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Abstract 

 
Accurate forecasting of project duration is crucial during the execution phase as it affects its overall 

performance, timely decision-making, identification of potential delays, and resource allocation. 

This research proposes a proof of concept based on artificial intelligence, specifically using deep 

learning algorithms, demonstrating its potential application. These algorithms have shown 

remarkable results in finding patterns in large amounts of data and making accurate predictions. 

Moreover, the dataset provided to the model is treated as a time series, capturing the sequential 

nature of data collected throughout the execution phase. Additionally, predictions are yielded at 

work package level, providing to project managers granular information to make decisions. 

The study follows these steps: (1) a comprehensive literature review was conducted to explore the 

latest advancements on related topics and underline current gaps. (2) A data acquisition model was 

elaborated founded on a consistent selection of duration-influencing factors. Then, actual data was 

collected and profiled from multiple projects using their work package names as links, thus 

creating datasets per work package. (3) The forecasting duration at completion model was 

developed, including data preprocessing and the computational deep-learning-based modelling per 

work package. After that, the overall project duration was modelled using the Critical Path Method 

and Precedence Diagramming Method and set in the Graphical User Interface. (4) The developed 

forecasting model was used to comparing three well-suited deep-learning algorithms with actual 

project data and consequently, selecting the most accurate. Next, the selected algorithm was 

incorporated into the Graphical User Interface. The study also was validated by comparing the 

proposed model with traditional methods, including the Earned Value Methodology (EVM) and 

Earned Schedule Methodology (ESM). Finally, the resultant model was verified through 

sensitivity analysis.  
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As a result, the forecasting model based on the Long Short-Term Memory (LSTM) algorithm 

demonstrated the best performance against Multi-Layer Perceptron and Convolutional Neural 

Network algorithms. Likewise, it performed better than intensive-used forecasting methods in the 

industry, such as Earned Value Methodology (EVM) and Earned Schedule Methodology (ESM). 

These promising results contributes to the foundation of Artificial Intelligence (AI) applicability 

in construction project duration at completion forecasting. 
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Chapter 1 Introduction 

1.1 Background 

The construction sector significantly contributes to the global economy, promoting infrastructure 

development, job creation, and economic growth. According to Oxford Economics, global 

construction spending is expected to increase from $9.7 trillion in 2022 to $13.9 trillion by 2037. 

(Fearnley et al., 2023). Similarly, Canada's construction industry is also essential. It supports 

multiple construction types, such as residential, commercial, infrastructure, and industrial, and 

contributed to about 7.5% of Canada's GDP in 2023 (Statistics Canada, 2024). 

Regarding the construction project lifecycle, the construction execution phase is unique and 

critical. It transforms project plans into physical structures, fulfilling utility requirements, resource 

management, subcontractors coordination, and adhesion to construction codes and regulations 

(Oberlender & Spencer, 2022). This phase involves multiple on-site activities such as excavation, 

foundation, framing, electrical, finishing works, among others related. Moreover, most of the 

project's budget is spent in this phase (as shown in Figure 1.1) and potential delays can significantly 

impact the overall project timeline (Chhotelal et al., 2023; Ajayi & Chinda, 2022; Shahsavand et 

al., 2018).  

Therefore, accurate project outcome forecasts become crucial. This research is focused on the 

project duration at completion forecasting, which helps to fit resource allocation, timely 

procurement, and coordination of various activities. It also enables construction organizations to 

set realistic expectations for clients, stakeholders, and project teams. In addition, timely project 

completion is essential for maintaining client satisfaction and enhancing the reputation of 

construction organizations. 
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Figure 1.1 Influence and Expenditures Curve (MacLeamy curve) for the Project Life Cycle 

On the other hand, Artificial Intelligence (AI) has emerged as a promising solution, revolutionizing 

the approach of data analysis, decision-making, and innovation (Duan et al., 2019). It can handle 

large quantities of data to deliver valuable data-driven outcomes, such vast amounts of data as 

generated by the construction industry. Thus, many construction firms have started adopting AI in 

their processes, as was reported by KPMG in 2023, finding that 40% have implemented AI, mostly 

in the early stages (Armstrong et al., 2023). The primary explored fields with AI have been worker 

safety, productivity improvements, and quality assurance, conversely, forecasting applications in 

project control still in their beginnings. Accordingly, the application of AI in project management 

tasks like forecasting constitutes a significant gap nowadays. 

1.2 Problem Identification 

Researchers have addressed project duration at completion forecasting for decades, proposing 

several methodologies, many of them even automated with sophisticated software to ensure 

accurate outcomes. Unfortunately, weaknesses have been identified during their implementations. 
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For instance, the Earned Value Methodology (EVM) ideally assumes that current performance still 

during remaining works (Chou et al., 2010; Grandage, 2022; Vanhoucke, 2012); Probabilistic 

methods require uncertainty inputs from experts, which are prone to subjectivity or bias (Durbach 

et al., 2017; Gneiting & Katzfuss, 2014; X. Yue et al., 2018); and also most of these methodologies 

present non-timely forecasts calculations due to their complex processes leading to delays in 

decision making (Ahiaga-Dagbui & Smith, 2014; Loshin, 2011). 

Poor data management has been evidenced as another issue regarding Machine Learning 

applications. Large amounts of data are yielded in the construction sector while monitoring 

progress, which should be leveraged to obtain beneficial outcomes using Machine Learning (Tanga 

et al., 2022). To take advantage of that, it is crucial a proper data collection which enables data 

quality and consistency for optimal Machine Learning application performance. However, 

research agrees that construction companies do not have a standardized data flow (Bobrova, 2023; 

Matti & Antti, 2020; Pavlova et al., 2021), varying between projects and misusing valuable, 

reliable forecasting input data. 

Similarly, another drawback identified is how machine learning has been used in addressing 

construction project duration forecasting. Its application has been limited to predicting the overall 

project level without exploring more granular levels, such as at the work package level. 

Additionally, most machine-learning-based applications consider solely non-time-dependent input 

variables, disregarding time-dependent variables like those generated during the construction 

project’s tracking.  

Accordingly, inaccurate predictions cause inefficient resource allocation or improper risk 

management for the remaining work. Moreover, because of time overruns, companies must incur 

unexpected indirect costs and expend undesirable liquidated damages. Given that, providing 
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accurate project duration forecasts at the work package level supported by adequate data collection 

and deep learning algorithms will be proposed. 

1.3 Research Objectives 

This research aims to enhance the accuracy of duration-at-completion forecasting for construction 

projects since the work package level during the execution phase, processing historical data with 

a deep-learning model. In fulfillment of the research objective, the present study will focus on the 

following goals: 

• Analyze and propose a structured data collection for project duration predictions. 

• Evaluate and select deep learning algorithms for project duration forecasting that can address 

the regression perspective and handling time series datasets. 

• To integrate individual work package predictions from deep learning to obtain the overall 

project prediction, through a User Interface environment. 

1.4 Research Methodology 

The research methodology which involves a proof of concept to address the problem identified 

and achieve the research objectives is divided into four phases as shown in Figure 1.2 and 

explained below. 

 
Figure 1.2 Research Methodology 
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In phase one, an extensive literature review on five topics about construction project duration 

forecasting is developed. These topics include understanding project construction in the execution 

phase, exploring the latest methods when managing project schedules, reviewing advancements in 

forecasting methods and studying machine learning developments applied to construction projects 

for project duration forecasting. On the other hand, this phase involves understanding industry 

practitioners' current practices, including project duration forecasting since work package levels. 

It enables the elucidation of advantages and disadvantages from an industry perspective. 

The second phase encompasses a structured data acquisition model, considering the outcomes of 

phase one. In this phase, the input and output modelling variables are defined by an exploratory 

analysis of the raw data collected. As data characteristics, it should be numerical and sequential 

over time. The former is because this is a regression problem and the neural network application 

(Turban et al., 2011). The latter is related to time series requirements such as seasonality or trends. 

The third phase spans three stages: data preprocessing, deep learning model development and the 

user interface model creation. The data preprocessing handles raw data by data cleaning, 

transforming, feature selection, splitting and normalizing.  After that, the deep learning 

development presents architectural aspects of its design, such as hyperparameters and performance 

metrics. Later, the user interface design is powered by the deep learning model for calculations 

and adds the methodology to integrate individual work package predictions into overall project 

forecasting.  

An application of the User Interface (UI) integrated with the deep learning model is presented in 

phase 4. It sets optimal hyperparameters and selects a deep learning algorithm among the three 

proposed. The algorithm chosen from the third phase is incorporated into the UI, which is designed 

to be user-friendly for non-expert users. The interface is intuitive and sequentially logical, making 
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navigating easier until it produces work package and overall project prediction reports. Next, a 

sensitivity analysis (what-if) over input variables is deployed. 

1.5 Thesis Organization 

The thesis was organized as follows: 

- Chapter one of the thesis provides a background description, problem identification, 

research objectives, research methodology, academic and industry expected contributions, 

and the thesis organization. 

- Chapter two of the thesis presents a detailed literature review on every topic related to 

project duration forecasting in construction during the execution phase. 

- Chapter three of the thesis develops the conceptual model and considers a process flow to 

propose a suitable data acquisition mode. It involves selecting proper duration-influencing 

factors, ERD, and analysis of available data. 

- Chapter four of the thesis details the model development using machine learning, as well 

as the elaboration of the user interface. 

- Chapter five of the thesis depicts the outcomes using the model created and passing through 

the selection of the best machine learning algorithm. This chapter also demonstrates the 

step-by-step user interface with project data. 

- Finally, chapter six of the thesis comprises a research summary, limitations of the research 

work, and recommendations for future investigations.  
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Chapter 2 Literature Review 

2.1 Introduction 

To attain the research objectives for this study, the initial and crucial step involves establishing a 

comprehensive perspective through an exhaustive literature review. These objectives lie in 

complex construction project management fields and the application of state-of-the-art technology 

such as Artificial Intelligence (AI). In this context, the investigation draws support from the 

following four specialization fields: Firstly, this chapter explains schedule management in 

construction projects. Secondly, scheduling techniques are described. Thirdly, an exploration of 

forecasting techniques is presented. Fourth, a brief overview of machine learning (ML) techniques, 

data clustering, regression and classification tasks, types of machine learning, a revision of 

Artificial Neural networks, representative Deep Learning algorithms, and current applications on 

Construction are studied. Lastly, a summary of previous research and the research gap was 

explained. 

Each previously described field drives to expand the knowledge of these matters, understanding 

their synergy and elucidating their contribution to the present research. By doing so, this chapter 

will expose the fundamentals behind this study. 

2.2 Schedule Management in Construction Projects 

Many studies agree that schedule management is a meaningful component of construction project 

management (Faghihi et al., 2014; Meng et al., 2022; Yu et al., 2021). It is defined as those 

processes needed to complete the project on time. These processes are planning schedule 

management, activities definition, activities sequencing configuration, activities duration 

estimation, schedule development, and schedule control (Project Management Institute, 2017). By 
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executing these processes, one of the important outcomes is the Schedule Model, which results 

from applying project scheduling tasks during the Schedule Development Process. This task 

involves tools, techniques, and the project team’s experience (Project Management Institute, 

2019). The schedule model is then controlled and monitored under preset conditions established 

in the schedule project plan. 

Unlike the PMI, for the Association for the Advancement of Cost Engineering International 

(AACEi), schedule management includes only three phases: planning, developing, and controlling 

project schedules (Stephenson, 2015). By matching both perspectives about schedule management 

processes, AACEi considers that defining, sequencing, and estimating activities are subprocesses 

of the Planning Project Schedule. It also adds that Controlling Project Schedule encompasses 

measuring, evaluating performance, forecasting, and initializing the change management process 

whether the project requires it. From both frameworks, the forecasting task is placed within the 

controlling schedule process in the overall project schedule management, as shown in figure 2.1. 

As can be seen, the forecasting task outcomes will depend on the scheduling technique adopted 

because different techniques consider diverse factors and limitations that can impact forecasting 

management. The following studies the scheduling techniques used in the construction industry. 

 

Figure 2.1 Schedule Management Processes (Project Management Institute, 2019). 
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2.3 Scheduling Techniques: Network-based, Constraint-based, Line of 

Balance, Pull-Driven. 

The schedule model encompasses three critical aspects: defining the scheduling approach to adopt, 

selecting suitable scheduling tools, and considering wide-ranging project information (Project 

Management Institute, 2019). The four most used scheduling approaches have been studied, as 

shown in the Figure below. 

 

Figure 2.2 Most Used Scheduling Techniques encompassed on this Research 

1. Network-based scheduling methods. 

Network-based scheduling is arguably the most-known approach used by the construction 

industry. It was raised in the 1950s in response to the limitations of bar chart scheduling techniques 

(Baldwin & Bordoli, 2014). This method is characterized by using a graph that portrays nodes 
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interconnected logically by arrows, each oriented to a specific direction (Hajdu, 1997). In the 

construction industry, several approaches have been widely applied and fall under this category, 

including the Critical Path Method (CPM), the Program Evaluation and Review Technique 

(PERT), the Precedence Diagram Method (PDM) and the Critical Chain Project Management 

(CCPM). Below, these methods are delved into detail. 

• Critical Path Method (CPM) 

Hajdu (1997) stated that this method is arguably the earliest method that came with innovative 

techniques shifting from traditional non-network techniques to a network approach. In 1959, 

Kelley and Walker introduced this method as part of the research conducted by DuPont Company 

(“The Origins of Schedule Management,” 2018). Initially, this method consisted of three rules by 

drawing the network (Hajdu, 1997). First, it considered one starting event (node) and one terminal 

event (node) only, represented by ‘s’ and ‘t,’ respectively. Second, the loops were not part of the 

network; otherwise, it would imply a returning path to the origin node, or even successor nodes 

would condition to the predecessor nodes. Third, the network did not consider multiple activities 

(represented by arrows) arriving in the same node conversely in most real-life situations; however, 

this could be overcome by imputing fictitious nodes or 'dummies.' Today, the CPM algorithm is 

well-known for the forward and backward pass calculations. When making a forward pass, it 

computes the earliest start and finish dates, and making a backward pass calculates the latest start 

and finish dates. This logic is the CPM's potential to discover the critical path (Lu, 2020). 

• Program Evaluation and Review Technique (PERT) 

The U.S. Navy Special Projects Office introduced the PERT in 1958 when addressing complex 

projects (Baldwin & Bordoli, 2014). For Kerzner (2017), this period marked the “age of massive 

engineering.” In the beginning, the PERT followed the next steps (PERT, 1958)  
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a. Defining coherent events aligned with specific objectives at the core of planned progress. 

b. Sequentially arranging these events to establish logical relationships among them as they 

unfold. 

c. Providing an initial estimate of each activity's duration while gauging the variability by 

comparing the associated events. 

d. Leveraging computational tools to process and effectively manage this data. 

e. Creating a structured, systematic communication framework to capture progress and facilitate 

data updates. 

This technique has spurred the development and adoption of other scheduling methods, such as 

the Precedence Diagram and Critical Chain Method. 

• Precedence Diagram Method (PDM) 

The Precedence Diagram Method visually shows project activities through nodes, delivering 

essential information for each task. Baldwin et al. (2014) outlined five critical considerations for 

creating a PDM: 

a. Sequential Time Flow: Ensure that time flows from left to right in the diagram. 

b. Flow Direction: Indicate the flow direction using arrowheads. 

c. Arrow Length: Pay attention to the relative length of arrows within the graph. 

d. Arrow Orientation: The orientation of arrows should be unambiguous. 

e. Activity Descriptions: Each node should comprehensively describe the associated activity. 

Kerzner (2017) also referred to this method as Activity-on-Node (AON). In PDM, activity 

relationships and constraints are represented by arrows in the graph. Activities encompass slacks, 

while lags are calculated between activities. Kerzner emphasized the use of leads, particularly 

when addressing resource constraints. Lu (2020) noted that PDM, a variation of the Critical Path 
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Method (CPM), features intelligent relationships. In PDM, non-Finish-to-Start (non-FS) 

relationships may include restrictions related to resources or technologies. Currently, the PDM is 

a widely adopted scheduling technique and is commonly implemented in various project 

management software tools. PDM is sometimes mistaken for CPM in practice due to their 

similarities (Project Management Institute, 2019). 

• Critical Chain method 

This method centers on activities and resource interaction (Project Management Institute, 2019). 

In its application, two crucial factors are considered: firstly, an analysis of the original critical path 

and, secondly, a thorough evaluation of resource availability for the successful completion of 

project activities (Baldwin & Bordoli, 2014). After completing the tasks, the subsequent phase 

involves the reduction of the estimated durations for activities, as highlighted by Raz et al. (2003): 

a. Inherent Uncertainties: Recognizing that uncertainties are inherent in all activities. 

b. Common Overestimation: Acknowledging the tendency for overestimation in the duration of 

activities. 

c. Safety Time Considerations: Understanding that activities typically incorporate safety time, 

leading to constrained resources for subsequent activities related to the original one. In 

practice, the activity owner relies on the planned time due to these restrictions. 

In this context, the Project Management Institute (2019) emphasizes that the critical chain is 

identified as the longest resource-leveled path, considering the presence of buffers. 

While Critical Chain Project Management (CCPM) offers notable advantages, as articulated by 

Leach (1999): Ensuring timely delivery, averting scope creep, and adhering to budgets with 

diligent application, a significant drawback lies in the lack of clarity regarding buffer dimensions. 
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This concern is underscored by Baldwin et al. (2014), who also note the method's reluctance to 

update the project baseline, a practice viewed as essential by some project managers. 

• Comparison among the Network-based Scheduling approaches 

Table 2.1 provides an overview of the characteristics of each method across various criteria, as 

discussed earlier: 

Table 2.1 Comparison of the Described Network-based Scheduling Approaches  

Criteria 

Critical Path 

Method 

(CPM) 

Program 

Evaluation and 

Review Technique 

(PERT) 

Precedence 

Diagram 

Method (PDM) 

Critical Chain 

Method 

Nature of Network 

Representation 

Node and 

Arrow 

Diagram 

Node and Arrow 

Diagram 

Node and 

Arrow Diagram 

Node and Arrow 

Diagram 

Activity 

Dependency 

Representation 

Finish-to-Start 

(FS) 
Finish-to-Start (FS) 

Various 

dependencies 

allowed 

Finish-to-Start 

(FS) 

Focus on Resource 

Constraints 

Limited 

emphasis 
Limited emphasis 

Limited 

emphasis 
Central emphasis 

Activity Duration 

Estimation 

Single duration 

estimate 

Three-point estimate 

(optimistic, 

pessimistic, most 

likely) 

Single duration 

estimate 

Single duration 

estimates with 

buffer 

Uncertainty 

Consideration 
Limited High Limited Moderate 

Buffer Utilization No buffers Incorporates buffers No buffers 
Buffers are a vital 

element 

Critical Path 

Definition 

Longest path in 

terms of time 

Probabilistic critical 

path 

Longest path in 

terms of time 

Longest resource-

leveled path 

Management of 

Resource 

Constraints 

Limited focus Limited focus Limited focus 

Central focus, 

buffers manage 

constraints 

Handling Project 

Changes 
Rigid More adaptable Adaptable 

Adaptable with 

buffer 

management 

Commonly Used in 

Practice 
Yes Yes Yes 

Increasing 

adoption 
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2. Constrained-based scheduling based on Constraint Programming (CP) 

Unlike the Network-based Scheduling approaches, Constrained-based Scheduling utilizes 

Constraint Programming (CP) within the Operations Research (OR) domain to tackle scheduling 

challenges. Moreover, it employs efficient propagation algorithms to enhance model performance 

(Baptiste et al., 2006). By concurring rigid activity durations, interdependencies, and 

construction’s dynamic and uncertain nature, this approach introduces flexibility to the model. 

Activities are treated as variables with defined relationships, allowing for adding or eliminating 

constraints as needed (Zupančič et al., 2007). 

In constraint programming, it is classified as constraint satisfaction, where the activities' 

requirements become constraints in the model (I.-C. Wu et al., 2010). These constraints are 

categorized into hard and soft constraints, with technological dependencies and resource 

availability as attributes. Next, the goal is to establish an objective function that satisfies all project 

restrictions. This model includes activities, resource constraints, temporal constraints, an objective 

function, and extensions to the basic model. It enables addressing typical construction sector 

scenarios, such as resource availability, variable times and costs, breakable activities, and activities 

left undone due to resources (Baptiste et al., 2006).  

Supporting this scheduling method, Fromherz (2001) underscores that scheduling is both a 

constraint satisfaction problem and an optimization problem. While scheduling problems are 

considered NP-hard, complexity can be mitigated with specific considerations such as pre-empting 

tasks in the programming model. These kinds of conditions boost the CP method's efficiency and 

benefits in scheduling (Müller et al., 2022). They also suggest that machine learning can predict 

the most suitable CP solver based on each unique scenario, considering factors like activity 

relationships and resource availability.  
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Lorterapog and Ussavadilokrit (2013) suggest using constraint programming in construction 

projects because it offers greater flexibility in representing constraints and makes it more 

accessible to manage project networks than traditional CPM. The authors recommend prioritizing 

alternative schedules, incorporating search algorithms, and adopting constraint relaxation and 

collaborative scheduling for better efficiency. 

3. Line of balance (LOB) scheduling  

Line of Balance (LOB) is a prominent method within the family of Linear Scheduling methods 

(LSMs) (Ammar, 2020). The Goodyear Tire and Rubber Company initially proposed the 

technique, which the U.S. Navy later adopted during the Second World War and the Korean War 

to coordinate mass production strategies (Frandson et al., 2015).  The LOB scheduling technique 

is well-suited for applying the learning effect due to the repetitive nature of its activities. When 

the learning effect is applied to the LOB schedule, productivity rates improve as the project 

progresses. This improvement leads to a decrease in the duration of activities. As a result, the 

output schedule will change from inclined parallel bars to curves (Matey et al., 2017; Zahran et 

al., 2016). Initially, it is represented linearly, incorporating production rates and available 

resources, and focusing on sequencing activities. The results display project deliverables' 

completion times and a production schedule of significant sub-elements (Baldwin & Bordoli, 

2014). Notable projects suited for LOB include highways, high-rise buildings, pipelines, and 

tunnels (Bayhan et al., 2020).  

In his research, Ammar (2020) emphasizes the importance of considering crews when 

implementing the Line of Balance (LOB) scheduling method. He suggests incorporating work 

interruptions to simulate real-life conditions and optimizing the LOB model to improve its 
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performance. Ammar also acknowledges that recurrent activities typically make up a significant 

portion of the project construction process. 

The Line of Balance (LOB) method offers a graphical representation of the correlation between 

productivity and the time it takes to complete project activities. Also, the combination of CPM and 

LOB can deal with repetitive work, as demonstrated by Hegazy and Mostafa (2021). Conversely, 

achieving a "natural rhythm" is a significant challenge, as suggested by the LOB method (Tang et 

al., 2018), requiring a high commitment from construction practitioners. Ammar (2020) added that 

determining the optimal crew per activity to achieve the ideal project duration under typical project 

constraints would become another challenge by implementing this method. 

4. Lean Construction approach: Pull-Driven Scheduling 

From Lean Construction, employing "pull-driven" scheduling emerged as a prominent technique 

which lies in achieving optimal outcomes, considering factors such as quality, time, cost, and client 

demands (Tommelein, 1998). This approach advocates for the intensive and strategic use of 

resources as inputs, aiming to minimize wait times in queues and strategically selecting activities 

(processes) to obtain products needed further in the process, enhancing system fluency. 

Concerning the implementation of pull-driven scheduling, Tommelein (1998) highlights the need 

to reinforce a selective control process on resources for assignment to any activity. In this vein, 

Fukushima (2000) identifies three crucial factors for implementing pull-system scheduling: 

solving limited space problems, reducing inventory, and embracing change based on agility. 

Unlike the push-system utilized in Critical Path Method (CPM), the pull-system prioritizes a 

continuous workflow (I.-T. Yang & Ioannou, 2001). Ghanem et al. (2022) pointed out that 

production planning, crew-level assignments, and decisions on resource mobilization are 

remarkable differences between push and pull systems. Firstly, in production planning, the push-
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system aims to reduce project duration based on Critical Path Method techniques, while the pull-

system focuses on stabilizing crew work and production rates. Secondly, when deciding 

assignments, the push method relies on the previous sequence, whereas the pull method is based 

on real-time scenarios and considers empty locations. Thirdly, in decisions on resource 

mobilization, the push method is more reactive, putting resources based on deviations. In contrast, 

the pull method compares the actual production rates of predecessor and successor tasks. 

However, challenges arise when implementing pull-system scheduling, as Yang and Ioannou 

(2001) summarized. These challenges include difficulties mapping resources' work for various 

activities, crew splitting during progress activities, variable production rates, and intermittent 

activities. Furthermore, after conducting a case study using pull-driven scheduling, Ghanem et al. 

(2022) concluded that while this method might improve productivity, reduce idle time, and 

diminish task interruptions, project time can be overrun. 

5. Detailed Comparison of Studied Scheduling Techniques 

The table below summarizes each scheduling method's key characteristics, principles, strengths, 

and challenges.  

Table 2.2 Comparison of Scheduling Techniques 

Scheduling 

Method 
Description Key Principles Strengths Challenges 

Network-based 

Scheduling 

Utilizes network 

diagrams (e.g., 

PERT, CPM) for 

planning. 

Time-oriented, 

critical path 

identification. 

Clear 

visualization, 

critical path 

analysis. 

Sensitivity to 

changes, may not 

handle resource 

constraints well. 

Constrained-

based Scheduling 

(CP) 

Applies 

Constraint 

Programming 

(CP) for 

scheduling. 

Constraint-driven, 

handles rigid 

activities and 

relationships. 

Effective for rigid 

constraints, 

adaptable. 

Complexity in 

modelling, 

challenges in 

dynamic 

environments. 
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Line of Balance 

(LOB) 

Scheduling 

Suited for 

repetitive 

construction 

activities. 

Emphasizes 

continuous 

workflow, 

resource focused. 

Effective for 

repetitive projects, 

resource 

optimization. 

Challenges in 

achieving a 

"natural rhythm" 

may require 

substantial 

commitment. 

Lean 

Construction - 

Pull-Driven 

Scheduling 

Focuses on the 

just-in-time flow 

of work, 

minimizing waste. 

Pull-oriented, 

real-time 

decision-making, 

continuous 

workflow. 

Enhances 

efficiency, 

minimizes waste. 

Challenges in 

real-time 

decision-making, 

potential for 

project time 

overrun. 

 

Despite significant advancements in schedule management, the outcome performances of 

construction projects, particularly in terms of timely completion, have still not been encouraging. 

2.4 Forecasting Methods for Project Duration 

As described earlier, construction scheduling techniques are closely linked to the forecasting task. 

Forecasting involves modelling techniques that rely on historical data to predict the future (Turban 

et al., 2011). In the context of time series datasets, Petropoulos et al. (2022) highlighted that 

forecasting is based on past knowledge to generate future predictions. These datasets represent 

sequential records over time, often exhibiting dependent characteristics crucial for establishing 

relationships between past inputs and future outcomes (Box et al., 2016). However, Litsiou (2022) 

pointed out that time series models work on a black-box system basis, which means that inputs 

and outputs are known while internal working (relationships) is not visible or fully understood. 

Project forecasting is close related to risks, uncertainties, and bias, as was evidenced by Flyvbjerg 

et al. (2003). His research emphasized the crucial role of risk management at various levels, such 

as safety, cost, and environmental factors. Similarly, De Andrade et al. (2019)  concluded that risks 

and uncertainties are common causes of project delays when studying the efficiency of the earned 
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schedule and earned duration management for forecasting.  Given these reasons, Lovallo and 

Kahneman (2003) researched the forecasting bias, finding that decision-makers are experimenting 

with the planning fallacy, a typical behaviour labelled by psychologists. They described this 

behaviour adopted by decision makers when they over-optimize the best outcomes, such as profits 

or benefits, and underestimate potential costs, mistakes, etc. In this line, Flyvbjerg et al. (2009) 

performed extensive experiments, concluding that the consistent gaps between predicted outcomes 

and actual outcomes are due to "strategic misrepresentation." Its concept matches with Lovallo 

and Kahneman’s about planning fallacy, which means that project planners tend to overemphasize 

the benefits while downplaying the potential costs to increase the chances of getting approval and 

funding for the project.  

Within the realm of project control processes, Azeem et al. (2014) placed the forecasting at the 

end of the project control whole map, which includes monitoring actual project performance, 

deviations contrasting and evaluating, and outputs at project completion forecasting. Similarly, the 

Association for the Advancement of Cost Engineering International (AACEi) stresses that 

forecasting should be a set process on ongoing projects, which should actively use project control 

plans and baselines to verify schedule deviations. A forecasting method’s categorization proposed 

by Montgomery et al. (2015) is qualitative and quantitative. The present research primarily delves 

into judgmental methods within qualitative approaches alongside deterministic, probabilistic, and 

machine-learning methods within quantitative techniques. 
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Figure 2.3 Types of Forecasting Methods 

2.4.1 Judgmental forecasting 

Montgomery et al. (2015) pointed out that judgmental methods are often subjective and require 

expert opinions for their development. These methods become particularly significant when 

historical data for forecasting is lacking, such as when executing a new project requiring cutting-

edge design technology. In the early phases, educated guesses from experienced engineers, 

architects, and construction workers are crucial. Makridakis and Gaba (1998) added that 

judgmental forecasting relies not only on historical data but also on the biases acquired by 

forecasters through their practice and training. Despite judgmental methods being criticized for 

their nature, Caniato et al. (2011) stated that experimental studies demonstrated the significant 

impact of managerial decisions on expectations. For instance, Sanders and Manrodt (1994) noted 

that outcomes often align with judgmental elements provided by industry experts after applying 

any quantitative method. 
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A management tool for this qualitative forecasting method is the well-known Delphi method, 

introduced by the RAND Corporation, which engages a group of experts. Its application initiates 

with experts completing individual questionnaires to mitigate bias. Results from each round are 

reviewed and fed back to the panel with a new question, repeating the process cyclically to achieve 

consensus. This iterative method may reveal documented output differences, as Montgomery et al. 

noted (2015). 

2.4.2 Deterministic forecasting 

This method is part of the quantitative forecasting methods. According to Box et al. (2016)  a 

mathematical model is deterministic if it can produce future results precisely. For instance, a 

cosine-based function with a time series dataset for prediction can help determine exact future 

values. One benefit of using deterministic models is their simplicity, which makes them 

understandable and implementable for practitioners. It also requires less data and facilitates 

straightforward output processing to achieve the primary goal of understanding project 

performance (Ballesteros-Pérez et al., 2020). 

In this vein, Barrientos-Orellana et al. (2021) emphasized Earned Value Management as the most 

prominent method in the construction sector due to its easy implementation. Also, Wilson et al. 

(2003) noted that both Gantt charts and Critical Path Method (CPM) as deterministic methods hold 

a strong position in construction practice despite their significant limitations, such as overlooking 

the lack of variability control in activity durations and resulting impacts. Kim’s (2007) research 

compared the reliability of deterministic and probabilistic methods when forecasting the final 

project performance. He tested the Earned Value Management (EVM) and the Critical Path 

Method (CPM) as deterministic against the Kalman filter forecasting method (KFFM) and the 

Bayesian adaptive forecasting method (BAFM) as probabilistic. Initially, this study found that the 
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EVM outperformed the CPM in the realm of deterministic methods because the CPM method lacks 

dynamic updating of original estimates with project performance data, reducing its capacity to 

predict future activities. As a result, probabilistic methods demonstrated superior performance 

compared to deterministic ones. This is attributed to their capacity to forecast future outcomes, 

leveraging a combination of historical data from similar projects, judgmental insights, and 

preliminary project information obtained at the early stages.  

2.4.3 Probabilistic forecasting 

Unlike the forecasting deterministic methods, the probabilistic one addresses situations where 

numerous unknown inputs exist to compute predictions. In some cases, combining deterministic 

with probabilistic models yields multiple forecasting values that are bounded according to specific 

restrictions. This derived model is the probability or stochastic model (Box et al., 2016). Similarly, 

Montgomery et al. (2015) stressed that probabilistic forecasting results are intervals instead of a 

unique value, and this feature is worthy in a risk and uncertainty construction environment. For 

example, Barraza et al. (2004) applied probabilistic methods to the S-curve to obtain stochastic S-

curves. These S-curves would provide possible solutions between preset upper and lower limits, 

which enable considering other parameters to tackle project uncertainties.  

In regards to the accuracy of predictions, Abdel Azeem et al. (2014) compared the Kalman Filter 

Forecasting Model (KFFM) with the Earned Schedule (ES) model, finding that the former 

(probabilistic method) showed better performance than the latter (deterministic method). Research 

also compared probabilistic performance against machine learning models. Makridakis et al. 

(2018) assessed a large set of traditional probabilistic methods mentioned as follows: (1) Naïve 2, 

(2) Simple exponential smoothing, (3) Holt exponential smoothing, (4) Damped exponential 

smoothing, (5) SES, Holt and Damped (Comb), (6) Theta method, (7) automatic model selection 
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algorithms for ARIMA and finally (8) exponential smoothing (ETS). Consequently, probabilistic 

methods exhibited superior performance compared to Machine Learning algorithms. It is essential 

to note that this research focused solely on Machine Learning and did not include an assessment 

of Deep Learning algorithms, implying certain assumptions and limitations in the study. 

2.4.4 Machine Learning for forecasting 

Abioye et al. (2021) stressed that forecasting using Artificial Intelligence models has the potential 

to be used in many fields within the construction industry. According to Pan et al. (2021), the 

applicability of machine learning in construction has grown substantially, particularly in 

forecasting tasks, owing to its ability to process extensive datasets from diverse sources and return 

approximate outcomes. Whereas machine learning algorithms often yield accurate results 

individually, it is also a common practice to ensemble multiple algorithms, combining their 

strengths to enhance predictions.  For instance, the support vector machine (SVM) and fast-messy 

genetic algorithms (fmGA) produce the Evolutionary Support Vector Machine Inference Model 

(ESIM) for the prediction of construction management problems (Cheng & Wu, 2009). In this 

case, the SVM addressed learning and curve fitting, while fmGA deals with the optimization task. 

Among the extensive list of forecasting models, primarily ensembled models, the Support Vector 

Machine (SVM) and Artificial Neural Network (ANN) algorithms have had significant attention 

in the literature. The former works into higher-dimensional space, building optimal hyperplanes 

which give global solutions, while the latter, also classified as a subset of Machine Learning 

algorithms, comprises interrelation neurons, activation inputs, cyclic processes so that it can 

imitate the process of human learning. 

The differences between Machine Learning and Probabilistic models were illustrated by Nielsen 

(2019) using Time Series datasets. Probabilistic models require a theory to represent time series 
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data coupled with a parameter to monitor deviations and uncertainties. Once established, they can 

be utilized for prediction purposes. On the other hand, Machine Learning models rely on 

identifying patterns through complex mathematical algorithms to set up the behaviour, enabling it 

to predict future outcomes. Their prediction results were also compared. Makridakis et al. (2023) 

recently compared Machine Learning, Probabilistic and Deep Learning (a Machine Learning 

subcategory) models. They selected representative models for each method and ranked their 

accuracies in the context of the well-known M3 forecasting competition, encompassing 3003-time 

series datasets. The outcomes revealed that Deep Learning models outperformed others by using 

monthly data and yielding long-term predictions. Also, as an aspect to be improved, the Deep 

Learning algorithms compromised considerable Computational Time under this competition 

conditions. 

2.4.5 Detailed Comparison of Forecasting Methods 

Table 2.3 below shows relevant aspects of each forecasting method according to the previous 

discussion. 

Table 2.3 Detailed Comparison of Forecasting Methods 

Method Key Characteristics Advantages Limitations 

Judgmental 
Subjective, relies on 

expert opinions 

Quick implementation, 

functional with limited 

data 

Prone to biases, lacks 

objectivity 

Deterministic 

Uses mathematical 

models to predict 

future outcomes 

Easy to understand, 

suitable for projects 

with less data 

Ignores uncertainties, 

may not capture 

complex patterns 

Probabilistic 

Considers uncertainties 

and deviations in 

predictions 

Captures variability, 

provides a range of 

possible outcomes 

Requires supporting 

theory, may be data-

intensive 
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Machine Learning 

Utilizes complex 

algorithms to identify 

patterns and behaviors 

Adapts to complex 

data, can handle large 

datasets 

Requires significant 

computational 

resources, may lack 

interpretability 

 

2.5 Machine Learning (ML) Overview 

The purpose of this study is to delve deep into machine learning forecasting. Therefore, this section 

will describe the essential aspects of this topic. The most accepted definition of Machine Learning 

by research is credited to Tom M. Mitchell (2013), who stated that learning starts from experience 

“E” in tasks “T,” measured by performance “P” when its ability in these tasks improves through 

the accumulation of experience “E.” Likewise, Machine Learning is considered a foundational 

aspect of Data Mining, enabling the extraction of valuable insights from raw data in databases for 

various purposes (Witten & Witten, 2017). Chollet (2018) highlighted that whereas traditional 

programming inputs data and rules to yield answers through explicit programming, Machine 

Learning inputs data and answers to yield rules through training, as shown in Figure 2.4. 

 

Figure 2.4 Comparison Between Traditional and Machine Learning Approaches 

Also, it is essential to notice that Artificial Intelligence (AI), the parent branch of Machine 

Learning, is a non-new technology; on the contrary, they have gained momentum in the last three 

decades because of the intensive increment of computer power to handle vast quantities of data 
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(known as Big Data), which have enabled them to deploy high-demanding computational 

algorithms (Y. Zhang et al., 2014).  

When talking about Machine Learning, mentioning the Deep Learning algorithms is unavoidable. 

They are a subfield of Machine Learning, as represented in Figure 2.5. Deep Learning is centred 

on constructing expansive Neural Network models capable of making precise data-driven 

decisions. It involves the creation of intricate architectures with multiple layers, enabling the 

system to learn complex patterns and representations from data autonomously, ultimately 

enhancing its capacity for accurate decision-making (Kelleher, 2019). Indeed, “Deep” refers to 

many Neural Network layers that can solve specific and complex problems (LeCun et al., 2015).  

These neural network–based algorithms are characterized by mimicking the human brain's 

functioning by replicating biological components such as neurons or dendrites. They resemble 

stimulations among neurons through feed-forward and back-forward propagations, as these are 

known in deep learning terms (Auffarth, 2021). Prominent subcategories of deep learning 

algorithms are Recurrent Neural Networks (RNN), Modular Neural Networks, Convolutional 

Neural Networks (CNN), and Radial Basis Function Neural Networks. 

 

Figure 2.5 Artificial Intelligence, Machine Learning and Deep Learning 
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In the forecasting field, deep learning algorithms have delivered promising results in contrast to 

conventional pure machine learning models; because of that, they have become a center of 

attention, especially for time series prediction problems in the last years (Chandra et al., 2021; 

Makridakis et al., 2023). 

2.5.1 Machine Learning Types: Supervised, Unsupervised and Reinforcement 

There are three main types of machine learning: Supervised, Unsupervised, and Reinforcement 

Learning (Auffarth, 2021; Lazzeri, 2021; Turban et al., 2011). Supervised Learning is a kind of 

induced learning. This process occurs when the set of observations knows their outputs. It means 

that both inputs and outputs should be provided. Haque et al. (2022) stressed that Supervised 

Learning aims to define a relationship between inputs and output variables from the training 

dataset. In addition, Abioye et al. (2021) added that supervised learning is concentrated on an 

algorithm that makes decisions based on previous knowledge acquired, explicitly, prior 

understanding of the relationship among variables to deliver a specific output. “Supervised” refers 

to data scientists supervising the learning process as they know actual outcomes and can share 

iteratively to enhance the learning performance (Alachiotis et al., 2022; Lazzeri, 2021). Research 

in this field has categorized chiefly Supervised Learning into regression and classification, further 

explained in the next section. The mathematical expression to represent the said relationship is 

described as follows. If 𝑥 is a feature and 𝑦 an output, the equation in supervised learning would 

be 𝑦 = 𝑓(𝑥). 

Unsupervised Learning is a type of machine learning that deals with datasets where the output is 

unknown (Nelles, 2001; Turban et al., 2011; Vermeulen, 2020). In a Classification problem 

context, this would mean that the dataset is unlabelled, and no classes are associated with the 

observations, making it difficult to solve. In Unsupervised Learning, the goal is to identify 
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relationships between the observations and create a function 𝑓(𝑥) (where x represents inputs) 

without the use of labels (Abioye et al., 2021). As examples may be mentioned, the Clustering and 

Dimension Reduction techniques are two main categories of Unsupervised Learning (Wang, 

2016), while Lazzeri (2021) suggested that anomaly detection and principal component analysis 

might also be included as examples. 

Reinforcement Learning, on the other hand, is quite different from Unsupervised Learning (Turban 

et al., 2011). It does not rely on historical data to start the learning process, and there are no natural 

groupings in the dataset. Instead, the learning process is driven by interacting with the environment 

to create experience-based outputs, and the model's efficiency is improved through a trial-and-

error process (Auffarth, 2021). The following figure broadly categorizes the types of Machine 

Learning and their main subcategories. 

 

Figure 2.6 Types of Machine Learning 
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2.5.2 Data Mining Tasks: Classification, Regression and Clustering 

1. Classification.  

The classification is arguably the most widespread task in data mining when seeking valuable 

outcomes (Kesavaraj & Sukumaran, 2013; Linoff et al., 2011; Umadevi & Marseline, 2017). They 

added that it is a common practice by human beings during the communication process when 

categorizing or establishing grading to be understood by one another. In this way, classification is 

grouping objects into predefined classes. Aggarwal (2015) argued that, unlike clustering, the 

classification is developed on a training dataset containing one or more “target variables.” 

Bhattacharyya et al. (2020) outlined that classification might be based on endless criteria. For 

instance, Kotsiantis et al. (2006) proposed two categories based on their development process: 

firstly, artificial intelligence-based development, which in turn encircles logic-based techniques 

and perceptron-based techniques and, secondly, statistic-based development, encompassing 

Bayesian networks and Instance-based techniques. As examples in the artificial intelligence 

category, logic-based techniques comprise decision trees and rule-based classifiers whereas 

perceptron-based algorithms are neural networks. 

2. Regression 

The regression task is one of Supervised Learning, which struggles to find relationships between 

variables that affect the output variable. These variables can be independent or dependent (Miller, 

2017; Yildiz et al., 2017), and the function that encircles this relationship is called the Regression 

Function. Moreover, the dependent variable is numeric and continuous (Harrington, 2012). An 

algebraic representation of the variable's relationship is given as follows: 

𝒚′ = 𝒂𝟏 ×  𝒙𝟏 + 𝒂𝟐 ×  𝒙𝟐 + 𝒂𝟑 ×  𝒙𝟑 … … . +𝒂𝒏 × 𝒙𝒏 

𝒚 = 𝒚′ + 𝒆𝒓𝒓𝒐𝒓 
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Where, 𝑎1, 𝑎2, … 𝑎𝑛 are coefficients, 𝑥1, 𝑥2, … 𝑥𝑛 are independent variables, 𝑦′ is the output or 

dependent variable and 𝑦 es the actual output so that the difference would be the error (Yildiz et 

al., 2017). This simplistic representation assumes only one output instead of multiple outputs. It 

also includes various independent variables, which are known as multivariate variables. 

Furthermore, the regression on the time series dataset is closely related to forecasting and is 

supported by machine learning algorithms (Lazzeri, 2021).  

3. Clustering 

Gan et al. (2007) defined data clustering as creating groups of objects called clusters based on 

similarities. Also, such objects from separated clusters are different from each other. They added 

that data clustering is known as segmentation analysis, cluster analysis, taxonomy analysis or 

unsupervised classification. Linoff and Berry (2011) highlighted that there are no predefined 

classes in clustering; therefore, users may determine the denotation of each cluster. In addition, 

clustering is characterized by often being executed in the early stages compared to others during 

the data mining. It is useful, for example, for market segmentation before launching any market 

research to know habits from the objective group of people.  

