AND PHONONS
A. The Frohlich Hamiltonian

To illustrate the general method described in Section II, we will use arother
specific example ir which Bosons will be represented by phonons and Fermions by
electrons. Interactions between electrons and phonons in a metal were first described in a

quantum mechanical formalisme’9 using the Fréhlich Hamiitonian below
hz
H- Z S—Kaja, + S o bib, + Z M, [b, + b7 hia, (4.4.1)
9

where q = k -1 Here, the operators ag and a, refer to the electrons while b} and b,
refer to the phonons. This Hamiltonian is one of the simplest possible examples of the
general Fermion-Boson type since only w, 1} and Q2 terms are retained. The effective

coupling constant M is usuallyl8) written as

N~
2M w,

M, =i (-k)-sv,_,, (4.4.2)
where V. represents the screened Coulomb potential between two electrons in a metal,

and N is the number of electrons. Typically Vi.j takes the form

Zme?
V=, 4.4.3
k-1 +q: (443
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where q_* is of the order of the interparticle distance and plasma waves only exist when

their wavelength is greater than this. Also, s is the polarization vector for the phonons

and the acoustical phonons are taken to be parallel to the vector 1 - k.

In this simple model the ions of the metal are assumed to interact with one another
and with conduction electror’ via a short-range screened potential. The conduction
electrons, on the other hand, are considered to be essentially independent Fermions. Note
that the "bare" Coulomb interaction between the ions and the conduction electrons is not
used, and, to incorporate screening repulsive terms have been built in to some extent via
the short-range nature of the effective interaction remaining. The Frohlich Hamiltonian,
in spite of its approximate nature, played an important role in the development of the
theory of superconductivity by leading directly to the BCS model, which worked quite

weli for describing low temperature superconductors.

Our approach to the problem of the electron-phonon interaction will be based on
the Frohlich Hamiltonian but will differ from the standard perturbative approach.
Instead, we shall employ the formalism of the MCS developed in Section II and obtain

exact solutions to the equations of motion for the classical order parameter fieids.

Using the results of Section II the following coupled equations for the electron
field ¥ and phonon field @ are found to be

ih W = —~, VP + 2 Re[n, @ ¥ 4.4.9)
and

ih 3,® = —Q,V?® + 1 [ (4.4.5)

. K . . . .
where the coefficient w, = S and is due to the dispersion relation for free electrons.
m
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B. The g-Inde upling C t

(i) Fully NonLinear Calcuiation

The expansion in terms of k has to be around qg = 2kg since the conduction

electrons are close to the Fermi levell8). Consequently, to zeroth order

no =i Nk  2ne’qg
° \} 2Mo(g;s) qZ +¢2 (4.4.6)

Note also that we have conveniently removed gradient terms which can be readily

absorbed into the time dependence of W by shifting to a moving frame of reference.

To begin we adopt the simplest ansatze and write

W= e e 4.4.7)
and

@ = n,e. (4.4.8)

In equation (4.4.7) 0 is a constant and 113, ¢1, 12 and ¢2 are spatially dependent cnly.
Inserting equations (4.4.7) and (4.4.8) into equations (4.4.4) and (4.4.5) and splitting each

equation up into real and imaginary parts we obtain,

(Dzvznl - [wz(v¢1 )2 + he}h + 2!“0'“1‘“2 sin ¢2 =0 ’ (4.4.9)

v-[nive,]-o, (4.4.10)

Vi, = nz(v%)2 -Jg—oltﬁsinq)z, (4.4.11)
2

and

Q,V-[n3(V4,)]+ nomin, cose, = 0. (4.4.12)
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It is possible to find solutions to this system of nonlinear equations by assum:ng the

relationships below. We shall assume that ¢2 = (n+1/2)xt with n an integer, which

automatically satisfies equation (4.4.12). There are then four possible cases, which will

satisfy equation (4.4.10), namely:
() V¢, = constant, ™, =constant,

3 j
(i) V¢, ==,
ol

(iii) V¢, =0, 1), arbitrary,
and
(iv) MV, =Vxf.

The first case, i.e. (i), leads to n; = 0 and 1, being an arbitrary constant. Such a
condition exhibits no free electrons and thus is not valid. The second case leads to two
nonlinear ODE's for v; and n2 which are very difficult to solve but may be made
compatible. The second and fourth case will not be discussed here since a more general
form will be looked at in part C where we will find some analytical solutions. The third

case, however, results in two coupled equations in the form

®,V?n, = O, = 2nglnym, (4.4.13)
and
Vn, - J;_‘aﬂlnf. (4.4.14)

2

Equations (4.4.13) and (4.4.14) can be made compatible by assuming a linear relationship

between 11, and ;. For example,

Ny =un, +v, (4.4.15)
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where p and v are constants to be determined. Compatibility conditions imposed on the

system yield

o= o2 (4.4.16)
20,
and
=18
2] (4.4.17)

We now have one equation which can be integraied and so on integrating equation

(4.4.14) once, we obtain;

