

A Deep Learning Approach for Forecasting Construction Project Duration at Completion

by

Cristhian Felix Laura Portugal

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

in

Construction Engineering and Management

Department of Civil and Environmental Engineering

University of Alberta

© Cristhian Felix Laura Portugal, 2024

ii

Abstract

Accurate forecasting of project duration is crucial during the execution phase as it affects its overall

performance, timely decision-making, identification of potential delays, and resource allocation.

This research proposes a proof of concept based on artificial intelligence, specifically using deep

learning algorithms, demonstrating its potential application. These algorithms have shown

remarkable results in finding patterns in large amounts of data and making accurate predictions.

Moreover, the dataset provided to the model is treated as a time series, capturing the sequential

nature of data collected throughout the execution phase. Additionally, predictions are yielded at

work package level, providing to project managers granular information to make decisions.

The study follows these steps: (1) a comprehensive literature review was conducted to explore the

latest advancements on related topics and underline current gaps. (2) A data acquisition model was

elaborated founded on a consistent selection of duration-influencing factors. Then, actual data was

collected and profiled from multiple projects using their work package names as links, thus

creating datasets per work package. (3) The forecasting duration at completion model was

developed, including data preprocessing and the computational deep-learning-based modelling per

work package. After that, the overall project duration was modelled using the Critical Path Method

and Precedence Diagramming Method and set in the Graphical User Interface. (4) The developed

forecasting model was used to comparing three well-suited deep-learning algorithms with actual

project data and consequently, selecting the most accurate. Next, the selected algorithm was

incorporated into the Graphical User Interface. The study also was validated by comparing the

proposed model with traditional methods, including the Earned Value Methodology (EVM) and

Earned Schedule Methodology (ESM). Finally, the resultant model was verified through

sensitivity analysis.

iii

As a result, the forecasting model based on the Long Short-Term Memory (LSTM) algorithm

demonstrated the best performance against Multi-Layer Perceptron and Convolutional Neural

Network algorithms. Likewise, it performed better than intensive-used forecasting methods in the

industry, such as Earned Value Methodology (EVM) and Earned Schedule Methodology (ESM).

These promising results contributes to the foundation of Artificial Intelligence (AI) applicability

in construction project duration at completion forecasting.

iv

Preface

This thesis is an original work by Cristhian Felix Laura Portugal. No part of this thesis has been

previously published.

v

Dedication

With all my love for my soon-to-arrive baby, my beloved daughter Miranda, my wonderful wife

Denisse. Also, my family in Peru, my cherished parents, Nancy Portugal and Felix Laura. This

work is dedicated to all of you.

vi

Acknowledgments

First and foremost, to God for His spiritual support and strength throughout this journey.

I would like to express my thanks to my supervisor, Dr. Ahmed Hammad, for his invaluable

support and encouragement during this research. His expertise and insightful feedback have been

instrumental in the completion of this thesis. My sincere thanks go to the committee members, Dr.

Farook Hamzeh and Dr. Ali Imanpour, for their constructive feedback and suggestions during the

thesis defense, which contributed the quality of this work. In the same way, to Dr. Gaang Lee, who

kindly accepted be part of this meeting as the committee chair.

I am grateful to my wife, Denisse, whose expertise in project management provided critical

feedback and in turn, unwavering support. Her encouragement was pivotal to my success and kept

me motivated throughout this journey. To my mother, Nancy Portugal, for her eternal support and

love, and to my father, Felix Laura, for his always accurate advice, I am deeply thankful.

Additionally, to Alex Laura, Tanya Belleau and Dennis Laura, their encouragement has been

essential for this work.

I also want to extend my heartfelt thanks to my friends and colleagues for their support and

understanding, and to everyone who contributed to this work in various ways. Your contributions

have been deeply appreciated.

vii

Table of Contents

Abstract ... ii

Preface .. iv

Dedication ... v

Acknowledgments ... vi

List of Figures .. xi

List of Tables ... xiv

Chapter 1 Introduction ... 1

1.1 Background ... 1

1.2 Problem Identification ... 2

1.3 Research Objectives .. 4

1.4 Research Methodology .. 4

1.5 Thesis Organization .. 6

Chapter 2 Literature Review ... 7

2.1 Introduction ... 7

2.2 Schedule Management in Construction Projects ... 7

2.3 Scheduling Techniques: Network-based, Constraint-based, Line of Balance, Pull-Driven. .. 9

2.4 Forecasting Methods for Project Duration .. 18

2.4.1 Judgmental forecasting ... 20

2.4.2 Deterministic forecasting .. 21

2.4.3 Probabilistic forecasting .. 22

2.4.4 Machine Learning for forecasting ... 23

2.4.5 Detailed Comparison of Forecasting Methods .. 24

2.5 Machine Learning (ML) Overview ... 25

2.5.1 Machine Learning Types: Supervised, Unsupervised and Reinforcement 27

viii

2.5.2 Data Mining Tasks: Classification, Regression and Clustering 29

2.5.3 Time Series Datasets for Machine Learning Forecasting ... 31

2.5.4 Artificial Neural Networks .. 32

2.6 Application of ML for Forecasting Construction Project Duration 39

2.7 Schedule Delays in Construction Projects .. 41

2.7.1 Schedule Delay factors .. 42

2.8 Summary and Research Gap ... 45

Chapter 3 Methodology for Project Duration at Completion Forecasting using Machine

Learning ... 47

3.1 Introduction ... 47

3.2 Factors Influencing Project Duration Forecasting .. 48

3.2.1 Vertical and Horizontal Analysis for Construction Projects ... 48

3.2.2 Current Practices in Project Duration Forecasting .. 50

3.2.3 It Project Duration-Influencing Factors .. 54

3.3 Data Acquisition model (DAM) for forecasting project duration ... 62

3.3.1 The Relational Data Model for Project Duration forecasting. 64

3.3.2 The Entity Relationship Diagram (ERD) .. 65

3.4 Data Preparation for forecasting model .. 68

3.4.1 Managing Historical Data Collected ... 69

3.4.2 Data Cleaning .. 70

3.4.3 Feature engineering ... 71

3.4.4 Data Inspection on Selected Attributes ... 72

Chapter 4 The Deep Learning Forecasting Modelling for Project Duration and the Graphical

User Interface ... 78

4.1 Introduction ... 78

4.2 Dataset Setup for ML Forecasting model. .. 79

ix

4.3 Data Preprocessing .. 81

4.3.1 Feature Selection ... 83

4.3.2 Data Splitting .. 88

4.3.3 Data Normalization ... 88

4.4 Forecasting Model Development .. 90

4.4.1 Forecasting model with LSTM algorithm ... 92

4.4.2 Forecasting model with CONV-1D algorithm .. 93

4.4.3 Forecasting model with MLP algorithm ... 94

4.4.4 Model Performance Measurement. ... 94

4.5 Data Augmentation ... 95

4.6 Performance Metrics for Time Series Dataset models .. 97

4.7 Calculation of the Overall Project Duration .. 98

4.8 Graphical User Interface (GUI) for Project Duration Forecasting 102

4.8.1 Software Design and Reporting .. 103

Chapter 5 Project Duration Forecasting and Graphical User Interface Deployment 110

5.1 Introduction ... 110

5.2 Duration Forecasting model application – Case Study ... 111

5.2.1 Data Preprocessing and Feature Selection .. 111

5.2.2 Data Splitting .. 112

5.2.3 Data normalization .. 115

5.2.4 Forecasting model ... 115

5.2.5 Forecasting Models performance assessments.. 118

5.3 Graphical User Interface (GUI) for Project Duration Forecasting 124

5.4 Comparison with traditional methods for duration prediction .. 132

5.4.1 Comparison of Deep Learning, EVM and ESM models per work package 132

5.5 Sensitivity Analysis applying Montecarlo Simulation .. 138

x

5.5.1 Analysis of Concrete Work Package Prediction Model .. 140

5.5.2 Analysis of Excavation Work Package Prediction Model .. 143

5.5.3 Analysis of Backfill Work Package Prediction Model. .. 145

Chapter 6 Conclusions .. 149

6.1 Research Summary .. 149

6.2 Expected Contributions ... 151

6.2.1 Academic Contributions ... 151

6.2.2 Industry Contributions .. 152

6.3 Limitations .. 153

6.4 Recommendations for future research... 154

References ... 156

Appendix A: Python Script for Duration at Completion Forecasting using Long Short-Term

Memory (LSTM) Algorithm – Work Package Concrete.. 177

Appendix B: Python Script for the Graphical User Interface (GUI) for Project Duration at

Completion Forecasting ... 183

xi

List of Figures

Figure 1.1 Influence and Expenditures Curve (MacLeamy curve) for the Project Life Cycle 2

Figure 1.2 Research Methodology ... 4

Figure 2.1 Schedule Management Processes (Project Management Institute, 2019). 8

Figure 2.2 Most Used Scheduling Techniques encompassed on this Research 9

Figure 2.3 Types of Forecasting Methods ... 20

Figure 2.4 Comparison Between Traditional and Machine Learning Approaches 25

Figure 2.5 Artificial Intelligence, Machine Learning and Deep Learning ... 26

Figure 2.6 Types of Machine Learning .. 28

Figure 2.7 Linear and Non-linear Data Patterns .. 34

Figure 2.8 Causal Convolution (left) and Dilation (right) CNN Properties (Gridin, 2022)................. 36

Figure 2.9 Neuron’s Recurrent Connection Representation .. 36

Figure 2.10 Long Short-Term Memory (LSTM) Neuron .. 37

Figure 3.1 Methodology for Developing the Data Acquisition and Forecasting Models 48

Figure 3.2 Schematic of Operational Breakdown Structure for a Construction Company 49

 Figure 3.3 Interaction Between Project Lifecycle Phases and Process Groups for Project Execution,

adapted from Construction Industry Institute (2019) ... 50

Figure 3.4 Forecasting Map on the Industry (Stephenson, 2015) .. 51

Figure 3.5 ERD for Project Duration Forecasting ... 66

Figure 3.6 Pipeline of the Exploratory Data Analysis ... 68

Figure 3.7 Graphical Representation of Earned Schedule ... 72

Figure 3.8 Box-and-Whisker Plot for Planned And Actual Quantities and Planned Value 73

Figure 3.9 Box-and-Whisker Plot for Earned Value and Earned Schedule ... 74

Figure 3.10 Box-and-Whisker Plot for Time Performance Index and Time Variance 75

Figure 3.11 Box-and-Whisker Plot for Schedule Performance Index and Schedule Variance 76

Figure 3.12 Box-and-Whisker Plot for Planned Physical (%) and Actual Physical Progress (%) 77

Figure 4.1 Development of Forecasting Model ... 79

Figure 4.2 Three Time Series Data Setups to Improve Machine Learning Performance 81

Figure 4.3 Example of work package dataset after the data preprocessing Feature Selection 82

Figure 4.4 Visual Representation of Independent and Dependent Variables 84

Figure 4.5 Variance Influence Factor (VIF) Performance per Predictor ... 86

Figure 4.6 Spearman Correlation Matrix for Variables ... 87

xii

Figure 4.7 Schematic of Data Splitting .. 88

Figure 4.8 Schematic of Data Normalization ... 89

Figure 4.9 Rolling-Window Representation for the Forecasting Model.. 91

Figure 4.10 Representation of Relationship Between Samples and Batches 92

Figure 4.11 Schematic of the Loss Curve .. 95

Figure 4.12 Pipeline for Data Augmentation ... 97

Figure 4.13 Pipeline for Overall Project Duration Calculation ... 99

Figure 4.14 Duration, Start and Finish Dates Handling when Extracting from Primavera P6 100

Figure 4.15 Setup of Work Packages ... 101

Figure 4.16 Schematic of methodology flow describing transformation from PDM to CPM 101

 Figure 4.17 Location of Main Menu and Displaying Area ... 103

Figure 4.18 The “Add New Project” Window. .. 104

Figure 4.19 The “Update Project” window. ... 105

Figure 4.20 The “Project Tracking” window. .. 106

Figure 4.21 Project Reporting Period against Work Package Period Number 107

Figure 4.22 “Forecasting per Work Package” window. ... 108

Figure 4.23 “Forecasting per Work Package” window. ... 108

Figure 4.24 “Project Duration Forecasting” window. .. 109

Figure 5.1 Pipeline of GUI application for Project Duration Forecasting ... 110

Figure 5.2 Example of preprocessed data spreadsheet – Excavation Work Package. 112

Figure 5.3 Schematic of Process for Data Augmentation for the Present Study 114

Figure 5.4 Work Package Concrete loss curves per deep learning algorithm. 118

Figure 5.5 Work Package Excavation loss curves per deep learning algorithm. 118

Figure 5.6 Work Package Backfill loss curves per deep learning algorithm. 119

Figure 5.7 Work Package Concrete adjusted R-squared per LSTM, CONV-1D and MLP. 121

Figure 5.8 Work Package Excavation adjusted R-squared per LSTM, CONV-1D and MLP. 121

Figure 5.9 Work Package Backfill adjusted R-squared per LSTM, CONV-1D and MLP. 122

Figure 5.10 Forecasted DAC for Work Package “Concrete” per Period and per Algorithm against

Actual Duration. ... 122

Figure 5.11 Forecasted DAC for Work Package “Excavation” per Period and per Algorithm against

Actual Duration. ... 123

Figure 5.12 Forecasted DAC for Work Package “Backfill” per Period and per Algorithm against Actual

Duration. .. 123

xiii

Figure 5.13 Schematic of GUI Functioning ... 125

Figure 5.14 Project Schedule at Work Package Level in Primavera P6 .. 126

Figure 5.15 Schedule at the Work Package Level in XML format (first lines) 127

Figure 5.16 Setup of the Project... 128

Figure 5.17 The Project Information of “PJ-9000” on the Project Hub... 128

Figure 5.18 Entering Project Tracking Data .. 129

Figure 5.19 Forecasting Report for Excavation Work Package at Period 09 129

Figure 5.20 Loading Primavera P6 data to the GUI .. 130

Figure 5.21 Forecasting Report for Overall Project at Period 08 .. 131

Figure 5.22 Forecasting Report for Overall Project at Period 09 .. 131

Figure 5.23 Comparison of Deep Learning model, EVM and ESM for Concrete Work Package ... 134

Figure 5.24 Comparison of Deep Learning model, EVM and ESM for Excavation Work Package 135

Figure 5.25 Comparison of Deep Learning model, EVM and ESM for Backfill Work Package 137

Figure 5.26 Relationship between EV and ES for a Same Period. .. 139

Figure 5.27 Interaction Between Predictor and Target Variables – Concrete Forecasting Model 142

Figure 5.28 Interaction Between Predictor and Target Variables – Excavation Forecasting Model . 145

Figure 5.29 Interaction Between Predictor and Target Variables – Backfill Forecasting Model 148

xiv

List of Tables

Table 2.1 Comparison of the Described Network-based Scheduling Approaches 13

Table 2.2 Comparison of Scheduling Techniques ... 17

Table 2.3 Detailed Comparison of Forecasting Methods .. 24

Table 2.4 Comparison of Data Mining Tasks .. 31

Table 2.5 Comparison of MLP, CNN and LSTM Algorithms .. 38

Table 3.1 Input Variables by Applying Montecarlo Simulation with CPM for Duration Prediction .. 52

Table 3.2 Input Variables by Applying EVM for Duration Prediction.. 54

Table 3.3 Duration Influencing Factors per Author ... 55

Table 3.4 More Significant Factors (Median > 3.5 on Frequency of Occurrence) 57

Table 3.5 Factors Categorization based on Level of Impact, Probable Phase and Time Dependency 58

Table 3.6 Duration-Influencing Factors Selected per Work Package, Construction Phase and Time

Dependency .. 61

Table 3.7 Calculation Method per Duration-Influencing Factor ... 61

Table 3.8 Comparison Between Relational and Dimensional Databases .. 63

Table 3.9 Description of the ERD components for predicting project duration 66

Table 4.1 Performance Metrics for Time Series Datasets ... 97

Table 5.1 Training, Validation and Test Datasets per Work Package and LSTM, CONV-1D and MLP

Algorithms ... 114

Table 5.2 LSTM Hyperparameters used in the forecasting model per Work Package 116

Table 5.3 CONV-1D Hyperparameters used in the forecasting model per Work Package 116

Table 5.4 MLP Hyperparameters used in the forecasting model per Work Package 117

Table 5.5 Performance Metrics for the Concrete Work Package per algorithm. 120

Table 5.6 Performance Metrics for the Excavation Work Package per algorithm. 120

Table 5.7 Performance Metrics for the Backfill Work Package per algorithm. 120

Table 5.8 Project information for the Graphical User Interface .. 125

Table 5.9 Comparison of Deep Learning model, EVM and ESM for Concrete Work Package....... 133

Table 5.10 Comparison of Deep Learning model, EVM and ESM for Excavation Work Package . 134

Table 5.11 Comparison of Deep Learning model, EVM and ESM for Backfill Work Package 136

Such results where also evaluated using MAE and MAPE, underlining the Deep Learning model is

superior to traditional methodologies evaluated. These are showing in the Table below: Table 5.12

Comparison of Deep Learning model, EVM and ESM for Backfill Work Package 137

xv

Table 5.13 Work Package Parameters for Concrete .. 140

Table 5.14 Concrete Work Package - Records for Sensitivity Analysis ... 140

Table 5.15 Results of Fifty Simulations for Sensitivity Analysis - Concrete Forecasting Model 141

Table 5.16 Work Package Parameters for Excavation ... 143

Table 5.17 Excavation Work Package - Records for Sensitivity Analysis .. 143

Table 5.18 Results of Fifty Simulations for Sensitivity Analysis - Excavation Forecasting Model.. 144

Table 5.19 Work Package Parameters for Backfill .. 145

Table 5.20 Backfill Work Package - Records for Sensitivity Analysis ... 146

Table 5.21 Results of Fifty Simulations for Sensitivity Analysis in the Backfill Forecasting 146

1

Chapter 1 Introduction

1.1 Background

The construction sector significantly contributes to the global economy, promoting infrastructure

development, job creation, and economic growth. According to Oxford Economics, global

construction spending is expected to increase from $9.7 trillion in 2022 to $13.9 trillion by 2037.

(Fearnley et al., 2023). Similarly, Canada's construction industry is also essential. It supports

multiple construction types, such as residential, commercial, infrastructure, and industrial, and

contributed to about 7.5% of Canada's GDP in 2023 (Statistics Canada, 2024).

Regarding the construction project lifecycle, the construction execution phase is unique and

critical. It transforms project plans into physical structures, fulfilling utility requirements, resource

management, subcontractors coordination, and adhesion to construction codes and regulations

(Oberlender & Spencer, 2022). This phase involves multiple on-site activities such as excavation,

foundation, framing, electrical, finishing works, among others related. Moreover, most of the

project's budget is spent in this phase (as shown in Figure 1.1) and potential delays can significantly

impact the overall project timeline (Chhotelal et al., 2023; Ajayi & Chinda, 2022; Shahsavand et

al., 2018).

Therefore, accurate project outcome forecasts become crucial. This research is focused on the

project duration at completion forecasting, which helps to fit resource allocation, timely

procurement, and coordination of various activities. It also enables construction organizations to

set realistic expectations for clients, stakeholders, and project teams. In addition, timely project

completion is essential for maintaining client satisfaction and enhancing the reputation of

construction organizations.

2

Figure 1.1 Influence and Expenditures Curve (MacLeamy curve) for the Project Life Cycle

On the other hand, Artificial Intelligence (AI) has emerged as a promising solution, revolutionizing

the approach of data analysis, decision-making, and innovation (Duan et al., 2019). It can handle

large quantities of data to deliver valuable data-driven outcomes, such vast amounts of data as

generated by the construction industry. Thus, many construction firms have started adopting AI in

their processes, as was reported by KPMG in 2023, finding that 40% have implemented AI, mostly

in the early stages (Armstrong et al., 2023). The primary explored fields with AI have been worker

safety, productivity improvements, and quality assurance, conversely, forecasting applications in

project control still in their beginnings. Accordingly, the application of AI in project management

tasks like forecasting constitutes a significant gap nowadays.

1.2 Problem Identification

Researchers have addressed project duration at completion forecasting for decades, proposing

several methodologies, many of them even automated with sophisticated software to ensure

accurate outcomes. Unfortunately, weaknesses have been identified during their implementations.

3

For instance, the Earned Value Methodology (EVM) ideally assumes that current performance still

during remaining works (Chou et al., 2010; Grandage, 2022; Vanhoucke, 2012); Probabilistic

methods require uncertainty inputs from experts, which are prone to subjectivity or bias (Durbach

et al., 2017; Gneiting & Katzfuss, 2014; X. Yue et al., 2018); and also most of these methodologies

present non-timely forecasts calculations due to their complex processes leading to delays in

decision making (Ahiaga-Dagbui & Smith, 2014; Loshin, 2011).

Poor data management has been evidenced as another issue regarding Machine Learning

applications. Large amounts of data are yielded in the construction sector while monitoring

progress, which should be leveraged to obtain beneficial outcomes using Machine Learning (Tanga

et al., 2022). To take advantage of that, it is crucial a proper data collection which enables data

quality and consistency for optimal Machine Learning application performance. However,

research agrees that construction companies do not have a standardized data flow (Bobrova, 2023;

Matti & Antti, 2020; Pavlova et al., 2021), varying between projects and misusing valuable,

reliable forecasting input data.

Similarly, another drawback identified is how machine learning has been used in addressing

construction project duration forecasting. Its application has been limited to predicting the overall

project level without exploring more granular levels, such as at the work package level.

Additionally, most machine-learning-based applications consider solely non-time-dependent input

variables, disregarding time-dependent variables like those generated during the construction

project’s tracking.

Accordingly, inaccurate predictions cause inefficient resource allocation or improper risk

management for the remaining work. Moreover, because of time overruns, companies must incur

unexpected indirect costs and expend undesirable liquidated damages. Given that, providing

4

accurate project duration forecasts at the work package level supported by adequate data collection

and deep learning algorithms will be proposed.

1.3 Research Objectives

This research aims to enhance the accuracy of duration-at-completion forecasting for construction

projects since the work package level during the execution phase, processing historical data with

a deep-learning model. In fulfillment of the research objective, the present study will focus on the

following goals:

• Analyze and propose a structured data collection for project duration predictions.

• Evaluate and select deep learning algorithms for project duration forecasting that can address

the regression perspective and handling time series datasets.

• To integrate individual work package predictions from deep learning to obtain the overall

project prediction, through a User Interface environment.

1.4 Research Methodology

The research methodology which involves a proof of concept to address the problem identified

and achieve the research objectives is divided into four phases as shown in Figure 1.2 and

explained below.

Figure 1.2 Research Methodology

5

In phase one, an extensive literature review on five topics about construction project duration

forecasting is developed. These topics include understanding project construction in the execution

phase, exploring the latest methods when managing project schedules, reviewing advancements in

forecasting methods and studying machine learning developments applied to construction projects

for project duration forecasting. On the other hand, this phase involves understanding industry

practitioners' current practices, including project duration forecasting since work package levels.

It enables the elucidation of advantages and disadvantages from an industry perspective.

The second phase encompasses a structured data acquisition model, considering the outcomes of

phase one. In this phase, the input and output modelling variables are defined by an exploratory

analysis of the raw data collected. As data characteristics, it should be numerical and sequential

over time. The former is because this is a regression problem and the neural network application

(Turban et al., 2011). The latter is related to time series requirements such as seasonality or trends.

The third phase spans three stages: data preprocessing, deep learning model development and the

user interface model creation. The data preprocessing handles raw data by data cleaning,

transforming, feature selection, splitting and normalizing. After that, the deep learning

development presents architectural aspects of its design, such as hyperparameters and performance

metrics. Later, the user interface design is powered by the deep learning model for calculations

and adds the methodology to integrate individual work package predictions into overall project

forecasting.

An application of the User Interface (UI) integrated with the deep learning model is presented in

phase 4. It sets optimal hyperparameters and selects a deep learning algorithm among the three

proposed. The algorithm chosen from the third phase is incorporated into the UI, which is designed

to be user-friendly for non-expert users. The interface is intuitive and sequentially logical, making

6

navigating easier until it produces work package and overall project prediction reports. Next, a

sensitivity analysis (what-if) over input variables is deployed.

1.5 Thesis Organization

The thesis was organized as follows:

- Chapter one of the thesis provides a background description, problem identification,

research objectives, research methodology, academic and industry expected contributions,

and the thesis organization.

- Chapter two of the thesis presents a detailed literature review on every topic related to

project duration forecasting in construction during the execution phase.

- Chapter three of the thesis develops the conceptual model and considers a process flow to

propose a suitable data acquisition mode. It involves selecting proper duration-influencing

factors, ERD, and analysis of available data.

- Chapter four of the thesis details the model development using machine learning, as well

as the elaboration of the user interface.

- Chapter five of the thesis depicts the outcomes using the model created and passing through

the selection of the best machine learning algorithm. This chapter also demonstrates the

step-by-step user interface with project data.

- Finally, chapter six of the thesis comprises a research summary, limitations of the research

work, and recommendations for future investigations.

7

Chapter 2 Literature Review

2.1 Introduction

To attain the research objectives for this study, the initial and crucial step involves establishing a

comprehensive perspective through an exhaustive literature review. These objectives lie in

complex construction project management fields and the application of state-of-the-art technology

such as Artificial Intelligence (AI). In this context, the investigation draws support from the

following four specialization fields: Firstly, this chapter explains schedule management in

construction projects. Secondly, scheduling techniques are described. Thirdly, an exploration of

forecasting techniques is presented. Fourth, a brief overview of machine learning (ML) techniques,

data clustering, regression and classification tasks, types of machine learning, a revision of

Artificial Neural networks, representative Deep Learning algorithms, and current applications on

Construction are studied. Lastly, a summary of previous research and the research gap was

explained.

Each previously described field drives to expand the knowledge of these matters, understanding

their synergy and elucidating their contribution to the present research. By doing so, this chapter

will expose the fundamentals behind this study.

2.2 Schedule Management in Construction Projects

Many studies agree that schedule management is a meaningful component of construction project

management (Faghihi et al., 2014; Meng et al., 2022; Yu et al., 2021). It is defined as those

processes needed to complete the project on time. These processes are planning schedule

management, activities definition, activities sequencing configuration, activities duration

estimation, schedule development, and schedule control (Project Management Institute, 2017). By

8

executing these processes, one of the important outcomes is the Schedule Model, which results

from applying project scheduling tasks during the Schedule Development Process. This task

involves tools, techniques, and the project team’s experience (Project Management Institute,

2019). The schedule model is then controlled and monitored under preset conditions established

in the schedule project plan.

Unlike the PMI, for the Association for the Advancement of Cost Engineering International

(AACEi), schedule management includes only three phases: planning, developing, and controlling

project schedules (Stephenson, 2015). By matching both perspectives about schedule management

processes, AACEi considers that defining, sequencing, and estimating activities are subprocesses

of the Planning Project Schedule. It also adds that Controlling Project Schedule encompasses

measuring, evaluating performance, forecasting, and initializing the change management process

whether the project requires it. From both frameworks, the forecasting task is placed within the

controlling schedule process in the overall project schedule management, as shown in figure 2.1.

As can be seen, the forecasting task outcomes will depend on the scheduling technique adopted

because different techniques consider diverse factors and limitations that can impact forecasting

management. The following studies the scheduling techniques used in the construction industry.

Figure 2.1 Schedule Management Processes (Project Management Institute, 2019).

9

2.3 Scheduling Techniques: Network-based, Constraint-based, Line of

Balance, Pull-Driven.

The schedule model encompasses three critical aspects: defining the scheduling approach to adopt,

selecting suitable scheduling tools, and considering wide-ranging project information (Project

Management Institute, 2019). The four most used scheduling approaches have been studied, as

shown in the Figure below.

Figure 2.2 Most Used Scheduling Techniques encompassed on this Research

1. Network-based scheduling methods.

Network-based scheduling is arguably the most-known approach used by the construction

industry. It was raised in the 1950s in response to the limitations of bar chart scheduling techniques

(Baldwin & Bordoli, 2014). This method is characterized by using a graph that portrays nodes

10

interconnected logically by arrows, each oriented to a specific direction (Hajdu, 1997). In the

construction industry, several approaches have been widely applied and fall under this category,

including the Critical Path Method (CPM), the Program Evaluation and Review Technique

(PERT), the Precedence Diagram Method (PDM) and the Critical Chain Project Management

(CCPM). Below, these methods are delved into detail.

• Critical Path Method (CPM)

Hajdu (1997) stated that this method is arguably the earliest method that came with innovative

techniques shifting from traditional non-network techniques to a network approach. In 1959,

Kelley and Walker introduced this method as part of the research conducted by DuPont Company

(“The Origins of Schedule Management,” 2018). Initially, this method consisted of three rules by

drawing the network (Hajdu, 1997). First, it considered one starting event (node) and one terminal

event (node) only, represented by ‘s’ and ‘t,’ respectively. Second, the loops were not part of the

network; otherwise, it would imply a returning path to the origin node, or even successor nodes

would condition to the predecessor nodes. Third, the network did not consider multiple activities

(represented by arrows) arriving in the same node conversely in most real-life situations; however,

this could be overcome by imputing fictitious nodes or 'dummies.' Today, the CPM algorithm is

well-known for the forward and backward pass calculations. When making a forward pass, it

computes the earliest start and finish dates, and making a backward pass calculates the latest start

and finish dates. This logic is the CPM's potential to discover the critical path (Lu, 2020).

• Program Evaluation and Review Technique (PERT)

The U.S. Navy Special Projects Office introduced the PERT in 1958 when addressing complex

projects (Baldwin & Bordoli, 2014). For Kerzner (2017), this period marked the “age of massive

engineering.” In the beginning, the PERT followed the next steps (PERT, 1958)

11

a. Defining coherent events aligned with specific objectives at the core of planned progress.

b. Sequentially arranging these events to establish logical relationships among them as they

unfold.

c. Providing an initial estimate of each activity's duration while gauging the variability by

comparing the associated events.

d. Leveraging computational tools to process and effectively manage this data.

e. Creating a structured, systematic communication framework to capture progress and facilitate

data updates.

This technique has spurred the development and adoption of other scheduling methods, such as

the Precedence Diagram and Critical Chain Method.

• Precedence Diagram Method (PDM)

The Precedence Diagram Method visually shows project activities through nodes, delivering

essential information for each task. Baldwin et al. (2014) outlined five critical considerations for

creating a PDM:

a. Sequential Time Flow: Ensure that time flows from left to right in the diagram.

b. Flow Direction: Indicate the flow direction using arrowheads.

c. Arrow Length: Pay attention to the relative length of arrows within the graph.

d. Arrow Orientation: The orientation of arrows should be unambiguous.

e. Activity Descriptions: Each node should comprehensively describe the associated activity.

Kerzner (2017) also referred to this method as Activity-on-Node (AON). In PDM, activity

relationships and constraints are represented by arrows in the graph. Activities encompass slacks,

while lags are calculated between activities. Kerzner emphasized the use of leads, particularly

when addressing resource constraints. Lu (2020) noted that PDM, a variation of the Critical Path

12

Method (CPM), features intelligent relationships. In PDM, non-Finish-to-Start (non-FS)

relationships may include restrictions related to resources or technologies. Currently, the PDM is

a widely adopted scheduling technique and is commonly implemented in various project

management software tools. PDM is sometimes mistaken for CPM in practice due to their

similarities (Project Management Institute, 2019).

• Critical Chain method

This method centers on activities and resource interaction (Project Management Institute, 2019).

In its application, two crucial factors are considered: firstly, an analysis of the original critical path

and, secondly, a thorough evaluation of resource availability for the successful completion of

project activities (Baldwin & Bordoli, 2014). After completing the tasks, the subsequent phase

involves the reduction of the estimated durations for activities, as highlighted by Raz et al. (2003):

a. Inherent Uncertainties: Recognizing that uncertainties are inherent in all activities.

b. Common Overestimation: Acknowledging the tendency for overestimation in the duration of

activities.

c. Safety Time Considerations: Understanding that activities typically incorporate safety time,

leading to constrained resources for subsequent activities related to the original one. In

practice, the activity owner relies on the planned time due to these restrictions.

In this context, the Project Management Institute (2019) emphasizes that the critical chain is

identified as the longest resource-leveled path, considering the presence of buffers.

While Critical Chain Project Management (CCPM) offers notable advantages, as articulated by

Leach (1999): Ensuring timely delivery, averting scope creep, and adhering to budgets with

diligent application, a significant drawback lies in the lack of clarity regarding buffer dimensions.

13

This concern is underscored by Baldwin et al. (2014), who also note the method's reluctance to

update the project baseline, a practice viewed as essential by some project managers.

• Comparison among the Network-based Scheduling approaches

Table 2.1 provides an overview of the characteristics of each method across various criteria, as

discussed earlier:

Table 2.1 Comparison of the Described Network-based Scheduling Approaches

Criteria

Critical Path

Method

(CPM)

Program

Evaluation and

Review Technique

(PERT)

Precedence

Diagram

Method (PDM)

Critical Chain

Method

Nature of Network

Representation

Node and

Arrow

Diagram

Node and Arrow

Diagram

Node and

Arrow Diagram

Node and Arrow

Diagram

Activity

Dependency

Representation

Finish-to-Start

(FS)
Finish-to-Start (FS)

Various

dependencies

allowed

Finish-to-Start

(FS)

Focus on Resource

Constraints

Limited

emphasis
Limited emphasis

Limited

emphasis
Central emphasis

Activity Duration

Estimation

Single duration

estimate

Three-point estimate

(optimistic,

pessimistic, most

likely)

Single duration

estimate

Single duration

estimates with

buffer

Uncertainty

Consideration
Limited High Limited Moderate

Buffer Utilization No buffers Incorporates buffers No buffers
Buffers are a vital

element

Critical Path

Definition

Longest path in

terms of time

Probabilistic critical

path

Longest path in

terms of time

Longest resource-

leveled path

Management of

Resource

Constraints

Limited focus Limited focus Limited focus

Central focus,

buffers manage

constraints

Handling Project

Changes
Rigid More adaptable Adaptable

Adaptable with

buffer

management

Commonly Used in

Practice
Yes Yes Yes

Increasing

adoption

14

2. Constrained-based scheduling based on Constraint Programming (CP)

Unlike the Network-based Scheduling approaches, Constrained-based Scheduling utilizes

Constraint Programming (CP) within the Operations Research (OR) domain to tackle scheduling

challenges. Moreover, it employs efficient propagation algorithms to enhance model performance

(Baptiste et al., 2006). By concurring rigid activity durations, interdependencies, and

construction’s dynamic and uncertain nature, this approach introduces flexibility to the model.

Activities are treated as variables with defined relationships, allowing for adding or eliminating

constraints as needed (Zupančič et al., 2007).

In constraint programming, it is classified as constraint satisfaction, where the activities'

requirements become constraints in the model (I.-C. Wu et al., 2010). These constraints are

categorized into hard and soft constraints, with technological dependencies and resource

availability as attributes. Next, the goal is to establish an objective function that satisfies all project

restrictions. This model includes activities, resource constraints, temporal constraints, an objective

function, and extensions to the basic model. It enables addressing typical construction sector

scenarios, such as resource availability, variable times and costs, breakable activities, and activities

left undone due to resources (Baptiste et al., 2006).

Supporting this scheduling method, Fromherz (2001) underscores that scheduling is both a

constraint satisfaction problem and an optimization problem. While scheduling problems are

considered NP-hard, complexity can be mitigated with specific considerations such as pre-empting

tasks in the programming model. These kinds of conditions boost the CP method's efficiency and

benefits in scheduling (Müller et al., 2022). They also suggest that machine learning can predict

the most suitable CP solver based on each unique scenario, considering factors like activity

relationships and resource availability.

15

Lorterapog and Ussavadilokrit (2013) suggest using constraint programming in construction

projects because it offers greater flexibility in representing constraints and makes it more

accessible to manage project networks than traditional CPM. The authors recommend prioritizing

alternative schedules, incorporating search algorithms, and adopting constraint relaxation and

collaborative scheduling for better efficiency.

3. Line of balance (LOB) scheduling

Line of Balance (LOB) is a prominent method within the family of Linear Scheduling methods

(LSMs) (Ammar, 2020). The Goodyear Tire and Rubber Company initially proposed the

technique, which the U.S. Navy later adopted during the Second World War and the Korean War

to coordinate mass production strategies (Frandson et al., 2015). The LOB scheduling technique

is well-suited for applying the learning effect due to the repetitive nature of its activities. When

the learning effect is applied to the LOB schedule, productivity rates improve as the project

progresses. This improvement leads to a decrease in the duration of activities. As a result, the

output schedule will change from inclined parallel bars to curves (Matey et al., 2017; Zahran et

al., 2016). Initially, it is represented linearly, incorporating production rates and available

resources, and focusing on sequencing activities. The results display project deliverables'

completion times and a production schedule of significant sub-elements (Baldwin & Bordoli,

2014). Notable projects suited for LOB include highways, high-rise buildings, pipelines, and

tunnels (Bayhan et al., 2020).

In his research, Ammar (2020) emphasizes the importance of considering crews when

implementing the Line of Balance (LOB) scheduling method. He suggests incorporating work

interruptions to simulate real-life conditions and optimizing the LOB model to improve its

16

performance. Ammar also acknowledges that recurrent activities typically make up a significant

portion of the project construction process.

The Line of Balance (LOB) method offers a graphical representation of the correlation between

productivity and the time it takes to complete project activities. Also, the combination of CPM and

LOB can deal with repetitive work, as demonstrated by Hegazy and Mostafa (2021). Conversely,

achieving a "natural rhythm" is a significant challenge, as suggested by the LOB method (Tang et

al., 2018), requiring a high commitment from construction practitioners. Ammar (2020) added that

determining the optimal crew per activity to achieve the ideal project duration under typical project

constraints would become another challenge by implementing this method.

4. Lean Construction approach: Pull-Driven Scheduling

From Lean Construction, employing "pull-driven" scheduling emerged as a prominent technique

which lies in achieving optimal outcomes, considering factors such as quality, time, cost, and client

demands (Tommelein, 1998). This approach advocates for the intensive and strategic use of

resources as inputs, aiming to minimize wait times in queues and strategically selecting activities

(processes) to obtain products needed further in the process, enhancing system fluency.

Concerning the implementation of pull-driven scheduling, Tommelein (1998) highlights the need

to reinforce a selective control process on resources for assignment to any activity. In this vein,

Fukushima (2000) identifies three crucial factors for implementing pull-system scheduling:

solving limited space problems, reducing inventory, and embracing change based on agility.

Unlike the push-system utilized in Critical Path Method (CPM), the pull-system prioritizes a

continuous workflow (I.-T. Yang & Ioannou, 2001). Ghanem et al. (2022) pointed out that

production planning, crew-level assignments, and decisions on resource mobilization are

remarkable differences between push and pull systems. Firstly, in production planning, the push-

17

system aims to reduce project duration based on Critical Path Method techniques, while the pull-

system focuses on stabilizing crew work and production rates. Secondly, when deciding

assignments, the push method relies on the previous sequence, whereas the pull method is based

on real-time scenarios and considers empty locations. Thirdly, in decisions on resource

mobilization, the push method is more reactive, putting resources based on deviations. In contrast,

the pull method compares the actual production rates of predecessor and successor tasks.

However, challenges arise when implementing pull-system scheduling, as Yang and Ioannou

(2001) summarized. These challenges include difficulties mapping resources' work for various

activities, crew splitting during progress activities, variable production rates, and intermittent

activities. Furthermore, after conducting a case study using pull-driven scheduling, Ghanem et al.

(2022) concluded that while this method might improve productivity, reduce idle time, and

diminish task interruptions, project time can be overrun.

5. Detailed Comparison of Studied Scheduling Techniques

The table below summarizes each scheduling method's key characteristics, principles, strengths,

and challenges.

Table 2.2 Comparison of Scheduling Techniques

Scheduling

Method
Description Key Principles Strengths Challenges

Network-based

Scheduling

Utilizes network

diagrams (e.g.,

PERT, CPM) for

planning.

Time-oriented,

critical path

identification.

Clear

visualization,

critical path

analysis.

Sensitivity to

changes, may not

handle resource

constraints well.

Constrained-

based Scheduling

(CP)

Applies

Constraint

Programming

(CP) for

scheduling.

Constraint-driven,

handles rigid

activities and

relationships.

Effective for rigid

constraints,

adaptable.

Complexity in

modelling,

challenges in

dynamic

environments.

18

Line of Balance

(LOB)

Scheduling

Suited for

repetitive

construction

activities.

Emphasizes

continuous

workflow,

resource focused.

Effective for

repetitive projects,

resource

optimization.

Challenges in

achieving a

"natural rhythm"

may require

substantial

commitment.

Lean

Construction -

Pull-Driven

Scheduling

Focuses on the

just-in-time flow

of work,

minimizing waste.

Pull-oriented,

real-time

decision-making,

continuous

workflow.

Enhances

efficiency,

minimizes waste.

Challenges in

real-time

decision-making,

potential for

project time

overrun.

Despite significant advancements in schedule management, the outcome performances of

construction projects, particularly in terms of timely completion, have still not been encouraging.

2.4 Forecasting Methods for Project Duration

As described earlier, construction scheduling techniques are closely linked to the forecasting task.

Forecasting involves modelling techniques that rely on historical data to predict the future (Turban

et al., 2011). In the context of time series datasets, Petropoulos et al. (2022) highlighted that

forecasting is based on past knowledge to generate future predictions. These datasets represent

sequential records over time, often exhibiting dependent characteristics crucial for establishing

relationships between past inputs and future outcomes (Box et al., 2016). However, Litsiou (2022)

pointed out that time series models work on a black-box system basis, which means that inputs

and outputs are known while internal working (relationships) is not visible or fully understood.

Project forecasting is close related to risks, uncertainties, and bias, as was evidenced by Flyvbjerg

et al. (2003). His research emphasized the crucial role of risk management at various levels, such

as safety, cost, and environmental factors. Similarly, De Andrade et al. (2019) concluded that risks

and uncertainties are common causes of project delays when studying the efficiency of the earned

19

schedule and earned duration management for forecasting. Given these reasons, Lovallo and

Kahneman (2003) researched the forecasting bias, finding that decision-makers are experimenting

with the planning fallacy, a typical behaviour labelled by psychologists. They described this

behaviour adopted by decision makers when they over-optimize the best outcomes, such as profits

or benefits, and underestimate potential costs, mistakes, etc. In this line, Flyvbjerg et al. (2009)

performed extensive experiments, concluding that the consistent gaps between predicted outcomes

and actual outcomes are due to "strategic misrepresentation." Its concept matches with Lovallo

and Kahneman’s about planning fallacy, which means that project planners tend to overemphasize

the benefits while downplaying the potential costs to increase the chances of getting approval and

funding for the project.

Within the realm of project control processes, Azeem et al. (2014) placed the forecasting at the

end of the project control whole map, which includes monitoring actual project performance,

deviations contrasting and evaluating, and outputs at project completion forecasting. Similarly, the

Association for the Advancement of Cost Engineering International (AACEi) stresses that

forecasting should be a set process on ongoing projects, which should actively use project control

plans and baselines to verify schedule deviations. A forecasting method’s categorization proposed

by Montgomery et al. (2015) is qualitative and quantitative. The present research primarily delves

into judgmental methods within qualitative approaches alongside deterministic, probabilistic, and

machine-learning methods within quantitative techniques.

20

Figure 2.3 Types of Forecasting Methods

2.4.1 Judgmental forecasting

Montgomery et al. (2015) pointed out that judgmental methods are often subjective and require

expert opinions for their development. These methods become particularly significant when

historical data for forecasting is lacking, such as when executing a new project requiring cutting-

edge design technology. In the early phases, educated guesses from experienced engineers,

architects, and construction workers are crucial. Makridakis and Gaba (1998) added that

judgmental forecasting relies not only on historical data but also on the biases acquired by

forecasters through their practice and training. Despite judgmental methods being criticized for

their nature, Caniato et al. (2011) stated that experimental studies demonstrated the significant

impact of managerial decisions on expectations. For instance, Sanders and Manrodt (1994) noted

that outcomes often align with judgmental elements provided by industry experts after applying

any quantitative method.

21

A management tool for this qualitative forecasting method is the well-known Delphi method,

introduced by the RAND Corporation, which engages a group of experts. Its application initiates

with experts completing individual questionnaires to mitigate bias. Results from each round are

reviewed and fed back to the panel with a new question, repeating the process cyclically to achieve

consensus. This iterative method may reveal documented output differences, as Montgomery et al.

noted (2015).

2.4.2 Deterministic forecasting

This method is part of the quantitative forecasting methods. According to Box et al. (2016) a

mathematical model is deterministic if it can produce future results precisely. For instance, a

cosine-based function with a time series dataset for prediction can help determine exact future

values. One benefit of using deterministic models is their simplicity, which makes them

understandable and implementable for practitioners. It also requires less data and facilitates

straightforward output processing to achieve the primary goal of understanding project

performance (Ballesteros-Pérez et al., 2020).

In this vein, Barrientos-Orellana et al. (2021) emphasized Earned Value Management as the most

prominent method in the construction sector due to its easy implementation. Also, Wilson et al.

(2003) noted that both Gantt charts and Critical Path Method (CPM) as deterministic methods hold

a strong position in construction practice despite their significant limitations, such as overlooking

the lack of variability control in activity durations and resulting impacts. Kim’s (2007) research

compared the reliability of deterministic and probabilistic methods when forecasting the final

project performance. He tested the Earned Value Management (EVM) and the Critical Path

Method (CPM) as deterministic against the Kalman filter forecasting method (KFFM) and the

Bayesian adaptive forecasting method (BAFM) as probabilistic. Initially, this study found that the

22

EVM outperformed the CPM in the realm of deterministic methods because the CPM method lacks

dynamic updating of original estimates with project performance data, reducing its capacity to

predict future activities. As a result, probabilistic methods demonstrated superior performance

compared to deterministic ones. This is attributed to their capacity to forecast future outcomes,

leveraging a combination of historical data from similar projects, judgmental insights, and

preliminary project information obtained at the early stages.

2.4.3 Probabilistic forecasting

Unlike the forecasting deterministic methods, the probabilistic one addresses situations where

numerous unknown inputs exist to compute predictions. In some cases, combining deterministic

with probabilistic models yields multiple forecasting values that are bounded according to specific

restrictions. This derived model is the probability or stochastic model (Box et al., 2016). Similarly,

Montgomery et al. (2015) stressed that probabilistic forecasting results are intervals instead of a

unique value, and this feature is worthy in a risk and uncertainty construction environment. For

example, Barraza et al. (2004) applied probabilistic methods to the S-curve to obtain stochastic S-

curves. These S-curves would provide possible solutions between preset upper and lower limits,

which enable considering other parameters to tackle project uncertainties.

In regards to the accuracy of predictions, Abdel Azeem et al. (2014) compared the Kalman Filter

Forecasting Model (KFFM) with the Earned Schedule (ES) model, finding that the former

(probabilistic method) showed better performance than the latter (deterministic method). Research

also compared probabilistic performance against machine learning models. Makridakis et al.

(2018) assessed a large set of traditional probabilistic methods mentioned as follows: (1) Naïve 2,

(2) Simple exponential smoothing, (3) Holt exponential smoothing, (4) Damped exponential

smoothing, (5) SES, Holt and Damped (Comb), (6) Theta method, (7) automatic model selection

23

algorithms for ARIMA and finally (8) exponential smoothing (ETS). Consequently, probabilistic

methods exhibited superior performance compared to Machine Learning algorithms. It is essential

to note that this research focused solely on Machine Learning and did not include an assessment

of Deep Learning algorithms, implying certain assumptions and limitations in the study.

2.4.4 Machine Learning for forecasting

Abioye et al. (2021) stressed that forecasting using Artificial Intelligence models has the potential

to be used in many fields within the construction industry. According to Pan et al. (2021), the

applicability of machine learning in construction has grown substantially, particularly in

forecasting tasks, owing to its ability to process extensive datasets from diverse sources and return

approximate outcomes. Whereas machine learning algorithms often yield accurate results

individually, it is also a common practice to ensemble multiple algorithms, combining their

strengths to enhance predictions. For instance, the support vector machine (SVM) and fast-messy

genetic algorithms (fmGA) produce the Evolutionary Support Vector Machine Inference Model

(ESIM) for the prediction of construction management problems (Cheng & Wu, 2009). In this

case, the SVM addressed learning and curve fitting, while fmGA deals with the optimization task.

Among the extensive list of forecasting models, primarily ensembled models, the Support Vector

Machine (SVM) and Artificial Neural Network (ANN) algorithms have had significant attention

in the literature. The former works into higher-dimensional space, building optimal hyperplanes

which give global solutions, while the latter, also classified as a subset of Machine Learning

algorithms, comprises interrelation neurons, activation inputs, cyclic processes so that it can

imitate the process of human learning.

The differences between Machine Learning and Probabilistic models were illustrated by Nielsen

(2019) using Time Series datasets. Probabilistic models require a theory to represent time series

24

data coupled with a parameter to monitor deviations and uncertainties. Once established, they can

be utilized for prediction purposes. On the other hand, Machine Learning models rely on

identifying patterns through complex mathematical algorithms to set up the behaviour, enabling it

to predict future outcomes. Their prediction results were also compared. Makridakis et al. (2023)

recently compared Machine Learning, Probabilistic and Deep Learning (a Machine Learning

subcategory) models. They selected representative models for each method and ranked their

accuracies in the context of the well-known M3 forecasting competition, encompassing 3003-time

series datasets. The outcomes revealed that Deep Learning models outperformed others by using

monthly data and yielding long-term predictions. Also, as an aspect to be improved, the Deep

Learning algorithms compromised considerable Computational Time under this competition

conditions.

