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Abstract

This work establishes the foundation for the estimation of forces and distortions in-

duced by thermal processes, such as welding, as well as incorporates the effects of

departure from idealizations. The Order of Magnitude Scaling (OMS) technique is

applied to thermal-mechanical analysis of a moving point heat source. Under typical

conditions, the thermal stress field is found to be best characterized by a uniaxial

model. The region of plastic behaviour is set by the “first yield temperature”, a

material property associated with thermal strain equivalent to the yield strain. The

proposed scaling laws are applicable for any parameters that produce a sufficiently

elongated first yield isotherm with ÆR ≳ 17. A survey of single pass welding pro-

cedures indicate that this criterion will be met in almost all cases. The resulting

uniform residual stress distribution along the heat source trajectory may be sepa-

rated into a local driving component and a global reaction component. The driving

component is expressed as an equivalent concentrated load, termed the tendon force,

which is proportional to the linear energy input. A universal estimate of the propor-

tionality factor for any metal with temperature independent properties is obtained asˆ︁H ≈ 0.23. The temperature dependent behaviour of materials is captured accurately

using four independent dimensionless groups and the results are validated for com-

mon structural grades of steel, aluminum, and titanium with nonlinear finite element

simulations. For some geometries, the section may not be sufficiently rigid to support

uniaxial restraint. The concept of compliance is introduced as a simple, accurate, and

general measure of the tendency for the geometry to distort at the location of a locally

applied force. The effect of compliance is found to depend on a newly defined dimen-
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sionless parameter, the Okerblom number (Ok). For symmetric flat plate geometry,

this parameter is physically interpreted as the normalized equilibrium temperature

rise. The methodology of blended asymptotics is used to obtain explicit compli-

ance correction factors for the yield temperatures and tendon force. The closed-form

blended expressions are validated against literature data for flat plates, T-sections,

and thin cylinders. The practical utility of the corrected asymptotic methodology is

demonstrated with a case study on non-ideal fit-up of circumferential pipeline joints.

Angular distortion at the pipe end produces bending across the weld root. The ten-

don force is used to derive a novel root susceptibility index which relates the welding

procedure variables and material properties with the weld cross-section and pipe ge-

ometry. The stress concentration associated with non-ideal geometry is considered

as a correction factor on the asymptotic case of ideal fit-up. The index presented is

a contribution towards an objective criterion for acceptance of high-low offset. Al-

though many of the illustrative examples presented this work relate to welding, the

theory and equations presented here are broadly applicable to the fields of thermal

cutting, laser processing (cladding and heat treatment), machining, grinding, and ad-

ditive manufacturing. The simple, general, and accurate formulae presented in this

work are well suited for use in procedure development and process design.
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Chapter 1

Introduction

1.1 Methodology

Welding, and more broadly all fabrication processes which utilize moving heat sources,

plays an essential and ever expanding role in modern advanced manufacturing. The

current state of the art in prediction of thermal-mechanical phenomena in welding

are computational algorithms that incorporate coupled numerical heat transfer, fluid

mechanics, and solid mechanics; these models are capable of simulating transient

stress development with temperature dependent elastic-plastic material models [1–3].

Although it is possible to achieve high accuracy for a specific application, there is lim-

ited or unknown applicability outside the specific parameters used. These numerical

solutions are thus not well suited to general issues of procedure design.

Welding codes and standards in North America provide minimum acceptable re-

sults for tests of metallurgical and mechanical properties (e.g., minimum notch tough-

ness for joints in low-temperature service) [4–6]. Allowable deviations from the tested

parameters are also outlined for specified essential process variables, but limited guid-

ance is provided on what parameters should be used to achieve these results for a given

situation. Industrial operators must therefore rely on the experience of skilled trades-

people and equipment operators to achieve the desired outcomes through a process

of trial-and-error.

Although adequate for minor deviations from existing practice, this approach is
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costly, inefficient, and may not be suitable for all cases. This is a particular concern

for new or improved material systems, where existing intuition is often insufficient

to identify even a good starting point of proposed parameters and operating con-

ditions. Numerical techniques are often marketed as a solution to such problems.

Unfortunately, even with modern computational power, the complexity of multicou-

pled, multiphysics numerical models requires a significant investment of time and

money to explore even limited ranges of parameters or materials. The shortcomings

of empirical approaches, whether experimental or numerical, are further emphasized

in applications to automated processes and equipment. It is not enough to only

know the optimal parameters for a specific case; adaptive programming techniques

necessitate a comprehensive understanding of the underlying phenomena that can be

translated into a set of rules or heuristics and implemented in control algorithms.

Calibrated analytical engineering formulae offer an alternative to purely empirical

methods and are widely employed in other areas of engineering practice. For appli-

cations ranging from design of heat exchangers to gear trains, engineering equations

based on fundamental analytical solutions are employed to solve complex real-world

problems. The key to these approaches is the development and provision of appropri-

ate limits of validity and correction factors. Correction factors allow for a simple base

solution to be flexibly adjusted, only when necessary, to account for more complex

secondary phenomena.

Welding engineers are required to extract insights from idealized conditions dur-

ing procedure development and integrate this knowledge into the non-ideal realities

of industrial fabrication environments. Calibrated engineering expressions are well

suited to help bridge the gap between theory and application, providing much needed

understanding without sacrificing practical relevance. This work employs the math-

ematical techniques of dimensional analysis, asymptotic approximation, and scaling

to derive engineering formulae that are capable of meeting the needs of industrial

operators dealing with issues of residual stress and distortion.
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1.2 Background

Common fabrication methods such as welding, cutting, cladding, surface heat treat-

ment, and additive manufacturing all rely on concentrated heat sources to achieve

localized addition, removal, or transformation of material. Non-uniform heating of

the underlying geometry results in differential levels of thermal strain which pro-

duce internal stresses as well as changes of the component shape. In some cases, the

stresses and distortion are reversible upon cooling, but in other cases, residual effects

will persist even after the component returns to the starting temperature.