(Vn1)2=¢2|—2°l _wzg n; +c, (4.4.18)
29%2

where we have assumed Vn; = 0. If we plot the left-hand side as a function of n; it is
easy to see that all the real solutions are singular since the plot is monotonic and, no
matter what the integration constant c, there wiil not be two turning points for the same
value of c. The conclusion must, therefore, be drawn that the adopted approach is, in
some sense, inadequate because localized nonsingular solutions, which would manifest
the onset of superconductivity do not exist. The reason for the failure to obtain valid
physical solutions is that in equation {4.4.15), we have assumed a linear relationship
between the phonon density and the electron density, which is not the case. The onset of
superconductivity however, can be seen by tackling the problem from another point of
view, which relies on a small coupling energy compared to the phonon energy and is

discussed in the following subsection.
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(i) Weakly Coupled Elections and Phonons

In this subsection we will again consider the interaction between conduction
electrons and phonons to zeroth order and, for convenience, will consider the effects of
the electron field on the phonon field to be weak. Also, we not only retain the gradient in
the phonon field but do not assume that the second orcer terms have already been reduced
to a diagonal form of a Laplacian operator. Since the electrons are initially free, we have

for the energy -#2k2/(2m) which is a Laplacian, so that our starting equations are;
ihd, ¥ = —~0, VW + 2Re[no¢]‘P (4.4.19)

and

2
o, P = QP +iQ,- VO -Q, . a—i-g-’; + o F, (4.4.20)
i9%;

where w2 = #2/(2m). We first note that equation (4.4.20) is essentially linear and

inhomogeneous with a driving term in 1,. The independent variables are now changed

to one which is a function of time and space in a traveling-wave form. Thus, we define

29,

W=Cy+ [——m————
Qz.ijgl.igl.j

[|9.,|’t + Q- r], (4.4.21)
where, witk Qg > 0, we assume ;i Q1 Q1j is negative, Qi being the ith component of
the vector ;. The parameter cg is an arbitrary constant which may be fixed by boundary
conditions. We are, of course, implicitly assuming in equation (4.4.21) summation over
repeated indices. This reduces equation (4.4.20) into a linear ordinary differential

equation (ODE) which is easy to solve. Without loss of generality we can take
@ = i F(w), (4.4.22)

to be purely imaginary and equation (4.4.20) becomes



141

F' + F - (hQ,) Inofn(w) = 0, (4.4.23)

where n(w) = [¥]* is the electron number density and the primes denote differentiation
with respect to w. The independent solutions to the homogeneous part of equation

(4.4.23) are cos w and sin w and it is easy to demonstrate that the general solution of

equation {(4.4.23) is

F = ¢, cosw +c,sinw + ol =L cos f
[\

f dw" n(w")cosw". 4.4.29)
Having solved equation (4.4.20) via equation (4.4.24) we can now attempt to solve
equation (4.4.19) and we do this by assuming that the electron field may be written as
iBt
W o f(w)cxp[-? + 1§w)], (4.4.25)
where the functions f(w) and g(w) are to be determined from equation (4.4.19). To this

end we insert equation (4.4.25) into equation (4.4.19) and separate real and imaginary

parts. We find that the imaginary component gives us a form of continuity equation,

namely,
2w
a,f2 +—5&V~[f2Vg]- 0. (4.4.26)
. 29, . .
Defining A by A = |————>-—— we can rearrange equation (4.4.26) to be in terms of an
2,621,862, ;

ODE with the independent variable w as follows;
(£?) 2‘”2 =22 Alf%g ] - 0. (4.4.27)

Integrating equation (4.4.27) once and solving for g' we find

, C, h
o= ——1 - . .:28
g {f’ }20.) A (4.4.28)
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In equation (4.4.28) c3 is an arbitrary constant whose physical uicaning will be shown

below. Now, the real part of equation (4.4.19), on substituting equaticn (4.4.25), is;

Ef - #(3,g)f = —~w,V*f + 0,fV?g —n,|fF. (4.4.29)

Equation (4.4.29) can be converted into an ODE since g and f are functions only of w to

give
[E- Al ag ff - -l a7t - £(g)*]- Mot F- (4.4.30)

Substituting for g' from equation (4.4.28) into (4.4.30) decouples the two functions and

yields
Q[ [ 2 2
E - 4&‘ (ﬁ - 1) f = —w,|Q,|" A" ~n,|f F. (4.4.31)
2

The expression for F(w) from equation (4.4.24) may now be inserted into equation
(4.4.31) which, of course, at this stage, is an integro-differential equation and it is now
that we make approximations. First, if we assume that the electron field has a weak effect
on the phonon field, then In,|[(#22,)” in equation (4.4.24) is very small so we drop this
term. The second point which we note is that the electron current density is proportional

to

9

. 2 1 2

JofiVg= 0 [cs - £2]- (4.4.32)
It is clear from equation (4.4.32) that c3 is a constant current deusity which, if considered
to be an external current (remember it arose as an integration constant), destroys
superconductivity. Thus, at this stage we take c3 = 0. Taking these two effects into

account, equation (4.4.31) becomes Mathieu's equation.

Thus, equation (4.4.31) becomes
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2 2
£ + —I—-I-—[01 cosw +C,sinw | = {E o2 122 } f (4.4.33)

|§3 l2 3 4w, ‘wzlglizAz ‘

It is through a simple rescaling of the independent variable w that we can transform this
into the standard form of Mathieu's equation, with cos 2u, by letting w = 2u +
arctan(cy/c1). There are two types of solutions represented by equation (4.4.33); those
where electrons are scattered by the phonons and those where the electrons are bound by

the phonons (i.e. manifesting superconductivity). The bounded solutions occur whenever

E <nolyeZ +cZ - —L—l— (4.4.34)

otherwise, we obtain free electrons scaitering off the phonons. The above puts a
constraint on how weak the coupling between the phonons and the electrons (Jno]) can be

for superconductivity to occur or, conversely, how strong || can be.