2.4.5 Detailed Comparison of Forecasting Methods

Table 2.3 below shows relevant aspects of each forecasting method according to the previous

discussion.

Table 2.3 Detailed Comparison of Forecasting Methods

Method Key Characteristics Advantages Limitations

Judgmental
Subjective, relies on

expert opinions

Quick implementation,

functional with limited

data

Prone to biases, lacks

objectivity

Deterministic

Uses mathematical

models to predict

future outcomes

Easy to understand,

suitable for projects

with less data

Ignores uncertainties,

may not capture

complex patterns

Probabilistic

Considers uncertainties

and deviations in

predictions

Captures variability,

provides a range of

possible outcomes

Requires supporting

theory, may be data-

intensive

25

Machine Learning

Utilizes complex

algorithms to identify

patterns and behaviors

Adapts to complex

data, can handle large

datasets

Requires significant

computational

resources, may lack

interpretability

2.5 Machine Learning (ML) Overview

The purpose of this study is to delve deep into machine learning forecasting. Therefore, this section

will describe the essential aspects of this topic. The most accepted definition of Machine Learning

by research is credited to Tom M. Mitchell (2013), who stated that learning starts from experience

“E” in tasks “T,” measured by performance “P” when its ability in these tasks improves through

the accumulation of experience “E.” Likewise, Machine Learning is considered a foundational

aspect of Data Mining, enabling the extraction of valuable insights from raw data in databases for

various purposes (Witten & Witten, 2017). Chollet (2018) highlighted that whereas traditional

programming inputs data and rules to yield answers through explicit programming, Machine

Learning inputs data and answers to yield rules through training, as shown in Figure 2.4.

Figure 2.4 Comparison Between Traditional and Machine Learning Approaches

Also, it is essential to notice that Artificial Intelligence (AI), the parent branch of Machine

Learning, is a non-new technology; on the contrary, they have gained momentum in the last three

decades because of the intensive increment of computer power to handle vast quantities of data

26

(known as Big Data), which have enabled them to deploy high-demanding computational

algorithms (Y. Zhang et al., 2014).

When talking about Machine Learning, mentioning the Deep Learning algorithms is unavoidable.

They are a subfield of Machine Learning, as represented in Figure 2.5. Deep Learning is centred

on constructing expansive Neural Network models capable of making precise data-driven

decisions. It involves the creation of intricate architectures with multiple layers, enabling the

system to learn complex patterns and representations from data autonomously, ultimately

enhancing its capacity for accurate decision-making (Kelleher, 2019). Indeed, “Deep” refers to

many Neural Network layers that can solve specific and complex problems (LeCun et al., 2015).

These neural network–based algorithms are characterized by mimicking the human brain's

functioning by replicating biological components such as neurons or dendrites. They resemble

stimulations among neurons through feed-forward and back-forward propagations, as these are

known in deep learning terms (Auffarth, 2021). Prominent subcategories of deep learning

algorithms are Recurrent Neural Networks (RNN), Modular Neural Networks, Convolutional

Neural Networks (CNN), and Radial Basis Function Neural Networks.

Figure 2.5 Artificial Intelligence, Machine Learning and Deep Learning

27

In the forecasting field, deep learning algorithms have delivered promising results in contrast to

conventional pure machine learning models; because of that, they have become a center of

attention, especially for time series prediction problems in the last years (Chandra et al., 2021;

Makridakis et al., 2023).

2.5.1 Machine Learning Types: Supervised, Unsupervised and Reinforcement

There are three main types of machine learning: Supervised, Unsupervised, and Reinforcement

Learning (Auffarth, 2021; Lazzeri, 2021; Turban et al., 2011). Supervised Learning is a kind of

induced learning. This process occurs when the set of observations knows their outputs. It means

that both inputs and outputs should be provided. Haque et al. (2022) stressed that Supervised

Learning aims to define a relationship between inputs and output variables from the training

dataset. In addition, Abioye et al. (2021) added that supervised learning is concentrated on an

algorithm that makes decisions based on previous knowledge acquired, explicitly, prior

understanding of the relationship among variables to deliver a specific output. “Supervised” refers

to data scientists supervising the learning process as they know actual outcomes and can share

iteratively to enhance the learning performance (Alachiotis et al., 2022; Lazzeri, 2021). Research

in this field has categorized chiefly Supervised Learning into regression and classification, further

explained in the next section. The mathematical expression to represent the said relationship is

described as follows. If 𝑥 is a feature and 𝑦 an output, the equation in supervised learning would

be 𝑦 = 𝑓(𝑥).

Unsupervised Learning is a type of machine learning that deals with datasets where the output is

unknown (Nelles, 2001; Turban et al., 2011; Vermeulen, 2020). In a Classification problem

context, this would mean that the dataset is unlabelled, and no classes are associated with the

observations, making it difficult to solve. In Unsupervised Learning, the goal is to identify

28

relationships between the observations and create a function 𝑓(𝑥) (where x represents inputs)

without the use of labels (Abioye et al., 2021). As examples may be mentioned, the Clustering and

Dimension Reduction techniques are two main categories of Unsupervised Learning (Wang,

2016), while Lazzeri (2021) suggested that anomaly detection and principal component analysis

might also be included as examples.

Reinforcement Learning, on the other hand, is quite different from Unsupervised Learning (Turban

et al., 2011). It does not rely on historical data to start the learning process, and there are no natural

groupings in the dataset. Instead, the learning process is driven by interacting with the environment

to create experience-based outputs, and the model's efficiency is improved through a trial-and-

error process (Auffarth, 2021). The following figure broadly categorizes the types of Machine

Learning and their main subcategories.

Figure 2.6 Types of Machine Learning

29

2.5.2 Data Mining Tasks: Classification, Regression and Clustering

1. Classification.

The classification is arguably the most widespread task in data mining when seeking valuable

outcomes (Kesavaraj & Sukumaran, 2013; Linoff et al., 2011; Umadevi & Marseline, 2017). They

added that it is a common practice by human beings during the communication process when

categorizing or establishing grading to be understood by one another. In this way, classification is

grouping objects into predefined classes. Aggarwal (2015) argued that, unlike clustering, the

classification is developed on a training dataset containing one or more “target variables.”

Bhattacharyya et al. (2020) outlined that classification might be based on endless criteria. For

instance, Kotsiantis et al. (2006) proposed two categories based on their development process:

firstly, artificial intelligence-based development, which in turn encircles logic-based techniques

and perceptron-based techniques and, secondly, statistic-based development, encompassing

Bayesian networks and Instance-based techniques. As examples in the artificial intelligence

category, logic-based techniques comprise decision trees and rule-based classifiers whereas

perceptron-based algorithms are neural networks.

2. Regression

The regression task is one of Supervised Learning, which struggles to find relationships between

variables that affect the output variable. These variables can be independent or dependent (Miller,

2017; Yildiz et al., 2017), and the function that encircles this relationship is called the Regression

Function. Moreover, the dependent variable is numeric and continuous (Harrington, 2012). An

algebraic representation of the variable's relationship is given as follows:

𝒚′ = 𝒂𝟏 × 𝒙𝟏 + 𝒂𝟐 × 𝒙𝟐 + 𝒂𝟑 × 𝒙𝟑 … … . +𝒂𝒏 × 𝒙𝒏

𝒚 = 𝒚′ + 𝒆𝒓𝒓𝒐𝒓

30

Where, 𝑎1, 𝑎2, … 𝑎𝑛 are coefficients, 𝑥1, 𝑥2, … 𝑥𝑛 are independent variables, 𝑦′ is the output or

dependent variable and 𝑦 es the actual output so that the difference would be the error (Yildiz et

al., 2017). This simplistic representation assumes only one output instead of multiple outputs. It

also includes various independent variables, which are known as multivariate variables.

Furthermore, the regression on the time series dataset is closely related to forecasting and is

supported by machine learning algorithms (Lazzeri, 2021).

3. Clustering

Gan et al. (2007) defined data clustering as creating groups of objects called clusters based on

similarities. Also, such objects from separated clusters are different from each other. They added

that data clustering is known as segmentation analysis, cluster analysis, taxonomy analysis or

unsupervised classification. Linoff and Berry (2011) highlighted that there are no predefined

classes in clustering; therefore, users may determine the denotation of each cluster. In addition,

clustering is characterized by often being executed in the early stages compared to others during

the data mining. It is useful, for example, for market segmentation before launching any market

research to know habits from the objective group of people.

Clustering can be categorized into two groups (Gan et al., 2007): hard clustering and soft

clustering, based on the objects' belonging. Objects in hard clustering are likely to belong only to

one cluster, while soft clustering could go to two or more clusters. Diving hard clustering contains

two types: hierarchical algorithms and partitional algorithms. Thus, hierarchical algorithms can be

divided into divisive and agglomerative hierarchical algorithms. The first one creates clusters from

top to bottom direction, which means that it starts with a big cluster encompassing all the objects,

and then more clusters will be made starting from this primary cluster by partition. On the contrary,

31

the agglomerative hierarchical algorithm works from bottom to top direction, meaning that each

cluster only encloses one object, then clusters will be created, unifying these.

Below is a comparison of the data mining tasks described.

Table 2.4 Comparison of Data Mining Tasks

Task Objective Output Example

Classification

Assign input data to

predefined classes or

labels.

Discrete categories or

classes.

Classifying project risks as high,

medium, or low.

Regression

Predict a continuous

numerical value based on

input data.

Continuous numeric

values.

Predicting the estimated

completion time for a project

phase.

Clustering

Group similar data points

based on features or

characteristics.

Discrete clusters or

groups.

Grouping similar project tasks

for resource optimization.

2.5.3 Time Series Datasets for Machine Learning Forecasting

As construction projects yield overwhelming amounts of diverse data, it is essential to understand

time series datasets, which are the specific types managed in this research.

1. Structured and Unstructured Dataset

Datasets can be categorized by their ordering criteria, Structured and Unstructured. The structured

data is highly organized and recognized, mostly in rows and columns, which matches most

conventional relational database management systems (RDBMS) (Mishra & Misra, 2017).

Hopkins et al. (2022) underlined that it could be easily understandable for human beings regarding

amount and organization. An example of a structured dataset is the Time Series Dataset, arranged

in a tabular format where each row represents a timestamp, collecting observations over time. On

the contrary, unstructured datasets are initially hard to comprehend. Despite this characteristic,

32

most business data is generated in an unstructured form, accounting for around 80%. To make

datasets applicable to machine learning tasks, it is necessary to transform them into structured data.

However, this transformation can be intricate and computationally demanding (Cropper et al.,

2016; Mao et al., 2023; Mishra & Misra, 2017).

2. Univariate and Multivariate Time Series Dataset

Another relevant aspect of datasets involves time series analysis, oriented toward forecasting.

According to each machine learning problem goal, one input or multiple inputs can be considered

to represent the analysed event better. Thus, they might be univariate and multivariate. In many

cases, these events are essentially multivariate; for example, temperature forecasting implies the

concurrence of diverse variables such as pressure, humidity, location, etc. (Karimi-Bidhendi et al.,

2018). Analogically, diverse data is gathered during the project tracking, which finally affects the

project duration. Regarding the complexity of managing Univariate and Multivariate TS datasets,

the latter is usually more complex because many internal or external factors affect each variable

(G. Li & Jung, 2023).

2.5.4 Artificial Neural Networks

Artificial Neural Networks (ANN) are those algorithms within the Machine Learning field. The

ANN represents the learning process, simulating the human learning process and adapting

elements like neurons and synapses (Aggarwal, 2015). A simplistic view would describe the ANN

as a multilayer way to learn over an input dataset (Chollet, 2018). Specifically, it works as follows:

first, input variables must be weighted based on their incidence over the expected solution.

Sometimes, weights are also known as parameters. Second, the weighted inputs are collected by a

“neuron cell” and passed on to an “activation function.” However, the complexity of this process

is rooted here because this network will yield hundreds of weights and then should select the

33

correct values to obtain the calculated output. Third, the loss function was introduced to monitor

the process, scoring the error between the calculated and expected values. Fourth, ANN algorithms

allow the optimizer to implement a backpropagation algorithm to address high errors. It is the

hearth of the ANN. This iterative training process involves adjusting weights multiple times to

minimize the error. Finally, it is obtained as an outcome of ending the process, represented as

follows (Chollet, 2018; Dinov, 2023).

𝒚(𝒙) = 𝒇 (∑ 𝒘𝒊

𝒏

𝒊=𝟏

𝒙𝒊)

Where w means the calculated weights and x are the independent variables. Furthermore, Dinov

(2023) proposed three crucial parts when building a Neural Network algorithm: an activation

function, a network topology concerning neuron and layer quantities and a training algorithm to

polish weights/parameters of the input variables.

1. Multi-Layer Perceptron (MLP)

The Multi-Layer Perceptron is a subtype of the Artificial Neural Network algorithms and is the

most common neural network type. Moreover, it is an extension that enables the creation of

networks with multiple layers because of its architecture (Singh & Banerjee, 2019). Its creation is

rooted in the Perceptron model proposed by Rosenblatt in 1950, which included linear input and

output layers to solve problems (Ramchoun et al., 2016). However, most issues, such as

classification and regression, look for the fittest curve to represent the behaviour that is not

necessarily linear (See Figure 2.7). The MLP overcame this linear drawback by incorporating

layers in between the input and output layers. They are called hidden layers. (Taud & Mas, 2018).

For some, the MLP can be recognized because it uses three or more layers in its architecture.

34

Figure 2.7 Linear and Non-linear Data Patterns

Accordingly, the MLP is defined as a mapping function fitted between input and output variables,

which, in turn, is very useful for solving Time Series regression problems (Brownlee, 2018). This

model also follows the ANN’s main features as feedforward and backpropagation to find the

minimal error, but this time, it includes a nonlinear activation function in one or more neurons

(Dilipkumar & Durairaj, 2022). The mathematical expression for the MLP is the connection of

several fully connected layers represented as an input matrix called 𝑋𝑛 𝑥 𝑚 to yield an output matrix

𝑌𝑛 𝑥 𝑘. During this process, a weight matrix 𝑊𝑚 𝑥 𝑘
𝑙

 for layer 𝑙 that contains 𝑖 rows is yielded. Each

row corresponds to the weights leading from all of units 𝑖 in the previous layer to all of units 𝑗 in

the current layer. Lastly, the product matrix 𝑋 𝑥 𝑊 has dimensions 𝑛 𝑥 𝑘. Also, it should be

considered the bias vector 𝑏𝑘 𝑥 1 as part of the final mathematical expression. Each layer produces

an output that can be represented as:

35

2. Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are specialized neural networks that process data with a

known grid-like topology. They excel in handling various types of data, such as time-series data

(1-D grid) and image data (2-D grid); typically, in the literature, they are found as CONV-1D and

CONV2D, respectively, even though the CNN can handle more dimensions. The term

"convolutional" indicates using a mathematical operation called convolution, a specialized linear

operation. In practical applications, CNNs have demonstrated remarkable success by incorporating

convolution instead of general matrix multiplication in at least one of their layers (Goodfellow et

al., 2016).

As CNN is primarily applied to image classification problems, it can be used to Time Series

datasets, making some customizations. Some authors called this specific model Temporal

Convolutional Networks (TCN) based on Bai et al. (2018) research (Gridin, 2022). These

adaptations start by considering Time Series problems as one-dimensional convolutional Neural

Networks represented as CONV-1D. Secondly, CNN’s native properties, Causal Convolution and

Dilation, are leveraged. On the one hand, the Causal Convolution, also called Equivariance,

ensures that the output at a certain time depends only on the current and past inputs, not future

inputs. It is crucial in tasks like time series forecasting or any sequence prediction scenario where

the model cannot access future data points. (Goodfellow et al., 2016; Gridin, 2022).

On the other hand, dilation is the interval in the input sequence that produces the output values. It

is also known as steps or cadence. For example, some time series datasets identify as a pattern the

fact that a group (kernel) of intercalated inputs is linked to a reliable output (see figure 2.8) (Gridin,

2022; Gutman & Goldmeier, 2021).

36

Figure 2.8 Causal Convolution (left) and Dilation (right) CNN Properties (Gridin, 2022)

3. Recurrent Neural Networks: The Long Short-Term Memory

A subset of ANN is the Recurrent Neural Networks, which implement memory in each neuron. It

is represented by an internal loop which stores information in each iteration to polish the internal

output (Chollet, 2018). Figure 2.9 represents a recurrent connection.

Figure 2.9 Neuron’s Recurrent Connection Representation

Hochreiter and Schmidhuber developed the Long Short-Term Memory (LSTM) in 1997, an

improved variant of the vanilla RNN. Typical RNN models vanish or explode parameters, having

a reduced scope of memory (Nowrin, 2022). The LSTM performs much better Time Series datasets

than conventional RNN algorithms due to its memory capability (Chandra et al., 2021;

Staudemeyer & Morris, 2019), which is carried out by the incorporation of two additional

37

components known as hidden and cell states to memorize patterns in a short and long term,

respectively (Gridin, 2022; Lazzeri, 2021; Nowrin, 2022). The standard representation of an

LSTM neuron (also known as a cell or unit) is shown in Figure 2.10.

Figure 2.10 Long Short-Term Memory (LSTM) Neuron

Figure 2.10 identifies three gates known as forget, input and output gates, represented as 𝑓, 𝑖 and

𝑂, respectively. While the forget gate decides what information should be unused from the cell

state, the input gate decides which values will be used from new inputs. Then, the output gate

decides what the next hidden state, ℎ𝑡,, should be. Also, the hidden state is used for predictions

and passed to the next step. The mathematical expressions that show how the LSTM is depicted

below (Ling, 2023):

𝑓𝑡 = 𝜎(𝑊𝑓ℎ ⊙ ℎ𝑡−1 + 𝑊𝑓𝑥 ⊙ 𝑥𝑡 + 𝑏𝑓)

𝑖𝑡 = 𝜎(𝑊𝑖ℎ ⊙ ℎ𝑡−1 + 𝑊𝑖𝑥 ⊙ 𝑥𝑡 + 𝑏𝑖)

𝑜𝑡 = 𝜎(𝑊𝑜ℎ ⊙ ℎ𝑡−1 + 𝑊𝑜𝑥 ⊙ 𝑥𝑡 + 𝑏𝑜

38

𝑐�̃� = 𝑡𝑎𝑛ℎ(𝑊𝑐ℎ ⊙ ℎ𝑡−1 + 𝑊𝑐𝑥 ⊙ 𝑥𝑡 + 𝑏𝑐)

𝑐𝑡 = 𝑓𝑡 ⊙ 𝑐𝑡−1 + 𝑖𝑡 ⊙ 𝑐�̃�

ℎ𝑡 = 𝑜𝑡 ⊙ tanh (𝑐𝑡)

The state cells, denoted as 𝑐 and ℎ in the Current and Hidden Cells, as illustrated in the figure

above, store both long-term and short-term memory. These cells also establish connections

between the current timestamp information and a broader range of previous ones, allowing the

model to memorize previous details. The LSTM can polish each iteration's output several times,

considering extensive past observations in its calculations. Thus, this model is suitable for time

series problems.

4. Detailed Comparison of explained ANN algorithms.

Table 2.5 Comparison of MLP, CNN and LSTM Algorithms

Feature MLP CNN LSTM

Architecture

Type
Feedforward

Feedforward with

Convolution
Recurrent

Data Type Structured Data
Grid-like Data (Images,

Sequences)

Sequences (Time Series,

Natural Language)

Layer Types
Input Layer, Hidden

Layers, Output Layer

Convolutional Layers,

Pooling Layers, Fully

Connected Layers

Input Layer, Hidden

Layers with Memory

Cells, Output Layer

Parameter

Sharing
No

Yes (through

convolutional kernels)

Yes (through recurrent

connections)

Feature

Extraction

Manual Feature

Engineering

Automatic Feature

Learning

Automatic Feature

Learning with Memory

Use Cases
Tabular Data, Numeric

Predictions

Image Classification,

Object Detection, Spatial

Data

Time Series Prediction,

Natural Language

Processing

Memory

Handling
No Memory Handling

Limited Memory

Handling

Explicit Memory

Handling for Sequences

Applicability
Generalized for Various

Tasks

Specialized for Grid-like

Data

Specialized for Sequential

Data

39

2.6 Application of ML for Forecasting Construction Project Duration

Machine learning, as a broader concept, has emerged as a promising solution for predicting project

duration in the construction industry. This is primarily due to its ability to handle large amounts of

data, identify meaningful patterns, and generate valuable insights that align with the need to

manage the vast amounts of data generated by construction activities. This data is often poorly

leveraged for reasons such as lack of proper data collection, lack of standardized processes,

resource constraints, risk aversion to subsequent processing tools like machine learning, and so

on. However, notable advancements in academia might encourage industry practitioners to apply

it to large-scale construction projects.

For instance, creating an integrated model, which creates an adaptative ANN model using a genetic

algorithm. Lishner and Shtub (2022) addressed the need to adapt an ANN model to different

construction organization features such as uniqueness, management techniques, organizational

cultures, etc. by using a genetic algorithm that optimizes the generic ANN model to various

scenarios. It means that hyperparameters can be modified to match the number of hidden layers or

neurons. The model was tested with two organizations as predictors for the first company were the

project type, business units, project risk levels, start dates, project actual duration and planned start

dates, while stability of project scope, projected estimated duration, importance of time, among

others for the second organization. Finally, they obtained 25% and 17% as MAPE (error) by

predicting the project duration, respectively.

Wu et al. (2022) developed a framework using a backpropagation (BP) artificial neural network

(ANN) to forecast the power grid project duration, involving as predictors quantities, voltage level,

number of callable units (resource availability), and construction conditions (climate and

environmental). By analyzing project Gantt charts and leveraging historical data, the research

40

determines key project execution paths through network node diagrams. In another study, Sanni-

Anibire et al. (2022) used survey data from 48 construction practitioners against 36 potential risk

delay factors previously selected from a literature review. This study used K-Nearest Neighbors

(KNN), Artificial Neural Networks (ANN), Support Vector Machines (SVM) and Ensemble

methods, concluding that ANN shows the best accuracy (93.75%) in the duration prediction for

building construction projects.

Similarly, Yudhi (2022) could predict project completion with supervised machine learning,

reaching an accuracy of 98.6%, while applying the traditional methods, the accuracy was 40%.

This study also highlighted that predictions were obtained at construction task levels instead of at

the whole project level as usual. On the other hand, Lawal et al. (2023) compared the multilayer

perceptron (MLP) and a radial basis function (RBF) model to forecast the project duration of

building renovation. This study encompassed 121 questionnaires from specialized construction

firms, finding that the MLP was overcome with an accuracy of 86% against 80% for the RBF. The

industrial building construction duration was addressed by Leu and Liu (2016) by using the

Principal Component Analysis (PCM) algorithm to select duration influencing factors, so then,

apply a Backpropagation Neural Network (BP-NN) to predict the duration. This study involved

1538 industrial projects, with more than six months of duration each, and considering four

categories for the modelling: case type, participant, location, and time. Likewise, Cheng (2019)

addressed this problem by analyzing two types of factors that affect project duration: sequential

and nonsequential. The former was handled with the LSTM algorithm, while the latter was

addressed with a typical ANN network. The model was named NN-LSTM. Cheng tested 226

historical information from 11 construction projects and 14 factors. After testing, the results

41

displayed good performance, with a mean absolute percentage error (MAPE) of less than 5% and

a mean absolute error (MAE) of 2%.

Applying Machine Learning to predict construction project duration is a transformative approach,

but it is still a developing field. So far, Deep Learning has been more prevalent than Machine

Learning, and among the Deep Learning algorithms used, ANN has been the most explored

compared to RNN models. The research has mainly focused on classification problems like the

schedule risk assessment approach rather than regression through predictive modelling. Although

challenges such as data quality and model interpretability persist, ongoing research and

technological advancements offer promising results.

2.7 Schedule Delays in Construction Projects

A common setback in construction projects related to project duration is delays, which lead to

failed projects (Park, 2021; Shahhossein et al., 2017; Yates & Lockley, 2002). That is why it is

helpful to understand their causes, relevance to the project duration and the existing gap in the

construction industry. In this sense, Merrow (2011) found that the average schedule slip is 28% in

industrial megaprojects. This study encompassed 318 projects worldwide, including oil and gas

production plants, petroleum processing and refining megastructures, mineral and metals plants,

and chemical plants. Another comprehensive study by Ansar et al. (2014) delved into the

performance of 245 large dams executed between 1934 and 2007 worldwide. The findings

indicated that 8 out of 10 large dams experienced delays, accounting for a substantial 44% increase

in their schedules. Ayalew et al. (2016) conducted a study in the Ethiopian construction sector,

revealing schedule delays ranging between 61% and 80%. Some evidence was listed among many

more. These prevalent delays were also exhaustively studied by Flyvbjerg (2003), calling this

42

phenomenon a ‘paradox,’ where achieving timely completion remains a pervasive issue despite

advancements in project management practices.

2.7.1 Schedule Delay factors

The analysis of delays in construction projects centers on identifying causes and effects impacting

the project's critical path, consequently influencing the final project duration (Al-Saggaf, 1998; J.-

B. Yang & Kao, 2012). Research on delay factors started with data-gathering methods, which can

utilize both literature reviews and surveys or rely solely on literature reviews. Then, they were

usually categorized according to project types (e.g., infrastructure, industrial, residential), and

project locations (typically categorized by countries or regions), among other aspects. Regarding

data gathering, an approach adopted by academia involved selecting delay factors from prior

studies and ranking them through surveys of industry practitioners. Another approach relied on a

comprehensive literature review and elaborated a prioritized list of delay factors. In this sense,

Assaf and Al-Hejji (2006) surveyed 23 contractors, 19 consultants, and 15 owners in Saudi

Arabia’s construction environment. Focussing on Large construction projects, this study spanned

76 projects where 45 were delayed. This study also categorized delay causes according to Owners,

Contractors, and Consultants. As a result, this research detected 73 delay causes, the most frequent

of which were “change orders” among the three parties.

Another relevant study was performed by Sanni-Anibire et al. (2022), reviewing analytically

representative past worldwide studies in the last 15 years. As a result, 36 factors of delays were

reiterative in the construction sector, the top five below: "Financial challenges faced by the

contractor," "approval delays for completed work," "slow material delivery," "ineffective site

organization and coordination among involved parties," and "inadequate resource planning and

scheduling estimation.". In addition, it is worth mentioning that this study was focus on building

43

construction type. A similar scope was observed in the research conducted by Durdyev and

Hosseini (2019). This research systematically reviewed worldwide studies developed between

1985 and 2018. From 149 identified causes, the top ten most recurrent ones were composed of

“weather/climate conditions,” “poor communication,” “lack of coordination and conflicts between

stakeholders,” “ineffective or improper planning,” “material shortages,” “financial problems,”

“payment delays,” “equipment/plant shortage,” “lack of experience/qualification/competence

among project stakeholders,” “labour shortages and poor site management”.

Sepasgozar et al. (2019) selected 94 research studies from 29 countries worldwide, identifying the

causes and effects of delays in the construction industry. Consequently, 30 critical factors among

the most relevant are scheduling (Improper resource planning, inaccurate budgeting, procurement,

unreal scheduling), Payment delays to labourers or contractors, Design and scope changes,

unqualified workforce (workers, technical staff) and Financing and cashflow issues (insufficient

contingency allowance, penalties or loan gaining problems)—also, this research comprised among

residential, building, industrial and infrastructure types of constructions. Unlike previous

investigations, Selcuk et al. (2024) assessed 70 journal articles developed in 33 developing

countries. This study identified the 30 most frequent delay causes, such as material procurement,

change orders or uncertainty in project scope, problems in supplying labour and technical staff,

delayed payments to contractors by owners, unforeseen weather conditions, deficient or

incomplete design documents and specifications, deficient management skills of contractors,

equipment procurement issues, poor communication among the parties, lack of proper budgeting

and planning of the contractor. Likewise, the most recurrent type of construction considered was

building and infrastructure projects; conversely, one industrial project only was analyzed in this

research.

44

Similarly, Kermanshachi and Pamidimukkala. (2023) spanned main project lifecycle phases like

design, procurement, and construction. This research comprises 44 case studies from a literature

review on heavy industrial projects, with the authors defining three main categories: project

general aspects, project-specific features, and best construction practices. After a survey of over

140 construction practitioners, this study finds the following delay factors in the design phase: size

of project team, agreement with penalty clauses for project delays, providing of part of engineering

at the beginning of the project, number of budgeting stages, proper financing procedures,

interaction among designer, engineer, and contractor parties, count of vendor and subcontractor

entities, regulations, adequate project team interactions, appropriate rate of employees, skill

workers on fields, matching between project objectives and physically accomplish components,

efficient change management process, inspections by external entities, clarity of owner

requirements, proper resource management implementation, conflict resolution method

implemented, impacting of best practices strategies.

Likewise, the procurement phase shows the following indicators: level of project engineering

schedule performance, complexity of design and technology, collaboration among project parties,

amount of implementation locations for procurement activities, quality of resources (labour and

bulk materials), and impact of change order timing. In the construction phase main aspects, they

identified cost overruns from the engineering phases, actual duration of the engineering phase,

involvement of the project team in procurement, close relationship with technologies by

organizations, Level of completion of engineering/design project, difficulty of procurement of

machinery due to project location, time gap from required changes.

Despite the myriad schedule delay factors found by the Academia, the lack of a consensual

categorization is predominant. A standardized categorization would help take appropriate steps to

45

reduce the impact of such delays (Selcuk et al., 2024). A classification proposed considering the

liability of delays as the foundation: compensable, excusable, non-excusable, and concurrent.

Compensable refers to delays caused by the owner, while excusable means unforeseeable causes.

Non-excusable delays are caused by third parties such as contractors or subcontractors, and

concurrent delays are a combination of various types (Kraiem & Diekmann, 1987). Another

classification proposed by Enshassi et al. (2009), categorizes delay factors as critical or non-critical

based on their impact on the project's critical path. Although numerous attempts have been made

so far, there are no consensus reached yet.

2.8 Summary and Research Gap

Numerous studies have found that schedule management is essential to construction project

management. In schedule management, the schedule model plays a crucial role in forecasting. The

schedule model is created by adopting a scheduling technique to control scheduled tasks, including

forecasting. Several scheduling techniques, such as CPM, PERT, PDM, CCPM, and the 'Pull-

System' approach, are available. However, each technique has its own set of drawbacks. For

instance, these techniques may face challenges such as inefficiency in overlapping situations,

timeliness issues, accuracy concerns, buffer sizing difficulties, and coordination demands.

On the other hand, current most extended forecasting methods such as Judgmental, Deterministic

(e.g., EVM), and Probabilistic (e.g., ARIMA or Markov Chain) exhibit limitations. Specifically,

despite its prevalence, judgmental forecasting has known shortcomings, such as being prone to

bias, which is a consequence of its high dependency on expert opinions. Moreover, deterministic

forecasting, particularly EVM, struggles with time forecasting, especially during project

completion. Probabilistic Methods, while effective, often require a large quantity of input

46

variables. Amidst these challenges, Machine Learning emerges as a promising alternative for

forecasting. It offers flexibility in handling large amounts of data and identifying patterns from the

past to predict accurate durations. Moreover, Artificial Neural Networks (ANN) overcome typical

Machine Learning algorithms in time series forecasting. Likewise, its application requests

accomplished some requirements previously, such as obtaining structured data and performing

exhaustive data preprocessing.

Academic research on Machine Learning in the construction industry and time series forecasting

evidenced some gaps. Most Machine Learning models have been focused on cost prediction rather

than duration. Also, data mining tasks primarily approached the problem as Classification instead

of Regression, reducing its applicability in project control activities. Additionally, there is limited

exploration of Time Series (TS) datasets for the duration of completion forecasting, and the

analysis often lacks granularity, like at the Work Package level, which is crucial for proactive

decision-making.

This research addresses these gaps by prioritizing the accuracy of project duration forecasting

using Deep Learning algorithms. This study approaches this problem as a regression and handling

time series datasets, enabling real-time monitoring of project duration forecasting. The proposed

framework collects data related explicitly to time forecasting, and the analysis operates at the Work

Package level, facilitating more detailed identification of potential causes of delays.

47

Chapter 3 Methodology for Project Duration at Completion

Forecasting using Machine Learning

3.1 Introduction

Many completed construction projects tend to have poor performance related to time management.

This chapter aims to identify the main factors that affect project duration performance, define

relevant metadata, establish a Data Acquisition Model (DAM), and discuss the data required and

collected from the industry. As a result, the dataset required for the forecasting model was obtained

and used as input for the forecasting model, which is detailed in the following chapter.

To achieve this goal, two types of analyses were conducted: an analysis of current construction

projects from a business organization perspective and a comprehensive project lifecycle analysis.

Both studies provide a better understanding of the actual problem. A relational model was also

created to manage data relevant to the project duration calculation. Moreover, a detailed analysis

of factors influencing project duration was conducted based on completed projects. It enables the

identification of entities, attributes, relationships, and cardinality, as well as the configuration of

relevant metadata. The latter helps identify the numeric data required for subsequent Time Series

Forecasting models.

48

Figure 3.1 Methodology for Developing the Data Acquisition and Forecasting Models

3.2 Factors Influencing Project Duration Forecasting

3.2.1 Vertical and Horizontal Analysis for Construction Projects

Construction companies often adopt typical organizational structures to achieve their project goals,

so it is crucial to understand these structures during the projects' execution phase to determine

duration-influencing factors. To accomplish this, a vertical and horizontal analysis was conducted.

The vertical analysis was approached from an operational management perspective, which

provides a company’s transversal view. An operational management view drives construction

organizations toward their strategic goals while focusing on resources such as people, materials,

equipment, practices, and management tools. The vertical analysis divides the construction

organization into various levels, such as business units, portfolios, programs, projects, and work

packages (The Standard for Organizational Project Management (OPM), 2018). Likewise, other

49

departments, such as Accounting, Human Resources, Technology and Information, Logistics, and

Legal, support them during the project execution phase. The usual operational breakdown structure

for a construction organization is shown in Figure 3.2.

Figure 3.2 Schematic of Operational Breakdown Structure for a Construction Company

The Horizontal Analysis provides a long-term view of construction organizations when executing

projects. It allows stakeholders to monitor technological adoption, timely resource allocation,

regulatory changes over time, and more. These aspects are developed within the project lifecycle

of a typical construction project. The project lifecycle comprises project phases, which may be set

sequentially or iteratively, and overlapping among them is possible. The Construction Industry

Institute (CII) has defined eight project phases: Feasibility, Concept, Detailed Scope, Detailed

Design, Procurement, Construction, Commissioning & Start-up, and Handover & Closeout.

Additionally, each project phase or the entire project life cycle has stages known as Process

Groups, such as Initiating, Planning, Monitoring and Controlling, and Closing (Project

50

Management Institute, 2023). The interaction between project phases and process groups is shown

in Figure 3.3.

Figure 3.3 Interaction Between Project Lifecycle Phases and Process Groups for Project

Execution, adapted from Construction Industry Institute (2019)

3.2.2 Current Practices in Project Duration Forecasting

This section describes the most common techniques used by practitioners in the context of the

execution phase. It is also relevant to mention that any forecasting technique follows a sequence

well compiled by the AACEi, referring to it as the forecasting map, which industry professionals

mainly accept. The forecasting map is shown in Figure 3.4.

51

Figure 3.4 Forecasting Map on the Industry (Stephenson, 2015)

Today, the Monte Carlo Simulation is mentioned among the most applied techniques for project

duration forecasting, typically used on scheduling network-based techniques like CPM. Similarly,

the Earned Value Methodology (ESM) is often used by construction projects to forecast outcomes

using progress performance metrics.

• Overview of the Monte Carlo Simulation for Duration Forecasting

Monte Carlo Simulation, named after the Monte Carlo Casino, is a probabilistic method that

originated in the 1940s through the work of scientists Stanislaw Ulam and Nicholas Metropolis.

Initially designed for solving mathematical problems using statistical sampling, it has evolved into

a powerful tool for analyzing uncertainties in various fields, notably project management (Carlo,

2017; Sallabi, 2011). This technique leverages its probabilistic nature, considering a range of

potential project durations and providing a distribution of results rather than a single deterministic

forecast. This approach provides a more accurate depiction of uncertainty (Papadopoulos &

52

Yeung, 2001). Due to likely duration inputs, it facilitates scenario analysis, enabling project

managers to assess potential outcomes and make informed decisions based on a range of scenarios.

Additionally, it contributes to comprehensive schedule risk assessment by addressing uncertainties

in various project parameters, such as task durations, resource availability, and external factors.

This holistic approach enhances the understanding of project schedule risks. Likewise, it's crucial

to note that the effectiveness of Monte Carlo Simulation relies on detailed input data (Kroese et

al., 2011); therefore, result accuracy yields on the quality of the data provided. Notable

Montecarlo-based software options include Oracle Primavera Risk, Microsoft Project Risk

Analysis, and @Risk by Palisade. While these tools offer various strengths, the choice depends on

project complexity, user expertise, and organizational preferences. When using Monte Carlo

simulation with the Critical Path Method (CPM) for project duration forecasting, the input

variables are displayed in Table 3.1.

Table 3.1 Input Variables by Applying Montecarlo Simulation with CPM for Duration Prediction

Input variables Description

Activity Duration Estimates
Use probabilistic distributions (e.g., normal, triangular) for

each activity’s duration.

Probability Distributions
Select appropriate distributions to model task duration

uncertainties based on data or expertise.

Dependencies and

Sequencing

Accurately model all task dependencies and logical

relationships (finish-to-start, start-to-start).

Resource Allocation and

Availability

Include constraints on resources (labor, equipment,

materials) that affect task timings.

Risk Factors
Integrate potential risks that could impact task durations or

sequencing.

Project Milestones and

Critical Path

Define project milestones and dynamically identify the

critical path for minimum duration analysis.

53

• Overview of the Earned Value Management (EVM) for Duration Forecasting

Earned Value Management (EVM) was initially developed in the 1960s by the U.S. Department

of Defense as a financial analysis tool to track and manage project performance and progress

(Dibert & Velez, 2006; Vertenten et al., 2009). It has become a standard industry practice for

monitoring project costs and schedules. EVM combines project scope, price, and schedule

measures to accurately describe project performance and progress (Khamooshi & Golafshani,

2014; Mayo-Alvarez et al., 2022). The method uses three key data points: Planned Value (PV),

which is the budgeted cost of work scheduled; Earned Value (EV), which is the budgeted cost of

work performed; and Actual Cost (AC), which is the actual cost incurred for the work performed.

These metrics help assess project status and efficiency.

For predicting project duration, EVM incorporates the Schedule Performance Index (SPI)

(Khamooshi & Abdi, 2017). SPI is computed by dividing EV by PV and reflects how closely the

project is following its scheduled plan. An SPI of less than 1 suggests that the project is behind

schedule. By using the SPI and project performance data, project managers can forecast the likely

completion time and adjust schedules or resources as needed. A suggested calculation for the total

project duration is dividing Planned Duration by the SPI (Iranmanesh et al., 2007). However, it

should be noted that EVM's prediction reliability relies on the baseline plan, so any flaws in the

baseline can mislead performance evaluations. Additionally, EVM can be less effective in the early

stages of a project where EV and PV are too small to yield meaningful insights (Chen et al., 2016).

Likewise, it does not directly account for the impact of resource allocation changes in its

calculations, reducing its interactions with resource management.

Despite the mentioned drawbacks, EVM is recognized as one of the most effective project

management tools for monitoring and forecasting project performance, particularly in industries

54

like construction, where projects are complex and multi-faceted. It is endorsed by various

standards bodies, including the Project Management Institute (PMI), and is mandated for use in

U.S. government contracts. When using EVM for duration prediction, input variables are detailed

in Table 3.2.

Table 3.2 Input Variables by Applying EVM for Duration Prediction

Input variables Description

Planned Value (PV) Scheduled work value as per the baseline.

Earned Value (EV) Value of the actual work completed.

Actual Cost (AC) The real cost spent on the completed work.

Schedule Estimates Original and ongoing estimates of task durations.

Performance Indices

Such as SPI (Schedule Performance Index) and CPI (Cost

Performance Index), indicating current project status against

the plan.

3.2.3 It Project Duration-Influencing Factors

Forecasting the project duration during the construction phase is fraught with complexities due to

a wide range of factors that can influence it. Additionally, once factors are identified, they require

proper categorization based on their origin (internal or external), impact scope (overall project or

specific components), and temporal presence (specific stages or throughout the project). Overall,

the factors analysis follows three phases: (1) identification, which analyzed extensive

investigations related to duration-influencing factors and also, those factors sourced from current

industry practices; (2) categorization, which is supported by the vertical and horizontal analysis

previously performed and (3) quantification, which details calculation methods per factor to drive

a scientific analysis and develop a forecasting model.

55

1. Factors identification.

Multiple studies have delved into the identification of duration factors in construction projects.

The process was based on rigorous criteria, including publication types such as journals or books,

recent publication years, and authors' professional or academic background, which were

considered in the comprehensive analysis. Many studies that didn’t meet those requirements were

discarded, resulting in thirteen (13) primary studies spanning various global contexts. The table

below depicts the factor selected.

Table 3.3 Duration Influencing Factors per Author

Factor

K
er

m
an

sh
ac

h
i

et
 a

l.
 (

2
0
2
2
)

D
ee

p
 e

t
al

.
(2

0
2
2
)

D
u
rd

y
ev

 e
t

al
.
(2

0
1
9
)

E
m

am
 e

t
al

.
(2

0
1
5
)

H
an

se
n
 e

t
al

.
(2

0
2
3
)

H
o
ss

ai
n
 e

t
al

.
(2

0
2
2
)

M
er

ro
w

 (
2
0
1
2
)

S
el

cu
k
 e

t
al

.
(2

0
2
2
)

S
ep

as
g
o
za

r
et

 a
l.

 (
2
0
1
9
)

T
af

az
zo

li
 e

t
al

.
(2

0
1
7
)

T
eb

ej
e

(2
0
1
6
)

W
an

g
 e

t
al

 (
2
0
2
2
)

Z
id

an
e

et
 a

l.
 (

2
0
1
8
)

F
re

q
u

en
cy

Excessive change orders by the

owner during construction
1 - - 1 1 - - 1 1 1 - 1 1 8

Financial difficulties of the owner 1 - 1 - 1 1 - 1 1 - 1 1 - 8

Incomplete/improper design 1 - - 1 1 - 1 1 1 1 - 1 - 8

Ineffective communication among

parties
1 - 1 - 1 1 1 - 1 1 1 1 1

1

0

Lack of owner's commitment - - - - - - - - - - - 1 1 2

Lack of project stakeholders’

experience/ qualification/competence
- - 1 - - - - - - - - 1 - 2

Late approval process of design

documents by owner
- - - 1 - - - - - 1 - - - 2

Late design 1 - - 1 - 1 - - - 1 - - - 4

Poor execution management on site

(organizations)
1 1 - - 1 - - - - - 1 - 1 5

Poor planning and scheduling of

project
1 - 1 1 1 1 - 1 1 1 1 1 1

1

1

Realism of obligations - - - - - - - - - - - 1 - 1

Slow decision-making by owner 1 - - 1 1 - - - - 1 1 - 1 6

56

Slow quality inspection process by

owner
- - - - - - - - - - - - 1 1

Unskilled Construction Project

Management Team
- 1 - - 1 1 - - 1 - - - - 4

Unskilled Engineering Project

Management Team
1 - - - - - 1 - - - - - - 2

Unskilled Procurement Project

Management Team
1 - - - - - - - - - - - - 1

Bureaucracy within project

organizations
- - - - - - - - - - - - 1 1

Risk identification process for

execution
1 - - - 1 - - - - - - 1 - 3

Challenges of the physical location - 1 - - 1 - 1 - - - - 1 - 4

Poor site-office conditions 1 - - - - - - - - - - - - 1

Project complexity - - - - - - - - - - - 1 - 1

Project size - - - - - - - - - - - 1 - 1

Technology availability - - - - 1 - - - - - - 1 - 2

Weather/climate conditions 1 1 1 - 1 - - - - - - 1 - 5

Delays in equipment procurement

(shortage, delivery, quality)
- - 1 - 1 - - 1 - - 1 - 1 5

Delivery of materials 1 1 - 1 1 1 - 1 1 - 1 - - 8

Errors in contract documents 1 - - - - - - - - - - - - 1

Quality of materials - - - - - 1 - 1 - - - - - 2

Shortage of manpower (skilled, semi-

skilled or unskilled)
1 - - - 1 - 1 1 - - - - 1 5

Shortage of materials - - 1 - 1 1 - - - - 1 - - 4

The more significant ones were taken from this preliminary list of influencing factors by

performing the median significance test on the frequency of occurrence (Field, 2024; Wheelan,

2014). Given the frequency values observed in Table 3.3, the median is 3.5. Thus, table 3.4 reflects

the more significant factors with occurrence greater than 3.5. Additionally, many studies agree the

Earned Value Methodology is an assessment of the project performance and progress in the scope,

schedule, and cost aspects, helping to identify outcome deviations (Fayad et al., 2019; Khafri,

57

2018; Kostelyk, 2012; Priyo, 2021). Hence, it is considered in the influencing-factor list due to its

influence on the project schedule performance.

Table 3.4 More Significant Factors (Median > 3.5 on Frequency of Occurrence)

ID Factor Description

F-1
Excessive change orders by the owner

during construction

Additional work or modifications requested by the

owner

F-2 Financial difficulties of the owner Owner's inability to finance the project as planned

F-3 Incomplete/improper design Design documents that are incorrect or incomplete

F-4 Ineffective communication among parties
Lack of clear, timely information exchange among

stakeholders

F-5 Late design
Delivery of final design documents after the

scheduled date

F-6
Poor execution management on site

(organizations)

Inadequate management leading to inefficiencies on

site

F-7 Poor planning and scheduling of project Inaccurate project timelines and resource allocation

F-8 Slow decision-making by owner Delays in making crucial project decisions

F-9
Unskilled Construction Project Management

Team

Lack of necessary skills and expertise in the project

team

F-10 Challenges of the physical location
Difficulties arising from the project's geographical or

environmental conditions

F-11 Weather/climate conditions Adverse weather affecting construction activities

F-12
Delays in equipment procurement (shortage,

delivery, quality)
Late arrival of necessary equipment for construction

F-13 Delivery of materials Late or incorrect delivery of construction materials

F-14
Shortage of manpower (skilled, semi-skilled

or unskilled)
Insufficient or inadequately skilled labor force

F-15 Shortage of materials Lack of necessary materials for construction

F-16 Project performance and progress
Performance and progress evaluation that

encompasses cost, time, and scope.

2. Factors categorization.

The absence of a standardized categorization methodology leads to a lack of coherence and

integrated analysis; therefore, a pressing need exists to systematically assess, pinpoint, and

formulate a comprehensive assessment framework for the project duration-affecting factors. In the

literature, this classification is focused on project delays instead of project duration-influencing

58

factors. For example, the delay classification proposed by Ansah and Sorooshian (2018), called

the 4-P categorization, underscores internal project sources of delay such as Participants-related,

Procurement-related, Project-related, and Practices-related which follows a typical construction

project environment from an operational perspective.

Given this gap, the identified factors have been classified based on their level of impact, either

work package or overall project, and the probable phase of occurrence according to the vertical

and horizontal analysis previously performed. The level-of-impact analysis considered that if a

duration-influencing factor has effects on more than one work package, it has effects on the overall

project, for instance, weather or site conditions. Likewise, another category that was included is

related to time dependency, which indicates whether the factor is susceptible to changes during the

project execution timeline.

Table 3.5 Factors Categorization based on Level of Impact, Probable Phase and Time

Dependency

ID Factor
Factor

description
Level

Level

description

Probable

phase

Probable phase

description

Time

dependent?

F-1

Excessive change

orders by the

owner during

construction

Additional

work or

modifications

requested by

the owner

Project

Changes

affect overall

budget and

timeline

Construction

Changes often

result from

unforeseen issues

during

construction.

Yes

F-2

Financial

difficulties of the

owner

Contractor’s

or Owner's

inability to

finance the

project as

planned

Project

Financial

issues

typically

impact the

entire project's

financial

health

Engineering

&

Construction

Financial

difficulties can

arise during

planning or

construction.

No

F-3
Incomplete/impro

per design

Design

documents

that are

incorrect or

incomplete

Work

Package

Design issues

usually

pertain to

specific

components

Engineering

Design flaws are

typically

identified during

the engineering

phase, requiring

revisions.

No

F-4

Ineffective

communication

among parties

Lack of clear,

timely

information

exchange

Project

Communicati

on affects all

aspects of

All Phases

Effective

communication

plays a crucial

role at every

No

59

among

stakeholders

project

management

stage of the

project's

lifecycle.

F-5 Late design

Delivery of

final design

documents

after the

scheduled

date

Work

Package

Design delays

often affect

specific parts

of a project

Engineering

Design

completion

delays often

occur in the

engineering

phase, affecting

subsequent

stages.

No

F-6

Poor execution

management on

site

(organizations)

Inadequate

management

leading to

inefficiencies

on site

Work

Package

Execution

issues are

often

localized to

specific tasks

or areas

Construction

Execution

management

issues are most

prevalent during

the construction

phase.

