
Effective Bidirectional A* with Frontier Search and
External-Memory Utilization

Robert Niewiadomski José Nelson Amaral
Robert C. Holte

Department of Computing Science
University of Alberta

Edmonton, Alberta, T6G 2E8, Canada
Email: {niewiado, amaral, holte }@cs.ualberta.ca

October 4, 2008

Abstract

We present an advanced Bidirectional A* algorithm featuring an application of Frontier Search and a
strategy for the performance-efficient utilization of External Memory. We present the results of an experi-
mental evaluation demonstrating that this algorithm is capable of tackling exceptionally large state spaces
while consuming significantly less time and space than its A* counterpart. For instance, in solving diffi-
cult instances of the 5-by-5 Sliding-Tile Puzzle and the 4-peg Towers-of-Hanoi problems, using additive
pattern-database heuristics, the typical reductions in time- and space-consumption are in the range of one
to two orders of magnitude.

0.1 Introduction
A common perception regarding Bidirectional A* (BA*) is that it is inferior to A* in terms of time- and space-
consumption. Although the basic BA* algorithm can indeed end-up consuming significantly more time and space
than A*, an advanced BA* algorithm can end-up consuming significantly less.

In this paper we investigate the utilization of Frontier Search (FS) and External Memory (EM) in an advanced
BA* algorithm. The aim of FS is reducing the space consumption of the search, while the aim of utilization of EM
is increasing the amount of space that is available to the search. Although the utilization of FS and EM has been
examined in the context of A*, to our knowledge, neither the utilization of FS or EM has been examined in the context
of an BA* algorithm.

0.2 Background
In a BA* algorithm a ‘forward instance’ of A* that searches the state space beginning at ss, the start state, is executed
together with a ‘backward instance’ of A* that searches the transposed instance of the state space beginning at sg , the
goal state, in order to compute a minimum-cost path from ss to sg . This paper refers to the forward and backward
instances of A* in a BA* algorithm as search d and search d′, respectively, and vice versa, in addition to using d and
d′ subscripts to distinguish between various values of the searches.

BA* algorithms use either front-to-back evaluation or front-to-front evaluation. With front-to-back evaluation each
search uses a heuristic that guides it towards its goal state [12, 9, 4, 1]. With front-to-front evaluation each search uses a
heuristic that guides it towards the states in the frontier of the other search [2, 13]. Front-to-front evaluation is generally
perceived as being impractical due to the high overhead of computing heuristic values. This perception may change
with further research into multiple-goal pattern-databases [7]. This paper is concerned with BA* algorithms where
front-to-back evaluation is used and where the searches do not re-open closed states in the presence of a consistent
heuristic. A chronologically ordered listing of such BA* algorithms follows.

In Bidirectional Heuristic Path Algorithm (BHPA) [12], the searches are executed concurrently by way of alternat-
ing between the execution of a search step in search d and in search d′. This alternating is governed by a search-effort
allocation policy, an example of which is executing a search step in the search with smaller number of open states. As
search steps are executed, µ is computed as the minimum cost of a path from ss to sg through a state in the intersection
of the search d and search d′ search trees. Execution of search steps continues until either f -mind or f -mind′ is at or
above µ. BHPA does not improve upon A* because the searches can repeat each others search effort.

In BS* [9], BHPA is modified with the application of four techniques: nipping, pruning, screening and trimming.
Let si be a state that is to be expanded in search d. With nipping, si is closed without expansion if si is closed in
search d′. With screening, each state sj that is generated in the expansion of si is not opened if its fd-value is at or
above µ. With pruning, if si is closed in search d then each state sj that is a descendant of si in the search d′ search
tree is removed from the search d′ open list. Let si be a state that is open in search d. With trimming, si is removed
from the search d open list if the fd-value of si is at or above µ. BS* improves upon BHPA by preventing each search
from repeating the search effort of the other search and from searching needlessly.

In BS*-Add [4], BS* is modified with the application of the add technique. With add, each state that is generated
in search d has its fd-value computed as the sum of its gd-value, its hd-value, and an estimate of the error of hd in
estimating the minimum cost of a path from an open state in search d′ to the goal state of search d. This error estimate
is computed as the minimum difference between the gd′ -value of an open state in search d′ and its hd-value. BS*-Add
improves upon BS* by increasing the accuracy of heuristic estimates in each search using information gleaned from
the other search.