As a final note to this subsection, equation (4.4.25) can be easily generalized by
including in the exponential, ikg-x and if kg°€2; = 0 then the only change to our equations
isashiftinE to E-u)zl% Equation (4.4.24) remains unchanged but has a profound effect
upon equations (4.4.31), (4.4.33) and (4.4.34). Basically, from equation (4.4.34), we see
that this inclusion expands the range that E can be within and still have bound states. As
an example, consider w lying in 2 two-dimensional plane so that we wish the electrons to
be bounded within the potential wells of the phonons on the plane but free in the
perpendicular direction (say, the z-direction). Then, we have equation (4.4.25) but
multiplied by eikz so that the conditions for Cooper pairs to form becomes;

2 2
B <yl v e + ot - LI @.4.35)

2
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Thus, by having superconductivity only ou a plane and free electrons in the perpendicular

direction we have raised the critical temperature T.

With the full knowledge that superconductivity does arise from the Frohlich
Hamiltonian we re-examine the approximation in equation (4.4.6) in order to find out if
q-dependence of the coupling term may provide further insight. We proceed by
expanding linearly in g2 to obtain a gq-dependent correction to the coupling constant.

Thus, we obtain
g = Mo —NoAQ?, (4.4.36)

where A = 1/q%. This will introduce extra terms into the equations of motion for the W

and @ fields of equations (4.4.4) and (4.4.5), namely
i70,W = ~,V*W + 2Re[n,® ] + 2AV Re[n, @] ] @4.4.37)
and

73,0 = ~Q,V® + ¥ + An,v{|er | (4.4.38)

To analyze equation (4.4.38) we write

D=Pp +idy, (4.4.39)

Mo =1X; (4.4.40)
and

P = neltoeiB/R 4.4.41)

so that the real and imaginary parts of equation (4.4.38) become
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B .
* 2 - ——
Re: V@, Q. ®,, (4.4.42)
Im: Vz[gzd), + Axnz]- —hdg - %M. (4.4.43)

We then assume that the argument of the left hand side of equation (4.4.43) is zero so that

A 2
D = - é" (4.4.44)
2

and thus we also need

2

&y = - %] (4.4.45)

so as to satisfy equation (4.4.43). In principle, we could add any harmonic function of
spaceand an arbitrary function of time to the right-hand side of equation (4.4.44) so that

the left hand side of equation (4.4.43) is still zero but we draw back at such, possibly not
necessary, compiexity. Next we differentiate equation (4.4.42) with respect to time once

and substitute equations (4.4.44) and (4.4.45) into equation (4.4.42) to obtain a wave-

equation in the form

Vi =5 (4.4.46)
2

the solution of which in one dimension may be written as

"’ =), (4.4.47)

where € = x = vt, with v=Q, / (W A). Note that the function in equation (4.4.47) is an
arbitrary function of & and this does not impose any constraints on the procedure to

follow, except of course that 1} has the independent variable E.
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We now return to equation (4.4.37) with equation (4.4.44) providing a link and

making use of equation (4.4.39), to obtain

2
119, W = —w, VW + 2-;2\—;(2[11']21;' + 2g—xzvz(|lp]21p). (4.4.48)
2

2

In order to interpret the meaning of E in equation (4.4.41), we consider the kinetic

energy part of the Lagrangian density L = T - V which takes the form

T=- -;—[‘P‘Pt -wrw] (4.4.49)

Thus, inserting equation (4.4.41) into equation (4.4.49) gives the kinetic energy T as

E 2
T= ;‘ . (4.4.50)

From equation (4.4.50) it is clear that E must be positive i.e. the kinetic energy is

proportional to E and the amplitude squared of the field.

Using equation (4.4.41) and separating real and imaginary parts yields for
equation (4.4.48);

Re: -7m 9% , En= —mz[Vzn -1V, )2]+ A+ )\.A[6n(Vn)2 +

at X (4.4.51)
VN -n(V, )’

and
Im: h%"tl = —w,[2V0)- Vi + V% [+ AA[6VN- Voo + 1V, ], (4.4.52)

where A is defined by A = 2 2 A / Q2. Equation (4.4.52) can be understood as a form of
continuity equation. Defining charge density as n = 12 and current density as j =12 V¢,

equation (4.4.52) can be written as
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4 Q.13
v {-,;(wz ~MAn)’ J} s - AAnf =0, (4.4.53)

where we s¢. that equation (4.4.53) defines a new current density and number density
which are respectively J = -4(w2 - AMAn)2nV¢o/(AAR) and p = (n - 02/(AA))? and are due

to the interaction between the fields.