No

F-7

Poor planning and

scheduling of

project

Inaccurate

project

timelines and

resource

allocation

Project

Planning and

scheduling

affect the

entire project

timeline

Engineering

&

Procurement

Planning and

scheduling flaws

typically

originate in the

early phases,

affecting

procurement and

execution.

Yes

F-8
Slow decision-

making by owner

Delays in

making

crucial project

decisions

Project

Affects pace

and efficiency

across all

project stages

All Phases

Decision-making

processes can

slow down any

project phase,

from engineering

to construction.

No

F-9

Unskilled

Construction

Project

Management

Team

Lack of

necessary

skills and

expertise in

the project

team

Project

Management

capability

affects all

project

dimensions

All Phases

A skilled

management

team is critical

throughout the

project, from

planning to

execution.

No

F-10
Challenges of the

physical location

Difficulties

arising from

the project's

geographical

or

environmental

conditions

Work

Package

Location

challenges are

typically

specific to

site-related

activities

Construction

Physical location

challenges are

most impactful

during the

construction

phase.

Yes

F-11
Weather/climate

conditions

Adverse

weather

affecting

construction

activities

Work

Package

Weather

impacts are

often

localized to

outdoor

activities

Construction

Weather

conditions

directly affect

outdoor

construction

activities.

Yes

F-12

Delays in

equipment

procurement

Late arrival of

necessary

Work

Package

Equipment

procurement

usually affects

Procurement

Equipment

delays are

typically linked

Yes

60

(shortage,

delivery, quality)

equipment for

construction

specific

phases or

tasks

to procurement

challenges.

F-13
Delivery of

materials

Late or

incorrect

delivery of

construction

materials

Work

Package

Material

deliveries are

typically

linked to

specific

construction

phases

Procurement

&

Construction

Material delivery

issues can arise

during

procurement and

directly affect the

construction

phase.

Yes

F-14

Shortage of

manpower

(skilled, semi-

skilled or

unskilled)

Insufficient or

inadequately

skilled labor

force

Work

Package

Manpower

needs vary

across

different

stages of the

project

Construction

Manpower

shortages are

most acutely felt

during the

intensive labor

demands of the

construction

phase.

Yes

F-15
Shortage of

materials

Lack of

necessary

materials for

construction

Work

Package

Material

shortages

typically

affect specific

construction

activities

Procurement

&

Construction

Material

shortages can

occur during

procurement and

have immediate

impacts on

construction

activities.

Yes

F-16

Project

performance and

progress

Evaluating

work package

performance.

Utilize EVM

metrics to

evaluate and

predict.

Work

Package

Changes

affect overall

budget and

timeline at

WP level

Construction

EVM is a

continuous

evaluation tool

applicable

throughout the

project lifecycle

for performance

assessment,

however it has

relevant usage

during the

construction.

Yes

The present study is based on the analysis at the work package level during the construction phase

using timeseries dataset to solve a regression problem; consequently, the listed factors should be

filtered under those considerations. As a result, the duration-influencing factors are described in

the table below.

61

Table 3.6 Duration-Influencing Factors Selected per Work Package, Construction Phase and

Time Dependency

ID Factor Description

F-10 Challenges of the physical location Geographical or environmental difficulties.

F-11 Weather/climate conditions Adverse weather affecting activities.

F-13 Delivery of materials
Late or incorrect delivery of construction

materials

F-14 Shortage of manpower Insufficient or inadequately skilled labor.

F-15 Shortage of materials Lack of necessary materials for construction

F-16 Project performance and progress

Evaluating work package health and future

performance. Utilize EVM metrics to analyze

and predict.

3. Factor quantification.

A factor perse is ambiguous, hindering a forecasting regression problem which claims numeric

values by nature. By quantifying them, they can offer valuable insights into historical patterns,

thereby contributing to more robust datasets and enhancing the accuracy of forecasts. Accordingly,

a calculation method was implemented to facilitate the understanding of the identified duration-

influencing factors. Thus, they were categorized by level of analysis with the corresponding

calculation method, as it is shown in Table 3.7.

Table 3.7 Calculation Method per Duration-Influencing Factor

ID Factor Calculation Method Description

F-10
Challenges of the physical

location

It is calculated based on resource availability, suppliers'

delivery times, and transportation time, all of which are

directly related to the project site's physical location. These

metrics help assess the practical difficulties and constraints

associated with the project's location.

62

F-11 Weather/climate conditions

It involves historical weather data and weather monitoring

stations, which focus specifically on analyzing and forecasting

weather patterns and conditions that could impact project

activities. Thus, any potential hindrances to the project's duration

are addressed.

F-13 Delivery of materials
Assess the percentage of project time spent (deviation) waiting

for materials to arrive.

F-14 Shortage of manpower

It revolves around resource allocation tracking and

productivity metrics, which help monitor the availability and

efficiency of manpower resources. This factor assesses internal

workforce-related challenges that could lead to delays or

bottlenecks in project execution.

F-15 Shortage of materials
Measure the impact of material shortages on project schedule by

comparing planned versus actual progress.

F-16
Project performance and

progress

It is assessed through the EVM metrics, detailed below:

Planned Value (PV) = (Planned Percentage of Completed Work)

x (Budget at Completion)

Earned Value (EV) = (Actual Percentage of Completed Work) x

(Budget at Completion)

Actual Cost (AC) = Total Costs Incurred for the Work

Performed

Schedule Variance (SV) = EV - PV

Cost Variance (CV) = EV - AC

Schedule Performance Index (SPI) = EV / PV

Cost Performance Index (CPI) = EV / AC

3.3 Data Acquisition model (DAM) for forecasting project duration

Decision makers ultimately seek a unified and accurate representation of reality from their

information systems. In many organizations, data and information are scattered across various

sources. Consequently, when developing a singular forecasting model, the process involves

collecting data from diverse sources and consolidating it into a cohesive, particular version. It

ensures homogeneity among stakeholders, facilitating uniformity in information exchange,

promoting coherence and informed decision-making.

63

The Data Acquisition Model (DAM) is constructed during a database application's analysis and

design phases to ensure a comprehensive understanding and accurate capture of the requirements

before creating the actual database (Biskup & Menzel, 2007). Beyond their primary purpose, DAM

serves additional functions, including:

Grasping Business Dynamics: Data Acquisition modelling is crucial for understanding business

processes like the construction project schedule management and forecasting before developing

supporting applications.

Facilitating Team Understanding: Data Acquisition models serve as practical educational tools,

conveying information visually at different levels of detail. Walking through data models is a

valuable practice for quickly educating new team members on concepts and rules.

Subsequently, creating a DAM becomes crucial to collecting adequate information for the

Prediction Model application. DAMs can be created in two main ways: Relational and

dimensional. According to Hoberman (2015), Relational data modelling involves capturing a

business's operational essence by precisely representing its rules. In contrast, Dimensional data

modelling focuses on capturing how a business is monitored by precisely depicting aspects like

navigation through data. A comparison table is shown below to encircle that.

Table 3.8 Comparison Between Relational and Dimensional Databases

Feature Relational Database Dimensional Database

Data Structure
Tables with rows and

columns
Star or snowflake schema

Schema Design
Structured schema with

predefined relationships

More flexible, denormalized

schema for better query

performance

Query Type
Suited for transactional

processing (OLTP)

Optimized for analytical processing

(OLAP)

64

Query Flexibility
Supports complex queries

and transactions

Optimized for read-intensive

operations, especially complex

analytical queries

Operations
Inserts, updates, deletes, and

complex transactions

Aggregations, summaries, and

complex analytical queries

Data Integrity

Strong emphasis on data

integrity through

normalization

May sacrifice some aspects of

ACID properties for improved

query speed

Use Case Examples

Tracking tasks, team

assignments, and project

progress in real-time

Analyzing historical project data

for performance trends, resource

allocation, and risk assessment in

business intelligence and reporting

3.3.1 The Relational Data Model for Project Duration forecasting.

The relational data model relates the project's intricacies and yielded data. In the context of the

project duration forecasting, the project complexities can be operationally organized. The project

duration forecasting during the project execution phase involves widely known project

management levels such as portfolio, program, project, and work packages. These components

have been organized in a Relational Data model to facilitate collecting, organizing, and

periodically analyzing data tailored explicitly for project duration forecasting. Moreover,

Relational Models excel in handling structured data, making them particularly well-suited for

periodic data collection required for machine learning time series forecasting. Their robust

transactional support guarantees accurate data storage and updates, reinforcing their reliability in

dynamic and evolving time series datasets.

This database model type has also been selected to represent and interconnect various elements

that influence project schedules, defining the relationship between entities and offering a clear

understanding of dependencies and their impact on project duration. A prominent visual

representation of a Relational Database is the Entity Relationship Diagram (ERD).

65

3.3.2 The Entity Relationship Diagram (ERD)

An Entity-Relationship Diagram (ERD) is a tool used in database design and systems analysis to

model and understand the structure of information and how different entities interact (Bagui &

Earp, 2011; Q. Li & Chen, 2009). Figure 3.5 displays the ERD for project duration forecasting

using Chen’s notation. Key components of an ERD are:

• Entities: Represent real-world objects or concepts, such as “Work Package”, “Resources”, or

“Project Phase”. Each entity is depicted as a rectangular box in the diagram.

• Attributes: They are the qualities associated with entities. They are illustrated within ovals

and are connected to the respective entity. For example, a "Work Package" entity may include

"WorkPackageID," "WorkPackageName," and "DueDate."

• Relationships: Illustrate the connections between entities. Lines connecting entities indicate

the nature and type of association between them and they can have labels to describe the nature

of the association, such as "manages," "assigned to," or "belongs to."

• Cardinality: It establishes the numerical relationship between entities in a given relationship,

indicating the quantity of instances of one entity associated with another. Standard cardinality

notations include "1" for one, "0…1" for zero or one, and "0…n" for zero to many. For

instance, the relationship between "Work Package" and "Resource" could have a cardinality

of "1...n," indicating that one work package can be assigned to multiple resources. Still, each

resource is assigned to one work package at a time.

66

Figure 3.5 ERD for Project Duration Forecasting

The table below provides descriptions of the components in the ERD used for predicting project

duration.

Table 3.9 Description of the ERD components for predicting project duration

Entity Attribute Description

Business

Unit

BusinessUnitID Company Identification Code assigned to Project’s Business Unit

BusinessUnitName Company Identification Name of the Business Unit

Portfolio

PortfolioID Company Identification Code assigned to Project’s Portfolio

PortfolioName Company Identification Name of the Portfolio

StartDate Start Date of the Project’s Portfolio. It involves planned and actual.

EndDate Finish Date of the Project’s Portfolio. It involves planned and actual.

Status
It contains the physical progress status and can be Non-Started, In-

Progress, or Finished

67

Description
A brief description of the portfolio containing benefits, challenges, major

risks, and contribution to the organization.

Program

ProgramID Company Identification Code assigned to Project’s Program

ProgramName Company Identification Name of the Project’s Program

StartDate Start Date of the Project’s Program. It involves planned and actual.

EndDate Finish Date of the Project’s Program. It involves planned and actual.

Status
It contains the physical progress status and can be Non-Started, In-

Progress, or Finished

Description
A brief description of the program containing planned outcomes, goals,

and contribution to the portfolio.

Project

ProjectID Company Identification Code assigned to the Project

ProjectName Company Identification Name of the Project

StartDate Start Date of the Project. It involves planned and actual.

EndDate Finish Date of the Project. It involves planned and actual.

Status
It contains the physical progress status and can be Non-Started, In-

Progress, or Finished

Description
A brief description of the project including expected outcomes, interaction

with other project or phases.

DeliveryMethod

It refers to the strategy used to plan, design, and execute the project. It

includes Design-Bid-Build, Design-Build, Construction Management at

Risk, and Integrated Project Delivery.

Budget It encircles the amount allocated to execute the project.

Complexity

It refers to the outcome of analyzing the strategy adopted to execute the

project which considers many subfactors as risk, resources, or legal

restrictions. It can be low, medium, or high.

TeamExperience It is the experience of the Project Team in similar projects.

Location
It contains the location remoteness, which is close related to resource

availability, climate conditions, etc.

RiskScore It is the result of comprehensive Project Risk Assessment.

PDRI_Score

PDRI stands for Project Definition Rating Index. It is a tool used in the

field of project management and construction to assess the level of

definition and completeness of a project during the early stages of

planning. The PDRI score is a quantitative measure that helps project

teams evaluate and improve project definition to reduce the likelihood of

changes and problems during later stages of the project life cycle.

Work

Package

WorkPackageID Identification Code assigned to each Project Work Package.

Type It refers to nomenclature assigned to each Work Package.

Status
It contains the physical progress status and can be Non-Started, In-

Progress, or Finished

Budget It encircles the amount allocated to execute specific Work Package.

ResourcesAvailability
Numeric representation about resources availability difficulties. It uses a

Likert scale with low, medium, and high.

StartDate Start Date of the Work Package. It involves planned and actual.

EndDate Finish Date of the Work Package. It involves planned and actual.

68

3.4 Data Preparation for forecasting model

Data is the most valuable resource for the forecasting model, and it is closely related to outcomes

quality and consistency (Carney et al., 2006; L. Yang et al., 2023). The data preprocessing process

can start once the forecasting data needed within the project environment is set up through the

ERD. This latter consists of taking the previous data collected and preparing it for data mining

methods. Data Preprocessing is an iterative process subdivided into two sequential stages:

Exploratory Data Analysis (EDA) and Dataset for Forecasting Model Improvement. The former

is oriented to understanding historical data collected, and the latter to improve the forecasting

model performance. EDA comprises data collection, data cleaning, and data inspection. While

Data Collection aims to gather data from different sources (unstructured data) such as databases,

spreadsheets, or repositories in an organized tabular structure, Data Cleaning is focused on tasks

such as handling missing values by imputing new ones or deciding a strategy for handling them,

removing duplicates, correcting errors, or handling outliers. After that, the data inspection

struggles to understand the distribution, patterns, and relationships within the data when

performing statistical analysis. The “Dataset for Forecasting Model Improvement” stage is

explained in Chapter 4. The pipeline for the EDA process is shown in Figure 3.6.

Figure 3.6 Pipeline of the Exploratory Data Analysis

69

3.4.1 Managing Historical Data Collected

The historical data is from a project portfolio that a contractor company managed. This company

undertook twenty-two construction projects for a mining company located in a remote area in the

high mountains of Peru between 2011 and 2012. The objective of these projects was to increase

the mine production. They included demolishing old structures, constructing new facilities, and

relocations to set up a new site layout. Each project was divided into five work packages: Concrete,

Excavation, Backfill, Demolition, and Ground Mesh, to address different aspects of the project.

As discussed earlier, the duration-influencing factors needed for the project duration forecasting

model were identified, as shown in Table 3.7. Accordingly, the raw data from these projects, such

as project schedules, letters issued to the client, detailed budget and weekly three-week lookahead,

was encountered from various channels, predominantly relying on MS Excel Spreadsheets and MS

Project. Complementarily, Progress Weekly Reports in MS Word format and pertinent details from

MS PowerPoint were crucial to cross-reference information. This compilation process faced

challenges in extracting the most critical data on duration-influencing factors. Such data as

“resource availability,” “suppliers delivery time,” “transportation time,” “historical weather data,”

“weather monitoring stations data,” “resource allocation tracking data,” and “productivity metrics”

were not possible to gather. Conversely, most data related to the project performance have been

compiled. This data is associated with the project control, such as performance indicators or

progress status. Also, this information was managed weekly at the work package level.

• Historical Data Integration: from unstructured to structured data.

All data was integrated in an MS Excel spreadsheet in a tabular way, considering its weekly time

sequence per Work Package and Project. The following steps point out the integration process:

70

Step 1. Reviewing all available documents: three-week lookahead, project budgets, Progress

reports, project letters between contractor and client, project schedules, and project status

presentations.

Step 2. Gather data needed according to sources available:

• Unit Price per Work Package from the project planned budget.

• Weekly Actual Quantities from the Percentage of Activities Completed (PAC) weekly report.

• Weekly Percentage of Planned Cost incurred from the Project Cost-flow.

• Total Planned Quantities from the project planned budget.

• Actual and Planned Physical Progress from weekly project “S” Curve.

• Actual and Planned durations and start and finish dates from the weekly project schedule.

3.4.2 Data Cleaning

• Missing values

After initial compilation, notable missing values were raised in the novel integrated table. Each

row containing zeros or erroneous values were removed or replaced. As it deals with a time series

dataset, it is essential to know the timestamp sequence. In this sense, those values from the time

series sequence were removed, and values within the sequence were replaced following just the

previous row data behaviour. In addition, as Machine Learning models highly depend on the

quantity of data, the Demolition and Ground Mesh work packages were removed due to less data

available, leaving Concrete, Excavation and Backfill work packages.

• Verifying consistencies of values

Some attributes, like planned values, were contrasted by comparing the planned budget with

weekly progress reports. Others, like the work packages' start and finish dates, were compared

71

with project letters, weekly progress reports, and the weekly work planned completed report. Also,

the cumulative actual quantities against the actual physical progress weekly. Likewise, the planned

duration.

3.4.3 Feature engineering

The creation of new attributes is a common practice in data preparation. New attributes were

created based on the existing ones within the historical data available. Such attributes are the

Earned Value starting from the Planned Unit Price and the Actual Quantity, the weekly Planned

Value from the total planned quantity, and the weekly Percentage of Planned Cost. Also,

cumulative values for the Actual and Planned Quantities were inserted, cumulating the Earned and

Planned Value. Additionally, the planned physical progress from the planned quantities.

Subsequently, the Schedule Performance Index (SPI) and Schedule Variance (SV) since Planned

and Earned Values are known, were included due to their close relationship with the project

duration.

Moreover, after analyzing the gathered data, additional factors that are closely related to project

time performance were also considered. Research has shown that Earned Schedule Management

(ESM) is the most reliable method to forecast project schedules compared to other Earned Value-

based approaches (Vandevoorde & Vanhoucke, 2006). Thus, ESM metrics were introduced. It is

a deterministic method that emerged as an extension of Earned Value Management (EVM) and

focuses explicitly on schedule performance. The concept of ESM was introduced by Walter Lipke

in the early 21st century (Cho & Lim, 2020). Unlike EVM, ESM aims to provide a more accurate

representation of project schedule performance. ESM metrics included are Earned Schedule (ES),

Time Performance Index (TPI), and Time Variance (TV). ES is derived from Planned Value (PV)

and Earned Value (EV). Furthermore, it interacts with the actual project time elapsed to yield TPI

72

and TV through ratio and difference calculations, respectively. The Figure below represents the

ES graphically.

Figure 3.7 Graphical Representation of Earned Schedule

3.4.4 Data Inspection on Selected Attributes

The data inspection plays an essential role in the entire Data Mining pipeline (Augenstein et al.,

2019; Chekanov, 2016). It enables (1) identifying data quality issues by uncovering outliers,

duplications, or inconsistencies, (2) understanding data characteristics by providing patterns and

particular distributions, (3) ensuring data relevance by verifying their potential impact in the

forecasting of Duration to Complete DTC (target variable) and, (4) therefore, choosing appropriate

mining techniques by enabling match suitable algorithms with the dataset. In this sense, a

description of each attribute collected is explained. As this research is handling a time series

dataset, it is essential to identify patterns along the timeline.

• Planned and Actual Quantities:

The Planned Quantities (PQ) encompasses the initial estimations of materials on the work

packages such as concrete in cubic meters, excavation in cubic meters, backfill in cubic meters,

existing structure demolition in cubic meters and ground mesh in square meters required for the

73

construction project. It is relevant for forecasting duration because accurate planning of quantities

is crucial for determining the project's timeline and ensuring resource availability. The Actual

Quantities (AQ) represent the real, executed quantities of resources during the construction project.

It aids in understanding the actual resource consumption, informing future planning, and

forecasting potential budget variations. Comparing actual quantities to planned quantities helps

identify variances and adjust the project duration accordingly. Figure 3.8 (left side) shows the Box-

and-Whisker plot for Planned and Actual Quantities, indicating that the Actual Quantities dataset

exhibits more outliers and a larger spread, indicating higher variability than the Planned Quantities.

• Planned Value (PV)

PV is the estimated value of the work planned to be completed at a specific time. Serves as a

foundational benchmark for cost forecasting. Project managers can use PV to gauge whether the

project is on track regarding planned cost expenditure. It requires frequent re-evaluation and

adjustment in response to project changes rather than being a static figure. Figure 3.8 (right side)

shows fewer outliers in this plot, suggesting that the Planned Value data are more tightly clustered

around the median.

Figure 3.8 Box-and-Whisker Plot for Planned And Actual Quantities and Planned

Value

74

• Earned Value (EV)

EV represents the value of the work performed and completed at a specific point in time. Provides

a tangible measure of actual progress. Forecasting with EV assists in understanding how efficiently

resources are being utilized and aids in predicting future cost and schedule trends. Figure 3.9 (left

side) shows that the Earned Value data has significant variability, as indicated by the large number

of outliers and the extensive range of the whiskers.

• Earned Schedule (ES)

ES is the time-phased measure of the value of work performed. Offers a nuanced time-based

perspective for earned value. On the project duration forecasting, the ES shows project managers

schedule variations and potential delays based on earned value achieved over time. By comparing

the Box-and-Whisker plot (Figure 3.9 – right side) with the EV, the data points are notably less

spread out, implying a tighter distribution with less variability in the Earned Schedule metrics.

Figure 3.9 Box-and-Whisker Plot for Earned Value and Earned Schedule

• Time Performance Index (TPI)

TPI is a measure of schedule efficiency, calculated as the ratio of earned schedule to actual time

spent. Assists in forecasting the efficiency of the project in terms of time. A TPI greater than 1

indicates efficient progress, while a TPI less than one may signal potential delays, prompting

75

proactive adjustments to the schedule. From Figure 3.10 (left side), it is evidenced that the data

shows that the mean is slightly higher than the median, which may indicate a slight positive skew.

Outliers are depicted as individual points located outside the whiskers, signifying that these values

are unusual compared to the rest of the data. Additionally, the distribution of data points, especially

with outliers on the higher side, suggests that there are instances where the Time Performance is

significantly above what is typical for the dataset.

• Time Variance (TV)

TV represents the difference between the earned schedule and actual time spent. Identifying time

deviations allows project managers to forecast potential delays or accelerations. Forecasting with

TV provides insights into whether the project will likely meet or exceed its time objectives.

Similarly, from Figure 3.10 (right side), the dataset has a relatively symmetrical distribution

around its center, as the mean is very close to the median. However, some outliers below the lower

whisker represent significant negative time variance. Moreover, the range of TV is considerably

more comprehensive than that of TPI, with many large negative numbers present. It indicates that

there were instances of substantial delays or deviations from the plan.

Figure 3.10 Box-and-Whisker Plot for Time Performance Index and Time Variance

76

• Schedule Performance Index (SPI)

SPI quantifies the schedule efficiency and is computed as the ratio of earned value to planned

value. SPI assesses how well the project adheres to the planned schedule. Forecasting with SPI

helps project managers anticipate future schedule trends, enabling timely adjustments to optimize

project performance. Figure 3.11 (left side) indicates that the mean value is negatively skewed,

lying below the median value. Additionally, the figure depicts outliers above the upper whisker,

which suggests that there are instances of SPI values significantly higher than the average.

• Schedule Variance (SV)

SV offers a direct measure of whether the project is ahead or behind schedule at a specific point.

It is calculated subtracting the planned value from the earned value. Forecasting with SV helps

project managers anticipate schedule variations and make informed adjustments to keep the project

on track. From Figure 3.11 (right side), the median and mean values of the dataset are very similar,

indicating that the data is evenly distributed around the central value. Additionally, the SV plot

has a much more comprehensive range when compared to the SPI. It suggests a significant number

of data points with large negative values, indicating some deviations from the planned schedule.

Figure 3.11 Box-and-Whisker Plot for Schedule Performance Index and Schedule

Variance

77

• Planned and Actual Physical Progress

The planned physical progress encompasses the initial physical progress, including milestones and

expected completion percentages. A critical metric for forecasting overall project progress. On the

other hand, the actual physical progress represents the real, executed physical progress achieved

during the construction project. Forecasting with actual physical progress aids in understanding

the project's current state. It allows project managers to adjust plans based on observed progress,

facilitating accurate duration forecasting and timely decision-making. Comparing planned and

actual physical progress helps project managers anticipate potential delays and ensure alignment

with the planned timeline.

From the chart below (Figure 3.12), numerous outliers are shown below the lower whisker,

indicating significantly lower planned progress for the Planned Physical Progress. In contrast, the

plot for Actual Physical Progress shows consistent actual progress data with no significant

anomalies.

Figure 3.12 Box-and-Whisker Plot for Planned Physical (%) and Actual Physical Progress (%)

78

Chapter 4 The Deep Learning Forecasting Modelling for Project

Duration and the Graphical User Interface

4.1 Introduction

After analyzing the historical data, this chapter elaborates on the project duration forecasting

model using Deep Learning and produces a Graphical User Interface (GUI) for its usage and

application. A high-level pipeline is shown in Figure 4.1. It comprises data preprocessing and the

forecasting model itself. The preprocessing involves feature selection to address multicollinearity

by applying the variance inflation factor (VIF) and correlation model and data splitting and

normalization to address the model performance and data patterns. Then, the forecasting model

considers managing the algorithm hyperparameters, which highly depend on the data

characteristics and influence the model performance.

After getting individual duration predictions at work package levels, they are integrated into a

methodology to calculate the overall project duration at completion prediction, using the CPM and

PDM methodologies. In turn, this forecasting model is the core of the GUI, which, due to the deep

learning algorithm’s complexity, the user interface plays a pivotal role for non-expert users.

Additionally, this chapter described complementary, relevant subprocesses, such as data

augmentation, which addresses eventual small time series datasets, and present the performance

metrics to monitor the fittest accuracy of deep learning algorithms by handling time series datasets.

79

Figure 4.1 Development of Forecasting Model

4.2 Dataset Setup for ML Forecasting model.

The axiom 'More data equates to better model forecasting performance' holds in the context of

machine learning (Lara-Benítez et al., 2021; Passalis et al., 2020; Torres et al., 2020). However,

the first challenge lies in organizing available data to optimize the learning process by deep

learning algorithms. A methodical approach is crucial when handling data from multiple projects,

further divided into Work Packages (WPs). In this context, three possible scenarios for data setups

to augment machine learning efficacy were experimented with, as described below. A graphical

representation is shown in Figure 4.2.

a. Isolated Work Package Analysis:

This method involves analyzing data separately for each WP within a project. Contrary to machine

learning's preference for large datasets, this compartmentalized approach limits the chronological

data points, which hinders the algorithm’s learning capacity. Furthermore, repeated execution of

80

the machine learning algorithm for each WP can lead to increased computational time and resource

consumption.

b. Sequential Work Package Data Integration:

This strategy exploits the increased volume of data while preserving individual work package

(WP) characteristics by grouping sequentially the same work packages from multiple projects, for

example, grouping the work packages 'Concrete' from projects A, B, C, etc. likewise for the rest

of work packages. In turn, it becomes more efficient when leveraging the autocorrelation inherent

in Time Series Datasets. Autocorrelation is a statistical measure describing the degree of likeness

between a specified time series and a lagged version over successive interval. It's used to identify

repeating patterns or dependencies in data over time. Overall, this second setup allows for project-

specific forecasting through separated algorithms for each WP, potentially leading to more targeted

insights.

c. Aggregated Project Data Without WP Segregation:

This approach consolidates all data across projects without distinguishing between WPs. Although

it maximizes the dataset size, it may not facilitate the identification of patterns specific to

individual WPs due to the homogenization of data.

81

Figure 4.2 Three Time Series Data Setups to Improve Machine Learning Performance

4.3 Data Preprocessing

While data preprocessing is a broader step initiated in Chapter 3 by handling the raw data,

additional refinements are essential for enhancing the forecasting model performance, especially

when handling time series data for a regression approach. In this sense, the feature selection arises

to fit the best inputs regarding forecasting performance accuracy. Then, a meticulous treatment of

new missing values through strategies like time-based imputation or interpolation to ensure

consistency with the temporal nature of the data. After that, normalizing or scaling the data is

critical, with techniques like Min-Max scaling or Z-score normalization, to maintain uniformity in

variable scales. Furthermore, creating lag features and utilizing rolling window statistics are

crucial to capturing time series data's inherent temporal dynamics and dependencies. Preserving

82

sequential relationships between consecutive data points is paramount, necessitating careful

consideration when structuring the dataset in a tabular format. Moreover, data transformation, such

as differencing or any mathematical operation, might stabilize trends and seasonality in the

multivariate time series dataset. Once Chapter 3 enabled statistical inspection of the collected data,

they were assessed through the data preprocessing process. Figure 4.3 shows an example of the

Concrete work package dataset after such a process. This Figure depicts the dataset in a structured

way, with potential predictors and target variables placed as headers and the ‘Concrete’ work

package from multiple projects placed as rows sequentially downwards.

Figure 4.3 Example of work package dataset after the data preprocessing Feature Selection

83

4.3.1 Feature Selection

identifies and selects a subset of relevant features (predictors) for the forecasting model

construction (Pirbazari et al., 2019). It aims to improve the model's performance by eliminating

unnecessary, redundant, or noisy data, leading to more straightforward, faster, and more efficient

models (Pabuccu & Barbu, 2023). Moreover, it is relevant to include a visual inspection of

independent and dependent variables (Figure 4.4) as a must-do initial action. Notably, the selection

of features for this study involved two aspects considering the multivariate time series dataset to

be handled. First, analyze the relationship between predictor variables only and second, between

each predictor and target variable. The former is known as multicollinearity, which was addressed

by applying a Variance Inflation Factor (VIF) technique, while the latter was solved by using the

Spearman Correlation matrix.

84

Figure 4.4 Visual Representation of Independent and Dependent Variables

85

Multicollinearity Analysis by Variance Inflation Factor

Multicollinearity is a situation in regression analysis where two or more predictor variables

(independent variables) in a model are highly correlated (Shrestha, 2020). This is a linear

relationship that can influence outcome reliability (J. H. Kim, 2019). In the context of a regression

model, multicollinearity can be problematic because (Daoud, 2017; Obite et al., 2020):

• It is difficult to isolate each predictor's effects on the target variable.

• It can lead to incorrectly estimated coefficients, which may fluctuate wildly in response to

small changes in the model or data.

• It can artificially inflate the standard errors of the coefficients, resulting in a loss of statistical

significance for the affected predictors.

Addressing multicollinearity may involve removing some correlated predictors, combining them

into a single predictor through dimensionality reduction techniques (like Principal Component

Analysis), or using regularization techniques that can handle correlated predictors in the model.

On this matter, this study uses the Variance Inflation Factor (VIF) which is focus on the variation

of the regression coefficients when predictors are correlated. If no factors are correlated, the VIFs

will all be equal to 1 (Daoud, 2017; Senaviratna & A. Cooray, 2019). Here's how VIF is calculated

for each predictor variable:

• Run a linear regression using the predictor of interest as the dependent variable and all other

predictors as independent variables.

• Calculate the R-squared value from this regression.

• The VIF for that predictor is calculated as 𝑉𝐼𝐹 =
1

1−𝑅2

A VIF equals to 1 indicates no correlation between the k-th predictor and the remaining predictor

variables and, hence, a deficient level of multicollinearity. Values of VIF exceeding 5 or 10 suggest

86

high multicollinearity, depending on the sources and the context of the analysis, and may require

further investigation or adjustment of the model. When applying to the dataset, Planned and Actual

Quantities and Planned and Earned Values are highly correlated, which implies managing them as

explained above. Conversely, the rest of the predictors are going on within tolerable limits. The

following figure shows the VIF results for predictors.

Figure 4.5 Variance Influence Factor (VIF) Performance per Predictor

Spearman Correlation matrix

The correlation matrix shows correlation coefficients between variables (predictors and targets)

(Schober et al., 2018). In the following chart, each cell shows the correlation between two

variables. The value is in the range of -1 to 1. If two variables have a high correlation, it means the

movement of one variable is highly predictive of the movement of the other variable. There are

three main types to calculate the correlation factor. The Pearson correlation coefficient is typically

87

used in correlation matrices, but different types, like Spearman's rank correlation or Kendall's tau,

can also be used depending on the data and requirement. For time series data, which often involves

trends and does not necessarily follow a normal distribution, Spearman or Kendall might be more

appropriate (Croux & Dehon, 2010). Spearman is generally preferred for its balance between

sensitivity and robustness, but Kendall's Tau could be a better choice when a dataset is small or

particularly noisy. Accordingly, in the present research work, the dataset was evaluated under the

Spearman correlation type, whose results are shown in Figure 4.6 – Correlation Matrix.

Figure 4.6 Spearman Correlation Matrix for Variables

88

4.3.2 Data Splitting

Data Splitting is dividing the dataset into three sets, including training, validation, and test sets

(Xu & Goodacre, 2018). The training dataset serves to train and learning the model, the validation

dataset to adjust the model parameters and prevent overfitting, and the test dataset to assess the

model's performance on unseen data (Vabalas et al., 2019). This split is crucial for assessing the

model's generalization ability. The ratios for splitting data can vary based on the size and nature

of the dataset. Accordingly, the present research evaluated several split ratios considering the

characteristics of this specific time series datasets before getting the best outcomes. In time series

datasets, it is important to maintain trends/patterns on split datasets and a suggested practice is

analysing visually the dataset behaviour curve.

Figure 4.7 Schematic of Data Splitting

4.3.3 Data Normalization

Data normalization is vital in preparing data for time series forecasting, especially when using

deep learning models (Bhanja & Das, 2018; Nayak et al., 2014). Normalization adjusts the scale

of data to a standard range, typically between 0 and 1 or -1 and 1. This ensures that each input

feature contributes equally to model training and predictions (outcomes), facilitating a more

89

effective learning process. The importance of normalization lies in its ability to prevent features

with larger scales from disproportionately influencing the learning dynamics of the model.

Three normalization techniques are commonly employed: min-max normalization, z-score

normalization (also known as Standardization), and scaling to unit length. These methods bring

different scale features onto a level playing field, crucial in deep learning models that often handle

complex, high-dimensional data (Bhanja & Das, 2018). Additionally, normalization aids in

avoiding problems like gradient vanishing or exploding, thereby enhancing the model's training

efficiency and overall performance. Finally, the process becomes particularly noteworthy when

considering the sequence of Data Splitting followed by Data Normalization. First, it is strongly

advised to execute the data splitting, as this ensures that the resulting datasets are not influenced

by each other when any normalization technique is applied.

Figure 4.8 Schematic of Data Normalization

90

4.4 Forecasting Model Development

The first step is transforming the split datasets into more feeding data for the deep learning

algorithms. It implies setting the number of pasts that will be considered to predict the Duration to

Complete (DTC) (which is the target variable in the present study) and arranging predictors and

targets to maintain the autoregressive, a crucial time series dataset property (Ullrich, 2021). This

process is also known as the Rolling-Window analysis (Inoue et al., 2017), which is typically used

on time series datasets before being processed by any machine learning algorithm. The term

“windows” refers to the number of pasts considered for the prediction; the feature input and target

variable are represented as “X” values and “y” values, respectively (Zivot et al., 2003).

To manage the autoregressive property, specifically for the multivariate Time Series Dataset, the

“X” values are the combination of the predictor variables (i.e. Cumulative Earned Value,

Cumulative Earned Schedule, Time Performance index, Project Budget) and the lagged target

variables (i.e. the previous values of the target variable). The lagged target valuables are included

because of the autoregressive property on the multivariate time series datasets, which can be

explained as the existent correlation between the target variable to be predicted in the current

period and the past predicted target variables. For example, in time series data will exist correlation

among three past predicted values of the Duration to Complete (DTC) (from periods “t-3”, “t-2”

and “t-1”) and the current Duration to Complete (DTC) variable to be predicted (in the period “t”).

It can be represented as:

X (for a single sample):

Period t-3: [Cumulative EV, Cumulative ES, TPI, Project Budget, DTC (predicted)]

Period t-2: [Cumulative EV, Cumulative ES, TPI, Project Budget, DTC (predicted)]

Period t-1: [Cumulative EV, Cumulative ES, TPI, Project Budget, DTC (predicted)]

91

Y (for the same sample):

Period t: [DTC (to be predicted)]

In this sense, the Rolling-Window are arranged as shown in Figure 4.9, which indicates just three

rolling-windows groups with three “pasts” and one target each as an example:

Figure 4.9 Rolling-Window Representation for the Forecasting Model

In practice, each rolling-window is also referred as a sample. It should be noticed that the second

sample starts in the second record of the dataset, the third one begins on the third record, and so

on. A group of samples is known as a batch. Deep learning models work with a certain quantity of

batches, the quantity of samples that process per propagation through the model architecture. The

number of batches is a hyperparameter related to the prediction accuracy set by experimentation

(Kandel & Castelli, 2020). A graphical representation of a batch formation since samples are

shown in Figure 4.10. Moreover, an epoch refers when all batches have been processed through

92

the entire dataset. During an epoch, the model sees every sample in the dataset once, allowing it

to learn from the data over multiple iterations (epochs) to improve its predictions.

Figure 4.10 Representation of Relationship Between Samples and Batches

4.4.1 Forecasting model with LSTM algorithm

The LSTM algorithm was considered due to previous research's most recent successful results,

demonstrating better fitting by handling time series datasets. It is because it contains specific

memory cells aiming to remember information for long periods, a remarkable characteristic that

differs from other models. This model was computerized using Python's Keras library. Its

architecture construction involves setting the number of layers, learning rate, number of epochs,

batch sizes and the recurrent dropout factor as the most relevant elements. These items are grouped

under the name of hyperparameters within Machine Learning terms. The hyperparameters were

tunned by experimentation to find the most optimal set for the LSTM model. They must be set

before the learning process and are not associated with the data.

93

Additionally, selecting the proper Optimizer, an algorithm used to enhance the neural network

parameters to reduce the losses, is relevant for the project duration prediction accuracy. The

ADAM (Adaptive Moment Estimation) optimizer, an extension of stochastic gradient descent, is

designed to be more efficient in this time series forecasting model. ADAM maintains a learning

rate for each network weight (parameter). It adapts these rates individually over time, combining

the advantages of two other extensions of stochastic gradient descent: Adaptive Gradient

Algorithm (AdaGrad) and Root Mean Square Propagation (RMSProp). In an LSTM layer, each

LSTM unit does not divide the samples among themselves. Instead, all units process all samples,

contributing to the layer's overall output. The quantity of units represents the dimensionality of the

output feature space, not the number of samples each unit processes (Arsov et al., 2021).

4.4.2 Forecasting model with CONV-1D algorithm

Initially developed for image processing, CNNs have proven effective in time series analysis like

project progress datasets, thanks to their ability to identify patterns in sequential data. It uses 1D

convolutional layers to extract temporal features from sequences, such as features created during

project execution. The architecture of a CNN includes convolutional layers, pooling layers, and

fully connected layers as hyperparameters. This model was elaborated on using Python language

programming and the Keras library. In CNNs, convolutional layers apply filters (kernels) to the

input data. Each filter is slid across the input data to produce a feature map that highlights certain

features in the input. The same set of filters is applied to all samples in the batch, extracting features

from each sample independently.

After convolutional layers, pooling layers may reduce the dimensionality of the feature maps.

Eventually, the data may pass through fully connected layers (similar to those in MLPs) before

producing the final output. Each layer, whether convolutional, pooling, or fully connected,

94

processes each sample in the batch using the same weights and operations. Each filter in a

convolutional layer produces a feature map for each sample in the batch. The process is parallel

across samples but is shared regarding the filters applied. The network learns filters that are useful

across all samples in the training dataset, which are applied equally to each sample in the batch.

4.4.3 Forecasting model with MLP algorithm

Multi-Layer Perceptron is a feedforward artificial neural network developed to tackle many

problems ranging from simple binary classification to complex regression tasks. The strength of

MLPs lies in their ability to model complex, non-linear relationships through multiple layers of

computation. It allows for extracting high-level features and relationships across sequential data

points. Whether it handles forecasting future trends, identifying cyclic patterns, or detecting

anomalies in time series data, MLPs can learn from historical values to make informed predictions

about future or unseen events. An MLP comprises an input layer, multiple hidden layers, and an

output layer. Each neuron in a layer of an MLP is fully connected to all neurons in the preceding

layer. Regardless of the number of neurons in a layer, each neuron processes every sample in the

batch. The number of neurons in a layer determines the dimensionality of the output for that layer,

but all neurons participate in processing all samples. Each sample in the batch is processed in

parallel through the network's layers. The network output for each sample is determined by the

collective computation of neurons across the layers, according to the network's weights and biases

and the activation functions applied.

4.4.4 Model Performance Measurement.

During the model forecasting design, the loss curve plays an important role. It depicts the model's

inaccuracy by plotting the losses between training and validation datasets. Ideally, both curves

should decrease over time, indicating the model is learning from the dataset. Interpretation of this

95

chart spans to identify three possible scenarios: overfitting, underfitting and good fit. While the

overfitting indicates that the model learns too well, including noise, which leads to poor

generalization on unseen data, the underfitting means that the model cannot capture the underlying

data pattern. Ideally, in a good fit, both training and validation losses should decrease to a point of

stability with a minimal gap between the two curves. An example of a loss curve is shown in the

following figure.

Figure 4.11 Schematic of the Loss Curve

4.5 Data Augmentation

As discussed earlier, deep learning algorithms for time series forecasting require extensive data.

By gathering more data, they improve their performance significantly (Javeri et al., 2021). This

dataset should be accomplished in terms of quantity and quality (Wen et al., 2020). In addition,

actual project data is often incomplete, disorganized, or simply unavailable, especially in a time

series manner (Adekunle et al., 2022). To face with this issue, data augmentation arises as an

96

alternative offering diversity and coherence (X. Zhang et al., 2023), creating copies of the original

dataset available (Bandara et al., 2021).

Data augmentation techniques are used to increase the diversity of the dataset without collecting

new data. This technique uses available data as a benchmark to create a 'new' dataset. For instance,

if actual project datasets are available, where projects have similar conditions among them such as

location (country, region, continent, etc.), remoteness (like resource availability, distance to nearby

cities, etc.), contract type, adopted PDM, construction type among more relevant aspects, this

group of projects can become a benchmark to create new datasets. Like Monte Carlo simulations,

when making multiple random scenarios starting from a preset scenario as a benchmark, data

augmentation uses random data in a likely range between optimistic and pessimistic values to

deliver possible outcomes.

The primary goal of data augmentation is to improve a model's capacity to manage diverse real-

world conditions, thus boosting its robustness and ability to generalize (Y. Yue et al., 2023). Data

augmentation is not a rigid process that follows a standardized approach; instead, it is often

customized to the features and needs of the dataset in question, which can be influenced by domain

knowledge. (S. Y. Li, 2020). For augmented (synthetic) time series datasets related to project

duration management, domain knowledge plays a pivotal role in guiding appropriate data

augmentation outcomes, like coherence, as pointed out by Zhang et al. (2023). This ‘new’ data

should reflect realistic scenarios and variations that could occur during the project, which involves

understanding the typical patterns, ranges, and behaviours within the existent data. A typical data

augmentation pipeline is shown in Figure 4.12.

97

Figure 4.12 Pipeline for Data Augmentation

4.6 Performance Metrics for Time Series Dataset models

This section is focused on the metrics used to assess the accuracy of the machine learning models

when applied to time series training/validation/test datasets for forecasting. The present time series

data, characterized by its sequential nature and temporal dependencies, requires specialized

metrics to capture the model's predictive power in such contexts accurately (Makridakis et al.,

2023). Consequently, the performance metrics such as Mean Absolute Scaled Error (MASE)

proposed by Hyndman (2006) and Symmetric Mean Absolute Percentage Error (sMAPE) by

Makridakis (1993), whose application is focused on Time Series forecasting, were added to the

conventional Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE).

Table 4.1 Performance Metrics for Time Series Datasets

Metric Description

Formulas

(Where 𝑦𝑖 is the actual and 𝑦�̂� is the

predicted and 𝑦�̿� is the naïve value)

Interpretation

MAE

Mean Absolute Error calculates

the average number of errors in

a group of predictions without

considering whether they are

positive or negative. It is given

in the same units as the target

variable.

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑖 − 𝑦�̂�|

𝑛

𝑖=1

A lower MAE

indicates better

model

performance.

98

RMSE

Root Mean Squared Error

represents the square root of the

average squared differences

between prediction and actual

observation. It is also given in

the same units as the target

variable.

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(

𝑛

𝑖=1

𝑦𝑖 − 𝑦�̂�)
2

A lower RMSE

indicates better

performance.

MASE

Mean Absolute Scaled Error

measures the accuracy of

forecasts relative to a simple

benchmark, scaling errors based

on the in-sample MAE from a

naive forecast.

𝑀𝐴𝑆𝐸 =

1
𝑛

∑ |𝑦𝑖 − 𝑦�̂�|
𝑛
𝑖=1

(
1

𝑛 − 1
) ∑ |𝑦𝑖 − 𝑦�̿�|

If the MASE value

is less than 1, it

indicates that the

model performs

better than a naïve

model.

Additionally, the

lower the MASE

value, the better the

model performs

compared to the

naïve model

sMAPE

Like MAPE, Symmetric Mean

Absolute Percentage Error

adjusts the formula to handle

zero and near-zero

denominators, providing a more

balanced error percentage.

𝑠𝑀𝐴𝑃𝐸 =
1

𝑛
∑

|𝑦𝑖 − 𝑦�̂�|

(|𝑦𝑖| − |𝑦�̂�|) 2⁄

𝑛

𝑖=1

A lower sMAPE

indicates better

accuracy, with

values closer to

zero indicating

more accurate

forecasts

While evaluating the performance metrics on the training dataset provides an understanding of the

initial learning and model behaviour, the performance metrics on the validation dataset give a

chance to tune and select the optimal model. On the other hand, assessing the test dataset

performance lets us know how the model will generalize by addressing new, unseen data.

4.7 Calculation of the Overall Project Duration

Once work package durations were accurately predicted through the Deep Learning model, they

were integrated to calculate the Overall Project Duration. For this purpose, the proposed

methodology is based on the Precedence Diagramming Method (PDM) and the Critical Path

99

Method (CPM) (Lu, 2020). PDM is a technique used to create a project schedule network diagram

that depicts the logic sequence in which tasks must be performed. At the same time, CPM is a

technique in project management that helps identify the most extended sequence of tasks in a

project (critical path), determining the shortest possible project duration.

Most construction schedules are set following the PDM method. So, the methodology simplifies

the PDM network, which contains multiple precedence relationships and lags, into an AON

(Activity-On-Node) network, which contains finish-start relationships and without lags. It uses

dummy nodes to represent lags and durations equivalent to the lag value. After that, CPM is applied

to find the overall project duration. The following figure shows the methodology proposed

sequence:

Figure 4.13 Pipeline for Overall Project Duration Calculation

Each is considered an activity when applying this framework to the work packages. Moreover, it

is remarkable to analyze the current project schedule at the work package level, which provides

planned/actual durations, start dates and finish dates. This methodology was modelled in Python

and is explained as follows:

1. As the Primavera P6 software presents limitations when managing schedule information at

the work package level, this modelling imports activities’ information from Primavera P6,

such as durations, start and finish dates (planned and actuals), overlaps and precedence

relationships. Then, it is processed in a Python environment to calculate the work package

100

features like durations start and finish dates. The work package start date is calculated as the

finding of the earliest activity start date within such work package; similarly, the work package

finish date is the latest activity finish date. Next, work package durations are calculated by

subtracting the start and finish dates.

Figure 4.14 Duration, Start and Finish Dates Handling when Extracting from Primavera P6

2. After that, the work packages were set up sequentially to recall their lifecycle occurrences

(Boskers & AbouRizk, 2005; Siu et al., 2014). To do so, the model analyzes every start date

from the current project schedule. Accordingly, lags among them were computed by

subtracting the start dates of sequential work packages (see Figure 4.15). Also, the type of

relationship is attributed to a start–to–start relationship between consecutive work packages,

which will serve to proceed to the transform schemes later.

101

Figure 4.15 Setup of Work Packages

3. After that, the PDM network will be obtained. To do so, the durations of work packages are

inputted according to their status: Completed, In Progress or Non-Started. The actual

durations of completed work packages are considered. In the case of in-progress work

packages, their durations are calculated using deep learning modelling. Similarly, as non-

started work packages do not create records, forecasting their final duration should not be

possible; hence, their planned durations are inputted.

4. Then, it is continued with the transformation on the AON network that includes precedence

relationship as type Finish-Start solely. It creates dummy work packages between them by

splitting the earliest work package and then imputing the lag time between them as the

duration of the dummy work package (See Figure 4.16).

Figure 4.16 Schematic of methodology flow describing transformation from PDM to CPM

102

5. After transforming the Work Package PDM representation to the AON network without lags

where there are Finish–Start relationships only, the CPM method is applied to calculate the

overall project duration.

Integrating Deep Learning predictions into CPM-PDM allows for a more data-driven and

potentially accurate assessment of project timelines. Moreover, it can help project managers:

- Improve Scheduling Accuracy: The overall project schedule can be estimated more

precisely by providing more accurate predictions of work package durations.

- Identify Risk Areas: Understand which parts of the project might be at risk due to potential

delays in critical work packages.

- Enhance Decision Making: Make informed decisions about project planning, scheduling,

and management based on data-driven insights.

This approach modernizes traditional project management methods with the predictive power of

machine learning, potentially leading to more efficient, reliable, and successful project outcomes.