Clustering can be categorized into two groups (Gan et al., 2007): hard clustering and soft 

clustering, based on the objects' belonging. Objects in hard clustering are likely to belong only to 

one cluster, while soft clustering could go to two or more clusters. Diving hard clustering contains 

two types: hierarchical algorithms and partitional algorithms. Thus, hierarchical algorithms can be 

divided into divisive and agglomerative hierarchical algorithms. The first one creates clusters from 

top to bottom direction, which means that it starts with a big cluster encompassing all the objects, 

and then more clusters will be made starting from this primary cluster by partition. On the contrary, 
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the agglomerative hierarchical algorithm works from bottom to top direction, meaning that each 

cluster only encloses one object, then clusters will be created, unifying these.  

Below is a comparison of the data mining tasks described. 

Table 2.4 Comparison of Data Mining Tasks 

Task Objective Output Example 

Classification 

Assign input data to 

predefined classes or 

labels. 

Discrete categories or 

classes. 

Classifying project risks as high, 

medium, or low. 

Regression 

Predict a continuous 

numerical value based on 

input data. 

Continuous numeric 

values. 

Predicting the estimated 

completion time for a project 

phase. 

Clustering 

Group similar data points 

based on features or 

characteristics. 

Discrete clusters or 

groups. 

Grouping similar project tasks 

for resource optimization. 

 

2.5.3 Time Series Datasets for Machine Learning Forecasting 

As construction projects yield overwhelming amounts of diverse data, it is essential to understand 

time series datasets, which are the specific types managed in this research. 

1. Structured and Unstructured Dataset 

Datasets can be categorized by their ordering criteria, Structured and Unstructured. The structured 

data is highly organized and recognized, mostly in rows and columns, which matches most 

conventional relational database management systems (RDBMS) (Mishra & Misra, 2017). 

Hopkins et al. (2022) underlined that it could be easily understandable for human beings regarding 

amount and organization. An example of a structured dataset is the Time Series Dataset, arranged 

in a tabular format where each row represents a timestamp, collecting observations over time. On 

the contrary, unstructured datasets are initially hard to comprehend. Despite this characteristic, 
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most business data is generated in an unstructured form, accounting for around 80%. To make 

datasets applicable to machine learning tasks, it is necessary to transform them into structured data. 

However, this transformation can be intricate and computationally demanding (Cropper et al., 

2016; Mao et al., 2023; Mishra & Misra, 2017). 

2. Univariate and Multivariate Time Series Dataset 

Another relevant aspect of datasets involves time series analysis, oriented toward forecasting. 

According to each machine learning problem goal, one input or multiple inputs can be considered 

to represent the analysed event better. Thus, they might be univariate and multivariate. In many 

cases, these events are essentially multivariate; for example, temperature forecasting implies the 

concurrence of diverse variables such as pressure, humidity, location, etc. (Karimi-Bidhendi et al., 

2018). Analogically, diverse data is gathered during the project tracking, which finally affects the 

project duration. Regarding the complexity of managing Univariate and Multivariate TS datasets, 

the latter is usually more complex because many internal or external factors affect each variable 

(G. Li & Jung, 2023). 

2.5.4 Artificial Neural Networks 

Artificial Neural Networks (ANN) are those algorithms within the Machine Learning field. The 

ANN represents the learning process, simulating the human learning process and adapting 

elements like neurons and synapses (Aggarwal, 2015). A simplistic view would describe the ANN 

as a multilayer way to learn over an input dataset (Chollet, 2018). Specifically, it works as follows: 

first, input variables must be weighted based on their incidence over the expected solution. 

Sometimes, weights are also known as parameters. Second, the weighted inputs are collected by a 

“neuron cell” and passed on to an “activation function.” However, the complexity of this process 

is rooted here because this network will yield hundreds of weights and then should select the 
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correct values to obtain the calculated output. Third, the loss function was introduced to monitor 

the process, scoring the error between the calculated and expected values. Fourth, ANN algorithms 

allow the optimizer to implement a backpropagation algorithm to address high errors. It is the 

hearth of the ANN. This iterative training process involves adjusting weights multiple times to 

minimize the error. Finally, it is obtained as an outcome of ending the process, represented as 

follows (Chollet, 2018; Dinov, 2023).  

𝒚(𝒙) = 𝒇 (∑ 𝒘𝒊

𝒏

𝒊=𝟏

𝒙𝒊) 

Where w means the calculated weights and x are the independent variables. Furthermore, Dinov 

(2023) proposed three crucial parts when building a Neural Network algorithm: an activation 

function, a network topology concerning neuron and layer quantities and a training algorithm to 

polish weights/parameters of the input variables. 

1. Multi-Layer Perceptron (MLP) 

The Multi-Layer Perceptron is a subtype of the Artificial Neural Network algorithms and is the 

most common neural network type. Moreover, it is an extension that enables the creation of 

networks with multiple layers because of its architecture (Singh & Banerjee, 2019). Its creation is 

rooted in the Perceptron model proposed by Rosenblatt in 1950, which included linear input and 

output layers to solve problems (Ramchoun et al., 2016). However, most issues, such as 

classification and regression, look for the fittest curve to represent the behaviour that is not 

necessarily linear (See Figure 2.7). The MLP overcame this linear drawback by incorporating 

layers in between the input and output layers. They are called hidden layers. (Taud & Mas, 2018). 

For some, the MLP can be recognized because it uses three or more layers in its architecture.  
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Figure 2.7 Linear and Non-linear Data Patterns 

Accordingly, the MLP is defined as a mapping function fitted between input and output variables, 

which, in turn, is very useful for solving Time Series regression problems (Brownlee, 2018). This 

model also follows the ANN’s main features as feedforward and backpropagation to find the 

minimal error, but this time, it includes a nonlinear activation function in one or more neurons 

(Dilipkumar & Durairaj, 2022). The mathematical expression for the MLP is the connection of 

several fully connected layers represented as an input matrix called 𝑋𝑛 𝑥 𝑚 to yield an output matrix 

𝑌𝑛 𝑥 𝑘. During this process, a weight matrix 𝑊𝑚 𝑥 𝑘
𝑙

  for layer 𝑙 that contains 𝑖 rows is yielded. Each 

row corresponds to the weights leading from all of units 𝑖 in the previous layer to all of units 𝑗 in 

the current layer. Lastly, the product matrix 𝑋 𝑥 𝑊 has dimensions 𝑛 𝑥 𝑘. Also, it should be 

considered the bias vector 𝑏𝑘 𝑥 1 as part of the final mathematical expression. Each layer produces 

an output that can be represented as: 
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2. Convolutional Neural Networks 

Convolutional Neural Networks (CNNs) are specialized neural networks that process data with a 

known grid-like topology. They excel in handling various types of data, such as time-series data 

(1-D grid) and image data (2-D grid); typically, in the literature, they are found as CONV-1D and 

CONV2D, respectively, even though the CNN can handle more dimensions. The term 

"convolutional" indicates using a mathematical operation called convolution, a specialized linear 

operation. In practical applications, CNNs have demonstrated remarkable success by incorporating 

convolution instead of general matrix multiplication in at least one of their layers (Goodfellow et 

al., 2016). 

As CNN is primarily applied to image classification problems, it can be used to Time Series 

datasets, making some customizations. Some authors called this specific model Temporal 

Convolutional Networks (TCN) based on Bai et al. (2018) research (Gridin, 2022). These 

adaptations start by considering Time Series problems as one-dimensional convolutional Neural 

Networks represented as CONV-1D. Secondly, CNN’s native properties, Causal Convolution and 

Dilation, are leveraged. On the one hand, the Causal Convolution, also called Equivariance, 

ensures that the output at a certain time depends only on the current and past inputs, not future 

inputs. It is crucial in tasks like time series forecasting or any sequence prediction scenario where 

the model cannot access future data points. (Goodfellow et al., 2016; Gridin, 2022). 

On the other hand, dilation is the interval in the input sequence that produces the output values. It 

is also known as steps or cadence. For example, some time series datasets identify as a pattern the 

fact that a group (kernel) of intercalated inputs is linked to a reliable output (see figure 2.8) (Gridin, 

2022; Gutman & Goldmeier, 2021). 
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Figure 2.8 Causal Convolution (left) and Dilation (right) CNN Properties (Gridin, 2022) 

3. Recurrent Neural Networks: The Long Short-Term Memory 

A subset of ANN is the Recurrent Neural Networks, which implement memory in each neuron. It 

is represented by an internal loop which stores information in each iteration to polish the internal 

output (Chollet, 2018). Figure 2.9 represents a recurrent connection.  

 

Figure 2.9 Neuron’s Recurrent Connection Representation  

Hochreiter and Schmidhuber developed the Long Short-Term Memory (LSTM) in 1997, an 

improved variant of the vanilla RNN. Typical RNN models vanish or explode parameters, having 

a reduced scope of memory (Nowrin, 2022). The LSTM performs much better Time Series datasets 

than conventional RNN algorithms due to its memory capability (Chandra et al., 2021; 

Staudemeyer & Morris, 2019), which is carried out by the incorporation of two additional 
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components known as hidden and cell states to memorize patterns in a short and long term, 

respectively (Gridin, 2022; Lazzeri, 2021; Nowrin, 2022). The standard representation of an 

LSTM neuron (also known as a cell or unit) is shown in Figure 2.10. 

 

Figure 2.10 Long Short-Term Memory (LSTM) Neuron 

Figure 2.10 identifies three gates known as forget, input and output gates, represented as 𝑓,  𝑖 and 

𝑂, respectively. While the forget gate decides what information should be unused from the cell 

state, the input gate decides which values will be used from new inputs. Then, the output gate 

decides what the next hidden state, ℎ𝑡,, should be. Also, the hidden state is used for predictions 

and passed to the next step. The mathematical expressions that show how the LSTM is depicted 

below (Ling, 2023): 

𝑓𝑡 = 𝜎(𝑊𝑓ℎ ⊙  ℎ𝑡−1 +  𝑊𝑓𝑥 ⊙ 𝑥𝑡 +  𝑏𝑓) 

𝑖𝑡 = 𝜎(𝑊𝑖ℎ ⊙ ℎ𝑡−1 +  𝑊𝑖𝑥 ⊙ 𝑥𝑡 +  𝑏𝑖) 

𝑜𝑡 = 𝜎(𝑊𝑜ℎ ⊙ ℎ𝑡−1 +  𝑊𝑜𝑥 ⊙  𝑥𝑡 +  𝑏𝑜 
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𝑐�̃� = 𝑡𝑎𝑛ℎ(𝑊𝑐ℎ ⊙ ℎ𝑡−1 +  𝑊𝑐𝑥 ⊙  𝑥𝑡 +  𝑏𝑐) 

𝑐𝑡 = 𝑓𝑡 ⊙  𝑐𝑡−1 +  𝑖𝑡 ⊙  𝑐�̃� 

ℎ𝑡 = 𝑜𝑡 ⊙  tanh (𝑐𝑡) 

The state cells, denoted as 𝑐 and ℎ in the Current and Hidden Cells, as illustrated in the figure 

above, store both long-term and short-term memory. These cells also establish connections 

between the current timestamp information and a broader range of previous ones, allowing the 

model to memorize previous details. The LSTM can polish each iteration's output several times, 

considering extensive past observations in its calculations. Thus, this model is suitable for time 

series problems. 

4. Detailed Comparison of explained ANN algorithms. 

Table 2.5 Comparison of MLP, CNN and LSTM Algorithms 

Feature MLP CNN LSTM 

Architecture 

Type 
Feedforward 

Feedforward with 

Convolution 
Recurrent 

Data Type Structured Data 
Grid-like Data (Images, 

Sequences) 

Sequences (Time Series, 

Natural Language) 

Layer Types 
Input Layer, Hidden 

Layers, Output Layer 

Convolutional Layers, 

Pooling Layers, Fully 

Connected Layers 

Input Layer, Hidden 

Layers with Memory 

Cells, Output Layer 

Parameter 

Sharing 
No 

Yes (through 

convolutional kernels) 

Yes (through recurrent 

connections) 

Feature 

Extraction 

Manual Feature 

Engineering 

Automatic Feature 

Learning 

Automatic Feature 

Learning with Memory 

Use Cases 
Tabular Data, Numeric 

Predictions 

Image Classification, 

Object Detection, Spatial 

Data 

Time Series Prediction, 

Natural Language 

Processing 

Memory 

Handling 
No Memory Handling 

Limited Memory 

Handling 

Explicit Memory 

Handling for Sequences 

Applicability 
Generalized for Various 

Tasks 

Specialized for Grid-like 

Data 

Specialized for Sequential 

Data 
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2.6 Application of ML for Forecasting Construction Project Duration 

Machine learning, as a broader concept, has emerged as a promising solution for predicting project 

duration in the construction industry. This is primarily due to its ability to handle large amounts of 

data, identify meaningful patterns, and generate valuable insights that align with the need to 

manage the vast amounts of data generated by construction activities. This data is often poorly 

leveraged for reasons such as lack of proper data collection, lack of standardized processes, 

resource constraints, risk aversion to subsequent processing tools like machine learning, and so 

on. However, notable advancements in academia might encourage industry practitioners to apply 

it to large-scale construction projects.  

For instance, creating an integrated model, which creates an adaptative ANN model using a genetic 

algorithm. Lishner and Shtub (2022) addressed the need to adapt an ANN model to different 

construction organization features such as uniqueness, management techniques, organizational 

cultures, etc. by using a genetic algorithm that optimizes the generic ANN model to various 

scenarios. It means that hyperparameters can be modified to match the number of hidden layers or 

neurons. The model was tested with two organizations as predictors for the first company were the 

project type, business units, project risk levels, start dates, project actual duration and planned start 

dates, while stability of project scope, projected estimated duration, importance of time, among 

others for the second organization.  Finally, they obtained 25% and 17% as MAPE (error) by 

predicting the project duration, respectively.  

Wu et al. (2022) developed a framework using a backpropagation (BP) artificial neural network 

(ANN) to forecast the power grid project duration, involving as predictors quantities, voltage level, 

number of callable units (resource availability), and construction conditions (climate and 

environmental). By analyzing project Gantt charts and leveraging historical data, the research 
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determines key project execution paths through network node diagrams. In another study, Sanni-

Anibire et al. (2022) used survey data from 48 construction practitioners against 36 potential risk 

delay factors previously selected from a literature review. This study used K-Nearest Neighbors 

(KNN), Artificial Neural Networks (ANN), Support Vector Machines (SVM) and Ensemble 

methods, concluding that ANN shows the best accuracy (93.75%) in the duration prediction for 

building construction projects. 

Similarly, Yudhi (2022) could predict project completion with supervised machine learning, 

reaching an accuracy of 98.6%, while applying the traditional methods, the accuracy was 40%. 

This study also highlighted that predictions were obtained at construction task levels instead of at 

the whole project level as usual. On the other hand, Lawal et al. (2023) compared the multilayer 

perceptron (MLP) and a radial basis function (RBF) model to forecast the project duration of 

building renovation. This study encompassed 121 questionnaires from specialized construction 

firms, finding that the MLP was overcome with an accuracy of 86% against 80% for the RBF. The 

industrial building construction duration was addressed by Leu and Liu (2016) by using the 

Principal Component Analysis (PCM) algorithm to select duration influencing factors, so then, 

apply a Backpropagation Neural Network (BP-NN) to predict the duration. This study involved 

1538 industrial projects, with more than six months of duration each, and considering four 

categories for the modelling: case type, participant, location, and time. Likewise, Cheng (2019) 

addressed this problem by analyzing two types of factors that affect project duration: sequential 

and nonsequential. The former was handled with the LSTM algorithm, while the latter was 

addressed with a typical ANN network. The model was named NN-LSTM. Cheng tested 226 

historical information from 11 construction projects and 14 factors. After testing, the results 
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displayed good performance, with a mean absolute percentage error (MAPE) of less than 5% and 

a mean absolute error (MAE) of 2%. 

Applying Machine Learning to predict construction project duration is a transformative approach, 

but it is still a developing field. So far, Deep Learning has been more prevalent than Machine 

Learning, and among the Deep Learning algorithms used, ANN has been the most explored 

compared to RNN models. The research has mainly focused on classification problems like the 

schedule risk assessment approach rather than regression through predictive modelling. Although 

challenges such as data quality and model interpretability persist, ongoing research and 

technological advancements offer promising results. 

2.7 Schedule Delays in Construction Projects 

A common setback in construction projects related to project duration is delays, which lead to 

failed projects (Park, 2021; Shahhossein et al., 2017; Yates & Lockley, 2002). That is why it is 

helpful to understand their causes, relevance to the project duration and the existing gap in the 

construction industry. In this sense, Merrow (2011) found that the average schedule slip is 28% in 

industrial megaprojects. This study encompassed 318 projects worldwide, including oil and gas 

production plants, petroleum processing and refining megastructures, mineral and metals plants, 

and chemical plants. Another comprehensive study by Ansar et al. (2014) delved into the 

performance of 245 large dams executed between 1934 and 2007 worldwide. The findings 

indicated that 8 out of 10 large dams experienced delays, accounting for a substantial 44% increase 

in their schedules. Ayalew et al. (2016) conducted a study in the  Ethiopian construction sector, 

revealing schedule delays ranging between 61% and 80%. Some evidence was listed among many 

more. These prevalent delays were also exhaustively studied by Flyvbjerg (2003), calling this 
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phenomenon a ‘paradox,’ where achieving timely completion remains a pervasive issue despite 

advancements in project management practices. 

2.7.1 Schedule Delay factors 

The analysis of delays in construction projects centers on identifying causes and effects impacting 

the project's critical path, consequently influencing the final project duration (Al-Saggaf, 1998; J.-

B. Yang & Kao, 2012). Research on delay factors started with data-gathering methods, which can 

utilize both literature reviews and surveys or rely solely on literature reviews. Then, they were 

usually categorized according to project types (e.g., infrastructure, industrial, residential), and 

project locations (typically categorized by countries or regions), among other aspects. Regarding 

data gathering, an approach adopted by academia involved selecting delay factors from prior 

studies and ranking them through surveys of industry practitioners. Another approach relied on a 

comprehensive literature review and elaborated a prioritized list of delay factors. In this sense, 

Assaf and Al-Hejji (2006) surveyed 23 contractors, 19 consultants, and 15 owners in Saudi 

Arabia’s construction environment. Focussing on Large construction projects, this study spanned 

76 projects where 45 were delayed. This study also categorized delay causes according to Owners, 

Contractors, and Consultants. As a result, this research detected 73 delay causes, the most frequent 

of which were “change orders” among the three parties. 

Another relevant study was performed by Sanni-Anibire et al. (2022), reviewing analytically 

representative past worldwide studies in the last 15 years. As a result, 36 factors of delays were 

reiterative in the construction sector, the top five below: "Financial challenges faced by the 

contractor," "approval delays for completed work," "slow material delivery," "ineffective site 

organization and coordination among involved parties," and "inadequate resource planning and 

scheduling estimation.". In addition, it is worth mentioning that this study was focus on building 
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construction type. A similar scope was observed in the research conducted by Durdyev and 

Hosseini (2019). This research systematically reviewed worldwide studies developed between 

1985 and 2018. From 149 identified causes, the top ten most recurrent ones were composed of 

“weather/climate conditions,” “poor communication,” “lack of coordination and conflicts between 

stakeholders,” “ineffective or improper planning,” “material shortages,” “financial problems,” 

“payment delays,” “equipment/plant shortage,” “lack of experience/qualification/competence 

among project stakeholders,” “labour shortages and poor site management”. 

Sepasgozar et al. (2019) selected 94 research studies from 29 countries worldwide, identifying the 

causes and effects of delays in the construction industry. Consequently, 30 critical factors among 

the most relevant are scheduling (Improper resource planning, inaccurate budgeting, procurement, 

unreal scheduling), Payment delays to labourers or contractors, Design and scope changes, 

unqualified workforce (workers, technical staff) and Financing and cashflow issues (insufficient 

contingency allowance, penalties or loan gaining problems)—also, this research comprised among 

residential, building, industrial and infrastructure types of constructions. Unlike previous 

investigations, Selcuk et al. (2024) assessed 70 journal articles developed in 33 developing 

countries. This study identified the 30 most frequent delay causes, such as material procurement, 

change orders or uncertainty in project scope, problems in supplying labour and technical staff, 

delayed payments to contractors by owners, unforeseen weather conditions, deficient or 

incomplete design documents and specifications, deficient management skills of contractors, 

equipment procurement issues, poor communication among the parties, lack of proper budgeting 

and planning of the contractor. Likewise, the most recurrent type of construction considered was 

building and infrastructure projects; conversely, one industrial project only was analyzed in this 

research. 
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Similarly, Kermanshachi and Pamidimukkala. (2023) spanned main project lifecycle phases like 

design, procurement, and construction. This research comprises 44 case studies from a literature 

review on heavy industrial projects, with the authors defining three main categories: project 

general aspects, project-specific features, and best construction practices. After a survey of over 

140 construction practitioners, this study finds the following delay factors in the design phase: size 

of project team, agreement with penalty clauses for project delays, providing of part of engineering 

at the beginning of the project, number of budgeting stages, proper financing procedures, 

interaction among designer, engineer, and contractor parties, count of vendor and subcontractor 

entities, regulations, adequate project team interactions, appropriate rate of employees, skill 

workers on fields, matching between project objectives and physically accomplish components, 

efficient change management process, inspections by external entities, clarity of owner 

requirements, proper resource management implementation, conflict resolution method 

implemented, impacting of best practices strategies.  

Likewise, the procurement phase shows the following indicators: level of project engineering 

schedule performance, complexity of design and technology, collaboration among project parties, 

amount of implementation locations for procurement activities, quality of resources (labour and 

bulk materials), and impact of change order timing. In the construction phase main aspects, they 

identified cost overruns from the engineering phases, actual duration of the engineering phase, 

involvement of the project team in procurement, close relationship with technologies by 

organizations, Level of completion of engineering/design project, difficulty of procurement of 

machinery due to project location, time gap from required changes. 

Despite the myriad schedule delay factors found by the Academia, the lack of a consensual 

categorization is predominant. A standardized categorization would help take appropriate steps to 
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reduce the impact of such delays (Selcuk et al., 2024). A classification proposed considering the 

liability of delays as the foundation: compensable, excusable, non-excusable, and concurrent. 

Compensable refers to delays caused by the owner, while excusable means unforeseeable causes. 

Non-excusable delays are caused by third parties such as contractors or subcontractors, and 

concurrent delays are a combination of various types (Kraiem & Diekmann, 1987). Another 

classification proposed by Enshassi et al. (2009), categorizes delay factors as critical or non-critical 

based on their impact on the project's critical path. Although numerous attempts have been made 

so far, there are no consensus reached yet. 

2.8 Summary and Research Gap 

Numerous studies have found that schedule management is essential to construction project 

management. In schedule management, the schedule model plays a crucial role in forecasting. The 

schedule model is created by adopting a scheduling technique to control scheduled tasks, including 

forecasting. Several scheduling techniques, such as CPM, PERT, PDM, CCPM, and the 'Pull-

System' approach, are available. However, each technique has its own set of drawbacks. For 

instance, these techniques may face challenges such as inefficiency in overlapping situations, 

timeliness issues, accuracy concerns, buffer sizing difficulties, and coordination demands. 

On the other hand, current most extended forecasting methods such as Judgmental, Deterministic 

(e.g., EVM), and Probabilistic (e.g., ARIMA or Markov Chain) exhibit limitations. Specifically, 

despite its prevalence, judgmental forecasting has known shortcomings, such as being prone to 

bias, which is a consequence of its high dependency on expert opinions. Moreover, deterministic 

forecasting, particularly EVM, struggles with time forecasting, especially during project 

completion. Probabilistic Methods, while effective, often require a large quantity of input 
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variables. Amidst these challenges, Machine Learning emerges as a promising alternative for 

forecasting. It offers flexibility in handling large amounts of data and identifying patterns from the 

past to predict accurate durations. Moreover, Artificial Neural Networks (ANN) overcome typical 

Machine Learning algorithms in time series forecasting. Likewise, its application requests 

accomplished some requirements previously, such as obtaining structured data and performing 

exhaustive data preprocessing.  

Academic research on Machine Learning in the construction industry and time series forecasting 

evidenced some gaps. Most Machine Learning models have been focused on cost prediction rather 

than duration. Also, data mining tasks primarily approached the problem as Classification instead 

of Regression, reducing its applicability in project control activities. Additionally, there is limited 

exploration of Time Series (TS) datasets for the duration of completion forecasting, and the 

analysis often lacks granularity, like at the Work Package level, which is crucial for proactive 

decision-making. 

This research addresses these gaps by prioritizing the accuracy of project duration forecasting 

using Deep Learning algorithms. This study approaches this problem as a regression and handling 

time series datasets, enabling real-time monitoring of project duration forecasting. The proposed 

framework collects data related explicitly to time forecasting, and the analysis operates at the Work 

Package level, facilitating more detailed identification of potential causes of delays. 
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Chapter 3 Methodology for Project Duration at Completion 

Forecasting using Machine Learning 

3.1 Introduction 

Many completed construction projects tend to have poor performance related to time management. 

This chapter aims to identify the main factors that affect project duration performance, define 

relevant metadata, establish a Data Acquisition Model (DAM), and discuss the data required and 

collected from the industry. As a result, the dataset required for the forecasting model was obtained 

and used as input for the forecasting model, which is detailed in the following chapter. 

To achieve this goal, two types of analyses were conducted: an analysis of current construction 

projects from a business organization perspective and a comprehensive project lifecycle analysis. 

Both studies provide a better understanding of the actual problem. A relational model was also 

created to manage data relevant to the project duration calculation. Moreover, a detailed analysis 

of factors influencing project duration was conducted based on completed projects. It enables the 

identification of entities, attributes, relationships, and cardinality, as well as the configuration of 

relevant metadata. The latter helps identify the numeric data required for subsequent Time Series 

Forecasting models. 



48 

 

 

Figure 3.1 Methodology for Developing the Data Acquisition and Forecasting Models 

3.2 Factors Influencing Project Duration Forecasting 

3.2.1 Vertical and Horizontal Analysis for Construction Projects 

Construction companies often adopt typical organizational structures to achieve their project goals, 

so it is crucial to understand these structures during the projects' execution phase to determine 

duration-influencing factors. To accomplish this, a vertical and horizontal analysis was conducted. 

The vertical analysis was approached from an operational management perspective, which 

provides a company’s transversal view. An operational management view drives construction 

organizations toward their strategic goals while focusing on resources such as people, materials, 

equipment, practices, and management tools. The vertical analysis divides the construction 

organization into various levels, such as business units, portfolios, programs, projects, and work 

packages (The Standard for Organizational Project Management (OPM), 2018). Likewise, other 
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departments, such as Accounting, Human Resources, Technology and Information, Logistics, and 

Legal, support them during the project execution phase. The usual operational breakdown structure 

for a construction organization is shown in Figure 3.2. 

 

Figure 3.2 Schematic of Operational Breakdown Structure for a Construction Company 

The Horizontal Analysis provides a long-term view of construction organizations when executing 

projects. It allows stakeholders to monitor technological adoption, timely resource allocation, 

regulatory changes over time, and more. These aspects are developed within the project lifecycle 

of a typical construction project. The project lifecycle comprises project phases, which may be set 

sequentially or iteratively, and overlapping among them is possible. The Construction Industry 

Institute (CII) has defined eight project phases: Feasibility, Concept, Detailed Scope, Detailed 

Design, Procurement, Construction, Commissioning & Start-up, and Handover & Closeout. 

Additionally, each project phase or the entire project life cycle has stages known as Process 

Groups, such as Initiating, Planning, Monitoring and Controlling, and Closing (Project 
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Management Institute, 2023). The interaction between project phases and process groups is shown 

in Figure 3.3. 

 

Figure 3.3 Interaction Between Project Lifecycle Phases and Process Groups for Project 

Execution, adapted from Construction Industry Institute (2019) 

 

3.2.2 Current Practices in Project Duration Forecasting 

This section describes the most common techniques used by practitioners in the context of the 

execution phase. It is also relevant to mention that any forecasting technique follows a sequence 

well compiled by the AACEi, referring to it as the forecasting map, which industry professionals 

mainly accept. The forecasting map is shown in Figure 3.4. 
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Figure 3.4 Forecasting Map on the Industry (Stephenson, 2015) 

Today, the Monte Carlo Simulation is mentioned among the most applied techniques for project 

duration forecasting, typically used on scheduling network-based techniques like CPM. Similarly, 

the Earned Value Methodology (ESM) is often used by construction projects to forecast outcomes 

using progress performance metrics. 

• Overview of the Monte Carlo Simulation for Duration Forecasting  

Monte Carlo Simulation, named after the Monte Carlo Casino, is a probabilistic method that 

originated in the 1940s through the work of scientists Stanislaw Ulam and Nicholas Metropolis. 

Initially designed for solving mathematical problems using statistical sampling, it has evolved into 

a powerful tool for analyzing uncertainties in various fields, notably project management (Carlo, 

2017; Sallabi, 2011). This technique leverages its probabilistic nature, considering a range of 

potential project durations and providing a distribution of results rather than a single deterministic 

forecast. This approach provides a more accurate depiction of uncertainty (Papadopoulos & 
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Yeung, 2001). Due to likely duration inputs, it facilitates scenario analysis, enabling project 

managers to assess potential outcomes and make informed decisions based on a range of scenarios. 

Additionally, it contributes to comprehensive schedule risk assessment by addressing uncertainties 

in various project parameters, such as task durations, resource availability, and external factors. 

This holistic approach enhances the understanding of project schedule risks. Likewise, it's crucial 

to note that the effectiveness of Monte Carlo Simulation relies on detailed input data (Kroese et 

al., 2011); therefore, result accuracy yields on the quality of the data provided. Notable 

Montecarlo-based software options include Oracle Primavera Risk, Microsoft Project Risk 

Analysis, and @Risk by Palisade. While these tools offer various strengths, the choice depends on 

project complexity, user expertise, and organizational preferences. When using Monte Carlo 

simulation with the Critical Path Method (CPM) for project duration forecasting, the input 

variables are displayed in Table 3.1. 

Table 3.1 Input Variables by Applying Montecarlo Simulation with CPM for Duration Prediction 

Input variables Description 

Activity Duration Estimates 
Use probabilistic distributions (e.g., normal, triangular) for 

each activity’s duration. 

Probability Distributions 
Select appropriate distributions to model task duration 

uncertainties based on data or expertise. 

Dependencies and 

Sequencing 

Accurately model all task dependencies and logical 

relationships (finish-to-start, start-to-start). 

Resource Allocation and 

Availability 

Include constraints on resources (labor, equipment, 

materials) that affect task timings. 

Risk Factors 
Integrate potential risks that could impact task durations or 

sequencing. 

Project Milestones and 

Critical Path 

Define project milestones and dynamically identify the 

critical path for minimum duration analysis. 
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• Overview of the Earned Value Management (EVM) for Duration Forecasting 

Earned Value Management (EVM) was initially developed in the 1960s by the U.S. Department 

of Defense as a financial analysis tool to track and manage project performance and progress 

(Dibert & Velez, 2006; Vertenten et al., 2009). It has become a standard industry practice for 

monitoring project costs and schedules. EVM combines project scope, price, and schedule 

measures to accurately describe project performance and progress (Khamooshi & Golafshani, 

2014; Mayo-Alvarez et al., 2022). The method uses three key data points: Planned Value (PV), 

which is the budgeted cost of work scheduled; Earned Value (EV), which is the budgeted cost of 

work performed; and Actual Cost (AC), which is the actual cost incurred for the work performed. 

These metrics help assess project status and efficiency. 

For predicting project duration, EVM incorporates the Schedule Performance Index (SPI) 

(Khamooshi & Abdi, 2017). SPI is computed by dividing EV by PV and reflects how closely the 

project is following its scheduled plan. An SPI of less than 1 suggests that the project is behind 

schedule. By using the SPI and project performance data, project managers can forecast the likely 

completion time and adjust schedules or resources as needed. A suggested calculation for the total 

project duration is dividing Planned Duration by the SPI (Iranmanesh et al., 2007). However, it 

should be noted that EVM's prediction reliability relies on the baseline plan, so any flaws in the 

baseline can mislead performance evaluations. Additionally, EVM can be less effective in the early 

stages of a project where EV and PV are too small to yield meaningful insights (Chen et al., 2016). 

Likewise, it does not directly account for the impact of resource allocation changes in its 

calculations, reducing its interactions with resource management. 

Despite the mentioned drawbacks, EVM is recognized as one of the most effective project 

management tools for monitoring and forecasting project performance, particularly in industries 
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like construction, where projects are complex and multi-faceted. It is endorsed by various 

standards bodies, including the Project Management Institute (PMI), and is mandated for use in 

U.S. government contracts. When using EVM for duration prediction, input variables are detailed 

in Table 3.2. 

Table 3.2 Input Variables by Applying EVM for Duration Prediction 

Input variables Description 

Planned Value (PV) Scheduled work value as per the baseline. 

Earned Value (EV) Value of the actual work completed. 

Actual Cost (AC) The real cost spent on the completed work. 

Schedule Estimates Original and ongoing estimates of task durations. 

Performance Indices 

Such as SPI (Schedule Performance Index) and CPI (Cost 

Performance Index), indicating current project status against 

the plan. 

 

3.2.3 It Project Duration-Influencing Factors 

Forecasting the project duration during the construction phase is fraught with complexities due to 

a wide range of factors that can influence it. Additionally, once factors are identified, they require 

proper categorization based on their origin (internal or external), impact scope (overall project or 

specific components), and temporal presence (specific stages or throughout the project). Overall, 

the factors analysis follows three phases: (1) identification, which analyzed extensive 

investigations related to duration-influencing factors and also, those factors sourced from current 

industry practices; (2) categorization, which is supported by the vertical and horizontal analysis 

previously performed and (3) quantification, which details calculation methods per factor to drive 

a scientific analysis and develop a forecasting model. 
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1. Factors identification. 

Multiple studies have delved into the identification of duration factors in construction projects. 

The process was based on rigorous criteria, including publication types such as journals or books, 

recent publication years, and authors' professional or academic background, which were 

considered in the comprehensive analysis. Many studies that didn’t meet those requirements were 

discarded, resulting in thirteen (13) primary studies spanning various global contexts. The table 

below depicts the factor selected.  

Table 3.3 Duration Influencing Factors per Author 
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Excessive change orders by the 

owner during construction 
1 - - 1 1 - - 1 1 1 - 1 1 8 

Financial difficulties of the owner 1 - 1 - 1 1 - 1 1 - 1 1 - 8 

Incomplete/improper design 1 - - 1 1 - 1 1 1 1 - 1 - 8 

Ineffective communication among 

parties 
1 - 1 - 1 1 1 - 1 1 1 1 1 

1

0 

Lack of owner's commitment - - - - - - - - - - - 1 1 2 

Lack of project stakeholders’ 

experience/ qualification/competence 
- - 1 - - - - - - - - 1 - 2 

Late approval process of design 

documents by owner 
- - - 1 - - - - - 1 - - - 2 

Late design 1 - - 1 - 1 - - - 1 - - - 4 

Poor execution management on site 

(organizations) 
1 1 - - 1 - - - - - 1 - 1 5 

Poor planning and scheduling of 

project 
1 - 1 1 1 1 - 1 1 1 1 1 1 

1

1 

Realism of obligations - - - - - - - - - - - 1 - 1 

Slow decision-making by owner 1 - - 1 1 - - - - 1 1 - 1 6 
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Slow quality inspection process by 

owner 
- - - - - - - - - - - - 1 1 

Unskilled Construction Project 

Management Team 
- 1 - - 1 1 - - 1 - - - - 4 

Unskilled Engineering Project 

Management Team 
1 - - - - - 1 - - - - - - 2 

Unskilled Procurement Project 

Management Team 
1 - - - - - - - - - - - - 1 

Bureaucracy within project 

organizations 
- - - - - - - - - - - - 1 1 

Risk identification process for 

execution 
1 - - - 1 - - - - - - 1 - 3 

Challenges of the physical location  - 1 - - 1 - 1 - - - - 1 - 4 

Poor site-office conditions 1 - - - - - - - - - - - - 1 

Project complexity - - - - - - - - - - - 1 - 1 

Project size - - - - - - - - - - - 1 - 1 

Technology availability - - - - 1 - - - - - - 1 - 2 

Weather/climate conditions 1 1 1 - 1 - - - - - - 1 - 5 

Delays in equipment procurement 

(shortage, delivery, quality) 
- - 1 - 1 - - 1 - - 1 - 1 5 

Delivery of materials 1 1 - 1 1 1 - 1 1 - 1 - - 8 

Errors in contract documents  1 - - - - - - - - - - - - 1 

Quality of materials - - - - - 1 - 1 - - - - - 2 

Shortage of manpower (skilled, semi-

skilled or unskilled) 
1 - - - 1 - 1 1 - - - - 1 5 

Shortage of materials - - 1 - 1 1 - - - - 1 - - 4 

 

The more significant ones were taken from this preliminary list of influencing factors by 

performing the median significance test on the frequency of occurrence (Field, 2024; Wheelan, 

2014). Given the frequency values observed in Table 3.3, the median is 3.5. Thus, table 3.4 reflects 

the more significant factors with occurrence greater than 3.5. Additionally, many studies agree the 

Earned Value Methodology is an assessment of the project performance and progress in the scope, 

schedule, and cost aspects, helping to identify outcome deviations (Fayad et al., 2019; Khafri, 
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2018; Kostelyk, 2012; Priyo, 2021). Hence, it is considered in the influencing-factor list due to its 

influence on the project schedule performance. 

Table 3.4 More Significant Factors (Median > 3.5 on Frequency of Occurrence) 

ID Factor Description 

F-1 
Excessive change orders by the owner 

during construction 

Additional work or modifications requested by the 

owner 

F-2 Financial difficulties of the owner Owner's inability to finance the project as planned 

F-3 Incomplete/improper design Design documents that are incorrect or incomplete 

F-4 Ineffective communication among parties 
Lack of clear, timely information exchange among 

stakeholders 

F-5 Late design 
Delivery of final design documents after the 

scheduled date 

F-6 
Poor execution management on site 

(organizations) 

Inadequate management leading to inefficiencies on 

site 

F-7 Poor planning and scheduling of project Inaccurate project timelines and resource allocation 

F-8 Slow decision-making by owner Delays in making crucial project decisions 

F-9 
Unskilled Construction Project Management 

Team 

Lack of necessary skills and expertise in the project 

team 

F-10 Challenges of the physical location  
Difficulties arising from the project's geographical or 

environmental conditions 

F-11 Weather/climate conditions Adverse weather affecting construction activities 

F-12 
Delays in equipment procurement (shortage, 

delivery, quality) 
Late arrival of necessary equipment for construction 

F-13 Delivery of materials Late or incorrect delivery of construction materials 

F-14 
Shortage of manpower (skilled, semi-skilled 

or unskilled) 
Insufficient or inadequately skilled labor force 

F-15 Shortage of materials Lack of necessary materials for construction 

F-16 Project performance and progress 
Performance and progress evaluation that 

encompasses cost, time, and scope. 

 

2. Factors categorization. 

The absence of a standardized categorization methodology leads to a lack of coherence and 

integrated analysis; therefore, a pressing need exists to systematically assess, pinpoint, and 

formulate a comprehensive assessment framework for the project duration-affecting factors. In the 

literature, this classification is focused on project delays instead of project duration-influencing 
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factors. For example, the delay classification proposed by Ansah and Sorooshian (2018), called 

the 4-P categorization, underscores internal project sources of delay such as Participants-related, 

Procurement-related, Project-related, and Practices-related which follows a typical construction 

project environment from an operational perspective.  

Given this gap, the identified factors have been classified based on their level of impact, either 

work package or overall project, and the probable phase of occurrence according to the vertical 

and horizontal analysis previously performed. The level-of-impact analysis considered that if a 

duration-influencing factor has effects on more than one work package, it has effects on the overall 

project, for instance, weather or site conditions. Likewise, another category that was included is 

related to time dependency, which indicates whether the factor is susceptible to changes during the 

project execution timeline. 

Table 3.5 Factors Categorization based on Level of Impact, Probable Phase and Time 

Dependency 

ID Factor 
Factor 

description 
Level 

Level 

description 

Probable 

phase 

Probable phase 

description 

Time 

dependent? 

F-1 

Excessive change 

orders by the 

owner during 

construction 

Additional 

work or 

modifications 

requested by 

the owner 

Project 

Changes 

affect overall 

budget and 

timeline 

Construction 

Changes often 

result from 

unforeseen issues 

during 

construction. 

Yes 

F-2 

Financial 

difficulties of the 

owner 

Contractor’s 

or Owner's 

inability to 

finance the 

project as 

planned 

Project 

Financial 

issues 

typically 

impact the 

entire project's 

financial 

health 

Engineering 

& 

Construction 

Financial 

difficulties can 

arise during 

planning or 

construction. 

No 

F-3 
Incomplete/impro

per design 

Design 

documents 

that are 

incorrect or 

incomplete 

Work 

Package 

Design issues 

usually 

pertain to 

specific 

components 

Engineering 

Design flaws are 

typically 

identified during 

the engineering 

phase, requiring 

revisions. 

No 

F-4 

Ineffective 

communication 

among parties 

Lack of clear, 

timely 

information 

exchange 

Project 

Communicati

on affects all 

aspects of 

All Phases 

Effective 

communication 

plays a crucial 

role at every 

No 



59 

 

among 

stakeholders 

project 

management 

stage of the 

project's 

lifecycle. 

F-5 Late design 

Delivery of 

final design 

documents 

after the 

scheduled 

date 

Work 

Package 

Design delays 

often affect 

specific parts 

of a project 

Engineering 

Design 

completion 

delays often 

occur in the 

engineering 

phase, affecting 

subsequent 

stages. 

No 

F-6 

Poor execution 

management on 

site 

(organizations) 

Inadequate 

management 

leading to 

inefficiencies 

on site 

Work 

Package 

Execution 

issues are 

often 

localized to 

specific tasks 

or areas 

Construction 

Execution 

management 

issues are most 

prevalent during 

the construction 

phase. 

No 

F-7 

Poor planning and 

scheduling of 

project 

Inaccurate 

project 

timelines and 

resource 

allocation 

Project 

Planning and 

scheduling 

affect the 

entire project 

timeline 

Engineering 

& 

Procurement 

Planning and 

scheduling flaws 

typically 

originate in the 

early phases, 

affecting 

procurement and 

execution. 

Yes 

F-8 
Slow decision-

making by owner 

Delays in 

making 

crucial project 

decisions 

Project 

Affects pace 

and efficiency 

across all 

project stages 

All Phases 

Decision-making 

processes can 

slow down any 

project phase, 

from engineering 

to construction. 

No 

F-9 

Unskilled 

Construction 

Project 

Management 

Team 

Lack of 

necessary 

skills and 

expertise in 

the project 

team 

Project 

Management 

capability 

affects all 

project 

dimensions 

All Phases 

A skilled 

management 

team is critical 

throughout the 

project, from 

planning to 

execution. 

No 

F-10 
Challenges of the 

physical location  

Difficulties 

arising from 

the project's 

geographical 

or 

environmental 

conditions 

Work 

Package 

Location 

challenges are 

typically 

specific to 

site-related 

activities 

Construction 

Physical location 

challenges are 

most impactful 

during the 

construction 

phase. 

Yes 

F-11 
Weather/climate 

conditions 

Adverse 

weather 

affecting 

construction 

activities 

Work 

Package 

Weather 

impacts are 

often 

localized to 

outdoor 

activities 

Construction 

Weather 

conditions 

directly affect 

outdoor 

construction 

activities. 