If we now recall the one dimensional solution for 1 (see equation (4.4.46) and

(4.4.47)), then equation (4.4.53) can be written as a first order ordinary differential

equation as follows, using & = x - vi;
d 2( 4) v
Eg{(mz ~MAn) (% + ﬁ)} 0. (4.4.54)

We have chosen jy = j; = 0 for convenience. Equation (4.4.54) can be solved for the
current by integrating once to obtain, where we have dropped the subscript x on the

current;

. Co __hv
) ()\.An _ (.02)2 4M * (4.4.55)

Now, we return to the real part as given in equation (4.4.51) and insert V¢o =jm?

to obtain;
th+E " _ji AN \2 2 u__jj_ 3
— +En=-w,{n i + 6en(n')” +3n™ - +An’. (4.4.56)
L]

Since equation (4.4.56) does not have an explicit dependence on the independent
variable, we can use the method outlined in chapter 3 or make the following substitution

to obtain a first order ordinary differential equation;

(') = P@) (4.4.57)
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so that equation (4.4.56) becomes;

- 2
[3Mn—m2]P'+6PM—m+E—M—M.

- — (4.4.58)

This is solved using the integrating factor method as

L {cx + f?dz[st —mz]{jz(M:; ;) + ":‘ +E- m}} (4.4.59)

= [3)-.An - w;,]z

Thus, we can formally write the solution for j in an implicit form as

f \/P_('n— (4.4.60)

Upon substituting for the current from equation (4.4.55) into equation (4.4.59), we can

t

solve the first integral to obtain;

- 1 122 3
[32An ~w,f {c‘ MAnT+
n(9h2v2 + 16Ew2) _ (400}\1‘. - hvcoi)2 cO(Zhvm§ —coMA)

16 (4Ao,f'n  wi(w,-AAn) |

e P
w,(e, - AMn)’

(4.4.61)

As was mentioned earlier, superconductivity corresponds to a localized or
periodic solution which would describe bound states for the electrons formed by the
phonons. An analysis of equation (4.4.61) provides a quantitative criterion for
superconductivity. Note here that localized solutions correspond to the existence of at

least two different real roots of P(n)), one of which must be a multiple root.

From c<uation (4.4.61) the resultant integration constant will determine the values

¢ f the corresponding ioots of P()). Analyzing the asymptotic behavior of P(n) for n —
o we see that P(1)) — -« and for 1) — 0, we find that P(n) — - unless cg = hvm%/(4M),

in which case we have P(n) — (8\AAcy + 3h2v2w2)(8)~Au§)'1. This value for co

corresponds to a special value for the current density j, which may possibly represent je.



149
In searching for localized solutions we must determine whether there exists at least one

local maximum for P(n}) where P(n}) = 0.

Before examining equation (4.4.61) in more detail, we will simplify the equation

by introducing new parameters and rescaling n and P as follows:

woQ(x) WHX W,y hvaA w3dg w3d,
B v VT i T v ikl VoI
that equation (4.4.0:i , becomes;
2
Q- 1 d, - x>+ ox? - dg 2_x(27w+20—1)_
[3x-1F (1-x) 3
(4.4.62)
(w-do)* . dof2w -dy) .
X (1-x)

Thus, we see from equation (4.4.62) that we essentially have only two parameters
and that Q is singular at x = 0, 1,3, 1, and oo, unless we have specific boundary
conditions. Note that the singularities at x = 0 and 1 can not both be eliminated at the
same time unless w = dg = 0, and iu climinate the singularity also at x = 1/3, we nced dj =
(30-2)/27 so that Q = (30 - 3x - 2)/27. Also, the reader should note that we are assuming
that all the parameters at this point are positive, however, if some of them are negative
then the change would have to be incorporated into x, Q, and the parameters O and w. As
an example, if A < O say, then we need to look at Q < 0 and x < O instead of both of them
being nonnegative. If we let jx = -hvI{4AA)1 and substitute this along with the new
parameters and constants defined just above equation (4.4.62), then equation (4.4.55)
becomes;

do

J=1- p ey (4.4.63)

There is much that can be gained from equations (4.4.62) and (4.4.63), the first of
which is that if we solve for d; such that ([3x-1]2Q(x)) — 0 when x — 1/3 then for any
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dq less than this value, Q — -0 and Q — o for dj greater than this value. Thus, we have

an upper limit on the value of d; and still obtain nonsingular solutions for x < 1/3. This is
alsotrue for1/3 <x<1ifdgp=0or 1/3 <x <o if dg = 0. The lower limit on d;j is
determined by the faci that Q = 0 and the lower limit of d; will occur when Q =< 0 for all x
= 0. Now dy is interesting in that besides setting the range of values for the currents, it
has a strong effect upon Q. For dg = O or for a constant current we see from equation
(4.4.62) that Q is no longer singular at x = 1 which means that we have only two regimes
for x, namely, 0 < x <1/3 and 1/3 < x < . We also have only two singularities when dg
= w, which are at x = 1/3 and 1. This means that at x = 0, the current is zero and Q in no
longer singular which makes since we can not have a current where there are no electrons
and this is the only value of dg that allows x = 0 to be part of the solution. For any value
of dg besides the two given above, we have three singularities and so our solutions can be
periodic functions with the range in values between: 0 < x<1/3,1/3<x<l,orl<x<
o, It is our opinion that for the range 0 < ~ < 1/3, we have the electrons being bounded
by the phonons whereas for the higher ranges we look at them as being electrons which
are scattering of the phonon field. The reason we think the lower range is the
superconducting solutions is first; for the lower range, our solutions are highly dependent
upon the values of the d’s. The larger dg becomes the lower the upper bound for d; is
and thus in essence shows that there is a value for a critical current. Second, it is possible
to hiave X ~Z-iéch in a periodic fashion when dg = w and for free electrons scattering off a
back r:- .+ <> phonon field, there would not be any locations in space where there are no
clectrons. The third reason is that the upper range 1 < x < o, is not restricted by an upper
limit for d;, as di grows so does the range in which x oscillates over and represents a
build of the electron density. This of course is contrary to Cooper pairs which require a
low concentration so that the Coulomb repulsion does not destroy the pairing. For the
mid range values of x (i.e. 1/3 < x < 1), there does not seem to be any solutions since it