4.8 Graphical User Interface (GUI) for Project Duration Forecasting

A poor handling of deep learning algorithms can lead to misuse or misunderstood due to their

complexity. This section describes the design and implementation of a friendly Graphical User

Interface (GUI) to manage deep learning algorithms. It was programmed using Python's Tkinter

library and designed to be used and applied by non-expert users during the project execution

monitoring stage (also known as project tracking).

It is remarkable that this type of GUI based on purely deep learning for project management

software, particularly for duration forecasting, is an emerging field that combines advanced

predictive analytics capabilities with traditional project management methodologies. Most

103

software solutions use a combination of techniques, including conventional statistical methods and

some machine learning components, to enhance forecasting accuracy. However, these might be

integrated into broader project management tools or specialized analytics platforms. Applying pure

deep learning models for forecasting project duration, such as Long Short-Term Memory

networks, is still relatively innovative.

4.8.1 Software Design and Reporting

The software design consists of two main areas. The “Main Menu” is located on the left, and the

“Displaying area” is on the right. The Main Menu contains three sections: “Projects Setup”, “Deep

Learning Forecasting Data”, and “Deep Learning Forecasting”. Moreover, the displaying area

dynamically show windows according to the selected button in the Main Menu. Below, each

section is explained in detail.

Figure 4.17 Location of Main Menu and Displaying Area

Main Menu
Displaying Area

Menu

104

• Main Menu - Projects Setup Section:

Home: Clicking on the “Home” button will display the “Project Hub” window, which contains

detailed information on the projects that have been entered. Each project is listed in the top left

region within the project hub, describing its Project ID, Name, Original Duration, and Original

Budget. Similarly, the “Add New Project” and “Update Project” buttons are distinguished on the

top right area, which will open new windows separately to enter new project information or update

an existing one. The information requested is aligned with the ERD described in Chapter 3. Finally,

in the Project Hub’s bottom region, a notebook is shown with two tabs: "At Project Level" and "At

Work Package Level." These notebook tabs will interactively populate when you select any project

from the top area. Below are the windows used when clicking “Add New Project” and “Update

Project.”

Figure 4.18 The “Add New Project” Window.

105

Figure 4.19 The “Update Project” window.

The “Add Project window” requires filling in general information on the top entries and adding

work package information on the bottom. On the latter, clicking the “+ Add Work Package” button

will add rows as many as quantity of work packages needed without limits. Finally, the “Save New

Project” button should be pressed.

• Main Menu – Deep Learning Forecasting Data section:

This section contains the “Enter Tracking Data” button, which enables users to enter tracking data

per period per work package. First, the project name and reporting date will be entered. After

clicking “Enter Data,” new entry fields will appear per work package, as shown in Figure 4.20

below. It contains the Project Work Packages arranged as rows and the features for forecasting as

columns. After completing the information, it should be clicked on “Save.”

106

Figure 4.20 The “Project Tracking” window.

The “Status” of the work package is quite significant when entering tracking data. In the GUI, the

“Status” entry will show “non-started,” “in progress,” or “finished” options from a dropdown list.

When the work packages have a “non-started” status, the rest of its entry inputs should be filled

with null (zero) values. Also, when the work package is “in progress,” complete the requested

progress data; otherwise, when it is “Finished,” complete the actual data, considering the actual

last period data. Additionally, when a work package is “in progress,” the following entry input,

called Project Period, is solely related to the work package, and can differ from the reporting period

number. Figure 4.21 shows an example where the timeline for the entire project and each work

package differs for Work Packages 02 and 03.

107

Figure 4.21 Project Reporting Period against Work Package Period Number

• Main Menu – Deep Learning Forecasting:

This section includes “Step 01: Work Package Level” and “Step 02: Project Level”. Step 1 will

require the Project ID and the Reporting Period. By doing so, it will run the deep learning algorithm

and will display the results per work package. On the top is horizontally listed the project work

packages, and at the bottom, a Gantt chart showing the planned, actual, and forecasted durations

and a Schedule Deviation per period chart depicting the variation of finish dates planned and

forecasted. These charts will change dynamically when selecting a work package and another

reporting period.

108

Figure 4.22 “Forecasting per Work Package” window.

On the other hand, Step 02 will require the Project ID, the Reporting Period. Then, the

relationships among work packages will be shown in a table when uploading the Primavera P6

Schedule at the work package level in .xml format, as shown in Figure 4.23. After that, the button

“Display Duration at Completion Forecasting” will show the Gantt Chart of the entire project.

Also, a button will be displayed to show the critical path for PDM-CPM calculation.

Figure 4.23 “Forecasting per Work Package” window.

109

Figure 4.24 “Project Duration Forecasting” window.

Imported data from
Primavera P6

110

Chapter 5 Project Duration Forecasting and Graphical User

Interface Deployment

5.1 Introduction

This chapter outlines applying deep learning predictive modelling alongside the Graphical User

Interface (GUI). It discusses using training, validation, and test datasets to evaluate and select the

optimal forecasting model from the Long Short-Term Memory (LSTM), Convolutional Neural

network 1-D (CONV-1D), and Multi-Layer Perceptron (MLP) algorithms. The best-performing

algorithm is then implemented in the GUI. To do so, each forecasting model was evaluated using

actual data collected. Then, data preprocessing, splitting, and normalization, as well as the

assessment of three algorithms to determine the highest accuracy performer for integration into the

GUI, was performed.

The GUI functionality is demonstrated step-by-step, considering project data across the three work

packages evaluated previously (i.e. Concrete, Excavation and Backfill). This GUI application also

addresses the challenges encountered and the outcomes, highlighting the synergy between

advanced analytics and user-centred design in the resulting predictive analysis tool. A visualization

of the process using the GUI is presented in Figure 5.1.

Figure 5.1 Pipeline of GUI application for Project Duration Forecasting

111

5.2 Duration Forecasting model application – Case Study

This section describes the application of three deep learning algorithms: LSTM, CONV-1D and

MLP; which are evaluated with actual project data. The goal is to put into practice the steps

described in the previous chapter to create the forecasting model. After that, each models’

prediction performance is calculated to select the optimal predictive deep-learning algorithm.

Finally, this is included in the Graphical User Interface (GUI) to perform the overall project

duration at completion.

5.2.1 Data Preprocessing and Feature Selection

In Section 3.4, the project's actual data was presented. Originally, this data pertains to a mining

civil project portfolio contained five work packages; however, after conducting the initial data

cleaning, three work packages, namely Concrete, Excavation, and Backfill, were retained. The

remaining two work packages, Demolition and Ground Mesh, were discarded due to insufficient

data. Similarly, some records with missing values were removed from the three work package

datasets to ensure consistency, resulting 173, 65, and 85 records for the Concrete, Excavation, and

Backfill work packages.

Figure 5.2 is an example of the preprocessed data, where only five out of thirteen projects

considered in the analysis of the Excavation work package are presented. On this dataset,

multicollinearity processes and Spearman correlation were performed, identifying the input

variables for the model. These variables are Actual Duration, Cumulative EV, Cumulative Earned

Schedule, Time Performance Index, and Contract Amount. It is important to note that the Duration

To Complete (DTC) is the target variable for the analysis.

112

Figure 5.2 Example of preprocessed data spreadsheet – Excavation Work Package.

5.2.2 Data Splitting

The collected dataset was divided into two sets: the training and validation datasets. After several

experiments, the splitting values were obtained based on the optimal accuracy of the deep-learning

model. Then, to ensure that the deep learning model could perform well on unseen data, the data

augmentation technique was applied to obtain the test dataset.

Data augmentation for test dataset:

As the time series dataset from available projects was stored per Work Package (i.e. Concrete,

Excavation and Backfill), it enables users to find specific behaviour patterns from each. Typically,

progress control parameters form an S curve (Cristóbal, 2017; Mubarak, 2019). In this sense, the

logistic function was chosen to characterize the Planned Value (PV). It represents growth that

starts exponentially but eventually slows down because it approaches a maximum limit due to

resource limitations, productivity variations, or other project factors. Also, the logistic function

parameters needed, such as the maximum value that the function can take (L), growth rate (k) and

Potential Predictors
Target variable

113

the x-value of the inflection point (X0), were grasped from existing data by studying the behaviour

of every Planned Value’s S curve through an automated model in Python.

The Earned Value (EV) curves were based on previous research closely related to the

characteristics of the available projects. Thus, the Earned Values’ S curves were created using

polynomial functions and neural networks (Chao & Chien, 2009). Typical occurrences in real-life

projects, like delays or early starts concerning the planned start date, were also considered. It was

achieved by assigning a random quantity of periods (positive or negative) considered as slip

periods. Subsequently, additional indicators, such as the Earned Schedule (ES) and the Time

Performance Index (TPI), were calculated based on the estimated value (EV) of the project and

the planned value (PV) and the ES and the actual time that has elapsed, respectively.

Furthermore, the budget was generated randomly within the range of the original project budgets.

After the new data was collected, it was thoroughly reviewed and validated. Similarly, the overall

data augmentation process was computerized using the curve_fit function from Python’s library

SCIPY. To create synthetic time series data in the implemented Python program, practitioners

must enter the number of new projects to generate. The code will return a CSV file holding the

specified number of projects, each containing a random number of timestamps (the project

progress periods) as rows and the predictors as columns. Figure 5.3 is a visual representation of

the data augmentation process for this study.

114

Figure 5.3 Schematic of Process for Data Augmentation for the Present Study

A new project with Concrete, Excavation, and Backfill work packages was created containing 33,

27, and 21 records, respectively. The table below shows the optimal split percentages and the

number of records used in the test datasets.

Table 5.1 Training, Validation and Test Datasets per Work Package and LSTM, CONV-1D and

MLP Algorithms

Work

Package
Datasets

Deep Learning Algorithms

LSTM CONV-1D MLP

Concrete

Training (%, # records) 70% (121) 70% (121) 75% (129)

Validation (%, # records) 30% (52) 30% (52) 25% (44)

Test (# records) 33 33 33

Excavation

Training (%, # records) 60% (39) 60% (39) 60% (39)

Validation (%, # records) 40% (25) 40% (25) 40% (25)

Test (# records) 27 27 27

Backfill

Training (%, # records) 70% (60) 70% (60) 70% (60)

Validation (%, # records) 30% (25) 30% (25) 30% (25)

Test (# records) 21 21 21

115

5.2.3 Data normalization

The Min-Max normalization was chosen for this case study because of the optimal dataset

arrangement to leverage the machine learning features as explained in section 4.2. Each work

package dataset contains multiple projects and is structured in a tabular way, where rows represent

the timestamps and columns represent the predictor and target variables (see Figure 5.2 as

reference). Therefore, to keep each project's characteristics, the min-max technique follows this

equation: 𝑆𝑐𝑎𝑙𝑒𝑑 𝑣𝑎𝑙𝑢𝑒𝑠 =
𝑥−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
, which reduces the scale of original values without

changing the graphical distribution. The other alternative was the z-score normalization, which fed

the mean and standard deviation. However, given the data arrangement (multiple projects in

series), it would alter the dataset and its graphical distribution. The z-score equation is expressed

by 𝑍 =
𝑥−𝜇

𝜎
 (where µ is the mean and 𝜎 represents the standard deviation).

5.2.4 Forecasting model

The algorithms architecture used in the forecasting model was built using Keras, an open-source

neural network library for Python. Keras is renowned for enabling rapid experimentation with deep

neural networks, designed to be user-friendly, modular, and easily extendable. The library's core

data structures are models and layers, and it provides a Sequential model for linear stacking of

layers and a functional API (more flexibility compared to Sequential API) for building complex

model architectures. Nine forecasting models were created because of the three evaluating

algorithms (LSTM, CONV-1D, and MLP) and for the three work packages assessed (Concrete,

Excavation, and Backfill). It is crucial to look into the number of past timestamps to predict.

Initially, 4, 5 and 6 past timestamps were considered to form the batches; however, after

experimentation, when inputting three timestamps demonstrated the best performance. The

selection of the optimal value depends on the dataset characteristics and the amount of available

116

data. Similarly, the hyperparameters were selected using a trial-and-error process. The resulting

accuracy demonstrated being highly sensitive to the hyperparameters modification during the

learning stage. For instance, the learning rate selection depends on the optimizer utilized, which

for this study was ADAM; therefore, the learning rate varies from 0.001 to 0.01. If the SGD

(Stochastic Gradient Descent) is used as an optimizer, values will vary between 0.01 and 0.1.

Finally, the tables below show values for each algorithm per work package.

Table 5.2 LSTM Hyperparameters used in the forecasting model per Work Package

LSTM

Hyperparameters
Description

Work Packages

Concrete Excavation Backfill

Number of Layers
Determines the depth of the network, affecting

its complexity and capacity to learn patterns.
3 3 3

Number of neurons
Describe the total quantity of units that process

sequence data
64 64 64

Learning Rate

Controls the step size during optimization,

influencing the convergence speed and

accuracy.

0.001 0.01 0.005

Number of Epochs
It is the total number of passes through the entire

training dataset.
200 200 200

Batch Size
It is the number of samples processed before the

model updates its weights.
8 4 8

Recurrent Dropout

The percentage of dropped recurrent

connections was randomly selected to prevent

overfitting.

0.30 0.05 0.30

Table 5.3 CONV-1D Hyperparameters used in the forecasting model per Work Package

CONV-1D

Hyperparameters
Description

Work Packages

Concrete Excavation Backfill

Number of

Convolutional Layers

Determines the depth of feature

extraction.
1 1 1

Number of filters
Specifies the number of filters (or

kernels) in the convolutional layer
32 32 32

117

Kernel Size
Size of the filters used in

convolutional layers.
3 3 3

Number of dropout

layers

Serve as a regularization technique to

prevent overfitting
1 1 1

Dropout
Percentage of ignored neurons to

avoid overfitting
0.35 0.05 0.25

Number of dense layers
Used to increase the model's

complexity and learning capacity.
2 2 2

Number of neurons on

dense layers

Used to learn different aspects of the

input it receives from the previous

layer

50 (first

layer) and

1 (second

layer)

50 (first

layer) and 1

(second

layer)

60 (first

layer) and 1

(second

layer)

Learning Rate
It affects how quickly the network

updates its parameters.
0.001 0.0001 0.001

Number of Epochs The total number of training cycles. 150 120 200

Batch Size
Number of samples processed before

the model is updated.
32 8 8

Table 5.4 MLP Hyperparameters used in the forecasting model per Work Package

MLP

Hyperparameters
Description

Work Packages

Concrete Excavation Backfill

Number of Hidden

Layers

Influences the model's ability to

capture complex relationships.
2 2 2

Number of

Neurons per Layer
Determines the width of the network.

10 (First

layer) and

100 (second

layer)

10 (First

layer) and

40 (second

layer)

10 (First

layer) and 30

(second

layer)

Activation

Function

Such as ReLU, Sigmoid, or Tanh,

used in neurons.
ReLU ReLU ReLU

Learning Rate
Impacts the convergence speed

during training.
0.001 0.001 0.0005

Number of Epochs
The total round of training the

network undergoes.
200 250 150

Batch Size
The quantity of data samples used in

one iteration.
8 8 32

118

5.2.5 Forecasting Models performance assessments.

After setting up the model architecture, their performance is evaluated during the learning process,

using the training and validation datasets, and analysing the results on the Loss Curve. Then, it is

calculated the performance metrics (MAE, MASE, and sMAPE) for all the datasets, including

testing dataset to assess the model on unseen data. After that, R-squared curves to analyse the

relationship between observed and predicted values are elaborated for the unseen dataset. The

Figures 5.4, 5.5 and 5.6 shows the “Loss curves” per algorithm per work package.

Figure 5.4 Work Package Concrete loss curves per deep learning algorithm.

Figure 5.5 Work Package Excavation loss curves per deep learning algorithm.

119

Figure 5.6 Work Package Backfill loss curves per deep learning algorithm.

For the Concrete work package, the LSTM model displays a training loss that sharply decreases

and then plateaus, while the validation loss is slightly higher but also reaches a plateau. This

interaction between the training and validation loss curves could indicate good generalization after

a certain number of epochs. In contrast, the CONV-1D and MLP models show more fluctuations

in validation loss, which might suggest less stability. Therefore, the LSTM's smoother

convergence is considered the best performer for the Concrete work package.

In the Excavation work package, the LSTM model quickly reduces loss and shows less overfitting

as the epochs increase. Also, training and validation losses converge closely, which differs from

the CONV-1D and MLP models, where the validation loss tends to diverge as epochs increase.

Thus, the LSTM model performs better for the Excavation work package.

In the Backfill work package, the LSTM model again shows rapid initial learning and consistent

validation loss, indicative of learning stability and good generalization. On the other hand, the

different models, particularly the MLP, appear to overfit, as indicated by increasing validation loss

after a certain point. Therefore, the LSTM would be considered the best for the Backfill work

120

package. The LSTM model consistently shows the best performance across all three work

packages, with the least overfitting and the lowest validation loss.

Similarly, the performance metrics per algorithm per work package are depicted in the subsequent

tables. The metrics considered were MAE, MASE, and sMAPE, as they are more fit when handling

Time Series datasets for forecasting, as explained in Chapter 4. RMSE was disregarded because

the target variable (Duration to Complete) will become zero at any time, affecting the consistency

of the RMSE result. Although the following tables also show training and validation performance

metrics, it is essential to analyze the testing ones to evaluate the model performance over unseen

datasets.

Table 5.5 Performance Metrics for the Concrete Work Package per algorithm.

Metric
LSTM CONV-1D MLP

Training Validation Testing Training Validation Testing Training Validation Testing

MAE 12.85 12.39 16.42 12.76 10.36 18.67 8.49 13.07 15.61

MASE 0.21 0.44 0.27 0.21 0.37 0.31 0.15 0.49 0.27

sMAPE 40.14% 52.45% 42.3 % 36.05% 46.38% 33.26% 31.58% 56.99% 38.35%

Table 5.6 Performance Metrics for the Excavation Work Package per algorithm.

Metric
LSTM CONV-1D MLP

Training Validation Testing Training Validation Testing Training Validation Testing

MAE 14.71 9.82 17.14 14.31 9.17 41.45 15.18 10.41 48.87

MASE 0.65 0.58 0.29 0.63 0.54 0.71 0.67 0.62 0.84

sMAPE 81.49% 76.75% 29.73% 76.45% 75.38% 54.81% 77.45 % 78.38 % 64.57%

Table 5.7 Performance Metrics for the Backfill Work Package per algorithm.

Metric
LSTM CONV-1D MLP

Training Validation Testing Training Validation Testing Training Validation Testing

MAE 12.08 7.15 18.27 5.47 7.12 23.20 8.91 4.87 20.66

MASE 0.33 0.52 0.54 0.16 0.56 0.73 0.70 0.15 0.65

sMAPE 51.42% 46.7% 48.63% 58.43% 40.38% 51.27% 61.94% 59.72% 47.37%

121

Given these results, the model performance on unseen data using the LSTM algorithm depicts the

best results on MAE, MASE and sMAPE metrics. Consequently, the LSTM will perform better

when handling upcoming project datasets. The adjusted R-squared can also provide some insights

into model performance despite not typically being the primary metric for evaluating deep learning

models in time series regression problems.

The charts below are displayed per Concrete, Excavation and Backfill work packages,

respectively.

Figure 5.7 Work Package Concrete adjusted R-squared per LSTM, CONV-1D and MLP.

Figure 5.8 Work Package Excavation adjusted R-squared per LSTM, CONV-1D and MLP.

122

Figure 5.9 Work Package Backfill adjusted R-squared per LSTM, CONV-1D and MLP.

The charts below compare the yielded predictions per period and per algorithm against the actual

time completion per work package of the test dataset. Because of the model predicts the Duration

to Complete (DTC), it is then added to the Actual Time (AT) elapsed to obtain the Duration at

Completion (DAC), as indicated below.

𝐷𝐴𝐶 = 𝐴𝑇 + 𝐷𝑇𝐶

Where DAC=Duration at Completion, AT=Actual Time, and DTC=Duration to Complete.

Figure 5.10 Forecasted DAC for Work Package “Concrete” per Period and per Algorithm against

Actual Duration.

120
125
130
135
140
145
150
155
160
165
170
175
180
185
190
195
200
205
210

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

D
ur

at
io

n
at

 C
om

pl
et

io
n

(d
ay

s)

Reporting Period

Actual DAC Predicted DAC (MLP) Predicted DAC (CONV-1D) Predicted DAC (LSTM)

123

Figure 5.11 Forecasted DAC for Work Package “Excavation” per Period and per Algorithm

against Actual Duration.

Figure 5.12 Forecasted DAC for Work Package “Backfill” per Period and per Algorithm

against Actual Duration.

10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

D
ur

at
io

n
at

 C
om

pl
et

io
n

(d
ay

s)

Reporting Period

Actual DAC Predicted DAC (MLP) Predicted DAC (CONV-1D) Predicted DAC (LSTM)

90
95

100
105
110
115
120
125
130
135
140
145
150
155
160
165

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

D
ur

at
io

n
at

 C
om

pl
et

io
n

(d
ay

s)

Reporting Period

Actual DAC Predicted DAC (MLP) Predicted DAC (CONV-1D) Predicted DAC (LSTM)

124

The LSTMs own inherent advantages that might explain why outperformed CONV-1D and MLP

algorithms:

a. Long-Term Dependencies: As discussed earlier, LSTMs remember long-term dependencies

through memory cells and gate mechanisms, crucial for time series prediction.

b. Causality: LSTMs capture causal relationships due to their memory past states, essential in

time series where past events influence future outcomes.

Also, when comparing only the LSTM models obtained from the different work packages, the

Concrete work package had the lowest MASE value (0.27), showing the best performance. Such

work package also had more data than the Excavation and Backfill, suggesting that more data leads

to more accurate results. However, it's important to consider other factors, such as the construction

characteristics of each work package. This includes on-site conditions, such as interferences or

lack of preventive equipment maintenance, which can have a greater impact on excavation-related

activities than on Concrete work, making the prediction process more challenging.

5.3 Graphical User Interface (GUI) for Project Duration Forecasting

The application of the GUI follows up a high-level pipeline presented in Figure 5.13. It begins by

collecting progress data from the work packages, which is used to generate work package

predictions using the LSTM algorithm. This algorithm has been evaluated previous section,

showing the best performance. Similarly, the GUI collects the project schedule to calculate the

Overall Project Forecasting using PDM and CPM methods. As outputs, this GUI delivers two

graphical reports at each level of analysis, i.e., work packages and the overall project.

125

Figure 5.13 Schematic of GUI Functioning

The GUI application uses unseen data obtained from the data augmentation process. This data is

from a project containing 03 work packages: Excavation, Concrete and Backfill. The following

table summarizes the project information:

Table 5.8 Project information for the Graphical User Interface

Name Code Planned Duration (days) Budget ($)

Excavation WP-0001 154 1,250,000.00

Concrete WP-0002 168 1,100,000.00

Backfill WP-0003 105 1,900,000.00

Total Project PJ-9000 427 4,250,000.00

126

Whereas each period is entered (assuming a project tracking during the execution), the predictions

per work packages and the overall project duration are calculated. Concerning the project schedule

at the work package level, the current GUI version works with Primavera P6, which in subsequent

versions may incorporate new features such as linking with MS Project or Asta Powerproject due

to the flexibility of Python. Figure 5.14 shows a screenshot of the schedule utilized in this

demonstration, considering the three work packages, including start date, finish date, and

precedence relationship information. In addition, Figure 5.15 shows its version in XML format.

Figure 5.14 Project Schedule at Work Package Level in Primavera P6

127

Figure 5.15 Schedule at the Work Package Level in XML format (first lines)

The following sections describe the Graphical User Interface (GUI) application:

1. The user should ensure that the project information is filled in. This task should be done before

entering any reporting period. To do so, it should look for it on the hub listed and review its

corresponding details on the notebook. If the project does not exist, click the “Add New

Project…” button and filled the project information requested in the emerging window.

128

Figure 5.16 Setup of the Project

2. Verifying that the added project is listed on the Project Hub. To do this, click on the "Home"

button to refresh the page. After that, the project hub window should look like the image

provided below, showing the project PJ-9000.

Figure 5.17 The Project Information of “PJ-9000” on the Project Hub

129

3. Once set up, the user can proceed with the forecasting. On the main menu, click the “Enter

Tracking Data” button to enter the work packages’ information for the analyzed period. Then,

Select the project (PJ-9000) from the dropdown list, entering the ending date, and press “Enter

Data…”. Once entering the tracking data, press on “Save.” This process is repeated per progress

period. It was entered until the Reporting Period number 09 (date = 2017-07-03).

Figure 5.18 Entering Project Tracking Data

4. Then, click “Step 01. Work Package level”, selecting the project PJ-9000 and the Reporting

Period 09. The Excavation work package's forecasted duration of 63+114=177 days is reported

at this data date. Similarly, navigating by the Work Packages buttons will allow users to observe

other predictions.

Figure 5.19 Forecasting Report for Excavation Work Package at Period 09

1

2 3 4

At Reporting period 09:
- Current BL = 154 d
- Actual = 63 d
- Forecast = 114d

130

5. Next, click “Step 2: Project Level” to show the overall project prediction. The XML file is

loaded and then executed to read the primavera P6 information. It is relevant to note that the

information in the GUI matches the information in the source P6 schedule. Next, click Display

Duration at the Completion Forecasting button to show the Gantt Chart for the overall project.

Finally, it is processed with PDM-CPM to show the overall project duration.

Figure 5.20 Loading Primavera P6 data to the GUI

The charts below show results for periods 08 and 09. It was included the period 08 (Figure 5.21)

to present how differs the prediction period by period. Also, it is included the CPM network

depicting the critical path per each period.

Primavera P6
Data matches
with the GUI
data

131

Figure 5.21 Forecasting Report for Overall Project at Period 08

Figure 5.22 Forecasting Report for Overall Project at Period 09

Forecasting results at
Period 09.

Deviation = -30 days
Finish date = 2018/02/21

Forecasting results at
Period 08.

Deviation = -27 days
Finish date = 2018/02/18

132

5.4 Comparison with traditional methods for duration prediction

Project managers often rely on the Earned Value methodology (EVM) to forecast project duration.

Similarly, another helpful method gaining popularity in project time management is the Earned

Schedule Management (ESM) because it is solely calculated using time units-based parameters.

These techniques are frequently used in the construction industry and are known for leveraging

current performances to achieve forecast outcomes. As a result, they are suitable for comparison

with the proposed Deep Learning-based method.

The Duration at completion (DAC) under EVM is calculated following the formula below:

𝑫𝑨𝑪𝑬𝑽𝑴 =
𝑷𝑫

𝑺𝑷𝑰

Where DACEVM = Duration at Completion through EVM; PD = Planned Duration; and SPI =

Schedule Performance Index. On the other hand, the DAC obtained using ESM uses formulas such

as :

𝑫𝑨𝑪𝑬𝑺𝑴 = 𝑨𝑻 + (
𝑷𝑫 − 𝑬𝑺

𝑺𝑷𝑰𝒕
)

Where DACESM = Duration at Completion through ESM; AT=Actual Time; PD = Planned

Duration; ES = Cumulated Earned Schedule (until analyzed period); SPIt = Schedule Performance

Index in time units (calculated as ES/AT), also called Time Performance index in this research.

5.4.1 Comparison of Deep Learning, EVM and ESM models per work package

Table 5.9 shows the comparison of DAC over the concrete work package dataset (PD=98 days),

which also includes the error in percentage per prediction at each period, calculated as:

133

𝑬𝒓𝒓𝒐𝒓 (%) = (
𝑫𝑨𝑪𝑨𝒄𝒕𝒖𝒂𝒍 − 𝑫𝑨𝑪𝒑𝒓𝒆𝒅𝒊𝒄𝒕𝒆𝒅

𝑫𝑨𝑪𝑨𝒄𝒕𝒖𝒂𝒍
) 𝒙𝟏𝟎𝟎

Where DAC Actual stands for the actual duration at completion, and DAC predicted
 represents the

predicted value at each period per model.

Table 5.9 Comparison of Deep Learning model, EVM and ESM for Concrete Work Package

Reporting

Period

Duration at Completion

(DAC, in days)
 Error (in percentage)

Deep-

Learning
EVM ESM Deep-

Learning
EVM ESM

4 168 36 81 -9% 77% 47%

5 166 75 94 -8% 52% 39%

6 165 144 107 -7% 7% 30%

7 164 220 118 -6% -43% 23%

8 162 251 129 -5% -63% 16%

9 161 239 140 -5% -55% 9%

10 160 213 150 -4% -38% 3%

11 159 188 159 -3% -22% -3%

12 158 167 167 -3% -8% -9%

13 157 150 174 -2% 2% -13%

14 156 137 181 -1% 11% -18%

15 155 127 188 -1% 18% -22%

16 154 118 194 0% 23% -26%

17 154 112 196 0% 28% -27%

18 153 106 199 0% 31% -29%

19 153 103 197 0% 33% -28%

20 154 100 195 0% 35% -26%

21 154 98 179 0% 36% -16%

22 156 98 154 -1% 36% 0%

134

Figure 5.23 Comparison of Deep Learning model, EVM and ESM for Concrete Work Package

Similarly, the comparison analysis for the Excavation work packages (PD=98 days) is shown as

follows.

Table 5.10 Comparison of Deep Learning model, EVM and ESM for Excavation Work Package

Reporting

Period

Duration at Completion

(DAC, in days)
 Error (in percentage)

Deep-

Learning
EVM ESM Deep-

Learning
EVM ESM

4 172 54 89 9% 71% 53%

5 173 110 101 9% 42% 46%

6 174 209 114 8% -11% 40%

7 175 317 128 7% -68% 32%

8 176 360 139 7% -90% 26%

9 178 339 149 6% -79% 21%

10 179 298 160 5% -58% 15%

11 181 260 171 4% -37% 10%

12 182 228 181 4% -20% 4%

0

50

100

150

200

250

300

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

D
U

R
A

TI
O

N
 A

T
C

M
P

LE
TI

O
N

 (
D

A
YS

)

REPORTING PERIOD

Deep-Learning EVM ESM Actual

135

13 183 202 190 3% -7% -1%

14 185 181 199 2% 4% -5%

15 186 165 207 2% 13% -10%

16 188 151 214 1% 20% -13%

17 189 140 221 0% 26% -17%

18 190 130 228 -1% 31% -21%

19 192 123 235 -1% 35% -24%

20 193 116 238 -2% 38% -26%

21 195 111 240 -3% 41% -27%

22 196 107 244 -4% 43% -29%

23 197 104 243 -4% 45% -29%

24 199 101 240 -5% 47% -27%

25 200 99 232 -6% 47% -23%

26 200 98 214 -6% 48% -13%

27 200 98 189 -6% 48% 0%

Figure 5.24 Comparison of Deep Learning model, EVM and ESM for Excavation Work

Package

0

50

100

150

200

250

300

350

400

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

D
U

R
A

TI
O

N
 A

T
C

O
M

P
LE

TI
O

N
 (

D
A

C
)

REPORTING PERIOD

Deep-Learning EVM ESM Actual

136

Note that predictions have only been available since period 04 because the deep-learning model

requires at least three historical records to make predictions. It is also worth mentioning that the

EVM method is not the most suitable approach to monitor project time, despite its widespread use.

This is because calculating time estimations with money units can be highly variable from one

period to the next, leading to inconsistencies in the estimations. As example, the Figure 5.24 shows

a lower prediction value by EVM. Below it is presented the comparison analysis for the Backfill

work package (PD=84 days).

Table 5.11 Comparison of Deep Learning model, EVM and ESM for Backfill Work Package

Period

of

forecast

DAC (in days) Error (in percentage)

Deep Learning

model
EVM ESM

Deep

Learning

model

EVM ESM

4 138 56 79 6% 62% 46%

5 140 124 93 5% 16% 37%

6 142 213 103 4% -45% 30%

7 143 249 114 2% -69% 22%

8 145 231 126 1% -57% 14%

9 146 200 136 1% -36% 8%

10 148 173 145 0% -17% 1%

11 149 151 154 -1% -3% -4%

12 150 134 161 -2% 9% -9%

13 151 121 168 -3% 17% -14%

14 152 111 175 -4% 24% -19%

15 154 103 181 -5% 30% -23%

16 155 97 183 -5% 34% -25%

17 156 92 185 -6% 37% -26%

18 157 88 188 -7% 40% -28%

19 159 86 182 -8% 42% -24%

20 160 84 170 -9% 43% -16%

21 161 84 147 -9% 43% 0%

137

Figure 5.25 Comparison of Deep Learning model, EVM and ESM for Backfill Work Package

Such results where also evaluated using MAE and MAPE, underlining the Deep Learning model

is superior to traditional methodologies evaluated. These are showing in the Table below:

Table 5.12 Comparison of Deep Learning model, EVM and ESM for Backfill Work Package

Work Package Model MAE RMSE Ranking

Concrete

Deep Learning 2.97% 4.14% 1

ESM 20.30% 23.69% 2

EVM 32.54% 37.76% 3

Excavation

Deep Learning 4.34% 5.03% 1

ESM 21.34% 25.13% 2

EVM 40.50% 46.04% 3

Backfill

Deep Learning 4.38% 5.16% 1

ESM 19.27% 22.64% 2

EVM 34.73% 38.90% 3

0
20
40
60
80

100
120
140
160
180
200
220
240
260
280

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

D
U

R
A

TI
O

N
 A

T
C

O
M

P
LE

TI
O

N
 (

D
A

YS
)

REPORTING PERIOD

Deep-Learning EVM ESM Actual

138

5.5 Sensitivity Analysis applying Montecarlo Simulation

A sensitivity analysis was conducted to assess how variations in independent variables impact the

dependent variable (outcome). Specifically, the analysis focused on project progress data, which

encompasses multiple variables per progress period. Consistent values were inputted, considering

two key considerations. Firstly, the interdependency between time-sequential records (between

timestamps), and secondly, the intrinsic relationship between project progress parameters within

each timestamp. This includes relationships between PV (Planned Value) with EV (Earned Value),

actual time and progress, actual time, and PV, among others. In time series datasets, both

interactions are crucial to consider. Accordingly, the following steps were undertaken for the

present study:

1. A random progress period (timestamp) was selected for each work package, incorporating the

original predictors.

2. Each independent variable (predictor) underwent adjustment within predefined ranges to

generate multiple consistent replicates of this specific progress period, utilizing Monte Carlo

Simulation. This process exploited the intrinsic relationships between predictors, as illustrated

in Figure 5.26.

3. Monte Carlo simulation involves creating random values for the predictors based on specified

distributions or criteria. Subsequently, the resulting outcomes were analyzed to assess

sensitivity and uncertainty.

4. Once the reproductions of progress period data were generated, each was seamlessly integrated

as record data into the original project tracking dataset, preserving its chronological position.

139

5. Following integration, the deep learning algorithm was executed multiple times, corresponding

to the number of independent variable chains created. This iterative process yielded predictions

for Duration to Complete (DTC).

6. The inputs and respective outcomes obtained from the deep learning algorithm iterations were

thoroughly analyzed to discern patterns and behavior.

Figure 5.26 Relationship between EV and ES for a Same Period.

The following outlines the sensitivity analysis per work package utilizing the Deep Learning

forecasting model.

140

5.5.1 Analysis of Concrete Work Package Prediction Model

Table 5.13 presents concrete work package parameters, as well as, in Table 5.14 shows the

timestamps analyzed, highlighting the fifteen period, which has been selected, and three previous

timestamps as the forecasting model needs three past records to predict the future. Range of values

greater than $705,323.5 (previous EV) and less than $843,059.0 (following EV) are considered for

the EV in the simulations. In total, were conducted 50 simulations.

Table 5.13 Work Package Parameters for Concrete

Work Package Parameters Value

Planned periods 24

Actual periods 26

Current analysed period (randomly selected) 15

Budget (dollars) 1’100,000

DTC 15th (predicted with actual values) 178.2

Table 5.14 Concrete Work Package - Records for Sensitivity Analysis

Actual

Duration

(weeks)

Actual

Duration

(days)

Cumulative

EV ($)

Cumulative

Earned

Schedule

(weeks)

Time

Performance

Index (TPI)

Contract

Amount

($)

Duration

To

complete

(DTC,

days)

….

12 84 563,399.6 9.2 0.768 1’100,000 174.8

13 91 634,467.7 10.8 0.827 1’100,000 176.3

14 98 705,323.5 12.3 0.878 1’100,000 177.4

15 105 775,132.2 13.9 0.925 1’100,000 DTC 15th

16 112 843,059 15.5 0.968 1’100,000 ---

….

As a result, fifty predictor’s replicates of the 15th period were obtained, as detailed in Table 5.15.

Following the previous steps explained, the forecasting model was run to predict Duration to

141

Complete (DTC) considering each new record which have replaced the “fifteen” record within the

whole list of timestamps. After that, Figure 5.27 depicts the interaction between independent and

target variables. The analysis showed that a variation between -8% and 7% in the EV values

represents a variability between -8% and -12% in the target variable (Duration to Complete),

respectively. The ES is between -8% and 9% in this scenario.

Table 5.15 Results of Fifty Simulations for Sensitivity Analysis - Concrete Forecasting Model

Independent Variables and Predicted DAC for 15th period Variations (%)

Cumulative

EV ($)

Cumulative

Earned

Schedule

(weeks)

Time

Performance

Index (TPI)

Contract

Amount ($)

Duration To

complete

(DTC, days)

 EV ES TPI
Contract

Amount
DTC

783,953.20 14.08 0.94 1,100,000.00 80.9 -1% -1% -1% 0% -10%

811,599.10 14.74 0.98 1,100,000.00 79.8 -5% -6% -6% 0% -9%

823,641.60 15.02 1.00 1,100,000.00 79.3 -6% -8% -8% 0% -8%

727,838.40 12.79 0.85 1,100,000.00 82.9 6% 8% 8% 0% -13%

781,783.20 14.03 0.94 1,100,000.00 81.0 -1% -1% -1% 0% -11%

771,058.10 13.78 0.92 1,100,000.00 81.4 1% 1% 1% 0% -11%

795,542.70 14.36 0.96 1,100,000.00 80.4 -3% -3% -3% 0% -10%

731,679.70 12.87 0.86 1,100,000.00 82.8 6% 7% 7% 0% -13%

814,223.40 14.80 0.99 1,100,000.00 79.7 -5% -7% -7% 0% -9%

813,256.50 14.78 0.99 1,100,000.00 79.7 -5% -7% -7% 0% -9%

808,615.30 14.67 0.98 1,100,000.00 79.9 -4% -6% -6% 0% -9%

816,519.30 14.85 0.99 1,100,000.00 79.6 -5% -7% -7% 0% -9%

731,523.00 12.87 0.86 1,100,000.00 82.8 6% 7% 7% 0% -13%

752,780.40 13.36 0.89 1,100,000.00 82.1 3% 4% 4% 0% -12%

809,571.80 14.69 0.98 1,100,000.00 79.9 -4% -6% -6% 0% -9%

785,875.50 14.12 0.94 1,100,000.00 80.8 -1% -2% -2% 0% -10%

771,611.60 13.79 0.92 1,100,000.00 81.4 0% 1% 1% 0% -11%

748,021.50 13.25 0.88 1,100,000.00 82.3 3% 5% 5% 0% -12%

764,235.60 13.62 0.91 1,100,000.00 81.7 1% 2% 2% 0% -12%

739,139.00 13.04 0.87 1,100,000.00 82.6 5% 6% 6% 0% -13%

784,867.10 14.10 0.94 1,100,000.00 80.8 -1% -2% -2% 0% -10%

749,080.90 13.27 0.88 1,100,000.00 82.3 3% 4% 4% 0% -12%

749,619.70 13.28 0.89 1,100,000.00 82.3 3% 4% 4% 0% -12%

822,186.50 14.99 1.00 1,100,000.00 79.4 -6% -8% -8% 0% -8%

814,637.50 14.81 0.99 1,100,000.00 79.7 -5% -7% -7% 0% -9%

750,418.70 13.30 0.89 1,100,000.00 82.2 3% 4% 4% 0% -12%

724,716.00 12.72 0.85 1,100,000.00 83.0 7% 8% 8% 0% -13%

142

727,212.90 12.78 0.85 1,100,000.00 83.0 6% 8% 8% 0% -13%

741,052.60 13.08 0.87 1,100,000.00 82.6 4% 6% 6% 0% -13%

741,640.10 13.10 0.87 1,100,000.00 82.6 4% 6% 6% 0% -13%

815,927.20 14.84 0.99 1,100,000.00 79.6 -5% -7% -7% 0% -9%

803,784.60 14.55 0.97 1,100,000.00 80.1 -4% -5% -5% 0% -9%

755,635.00 13.42 0.89 1,100,000.00 82.0 3% 3% 3% 0% -12%

748,661.80 13.26 0.88 1,100,000.00 82.3 3% 4% 4% 0% -12%

820,284.70 14.94 1.00 1,100,000.00 79.5 -6% -8% -8% 0% -9%

756,858.50 13.45 0.90 1,100,000.00 82.0 2% 3% 3% 0% -12%

812,107.70 14.75 0.98 1,100,000.00 79.8 -5% -6% -6% 0% -9%

730,851.00 12.86 0.86 1,100,000.00 82.9 6% 7% 7% 0% -13%

782,089.70 14.03 0.94 1,100,000.00 81.0 -1% -1% -1% 0% -11%

820,077.30 14.94 1.00 1,100,000.00 79.5 -6% -8% -8% 0% -9%

784,629.90 14.10 0.94 1,100,000.00 80.8 -1% -2% -2% 0% -10%

794,978.30 14.34 0.96 1,100,000.00 80.4 -3% -3% -3% 0% -10%

756,453.90 13.44 0.90 1,100,000.00 82.0 2% 3% 3% 0% -12%

749,671.90 13.28 0.89 1,100,000.00 82.3 3% 4% 4% 0% -12%

811,019.00 14.72 0.98 1,100,000.00 79.8 -5% -6% -6% 0% -9%

794,410.50 14.33 0.96 1,100,000.00 80.5 -2% -3% -3% 0% -10%

734,573.10 12.94 0.86 1,100,000.00 82.8 5% 7% 7% 0% -13%

751,017.80 13.31 0.89 1,100,000.00 82.2 3% 4% 4% 0% -12%

821,660.40 14.98 1.00 1,100,000.00 79.4 -6% -8% -8% 0% -8%

748,509.40 13.26 0.88 1,100,000.00 82.3 3% 4% 4% 0% -12%

Figure 5.27 Interaction Between Predictor and Target Variables – Concrete Forecasting Model

-20%

-15%

-10%

-5%

0%

5%

10%
Cumulative EV

Cumulative ES

TPIContract Amount

Duration To complete (DTC)

143

5.5.2 Analysis of Excavation Work Package Prediction Model

Table 5.16 presents the parameters of the excavation work package, as well as, Table 5.17 depicts

the portion of the records analyzed, highlighting the eighteen period which is studied. Range of

values greater than $1’364,048 (previous EV) and less than $1’553,022 (following EV) are

considered for the EV in the simulations. In total, were carried out 50 simulations.

Table 5.16 Work Package Parameters for Excavation

Work Package Parameters Value

Planned periods 14

Actual periods 27

Current analyzed period (randomly selected) 18

Budget (dollars) 2’000,000

DTC 18th (predicted with actual values) 49.5

Table 5.17 Excavation Work Package - Records for Sensitivity Analysis

Actual

Duration

(weeks)

Actual

Duration

(days)

Cumulative

EV ($)

Cumulative

Earned

Schedule

(weeks)

Time

Performance

Index (TPI)

Contract

Amount

($)

Duration To

complete

(DTC, days)

….

15 105 1’157,427 6.67 0.444 2’000,000 68.2

16 112 1’262,355 6.88 0.430 2’000,000 61.9

17 119 1’364,048 7.13 0.419 2’000,000 55.6

18 126 1’461,330 7.41 0.411 2’000,000 DTC 18th

19 133 1’553,022 7.67 0.404 2’000,000 ---

….

As a result, fifty replicates were generated, as presented in Table 5.18. The predictors

corresponding to the “eighteen period” and, consequently, the predicted Duration to Complete

(DTC) are described below. These predictions encompass variations relative to the original

parameters for this period. Furthermore, Figure 5.28 illustrates the interaction between

independent and target variables. It reveals that a variation ranging from -4% to 4% in the Earned

144

Value (EV) values corresponds to a variability between 3% and 2% in the target variable (Duration

to Complete), respectively. In this scenario, the Earned Schedule (ES) ranges between -2% and

2%.

Table 5.18 Results of Fifty Simulations for Sensitivity Analysis - Excavation Forecasting Model

Independent Variables and Predicted DAC for 18th period Variations (%)

Cumulative EV

($)

Cumulative

Earned

Schedule
(weeks)

Time
Performance

Index (TPI)

Contract

Amount ($)

Duration To

complete

(DTC,
days)

 EV ES TPI
Contract

Amount
DTC

1,508,594.20 7.55 0.42 2,000,000.00 60.6 -3% -2% -2% 0% 4%

1,460,855.90 7.41 0.41 2,000,000.00 61.3 0% 0% 0% 0% 3%

1,479,068.50 7.47 0.41 2,000,000.00 61.1 -1% -1% -1% 0% 3%

1,493,230.20 7.51 0.42 2,000,000.00 60.8 -2% -1% -1% 0% 3%

1,436,162.60 7.34 0.41 2,000,000.00 61.6 2% 1% 1% 0% 2%

1,464,695.50 7.42 0.41 2,000,000.00 61.3 0% 0% 0% 0% 3%

1,451,758.20 7.39 0.41 2,000,000.00 61.4 1% 0% 0% 0% 2%

1,460,862.20 7.41 0.41 2,000,000.00 61.3 0% 0% 0% 0% 3%

1,411,481.40 7.27 0.40 2,000,000.00 62.0 3% 2% 2% 0% 2%

1,461,094.50 7.41 0.41 2,000,000.00 61.3 0% 0% 0% 0% 3%

1,488,630.00 7.49 0.42 2,000,000.00 60.9 -2% -1% -1% 0% 3%

1,444,311.10 7.36 0.41 2,000,000.00 61.5 1% 1% 1% 0% 2%

1,508,625.20 7.55 0.42 2,000,000.00 60.6 -3% -2% -2% 0% 4%

1,464,621.80 7.42 0.41 2,000,000.00 61.3 0% 0% 0% 0% 3%

1,520,059.10 7.58 0.42 2,000,000.00 60.5 -4% -2% -2% 0% 4%

1,434,401.40 7.34 0.41 2,000,000.00 61.7 2% 1% 1% 0% 2%

1,470,394.00 7.44 0.41 2,000,000.00 61.2 -1% 0% 0% 0% 3%

1,417,978.30 7.29 0.40 2,000,000.00 61.9 3% 2% 2% 0% 2%

1,450,803.70 7.38 0.41 2,000,000.00 61.4 1% 0% 0% 0% 2%

1,419,797.30 7.29 0.41 2,000,000.00 61.9 3% 2% 2% 0% 2%

1,419,427.00 7.29 0.41 2,000,000.00 61.9 3% 2% 2% 0% 2%

1,416,766.00 7.29 0.40 2,000,000.00 61.9 3% 2% 2% 0% 2%

1,402,138.90 7.24 0.40 2,000,000.00 62.1 4% 2% 2% 0% 1%

1,490,389.00 7.50 0.42 2,000,000.00 60.9 -2% -1% -1% 0% 3%

1,450,459.40 7.38 0.41 2,000,000.00 61.5 1% 0% 0% 0% 2%

1,403,584.50 7.25 0.40 2,000,000.00 62.1 4% 2% 2% 0% 1%

1,485,110.80 7.48 0.42 2,000,000.00 61.0 -2% -1% -1% 0% 3%

1,487,331.20 7.49 0.42 2,000,000.00 60.9 -2% -1% -1% 0% 3%

1,483,286.90 7.48 0.42 2,000,000.00 61.0 -2% -1% -1% 0% 3%

1,485,096.80 7.48 0.42 2,000,000.00 61.0 -2% -1% -1% 0% 3%

1,427,391.60 7.32 0.41 2,000,000.00 61.8 2% 1% 1% 0% 2%

1,515,408.70 7.57 0.42 2,000,000.00 60.6 -4% -2% -2% 0% 4%

1,473,639.70 7.45 0.41 2,000,000.00 61.1 -1% 0% 0% 0% 3%

1,457,443.20 7.40 0.41 2,000,000.00 61.4 0% 0% 0% 0% 3%

1,513,283.90 7.56 0.42 2,000,000.00 60.6 -4% -2% -2% 0% 4%

1,501,774.10 7.53 0.42 2,000,000.00 60.7 -3% -2% -2% 0% 4%

1,468,141.20 7.43 0.41 2,000,000.00 61.2 0% 0% 0% 0% 3%

1,515,690.70 7.57 0.42 2,000,000.00 60.6 -4% -2% -2% 0% 4%

1,399,750.30 7.24 0.40 2,000,000.00 62.1 4% 2% 2% 0% 1%

1,512,901.30 7.56 0.42 2,000,000.00 60.6 -4% -2% -2% 0% 4%

1,455,018.80 7.40 0.41 2,000,000.00 61.4 0% 0% 0% 0% 3%

1,418,730.90 7.29 0.41 2,000,000.00 61.9 3% 2% 2% 0% 2%

1,425,084.40 7.31 0.41 2,000,000.00 61.8 2% 1% 1% 0% 2%

1,511,146.40 7.56 0.42 2,000,000.00 60.6 -3% -2% -2% 0% 4%

1,443,271.30 7.36 0.41 2,000,000.00 61.5 1% 1% 1% 0% 2%

145

1,476,756.00 7.46 0.41 2,000,000.00 61.1 -1% -1% -1% 0% 3%

1,515,480.00 7.57 0.42 2,000,000.00 60.6 -4% -2% -2% 0% 4%

1,399,326.50 7.23 0.40 2,000,000.00 62.1 4% 2% 2% 0% 1%

1,493,600.30 7.51 0.42 2,000,000.00 60.8 -2% -1% -1% 0% 3%

1,444,809.00 7.37 0.41 2,000,000.00 61.5 1% 1% 1% 0% 2%

Figure 5.28 Interaction Between Predictor and Target Variables – Excavation Forecasting Model

5.5.3 Analysis of Backfill Work Package Prediction Model.

Table 5.19 presents the parameters of the backfill work package, as well as, in Table 5.20 depicts

the portion of the records analyzed, highlighting the fifteen period which is studied. Range of

values greater $1’676,408 (previous EV) and, less than $1’837,939 (next EV)

Table 5.19 Work Package Parameters for Backfill

Project characteristics Value

Planned periods 7

Actual periods 18

Current analysed period (randomly selected) 15

Budget (dollars) 1’900,000

DTC 15th (predicted with actual values) 3.3

-10%

-5%

0%

5%
EV

ES

TPIContract Amount

DTC

146

Table 5.20 Backfill Work Package - Records for Sensitivity Analysis

Actual

Duration

(weeks)

Actual

Duration

(days)

Cumulative

EV ($)

Cumulative

Earned

Schedule

(weeks)

Time

Performance

Index (TPI)

Contract

Amount ($)

Duration To

complete

(DTC, days)

….