In BS*-MaxRedux [1], BS* is modified with the application of the max-redux technique.1 With max-redux, each
state that is generated in search d, and each state that is open in search d, is screened and trimmed, respectively, based
on the maximum of its fd-value and its alternative fd-value. The alternative fd-value of a state si is computed as the
sum of f -mind′ and an estimate of the error of hd′ in estimating the minimum cost of a path from si to the goal state
of search d′. This error estimate is computed as the difference between the gd-value of si and the hd′ -value of si. Like

1The max-redux technique is not to be confused with the max technique [4]. The max technique is also applied to BS* but can lead to the
searches re-opening closed states in the presence of a consistent heuristic.

1

BS*-Add, BS*-MaxRedux also improves upon BS* by increasing the accuracy of heuristic estimates in each search
using information gleaned from the other search.

Applying both add and max-redux to BS* has the potential of providing the benefits of both techniques. However,
if both techniques are applied without modifying max-redux, the error estimate of max-redux in search d may double
count the error estimate of add in search d′. The resulting erroneous screening and trimming may compromise the
admissibility of the search. To eliminate this problem we modify max-redux such that the error estimate of add in
search d′ is subtracted from the error estimate of max-redux in search d. We refer to the combination of add and max-
redux as the add/max-redux technique, and to the version of BS* that uses this technique as BS*-Add/MaxRedux.
Experimental results indicate that although the benefits of add and max-redux in combination do not seem to be
additive, combining add and max-redux does seem to provide the maximum benefit provided by either technique in
isolation of the other.

0.3 Frontier BS*
Space consumption is a limiting factor in BS* because the searches are executed as instances of A*. An approach
for reducing the space consumption of BS* is to execute the searches as instances of a Frontier A* (FA*) algorithm
instead of as instances of A*. In the presence of a consistent heuristic, A* does not re-open closed states. A FA*
algorithm leverages this property maintain an amount of information about the closed regions of the state space that is
reduced but sufficient to prevent the search from leaking into these regions.

There are two mainstream FA* formulations: the Korf formulation (Korf-FA*) and the Zhou/Hansen formulation
(Zhou/Hansen-FA*). Korf-FA* [8] maintains an open list but does not maintain a closed list. Each state in the open
list has a set of state transitions S that consists of each state transition from that state to one of its closed successors.
Each time an open state is expanded its S-set is consulted to prevent the generation of closed successors, the S-sets of
open successors are updated, while the S-sets of non-open and non-closed successors are initialized. Zhou/Hansen-
FA* [14] maintains an open list and a reduced closed list. The closed list contains all closed states that have non-closed
predecessors, but does not contain any closed states that have no non-closed predecessors. Each state in both the open
list and the closed list has an integer p that is equal to the number of non-closed predecessors of that state. Each time
a state is expanded the p-values of closed successors and open successors are updated, while the p-values of non-open
and non-closed successors are initialized. Whenever the p-value of a closed state reaches zero it is removed from the
closed list.

In this section we present Frontier BS* (FBS*), a version of BS* where the searches are executed as instances of
a FA* algorithm. The techniques that are applied to BS* to obtain BS* derivatives are also applicable to FBS*, as
long as the technique does not lead to the searches re-opening closed states in the presence of a consistent heuristic.
FBS* executes the searches as instances of Zhou/Hansen-FA* and not as instances of Korf-FA* because the former
algorithm is better suited at facilitating the execution of BS* than the latter. In particular, in executing BS*, whenever
search d either generates or expands a state that is closed in search d′, the gd′ -value of that state is required. This gd′-
value is available in using Zhou/Hansen-FA* because the maintained information about closed states includes both the
identities of closed states and their g-values. The same gd′ -value is not available in using Korf-FA*, however, since
the maintained information about closed states is sufficient to obtain the identities of closed states, but is insufficient
to obtain their g-values. This difference makes Zhou/Hansen-FA* better suited at facilitating the execution of BS*.
That is not to say that Korf-FA* is not applicable. The aforementioned gd′ -value can be made available in using the
Korf FA* algorithm with a modification where each state-transition in the S-set of each open state is tagged with the
g-value of the corresponding closed state. In this paper, however, we do not pursue this modification.

0.3.1 The algorithm
The definition of the algorithm is literally identical to that of BS* with the exception of two differences.