Yes 

F-12 

Delays in 

equipment 

procurement 

Late arrival of 

necessary 

Work 

Package 

Equipment 

procurement 

usually affects 

Procurement 

Equipment 

delays are 

typically linked 

Yes 
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(shortage, 

delivery, quality) 

equipment for 

construction 

specific 

phases or 

tasks 

to procurement 

challenges. 

F-13 
Delivery of 

materials 

Late or 

incorrect 

delivery of 

construction 

materials 

Work 

Package 

Material 

deliveries are 

typically 

linked to 

specific 

construction 

phases 

Procurement 

& 

Construction 

Material delivery 

issues can arise 

during 

procurement and 

directly affect the 

construction 

phase. 

Yes 

F-14 

Shortage of 

manpower 

(skilled, semi-

skilled or 

unskilled) 

Insufficient or 

inadequately 

skilled labor 

force 

Work 

Package 

Manpower 

needs vary 

across 

different 

stages of the 

project 

Construction 

Manpower 

shortages are 

most acutely felt 

during the 

intensive labor 

demands of the 

construction 

phase. 

Yes 

F-15 
Shortage of 

materials 

Lack of 

necessary 

materials for 

construction 

Work 

Package 

Material 

shortages 

typically 

affect specific 

construction 

activities 

Procurement 

& 

Construction 

Material 

shortages can 

occur during 

procurement and 

have immediate 

impacts on 

construction 

activities. 

Yes 

F-16 

Project 

performance and 

progress 

Evaluating 

work package 

performance. 

Utilize EVM 

metrics to 

evaluate and 

predict. 

Work 

Package 

Changes 

affect overall 

budget and 

timeline at 

WP level 

 

Construction 

EVM is a 

continuous 

evaluation tool 

applicable 

throughout the 

project lifecycle 

for performance 

assessment, 

however it has 

relevant usage 

during the 

construction. 

Yes 

 

The present study is based on the analysis at the work package level during the construction phase 

using timeseries dataset to solve a regression problem; consequently, the listed factors should be 

filtered under those considerations. As a result, the duration-influencing factors are described in 

the table below. 
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Table 3.6 Duration-Influencing Factors Selected per Work Package, Construction Phase and 

Time Dependency 

ID Factor Description 

F-10 Challenges of the physical location Geographical or environmental difficulties. 

F-11 Weather/climate conditions Adverse weather affecting activities. 

F-13 Delivery of materials 
Late or incorrect delivery of construction 

materials 

F-14 Shortage of manpower Insufficient or inadequately skilled labor. 

F-15 Shortage of materials Lack of necessary materials for construction 

F-16 Project performance and progress 

Evaluating work package health and future 

performance. Utilize EVM metrics to analyze 

and predict. 

 

3. Factor quantification. 

A factor perse is ambiguous, hindering a forecasting regression problem which claims numeric 

values by nature. By quantifying them, they can offer valuable insights into historical patterns, 

thereby contributing to more robust datasets and enhancing the accuracy of forecasts. Accordingly, 

a calculation method was implemented to facilitate the understanding of the identified duration-

influencing factors. Thus, they were categorized by level of analysis with the corresponding 

calculation method, as it is shown in Table 3.7. 

Table 3.7 Calculation Method per Duration-Influencing Factor 

ID Factor Calculation Method Description 

F-10 
Challenges of the physical 

location 

It is calculated based on resource availability, suppliers' 

delivery times, and transportation time, all of which are 

directly related to the project site's physical location. These 

metrics help assess the practical difficulties and constraints 

associated with the project's location. 
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F-11 Weather/climate conditions 

It involves historical weather data and weather monitoring 

stations, which focus specifically on analyzing and forecasting 

weather patterns and conditions that could impact project 

activities. Thus, any potential hindrances to the project's duration 

are addressed. 

F-13 Delivery of materials 
Assess the percentage of project time spent (deviation) waiting 

for materials to arrive. 

F-14 Shortage of manpower 

It revolves around resource allocation tracking and 

productivity metrics, which help monitor the availability and 

efficiency of manpower resources. This factor assesses internal 

workforce-related challenges that could lead to delays or 

bottlenecks in project execution. 

F-15 Shortage of materials 
Measure the impact of material shortages on project schedule by 

comparing planned versus actual progress. 

F-16 
Project performance and 

progress 

It is assessed through the EVM metrics, detailed below: 

Planned Value (PV) = (Planned Percentage of Completed Work) 

x (Budget at Completion) 

Earned Value (EV) = (Actual Percentage of Completed Work) x 

(Budget at Completion) 

Actual Cost (AC) = Total Costs Incurred for the Work 

Performed 

Schedule Variance (SV) = EV - PV 

Cost Variance (CV) = EV - AC 

Schedule Performance Index (SPI) = EV / PV 

Cost Performance Index (CPI) = EV / AC 

 

3.3 Data Acquisition model (DAM) for forecasting project duration 

Decision makers ultimately seek a unified and accurate representation of reality from their 

information systems. In many organizations, data and information are scattered across various 

sources. Consequently, when developing a singular forecasting model, the process involves 

collecting data from diverse sources and consolidating it into a cohesive, particular version. It 

ensures homogeneity among stakeholders, facilitating uniformity in information exchange, 

promoting coherence and informed decision-making. 
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The Data Acquisition Model (DAM) is constructed during a database application's analysis and 

design phases to ensure a comprehensive understanding and accurate capture of the requirements 

before creating the actual database (Biskup & Menzel, 2007). Beyond their primary purpose, DAM 

serves additional functions, including: 

Grasping Business Dynamics: Data Acquisition modelling is crucial for understanding business 

processes like the construction project schedule management and forecasting before developing 

supporting applications.  

Facilitating Team Understanding: Data Acquisition models serve as practical educational tools, 

conveying information visually at different levels of detail. Walking through data models is a 

valuable practice for quickly educating new team members on concepts and rules. 

Subsequently, creating a DAM becomes crucial to collecting adequate information for the 

Prediction Model application. DAMs can be created in two main ways: Relational and 

dimensional. According to Hoberman (2015), Relational data modelling involves capturing a 

business's operational essence by precisely representing its rules. In contrast, Dimensional data 

modelling focuses on capturing how a business is monitored by precisely depicting aspects like 

navigation through data. A comparison table is shown below to encircle that. 

Table 3.8 Comparison Between Relational and Dimensional Databases 

Feature Relational Database Dimensional Database 

Data Structure 
Tables with rows and 

columns 
Star or snowflake schema 

Schema Design 
Structured schema with 

predefined relationships 

More flexible, denormalized 

schema for better query 

performance 

Query Type 
Suited for transactional 

processing (OLTP) 

Optimized for analytical processing 

(OLAP) 



64 

 

Query Flexibility 
Supports complex queries 

and transactions 

Optimized for read-intensive 

operations, especially complex 

analytical queries 

Operations 
Inserts, updates, deletes, and 

complex transactions 

Aggregations, summaries, and 

complex analytical queries 

Data Integrity 

Strong emphasis on data 

integrity through 

normalization 

May sacrifice some aspects of 

ACID properties for improved 

query speed 

Use Case Examples 

Tracking tasks, team 

assignments, and project 

progress in real-time 

Analyzing historical project data 

for performance trends, resource 

allocation, and risk assessment in 

business intelligence and reporting 

 

3.3.1 The Relational Data Model for Project Duration forecasting. 

The relational data model relates the project's intricacies and yielded data. In the context of the 

project duration forecasting, the project complexities can be operationally organized. The project 

duration forecasting during the project execution phase involves widely known project 

management levels such as portfolio, program, project, and work packages. These components 

have been organized in a Relational Data model to facilitate collecting, organizing, and 

periodically analyzing data tailored explicitly for project duration forecasting. Moreover, 

Relational Models excel in handling structured data, making them particularly well-suited for 

periodic data collection required for machine learning time series forecasting. Their robust 

transactional support guarantees accurate data storage and updates, reinforcing their reliability in 

dynamic and evolving time series datasets. 

This database model type has also been selected to represent and interconnect various elements 

that influence project schedules, defining the relationship between entities and offering a clear 

understanding of dependencies and their impact on project duration. A prominent visual 

representation of a Relational Database is the Entity Relationship Diagram (ERD). 
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3.3.2 The Entity Relationship Diagram (ERD) 

An Entity-Relationship Diagram (ERD) is a tool used in database design and systems analysis to 

model and understand the structure of information and how different entities interact (Bagui & 

Earp, 2011; Q. Li & Chen, 2009). Figure 3.5 displays the ERD for project duration forecasting 

using Chen’s notation. Key components of an ERD are: 

• Entities: Represent real-world objects or concepts, such as “Work Package”, “Resources”, or 

“Project Phase”. Each entity is depicted as a rectangular box in the diagram. 

• Attributes: They are the qualities associated with entities. They are illustrated within ovals 

and are connected to the respective entity. For example, a "Work Package" entity may include 

"WorkPackageID," "WorkPackageName," and "DueDate." 

• Relationships: Illustrate the connections between entities. Lines connecting entities indicate 

the nature and type of association between them and they can have labels to describe the nature 

of the association, such as "manages," "assigned to," or "belongs to." 

• Cardinality:  It establishes the numerical relationship between entities in a given relationship, 

indicating the quantity of instances of one entity associated with another. Standard cardinality 

notations include "1" for one, "0…1" for zero or one, and "0…n" for zero to many. For 

instance, the relationship between "Work Package" and "Resource" could have a cardinality 

of "1...n," indicating that one work package can be assigned to multiple resources. Still, each 

resource is assigned to one work package at a time. 
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Figure 3.5 ERD for Project Duration Forecasting 

The table below provides descriptions of the components in the ERD used for predicting project 

duration. 

Table 3.9 Description of the ERD components for predicting project duration 

Entity Attribute Description 

Business 

Unit 

BusinessUnitID Company Identification Code assigned to Project’s Business Unit 

BusinessUnitName Company Identification Name of the Business Unit 

Portfolio 

PortfolioID Company Identification Code assigned to Project’s Portfolio 

PortfolioName Company Identification Name of the Portfolio 

StartDate Start Date of the Project’s Portfolio. It involves planned and actual. 

EndDate Finish Date of the Project’s Portfolio. It involves planned and actual. 

Status 
It contains the physical progress status and can be Non-Started, In-

Progress, or Finished 



67 

 

Description  
A brief description of the portfolio containing benefits, challenges, major 

risks, and contribution to the organization. 

Program 

ProgramID Company Identification Code assigned to Project’s Program 

ProgramName Company Identification Name of the Project’s Program 

StartDate Start Date of the Project’s Program. It involves planned and actual. 

EndDate Finish Date of the Project’s Program. It involves planned and actual. 

Status 
It contains the physical progress status and can be Non-Started, In-

Progress, or Finished 

Description  
A brief description of the program containing planned outcomes, goals, 

and contribution to the portfolio. 

Project 

ProjectID Company Identification Code assigned to the Project 

ProjectName Company Identification Name of the Project 

StartDate Start Date of the Project. It involves planned and actual. 

EndDate Finish Date of the Project. It involves planned and actual. 

Status 
It contains the physical progress status and can be Non-Started, In-

Progress, or Finished 

Description  
A brief description of the project including expected outcomes, interaction 

with other project or phases. 

DeliveryMethod  

It refers to the strategy used to plan, design, and execute the project. It 

includes Design-Bid-Build, Design-Build, Construction Management at 

Risk, and Integrated Project Delivery. 

Budget It encircles the amount allocated to execute the project. 

Complexity 

It refers to the outcome of analyzing the strategy adopted to execute the 

project which considers many subfactors as risk, resources, or legal 

restrictions. It can be low, medium, or high. 

TeamExperience It is the experience of the Project Team in similar projects. 

Location 
It contains the location remoteness, which is close related to resource 

availability, climate conditions, etc. 

RiskScore It is the result of comprehensive Project Risk Assessment. 

PDRI_Score 

PDRI stands for Project Definition Rating Index. It is a tool used in the 

field of project management and construction to assess the level of 

definition and completeness of a project during the early stages of 

planning. The PDRI score is a quantitative measure that helps project 

teams evaluate and improve project definition to reduce the likelihood of 

changes and problems during later stages of the project life cycle. 

Work 

Package 

WorkPackageID Identification Code assigned to each Project Work Package. 

Type It refers to nomenclature assigned to each Work Package. 

Status 
It contains the physical progress status and can be Non-Started, In-

Progress, or Finished 

Budget It encircles the amount allocated to execute specific Work Package. 

ResourcesAvailability 
Numeric representation about resources availability difficulties. It uses a 

Likert scale with low, medium, and high. 

StartDate Start Date of the Work Package. It involves planned and actual. 

EndDate Finish Date of the Work Package. It involves planned and actual. 
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3.4 Data Preparation for forecasting model 

Data is the most valuable resource for the forecasting model, and it is closely related to outcomes 

quality and consistency (Carney et al., 2006; L. Yang et al., 2023). The data preprocessing process 

can start once the forecasting data needed within the project environment is set up through the 

ERD. This latter consists of taking the previous data collected and preparing it for data mining 

methods. Data Preprocessing is an iterative process subdivided into two sequential stages: 

Exploratory Data Analysis (EDA) and Dataset for Forecasting Model Improvement. The former 

is oriented to understanding historical data collected, and the latter to improve the forecasting 

model performance. EDA comprises data collection, data cleaning, and data inspection. While 

Data Collection aims to gather data from different sources (unstructured data) such as databases, 

spreadsheets, or repositories in an organized tabular structure, Data Cleaning is focused on tasks 

such as handling missing values by imputing new ones or deciding a strategy for handling them, 

removing duplicates, correcting errors, or handling outliers. After that, the data inspection 

struggles to understand the distribution, patterns, and relationships within the data when 

performing statistical analysis. The “Dataset for Forecasting Model Improvement” stage is 

explained in Chapter 4. The pipeline for the EDA process is shown in Figure 3.6. 

 

Figure 3.6 Pipeline of the Exploratory Data Analysis 
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3.4.1 Managing Historical Data Collected 

The historical data is from a project portfolio that a contractor company managed. This company 

undertook twenty-two construction projects for a mining company located in a remote area in the 

high mountains of Peru between 2011 and 2012. The objective of these projects was to increase 

the mine production. They included demolishing old structures, constructing new facilities, and 

relocations to set up a new site layout. Each project was divided into five work packages: Concrete, 

Excavation, Backfill, Demolition, and Ground Mesh, to address different aspects of the project. 

As discussed earlier, the duration-influencing factors needed for the project duration forecasting 

model were identified, as shown in Table 3.7. Accordingly, the raw data from these projects, such 

as project schedules, letters issued to the client, detailed budget and weekly three-week lookahead, 

was encountered from various channels, predominantly relying on MS Excel Spreadsheets and MS 

Project. Complementarily, Progress Weekly Reports in MS Word format and pertinent details from 

MS PowerPoint were crucial to cross-reference information. This compilation process faced 

challenges in extracting the most critical data on duration-influencing factors. Such data as 

“resource availability,” “suppliers delivery time,” “transportation time,” “historical weather data,” 

“weather monitoring stations data,” “resource allocation tracking data,” and “productivity metrics” 

were not possible to gather. Conversely, most data related to the project performance have been 

compiled. This data is associated with the project control, such as performance indicators or 

progress status. Also, this information was managed weekly at the work package level. 

• Historical Data Integration: from unstructured to structured data. 

All data was integrated in an MS Excel spreadsheet in a tabular way, considering its weekly time 

sequence per Work Package and Project. The following steps point out the integration process: 
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Step 1. Reviewing all available documents: three-week lookahead, project budgets, Progress 

reports, project letters between contractor and client, project schedules, and project status 

presentations. 

Step 2. Gather data needed according to sources available: 

• Unit Price per Work Package from the project planned budget. 

• Weekly Actual Quantities from the Percentage of Activities Completed (PAC) weekly report. 

• Weekly Percentage of Planned Cost incurred from the Project Cost-flow. 

• Total Planned Quantities from the project planned budget. 

• Actual and Planned Physical Progress from weekly project “S” Curve. 

• Actual and Planned durations and start and finish dates from the weekly project schedule. 

3.4.2 Data Cleaning 

• Missing values 

After initial compilation, notable missing values were raised in the novel integrated table. Each 

row containing zeros or erroneous values were removed or replaced. As it deals with a time series 

dataset, it is essential to know the timestamp sequence. In this sense, those values from the time 

series sequence were removed, and values within the sequence were replaced following just the 

previous row data behaviour. In addition, as Machine Learning models highly depend on the 

quantity of data, the Demolition and Ground Mesh work packages were removed due to less data 

available, leaving Concrete, Excavation and Backfill work packages. 

• Verifying consistencies of values 

Some attributes, like planned values, were contrasted by comparing the planned budget with 

weekly progress reports. Others, like the work packages' start and finish dates, were compared 



71 

 

with project letters, weekly progress reports, and the weekly work planned completed report. Also, 

the cumulative actual quantities against the actual physical progress weekly. Likewise, the planned 

duration. 

3.4.3 Feature engineering 

The creation of new attributes is a common practice in data preparation. New attributes were 

created based on the existing ones within the historical data available. Such attributes are the 

Earned Value starting from the Planned Unit Price and the Actual Quantity, the weekly Planned 

Value from the total planned quantity, and the weekly Percentage of Planned Cost. Also, 

cumulative values for the Actual and Planned Quantities were inserted, cumulating the Earned and 

Planned Value. Additionally, the planned physical progress from the planned quantities. 

Subsequently, the Schedule Performance Index (SPI) and Schedule Variance (SV) since Planned 

and Earned Values are known, were included due to their close relationship with the project 

duration. 

Moreover, after analyzing the gathered data, additional factors that are closely related to project 

time performance were also considered. Research has shown that Earned Schedule Management 

(ESM) is the most reliable method to forecast project schedules compared to other Earned Value-

based approaches (Vandevoorde & Vanhoucke, 2006). Thus, ESM metrics were introduced. It is 

a deterministic method that emerged as an extension of Earned Value Management (EVM) and 

focuses explicitly on schedule performance. The concept of ESM was introduced by Walter Lipke 

in the early 21st century (Cho & Lim, 2020). Unlike EVM, ESM aims to provide a more accurate 

representation of project schedule performance. ESM metrics included are Earned Schedule (ES), 

Time Performance Index (TPI), and Time Variance (TV). ES is derived from Planned Value (PV) 

and Earned Value (EV). Furthermore, it interacts with the actual project time elapsed to yield TPI 
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and TV through ratio and difference calculations, respectively. The Figure below represents the 

ES graphically. 

 

Figure 3.7 Graphical Representation of Earned Schedule 

3.4.4 Data Inspection on Selected Attributes 

The data inspection plays an essential role in the entire Data Mining pipeline (Augenstein et al., 

2019; Chekanov, 2016). It enables (1) identifying data quality issues by uncovering outliers, 

duplications, or inconsistencies, (2) understanding data characteristics by providing patterns and 

particular distributions, (3) ensuring data relevance by verifying their potential impact in the 

forecasting of Duration to Complete DTC (target variable) and, (4) therefore, choosing appropriate 

mining techniques by enabling match suitable algorithms with the dataset. In this sense, a 

description of each attribute collected is explained. As this research is handling a time series 

dataset, it is essential to identify patterns along the timeline.  

• Planned and Actual Quantities: 

The Planned Quantities (PQ) encompasses the initial estimations of materials on the work 

packages such as concrete in cubic meters, excavation in cubic meters, backfill in cubic meters, 

existing structure demolition in cubic meters and ground mesh in square meters required for the 
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construction project. It is relevant for forecasting duration because accurate planning of quantities 

is crucial for determining the project's timeline and ensuring resource availability. The Actual 

Quantities (AQ) represent the real, executed quantities of resources during the construction project. 

It aids in understanding the actual resource consumption, informing future planning, and 

forecasting potential budget variations. Comparing actual quantities to planned quantities helps 

identify variances and adjust the project duration accordingly. Figure 3.8 (left side) shows the Box-

and-Whisker plot for Planned and Actual Quantities, indicating that the Actual Quantities dataset 

exhibits more outliers and a larger spread, indicating higher variability than the Planned Quantities. 

• Planned Value (PV) 

PV is the estimated value of the work planned to be completed at a specific time. Serves as a 

foundational benchmark for cost forecasting. Project managers can use PV to gauge whether the 

project is on track regarding planned cost expenditure. It requires frequent re-evaluation and 

adjustment in response to project changes rather than being a static figure. Figure 3.8 (right side) 

shows fewer outliers in this plot, suggesting that the Planned Value data are more tightly clustered 

around the median. 

 

Figure 3.8 Box-and-Whisker Plot for Planned And Actual Quantities and Planned 

Value 
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• Earned Value (EV) 

EV represents the value of the work performed and completed at a specific point in time. Provides 

a tangible measure of actual progress. Forecasting with EV assists in understanding how efficiently 

resources are being utilized and aids in predicting future cost and schedule trends. Figure 3.9 (left 

side) shows that the Earned Value data has significant variability, as indicated by the large number 

of outliers and the extensive range of the whiskers. 

• Earned Schedule (ES) 

ES is the time-phased measure of the value of work performed. Offers a nuanced time-based 

perspective for earned value. On the project duration forecasting, the ES shows project managers 

schedule variations and potential delays based on earned value achieved over time. By comparing 

the Box-and-Whisker plot (Figure 3.9 – right side) with the EV, the data points are notably less 

spread out, implying a tighter distribution with less variability in the Earned Schedule metrics. 

 

Figure 3.9 Box-and-Whisker Plot for Earned Value and Earned Schedule 

• Time Performance Index (TPI) 

TPI is a measure of schedule efficiency, calculated as the ratio of earned schedule to actual time 

spent. Assists in forecasting the efficiency of the project in terms of time. A TPI greater than 1 

indicates efficient progress, while a TPI less than one may signal potential delays, prompting 
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proactive adjustments to the schedule. From Figure 3.10 (left side), it is evidenced that the data 

shows that the mean is slightly higher than the median, which may indicate a slight positive skew. 

Outliers are depicted as individual points located outside the whiskers, signifying that these values 

are unusual compared to the rest of the data. Additionally, the distribution of data points, especially 

with outliers on the higher side, suggests that there are instances where the Time Performance is 

significantly above what is typical for the dataset. 

• Time Variance (TV) 

TV represents the difference between the earned schedule and actual time spent. Identifying time 

deviations allows project managers to forecast potential delays or accelerations. Forecasting with 

TV provides insights into whether the project will likely meet or exceed its time objectives. 

Similarly, from Figure 3.10 (right side), the dataset has a relatively symmetrical distribution 

around its center, as the mean is very close to the median. However, some outliers below the lower 

whisker represent significant negative time variance. Moreover, the range of TV is considerably 

more comprehensive than that of TPI, with many large negative numbers present. It indicates that 

there were instances of substantial delays or deviations from the plan. 

 

Figure 3.10 Box-and-Whisker Plot for Time Performance Index and Time Variance 
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• Schedule Performance Index (SPI) 

SPI quantifies the schedule efficiency and is computed as the ratio of earned value to planned 

value. SPI assesses how well the project adheres to the planned schedule. Forecasting with SPI 

helps project managers anticipate future schedule trends, enabling timely adjustments to optimize 

project performance. Figure 3.11 (left side) indicates that the mean value is negatively skewed, 

lying below the median value. Additionally, the figure depicts outliers above the upper whisker, 

which suggests that there are instances of SPI values significantly higher than the average. 

• Schedule Variance (SV) 

SV offers a direct measure of whether the project is ahead or behind schedule at a specific point. 

It is calculated subtracting the planned value from the earned value. Forecasting with SV helps 

project managers anticipate schedule variations and make informed adjustments to keep the project 

on track. From Figure 3.11 (right side), the median and mean values of the dataset are very similar, 

indicating that the data is evenly distributed around the central value. Additionally, the SV plot 

has a much more comprehensive range when compared to the SPI. It suggests a significant number 

of data points with large negative values, indicating some deviations from the planned schedule. 

 

Figure 3.11 Box-and-Whisker Plot for Schedule Performance Index and Schedule 

Variance 



77 

 

• Planned and Actual Physical Progress 

The planned physical progress encompasses the initial physical progress, including milestones and 

expected completion percentages. A critical metric for forecasting overall project progress. On the 

other hand, the actual physical progress represents the real, executed physical progress achieved 

during the construction project. Forecasting with actual physical progress aids in understanding 

the project's current state. It allows project managers to adjust plans based on observed progress, 

facilitating accurate duration forecasting and timely decision-making. Comparing planned and 

actual physical progress helps project managers anticipate potential delays and ensure alignment 

with the planned timeline.  

From the chart below (Figure 3.12), numerous outliers are shown below the lower whisker, 

indicating significantly lower planned progress for the Planned Physical Progress. In contrast, the 

plot for Actual Physical Progress shows consistent actual progress data with no significant 

anomalies. 

 

Figure 3.12 Box-and-Whisker Plot for Planned Physical (%) and Actual Physical Progress (%) 
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Chapter 4 The Deep Learning Forecasting Modelling for Project 

Duration and the Graphical User Interface 

4.1 Introduction 

After analyzing the historical data, this chapter elaborates on the project duration forecasting 

model using Deep Learning and produces a Graphical User Interface (GUI) for its usage and 

application. A high-level pipeline is shown in Figure 4.1. It comprises data preprocessing and the 

forecasting model itself. The preprocessing involves feature selection to address multicollinearity 

by applying the variance inflation factor (VIF) and correlation model and data splitting and 

normalization to address the model performance and data patterns. Then, the forecasting model 

considers managing the algorithm hyperparameters, which highly depend on the data 

characteristics and influence the model performance. 

After getting individual duration predictions at work package levels, they are integrated into a 

methodology to calculate the overall project duration at completion prediction, using the CPM and 

PDM methodologies. In turn, this forecasting model is the core of the GUI, which, due to the deep 

learning algorithm’s complexity, the user interface plays a pivotal role for non-expert users. 

Additionally, this chapter described complementary, relevant subprocesses, such as data 

augmentation, which addresses eventual small time series datasets, and present the performance 

metrics to monitor the fittest accuracy of deep learning algorithms by handling time series datasets. 
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Figure 4.1 Development of Forecasting Model 

4.2 Dataset Setup for ML Forecasting model. 

The axiom 'More data equates to better model forecasting performance' holds in the context of 

machine learning (Lara-Benítez et al., 2021; Passalis et al., 2020; Torres et al., 2020). However, 

the first challenge lies in organizing available data to optimize the learning process by deep 

learning algorithms. A methodical approach is crucial when handling data from multiple projects, 

further divided into Work Packages (WPs). In this context, three possible scenarios for data setups 

to augment machine learning efficacy were experimented with, as described below. A graphical 

representation is shown in Figure 4.2. 

a. Isolated Work Package Analysis: 

This method involves analyzing data separately for each WP within a project. Contrary to machine 

learning's preference for large datasets, this compartmentalized approach limits the chronological 

data points, which hinders the algorithm’s learning capacity. Furthermore, repeated execution of 
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the machine learning algorithm for each WP can lead to increased computational time and resource 

consumption. 

b. Sequential Work Package Data Integration: 

This strategy exploits the increased volume of data while preserving individual work package 

(WP) characteristics by grouping sequentially the same work packages from multiple projects, for 

example, grouping the work packages 'Concrete' from projects A, B, C, etc. likewise for the rest 

of work packages. In turn, it becomes more efficient when leveraging the autocorrelation inherent 

in Time Series Datasets. Autocorrelation is a statistical measure describing the degree of likeness 

between a specified time series and a lagged version over successive interval. It's used to identify 

repeating patterns or dependencies in data over time. Overall, this second setup allows for project-

specific forecasting through separated algorithms for each WP, potentially leading to more targeted 

insights. 

c. Aggregated Project Data Without WP Segregation: 

This approach consolidates all data across projects without distinguishing between WPs. Although 

it maximizes the dataset size, it may not facilitate the identification of patterns specific to 

individual WPs due to the homogenization of data. 
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Figure 4.2 Three Time Series Data Setups to Improve Machine Learning Performance  

4.3 Data Preprocessing 

While data preprocessing is a broader step initiated in Chapter 3 by handling the raw data, 

additional refinements are essential for enhancing the forecasting model performance, especially 

when handling time series data for a regression approach. In this sense, the feature selection arises 

to fit the best inputs regarding forecasting performance accuracy. Then, a meticulous treatment of 

new missing values through strategies like time-based imputation or interpolation to ensure 

consistency with the temporal nature of the data. After that, normalizing or scaling the data is 

critical, with techniques like Min-Max scaling or Z-score normalization, to maintain uniformity in 

variable scales. Furthermore, creating lag features and utilizing rolling window statistics are 

crucial to capturing time series data's inherent temporal dynamics and dependencies. Preserving 
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sequential relationships between consecutive data points is paramount, necessitating careful 

consideration when structuring the dataset in a tabular format. Moreover, data transformation, such 

as differencing or any mathematical operation, might stabilize trends and seasonality in the 

multivariate time series dataset. Once Chapter 3 enabled statistical inspection of the collected data, 

they were assessed through the data preprocessing process. Figure 4.3 shows an example of the 

Concrete work package dataset after such a process. This Figure depicts the dataset in a structured 

way, with potential predictors and target variables placed as headers and the ‘Concrete’ work 

package from multiple projects placed as rows sequentially downwards. 

Figure 4.3 Example of work package dataset after the data preprocessing Feature Selection 
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4.3.1 Feature Selection  

identifies and selects a subset of relevant features (predictors) for the forecasting model 

construction (Pirbazari et al., 2019). It aims to improve the model's performance by eliminating 

unnecessary, redundant, or noisy data, leading to more straightforward, faster, and more efficient 

models (Pabuccu & Barbu, 2023). Moreover, it is relevant to include a visual inspection of 

independent and dependent variables (Figure 4.4) as a must-do initial action. Notably, the selection 

of features for this study involved two aspects considering the multivariate time series dataset to 

be handled. First, analyze the relationship between predictor variables only and second, between 

each predictor and target variable. The former is known as multicollinearity, which was addressed 

by applying a Variance Inflation Factor (VIF) technique, while the latter was solved by using the 

Spearman Correlation matrix.  
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Figure 4.4 Visual Representation of Independent and Dependent Variables 
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Multicollinearity Analysis by Variance Inflation Factor 

Multicollinearity is a situation in regression analysis where two or more predictor variables 

(independent variables) in a model are highly correlated (Shrestha, 2020). This is a linear 

relationship that can influence outcome reliability (J. H. Kim, 2019). In the context of a regression 

model, multicollinearity can be problematic because (Daoud, 2017; Obite et al., 2020): 

• It is difficult to isolate each predictor's effects on the target variable. 

• It can lead to incorrectly estimated coefficients, which may fluctuate wildly in response to 

small changes in the model or data. 

• It can artificially inflate the standard errors of the coefficients, resulting in a loss of statistical 

significance for the affected predictors. 

Addressing multicollinearity may involve removing some correlated predictors, combining them 

into a single predictor through dimensionality reduction techniques (like Principal Component 

Analysis), or using regularization techniques that can handle correlated predictors in the model. 

On this matter, this study uses the Variance Inflation Factor (VIF) which is focus on the variation 

of the regression coefficients when predictors are correlated. If no factors are correlated, the VIFs 

will all be equal to 1 (Daoud, 2017; Senaviratna & A. Cooray, 2019). Here's how VIF is calculated 

for each predictor variable: 

• Run a linear regression using the predictor of interest as the dependent variable and all other 

predictors as independent variables. 

• Calculate the R-squared value from this regression. 

• The VIF for that predictor is calculated as 𝑉𝐼𝐹 =
1

1−𝑅2
 

A VIF equals to 1 indicates no correlation between the k-th predictor and the remaining predictor 

variables and, hence, a deficient level of multicollinearity. Values of VIF exceeding 5 or 10 suggest 
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high multicollinearity, depending on the sources and the context of the analysis, and may require 

further investigation or adjustment of the model. When applying to the dataset, Planned and Actual 

Quantities and Planned and Earned Values are highly correlated, which implies managing them as 

explained above. Conversely, the rest of the predictors are going on within tolerable limits. The 

following figure shows the VIF results for predictors. 

 

Figure 4.5 Variance Influence Factor (VIF) Performance per Predictor  

Spearman Correlation matrix 

The correlation matrix shows correlation coefficients between variables (predictors and targets) 

(Schober et al., 2018). In the following chart, each cell shows the correlation between two 

variables. The value is in the range of -1 to 1. If two variables have a high correlation, it means the 

movement of one variable is highly predictive of the movement of the other variable. There are 

three main types to calculate the correlation factor. The Pearson correlation coefficient is typically 
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used in correlation matrices, but different types, like Spearman's rank correlation or Kendall's tau, 

can also be used depending on the data and requirement. For time series data, which often involves 

trends and does not necessarily follow a normal distribution, Spearman or Kendall might be more 

appropriate (Croux & Dehon, 2010). Spearman is generally preferred for its balance between 

sensitivity and robustness, but Kendall's Tau could be a better choice when a dataset is small or 

particularly noisy. Accordingly, in the present research work, the dataset was evaluated under the 

Spearman correlation type, whose results are shown in Figure 4.6 – Correlation Matrix. 

 

Figure 4.6 Spearman Correlation Matrix for Variables 
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4.3.2 Data Splitting 

Data Splitting is dividing the dataset into three sets, including training, validation, and test sets 

(Xu & Goodacre, 2018). The training dataset serves to train and learning the model, the validation 

dataset to adjust the model parameters and prevent overfitting, and the test dataset to assess the 

model's performance on unseen data (Vabalas et al., 2019). This split is crucial for assessing the 

model's generalization ability. The ratios for splitting data can vary based on the size and nature 

of the dataset. Accordingly, the present research evaluated several split ratios considering the 

characteristics of this specific time series datasets before getting the best outcomes. In time series 

datasets, it is important to maintain trends/patterns on split datasets and a suggested practice is 

analysing visually the dataset behaviour curve.  

 

Figure 4.7 Schematic of Data Splitting 

4.3.3 Data Normalization 

Data normalization is vital in preparing data for time series forecasting, especially when using 

deep learning models (Bhanja & Das, 2018; Nayak et al., 2014). Normalization adjusts the scale 

of data to a standard range, typically between 0 and 1 or -1 and 1. This ensures that each input 

feature contributes equally to model training and predictions (outcomes), facilitating a more 
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effective learning process. The importance of normalization lies in its ability to prevent features 

with larger scales from disproportionately influencing the learning dynamics of the model. 

Three normalization techniques are commonly employed: min-max normalization, z-score 

normalization (also known as Standardization), and scaling to unit length. These methods bring 

different scale features onto a level playing field, crucial in deep learning models that often handle 

complex, high-dimensional data (Bhanja & Das, 2018). Additionally, normalization aids in 

avoiding problems like gradient vanishing or exploding, thereby enhancing the model's training 

efficiency and overall performance. Finally, the process becomes particularly noteworthy when 

considering the sequence of Data Splitting followed by Data Normalization. First, it is strongly 

advised to execute the data splitting, as this ensures that the resulting datasets are not influenced 

by each other when any normalization technique is applied. 

 

Figure 4.8 Schematic of Data Normalization 
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4.4 Forecasting Model Development 

The first step is transforming the split datasets into more feeding data for the deep learning 

algorithms. It implies setting the number of pasts that will be considered to predict the Duration to 

Complete (DTC) (which is the target variable in the present study) and arranging predictors and 

targets to maintain the autoregressive, a crucial time series dataset property (Ullrich, 2021). This 

process is also known as the Rolling-Window analysis (Inoue et al., 2017), which is typically used 

on time series datasets before being processed by any machine learning algorithm. The term 

“windows” refers to the number of pasts considered for the prediction; the feature input and target 

variable are represented as “X” values and “y” values, respectively (Zivot et al., 2003).  

To manage the autoregressive property, specifically for the multivariate Time Series Dataset, the 

“X” values are the combination of the predictor variables (i.e. Cumulative Earned Value, 

Cumulative Earned Schedule, Time Performance index, Project Budget) and the lagged target 

variables (i.e. the previous values of the target variable). The lagged target valuables are included 

because of the autoregressive property on the multivariate time series datasets, which can be 

explained as the existent correlation between the target variable to be predicted in the current 

period and the past predicted target variables. For example, in time series data will exist correlation 

among three past predicted values of the Duration to Complete (DTC) (from periods “t-3”, “t-2” 

and “t-1”) and the current Duration to Complete (DTC) variable to be predicted (in the period “t”). 

It can be represented as: 

X (for a single sample): 

Period t-3: [Cumulative EV, Cumulative ES, TPI, Project Budget, DTC (predicted)] 

Period t-2: [Cumulative EV, Cumulative ES, TPI, Project Budget, DTC (predicted)] 

Period t-1: [Cumulative EV, Cumulative ES, TPI, Project Budget, DTC (predicted)] 
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Y (for the same sample): 

Period t: [DTC (to be predicted)] 

In this sense, the Rolling-Window are arranged as shown in Figure 4.9, which indicates just three 

rolling-windows groups with three “pasts” and one target each as an example: 

 

Figure 4.9 Rolling-Window Representation for the Forecasting Model 

In practice, each rolling-window is also referred as a sample. It should be noticed that the second 

sample starts in the second record of the dataset, the third one begins on the third record, and so 

on. A group of samples is known as a batch. Deep learning models work with a certain quantity of 

batches, the quantity of samples that process per propagation through the model architecture. The 

number of batches is a hyperparameter related to the prediction accuracy set by experimentation 

(Kandel & Castelli, 2020). A graphical representation of a batch formation since samples are 

shown in Figure 4.10. Moreover, an epoch refers when all batches have been processed through 
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the entire dataset. During an epoch, the model sees every sample in the dataset once, allowing it 

to learn from the data over multiple iterations (epochs) to improve its predictions. 

 

Figure 4.10 Representation of Relationship Between Samples and Batches 

4.4.1 Forecasting model with LSTM algorithm 

The LSTM algorithm was considered due to previous research's most recent successful results, 

demonstrating better fitting by handling time series datasets. It is because it contains specific 

memory cells aiming to remember information for long periods, a remarkable characteristic that 

differs from other models. This model was computerized using Python's Keras library. Its 

architecture construction involves setting the number of layers, learning rate, number of epochs, 

batch sizes and the recurrent dropout factor as the most relevant elements. These items are grouped 

under the name of hyperparameters within Machine Learning terms. The hyperparameters were 

tunned by experimentation to find the most optimal set for the LSTM model. They must be set 

before the learning process and are not associated with the data.  
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Additionally, selecting the proper Optimizer, an algorithm used to enhance the neural network 

parameters to reduce the losses, is relevant for the project duration prediction accuracy. The 

ADAM (Adaptive Moment Estimation) optimizer, an extension of stochastic gradient descent, is 

designed to be more efficient in this time series forecasting model. ADAM maintains a learning 

rate for each network weight (parameter). It adapts these rates individually over time, combining 

the advantages of two other extensions of stochastic gradient descent: Adaptive Gradient 

Algorithm (AdaGrad) and Root Mean Square Propagation (RMSProp). In an LSTM layer, each 

LSTM unit does not divide the samples among themselves. Instead, all units process all samples, 

contributing to the layer's overall output. The quantity of units represents the dimensionality of the 

output feature space, not the number of samples each unit processes (Arsov et al., 2021). 

4.4.2 Forecasting model with CONV-1D algorithm 

Initially developed for image processing, CNNs have proven effective in time series analysis like 

project progress datasets, thanks to their ability to identify patterns in sequential data. It uses 1D 

convolutional layers to extract temporal features from sequences, such as features created during 

project execution. The architecture of a CNN includes convolutional layers, pooling layers, and 

fully connected layers as hyperparameters. This model was elaborated on using Python language 

programming and the Keras library. In CNNs, convolutional layers apply filters (kernels) to the 

input data. Each filter is slid across the input data to produce a feature map that highlights certain 

features in the input. The same set of filters is applied to all samples in the batch, extracting features 

from each sample independently. 

After convolutional layers, pooling layers may reduce the dimensionality of the feature maps. 

Eventually, the data may pass through fully connected layers (similar to those in MLPs) before 

producing the final output. Each layer, whether convolutional, pooling, or fully connected, 
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processes each sample in the batch using the same weights and operations. Each filter in a 

convolutional layer produces a feature map for each sample in the batch. The process is parallel 

across samples but is shared regarding the filters applied. The network learns filters that are useful 

across all samples in the training dataset, which are applied equally to each sample in the batch. 

4.4.3 Forecasting model with MLP algorithm 

Multi-Layer Perceptron is a feedforward artificial neural network developed to tackle many 

problems ranging from simple binary classification to complex regression tasks. The strength of 

MLPs lies in their ability to model complex, non-linear relationships through multiple layers of 

computation. It allows for extracting high-level features and relationships across sequential data 

points. Whether it handles forecasting future trends, identifying cyclic patterns, or detecting 

anomalies in time series data, MLPs can learn from historical values to make informed predictions 

about future or unseen events. An MLP comprises an input layer, multiple hidden layers, and an 

output layer. Each neuron in a layer of an MLP is fully connected to all neurons in the preceding 

layer. Regardless of the number of neurons in a layer, each neuron processes every sample in the 

batch. The number of neurons in a layer determines the dimensionality of the output for that layer, 

but all neurons participate in processing all samples. Each sample in the batch is processed in 

parallel through the network's layers. The network output for each sample is determined by the 

collective computation of neurons across the layers, according to the network's weights and biases 

and the activation functions applied. 

4.4.4 Model Performance Measurement. 

During the model forecasting design, the loss curve plays an important role. It depicts the model's 

inaccuracy by plotting the losses between training and validation datasets. Ideally, both curves 

should decrease over time, indicating the model is learning from the dataset. Interpretation of this 
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chart spans to identify three possible scenarios: overfitting, underfitting and good fit. While the 

overfitting indicates that the model learns too well, including noise, which leads to poor 

generalization on unseen data, the underfitting means that the model cannot capture the underlying 

data pattern. Ideally, in a good fit, both training and validation losses should decrease to a point of 

stability with a minimal gap between the two curves. An example of a loss curve is shown in the 

following figure. 

 

Figure 4.11 Schematic of the Loss Curve 

4.5 Data Augmentation 

As discussed earlier, deep learning algorithms for time series forecasting require extensive data. 

By gathering more data, they improve their performance significantly (Javeri et al., 2021). This 

dataset should be accomplished in terms of quantity and quality (Wen et al., 2020). In addition, 

actual project data is often incomplete, disorganized, or simply unavailable, especially in a time 

series manner (Adekunle et al., 2022). To face with this issue, data augmentation arises as an 
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alternative offering diversity and coherence (X. Zhang et al., 2023), creating copies of the original 

dataset available (Bandara et al., 2021). 

Data augmentation techniques are used to increase the diversity of the dataset without collecting 

new data. This technique uses available data as a benchmark to create a 'new' dataset. For instance, 

if actual project datasets are available, where projects have similar conditions among them such as 

location (country, region, continent, etc.), remoteness (like resource availability, distance to nearby 

cities, etc.), contract type, adopted PDM, construction type among more relevant aspects, this 

group of projects can become a benchmark to create new datasets. Like Monte Carlo simulations, 

when making multiple random scenarios starting from a preset scenario as a benchmark, data 

augmentation uses random data in a likely range between optimistic and pessimistic values to 

deliver possible outcomes. 

The primary goal of data augmentation is to improve a model's capacity to manage diverse real-

world conditions, thus boosting its robustness and ability to generalize (Y. Yue et al., 2023). Data 

augmentation is not a rigid process that follows a standardized approach; instead, it is often 

customized to the features and needs of the dataset in question, which can be influenced by domain 

knowledge. (S. Y. Li, 2020). For augmented (synthetic) time series datasets related to project 

duration management, domain knowledge plays a pivotal role in guiding appropriate data 

augmentation outcomes, like coherence, as pointed out by Zhang et al. (2023). This ‘new’ data 

should reflect realistic scenarios and variations that could occur during the project, which involves 

understanding the typical patterns, ranges, and behaviours within the existent data. A typical data 

augmentation pipeline is shown in Figure 4.12. 
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Figure 4.12 Pipeline for Data Augmentation 

4.6 Performance Metrics for Time Series Dataset models 

This section is focused on the metrics used to assess the accuracy of the machine learning models 

when applied to time series training/validation/test datasets for forecasting. The present time series 

data, characterized by its sequential nature and temporal dependencies, requires specialized 

metrics to capture the model's predictive power in such contexts accurately (Makridakis et al., 

2023). Consequently, the performance metrics such as Mean Absolute Scaled Error (MASE) 

proposed by Hyndman (2006) and Symmetric Mean Absolute Percentage Error (sMAPE) by 

Makridakis (1993), whose application is focused on Time Series forecasting, were added to the 

conventional Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE).  