12 84 1’436,694 4.51 0.37 1’900,000 21.36

13 91 1’564,489 4.69 0.36 1’900,000 15.26

14 98 1’676,408 4.85 0.34 1’900,000 9.24

15 105 1’768,781 4.98 0.33 1’900,000 DTC 15th

16 112 1’837,939 5.55 0.34 1’900,000 ---

….

As a result, fifty predictor’s replicates were obtained, shown in Table 5.21. The independent inputs

yielded for the fifteen period and, consequently, the predicted Duration to Complete (DAC) are

shown below. It includes the variations with respect to the original parameters for this period. The

analysis showed that a variation between -8% and 5% in the EV values represents a variability

between 52% and 59% in the target variable (Duration to Complete), respectively. The ES is

between -5% and 2% in this scenario. This also shows that this model is highly sensitive to

variations of input variables, unlike the excavation and concrete forecasting models.

Table 5.21 Results of Fifty Simulations for Sensitivity Analysis in the Backfill Forecasting

Independent Variables and Predicted DAC for 15th period Variations (%)

Cumulative
EV ($)

Cumulative

Earned
Schedule

(weeks)

Time

Performance

Index (TPI)

Contract
Amount ($)

Duration To

complete (DTC,

days)

 EV ES TPI
Contract

Amount DTC

1,720,719.80 4.91 0.33 1,900,000.00 10.94 3% 1% 1% 0% 48%

1,755,905.70 4.96 0.33 1,900,000.00 11.02 1% 0% 0% 0% 48%

1,794,965.50 5.13 0.34 1,900,000.00 11.21 -1% -3% -3% 0% 47%

1,794,347.70 5.12 0.34 1,900,000.00 11.21 -1% -3% -3% 0% 47%

1,743,900.50 4.95 0.33 1,900,000.00 10.99 1% 1% 1% 0% 48%

1,726,552.40 4.92 0.33 1,900,000.00 10.95 2% 1% 1% 0% 48%

1,788,674.10 5.06 0.34 1,900,000.00 11.14 -1% -2% -2% 0% 47%

1,748,224.60 4.95 0.33 1,900,000.00 11.00 1% 1% 1% 0% 48%

1,742,922.60 4.95 0.33 1,900,000.00 10.99 1% 1% 1% 0% 48%

1,726,492.10 4.92 0.33 1,900,000.00 10.95 2% 1% 1% 0% 48%

147

1,800,778.00 5.19 0.35 1,900,000.00 11.29 -2% -4% -4% 0% 46%

1,779,296.80 5.00 0.33 1,900,000.00 11.07 -1% 0% 0% 0% 47%

1,721,063.50 4.91 0.33 1,900,000.00 10.94 3% 1% 1% 0% 48%

1,762,346.10 4.97 0.33 1,900,000.00 11.03 0% 0% 0% 0% 47%

1,727,037.50 4.92 0.33 1,900,000.00 10.95 2% 1% 1% 0% 48%

1,748,420.60 4.95 0.33 1,900,000.00 11.00 1% 1% 1% 0% 48%

1,779,119.80 5.00 0.33 1,900,000.00 11.07 -1% 0% 0% 0% 47%

1,773,408.70 4.99 0.33 1,900,000.00 11.05 0% 0% 0% 0% 47%

1,765,600.20 4.98 0.33 1,900,000.00 11.04 0% 0% 0% 0% 47%

1,726,513.00 4.92 0.33 1,900,000.00 10.95 2% 1% 1% 0% 48%

1,755,296.40 4.96 0.33 1,900,000.00 11.02 1% 0% 0% 0% 48%

1,751,353.10 4.96 0.33 1,900,000.00 11.01 1% 0% 0% 0% 48%

1,763,396.70 4.97 0.33 1,900,000.00 11.03 0% 0% 0% 0% 47%

1,729,824.30 4.93 0.33 1,900,000.00 10.96 2% 1% 1% 0% 48%

1,774,851.70 4.99 0.33 1,900,000.00 11.06 0% 0% 0% 0% 47%

1,769,824.10 4.98 0.33 1,900,000.00 11.05 0% 0% 0% 0% 47%

1,794,640.80 5.12 0.34 1,900,000.00 11.21 -1% -3% -3% 0% 47%

1,787,410.30 5.05 0.34 1,900,000.00 11.13 -1% -1% -1% 0% 47%

1,758,170.70 4.97 0.33 1,900,000.00 11.02 1% 0% 0% 0% 48%

1,777,235.20 4.99 0.33 1,900,000.00 11.06 0% 0% 0% 0% 47%

1,756,678.40 4.96 0.33 1,900,000.00 11.02 1% 0% 0% 0% 48%

1,752,060.50 4.96 0.33 1,900,000.00 11.01 1% 0% 0% 0% 48%

1,767,697.30 4.98 0.33 1,900,000.00 11.04 0% 0% 0% 0% 47%

1,794,263.50 5.12 0.34 1,900,000.00 11.20 -1% -3% -3% 0% 47%

1,754,465.30 4.96 0.33 1,900,000.00 11.01 1% 0% 0% 0% 48%

1,780,718.30 5.00 0.33 1,900,000.00 11.07 -1% 0% 0% 0% 47%

1,774,837.70 4.99 0.33 1,900,000.00 11.06 0% 0% 0% 0% 47%

1,799,092.80 5.17 0.34 1,900,000.00 11.27 -2% -4% -4% 0% 46%

1,770,667.00 4.98 0.33 1,900,000.00 11.05 0% 0% 0% 0% 47%

1,791,742.80 5.10 0.34 1,900,000.00 11.17 -1% -2% -2% 0% 47%

1,721,493.40 4.92 0.33 1,900,000.00 10.94 3% 1% 1% 0% 48%

1,741,675.80 4.94 0.33 1,900,000.00 10.99 2% 1% 1% 0% 48%

1,750,503.40 4.96 0.33 1,900,000.00 11.01 1% 1% 1% 0% 48%

1,776,568.20 4.99 0.33 1,900,000.00 11.06 0% 0% 0% 0% 47%

1,787,137.40 5.05 0.34 1,900,000.00 11.12 -1% -1% -1% 0% 47%

1,745,521.10 4.95 0.33 1,900,000.00 10.99 1% 1% 1% 0% 48%

1,723,349.10 4.92 0.33 1,900,000.00 10.94 3% 1% 1% 0% 48%

1,793,350.70 5.11 0.34 1,900,000.00 11.19 -1% -3% -3% 0% 47%

1,770,235.70 4.98 0.33 1,900,000.00 11.05 0% 0% 0% 0% 47%

1,736,756.90 4.94 0.33 1,900,000.00 10.97 2% 1% 1% 0% 48%

148

Figure 5.29 Interaction Between Predictor and Target Variables – Backfill Forecasting Model

-10%

0%

10%

20%

30%

40%

50%

60%

EV

ES

TPIContract Amount

DTC

149

Chapter 6 Conclusions

6.1 Research Summary

Construction projects are executed complexly and dynamically, yielding large quantities of data

each time. That is why accurately forecasting outcomes, such as project duration, becomes

paramount and challenging simultaneously. Typical forecasting approaches contractors adopt

when addressing ongoing projects consider traditional methods such as Earned Value

Management, Critical Path Method, or Montecarlo simulation. However, each presents multiple

drawbacks, even when powered by sophisticated software. Some inconveniences related to EVM

can be the static performance consideration applied over the remaining project, CPM might be the

inaccuracy assumptions of remaining work durations, and Monte Carlo simulation could be biased

when incorporating uncertainty parameters. To address these shortfalls, this research proposes

whole management that starts with data collection and finishes with accurate project duration

prediction by applying deep learning algorithms. It aims to leverage large amounts of data created

during project executions, suggesting identifying, managing, and organizing data, which should

be used to make well-based data-driven forecasts.

The research went through four stages. First, an extensive review of existing research was

conducted on project duration management, delay factors affecting the project schedule

management, forecasting duration methods, the latest machine learning algorithms to address time

series datasets on regression problems, and machine learning applications in construction projects.

This work is detailed in the second chapter of the thesis. The second stage involved an in-depth

examination of the construction projects by facing the execution phase to identify potential factors

associated with project duration forecasting. It assessed the adopted operational organization

150

(vertical analysis), process involved, and project time progress (horizontal analysis) to understand

the project intricacies at this phase. Then, combined with well-known forecasting practices such

as Monte Carlo simulation and Earned Schedule Management (a derived of EVM), led to the

identification of four essential project duration influencing factors for the Data Acquisition

modelling. DAM was developed through a relational database and an ERD. Finally, an intensive

inspection of actual, available data was performed. The findings from this examination are

presented in the third chapter of the thesis.

The third stage explained the development of the machine learning model and the User Interface.

The former describes the assessment of three alternatives to arrange the dataset to get the optimal

outcome. After that, the data preprocessing step was explained, including the feature selection

conducted through multicollinearity analysis and Spearman correlation matrix, data splitting

(involving the training, validation, and test datasets) and data normalization using the min-max

technique. Next, the preprocessed data is fed to the forecasting model by the rolling window

technique, emphasizing the importance of the autoregressive time series dataset property. It also

described specific data treatment per each algorithm (LSTM, CONV-1D and MLP), like the

hyperparameters tuning. The performance metrics that fit more when assessing time series datasets

were explained, such as MAE, RMSE, MASE, and sMAPE. Once machine learning predictions

are obtained, the way to calculate the whole project duration is explained using PDM-CPM

methods. On the other hand, each component of the User Interface was described, and its

application was properly sequenced since data is inputted until the duration forecast reports. The

discussion on this approach is found in the fourth chapter of the thesis.

The last stage involved applying the machine learning model and the user interface as a case study

to evaluate its efficacy and friendly usage by practitioners. The pipeline used actual data from a

151

mining civil project portfolio. The data preprocessing comprised selecting the optimal input

variable by feature selection techniques, and then they were split and normalized. This step

delivered 173, 132, and 85 records for the Concrete, Excavation, and Backfill work packages.

After that, each work package was performed per each algorithm, namely LSTM, CONV-1D and

MLP. As a result, the LSTM showed the best performance by comparing three aspects: loss curves

aligned with the learning process, performance metrics and adjusted R-squared aligned with

unseen dataset outcomes performance. Accordingly, the LSTM model was incorporated into the

User Interface. Finally, the model was compared to the EVM and ESM forecasting methods, and

a sensitivity analysis was performed.

This thesis has successfully developed a proof of concept (PoC) to validate the feasibility of using

artificial intelligence for forecasting duration-at-completion in construction projects. The results

of the PoC confirmed that deep learning algorithms can overcome the inaccuracy problems of

traditional methods by effectively managing historical data. Additionally, a user interface was

proposed to make the solution more accessible to non-expert practitioners, demonstrating its

potential. The study also considered and addressed challenges such as unstructured and insufficient

actual data using techniques like data augmentation. This new approach paves the way for

innovative methods of project duration forecasting using artificial intelligence, particularly deep

learning.

6.2 Expected Contributions

6.2.1 Academic Contributions

In the academic field, this research proposes a new approach to project duration forecasting:

152

- The model training has used data from multiple projects, not only one, representing better

different scenarios.

- Unlike most previous studies, this study approaches the forecasting problem as a regression,

Earlier works, aim to set classifiers as targets and assign outcomes to such classes.

- A novel framework to consolidate work package predictions into the overall project prediction

based on CPM and PDM methodologies.

- This model handles Multivariate Time Series datasets to address the project monitoring

dynamic during the execution phase. It struggles to select the proper algorithm to handle time

dependencies. Moreover, the multivariate feature added complexity because it implies

managing multiple predictors simultaneously and understanding the relationship between

variables. Due to the complexity of construction projects, the research problem should be

solved naturally by involving more than one predictor.

- This study presented a forecasting model comparing three Deep Learning algorithms: LSTM

from Recurrent Neural Networks (RNN), CONV-1D from Convolutional Neural Networks

(CNN) and the well-known MLP to learn complex sequential data patterns. They were chosen

for their demonstrated capabilities in managing multivariate time series datasets.

This investigation aims to contribute to AI applications in the construction sector, especially in

forecasting, considering its early exploration stage.

6.2.2 Industry Contributions

On the industry side, this research is expected to contribute as follows:

- Delivering accurate predictions earlier than traditional methods enables project managers

to handle resources efficiently and mitigate risks effectively. This model can also prevent

indirect cost overruns and additional expenses due to liquidated damages.

153

- Enhancing forecasting performance at work package and project levels compared to

traditional methods. This granular approach allows the project manager to mitigate

potential risks or leverage potential opportunities. By acting, the overall project duration

will also be positively impacted in a timely manner.

- Additionally, this research proposed a data collection framework oriented toward

overcoming the challenging problem of poor data management and helping to identify

impacting duration factors during project monitoring. Implementing it mitigates processing

delays in obtaining forecasts. Similarly, the machine learning model improves accuracy by

being fed new, quality data collected over time.

- The GUI was designed to be user-friendly and to bridge the gap between understanding

complex deep-learning algorithms and using them for predictions. The GUI also aims to

give practitioners forecasting reports with charts and tables. Gantt charts are provided to

compare planned, actual, and forecasts; behaviour curves are provided to visualize the

deviation of finish dates; and summarised tables are provided to show the historical project

predictions. Additionally, interaction with the project schedule to gather essential

information and a visual representation of the critical path through CPM is returned on the

overall project calculation.

6.3 Limitations

One of the challenges was the lack of sufficient, actual project data at the work package level with

shared characteristics such as type of construction, location, remoteness, complexity, technology

used, owner type, contract type, and so on. Machine learning algorithms rely heavily on consistent

data to identify patterns. To address this issue, the research assigned actual data for the training

and validation datasets, which perform the learning process, and augmented data (generated from

154

original data) for the test process, which requests unseen data. Overcoming this issue would

provide a significant spectrum of duration-affecting factors that can be selected when performing

the feature selection step.

Another challenge in this study was the quality of data available without missing values or

inconsistencies. Data quality also implies that data is tracked sequentially during the project’s

execution and should be coherent across different sources. For example, the project schedule

information should be aligned with the project cost at the same analysis period.

6.4 Recommendations for future research

This study addresses three algorithms chosen due to their better predominance when performing

predictions with a time series data set according to the literature review; however, it can be added

more to this comparison evaluation. As mentioned earlier, knowing other scenarios, such as new

types of projects, new construction locations, or, more specifically, weather and transportation

challenges, among others, will be necessary. Those will influence the algorithm selected. While

this study verifies that LSTM performs well by managing time series datasets, further investigation

is required, especially regarding the challenges in the construction sector. It would provide new

insights into the deep learning model performance. Similarly, as the classification problem is

prominent so far, more regression problem approaches are needed. In dynamic construction project

tracking, data is collected sequentially over the project time. Therefore, more investigation

considering multivariate time series datasets will improve the forecasting duration.

On the other hand, the CPM-PDM techniques were employed when integrating work package-

level predictions to obtain overall project duration; nevertheless, it can be experimented with using

other methods such as Critical Chain Project Management, Constraint Programming, Line of

155

Balance, or Pull-Driven Scheduling. Whereas drawbacks were related earlier, they can be

addressed using machine learning algorithms. Once done, integrating the improved scheduling

technique selected with individual predictions would offer new insights. This matter would need

more investigation. Finally, migrating to any cloud service can improve the standalone GUI. It will

allow real-time interaction with data sources, thus providing quick deep learning-based

predictions.

156

References

Abdel Azeem, S. A., Hosny, H. E., & Ibrahim, A. H. (2014). Forecasting project schedule

performance using probabilistic and deterministic models. HBRC Journal, 10(1), 35–42.

https://doi.org/10.1016/j.hbrcj.2013.09.002

Abioye, S. O., Oyedele, L. O., Akanbi, L., Ajayi, A., Davila Delgado, J. M., Bilal, M., Akinade,

O. O., & Ahmed, A. (2021). Artificial intelligence in the construction industry: A review of present

status, opportunities and future challenges. Journal of Building Engineering, 44, 103299.

https://doi.org/10.1016/j.jobe.2021.103299

Adekunle, P., Aigabvboa, C., Thwala, W., Akinradewo, O., & Oke, A. E. (2022). Challenges

confronting construction information management. 8. https://doi.org/10.3389/fbuil.2022.1075674

Aggarwal, C. (2015). Data mining: The textbook (1st edition). Springer Science+Business Media.

Ahiaga-Dagbui, D. D., & Smith, S. D. (2014). Dealing with construction cost overruns using data

mining. Construction Management and Economics, 32(7–8), 682–694.

https://doi.org/10.1080/01446193.2014.933854

Ajayi, B. O., & Chinda, T. (2022). Impact of Construction Delay-Controlling Parameters on

Project Schedule: DEMATEL-System Dynamics Modeling Approach. Frontiers in Built

Environment, 8, 799314. https://doi.org/10.3389/fbuil.2022.799314

Alachiotis, N. S., Kotsiantis, S., Sakkopoulos, E., & Verykios, V. S. (2022). Supervised machine

learning models for student performance prediction. Intelligent Decision Technologies, 16(1), 93–

106. https://doi.org/10.3233/IDT-210251

Al-Saggaf, H. A. (1998). The five commandments of construction project delay analysis. Cost

Engineering, 40(4), 37.

American Automatic Control Council, & Internationale Förderung für Automatische Lenkung

(Eds.). (2001). Proceedings of the 2001 American Control Conference, ACC: June 25 - 27, 2001,

Crystal Gateway Marriot, Arlington, VA, USA. Vol. 6 (Vol. 6). IEEE Service Center.

Ammar, M. A. (2020). Resource optimisation in line of balance scheduling. Construction

Management and Economics, 38(8), 715–725. https://doi.org/10.1080/01446193.2019.1606924

157

Andrade, P. A. D., Martens, A., & Vanhoucke, M. (2019). Using real project schedule data to

compare earned schedule and earned duration management project time forecasting capabilities.

Automation in Construction, 99, 68–78. https://doi.org/10.1016/j.autcon.2018.11.030

Ansah, R. H., & Sorooshian, S. (2018). 4P delays in project management. Engineering,

Construction and Architectural Management, 25(1), 62–76.

Ansar, A., Flyvbjerg, B., Budzier, A., & Lunn, D. (2014). Should we build more large dams? The

actual costs of hydropower megaproject development. Energy Policy, 69, 43–56.

https://doi.org/10.1016/j.enpol.2013.10.069

Armstrong, G., Gilge, C., Max, K., & Vora, S. (2023). Familiar Challenges—New Approaches—

2023 Global Construction Survey (p. 40). KPMG International.

Arsov, M., Zdravevski, E., Lameski, P., Corizzo, R., Koteli, N., Gramatikov, S., Mitreski, K., &

Trajkovik, V. (2021). Multi-horizon air pollution forecasting with deep neural networks. Sensors,

21(4), 1235.

Assaf, S. A., & Al-Hejji, S. (2006). Causes of delay in large construction projects. International

Journal of Project Management, 24(4), 349–357. https://doi.org/10.1016/j.ijproman.2005.11.010

Auffarth, B. (2021). Machine learning for time-series with Python: Forecast, predict, and detect

anomalies with state-of-the-art machine learning methods. Packt.

Augenstein, S., McMahan, H. B., Ramage, D., Ramaswamy, S. I., Kairouz, P., Chen, M., Mathews,

R., & Arcas, B. a. Y. (2019). Generative Models for Effective ML on Private, Decentralized

Datasets. ArXiv, abs/1911.06679. https://consensus.app/papers/models-effective-private-

decentralized-datasets-augenstein/8d7ecf0be190505086f391609c4896fe/

Ayalew, T., Dakhli, Z., & Lafhaj, Z. (2016). Assessment on performance and challenges of

Ethiopian construction industry. Journal of Architecture and Civil Engineering, 2(11), 01–11.

Bagui, S., & Earp, R. (2011). Database Design Using Entity-Relationship Diagrams, Second

Edition. https://doi.org/10.1201/9781439861776

Bai, S., Kolter, J. Z., & Koltun, V. (2018). An Empirical Evaluation of Generic Convolutional and

Recurrent Networks for Sequence Modeling. https://doi.org/10.48550/ARXIV.1803.01271

158

Baldwin, A., & Bordoli, D. (2014). A handbook for construction planning and scheduling. Wiley

Blackwell.

Ballesteros-Pérez, P., Cerezo-Narváez, A., Otero-Mateo, M., Pastor-Fernández, A., Zhang, J., &

Vanhoucke, M. (2020). Forecasting the Project Duration Average and Standard Deviation from

Deterministic Schedule Information. Applied Sciences, 10(2), 654.

https://doi.org/10.3390/app10020654

Bandara, K., Hewamalage, H., Liu, Y.-H., Kang, Y., & Bergmeir, C. (2021). Improving the

accuracy of global forecasting models using time series data augmentation. Pattern Recognition,

120, 108148. https://doi.org/10.1016/j.patcog.2021.108148

Baptiste, P., Laborie, P., Pape, C. L., & Nuijten, W. (2006). Constraint-Based Scheduling and

Planning. In Foundations of Artificial Intelligence (Vol. 2, pp. 761–799). Elsevier.

https://doi.org/10.1016/S1574-6526(06)80026-X

Barraza, G. A., Back, W. E., & Mata, F. (2004). Probabilistic Forecasting of Project Performance

Using Stochastic S Curves. Journal of Construction Engineering and Management, 130(1), 25–

32. https://doi.org/10.1061/(ASCE)0733-9364(2004)130:1(25)

Barrientos-Orellana, A., Ballesteros-Pérez, P., Mora-Melia, D., González-Cruz, M. C., &

Vanhoucke, M. (2021). Stability and accuracy of deterministic project duration forecasting

methods in earned value management. Engineering, Construction and Architectural Management.

https://doi.org/10.1108/ECAM-12-2020-1045

Bayhan, H., Damci, A., & Demirkesen Çakır, S. (2020). Line of Balance (LoB) Scheduling versus

Takt Time Planning (TTP): A Comparison of Two Methods.

Bhanja, S., & Das, A. (2018). Impact of data normalization on deep neural network for time series

forecasting. arXiv Preprint arXiv:1812.05519.

Bhattacharyya, A., Chakraborty, T., & Rai, S. N. (2020). Stochastic forecasting of COVID-19 daily

new cases across countries with a novel hybrid time series model.

https://doi.org/10.1101/2020.10.01.20205021

Biskup, J., & Menzel, R. (2007). Building a Tool for Cost-Based Design of Object-Oriented

Database Schemas. In C. Parent, K.-D. Schewe, V. C. Storey, & B. Thalheim (Eds.), Conceptual

159

Modeling—ER 2007 (Vol. 4801, pp. 120–131). Springer Berlin Heidelberg.

https://doi.org/10.1007/978-3-540-75563-0_10

Bobrova, T. (2023). Updating parameters of an information model for road construction flow in

work development project. The Russian Automobile and Highway Industry Journal.

https://doi.org/10.26518/2071-7296-2022-19-6-916-927

Boskers, N. D., & AbouRizk, S. M. (2005). Modeling Scheduling Uncertainty in Capital

Construction Projects. Proceedings of the Winter Simulation Conference, 2005., 1500–1507.

https://doi.org/10.1109/WSC.2005.1574417

Box, G. E. P., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. (2016). Time series analysis:

Forecasting and control (Fifth edition). Wiley.

Brownlee, J. (2018). Deep Learning for Time Series Forecasting: Predict the Future with MLPs,

CNNs and LSTMs in Python. Machine Learning Mastery.

https://books.google.ca/books?id=o5qnDwAAQBAJ

Caniato, F., Kalchschmidt, M., & Ronchi, S. (2011). Integrating quantitative and qualitative

forecasting approaches: Organizational learning in an action research case. Journal of the

Operational Research Society, 62(3), 413–424. https://doi.org/10.1057/jors.2010.142

Carlo, M. (2017). Markov Chain. https://doi.org/10.1007/978-1-4899-7687-1_100285

Carney, M., Cunningham, P., & Lucey, B. (2006). Making Density Forecasting Models

Statistically Consistent. Frontiers in Finance & Economics. https://doi.org/10.2139/ssrn.877629

Chandra, R., Goyal, S., & Gupta, R. (2021). Evaluation of Deep Learning Models for Multi-Step

Ahead Time Series Prediction. IEEE Access, 9, 83105–83123.

https://doi.org/10.1109/ACCESS.2021.3085085

Chao, L.-C., & Chien, C.-F. (2009). Estimating Project S-Curves Using Polynomial Function and

Neural Networks. Journal of Construction Engineering and Management, 135, 169–177.

https://doi.org/10.1061/(ASCE)0733-9364(2009)135:3(169)

Chekanov, S. (2016). Data Analysis and Data Mining. 431–473. https://doi.org/10.1007/978-3-

319-28531-3_12

160

Chen, H., Chen, W., & Lin, Y.-L. (2016). Earned value project management: Improving the

predictive power of planned value. International Journal of Project Management, 34, 22–29.

https://doi.org/10.1016/J.IJPROMAN.2015.09.008

Cheng, M.-Y., Chang, Y.-H., & Korir, D. (2019). Novel Approach to Estimating Schedule to

Completion in Construction Projects Using Sequence and Nonsequence Learning. Journal of

Construction Engineering and Management, 145(11), 04019072.

https://doi.org/10.1061/(ASCE)CO.1943-7862.0001697

Cheng, M.-Y., & Wu, Y.-W. (2009). Evolutionary support vector machine inference system for

construction management. Automation in Construction, 18(5), 597–604.

https://doi.org/10.1016/j.autcon.2008.12.002

Chhotelal, B. Y., Tophique, Q., & Hira, L. Y. (2023). A study of delays in indian road construction

projects under different contracts. I-Manager’s Journal on Structural Engineering, 12(1), 34.

https://doi.org/10.26634/jste.12.1.19974

Cho, J.-E., & Lim, J. (2020). Research on Improving Schedule Forecasting Method for Delayed

Defense Research & Development Project. Journal of the Korea Institute of Military Science and

Technology. https://doi.org/10.9766/kimst.2020.23.3.286

Chollet, F. (2018). Deep learning with Python. Manning Publications Co.

Chou, J.-S., Chen, H.-M., Hou, C.-C., & Lin, C.-W. (2010). Visualized EVM system for assessing

project performance. Automation in Construction, 19(5), 596–607.

https://doi.org/10.1016/j.autcon.2010.02.006

CII. (2019). PDRI: Project Definition Rating Index Industrial Projects (5). Construction Industry

Institute.

Cristóbal, J. R. S. (2017). The S-curve envelope as a tool for monitoring and control of projects.

Procedia Computer Science, 121, 756–761. https://doi.org/10.1016/j.procs.2017.11.097

Cropper, A., Tamaddoni-Nezhad, A., & Muggleton, S. H. (2016). Meta-Interpretive Learning of

Data Transformation Programs. In K. Inoue, H. Ohwada, & A. Yamamoto (Eds.), Inductive Logic

Programming (Vol. 9575, pp. 46–59). Springer International Publishing.

https://doi.org/10.1007/978-3-319-40566-7_4

161

Croux, C., & Dehon, C. (2010). Influence functions of the Spearman and Kendall correlation

measures. Statistical Methods & Applications, 19, 497–515. https://doi.org/10.2139/ssrn.1585216

Daoud, J. I. (2017). Multicollinearity and Regression Analysis. Journal of Physics: Conference

Series, 949(1), 012009. https://doi.org/10.1088/1742-6596/949/1/012009

Dibert, J. C., & Velez, J. C. (2006). An Analysis of Earned Value Management Implementation

Within the F-22 System Program Office’s Software Development: Defense Technical Information

Center. https://doi.org/10.21236/ADA460316

Dilipkumar, S., & Durairaj, M. (2022). Detection of Attacks Using Multilayer Perceptron

Algorithm. In G. Ranganathan, X. Fernando, & F. Shi (Eds.), Inventive Communication and

Computational Technologies (Vol. 311, pp. 943–950). Springer Nature Singapore.

https://doi.org/10.1007/978-981-16-5529-6_71

Dinov, I. D. (2023). Deep Learning, Neural Networks. In I. D. Dinov, Data Science and Predictive

Analytics (pp. 773–901). Springer International Publishing. https://doi.org/10.1007/978-3-031-

17483-4_14

Duan, Y., Edwards, J. S., & Dwivedi, Y. K. (2019). Artificial intelligence for decision making in

the era of Big Data – evolution, challenges and research agenda. International Journal of

Information Management, 48, 63–71. https://doi.org/10.1016/j.ijinfomgt.2019.01.021

Durbach, I., Merven, B., & McCall, B. (2017). Expert elicitation of autocorrelated time series with

application to e3 (energy-environment-economic) forecasting models. Environmental Modelling

& Software, 88, 93–105. https://doi.org/10.1016/j.envsoft.2016.11.007

Durdyev, S., & Hosseini, M. R. (2019). Causes of delays on construction projects: A

comprehensive list. International Journal of Managing Projects in Business, 13(1), 20–46.

https://doi.org/10.1108/IJMPB-09-2018-0178

Enshassi, A., Al‐Najjar, J., & Kumaraswamy, M. (2009). Delays and cost overruns in the

construction projects in the Gaza Strip. Journal of Financial Management of Property and

Construction, 14(2), 126–151. https://doi.org/10.1108/13664380910977592

162

Faghihi, V., Reinschmidt, K. F., & Kang, J. H. (2014). Construction scheduling using Genetic

Algorithm based on Building Information Model. Expert Systems with Applications, 41(16), 7565–

7578. https://doi.org/10.1016/j.eswa.2014.05.047

Fayad, A. M., Hussein, B. A., Hajj-Hassan, M., & Haj-Ali, A. (2019). A New Approach for

Complementing the Earned Value Method for Project Progress Monitoring and Controlling. New

Challenges in Accounting and Finance. https://doi.org/10.32038/ncaf.2019.02.02

Fearnley, N., Robinson, G., & Leonard, J. (2023). Global Construction Futures (p. 600). Oxford

Economics. https://www.oxfordeconomics.com/

Field, A. (2024). Discovering Statistics Using IBM SPSS Statistics (6th ed. edition). Sage

Publications Ltd.

Flyvbjerg, B., Bruzelius, N., & Rothengatter, W. (2003). Megaprojects and risk: An anatomy of

ambition. Cambridge University Press.

Flyvbjerg, B., Garbuio, M., & Lovallo, D. (2009). Delusion and Deception in Large Infrastructure

Projects: Two Models for Explaining and Preventing Executive Disaster. California Management

Review, 51(2), 170–194. https://doi.org/10.2307/41166485

Frandson, A. G., Seppänen, O., & Tommelein, I. D. (2015). Comparison between location based

management and takt time planning. 3–12.

Fukushima, K. (2000). Defining ‘Pull Scheduling.’ Bulletin of the Department of Economics, 1,

35–36.

Gan, G., Ma, C., & Wu, J. (2007). Data clustering: Theory, algorithms, and applications. SIAM,

Society for Industrial and Applied Mathematics ; American Statistical Association.

Ghanem, M., Hamzeh, F., Seppänen, O., Shehab, L., & Zankoul, E. (2022). Pull planning versus

push planning: Investigating impacts on crew performance from a location-based perspective.

Frontiers in Built Environment, 8, 980023. https://doi.org/10.3389/fbuil.2022.980023

Gneiting, T., & Katzfuss, M. (2014). Probabilistic Forecasting. Annual Review of Statistics and Its

Application, 1(1), 125–151. https://doi.org/10.1146/annurev-statistics-062713-085831

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. The MIT Press.

163

Grandage, A. J. (2022). Managing Performance for Capital Projects. State and Local Government

Review, 54(3), 221–235. https://doi.org/10.1177/0160323X221079675

Gridin, I. (2022). Time series forecasting using deep learning: Combining PyTorch, RNN, TCN,

and deep neural network models to provide production-ready prediction solutions (First edition).

BPB Publications.

Gutman, A. J., & Goldmeier, J. (2021). Becoming a data head: How to think, speak, and

understand data science, statistics, and machine learning. Wiley.

Hajdu, M. (1997). Network Scheduling Techniques for Construction Project Management (Vol.

16). Springer US. https://doi.org/10.1007/978-1-4757-5951-8

Haque, A., Hossain, T., Murshed, M. N., Iqbal, K. I. B., & Uddin, M. M. (2022). Estimating

Aerodynamic Data via Supervised Learning. 2022 25th International Conference on Computer

and Information Technology (ICCIT), 67–71.

https://doi.org/10.1109/ICCIT57492.2022.10054896

Harrington, P. (2012). Machine learning in action. Manning Publications Co.

Hegazy, T., & Mostafa, K. (2021). Enhanced CPM/LOB repetitive scheduling formulation to meet

deadlines. 337–346.

Hoberman, S. (2015). Data Modeling Made Simple with ER/Studio Data Architect: Adapting to

Agile Data Modeling in a Big Data World (2nd edition). Technics Publications.

Hopkins, D., Rickwood, D. J., Hallford, D. J., & Watsford, C. (2022). Structured data vs.

unstructured data in machine learning prediction models for suicidal behaviors: A systematic

review and meta-analysis. Frontiers in Digital Health, 4, 945006.

https://doi.org/10.3389/fdgth.2022.945006

Hyndman, R. J. (2006). Another look at forecast-accuracy metrics for intermittent demand.

Foresight: The International Journal of Applied Forecasting, 4(4), 43–46.

Inoue, A., Jin, L., & Rossi, B. (2017). Rolling window selection for out-of-sample forecasting with

time-varying parameters. Journal of Econometrics, 196(1), 55–67.

164

Iranmanesh, H., Mojir, N., & Kimiagari, S. (2007). A new formula to “Estimate At Completion”

of a Project’s time to improve “Earned Value Management System.” 2007 IEEE International

Conference on Industrial Engineering and Engineering Management, 1014–1017.

https://doi.org/10.1109/IEEM.2007.4419345

Javeri, I. Y., Toutiaee, M., Arpinar, I. B., Miller, J. A., & Miller, T. W. (2021). Improving Neural

Networks for Time-Series Forecasting using Data Augmentation and AutoML. 2021 IEEE Seventh

International Conference on Big Data Computing Service and Applications (BigDataService), 1–

8. https://doi.org/10.1109/BigDataService52369.2021.00006

Kandel, I., & Castelli, M. (2020). The effect of batch size on the generalizability of the

convolutional neural networks on a histopathology dataset. ICT Express, 6(4), 312–315.

https://doi.org/10.1016/j.icte.2020.04.010

Karimi-Bidhendi, S., Munshi, F., & Munshi, A. (2018). Scalable Classification of Univariate and

Multivariate Time Series. 2018 IEEE International Conference on Big Data (Big Data), 1598–

1605. https://doi.org/10.1109/BigData.2018.8621889

Kelleher, J. D. (2019). Deep learning. The MIT Press.

Kermanshachi, S., & Pamidimukkala, A. (2023). Uncertainty Analysis of Key Schedule

Performance Indicators in Design, Procurement, and Construction Phases of Heavy Industrial

Projects. Journal of Legal Affairs and Dispute Resolution in Engineering and Construction, 15(1),

04522042. https://doi.org/10.1061/(ASCE)LA.1943-4170.0000588

Kerzner, H. (2017). Project management: A systems approach to planning, scheduling, and

controlling (Twelfth edition). Wiley.

Kesavaraj, G., & Sukumaran, S. (2013). A study on classification techniques in data mining. 2013

Fourth International Conference on Computing, Communications and Networking Technologies

(ICCCNT), 1–7. https://doi.org/10.1109/ICCCNT.2013.6726842

Khafri, A. (2018, Fall). A Framework for Forecasting Project Estimate at Completion Using

Historical and Current Performance Data. ERA. https://doi.org/10.7939/R32F7K69P

165

Khamooshi, H., & Abdi, A. (2017). Project Duration Forecasting Using Earned Duration

Management with Exponential Smoothing Techniques. Journal of Management in Engineering,

33. https://doi.org/10.1061/(ASCE)ME.1943-5479.0000475

Khamooshi, H., & Golafshani, H. (2014). EDM: Earned Duration Management, a new approach

to schedule performance management and measurement. International Journal of Project

Management, 32, 1019–1041. https://doi.org/10.1016/J.IJPROMAN.2013.11.002

Kim, B. C. (2007). Forecasting Project Progress and Early Warning of Project Overruns with

Probabilistic Methods [Doctoral dissertation]. Texas A&M University.

Kim, J. H. (2019). Multicollinearity and misleading statistical results. Korean Journal of

Anesthesiology, 72(6), 558–569. https://doi.org/10.4097/kja.19087

Kostelyk, J. D. (2012, Spring). Project Controls for Engineering Work in Practice. ERA.

https://doi.org/10.7939/R3XM73

Kotsiantis, S. B., Zaharakis, I. D., & Pintelas, P. E. (2006). Machine learning: A review of

classification and combining techniques. Artificial Intelligence Review, 26(3), 159–190.

https://doi.org/10.1007/s10462-007-9052-3

Kraiem, Z. M., & Diekmann, J. E. (1987). Concurrent delays in construction projects. Journal of

Construction Engineering and Management, 113(4), 591–602.

Kroese, D. P., Taimre, T., & Botev, Z. I. (2011). Handbook for Monte Carlo methods. Wiley.

Lara-Benítez, P., Carranza-García, M., & Riquelme, J. C. (2021). An experimental review on deep

learning architectures for time series forecasting. International Journal of Neural Systems, 31(03),

2130001.

Lawal, H. S., Ahmadu, H. A., Abdullahi, M., Yamusa, M. A., & Abdulrazaq, M. (2023). Modeling

duration of building renovation projects. Journal of Financial Management of Property and

Construction, 28(3), 423–438. https://doi.org/10.1108/JFMPC-06-2022-0030

Lazzeri, F. (2021). Machine learning for time series forecasting with Python. Wiley.

Leach, L. P. (1999). Critical Chain Project Management Improves Project Performance. Project

Management Journal, 30(2), 39–51. https://doi.org/10.1177/875697289903000207

166

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444.

https://doi.org/10.1038/nature14539

Leu, S.-S., & Liu, C.-M. (2016). USING PRINCIPAL COMPONENT ANALYSIS WITH A

BACK-PROPAGATION NEURAL NETWORK TO PREDICT INDUSTRIAL BUILDING

CONSTRUCTION DURATION. Journal of Marine Science and Technology, 24(2).

https://doi.org/10.6119/JMST-015-0325-2

Li, G., & Jung, J. J. (2023). Deep learning for anomaly detection in multivariate time series:

Approaches, applications, and challenges. Information Fusion, 91, 93–102.

https://doi.org/10.1016/j.inffus.2022.10.008

Li, Q., & Chen, Y. (2009). Entity-Relationship Diagram. 125–139. https://doi.org/10.1007/978-3-

540-89556-5_6

Li, S. Y. (2020). Automating data augmentation: Practice, theory and new direction. SAIL Blog.

Retrieved March, 8, 2023.

Ling, S. (2023). Exploring Timescale in Language Comprehension with EEG.

https://doi.org/10.7939/R3-547N-9P79

Linoff, G., Berry, M. J. A., & Linoff, G. S. (2011). Data mining techniques: For marketing, sales,

and customer relationship management (3. ed). Wiley.

Lishner, I., & Shtub, A. (2022). Using an Artificial Neural Network for Improving the Prediction

of Project Duration. Mathematics, 10(22), 4189. https://doi.org/10.3390/math10224189

Litsiou, K., Polychronakis, Y., Karami, A., & Nikolopoulos, K. (2022). Relative performance of

judgmental methods for forecasting the success of megaprojects. International Journal of

Forecasting, 38(3), 1185–1196. https://doi.org/10.1016/j.ijforecast.2019.05.018

Lorterapong, P., & Ussavadilokrit, M. (2013). Construction Scheduling Using the Constraint

Satisfaction Problem Method. Journal of Construction Engineering and Management, 139(4),

414–422. https://doi.org/10.1061/(ASCE)CO.1943-7862.0000582

Loshin, D. (2011). Evaluating the business impacts of poor data quality. Information Quality

Journal.

167

Lovallo, D., & Kahneman, D. (2003). Delusions of Success: How Optimism Undermines

Executives’ Decisions. Harvard Business Review, 81(7), 1–10.

Lu, M. (2020). Construction Planning by Engineer-In-Training (1st ed.). Kendall Hunt.

Makridakis, S. (1993). Accuracy measures: Theoretical and practical concerns. International

Journal of Forecasting, 9(4), 527–529. https://doi.org/10.1016/0169-2070(93)90079-3

Makridakis, S., & Gaba, A. (1998). Judgment: Its role and value for strategy. INSEAD.

Makridakis, S., Spiliotis, E., & Assimakopoulos, V. (2018). Statistical and Machine Learning

forecasting methods: Concerns and ways forward. PLOS ONE, 13(3), e0194889.

https://doi.org/10.1371/journal.pone.0194889

Makridakis, S., Spiliotis, E., Assimakopoulos, V., Semenoglou, A.-A., Mulder, G., &

Nikolopoulos, K. (2023). Statistical, machine learning and deep learning forecasting methods:

Comparisons and ways forward. Journal of the Operational Research Society, 74(3), 840–859.

https://doi.org/10.1080/01605682.2022.2118629

Mao, Z., Xu, Y., & Suarez, E. (2023). Dataset Management Platform for Machine Learning.

https://doi.org/10.48550/ARXIV.2303.08301

Matey, T. K., Bhonde, C. B. K., Pathak, S., & Kholia, B. (2017). A Case Study: Line of Balance

(LOB) Method for High Rise Residential Project. International Journal of Advance Research and

Innovative Ideas in Education, 3, 1729–1736.

Matti, T., & Antti, L. (2020). Improving the Information Flow in the Construction Phase of a

Construction Project. Proceedings of the Creative Construction E-Conference 2020.

https://doi.org/10.3311/ccc2020-044

Mayo-Alvarez, L., Alvarez-Risco, A., Del-Aguila-Arcentales, S., Sekar, M. C., & Yañez, J. A.

(2022). A Systematic Review of Earned Value Management Methods for Monitoring and Control

of Project Schedule Performance: An AHP Approach. Sustainability, 14(22), 15259.

https://doi.org/10.3390/su142215259

168

Meng, F., Yu, S., & Xue, J. (2022). Construction Schedule Management System for Large-Scale

Construction Projects Based on Multisensor Network. Computational Intelligence and

Neuroscience, 2022. https://doi.org/10.1155/2022/3003552

Merrow, E. W. (2011). Industrial megaprojects: Concepts, strategies, and practices for success.

Wiley.

Miller, J. D. (2017). Statistics for data science: Leverage the power of statistics for data analysis,

classification, regression, machine learning, and neural networks. Packt.

Mishra, S., & Misra, A. (2017). Structured and Unstructured Big Data Analytics. 2017

International Conference on Current Trends in Computer, Electrical, Electronics and

Communication (CTCEEC), 740–746. https://doi.org/10.1109/CTCEEC.2017.8454999

Mitchell, T. M. (2013). Machine learning (Nachdr.). McGraw-Hill.

Montgomery, D. C., Jennings, C. L., & Kulahci, M. (2015). Introduction to time series analysis

and forecasting (Second edition). Wiley.

Mubarak, S. (2019). Construction project scheduling and control (Fourth edition). Wiley.

Müller, D., Müller, M. G., Kress, D., & Pesch, E. (2022). An algorithm selection approach for the

flexible job shop scheduling problem: Choosing constraint programming solvers through machine

learning. European Journal of Operational Research, 302(3), 874–891.

https://doi.org/10.1016/j.ejor.2022.01.034

Nayak, S., Misra, B. B., & Behera, H. S. (2014). Impact of data normalization on stock index

forecasting. International Journal of Computer Information Systems and Industrial Management

Applications, 6, 13–13.

Nelles, O. (2001). Unsupervised Learning Techniques. In O. Nelles, Nonlinear System

Identification (pp. 137–155). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-

04323-3_6

Nielsen, A. (2019). Practical time series analysis: Prediction with statistics and machine learning

(First edition). O’Reilly.

169

Nowrin, T. (2022). Forecasting Short-Term Road Surface Temperatures – A Neural Network-

based Approach. https://doi.org/10.7939/R3-3PK3-KP19

Oberlender, G. D., & Spencer, G. R. (2022). Project management for engineering and

construction: A life-cycle approach (Fourth edition). McGraw Hill Education.

Obite, C., Olewuezi, N., Ugwuanyim, G., & Bartholomew, D. (2020). Multicollinearity Effect in

Regression Analysis: A Feed Forward Artificial Neural Network Approach. Asian Journal of

Probability and Statistics, 22–33. https://doi.org/10.9734/ajpas/2020/v6i130151

Pabuccu, H., & Barbu, A. (2023). Feature Selection for Forecasting. arXiv Preprint

arXiv:2303.02223.

Pan, Y., & Zhang, L. (2021). Roles of artificial intelligence in construction engineering and

management: A critical review and future trends. Automation in Construction, 122, 103517.

https://doi.org/10.1016/j.autcon.2020.103517

Papadopoulos, C., & Yeung, H. (2001). Uncertainty estimation and Monte Carlo simulation

method. Flow Measurement and Instrumentation, 12, 291–298. https://doi.org/10.1016/S0955-

5986(01)00015-2

Park, J. E. (2021). Schedule delays of major projects: What should we do about it? Transport

Reviews, 41(6), 814–832. https://doi.org/10.1080/01441647.2021.1915897

Passalis, N., Tefas, A., Kanniainen, J., Gabbouj, M., & Iosifidis, A. (2020). Deep Adaptive Input

Normalization for Time Series Forecasting. IEEE Transactions on Neural Networks and Learning

Systems, 31(9), 3760–3765. https://doi.org/10.1109/TNNLS.2019.2944933

Pavlova, O., Yushak, A., & Antipova, M. (2021). MANAGEMENT OF INFORMATION FLOWS

IN THE ACTIVITIES OF CONSTRUCTION COMPANIES IN THE REGION. Market

Infrastructure. https://doi.org/10.32843/infrastruct61-19

Petropoulos, F., Apiletti, D., Assimakopoulos, V., Babai, M. Z., Barrow, D. K., Ben Taieb, S.,

Bergmeir, C., Bessa, R. J., Bijak, J., Boylan, J. E., Browell, J., Carnevale, C., Castle, J. L., Cirillo,

P., Clements, M. P., Cordeiro, C., Cyrino Oliveira, F. L., De Baets, S., Dokumentov, A., … Ziel,

F. (2022). Forecasting: Theory and practice. International Journal of Forecasting, 38(3), 705–871.

https://doi.org/10.1016/j.ijforecast.2021.11.001

170

Pirbazari, A. M., Chakravorty, A., & Rong, C. (2019). Evaluating Feature Selection Methods for

Short-Term Load Forecasting. 2019 IEEE International Conference on Big Data and Smart

Computing (BigComp), 1–8. https://doi.org/10.1109/BIGCOMP.2019.8679188

Priyo, M. (2021). Earned Value Management System in Indonesian Construction Projects.

International Journal of Integrated Engineering. https://doi.org/10.30880/ijie.2021.13.03.005

Program Evaluation Research Task (PERT): Summary Report (p. 35). (1958). Bureau of Naval

Weapons, Department of the Navy.

Project Management Institute (Ed.). (2017). A guide to the project management body of knowledge

/ Project Management Institute (Sixth edition). Project Management Institute.

Project Management Institute (Ed.). (2019). Practice standard for scheduling (Third edition).

Project Management Institute, Inc.

Project Management Institute (Ed.). (2023). Process groups: A practice guide. Project

Management Institute, Inc.

Ramchoun, H., Amine, M., Idrissi, J., Ghanou, Y., & Ettaouil, M. (2016). Multilayer Perceptron:

Architecture Optimization and Training. International Journal of Interactive Multimedia and

Artificial Intelligence, 4(1), 26. https://doi.org/10.9781/ijimai.2016.415

Raz, T., Barnes, R., & Dvir, D. (2003). A Critical Look at Critical Chain Project Management.