The first difference is that in executing search d, the algorithm maintains pd-values for states in the open and closed
lists of search d, updates the pd-values of states that are open or closed in search d, initializes the pd-values of states
that are opened in search d, removes states from the closed list of search d when their pd-values become zero, and
does not add states to the closed list of search d when their pd-values are zero.

2

PDB Time consumption Space consumption
FA* FBS* FA* FBS*

3-3-3-3-3 2.94+07 9.62+06 4.05+07 8.05+06
4-4-4-3 1.12+07 9.40+06 1.57+07 8.15+06
5-5-5 3.64+06 2.83+06 5.24+06 2.13+06
6-6-3 1.84+06 1.42+06 2.80+06 1.13+06
7-7-1 3.86+05 5.60+05 6.29+05 6.99+05
8-7 1.43+05 1.57+05 2.46+05 1.85+05

(a) STP.

PDB Time consumption Space consumption
FA* FBS* FA* FBS*

5-10 6.71+07 1.09+07 2.14+07 2.88+06
6-9 1.09+08 1.93+07 3.06+07 6.00+06
7-8 1.33+08 2.83+07 3.60+07 8.31+06
8-7 1.37+08 5.80+07 3.76+07 1.42+07
9-6 1.21+08 8.38+07 3.20+07 2.02+07
10-5 8.83+07 9.23+07 2.23+07 2.11+07

(b) ToH.

Table 1: Time- and space-consumption of FA* and FBS* with add/max-redux on the 100-th instance in Korf’s 4-by-4
STP problem instance set, and the standard instance the 15-disk ToH problem.

The second difference concerns pruning. Whereas in BS*, given a state si that is nipped in search d, the states
that are pruned in search d′ are all the descendants of si in the search d′ search tree, in the algorithm the states that
are pruned in search d′ are all the descendants of si in the search d′ search tree that are also successors of si. More
specifically, the algorithm prunes in search d′ all successors of si whose gd′ -value is equal to the sum of the gd′ -value
of si and of the cost of the state transition to them from si. In principle, BS* performs complete pruning, while the
algorithm performs partial pruning. The use of partial pruning in the algorithm is a necessity because the algorithm
removes states from the search d′ closed list. In doing so, the algorithm loses the ability to identify the descendants
of states in the search d′ search tree, with the exception of those that are also successors. Fortunately, by the time that
the algorithm begins pruning it also begins trimming. Unless the heuristic is particularly inaccurate, the states that the
algorithm fails to prune are likely to be good candidates for trimming.

Adhering to the policies of nipping, pruning, screening and trimming, gives rise to a stale p-value problem: the
p-value of a state can be larger than it should be, an effect of which is bigger closed lists. For example, when a state
si is removed from the open list because of trimming, the p-value of si is lost. When si is generated again and placed
into the open list, the p-value of si is larger than it should be and, more importantly, will not reach zero when all
predecessors of si are closed, which is the prerequisite for the removal of si from the closed list. A fix to the stale
p-value problem is as follows. When nipping, expand the nipped state such that the f -value of each generated state is
∞. When screening, generate the screened state with g- and f -values equal to ∞. When pruning or trimming, retain
the pruned or trimmed state while setting its g- and f -values to ∞. Unfortunately, the fix does more harm than good.
Although using the fix does indeed lead to smaller closed lists, using it also leads to bigger open lists, with the increase
in the size of the open lists being larger than the decrease in the size of the closed lists. Accordingly, we did not utilize
the fix in obtained any of the results reported in this paper.

0.3.2 Experimental Evaluation
We performed an experimental evaluation of FA* and FBS* with add/max-redux. Table 1 highlights the results of this
experimental evaluation: Table 1(a) presents the time- and space-consumption of the algorithms on the 100-th instance
in Korf’s 4-by-4 Sliding-Tile Puzzle (STP) problem set for various additive pattern-database heuristic configurations,
while Table 1(a) does likewise on standard instances of the 15-disk 4-peg Towers-of-Hanoi (ToH) problem. Time
consumption is measured in terms of the total number of state expansions, while space consumption is measured in
terms of the maximum number of open or closed states at any given time during execution.

In general, FBS* consumes less time and space than FA*. The more accurate the heuristic the smaller the difference
between the time- and space-consumption of FA* and FBS*.