Table 4.1 Performance Metrics for Time Series Datasets 

Metric Description 

Formulas  

(Where 𝑦𝑖 is the actual and 𝑦�̂� is the 

predicted and 𝑦�̿� is the naïve value) 

Interpretation 

MAE 

Mean Absolute Error calculates 

the average number of errors in 

a group of predictions without 

considering whether they are 

positive or negative. It is given 

in the same units as the target 

variable. 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑖 − 𝑦�̂�|

𝑛

𝑖=1

 

 

A lower MAE 

indicates better 

model 

performance. 
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RMSE 

Root Mean Squared Error 

represents the square root of the 

average squared differences 

between prediction and actual 

observation. It is also given in 

the same units as the target 

variable. 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑(

𝑛

𝑖=1

𝑦𝑖 − 𝑦�̂�)
2 

A lower RMSE 

indicates better 

performance. 

MASE 

Mean Absolute Scaled Error 

measures the accuracy of 

forecasts relative to a simple 

benchmark, scaling errors based 

on the in-sample MAE from a 

naive forecast. 

𝑀𝐴𝑆𝐸 =  

1
𝑛

∑ |𝑦𝑖 − 𝑦�̂�|
𝑛
𝑖=1

(
1

𝑛 − 1
) ∑ |𝑦𝑖 − 𝑦�̿�|

  

If the MASE value 

is less than 1, it 

indicates that the 

model performs 

better than a naïve 

model. 

Additionally, the 

lower the MASE 

value, the better the 

model performs 

compared to the 

naïve model 

sMAPE 

Like MAPE, Symmetric Mean 

Absolute Percentage Error 

adjusts the formula to handle 

zero and near-zero 

denominators, providing a more 

balanced error percentage. 

𝑠𝑀𝐴𝑃𝐸 =
1

𝑛
∑

|𝑦𝑖 − 𝑦�̂�|

(|𝑦𝑖| − |𝑦�̂�|) 2⁄

𝑛

𝑖=1

 

 

A lower sMAPE 

indicates better 

accuracy, with 

values closer to 

zero indicating 

more accurate 

forecasts 

 

While evaluating the performance metrics on the training dataset provides an understanding of the 

initial learning and model behaviour, the performance metrics on the validation dataset give a 

chance to tune and select the optimal model. On the other hand, assessing the test dataset 

performance lets us know how the model will generalize by addressing new, unseen data. 

4.7 Calculation of the Overall Project Duration  

Once work package durations were accurately predicted through the Deep Learning model, they 

were integrated to calculate the Overall Project Duration. For this purpose, the proposed 

methodology is based on the Precedence Diagramming Method (PDM) and the Critical Path 
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Method (CPM) (Lu, 2020). PDM is a technique used to create a project schedule network diagram 

that depicts the logic sequence in which tasks must be performed. At the same time, CPM is a 

technique in project management that helps identify the most extended sequence of tasks in a 

project (critical path), determining the shortest possible project duration.  

Most construction schedules are set following the PDM method. So, the methodology simplifies 

the PDM network, which contains multiple precedence relationships and lags, into an AON 

(Activity-On-Node) network, which contains finish-start relationships and without lags. It uses 

dummy nodes to represent lags and durations equivalent to the lag value. After that, CPM is applied 

to find the overall project duration. The following figure shows the methodology proposed 

sequence: 

 

Figure 4.13 Pipeline for Overall Project Duration Calculation 

Each is considered an activity when applying this framework to the work packages. Moreover, it 

is remarkable to analyze the current project schedule at the work package level, which provides 

planned/actual durations, start dates and finish dates. This methodology was modelled in Python 

and is explained as follows: 

1. As the Primavera P6 software presents limitations when managing schedule information at 

the work package level, this modelling imports activities’ information from Primavera P6, 

such as durations, start and finish dates (planned and actuals), overlaps and precedence 

relationships. Then, it is processed in a Python environment to calculate the work package 
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features like durations start and finish dates. The work package start date is calculated as the 

finding of the earliest activity start date within such work package; similarly, the work package 

finish date is the latest activity finish date. Next, work package durations are calculated by 

subtracting the start and finish dates.  

 

Figure 4.14 Duration, Start and Finish Dates Handling when Extracting from Primavera P6 

2. After that, the work packages were set up sequentially to recall their lifecycle occurrences 

(Boskers & AbouRizk, 2005; Siu et al., 2014). To do so, the model analyzes every start date 

from the current project schedule. Accordingly, lags among them were computed by 

subtracting the start dates of sequential work packages (see Figure 4.15). Also, the type of 

relationship is attributed to a start–to–start relationship between consecutive work packages, 

which will serve to proceed to the transform schemes later. 
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Figure 4.15 Setup of Work Packages 

3. After that, the PDM network will be obtained. To do so, the durations of work packages are 

inputted according to their status: Completed, In Progress or Non-Started. The actual 

durations of completed work packages are considered. In the case of in-progress work 

packages, their durations are calculated using deep learning modelling. Similarly, as non-

started work packages do not create records, forecasting their final duration should not be 

possible; hence, their planned durations are inputted. 

4. Then, it is continued with the transformation on the AON network that includes precedence 

relationship as type Finish-Start solely. It creates dummy work packages between them by 

splitting the earliest work package and then imputing the lag time between them as the 

duration of the dummy work package (See Figure 4.16). 

 

Figure 4.16 Schematic of methodology flow describing transformation from PDM to CPM 
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5. After transforming the Work Package PDM representation to the AON network without lags 

where there are Finish–Start relationships only, the CPM method is applied to calculate the 

overall project duration. 

Integrating Deep Learning predictions into CPM-PDM allows for a more data-driven and 

potentially accurate assessment of project timelines. Moreover, it can help project managers: 

- Improve Scheduling Accuracy: The overall project schedule can be estimated more 

precisely by providing more accurate predictions of work package durations. 

- Identify Risk Areas: Understand which parts of the project might be at risk due to potential 

delays in critical work packages. 

- Enhance Decision Making: Make informed decisions about project planning, scheduling, 

and management based on data-driven insights. 

This approach modernizes traditional project management methods with the predictive power of 

machine learning, potentially leading to more efficient, reliable, and successful project outcomes. 

4.8 Graphical User Interface (GUI) for Project Duration Forecasting 

A poor handling of deep learning algorithms can lead to misuse or misunderstood due to their 

complexity. This section describes the design and implementation of a friendly Graphical User 

Interface (GUI) to manage deep learning algorithms. It was programmed using Python's Tkinter 

library and designed to be used and applied by non-expert users during the project execution 

monitoring stage (also known as project tracking). 

It is remarkable that this type of GUI based on purely deep learning for project management 

software, particularly for duration forecasting, is an emerging field that combines advanced 

predictive analytics capabilities with traditional project management methodologies. Most 
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software solutions use a combination of techniques, including conventional statistical methods and 

some machine learning components, to enhance forecasting accuracy. However, these might be 

integrated into broader project management tools or specialized analytics platforms. Applying pure 

deep learning models for forecasting project duration, such as Long Short-Term Memory 

networks, is still relatively innovative. 

4.8.1 Software Design and Reporting 

The software design consists of two main areas. The “Main Menu” is located on the left, and the 

“Displaying area” is on the right. The Main Menu contains three sections: “Projects Setup”, “Deep 

Learning Forecasting Data”, and “Deep Learning Forecasting”. Moreover, the displaying area 

dynamically show windows according to the selected button in the Main Menu. Below, each 

section is explained in detail. 

 

 

Figure 4.17 Location of Main Menu and Displaying Area 

 

 

Main Menu 
Displaying Area 

Menu 
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• Main Menu - Projects Setup Section: 

Home: Clicking on the “Home” button will display the “Project Hub” window, which contains 

detailed information on the projects that have been entered. Each project is listed in the top left 

region within the project hub, describing its Project ID, Name, Original Duration, and Original 

Budget. Similarly, the “Add New Project” and “Update Project” buttons are distinguished on the 

top right area, which will open new windows separately to enter new project information or update 

an existing one. The information requested is aligned with the ERD described in Chapter 3. Finally, 

in the Project Hub’s bottom region, a notebook is shown with two tabs: "At Project Level" and "At 

Work Package Level." These notebook tabs will interactively populate when you select any project 

from the top area. Below are the windows used when clicking “Add New Project” and “Update 

Project.” 

 

Figure 4.18 The “Add New Project” Window. 
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Figure 4.19 The “Update Project” window. 

The “Add Project window” requires filling in general information on the top entries and adding 

work package information on the bottom. On the latter, clicking the “+ Add Work Package” button 

will add rows as many as quantity of work packages needed without limits. Finally, the “Save New 

Project” button should be pressed. 

• Main Menu – Deep Learning Forecasting Data section: 

This section contains the “Enter Tracking Data” button, which enables users to enter tracking data 

per period per work package. First, the project name and reporting date will be entered. After 

clicking “Enter Data,” new entry fields will appear per work package, as shown in Figure 4.20 

below. It contains the Project Work Packages arranged as rows and the features for forecasting as 

columns. After completing the information, it should be clicked on “Save.” 
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Figure 4.20 The “Project Tracking” window. 

The “Status” of the work package is quite significant when entering tracking data.  In the GUI, the 

“Status” entry will show “non-started,” “in progress,” or “finished” options from a dropdown list. 

When the work packages have a “non-started” status, the rest of its entry inputs should be filled 

with null (zero) values. Also, when the work package is “in progress,” complete the requested 

progress data; otherwise, when it is “Finished,” complete the actual data, considering the actual 

last period data. Additionally, when a work package is “in progress,” the following entry input, 

called Project Period, is solely related to the work package, and can differ from the reporting period 

number. Figure 4.21 shows an example where the timeline for the entire project and each work 

package differs for Work Packages 02 and 03.  



107 

 

 

Figure 4.21 Project Reporting Period against Work Package Period Number 

• Main Menu – Deep Learning Forecasting: 

This section includes “Step 01: Work Package Level” and “Step 02: Project Level”. Step 1 will 

require the Project ID and the Reporting Period. By doing so, it will run the deep learning algorithm 

and will display the results per work package. On the top is horizontally listed the project work 

packages, and at the bottom, a Gantt chart showing the planned, actual, and forecasted durations 

and a Schedule Deviation per period chart depicting the variation of finish dates planned and 

forecasted. These charts will change dynamically when selecting a work package and another 

reporting period. 
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Figure 4.22 “Forecasting per Work Package” window. 

On the other hand, Step 02 will require the Project ID, the Reporting Period. Then, the 

relationships among work packages will be shown in a table when uploading the Primavera P6 

Schedule at the work package level in .xml format, as shown in Figure 4.23. After that, the button 

“Display Duration at Completion Forecasting” will show the Gantt Chart of the entire project. 

Also, a button will be displayed to show the critical path for PDM-CPM calculation. 

 

Figure 4.23 “Forecasting per Work Package” window. 
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Figure 4.24 “Project Duration Forecasting” window. 
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Chapter 5 Project Duration Forecasting and Graphical User 

Interface Deployment 

5.1 Introduction 

This chapter outlines applying deep learning predictive modelling alongside the Graphical User 

Interface (GUI). It discusses using training, validation, and test datasets to evaluate and select the 

optimal forecasting model from the Long Short-Term Memory (LSTM), Convolutional Neural 

network 1-D (CONV-1D), and Multi-Layer Perceptron (MLP) algorithms. The best-performing 

algorithm is then implemented in the GUI. To do so, each forecasting model was evaluated using 

actual data collected. Then, data preprocessing, splitting, and normalization, as well as the 

assessment of three algorithms to determine the highest accuracy performer for integration into the 

GUI, was performed.  

The GUI functionality is demonstrated step-by-step, considering project data across the three work 

packages evaluated previously (i.e. Concrete, Excavation and Backfill). This GUI application also 

addresses the challenges encountered and the outcomes, highlighting the synergy between 

advanced analytics and user-centred design in the resulting predictive analysis tool. A visualization 

of the process using the GUI is presented in Figure 5.1. 

 

Figure 5.1 Pipeline of GUI application for Project Duration Forecasting 
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5.2 Duration Forecasting model application – Case Study 

This section describes the application of three deep learning algorithms: LSTM, CONV-1D and 

MLP; which are evaluated with actual project data. The goal is to put into practice the steps 

described in the previous chapter to create the forecasting model. After that, each models’ 

prediction performance is calculated to select the optimal predictive deep-learning algorithm. 

Finally, this is included in the Graphical User Interface (GUI) to perform the overall project 

duration at completion. 

5.2.1 Data Preprocessing and Feature Selection 

In Section 3.4, the project's actual data was presented. Originally, this data pertains to a mining 

civil project portfolio contained five work packages; however, after conducting the initial data 

cleaning, three work packages, namely Concrete, Excavation, and Backfill, were retained. The 

remaining two work packages, Demolition and Ground Mesh, were discarded due to insufficient 

data. Similarly, some records with missing values were removed from the three work package 

datasets to ensure consistency, resulting 173, 65, and 85 records for the Concrete, Excavation, and 

Backfill work packages.  

Figure 5.2 is an example of the preprocessed data, where only five out of thirteen projects 

considered in the analysis of the Excavation work package are presented. On this dataset, 

multicollinearity processes and Spearman correlation were performed, identifying the input 

variables for the model. These variables are Actual Duration, Cumulative EV, Cumulative Earned 

Schedule, Time Performance Index, and Contract Amount. It is important to note that the Duration 

To Complete (DTC) is the target variable for the analysis.  



112 

 

  

Figure 5.2 Example of preprocessed data spreadsheet – Excavation Work Package. 

5.2.2 Data Splitting 

The collected dataset was divided into two sets: the training and validation datasets. After several 

experiments, the splitting values were obtained based on the optimal accuracy of the deep-learning 

model. Then, to ensure that the deep learning model could perform well on unseen data, the data 

augmentation technique was applied to obtain the test dataset.  

Data augmentation for test dataset:  

As the time series dataset from available projects was stored per Work Package (i.e. Concrete, 

Excavation and Backfill), it enables users to find specific behaviour patterns from each. Typically, 

progress control parameters form an S curve (Cristóbal, 2017; Mubarak, 2019). In this sense, the 

logistic function was chosen to characterize the Planned Value (PV). It represents growth that 

starts exponentially but eventually slows down because it approaches a maximum limit due to 

resource limitations, productivity variations, or other project factors. Also, the logistic function 

parameters needed, such as the maximum value that the function can take (L), growth rate (k) and 

Potential Predictors 
Target variable 
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the x-value of the inflection point (X0), were grasped from existing data by studying the behaviour 

of every Planned Value’s S curve through an automated model in Python. 

The Earned Value (EV) curves were based on previous research closely related to the 

characteristics of the available projects. Thus, the Earned Values’ S curves were created using 

polynomial functions and neural networks (Chao & Chien, 2009). Typical occurrences in real-life 

projects, like delays or early starts concerning the planned start date, were also considered. It was 

achieved by assigning a random quantity of periods (positive or negative) considered as slip 

periods. Subsequently, additional indicators, such as the Earned Schedule (ES) and the Time 

Performance Index (TPI), were calculated based on the estimated value (EV) of the project and 

the planned value (PV) and the ES and the actual time that has elapsed, respectively. 

Furthermore, the budget was generated randomly within the range of the original project budgets. 

After the new data was collected, it was thoroughly reviewed and validated. Similarly, the overall 

data augmentation process was computerized using the curve_fit function from Python’s library 

SCIPY. To create synthetic time series data in the implemented Python program, practitioners 

must enter the number of new projects to generate. The code will return a CSV file holding the 

specified number of projects, each containing a random number of timestamps (the project 

progress periods) as rows and the predictors as columns. Figure 5.3 is a visual representation of 

the data augmentation process for this study. 



114 

 

 

Figure 5.3 Schematic of Process for Data Augmentation for the Present Study 

A new project with Concrete, Excavation, and Backfill work packages was created containing 33, 

27, and 21 records, respectively. The table below shows the optimal split percentages and the 

number of records used in the test datasets. 

Table 5.1 Training, Validation and Test Datasets per Work Package and LSTM, CONV-1D and 

MLP Algorithms 

Work 

Package 
Datasets 

Deep Learning Algorithms 

LSTM CONV-1D MLP 

Concrete 

Training (%, # records) 70% (121) 70% (121) 75% (129) 

Validation (%, # records) 30% (52) 30% (52) 25% (44) 

Test (# records) 33 33 33 

Excavation 

Training (%, # records) 60% (39) 60% (39) 60% (39) 

Validation (%, # records) 40% (25) 40% (25) 40% (25) 

Test (# records) 27 27 27 

Backfill 

Training (%, # records) 70% (60) 70% (60) 70% (60) 

Validation (%, # records) 30% (25) 30% (25) 30% (25) 

Test (# records) 21 21 21 
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5.2.3 Data normalization 

The Min-Max normalization was chosen for this case study because of the optimal dataset 

arrangement to leverage the machine learning features as explained in section 4.2.  Each work 

package dataset contains multiple projects and is structured in a tabular way, where rows represent 

the timestamps and columns represent the predictor and target variables (see Figure 5.2 as 

reference). Therefore, to keep each project's characteristics, the min-max technique follows this 

equation: 𝑆𝑐𝑎𝑙𝑒𝑑 𝑣𝑎𝑙𝑢𝑒𝑠 =
𝑥−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
, which reduces the scale of original values without 

changing the graphical distribution. The other alternative was the z-score normalization, which fed 

the mean and standard deviation. However, given the data arrangement (multiple projects in 

series), it would alter the dataset and its graphical distribution. The z-score equation is expressed 

by 𝑍 =
𝑥−𝜇

𝜎
  (where µ is the mean and 𝜎 represents the standard deviation). 

5.2.4 Forecasting model 

The algorithms architecture used in the forecasting model was built using Keras, an open-source 

neural network library for Python. Keras is renowned for enabling rapid experimentation with deep 

neural networks, designed to be user-friendly, modular, and easily extendable. The library's core 

data structures are models and layers, and it provides a Sequential model for linear stacking of 

layers and a functional API (more flexibility compared to Sequential API) for building complex 

model architectures. Nine forecasting models were created because of the three evaluating 

algorithms (LSTM, CONV-1D, and MLP) and for the three work packages assessed  (Concrete, 

Excavation, and Backfill). It is crucial to look into the number of past timestamps to predict. 

Initially, 4, 5 and 6 past timestamps were considered to form the batches; however, after 

experimentation, when inputting three timestamps demonstrated the best performance. The 

selection of the optimal value depends on the dataset characteristics and the amount of available 
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data. Similarly, the hyperparameters were selected using a trial-and-error process. The resulting 

accuracy demonstrated being highly sensitive to the hyperparameters modification during the 

learning stage. For instance, the learning rate selection depends on the optimizer utilized, which 

for this study was ADAM; therefore, the learning rate varies from 0.001 to 0.01. If the SGD 

(Stochastic Gradient Descent) is used as an optimizer, values will vary between 0.01 and 0.1. 

Finally, the tables below show values for each algorithm per work package. 

Table 5.2 LSTM Hyperparameters used in the forecasting model per Work Package 

LSTM 

Hyperparameters 
Description 

Work Packages 

Concrete Excavation Backfill 

Number of Layers 
Determines the depth of the network, affecting 

its complexity and capacity to learn patterns. 
3 3 3 

Number of neurons 
Describe the total quantity of units that process 

sequence data 
64 64 64 

Learning Rate 

Controls the step size during optimization, 

influencing the convergence speed and 

accuracy. 

0.001 0.01 0.005 

Number of Epochs 
It is the total number of passes through the entire 

training dataset. 
200 200 200 

Batch Size 
It is the number of samples processed before the 

model updates its weights. 
8 4 8 

Recurrent Dropout 

The percentage of dropped recurrent 

connections was randomly selected to prevent 

overfitting. 

0.30 0.05 0.30 

 

 

Table 5.3 CONV-1D Hyperparameters used in the forecasting model per Work Package 

CONV-1D 

Hyperparameters 
Description 

Work Packages 

Concrete Excavation Backfill 

Number of 

Convolutional Layers 

Determines the depth of feature 

extraction. 
1 1 1 

Number of filters 
Specifies the number of filters (or 

kernels) in the convolutional layer 
32 32 32 
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Kernel Size 
Size of the filters used in 

convolutional layers. 
3 3 3 

Number of dropout 

layers 

Serve as a regularization technique to 

prevent overfitting 
1 1 1 

Dropout 
Percentage of ignored neurons to 

avoid overfitting 
0.35 0.05 0.25 

Number of dense layers 
Used to increase the model's 

complexity and learning capacity. 
2 2 2 

Number of neurons on 

dense layers 

Used to learn different aspects of the 

input it receives from the previous 

layer 

50 (first 

layer) and 

1 (second 

layer) 

50 (first 

layer) and 1 

(second 

layer) 

60 (first 

layer) and 1 

(second 

layer) 

Learning Rate 
It affects how quickly the network 

updates its parameters. 
0.001 0.0001 0.001 

Number of Epochs The total number of training cycles. 150 120 200 

Batch Size 
Number of samples processed before 

the model is updated. 
32 8 8 

 

 

Table 5.4 MLP Hyperparameters used in the forecasting model per Work Package 

MLP 

Hyperparameters 
Description 

Work Packages 

Concrete Excavation Backfill 

Number of Hidden 

Layers 

Influences the model's ability to 

capture complex relationships. 
2 2 2 

Number of 

Neurons per Layer 
Determines the width of the network. 

10 (First 

layer) and 

100 (second 

layer) 

10 (First 

layer) and 

40 (second 

layer) 

10 (First 

layer) and 30 

(second 

layer) 

Activation 

Function 

Such as ReLU, Sigmoid, or Tanh, 

used in neurons. 
ReLU ReLU ReLU 

Learning Rate 
Impacts the convergence speed 

during training. 
0.001 0.001 0.0005 

Number of Epochs 
The total round of training the 

network undergoes. 
200 250 150 

Batch Size 
The quantity of data samples used in 

one iteration. 
8 8 32 
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5.2.5 Forecasting Models performance assessments.  

After setting up the model architecture, their performance is evaluated during the learning process, 

using the training and validation datasets, and analysing the results on the Loss Curve. Then, it is 

calculated the performance metrics (MAE, MASE, and sMAPE) for all the datasets, including 

testing dataset to assess the model on unseen data. After that, R-squared curves to analyse the 

relationship between observed and predicted values are elaborated for the unseen dataset. The 

Figures 5.4, 5.5 and 5.6 shows the “Loss curves” per algorithm per work package. 

 
  

 

Figure 5.4 Work Package Concrete loss curves per deep learning algorithm. 

 

   

 

Figure 5.5 Work Package Excavation loss curves per deep learning algorithm. 
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Figure 5.6 Work Package Backfill loss curves per deep learning algorithm. 

For the Concrete work package, the LSTM model displays a training loss that sharply decreases 

and then plateaus, while the validation loss is slightly higher but also reaches a plateau. This 

interaction between the training and validation loss curves could indicate good generalization after 

a certain number of epochs. In contrast, the CONV-1D and MLP models show more fluctuations 

in validation loss, which might suggest less stability. Therefore, the LSTM's smoother 

convergence is considered the best performer for the Concrete work package.  

In the Excavation work package, the LSTM model quickly reduces loss and shows less overfitting 

as the epochs increase. Also, training and validation losses converge closely, which differs from 

the CONV-1D and MLP models, where the validation loss tends to diverge as epochs increase. 

Thus, the LSTM model performs better for the Excavation work package.  

In the Backfill work package, the LSTM model again shows rapid initial learning and consistent 

validation loss, indicative of learning stability and good generalization. On the other hand, the 

different models, particularly the MLP, appear to overfit, as indicated by increasing validation loss 

after a certain point. Therefore, the LSTM would be considered the best for the Backfill work 
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package. The LSTM model consistently shows the best performance across all three work 

packages, with the least overfitting and the lowest validation loss. 

Similarly, the performance metrics per algorithm per work package are depicted in the subsequent 

tables. The metrics considered were MAE, MASE, and sMAPE, as they are more fit when handling 

Time Series datasets for forecasting, as explained in Chapter 4. RMSE was disregarded because 

the target variable (Duration to Complete) will become zero at any time, affecting the consistency 

of the RMSE result. Although the following tables also show training and validation performance 

metrics, it is essential to analyze the testing ones to evaluate the model performance over unseen 

datasets. 

Table 5.5 Performance Metrics for the Concrete Work Package per algorithm. 

Metric 
LSTM CONV-1D MLP 

Training Validation Testing Training Validation Testing Training Validation Testing 

MAE 12.85 12.39 16.42 12.76 10.36 18.67 8.49 13.07 15.61 

MASE 0.21 0.44 0.27 0.21 0.37 0.31 0.15 0.49 0.27 

sMAPE 40.14% 52.45% 42.3 % 36.05% 46.38% 33.26% 31.58% 56.99% 38.35% 

 

Table 5.6 Performance Metrics for the Excavation Work Package per algorithm. 

Metric 
LSTM CONV-1D MLP 

Training Validation Testing Training Validation Testing Training Validation Testing 

MAE 14.71 9.82 17.14 14.31 9.17 41.45 15.18 10.41 48.87 

MASE 0.65 0.58 0.29 0.63 0.54 0.71 0.67 0.62 0.84 

sMAPE 81.49% 76.75% 29.73% 76.45% 75.38% 54.81% 77.45 % 78.38 % 64.57% 

 

Table 5.7 Performance Metrics for the Backfill Work Package per algorithm. 

Metric 
LSTM CONV-1D MLP 

Training Validation Testing Training Validation Testing Training Validation Testing 

MAE 12.08 7.15 18.27 5.47 7.12 23.20 8.91 4.87 20.66 

MASE 0.33 0.52 0.54 0.16 0.56 0.73 0.70 0.15 0.65 

sMAPE 51.42% 46.7% 48.63% 58.43% 40.38% 51.27% 61.94% 59.72% 47.37% 
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Given these results, the model performance on unseen data using the LSTM algorithm depicts the 

best results on MAE, MASE and sMAPE metrics. Consequently, the LSTM will perform better 

when handling upcoming project datasets. The adjusted R-squared can also provide some insights 

into model performance despite not typically being the primary metric for evaluating deep learning 

models in time series regression problems.  

The charts below are displayed per Concrete, Excavation and Backfill work packages, 

respectively. 

   

Figure 5.7 Work Package Concrete adjusted R-squared per LSTM, CONV-1D and MLP. 

 

   

Figure 5.8 Work Package Excavation adjusted R-squared per LSTM, CONV-1D and MLP. 
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Figure 5.9 Work Package Backfill adjusted R-squared per LSTM, CONV-1D and MLP. 

The charts below compare the yielded predictions per period and per algorithm against the actual 

time completion per work package of the test dataset. Because of the model predicts the Duration 

to Complete (DTC), it is then added to the Actual Time (AT) elapsed to obtain the Duration at 

Completion (DAC), as indicated below.  

𝐷𝐴𝐶 = 𝐴𝑇 + 𝐷𝑇𝐶 

Where DAC=Duration at Completion, AT=Actual Time, and DTC=Duration to Complete.  

 

Figure 5.10 Forecasted DAC for Work Package “Concrete” per Period and per Algorithm against 

Actual Duration. 
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Figure 5.11 Forecasted DAC for Work Package “Excavation” per Period and per Algorithm 

against Actual Duration. 

 

 

Figure 5.12 Forecasted DAC for Work Package “Backfill” per Period and per Algorithm 

against Actual Duration. 
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The LSTMs own inherent advantages that might explain why outperformed CONV-1D and MLP 

algorithms: 

a. Long-Term Dependencies: As discussed earlier, LSTMs remember long-term dependencies 

through memory cells and gate mechanisms, crucial for time series prediction. 

b. Causality: LSTMs capture causal relationships due to their memory past states, essential in 

time series where past events influence future outcomes.  

 
Also, when comparing only the LSTM models obtained from the different work packages, the 

Concrete work package had the lowest MASE value (0.27), showing the best performance. Such 

work package also had more data than the Excavation and Backfill, suggesting that more data leads 

to more accurate results. However, it's important to consider other factors, such as the construction 

characteristics of each work package. This includes on-site conditions, such as interferences or 

lack of preventive equipment maintenance, which can have a greater impact on excavation-related 

activities than on Concrete work, making the prediction process more challenging. 

5.3 Graphical User Interface (GUI) for Project Duration Forecasting 

The application of the GUI follows up a high-level pipeline presented in Figure 5.13. It begins by 

collecting progress data from the work packages, which is used to generate work package 

predictions using the LSTM algorithm. This algorithm has been evaluated previous section, 

showing the best performance. Similarly, the GUI collects the project schedule to calculate the 

Overall Project Forecasting using PDM and CPM methods. As outputs, this GUI delivers two 

graphical reports at each level of analysis, i.e., work packages and the overall project. 
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Figure 5.13 Schematic of GUI Functioning 

 

The GUI application uses unseen data obtained from the data augmentation process. This data is 

from a project containing 03 work packages: Excavation, Concrete and Backfill.  The following 

table summarizes the project information: 

Table 5.8 Project information for the Graphical User Interface 

Name Code Planned Duration (days) Budget ($) 

Excavation WP-0001 154 1,250,000.00 

Concrete WP-0002 168 1,100,000.00 

Backfill  WP-0003 105 1,900,000.00 

Total Project PJ-9000 427 4,250,000.00 
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Whereas each period is entered (assuming a project tracking during the execution), the predictions 

per work packages and the overall project duration are calculated. Concerning the project schedule 

at the work package level, the current GUI version works with Primavera P6, which in subsequent 

versions may incorporate new features such as linking with MS Project or Asta Powerproject due 

to the flexibility of Python. Figure 5.14 shows a screenshot of the schedule utilized in this 

demonstration, considering the three work packages, including start date, finish date, and 

precedence relationship information. In addition, Figure 5.15 shows its version in XML format. 

 

 

Figure 5.14 Project Schedule at Work Package Level in Primavera P6 
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Figure 5.15 Schedule at the Work Package Level in XML format (first lines) 

The following sections describe the Graphical User Interface (GUI) application: 

1. The user should ensure that the project information is filled in. This task should be done before 

entering any reporting period. To do so, it should look for it on the hub listed and review its 

corresponding details on the notebook. If the project does not exist, click the “Add New 

Project…” button and filled the project information requested in the emerging window. 



128 

 

 

 

 

 

Figure 5.16 Setup of the Project 

2. Verifying that the added project is listed on the Project Hub. To do this, click on the "Home" 

button to refresh the page. After that, the project hub window should look like the image 

provided below, showing the project PJ-9000. 

 

Figure 5.17 The Project Information of “PJ-9000” on the Project Hub 
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3. Once set up, the user can proceed with the forecasting. On the main menu, click the “Enter 

Tracking Data” button to enter the work packages’ information for the analyzed period. Then, 

Select the project (PJ-9000) from the dropdown list, entering the ending date, and press “Enter 

Data…”. Once entering the tracking data, press on “Save.” This process is repeated per progress 

period. It was entered until the Reporting Period number 09 (date = 2017-07-03). 

Figure 5.18 Entering Project Tracking Data 

4. Then, click “Step 01. Work Package level”, selecting the project PJ-9000 and the Reporting 

Period 09. The Excavation work package's forecasted duration of 63+114=177 days is reported 

at this data date. Similarly, navigating by the Work Packages buttons will allow users to observe 

other predictions. 

 

 

 

 

 

Figure 5.19 Forecasting Report for Excavation Work Package at Period 09 

1 

2 3 4 

At Reporting period 09:  
- Current BL = 154 d 
- Actual = 63 d  
- Forecast = 114d 
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5. Next, click “Step 2: Project Level” to show the overall project prediction. The XML file is 

loaded and then executed to read the primavera P6 information. It is relevant to note that the 

information in the GUI matches the information in the source P6 schedule. Next, click Display 

Duration at the Completion Forecasting button to show the Gantt Chart for the overall project. 

Finally, it is processed with PDM-CPM to show the overall project duration.  

 

 

 

 

 

 

 

 

Figure 5.20 Loading Primavera P6 data to the GUI 

The charts below show results for periods 08 and 09. It was included the period 08 (Figure 5.21) 

to present how differs the prediction period by period. Also, it is included the CPM network 

depicting the critical path per each period. 

 

 

 

Primavera P6 
Data matches 
with the GUI 
data 
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Figure 5.21 Forecasting Report for Overall Project at Period 08 

 

 

 

 

 

 

 

 

 

Figure 5.22 Forecasting Report for Overall Project at Period 09 

 

Forecasting results at 
Period 09. 

Deviation = -30 days 
Finish date = 2018/02/21 
 

Forecasting results at 
Period 08. 

Deviation = -27 days 
Finish date = 2018/02/18 
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5.4 Comparison with traditional methods for duration prediction 

Project managers often rely on the Earned Value methodology (EVM) to forecast project duration. 

Similarly, another helpful method gaining popularity in project time management is the Earned 

Schedule Management (ESM) because it is solely calculated using time units-based parameters. 

These techniques are frequently used in the construction industry and are known for leveraging 

current performances to achieve forecast outcomes. As a result, they are suitable for comparison 

with the proposed Deep Learning-based method. 

The Duration at completion (DAC) under EVM is calculated following the formula below:  

𝑫𝑨𝑪𝑬𝑽𝑴 =
𝑷𝑫

𝑺𝑷𝑰
 

Where DACEVM = Duration at Completion through EVM; PD = Planned Duration; and SPI = 

Schedule Performance Index. On the other hand, the DAC obtained using ESM uses formulas such 

as : 

𝑫𝑨𝑪𝑬𝑺𝑴 = 𝑨𝑻 + (
𝑷𝑫 − 𝑬𝑺

𝑺𝑷𝑰𝒕
) 

Where DACESM = Duration at Completion through ESM; AT=Actual Time; PD = Planned 

Duration; ES = Cumulated Earned Schedule (until analyzed period); SPIt = Schedule Performance 

Index in time units (calculated as ES/AT), also called Time Performance index in this research. 

5.4.1 Comparison of Deep Learning, EVM and ESM models per work package 

Table 5.9 shows the comparison of DAC over the concrete work package dataset (PD=98 days), 

which also includes the error in percentage per prediction at each period, calculated as: 
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𝑬𝒓𝒓𝒐𝒓 (%) = (
𝑫𝑨𝑪𝑨𝒄𝒕𝒖𝒂𝒍 − 𝑫𝑨𝑪𝒑𝒓𝒆𝒅𝒊𝒄𝒕𝒆𝒅

𝑫𝑨𝑪𝑨𝒄𝒕𝒖𝒂𝒍
) 𝒙𝟏𝟎𝟎 

Where DAC Actual stands for the actual duration at completion, and DAC predicted
 represents the 

predicted value at each period per model. 

Table 5.9 Comparison of  Deep Learning model, EVM and ESM for Concrete Work Package 

Reporting 

Period 

Duration at Completion 

(DAC, in days) 
 Error (in percentage) 

Deep-

Learning 
EVM ESM  Deep-

Learning 
EVM ESM 

4 168 36 81  -9% 77% 47% 

5 166 75 94  -8% 52% 39% 

6 165 144 107  -7% 7% 30% 

7 164 220 118  -6% -43% 23% 

8 162 251 129  -5% -63% 16% 

9 161 239 140  -5% -55% 9% 

10 160 213 150  -4% -38% 3% 

11 159 188 159  -3% -22% -3% 

12 158 167 167  -3% -8% -9% 

13 157 150 174  -2% 2% -13% 

14 156 137 181  -1% 11% -18% 

15 155 127 188  -1% 18% -22% 

16 154 118 194  0% 23% -26% 

17 154 112 196  0% 28% -27% 

18 153 106 199  0% 31% -29% 

19 153 103 197  0% 33% -28% 

20 154 100 195  0% 35% -26% 

21 154 98 179  0% 36% -16% 

22 156 98 154  -1% 36% 0% 
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Figure 5.23 Comparison of  Deep Learning model, EVM and ESM for Concrete Work Package 

Similarly, the comparison analysis for the Excavation work packages (PD=98 days) is shown as 

follows. 

Table 5.10 Comparison of  Deep Learning model, EVM and ESM for Excavation Work Package 

Reporting 

Period 

Duration at Completion 

(DAC, in days) 
 Error (in percentage) 

Deep-

Learning 
EVM ESM  Deep-

Learning 
EVM ESM 

4 172 54 89  9% 71% 53% 

5 173 110 101  9% 42% 46% 

6 174 209 114  8% -11% 40% 

7 175 317 128  7% -68% 32% 

8 176 360 139  7% -90% 26% 

9 178 339 149  6% -79% 21% 

10 179 298 160  5% -58% 15% 

11 181 260 171  4% -37% 10% 

12 182 228 181  4% -20% 4% 
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13 183 202 190  3% -7% -1% 

14 185 181 199  2% 4% -5% 

15 186 165 207  2% 13% -10% 

16 188 151 214  1% 20% -13% 

17 189 140 221  0% 26% -17% 

18 190 130 228  -1% 31% -21% 

19 192 123 235  -1% 35% -24% 

20 193 116 238  -2% 38% -26% 

21 195 111 240  -3% 41% -27% 

22 196 107 244  -4% 43% -29% 

23 197 104 243  -4% 45% -29% 

24 199 101 240  -5% 47% -27% 

25 200 99 232  -6% 47% -23% 

26 200 98 214  -6% 48% -13% 

27 200 98 189  -6% 48% 0% 

 

 

Figure 5.24 Comparison of  Deep Learning model, EVM and ESM for Excavation Work 

Package 
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Note that predictions have only been available since period 04 because the deep-learning model 

requires at least three historical records to make predictions. It is also worth mentioning that the 

EVM method is not the most suitable approach to monitor project time, despite its widespread use. 

This is because calculating time estimations with money units can be highly variable from one 

period to the next, leading to inconsistencies in the estimations. As example, the Figure 5.24 shows 

a lower prediction value by EVM. Below it is presented the comparison analysis for the Backfill 

work package (PD=84 days). 

Table 5.11 Comparison of  Deep Learning model, EVM and ESM for Backfill Work Package 

Period 

of 

forecast 

DAC (in days)  Error (in percentage) 

Deep Learning 

model 
EVM ESM  

Deep 

Learning 

model 

EVM ESM 

4 138 56 79  6% 62% 46% 

5 140 124 93  5% 16% 37% 

6 142 213 103  4% -45% 30% 

7 143 249 114  2% -69% 22% 

8 145 231 126  1% -57% 14% 

9 146 200 136  1% -36% 8% 

10 148 173 145  0% -17% 1% 

11 149 151 154  -1% -3% -4% 

12 150 134 161  -2% 9% -9% 

13 151 121 168  -3% 17% -14% 

14 152 111 175  -4% 24% -19% 

15 154 103 181  -5% 30% -23% 

16 155 97 183  -5% 34% -25% 

17 156 92 185  -6% 37% -26% 

18 157 88 188  -7% 40% -28% 

19 159 86 182  -8% 42% -24% 

20 160 84 170  -9% 43% -16% 

21 161 84 147  -9% 43% 0% 
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Figure 5.25 Comparison of  Deep Learning model, EVM and ESM for Backfill Work Package 

Such results where also evaluated using MAE and MAPE, underlining the Deep Learning model 

is superior to traditional methodologies evaluated. These are showing in the Table below: 

 

Table 5.12 Comparison of  Deep Learning model, EVM and ESM for Backfill Work Package 

Work Package Model MAE RMSE Ranking 

Concrete 

Deep Learning 2.97% 4.14% 1 

ESM 20.30% 23.69% 2 

EVM 32.54% 37.76% 3 

Excavation 

Deep Learning 4.34% 5.03% 1 

ESM 21.34% 25.13% 2 

EVM 40.50% 46.04% 3 

Backfill 

Deep Learning 4.38% 5.16% 1 

ESM 19.27% 22.64% 2 

EVM 34.73% 38.90% 3 
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5.5 Sensitivity Analysis applying Montecarlo Simulation 

A sensitivity analysis was conducted to assess how variations in independent variables impact the 

dependent variable (outcome). Specifically, the analysis focused on project progress data, which 

encompasses multiple variables per progress period. Consistent values were inputted, considering 

two key considerations. Firstly, the interdependency between time-sequential records (between 

timestamps), and secondly, the intrinsic relationship between project progress parameters within 

each timestamp. This includes relationships between PV (Planned Value) with EV (Earned Value), 

actual time and progress, actual time, and PV, among others. In time series datasets, both 

interactions are crucial to consider. Accordingly, the following steps were undertaken for the 

present study: 

1. A random progress period (timestamp) was selected for each work package, incorporating the 

original predictors. 

2. Each independent variable (predictor) underwent adjustment within predefined ranges to 

generate multiple consistent replicates of this specific progress period, utilizing Monte Carlo 

Simulation. This process exploited the intrinsic relationships between predictors, as illustrated 

in Figure 5.26. 

3. Monte Carlo simulation involves creating random values for the predictors based on specified 

distributions or criteria. Subsequently, the resulting outcomes were analyzed to assess 

sensitivity and uncertainty. 

4. Once the reproductions of progress period data were generated, each was seamlessly integrated 

as record data into the original project tracking dataset, preserving its chronological position. 
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5. Following integration, the deep learning algorithm was executed multiple times, corresponding 

to the number of independent variable chains created. This iterative process yielded predictions 

for Duration to Complete (DTC). 

6. The inputs and respective outcomes obtained from the deep learning algorithm iterations were 

thoroughly analyzed to discern patterns and behavior. 

 

 

Figure 5.26 Relationship between EV and ES for a Same Period. 

The following outlines the sensitivity analysis per work package utilizing the Deep Learning 

forecasting model.  
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5.5.1 Analysis of Concrete Work Package Prediction Model 

Table 5.13 presents concrete work package parameters, as well as, in Table 5.14 shows the 

timestamps analyzed, highlighting the fifteen period, which has been selected, and three previous 

timestamps as the forecasting model needs three past records to predict the future. Range of values 

greater than $705,323.5 (previous EV) and less than $843,059.0 (following EV) are considered for 

the EV in the simulations. In total, were conducted 50 simulations. 

Table 5.13 Work Package Parameters for Concrete 

Work Package Parameters Value 

Planned periods 24 

Actual periods 26 

Current analysed period (randomly selected) 15  

Budget (dollars) 1’100,000  

DTC 15th (predicted with actual values) 178.2 

 

Table 5.14 Concrete Work Package - Records for Sensitivity Analysis 

Actual 

Duration 

(weeks) 

Actual 

Duration 

(days) 

Cumulative 

EV ($) 

Cumulative 

Earned 

Schedule 

(weeks) 

Time 

Performance 

Index (TPI) 

Contract 

Amount 

($) 

Duration 

To 

complete 

(DTC, 

days) 

….       

12 84 563,399.6 9.2 0.768 1’100,000 174.8 

13 91 634,467.7 10.8 0.827 1’100,000 176.3 

14 98 705,323.5 12.3 0.878 1’100,000 177.4 

15 105 775,132.2 13.9 0.925 1’100,000 DTC 15th 

16 112 843,059 15.5 0.968 1’100,000 --- 

….       

 

As a result, fifty predictor’s replicates of the 15th period were obtained, as detailed in Table 5.15. 

Following the previous steps explained, the forecasting model was run to predict Duration to 
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Complete (DTC) considering each new record which have replaced the “fifteen” record within the 

whole list of timestamps. After that, Figure 5.27 depicts the interaction between independent and 

target variables. The analysis showed that a variation between -8% and 7% in the EV values 

represents a variability between -8% and -12% in the target variable (Duration to Complete), 

respectively. The ES is between -8% and 9% in this scenario. 