Project Management Journal, 34(4), 24–32. https://doi.org/10.1177/875697280303400404

Sallabi, A. K. (2011). Monte Carlo Simulations of Adsorbed Molecules on Ionic Surfaces.

https://doi.org/10.5772/16047

Sanders, N. R., & Manrodt, K. B. (1994). Forecasting practices in US corporations: Survey results.

Interfaces, 24(2), 92–100.

Sanni-Anibire, M. O., Mohamad Zin, R., & Olatunji, S. O. (2022). Causes of delay in the global

construction industry: A meta analytical review. International Journal of Construction

Management, 22(8), 1395–1407. https://doi.org/10.1080/15623599.2020.1716132

171

Sanni-Anibire, M. O., Zin, R. M., & Olatunji, S. O. (2022). Machine learning model for delay risk

assessment in tall building projects. International Journal of Construction Management, 22(11),

2134–2143. https://doi.org/10.1080/15623599.2020.1768326

Schober, P., Boer, C., & Schwarte, L. (2018). Correlation Coefficients: Appropriate Use and

Interpretation. Anesthesia & Analgesia, 126. https://doi.org/10.1213/ANE.0000000000002864

Selcuk, O., Turkoglu, H., Polat, G., & Hajdu, M. (2024). An integrative literature review on the

causes of delays in construction projects: Evidence from developing countries. International

Journal of Construction Management, 24(6), 610–622.

https://doi.org/10.1080/15623599.2022.2135939

Senaviratna, N. A. M. R., & A. Cooray, T. M. J. (2019). Diagnosing Multicollinearity of Logistic

Regression Model. Asian Journal of Probability and Statistics, 5(2), Article 2.

https://doi.org/10.9734/ajpas/2019/v5i230132

Sepasgozar, S. M. E., Karimi, R., Shirowzhan, S., Mojtahedi, M., Ebrahimzadeh, S., & McCarthy,

D. (2019). Delay Causes and Emerging Digital Tools: A Novel Model of Delay Analysis,

Including Integrated Project Delivery and PMBOK. Buildings, 9(9), 191.

https://doi.org/10.3390/buildings9090191

Shahhossein, V., Afshar, M. R., & Amiri, O. (2017). The Root Causes of Construction Project

Failure. Scientia Iranica, 0(0), 0–0. https://doi.org/10.24200/sci.2017.4178

Shahsavand, P., Marefat, A., & Parchamijalal, M. (2018). Causes of delays in construction industry

and comparative delay analysis techniques with SCL protocol. Engineering, Construction and

Architectural Management, 25(4), 497–533. https://doi.org/10.1108/ECAM-10-2016-0220

Shrestha, N. (2020). Detecting Multicollinearity in Regression Analysis. American Journal of

Applied Mathematics and Statistics, 8, 39–42. https://doi.org/10.12691/ajams-8-2-1

Singh, J., & Banerjee, R. (2019). A Study on Single and Multi-layer Perceptron Neural Network.

2019 3rd International Conference on Computing Methodologies and Communication (ICCMC),

35–40. https://doi.org/10.1109/ICCMC.2019.8819775

Siu, M.-F. F., Lu, M., & AbouRizk, S. (2014). Bi-level project simulation methodology to integrate

superintendent and project manager in decision making: Shutdown/turnaround applications.

172

Proceedings of the Winter Simulation Conference 2014, 3353–3364.

https://doi.org/10.1109/WSC.2014.7020169

Statistics Canada. (2024). Gross domestic product (GDP) at basic prices, by industry, monthly

[dataset]. [object Object]. https://doi.org/10.25318/3610043401-ENG

Staudemeyer, R. C., & Morris, E. R. (2019). Understanding LSTM--a tutorial into long short-term

memory recurrent neural networks. arXiv Preprint arXiv:1909.09586.

Stephenson, H. L. (Ed.). (2015). Total cost management framework: An integrated approach to

portfolio, program, and project management (Second edition). AACE International.

Tang, Y., Sun, Q., Liu, R., & Wang, F. (2018). Resource Leveling Based on Line of Balance and

Constraint Programming. Computer‐Aided Civil and Infrastructure Engineering, 33.

https://doi.org/10.1111/mice.12383

Tanga, O., Akinradewo, O., Aigbavboa, C., Oke, A., & Adekunle, S. (2022). Data Management

Risks: A Bane of Construction Project Performance. Sustainability, 14(19), 12793.

https://doi.org/10.3390/su141912793

Taud, H., & Mas, J. F. (2018). Multilayer Perceptron (MLP). In M. T. Camacho Olmedo, M.

Paegelow, J.-F. Mas, & F. Escobar (Eds.), Geomatic Approaches for Modeling Land Change

Scenarios (pp. 451–455). Springer International Publishing. https://doi.org/10.1007/978-3-319-

60801-3_27

The origins of schedule management: The concepts used in planning, allocating, visualizing and

managing time in a project. (2018). Frontiers of Engineering Management, 0(0), 0.

https://doi.org/10.15302/J-FEM-2018012

The standard for organizational project management (OPM). (2018). Project Management

Institute.

Tommelein, I. D. (1998). Pull-Driven Scheduling for Pipe-Spool Installation: Simulation of Lean

Construction Technique. Journal of Construction Engineering and Management, 124(4), 279–

288. https://doi.org/10.1061/(ASCE)0733-9364(1998)124:4(279)

173

Torres, J. F., Hadjout, D., Sebaa, A., Martínez-Álvarez, F., & Lora, A. T. (2020). Deep Learning

for Time Series Forecasting: A Survey. Big Data. https://doi.org/10.1089/big.2020.0159

Turban, E., Sharda, R., & Delen, D. (2011). Decision support and business intelligence systems

(9th ed). Prentice Hall.

Ullrich, T. (2021). On the Autoregressive Time Series Model Using Real and Complex Analysis.

Forecasting. https://doi.org/10.3390/forecast3040044

Umadevi, S., & Marseline, K. S. J. (2017). A survey on data mining classification algorithms. 2017

International Conference on Signal Processing and Communication (ICSPC), 264–268.

https://doi.org/10.1109/CSPC.2017.8305851

Vabalas, A., Gowen, E., Poliakoff, E., & Casson, A. J. (2019). Machine learning algorithm

validation with a limited sample size. PloS One, 14(11), e0224365.

Vandevoorde, S., & Vanhoucke, M. (2006). A comparison of different project duration forecasting

methods using earned value metrics. International Journal of Project Management, 24(4), 289–

302. https://doi.org/10.1016/j.ijproman.2005.10.004

Vanhoucke, M. (2012). Earned Value Management. In M. Vanhoucke, Project Management with

Dynamic Scheduling (pp. 215–238). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-

642-25175-7_12

Vermeulen, A. F. (2020). Unsupervised Learning: Using Unlabeled Data. In A. F. Vermeulen,

Industrial Machine Learning (pp. 181–206). Apress. https://doi.org/10.1007/978-1-4842-5316-

8_6

Vertenten, M., Pretorius, L., & Pretorius, J. (2009). Earned Value as a performance measurement

tool for small and large construction projects in a South African environment. AFRICON 2009, 1–

5. https://doi.org/10.1109/AFRCON.2009.5308080

Wang, L. (2016). Discovering phase transitions with unsupervised learning. Physical Review B,

94(19), 195105. https://doi.org/10.1103/PhysRevB.94.195105

Wen, Q., Sun, L., Song, X., Gao, J., Wang, X., & Xu, H. (2020). Time Series Data Augmentation

for Deep Learning: A Survey. 4653–4660. https://doi.org/10.24963/ijcai.2021/631

174

Wheelan, C. J. (2014). Naked statistics: Stripping the dread from the data (First published as a

Norton paperback). W.W. Norton & Company.

Wilson, J. M. (2003). Gantt charts: A centenary appreciation. European Journal of Operational

Research, 149(2), 430–437. https://doi.org/10.1016/S0377-2217(02)00769-5

Witten, I. H., & Witten, I. H. (Eds.). (2017). Data mining: Practical machine learning tools and

techniques (Fourth Edition). Elsevier.

Wu, I.-C., Borrmann, A., Beißert, U., König, M., & Rank, E. (2010). Bridge construction schedule

generation with pattern-based construction methods and constraint-based simulation. Advanced

Engineering Informatics, 24(4), 379–388. https://doi.org/10.1016/j.aei.2010.07.002

Wu, W., Fang, L., Ma, T., Yang, Y., Zhao, W., Yu, P., & Wang, C. (2022). Research on Project

Duration Prediction Based on Artificial Neural Network. 2022 IEEE 5th International Electrical

and Energy Conference (CIEEC), 1613–1618.

https://doi.org/10.1109/CIEEC54735.2022.9845997

Xu, Y., & Goodacre, R. (2018). On splitting training and validation set: A comparative study of

cross-validation, bootstrap and systematic sampling for estimating the generalization performance

of supervised learning. Journal of Analysis and Testing, 2(3), 249–262.

Yang, I.-T., & Ioannou, P. G. (2001). Resource-driven scheduling for repetitive projects: A pull-

system approach. 1, 365–377.

Yang, J.-B., & Kao, C.-K. (2012). Critical path effect based delay analysis method for construction

projects. International Journal of Project Management, 30(3), 385–397.

https://doi.org/10.1016/j.ijproman.2011.06.003

Yang, L., Ma, Y., & Zhang, Y. (2023). Measuring Consistency in Text-based Financial

Forecasting Models. ArXiv, abs/2305.08524. https://doi.org/10.48550/arXiv.2305.08524

Yates, J. K., & Lockley, E. E. (2002). Documenting and Analyzing Construction Failures. Journal

of Construction Engineering and Management, 128(1), 8–17.

https://doi.org/10.1061/(ASCE)0733-9364(2002)128:1(8)

175

Yildiz, B., Bilbao, J. I., & Sproul, A. B. (2017). A review and analysis of regression and machine

learning models on commercial building electricity load forecasting. Renewable and Sustainable

Energy Reviews, 73, 1104–1122. https://doi.org/10.1016/j.rser.2017.02.023

Yu, F., Chen, X., Cory, C. A., Yang, Z., & Hu, Y. (2021). An Active Construction Dynamic

Schedule Management Model: Using the Fuzzy Earned Value Management and BP Neural

Network. KSCE Journal of Civil Engineering, 25(7), 2335–2349. https://doi.org/10.1007/s12205-

021-1041-6

Yudhi, M. R. A. (2022, September 21). Prediction Project Task Completion Using Supervised

Machine Learning Method: A Conceptual Approach. Proceedings of Indonesian Petroleum

Association, 46th Annual Convention & Exhibition, 2022. Indonesian Petroleum Association -

46th Annual Convention & Exhibition 2022. https://doi.org/10.29118/IPA22-F-104

Yue, X., Pye, S., DeCarolis, J., Li, F. G. N., Rogan, F., & Gallachóir, B. Ó. (2018). A review of

approaches to uncertainty assessment in energy system optimization models. Energy Strategy

Reviews, 21, 204–217. https://doi.org/10.1016/j.esr.2018.06.003

Yue, Y., Shi, X., Qin, L., Zhang, X., Chen, Y., Xu, J., Zheng, Z., Cao, Y., Liu, D., Li, Z., & Li, Y.

(2023). Ultrafast-and-Ultralight ConvNet-Based Intelligent Monitoring System for Diagnosing

Early-Stage Mpox Anytime and Anywhere. https://doi.org/10.48550/ARXIV.2308.13492

Zahran, K., Nour, M., & Hosny, O. (2016). The effect of learning on line of balance scheduling:

Obstacles and potentials. International Journal of Engineering Science, 6(4), 3831–3841.

Zhang, X., Roy Chowdhury, R., Shang, J., Gupta, R., & Hong, D. (2023). Towards Diverse and

Coherent Augmentation for Time-Series Forecasting. ICASSP 2023 - 2023 IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP), 1–5.

https://doi.org/10.1109/ICASSP49357.2023.10097273

Zhang, Y., Wang, J., & Wang, X. (2014). Review on probabilistic forecasting of wind power

generation. Renewable and Sustainable Energy Reviews, 32, 255–270.

https://doi.org/10.1016/j.rser.2014.01.033

Zivot, E., Wang, J., Zivot, E., & Wang, J. (2003). Rolling analysis of time series. Modeling

Financial Time Series with S-Plus®, 299–346.

176

Zupančič, B., Karba, R., Blažič, S., & Univerza v Ljubljani (Eds.). (2007). Proceedings of the 6th

EUROSIM Congress on Modelling and Simulation, EUROSIM 2007: 9 - 13 September, 2007,

Ljubljana, Slovenia.

177

Appendix A: Python Script for Duration at Completion Forecasting

using Long Short-Term Memory (LSTM) Algorithm – Work

Package Concrete

1. Importing libraries and functions

import matplotlib.pyplot as plt
import tensorflow as tf
from tensorflow import keras
import pandas as pd
import numpy as np
from sklearn.metrics import mean_absolute_error
from sklearn.metrics import mean_squared_error
from sklearn.metrics import mean_absolute_percentage_error
from math import sqrt
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import r2_score
from keras.models import load_model
from keras.regularizers import l2
from matplotlib.font_manager import FontProperties
import random

2. Reading raw data and initial Data Inspection

df_1 = pd.read_csv('Concrete_Data_NEW_3x.csv')
rev_1 = df_1.values.astype('float32')
titles_1 = list(df_1.columns)[1:]
feature_keys_1 = list(df_1.columns)[1:]
get_colors_1 = lambda n: ["#%06x" % random.randint(0, 0xFFFFFF) for _ in
range(n)]
colors_1 = get_colors_1(len(feature_keys_1))
date_time_key_1 = df_1.columns[0]

def show_raw_visualization(df, date_time_key, feature_keys, colors):
 data_0 = df[date_time_key]
 fig, axes = plt.subplots(nrows=round(len(feature_keys)/2+.1), ncols=2,
figsize=(15, 20), dpi=80, facecolor="w", edgecolor="k")
 for i in range(len(feature_keys)):
 key = feature_keys[i]
 c = colors[i % (len(colors))]
 t_data = df[key]
 t_data.index = data_0
 t_data.head()
 ax = t_data.plot(ax=axes[i // 2, i % 2], color=c, rot=0,)
 ax.legend([list(df.columns)[1:][i]])
 ax.set_title("{}".format(list(df.columns)[1:][i]),loc='left',color='blue'
)
 ax.grid()

178

 labels = ax.get_xticklabels() + ax.get_yticklabels()
 [label.set_fontname('Arial') for label in labels]
 plt.tight_layout()
show_raw_visualization(df_1, date_time_key_1, feature_keys_1, colors_1)

def show_heatmap(data):
 plt.matshow(data.corr())
 plt.xticks(range(data.shape[1]), data.columns, fontsize=8, rotation=90)
 plt.gca().xaxis.tick_bottom()
 plt.yticks(range(data.shape[1]), data.columns, fontsize=8)
 cb = plt.colorbar()
 cb.ax.tick_params(labelsize=12)
 plt.title("Feature Correlation Heatmap", fontsize=14)
 plt.show()
show_heatmap(df_1[list(df_1.columns)[1:]])

Selected_list= [1,9,10,11,17,18]
print("The selected parameters are:", ",".join([titles_1[i] for i in
Selected_list]))
selected_features_1 = [feature_keys_1[i] for i in Selected_list]

3. Data Preprocessing: Splitting, Normalization and Grouping for model training

split_1=0.7
past_1 = 3
future_1 = 0

Data Splitting ###
def splitting(split, df, selected_features):
 train_split = int(split * int(df.shape[0]))
 df_train= df[selected_features][:train_split]
 df_test= df[selected_features][train_split:]
 return df_train, df_test
df_train1, df_test1 = splitting(split_1, df_1, selected_features_1)

Data Normalization ###
def normalization(df):
 values = df.values.astype('float32')
 scaler = MinMaxScaler()
 values_scaled = scaler.fit_transform(values)
 df_scaled = pd.DataFrame(values_scaled)
 return df_scaled
df_train_scaled1 = normalization(df_train1)
df_test_scaled1 = normalization(df_test1)

Variables for denormalization ###
def denormalization(df):
 Max_orig = df.iloc[:,len(Selected_list)-1].max()
 Min_orig = df.iloc[:,len(Selected_list)-1].min()
 Delta = Max_orig-Min_orig
 return Delta, Min_orig
Delta_train1, Min_orig_train1 = denormalization(df_train1)

179

Delta_test1, Min_orig_test1 = denormalization(df_test1)

Grouping for Modelling ###
def df_to_X_y(df, past):
 df_as_np = df.to_numpy()
 X = []
 y = []
 for i in range(len(df_as_np)-past):
 row = [r for r in df_as_np[i:i+past]]
 X.append(row)
 label = df_as_np[i+past][df.shape[1]-1]
 y.append(label)
 return np.array(X), np.array(y)

X1_train, y1_train = df_to_X_y(df_train_scaled1, past_1)
X1_val, y1_val = df_to_X_y(df_test_scaled1, past_1)
X1_train.shape, y1_train.shape, X1_val.shape, y1_val.shape

4. Forecasting Model Training

learning_rate_1 = 0.001
epochs_1 = 200
batch_size_1=8
recurrent_dropout_1=0.30
l2_reg_factor_1=0.01

Layer Designs ###
inputs_1 = keras.layers.Input(shape=(X1_train.shape[1], X1_train.shape[2]))
lstm_out_1 = keras.layers.LSTM(64, recurrent_dropout=recurrent_dropout_1,
kernel_regularizer=l2(l2_reg_factor_1),recurrent_regularizer=l2(l2_reg_factor_1))
(inputs_1)
outputs_1 = keras.layers.Dense(1,kernel_regularizer=l2(l2_reg_factor_1))
(lstm_out_1)

Model development ###
model1 = keras.Model(inputs=inputs_1, outputs=outputs_1)
model1.summary()
model1.compile(optimizer=keras.optimizers.Adam(learning_rate=learning_rate_1),
loss='mae', metrics=["mse", "mape"])
es_callback_1 = keras.callbacks.EarlyStopping(monitor="val_loss", min_delta=0,
patience=5)
modelckpt_callback_1 = keras.callbacks.ModelCheckpoint(filepath='model1/',
monitor="val_loss", mode='min', verbose=1, save_best_only=True,)
history_1 = model1.fit(X1_train, y1_train, validation_data=(X1_val, y1_val),
batch_size=batch_size_1, epochs=epochs_1,
callbacks=[modelckpt_callback_1,es_callback_1], shuffle=False)
model1.save('model1.h5')

def visualize_loss(history, title):
 loss = history.history["loss"]
 val_loss = history.history["val_loss"]
 epochs = range(len(loss))

180

 plt.figure()
 plt.plot(epochs, loss, "b", label="Training loss")
 plt.plot(epochs, val_loss, "r", label="Validation loss")
 plt.title(title, fontsize=18, fontweight='bold', family='Arial')
 plt.xlabel("Epochs",fontsize=14, family='Arial')
 plt.ylabel("Loss",fontsize=14, family='Arial')
 font_prop = FontProperties(family='Arial', size=16)
 plt.legend(prop=font_prop)
 plt.grid(True)
 plt.show()

visualize_loss(history_1, "Training and Validation Loss\nModel: LSTM Work
Package: Concrete")

5. Creating functions for Performance Metrics and Measurements

def performance_metrics(model, X, y, Delta, Min_orig, Seasonality_value, ytrain):
 Actuals_den = (y)*(Delta) + Min_orig
 Predicted_den = (model.predict(X).flatten())*(Delta) + Min_orig
 """MAPE"""
 MAPE= mean_absolute_percentage_error(Actuals_den, Predicted_den)*100
 """MAE"""
 MAE= mean_absolute_error(Actuals_den, Predicted_den)
 """RMSE"""
 RMSE = sqrt(mean_squared_error(Actuals_den, Predicted_den))
 """MSE"""
 MSE = mean_squared_error(Actuals_den, Predicted_den)
 """sMAPE"""
 sMAPE = (np.sum((abs(Predicted_den- Actuals_den))/(abs(Actuals_den)+

abs(Predicted_den))))*200/(y.shape[0])
 """MASE"""
 ytrain_un = (ytrain)*(Delta) + Min_orig

MASE = MAE / (np.sum(abs(ytrain_un[0:-Seasonality_value]-
ytrain_un[Seasonality_value:]))/ (len(ytrain_un[0:-Seasonality_value])))

Metrics = {'Value' : [round(MASE,3), f"{round(sMAPE,2)} %", f"{round(MAPE,3)}
%", round(MAE,3), round(MSE,3), round(RMSE,3)]}
df_metrics = pd.DataFrame(Metrics, index=['MASE', 'sMAPE', 'MAPE', 'MAE',
'MSE', 'RMSE'])

 return print(df_metrics)

performance_metrics(model1, X1_train, y1_train, Delta_train1, Min_orig_train1 ,
20, y1_train)
performance_metrics(model1, X1_val, y1_val, Delta_test1, Min_orig_test1, 20,
y1_train)

6. Exporting and Storing Actual and Predicted Results

def results_to_csv(model, X, y, title, Delta, Min_orig):
 Actuals_den = (y)*(Delta) + Min_orig
 Predicted_den = (model.predict(X).flatten())*(Delta) + Min_orig

181

 df_results = pd.DataFrame({'Actuals':Actuals_den, 'Predicted':Predicted_den})
 df_results.to_csv(f"{title}.csv", index=False)

results_to_csv(model1, X1_train, y1_train,"Training_Concrete", Delta_train1,
Min_orig_train1)
results_to_csv(model1, X1_val, y1_val,"Validation_Concrete", Delta_test1,
Min_orig_test1)

7. Plotting actual and predicted results in a linear chart for comparison

def plot_predictions(model, Xtrain, ytrain, Xval, yval, past, Deltatrain,
Min_origtrain, Deltaval, Min_origval):
 predictions_train = (model.predict(Xtrain).flatten())*(Deltatrain) +
Min_origtrain
 dftrain = pd.DataFrame(data={'Predictions_train':predictions_train,
'Actuals_train':(ytrain)*(Deltatrain) + Min_origtrain})
 axisTrain= np.arange(past,past+ytrain.shape[0])
 plt.plot(axisTrain, dftrain['Predictions_train'],'r',ls='--', label='Training
Dataset Predictions')
 plt.plot(axisTrain, dftrain['Actuals_train'],'b', label='Training Dataset
Actuals')
 plt.title('Actual vs Predicted values - LSTM', fontname='Arial', fontsize=18,
fontweight='bold', color='blue')
 predictions_val = (model.predict(Xval).flatten())*(Deltaval) + Min_origval
 dfval = pd.DataFrame(data={'Predictions_val':predictions_val,
'Actuals_val':(yval)*(Deltaval) + Min_origval})
 axisVal= np.arange(past+ytrain.shape[0],past+ytrain.shape[0]+yval.shape[0])
 plt.plot(axisVal, dfval['Predictions_val'],'m',ls='--', label='Validation
Dataset Predictions')
 plt.plot(axisVal, dfval['Actuals_val'],'c', label='Validation Dataset
Actuals')
 plt.xlabel('Periods', fontname='Arial', fontsize=14)
 plt.ylabel('DTC (days)', fontname='Arial', fontsize=14)
 font_prop = FontProperties(family='Arial', size=12)
 plt.legend(prop=font_prop)
 plt.grid(True)
 return plt.show(), print(dftrain), print(dfval)

plot_predictions(model1, X1_train, y1_train, X1_val, y1_val, past_1,
Delta_train1, Min_orig_train1, Delta_test1, Min_orig_test1)

8. Testing of Forecasting Model using unseen data

model1 = load_model('model1.h5')
df_predic1= pd.read_csv('Synthetic_Concrete_data_SHORT_NEW_3.csv')
df_predic1 = df_predic1[selected_features_1]
df_predict_scaled1 = normalization(df_predic1)
X1_test, y1_test = df_to_X_y(df_predict_scaled1, past_1)
Xpredict1=model1.predict(X1_test).flatten()
Delta_test1, Min_orig_test1 = denormalization(df_predic1)
print(Xpredict1*Delta_test1+Min_orig_test1)
print(y1_test*Delta_test1+Min_orig_test1)

182

array1_1=y1_test*Delta_test1+Min_orig_test1
array2_1=Xpredict1*Delta_test1+Min_orig_test1
dfarraytest_1 = pd.DataFrame({'Column1': array1_1, 'Column2': array2_1})
dfarraytest_1.to_csv('test_concrete_results.csv', index=False)

performance_metrics(model1, X1_test, y1_test, Delta_test1, Min_orig_test1 , 20,
y1_train)
plot_scatter(model1, X1_test, y1_test,'Test Dataset\nModel: LSTM Work Package:
Concrete')

def plot_test_predictions(model, Xtest, ytest, past, Deltatest, Min_origtest):
 predictions_test= (model.predict(Xtest).flatten())*(Deltatest) +
Min_origtest
 dftest = pd.DataFrame(data={'Predictions_test':predictions_test,
'Actuals_test':(ytest)*(Deltatest) + Min_origtest})
 axisTest= np.arange(past,past+ytest.shape[0])
 plt.plot(axisTest, dftest['Predictions_test'],'r',ls='--', label='Test
Dataset Predictions')
 plt.plot(axisTest, dftest['Actuals_test'],'b', label='Test Dataset Actuals')
 plt.title('Actual vs Predicted values - LSTM', fontname='Arial', fontsize=18,
fontweight='bold', color='blue')
 plt.xlabel('Periods', fontname='Arial', fontsize=14)
 plt.ylabel('DTC (days)', fontname='Arial', fontsize=14)
 font_prop = FontProperties(family='Arial', size=12)
 plt.legend(prop=font_prop)
 plt.grid(True)
 return plt.show(), print(dftest)

plot_test_predictions(model1, X1_test, y1_test, past_1, Delta_test1,
Min_orig_test1)

183

Appendix B: Python Script for the Graphical User Interface (GUI)

for Project Duration at Completion Forecasting

1. Importing libraries and functions

import tkinter as tk
from tkinter import ttk
import tkinter.messagebox as messagebox
import json
import pandas as pd
from keras.models import load_model
from sklearn.metrics import mean_absolute_error
from sklearn.preprocessing import MinMaxScaler
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg
from tkinter import filedialog
from PIL import Image, ImageTk
import xml.etree.ElementTree as Xet
from datetime import timedelta
import networkx as nx
from datetime import datetime
import datetime
import os
import matplotlib.dates as mdates
from tkinter import font
from pandas import Timedelta
import math
from tkcalendar import Calendar
import re
from matplotlib.figure import Figure
from matplotlib.ticker import FixedLocator
from matplotlib.offsetbox import OffsetImage, AnnotationBbox
from PIL import Image

2. Initializing Tkinter as Tk, creating frames and storage for project information

root = tk.Tk()
root.title("Duration Project Forecasting for Time Series Data using Deep Learning")
root.configure(background='white')
style = ttk.Style()
style.theme_use('vista')

#Creation of frames:
project_hub_frame = ttk.Frame(root, style='Custom.TFrame')
progress_frame = ttk.Frame(root, style='Custom.TFrame')
forecasting_work_package_frame= ttk.Frame(root, style='Custom.TFrame')
forecasting_project_frame= ttk.Frame(root, style='Custom.TFrame')

Load project info from a file if it exists
try:
 with open("project_info.json", "r") as file:
 project_info = json.load(file)
except FileNotFoundError:
 project_info = {}
def save_project_info_to_file():
 with open("project_info.json", "w") as file:

184

 json.dump(project_info, file, indent=4)

3. Defining the Project Hub to Entered project visualization

def project_hub():
 global treeview_projects, work_packages_list_tab2
 treeframe = ttk.Labelframe(project_hub_frame, text="Project Hub",
style='Custom2.TLabelframe',)
 treeframe.grid(row=0, column=0, padx=0, pady=0, sticky="news")
 project_hub_label = ttk.Label(treeframe, text='By selecting a listed project, detailed
information will be shown at the bottom. Also, press the "Add New Project" or "Update Project"
buttons when needed.', foreground='black', font=('Arial', 10,), background='white')
 project_hub_label.grid(row=0, column=0, padx=10, pady=10, columnspan=3, sticky= 'w')
 treeview_projects = ttk.Treeview(treeframe, columns=("Project ID", "Project Name",
"Original Duration", "Original Budget",), show="headings", height=5, style='Custom1.Treeview')
 treeview_projects.grid(row=1, column=0, padx=10, pady=10)
 treeScroll = ttk.Scrollbar(treeframe)
 treeScroll.grid(row=1, column=1, sticky="ns")
 treeview_projects.heading("Project ID", text="Project ID")
 treeview_projects.heading("Project Name", text="Project Name")
 treeview_projects.heading("Original Duration", text="Original Duration (days)")
 treeview_projects.heading("Original Budget", text="Original Budget ($)")
 treeview_projects.column("Project ID", width=160)
 treeview_projects.column("Project Name", width=300)
 treeview_projects.column("Original Duration", width=200)
 treeview_projects.column("Original Budget", width=200)
 treeScroll.config(command=treeview_projects.yview)
 treeview_projects.config(yscrollcommand=treeScroll.set)
 treeview_projects.tag_configure('oddrow', background='#f9f9d6', font=("Arial", 11))
 treeview_projects.tag_configure('evenrow', background='lightgrey', font=("Arial", 11))
 for index, (project, attributes) in enumerate(project_info.items()):
 tag = 'oddrow' if index % 2 == 0 else 'evenrow'
 treeview_projects.insert("", "end", values=(
 project,
 attributes.get("Project Name"),
 str(attributes.get("IB-Duration (days)", "0")) + " days",
 "{:,.2f}".format(float(attributes.get("IB-Budget At Completion ($)", "0")))
), tags=(tag,))

 add_project_button = ttk.Button(treeframe, text="Add New Project...",
command= add_new_project, style='Custom1.TButton')
 update_button = ttk.Button(treeframe, text="Update Project...",
command= project_updating, style='Custom1.TButton',)
 add_project_button.configure(padding=(25,20))
 update_button.configure(padding=(32,20))
 add_project_button.grid(row=1, column=2, padx=10, pady=(5,0), sticky= 'nw')
 update_button.grid(row=1, column=2, padx=10, pady=(0,5), sticky='sw')

 def get_selected_project():
 global project_row
 project_row = treeview_projects.selection()
 projectid = treeview_projects.item(project_row, "text")
 return projectid
 project = get_selected_project()

 #Creation of Notebook:
 notebook = ttk.Notebook(project_hub_frame, style='Custom.TNotebook')
 notebook.grid(row=1, column=0, padx=0, pady=(10,0), sticky="news")
 tab1 = ttk.Frame(notebook)
 tab2 = ttk.Frame(notebook)
 notebook.add(tab1, text="At Project level",)

185

 notebook.add(tab2, text="At Work Packages level",)

 #Entries on general information tab:
 gen_info = ttk.Labelframe(tab1, text="General Information", style='Custom3.TLabelframe',
padding=(0,20))
 gen_info.grid(row=0, column=0, padx=10, pady=5, sticky='nwes')
 nameid_label_tab = ttk.Label(gen_info, text="Project ID:", style='Custom.TLabel')
 nameid_label_tab.grid(row=0, column=0, sticky="w")
 nameid_entry_tab = ttk.Entry(gen_info, font=('Arial', 11))
 nameid_entry_tab.grid(row=0, column=1, sticky="w")
 bu_label_tab = ttk.Label(gen_info, text="Business Unit Code:" , style='Custom.TLabel')
 bu_label_tab.grid(row=0, column=2, sticky="w")
 bu_entry_tab = ttk.Entry(gen_info, font=('Arial', 11))
 bu_entry_tab.grid(row=0, column=3, sticky="w")
 portfolio_label_tab = ttk.Label(gen_info, text="Portfolio Code:" , style='Custom.TLabel')
 portfolio_label_tab.grid(row=0, column=4, sticky="w")
 portfolio_entry_tab = ttk.Entry(gen_info, font=('Arial', 11))
 portfolio_entry_tab.grid(row=0, column=5, sticky="w")
 program_label_tab = ttk.Label(gen_info, text="Program Code:" , style='Custom.TLabel')
 program_label_tab.grid(row=0, column=6, sticky="w")
 program_entry_tab = ttk.Entry(gen_info, font=('Arial', 11))
 program_entry_tab.grid(row=0, column=7, sticky="w")
 contract_label_tab = ttk.Label(gen_info, text="Contract Type:" , style='Custom.TLabel')
 contract_label_tab.grid(row=1, column=0, sticky="w")
 contract_entry_tab = ttk.Entry(gen_info, font=('Arial', 11))
 contract_entry_tab.grid(row=1, column=1, sticky="w")
 owner_label_tab = ttk.Label(gen_info, text="Owner Internal Code:" , style='Custom.TLabel')
 owner_label_tab.grid(row=1, column=2, sticky="w")
 owner_entry_tab = ttk.Entry(gen_info, font=('Arial', 11))
 owner_entry_tab.grid(row=1, column=3,sticky="w")
 construction_label_tab = ttk.Label(gen_info, text="Project Type:" , style='Custom.TLabel')
 construction_label_tab.grid(row=1, column=4, sticky="w")
 construction_entry_tab = ttk.Entry(gen_info, font=('Arial', 11))
 construction_entry_tab.grid(row=1, column=5, sticky="w")
 location_label_tab = ttk.Label(gen_info, text="Location:" , style='Custom.TLabel')
 location_label_tab.grid(row=1, column=6, sticky="w")
 location_entry_tab = ttk.Entry(gen_info, font=('Arial', 11))
 location_entry_tab.grid(row=1, column=7, sticky="w")

 baseline_frame_tab = ttk.Labelframe(tab1, text="Baseline Information",
style='Custom3.TLabelframe', padding=(0,20))
 baseline_frame_tab.grid(row=1, column=0, padx=10, pady=5, sticky='nwes')

 initial_baseline_label_tab= ttk.Label(baseline_frame_tab, text="Project Initial Baseline",
font=('Arial',11,))
 initial_baseline_label_tab.grid(row=1, column=0, sticky="nwes")
 current_baseline_label_tab= ttk.Label(baseline_frame_tab, text="Project Current Baseline",
font=('Arial',11,))
 current_baseline_label_tab.grid(row=2, column=0, sticky="nwes")

 bac_label_tab = ttk.Label(baseline_frame_tab, text="Budget At Completion ($)",
style='Custom.TLabel')
 bac_label_tab.grid(row=0, column=1, sticky="nwes")
 baci_entry_tab = ttk.Entry(baseline_frame_tab, font=('Arial', 11))
 baci_entry_tab.grid(row=1, column=1, sticky="nwes")
 bacc_entry_tab = ttk.Entry(baseline_frame_tab, font=('Arial', 11))
 bacc_entry_tab.grid(row=2, column=1, sticky="nwes")
 duration_label_tab = ttk.Label(baseline_frame_tab, text="Duration (days)",
style='Custom.TLabel')
 duration_label_tab.grid(row=0, column=2, sticky="nwes")
 durationi_entry_tab = ttk.Entry(baseline_frame_tab, font=('Arial', 11))

186

 durationi_entry_tab.grid(row=1, column=2, sticky="nwes")
 durationc_entry_tab = ttk.Entry(baseline_frame_tab, font=('Arial', 11))
 durationc_entry_tab.grid(row=2, column=2, sticky="nwes")
 startdate_label_tab = ttk.Label(baseline_frame_tab, text="Start Date (yyyy/mm/dd)",
style='Custom.TLabel')
 startdate_label_tab.grid(row=0, column=3, sticky="nwes")
 startdatei_entry_tab = ttk.Entry(baseline_frame_tab, font=('Arial', 11))
 startdatei_entry_tab.grid(row=1, column=3, sticky="nwes")
 startdatec_entry_tab = ttk.Entry(baseline_frame_tab, font=('Arial', 11))
 startdatec_entry_tab.grid(row=2, column=3, sticky="nwes")
 finishdate_label_tab = ttk.Label(baseline_frame_tab, text="Finish Date (yyyy/mm/dd)",
style='Custom.TLabel')
 finishdate_label_tab.grid(row=0, column=4, sticky="nwes")
 finishdatei_entry_tab = ttk.Entry(baseline_frame_tab, font=('Arial', 11))
 finishdatei_entry_tab.grid(row=1, column=4, sticky="nwes")
 finishdatec_entry_tab = ttk.Entry(baseline_frame_tab, font=('Arial', 11))
 finishdatec_entry_tab.grid(row=2, column=4, sticky="nwes")

 dynamic_frame = ttk.Frame(tab2)
 dynamic_frame.grid(row=0, column=0, padx=0, pady=(10,0), sticky="news")

 def populate_entry_widgets(selected_item):
 item_values = treeview_projects.item(selected_item)['values']
 id = str(item_values[0])
 nameid_entry_tab.delete(0, tk.END)
 nameid_entry_tab.insert(0, id)
 bu_entry_tab.delete(0, tk.END)
 bu_entry_tab.insert(0, project_info[id]["Business Unit"])
 portfolio_entry_tab.delete(0, tk.END)
 portfolio_entry_tab.insert(0, project_info[id]["Portfolio Code"])
 program_entry_tab.delete(0, tk.END)
 program_entry_tab.insert(0, project_info[id]["Program Code"])
 contract_entry_tab.delete(0, tk.END)
 contract_entry_tab.insert(0, project_info[id]["Contract Type"])
 owner_entry_tab.delete(0, tk.END)
 owner_entry_tab.insert(0, project_info[id]["Owner Internal Code"])
 construction_entry_tab.delete(0, tk.END)
 construction_entry_tab.insert(0, project_info[id]["Project Type"])
 location_entry_tab.delete(0, tk.END)
 location_entry_tab.insert(0, project_info[id]["Location"])
 baci_entry_tab.delete(0, tk.END)
 baci_entry_tab.insert(0, project_info[id]["IB-Budget At Completion ($)"])
 durationi_entry_tab.delete(0, tk.END)
 durationi_entry_tab.insert(0, project_info[id]["IB-Duration (days)"])
 startdatei_entry_tab.delete(0, tk.END)
 startdatei_entry_tab.insert(0, project_info[id]["IB-Start Date"])
 finishdatei_entry_tab.delete(0, tk.END)
 finishdatei_entry_tab.insert(0, project_info[id]["IB-Finish Date"])

 if {key: value for key, value in project_info[id].items() if key.startswith("CB-")}:
 bacc_entry_tab.delete(0, tk.END)
 bacc_entry_tab.insert(0, project_info[id]["CB-Budget At Completion ($)"])
 durationc_entry_tab.delete(0, tk.END)
 durationc_entry_tab.insert(0, project_info[id]["CB-Duration (days)"])
 startdatec_entry_tab.delete(0, tk.END)
 startdatec_entry_tab.insert(0, project_info[id]["CB-Start Date"])
 finishdatec_entry_tab.delete(0, tk.END)
 finishdatec_entry_tab.insert(0, project_info[id]["CB-Finish Date"])
 else:
 bacc_entry_tab.delete(0, tk.END)
 bacc_entry_tab.insert(0, "No entry yet")

187

 durationc_entry_tab.delete(0, tk.END)
 durationc_entry_tab.insert(0, "No entry yet")
 startdatec_entry_tab.delete(0, tk.END)
 startdatec_entry_tab.insert(0, "No entry yet")
 finishdatec_entry_tab.delete(0, tk.END)
 finishdatec_entry_tab.insert(0, "No entry yet")

 # Clear the dynamic frame
 for widget in dynamic_frame.winfo_children():
 widget.destroy()

 work_packages = project_info[id]["Work Packages"]
 attribute_keys = ["Budget At Completion ($)", "Duration (days)", "Start Date", "Finish
Date"]

 # Row Labels for "Initial Baseline" and "Current Baseline"
 ttk.Label(dynamic_frame, text="Initial Baseline", font=('Arial',
11)).grid(row=row+1, column=0, padx=20, sticky='w')
 ttk.Label(dynamic_frame, text="Current Baseline", font=('Arial',
11)).grid(row=row+2, column=0, padx=20, sticky='w')
 # Populate entry widgets for each attribute under each baseline
 for col, key_suffix in enumerate(attribute_keys, start=1):
 # Initial Baseline Entries
 ib_key = f"IB-{key_suffix}"
 ib_entry = ttk.Entry(dynamic_frame, font=('Arial', 11))
 ib_entry.grid(row=row+1, column=col, sticky='ew')
 ib_entry.insert(0, wp_details.get(ib_key, ""))
 # Current Baseline Entries
 cb_key = f"CB-{key_suffix}"
 cb_entry = ttk.Entry(dynamic_frame, font=('Arial', 11))
 cb_entry.grid(row=row+2, column=col, sticky='ew')
 cb_entry.insert(0, wp_details.get(cb_key, "N/A"))
 # Increment row for the next work package
 row += 3
 treeview_projects.bind("<<TreeviewSelect>>", lambda event:
populate_entry_widgets(event.widget.selection()[0]))

4. Entering new projects information to the GUI

def add_new_project():
 global original_project_entry_list, project_entries_list, new_work_package_entries
 add_window = tk.Toplevel(root, background='white')
 add_window.lift()
 add_window.title("Add New Project")
 project_info_label_frame = ttk.Labelframe(add_window, text="At Project Level",
style='Custom5.TLabelframe')
 project_info_label_frame.grid(row=0, column=0, padx=10, pady=10, sticky="nwes")
 add_window.grid_columnconfigure(0, weight=1)

 ### PROJECT GENERAL INFORMATION
 project_info_frame = ttk.Labelframe(project_info_label_frame, text="General Information",
style='Custom4.TLabelframe', padding= (10,20))
 project_info_frame.grid(row=0, column=0, columnspan=4, padx=10, pady=10, sticky="nwes")
 name_label = ttk.Label(project_info_frame, text="Project Name:", font='Arial 11',
background='white')
 name_label.grid(row=0, column=0, pady= 2, sticky="w")
 name_text = ttk.Entry(project_info_frame, font=('Arial', 11), width= 75)
 name_text.grid(row=0, column=1, columnspan=7, sticky="w")
 id_label = ttk.Label(project_info_frame, text="Project ID:", font='Arial 11',
background='white')

188

 id_label.grid(row=1, column=0, pady= 2, sticky="w")
 id_text = ttk.Entry(project_info_frame,font=('Arial', 11))
 id_text.grid(row=1, column=1, sticky="w")
 bu_label = ttk.Label(project_info_frame, text="Business Unit Code:", font='Arial 11',
background='white')
 bu_label.grid(row=1, column=2, pady= 2, sticky="w")
 bu_text = ttk.Entry(project_info_frame,font=('Arial', 11))
 bu_text.grid(row=1, column=3, pady= 2, sticky="w")
 pf_label = ttk.Label(project_info_frame, text="Portfolio Code:", font='Arial 11',
background='white')
 pf_label.grid(row=1, column=4, pady= 2, sticky="w")
 pf_text = ttk.Entry(project_info_frame, font=('Arial', 11))
 pf_text.grid(row=1, column=5, sticky="w")
 pg_label = ttk.Label(project_info_frame, text="Program Code:", font='Arial 11',
background='white')
 pg_label.grid(row=1, column=6, pady= 2, sticky="w")
 pg_text = ttk.Entry(project_info_frame, font=('Arial', 11))
 pg_text.grid(row=1, column=7, sticky="w")
 contract_type_label = ttk.Label(project_info_frame, text="Contract Type:",font='Arial 11',
background='white')
 contract_type_label.grid(row=2, column=0, pady= 2, sticky="w")
 contract_type_text = ttk.Combobox(project_info_frame, values=['Unit Price', 'Lump Sum',
'Time & Materials'], font=('Arial', 11))
 contract_type_text.set('Select Contract Type')
 contract_type_text.grid(row=2, column=1, sticky="w")
 Owner_label = ttk.Label(project_info_frame, text="Owner Internal Code:", font='Arial 11',
background='white')
 Owner_label.grid(row=2, column=2, pady= 2, sticky="w")
 Owner_text = ttk.Entry(project_info_frame, font=('Arial', 11))
 Owner_text.grid(row=2, column=3, sticky="w")
 project_type_label = ttk.Label(project_info_frame, text="Project Type:", font='Arial 11',
background='white')
 project_type_label.grid(row=2, column=4, pady= 2, sticky="w")
 project_type_text = ttk.Combobox(project_info_frame, values=['Residential', 'Commercial',
'Infrastructure', 'Industrial'], font=('Arial', 11))
 project_type_text.set('Select Project Type')
 project_type_text.grid(row=2, column=5, sticky="w")
 location_label = ttk.Label(project_info_frame, text="Location:", font='Arial 11',
background='white')
 location_label.grid(row=2, column=6, pady= 2, sticky="w")
 location_text = ttk.Entry(project_info_frame, font=('Arial', 11))
 location_text.grid(row=2, column=7, sticky="w")
 project_entries_list = [name_text, id_text, bu_text, pf_text, pg_text, contract_type_text,
Owner_text, project_type_text, location_text]

 ### PROJECT BASELINE INFO
 project_baseline_frame = ttk.Labelframe(project_info_label_frame, text="Project Initial
Baseline", style='Custom4.TLabelframe', padding= (10,20))
 project_baseline_frame.grid(row=1, column=0, columnspan=4, padx=10, pady=10,
sticky="nwes")
 original_project_entry_list = []
 label_values = ["Budget At Completion (BAC, $):","Duration (days):","Start Date
(yyyy/mm/dd):","Finish Date (yyyy/mm/dd):"]
 for i, label in enumerate(label_values):
 label = ttk.Label(project_baseline_frame, text=f"{label}", font=("Arial",
11), background='white')
 label.grid(row=0, column=2*i, sticky="w")
 original_entry = ttk.Entry(project_baseline_frame, font=("Arial", 11,))
 original_entry.grid(row=0, column=2*i+1, padx=(0, 10),sticky="w")
 original_project_entry_list.append(original_entry)

189

 project_work_packages_label_frame = ttk.Labelframe(add_window, text="At Work Package
Level", style='Custom5.TLabelframe')
 project_work_packages_label_frame.grid(row=1, column=0, padx=10, pady=10, sticky="nwes")
 project_work_packages_label_frame.grid_rowconfigure(0, weight=1)
 project_work_packages_label_frame.grid_columnconfigure(0, weight=1)
 canvas = tk.Canvas(project_work_packages_label_frame, highlightthickness=0,
background='white')
 canvas.grid(row=0, column=0, sticky="nwes")
 scrollbar = ttk.Scrollbar(project_work_packages_label_frame, orient="vertical",
command=canvas.yview)
 scrollbar.grid(row=0, column=2, sticky="ns")
 canvas.configure(yscrollcommand=scrollbar.set)

 frame = ttk.Frame(canvas)
 canvas_frame = canvas.create_window((0, 0), window=frame, anchor="nw")

 labels = ["Work Package ID", "Work Package Name", "Budget At Completion ($)", "Duration
(days)", "Start Date (yyyy/mm/dd)", "Finish Date (yyyy/mm/dd)"]

 new_work_package_entries = []
 # Function to create widgets for entering a new work package
 def create_new_widgets_for_work_package():
 nrow = len(new_work_package_entries) * 2
 wp_frame = tk.Frame(frame, background=bg_color)
 wp_frame.grid(row=nrow, column=0, columnspan=len(labels), sticky="ew", padx=5, pady=2)
 entries = []
 for i, label_text in enumerate(labels):
 label = ttk.Label(wp_frame, text=label_text, font=("Arial", 11,),
background='white', borderwidth=1)
 label.grid(row=0, column=i, sticky="w", padx=19, pady=2)
 entry = ttk.Entry(wp_frame, width=20, font=("Arial", 11,))
 entry.grid(row=1, column=i, sticky="ew", padx=19, pady=2,)
 entries.append(entry)

 new_work_package_entries.append(entries)
 frame.update_idletasks()
 canvas.configure(scrollregion=canvas.bbox("all"))

 # Function to save work packages into project_info
def save_new_project():
 global project_info, new_work_package_entries, work_package_names_entries
 project_id = project_entries_list[1].get()
 if project_entries_list and original_project_entry_list:
 project_info[project_id] = {
 'Project Name': project_entries_list[0].get(),
 'Business Unit': project_entries_list[2].get(),
 'Portfolio Code': project_entries_list[3].get(),
 'Program Code': project_entries_list[4].get(),
 'Contract Type': project_entries_list[5].get(),
 'Owner Internal Code': project_entries_list[6].get(),
 'Project Type': project_entries_list[7].get(),
 'Location': project_entries_list[8].get(),
 'IB-Budget At Completion ($)': original_project_entry_list[0].get(),
 'IB-Duration (days)': original_project_entry_list[1].get(),
 'IB-Start Date': original_project_entry_list[2].get(),
 'IB-Finish Date': original_project_entry_list[3].get(),
 'Work Packages':{} }

 for entries in new_work_package_entries:
 wp_name = entries[1].get()
 project_info[project_id]["Work Packages"][wp_name.upper()] = {

190

 "Work Package ID": entries[0].get(),
 "IB-Budget At Completion ($)": entries[2].get(),
 "IB-Duration (days)": entries[3].get(),
 "IB-Start Date": entries[4].get(),
 "IB-Finish Date": entries[5].get(),}
 messagebox.showinfo("Info Saved", "New Project saved successfully.")
 save_project_info_to_file()

 else:
 tk.messagebox.showerror("Missing Information", "Please provide all required
information.")
 add_window.destroy()
 Cancel_button = ttk.Button(add_window, text="Cancel", command = lambda:
destroy_window(add_window), padding=20, style='Custom3.TButton')
 Cancel_button.grid(row=3, column=0, padx=200, pady=10, sticky="e")
 Cancel_button.configure(padding=(10,10))

 # Button to save all entered work packages
 save_button = ttk.Button(add_window, text="Save New Project", command=save_new_project,
padding=20, style='Custom2.TButton')
 save_button.grid(row=3, column=0, sticky="e", padx=10, pady=10)
 save_button.configure(padding=(10,10))