0.4 External-Memory Frontier BS*
Even though FBS* is designed to consume less space than BS*, space consumption remains a problem. The utilization
of External Memory (EM) in addition to Internal Memory (IM) alleviates this problem. The access latency and,
to a lesser extent, the access bandwidth of EM is significantly worse than in the case of IM. Therefore, ensuring
that EM is utilized in a performance-efficient manner requires the use of special techniques, such as sorting-based

3

delayed-duplicate-detection [5, 11], hashing-based delayed-duplicate-detection [5, 3, 8] and hashing-based structured-
duplicate-detection [15, 16].

In this section we present External-Memory Frontier BS* (EM-FBS*), a version of FBS* that utilizes EM in
addition to IM, and External-Memory FA* (EM-FA*), a version of FA*, that utilizes EM in addition to IM. To utilize
EM in a performance-efficient manner, both EM-FA* and EM-BS* use a sorting-based delayed-duplicate-detection
strategy. The execution of EM-FA* forms the basis of the execution of EM-FBS*.

0.4.1 Runs and reductions
Both algorithms use runs. A run is a list of states where there are no duplicate copies of states and where states
appear in the increasing order of the magnitudes of the binary-encodings of their descriptions. Both state-insertion and
state-removal operations on a run must preserve the run property.

Both algorithms also use reductions. A reduction is an operation whose input is one or more copies of a state si
and whose output is one copy of si, also called the reduced copy, such that the g-value of the output copy of si is the
minimum of the g-values of the input copies of si, the f -value of the output copy of si is the minimum of the f -values
of the input copies of si, and the p-value of the output copy of si is the difference between the number of predecessors
of si and the sum of the differences between the number of predecessors of si and the p-value of each input copy of
si.2

0.4.2 The unidirectional algorithm
The algorithm maintains EM runs Open and Closed and an IM list of EM runs Open, such that Open consists of the
open states, Closed consists of the closed states, and Open consists of the open states by way of consisting of as many
EM runs as there are distinct f -values of the open states, such that each EM run in Open consists of all the open states
with a given f -value and the EM runs in Open are ordered in the increasing order of their f -values, i.e. the f -values
of their states.

While Open is not empty and sg is not in Open with an f -value of f -min — which is computed as the f -value
of the leading EM run in Open — the algorithm executes a search step. In each search step, the algorithm executes an
expansion phase followed by either a reconstruction-reconciliation phase, or a refinement-reconciliation phase.

In the expansion phase, the algorithm removes the first EM run from Open, and names it Expand. Next, the
algorithm creates an IM list of EM runs Generate and an IM list of states Generate with a fixed capacity that does
not exceed the available IM capacity of the machine. Next, the algorithm executes a scan of Expand. In executing
the scan, the algorithm expands each state in Expand while appending each generated state to Generate. Each time
Generate becomes full or the expansions are finished, the algorithm sorts and reduces Generate such that all copies
of each state in Generate are replaced with their reduced copy — thereby making Generate an IM run — writes
Generate to EM to create a new EM run, appends this EM run to Generate, and, if the expansions are not finished,
resets Generate to empty. When the expansions are finished, the algorithm destroys Generate.

In the reconstruction-reconciliation phase, the algorithm creates EM runs tOpen and tClosed and an IM list of EM
runs tOpen. Next, the algorithm executes a merge of Open, Closed and each EM run in Generate. While executing
the merge, the algorithm computes si as the reduced copy of all copies of the current state in the merge output. Each
time the next state in the merge output differs from the current state or the merge is finished, the algorithm processes si,
such that at the end of the reconstruction-reconciliation phase, Open and Closed and Open are consistent with respect
to the state expansions and generations in the expansion phase, should Open and Closed and Open be replaced with
tOpen and tClosed and tOpen, respectively. This processing of si involves append operations on tOpen, tClosed
and the EM runs in tOpen, and find and insert operations on tOpen. When it is finished executing the merge, the
algorithm destroys Open, Closed, each EM run in Open, Open, Expand, each EM run in Generate, and Generate,
and, subsequently, renames tOpen and tClosed and tOpen to Open and Closed and Open, respectively.

In the refinement-reconciliation phase, the algorithm executes a merge of Expand and each EM run in Generate.
While executing the merge, the algorithm computes si as the reduced copy of all copies of the current state in the

2For example, if there are three input copies of si such that the p-values of these three input copies are 3, 3 and 4, and the number of predecessors
of si is 5, then the p-value of the output copy of si is 0, because we compute it as 5− ((5− 3) + (5− 3) + (5− 4)).