Table 5.15 Results of Fifty Simulations for Sensitivity Analysis - Concrete Forecasting Model 

Independent Variables and Predicted DAC for 15th period  Variations (%) 

Cumulative 

EV ($) 

Cumulative 

Earned 

Schedule 

(weeks) 

Time 

Performance 

Index (TPI) 

Contract 

Amount ($) 

Duration To 

complete 

(DTC, days) 

 EV ES TPI 
Contract 

Amount 
DTC 

783,953.20 14.08 0.94 1,100,000.00 80.9  -1% -1% -1% 0% -10% 

811,599.10 14.74 0.98 1,100,000.00 79.8  -5% -6% -6% 0% -9% 

823,641.60 15.02 1.00 1,100,000.00 79.3  -6% -8% -8% 0% -8% 

727,838.40 12.79 0.85 1,100,000.00 82.9  6% 8% 8% 0% -13% 

781,783.20 14.03 0.94 1,100,000.00 81.0  -1% -1% -1% 0% -11% 

771,058.10 13.78 0.92 1,100,000.00 81.4  1% 1% 1% 0% -11% 

795,542.70 14.36 0.96 1,100,000.00 80.4  -3% -3% -3% 0% -10% 

731,679.70 12.87 0.86 1,100,000.00 82.8  6% 7% 7% 0% -13% 

814,223.40 14.80 0.99 1,100,000.00 79.7  -5% -7% -7% 0% -9% 

813,256.50 14.78 0.99 1,100,000.00 79.7  -5% -7% -7% 0% -9% 

808,615.30 14.67 0.98 1,100,000.00 79.9  -4% -6% -6% 0% -9% 

816,519.30 14.85 0.99 1,100,000.00 79.6  -5% -7% -7% 0% -9% 

731,523.00 12.87 0.86 1,100,000.00 82.8  6% 7% 7% 0% -13% 

752,780.40 13.36 0.89 1,100,000.00 82.1  3% 4% 4% 0% -12% 

809,571.80 14.69 0.98 1,100,000.00 79.9  -4% -6% -6% 0% -9% 

785,875.50 14.12 0.94 1,100,000.00 80.8  -1% -2% -2% 0% -10% 

771,611.60 13.79 0.92 1,100,000.00 81.4  0% 1% 1% 0% -11% 

748,021.50 13.25 0.88 1,100,000.00 82.3  3% 5% 5% 0% -12% 

764,235.60 13.62 0.91 1,100,000.00 81.7  1% 2% 2% 0% -12% 

739,139.00 13.04 0.87 1,100,000.00 82.6  5% 6% 6% 0% -13% 

784,867.10 14.10 0.94 1,100,000.00 80.8  -1% -2% -2% 0% -10% 

749,080.90 13.27 0.88 1,100,000.00 82.3  3% 4% 4% 0% -12% 

749,619.70 13.28 0.89 1,100,000.00 82.3  3% 4% 4% 0% -12% 

822,186.50 14.99 1.00 1,100,000.00 79.4  -6% -8% -8% 0% -8% 

814,637.50 14.81 0.99 1,100,000.00 79.7  -5% -7% -7% 0% -9% 

750,418.70 13.30 0.89 1,100,000.00 82.2  3% 4% 4% 0% -12% 

724,716.00 12.72 0.85 1,100,000.00 83.0  7% 8% 8% 0% -13% 
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727,212.90 12.78 0.85 1,100,000.00 83.0  6% 8% 8% 0% -13% 

741,052.60 13.08 0.87 1,100,000.00 82.6  4% 6% 6% 0% -13% 

741,640.10 13.10 0.87 1,100,000.00 82.6  4% 6% 6% 0% -13% 

815,927.20 14.84 0.99 1,100,000.00 79.6  -5% -7% -7% 0% -9% 

803,784.60 14.55 0.97 1,100,000.00 80.1  -4% -5% -5% 0% -9% 

755,635.00 13.42 0.89 1,100,000.00 82.0  3% 3% 3% 0% -12% 

748,661.80 13.26 0.88 1,100,000.00 82.3  3% 4% 4% 0% -12% 

820,284.70 14.94 1.00 1,100,000.00 79.5  -6% -8% -8% 0% -9% 

756,858.50 13.45 0.90 1,100,000.00 82.0  2% 3% 3% 0% -12% 

812,107.70 14.75 0.98 1,100,000.00 79.8  -5% -6% -6% 0% -9% 

730,851.00 12.86 0.86 1,100,000.00 82.9  6% 7% 7% 0% -13% 

782,089.70 14.03 0.94 1,100,000.00 81.0  -1% -1% -1% 0% -11% 

820,077.30 14.94 1.00 1,100,000.00 79.5  -6% -8% -8% 0% -9% 

784,629.90 14.10 0.94 1,100,000.00 80.8  -1% -2% -2% 0% -10% 

794,978.30 14.34 0.96 1,100,000.00 80.4  -3% -3% -3% 0% -10% 

756,453.90 13.44 0.90 1,100,000.00 82.0  2% 3% 3% 0% -12% 

749,671.90 13.28 0.89 1,100,000.00 82.3  3% 4% 4% 0% -12% 

811,019.00 14.72 0.98 1,100,000.00 79.8  -5% -6% -6% 0% -9% 

794,410.50 14.33 0.96 1,100,000.00 80.5  -2% -3% -3% 0% -10% 

734,573.10 12.94 0.86 1,100,000.00 82.8  5% 7% 7% 0% -13% 

751,017.80 13.31 0.89 1,100,000.00 82.2  3% 4% 4% 0% -12% 

821,660.40 14.98 1.00 1,100,000.00 79.4  -6% -8% -8% 0% -8% 

748,509.40 13.26 0.88 1,100,000.00 82.3  3% 4% 4% 0% -12% 

 

 

 

 

 

 

 

 

Figure 5.27 Interaction Between Predictor and Target Variables – Concrete Forecasting Model 
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5.5.2 Analysis of Excavation Work Package Prediction Model 

Table 5.16 presents the parameters of the excavation work package, as well as, Table 5.17 depicts 

the portion of the records analyzed, highlighting the eighteen period which is studied. Range of 

values greater than $1’364,048 (previous EV) and less than $1’553,022 (following EV) are 

considered for the EV in the simulations. In total, were carried out 50 simulations. 

Table 5.16 Work Package Parameters for Excavation 

Work Package Parameters Value 

Planned periods 14 

Actual periods 27 

Current analyzed period (randomly selected) 18 

Budget (dollars) 2’000,000  

DTC 18th (predicted with actual values) 49.5 

 

Table 5.17 Excavation Work Package - Records for Sensitivity Analysis 

Actual 

Duration 

(weeks) 

Actual 

Duration 

(days) 

Cumulative 

EV ($) 

Cumulative 

Earned 

Schedule 

(weeks) 

Time 

Performance 

Index (TPI) 

Contract 

Amount 

($) 

Duration To 

complete 

(DTC, days) 

….       

15 105 1’157,427 6.67 0.444 2’000,000 68.2 

16 112 1’262,355 6.88 0.430 2’000,000 61.9 

17 119 1’364,048 7.13 0.419 2’000,000 55.6 

18 126 1’461,330 7.41 0.411 2’000,000 DTC 18th 

19 133 1’553,022 7.67 0.404 2’000,000 --- 

….       

 

As a result, fifty replicates were generated, as presented in Table 5.18. The predictors 

corresponding to the “eighteen period” and, consequently, the predicted Duration to Complete 

(DTC) are described below. These predictions encompass variations relative to the original 

parameters for this period. Furthermore, Figure 5.28 illustrates the interaction between 

independent and target variables. It reveals that a variation ranging from -4% to 4% in the Earned 
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Value (EV) values corresponds to a variability between 3% and 2% in the target variable (Duration 

to Complete), respectively. In this scenario, the Earned Schedule (ES) ranges between -2% and 

2%. 

Table 5.18 Results of Fifty Simulations for Sensitivity Analysis - Excavation Forecasting Model 

Independent Variables and Predicted DAC for 18th period  Variations (%) 

Cumulative EV 

($) 

Cumulative 

Earned 

Schedule 
(weeks) 

Time 
Performance 

Index (TPI) 

Contract 

Amount ($) 

Duration To 

complete 

(DTC, 
days) 

 EV ES TPI 
Contract 

Amount 
DTC 

1,508,594.20 7.55 0.42 2,000,000.00 60.6  -3% -2% -2% 0% 4% 

1,460,855.90 7.41 0.41 2,000,000.00 61.3  0% 0% 0% 0% 3% 

1,479,068.50 7.47 0.41 2,000,000.00 61.1  -1% -1% -1% 0% 3% 

1,493,230.20 7.51 0.42 2,000,000.00 60.8  -2% -1% -1% 0% 3% 

1,436,162.60 7.34 0.41 2,000,000.00 61.6  2% 1% 1% 0% 2% 

1,464,695.50 7.42 0.41 2,000,000.00 61.3  0% 0% 0% 0% 3% 

1,451,758.20 7.39 0.41 2,000,000.00 61.4  1% 0% 0% 0% 2% 

1,460,862.20 7.41 0.41 2,000,000.00 61.3  0% 0% 0% 0% 3% 

1,411,481.40 7.27 0.40 2,000,000.00 62.0  3% 2% 2% 0% 2% 

1,461,094.50 7.41 0.41 2,000,000.00 61.3  0% 0% 0% 0% 3% 

1,488,630.00 7.49 0.42 2,000,000.00 60.9  -2% -1% -1% 0% 3% 

1,444,311.10 7.36 0.41 2,000,000.00 61.5  1% 1% 1% 0% 2% 

1,508,625.20 7.55 0.42 2,000,000.00 60.6  -3% -2% -2% 0% 4% 

1,464,621.80 7.42 0.41 2,000,000.00 61.3  0% 0% 0% 0% 3% 

1,520,059.10 7.58 0.42 2,000,000.00 60.5  -4% -2% -2% 0% 4% 

1,434,401.40 7.34 0.41 2,000,000.00 61.7  2% 1% 1% 0% 2% 

1,470,394.00 7.44 0.41 2,000,000.00 61.2  -1% 0% 0% 0% 3% 

1,417,978.30 7.29 0.40 2,000,000.00 61.9  3% 2% 2% 0% 2% 

1,450,803.70 7.38 0.41 2,000,000.00 61.4  1% 0% 0% 0% 2% 

1,419,797.30 7.29 0.41 2,000,000.00 61.9  3% 2% 2% 0% 2% 

1,419,427.00 7.29 0.41 2,000,000.00 61.9  3% 2% 2% 0% 2% 

1,416,766.00 7.29 0.40 2,000,000.00 61.9  3% 2% 2% 0% 2% 

1,402,138.90 7.24 0.40 2,000,000.00 62.1  4% 2% 2% 0% 1% 

1,490,389.00 7.50 0.42 2,000,000.00 60.9  -2% -1% -1% 0% 3% 

1,450,459.40 7.38 0.41 2,000,000.00 61.5  1% 0% 0% 0% 2% 

1,403,584.50 7.25 0.40 2,000,000.00 62.1  4% 2% 2% 0% 1% 

1,485,110.80 7.48 0.42 2,000,000.00 61.0  -2% -1% -1% 0% 3% 

1,487,331.20 7.49 0.42 2,000,000.00 60.9  -2% -1% -1% 0% 3% 

1,483,286.90 7.48 0.42 2,000,000.00 61.0  -2% -1% -1% 0% 3% 

1,485,096.80 7.48 0.42 2,000,000.00 61.0  -2% -1% -1% 0% 3% 

1,427,391.60 7.32 0.41 2,000,000.00 61.8  2% 1% 1% 0% 2% 

1,515,408.70 7.57 0.42 2,000,000.00 60.6  -4% -2% -2% 0% 4% 

1,473,639.70 7.45 0.41 2,000,000.00 61.1  -1% 0% 0% 0% 3% 

1,457,443.20 7.40 0.41 2,000,000.00 61.4  0% 0% 0% 0% 3% 

1,513,283.90 7.56 0.42 2,000,000.00 60.6  -4% -2% -2% 0% 4% 

1,501,774.10 7.53 0.42 2,000,000.00 60.7  -3% -2% -2% 0% 4% 

1,468,141.20 7.43 0.41 2,000,000.00 61.2  0% 0% 0% 0% 3% 

1,515,690.70 7.57 0.42 2,000,000.00 60.6  -4% -2% -2% 0% 4% 

1,399,750.30 7.24 0.40 2,000,000.00 62.1  4% 2% 2% 0% 1% 

1,512,901.30 7.56 0.42 2,000,000.00 60.6  -4% -2% -2% 0% 4% 

1,455,018.80 7.40 0.41 2,000,000.00 61.4  0% 0% 0% 0% 3% 

1,418,730.90 7.29 0.41 2,000,000.00 61.9  3% 2% 2% 0% 2% 

1,425,084.40 7.31 0.41 2,000,000.00 61.8  2% 1% 1% 0% 2% 

1,511,146.40 7.56 0.42 2,000,000.00 60.6  -3% -2% -2% 0% 4% 

1,443,271.30 7.36 0.41 2,000,000.00 61.5  1% 1% 1% 0% 2% 
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1,476,756.00 7.46 0.41 2,000,000.00 61.1  -1% -1% -1% 0% 3% 

1,515,480.00 7.57 0.42 2,000,000.00 60.6  -4% -2% -2% 0% 4% 

1,399,326.50 7.23 0.40 2,000,000.00 62.1  4% 2% 2% 0% 1% 

1,493,600.30 7.51 0.42 2,000,000.00 60.8  -2% -1% -1% 0% 3% 

1,444,809.00 7.37 0.41 2,000,000.00 61.5  1% 1% 1% 0% 2% 

 

 

Figure 5.28 Interaction Between Predictor and Target Variables – Excavation Forecasting Model 

5.5.3 Analysis of Backfill Work Package Prediction Model. 

Table 5.19 presents the parameters of the backfill work package, as well as, in Table 5.20 depicts 

the portion of the records analyzed, highlighting the fifteen period which is studied. Range of 

values greater $1’676,408 (previous EV) and, less than $1’837,939 (next EV) 

Table 5.19 Work Package Parameters for Backfill 

Project characteristics Value 

Planned periods 7 

Actual periods 18 

Current analysed period (randomly selected) 15 

Budget (dollars) 1’900,000  

DTC 15th (predicted with actual values) 3.3 
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Table 5.20 Backfill Work Package - Records for Sensitivity Analysis 

Actual 

Duration 

(weeks) 

Actual 

Duration 

(days) 

Cumulative 

EV ($) 

Cumulative 

Earned 

Schedule 

(weeks) 

Time 

Performance 

Index (TPI) 

Contract 

Amount ($) 

Duration To 

complete 

(DTC, days) 

….       

12 84 1’436,694 4.51 0.37 1’900,000 21.36 

13 91 1’564,489 4.69 0.36 1’900,000 15.26 

14 98 1’676,408 4.85 0.34 1’900,000 9.24 

15 105 1’768,781 4.98 0.33 1’900,000 DTC 15th 

16 112 1’837,939 5.55 0.34 1’900,000 --- 

….       

 

As a result, fifty predictor’s replicates were obtained, shown in Table 5.21. The independent inputs 

yielded for the fifteen period and, consequently, the predicted Duration to Complete (DAC) are 

shown below. It includes the variations with respect to the original parameters for this period. The 

analysis showed that a variation between -8% and 5% in the EV values represents a variability 

between 52% and 59% in the target variable (Duration to Complete), respectively. The ES is 

between -5% and 2% in this scenario. This also shows that this model is highly sensitive to 

variations of input variables, unlike the excavation and concrete forecasting models. 

Table 5.21 Results of Fifty Simulations for Sensitivity Analysis in the Backfill Forecasting 

Independent Variables and Predicted DAC for 15th period  Variations (%) 

Cumulative 
EV ($) 

Cumulative 

Earned 
Schedule 

(weeks) 

Time 

Performance 

Index (TPI) 

Contract 
Amount ($) 

Duration To 

complete (DTC, 

days) 

 EV ES TPI 
Contract 

Amount DTC 

1,720,719.80 4.91 0.33 1,900,000.00 10.94  3% 1% 1% 0% 48% 

1,755,905.70 4.96 0.33 1,900,000.00 11.02  1% 0% 0% 0% 48% 

1,794,965.50 5.13 0.34 1,900,000.00 11.21  -1% -3% -3% 0% 47% 

1,794,347.70 5.12 0.34 1,900,000.00 11.21  -1% -3% -3% 0% 47% 

1,743,900.50 4.95 0.33 1,900,000.00 10.99  1% 1% 1% 0% 48% 

1,726,552.40 4.92 0.33 1,900,000.00 10.95  2% 1% 1% 0% 48% 

1,788,674.10 5.06 0.34 1,900,000.00 11.14  -1% -2% -2% 0% 47% 

1,748,224.60 4.95 0.33 1,900,000.00 11.00  1% 1% 1% 0% 48% 

1,742,922.60 4.95 0.33 1,900,000.00 10.99  1% 1% 1% 0% 48% 

1,726,492.10 4.92 0.33 1,900,000.00 10.95  2% 1% 1% 0% 48% 
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1,800,778.00 5.19 0.35 1,900,000.00 11.29  -2% -4% -4% 0% 46% 

1,779,296.80 5.00 0.33 1,900,000.00 11.07  -1% 0% 0% 0% 47% 

1,721,063.50 4.91 0.33 1,900,000.00 10.94  3% 1% 1% 0% 48% 

1,762,346.10 4.97 0.33 1,900,000.00 11.03  0% 0% 0% 0% 47% 

1,727,037.50 4.92 0.33 1,900,000.00 10.95  2% 1% 1% 0% 48% 

1,748,420.60 4.95 0.33 1,900,000.00 11.00  1% 1% 1% 0% 48% 

1,779,119.80 5.00 0.33 1,900,000.00 11.07  -1% 0% 0% 0% 47% 

1,773,408.70 4.99 0.33 1,900,000.00 11.05  0% 0% 0% 0% 47% 

1,765,600.20 4.98 0.33 1,900,000.00 11.04  0% 0% 0% 0% 47% 

1,726,513.00 4.92 0.33 1,900,000.00 10.95  2% 1% 1% 0% 48% 

1,755,296.40 4.96 0.33 1,900,000.00 11.02  1% 0% 0% 0% 48% 

1,751,353.10 4.96 0.33 1,900,000.00 11.01  1% 0% 0% 0% 48% 

1,763,396.70 4.97 0.33 1,900,000.00 11.03  0% 0% 0% 0% 47% 

1,729,824.30 4.93 0.33 1,900,000.00 10.96  2% 1% 1% 0% 48% 

1,774,851.70 4.99 0.33 1,900,000.00 11.06  0% 0% 0% 0% 47% 

1,769,824.10 4.98 0.33 1,900,000.00 11.05  0% 0% 0% 0% 47% 

1,794,640.80 5.12 0.34 1,900,000.00 11.21  -1% -3% -3% 0% 47% 

1,787,410.30 5.05 0.34 1,900,000.00 11.13  -1% -1% -1% 0% 47% 

1,758,170.70 4.97 0.33 1,900,000.00 11.02  1% 0% 0% 0% 48% 

1,777,235.20 4.99 0.33 1,900,000.00 11.06  0% 0% 0% 0% 47% 

1,756,678.40 4.96 0.33 1,900,000.00 11.02  1% 0% 0% 0% 48% 

1,752,060.50 4.96 0.33 1,900,000.00 11.01  1% 0% 0% 0% 48% 

1,767,697.30 4.98 0.33 1,900,000.00 11.04  0% 0% 0% 0% 47% 

1,794,263.50 5.12 0.34 1,900,000.00 11.20  -1% -3% -3% 0% 47% 

1,754,465.30 4.96 0.33 1,900,000.00 11.01  1% 0% 0% 0% 48% 

1,780,718.30 5.00 0.33 1,900,000.00 11.07  -1% 0% 0% 0% 47% 

1,774,837.70 4.99 0.33 1,900,000.00 11.06  0% 0% 0% 0% 47% 

1,799,092.80 5.17 0.34 1,900,000.00 11.27  -2% -4% -4% 0% 46% 

1,770,667.00 4.98 0.33 1,900,000.00 11.05  0% 0% 0% 0% 47% 

1,791,742.80 5.10 0.34 1,900,000.00 11.17  -1% -2% -2% 0% 47% 

1,721,493.40 4.92 0.33 1,900,000.00 10.94  3% 1% 1% 0% 48% 

1,741,675.80 4.94 0.33 1,900,000.00 10.99  2% 1% 1% 0% 48% 

1,750,503.40 4.96 0.33 1,900,000.00 11.01  1% 1% 1% 0% 48% 

1,776,568.20 4.99 0.33 1,900,000.00 11.06  0% 0% 0% 0% 47% 

1,787,137.40 5.05 0.34 1,900,000.00 11.12  -1% -1% -1% 0% 47% 

1,745,521.10 4.95 0.33 1,900,000.00 10.99  1% 1% 1% 0% 48% 

1,723,349.10 4.92 0.33 1,900,000.00 10.94  3% 1% 1% 0% 48% 

1,793,350.70 5.11 0.34 1,900,000.00 11.19  -1% -3% -3% 0% 47% 

1,770,235.70 4.98 0.33 1,900,000.00 11.05  0% 0% 0% 0% 47% 

1,736,756.90 4.94 0.33 1,900,000.00 10.97  2% 1% 1% 0% 48% 
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Figure 5.29 Interaction Between Predictor and Target Variables – Backfill Forecasting Model 
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Chapter 6 Conclusions 

6.1 Research Summary 

Construction projects are executed complexly and dynamically, yielding large quantities of data 

each time. That is why accurately forecasting outcomes, such as project duration, becomes 

paramount and challenging simultaneously. Typical forecasting approaches contractors adopt 

when addressing ongoing projects consider traditional methods such as Earned Value 

Management, Critical Path Method, or Montecarlo simulation. However, each presents multiple 

drawbacks, even when powered by sophisticated software. Some inconveniences related to EVM 

can be the static performance consideration applied over the remaining project, CPM might be the 

inaccuracy assumptions of remaining work durations, and Monte Carlo simulation could be biased 

when incorporating uncertainty parameters. To address these shortfalls, this research proposes 

whole management that starts with data collection and finishes with accurate project duration 

prediction by applying deep learning algorithms. It aims to leverage large amounts of data created 

during project executions, suggesting identifying, managing, and organizing data, which should 

be used to make well-based data-driven forecasts. 

The research went through four stages. First, an extensive review of existing research was 

conducted on project duration management, delay factors affecting the project schedule 

management, forecasting duration methods, the latest machine learning algorithms to address time 

series datasets on regression problems, and machine learning applications in construction projects. 

This work is detailed in the second chapter of the thesis. The second stage involved an in-depth 

examination of the construction projects by facing the execution phase to identify potential factors 

associated with project duration forecasting. It assessed the adopted operational organization 
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(vertical analysis), process involved, and project time progress (horizontal analysis) to understand 

the project intricacies at this phase. Then, combined with well-known forecasting practices such 

as Monte Carlo simulation and Earned Schedule Management (a derived of EVM), led to the 

identification of four essential project duration influencing factors for the Data Acquisition 

modelling. DAM was developed through a relational database and an ERD. Finally, an intensive 

inspection of actual, available data was performed. The findings from this examination are 

presented in the third chapter of the thesis.  

The third stage explained the development of the machine learning model and the User Interface. 

The former describes the assessment of three alternatives to arrange the dataset to get the optimal 

outcome. After that, the data preprocessing step was explained, including the feature selection 

conducted through multicollinearity analysis and Spearman correlation matrix, data splitting 

(involving the training, validation, and test datasets) and data normalization using the min-max 

technique. Next, the preprocessed data is fed to the forecasting model by the rolling window 

technique, emphasizing the importance of the autoregressive time series dataset property. It also 

described specific data treatment per each algorithm (LSTM, CONV-1D and MLP), like the 

hyperparameters tuning. The performance metrics that fit more when assessing time series datasets 

were explained, such as MAE, RMSE, MASE, and sMAPE. Once machine learning predictions 

are obtained, the way to calculate the whole project duration is explained using PDM-CPM 

methods. On the other hand, each component of the User Interface was described, and its 

application was properly sequenced since data is inputted until the duration forecast reports. The 

discussion on this approach is found in the fourth chapter of the thesis. 

The last stage involved applying the machine learning model and the user interface as a case study 

to evaluate its efficacy and friendly usage by practitioners. The pipeline used actual data from a 
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mining civil project portfolio.  The data preprocessing comprised selecting the optimal input 

variable by feature selection techniques, and then they were split and normalized. This step 

delivered 173, 132, and 85 records for the Concrete, Excavation, and Backfill work packages. 

After that, each work package was performed per each algorithm, namely LSTM, CONV-1D and 

MLP. As a result, the LSTM showed the best performance by comparing three aspects: loss curves 

aligned with the learning process, performance metrics and adjusted R-squared aligned with 

unseen dataset outcomes performance.  Accordingly, the LSTM model was incorporated into the 

User Interface. Finally, the model was compared to the EVM and ESM forecasting methods, and 

a sensitivity analysis was performed. 

This thesis has successfully developed a proof of concept (PoC) to validate the feasibility of using 

artificial intelligence for forecasting duration-at-completion in construction projects. The results 

of the PoC confirmed that deep learning algorithms can overcome the inaccuracy problems of 

traditional methods by effectively managing historical data. Additionally, a user interface was 

proposed to make the solution more accessible to non-expert practitioners, demonstrating its 

potential. The study also considered and addressed challenges such as unstructured and insufficient 

actual data using techniques like data augmentation. This new approach paves the way for 

innovative methods of project duration forecasting using artificial intelligence, particularly deep 

learning. 

6.2 Expected Contributions 

6.2.1 Academic Contributions 

In the academic field, this research proposes a new approach to project duration forecasting: 



152 

 

- The model training has used data from multiple projects, not only one, representing better 

different scenarios.  

- Unlike most previous studies, this study approaches the forecasting problem as a regression, 

Earlier works, aim to set classifiers as targets and assign outcomes to such classes.  

- A novel framework to consolidate work package predictions into the overall project prediction 

based on CPM and PDM methodologies. 

- This model handles Multivariate Time Series datasets to address the project monitoring 

dynamic during the  execution phase. It struggles to select the proper algorithm to handle time 

dependencies. Moreover, the multivariate feature added complexity because it implies 

managing multiple predictors simultaneously and understanding the relationship between 

variables. Due to the complexity of construction projects, the research problem should be 

solved naturally by involving more than one predictor. 

- This study presented a forecasting model comparing three Deep Learning algorithms: LSTM 

from Recurrent Neural Networks (RNN), CONV-1D from Convolutional Neural Networks 

(CNN) and the well-known MLP to learn complex sequential data patterns. They were chosen 

for their demonstrated capabilities in managing multivariate time series datasets. 

This investigation aims to contribute to AI applications in the construction sector, especially in 

forecasting, considering its early exploration stage. 

6.2.2 Industry Contributions 

On the industry side, this research is expected to contribute as follows: 

- Delivering accurate predictions earlier than traditional methods enables project managers 

to handle resources efficiently and mitigate risks effectively. This model can also prevent 

indirect cost overruns and additional expenses due to liquidated damages. 



153 

 

- Enhancing forecasting performance at work package and project levels compared to 

traditional methods. This granular approach allows the project manager to mitigate 

potential risks or leverage potential opportunities. By acting, the overall project duration 

will also be positively impacted in a timely manner. 

- Additionally, this research proposed a data collection framework oriented toward 

overcoming the challenging problem of poor data management and helping to identify 

impacting duration factors during project monitoring. Implementing it mitigates processing 

delays in obtaining forecasts. Similarly, the machine learning model improves accuracy by 

being fed new, quality data collected over time. 

- The GUI was designed to be user-friendly and to bridge the gap between understanding 

complex deep-learning algorithms and using them for predictions. The GUI also aims to 

give practitioners forecasting reports with charts and tables. Gantt charts are provided to 

compare planned, actual, and forecasts; behaviour curves are provided to visualize the 

deviation of finish dates; and summarised tables are provided to show the historical project 

predictions. Additionally, interaction with the project schedule to gather essential 

information and a visual representation of the critical path through CPM is returned on the 

overall project calculation. 

6.3 Limitations 

One of the challenges was the lack of sufficient, actual project data at the work package level with 

shared characteristics such as type of construction, location, remoteness, complexity, technology 

used, owner type, contract type, and so on. Machine learning algorithms rely heavily on consistent 

data to identify patterns. To address this issue, the research assigned actual data for the training 

and validation datasets, which perform the learning process, and augmented data (generated from 
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original data) for the test process, which requests unseen data. Overcoming this issue would 

provide a significant spectrum of duration-affecting factors that can be selected when performing 

the feature selection step.  

Another challenge in this study was the quality of data available without missing values or 

inconsistencies. Data quality also implies that data is tracked sequentially during the project’s 

execution and should be coherent across different sources. For example, the project schedule 

information should be aligned with the project cost at the same analysis period. 

6.4 Recommendations for future research 

This study addresses three algorithms chosen due to their better predominance when performing 

predictions with a time series data set according to the literature review; however, it can be added 

more to this comparison evaluation. As mentioned earlier, knowing other scenarios, such as new 

types of projects, new construction locations, or, more specifically, weather and transportation 

challenges, among others, will be necessary. Those will influence the algorithm selected. While 

this study verifies that LSTM performs well by managing time series datasets, further investigation 

is required, especially regarding the challenges in the construction sector. It would provide new 

insights into the deep learning model performance. Similarly, as the classification problem is 

prominent so far, more regression problem approaches are needed. In dynamic construction project 

tracking, data is collected sequentially over the project time. Therefore, more investigation 

considering multivariate time series datasets will improve the forecasting duration.   

On the other hand, the CPM-PDM techniques were employed when integrating work package-

level predictions to obtain overall project duration; nevertheless, it can be experimented with using 

other methods such as Critical Chain Project Management, Constraint Programming, Line of 
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Balance, or Pull-Driven Scheduling. Whereas drawbacks were related earlier, they can be 

addressed using machine learning algorithms. Once done, integrating the improved scheduling 

technique selected with individual predictions would offer new insights. This matter would need 

more investigation. Finally, migrating to any cloud service can improve the standalone GUI. It will 

allow real-time interaction with data sources, thus providing quick deep learning-based 

predictions. 
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Appendix A: Python Script for Duration at Completion Forecasting 

using Long Short-Term Memory (LSTM) Algorithm – Work 

Package Concrete 

1. Importing libraries and functions 

import matplotlib.pyplot as plt 
import tensorflow as tf 
from tensorflow import keras 
import pandas as pd 
import numpy as np 
from sklearn.metrics import mean_absolute_error 
from sklearn.metrics import mean_squared_error 
from sklearn.metrics import mean_absolute_percentage_error 
from math import sqrt 
from sklearn.preprocessing import MinMaxScaler 
from sklearn.metrics import r2_score 
from keras.models import load_model 
from keras.regularizers import l2 
from matplotlib.font_manager import FontProperties 
import random 

 

2. Reading raw data and initial Data Inspection 

df_1 = pd.read_csv('Concrete_Data_NEW_3x.csv') 
rev_1 = df_1.values.astype('float32') 
titles_1 = list(df_1.columns)[1:] 
feature_keys_1 = list(df_1.columns)[1:] 
get_colors_1 = lambda n: ["#%06x" % random.randint(0, 0xFFFFFF) for _ in 
range(n)] 
colors_1 = get_colors_1(len(feature_keys_1)) 
date_time_key_1 = df_1.columns[0] 
 
def show_raw_visualization(df, date_time_key, feature_keys, colors): 
    data_0 = df[date_time_key] 
    fig, axes = plt.subplots(nrows=round(len(feature_keys)/2+.1), ncols=2, 
figsize=(15, 20), dpi=80, facecolor="w", edgecolor="k") 
    for i in range(len(feature_keys)): 
        key = feature_keys[i] 
        c = colors[i % (len(colors))] 
        t_data = df[key] 
        t_data.index = data_0 
        t_data.head() 
        ax = t_data.plot(ax=axes[i // 2, i % 2], color=c, rot=0,) 
        ax.legend([list(df.columns)[1:][i]]) 
        ax.set_title("{}".format(list(df.columns)[1:][i]),loc='left',color='blue'
) 
        ax.grid() 
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        labels = ax.get_xticklabels() + ax.get_yticklabels() 
        [label.set_fontname('Arial') for label in labels] 
        plt.tight_layout() 
show_raw_visualization(df_1, date_time_key_1, feature_keys_1, colors_1) 
 
def show_heatmap(data): 
    plt.matshow(data.corr()) 
    plt.xticks(range(data.shape[1]), data.columns, fontsize=8, rotation=90) 
    plt.gca().xaxis.tick_bottom() 
    plt.yticks(range(data.shape[1]), data.columns, fontsize=8) 
    cb = plt.colorbar() 
    cb.ax.tick_params(labelsize=12) 
    plt.title("Feature Correlation Heatmap", fontsize=14) 
    plt.show() 
show_heatmap(df_1[list(df_1.columns)[1:]]) 
 
Selected_list= [1,9,10,11,17,18] 
print("The selected parameters are:", ",".join([titles_1[i] for i in 
Selected_list])) 
selected_features_1 = [feature_keys_1[i] for i in Selected_list] 
 

3. Data Preprocessing: Splitting, Normalization and Grouping for model training 

split_1=0.7 
past_1 = 3 
future_1 = 0 
 
### Data Splitting ### 
def splitting(split, df, selected_features): 
    train_split = int(split * int(df.shape[0])) 
    df_train= df[selected_features][:train_split] 
    df_test= df[selected_features][train_split:] 
    return df_train, df_test 
df_train1, df_test1 = splitting(split_1, df_1, selected_features_1) 
 
### Data Normalization ### 
def normalization(df): 
    values = df.values.astype('float32') 
    scaler = MinMaxScaler() 
    values_scaled = scaler.fit_transform(values) 
    df_scaled = pd.DataFrame(values_scaled) 
    return df_scaled 
df_train_scaled1 = normalization(df_train1) 
df_test_scaled1 = normalization(df_test1) 
 
##### Variables for denormalization ### 
def denormalization(df): 
    Max_orig = df.iloc[:,len(Selected_list)-1].max() 
    Min_orig = df.iloc[:,len(Selected_list)-1].min() 
    Delta = Max_orig-Min_orig 
    return Delta, Min_orig 
Delta_train1, Min_orig_train1 = denormalization(df_train1) 
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Delta_test1, Min_orig_test1 = denormalization(df_test1) 
 
##### Grouping for Modelling ### 
def df_to_X_y(df, past): 
  df_as_np = df.to_numpy() 
  X = [] 
  y = [] 
  for i in range(len(df_as_np)-past): 
    row = [r for r in df_as_np[i:i+past]] 
    X.append(row) 
    label = df_as_np[i+past][df.shape[1]-1] 
    y.append(label) 
  return np.array(X), np.array(y) 
 
X1_train, y1_train = df_to_X_y(df_train_scaled1, past_1) 
X1_val, y1_val = df_to_X_y(df_test_scaled1, past_1) 
X1_train.shape, y1_train.shape, X1_val.shape, y1_val.shape 
 

4. Forecasting Model Training 

learning_rate_1 = 0.001 
epochs_1 = 200 
batch_size_1=8 
recurrent_dropout_1=0.30 
l2_reg_factor_1=0.01 
 
### Layer Designs ### 
inputs_1 = keras.layers.Input(shape=(X1_train.shape[1], X1_train.shape[2])) 
lstm_out_1 = keras.layers.LSTM(64, recurrent_dropout=recurrent_dropout_1, 
kernel_regularizer=l2(l2_reg_factor_1),recurrent_regularizer=l2(l2_reg_factor_1))
(inputs_1) 
outputs_1 = keras.layers.Dense(1,kernel_regularizer=l2(l2_reg_factor_1)) 
(lstm_out_1) 
 
### Model development ### 
model1 = keras.Model(inputs=inputs_1, outputs=outputs_1) 
model1.summary() 
model1.compile(optimizer=keras.optimizers.Adam(learning_rate=learning_rate_1), 
loss='mae', metrics=["mse", "mape"]) 
es_callback_1 = keras.callbacks.EarlyStopping(monitor="val_loss", min_delta=0, 
patience=5) 
modelckpt_callback_1 = keras.callbacks.ModelCheckpoint(filepath='model1/', 
monitor="val_loss", mode='min', verbose=1, save_best_only=True,) 
history_1 = model1.fit(X1_train, y1_train, validation_data=(X1_val, y1_val), 
batch_size=batch_size_1, epochs=epochs_1, 
callbacks=[modelckpt_callback_1,es_callback_1], shuffle=False) 
model1.save('model1.h5') 
 
def visualize_loss(history, title): 
    loss = history.history["loss"] 
    val_loss = history.history["val_loss"] 
    epochs = range(len(loss)) 
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    plt.figure() 
    plt.plot(epochs, loss, "b", label="Training loss") 
    plt.plot(epochs, val_loss, "r", label="Validation loss") 
    plt.title(title, fontsize=18, fontweight='bold', family='Arial') 
    plt.xlabel("Epochs",fontsize=14, family='Arial') 
    plt.ylabel("Loss",fontsize=14, family='Arial') 
    font_prop = FontProperties(family='Arial', size=16) 
    plt.legend(prop=font_prop) 
    plt.grid(True) 
    plt.show() 
 
visualize_loss(history_1, "Training and Validation Loss\nModel: LSTM   Work 
Package: Concrete") 

 

5. Creating functions for Performance Metrics and Measurements 

def performance_metrics(model, X, y, Delta, Min_orig, Seasonality_value, ytrain): 
    Actuals_den = (y)*(Delta) + Min_orig 
    Predicted_den = (model.predict(X).flatten())*(Delta) + Min_orig  
    """MAPE""" 
    MAPE= mean_absolute_percentage_error(Actuals_den, Predicted_den)*100 
    """MAE""" 
    MAE= mean_absolute_error(Actuals_den, Predicted_den) 
    """RMSE""" 
    RMSE = sqrt(mean_squared_error(Actuals_den, Predicted_den)) 
    """MSE""" 
    MSE = mean_squared_error(Actuals_den, Predicted_den) 
    """sMAPE""" 
    sMAPE = (np.sum((abs(Predicted_den- Actuals_den))/(abs(Actuals_den)+ 

abs(Predicted_den))))*200/(y.shape[0]) 
    """MASE""" 
    ytrain_un = (ytrain)*(Delta) + Min_orig 

MASE = MAE / (np.sum(abs(ytrain_un[0:-Seasonality_value]-
ytrain_un[Seasonality_value:]))/ (len(ytrain_un[0:-Seasonality_value]))) 

     
Metrics = {'Value' : [round(MASE,3), f"{round(sMAPE,2)} %", f"{round(MAPE,3)} 
%", round(MAE,3), round(MSE,3), round(RMSE,3)]} 
df_metrics = pd.DataFrame(Metrics, index=['MASE', 'sMAPE', 'MAPE', 'MAE', 
'MSE', 'RMSE']) 

    return print(df_metrics) 
 
performance_metrics(model1, X1_train, y1_train, Delta_train1, Min_orig_train1 , 
20, y1_train) 
performance_metrics(model1, X1_val, y1_val, Delta_test1, Min_orig_test1, 20, 
y1_train) 

 

6. Exporting and Storing Actual and Predicted Results  

def results_to_csv(model, X, y, title, Delta, Min_orig): 
    Actuals_den = (y)*(Delta) + Min_orig 
    Predicted_den = (model.predict(X).flatten())*(Delta) + Min_orig 
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    df_results = pd.DataFrame({'Actuals':Actuals_den, 'Predicted':Predicted_den}) 
    df_results.to_csv(f"{title}.csv", index=False) 
 
results_to_csv(model1, X1_train, y1_train,"Training_Concrete", Delta_train1, 
Min_orig_train1) 
results_to_csv(model1, X1_val, y1_val,"Validation_Concrete", Delta_test1, 
Min_orig_test1) 

 

7. Plotting actual and predicted results in a linear chart for comparison 

def plot_predictions(model, Xtrain, ytrain, Xval, yval, past, Deltatrain, 
Min_origtrain, Deltaval, Min_origval): 
    predictions_train = (model.predict(Xtrain).flatten())*(Deltatrain) + 
Min_origtrain    
    dftrain = pd.DataFrame(data={'Predictions_train':predictions_train, 
'Actuals_train':(ytrain)*(Deltatrain) + Min_origtrain}) 
    axisTrain= np.arange(past,past+ytrain.shape[0]) 
    plt.plot(axisTrain, dftrain['Predictions_train'],'r',ls='--', label='Training 
Dataset Predictions') 
    plt.plot(axisTrain, dftrain['Actuals_train'],'b', label='Training Dataset 
Actuals') 
    plt.title('Actual vs Predicted values - LSTM', fontname='Arial', fontsize=18, 
fontweight='bold', color='blue') 
    predictions_val = (model.predict(Xval).flatten())*(Deltaval) + Min_origval 
    dfval = pd.DataFrame(data={'Predictions_val':predictions_val, 
'Actuals_val':(yval)*(Deltaval) + Min_origval}) 
    axisVal= np.arange(past+ytrain.shape[0],past+ytrain.shape[0]+yval.shape[0]) 
    plt.plot(axisVal, dfval['Predictions_val'],'m',ls='--', label='Validation 
Dataset Predictions') 
    plt.plot(axisVal, dfval['Actuals_val'],'c', label='Validation Dataset 
Actuals') 
    plt.xlabel('Periods', fontname='Arial', fontsize=14)  
    plt.ylabel('DTC (days)', fontname='Arial', fontsize=14)  
    font_prop = FontProperties(family='Arial', size=12) 
    plt.legend(prop=font_prop) 
    plt.grid(True) 
    return plt.show(), print(dftrain), print(dfval) 
 
plot_predictions(model1, X1_train, y1_train, X1_val, y1_val, past_1, 
Delta_train1, Min_orig_train1, Delta_test1, Min_orig_test1) 
 

8. Testing of Forecasting Model using unseen data 

model1 = load_model('model1.h5') 
df_predic1= pd.read_csv('Synthetic_Concrete_data_SHORT_NEW_3.csv') 
df_predic1 = df_predic1[selected_features_1] 
df_predict_scaled1 = normalization(df_predic1) 
X1_test, y1_test = df_to_X_y(df_predict_scaled1, past_1) 
Xpredict1=model1.predict(X1_test).flatten() 
Delta_test1, Min_orig_test1 = denormalization(df_predic1) 
print(Xpredict1*Delta_test1+Min_orig_test1) 
print(y1_test*Delta_test1+Min_orig_test1) 
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array1_1=y1_test*Delta_test1+Min_orig_test1 
array2_1=Xpredict1*Delta_test1+Min_orig_test1 
dfarraytest_1 = pd.DataFrame({'Column1': array1_1, 'Column2': array2_1}) 
dfarraytest_1.to_csv('test_concrete_results.csv', index=False) 
 
performance_metrics(model1, X1_test, y1_test, Delta_test1, Min_orig_test1 , 20, 
y1_train) 
plot_scatter(model1, X1_test, y1_test,'Test Dataset\nModel: LSTM   Work Package: 
Concrete') 
 
def plot_test_predictions(model, Xtest, ytest, past, Deltatest, Min_origtest): 
    predictions_test= (model.predict(Xtest).flatten())*(Deltatest) + 
Min_origtest    
    dftest = pd.DataFrame(data={'Predictions_test':predictions_test, 
'Actuals_test':(ytest)*(Deltatest) + Min_origtest}) 
    axisTest= np.arange(past,past+ytest.shape[0]) 
    plt.plot(axisTest, dftest['Predictions_test'],'r',ls='--', label='Test 
Dataset Predictions') 
    plt.plot(axisTest, dftest['Actuals_test'],'b', label='Test Dataset Actuals') 
    plt.title('Actual vs Predicted values - LSTM', fontname='Arial', fontsize=18, 
fontweight='bold', color='blue') 
    plt.xlabel('Periods', fontname='Arial', fontsize=14)  
    plt.ylabel('DTC (days)', fontname='Arial', fontsize=14)  
    font_prop = FontProperties(family='Arial', size=12) 
    plt.legend(prop=font_prop) 
    plt.grid(True) 
    return plt.show(), print(dftest) 
 
plot_test_predictions(model1, X1_test, y1_test, past_1, Delta_test1, 
Min_orig_test1) 
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Appendix B: Python Script for the Graphical User Interface (GUI) 

for Project Duration at Completion Forecasting 

 