5. Updating projects information into the GUI

def project_updating():
 update_window = tk.Toplevel(root, background='white')
 update_window.title("Update Project")
 project_entry_for_update_frame = ttk.Labelframe(update_window, text="Project Entry for
Updating", style='Custom5.TLabelframe')
 project_entry_for_update_frame.grid(row=0, column=0, padx=10, pady=10, sticky="nwes")
 projectid_label = ttk.Label(project_entry_for_update_frame, text="Select Project ID:",
font='Arial 11 bold', background='white')
 projectid_comb = ttk.Combobox(project_entry_for_update_frame, values=
list(project_info.keys()), state="readonly", font='Arial 11 bold',)
 projectid_comb.set("Select Project")
 projectid_label.grid(row=0, column=0, padx=10, pady=10, sticky="w")
 projectid_comb.grid(row=0, column=1, padx=10, pady=10, sticky="w")
 projectid_button = ttk.Button(project_entry_for_update_frame, text="Display Project
Information", command=lambda: populate_update_frame(projectid_comb.get()),
style='Custom1.TButton')
 projectid_button.grid(row=0, column=2, padx=10, pady=10, sticky="w")

 project_info_label_frame = ttk.Labelframe(update_window, text="At Project Level",
style='Custom5.TLabelframe')
 project_info_label_frame.grid(row=1, column=0, padx=10, pady=10, sticky="nwes")

 def populate_update_frame(selected_project):
 global work_package_list, current_project_entry_list, current_work_package_entries

 ### PROJECT LEVEL
 project_info_frame = ttk.Labelframe(project_info_label_frame, text="Project
Information", style='Custom4.TLabelframe', padding= (10,20))
 project_info_frame.grid(row=0, column=0, columnspan=4, padx=10, pady=10,
sticky="nwes")
 width_label = 19
 width_entries = 12
 name_label = ttk.Label(project_info_frame, text="Project Name", font='Arial 11 bold',
background='white', width=width_label)
 name_label.grid(row=0, column=0, padx=10, pady=0, sticky="w")

191

 name_text = ttk.Label(project_info_frame, text=
project_info[selected_project]["Project Name"], font='Arial 11', background='white',)
 name_text.grid(row=0, column=1, columnspan=5, padx=10, pady=0, sticky="w")

 pid_label = ttk.Label(project_info_frame, text="Project ID", font='Arial 11 bold',
background='white', width=width_label)
 pid_label.grid(row=1, column=0, padx=10, pady=0, sticky="w")
 pid_text = ttk.Label(project_info_frame, text=selected_project, font='Arial 11 ',
background='white', width=width_entries)
 pid_text.grid(row=1, column=1, padx=10, pady=0, sticky="w")

 bu_label = ttk.Label(project_info_frame, text="Business Unit Code", font='Arial 11
bold', background='white', width=width_label)
 bu_label.grid(row=1, column=2, padx=10, pady=0, sticky="w")
 bu_text = ttk.Label(project_info_frame, text=project_info[selected_project]["Business
Unit"], font='Arial 11 ', background='white', width=width_entries)
 bu_text.grid(row=1, column=3, padx=10, pady=0, sticky="w")

 pf_label = ttk.Label(project_info_frame, text="Portfolio Code", font='Arial 11 bold',
background='white', width=width_label)
 pf_label.grid(row=1, column=4, padx=10, pady=0, sticky="w")
 pf_text = ttk.Label(project_info_frame, text=project_info[selected_project]["Portfolio
Code"], font='Arial 11 ', background='white', width=width_entries)
 pf_text.grid(row=1, column=5, padx=10, pady=0, sticky="w")

 pg_label = ttk.Label(project_info_frame, text="Program Code", font='Arial 11 bold',
background='white', width=width_label)
 pg_label.grid(row=1, column=6, padx=10, pady=0, sticky="w")
 pg_text = ttk.Label(project_info_frame, text=project_info[selected_project]["Program
Code"], font='Arial 11 ', background='white', width=width_entries)
 pg_text.grid(row=1, column=7, padx=10, pady=0, sticky="w")

 contract_type_label = ttk.Label(project_info_frame, text="Contract Type", font='Arial
11 bold', background='white', width=width_label)
 contract_type_label.grid(row=2, column=0, padx=10, pady=0, sticky="w")
 contract_type_label = ttk.Label(project_info_frame,
text=project_info[selected_project]["Contract Type"], font='Arial 11 ', background='white',
width=width_entries)
 contract_type_label.grid(row=2, column=1, padx=10, pady=0, sticky="w")

 Owner_label = ttk.Label(project_info_frame, text="Owner Internal Code", font='Arial 11
bold', background='white', width=width_label)
 Owner_label.grid(row=2, column=2, padx=10, pady=0, sticky="w")
 Owner_text = ttk.Label(project_info_frame, text=project_info[selected_project]["Owner
Internal Code"], font='Arial 11 ', background='white', width=width_entries)
 Owner_text.grid(row=2, column=3, padx=10, pady=0, sticky="w")

 project_type_label = ttk.Label(project_info_frame, text="Project Type", font='Arial 11
bold', background='white', width=width_label)
 project_type_label.grid(row=2, column=4, padx=10, pady=0, sticky="w")
 project_type_text = ttk.Label(project_info_frame,
text=project_info[selected_project]["Owner Internal Code"], font='Arial 11 ',
background='white', width=width_entries)
 project_type_text.grid(row=2, column=5, padx=10, pady=0, sticky="w")

 location_label = ttk.Label(project_info_frame, text="Location", font='Arial 11 bold',
background='white', width=width_label)
 location_label.grid(row=2, column=6, padx=10, pady=0, sticky="w")
 location_text = ttk.Label(project_info_frame,
text=project_info[selected_project]["Location"], font='Arial 11 ', background='white',
width=width_entries)

192

 location_text.grid(row=2, column=7, padx=10, pady=0, sticky="w")

 project_baselines_frame = ttk.Labelframe(project_info_label_frame, text="Project
Baselines", style='Custom4.TLabelframe', padding= (10,10))
 project_baselines_frame.grid(row=1, column=0, padx=10, pady=10, sticky="nwes")

 original_label = ttk.Label(project_baselines_frame, text="Initial Baseline",
font=("Arial", 11, 'bold'), background='white', width=20,)
 original_label.grid(row=1, column=0, padx=10)
 current_label = ttk.Label(project_baselines_frame, text="Current Baseline",
font=("Arial", 11, 'bold'), background='white', width=20)
 current_label.grid(row=2, column=0, padx=10)

 label_values = ["Budget At Completion ($)", "Duration (days)", "Start Date
(yyyy/mm/dd)", "Finish Date (yyyy/mm/dd)"]
 text_values = [project_info[selected_project]["IB-Budget At Completion ($)"],
 project_info[selected_project]["IB-Duration (days)"],
 project_info[selected_project]["IB-Start Date"],
 project_info[selected_project]["IB-Finish Date"]]

 current_project_entry_list = []

 for i, (label, text) in enumerate(zip(label_values, text_values), start=1):
 label = ttk.Label(project_baselines_frame, text=f"{label}", font=("Arial", 11,
"bold"), background='white', width=25)
 label.grid(row=0, column=i, sticky='nesw', padx=20)
 text_label = ttk.Label(project_baselines_frame, text=f"{text}", font=("Arial",
11), background='white')
 text_label.grid(row=1, column=i,sticky='nesw' , padx=20)

 entry = ttk.Entry(project_baselines_frame, font=("Arial", 11),)
 entry.grid(row=2, column=i,sticky='nesw', padx=20)

 current_project_entry_list.append(entry)

 ### WORK PACKAGES
 work_package_frame = ttk.Labelframe(update_window, text="At Work Package Level",
style='Custom5.TLabelframe', padding= (10,20))
 work_package_frame.grid(row=2, column=0, padx=10, sticky="nwes")
 work_package_frame.grid_rowconfigure(0, weight=1)
 work_package_frame.grid_columnconfigure(0, weight=1)
 canvas = tk.Canvas(work_package_frame, highlightthickness=0, background='white',
height=220)
 canvas.grid(row=0, column=0, sticky="nwes")
 scrollable_frame = ttk.Frame(canvas, style='Custom.TFrame')
 canvas.create_window((0, 0), window=scrollable_frame, anchor='nw')
 scrollbar = ttk.Scrollbar(work_package_frame, orient="vertical", command=canvas.yview)
 scrollbar.grid(row=0, column=2, sticky="ns")
 canvas.configure(yscrollcommand=scrollbar.set)

 def on_configure(event):
 canvas.configure(scrollregion=canvas.bbox("all"))

 # Bind the on_configure function to the canvas's configure event
 canvas.bind("<Configure>", on_configure)

 labels = ["Work Package", "Budget At Completion ($)", "Duration (days)", "Start Date
(yyyy/mm/dd)", "Finish Date (yyyy/mm/dd)"]

 for i, label in enumerate(labels):

193

 label_widget = ttk.Label(scrollable_frame, text=label, font=("Arial", 11, "bold"),
background='white', width=25, anchor='center')
 label_widget.grid(row=0, column=i, sticky="w", padx=20)

 work_package_list = list(project_info[selected_project]["Work Packages"].keys())
 current_work_package_entries = []

 row=1
 for column, work_package in enumerate(work_package_list):
 work_package_name_label = ttk.Label(scrollable_frame, text=
project_info[selected_project]["Work Packages"][work_package.upper()]["Work Package ID"] + f"-
{work_package}", font=("Arial", 11,'bold'), background='white',)
 work_package_name_label.grid(row=row, column=0, sticky="nwse")

 original_wp_label = ttk.Label(scrollable_frame, text="Initial Baseline",
font=("Arial", 11), background='white')
 original_wp_label.grid(row=row+1, column=0, padx=20, sticky="e")
 current_wp_label = ttk.Label(scrollable_frame, text="Current Baseline",
font=("Arial", 11), background='white')
 current_wp_label.grid(row=row+2, column=0, padx=20, sticky="e")
 original_cost_text = ttk.Label(scrollable_frame,
text=project_info[selected_project]["Work Packages"][work_package.upper()]["IB-Budget At
Completion ($)"], font=("Arial", 11), background='white')
 original_cost_text.grid(row=row+1, column=1,)
 original_duration_text = ttk.Label(scrollable_frame,
text=project_info[selected_project]["Work Packages"][work_package.upper()]["IB-Duration
(days)"], font=("Arial", 11), background='white')
 original_duration_text.grid(row=row+1, column=2,)
 original_startdate_text = ttk.Label(scrollable_frame,
text=project_info[selected_project]["Work Packages"][work_package.upper()]["IB-Start Date"],
font=("Arial", 11), background='white')
 original_startdate_text.grid(row=row+1, column=3,)
 original_finishdate_text = ttk.Label(scrollable_frame, text=
project_info[selected_project]["Work Packages"][work_package.upper()]["IB-Finish Date"],
font=("Arial", 11), background='white')
 original_finishdate_text.grid(row=row+1, column=4,)

 current_cost_text = ttk.Entry(scrollable_frame, width=20,font=("Arial", 11))
 current_cost_text.grid(row=row+2, column=1,)
 current_duration_text = ttk.Entry(scrollable_frame, width=20 ,font=("Arial", 11))
 current_duration_text.grid(row=row+2, column=2,)
 current_startdate_text = ttk.Entry(scrollable_frame, width=20,font=("Arial", 11))
 current_startdate_text.grid(row=row+2, column=3,)
 current_finishdate_text = ttk.Entry(scrollable_frame, width=20,font=("Arial", 11)
)
 current_finishdate_text.grid(row=row+2, column=4,)

 current_work_package_entries.append([current_cost_text, current_duration_text,
current_startdate_text, current_finishdate_text])
 row += 3

 update_window.update_idletasks()
 canvas.config(scrollregion=canvas.bbox("all"))

 def save_updated_project_info(selected_project):
 global project_info
 # Ensure there is a selected project, and the necessary entries are filled
 if not current_project_entry_list or not all(entry.get() for entry in
current_project_entry_list):
 tk.messagebox.showwarning("Missing Information", "Please provide all required
information for the Project.")

194

 return

 # Update project-level information
 attributes = ['CB-Budget At Completion ($)', 'CB-Duration (days)', 'CB-Start Date',
'CB-Finish Date']
 project_info[selected_project].update({attr: current_project_entry_list[i].get() for
i, attr in enumerate(attributes)})

 # Update work package-level information
 for pos, wp_att in enumerate(current_work_package_entries):
 wp_name = work_package_list[pos].upper()
 project_info[selected_project]["Work Packages"][wp_name].update({
 attributes[i]: wp_att[i].get() for i in range(4)
 })

 # Clear entry widgets after successful update
 for entry in current_project_entry_list + [item for sublist in
current_work_package_entries for item in sublist]:
 entry.delete(0, "end")

 tk.messagebox.showinfo("Info Saved", "Information saved successfully.")
 save_project_info_to_file()
 update_window.destroy()

 def on_save_click(project_id):
 save_updated_project_info(project_id)
 current_datetime = datetime.now()
 save_project_info_to_file()
 project_info[project_id]["CB_Storage_date"] = current_datetime

 Cancel_button = ttk.Button(update_window, text="Cancel", command = lambda:
destroy_window(update_window), padding=20, style='Custom3.TButton')
 Cancel_button.grid(row=3, column=0, padx=250, pady=10, sticky="e")
 Cancel_button.configure(padding=(10,10))

 update_project_button = ttk.Button(update_window, text="Update Project Information",
command=lambda: on_save_click(projectid_comb.get()), padding=20, style='Custom2.TButton')
 update_project_button.grid(row=3, column=0, padx=10, pady=10, sticky="e")
 update_project_button.configure(padding=(10,10))

6. Inputs for the Forecasting model from the Project Tracking

def enter_WP_reports():
 global project_id_combobox_frame0, report_combobox_frame0, report_date_entry,
project_selected_progress

 for widget in progress_frame.winfo_children():
 widget.destroy()

 frame0 = ttk.Labelframe(progress_frame, text='Progress Period Data',
style='Custom2.TLabelframe')
 frame0.grid(row=0, column=0, padx=0, pady=0, sticky="nwes")

 project_list = [f"Project {code}: {list(name.values())[0]}" for code, name in
project_info.items()]
 project_id_combobox_frame0 = ttk.Combobox(frame0, values=project_list, font=('Arial', 13),
width=45, justify='left')
 project_id_combobox_frame0.grid(row=0, column=0, padx=(10,100), pady=10, sticky="w")
 project_id_combobox_frame0.set('Please select a project')

 def on_project_selected_progress(event):

195

 global project_selected_progress
 selection = project_id_combobox_frame0.get()
 match = re.search(r"Project ([\w-]+):", selection)
 if match:
 project_selected_progress = match.group(1)
project_id_combobox_frame0.bind('<<ComboboxSelected>>', on_project_selected_progress)
 report_date_label = ttk.Label(frame0, text="Ending Date:", font=('Arial', 13),
background='white')
 report_date_label.grid(row=0, column=3, padx=10, pady=10)

 def open_calendar():

 def on_date_selected():

 report_date_entry.set(calendar.selection_get().strftime("%Y/%m/%d"))
 calendar_window.destroy()
 calendar_window = tk.Toplevel(root)
 calendar_window.title("Select Date")
 calendar_window.geometry(f"+{report_date_field.winfo_rootx()}+{report_date_field.winfo
_rooty() + report_date_field.winfo_height()}")
 calendar_window.grab_set()
 calendar_window.transient(root)

 calendar = Calendar(calendar_window, selectmode='day', date_pattern='y-mm-dd')
 calendar.pack(pady=10, padx=10)

 ok_button = ttk.Button(calendar_window, text="OK", command=on_date_selected)
 ok_button.pack()

 report_date_entry = tk.StringVar()
 report_date_field = ttk.Entry(frame0, font=('Arial', 13), textvariable=report_date_entry)
 report_date_field.grid(row=0, column=4, padx=(10,0), pady=10, sticky='n')
 deploy_button = ttk.Button(frame0, text="▼", command=open_calendar)
 deploy_button.grid(row=0, column=5, padx=(0,0))

 set_data_button = ttk.Button(frame0, text="Enter Data...", command=lambda:
validation_and_entries_creation(project_selected_progress), style='Custom.TButton')
 set_data_button.grid(row=0, column=7, padx=10, pady=0, sticky="nwse")

 def validation_and_entries_creation(selected_project):
 global report_number_key
 report_date = report_date_entry.get()
 project_reports_info = project_info.setdefault(selected_project,
{}).setdefault("Project Reports Info", {})
 dates_exist = any("Date" in report_info for report_info in
project_reports_info.values())
 if dates_exist:
 max_report_number = max(int(k.split()[-1]) for k in project_reports_info.keys())
 last_report_date = project_reports_info[f'Project Report Number
{max_report_number}']['Date']
 if datetime.datetime.strptime(report_date, "%Y/%m/%d") <=
datetime.datetime.strptime(last_report_date, "%Y/%m/%d"):
 messagebox.showerror("Date Error", "Reporting Date must be later than the
previous reporting dates entered.")
 else:
 report_number_key=f'Project Report Number {max_report_number+1}'
 project_reports_info[report_number_key] = {'Date': report_date}
 create_work_package_entries(selected_project)

 else:
 report_number_key=f'Project Report Number 1'

196

 project_reports_info[report_number_key] = {'Date': report_date}
 create_work_package_entries(selected_project)
 def create_work_package_entries(selected_project):
 global frame1, save_data_button, go_to_step_2_button, entries, headers_list,
work_packages_in_selected_project

 frame1 = ttk.Labelframe(progress_frame, text='Inputs for Machine Learning Model
Forecasting', padding=(10,10), style='Custom9.TLabelframe')
 frame1.grid(row=1, column=0, padx=0, pady=20, sticky="nwse")

 project_reports_info = project_info[project_selected_progress]["Project Reports Info"]
 max_report_number = max(int(k.split()[-1]) for k in project_reports_info.keys())
 next_reporting_period = f"Reporting Period {max_report_number}: Ending
{report_date_entry.get()}"
 ttk.Label(frame1, text=next_reporting_period, font=("Arial", 11,)).grid(row=0,
column=0, columnspan=5, pady=10,sticky='nwes')
 work_packages_in_selected_project = list(project_info[selected_project]["Work
Packages"].keys())

 #Row labels---:
 for i, work_package in enumerate(work_packages_in_selected_project, start=2):
 work_package_id_label = ttk.Label(frame1,
text=project_info[selected_project]["Work Packages"][work_package]["Work Package ID"],
font=("Arial", 10,), width= 10)
 work_package_id_label.grid(row=i, column=0, sticky='nwes')
 work_package_name_label = ttk.Label(frame1, text=work_package, font=("Arial", 10,
), justify='left')
 work_package_name_label.grid(row=i, column=1,)

 #Headers labels---:
 headers_list = ['ID', 'WP Name', 'Status', 'Period Number', 'AD to date',
 'Cum EV ($)', 'Cum ES (weeks)', 'TPI' ,
 'Actual Start Date', 'Actual Finish Date']
 for i, header in enumerate(headers_list):
 if header == 'Status' or header == 'ID':
 ttk.Label(frame1, text=header, font=("Arial", 11,),
anchor='center').grid(row=1, column=i, pady=20,sticky='nwes')

 else:
 ttk.Label(frame1, text=header, font=("Arial", 11,),
anchor='center').grid(row=1, column=i, pady=20,)

 frame1.grid_columnconfigure(i, weight=1)

 ## Entries---:
 entries = []
 for j in range(2, len(work_packages_in_selected_project)+2): ### "j" rows
 row_entries = []
 for i in range(2,len(headers_list)): ### "i" is column
 if i==2:
 att_entry = ttk.Combobox(frame1, values=["Non Started", "In Progress",
"Finished"], font=("Arial", 11,), width=10)
 else:
 att_entry = ttk.Entry(frame1, font=("Arial", 11,), width=15)
 att_entry.grid(row=j, column=i)
 row_entries.append(att_entry)
 entries.append(row_entries)

 save_data_button = ttk.Button(progress_frame, text="Save", command=lambda:
store_data(project_selected_progress), style='Custom2.TButton')
 save_data_button.grid(row=3, column=0, padx=20, pady=20, sticky="e")

197

 def cancel_function():
 del project_info[selected_project]["Project Reports Info"][report_number_key]
 cancel_button.destroy()
 save_data_button.destroy()
 frame1.grid_forget()
 show_frame(project_hub_frame)

 cancel_button = ttk.Button(progress_frame, text="Cancel", command=cancel_function,
style='Custom3.TButton')
 cancel_button.grid(row=3, column=0, padx=150, pady=20, sticky="e")
 save_data_button.configure(padding=(10, 10))
 cancel_button.configure(padding=(10, 10))

def store_data(selected_project):
 if 'Work Packages' not in project_info[selected_project]["Project Reports
Info"][report_number_key]:
 project_info[selected_project]["Project Reports Info"][report_number_key]['Work
Packages'] = {}

 for i, work_package in enumerate(work_packages_in_selected_project):
 project_info[selected_project]["Project Reports Info"][report_number_key]['Work
Packages'][work_package] = {
 'ID': project_info[selected_project]["Work Packages"][work_package]["Work Package
ID"],
 'Status': entries[i][0].get(),
 'Period Number': entries[i][1].get(),
 'Actual Duration To Date (days)': entries[i][2].get(),
 'Cumulative EV': entries[i][3].get(),
 'Cumulative ES': entries[i][4].get(),
 'TPI': entries[i][5].get(),
 'Start Date Actual': entries[i][6].get(),
 'Finish Date Actual': entries[i][7].get(),
 }

 save_project_info_to_file()

 for work_package in work_packages_in_selected_project:
 try:
 Budget_item = project_info[selected_project]['Work Packages'][work_package]['CB-
Budget At Completion ($)']
 except KeyError:
 Budget_item = project_info[selected_project]['Work Packages'][work_package]['IB-
Budget At Completion ($)']

 data_for_dict = {
 'Period Number': [project_info[selected_project]["Project Reports
Info"][report_number_key]['Work Packages'][work_package]['Period Number']],
 'Actual Duration To Date (days)':[project_info[selected_project]["Project Reports
Info"][report_number_key]['Work Packages'][work_package]['Actual Duration To Date (days)']],
 'Cumulative Earned Value ($)': [project_info[selected_project]["Project Reports
Info"][report_number_key]['Work Packages'][work_package]['Cumulative EV']],
 'Cumulative Earned Schedule (weeks)': [project_info[selected_project]["Project Reports
Info"][report_number_key]['Work Packages'][work_package]['Cumulative ES']],
 'Time Performance Index': [project_info[selected_project]["Project Reports
Info"][report_number_key]['Work Packages'][work_package]['TPI']],
 'Budget': [Budget_item],
 'Duration to Complete (days)': None}

 df = pd.DataFrame(data_for_dict)
 df.astype(float)

198

 if os.path.exists(f'{selected_project}_{work_package}_data.csv'):
 df_1 = pd.read_csv(f'{selected_project}_{work_package}_data.csv')
 df3 = pd.concat([df_1, df], ignore_index=True)
 df3.to_csv(f'{selected_project}_{work_package}_data.csv', index=False)
 else:
 df.to_csv(f'{selected_project}_{work_package}_data.csv', index=False)

 clear_entries()
 messagebox.showinfo("Success", "Data Stored Successfully")

7. The forecasting of Work Packages: Integrating forecasting model and incorporating

Gantt and line charts and, a summary table.

Filtering data for forecasting model ###
def forecasting_file(selected_project, selected_package, period):
 df = pd.read_csv(f'{selected_project}_{selected_package}_data.csv')
 df = df.head(period)
 df_reduced = df[df['Period Number'] != 0].reset_index(drop=True)
 df_predic_1 = df_reduced.drop(['Period Number'],axis=1)
 return df_predic_1, df

VARIABLES FOR NORMALIZATION ###
def normalization(df):
 values = df.values.astype('float32')
 scaler = MinMaxScaler()
 values_scaled = scaler.fit_transform(values)
 df_scaled = pd.DataFrame(values_scaled)
 return df_scaled
GROUPING FOR MODELLING ###
def df_to_X_y(df, past):
 df_as_np = df.to_numpy()
 X = []
 y = []
 for i in range(len(df_as_np)-past):
 row = [r for r in df_as_np[i:i+past]]
 X.append(row)
 label = df_as_np[i+past][df.shape[1]-1]
 y.append(label)
 return np.array(X), np.array(y)
VARIABLES FOR DENORMALIZATION ###
def factors_for_denormalization(df):
 Max_orig = df.iloc[:,5].max()
 Min_orig = df.iloc[:,5].min()
 Delta = Max_orig-Min_orig
 return Delta, Min_orig

def Prediction(selected_project, selected_package, period):
 predict_value = None
 df_predic, df_in_csv_file = forecasting_file(selected_project, selected_package, period)

 try:
 bl_duration = float(project_info[selected_project]['Work
Packages'][selected_package]['CB-Duration (days)'])
 except KeyError:
 bl_duration = float(project_info[selected_project]['Work
Packages'][selected_package]['IB-Duration (days)'])

 if len(df_predic) >= 4:
 df=df_predic.tail(4)

199

 df = df_predic
 to_complete = float(bl_duration) - float(df.iloc[-1,0])
 df.iloc[-1,-1] = to_complete
 if df.iloc[:, -1].isnull().any():
 messagebox.showwarning("Warning", "Ensure that previous Duration to Completion
(DTC) were filled")
 else:
 Delta_1p, Min_orig_1p = factors_for_denormalization(df)
 df_predict_scaled = normalization(df)
 model = load_model(f'{selected_package}_model.h5')
 X1p, y1p = df_to_X_y(df_predict_scaled, 3)
 Xpredict=model.predict(X1p).flatten()
 predicted_list = Xpredict*Delta_1p+Min_orig_1p
 predict_value = predicted_list[-1]
 else:
 predict_value = float(bl_duration) - float(df_predic.iloc[-1,0])

 period_value = df_predic.index[-1] + 1
 df1 = pd.read_csv(f'{selected_project}_{selected_package}_data.csv')
 df1.loc[df1['Period Number'] == period_value, 'Duration to Complete (days)'] =
predict_value
 df1.to_csv(f'{selected_project}_{selected_package}_data.csv', index=False)

 return predict_value

def work_package_forecasting():

 for widget in forecasting_work_package_frame.winfo_children():
 widget.destroy()
 wp_prediction_frame = ttk.Labelframe(forecasting_work_package_frame, text='Forecasting per
Work Package', style='Custom2.TLabelframe')
 wp_prediction_frame.grid(row=0, column=0, padx=0, pady=0, sticky='nwes')

 buttons_frame = ttk.Labelframe(forecasting_work_package_frame, text="Work Packages",
style='Custom7.TLabelframe')
 buttons_frame.grid(row=1, column=0, sticky="nsew", padx=0, pady=5)

 ### Getting Predictions-----------------------###
 def getting_predictions(project, period):
 dic = project_info[project]["Project Reports Info"][f'Project Report Number {period}']
 if 'Predictions' not in dic:
 wpackages = list(project_info[project]["Work Packages"].keys())
 predicted_values_dict = {key: None for key in wpackages}
 for wpackage in wpackages:
 if dic['Work Packages'][wpackage]["Status"] == 'In Progress':
 predicted_value = Prediction(project, wpackage, period)
 predicted_values_dict[wpackage] = float(math.ceil(predicted_value))
 else:
 predicted_values_dict[wpackage] = 0
 dic['Predictions'] = predicted_values_dict

 save_project_info_to_file()
 def show_chart(proj, package_name, period_selected):
 fig_gantt.clf()
 fig_line.clf()

 ax = fig_gantt.add_subplot(111)
 ax1 = fig_line.add_subplot(111)

 dic_temp_2 = project_info[proj]["Project Reports Info"][f'Project Report Number
{period_selected}']['Work Packages'][package_name]

200

 df1=pd.read_csv(f'database {package_name}.csv')

 df1 = df1[df1['Period'] == period_selected]
 df1=df1.reset_index()

 df=pd.DataFrame(columns=['Item', 'Start', 'Finish'])
 Item_list = ['Current BL', 'Actual', 'Forecast']
 if df1.at[0,'Status']== 'In Progress':
 Start_list = [df1.at[0,'BL Start Date'], df1.at[0,'Start date'],
df1.at[0,'Reporting Date']]
 Finish_list = [df1.at[0,'BL Finish Date'], df1.at[0,'Reporting Date'],
df1.at[0,'Forecasted Finish Date']]
 elif df1.at[0,'Status'] == 'Non Started':
 Start_list = [df1.at[0,'BL Start Date'], df1.at[0,'Reporting Date'],
df1.at[0,'Reporting Date']]
 Finish_list = [df1.at[0,'BL Finish Date'], df1.at[0,'Reporting Date'],
df1.at[0,'Reporting Date']]
 elif df1.at[0,'Status'] == 'Finished':
 Start_list = [df1.at[0,'BL Start Date'], df1.at[0,'Start date'],
df1.at[0,'Reporting Date']]
 Finish_list = [df1.at[0,'BL Finish Date'], df1.at[0,'Finish Date'],
df1.at[0,'Reporting Date']]

 df['Item'] = Item_list
 df['Start'] = pd.to_datetime(Start_list,)
 df['Finish'] = pd.to_datetime(Finish_list,)
 df['Duration'] = (df['Finish']-df['Start']).dt.days
 df['Start'] = mdates.date2num(df['Start'])
 df['Finish'] = mdates.date2num(df['Finish'])

 # Create a Gantt chart
 color_dict = {'Current BL': '#EAEE1B','Actual': '#271BE6',
 'Forecast': '#9F2CEA'}
 labeled_items = set()

 for index, row in df.iterrows():
 item_color = color_dict[row['Item']]
 # Only add a label if this item hasn't been labeled before
 if row['Item'] not in labeled_items:
 ax.barh(row['Item'], row['Finish'] - row['Start'], left=row['Start'],
height=0.5, color=item_color, edgecolor='black', label=row['Item'])
 labeled_items.add(row['Item'])
 else:
 ax.barh(row['Item'], row['Finish'] - row['Start'], left=row['Start'],
height=0.5, color=item_color, edgecolor='black')

 ax.xaxis_date()
 ax.xaxis.set_major_locator(mdates.MonthLocator())
 ax.xaxis.set_major_formatter(mdates.DateFormatter('%Y-%b-%d'))
 ax.set_xlabel('Date', fontdict={'family': 'Arial', 'size': 11})
 ax.set_yticks(range(len(df['Item'])))
 ax.set_yticklabels(df['Item'], fontdict={'family': 'Arial', 'size': 11})
 ax.yaxis.set_major_locator(FixedLocator(range(len(df['Item']))))
 for label in ax.get_xticklabels():
 label.set_fontname('Arial')
 label.set_fontsize(10)

 today1 = df1.at[0,'Reporting Date']
 today1 = datetime.datetime.strptime(today1, '%Y-%m-%d')

201

 ax.axvline(x=today1, color='red', linestyle='-')
 ax.text(today1, 0.5, 'Data Date', color='red', fontsize=10, ha='left', family='Arial')
 ax.legend(fontsize=11, loc='upper center', frameon=False, bbox_to_anchor=(0.5, 1.3),
prop={'family': 'Arial', 'size': 10}, ncol=len(labeled_items))
 ax.invert_yaxis()
 ax.grid(axis='x', zorder=0)
 ax.set_axisbelow(True)
 fig_gantt.autofmt_xdate()
 fig_gantt.subplots_adjust(left=0.05, right=0.95, top=0.95, bottom=0.05)
 fig_gantt.tight_layout()
 chart_canvas.draw()

 ### Line Chart
 if dic_temp_2["Status"] == 'In Progress':
 df2=pd.read_csv(f'database {package_name}.csv')
 df2 = df2[df2['Tracking Period'] != 0]
 x_values = df2['Tracking Period']
 y_values = df2['Finish Date Variance']
 ax1.plot(x_values, y_values, marker='o', linestyle='-', color='blue')
 ax1.set_xlim(left=x_values.min(), right=x_values.max())
 ax1.set_xticks(x_values)
 ax1.set_xticklabels(x_values, fontdict={'family': 'Arial', 'size': 10})

 min_y = y_values.min()
 max_y = y_values.max()
 y_ticks = np.arange(min_y, max_y+1, 10)
 ax1.set_yticks(y_ticks)
 ax1.set_yticklabels(y_ticks, fontdict={'family': 'Arial', 'size': 10})
 # Formatting the date axis
 ax1.set_xlabel('Work Package Execution Period', fontdict={'family': 'Arial',
'size': 9})
 ax1.set_ylabel('Deviation (days)', fontdict={'family': 'Arial', 'size': 11})
 fig_line.tight_layout()
 ax1.grid(True)
 ax1.set_axisbelow(True)
 line_chart_canvas.draw()

 else:
 ax1.text(0.5, 0.5, 'No chart to display as \nthe work package has not \nstarted or
has already finished.',
 horizontalalignment='center', verticalalignment='center',
 transform=ax1.transAxes,fontdict={'family': 'Arial', 'size': 12,
'weight': 'normal'})
 line_chart_canvas.draw()

 def show_data_and_charts(proj, package_name, period_selected):

 dic_temp = project_info[proj]['Work Packages'][package_name]
 data_chart_frame = ttk.Labelframe(forecasting_work_package_frame,
text=f"{dic_temp['Work Package ID']} {package_name}", style='Custom7.TLabelframe')
 data_chart_frame.grid(row=2, column=0, sticky="nsew", padx=0, pady=5)
 data_chart_frame.grid_columnconfigure(2, weight=1)

 chart_frame = ttk.Labelframe(data_chart_frame, text="Gantt Chart",
style='Custom11.TLabelframe')
 chart_frame.grid(row=1, column=0, sticky="nsew", padx=5, pady=5)
 line_chart_frame = ttk.Labelframe(data_chart_frame, text="Finish Date Deviation per
Period", style='Custom11.TLabelframe')
 line_chart_frame.grid(row=1, column=1, sticky="nsew", padx=5, pady=5)
 chart_frame.grid_rowconfigure(1, weight=1)
 chart_frame.grid_columnconfigure(1, weight=1)

202

 line_chart_frame.grid_rowconfigure(0, weight=1)
 line_chart_frame.grid_columnconfigure(0, weight=1)
 fig_gantt = Figure(figsize=(6, 4), dpi=100)
 chart_canvas = FigureCanvasTkAgg(fig_gantt, master=chart_frame)
 chart_canvas.get_tk_widget().grid(row=0, column=0, sticky="nsew")
 fig_line = Figure(figsize=(4, 4), dpi=100)
 line_chart_canvas = FigureCanvasTkAgg(fig_line, master=line_chart_frame)
 line_chart_canvas.get_tk_widget().grid(row=0, column=0, sticky="nsew")
 df = pd.DataFrame({'Period': range(1, period_selected + 1)})
 df['ID'] = dic_temp['Work Package ID']
 df['WP Name'] = package_name

 def get_status(period):
 return project_info[proj]["Project Reports Info"][f'Project Report Number
{period}']['Work Packages'][package_name]['Status']
 df['Status'] = df['Period'].apply(get_status)
 df['Tracking Period'] = 0
 df.loc[df['Status'] == 'In Progress', 'Tracking Period'] = (df['Status'] == 'In
Progress').cumsum()

 def get_reporting_date(period):
 return project_info[proj]["Project Reports Info"][f'Project Report Number
{period}']['Date']
 df['Reporting Date'] = df['Period'].apply(get_reporting_date)
 df['Reporting Date'] = pd.to_datetime(df['Reporting Date'], format='%Y/%m/%d')

 def get_actual_start(period):
 return project_info[proj]["Project Reports Info"][f'Project Report Number
{period}']['Work Packages'][package_name]['Start Date Actual']
 df['Start date'] = df['Period'].apply(get_actual_start)
 df['Start date'] = pd.to_datetime(df['Start date'], format='%Y/%m/%d',
errors='coerce')

 def get_actual_finish(period):
 return project_info[proj]["Project Reports Info"][f'Project Report Number
{period}']['Work Packages'][package_name]['Finish Date Actual']
 df['Finish Date'] = df['Period'].apply(get_actual_finish)
 df['Finish Date'] = pd.to_datetime(df['Finish Date'], format='%Y/%m/%d',
errors='coerce')

 #### BL Duration
 df['BL Duration'] = None
 for i, row in df.iterrows():
 if row['Status'] == 'In Progress':
 try:
 given_value1 =
datetime.datetime.strptime(project_info[proj]["CB_Storage_date"], "%Y/%m/%d")
 value3 = dic_temp["IB-Duration (days)"]
 value4 = dic_temp["CB-Duration (days)"]
 df.at[i, 'BL Duration'] = value3 if row['Reporting Date'] < given_value1
else value4
 except KeyError:
 df.at[i, 'BL Duration'] = dic_temp["IB-Duration (days)"]
 elif row['Status'] == 'Non Started':
 try:
 df.at[i, 'BL Duration'] = dic_temp["CB-Duration (days)"]
 except KeyError:
 df.at[i, 'BL Duration'] = dic_temp["IB-Duration (days)"]
 elif row['Status'] == 'Finished':
 try:
 df.at[i, 'BL Duration'] = dic_temp["CB-Duration (days)"]

203

 except KeyError:
 df.at[i, 'BL Duration'] = dic_temp["IB-Duration (days)"]

 df['BL Duration'] = df['BL Duration'].astype(float)

 ### Forecasted Duration
 def get_ADdate(period):
 return project_info[proj]["Project Reports Info"][f'Project Report Number
{period}']['Work Packages'][package_name]['Actual Duration To Date (days)']
 df['AD_to_date'] = df['Period'].apply(get_ADdate)
 df['AD_to_date'] = df['AD_to_date'].astype(int)

 def get_predicted(period):
 try:
 return project_info[proj]["Project Reports Info"][f'Project Report Number
{period}']['Predictions'][package_name]
 except KeyError:
 return 0
 df['Predicted_value'] = df['Period'].apply(get_predicted)
 df['Predicted_value']=np.ceil(df['Predicted_value'])

 ### Then:
 df['Forecasted Duration'] = df['AD_to_date']+df['Predicted_value']

 for i, row in df.iterrows():
 if row['Status'] == 'In Progress' and row['Predicted_value'] == 0:
 df.at[i, 'Forecasted Duration'] = df.at[i, 'BL Duration']
 elif row['Status'] == 'Non Started':
 df.at[i, 'Forecasted Duration'] = df.at[i, 'BL Duration']
 elif row['Status'] == 'Finished':
 df.at[i, 'Forecasted Duration'] = (df.at[i,'Finish Date'] - df.at[i,'Start
date']).days

 ### BL Finish Date
 df['BL Finish Date'] = None
 df['BL Start Date'] = None

 for i, row in df.iterrows():
 if row['Status'] == 'In Progress':
 try:
 given_value1 = datetime.datetime.strptime(project_info[proj]
["CB_Storage_date"], "%Y/%m/%d")
 value1=dic_temp["IB-Finish Date"]
 value2=dic_temp["CB-Finish Date"]
 value10=dic_temp["IB-Start Date"]
 value20=dic_temp["CB-Start Date"]

 df.at[i,'BL Finish Date'] = value1 if row['Reporting Date'] < given_value1
else value2
 df.at[i,'BL Start Date'] = value10 if row['Reporting Date'] < given_value1
else value20

 except KeyError:
 df.at[i,'BL Finish Date'] = dic_temp["IB-Finish Date"]
 df['BL Finish Date'] = pd.to_datetime(df['BL Finish Date'],
format='%Y/%m/%d')
 df.at[i,'BL Start Date'] = dic_temp["IB-Start Date"]
 df['BL Start Date'] = pd.to_datetime(df['BL Start Date'],
format='%Y/%m/%d')

 elif row['Status'] == 'Non Started':

204

 try:
 df.at[i,'BL Finish Date'] = dic_temp["CB-Finish Date"]
 df.at[i,'BL Start Date'] = dic_temp["CB-Start Date"]
 except KeyError:
 df.at[i,'BL Finish Date'] = dic_temp["IB-Finish Date"]
 df.at[i,'BL Start Date'] = dic_temp["IB-Start Date"]

 elif row['Status'] == 'Finished':
 try:
 df.at[i,'BL Finish Date'] = dic_temp["CB-Finish Date"]
 df.at[i,'BL Start Date'] = dic_temp["CB-Start Date"]
 except KeyError:
 df.at[i,'BL Finish Date'] = dic_temp["IB-Finish Date"]
 df.at[i,'BL Start Date'] = dic_temp["IB-Start Date"]

 df['BL Finish Date'] = pd.to_datetime(df['BL Finish Date'], format='%Y/%m/%d')
 df['BL Start Date'] = pd.to_datetime(df['BL Start Date'], format='%Y/%m/%d')

 ### Forecasted Finish Date
 df['Forecasted Finish Date'] = None
 for i, row in df.iterrows():
 if row['Status'] == 'In Progress':
 duration_days = Timedelta(days=row['Forecasted Duration'])
 try:
 df.at[i,'Forecasted Finish Date'] = row['Start date'] + duration_days
 except KeyError:
 df.at[i,'Forecasted Finish Date'] = row['BL Start Date'] + duration_days

 elif row['Status'] == 'Non Started':
 if row['Reporting Date'] <= row['BL Start Date']:
 df.at[i, 'Forecasted Finish Date'] = row['BL Finish Date']
 else:
 df.at[i, 'Forecasted Finish Date'] = row['Reporting Date'] +
pd.to_timedelta(row['BL Duration'], unit='D')

 elif row['Status'] == 'Finished':
 df.at[i, 'Forecasted Finish Date'] = row['Finish Date']

 df['Forecasted Finish Date'] = pd.to_datetime(df['Forecasted Finish Date'],
format='%Y/%m/%d')
 df['Duration Variance (days)'] = df['BL Duration'] - df['Forecasted Duration']
 df['Finish Date Variance']= df['Forecasted Finish Date'] - df['BL Finish Date']
 df['Finish Date Variance']=df['Finish Date Variance'].dt.days
 df.to_csv(f"database {package_name}.csv")
 df_for_tree = df
 df_for_tree = df_for_tree.drop(['Tracking Period', 'AD_to_date',
'Predicted_value', 'Finish Date','Forecasted Duration','Duration Variance (days)','BL
Duration',], axis=1)

 df_for_tree['BL Finish Date'] = df_for_tree['BL Finish Date'] - pd.Timedelta(days=1)
Subtractring one day to match P6 dates.
 datetim_cols = ['Reporting Date', 'BL Finish Date', 'Forecasted Finish Date', 'BL
Start Date','Start date']
 for col in datetim_cols:
 df_for_tree[col] = df_for_tree[col].dt.date
 df_for_tree = df_for_tree[['Period', 'Reporting Date', 'Status', 'BL Start Date', 'BL
Finish Date', 'Start date','Forecasted Finish Date', 'Finish Date Variance']]
 df_for_tree.rename(columns={'Start date': 'Actual Start Date','Finish Date
Variance':'Schedule Deviation'}, inplace=True)
 tree = ttk.Treeview(data_chart_frame, height=7, style='Custom2.Treeview')

205

 tree['columns'] = list(df_for_tree.columns)
 tree.column("#0", width=0, stretch=tk.NO)
 for col in df_for_tree.columns:
 if col in ('Period'):
 tree.column(col, anchor=tk.CENTER, width=8)
 elif col in ('ID'):
 tree.column(col, anchor=tk.CENTER, width=14)
 elif col in ('WP Name', 'Status'):
 tree.column(col, anchor=tk.CENTER, width=35)
 else:
 tree.column(col, anchor=tk.CENTER, width=80)
 tree.heading("#0", text="", anchor=tk.CENTER)
 for col in df_for_tree.columns:
 tree.heading(col, text=col, anchor=tk.CENTER)

 # Insert data from DataFrame into Treeview
 for i, row in df_for_tree.iterrows():
 tree.insert("", tk.END, iid=i, values=list(row), tags=('myTag',))

 tree.tag_configure('highlight', background='yellow')
 children = tree.get_children()
 if children:
 last_child_id = children[-1]
 # Apply the 'highlight' tag to the last row
 tree.item(last_child_id, tags=('highlight',))

 tree.grid(row=2, columnspan=2, padx=10, pady=0, sticky="ew")
 scrollbar = ttk.Scrollbar(data_chart_frame, orient="vertical", command=tree.yview)
 tree.configure(yscrollcommand=scrollbar.set)
 scrollbar.grid(row=2, column=2, padx=0, pady=0, sticky="sn")

 tree.tag_configure('myTag', font=("Arial", 10))

 show_chart(proj, package_name, period_selected)

 def create_buttons(frame, project, period_number):
 work_packages = list(project_info[project]["Work Packages"].keys())
 for widget in frame.winfo_children():
 widget.destroy()
 for i, package_name in enumerate(work_packages):
 button = ttk.Button(frame, text=package_name,
 command=lambda name=package_name, proj=project,
period=period_number: show_data_and_charts(proj, name, period),
 style='Custom4.TButton')
 button.grid(row=0, column=i, pady=10, padx=15, sticky="ew")

 def update_packages_combobox(project_code):
 project_reports_info = project_info[project_code]["Project Reports Info"]
 formatted_list = [f"Reporting Period {k.split()[-1]}: Ending {v['Date']}" for k, v in
project_reports_info.items()]
 period_combobox['values'] = formatted_list
 period_combobox.set(formatted_list[-1] if formatted_list else '')

 def clear_widgets():
 for widget in buttons_frame.winfo_children():
 widget.destroy()
 try:
 for widget in data_chart_frame.winfo_children():
 widget.destroy()
 except tk.TclError:
 pass

206

 def on_project_select(event):
 selection = project_combobox.get()
 match = re.search(r"Project ([\w-]+):", selection)
 if match:
 project_code = match.group(1)
 update_packages_combobox(project_code)
 clear_widgets()

 project_list = [f"Project {code}: {list(name.values())[0]}" for code, name in
project_info.items()]
 project_combobox = ttk.Combobox(wp_prediction_frame, values=project_list, font=('Arial',
13), width=45, justify='left')
 project_combobox.grid(row=0, column=0, padx=(10,180), pady=10, sticky="w")
 project_combobox.set('Please select a project')
 project_combobox.bind('<<ComboboxSelected>>', on_project_select)
 period_combobox = ttk.Combobox(wp_prediction_frame, values=['Please select a period'],
font=('Arial', 13), width=35, justify='left')
 period_combobox.grid(row=0, column=2, padx=10, pady=10, sticky="e")
 period_combobox.set('Please select a period')
 def on_package_select(event):
 project_selection = project_combobox.get()
 period_selection = period_combobox.get()

 # Extract project code from selection
 project_match = re.search(r"Project ([\w-]+):", project_selection)
 period_match = re.search(r"Reporting Period (\d+):", period_selection)
 if project_match:
 project_code = project_match.group(1)
 if period_match:
 period_number = int(period_match.group(1))
 create_buttons(buttons_frame, project_code, period_number)
 getting_predictions(project_code, period_number)
 wp_slected_project = list(project_info[project_code]["Work Packages"].keys())
 first_package_show = wp_slected_project[0]
 show_data_and_charts(project_code, first_package_show, period_number)

 period_combobox.bind('<<ComboboxSelected>>', on_package_select)

8. The Overall Project Forecasting: Capturing information from P6 Schedule and

development CPM and PDM methodologies computerized to consolidate individual

work package predictions.