4

merge output. Each time the next state in the merge output differs from the current state or the merge is finished, the
algorithm processes si, such that at the end of the refinement-reconciliation phase, Open and Closed and Open are
consistent with respect to the state expansions and generations in the expansion phase. This processing of si involves
find, insert, remove and update operations on Open, Closed and the EM runs in Open, and find, insert and remove
operations on Open, as well as additional reduction operations involving si and copies of si inOpen orClosed. When
it is finished executing the merge, the algorithm destroys Expand, each EM run in Generate, and Generate.

Instance Time consumption Space consumption
Number EM-FA* EM-FBS* EM-FA* EM-FBS*

38 3.06+09 3.24+08 6.61+09 5.92+08
40 3.76+08 1.25+07 8.78+08 1.98+07
25 1.38+09 3.45+08 3.30+09 5.20+08
46 . . . 1.34+10 . . . 1.74+10
45 . . . 4.90+09 . . . 7.88+09
6 . . . 3.84+09 . . . 5.55+09

11
9 . . . 4.88+10 . . . 7.38+10

50 . . . 6.43+10 . . . 8.33+10

(a) STP.

PDB Disks Time consumption Space consumption
EM-FA* EM-FBS* EM-FA* EM-FBS*

15 14-1 2.23+05 4.91+04 3.40+05 7.01+04
16 14-2 2.00+07 3.50+06 1.23+07 2.40+06
17 14-3 2.99+08 3.27+07 1.71+08 1.69+07
18 14-4 2.29+09 1.77+08 1.21+09 7.85+07
19 14-5 1.24+10 6.65+08 6.23+09 2.95+08
20 14-6 . . . 1.89+09 . . . 7.95+08
21 14-7 . . . 8.79+09 . . . 3.32+09
16 15-1 3.01+06 9.65+05 3.17+06 8.21+05
17 15-2 7.45+07 1.57+07 5.16+07 9.12+06
18 15-3 8.12+08 9.88+07 4.78+08 5.14+07
19 15-4 5.23+09 4.14+08 2.57+09 1.79+08
20 15-5 2.50+10 1.25+09 1.11+10 4.91+08
21 15-6 . . . 4.13+09 . . . 1.69+09

(b) ToH.

Table 2: Time- and space-consumption of EM-FA* and EM-FBS* with add/max-redux on instances in Korf and
Felner’s 5-by-5 STP problem set, and on standard instances of various versions of the ToH problem.

0.4.3 The bidirectional algorithm
The algorithm maintains EM runs Opend and Closedd and an IM list of EM runs Opend, such that Opend and
Closedd and Opend are equivalent to Open and Closed and Open, respectively, for search d in the unidirectional
algorithm. In addition to maintaining the gd-, fd- and pd-values of states in search d, as is done in the unidirectional
algorithm, the algorithm maintains their gd′ - and fd′ -values.

While both Opend and Opend′ are not empty and neither sg is in Opend with an fd-value of f -mind — which
is computed as the fd-value of the leading EM run in Opend — or ss is in Opend′ with an fd′ -value of f -mind′ —
which is computed as the fd′ -value of the leading EM run in Opend′ — the algorithm executes a search step. In each
search step the algorithm executes an expansion phase followed by either a reconstruction-reconciliation phase or a
refinement-reconciliation phase.

In the expansion phase, the algorithm executes a unidirectional algorithm expansion phase for either search d
or search d′. The algorithm modifies the execution of the unidirectional algorithm expansion phase for search d as
follows. Let si be a state in Expandd to be expanded in the expansion phase of search d. If the fd′ -value of si is
less-than or equal-to f -mind′ , then the algorithm modifies the expansion of si such that, for each sj generated in the
expansion of si, sj is marked as a pruning state for search d′, the gd- and fd-values of sj are both equal to ∞, the
fd′ -value of sj is equal to ∞, and the gd′ -value of sj is equal to the sum of the gd-value of si and of the cost of the
state transition from si to sj . Otherwise, the algorithm modifies the expansion of si such that, for each sj generated in
the expansion of si, the algorithm does not append sj to Generated if the fd-value of sj is greater-than or equal-to µ.