Residual stress and distortion share a common driving force and are often produced

together, but these terms should not be considered interchangeable. The trends in

behaviour for stress and distortion do not always move together and in some cases

may even be entirely opposite. For example, highly restrained components may be

expected to experience reduced distortion during welding. However, as is shown in

this work, a greater degree of restraint will also tend to increase the plastic strain and

thus increase the volume of material with yield magnitude residual tensile stresses.

In general, stresses and distortion due to thermal processing can be broadly divided

into two categories, based on whether they are primarily associated with: transverse

effects in the direction perpendicular to the heat source movement; or longitudinal

effects in the direction parallel to the heat source movement. Transverse shrinkage,

angular change, and rotational distortion are predominantly associated with the devel-

opment of transverse residual stresses. Longitudinal shrinkage, longitudinal distortion

(i.e., out-of-plane bending), and buckling distortion are associated with longitudinal

residual stresses. The various forms of distortion are illustrated for the case of welding

in Figure 1.1.

This work is primarily focused on longitudinal stresses and distortion, and their

relation to the transient temperature gradients that surround a moving point heat

source in a thin (i.e., 2-D) geometry. Modern power supplies and advanced processing
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(a) transverse shrinkage (b) angular change (c) rotational distortion

(d) longitudinal shrinkage (e) longitudinal distortion (f) buckling distortion

Figure 1.1: Various possible types of distortion induced by thermal processes such as
welding; after Papazoglou & Masubuchi [7].

equipment, such as lasers, enable the use of fast moving, high power heat sources that

result in relatively low thermal gradients in the direction of heat source movement.

The temperature distribution along the heat source trajectory is thus approximately

uniform and thermal stresses due to internal restraint in the transverse direction

are expected to be small compared to the longitudinal direction. An exact criterion

for when the thermal gradients may be considered sufficiently small to employ this

approximation has not previously been presented, but is derived for the first time in

this work.

Transverse effects may not be expected to be entirely negligible in all cases. In

welded construction, transverse stresses have been widely studied and are known to

be a contributing factor in formation of solidification cracks [8]; when combined with

stress concentrations at the weld toe or root, residual stresses can also lead to a reduc-

tion in fatigue life of welded components [9]. Satoh [10] has shown that these stresses

are associated with external restraint of thermal shrinkage during cooling, rather than
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the transient temperature distribution. The distinct mechanism that governs forma-

tion of transverse residual stresses, supports an independent and decoupled treatment

of longitudinal stresses and distortions.

The mechanisms for development of longitudinal residual stress and distortion

have been under investigation since the mid 1930s. Boulton & Lance-Martin [11]

first proposed a theoretical model to relate the thermal strains due to heating with

development of plastic strain; the region of plastic strain was measured experimentally

and found to significantly exceed the region of melting. Rodgers & Fetcher [12]

performed a similar study and identified that for a symmetric flat plate geometry, the

residual stress distribution consists of yield magnitude tensile stresses near the line

of heating with balancing compressive stresses in the surrounding material.

The “three-bar model” was established by Wells [13] to explain the development

of these counterbalancing tensile and compressive zones. During heating, material

expansion near the heat source is restrained by the cooler surrounding material re-

sulting in the development of compressive plastic strain. During cooling to a uniform

temperature, there is a mismatch between the material with and without this plastic

strain. Assuming that the cross-section of material remains planar, the strain must

be uniform, so elastic strains are produced to compensate for this strain mismatch.

The elastic strains and associated residual stresses are thus positive (tensile) in the

region with plastic strain and negative (compressive) in the surrounding material to

maintain an overall uniform strain across the section.

Consistent through the early analytical work on welding residual stresses is the

simplifying assumption that, for typical conditions, the weld may be treated as uniax-

ially restrained and the distributions of longitudinal stress and strain may be assumed

uniform along the weld length. This simplification also enabled the early numerical

algorithms created by Tall [14] and Masubuchi et al. [15].

These early simplified approaches evolved into the concept of inherent strain, a

term coined by Ueda et al. [16] in reference to the mismatch produced by plastic
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behaviour as described in the three-bar model. The inherent strain concept addresses

the complex transient thermal-mechanical phenomena separate from the reaction of

the larger geometry. Subsets of this approach include both those methods which use

a separate computational model to obtain values for inherent strain [17–19] as well as

those which rely on estimates of inherent strain from analytical formulae or a database

of experimental measurements [20, 21]. Implementations in numerical software apply

the inherent strain as a static load distribution to a simple linear model yielding

significantly improved computational efficiency compared to full transient elastic-

plastic models [22–24].

Analytical estimates of inherent strain and associated stresses and distortions are

the focus of this work since they provide necessary generality to address problems

of procedure development and process design. Blodgett [25] pioneered the “weld-as-

a-line” concept to calculate the necessary weld size for a given load capacity. This

methodology provides the basis for guidelines used to size welds in modern structural

welding codes and standards. The goal of this work is to enable a similarly convenient

and powerful tool to estimate longitudinal stresses and distortions.

The primary challenge in adapting this efficient methodology are the limitations of

existing analytical models for the inherent strain distribution. Traditional implemen-

tations of inherent strain are focused on applications to structural construction [14,

26] and thus existing models are primarily validated for low-carbon steels. General

applicability to modern materials and new processing techniques, such as additive

manufacturing, necessitates that these models be validated with consideration of more

complex material property behaviour.

A secondary challenge is that the limits of applicability for the model must be

rigorously defined and easily evaluated for a given situation. This is essential both

for model validation as well as for practical application of the results. Specific consid-

erations include the impact of the overall geometry size and shape on estimates of the

inherent strain, and most importantly the criterion for application of the assumptions
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that enable a simplified uniaxial model of thermal and residual stress.

This work brings fresh insights to a 100 year-old problem. The new contribution to

knowledge includes both an improved theoretical understanding, and also a practical

consideration of how to apply this understanding to real-world non-ideal problems of

immediate and significant industrial relevance.

1.3 Objectives

The main purpose of this research project is to generate simple, general, and accu-

rate formulae to describe the longitudinal residual stresses, strains, and distortions

produced during thermal processes such as welding. In order to achieve this goal, the

following objectives were established:

� Formulate a fundamental mathematical framework to link the mechanical re-

sponse to thermal processing with material properties and procedural variables.