PROJECT FORECASTING
def project_forecasting():
 for widget in forecasting_project_frame.winfo_children():
 widget.destroy()

 def browse_file():
 global file_path
 file_path = filedialog.askopenfilename()
 file_path_var.set(file_path)
 def update_packages_combobox(project):
 project_reports_info = project_info[project]["Project Reports Info"]
 formatted_list = [f"Reporting Period {k.split()[-1]}: Ending {v['Date']}" for k, v in
project_reports_info.items()]
 period_combobox_overall['values'] = formatted_list
 period_combobox_overall.set(formatted_list[-1] if formatted_list else '')

207

 def clear_widgets():
 try:
 for widget in forecasting_project_frame.winfo_children():
 widget.destroy()
 except tk.TclError:
 pass

 heading_frame = ttk.Labelframe(forecasting_project_frame, text='Project Duration
Forecasting', style='Custom2.TLabelframe')
 heading_frame.grid(row=0, column=0, padx=0, pady=0, sticky='nwes')
 primavera_frame = ttk.Labelframe(forecasting_project_frame, text='Primavera P6 data',
style='Custom7.TLabelframe')
 primavera_frame.grid(row=1, column=0, sticky="nsew", padx=0, pady=5)
 ttk.Label(primavera_frame, text='Select project schedule at work package level: ',
font=("Arial", 11,), background='white',).grid(row=0, column=0, padx=10, pady=0, sticky="w")

 project_list = [f"Project {code}: {list(name.values())[0]}" for code, name in
project_info.items()]
 project_combobox_overall = ttk.Combobox(heading_frame, values=project_list, font=('Arial',
13), width=45, justify='left')
 project_combobox_overall.grid(row=0, column=0, padx=(10,180), pady=10, sticky="w")
 project_combobox_overall.set('Please select a project')
 period_combobox_overall = ttk.Combobox(heading_frame, values=['Please select a period'],
font=('Arial', 13), width=35, justify='left')
 period_combobox_overall.grid(row=0, column=2, padx=10, pady=10, sticky="e")
 period_combobox_overall.set('Please select a period')
 def on_project_select_overall(event):
 selection = project_combobox_overall.get()
 match = re.search(r"Project ([\w-]+):", selection)
 if match:
 project_code = match.group(1)
 update_packages_combobox(project_code)

 project_combobox_overall.bind('<<ComboboxSelected>>', on_project_select_overall)

1. CALCULATION BY CPM
 def get_primavera_p6(project_code_0, period_number_0):
 global project_id_combobox_frame0, report_combobox_frame0, data
 ttk.Button(primavera_frame, text="Display Duration at Completion Forecasting",
command=lambda: duration_at_completion(project_code_0), style='Custom.TButton').grid(row=2,
column=0, columnspan= 5, padx=10, pady=5, sticky='nwes')

 dict_predictions = project_info[project_code_0]["Project Reports Info"][f'Project
Report Number {period_number_0}']['Predictions']
 dfPred_WP = pd.DataFrame(list(dict_predictions.items()), columns=['Work_Package_Name',
'WP_Predictions'])
 WPnames = list(dict_predictions.keys())

 #### Parsing the XML file
 tree = Xet.parse(file_path)
 root = tree.getroot()
 ns = {'' : root.tag[1:root.tag.index('}')]}
 for i in root.findall('*/Activity', ns):
 col_01 = []
 for i in root.findall('*/Activity/WBSObjectId', ns):
 col_01.append(i.text)
 col_02 = []
 for i in root.findall('*/Activity/ObjectId', ns):
 col_02.append(i.text)
 col_07 = []
 for i in root.findall('*/Activity/PlannedDuration', ns):

208

 col_07.append(i.text)
 col_08 = []
 for i in root.findall('*/Activity/ActualDuration', ns):
 col_08.append(i.text)
 col_09 = []
 for i in root.findall('*/Activity/PlannedStartDate', ns):
 col_09.append(i.text)
 col_10 = []
 for i in root.findall('*/Activity/PlannedFinishDate', ns):
 col_10.append(i.text)
 col_11 = []
 for i in root.findall('*/Activity/ActualStartDate', ns):
 col_11.append(i.text)
 col_12 = []
 for i in root.findall('*/Activity/ActualFinishDate', ns):
 col_12.append(i.text)
 col_23 = []
 for i in root.findall('*/Activity/StartDate', ns):
 col_23.append(i.text)
 col_24 = []
 for i in root.findall('*/Activity/FinishDate', ns):
 col_24.append(i.text)

 rows_1=zip(col_01, col_02, col_03, col_04, col_05, col_06, col_07, col_08, col_09,
col_10, col_11, col_12, col_23, col_24)
 cols_1 = ["WBSObjectId", "Activity_ObjectId", "ActivityID", "Activity_Name", "Type",
"Physical_Percent_Complete", "Planned_duration", "Actual_duration", "Planned_Start_Date",
"Planned_finish_date", "Actual_start_date", "Actual_finish_date", "Start_date", "Finish_date"]
 df1 = pd.DataFrame(rows_1, columns = cols_1)

 for i in root.findall('*/Relationship', ns):
 col_13 = []
 for i in root.findall('*/Relationship/ObjectId', ns):
 col_13.append(i.text)
 col_14 = []
 for i in root.findall('*/Relationship/PredecessorActivityObjectId', ns):
 col_14.append(i.text)
 col_15 = []
 for i in root.findall('*/Relationship/SuccessorActivityObjectId', ns):
 col_15.append(i.text)
 col_16 = []
 for i in root.findall('*/Relationship/Type', ns):
 col_16.append(i.text)
 col_17 = []
 for i in root.findall('*/Relationship/Lag', ns):
 col_17.append(i.text)

 rows_2=zip(col_13, col_14, col_15, col_16, col_17)
 cols_2 = ["Relationship_ObjectId", "PredecessorActivityObjectId", "Activity_ObjectId",
"Type", "Lags"]
 df2 = pd.DataFrame(rows_2, columns = cols_2)
 ###
 for i in root.findall('*/WBS', ns):

 col_19 = []
 for i in root.findall('*/WBS/Name', ns):
 col_19.append(i.text)
 col_20 = []
 for i in root.findall('*/WBS/ObjectId', ns):
 col_20.append(i.text)

209

 rows_3=zip(col_19, col_20)
 df2333 = pd.DataFrame(rows_3, columns = ["Work_Package_Name", "WBSObjectId"])
 df2333["Work_Package_Name"] = df2333["Work_Package_Name"].str.upper()
 df2333.to_csv('output3.csv')

 ### Joining Predictions to respective WBS codes
 df_incl_predictions = pd.merge(df2333, dfPred_WP, on ='Work_Package_Name', how
='left')

 ###Calculating Physical Percent Complete per Work Package, using the average of
Physical Percent Complete of their activities.
 df1['Physical_Percent_Complete'] = pd.to_numeric(df1['Physical_Percent_Complete'])
 df3 = df1.groupby('WBSObjectId')['Physical_Percent_Complete'].mean()
 df3 = pd.DataFrame(df3)
 ### Putting Physical Percent Completes (df3) to every WBSObjectID of df1,
 df4 = pd.merge(df1, df3, on ='WBSObjectId', how ='left')
 df4[["Planned_Start_Date", "Planned_finish_date", "Actual_start_date",
"Actual_finish_date", "Start_date", "Finish_date"]] = df4[["Planned_Start_Date",
"Planned_finish_date", "Actual_start_date","Actual_finish_date", "Start_date",
"Finish_date"]].apply(pd.to_datetime)
 df4['WBSObjectId'] = pd.to_numeric(df4['WBSObjectId'])
 df4['Activity_ObjectId'] = pd.to_numeric(df4['Activity_ObjectId'])
 ### Putting min and max activities of each Work Package depending on % progress.
 ### Actual dates stand for finished, Planned dates for non started and dates (alone),
in progress. (Primavera nomenclature)

 Start_date_of_WP = []
 Finish_date_of_WP = []
 Activity_ID_start_date = []
 Activity_ID_finish_date = []

 for i in range(len(df3.index)):
 df5= df4.groupby('WBSObjectId').get_group(int(df3.index[i]))
 if df5['Physical_Percent_Complete_y'].mean() == 1 :
 Start_date_of_WP.append(df5['Actual_start_date'].min())
 Finish_date_of_WP.append(df5['Actual_finish_date'].max())
 if 'Start Milestone' in df5['Type'].values:
 Activity_ID_start_date.append(df5.at[df5.loc[df5['Type'] == 'Start
Milestone'].index[0],'Activity_ObjectId'])
 else:
 Activity_ID_start_date.append(df5.at[df5['Actual_start_date'].idxmin()
,'Activity_ObjectId'])

 if 'Finish Milestone' in df5['Type'].values:
 Activity_ID_finish_date.append(df5.at[df5.loc[df5['Type'] == 'Finish
Milestone'].index[0],'Activity_ObjectId'])
 else:
 Activity_ID_finish_date.append(df5.at[df5['Actual_finish_date'].idxmax
(),'Activity_ObjectId'])

 elif df5['Physical_Percent_Complete_y'].mean() == 0 :
 Start_date_of_WP.append(df5['Planned_Start_Date'].min())
 Finish_date_of_WP.append(df5['Planned_finish_date'].max())

 if 'Start Milestone' in df5['Type'].values:
 Activity_ID_start_date.append(df5.at[df5.loc[df5['Type'] == 'Start
Milestone'].index[0],'Activity_ObjectId'])
 else:
 Activity_ID_start_date.append(df5.at[df5['Planned_Start_Date'].idxmin(
),'Activity_ObjectId'])

210

 if 'Finish Milestone' in df5['Type'].values:
 Activity_ID_finish_date.append(df5.at[df5.loc[df5['Type'] == 'Finish
Milestone'].index[0],'Activity_ObjectId'])
 else:
 Activity_ID_finish_date.append(df5.at[df5['Planned_finish_date'].idxma
x(),'Activity_ObjectId'])

 else: ### In-Progress Work Packages
 Start_date_of_WP.append(df5['Start_date'].min())
 Finish_date_of_WP.append(df5['Finish_date'].max())

 if 'Start Milestone' in df5['Type'].values:
 Activity_ID_start_date.append(df5.at[df5.loc[df5['Type'] == 'Start
Milestone'].index[0],'Activity_ObjectId'])
 else:
 Activity_ID_start_date.append(df5.at[df5['Start_date'].idxmin(),'Activ
ity_ObjectId'])

 if 'Finish Milestone' in df5['Type'].values:
 Activity_ID_finish_date.append(df5.at[df5.loc[df5['Type'] == 'Finish
Milestone'].index[0],'Activity_ObjectId'])
 else:
 Activity_ID_finish_date.append(df5.at[df5['Finish_date'].idxmax(),'Act
ivity_ObjectId'])
 df3['Start_date_of_WP'] = Start_date_of_WP
 df3['Finish_date_of_WP'] = Finish_date_of_WP
 df3['Activity_ID_start_date'] = Activity_ID_start_date
 df3['Activity_ID_finish_date'] = Activity_ID_finish_date

 df3 = df3.reset_index()
 ### Adding Activity name and ActivityID (df3_2)
 df3_1 = df3.merge(df4[['Activity_ObjectId','ActivityID','Activity_Name']], how
='left', left_on ='Activity_ID_start_date', right_on ='Activity_ObjectId')
 df3_2 = df3_1.merge(df4[['Activity_ObjectId','ActivityID','Activity_Name']], how
='left', left_on ='Activity_ID_finish_date', right_on ='Activity_ObjectId')
 df3_2.drop(['Activity_ObjectId_x', 'Activity_ObjectId_y'], axis=1, inplace=True)

 ###Sorting WP Start Dates'
 df3_2[["Start_date_of_WP"]] = df3_2[["Start_date_of_WP"]].apply(pd.to_datetime)
 df3_2 = df3_2.set_index('Start_date_of_WP')
 df3_2 = df3_2.sort_index()
 df3_2 = df3_2.reset_index()
 df3_2.columns.tolist()
 list1 = df3_2.columns.tolist()[0:3]
 list2 = df3_2.columns.tolist()[3:11]
 reorder_list1=[list1[1], list1[2], list1[0]]
 new_column_order = reorder_list1 + list2
 df3_2 = df3_2[new_column_order]
 ##### Calculating the S-S lags -----------------
 df_for_CPM = df3_2.copy()
 df_with_predictions = pd.merge(df_for_CPM, df_incl_predictions, on='WBSObjectId',
how='left')

 df_with_predictions['CurrentDurations_P6'] = (df_with_predictions['Finish_date_of_WP']
- df_with_predictions['Start_date_of_WP']).dt.days +1
 date_match_1 = re.search(r"Ending (\d{4}/\d{2}/\d{2})", period_combobox_overall.get())
 report_date = date_match_1.group(1)
 report_date_datetime = datetime.datetime.strptime(report_date, '%Y/%m/%d')
 df_with_predictions['ElapsedDays'] = (report_date_datetime -
df_with_predictions['Start_date_of_WP']).dt.days
 df_with_predictions['ElapsedDays'] = df_with_predictions['ElapsedDays'].clip(lower=0)

211

 df_with_predictions['Duration'] = np.where(
 df_with_predictions['WP_Predictions'] == 0,
 df_with_predictions['CurrentDurations_P6'],
 df_with_predictions['ElapsedDays'] + df_with_predictions['WP_Predictions'])
df_with_predictions['Start_date_of_WP'].dtype)

 FS_lag_CPM=[]

 if df_with_predictions.shape[0]>1:
 for i in range(df_with_predictions.shape[0]-1):
 vari1=df_with_predictions.loc[i,'Start_date_of_WP']
 vari2=df_with_predictions.loc[i+1,'Start_date_of_WP']
 vari3=df_with_predictions.loc[i,'Finish_date_of_WP']
 vari4=df_with_predictions.loc[i+1,'Finish_date_of_WP']

 FS_lag_CPM.append((vari3-vari2).days + 1)
 else:
 None
 FS_lag_CPM_array = np.array([timedelta(days=days) for days in FS_lag_CPM])
 FS_lag_CPM.append(0) ### to equal shape of df_with_predictions.
 df_with_predictions['FS_lag_CPM'] = FS_lag_CPM
 df_with_predictions['WP_SS_lags'] = (df_with_predictions['Duration'] -
df_with_predictions['FS_lag_CPM'])

 def generate_ac_list(number):
 return [chr(ord('A') + i) for i in range((number*2)-1)]

 ac_list = generate_ac_list(len(WPnames))

 letters_alternate = [ac_list[i] for i in range(0, len(ac_list)-1, 2)]
 pr_list = [item for item in letters_alternate for _ in range(2)]
 pr_list.insert(0, '-')

 du_list = [val for pair in zip(df_with_predictions['WP_SS_lags'],
df_with_predictions['FS_lag_CPM']) for val in pair]
 du_list = du_list[:-2]
 du_list.append(df_with_predictions.loc[df_with_predictions.shape[0] - 1, 'Duration'])
 # Including Predecessors and Successors:

 df_2 = df2[["PredecessorActivityObjectId", "Activity_ObjectId", "Type", 'Lags']]
 df_2[["PredecessorActivityObjectId","Activity_ObjectId"]] =
df_2[["PredecessorActivityObjectId","Activity_ObjectId"]].astype(int)

 df_1 = df_with_predictions[['Work_Package_Name','WBSObjectId',
'Activity_ID_start_date', 'Activity_ID_finish_date']]
 df_1[['WBSObjectId','Activity_ID_start_date','Activity_ID_finish_date']] =
df_1[['WBSObjectId','Activity_ID_start_date','Activity_ID_finish_date']].astype(int)
 df_1.loc[:, 'Successors'] = None
 df_1.loc[:, 'Predecessors'] = None
 df_1.loc[:, 'RelationshipsS'] = None
 df_1.loc[:, 'RelationshipsP'] = None
 df_1.loc[:, 'lagS'] = None
 df_1.loc[:, 'lagP'] = None

 for i, row in df_2.iterrows():
 if row['Type'] == 'Finish to Start':
 first_index = df_1[df_1['Activity_ID_finish_date'] ==
row['PredecessorActivityObjectId']].index[0]
 second_index = df_1[df_1['Activity_ID_start_date'] ==
row['Activity_ObjectId']].index[0]

212

 df_1.at[first_index,'Successors'] = df_1.at[second_index, 'WBSObjectId']
 df_1.at[first_index,'RelationshipsS'] = row['Type']
 df_1.at[first_index,'lagS'] = int(row['Lags'])/8
 df_1.at[second_index,'RelationshipsP'] = row['Type']
 df_1.at[second_index,'lagP'] = int(row['Lags'])/8
 elif row['Type'] == 'Start to Start':
 first_index = df_1[df_1['Activity_ID_start_date'] ==
row['PredecessorActivityObjectId']].index[0]
 second_index = df_1[df_1['Activity_ID_start_date'] ==
row['Activity_ObjectId']].index[0]
 df_1.at[first_index,'Successors'] = df_1.at[second_index, 'WBSObjectId']
 df_1.at[first_index,'RelationshipsS'] = row['Type']
 df_1.at[first_index,'lagS'] = int(row['Lags'])/8
 df_1.at[second_index,'RelationshipsP'] = row['Type']
 df_1.at[second_index,'lagP'] = int(row['Lags'])/8
 elif row['Type'] == 'Finish to Finish':
 first_index = df_1[df_1['Activity_ID_finish_date'] ==
row['PredecessorActivityObjectId']].index[0]
 second_index = df_1[df_1['Activity_ID_finish_date'] ==
row['Activity_ObjectId']].index[0]
 df_1.at[first_index,'Successors'] = df_1.at[second_index, 'WBSObjectId']
 df_1.at[first_index,'RelationshipsS'] = row['Type']
 df_1.at[first_index,'lagS'] = int(row['Lags'])/8
 df_1.at[second_index,'RelationshipsP'] = row['Type']
 df_1.at[second_index,'lagP'] = int(row['Lags'])/8
 elif row['Type'] == 'Start to Finish':
 first_index = df_1[df_1['Activity_ID_start_date'] ==
row['PredecessorActivityObjectId']].index[0]
 second_index = df_1[df_1['Activity_ID_finish_date'] ==
row['Activity_ObjectId']].index[0]
 df_1.at[first_index,'Successors'] = df_1.at[second_index, 'WBSObjectId']
 df_1.at[first_index,'RelationshipsS'] = row['Type']
 df_1.at[first_index,'lagS'] = int(row['Lags'])/8
 df_1.at[second_index,'RelationshipsP'] = row['Type']
 df_1.at[second_index,'lagP'] = int(row['Lags'])/8

 ## Making Predecessor column:
 for i, row in df_1.iterrows():
 if row['Successors'] is not None:
 index1= df_1[df_1['WBSObjectId'] == int(row['Successors'])].index[0]
 df_1.at[index1,'Predecessors'] = row['WBSObjectId']
 ## Getting WP codes:
 work_packages = project_info[project_code_0]["Work Packages"]
 work_packages_list = [{"Work_Package_Name": wp.upper(), "Work Package ID":
details["Work Package ID"]}
 for wp, details in work_packages.items()]
 df_3 = pd.DataFrame(work_packages_list)

 df_1 = pd.merge(df_1, df_3, on='Work_Package_Name', how='left')
 ### Preparing for tree:
 WBSObjectId_to_code = df_1.set_index('WBSObjectId')['Work Package ID'].to_dict()
 df_1['Successors'] = df_1['Successors'].map(WBSObjectId_to_code)
 df_1['Predecessors'] = df_1['Predecessors'].map(WBSObjectId_to_code)

 df_1 = df_1.drop(['WBSObjectId', 'Activity_ID_start_date', 'Activity_ID_finish_date'],
axis=1)

 df_1 = df_1[['Work Package ID', 'Work_Package_Name', 'Predecessors', 'RelationshipsP',
'lagP', 'Successors','RelationshipsS','lagS']]
 df_1.rename(columns={'Work_Package_Name': 'Work Package Name',

213

 'RelationshipsP': 'Predecessor Relationship Type', 'lagP':
'Predecessor Lag',
 'RelationshipsS': 'Successor Relationship Type', 'lagS':
'Successor Lag'}, inplace=True)
 df_1['Work Package Name'] = df_1['Work Package Name'].str.title()

 df_1.fillna('---', inplace=True)
 ## Making the Tree
 tree = ttk.Treeview(primavera_frame, height=3, style='Custom2.Treeview')
 tree['columns'] = list(df_1.columns)

 tree.column("#0", width=0, stretch=tk.NO)
 if col in ('Work Package ID'):
 tree.column(col, anchor=tk.CENTER, width=80)
 elif col in ('Work Package Name'):
 tree.column(col, anchor=tk.CENTER, width=110)
 elif col in ('Predecessors'):
 tree.column(col, anchor=tk.CENTER, width=65)
 elif col in ('Predecessor Relationship Type'):
 tree.column(col, anchor=tk.CENTER, width=160)
 elif col in ('Predecessor Lag'):
 tree.column(col, anchor=tk.CENTER, width=90)
 elif col in ('Successors'):
 tree.column(col, anchor=tk.CENTER, width=60)
 elif col in ('Successor Relationship Type'):
 tree.column(col, anchor=tk.CENTER, width=160)
 elif col in ('Successor Lag'):
 tree.column(col, anchor=tk.CENTER, width=80)

 tree.heading("#0", text="", anchor=tk.CENTER) # Invisible column for IDs
 for col in df_1.columns:
 tree.heading(col, text=col, anchor=tk.CENTER)

 tree.tag_configure('myTag', font=("Arial", 10))
 for i, row in df_1.iterrows():
 tree.insert("", tk.END, iid=i, values=list(row), tags=('myTag',))

 tree.grid(row=1, padx=10, columnspan=8, pady=10, sticky="ew")
 scrollbar = ttk.Scrollbar(primavera_frame, orient="vertical", command=tree.yview)
 tree.configure(yscrollcommand=scrollbar.set)
 scrollbar.grid(row=1, column=8, padx=0, pady=0, sticky="sn")

 Removed_WP_list=[]
 Number_times = []

 for i in range(df3_2.shape[0]):

 for j in range(df3_2.shape[0]):

 var1=df3_2.iloc[i,[2]].item()
 var2=df3_2.iloc[j,[2]].item()
 var3=df3_2.iloc[i,[3]].item()
 var4=df3_2.iloc[j,[3]].item()

 if (var1 > var2) and (var3 < var4) and (i != j):
 Removed_WP_list.append(df3_2['WBSObjectId'][i])
 elif (var1 > var2) and (var3 == var4) and (i != j):
 Removed_WP_list.append(df3_2['WBSObjectId'][i])
 elif (var1 == var2) and (var3 < var4) and (i != j):
 Removed_WP_list.append(df3_2['WBSObjectId'][i])

214

 elif (var1 == var2) and (var3 == var4) and (i != j):
 Removed_WP_list.append(df3_2['WBSObjectId'][i])
 Number_times.append(df3_2['WBSObjectId'][i])

 df3_4 = pd.DataFrame(zip(list(pd.unique(Number_times))), columns = ['WBSObjectId'])

 df3_4 = df3_4.merge(df3_2, how ='left', left_on ='WBSObjectId', right_on
='WBSObjectId')

 df3_4 = df3_4.groupby('Start_date_of_WP')['WBSObjectId'].min()
 df3_4 = pd.DataFrame(zip(df3_4.values.tolist()), columns = ['WBSObjectId'])
 df3_4 = df3_4.merge(df3_2, how ='right', left_on ='WBSObjectId', right_on
='WBSObjectId')

 df_Critical_WP = pd.DataFrame(zip(list(set(df3_2['WBSObjectId'].tolist()) -
set(list(pd.unique(Removed_WP_list)))) + df3_4['WBSObjectId'].values.tolist()), columns =
['WBSObjectId'])
 df_Critical_WP = df_Critical_WP.merge(df3_2, how ='left', left_on ='WBSObjectId',
right_on ='WBSObjectId')

 ###Evaluating Critical WP identified by including repeated WP with same start and
finish dates
 Removed_WP_list_1=[]
 Number_times_1 = []
 for i in range(df_Critical_WP.shape[0]):
 for j in range(df_Critical_WP.shape[0]):
 if (df_Critical_WP.iloc[i,[2]].item() > df_Critical_WP.iloc[j,[2]].item()) and
(df_Critical_WP.iloc[i,[3]].item() < df_Critical_WP.iloc[j,[3]].item()) and (i != j):
 Removed_WP_list_1.append(df_Critical_WP['WBSObjectId'][i])
 elif (df_Critical_WP.iloc[i,[2]].item() > df_Critical_WP.iloc[j,[2]].item())
and (df_Critical_WP.iloc[i,[3]].item() == df_Critical_WP.iloc[j,[3]].item()) and (i != j):
 Removed_WP_list_1.append(df_Critical_WP['WBSObjectId'][i])
 elif (df_Critical_WP.iloc[i,[2]].item() == df_Critical_WP.iloc[j,[2]].item())
and (df_Critical_WP.iloc[i,[3]].item() < df_Critical_WP.iloc[j,[3]].item()) and (i != j):
 Removed_WP_list_1.append(df_Critical_WP['WBSObjectId'][i])
 elif (df_Critical_WP.iloc[i,[2]].item() == df_Critical_WP.iloc[j,[2]].item())
and (df_Critical_WP.iloc[i,[3]].item() == df_Critical_WP.iloc[j,[3]].item()) and (i != j):
 Removed_WP_list_1.append(df_Critical_WP['WBSObjectId'][i])
 Number_times_1.append(df_Critical_WP['WBSObjectId'][i])

 df3_5 = pd.DataFrame(zip(list(pd.unique(Number_times_1))), columns = ['WBSObjectId'])
 df3_5 = df3_5.merge(df3_2, how ='right', left_on ='WBSObjectId', right_on
='WBSObjectId')
 df3_5 = df3_5.groupby('Start_date_of_WP')['WBSObjectId'].min()
 df3_5 = pd.DataFrame(zip(df3_5.values.tolist()), columns = ['WBSObjectId'])
 df3_5 = df3_5.merge(df3_2, how ='right', left_on ='WBSObjectId', right_on
='WBSObjectId')

 ### Ensambling Critical WP table removing repeated WP with same starts and finish
dates (if they are)
 new_df_Critical_WP = pd.DataFrame(zip(list(set(df_Critical_WP['WBSObjectId'].tolist())
- set(list(pd.unique(Removed_WP_list_1))))+ df3_5['WBSObjectId'].values.tolist()), columns =
['WBSObjectId'])
 new_df_Critical_WP = new_df_Critical_WP.merge(df3_2, how ='left', left_on
='WBSObjectId', right_on ='WBSObjectId')

 ### df_WP_ensambled:
 Physical_progress_list = []
 start_date_list = []
 finish_date_list = []
 actual_elapsed_duration = []

215

 for i, work_package in enumerate(list(project_info[project_code_0]["Work
Packages"].keys())):
 dict3_temp= project_info[project_code_0]["Work Packages"][work_package]
 dict4_temp= project_info[project_code_0]["Project Reports Info"][f'Project Report
Number {period_number_0}']['Work Packages'][work_package]
 if dict4_temp['Status'] == 'In Progress':
 Physical_progress_list.append(float(0.5))
 actual_elapsed_duration.append(float(dict4_temp["Actual Duration To Date
(days)"]))
 if dict4_temp['Start Date Actual']:
 start_date_list.append(dict4_temp['Start Date Actual'])
 else:
 try:
 start_date_list.append(dict3_temp["CB-Start Date"])
 except KeyError:
 start_date_list.append(dict3_temp["IB-Start Date"])
 try:
 finish_date_list.append(dict3_temp["CB-Finish Date"])
 except KeyError:
 finish_date_list.append(dict3_temp["IB-Finish Date"])

 elif dict4_temp['Status'] == 'Non Started':
 Physical_progress_list.append(float(0))
 actual_elapsed_duration.append(float(0))
 try:
 start_date_list.append(dict3_temp["CB-Start Date"])
 finish_date_list.append(dict3_temp["CB-Finish Date"])
 except KeyError:
 start_date_list.append(dict3_temp["IB-Start Date"])
 finish_date_list.append(dict3_temp["IB-Finish Date"])

 elif dict4_temp['Status'] == 'Finished':
 Physical_progress_list.append(float(1))
 actual_elapsed_duration.append(float(0))
 start_date_list.append(dict4_temp['Start Date Actual'])
 finish_date_list.append(dict4_temp['Finish Date Actual'])

 #Finding WP codes associated to WP by names
 WBSObjectId_list= []
 for WPname in WPnames:
 matching_items = df_incl_predictions.loc[df_incl_predictions['Work_Package_Name']
== WPname, 'WBSObjectId'].values.tolist()
 WBSObjectId_list.extend(matching_items)

 Physical_df = pd.DataFrame({'WBSObjectId':WBSObjectId_list,
'Physical_progress':Physical_progress_list, 'Start Date':start_date_list, 'Finish Date':
finish_date_list, 'Actual Duration to Date': actual_elapsed_duration})
 new_df_Critical_WP = pd.merge(new_df_Critical_WP, Physical_df, on='WBSObjectId',
how='left')

 new_physical_list = new_df_Critical_WP['Physical_progress'].tolist()
 new_starts_date_list = new_df_Critical_WP['Start Date'].tolist()
 new_finish_date_list = new_df_Critical_WP['Finish Date'].tolist()
 new_actual_duration_list = new_df_Critical_WP['Actual Duration to Date'].tolist()

 new_df_Critical_WP['Physical_Percent_Complete'] = new_physical_list
 new_df_Critical_WP['Start_date_of_WP'] = new_starts_date_list
 new_df_Critical_WP['Finish_date_of_WP'] = new_finish_date_list
 new_df_Critical_WP['Actual Duration to Date'] = new_actual_duration_list

216

 new_df_Critical_WP = new_df_Critical_WP.drop(['Physical_progress','Start Date',
'Finish Date'],axis=1)
 ##Converting to datetime:
 new_df_Critical_WP['Start_date_of_WP'] =
pd.to_datetime(new_df_Critical_WP['Start_date_of_WP'])
 new_df_Critical_WP['Finish_date_of_WP'] =
pd.to_datetime(new_df_Critical_WP['Finish_date_of_WP'])
 ## Converting to numeric:
 new_df_Critical_WP['Physical_Percent_Complete'] =
pd.to_numeric(new_df_Critical_WP['Physical_Percent_Complete'])

 #### Overlap - WP relationships: List of numbers representing overlaps among Critical
WP:
 Overlap_list=[]
 if new_df_Critical_WP.shape[0]>1:
 for i in range(new_df_Critical_WP.shape[0]-1):
 if (new_df_Critical_WP.iloc[i+1,[2]].item() <
new_df_Critical_WP.iloc[i,[2]].item()) and (new_df_Critical_WP.iloc[i+1,[3]].item() <
new_df_Critical_WP.iloc[i,[2]].item()):
 Overlap_list.append(new_df_Critical_WP.iloc[i+1,[3]].item()-
new_df_Critical_WP.iloc[i,[2]].item())
 elif (new_df_Critical_WP.iloc[i+1,[2]].item() <
new_df_Critical_WP.iloc[i,[2]].item()) and (new_df_Critical_WP.iloc[i+1,[3]].item() >
new_df_Critical_WP.iloc[i,[2]].item()):
 Overlap_list.append(new_df_Critical_WP.iloc[i+1,[3]].item()-
new_df_Critical_WP.iloc[i,[2]].item())
 elif (new_df_Critical_WP.iloc[i+1,[2]].item() >
new_df_Critical_WP.iloc[i,[2]].item()):
 Overlap_list.append(new_df_Critical_WP.iloc[i+1,[2]].item()-
new_df_Critical_WP.iloc[i,[3]].item())
 else:
 None
 Overlap_arr=np.array(Overlap_list)
 total_days = [td.total_seconds()/ (24 * 60 * 60) for td in Overlap_arr]

 total_sum_in_days = np.sum(total_days)

9. Inserting independent Prediction Results

 new_df_Critical_WP=new_df_Critical_WP.merge(df_incl_predictions, how ='left', left_on
='WBSObjectId', right_on ='WBSObjectId')
 new_df_Critical_WP['Actual Duration to Date'].astype(int)
 new_df_Critical_WP['WP_Duration']=np.where(
 (new_df_Critical_WP['Physical_Percent_Complete']>0)&(new_df_Critical_WP['Physical_
Percent_Complete']<1),
 new_df_Critical_WP['Actual Duration to Date'] +
new_df_Critical_WP['WP_Predictions'],
 (new_df_Critical_WP['Finish_date_of_WP'] -
new_df_Critical_WP['Start_date_of_WP']).dt.days-1)
 data = pd.DataFrame({'ac': ac_list, 'pr': pr_list, 'du': du_list })
 data['du'] = data['du'].round(1)

'Precedence Diagramming Method PDM - CPM'
 def open_cpm():
 global overall_project_frame, photo
 cpm_window = tk.Toplevel(overall_project_frame, background='white')
 cpm_window.title("Project Critical Path")
 ttk.Label(cpm_window, text="Project Duration calculated by the Critical Path Method
(CPM)",font=("Arial", 12, 'bold'), background='white').grid(row=0, column=0, padx=10,
pady=(5,0), sticky='w')

217

 ttk.Label(cpm_window, text="This network is the result of transforming existent work
package relationships (with lags) into\nFinish - Start (FS) relationship (without lags). Thus,
this depicts the Critical Path (in red).",font=("Arial", 10,),
background='white').grid(row=1, column=0, padx=10, sticky='nw')

 label = ttk.Label(cpm_window, image=photo)
 label.photo = photo
 label.grid(row=2, column=0, padx=10, sticky="nsew")

 ttk.Label(cpm_window, text='Note:\n1.The Precedence Diagraming Method (PDM) is
transformed to AON network, which does not contain lags. \n2.From the AON Network above:\n -
"A" and "B" denote the CONCRETE Work Package\n -"C" and "D" denote the EXCAVATION Work
Package\n -"E" represents the BACKFILL Work Package',font=("Arial", 10,),
background='white').grid(row=3, column=0, padx=10, sticky='nw')

 def duration_at_completion(project_code_0):
 global overall_project_frame, photo, data

 overall_project_frame = ttk.Labelframe(forecasting_project_frame, text='Overall
Project', style='Custom7.TLabelframe')
 overall_project_frame.grid(row=2, column=0, padx=0, pady=5, sticky="nsew")

 ttk.Button(overall_project_frame, text="Show PDM-CPM calculation detail",
command=open_cpm, style='Custom.TButton').grid(row=0, column=0, padx=10, pady=0, sticky='e')

 for q in range(1, 2):
 start = []
 graph = []
 atts = []
 path = []
 new = []
 st = ""

 last = data.iloc[-1, 0]
 last = chr(ord(last)+1)
 for j in range(len(data)):
 for k in range(len(data.iloc[j, 1])):
 if data.iloc[j, 1][k] != '-':
 new.append(data.iloc[j, 1][k])
 for j in range(len(data)):
 if not data.iloc[j, 0] in new:
 st = st+data.iloc[j, 0]
 if data.shape[1] == 3:
 df = pd.DataFrame([[last, st, 0]], columns=["ac", "pr", "du"])
 else:
 df = pd.DataFrame([[last, st, 0, 0, 0]], columns=["ac", "pr", "b", "m", "a"])
 data = data.append(df)
 for i in range(len(data)):
 graph.append([])
 atts.append({})
 for j in range(len(data)):
 atts[j]["Name"] = data.iloc[j, 0]
 if data.shape[1] == 3:
 atts[j]["DU"] = data.iloc[j, 2]
 else:
 atts[j]["DU"] = (data.iloc[j, 4] + 4 *
 data.iloc[j, 3] + data.iloc[j, 2]) / 6
 if(data.iloc[j, 1] == "-"):
 start.append(ord(data.iloc[j, 0])-65)
 continue

218

 for k in range(len(data.iloc[j, 1])):
 graph[ord(data.iloc[j, 1][k]) -
 65].append(ord(data.iloc[j, 0])-65)

 level = [None] * (len(graph))
 def BFS(s, graph):
 visited = [False] * (len(graph))
 queue = []
 for i in s:
 queue.append(i)
 level[i] = 0
 visited[i] = True
 while queue:
 s = queue.pop(0)
 path.append(s)
 for i in graph[s]:
 if visited[i] == False:
 queue.append(i)
 level[i] = level[s] + 1
 visited[i] = True
 else:
 level[i] = max(level[s]+1, level[i])
 BFS(start, graph)

 levels = [None] * len(path)
 for i in range(len(path)):
 levels[i] = level[path[i]]
 path = [x for y, x in sorted(zip(levels, path))]

 for i in path:
 for s in path:
 if(data.iloc[s, 1] == "-"):
 atts[s]["ES"] = 0
 else:
 ls = []
 for k in range(len(data.iloc[s, 1])):
 ls.append(atts[ord(data.iloc[s, 1][k]) - 65]["EF"])
 atts[s]["ES"] = max(ls)
 atts[s]["EF"] = atts[s]["DU"] + atts[s]["ES"]
 for i in range(len(graph)):
 if(graph[i] == []):
 atts[i]["LF"] = atts[i]["EF"]
 atts[i]["LS"] = atts[i]["ES"]
 path.reverse()
 for i in path:
 if(data.iloc[i, 1] != "-"):
 for k in range(len(data.iloc[i, 1])):
 if "LF" in atts[ord(data.iloc[i, 1][k]) - 65].keys():
 atts[ord(data.iloc[i, 1][k]) - 65]["LF"] = min(atts[i]
 ["LS"],
atts[ord(data.iloc[i, 1][k]) - 65]["LF"])
 else:
 atts[ord(data.iloc[i, 1][k]) -
 65]["LF"] = atts[i]["LS"]
 atts[ord(data.iloc[i, 1][k]) - 65]["LS"] = atts[ord(data.iloc[i,
1][k]) - 65]["LF"] - atts[ord(data.iloc[i, 1][k]) - 65]["DU"]
 atts[i]["SK"] = atts[i]["LF"] - atts[i]["EF"]
 atts[-1]["Name"] = "End"
 for j in range(len(graph)):

 G2 = nx.DiGraph()

219

 for i in range(len(graph)):
 for j in graph[i]:
 G2.add_edge(atts[i]["Name"], atts[j]["Name"])
 temp = []
 for i in range(len(atts)):
 temp.append(atts[i]["Name"])
 temp = dict(zip(temp, atts))
 nx.set_node_attributes(G2, temp)
 fig, ax = plt.subplots(figsize=(15, 15))
 pos = nx.nx_agraph.graphviz_layout(G2, prog='dot')
 nx.draw(G2, pos=pos, ax=ax, with_labels=True, font_weight='bold')
 nx.draw_networkx_edges(G2, pos, edge_color='olive', width=1, arrowstyle='simple',
arrowsize=20, min_source_margin=25, min_target_margin=25)
 crt = []
 notcrt = []
 for j, i in temp.items():
 if(i["LF"] == i["EF"]):
 crt.append(j)
 else:
 notcrt.append(j)
 nx.draw_networkx_nodes(G2, pos, node_size=5000,
 node_color='red', ax=ax, nodelist=crt)
 nx.draw_networkx_nodes(G2, pos, node_size=2500,
 node_color='black', ax=ax, nodelist=notcrt)
 nx.draw_networkx_labels(G2, pos, ax=ax, font_weight="bold",
 font_color="white", font_size=26)

 def without(d, keys={"Name"}):
 return {x: d[x] for x in d if x not in keys}

 for node in G2.nodes:
 xy = pos[node]
 node_attr = G2.nodes[node]
 d = G2.nodes[node]
 d = without(d)
 text = '\n'.join(f'{k}: {round(v,0)}' for k, v in d.items())
 ax.annotate(text, xy=xy, xytext=(70, 5), textcoords="offset points",
fontsize=20, bbox=dict(boxstyle="round, pad=0.3", fc="lightgrey"),
arrowprops=dict(arrowstyle="wedge"))
 ax.axis('off')
 plt.savefig('fig'+str(q)+".png")

 image = Image.open("fig1.png")
 percentage=38
 width, height = image.size
 new_width = int(width * (percentage / 100))
 new_height = int(height * (percentage / 100))
 resized_image = image.resize((new_width, new_height))
 photo = ImageTk.PhotoImage(resized_image)
 # Display the Gantt chart
 # Define tasks, their start and end dates
 try:
 start_planned_date_total_project = project_info[project_code_0]["CB-Start Date"]
 except KeyError:
 start_planned_date_total_project = project_info[project_code_0]["IB-Start Date"]

 try:
 finish_planned_date_total_project = project_info[project_code_0]["CB-Finish Date"]
 except KeyError:
 finish_planned_date_total_project = project_info[project_code_0]["IB-Finish Date"]

220

 start_planned_date_total_project =
datetime.datetime.strptime(start_planned_date_total_project, '%Y/%m/%d')
 finish_planned_date_total_project =
datetime.datetime.strptime(finish_planned_date_total_project, '%Y/%m/%d')

 wp_dict = project_info[project_code_0]["Work Packages"]
 wp_list = list(wp_dict.keys())
 date_columns = []
 for package_name in wp_list:
 file_path1 = f"database {package_name}.csv"
 df_file = pd.read_csv(file_path1)
 df_file['Start date'] = pd.to_datetime(df_file['Start date'])
 date_columns.append(df_file['Start date'])
 all_dates = pd.concat(date_columns)
 actual_start_date = all_dates.min()

 date_match = re.search(r"Ending (\d{4}/\d{2}/\d{2})", period_combobox_overall.get())
 today_input = date_match.group(1)
 today = datetime.datetime.strptime(today_input, '%Y/%m/%d')
 finish_dates_forecasted = actual_start_date + timedelta(days=int(atts[-1]['ES']))
 tasks = ['Forecasted', 'Actual', 'Current BL']
 start_dates = [today, actual_start_date, start_planned_date_total_project]
 end_dates = [finish_dates_forecasted, today, finish_planned_date_total_project]
 start_dates_num = [mdates.date2num(date) for date in start_dates]
 end_dates_num = [mdates.date2num(date) for date in end_dates]
 # Create a Gantt chart
 fig, ax = plt.subplots(figsize=(10, 4))
 # Create horizontal bars for tasks
 for i, task in enumerate(tasks):
 if task in 'Current BL':
 color = '#EAEE1B'
 elif task in 'Forecasted':
 color = '#9F2CEA'
 else:
 color = '#271BE6'

 bar = ax.barh(task, width=end_dates_num[i] - start_dates_num[i],
left=start_dates_num[i],height=0.5, color=color, edgecolor='black', label=task)

 text_position = round(((start_dates_num[i] + end_dates_num[i]) / 2),0)
 text_date = mdates.num2date(text_position)
 ax.text(text_position, i, f'{end_dates_num[i] - start_dates_num[i]} days',
ha='center', va='center', color='black', fontsize=11, fontfamily='Arial',)

 end_date = mdates.num2date(end_dates_num[0])
 ax.annotate(f'Finish Date: {end_date.strftime("%Y-%m-%d")}', (end_dates_num[0], 0.5),
 textcoords="offset points", xytext=(5,0),
 ha='left', va='center', fontfamily='Arial', fontsize=12)

 ax.set_yticks(range(len(tasks)))
 ax.set_yticklabels(tasks, rotation=0, fontdict={'family': 'Arial', 'size': 12})

 date_range = np.arange(min(start_dates_num), max(end_dates_num) + 1, 14)
 ax.set_xticks(date_range)

 ax.xaxis_date()
 ax.set_xticklabels(ax.get_xticklabels(), fontdict={'fontname': 'Arial', 'size': 8})
 fig.autofmt_xdate()
 plt.xlim(min(start_dates) - timedelta(days=7), max(end_dates) + timedelta(days=15))
 # Calculate the difference in days between "Planned" and "Forecasted"
 difference_in_days = (end_dates[2] - end_dates[0]).days

221

 difference_in_days -= datetime.timedelta(days=1).days
 # Determine the y-coordinate for the arrow (lower finish date)
 arrow_y = 0 if end_dates[0] < end_dates[2] else 2

 # Add a horizontal double-headed arrow with the difference in days
 arrow_start_x = end_dates[0]
 arrow_end_x = end_dates[2]

 if end_dates[0] < end_dates[2]:
 text_x = end_dates[0] + (end_dates[2] - end_dates[0]) / 2
 text_y = -0.25
 else:
 text_x = end_dates[2] + (end_dates[0] - end_dates[2]) / 2
 text_y = 1.75

 ax.text(text_x, text_y, arrow_text,
 fontdict={'family': 'Arial', 'fontsize': 11, 'color': 'black'}, ha='center',
va='center',
 bbox=dict(facecolor='white', edgecolor='black', boxstyle='square, pad=0.3'))

 ax.annotate('', xy=(arrow_start_x, arrow_y),
 xytext=(arrow_end_x, arrow_y),
 arrowprops=dict(arrowstyle='<->', color='black', lw=1.5, ls='--'))
 ax.axvline(x=today, color='red', linestyle='--')
 ax.text(today, 0.5, 'Data Date', color='red', fontsize=10, ha='left', family='Arial')
 ax.legend(fontsize=11, loc='upper center', ncol=3, frameon=False, bbox_to_anchor=(0.5,
1.3), prop={'family': 'Arial', 'size': 10})

 # Customize date formatting on the x-axis
 ax.xaxis.set_major_formatter(mdates.DateFormatter('%Y-%b-%d'))

 # Show the Gantt chart
 plt.grid(axis='x', zorder=0)
 plt.gca().set_axisbelow(True)
 plt.tight_layout()
 plt.show()

 chart_canvas = FigureCanvasTkAgg(fig, master=overall_project_frame)
 chart_canvas.get_tk_widget().grid(row=1, padx=0, pady=0, column=0, sticky='new')

 ### RESULT BOX:
 # Create Label widgets for the text values in the second row and onwards
 text_values_2 = int(atts[-1]['ES'])
 try:
 text_values_3 = datetime.datetime.strptime(project_info[project_code_0]['CB-Start
Date'], "%Y/%m/%d") + timedelta(days=atts[-1]['ES'])
 text_values_3 = text_values_3.strftime("%Y/%m/%d")
 except KeyError:
 text_values_3 = datetime.datetime.strptime(project_info[project_code_0]['IB-Start
Date'], "%Y/%m/%d") + timedelta(days=atts[-1]['ES'])
 text_values_3 = text_values_3.strftime("%Y/%m/%d")

 try:
 text_values_4 = datetime.datetime.strptime(project_info[project_code_0]['CB-Finish
Date'], "%Y/%m/%d")
 text_values_4 = text_values_4.strftime("%Y/%m/%d")
 except KeyError:
 text_values_4 = datetime.datetime.strptime(project_info[project_code_0]['IB-Finish
Date'], "%Y/%m/%d")
 text_values_4 = text_values_4.strftime("%Y/%m/%d")

222

 text_values_5 = (datetime.datetime.strptime(text_values_4, "%Y/%m/%d") -
datetime.datetime.strptime(text_values_3, "%Y/%m/%d")).total_seconds() / (24 * 60 * 60)

 text_values = [text_values_2, text_values_3, text_values_4, int(text_values_5)-1]
 text_labels = ["Prediction (days)", "Predicted Finish Date", "Planned Finish Date",
"Deviation (days)"]

 tree1 = ttk.Treeview(overall_project_frame, height=1, style='Custom2.Treeview')
 tree1['columns'] = text_labels
 tree1.column("#0", width=0, stretch=tk.NO)
 for heading in text_labels:
 tree1.column(heading, width=120, anchor=tk.CENTER)

 tree1.heading("#0", text="", anchor=tk.CENTER)
 for heading in text_labels:
 tree1.heading(heading, text=heading, anchor=tk.CENTER)

 tree1.tag_configure('myTag', font=("Arial", 11))
 tree1.insert('', tk.END, values=text_values, tags=('myTag',))

 tree1.grid(row=2, column=0, padx=10, pady=0, sticky="ew")

 file_path_var = tk.StringVar()
 file_path_entry = ttk.Entry(primavera_frame, textvariable=file_path_var, state='readonly',
width=50, font=('Arial', 11))
 file_path_entry.grid(row=0, column=1, columnspan=5, padx=10, pady=2, sticky='nesw')

 def get_primavera_p6_wrapper():
 # Fetch project code from the combobox string
 match = re.search(r"Project ([\w-]+):", project_combobox_overall.get())
 if match:
 project_code_overall = match.group(1)
 else:
 messagebox.showerror("Error", "Invalid project selection.")
 return

 # Fetch period number from the combobox string
 period_match = re.search(r"Reporting Period (\d+):", period_combobox_overall.get())
 if period_match:
 period_number_overall = int(period_match.group(1))
 else:
 messagebox.showerror("Error", "Invalid reporting period selection.")
 return

 # Now call the original function with the extracted values
 get_primavera_p6(project_code_overall, period_number_overall)

 ttk.Button(primavera_frame, text="Browse File", command=browse_file,
style='Custom.TButton').grid(row=0, column=6, padx=10, pady=2, sticky='nwes')
 ttk.Button(primavera_frame, text="Get P6 Data...", command=get_primavera_p6_wrapper,
style='Custom.TButton').grid(row=0, column=7, padx=10, pady=2, sticky='nwes')

10. Consolidation of Frames

frames_names = [project_hub_frame, progress_frame, forecasting_work_package_frame,
forecasting_project_frame]
frames_functions = [project_hub, enter_WP_reports, work_package_forecasting,
project_forecasting]

223

def show_frame(frame_name):
 for frame, functions in zip(frames_names, frames_functions):
 if frame == frame_name:
 frame.grid(row=0, column=2, padx=10, pady=10, sticky="nsew")
 functions()
 else:
 frame.grid_forget()

task_bar = ttk.Labelframe(root, text="Main Menu", padding=(1, 10), style='Custom.TLabelframe')
project_frame = ttk.Labelframe(task_bar, text='Projects Setup', style='Custom1.TLabelframe')
home_button = ttk.Button(project_frame, text="Home", command = lambda:
show_frame(project_hub_frame), style='Custom.TButton')
track_frame = ttk.Labelframe(task_bar, text='Deep Learning Forecasting Data',
style='Custom1.TLabelframe')
progress_button = ttk.Button(track_frame, text="Enter Tracking Data", command=lambda:
show_frame(progress_frame), style='Custom.TButton')
forecasting_frame = ttk.Labelframe(task_bar, text='Deep Learning Forecasting',
style='Custom1.TLabelframe')
forecasting_WP_results_button = ttk.Button(forecasting_frame, text="Step 01: Work Package
Level", command=lambda: show_frame(forecasting_work_package_frame), style='Custom.TButton')
forecasting_project_results_button = ttk.Button(forecasting_frame, text="Step 02: Project
Level", command=lambda: show_frame(forecasting_project_frame), style='Custom.TButton')

home_button.configure(padding=(10, 10))
progress_button.configure(padding=(10, 10))
forecasting_WP_results_button.configure(padding=(10, 10))
forecasting_project_results_button.configure(padding=(10, 10))

task_bar.grid(row=0, column=0, padx=5, pady=2, sticky="news",)
project_frame.grid(row=0, column=0, padx=10, pady=(10,20), sticky="nwes")
home_button.grid(row=0, column=0, padx=10, pady=10, sticky="w")
track_frame.grid(row=1, column=0, padx=10, pady=(20,20), sticky="nwes")
progress_button.grid(row=1, column=0, padx=10, pady=10, sticky= 'w')
forecasting_frame.grid(row=2, column=0, padx=10, pady=(20,20), sticky="nwes")
forecasting_WP_results_button.grid(row=3, column=0, padx=10, pady=10, sticky= 'w')
forecasting_project_results_button.grid(row=4, column=0, padx=10, pady=10, sticky= 'w')

show_frame(project_hub_frame)
root.mainloop()