seems to remain below the axis and as one tries to get Q positive in this region, the
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maximum d; is reached and Q jumps up to + at x = 1/3 and thus the solutions become

singular. In figures IV-] through IV-4, we have plotted Q as a function of x with the
choice w = 1/4 and o = 4. Also, d1 was chosen just below its critical value for all four
figures. For figure IV-1, we have chosen dg = O so that the current is a constant J = 1.
The only valid solution is for 0 < x < 1/3 since for larger x the curve is just below the
axis. The solution shown in figure IV-1 is “blown up” in figure I'V-2 showing in more
detail the curvature of the solution between 0 < x < 1/3. Thus we see that we can lower
d; down till O only touches the axis at one point between 0 < x < 1/3 which can be
determined numerically and as we raise d; above the critical value, the solutions for x <
1/3 become singular and the solutions for x > 1/3 become allowed and nonsingular thus
demonstrating the break up of the Cooper pairs and the formation of free electrons
scattering off the phonon field. This is also shown by the sudden jump in the density of

in ~iectrons. For figures IV-3 and IV-4, we have chosen dg = w, which gives for x the
:..nge 0 = X < 1/3. Again, we see the superconducting state and if we increase dj, we
would get the free electron state. Figure IV-4 just shows figure IV-3 between O < x < 1/3.
Figures IV-S and IV-6 confirm the existence of a critical current since for all six figures
we have chosen d; just below its critical value, at which there is a switch in the curvature
at thke x = 1/3 singularity from - to «. In figure IV-6, we have chosen the current

¢ =nsity very large and as can be seen, the nonsingular solutions for the superconducting

phase de not exist.
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Figure IV-1: Plot of Q(x) as given by equation (4.4.62) with do = 1.

-0.75}

Figure IV-2: Plot of figure IV-1 for small x.
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Figure IV-3: Plot of Q(x) as given by equation (4.4.62) with dg = w.
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Figure IV-4: Plot of figure IV-3 for small x.
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Figure IV-5: Plot of Q(x) as given by equation (4.4.62) with do = w/2.
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Figure IV-6: Plot of Q(x) as given by equation (4.4.62) with dg = 20w.
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SECTION V: CONCLUSION

In this chapter, we have provided a method of analyzing coupled many-body
svstems of two degrees of freedom which occur in condensed matter physics and also
~ er nranches of physics relying on many-body formalism. The approach to the problem
is - important new application to a very general class of problems using the method of
coherent structures®7). Since a growing number of important physical phenomena
(superconductivity, metamagnetism, structural phase transitions, Mott insulators, etc.) can
be adequately described only in terms of two or more interacting degrees of freedom, we
feel that our work represents a significant step forward in unifying these diverse systems
within a single theory. In our paper, a general calculation of the ficld equations has been
performed that can be applied to an arbitrary system with two field degrees of freedom
provided its energy dispersion relations and coupling constants are known or can be
estimated. All four types of system, i.e. Boso: 72 1son, Fermion-Feimion distinguishable
as well as indistinguishable and Fermion-Boson have been investigated and their

equations of motion provided.

In addition, we have provided two application sections. The first one, being the
simplest, deals with the distinguishable Fermion-Fermion system and demonstrates a
direct connection between the equations of motion for the fields and the celebrated

nonlinear Schridinger equation, leading to a wealith of analytical solutioas including

solitons.

In the second application section of this paper we have given a detailed analysis
of the Fishlich Hamiltonian for electron-phonon interactions in a metal which was so
crucial in building 2 modern theory of superconductivity. Our approach has been fully
nonlinear and analytical solutions have been provided for both the phonon and <lectron

fields under the general conditions of arbitrary dimensionality and the strength of
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coupling. The conclusion reached here is that in order to demonstrate Cooper pair

formation in a Frohlich-like Hamiltonian the electron-phonon coupling coefficient must
be sufficiently strong for g-independent interactions or must not exceed a critical value
for g-dependent couplings. Precise formulae linking the model parameters have been
obtained as quantitative criteria for superconductivity. If they are not satisfied the only

solutions which =+ 2 are either identically zero or singular.
y

We intend to carry out further applications to this and other important systems
(structurally unstable crystal lattices, Jahn-Teller compounds, magnetoelastically coupled

spin systems, etc.) in our future work.
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CHAPTER 5: CONCLUSIONS

This work has examined in detail, two models near criticality. The first was the
Landau - Ginzburg phenomenological model for superconductors and the second was the
Frohlich Hamiltonian which was presented as an example in chapter four. Both the
models were instrumental in the theoretical understanding of low temperature
superconductors. Chapter two dealt exclusively with the Landau - Ginzburg model.
Chapter four dealt mainly with the method for finding the classical number of particle
density from a quantum picture and then the Frohlich Hamiltonian for describing the
electron - phonon interaction in metals was used as an example. The third chapter was
mathematical in nature and was to d>vloped so as to help in the analysis of the models
studied in the other two chapters. Now, we will briefly summarize the results and

conclusions from the previous chapters.