� Identify key characteristic values of the residual stress field and obtain descrip-

tive normalized asymptotic expressions with associated limits of applicability.

� Develop and validate correction factors to account for secondary phenomena

that may produce deviations from the asymptotic model in specific cases.

� Demonstrate the utility of the proposed expressions to problems of practical

industrial relevance.
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1.4 Thesis Outline

The remaining 5 chapters of this thesis focus on achieving the above objectives. A

brief outline of each chapter is included below.

� Chapter (2) presents an order of magnitude scaling analysis which establishes

the foundation for the uniaxial thermal stress field applied throughout this work.

Novel limits of validity for the uniaxial model are obtained and the applicability

to typical welding procedures is verified for a wide range of common processes

and materials.

� Chapter (3) outlines a methodology for reducing the residual stress field pro-

duced during thermal processing of materials to an equivalent load concentrated

at the application of heating. This approach enables prediction of the overall

stress and distortion based on information from only a small area of interest

near the heat source.

� Chapter (4) characterizes the influence of the component geometry on the resid-

ual stress distribution using the concept of compliance. Closed-form blended

expressions are derived that extend the asymptotic tendon force model to any

general thin section geometry.

� Chapter (5) provides a practical application of the tendon force approach to as-

sess the influence of non-ideal fit-up on the integrity of circumferential pipeline

joints. An analytical solution is presented for the local angular distortion asso-

ciated with the welding tendon force, and used to derive a numerical index for

the susceptibility to formation of latent root discontinuities.

� Chapter (6) summarizes the major findings and conclusions of this body of

work. Recommendations for potential future work are also provided.
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Chapter 2

Scaling Analysis of the Thermal
Stress Field Produced by a Moving
Point Heat Source in a Thin Plate

2.1 Introduction

Residual stresses produced during welding and additive manufacturing of materials

can lead to undesirable distortion of initial geometry [27] and may also have signifi-

cant implications on the stress carrying capacity of the welded structure [26, 28]. For

industrial practitioners, combating these issues requires knowledge of the magnitude

and distribution of the residual stresses. The development of residual stresses is a

complex process dependent on interactions between the physics governing heat flow

and mechanical deformation, as well as the potential for these processes to produce

changes in material properties. Estimation of the residual stresses resulting from a

given welding process is generally attempted through one of three methods: experi-

ments (i.e., trial and error), numerical techniques, or analytical expressions, with the

bulk of existing work focused on the first two methodologies.

All of these methods contain a balance of advantages and disadvantages in terms of

capital cost, time, accuracy, and generality. Experimentally derived empirical models

have historically been widely applied to problems in welding. The low capital and

time investment for individual experiments makes this method appealing to industrial
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practitioners. Direct in-situ measurement of residual stresses poses a significant chal-

lenge, while indirect measurement techniques such as strain-gauge hole-drilling have

limited accuracy, and may not be suitable for complex geometries or sub-surface stress

measurement. Volumetric strain measurement with neutron-diffraction has been uti-

lized in many recent studies to overcome some of the limitations of traditional residual

stress measurement techniques [29, 30], but the time and cost to perform these mea-

surements is prohibitive for day-to-day industrial practice.

Numerical models have emerged in recent decades as a potential solution to the

limitations of experimental measurement techniques, and have been used to success-

fully analyze welds on a range of complex weld geometries [1, 31, 32]. Numerical

techniques have the potential to provide high accuracy at the expense of significant

investment of time and capital, particularly if considerations of complex phenomena

such as phase transformations are necessary.

The utility of simple analytical formulae for estimation of key properties of the

temperature field surrounding a moving point heat source has been recently demon-

strated by [33, 34]. Central to the practical application of these formulae are well

established limits of applicability. This study applies a similar methodology to obtain

an analytical formula for the characteristic size of the welding residual stress field.

A simple uniaxial analytical model for thermal stresses in welding or additive man-

ufacturing was first considered for edge welded plates in [11] and butt welded plates

in [12]. This model idealizes the material behaviour as analogous to a cylindrical

specimen with a rigidly fixed length, such as is used in a Satoh Test [35]. Variations

on this analysis have been used to provide analytical predictions of welding residual

stress [13, 36, 37], to simplify early computational algorithms [14, 15] as well as in

combined analytical-computational approaches [20, 21]. Despite excellent correlation

with experimental results, due to the unknown limits of applicability, this simple and

powerful model remains inaccessible to industry, denying welding engineers a much

needed tool for estimation of residual stress.
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This study utilizes a novel analytical technique presented in [38] to derive the

range of validity of the uniaxial model of residual stresses. The proposed criterion

for application of the uniaxial model is validated against numerical simulations and

applied to a survey of typical procedures for a variety of different welding processes.

For the first time, a simple and general formula is provided which enables industrial

practitioners to evaluate and apply the uniaxial model to a wide range of different

materials and procedural variables.
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2.2 List of Symbols

Symbol SI Unit Description

Roman Letters

ÆR 1 Aspect ratio of isotherm

d m Plate thickness

E Nm−2 Elastic modulus

fÆR 1 Correction factor

G Nm−2 Shear modulus

k Wm−1K−1 Thermal conductivity

Q′ Jm−1 Linear energy input (i.e., welding heat input)

q W Power absorbed by the substrate

Ro 1 Dimensionless Rosenthal number

TY1 K First yield temperature

Ts K Solidus temperature

T0 K Starting temperature

U ms−1 Heat source travel speed

xb m Distance between heat source and back of isotherm

xmax m Distance between heat source and max. width of isotherm

xf m Distance between heat source and front of isotherm

yfz m Fusion zone size (i.e., half-width)

ymax m Maximum isotherm half-width

ypl m Plastic zone size (i.e., half-width)