In the reconstruction-reconciliation phase, the algorithm fuses the execution of the unidirectional algorithm reconstruction-
reconciliation phase for both searches with the execution of a merge of Opend, Opend′ , Closedd, Closedd′ , each EM
run in Generated, and each EM run in Generated′ , while in the refinement-reconciliation phase, the algorithm fuses
the execution of the unidirectional algorithm refinement-reconciliation phase for both searches with the execution of
a merge of Expandd, Expandd′ , each EM run in Generated, and each EM run in Generated′ . In executing these
merges, two versions of the reduced copy of the current state in the merge output are computed: a search d version and
a search d′ version. The algorithm processes these versions in the same manner as the unidirectional algorithm while
also performing additional processing. This additional processing involves: the updating of µ using the gd-values of
states that are open in search d and the gd′ -values of their duplicates that are either open or closed in search d′; the

5

updating of the gd′ - and fd′ -values of states that are open in search d using the gd′ - and fd′ -values of their duplicates
that are either open or closed in search d′; the elimination of states that are open in search d with fd-values that are
greater-than or equal-to µ; the elimination of states that are open in search d with duplicates generated in search d′

that are marked as pruning states for search d and have gd′ -values equal to the gd-values of the states that are open
in search d; and the ignoring of states in search d that were generated in search d but are marked as pruning states
for search d′. In the case of the reconstruction-reconciliation phase, the additional processing is accomplished merely
with logic operations on the two versions of the reduced instance of the current state in the merge output. In contrast,
in the case of the refinement-reconciliation phase, the additional processing involves a combination of logic operations
on the two versions of the reduced state, along with find, remove and update operations on Opend, Open′d, Closedd,
Closed′d, Opend, Opend, along with find and remove operations on Opend and Opend′ .

0.4.4 Reconstruction versus refinement
The refinement-reconciliation phase is designed to be efficient when the ratio of the number of states expanded and
generated in the expansion phase over the number of states that are open and closed is small, while the reconstruction-
reconciliation phase is designed to be efficient when that ratio is not small. In practice, this ratio tends to be large in
the first iteration with a given value of f -min, but then tends to grow smaller, eventually approaching zero, with each
subsequent iteration with that value of f -min. After each expansion phase the algorithm chooses the reconciliation
phase that is likely to yield the best performance. This decision should take into account both computational efficiency
and data-reference locality. We note that the reconstruction-reconciliation phase can consume a significantly larger
amount of space than the refinement-reconciliation phase unless the algorithm recovers space at incrementally while
executing the merge.

0.4.5 Experimental evaluation
We performed an experimental evaluation of EM-FA* and EM-FBS* with add/max-redux. Table 2 highlights the
results of this evaluation: Table 2(a) presents the time- and space-consumption of EM-FA* and EM-FBS* on nine in-
stances in Korf and Felner’s 5-by-5 Sliding-Tile-Puzzle (STP) problem set, using the additive pattern-database heuristic
configurations described by Korf and Felner [6], while Table 2(b) presents the time- and space-consumption of EM-
FA* and EM-FBS* on standard instances of various versions of the Towers-of-Hanoi (ToH) problem, using various
additive pattern-databse heuristic configurations.3 Time consumption is measured in terms of the total number of state
expansions, while space consumption is measured in terms of the maximum number of open, closed or generated
states at any given time during execution. The nine STP instances are arranged in the increasing order of difficulty
as measured by the state generation totals reported by Korf and Felner, and correspond to the three least-, median-,
and most-difficult instances. Because of resource limitations we were unable to solve all STP or ToH instances using
EM-FA* that we were able to solve using EM-FBS*.

The results presented in Table 2 are in line with those presented in Table 1 with the exception that the margins
by which EM-FA* beats EM-FBS* are larger than those by which FBS* beats FA*. In most cases, the margin of
difference in favour of EM-FBS* is approximately an order of magnitude, with the extreme being approximately two
orders of magnitude. Indeed, considering that we were unable to solve the most difficult instances of STP and ToH
using EM-FA* while being able to do so using EM-FBS* is testament to the superiority of EM-FBS*.

The results presented in Table 2 were obtained using parallel implementations of EM-FA* and EM-FBS* that
target distributed-memory systems. The parallel implementations are equivalent to their sequential counterparts in
terms of work and storage, and were developed using the ideas of Niewiadomski et al. [11, 10]. Because the parallel
implementations are undergoing performance tuning at the time of writing of this paper, and because we obtained
results using different sets of machines, we are unable to provide meaningful execution-times. We do note, however,
that the longest execution time was approximately a week using a dozen machines on the most difficult instance of
STP, and that the decreases achieved by EM-FBS* over EM-FA* in the number of state expansions did indeed translate
to similar decreases in execution time.