Chapter two was a nonlinear study of the Landau - Ginzburg phenomenological
model for superconductors with the presence of a magnetic fieid. In the third section,
three different sets of solutions in one dimension at the critical temperature were found
and then these solutions were expanded below the critical temperature. The first set of
solutions obtained gave a periodically fluctuating solution for the superconducting charge
density and also a periodic solution for the magnetic field but shifted by a quarter of a
period relative to the superconducting charge density. The first order corrections for just
below the critical temperature were also found. The solutions for the homogeneous
equations provide a wealth of possibilities for change in the solutions as the temperature
is lowered. The particular solution for the first order corrections without the
homogeneous solutions provided us with the expected behavior in the magnetic field and
the superconducting charge density by increasing the range over which superconducting
charge density is dominate and decreasing the range over which the magnetic field is

dominate. The inclusion of the homogeneous solutions would be necessary to fit the
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solutions to the boundary conditions. The second set of solutions are similar to the first

set. Both the magnetic field and the superconducting charge density are periodic and
shifted by a quarter of a period relative to each other. The main difference between this
set of solutions and the first set is that the magnetic field vanishes at the critical
temperature and thus represents trapped flux with no external magnetic field present. The
third set of solutions found in section three represent an extreme case in which the
magnetic field is so strong it has just about driven the superconductor into the normal
phase. This leaves only the surface of the material superconducting and the rest of the
material in the normal phase. At the end of seciion three a numerical plot of the full
equations was presented so as to test how accurate the expansion was for this model.
Even ihough it was not explicitly shown to be true, the first set of solutions and to a
slightly lesser degree, the second set of solutions can replicate the numerical plot to very
good agreement. This means that even though the solutions are only to first order in the

parameter o, the series converges very fast giving us good results to work with.

The fourth section of chapter two is basically an extension of the work which has
been done in the past, where the effects of the magnetic field upon the superconducting
charge is neglected. This is an adequate approximation for type I superconductors where
the magnetic field can not penetrate into the superconductor except for the skin,
depending of course on the macroscopic shape of the superconductor. These solutions
are also valid for type II superconductors in regions were the superconducting current
density is essentially a constant. By treating the superconducting current density as a
constant, the effects of the magnetic field upon the superconducting charge density are
ignored. The equation describing the superconducting charge density under this
approximation has been previously analyzed. By simplifying the equation describing the
magnetic field, a new independent variable was obtained which is the indefinite integral
of the superconducting charge density. In the second part of this section, besides the

trivial solution and the standard solution where the superconducting charge density is
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taken to be a constant, one further soiution was obtained where no more approximations

were needed. The solutior corresponds to the superconducting charge density being a
sechZ solution, whi:h v ould correspond to a superconducting plane. The rest of the
solutions for the superconducting charge density led to very complicated indefinite
integrals which needed to be approximated further in order to solve the equation for the
magnetic field. A fcw of ihe limiting cases were considered and even though these were
limiting cases and reguired further approximations, they did provide solutions that were
physically correct. The last part of section four dealt with looking at the equation for the
magnetic field from a different point of view. This methcd gave solutions for the
magnetic field and the superconducting charge density for two special cases and also
obtained recursion relationships for the general solution The first special case was when
there was no cubic noalinearity and no superconducting current density and the second

special case was when there was just no superconducting current density.

In sections three and four of chapter two, only one dimensional symmetry was
discussed and so in section five the equations of state with a cylindrical symmetry were
considered. The method used to solve the equations of state in this section was the same
as that in section IIl, an expansion about the critical temperature. Section five contained
two parts, the first was called vortices and the second spirals. The first pa2rt of section
five considercd the magnetic field and the superconducting charge density to have only
radial dependence. The vortex part of this section led to many interesting solutions some
of which were very singular and others that appear to have applications to magnetic field
penetration in high temperature superconductors. Some of the obtained solutions
included a solution for the magnetic field close to the core of a magnetic vortex and a
solution of damped periodic rings of superconducting charge density to mention a couple.
The spiral part of section four also gave many solutions that were similar to those
obtained in the vortex part. For the spiral part of the section, it was assumed that the

magnetic field and the superconducting charge density were both functions of an
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indepenuent .ariable that leads to spiral solutions. For this part, to simplify the

equations, the radial distance from the core was assumed to be small so that the In(r) in
the spiral symmetry is dominate. As in the vortex part of section five, many solutions

were obtained, some of which were kink solutions and damped periodic solutions.

The sixth section of chapier two dealt with rescaling the magnetic field and the
superconducting charge density in order to validate an approximation where the magnetic
field is wriiten as a function of the superconducting charge density and thus decouple the
two equations. The decoupling gave a single equation which was the cubic nonlinear
Klein - Gordon equation which was studied in the past. These solutions were reviewed in
section six as were the comresponding magnetic field and superconducting charge density
that resulted from these solutions. For nontrivial solutions, there were five sets of
solutions found for the magnetic ficld and the superconducting charge density. Even
though the solutions found were physically acceptable for specific boundary conditions,
the generic solutions appeared to be unphysical, with the magnetic ficld being unbounded
ic most of the cases. There were a few cases that gave well behaved solutions for the

generic case.