1. Importing libraries and functions 

import tkinter as tk 
from tkinter import ttk 
import tkinter.messagebox as messagebox 
import json 
import pandas as pd 
from keras.models import load_model 
from sklearn.metrics import mean_absolute_error 
from sklearn.preprocessing import MinMaxScaler 
import numpy as np 
import matplotlib.pyplot as plt 
from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg 
from tkinter import filedialog 
from PIL import Image, ImageTk 
import xml.etree.ElementTree as Xet 
from datetime import timedelta 
import networkx as nx 
from datetime import datetime 
import datetime 
import os 
import matplotlib.dates as mdates 
from tkinter import font 
from pandas import Timedelta 
import math 
from tkcalendar import Calendar 
import re 
from matplotlib.figure import Figure 
from matplotlib.ticker import FixedLocator 
from matplotlib.offsetbox import OffsetImage, AnnotationBbox 
from PIL import Image 
 

2. Initializing Tkinter as Tk, creating frames and storage for project information 

root = tk.Tk() 
root.title("Duration Project Forecasting for Time Series Data using Deep Learning") 
root.configure(background='white') 
style = ttk.Style() 
style.theme_use('vista') 
 
#Creation of frames: 
project_hub_frame = ttk.Frame(root, style='Custom.TFrame') 
progress_frame = ttk.Frame(root, style='Custom.TFrame') 
forecasting_work_package_frame= ttk.Frame(root, style='Custom.TFrame') 
forecasting_project_frame= ttk.Frame(root, style='Custom.TFrame') 
 
# Load project info from a file if it exists 
try: 
    with open("project_info.json", "r") as file: 
        project_info = json.load(file) 
except FileNotFoundError: 
    project_info = {} 
def save_project_info_to_file(): 
    with open("project_info.json", "w") as file: 
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        json.dump(project_info, file, indent=4) 
 

3. Defining the Project Hub to Entered project visualization 

def project_hub(): 
    global treeview_projects, work_packages_list_tab2 
    treeframe = ttk.Labelframe(project_hub_frame, text="Project Hub", 
style='Custom2.TLabelframe', ) 
    treeframe.grid(row=0, column=0, padx=0, pady=0, sticky="news") 
    project_hub_label = ttk.Label(treeframe, text='By selecting a listed project, detailed 
information will be shown at the bottom. Also, press the "Add New Project" or "Update Project" 
buttons when needed.', foreground='black', font=('Arial', 10, ), background='white') 
    project_hub_label.grid(row=0, column=0, padx=10, pady=10, columnspan=3, sticky= 'w') 
    treeview_projects = ttk.Treeview(treeframe, columns=("Project ID", "Project Name", 
"Original Duration", "Original Budget",), show="headings", height=5, style='Custom1.Treeview') 
    treeview_projects.grid(row=1, column=0, padx=10, pady=10) 
    treeScroll = ttk.Scrollbar(treeframe) 
    treeScroll.grid(row=1, column=1, sticky="ns") 
    treeview_projects.heading("Project ID", text="Project ID") 
    treeview_projects.heading("Project Name", text="Project Name") 
    treeview_projects.heading("Original Duration", text="Original Duration (days)") 
    treeview_projects.heading("Original Budget", text="Original Budget ($)") 
    treeview_projects.column("Project ID", width=160) 
    treeview_projects.column("Project Name", width=300) 
    treeview_projects.column("Original Duration", width=200) 
    treeview_projects.column("Original Budget", width=200) 
    treeScroll.config(command=treeview_projects.yview) 
    treeview_projects.config(yscrollcommand=treeScroll.set) 
    treeview_projects.tag_configure('oddrow', background='#f9f9d6', font=("Arial", 11)) 
    treeview_projects.tag_configure('evenrow', background='lightgrey', font=("Arial", 11)) 
    for index, (project, attributes) in enumerate(project_info.items()): 
        tag = 'oddrow' if index % 2 == 0 else 'evenrow' 
        treeview_projects.insert("", "end", values=( 
        project,  
        attributes.get("Project Name"),  
        str(attributes.get("IB-Duration (days)", "0")) + " days",  
        "{:,.2f}".format(float(attributes.get("IB-Budget At Completion ($)", "0"))) 
        ), tags=(tag,)) 
     
    add_project_button = ttk.Button(treeframe, text="Add New Project...",  
command= add_new_project, style='Custom1.TButton') 
    update_button = ttk.Button(treeframe, text="Update Project...",  
command= project_updating, style='Custom1.TButton',) 
    add_project_button.configure(padding=(25,20)) 
    update_button.configure(padding=(32,20)) 
    add_project_button.grid(row=1, column=2, padx=10, pady=(5,0), sticky= 'nw') 
    update_button.grid(row=1, column=2, padx=10, pady=(0,5), sticky='sw') 
 
    def get_selected_project(): 
        global project_row 
        project_row = treeview_projects.selection() 
        projectid = treeview_projects.item(project_row, "text") 
        return projectid 
    project = get_selected_project() 
 
    #Creation of Notebook: 
    notebook = ttk.Notebook(project_hub_frame, style='Custom.TNotebook') 
    notebook.grid(row=1, column=0, padx=0, pady=(10,0), sticky="news") 
    tab1 = ttk.Frame(notebook) 
    tab2 = ttk.Frame(notebook) 
    notebook.add(tab1, text="At Project level", ) 
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    notebook.add(tab2, text="At Work Packages level",) 
   
    #Entries on general information tab: 
    gen_info = ttk.Labelframe(tab1, text="General Information", style='Custom3.TLabelframe', 
padding=(0,20)) 
    gen_info.grid(row=0, column=0, padx=10, pady=5, sticky='nwes') 
    nameid_label_tab = ttk.Label(gen_info, text="Project ID:", style='Custom.TLabel') 
    nameid_label_tab.grid(row=0, column=0,  sticky="w") 
    nameid_entry_tab = ttk.Entry(gen_info, font=('Arial', 11)) 
    nameid_entry_tab.grid(row=0, column=1, sticky="w") 
    bu_label_tab = ttk.Label(gen_info, text="Business Unit Code:" , style='Custom.TLabel') 
    bu_label_tab.grid(row=0, column=2, sticky="w") 
    bu_entry_tab = ttk.Entry(gen_info, font=('Arial', 11)) 
    bu_entry_tab.grid(row=0, column=3, sticky="w") 
    portfolio_label_tab = ttk.Label(gen_info, text="Portfolio Code:" , style='Custom.TLabel') 
    portfolio_label_tab.grid(row=0, column=4, sticky="w") 
    portfolio_entry_tab = ttk.Entry(gen_info, font=('Arial', 11)) 
    portfolio_entry_tab.grid(row=0, column=5,  sticky="w") 
    program_label_tab = ttk.Label(gen_info, text="Program Code:" , style='Custom.TLabel') 
    program_label_tab.grid(row=0, column=6,  sticky="w") 
    program_entry_tab = ttk.Entry(gen_info, font=('Arial', 11)) 
    program_entry_tab.grid(row=0, column=7, sticky="w") 
    contract_label_tab = ttk.Label(gen_info, text="Contract Type:" , style='Custom.TLabel') 
    contract_label_tab.grid(row=1, column=0,  sticky="w") 
    contract_entry_tab = ttk.Entry(gen_info, font=('Arial', 11)) 
    contract_entry_tab.grid(row=1, column=1, sticky="w") 
    owner_label_tab = ttk.Label(gen_info, text="Owner Internal Code:" , style='Custom.TLabel') 
    owner_label_tab.grid(row=1, column=2,  sticky="w") 
    owner_entry_tab = ttk.Entry(gen_info, font=('Arial', 11)) 
    owner_entry_tab.grid(row=1, column=3,sticky="w") 
    construction_label_tab = ttk.Label(gen_info, text="Project Type:" , style='Custom.TLabel') 
    construction_label_tab.grid(row=1, column=4,  sticky="w") 
    construction_entry_tab = ttk.Entry(gen_info, font=('Arial', 11)) 
    construction_entry_tab.grid(row=1, column=5, sticky="w") 
    location_label_tab = ttk.Label(gen_info, text="Location:" , style='Custom.TLabel') 
    location_label_tab.grid(row=1, column=6,  sticky="w") 
    location_entry_tab = ttk.Entry(gen_info, font=('Arial', 11)) 
    location_entry_tab.grid(row=1, column=7,  sticky="w") 
 
    baseline_frame_tab = ttk.Labelframe(tab1, text="Baseline Information", 
style='Custom3.TLabelframe', padding=(0,20)) 
    baseline_frame_tab.grid(row=1, column=0, padx=10, pady=5, sticky='nwes') 
 
    initial_baseline_label_tab= ttk.Label(baseline_frame_tab, text="Project Initial Baseline", 
font=('Arial',11,)) 
    initial_baseline_label_tab.grid(row=1, column=0, sticky="nwes") 
    current_baseline_label_tab= ttk.Label(baseline_frame_tab, text="Project Current Baseline", 
font=('Arial',11,)) 
    current_baseline_label_tab.grid(row=2, column=0,  sticky="nwes") 
     
    bac_label_tab = ttk.Label(baseline_frame_tab, text="Budget At Completion ($)", 
style='Custom.TLabel') 
    bac_label_tab.grid(row=0, column=1,  sticky="nwes") 
    baci_entry_tab = ttk.Entry(baseline_frame_tab, font=('Arial', 11)) 
    baci_entry_tab.grid(row=1, column=1,  sticky="nwes") 
    bacc_entry_tab = ttk.Entry(baseline_frame_tab, font=('Arial', 11)) 
    bacc_entry_tab.grid(row=2, column=1,  sticky="nwes") 
    duration_label_tab = ttk.Label(baseline_frame_tab, text="Duration (days)", 
style='Custom.TLabel') 
    duration_label_tab.grid(row=0, column=2,  sticky="nwes") 
    durationi_entry_tab = ttk.Entry(baseline_frame_tab, font=('Arial', 11)) 
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    durationi_entry_tab.grid(row=1, column=2,  sticky="nwes") 
    durationc_entry_tab = ttk.Entry(baseline_frame_tab, font=('Arial', 11)) 
    durationc_entry_tab.grid(row=2, column=2,  sticky="nwes") 
    startdate_label_tab = ttk.Label(baseline_frame_tab, text="Start Date (yyyy/mm/dd)", 
style='Custom.TLabel') 
    startdate_label_tab.grid(row=0, column=3,  sticky="nwes") 
    startdatei_entry_tab = ttk.Entry(baseline_frame_tab, font=('Arial', 11)) 
    startdatei_entry_tab.grid(row=1, column=3,  sticky="nwes") 
    startdatec_entry_tab = ttk.Entry(baseline_frame_tab, font=('Arial', 11)) 
    startdatec_entry_tab.grid(row=2, column=3, sticky="nwes") 
    finishdate_label_tab = ttk.Label(baseline_frame_tab, text="Finish Date (yyyy/mm/dd)", 
style='Custom.TLabel') 
    finishdate_label_tab.grid(row=0, column=4,  sticky="nwes") 
    finishdatei_entry_tab = ttk.Entry(baseline_frame_tab, font=('Arial', 11)) 
    finishdatei_entry_tab.grid(row=1, column=4,  sticky="nwes") 
    finishdatec_entry_tab = ttk.Entry(baseline_frame_tab, font=('Arial', 11)) 
    finishdatec_entry_tab.grid(row=2, column=4,  sticky="nwes") 
 
    dynamic_frame = ttk.Frame(tab2) 
    dynamic_frame.grid(row=0, column=0, padx=0, pady=(10,0), sticky="news") 
 
    def populate_entry_widgets(selected_item): 
        item_values = treeview_projects.item(selected_item)['values'] 
        id = str(item_values[0]) 
        nameid_entry_tab.delete(0, tk.END) 
        nameid_entry_tab.insert(0, id) 
        bu_entry_tab.delete(0, tk.END) 
        bu_entry_tab.insert(0, project_info[id]["Business Unit"]) 
        portfolio_entry_tab.delete(0, tk.END) 
        portfolio_entry_tab.insert(0, project_info[id]["Portfolio Code"]) 
        program_entry_tab.delete(0, tk.END) 
        program_entry_tab.insert(0, project_info[id]["Program Code"]) 
        contract_entry_tab.delete(0, tk.END) 
        contract_entry_tab.insert(0, project_info[id]["Contract Type"]) 
        owner_entry_tab.delete(0, tk.END) 
        owner_entry_tab.insert(0, project_info[id]["Owner Internal Code"]) 
        construction_entry_tab.delete(0, tk.END) 
        construction_entry_tab.insert(0, project_info[id]["Project Type"]) 
        location_entry_tab.delete(0, tk.END) 
        location_entry_tab.insert(0, project_info[id]["Location"]) 
        baci_entry_tab.delete(0, tk.END) 
        baci_entry_tab.insert(0, project_info[id]["IB-Budget At Completion ($)"]) 
        durationi_entry_tab.delete(0, tk.END) 
        durationi_entry_tab.insert(0, project_info[id]["IB-Duration (days)"]) 
        startdatei_entry_tab.delete(0, tk.END) 
        startdatei_entry_tab.insert(0, project_info[id]["IB-Start Date"]) 
        finishdatei_entry_tab.delete(0, tk.END) 
        finishdatei_entry_tab.insert(0, project_info[id]["IB-Finish Date"]) 
 
        if {key: value for key, value in project_info[id].items() if key.startswith("CB-")}: 
            bacc_entry_tab.delete(0, tk.END) 
            bacc_entry_tab.insert(0, project_info[id]["CB-Budget At Completion ($)"]) 
            durationc_entry_tab.delete(0, tk.END) 
            durationc_entry_tab.insert(0, project_info[id]["CB-Duration (days)"]) 
            startdatec_entry_tab.delete(0, tk.END) 
            startdatec_entry_tab.insert(0, project_info[id]["CB-Start Date"]) 
            finishdatec_entry_tab.delete(0, tk.END) 
            finishdatec_entry_tab.insert(0, project_info[id]["CB-Finish Date"]) 
        else: 
            bacc_entry_tab.delete(0, tk.END) 
            bacc_entry_tab.insert(0, "No entry yet") 
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            durationc_entry_tab.delete(0, tk.END) 
            durationc_entry_tab.insert(0, "No entry yet") 
            startdatec_entry_tab.delete(0, tk.END) 
            startdatec_entry_tab.insert(0, "No entry yet") 
            finishdatec_entry_tab.delete(0, tk.END) 
            finishdatec_entry_tab.insert(0, "No entry yet") 
 
        # Clear the dynamic frame 
        for widget in dynamic_frame.winfo_children(): 
            widget.destroy() 
 
         
        work_packages = project_info[id]["Work Packages"] 
        attribute_keys = ["Budget At Completion ($)", "Duration (days)", "Start Date", "Finish 
Date"] 
         
       # Row Labels for "Initial Baseline" and "Current Baseline" 
            ttk.Label(dynamic_frame, text="Initial Baseline", font=('Arial', 
11)).grid(row=row+1, column=0, padx=20, sticky='w') 
            ttk.Label(dynamic_frame, text="Current Baseline", font=('Arial', 
11)).grid(row=row+2, column=0, padx=20, sticky='w') 
       # Populate entry widgets for each attribute under each baseline 
            for col, key_suffix in enumerate(attribute_keys, start=1): 
                # Initial Baseline Entries 
                ib_key = f"IB-{key_suffix}" 
                ib_entry = ttk.Entry(dynamic_frame, font=('Arial', 11)) 
                ib_entry.grid(row=row+1, column=col, sticky='ew') 
                ib_entry.insert(0, wp_details.get(ib_key, "")) 
       # Current Baseline Entries 
                cb_key = f"CB-{key_suffix}" 
                cb_entry = ttk.Entry(dynamic_frame, font=('Arial', 11)) 
                cb_entry.grid(row=row+2, column=col, sticky='ew') 
                cb_entry.insert(0, wp_details.get(cb_key, "N/A")) 
       # Increment row for the next work package 
            row += 3  
    treeview_projects.bind("<<TreeviewSelect>>",  lambda event: 
populate_entry_widgets(event.widget.selection()[0])) 
 

4. Entering new projects information to the GUI 

def add_new_project(): 
    global original_project_entry_list, project_entries_list, new_work_package_entries 
    add_window = tk.Toplevel(root, background='white') 
    add_window.lift() 
    add_window.title("Add New Project") 
    project_info_label_frame = ttk.Labelframe(add_window, text="At Project Level", 
style='Custom5.TLabelframe') 
    project_info_label_frame.grid(row=0, column=0, padx=10, pady=10, sticky="nwes") 
    add_window.grid_columnconfigure(0, weight=1) 
 
    ### PROJECT GENERAL INFORMATION 
    project_info_frame = ttk.Labelframe(project_info_label_frame, text="General Information", 
style='Custom4.TLabelframe', padding= (10,20)) 
    project_info_frame.grid(row=0, column=0, columnspan=4, padx=10, pady=10, sticky="nwes") 
    name_label = ttk.Label(project_info_frame, text="Project Name:", font='Arial 11', 
background='white') 
    name_label.grid(row=0, column=0,  pady= 2, sticky="w") 
    name_text = ttk.Entry(project_info_frame, font=('Arial', 11), width= 75) 
    name_text.grid(row=0, column=1, columnspan=7, sticky="w") 
    id_label = ttk.Label(project_info_frame, text="Project ID:", font='Arial 11', 
background='white') 
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    id_label.grid(row=1, column=0,  pady= 2, sticky="w") 
    id_text = ttk.Entry(project_info_frame,font=('Arial', 11)) 
    id_text.grid(row=1, column=1,  sticky="w") 
    bu_label = ttk.Label(project_info_frame, text="Business Unit Code:", font='Arial 11', 
background='white') 
    bu_label.grid(row=1, column=2, pady= 2, sticky="w") 
    bu_text = ttk.Entry(project_info_frame,font=('Arial', 11))    
    bu_text.grid(row=1, column=3,  pady= 2, sticky="w") 
    pf_label = ttk.Label(project_info_frame, text="Portfolio Code:", font='Arial 11', 
background='white') 
    pf_label.grid(row=1, column=4,  pady= 2, sticky="w") 
    pf_text = ttk.Entry(project_info_frame, font=('Arial', 11))   
    pf_text.grid(row=1, column=5, sticky="w") 
    pg_label = ttk.Label(project_info_frame, text="Program Code:", font='Arial 11', 
background='white') 
    pg_label.grid(row=1, column=6,  pady= 2, sticky="w")  
    pg_text = ttk.Entry(project_info_frame, font=('Arial', 11)) 
    pg_text.grid(row=1, column=7,  sticky="w") 
    contract_type_label = ttk.Label(project_info_frame, text="Contract Type:",font='Arial 11', 
background='white') 
    contract_type_label.grid(row=2, column=0,  pady= 2, sticky="w")  
    contract_type_text = ttk.Combobox(project_info_frame, values=['Unit Price', 'Lump Sum', 
'Time & Materials'], font=('Arial', 11) ) 
    contract_type_text.set('Select Contract Type') 
    contract_type_text.grid(row=2, column=1, sticky="w") 
    Owner_label = ttk.Label(project_info_frame, text="Owner Internal Code:", font='Arial 11', 
background='white') 
    Owner_label.grid(row=2, column=2,  pady= 2, sticky="w")  
    Owner_text = ttk.Entry(project_info_frame, font=('Arial', 11)) 
    Owner_text.grid(row=2, column=3,  sticky="w") 
    project_type_label = ttk.Label(project_info_frame, text="Project Type:", font='Arial 11', 
background='white') 
    project_type_label.grid(row=2, column=4,  pady= 2, sticky="w")  
    project_type_text = ttk.Combobox(project_info_frame, values=['Residential', 'Commercial', 
'Infrastructure', 'Industrial' ], font=('Arial', 11) ) 
    project_type_text.set('Select Project Type') 
    project_type_text.grid(row=2, column=5,  sticky="w") 
    location_label = ttk.Label(project_info_frame, text="Location:", font='Arial 11', 
background='white') 
    location_label.grid(row=2, column=6,  pady= 2, sticky="w")  
    location_text = ttk.Entry(project_info_frame, font=('Arial', 11)) 
    location_text.grid(row=2, column=7, sticky="w") 
    project_entries_list = [name_text, id_text, bu_text, pf_text, pg_text, contract_type_text, 
Owner_text, project_type_text, location_text] 
 
    ### PROJECT BASELINE INFO 
    project_baseline_frame = ttk.Labelframe(project_info_label_frame, text="Project Initial 
Baseline", style='Custom4.TLabelframe', padding= (10,20)) 
    project_baseline_frame.grid(row=1, column=0, columnspan=4, padx=10, pady=10, 
sticky="nwes") 
    original_project_entry_list = [] 
    label_values = ["Budget At Completion (BAC, $):","Duration (days):","Start Date 
(yyyy/mm/dd):","Finish Date (yyyy/mm/dd):"] 
    for i, label in enumerate(label_values): 
        label = ttk.Label(project_baseline_frame, text=f"{label}", font=("Arial",  
11), background='white') 
        label.grid(row=0, column=2*i, sticky="w") 
        original_entry = ttk.Entry(project_baseline_frame, font=("Arial", 11, )) 
        original_entry.grid(row=0, column=2*i+1, padx=(0, 10),sticky="w") 
        original_project_entry_list.append(original_entry) 
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    project_work_packages_label_frame = ttk.Labelframe(add_window, text="At Work Package 
Level", style='Custom5.TLabelframe') 
    project_work_packages_label_frame.grid(row=1, column=0, padx=10, pady=10, sticky="nwes") 
    project_work_packages_label_frame.grid_rowconfigure(0, weight=1) 
    project_work_packages_label_frame.grid_columnconfigure(0, weight=1) 
    canvas = tk.Canvas(project_work_packages_label_frame, highlightthickness=0, 
background='white') 
    canvas.grid(row=0, column=0, sticky="nwes") 
    scrollbar = ttk.Scrollbar(project_work_packages_label_frame, orient="vertical", 
command=canvas.yview) 
    scrollbar.grid(row=0, column=2, sticky="ns") 
    canvas.configure(yscrollcommand=scrollbar.set) 
 
    frame = ttk.Frame(canvas) 
    canvas_frame = canvas.create_window((0, 0), window=frame, anchor="nw") 
 
    labels = ["Work Package ID", "Work Package Name", "Budget At Completion ($)", "Duration 
(days)", "Start Date (yyyy/mm/dd)", "Finish Date (yyyy/mm/dd)"] 
     
    new_work_package_entries = [] 
    # Function to create widgets for entering a new work package 
    def create_new_widgets_for_work_package(): 
        nrow = len(new_work_package_entries) * 2               
        wp_frame = tk.Frame(frame, background=bg_color) 
        wp_frame.grid(row=nrow, column=0, columnspan=len(labels), sticky="ew", padx=5, pady=2) 
        entries = [] 
        for i, label_text in enumerate(labels): 
            label = ttk.Label(wp_frame, text=label_text, font=("Arial", 11, ), 
background='white', borderwidth=1) 
            label.grid(row=0, column=i, sticky="w", padx=19, pady=2) 
            entry = ttk.Entry(wp_frame, width=20, font=("Arial", 11, )) 
            entry.grid(row=1, column=i, sticky="ew", padx=19, pady=2,) 
            entries.append(entry) 
         
        new_work_package_entries.append(entries) 
        frame.update_idletasks() 
        canvas.configure(scrollregion=canvas.bbox("all")) 
 
    # Function to save work packages into project_info 
def save_new_project(): 
        global project_info, new_work_package_entries, work_package_names_entries 
        project_id = project_entries_list[1].get() 
        if project_entries_list and original_project_entry_list: 
            project_info[project_id] = { 
                'Project Name': project_entries_list[0].get(), 
                'Business Unit': project_entries_list[2].get(), 
                'Portfolio Code': project_entries_list[3].get(), 
                'Program Code': project_entries_list[4].get(), 
                'Contract Type': project_entries_list[5].get(), 
                'Owner Internal Code': project_entries_list[6].get(), 
                'Project Type': project_entries_list[7].get(), 
                'Location': project_entries_list[8].get(), 
                'IB-Budget At Completion ($)': original_project_entry_list[0].get(), 
                'IB-Duration (days)': original_project_entry_list[1].get(), 
                'IB-Start Date': original_project_entry_list[2].get(), 
                'IB-Finish Date': original_project_entry_list[3].get(), 
                'Work Packages':{} } 
           
            for entries in new_work_package_entries: 
                wp_name = entries[1].get() 
                project_info[project_id]["Work Packages"][wp_name.upper()] = { 
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                    "Work Package ID": entries[0].get(), 
                    "IB-Budget At Completion ($)": entries[2].get(), 
                    "IB-Duration (days)": entries[3].get(), 
                    "IB-Start Date": entries[4].get(), 
                    "IB-Finish Date": entries[5].get(),} 
            messagebox.showinfo("Info Saved", "New Project saved successfully.") 
            save_project_info_to_file() 
 
        else: 
            tk.messagebox.showerror("Missing Information", "Please provide all required 
information.") 
        add_window.destroy() 
    Cancel_button = ttk.Button(add_window, text="Cancel", command = lambda: 
destroy_window(add_window), padding=20, style='Custom3.TButton') 
    Cancel_button.grid(row=3, column=0, padx=200, pady=10, sticky="e") 
    Cancel_button.configure(padding=(10,10)) 
 
    # Button to save all entered work packages 
    save_button = ttk.Button(add_window, text="Save New Project", command=save_new_project, 
padding=20, style='Custom2.TButton') 
    save_button.grid(row=3, column=0, sticky="e", padx=10, pady=10) 
    save_button.configure(padding=(10,10)) 
 

5. Updating projects information into the GUI 

def project_updating(): 
    update_window = tk.Toplevel(root, background='white') 
    update_window.title("Update Project") 
    project_entry_for_update_frame = ttk.Labelframe(update_window, text="Project Entry for 
Updating", style='Custom5.TLabelframe') 
    project_entry_for_update_frame.grid(row=0, column=0, padx=10, pady=10, sticky="nwes")    
    projectid_label = ttk.Label(project_entry_for_update_frame, text="Select Project ID:", 
font='Arial 11 bold', background='white') 
    projectid_comb = ttk.Combobox(project_entry_for_update_frame, values= 
list(project_info.keys()), state="readonly", font='Arial 11 bold',) 
    projectid_comb.set("Select Project") 
    projectid_label.grid(row=0, column=0, padx=10, pady=10, sticky="w") 
    projectid_comb.grid(row=0, column=1, padx=10, pady=10, sticky="w") 
    projectid_button = ttk.Button(project_entry_for_update_frame, text="Display Project 
Information", command=lambda: populate_update_frame(projectid_comb.get()), 
style='Custom1.TButton') 
    projectid_button.grid(row=0, column=2, padx=10, pady=10, sticky="w")        
     
    project_info_label_frame = ttk.Labelframe(update_window, text="At Project Level", 
style='Custom5.TLabelframe') 
    project_info_label_frame.grid(row=1, column=0, padx=10, pady=10, sticky="nwes") 
 
    def populate_update_frame(selected_project): 
        global work_package_list, current_project_entry_list, current_work_package_entries 
 
    ### PROJECT LEVEL 
        project_info_frame = ttk.Labelframe(project_info_label_frame, text="Project 
Information", style='Custom4.TLabelframe', padding= (10,20)) 
        project_info_frame.grid(row=0, column=0, columnspan=4, padx=10, pady=10, 
sticky="nwes") 
        width_label = 19 
        width_entries = 12 
        name_label = ttk.Label(project_info_frame, text="Project Name", font='Arial 11 bold', 
background='white', width=width_label) 
        name_label.grid(row=0, column=0, padx=10, pady=0, sticky="w") 
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        name_text = ttk.Label(project_info_frame, text= 
project_info[selected_project]["Project Name"], font='Arial 11', background='white', ) 
        name_text.grid(row=0, column=1, columnspan=5, padx=10, pady=0, sticky="w") 
 
        pid_label = ttk.Label(project_info_frame, text="Project ID", font='Arial 11 bold', 
background='white', width=width_label) 
        pid_label.grid(row=1, column=0, padx=10, pady=0, sticky="w") 
        pid_text = ttk.Label(project_info_frame, text=selected_project, font='Arial 11 ', 
background='white', width=width_entries)     
        pid_text.grid(row=1, column=1, padx=10, pady=0, sticky="w") 
 
        bu_label = ttk.Label(project_info_frame, text="Business Unit Code", font='Arial 11 
bold', background='white', width=width_label) 
        bu_label.grid(row=1, column=2, padx=10, pady=0, sticky="w") 
        bu_text = ttk.Label(project_info_frame, text=project_info[selected_project]["Business 
Unit"], font='Arial 11 ', background='white', width=width_entries)     
        bu_text.grid(row=1, column=3, padx=10, pady=0, sticky="w") 
 
        pf_label = ttk.Label(project_info_frame, text="Portfolio Code", font='Arial 11 bold', 
background='white', width=width_label) 
        pf_label.grid(row=1, column=4, padx=10, pady=0, sticky="w") 
        pf_text = ttk.Label(project_info_frame, text=project_info[selected_project]["Portfolio 
Code"], font='Arial 11 ', background='white', width=width_entries)   
        pf_text.grid(row=1, column=5, padx=10, pady=0, sticky="w") 
 
        pg_label = ttk.Label(project_info_frame, text="Program Code", font='Arial 11 bold', 
background='white', width=width_label) 
        pg_label.grid(row=1, column=6, padx=10, pady=0, sticky="w")  
        pg_text = ttk.Label(project_info_frame, text=project_info[selected_project]["Program 
Code"], font='Arial 11 ', background='white', width=width_entries) 
        pg_text.grid(row=1, column=7, padx=10, pady=0, sticky="w") 
 
        contract_type_label = ttk.Label(project_info_frame, text="Contract Type", font='Arial 
11 bold', background='white', width=width_label) 
        contract_type_label.grid(row=2, column=0, padx=10, pady=0, sticky="w")  
        contract_type_label = ttk.Label(project_info_frame, 
text=project_info[selected_project]["Contract Type"], font='Arial 11 ', background='white', 
width=width_entries) 
        contract_type_label.grid(row=2, column=1, padx=10, pady=0, sticky="w") 
 
        Owner_label = ttk.Label(project_info_frame, text="Owner Internal Code", font='Arial 11 
bold', background='white', width=width_label) 
        Owner_label.grid(row=2, column=2, padx=10, pady=0, sticky="w")  
        Owner_text = ttk.Label(project_info_frame, text=project_info[selected_project]["Owner 
Internal Code"], font='Arial 11 ', background='white', width=width_entries) 
        Owner_text.grid(row=2, column=3, padx=10, pady=0, sticky="w") 
 
        project_type_label = ttk.Label(project_info_frame, text="Project Type", font='Arial 11 
bold', background='white', width=width_label) 
        project_type_label.grid(row=2, column=4, padx=10, pady=0, sticky="w")  
        project_type_text = ttk.Label(project_info_frame, 
text=project_info[selected_project]["Owner Internal Code"], font='Arial 11 ', 
background='white', width=width_entries) 
        project_type_text.grid(row=2, column=5, padx=10, pady=0, sticky="w") 
         
        location_label = ttk.Label(project_info_frame, text="Location", font='Arial 11 bold', 
background='white', width=width_label) 
        location_label.grid(row=2, column=6, padx=10, pady=0, sticky="w")  
        location_text = ttk.Label(project_info_frame, 
text=project_info[selected_project]["Location"], font='Arial 11 ', background='white', 
width=width_entries) 
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        location_text.grid(row=2, column=7, padx=10, pady=0, sticky="w")  
 
        project_baselines_frame = ttk.Labelframe(project_info_label_frame, text="Project 
Baselines", style='Custom4.TLabelframe', padding= (10,10)) 
        project_baselines_frame.grid(row=1, column=0, padx=10, pady=10, sticky="nwes") 
 
        original_label = ttk.Label(project_baselines_frame, text="Initial Baseline", 
font=("Arial", 11, 'bold'), background='white', width=20,) 
        original_label.grid(row=1, column=0, padx=10 ) 
        current_label = ttk.Label(project_baselines_frame, text="Current Baseline", 
font=("Arial", 11, 'bold'), background='white', width=20) 
        current_label.grid(row=2, column=0, padx=10) 
 
        label_values = ["Budget At Completion ($)", "Duration (days)", "Start Date 
(yyyy/mm/dd)", "Finish Date (yyyy/mm/dd)" ] 
        text_values = [project_info[selected_project]["IB-Budget At Completion ($)"],  
                       project_info[selected_project]["IB-Duration (days)"],  
                       project_info[selected_project]["IB-Start Date"],  
                       project_info[selected_project]["IB-Finish Date"] ] 
         
        current_project_entry_list = [] 
 
        for i, (label, text) in enumerate(zip(label_values, text_values), start=1): 
            label = ttk.Label(project_baselines_frame, text=f"{label}", font=("Arial", 11, 
"bold"), background='white', width=25) 
            label.grid(row=0, column=i, sticky='nesw', padx=20) 
            text_label = ttk.Label(project_baselines_frame, text=f"{text}", font=("Arial", 
11), background='white') 
            text_label.grid(row=1, column=i,sticky='nesw' , padx=20) 
 
            entry = ttk.Entry(project_baselines_frame, font=("Arial", 11),) 
            entry.grid(row=2, column=i,sticky='nesw', padx=20 ) 
 
            current_project_entry_list.append(entry) 
 
        ### WORK PACKAGES 
        work_package_frame = ttk.Labelframe(update_window, text="At Work Package Level", 
style='Custom5.TLabelframe', padding= (10,20)) 
        work_package_frame.grid(row=2, column=0, padx=10, sticky="nwes") 
        work_package_frame.grid_rowconfigure(0, weight=1) 
        work_package_frame.grid_columnconfigure(0, weight=1) 
        canvas = tk.Canvas(work_package_frame, highlightthickness=0, background='white', 
height=220) 
        canvas.grid(row=0, column=0, sticky="nwes") 
        scrollable_frame = ttk.Frame(canvas, style='Custom.TFrame') 
        canvas.create_window((0, 0), window=scrollable_frame, anchor='nw') 
        scrollbar = ttk.Scrollbar(work_package_frame, orient="vertical", command=canvas.yview) 
        scrollbar.grid(row=0, column=2, sticky="ns") 
        canvas.configure(yscrollcommand=scrollbar.set) 
 
        def on_configure(event): 
            canvas.configure(scrollregion=canvas.bbox("all")) 
 
        # Bind the on_configure function to the canvas's configure event 
        canvas.bind("<Configure>", on_configure) 
 
        labels = ["Work Package", "Budget At Completion ($)", "Duration (days)", "Start Date 
(yyyy/mm/dd)", "Finish Date (yyyy/mm/dd)"] 

         
        for i, label in enumerate(labels): 
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            label_widget = ttk.Label(scrollable_frame, text=label, font=("Arial", 11, "bold"), 
background='white', width=25, anchor='center') 
            label_widget.grid(row=0, column=i, sticky="w", padx=20) 
 
        work_package_list = list(project_info[selected_project]["Work Packages"].keys()) 
        current_work_package_entries = [] 
 
        row=1 
        for column, work_package in enumerate(work_package_list): 
            work_package_name_label = ttk.Label(scrollable_frame, text= 
project_info[selected_project]["Work Packages"][work_package.upper()]["Work Package ID"] + f"- 
{work_package}", font=("Arial", 11,'bold'), background='white', ) 
            work_package_name_label.grid(row=row, column=0, sticky="nwse") 
 
            original_wp_label = ttk.Label(scrollable_frame, text="Initial Baseline", 
font=("Arial", 11), background='white') 
            original_wp_label.grid(row=row+1, column=0, padx=20, sticky="e") 
            current_wp_label = ttk.Label(scrollable_frame, text="Current Baseline", 
font=("Arial", 11), background='white') 
            current_wp_label.grid(row=row+2, column=0, padx=20, sticky="e") 
            original_cost_text = ttk.Label(scrollable_frame, 
text=project_info[selected_project]["Work Packages"][work_package.upper()]["IB-Budget At 
Completion ($)"], font=("Arial", 11), background='white') 
            original_cost_text.grid(row=row+1, column=1, ) 
            original_duration_text = ttk.Label(scrollable_frame, 
text=project_info[selected_project]["Work Packages"][work_package.upper()]["IB-Duration 
(days)"], font=("Arial", 11), background='white') 
            original_duration_text.grid(row=row+1, column=2, ) 
            original_startdate_text = ttk.Label(scrollable_frame, 
text=project_info[selected_project]["Work Packages"][work_package.upper()]["IB-Start Date"], 
font=("Arial", 11), background='white') 
            original_startdate_text.grid(row=row+1, column=3, ) 
            original_finishdate_text = ttk.Label(scrollable_frame, text= 
project_info[selected_project]["Work Packages"][work_package.upper()]["IB-Finish Date"], 
font=("Arial", 11), background='white') 
            original_finishdate_text.grid(row=row+1, column=4, ) 
             
            current_cost_text = ttk.Entry(scrollable_frame, width=20,font=("Arial", 11) ) 
            current_cost_text.grid(row=row+2, column=1,) 
            current_duration_text = ttk.Entry(scrollable_frame, width=20 ,font=("Arial", 11) ) 
            current_duration_text.grid(row=row+2, column=2, ) 
            current_startdate_text = ttk.Entry(scrollable_frame, width=20,font=("Arial", 11) ) 
            current_startdate_text.grid(row=row+2, column=3,  ) 
            current_finishdate_text = ttk.Entry(scrollable_frame, width=20,font=("Arial", 11) 
) 
            current_finishdate_text.grid(row=row+2, column=4,  ) 
 
            current_work_package_entries.append([current_cost_text, current_duration_text, 
current_startdate_text, current_finishdate_text]) 
            row += 3 
 
        update_window.update_idletasks() 
        canvas.config(scrollregion=canvas.bbox("all")) 
 
    def save_updated_project_info(selected_project): 
        global project_info 
        # Ensure there is a selected project, and the necessary entries are filled 
        if not current_project_entry_list or not all(entry.get() for entry in 
current_project_entry_list): 
            tk.messagebox.showwarning("Missing Information", "Please provide all required 
information for the Project.") 
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            return 
 
        # Update project-level information 
        attributes = ['CB-Budget At Completion ($)', 'CB-Duration (days)', 'CB-Start Date', 
'CB-Finish Date'] 
        project_info[selected_project].update({attr: current_project_entry_list[i].get() for 
i, attr in enumerate(attributes)}) 
 
        # Update work package-level information 
        for pos, wp_att in enumerate(current_work_package_entries): 
            wp_name = work_package_list[pos].upper() 
            project_info[selected_project]["Work Packages"][wp_name].update({ 
                attributes[i]: wp_att[i].get() for i in range(4) 
            }) 
 
        # Clear entry widgets after successful update 
        for entry in current_project_entry_list + [item for sublist in 
current_work_package_entries for item in sublist]: 
            entry.delete(0, "end") 
 
        tk.messagebox.showinfo("Info Saved", "Information saved successfully.") 
        save_project_info_to_file() 
        update_window.destroy() 
 
    def on_save_click(project_id): 
        save_updated_project_info(project_id) 
        current_datetime = datetime.now() 
        save_project_info_to_file() 
        project_info[project_id]["CB_Storage_date"] = current_datetime 
 
    Cancel_button = ttk.Button(update_window, text="Cancel", command = lambda: 
destroy_window(update_window), padding=20, style='Custom3.TButton') 
    Cancel_button.grid(row=3, column=0, padx=250, pady=10, sticky="e") 
    Cancel_button.configure(padding=(10,10)) 
 
    update_project_button = ttk.Button(update_window, text="Update Project Information", 
command=lambda: on_save_click(projectid_comb.get()), padding=20, style='Custom2.TButton') 
    update_project_button.grid(row=3, column=0, padx=10, pady=10, sticky="e") 
    update_project_button.configure(padding=(10,10)) 
 

6. Inputs for the Forecasting model from the Project Tracking 

def enter_WP_reports(): 
    global project_id_combobox_frame0, report_combobox_frame0, report_date_entry, 
project_selected_progress 
     
    for widget in progress_frame.winfo_children(): 
        widget.destroy() 
     
    frame0 = ttk.Labelframe(progress_frame, text='Progress Period Data', 
style='Custom2.TLabelframe') 
    frame0.grid(row=0, column=0, padx=0, pady=0,  sticky="nwes" ) 
 
    project_list = [f"Project {code}: {list(name.values())[0]}" for code, name in 
project_info.items()] 
    project_id_combobox_frame0 = ttk.Combobox(frame0, values=project_list, font=('Arial', 13), 
width=45, justify='left') 
    project_id_combobox_frame0.grid(row=0, column=0, padx=(10,100), pady=10, sticky="w") 
    project_id_combobox_frame0.set('Please select a project') 
     
    def on_project_selected_progress(event): 
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        global project_selected_progress 
        selection = project_id_combobox_frame0.get() 
        match = re.search(r"Project ([\w-]+):", selection) 
        if match: 
            project_selected_progress = match.group(1) 
project_id_combobox_frame0.bind('<<ComboboxSelected>>', on_project_selected_progress) 
    report_date_label = ttk.Label(frame0, text="Ending Date:", font=('Arial', 13), 
background='white') 
    report_date_label.grid(row=0, column=3, padx=10, pady=10) 
 
  def open_calendar(): 

        def on_date_selected(): 
             
            report_date_entry.set(calendar.selection_get().strftime("%Y/%m/%d"))  
            calendar_window.destroy() 
        calendar_window = tk.Toplevel(root) 
        calendar_window.title("Select Date") 
        calendar_window.geometry(f"+{report_date_field.winfo_rootx()}+{report_date_field.winfo
_rooty() + report_date_field.winfo_height()}") 
        calendar_window.grab_set()   
        calendar_window.transient(root)   
 
        calendar = Calendar(calendar_window, selectmode='day', date_pattern='y-mm-dd') 
        calendar.pack(pady=10, padx=10) 
 
        ok_button = ttk.Button(calendar_window, text="OK", command=on_date_selected) 
        ok_button.pack() 
 
    report_date_entry = tk.StringVar()   
    report_date_field = ttk.Entry(frame0, font=('Arial', 13), textvariable=report_date_entry) 
    report_date_field.grid(row=0, column=4, padx=(10,0), pady=10, sticky='n') 
    deploy_button = ttk.Button(frame0, text="▼", command=open_calendar) 
    deploy_button.grid(row=0, column=5, padx=(0,0)) 
 
    set_data_button = ttk.Button(frame0, text="Enter Data...", command=lambda: 
validation_and_entries_creation(project_selected_progress), style='Custom.TButton') 
    set_data_button.grid(row=0, column=7, padx=10, pady=0, sticky="nwse") 
 
    def validation_and_entries_creation(selected_project): 
        global report_number_key 
        report_date = report_date_entry.get() 
        project_reports_info = project_info.setdefault(selected_project, 
{}).setdefault("Project Reports Info", {}) 
        dates_exist = any("Date" in report_info for report_info in 
project_reports_info.values()) 
        if dates_exist: 
            max_report_number = max(int(k.split()[-1]) for k in project_reports_info.keys()) 
            last_report_date = project_reports_info[f'Project Report Number 
{max_report_number}']['Date'] 
            if datetime.datetime.strptime(report_date, "%Y/%m/%d") <= 
datetime.datetime.strptime(last_report_date, "%Y/%m/%d"): 
                messagebox.showerror("Date Error", "Reporting Date must be later than the 
previous reporting dates entered.") 
            else: 
                report_number_key=f'Project Report Number {max_report_number+1}' 
                project_reports_info[report_number_key] = {'Date': report_date} 
                create_work_package_entries(selected_project) 
 
        else: 
            report_number_key=f'Project Report Number 1' 