Greek Letters

ᾱ K−1 Mean linear coefficient of thermal expansion

ϵx 1 Normal strain parallel to heat source movement

ϵy 1 Normal strain perpendicular to heat source movement

γxy 1 In-plane shear strain

η 1 Thermal efficiency

ν 1 Poisson’s ratio

ρc Jm−3K−1 Volumetric specific heat capacity

σY Nm−2 Material yield strength

σx Nm−2 Normal stress parallel to heat source movement

σy Nm−2 Normal stress perpendicular to heat source movement

τxy Nm−2 In-plane shear stress
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2.3 Asymptotic Analysis

2.3.1 Order of Magnitude Scaling

The OMS (Order of Magnitude Scaling) algorithm is used to perform an automated

scaling analysis to simplify a multi-coupled, multi-physics problem. The OMS ap-

proach is described in detail in [39] and consists of three stages. Stage 1: identify

the governing equations for the system, normalize each term in the equations by

characteristic values and create a matrix of coefficients by substituting normalized

expressions into the governing equations. Stage 2: select a subset of the governing

terms and use them to create and solve a system of linear equations, check that the

solution is self-consistent and non-singular and, if this is not the case, repeat the pro-

cess with a different subset of terms. Stage 3: assess the output from the automated

algorithm, select the appropriate self-consistent balance and verify the reasonableness

of the associated estimations.

The asymptotic analysis considers the heat source to be represented by a moving

point as proposed by Rosenthal [40]. The substrate is assumed to be infinite in the y

(width) and x (length) dimensions and sufficiently small in z (thickness) such that the

temperature, stress, and strain fields have negligible variation through the thickness.

In the absence of an external traction on the surface of the substrate, this geometry

will be in a state of plane stress.
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Calculation of the stress and strain components for a 2-D plane stress state in

a linear elastic material requires the simultaneous solution of a set of six partial

differential equations: 3 constitutive laws, 2 equations of motion/equilibrium, and 1

compatibility condition [41]

ϵx =
1

E
σx −

ν

E
σy + ᾱ∆T (2.1a)

ϵy =
1

E
σy −

ν

E
σx + ᾱ∆T (2.1b)

γxy =
1

G
τxy (2.1c)

∂σx
∂x

+
∂τxy
∂y

= 0 (2.1d)

∂τxy
∂x

+
∂σy
∂y

= 0 (2.1e)

∂2ϵy
∂x2

+
∂2ϵx
∂y2

=
∂2γxy
∂x∂y

(2.1f)

where ϵx, ϵy, γxy are the in-plane strains, σx, σy, τxy are the in-plane stress components,

E is the modulus of elasticity, G is the shear modulus, ν is Poisson’s ratio, ᾱ is the

mean coefficient of thermal expansion, and ∆T = T (x, y) − T0 is the temperature

change relative to a reference state of zero strain at the starting temperature T0.

This analysis considers boundary conditions of zero normal and shear forces acting

on the lateral and longitudinal plate edges at infinity and zero traction on the plate

surfaces. Distortions of the plate in the out of plane direction will be negligible for a

plane stress state and are not considered.

For the temperature field to be compatible with the plane stress assumption it

must be uniform in the thickness direction. Figure 2.1 illustrates the typical 2-D
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temperature field for a plate where the thickness is small relative to the width of

the isotherm. A 2-D temperature distribution is appropriate for a single pass, full

penetration weld if the width of the isotherms in the temperature range of interest

are significantly greater than the thickness (d) of the substrate. This condition has

been expressed graphically in the work of Myhr and Grong [42].

Figure 2.1: Schematic of 2-D temperature field in a thin plate for a single pass, full
penetration weld [33].

2.3.2 Construction of the Matrix of Coefficients

As shown in Equation (2.1), the mathematical formulation for the thermal stress field

in a 2-D plane composed of a homogeneous, isotropic, linear elastic material involves

a total of six equations, with six (unknown) dependent variables, three independent

variables and seven fixed parameters. The dependent variables are {U} = {ϵx, ϵy, γxy,

σx, σy, τxy}; the independent variables are {X} = {∆T, x, y}; and the parameters

are {P} = {∆Tc, xc, yc, ν, G,E, ᾱ}, where xc = xb − xf and yc = 2ymax are the

characteristic length and width of the characteristic isotherm T (x, y) = Tc as shown

in Figure 2.2. This notation follows the convention used in [34], where xf is the

distance from the heat source to the leading point on the front of the isotherm, xb is

the distance from the heat source to the trailing point on the back of the isotherm,

and ymax is the maximum width of the isotherm.

The OMS analysis requires input of a set of parameters which fall within the desired
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Figure 2.2: Schematic of characteristic isotherm geometry.

asymptotic regime. Empirical validation of the uniaxial stress model has predomi-

nantly focused on arc welding of low-carbon structural steels [26, 43, 44]. Recom-

mended parameters for a single pass GMAW butt weld on a 3 mm carbon steel plate

are provided in [45] (absorbed power q = 1920 W, travel speed U = 8 mm/s). The me-

chanical properties of a nominally composed ASTMA36 structural steel were obtained

using the computational materials software JMatPro [46] (ν = 0.3, G = 76 GPa, E =

197 GPa, ᾱ = 12.6× 10−6 1/K). A characteristic temperature for residual stress de-

velopment in low-carbon structural steel of approximately Tc = σY/Eᾱ+T0 ≈ 120 ◦C

is proposed in [26] for a starting temperature of T0 = 20 ◦C. This approximation

assumes the yield strength σY is constant for temperatures < 200 ◦C. A decrease

in yield strength of approximately 0.625 MPa/◦C to 100◦C and 0.275 MPa/◦C from

100–200◦C is predicted by JMatPro. Accounting for the decreased yield strength

at elevated temperatures, an improved estimate of the characteristic temperature is

Tc ≈ 100 ◦C. Using the equations provided by [34] and thermal properties at the

characteristic temperature (thermal conductivity k = 53 Wm−1K−1, volumetric spe-

cific heat capacity ρc = 3.8 × 106 Jm−3K−1) the characteristic width and length are
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xc = 3.2 m and yc = 0.13 m.