Chapter three was a purely mathematical ckapter with no physics involved except
in the cxampiecs where some important physical models were discussed and the
applic2bility of this chapter to those models. The chapter looks at a class of autonomous
nonlinear ordinary differentiai equations and seeks solutions for these equations. The
second section of chapter three looked at seven special cases in which the geneial
equation could be solved. For six of the seven cases, the restriction on the equation was
that two of the three initially unknown functions remained unknown and the third
function was a specific function of the other two arbitrary functions. The seventh special
case however. was for only one arbitrary function and for the other two, one was a

constant and the other was a function of the arbitrary function. In the third section, the
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algebraic method was introduced. The section showed how the nonlinear ordinary

differential equation could be reduced to a system of algebraic equations that could be
solved in principle by a symbolic solver. The section also showed that depending on the
type of reduction, one car obtain either exponential solutions or solutions of Jacobi
elliptic functions. The fourth section dealt with several examples, some of which are
physically important. The examples showed how to approach the problem using either

the special cases and/or the algebraic method. There were four examples analyzed and

another three were briefly discussed.

Chapter four starts with a very general and complicated generic second quantized
Hamiltonian for a system of two types of interacting particles. From this Hamiltonian,
the Heisenberg equations of motion are obtained for four cases; the Boson - Boson case,
the indistinguishable Fermion - Fermion case, the distinguishable Fermion - Fermion
case, and the Boson - Fermion case. In each case, the creation and annihilation operators
are written in terms of field operators for both types of particles. A plane wave basis was
used and all the coefficients were expanded in a Taylor series, with the single particle
energies expanded to second order and all other coefficients expanded only tc
order. For each case, the resulting equations of motion were of the nenlinear Schrou...or
type coupled together. This was the end for each case since the obtained equations were
too complicated to analyze and only when considering a specific model couid the
equations be reduced to something more manageable and even then not much could be
done with them unless treated classically. Once the equations were treated classically and
their classical solutions obtained, the modulus squared of these solutions wouid
correspond to the classical particle number density. In the third section, an attempt is
made to find classical solutions for the general equations of meotion for the
distinguishable Fermion - Fermion case. Under the assumption that the two fields were
linearly dependent, the equations of motion reduce to a single nonlinear Schrodinger

equation. A great deal of work has already been done in finding analytical solutions for
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this cquation with the solutions including elliptic waves and hyperbolic localized

solutions. The fourth section dealt with the Fishlich Hamiltonian, which is the electron -
phonon interaction in metals and thus falls into the Fermion - Boson case. Only three of
the cocfficients in the generic Hamiltonian remained in the example and thus simplified
the equations of motion for the classical fields significantly. The first part was a general
discussion of the Fhlich Hamiltonian and the derivation of the equations of motion for
this case. The second part dealt with the interaction being q independent or equivalently,
only to zeroth order in the Taylor expansion of the coefficient was considered. After the
two equations were decoupled, a single integro - differential equation was obtained. This
was not possible to solve but by assuming that the effects of the electrons upon the
phonon field were weak, then the term with the integral could be dropped. This gave a
second orde: _onlinear ordirary differential equation to solve, however, by assuming no
external current was present, then the equation reduced down to Mathieu’s equation. For
Mathieu’s equation, there are bounded pericdic solutions and also unbounded solutions
depending on the epergy of the electrons. Thus, even with the assumptions made to
simplify, the solutions still showed superconductivity through the formation of Cooper
pairs by the bounded solutions and also solutions for free electrons scattering off the
phonon field were present. In the third part, higher order terms in the Taylor expansion
of the interaction coefficient were considered. This lead to a pair of complicated coupled
nonlinear partial differential equations to solve. However, again it was possible to find a
relationship between the phonon field and the electron field which gave the constraint
that the envelop of the electron field must satisfy the wave equation. Using the
relationship between the phonon ficld and the electron field and also the constraint, one is
able to reduce the second equation down to a nonlinear ordinary differential equation and
also a continuity equation. Tn one dimenrion, the continuity equation was easily solved
for the current density. Tbe fina: =olution for the electron envelop was written as

indefinite integral, giving an implicit solution for the envelop. However, it was possible
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to be gain some intormation without actually solving the integral. It was found that there

were only two independent parameters which is an acceptable number of parameters.
Also, it was shown that there exists solutions for superconductivity and solutions for free

electrons scattering off the phonon field as was illustrated in the figures V-1 through IV-
4.

Thus, this work has analyzed two models that were fundamental in the
understanding of low temperature superconductors. The work presented here expanded
on the previous work done on these models to a great extent. Also, new techniques for
solving nonlinezr ordinary differential equations was introduced. Finally, a method was

developed in chapter four to find ihe classical number density for lurge systems of

interacting particles.



APPENDIX A: POLYNOMIAL ANSATZE FOR CHAPTER TWO SECTION
il

Consider the system of equations (2.3.4) and (2.3.5). Assume first a linear

reiacionship between u and 1}, ie.,

4=am+a, (A1)

Then we =ubstitute equation (A1) back into equations (2.3.4) and (2.3.5), both of which

can now be compared as to their form. Compatibility conditions that arise read

a+a,=0, (A2)
¥, . 2a,a,, (A3)
4,
and
y =P +a’. Ad)

Equation (A3) can be satisfied if either a, = 0 or af = y/2. The first possibility, i.e., a, =
0, leads immediatcly to a = 0, which means that the temperature must be at the critical
temperature. This must also be accompanied by al =y -8 > 0. On the other hand, the
requirement that a? = y/2 also implies that aj = —a and y = 2P. Therefore, a very specific
(and highly unlikely) set of coupling parameters is needed in this second case to satisfy

compatibility.