196 

 

            project_reports_info[report_number_key] = {'Date': report_date} 
            create_work_package_entries(selected_project)         
   def create_work_package_entries(selected_project): 
        global frame1, save_data_button, go_to_step_2_button, entries, headers_list, 
work_packages_in_selected_project 
 
        frame1 = ttk.Labelframe(progress_frame, text='Inputs for Machine Learning Model 
Forecasting', padding=(10,10), style='Custom9.TLabelframe') 
        frame1.grid(row=1, column=0, padx=0, pady=20, sticky="nwse") 
 
        project_reports_info = project_info[project_selected_progress]["Project Reports Info"] 
        max_report_number = max(int(k.split()[-1]) for k in project_reports_info.keys()) 
        next_reporting_period = f"Reporting Period {max_report_number}: Ending 
{report_date_entry.get()}" 
        ttk.Label(frame1, text=next_reporting_period, font=("Arial", 11, )).grid(row=0, 
column=0, columnspan=5, pady=10,sticky='nwes') 
        work_packages_in_selected_project = list(project_info[selected_project]["Work 
Packages"].keys()) 
 
        #Row labels---------------------------------------------------: 
        for i, work_package in enumerate(work_packages_in_selected_project, start=2): 
            work_package_id_label = ttk.Label(frame1, 
text=project_info[selected_project]["Work Packages"][work_package]["Work Package ID"], 
font=("Arial", 10, ), width= 10) 
            work_package_id_label.grid(row=i, column=0, sticky='nwes') 
            work_package_name_label = ttk.Label(frame1, text=work_package, font=("Arial", 10, 
), justify='left') 
            work_package_name_label.grid(row=i, column=1, ) 
                 
        #Headers labels---------------------------------------------------: 
        headers_list = ['ID', 'WP Name', 'Status', 'Period Number', 'AD to date', 
                        'Cum EV ($)', 'Cum ES (weeks)', 'TPI' ,  
                        'Actual Start Date', 'Actual Finish Date'] 
        for i, header in enumerate(headers_list): 
            if header == 'Status' or header == 'ID': 
                ttk.Label(frame1, text=header, font=("Arial", 11, ), 
anchor='center').grid(row=1, column=i, pady=20,sticky='nwes') 
             
            else: 
                ttk.Label(frame1, text=header, font=("Arial", 11, ), 
anchor='center').grid(row=1, column=i, pady=20,) 
             
            frame1.grid_columnconfigure(i, weight=1) 
 
        ## Entries---------------------------------------------------------: 
        entries = [] 
        for j in range(2, len(work_packages_in_selected_project)+2):   ### "j" rows    
            row_entries = [] 
            for i in range(2,len(headers_list)):  ### "i" is column 
                if i==2: 
                    att_entry = ttk.Combobox(frame1, values=["Non Started", "In Progress", 
"Finished"], font=("Arial", 11,), width=10) 
                else: 
                    att_entry = ttk.Entry(frame1,  font=("Arial", 11,), width=15) 
                att_entry.grid(row=j, column=i) 
                row_entries.append(att_entry) 
            entries.append(row_entries) 
         
        save_data_button = ttk.Button(progress_frame, text="Save", command=lambda: 
store_data(project_selected_progress), style='Custom2.TButton') 
        save_data_button.grid(row=3, column=0, padx=20, pady=20, sticky="e" ) 
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        def cancel_function():             
            del project_info[selected_project]["Project Reports Info"][report_number_key] 
            cancel_button.destroy() 
            save_data_button.destroy() 
            frame1.grid_forget() 
            show_frame(project_hub_frame) 
 
        cancel_button = ttk.Button(progress_frame, text="Cancel", command=cancel_function, 
style='Custom3.TButton') 
        cancel_button.grid(row=3, column=0, padx=150, pady=20, sticky="e" )           
        save_data_button.configure(padding=(10, 10)) 
        cancel_button.configure(padding=(10, 10)) 
 
def store_data(selected_project): 
    if 'Work Packages' not in project_info[selected_project]["Project Reports 
Info"][report_number_key]: 
        project_info[selected_project]["Project Reports Info"][report_number_key]['Work 
Packages'] = {} 
            
    for i, work_package in enumerate(work_packages_in_selected_project): 
        project_info[selected_project]["Project Reports Info"][report_number_key]['Work 
Packages'][work_package] = { 
            'ID': project_info[selected_project]["Work Packages"][work_package]["Work Package 
ID"], 
            'Status': entries[i][0].get(), 
            'Period Number': entries[i][1].get(), 
            'Actual Duration To Date (days)': entries[i][2].get(), 
            'Cumulative EV': entries[i][3].get(), 
            'Cumulative ES': entries[i][4].get(), 
            'TPI': entries[i][5].get(), 
            'Start Date Actual': entries[i][6].get(), 
            'Finish Date Actual': entries[i][7].get(), 
        } 
 
    save_project_info_to_file() 
 
    for work_package in work_packages_in_selected_project: 
        try: 
            Budget_item = project_info[selected_project]['Work Packages'][work_package]['CB-
Budget At Completion ($)'] 
        except KeyError: 
            Budget_item = project_info[selected_project]['Work Packages'][work_package]['IB-
Budget At Completion ($)'] 
                
        data_for_dict = { 
        'Period Number': [project_info[selected_project]["Project Reports 
Info"][report_number_key]['Work Packages'][work_package]['Period Number']], 
        'Actual Duration To Date (days)':[project_info[selected_project]["Project Reports 
Info"][report_number_key]['Work Packages'][work_package]['Actual Duration To Date (days)']], 
        'Cumulative Earned Value ($)': [project_info[selected_project]["Project Reports 
Info"][report_number_key]['Work Packages'][work_package]['Cumulative EV']], 
        'Cumulative Earned Schedule (weeks)': [project_info[selected_project]["Project Reports 
Info"][report_number_key]['Work Packages'][work_package]['Cumulative ES']], 
        'Time Performance Index': [project_info[selected_project]["Project Reports 
Info"][report_number_key]['Work Packages'][work_package]['TPI'] ], 
        'Budget': [Budget_item], 
        'Duration to Complete (days)': None} 
 
        df = pd.DataFrame(data_for_dict)  
        df.astype(float) 
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        if os.path.exists(f'{selected_project}_{work_package}_data.csv'): 
            df_1 = pd.read_csv(f'{selected_project}_{work_package}_data.csv') 
            df3 = pd.concat([df_1, df], ignore_index=True) 
            df3.to_csv(f'{selected_project}_{work_package}_data.csv', index=False) 
        else: 
            df.to_csv(f'{selected_project}_{work_package}_data.csv', index=False) 
       
    clear_entries() 
    messagebox.showinfo("Success", "Data Stored Successfully") 

7. The forecasting of Work Packages: Integrating forecasting model and incorporating 

Gantt and line charts and, a summary table. 

 
##### Filtering data for forecasting model ### 
def forecasting_file(selected_project, selected_package, period): 
    df = pd.read_csv(f'{selected_project}_{selected_package}_data.csv') 
    df = df.head(period)    
    df_reduced = df[df['Period Number'] != 0].reset_index(drop=True) 
    df_predic_1 = df_reduced.drop(['Period Number'],axis=1) 
    return df_predic_1, df 
 
##### VARIABLES FOR NORMALIZATION ### 
def normalization(df): 
    values = df.values.astype('float32') 
    scaler = MinMaxScaler() 
    values_scaled = scaler.fit_transform(values) 
    df_scaled = pd.DataFrame(values_scaled) 
    return df_scaled 
##### GROUPING FOR MODELLING ###  
def df_to_X_y(df, past): 
  df_as_np = df.to_numpy() 
  X = [] 
  y = [] 
  for i in range(len(df_as_np)-past): 
    row = [r for r in df_as_np[i:i+past]] 
    X.append(row) 
    label = df_as_np[i+past][df.shape[1]-1] 
    y.append(label) 
  return np.array(X), np.array(y) 
##### VARIABLES FOR DENORMALIZATION ### 
def factors_for_denormalization(df): 
    Max_orig = df.iloc[:,5].max()   
    Min_orig = df.iloc[:,5].min()  
    Delta = Max_orig-Min_orig 
    return Delta, Min_orig 
 
def Prediction(selected_project, selected_package, period): 
    predict_value = None 
    df_predic, df_in_csv_file = forecasting_file(selected_project, selected_package, period) 
 
    try: 
        bl_duration = float(project_info[selected_project]['Work 
Packages'][selected_package]['CB-Duration (days)']) 
    except KeyError: 
        bl_duration = float(project_info[selected_project]['Work 
Packages'][selected_package]['IB-Duration (days)']) 
     
    if len(df_predic) >= 4: 
        df=df_predic.tail(4) 



199 

 

        df = df_predic 
        to_complete = float(bl_duration) - float(df.iloc[-1,0]) 
        df.iloc[-1,-1] = to_complete 
        if df.iloc[:, -1].isnull().any(): 
            messagebox.showwarning("Warning", "Ensure that previous Duration to Completion 
(DTC) were filled") 
        else: 
            Delta_1p, Min_orig_1p = factors_for_denormalization(df)  
            df_predict_scaled = normalization(df) 
            model = load_model(f'{selected_package}_model.h5') 
            X1p, y1p = df_to_X_y(df_predict_scaled, 3) 
            Xpredict=model.predict(X1p).flatten() 
            predicted_list = Xpredict*Delta_1p+Min_orig_1p 
            predict_value = predicted_list[-1] 
    else: 
        predict_value = float(bl_duration) - float(df_predic.iloc[-1,0]) 
     
    period_value = df_predic.index[-1] + 1 
    df1 = pd.read_csv(f'{selected_project}_{selected_package}_data.csv') 
    df1.loc[df1['Period Number'] == period_value, 'Duration to Complete (days)'] = 
predict_value 
    df1.to_csv(f'{selected_project}_{selected_package}_data.csv', index=False) 
 
    return predict_value 
 
def work_package_forecasting():   

    for widget in forecasting_work_package_frame.winfo_children(): 
        widget.destroy() 
    wp_prediction_frame = ttk.Labelframe(forecasting_work_package_frame, text='Forecasting per 
Work Package', style='Custom2.TLabelframe') 
    wp_prediction_frame.grid(row=0, column=0, padx=0, pady=0, sticky='nwes') 
     
    buttons_frame = ttk.Labelframe(forecasting_work_package_frame, text="Work Packages", 
style='Custom7.TLabelframe') 
    buttons_frame.grid(row=1, column=0, sticky="nsew", padx=0, pady=5) 
 
    ### Getting Predictions-----------------------### 
    def getting_predictions(project, period): 
        dic = project_info[project]["Project Reports Info"][f'Project Report Number {period}'] 
        if 'Predictions' not in dic: 
            wpackages = list(project_info[project]["Work Packages"].keys()) 
            predicted_values_dict = {key: None for key in wpackages} 
            for wpackage in wpackages: 
                if dic['Work Packages'][wpackage]["Status"] == 'In Progress': 
                    predicted_value = Prediction(project, wpackage, period) 
                    predicted_values_dict[wpackage] = float(math.ceil(predicted_value)) 
                else: 
                    predicted_values_dict[wpackage] = 0 
            dic['Predictions'] = predicted_values_dict 
 
            save_project_info_to_file() 
  def show_chart(proj, package_name, period_selected): 
        fig_gantt.clf() 
        fig_line.clf() 
      
        ax = fig_gantt.add_subplot(111) 
        ax1 = fig_line.add_subplot(111) 
 
        dic_temp_2 = project_info[proj]["Project Reports Info"][f'Project Report Number 
{period_selected}']['Work Packages'][package_name] 
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        df1=pd.read_csv(f'database {package_name}.csv') 
         
        df1 = df1[df1['Period'] == period_selected] 
        df1=df1.reset_index() 
         
        df=pd.DataFrame(columns=['Item', 'Start', 'Finish']) 
        Item_list = ['Current BL', 'Actual', 'Forecast'] 
        if df1.at[0,'Status']== 'In Progress': 
            Start_list = [df1.at[0,'BL Start Date'], df1.at[0,'Start date'], 
df1.at[0,'Reporting Date']] 
            Finish_list = [df1.at[0,'BL Finish Date'], df1.at[0,'Reporting Date'], 
df1.at[0,'Forecasted Finish Date']] 
        elif df1.at[0,'Status'] == 'Non Started': 
            Start_list = [df1.at[0,'BL Start Date'], df1.at[0,'Reporting Date'], 
df1.at[0,'Reporting Date']] 
            Finish_list = [df1.at[0,'BL Finish Date'], df1.at[0,'Reporting Date'], 
df1.at[0,'Reporting Date']] 
        elif df1.at[0,'Status'] == 'Finished': 
            Start_list = [df1.at[0,'BL Start Date'], df1.at[0,'Start date'], 
df1.at[0,'Reporting Date']] 
            Finish_list = [df1.at[0,'BL Finish Date'], df1.at[0,'Finish Date'], 
df1.at[0,'Reporting Date']] 
 
        df['Item'] = Item_list 
        df['Start'] = pd.to_datetime(Start_list, ) 
        df['Finish'] = pd.to_datetime(Finish_list, ) 
        df['Duration'] = (df['Finish']-df['Start']).dt.days 
        df['Start'] = mdates.date2num(df['Start']) 
        df['Finish'] = mdates.date2num(df['Finish']) 
 
        # Create a Gantt chart 
        color_dict = {'Current BL': '#EAEE1B','Actual': '#271BE6', 
        'Forecast': '#9F2CEA'} 
        labeled_items = set() 
         
        for index, row in df.iterrows(): 
            item_color = color_dict[row['Item']] 
            # Only add a label if this item hasn't been labeled before 
            if row['Item'] not in labeled_items: 
                ax.barh(row['Item'], row['Finish'] - row['Start'], left=row['Start'], 
height=0.5, color=item_color, edgecolor='black', label=row['Item']) 
                labeled_items.add(row['Item']) 
            else: 
                ax.barh(row['Item'], row['Finish'] - row['Start'], left=row['Start'], 
height=0.5, color=item_color, edgecolor='black') 
 
 
        ax.xaxis_date() 
        ax.xaxis.set_major_locator(mdates.MonthLocator())  
        ax.xaxis.set_major_formatter(mdates.DateFormatter('%Y-%b-%d'))  
        ax.set_xlabel('Date', fontdict={'family': 'Arial', 'size': 11}) 
        ax.set_yticks(range(len(df['Item']))) 
        ax.set_yticklabels(df['Item'], fontdict={'family': 'Arial', 'size': 11}) 
        ax.yaxis.set_major_locator(FixedLocator(range(len(df['Item'])))) 
        for label in ax.get_xticklabels(): 
            label.set_fontname('Arial') 
            label.set_fontsize(10) 
       
        today1 = df1.at[0,'Reporting Date'] 
        today1 = datetime.datetime.strptime(today1, '%Y-%m-%d')      
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        ax.axvline(x=today1, color='red', linestyle='-') 
        ax.text(today1, 0.5, 'Data Date', color='red', fontsize=10, ha='left', family='Arial') 
        ax.legend(fontsize=11, loc='upper center', frameon=False, bbox_to_anchor=(0.5, 1.3), 
prop={'family': 'Arial', 'size': 10}, ncol=len(labeled_items)) 
        ax.invert_yaxis() 
        ax.grid(axis='x', zorder=0) 
        ax.set_axisbelow(True) 
        fig_gantt.autofmt_xdate()   
        fig_gantt.subplots_adjust(left=0.05, right=0.95, top=0.95, bottom=0.05) 
        fig_gantt.tight_layout() 
        chart_canvas.draw() 
       
        ### Line Chart 
        if dic_temp_2["Status"] == 'In Progress': 
            df2=pd.read_csv(f'database {package_name}.csv') 
            df2 = df2[df2['Tracking Period'] != 0] 
            x_values = df2['Tracking Period'] 
            y_values = df2['Finish Date Variance'] 
            ax1.plot(x_values, y_values, marker='o', linestyle='-', color='blue') 
            ax1.set_xlim(left=x_values.min(), right=x_values.max()) 
            ax1.set_xticks(x_values) 
            ax1.set_xticklabels(x_values, fontdict={'family': 'Arial', 'size': 10} ) 
 
            min_y = y_values.min() 
            max_y = y_values.max() 
            y_ticks = np.arange(min_y, max_y+1, 10)   
            ax1.set_yticks(y_ticks)  
            ax1.set_yticklabels(y_ticks, fontdict={'family': 'Arial', 'size': 10} ) 
           # Formatting the date axis 
            ax1.set_xlabel('Work Package Execution Period', fontdict={'family': 'Arial', 
'size': 9}) 
            ax1.set_ylabel('Deviation (days)', fontdict={'family': 'Arial', 'size': 11}) 
            fig_line.tight_layout() 
            ax1.grid(True) 
            ax1.set_axisbelow(True) 
            line_chart_canvas.draw() 
 
        else: 
            ax1.text(0.5, 0.5, 'No chart to display as \nthe work package has not \nstarted or 
has already finished.',  
                     horizontalalignment='center', verticalalignment='center',  
                     transform=ax1.transAxes,fontdict={'family': 'Arial', 'size': 12, 
'weight': 'normal'}) 
        line_chart_canvas.draw() 
 
    def show_data_and_charts(proj, package_name, period_selected):         

        dic_temp = project_info[proj]['Work Packages'][package_name]  
        data_chart_frame = ttk.Labelframe(forecasting_work_package_frame, 
text=f"{dic_temp['Work Package ID']} {package_name}", style='Custom7.TLabelframe') 
        data_chart_frame.grid(row=2, column=0, sticky="nsew", padx=0, pady=5) 
        data_chart_frame.grid_columnconfigure(2, weight=1) 
 
        chart_frame = ttk.Labelframe(data_chart_frame, text="Gantt Chart", 
style='Custom11.TLabelframe') 
        chart_frame.grid(row=1, column=0, sticky="nsew", padx=5, pady=5) 
        line_chart_frame = ttk.Labelframe(data_chart_frame, text="Finish Date Deviation per 
Period", style='Custom11.TLabelframe') 
        line_chart_frame.grid(row=1, column=1, sticky="nsew", padx=5, pady=5) 
        chart_frame.grid_rowconfigure(1, weight=1)  
        chart_frame.grid_columnconfigure(1, weight=1)  
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        line_chart_frame.grid_rowconfigure(0, weight=1) 
        line_chart_frame.grid_columnconfigure(0, weight=1) 
        fig_gantt = Figure(figsize=(6, 4), dpi=100) 
        chart_canvas = FigureCanvasTkAgg(fig_gantt, master=chart_frame) 
        chart_canvas.get_tk_widget().grid(row=0, column=0, sticky="nsew") 
        fig_line = Figure(figsize=(4, 4), dpi=100) 
        line_chart_canvas = FigureCanvasTkAgg(fig_line, master=line_chart_frame) 
        line_chart_canvas.get_tk_widget().grid(row=0, column=0, sticky="nsew") 
        df = pd.DataFrame({'Period': range(1, period_selected + 1)}) 
        df['ID'] = dic_temp['Work Package ID'] 
        df['WP Name'] = package_name         
         
        def get_status(period): 
            return project_info[proj]["Project Reports Info"][f'Project Report Number 
{period}']['Work Packages'][package_name]['Status'] 
        df['Status'] = df['Period'].apply(get_status) 
        df['Tracking Period'] = 0 
        df.loc[df['Status'] == 'In Progress', 'Tracking Period'] = (df['Status'] == 'In 
Progress').cumsum() 
 
        def get_reporting_date(period): 
            return project_info[proj]["Project Reports Info"][f'Project Report Number 
{period}']['Date'] 
        df['Reporting Date'] = df['Period'].apply(get_reporting_date) 
        df['Reporting Date'] = pd.to_datetime(df['Reporting Date'], format='%Y/%m/%d') 
 
        def get_actual_start(period): 
            return project_info[proj]["Project Reports Info"][f'Project Report Number 
{period}']['Work Packages'][package_name]['Start Date Actual'] 
        df['Start date'] = df['Period'].apply(get_actual_start) 
        df['Start date'] = pd.to_datetime(df['Start date'], format='%Y/%m/%d', 
errors='coerce') 
         
        def get_actual_finish(period): 
            return project_info[proj]["Project Reports Info"][f'Project Report Number 
{period}']['Work Packages'][package_name]['Finish Date Actual'] 
        df['Finish Date'] = df['Period'].apply(get_actual_finish) 
        df['Finish Date'] = pd.to_datetime(df['Finish Date'], format='%Y/%m/%d', 
errors='coerce') 
 
        #### BL Duration 
        df['BL Duration'] = None 
        for i, row in df.iterrows(): 
            if row['Status'] == 'In Progress': 
                try: 
                    given_value1 = 
datetime.datetime.strptime(project_info[proj]["CB_Storage_date"], "%Y/%m/%d") 
                    value3 = dic_temp["IB-Duration (days)"] 
                    value4 = dic_temp["CB-Duration (days)"] 
                    df.at[i, 'BL Duration'] = value3 if row['Reporting Date'] < given_value1 
else value4 
                except KeyError: 
                    df.at[i, 'BL Duration'] = dic_temp["IB-Duration (days)"] 
            elif row['Status'] == 'Non Started': 
                try: 
                    df.at[i, 'BL Duration'] = dic_temp["CB-Duration (days)"] 
                except KeyError: 
                    df.at[i, 'BL Duration'] = dic_temp["IB-Duration (days)"] 
            elif row['Status'] == 'Finished': 
                try: 
                    df.at[i, 'BL Duration'] = dic_temp["CB-Duration (days)"] 
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                except KeyError: 
                    df.at[i, 'BL Duration'] = dic_temp["IB-Duration (days)"] 
 
        df['BL Duration'] = df['BL Duration'].astype(float) 
         
        ### Forecasted Duration 
        def get_ADdate(period): 
            return project_info[proj]["Project Reports Info"][f'Project Report Number 
{period}']['Work Packages'][package_name]['Actual Duration To Date (days)'] 
        df['AD_to_date'] = df['Period'].apply(get_ADdate) 
        df['AD_to_date'] = df['AD_to_date'].astype(int)         
 
        def get_predicted(period): 
            try: 
                return project_info[proj]["Project Reports Info"][f'Project Report Number 
{period}']['Predictions'][package_name] 
            except KeyError: 
                return 0 
        df['Predicted_value'] = df['Period'].apply(get_predicted) 
        df['Predicted_value']=np.ceil(df['Predicted_value'])        
         
        ### Then: 
        df['Forecasted Duration'] = df['AD_to_date']+df['Predicted_value'] 
 
        for i, row in df.iterrows(): 
            if row['Status'] == 'In Progress' and row['Predicted_value'] == 0: 
                df.at[i, 'Forecasted Duration'] = df.at[i, 'BL Duration'] 
            elif row['Status'] == 'Non Started': 
                df.at[i, 'Forecasted Duration'] = df.at[i, 'BL Duration'] 
            elif row['Status'] == 'Finished': 
                df.at[i, 'Forecasted Duration'] = (df.at[i,'Finish Date'] - df.at[i,'Start 
date']).days 
 
        ### BL Finish Date 
        df['BL Finish Date'] = None 
        df['BL Start Date'] = None 
 
        for i, row in df.iterrows(): 
            if row['Status'] == 'In Progress': 
                try: 
                    given_value1 = datetime.datetime.strptime(project_info[proj] 
["CB_Storage_date"], "%Y/%m/%d") 
                    value1=dic_temp["IB-Finish Date"] 
                    value2=dic_temp["CB-Finish Date"] 
                    value10=dic_temp["IB-Start Date"] 
                    value20=dic_temp["CB-Start Date"] 
 
                    df.at[i,'BL Finish Date'] = value1 if row['Reporting Date'] < given_value1 
else value2 
                    df.at[i,'BL Start Date'] = value10 if row['Reporting Date'] < given_value1 
else value20 
                 
                except KeyError: 
                    df.at[i,'BL Finish Date'] = dic_temp["IB-Finish Date"] 
                    df['BL Finish Date'] = pd.to_datetime(df['BL Finish Date'], 
format='%Y/%m/%d')                    
                    df.at[i,'BL Start Date'] = dic_temp["IB-Start Date"] 
                    df['BL Start Date'] = pd.to_datetime(df['BL Start Date'], 
format='%Y/%m/%d') 
 
            elif row['Status'] == 'Non Started': 
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                try: 
                    df.at[i,'BL Finish Date'] = dic_temp["CB-Finish Date"] 
                    df.at[i,'BL Start Date'] = dic_temp["CB-Start Date"] 
                except KeyError: 
                    df.at[i,'BL Finish Date'] = dic_temp["IB-Finish Date"] 
                    df.at[i,'BL Start Date'] = dic_temp["IB-Start Date"]                     
 
            elif row['Status'] == 'Finished': 
                try: 
                    df.at[i,'BL Finish Date'] = dic_temp["CB-Finish Date"] 
                    df.at[i,'BL Start Date'] = dic_temp["CB-Start Date"] 
                except KeyError: 
                    df.at[i,'BL Finish Date'] = dic_temp["IB-Finish Date"] 
                    df.at[i,'BL Start Date'] = dic_temp["IB-Start Date"] 
 
        df['BL Finish Date'] = pd.to_datetime(df['BL Finish Date'], format='%Y/%m/%d') 
        df['BL Start Date'] = pd.to_datetime(df['BL Start Date'], format='%Y/%m/%d') 
 
        ### Forecasted Finish Date 
        df['Forecasted Finish Date'] = None 
        for i, row in df.iterrows(): 
            if row['Status'] == 'In Progress': 
                duration_days = Timedelta(days=row['Forecasted Duration']) 
                try: 
                    df.at[i,'Forecasted Finish Date'] = row['Start date'] + duration_days 
                except KeyError: 
                    df.at[i,'Forecasted Finish Date'] = row['BL Start Date'] + duration_days 
             
            elif row['Status'] == 'Non Started': 
                if row['Reporting Date'] <= row['BL Start Date']: 
                    df.at[i, 'Forecasted Finish Date'] = row['BL Finish Date'] 
                else: 
                    df.at[i, 'Forecasted Finish Date'] = row['Reporting Date'] + 
pd.to_timedelta(row['BL Duration'], unit='D') 
             
            elif row['Status'] == 'Finished': 
                df.at[i, 'Forecasted Finish Date'] = row['Finish Date'] 
                 
        df['Forecasted Finish Date'] = pd.to_datetime(df['Forecasted Finish Date'], 
format='%Y/%m/%d') 
        df['Duration Variance (days)'] = df['BL Duration'] - df['Forecasted Duration'] 
        df['Finish Date Variance']= df['Forecasted Finish Date'] - df['BL Finish Date'] 
        df['Finish Date Variance']=df['Finish Date Variance'].dt.days 
        df.to_csv(f"database {package_name}.csv") 
        df_for_tree = df 
        df_for_tree = df_for_tree.drop(['Tracking Period', 'AD_to_date', 
'Predicted_value',  'Finish Date','Forecasted Duration','Duration Variance (days)','BL 
Duration',], axis=1) 
         
        df_for_tree['BL Finish Date'] = df_for_tree['BL Finish Date'] - pd.Timedelta(days=1) 
### Subtractring one day to match P6 dates. 
        datetim_cols = ['Reporting Date', 'BL Finish Date', 'Forecasted Finish Date', 'BL 
Start Date','Start date'] 
        for col in datetim_cols: 
            df_for_tree[col] = df_for_tree[col].dt.date 
        df_for_tree = df_for_tree[['Period', 'Reporting Date', 'Status', 'BL Start Date', 'BL 
Finish Date', 'Start date','Forecasted Finish Date', 'Finish Date Variance' ]] 
        df_for_tree.rename(columns={'Start date': 'Actual Start Date','Finish Date 
Variance':'Schedule Deviation'}, inplace=True) 
        tree = ttk.Treeview(data_chart_frame, height=7, style='Custom2.Treeview')   
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        tree['columns'] = list(df_for_tree.columns) 
        tree.column("#0", width=0, stretch=tk.NO)   
        for col in df_for_tree.columns: 
            if col in ('Period'): 
                tree.column(col, anchor=tk.CENTER, width=8) 
            elif col in ('ID'): 
                tree.column(col, anchor=tk.CENTER, width=14) 
            elif col in ( 'WP Name', 'Status'): 
                tree.column(col, anchor=tk.CENTER, width=35) 
            else: 
                tree.column(col, anchor=tk.CENTER, width=80) 
        tree.heading("#0", text="", anchor=tk.CENTER)   
        for col in df_for_tree.columns: 
            tree.heading(col, text=col, anchor=tk.CENTER ) 
 
        # Insert data from DataFrame into Treeview 
        for i, row in df_for_tree.iterrows(): 
            tree.insert("", tk.END, iid=i, values=list(row), tags=('myTag',)) 
 
        tree.tag_configure('highlight', background='yellow')         
        children = tree.get_children() 
        if children:   
            last_child_id = children[-1]  
            # Apply the 'highlight' tag to the last row 
            tree.item(last_child_id, tags=('highlight',)) 
 
        tree.grid(row=2, columnspan=2, padx=10, pady=0, sticky="ew" ) 
        scrollbar = ttk.Scrollbar(data_chart_frame, orient="vertical", command=tree.yview) 
        tree.configure(yscrollcommand=scrollbar.set) 
        scrollbar.grid(row=2, column=2, padx=0, pady=0, sticky="sn" ) 
 
        tree.tag_configure('myTag', font=("Arial", 10)) 
 
        show_chart(proj, package_name, period_selected) 
 
    def create_buttons(frame, project, period_number): 
        work_packages = list(project_info[project]["Work Packages"].keys()) 
        for widget in frame.winfo_children(): 
            widget.destroy() 
        for i, package_name in enumerate(work_packages): 
            button = ttk.Button(frame, text=package_name,  
                            command=lambda name=package_name, proj=project, 
period=period_number: show_data_and_charts(proj, name, period),  
                            style='Custom4.TButton') 
            button.grid(row=0, column=i, pady=10, padx=15, sticky="ew") 
 
    def update_packages_combobox(project_code): 
        project_reports_info = project_info[project_code]["Project Reports Info"] 
        formatted_list = [f"Reporting Period {k.split()[-1]}: Ending {v['Date']}" for k, v in 
project_reports_info.items()] 
        period_combobox['values'] = formatted_list 
        period_combobox.set(formatted_list[-1] if formatted_list else '') 
 
    def clear_widgets(): 
        for widget in buttons_frame.winfo_children(): 
            widget.destroy() 
        try: 
            for widget in data_chart_frame.winfo_children(): 
                widget.destroy() 
        except tk.TclError: 
            pass 
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    def on_project_select(event): 
        selection = project_combobox.get() 
        match = re.search(r"Project ([\w-]+):", selection) 
        if match: 
            project_code = match.group(1) 
            update_packages_combobox(project_code) 
            clear_widgets() 
    
 
    project_list = [f"Project {code}: {list(name.values())[0]}" for code, name in 
project_info.items()] 
    project_combobox = ttk.Combobox(wp_prediction_frame, values=project_list, font=('Arial', 
13), width=45, justify='left') 
    project_combobox.grid(row=0, column=0, padx=(10,180), pady=10, sticky="w") 
    project_combobox.set('Please select a project') 
    project_combobox.bind('<<ComboboxSelected>>', on_project_select) 
    period_combobox = ttk.Combobox(wp_prediction_frame, values=['Please select a period'], 
font=('Arial', 13), width=35, justify='left') 
    period_combobox.grid(row=0, column=2, padx=10, pady=10, sticky="e") 
    period_combobox.set('Please select a period') 
    def on_package_select(event): 
        project_selection = project_combobox.get() 
        period_selection = period_combobox.get() 
         
        # Extract project code from selection 
        project_match = re.search(r"Project ([\w-]+):", project_selection) 
        period_match = re.search(r"Reporting Period (\d+):", period_selection) 
        if project_match: 
            project_code = project_match.group(1) 
        if period_match: 
            period_number = int(period_match.group(1)) 
            create_buttons(buttons_frame, project_code, period_number) 
            getting_predictions(project_code, period_number) 
            wp_slected_project = list(project_info[project_code]["Work Packages"].keys()) 
            first_package_show = wp_slected_project[0] 
            show_data_and_charts(project_code, first_package_show, period_number) 
 
    period_combobox.bind('<<ComboboxSelected>>', on_package_select) 
 

8. The Overall Project Forecasting: Capturing information from P6 Schedule and 

development CPM and PDM methodologies computerized to consolidate individual 

work package predictions. 

## PROJECT FORECASTING 
def project_forecasting(): 
    for widget in forecasting_project_frame.winfo_children(): 
        widget.destroy() 
 
    def browse_file(): 
        global file_path 
        file_path = filedialog.askopenfilename() 
            file_path_var.set(file_path) 
    def update_packages_combobox(project): 
        project_reports_info = project_info[project]["Project Reports Info"] 
        formatted_list = [f"Reporting Period {k.split()[-1]}: Ending {v['Date']}" for k, v in 
project_reports_info.items()] 
        period_combobox_overall['values'] = formatted_list 
        period_combobox_overall.set(formatted_list[-1] if formatted_list else '') 
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    def clear_widgets(): 
        try: 
            for widget in forecasting_project_frame.winfo_children(): 
                widget.destroy() 
        except tk.TclError: 
            pass 
     
    heading_frame = ttk.Labelframe(forecasting_project_frame, text='Project Duration 
Forecasting', style='Custom2.TLabelframe') 
    heading_frame.grid(row=0, column=0, padx=0, pady=0, sticky='nwes') 
    primavera_frame = ttk.Labelframe(forecasting_project_frame, text='Primavera P6 data', 
style='Custom7.TLabelframe') 
    primavera_frame.grid(row=1, column=0, sticky="nsew", padx=0, pady=5) 
    ttk.Label(primavera_frame, text='Select project schedule at work package level: ', 
font=("Arial", 11, ), background='white', ).grid(row=0, column=0, padx=10, pady=0, sticky="w") 
     
    project_list = [f"Project {code}: {list(name.values())[0]}" for code, name in 
project_info.items()] 
    project_combobox_overall = ttk.Combobox(heading_frame, values=project_list, font=('Arial', 
13), width=45, justify='left') 
    project_combobox_overall.grid(row=0, column=0, padx=(10,180), pady=10, sticky="w") 
    project_combobox_overall.set('Please select a project') 
    period_combobox_overall = ttk.Combobox(heading_frame, values=['Please select a period'], 
font=('Arial', 13), width=35, justify='left') 
    period_combobox_overall.grid(row=0, column=2, padx=10, pady=10, sticky="e") 
    period_combobox_overall.set('Please select a period') 
    def on_project_select_overall(event): 
        selection = project_combobox_overall.get() 
        match = re.search(r"Project ([\w-]+):", selection) 
        if match: 
            project_code = match.group(1) 
            update_packages_combobox(project_code) 
 
    project_combobox_overall.bind('<<ComboboxSelected>>', on_project_select_overall) 
        
## 1. CALCULATION BY CPM 
    def get_primavera_p6(project_code_0, period_number_0): 
        global project_id_combobox_frame0, report_combobox_frame0, data 
        ttk.Button(primavera_frame, text="Display Duration at Completion Forecasting", 
command=lambda: duration_at_completion(project_code_0), style='Custom.TButton').grid(row=2, 
column=0,  columnspan= 5, padx=10, pady=5, sticky='nwes') 
 
        dict_predictions = project_info[project_code_0]["Project Reports Info"][f'Project 
Report Number {period_number_0}']['Predictions'] 
        dfPred_WP = pd.DataFrame(list(dict_predictions.items()), columns=['Work_Package_Name', 
'WP_Predictions']) 
        WPnames = list(dict_predictions.keys()) 
 
        #### Parsing the XML file 
        tree = Xet.parse(file_path) 
        root = tree.getroot() 
        ns = {'' : root.tag[1:root.tag.index('}')]} 
        for i in root.findall('*/Activity', ns): 
            col_01 = [] 
            for i in root.findall('*/Activity/WBSObjectId', ns): 
                col_01.append(i.text) 
            col_02 = [] 
            for i in root.findall('*/Activity/ObjectId', ns): 
                col_02.append(i.text)        
            col_07 = [] 
            for i in root.findall('*/Activity/PlannedDuration', ns): 
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                col_07.append(i.text)             
            col_08 = [] 
            for i in root.findall('*/Activity/ActualDuration', ns): 
                col_08.append(i.text)             
            col_09 = [] 
            for i in root.findall('*/Activity/PlannedStartDate', ns): 
                col_09.append(i.text) 
            col_10 = [] 
            for i in root.findall('*/Activity/PlannedFinishDate', ns): 
                col_10.append(i.text)             
            col_11 = [] 
            for i in root.findall('*/Activity/ActualStartDate', ns): 
                col_11.append(i.text)             
            col_12 = [] 
            for i in root.findall('*/Activity/ActualFinishDate', ns): 
                col_12.append(i.text)                 
            col_23 = [] 
            for i in root.findall('*/Activity/StartDate', ns): 
                col_23.append(i.text) 
            col_24 = [] 
            for i in root.findall('*/Activity/FinishDate', ns): 
                col_24.append(i.text) 
         
        rows_1=zip(col_01, col_02, col_03, col_04, col_05, col_06, col_07, col_08, col_09, 
col_10, col_11, col_12, col_23, col_24) 
        cols_1 = ["WBSObjectId", "Activity_ObjectId", "ActivityID", "Activity_Name", "Type", 
"Physical_Percent_Complete", "Planned_duration", "Actual_duration", "Planned_Start_Date", 
"Planned_finish_date", "Actual_start_date", "Actual_finish_date", "Start_date", "Finish_date"] 
        df1 = pd.DataFrame(rows_1, columns = cols_1) 
 
        for i in root.findall('*/Relationship', ns): 
            col_13 = [] 
            for i in root.findall('*/Relationship/ObjectId', ns): 
                col_13.append(i.text)                 
            col_14 = [] 
            for i in root.findall('*/Relationship/PredecessorActivityObjectId', ns): 
                col_14.append(i.text)             
            col_15 = [] 
            for i in root.findall('*/Relationship/SuccessorActivityObjectId', ns): 
                col_15.append(i.text)             
            col_16 = [] 
            for i in root.findall('*/Relationship/Type', ns): 
                col_16.append(i.text) 
            col_17 = [] 
            for i in root.findall('*/Relationship/Lag', ns): 
                col_17.append(i.text) 
         
        rows_2=zip(col_13, col_14, col_15, col_16, col_17) 
        cols_2 = ["Relationship_ObjectId", "PredecessorActivityObjectId", "Activity_ObjectId", 
"Type", "Lags"] 
        df2 = pd.DataFrame(rows_2, columns = cols_2) 
        ############################################################### 
        for i in root.findall('*/WBS', ns): 
            
            col_19 = [] 
            for i in root.findall('*/WBS/Name', ns): 
                col_19.append(i.text)             
            col_20 = [] 
            for i in root.findall('*/WBS/ObjectId', ns): 
                col_20.append(i.text) 
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        rows_3=zip(col_19, col_20) 
        df2333 = pd.DataFrame(rows_3, columns = ["Work_Package_Name", "WBSObjectId"]) 
        df2333["Work_Package_Name"] = df2333["Work_Package_Name"].str.upper() 
        df2333.to_csv('output3.csv') 
         
        ### Joining Predictions to respective WBS codes 
        df_incl_predictions = pd.merge(df2333, dfPred_WP, on ='Work_Package_Name', how 
='left') 
         
        ###Calculating Physical Percent Complete per Work Package, using the average of 
Physical Percent Complete of their activities.  
        df1['Physical_Percent_Complete'] = pd.to_numeric(df1['Physical_Percent_Complete']) 
        df3 = df1.groupby('WBSObjectId')['Physical_Percent_Complete'].mean() 
        df3 = pd.DataFrame(df3) 
        ### Putting Physical Percent Completes (df3) to every WBSObjectID of df1,  
        df4 = pd.merge(df1, df3, on ='WBSObjectId', how ='left') 
        df4[["Planned_Start_Date", "Planned_finish_date", "Actual_start_date", 
"Actual_finish_date", "Start_date", "Finish_date"]] = df4[["Planned_Start_Date", 
"Planned_finish_date", "Actual_start_date","Actual_finish_date", "Start_date", 
"Finish_date"]].apply(pd.to_datetime) 
        df4['WBSObjectId'] = pd.to_numeric(df4['WBSObjectId']) 
        df4['Activity_ObjectId'] = pd.to_numeric(df4['Activity_ObjectId']) 
        ### Putting min and max activities of each Work Package depending on % progress.  
        ### Actual dates stand for finished, Planned dates for non started and dates (alone), 
in progress. (Primavera nomenclature) 
         
        Start_date_of_WP = [] 
        Finish_date_of_WP = [] 
        Activity_ID_start_date = [] 
        Activity_ID_finish_date = [] 
 
        for i in range(len(df3.index)): 
            df5= df4.groupby('WBSObjectId').get_group(int(df3.index[i])) 
            if df5['Physical_Percent_Complete_y'].mean() == 1 :     
                    Start_date_of_WP.append(df5['Actual_start_date'].min()) 
                    Finish_date_of_WP.append(df5['Actual_finish_date'].max()) 
                    if  'Start Milestone' in df5['Type'].values: 
                        Activity_ID_start_date.append(df5.at[df5.loc[df5['Type'] == 'Start 
Milestone'].index[0],'Activity_ObjectId']) 
                    else: 
                        Activity_ID_start_date.append(df5.at[df5['Actual_start_date'].idxmin()
,'Activity_ObjectId']) 
                     
                    if  'Finish Milestone' in df5['Type'].values: 
                        Activity_ID_finish_date.append(df5.at[df5.loc[df5['Type'] == 'Finish 
Milestone'].index[0],'Activity_ObjectId']) 
                    else: 
                        Activity_ID_finish_date.append(df5.at[df5['Actual_finish_date'].idxmax
(),'Activity_ObjectId'])        
             
            elif df5['Physical_Percent_Complete_y'].mean() == 0 :   
                    Start_date_of_WP.append(df5['Planned_Start_Date'].min()) 
                    Finish_date_of_WP.append(df5['Planned_finish_date'].max()) 
                     
                    if  'Start Milestone' in df5['Type'].values: 
                        Activity_ID_start_date.append(df5.at[df5.loc[df5['Type'] == 'Start 
Milestone'].index[0],'Activity_ObjectId']) 
                    else: 
                        Activity_ID_start_date.append(df5.at[df5['Planned_Start_Date'].idxmin(
),'Activity_ObjectId']) 
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                    if  'Finish Milestone' in df5['Type'].values: 
                        Activity_ID_finish_date.append(df5.at[df5.loc[df5['Type'] == 'Finish 
Milestone'].index[0],'Activity_ObjectId']) 
                    else: 
                        Activity_ID_finish_date.append(df5.at[df5['Planned_finish_date'].idxma
x(),'Activity_ObjectId'])       
             
            else:   ### In-Progress Work Packages 
                    Start_date_of_WP.append(df5['Start_date'].min()) 
                    Finish_date_of_WP.append(df5['Finish_date'].max()) 
                     
                    if  'Start Milestone' in df5['Type'].values: 
                        Activity_ID_start_date.append(df5.at[df5.loc[df5['Type'] == 'Start 
Milestone'].index[0],'Activity_ObjectId']) 
                    else: 
                        Activity_ID_start_date.append(df5.at[df5['Start_date'].idxmin(),'Activ
ity_ObjectId']) 
                             
                    if  'Finish Milestone' in df5['Type'].values: 
                        Activity_ID_finish_date.append(df5.at[df5.loc[df5['Type'] == 'Finish 
Milestone'].index[0],'Activity_ObjectId']) 
                    else: 
                        Activity_ID_finish_date.append(df5.at[df5['Finish_date'].idxmax(),'Act
ivity_ObjectId'])    
        df3['Start_date_of_WP'] = Start_date_of_WP 
        df3['Finish_date_of_WP'] = Finish_date_of_WP 
        df3['Activity_ID_start_date'] = Activity_ID_start_date 
        df3['Activity_ID_finish_date'] = Activity_ID_finish_date 
 
        df3 = df3.reset_index() 
        ### Adding Activity name and ActivityID (df3_2) 
        df3_1 = df3.merge(df4[['Activity_ObjectId','ActivityID','Activity_Name']], how 
='left', left_on ='Activity_ID_start_date', right_on ='Activity_ObjectId') 
        df3_2 = df3_1.merge(df4[['Activity_ObjectId','ActivityID','Activity_Name']], how 
='left', left_on ='Activity_ID_finish_date', right_on ='Activity_ObjectId') 
        df3_2.drop(['Activity_ObjectId_x', 'Activity_ObjectId_y'], axis=1, inplace=True) 
         