The normalization approach presented in [47] is used to calculate characteris-

tic values of the differential expressions given in Equation (2.1). The independent

variables are normalized as x∗ = x/xc, and y∗ = y/yc. The characteristic tem-

perature for normalization is ∆Tc = Tc − T0, yielding a normalized temperature

T ∗(x∗, y∗) = ∆T (x, y)/∆Tc. The normalized equivalent of Equations (2.1a) to (2.1f)

is then:

ϵx,cϵ
∗
x =

1

E
σx,cσ

∗
x −

ν

E
σy,cσ

∗
y + ᾱ∆TcT

∗ (2.2a)

ϵy,cϵ
∗
y =

1

E
σy,cσ

∗
y −

ν

E
σx,cσ

∗
x + ᾱ∆TcT

∗ (2.2b)

γxy,cγ
∗
xy =

1

G
τxy,cτ

∗
xy (2.2c)

(︃
∂σx
∂x

)︃
c

(︃
∂σx
∂x

)︃∗

+

(︃
∂τxy
∂y

)︃
c

(︃
∂τxy
∂y

)︃∗

= 0 (2.2d)

(︃
∂τxy
∂x

)︃
c

(︃
∂τxy
∂x

)︃∗

+

(︃
∂σy
∂y

)︃
c

(︃
∂σy
∂y

)︃∗

= 0 (2.2e)

(︃
∂2ϵy
∂x2

)︃
c

(︃
∂2ϵy
∂x2

)︃∗

+

(︃
∂2ϵx
∂y2

)︃
c

(︃
∂2ϵx
∂y2

)︃∗

=

(︃
∂2γxy
∂x∂y

)︃
c

(︃
∂2γxy
∂x∂y

)︃∗

(2.2f)
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Considering Equations (2.2a) to (2.2f), the corresponding matrix of coefficients [C]

is given in Equation (2.3):

[C] =

∆Tc xc yc ν G E ᾱ σx,c σy,c τxy,c ϵx,c ϵy,c γxy,c⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

-1 1

1 -1 1

1 1

1

-1 1

1 -1 1

1 1

1

-1 1

-1 1

-1 1

-1 1

-1 1

-2 1

-2 1

-1 -1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.3)

2.3.3 Iterations Based on Matrix Operations

After construction of the matrix of coefficients, the first stage of OMS is complete.

The second stage uses a purpose-built computer algorithm to automatically perform

linear algebra operations on the matrix of coefficients. For the matrix of coefficients

in Equation (2.3), the OMS program considered 108 combinations of six pairs of

balancing terms and identified 74 indeterminate balances, 33 inconsistent balances,

and 1 self-consistent balance.

The third stage of scaling requires the use of engineering judgement to choose an

appropriate dominant balance. This analysis yielded only a single self-consistent bal-

ance, but it is still necessary to verify the suitability of the result. The self-consistent

balance considers the dominant terms to be term 2 and term 4 in Equation (2.2a),
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term 1 and term 4 in Equation (2.2b), and term 2 and term 3 in Equation (2.2f).

Equations (2.2c) to (2.2e) have only two terms and the dominant balance is triv-

ial. This balance yields the following estimates for the characteristic values of the

dependent variables:

ˆ︁σx,c = ᾱ∆TcE (2.4a)

ˆ︁σy,c = ᾱ∆Tc
y2c
x2c
E (2.4b)

ˆ︂τxy,c = ᾱ∆Tc
yc
xc
E (2.4c)

ˆ︁ϵx,c = ᾱ∆Tc
y2c
x2c

E

G
(2.4d)

ˆ︁ϵy,c = ᾱ∆Tc (2.4e)

ˆ︂γxy,c = ᾱ∆Tc
yc
xc

E

G
(2.4f)

Numerical values for the characteristic stresses and strains can be obtained for a

given welding procedure by substituting in values for the parameters {P} = {∆Tc, xc,

yc, ν, G,E, ᾱ}. For the GMAW weld on ASTM A36 structural steel, the characteristic

values for the thermal stresses and strains are ˆ︁σx,c = 198.6 MPa, ˆ︁σy,c = 0.3 MPa,

ˆ︂τxy,c = 8.1 MPa, ˆ︁ϵx,c = 4 µm/m, ˆ︁ϵy,c = 1008 µm/m, and ˆ︂γxy,c = 106 µm/m.
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Using the expressions given in Equations (2.4a) to (2.4f) the original Equations (2.1a)

to (2.1f) can be rewritten in dimensionless form:

(︃
y2cE

x2cG

)︃
ϵ∗x = σ∗

x −
(︃
y2cν

x2c

)︃
σ∗
y + T ∗ (2.5a)

ϵ∗y =

(︃
y2c
x2c

)︃
σ∗
y − (ν)σ∗

x + T ∗ (2.5b)

γ∗xy = τ ∗xy (2.5c)

∂σ∗
x

∂x∗
+
∂τ ∗xy
∂y∗

= 0 (2.5d)

∂τ ∗xy
∂x∗

+
∂σ∗

y

∂y∗
= 0 (2.5e)

(︃
G

E

)︃
∂2ϵ∗y
∂x∗2

+
∂2ϵ∗x
∂y∗2

=
∂2γ∗xy
∂x∗∂y∗

(2.5f)

Considering only the dominant terms, Equation (2.5a) can be reduced to:

σ∗
x(x

∗, y∗) = −T ∗(x∗, y∗) (2.6)

with the dimensional counterpart:

σx(x, y) = −Eᾱ∆T (x, y) (2.7)

For the self-consistent dominant balance, the total strain in the direction parallel

to the heat source movement (ϵx) and the stress in the perpendicular direction (σy)

are both found to be non-dominant. The stress in the parallel direction (σx) may

therefore be approximated as the product of the elastic modulus (E) and the thermal

strain (ᾱ∆T ). This is identical to the result obtained if the plate is idealized as
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having been formed of a number of independent parallel fibres of a fixed length. The

dominant balance obtained for the GMAW welding procedure is therefore equivalent

to the uniaxial stress model.