A more general Ansitze than that of equation (Al) was also contemplated,

namely,

u=an+a,+an’, (AS)
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with an a priori arbitrary value of p. Substituting equation (AS) into equations (2.3.4) and

(2.3.5) and comparing terms of the same order in 1 leads to compatibility conditions very
similar to those stated in equaticns (A2) through (A4). This time, however, there are
many more possibilities than before. We have examined all such cases and found that
only one additional situation is remotely possible. This is when p = 1/2 with a hosi of

restrictions, namely,
(i) aZ+a=0,
(i) 32a,a, =~5a2/2,
(iii) 19a? + 4a, = 8ypB,
and
(iv) —11y + 208 = 4a,.

The last two of these equations may be satisfied only if y and 8 are specificaily related,

requiring a particular temperature value for a given nonlinearity parameter in the model.



APPENDIX B: DIFFERENTIAL EQUATIONS FOR JACOBI ELLIPTIC

FUNCTIONS
{-:—usn(u)}z - [1 - sn?u][1 - k%sn?), (81)
{-ad:‘-cn(u)}z = [1- cn2u][(k'y? + Ken?u), B2)
{ -a‘—j;dn(u)}z - (1 - dn2u)dn®u — (K')?), (B3)
{G - JL - €1+ tn?u)(1 + (K )*tnu), B4)

where k is the Jacobi modulus and k' is the complementary modulus with (k')2 +k%=1.



APPENDIX C: REDUCTION OF THE SYSTEM OF EQUATIONS IN
CHAPTER TWO TO A SINGLE EQUATION

It is an interesting observation that in one dimension it is possible to reduce our

system of equations 1o a single nonlinear ODE. We start by considering the reduced

equations (2.3.4) and (2.3.5) where for convenience we set u, = u and u, = 0. We now

write 1} in terms of n, (which we simply ¢ - .= -eaceforth as n), so that equations (2.3.4)
and (2.3.5) become

4, 1)
and

%—2’5—;— ~ —zln—{g—z-}z = 2n(a +Bn + u?). (C2)

Equations (C1) and (C2) are two autonomous equations which we will reduce down to a
single nonautonomous equation by assuming that n = n(u), so that we obtain the

following consistency equation along with the physical parameters in terms of u, which

are;
2n%(2c + 28n + 2u? — yun’ :
=& [2020 28 i yan' ]} (C3)
du 2mn” - (n’)
o [ v -1/2
X+ X, = L glv{ L dw 2yw n(co)} , (Cs)
huy
v(u) = - — (C5)
. he* .
J.(w)=-—uny, (Co)

hi{u) = %ci Zy J:E_lv vn(v). (CT
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Equation (C3) is a third order nonlincar ODE which is very difficult to solve analytically,

but can be reduced to a second order ODE by the transformations o = yandn=f'/vy,

so that cquation (C3) becomes

{dzr} ! df {yiii-f+c1 +-L{a+69—f-} } (%)

dy? [ ~ y(f+c,)dy )’ dy 26

where ¢, and c, are constants of integration and & = 8/y = (b/2n)(m*c/he*)2. Thus
solving equation (C8) is essentially equivalent to solving equations (C1) and (C2),

however, once (C8) is solved, we need to analyize equations (C4) through (C7).

An alternative method for the reduction of equations (2.3.4) and (2.3.5) is to first
note that if we muitiply equation (2.3.4) by u' and multiply equation (2.3.5) by ', then we
add them together to obtain a complete differential, which can be integrated once to yield

2 2 2
-yl-{gﬂ} + {%‘-} -Coy + n"(a + ﬁ;‘ + uz) . (C9)
x X

Now, if we take u' = F(u,n) and ' = G(u,1}), then we obtain the relationship F, = yG,.
So we now take R = G* + F2/y and S = G/F, which reduces equations (2.3.4) and (2-3.5)

to the following set of equations:

du

predabil G n(u)), (C10)
d ,

ﬁ = G(u(x,n), (C11)
dn

gl G2 (C12)

and

yS3a+S-+SaS _n/y +8?)a + u? + Bn? ~ muS)
du  am co+nP@+ul+pn’/2)

(C13)
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Thus solving equations (2.3.4) and (2.3.5) is equivalent to solving equations (C12) and

(C13) along with either equation (C10) or (C11). This means that we now have two first

order ODE's and one first order PDE to solve.

For the special ca=:: @ = ¢, = 0 (i.e. at the critical temperature), this becomes four

first order ODE's by letting u = v w and 1} = v, and hence equation (C13) becomes

dv__do (w? + £ /2)SdS Cl4

v 18- (@?+B-yoSXi/y+S?) (€14
or

do (0? +B/2)SdS

YS? - (w*+B-ywS)Y1/y +S?) 0 (C15)
and

In|v{-—- dm—-—l— =C

J ¥S2(w)-w (C16)

From equation (C15) we obtain f,(S,w) = ¢,, and from equation (C16) we obtain f,(v,w)

= C,, S0 that our general solution is

(39((3)

where F is an arbitrary function. It remains to be seen, however, whether the results of

this appendix lead to any practical applications or additional . ysical insight.