        ###Sorting WP Start Dates' 
        df3_2[["Start_date_of_WP"]] = df3_2[["Start_date_of_WP"]].apply(pd.to_datetime) 
        df3_2 = df3_2.set_index('Start_date_of_WP') 
        df3_2 = df3_2.sort_index() 
        df3_2 = df3_2.reset_index() 
        df3_2.columns.tolist() 
        list1 = df3_2.columns.tolist()[0:3] 
        list2 = df3_2.columns.tolist()[3:11] 
        reorder_list1=[list1[1], list1[2], list1[0] ] 
        new_column_order = reorder_list1 + list2 
        df3_2 = df3_2[new_column_order] 
        ##### Calculating the S-S lags -----------------         
        df_for_CPM = df3_2.copy() 
        df_with_predictions = pd.merge(df_for_CPM, df_incl_predictions, on='WBSObjectId', 
how='left') 
 
        df_with_predictions['CurrentDurations_P6'] = (df_with_predictions['Finish_date_of_WP'] 
- df_with_predictions['Start_date_of_WP']).dt.days +1  
        date_match_1 = re.search(r"Ending (\d{4}/\d{2}/\d{2})", period_combobox_overall.get()) 
        report_date = date_match_1.group(1) 
        report_date_datetime = datetime.datetime.strptime(report_date, '%Y/%m/%d') 
        df_with_predictions['ElapsedDays'] = (report_date_datetime - 
df_with_predictions['Start_date_of_WP']).dt.days 
        df_with_predictions['ElapsedDays'] = df_with_predictions['ElapsedDays'].clip(lower=0) 
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        df_with_predictions['Duration'] = np.where( 
            df_with_predictions['WP_Predictions'] == 0, 
            df_with_predictions['CurrentDurations_P6'],      
            df_with_predictions['ElapsedDays'] + df_with_predictions['WP_Predictions']) 
df_with_predictions['Start_date_of_WP'].dtype) 
         
        FS_lag_CPM=[] 
 
        if df_with_predictions.shape[0]>1: 
            for i in range(df_with_predictions.shape[0]-1): 
                vari1=df_with_predictions.loc[i,'Start_date_of_WP'] 
                vari2=df_with_predictions.loc[i+1,'Start_date_of_WP'] 
                vari3=df_with_predictions.loc[i,'Finish_date_of_WP'] 
                vari4=df_with_predictions.loc[i+1,'Finish_date_of_WP'] 
                 
                FS_lag_CPM.append((vari3-vari2).days + 1) 
        else: 
            None 
        FS_lag_CPM_array = np.array([timedelta(days=days) for days in FS_lag_CPM]) 
        FS_lag_CPM.append(0)  ### to equal shape of df_with_predictions. 
        df_with_predictions['FS_lag_CPM'] = FS_lag_CPM 
        df_with_predictions['WP_SS_lags'] = (df_with_predictions['Duration'] - 
df_with_predictions['FS_lag_CPM']) 
       
        def generate_ac_list(number): 
            return [chr(ord('A') + i) for i in range((number*2)-1)] 
         
        ac_list = generate_ac_list(len(WPnames)) 
 
        letters_alternate = [ac_list[i] for i in range(0, len(ac_list)-1, 2)] 
        pr_list = [item for item in letters_alternate for _ in range(2)] 
        pr_list.insert(0, '-') 
 
        du_list =  [val for pair in zip(df_with_predictions['WP_SS_lags'], 
df_with_predictions['FS_lag_CPM']) for val in pair] 
        du_list = du_list[:-2] 
        du_list.append(df_with_predictions.loc[df_with_predictions.shape[0] - 1, 'Duration']) 
        # Including Predecessors and Successors:  
 
        df_2 = df2[["PredecessorActivityObjectId", "Activity_ObjectId", "Type", 'Lags']] 
        df_2[["PredecessorActivityObjectId","Activity_ObjectId"]] = 
df_2[["PredecessorActivityObjectId","Activity_ObjectId"]].astype(int) 
 
        df_1 = df_with_predictions[['Work_Package_Name','WBSObjectId', 
'Activity_ID_start_date', 'Activity_ID_finish_date']] 
        df_1[['WBSObjectId','Activity_ID_start_date','Activity_ID_finish_date']] = 
df_1[['WBSObjectId','Activity_ID_start_date','Activity_ID_finish_date']].astype(int) 
        df_1.loc[:, 'Successors'] = None 
        df_1.loc[:, 'Predecessors'] = None 
        df_1.loc[:, 'RelationshipsS'] = None 
        df_1.loc[:, 'RelationshipsP'] = None 
        df_1.loc[:, 'lagS'] = None 
        df_1.loc[:, 'lagP'] = None 
         
        for i, row in df_2.iterrows(): 
            if row['Type'] == 'Finish to Start': 
                first_index = df_1[df_1['Activity_ID_finish_date'] == 
row['PredecessorActivityObjectId']].index[0] 
                second_index = df_1[df_1['Activity_ID_start_date'] == 
row['Activity_ObjectId']].index[0] 
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                df_1.at[first_index,'Successors'] = df_1.at[second_index, 'WBSObjectId'] 
                df_1.at[first_index,'RelationshipsS'] = row['Type'] 
                df_1.at[first_index,'lagS'] = int(row['Lags'])/8 
                df_1.at[second_index,'RelationshipsP'] = row['Type'] 
                df_1.at[second_index,'lagP'] = int(row['Lags'])/8 
            elif row['Type'] == 'Start to Start': 
                first_index = df_1[df_1['Activity_ID_start_date'] == 
row['PredecessorActivityObjectId']].index[0] 
                second_index = df_1[df_1['Activity_ID_start_date'] == 
row['Activity_ObjectId']].index[0] 
                df_1.at[first_index,'Successors'] = df_1.at[second_index, 'WBSObjectId'] 
                df_1.at[first_index,'RelationshipsS'] = row['Type'] 
                df_1.at[first_index,'lagS'] = int(row['Lags'])/8 
                df_1.at[second_index,'RelationshipsP'] = row['Type'] 
                df_1.at[second_index,'lagP'] = int(row['Lags'])/8 
            elif row['Type'] == 'Finish to Finish': 
                first_index = df_1[df_1['Activity_ID_finish_date'] == 
row['PredecessorActivityObjectId']].index[0] 
                second_index = df_1[df_1['Activity_ID_finish_date'] == 
row['Activity_ObjectId']].index[0] 
                df_1.at[first_index,'Successors'] = df_1.at[second_index, 'WBSObjectId'] 
                df_1.at[first_index,'RelationshipsS'] = row['Type'] 
                df_1.at[first_index,'lagS'] = int(row['Lags'])/8 
                df_1.at[second_index,'RelationshipsP'] = row['Type'] 
                df_1.at[second_index,'lagP'] = int(row['Lags'])/8 
            elif row['Type'] == 'Start to Finish': 
                first_index = df_1[df_1['Activity_ID_start_date'] == 
row['PredecessorActivityObjectId']].index[0] 
                second_index = df_1[df_1['Activity_ID_finish_date'] == 
row['Activity_ObjectId']].index[0] 
                df_1.at[first_index,'Successors'] = df_1.at[second_index, 'WBSObjectId'] 
                df_1.at[first_index,'RelationshipsS'] = row['Type'] 
                df_1.at[first_index,'lagS'] = int(row['Lags'])/8 
                df_1.at[second_index,'RelationshipsP'] = row['Type'] 
                df_1.at[second_index,'lagP'] = int(row['Lags'])/8 
         
        ## Making Predecessor column: 
      for i, row in df_1.iterrows(): 
            if row['Successors'] is not None: 
                index1= df_1[df_1['WBSObjectId'] == int(row['Successors'])].index[0] 
                df_1.at[index1,'Predecessors'] = row['WBSObjectId'] 
        ## Getting WP codes: 
        work_packages = project_info[project_code_0]["Work Packages"] 
        work_packages_list = [{"Work_Package_Name": wp.upper(), "Work Package ID": 
details["Work Package ID"]}  
                      for wp, details in work_packages.items()] 
        df_3 = pd.DataFrame(work_packages_list) 
 
        df_1 = pd.merge(df_1, df_3, on='Work_Package_Name', how='left') 
        ### Preparing for tree: 
        WBSObjectId_to_code = df_1.set_index('WBSObjectId')['Work Package ID'].to_dict() 
        df_1['Successors'] = df_1['Successors'].map(WBSObjectId_to_code) 
        df_1['Predecessors'] = df_1['Predecessors'].map(WBSObjectId_to_code) 
 
        df_1 = df_1.drop(['WBSObjectId', 'Activity_ID_start_date', 'Activity_ID_finish_date'], 
axis=1) 
 
        df_1 = df_1[['Work Package ID', 'Work_Package_Name', 'Predecessors', 'RelationshipsP', 
'lagP', 'Successors','RelationshipsS','lagS' ]] 
        df_1.rename(columns={'Work_Package_Name': 'Work Package Name',  
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                             'RelationshipsP': 'Predecessor Relationship Type', 'lagP': 
'Predecessor Lag', 
                             'RelationshipsS': 'Successor Relationship Type', 'lagS': 
'Successor Lag'}, inplace=True) 
        df_1['Work Package Name'] = df_1['Work Package Name'].str.title() 
 
        df_1.fillna('---', inplace=True) 
        ## Making the Tree 
        tree = ttk.Treeview(primavera_frame, height=3, style='Custom2.Treeview')   
        tree['columns'] = list(df_1.columns) 
 
        tree.column("#0", width=0, stretch=tk.NO)   
            if col in ('Work Package ID'): 
                tree.column(col, anchor=tk.CENTER, width=80) 
            elif col in ('Work Package Name'): 
                tree.column(col, anchor=tk.CENTER, width=110) 
            elif col in ('Predecessors'): 
                tree.column(col, anchor=tk.CENTER, width=65) 
            elif col in ('Predecessor Relationship Type'): 
                tree.column(col, anchor=tk.CENTER, width=160) 
            elif col in ('Predecessor Lag'): 
                tree.column(col, anchor=tk.CENTER, width=90) 
            elif col in ('Successors'): 
                tree.column(col, anchor=tk.CENTER, width=60) 
            elif col in ('Successor Relationship Type'): 
                tree.column(col, anchor=tk.CENTER, width=160) 
            elif col in ('Successor Lag'): 
                tree.column(col, anchor=tk.CENTER, width=80) 
 

        tree.heading("#0", text="", anchor=tk.CENTER)  # Invisible column for IDs 
        for col in df_1.columns: 
            tree.heading(col, text=col, anchor=tk.CENTER ) 
 
        tree.tag_configure('myTag', font=("Arial", 10)) 
        for i, row in df_1.iterrows(): 
            tree.insert("", tk.END, iid=i, values=list(row), tags=('myTag',)) 
 
        tree.grid(row=1, padx=10, columnspan=8, pady=10, sticky="ew" ) 
        scrollbar = ttk.Scrollbar(primavera_frame, orient="vertical", command=tree.yview) 
        tree.configure(yscrollcommand=scrollbar.set) 
        scrollbar.grid(row=1, column=8, padx=0, pady=0, sticky="sn" ) 
 
        Removed_WP_list=[] 
        Number_times = [] 
 
        for i in range(df3_2.shape[0]): 
             
            for j in range(df3_2.shape[0]): 
 
                var1=df3_2.iloc[i,[2]].item() 
                var2=df3_2.iloc[j,[2]].item() 
                var3=df3_2.iloc[i,[3]].item() 
                var4=df3_2.iloc[j,[3]].item() 
 
                if (var1 > var2) and (var3 < var4) and (i != j): 
                    Removed_WP_list.append(df3_2['WBSObjectId'][i]) 
                elif (var1 > var2) and (var3 == var4) and (i != j): 
                    Removed_WP_list.append(df3_2['WBSObjectId'][i]) 
                elif (var1 == var2) and (var3 < var4) and (i != j): 
                    Removed_WP_list.append(df3_2['WBSObjectId'][i])             
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                elif (var1 == var2) and (var3 == var4) and (i != j): 
                    Removed_WP_list.append(df3_2['WBSObjectId'][i]) 
                    Number_times.append(df3_2['WBSObjectId'][i]) 
 
        df3_4 = pd.DataFrame(zip(list(pd.unique(Number_times))), columns = ['WBSObjectId']) 
 
        df3_4 = df3_4.merge(df3_2, how ='left', left_on ='WBSObjectId', right_on 
='WBSObjectId') 
 
        df3_4 = df3_4.groupby('Start_date_of_WP')['WBSObjectId'].min() 
        df3_4 = pd.DataFrame(zip(df3_4.values.tolist()), columns = ['WBSObjectId']) 
        df3_4 = df3_4.merge(df3_2, how ='right', left_on ='WBSObjectId', right_on 
='WBSObjectId') 
 
        df_Critical_WP = pd.DataFrame(zip(list(set(df3_2['WBSObjectId'].tolist()) - 
set(list(pd.unique(Removed_WP_list)))) + df3_4['WBSObjectId'].values.tolist()), columns = 
['WBSObjectId']) 
        df_Critical_WP = df_Critical_WP.merge(df3_2, how ='left', left_on ='WBSObjectId', 
right_on ='WBSObjectId') 
 
        ###Evaluating Critical WP identified by including repeated WP with same start and 
finish dates 
        Removed_WP_list_1=[] 
        Number_times_1 = [] 
        for i in range(df_Critical_WP.shape[0]): 
            for j in range(df_Critical_WP.shape[0]): 
                if (df_Critical_WP.iloc[i,[2]].item() > df_Critical_WP.iloc[j,[2]].item()) and 
(df_Critical_WP.iloc[i,[3]].item() < df_Critical_WP.iloc[j,[3]].item()) and (i != j): 
                    Removed_WP_list_1.append(df_Critical_WP['WBSObjectId'][i]) 
                elif (df_Critical_WP.iloc[i,[2]].item() > df_Critical_WP.iloc[j,[2]].item()) 
and (df_Critical_WP.iloc[i,[3]].item() == df_Critical_WP.iloc[j,[3]].item()) and (i != j): 
                    Removed_WP_list_1.append(df_Critical_WP['WBSObjectId'][i]) 
                elif (df_Critical_WP.iloc[i,[2]].item() == df_Critical_WP.iloc[j,[2]].item()) 
and (df_Critical_WP.iloc[i,[3]].item() < df_Critical_WP.iloc[j,[3]].item()) and (i != j): 
                    Removed_WP_list_1.append(df_Critical_WP['WBSObjectId'][i])             
                elif (df_Critical_WP.iloc[i,[2]].item() == df_Critical_WP.iloc[j,[2]].item()) 
and (df_Critical_WP.iloc[i,[3]].item() == df_Critical_WP.iloc[j,[3]].item()) and (i != j): 
                    Removed_WP_list_1.append(df_Critical_WP['WBSObjectId'][i]) 
                    Number_times_1.append(df_Critical_WP['WBSObjectId'][i]) 
 
        df3_5 = pd.DataFrame(zip(list(pd.unique(Number_times_1))), columns = ['WBSObjectId']) 
        df3_5 = df3_5.merge(df3_2, how ='right', left_on ='WBSObjectId', right_on 
='WBSObjectId') 
        df3_5 = df3_5.groupby('Start_date_of_WP')['WBSObjectId'].min() 
        df3_5 = pd.DataFrame(zip(df3_5.values.tolist()), columns = ['WBSObjectId']) 
        df3_5 = df3_5.merge(df3_2, how ='right', left_on ='WBSObjectId', right_on 
='WBSObjectId')             
              
        ### Ensambling Critical WP table removing repeated WP with same starts and finish 
dates (if they are) 
        new_df_Critical_WP = pd.DataFrame(zip(list(set(df_Critical_WP['WBSObjectId'].tolist()) 
- set(list(pd.unique(Removed_WP_list_1))))+ df3_5['WBSObjectId'].values.tolist()), columns = 
['WBSObjectId']) 
        new_df_Critical_WP = new_df_Critical_WP.merge(df3_2, how ='left', left_on 
='WBSObjectId', right_on ='WBSObjectId')           
         
        ### df_WP_ensambled:           
        Physical_progress_list = [] 
        start_date_list = [] 
        finish_date_list = [] 
        actual_elapsed_duration = [] 
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        for i, work_package in enumerate(list(project_info[project_code_0]["Work 
Packages"].keys())): 
            dict3_temp= project_info[project_code_0]["Work Packages"][work_package] 
            dict4_temp= project_info[project_code_0]["Project Reports Info"][f'Project Report 
Number {period_number_0}']['Work Packages'][work_package] 
            if dict4_temp['Status'] == 'In Progress': 
                Physical_progress_list.append(float(0.5)) 
                actual_elapsed_duration.append(float(dict4_temp["Actual Duration To Date 
(days)"])) 
                if dict4_temp['Start Date Actual']: 
                    start_date_list.append(dict4_temp['Start Date Actual']) 
                else: 
                    try: 
                        start_date_list.append(dict3_temp["CB-Start Date"]) 
                    except KeyError: 
                        start_date_list.append(dict3_temp["IB-Start Date"]) 
                try: 
                    finish_date_list.append(dict3_temp["CB-Finish Date"]) 
                except KeyError: 
                    finish_date_list.append(dict3_temp["IB-Finish Date"]) 
 
            elif dict4_temp['Status'] == 'Non Started': 
                Physical_progress_list.append(float(0)) 
                actual_elapsed_duration.append(float(0)) 
                try: 
                    start_date_list.append(dict3_temp["CB-Start Date"]) 
                    finish_date_list.append(dict3_temp["CB-Finish Date"]) 
                except KeyError: 
                    start_date_list.append(dict3_temp["IB-Start Date"]) 
                    finish_date_list.append(dict3_temp["IB-Finish Date"]) 
 
            elif dict4_temp['Status'] == 'Finished': 
                Physical_progress_list.append(float(1)) 
                actual_elapsed_duration.append(float(0)) 
                start_date_list.append(dict4_temp['Start Date Actual']) 
                finish_date_list.append(dict4_temp['Finish Date Actual']) 
 
        #Finding WP codes associated to WP by names 
        WBSObjectId_list= [] 
        for WPname in WPnames: 
            matching_items = df_incl_predictions.loc[df_incl_predictions['Work_Package_Name'] 
== WPname, 'WBSObjectId'].values.tolist() 
            WBSObjectId_list.extend(matching_items) 
 
        Physical_df = pd.DataFrame({'WBSObjectId':WBSObjectId_list, 
'Physical_progress':Physical_progress_list, 'Start Date':start_date_list, 'Finish Date': 
finish_date_list, 'Actual Duration to Date': actual_elapsed_duration}) 
        new_df_Critical_WP = pd.merge(new_df_Critical_WP, Physical_df, on='WBSObjectId', 
how='left' ) 
  
        new_physical_list = new_df_Critical_WP['Physical_progress'].tolist() 
        new_starts_date_list = new_df_Critical_WP['Start Date'].tolist() 
        new_finish_date_list = new_df_Critical_WP['Finish Date'].tolist() 
        new_actual_duration_list = new_df_Critical_WP['Actual Duration to Date'].tolist() 
 
        new_df_Critical_WP['Physical_Percent_Complete'] = new_physical_list 
        new_df_Critical_WP['Start_date_of_WP'] = new_starts_date_list 
        new_df_Critical_WP['Finish_date_of_WP'] = new_finish_date_list 
        new_df_Critical_WP['Actual Duration to Date'] = new_actual_duration_list 
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        new_df_Critical_WP = new_df_Critical_WP.drop(['Physical_progress','Start Date', 
'Finish Date'],axis=1) 
        ##Converting to datetime: 
        new_df_Critical_WP['Start_date_of_WP'] = 
pd.to_datetime(new_df_Critical_WP['Start_date_of_WP']) 
        new_df_Critical_WP['Finish_date_of_WP'] = 
pd.to_datetime(new_df_Critical_WP['Finish_date_of_WP']) 
        ## Converting to numeric: 
        new_df_Critical_WP['Physical_Percent_Complete'] = 
pd.to_numeric(new_df_Critical_WP['Physical_Percent_Complete']) 
 
        #### Overlap - WP relationships: List of numbers representing overlaps among Critical 
WP: 
        Overlap_list=[] 
        if new_df_Critical_WP.shape[0]>1: 
            for i in range(new_df_Critical_WP.shape[0]-1): 
                if (new_df_Critical_WP.iloc[i+1,[2]].item() < 
new_df_Critical_WP.iloc[i,[2]].item()) and (new_df_Critical_WP.iloc[i+1,[3]].item() < 
new_df_Critical_WP.iloc[i,[2]].item()): 
                        Overlap_list.append(new_df_Critical_WP.iloc[i+1,[3]].item()-
new_df_Critical_WP.iloc[i,[2]].item()) 
                elif (new_df_Critical_WP.iloc[i+1,[2]].item() < 
new_df_Critical_WP.iloc[i,[2]].item()) and (new_df_Critical_WP.iloc[i+1,[3]].item() > 
new_df_Critical_WP.iloc[i,[2]].item()): 
                        Overlap_list.append(new_df_Critical_WP.iloc[i+1,[3]].item()-
new_df_Critical_WP.iloc[i,[2]].item()) 
                elif (new_df_Critical_WP.iloc[i+1,[2]].item() > 
new_df_Critical_WP.iloc[i,[2]].item()): 
                        Overlap_list.append(new_df_Critical_WP.iloc[i+1,[2]].item()-
new_df_Critical_WP.iloc[i,[3]].item())            
        else: 
            None 
        Overlap_arr=np.array(Overlap_list) 
        total_days = [td.total_seconds()/ (24 * 60 * 60) for td in Overlap_arr] 
         
        total_sum_in_days = np.sum(total_days) 
  

9. Inserting independent Prediction Results      

      new_df_Critical_WP=new_df_Critical_WP.merge(df_incl_predictions, how ='left', left_on 
='WBSObjectId', right_on ='WBSObjectId') 
        new_df_Critical_WP['Actual Duration to Date'].astype(int) 
        new_df_Critical_WP['WP_Duration']=np.where( 
            (new_df_Critical_WP['Physical_Percent_Complete']>0)&(new_df_Critical_WP['Physical_
Percent_Complete']<1), 
            new_df_Critical_WP['Actual Duration to Date'] + 
new_df_Critical_WP['WP_Predictions'],  
            (new_df_Critical_WP['Finish_date_of_WP'] - 
new_df_Critical_WP['Start_date_of_WP']).dt.days-1)  
        data = pd.DataFrame({'ac': ac_list, 'pr': pr_list, 'du': du_list }) 
        data['du'] = data['du'].round(1) 
 
'Precedence Diagramming Method PDM - CPM' 
    def open_cpm(): 
        global overall_project_frame, photo    
        cpm_window = tk.Toplevel(overall_project_frame, background='white') 
        cpm_window.title("Project Critical Path") 
        ttk.Label(cpm_window, text="Project Duration calculated by the Critical Path Method 
(CPM)",font=("Arial", 12, 'bold'), background='white').grid(row=0, column=0, padx=10, 
pady=(5,0), sticky='w') 



217 

 

        ttk.Label(cpm_window, text="This network is the result of transforming existent work 
package relationships (with lags) into\nFinish - Start (FS) relationship (without lags). Thus, 
this depicts the Critical Path (in red).",font=("Arial", 10, ), 
background='white').grid(row=1, column=0, padx=10, sticky='nw') 
         
        label = ttk.Label(cpm_window, image=photo) 
        label.photo = photo 
        label.grid(row=2, column=0, padx=10, sticky="nsew") 
 
        ttk.Label(cpm_window, text='Note:\n1.The Precedence Diagraming Method (PDM) is 
transformed to AON network, which does not contain lags. \n2.From the AON Network above:\n -
"A" and "B" denote the CONCRETE Work Package\n -"C" and "D" denote the EXCAVATION Work 
Package\n -"E" represents the BACKFILL Work Package',font=("Arial", 10, ), 
background='white').grid(row=3, column=0, padx=10, sticky='nw') 
 
         
    def duration_at_completion(project_code_0): 
        global overall_project_frame, photo, data 
 
        overall_project_frame = ttk.Labelframe(forecasting_project_frame, text='Overall 
Project', style='Custom7.TLabelframe') 
        overall_project_frame.grid(row=2, column=0, padx=0, pady=5, sticky="nsew") 
 
        ttk.Button(overall_project_frame, text="Show PDM-CPM calculation detail", 
command=open_cpm, style='Custom.TButton').grid(row=0, column=0, padx=10, pady=0, sticky='e') 
               
        for q in range(1, 2): 
            start = [] 
            graph = [] 
            atts = [] 
            path = [] 
            new = [] 
            st = "" 
      
            last = data.iloc[-1, 0] 
            last = chr(ord(last)+1) 
            for j in range(len(data)): 
                for k in range(len(data.iloc[j, 1])): 
                    if data.iloc[j, 1][k] != '-': 
                        new.append(data.iloc[j, 1][k]) 
            for j in range(len(data)): 
                if not data.iloc[j, 0] in new: 
                    st = st+data.iloc[j, 0] 
            if data.shape[1] == 3: 
                df = pd.DataFrame([[last, st, 0]], columns=["ac", "pr", "du"]) 
            else: 
                df = pd.DataFrame([[last, st, 0, 0, 0]], columns=["ac", "pr", "b", "m", "a"]) 
            data = data.append(df) 
            for i in range(len(data)): 
                graph.append([]) 
                atts.append({}) 
            for j in range(len(data)): 
                atts[j]["Name"] = data.iloc[j, 0] 
                if data.shape[1] == 3: 
                    atts[j]["DU"] = data.iloc[j, 2] 
                else: 
                    atts[j]["DU"] = (data.iloc[j, 4] + 4 * 
                                    data.iloc[j, 3] + data.iloc[j, 2]) / 6 
                if(data.iloc[j, 1] == "-"): 
                    start.append(ord(data.iloc[j, 0])-65) 
                    continue 
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                for k in range(len(data.iloc[j, 1])): 
                    graph[ord(data.iloc[j, 1][k]) - 
                        65].append(ord(data.iloc[j, 0])-65) 
 
            level = [None] * (len(graph)) 
            def BFS(s, graph): 
                visited = [False] * (len(graph)) 
                queue = [] 
                for i in s: 
                    queue.append(i) 
                    level[i] = 0 
                    visited[i] = True 
                while queue: 
                    s = queue.pop(0) 
                    path.append(s) 
                    for i in graph[s]: 
                        if visited[i] == False: 
                            queue.append(i) 
                            level[i] = level[s] + 1 
                            visited[i] = True 
                        else: 
                            level[i] = max(level[s]+1, level[i]) 
            BFS(start, graph) 
 
            levels = [None] * len(path) 
            for i in range(len(path)): 
                levels[i] = level[path[i]] 
            path = [x for y, x in sorted(zip(levels, path))] 
 
            for i in path: 
            for s in path: 
                if(data.iloc[s, 1] == "-"): 
                    atts[s]["ES"] = 0 
                else: 
                    ls = [] 
                    for k in range(len(data.iloc[s, 1])): 
                        ls.append(atts[ord(data.iloc[s, 1][k]) - 65]["EF"]) 
                    atts[s]["ES"] = max(ls) 
                atts[s]["EF"] = atts[s]["DU"] + atts[s]["ES"] 
            for i in range(len(graph)): 
                if(graph[i] == []): 
                    atts[i]["LF"] = atts[i]["EF"] 
                    atts[i]["LS"] = atts[i]["ES"] 
            path.reverse() 
            for i in path: 
                if(data.iloc[i, 1] != "-"): 
                    for k in range(len(data.iloc[i, 1])): 
                        if "LF" in atts[ord(data.iloc[i, 1][k]) - 65].keys(): 
                            atts[ord(data.iloc[i, 1][k]) - 65]["LF"] = min(atts[i] 
                                                                        ["LS"], 
atts[ord(data.iloc[i, 1][k]) - 65]["LF"]) 
                        else: 
                            atts[ord(data.iloc[i, 1][k]) - 
                                65]["LF"] = atts[i]["LS"] 
                        atts[ord(data.iloc[i, 1][k]) - 65]["LS"] = atts[ord(data.iloc[i, 
1][k]) - 65]["LF"] - atts[ord(data.iloc[i, 1][k]) - 65]["DU"] 
                atts[i]["SK"] = atts[i]["LF"] - atts[i]["EF"] 
            atts[-1]["Name"] = "End" 
            for j in range(len(graph)): 
            
            G2 = nx.DiGraph() 
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            for i in range(len(graph)): 
                for j in graph[i]: 
                    G2.add_edge(atts[i]["Name"], atts[j]["Name"]) 
            temp = [] 
            for i in range(len(atts)): 
                temp.append(atts[i]["Name"]) 
            temp = dict(zip(temp, atts)) 
            nx.set_node_attributes(G2, temp) 
            fig, ax = plt.subplots(figsize=(15, 15)) 
            pos = nx.nx_agraph.graphviz_layout(G2, prog='dot') 
            nx.draw(G2, pos=pos, ax=ax, with_labels=True, font_weight='bold') 
            nx.draw_networkx_edges(G2, pos, edge_color='olive', width=1, arrowstyle='simple', 
arrowsize=20, min_source_margin=25, min_target_margin=25) 
            crt = [] 
            notcrt = [] 
            for j, i in temp.items(): 
                if(i["LF"] == i["EF"]): 
                    crt.append(j) 
                else: 
                    notcrt.append(j) 
            nx.draw_networkx_nodes(G2, pos, node_size=5000, 
                                node_color='red', ax=ax, nodelist=crt) 
            nx.draw_networkx_nodes(G2, pos, node_size=2500, 
                                node_color='black', ax=ax, nodelist=notcrt) 
            nx.draw_networkx_labels(G2, pos, ax=ax, font_weight="bold", 
                                    font_color="white", font_size=26) 
 
            def without(d, keys={"Name"}): 
                return {x: d[x] for x in d if x not in keys} 
             
            for node in G2.nodes: 
                xy = pos[node] 
                node_attr = G2.nodes[node] 
                d = G2.nodes[node] 
                d = without(d) 
                text = '\n'.join(f'{k}: {round(v,0)}' for k, v in d.items()) 
                ax.annotate(text, xy=xy, xytext=(70, 5), textcoords="offset points", 
fontsize=20, bbox=dict(boxstyle="round, pad=0.3", fc="lightgrey"), 
arrowprops=dict(arrowstyle="wedge")) 
            ax.axis('off') 
            plt.savefig('fig'+str(q)+".png") 
             
        image = Image.open("fig1.png") 
        percentage=38 
        width, height = image.size 
        new_width = int(width * (percentage / 100)) 
        new_height = int(height * (percentage / 100)) 
        resized_image = image.resize((new_width, new_height)) 
        photo = ImageTk.PhotoImage(resized_image) 
        # Display the Gantt chart 
        # Define tasks, their start and end dates 
        try:  
            start_planned_date_total_project = project_info[project_code_0]["CB-Start Date"] 
        except KeyError: 
            start_planned_date_total_project = project_info[project_code_0]["IB-Start Date"] 
 
        try:  
            finish_planned_date_total_project = project_info[project_code_0]["CB-Finish Date"] 
        except KeyError: 
            finish_planned_date_total_project = project_info[project_code_0]["IB-Finish Date"] 
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        start_planned_date_total_project = 
datetime.datetime.strptime(start_planned_date_total_project, '%Y/%m/%d') 
        finish_planned_date_total_project = 
datetime.datetime.strptime(finish_planned_date_total_project, '%Y/%m/%d') 
 
        wp_dict = project_info[project_code_0]["Work Packages"] 
        wp_list = list(wp_dict.keys()) 
        date_columns = [] 
        for package_name in wp_list: 
            file_path1 = f"database {package_name}.csv" 
            df_file = pd.read_csv(file_path1) 
            df_file['Start date'] = pd.to_datetime(df_file['Start date']) 
            date_columns.append(df_file['Start date']) 
        all_dates = pd.concat(date_columns) 
        actual_start_date = all_dates.min() 
 
        date_match = re.search(r"Ending (\d{4}/\d{2}/\d{2})", period_combobox_overall.get()) 
        today_input = date_match.group(1) 
        today = datetime.datetime.strptime(today_input, '%Y/%m/%d') 
        finish_dates_forecasted = actual_start_date + timedelta(days=int(atts[-1]['ES'])) 
        tasks = ['Forecasted', 'Actual', 'Current BL' ] 
        start_dates = [today, actual_start_date, start_planned_date_total_project ]  
        end_dates = [finish_dates_forecasted, today, finish_planned_date_total_project ]  
        start_dates_num = [mdates.date2num(date) for date in start_dates] 
        end_dates_num = [mdates.date2num(date) for date in end_dates] 
        # Create a Gantt chart 
        fig, ax = plt.subplots(figsize=(10, 4)) 
        # Create horizontal bars for tasks 
        for i, task in enumerate(tasks): 
            if task in 'Current BL': 
                color = '#EAEE1B'  
            elif task in 'Forecasted': 
                color = '#9F2CEA' 
            else: 
                color = '#271BE6' 
                        
            bar = ax.barh(task, width=end_dates_num[i] - start_dates_num[i], 
left=start_dates_num[i],height=0.5, color=color, edgecolor='black', label=task) 
 
            text_position = round(((start_dates_num[i] + end_dates_num[i]) / 2),0) 
            text_date = mdates.num2date(text_position) 
            ax.text(text_position, i, f'{end_dates_num[i] - start_dates_num[i]} days', 
ha='center', va='center', color='black', fontsize=11, fontfamily='Arial', ) 
 
        end_date = mdates.num2date(end_dates_num[0]) 
        ax.annotate(f'Finish Date: {end_date.strftime("%Y-%m-%d")}', (end_dates_num[0], 0.5),  
                    textcoords="offset points", xytext=(5,0),  
                    ha='left', va='center', fontfamily='Arial', fontsize=12) 
 
        ax.set_yticks(range(len(tasks))) 
        ax.set_yticklabels(tasks, rotation=0, fontdict={'family': 'Arial', 'size': 12}) 
 
        date_range = np.arange(min(start_dates_num), max(end_dates_num) + 1, 14) 
        ax.set_xticks(date_range) 
 
        ax.xaxis_date() 
        ax.set_xticklabels(ax.get_xticklabels(), fontdict={'fontname': 'Arial', 'size': 8}) 
        fig.autofmt_xdate() 
        plt.xlim(min(start_dates) - timedelta(days=7), max(end_dates) + timedelta(days=15)) 
        # Calculate the difference in days between "Planned" and "Forecasted" 
        difference_in_days = (end_dates[2] - end_dates[0]).days 
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        difference_in_days -= datetime.timedelta(days=1).days 
        # Determine the y-coordinate for the arrow (lower finish date) 
        arrow_y = 0 if end_dates[0] < end_dates[2] else 2 
         
        # Add a horizontal double-headed arrow with the difference in days 
        arrow_start_x = end_dates[0] 
        arrow_end_x = end_dates[2] 
         
        if end_dates[0] < end_dates[2]: 
            text_x = end_dates[0] + (end_dates[2] - end_dates[0]) / 2 
            text_y = -0.25 
        else: 
            text_x = end_dates[2] + (end_dates[0] - end_dates[2]) / 2 
            text_y = 1.75 
 
        ax.text(text_x, text_y, arrow_text,  
                fontdict={'family': 'Arial', 'fontsize': 11, 'color': 'black'}, ha='center', 
va='center',  
                bbox=dict(facecolor='white', edgecolor='black', boxstyle='square, pad=0.3')) 
         
        ax.annotate('', xy=(arrow_start_x, arrow_y), 
                    xytext=(arrow_end_x, arrow_y),  
                    arrowprops=dict(arrowstyle='<->', color='black', lw=1.5, ls='--'))    
        ax.axvline(x=today, color='red', linestyle='--')         
        ax.text(today, 0.5, 'Data Date', color='red', fontsize=10, ha='left', family='Arial') 
        ax.legend(fontsize=11, loc='upper center', ncol=3, frameon=False, bbox_to_anchor=(0.5, 
1.3), prop={'family': 'Arial', 'size': 10}) 
 
        # Customize date formatting on the x-axis          
        ax.xaxis.set_major_formatter(mdates.DateFormatter('%Y-%b-%d')) 
 
        # Show the Gantt chart 
        plt.grid(axis='x', zorder=0) 
        plt.gca().set_axisbelow(True) 
        plt.tight_layout() 
        plt.show() 
 
        chart_canvas = FigureCanvasTkAgg(fig, master=overall_project_frame) 
        chart_canvas.get_tk_widget().grid(row=1, padx=0, pady=0, column=0, sticky='new' ) 
 
        ### RESULT BOX: 
        # Create Label widgets for the text values in the second row and onwards 
        text_values_2 = int(atts[-1]['ES']) 
        try: 
            text_values_3 = datetime.datetime.strptime(project_info[project_code_0]['CB-Start 
Date'], "%Y/%m/%d") + timedelta(days=atts[-1]['ES'])  
            text_values_3 = text_values_3.strftime("%Y/%m/%d") 
        except KeyError: 
            text_values_3 = datetime.datetime.strptime(project_info[project_code_0]['IB-Start 
Date'], "%Y/%m/%d") + timedelta(days=atts[-1]['ES'])  
            text_values_3 = text_values_3.strftime("%Y/%m/%d") 
         
        try: 
            text_values_4 = datetime.datetime.strptime(project_info[project_code_0]['CB-Finish 
Date'], "%Y/%m/%d") 
            text_values_4 = text_values_4.strftime("%Y/%m/%d") 
        except KeyError: 
            text_values_4 = datetime.datetime.strptime(project_info[project_code_0]['IB-Finish 
Date'], "%Y/%m/%d")         
            text_values_4 = text_values_4.strftime("%Y/%m/%d") 
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        text_values_5 = (datetime.datetime.strptime(text_values_4, "%Y/%m/%d") - 
datetime.datetime.strptime(text_values_3, "%Y/%m/%d")).total_seconds() / (24 * 60 * 60) 
 
        text_values = [text_values_2, text_values_3, text_values_4, int(text_values_5)-1] 
        text_labels = ["Prediction (days)", "Predicted Finish Date", "Planned Finish Date", 
"Deviation (days)"] 
 
        tree1 = ttk.Treeview(overall_project_frame, height=1, style='Custom2.Treeview') 
        tree1['columns'] = text_labels 
        tree1.column("#0", width=0, stretch=tk.NO) 
        for heading in text_labels: 
            tree1.column(heading, width=120, anchor=tk.CENTER) 
 
        tree1.heading("#0", text="", anchor=tk.CENTER) 
        for heading in text_labels: 
            tree1.heading(heading, text=heading, anchor=tk.CENTER) 
 
        tree1.tag_configure('myTag', font=("Arial", 11)) 
        tree1.insert('', tk.END, values=text_values, tags=('myTag',))   
 
        tree1.grid(row=2, column=0, padx=10, pady=0, sticky="ew" ) 
 
    file_path_var = tk.StringVar() 
    file_path_entry = ttk.Entry(primavera_frame, textvariable=file_path_var, state='readonly', 
width=50, font=('Arial', 11)) 
    file_path_entry.grid(row=0, column=1, columnspan=5, padx=10, pady=2, sticky='nesw') 
 
    def get_primavera_p6_wrapper(): 
        # Fetch project code from the combobox string 
        match = re.search(r"Project ([\w-]+):", project_combobox_overall.get()) 
        if match: 
            project_code_overall = match.group(1) 
        else: 
            messagebox.showerror("Error", "Invalid project selection.") 
            return 
 
        # Fetch period number from the combobox string 
        period_match = re.search(r"Reporting Period (\d+):", period_combobox_overall.get()) 
        if period_match: 
            period_number_overall = int(period_match.group(1)) 
        else: 
            messagebox.showerror("Error", "Invalid reporting period selection.") 
            return 
         
        # Now call the original function with the extracted values 
        get_primavera_p6(project_code_overall, period_number_overall) 
 
    ttk.Button(primavera_frame, text="Browse File", command=browse_file, 
style='Custom.TButton').grid(row=0, column=6,  padx=10, pady=2, sticky='nwes') 
    ttk.Button(primavera_frame, text="Get P6 Data...", command=get_primavera_p6_wrapper, 
style='Custom.TButton').grid(row=0, column=7,  padx=10, pady=2, sticky='nwes') 
 
 

10. Consolidation of Frames  

frames_names = [project_hub_frame, progress_frame, forecasting_work_package_frame, 
forecasting_project_frame] 
frames_functions  = [project_hub, enter_WP_reports, work_package_forecasting, 
project_forecasting ]  
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def show_frame(frame_name): 
    for frame, functions in zip(frames_names, frames_functions): 
        if frame == frame_name: 
            frame.grid(row=0, column=2, padx=10, pady=10, sticky="nsew") 
            functions() 
        else: 
            frame.grid_forget() 
 
task_bar = ttk.Labelframe(root, text="Main Menu", padding=(1, 10), style='Custom.TLabelframe') 
project_frame = ttk.Labelframe(task_bar, text='Projects Setup', style='Custom1.TLabelframe') 
home_button = ttk.Button(project_frame, text="Home", command = lambda: 
show_frame(project_hub_frame), style='Custom.TButton') 
track_frame = ttk.Labelframe(task_bar, text='Deep Learning Forecasting Data', 
style='Custom1.TLabelframe') 
progress_button = ttk.Button(track_frame, text="Enter Tracking Data", command=lambda: 
show_frame(progress_frame), style='Custom.TButton' ) 
forecasting_frame = ttk.Labelframe(task_bar, text='Deep Learning Forecasting', 
style='Custom1.TLabelframe') 
forecasting_WP_results_button = ttk.Button(forecasting_frame, text="Step 01: Work Package 
Level", command=lambda: show_frame(forecasting_work_package_frame), style='Custom.TButton') 
forecasting_project_results_button = ttk.Button(forecasting_frame, text="Step 02: Project 
Level", command=lambda: show_frame(forecasting_project_frame), style='Custom.TButton') 
 
home_button.configure(padding=(10, 10)) 
progress_button.configure(padding=(10, 10)) 
forecasting_WP_results_button.configure(padding=(10, 10)) 
forecasting_project_results_button.configure(padding=(10, 10)) 
 
task_bar.grid(row=0, column=0, padx=5, pady=2, sticky="news",) 
project_frame.grid(row=0, column=0, padx=10, pady=(10,20), sticky="nwes") 
home_button.grid(row=0, column=0, padx=10, pady=10, sticky="w") 
track_frame.grid(row=1, column=0, padx=10, pady=(20,20), sticky="nwes") 
progress_button.grid(row=1, column=0, padx=10, pady=10, sticky= 'w') 
forecasting_frame.grid(row=2, column=0, padx=10, pady=(20,20), sticky="nwes") 
forecasting_WP_results_button.grid(row=3, column=0, padx=10, pady=10, sticky= 'w') 
forecasting_project_results_button.grid(row=4, column=0, padx=10, pady=10, sticky= 'w') 
 
show_frame(project_hub_frame) 
root.mainloop() 