2.3.4 Limit of Validity of Estimates

Although the scaling expressions in Equations (2.5a) to (2.5f) were derived by con-

sidering only a single welding procedure, the advantage of this scaling approach is

that these expressions, and therefore the uniaxial stress model, will remain valid for

any set of parameters which generates the same force balance. The scaling estimates

for σx,c, σy,c, τxy,c, ϵx,c, ϵy,c, and γxy,c are produced by considering only the domi-

nant forces (i.e., assuming the secondary forces are zero). The relative magnitude

of the secondary forces may be estimated from the corresponding coefficients on the

non-dominant terms in Equations (2.5a) to (2.5f).

The normalized coefficients can be written in matrix form as:

[ ˆ︁N ] =

∆Tc xc yc ν G E ᾱ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

-2 2 -1 1

-2 2 1

-2 2

1

1 -1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.8)

where the zeros have been omitted for clarity. The dominant terms have a normalized

coefficient of 1 (i.e., all exponents are zero) and the corresponding rows are empty.
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Euations (2.1c), (2.1d), and (2.1e) are omitted since they have only two terms each

and would appear as completely empty rows in Equation (2.8).

For the force balance to be self consistent, the coefficients on the non-dominant

terms should be less than the coefficients on the dominant terms (i.e., ≤ 1). Based on

this consideration, the limits of validity of Equations (2.4a) to (2.4f) can be written

as:

{︃
ν ,

G

E
,

(︃
y2c
x2c

)︃
,

(︃
y2cν

x2c

)︃
,

(︃
y2cE

x2cG

)︃}︃
≤ 1 (2.9)

The conditions given by Equation (2.9) can be simplified using dimensional anal-

ysis. The number of independent rows in [ ˆ︁N ] determines the number of independent

dimensionless groups (m) in Equation (2.9). For this analysis, m =3 which indicates

there can only be exactly three independent dimensionless groups. Any three dimen-

sionless groups that form an independent set may be selected. In this analysis, ν,

G/E, and xc/yc are selected. The dimensionless group xc/yc is physically interpreted

as the aspect ratio (ÆR) for the isotherm of interest (T (x, y) = Tc) as shown in Fig-

ure 2.2. There are in fact only two truly independent dimensionless groups, since for

an isotropic elastic material the ratio of the shear and elastic modulus (G/E) can be

expressed in terms of Poisson’s ratio (ν) [41]:

G/E =
1

2(1 + ν)
(2.10)

The range of validity given by Equation (2.9) can therefore be equivalently ex-

pressed in terms of only ÆR and ν as:

−0.5 ≤ ν ≤ 1 (2.11a)

ÆR2 ≥ 2(1 + ν) (2.11b)
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The upper bound of Equation (2.11a) is satisfied for all isotropic materials, which

must have a Poisson’s ratio between -1 and 0.5 [48]; this includes elastic behaviour

of most metals (ν = 0.25 − 0.35), and even the Poisson’s ratio of incompressible

deformation (such as in plasticity), with ν = 0.5. The lower bound of Equation (2.11a)

poses no additional restrictions on the range of validity of the OMS solution since one

of the underlying assumptions of this approach is that all parameters do not change

sign (i.e., ν ≥ 0). Consideration of both an upper and lower bound on ν means that

there will not exist an asymptotic case in which the corresponding coefficients on

non-dominant terms both approach zero, since ν cannot simultaneously be ≪ 1 and

≫ −0.5. The mean value for metals of ν = 0.3, is in the middle of the range of validity

and the model should therefore be expected to provide reasonable approximations.

For isotropic materials, the highest possible Poisson’s ratio is ν = 0.5 and therefore

Equation (2.11b) will always be satisfied if the moving heat source develops isotherms

with an aspect ratio ÆR ≥
√
3 ≈ 1.732. This criteria is not a strict limit, but an

approximate indication of the centre of the transition from the asymptotics of fast

to slow heat sources. Typically, asymptotic solutions in welding yield small errors

when the corresponding dimensionless groups are an order of magnitude away from

the centre of the transition, yielding the following criterion:

ÆR ≳ 17 (2.12)

For the previously considered GMAW welding procedure on ASTM A36 structural

steel, the estimated aspect ratio is ÆR = 25.

2.4 Plasticity Considerations

The asymptotic analysis corroborates the common practice of using a uniaxial model

to describe the transient thermal stress field produced during welding and additive

manufacturing of 2-D geometries. In welding applications, the transient thermal stress
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field is often of secondary importance, while the residual stress field that remains fol-

lowing welding is of primary concern. Although the linear elastic asymptotic analysis

alone is not sufficient to derive the complete residual stress field, it can be used to

estimate one of the most important properties of the stress field, the plastic zone

width.

The width of the plastic zone corresponds to the boundary between regions of

elastic and plastic material behaviour. The proposed model is self-consistent for

prediction of material behaviour up to and including this boundary. The existence

of a uniaxial stress state implies that the plate will behave in an equivalent manner

to a series of independent parallel strips. The behavior of the material outside the

plastic zone and up to this boundary may therefore be treated as independent of the

material within the plastic zone. The location of this boundary and therefore the

width of the plastic zone may be estimated as the perpendicular distance from the

heat source trajectory at which the elastic thermal stresses equal the material yield

strength.

2.4.1 First Yield Temperature

As the heat source moves, points of the substrate ahead of it experience heating, and

a consequent thermal expansion. In a large plate, the cold region far from the heat

source does not expand, and acts as a rigid constraint to the hot material. Under the

condition of uniaxial constraint, the thermal expansion results in compressive thermal

stresses, which in the elastic regime are proportional to the temperature increase. The

maximum temperature at each point depends on the proximity to the line on which the

heat source moves. The closer a point is to the line, the higher maximum temperature

it experiences and the larger the magnitude of the compressive thermal stresses. At

some distance from the weld line, the maximum temperature will be sufficient to

cause thermal stresses which exceed the elastic capacity of the material and result in

plasticity. The temperature increase necessary to produce plastic behaviour is termed
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the “yield temperature” in the welding literature [49, 50] and will be referred to as

“first yield temperature” in this line of work to distinguish it from the temperature

associated with additional plasticity which may be produced during cooling, to be

discussed in a separate publication.