3In STP experiments, we did not utilize the blank-compression technique of Korf and Felner, which increases heuristic accuracy, since it
compromises heuristic consistency

6

0.5 Conclusion
The principal contribution of this paper is an investigation of Bidirectional A* (BA*) with respect to the utilization
of Frontier Search (FS) and External Memory (EM) in an advanced BA* algorithm. We presented BA* algorithms
featuring an application of FS and a strategy for the performance-efficient utilization of EM, along with experimental
results demonstrating that these BA* algorithms consume significantly less time and space than their A* counterparts.
In general, we hope that this work will promote an increased awareness and appreciation of BA*. We plan on further
exploring the issues addressed in this paper in addition to presenting an in-depth examination of the algorithms and
their parallelization.

7

Bibliography

[1] Andreas Auer and Hermann Kaindl. A Case Study of Revisiting Best-First vs. Depth-First Search. In Proceedings
of the 16th Eureopean Conference on Artificial Intelligence, ECAI’2004, including Prestigious Applicants of
Intelligent Systems, PAIS 2004, pages 141–145, 2004.

[2] Dennis de Champeaux. Bidirectional Heuristic Search Again. Journal of the ACM, 30(1):22–32, 1983.

[3] Stefan Edelkamp, Shahid Jabbar, and Stefan Schrödl. External A*. In Advances in Artificial Intelligence, 27th
Annual German Conference on AI, pages 226–240, 2004.

[4] Hermann Kaindl and Gerhard Kainz. Bidirectional Heuristic Search Reconsidered. Journal of Artificial Intelli-
gence Research, 7:283–317, 1997.

[5] Richard E. Korf. Best-First Frontier Search with Delayed Duplicate Detection. In Proceedings of the Nineteenth
National Conference on Artificial Intelligence, Sixteenth Conference on Innovative Applications of Artificial
Intelligence, pages 650–657, 2004.

[6] Richard E. Korf and Ariel Felner. Disjoint Pattern Database Heuristics. Artificial Intelligence, 134(1-2):9–22,
2002.

[7] Richard E. Korf and Ariel Felner. Recent Progress in Heuristic Search: A Case Study of the Four-Peg Towers of
Hanoi Problem. In IJCAI 2007, Proceedings of the 20th International Joint Conference on Artificial Intelligence,
pages 2324–2329, 2007.

[8] Richard E. Korf, Weixiong Zhang, Ignacio Thayer, and Heath Hohwald. Frontier Search. Journal of the ACM,
52(5):715–748, 2005.

[9] James B.H. Kwa. BS*: An Admissible Bidirectional Staged Heuristic Search Algorithm. Artificial Intelligence,
38(1):95–109, 1989.

[10] Robert Niewiadomski, José Nelson Amaral, and Robert C. Holte. A parallel external-memory frontier breadth-
first traversal algorithm for clusters of workstations. In Proceedings of the Thirty-Fifth International Conference
on Parallel Processing, pages 531–538, 2006.

[11] Robert Niewiadomski, José Nelson Amaral, and Robert C. Holte. Sequential and Parallel Algorithms for Frontier
A* with Delayed Duplicate Detection. In Proceedings of the Twenty-First National Conference on Artificial
Intelligence and the Eighteenth Innovative Applications of Artificial Intelligence Conference, pages 1039–1044,
2006.

[12] Ira Sheldon Pohl. Bi-Directional and Heuristic Search in Path Problems. PhD thesis, Stanford University, 1969.

[13] George Politowski and Ira Pohl. D-Node Retargeting in Bidirectional Heuristic Search. In Proceedings of the
National Conference on Artificial Intelligence, pages 274–277, 1984.

[14] Rong Zhou and Eric A. Hansen. Sparse-Memory Graph Search. In Proceedings of the Eighteenth International
Joint Conference on Artificial Intelligence, pages 1259–1268, 2003.

8

[15] Rong Zhou and Eric A. Hansen. Structured Duplicate Detection in External-Memory Graph Search. In Pro-
ceedings of the Nineteenth National Conference on Artificial Intelligence, Sixteenth Conference on Innovative
Applications of Artificial Intelligence, pages 683–689, 2004.

[16] Rong Zhou and Eric A. Hansen. Edge Partitioning in External-Memory Graph Search. In Proceedings of the
20th International Joint Conference on Artificial Intelligence, pages 2410–2417, 2007.

9