The first yield temperature is defined by the intersection between the elastic and

plastic behaviour. The mathematical expression of the first yield temperature is:

TY1 = ∆TY1 + T0 =
σY
Eᾱ

⃓⃓⃓
TY1

+ T0 (2.13)

where the yield stress (σY), the elastic modulus (E), and the mean coefficient of

thermal expansion (ᾱ) are all evaluated at the yield temperature (TY1). Figure 2.3

illustrates the definition of the first yield temperature.

Figure 2.3: Definition of first yield temperature.

Table 2.1 lists the first yield temperature for a number of alloys commonly welded

or used in additive manufacturing assuming a starting temperature of 20◦C. For mod-

erate variations in starting temperatures, the first yield temperature varies by approx-

imately the same amount (e.g., the first yield temperature for ASTM A36 structural
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steel with a starting temperature of 50◦C is approximately 130◦C). Table 2.1 shows

that high strength alloys such as TiAl6V4 and high temperature service alloys such as

P91 alloy steel and Inconel 718 exhibit high first yield temperatures. Lower strength

materials, such as aluminum alloys, show comparatively low first yield temperatures.

Table 2.1: Properties of selected materials at first yield temperature (TY1) for a
starting temperature of T0 = 20 ◦C.

Material σY [MPa] E [GPa] ᾱ [1/K] TY1 [ ◦C] Ts [
◦C]

ASTM A36 201 197 12.6×10−6 101 1467

SS 304 208 196 16.7×10−6 84 1280

SS 316 230 191 15.2×10−6 99 1280

SS 316L 195 192 15.1×10−6 87 1280

Al 1050 89 69 24.0×10−6 73 585

Al 6082-T6 99 70 23.3×10−6 80 645

P91 454 207 11.1×10−6 217 1420

In 718 729 185 13.9×10−6 305 1260

TiAl6V4 507 81 9.8×10−6 663 1550

2.4.2 Plastic Zone Width

The size of the plastic zone (ypl) corresponds to the maximum width of the first yield

isotherm (T (x, y) = TY1) and can therefore be approximated using the asymptotic

expression for the isotherm half-width provided by [33]:

ypl = ymax|TY1
=

√︃
2π

e

Q′

2πρcd(TY1 − T0)
(2.14)

where ypl is the half-width of the plastic zone and Q′ = q/U is heat input given

by the intensity of heat absorbed by the substrate (q) and the travel velocity (U).
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This equation is valid for plates much thinner than the half-width of the isotherm

(d ≪ ymax), and for high values of the dimensionless Rosenthal number (Ro≫1),

which is defined as:

Ro =
q

2πkd(TY1 − T0)
(2.15)

where k is the thermal conductivity of the substrate. Equation (2.14) is based on

fixed values (i.e., temperature independent) for material properties. If temperature

dependent properties are available, effective values can be calculated as indicated

in [33].

Combining Equation (2.14) and Equation (2.13) provides an expression for the

estimated plastic zone width:

ypl = ymax|TY1
=

√︃
1

2πe

Eᾱ

ρc

Q′

dσY
(2.16)

The solidus temperature Ts for each of the various materials is also shown in Ta-

ble 2.1. For ambient starting temperature (i.e., T0 ≈ 20 ◦C), the first yield temper-

ature change is typically an order of magnitude less than the solidus temperature

change.

The half-width of the fusion (yfz = 3.6 mm) is estimated by substituting Ts into

Equation (2.14). The best estimate of the fusion zone size is obtained using material

properties at elevated temperatures, but for the purposes of this rough comparison,

a reasonable estimate is obtained using the material properties at TY1. The ratio

of the half-width of the fusion zone to the half-width of the plastic zone (yfz/ypl)

is approximately equal to the inverse of the ratio of the corresponding temperature

changes (i.e., ∆TY1/∆Ts). Under typical thin plate conditions the fusion zone there-

fore comprises a small fraction of the region of material subject to residual stress.

Figure 2.4 illustrates the relative size of the fusion zone and the plastic zone for an
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experimental GMAW weld between two 3 mm plates of ASTM A36 structural steel

with an effective heat input of Q′ = ηV I/U ≈ 240 J/mm (I = 98 A, V = 16 V,

U = 5 mm/s and an assumed thermal efficiency of η ≈ 0.77).

Figure 2.4: Width of the weld fusion zone and plastic zone for a GMAW butt weld
between two 150 mm × 150 mm × 3 mm plates with a current of 98 A, a voltage of
16 V, and a travel speed of 5 mm/s.

2.5 Validation of Results

2.5.1 Numerical Modelling

The validation in this study was performed using numerical methods due to the lack

of literature data related to plastic zone measurement in sufficiently large plates. The

welding simulation software utilizes the proprietary nonlinear finite element analysis

tool sfMarc to perform a thermal-mechanically coupled analysis. The matrix solution

is obtained by a direct sparse solver implementing the full Newton-Raphson tech-

nique. The transient thermal solution considers a heat source with constant thermal

load (i.e., energy flux) that moves along a specified weld trajectory at a prescribed
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travel speed. The resultant temperature field for each time increment is used to cal-

culate thermal strains. These thermal strains are treated as mechanical loads for the

subsequent computation of stress and distortion. The mechanical solution is obtained

from the force-displacement relations where the stiffness matrix is determined from

the combination of the strain-displacement relation and the stress-strain relation. The

nonlinear stress-strain relation for each material is based on tabulated values for the

temperature and strain dependent flow stress.

The geometry considered for all procedures was a centre weld on a large plate

2000 mm × 2400 mm × 3 mm (width × length × thickness). The mesh used in

the numerical validation is shown in Figure 2.5. The plate was meshed using 8-node

isoparametric brick elements with a size of 2.5 mm at the weld line, increasing to 10

mm at the boundary of the plastic zone, and 40 mm at the plate edge. A single layer

of elements was used for the thickness dimension of the plate since through thickness

temperature and stress gradients are beyond the scope of the 2-D analytical model

explored in this work. The boundary conditions consist of: (1) a y symmetry plane

coincident with the weld trajectory, (2) fixed x displacement for a single node on both

the top and bottom surface of the plate in one corner and (3) a z bearing surface

supporting the plate from beneath. A cooling time of 2700 s (45 min) after the

completion of the simulated weld allowed for the entire plate to cool below the first

yield temperature and therefore ensure the plastic zone achieved its maximum size.

Since the area of interest (i.e., the plastic zone) is significantly larger than the fusion

zone, computational efficiencies were possible by using a simple cylindrical heat source

rather than the more computational intensive double-ellipsoid heat source model. The

cylindrical heat source used a radius of 5 mm (i.e., twice the mesh size near the heat

source), which was adequately large to prevent instability due to jumping of the heat

source between subsequent nodes. The depth of the heat source was set equal to the

thickness of the plate to mimic a full penetration single pass weld.

The numerical studies consisted of two groups of tests. The first group of tests
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Figure 2.5: Top view of mesh used in numerical simulations.

considered four different commonly welded materials for the substrate: ASTM A36

structural steel, 316L stainless steel, P91 alloy steel, and aluminum alloy 6082-T6. For

each material, the same set of welding parameters were simulated with a fixed heat

input of 240 J/mm and variable travel speed ranging from 0.25 mm/s to 128 mm/s.

The wide range of travel speeds correspond to aspect ratios for the first yield isotherm

which span three orders of magnitude from 100–102. The intermediate travel speed

(log-scale) of U = 8 mm/s results in an equivalent procedure to the GMAW process

considered in the OMS analysis. The second group of tests considered only ASTM

A36 structural steel, with varying heat input from 120–480 J/mm and the same set
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of travel speeds considered in the first group of tests.

The suitability of the uniaxial model was assessed for each procedure by comparing

the width of the plastic zone measured from the simulation to the estimate based on

the maximum width of the first yield isotherm (Equation (2.16)). The estimated and

measured widths of the plastic zone are shown in Table 2.2. For the simulations, the

reported value is the mean width of the plastic zone for all tests with a yield isotherm

aspect ratio in the fast asymptotic regime (ÆR > 17). Measurements for the width of

the plastic zone are based on the nodes on the top surface of the plate adjacent to the

cross-section A-A shown in Figure 2.5. The width of the plastic zone was estimated

as the midpoint between the furthest node from the weld trajectory with a plastic

strain ≥ 1µm/m and the closest node with a plastic strain < 1µm/m. The predicted

and the mean measured size of the plastic zones, for ÆR > 17, were in relatively close

agreement with a maximum error of 17%. The greatest differences were associated

with the larger plastic zones obtained on aluminum alloy 6082-T6 and ASTM A36

structural steel with Q′ = 480 J/mm.

Table 2.2: Predicted width of the first yield isotherm for selected materials and
welding heat input.

Material
Q′ ypl [mm] ypl [mm] ymax|TY1

[mm]

[J/mm] Equation (2.16) Sim. Results for ÆR > 17

A36

120 32.5 33 (+2%) 33 (+2%)

240 65.0 63 (−3%) 67 (+3%)

480 130 114 (−12%) 135 (+4%)

316L 240 73.5 71 (−3%) 75 (+2%)

P91 240 25.7 27 (+5%) 28 (+9%)

6082 240 134 111 (−17%) 134 (±0%)

The width of the yield isotherm was measured by linearly interpolating between
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the maximum temperature value on the nodes adjacent to cross-section A-A. As

shown in Table 2.2, these values were in close agreement with the values predicted by

Equation (2.16) with a maximum error of 9%. For 316L stainless steel, P91 alloy steel,

and ASTM A36 structural steel with low to moderate heat input (i.e., Q′ = 120 J/mm

and Q′ = 240 J/mm), the error in the prediction of the isotherm width was of similar

magnitude to the error in prediction of the plastic zone width. For aluminum alloy

6082-T6 and ASTM A36 structural steel with high heat input (i.e., Q′ = 480 J/mm),

the error in the prediction of the isotherm width was significantly less than the error

in the prediction of the plastic zone width.

Figure 2.6 plots the simulation data for the plastic zone size and yield isotherm

width as a function of the aspect ratio (ÆR). This data is plotted in the form of a

correction factor fÆR = ypl/ymax|TY1
. Results for small aspect ratios are beyond the

scope of this paper, but the deviation shows a narrow scatter, that can be captured

with the empirical asymptote ln(ÆR) and blending as described in [33, 51], resulting

in:

fÆR = [lnn(ÆR) + 1]1/n (2.17)

where an optimized blending exponent of n = −2 provides a balance between sim-

plicity and a reasonable fit with the data.

2.6 Application to Industrial Practice

2.6.1 Analytical Estimation of Aspect Ratio

The asymptotic scaling analysis presented in this work reveals that the aspect ratio of

the first yield isotherm is a critical parameter for residual stress analysis. The aspect

ratio may be readily obtained from computational weld modelling or experimental

trials with the use of a thermographic imaging camera, but may also be estimated

with simple analytical expressions.
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Figure 2.6: Numerical validation of the plastic zone width as a function of the first
yield isotherm aspect ratio for selected materials and welding heat inputs.

It has been previously shown in Refs. [33, 34] that the characteristic values of

the 2-D temperature field surrounding a moving point heat source can be related

to the dimensionless Rosenthal number. This understanding is used to establish

limits of applicability for the asymptotic expressions of key characteristic values (such

as Equation (2.14)). All characteristic values of the temperature field, including

the aspect ratio of a given isotherm, have a unique one-to-one relationship with the

Rosenthal number. Figure 2.7 illustrates this relationship for the aspect ratio.

The term “fast” is used in reference to moving heat sources to describe the condition

in which advection (i.e., transfer of heat due to motion of the solid) is dominant

over conduction in the temperature range of interest [34]. Faster heat sources are

associated with larger values of the Rosenthal number (Equation (2.15)) which is

proportional to the heat source power. Metallurgical considerations during welding
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Figure 2.7: Aspect ratio as a function of the dimensionless Rosenthal number.

and additive manufacturing of materials result in a limited range for heat input (Q′ =

q/U), and it is generally true that higher power (q) processes (e.g., submerged-arc

welding) also have relatively fast travel speed (U) compared to lower power processes

(e.g., gas tungsten arc welding or friction stir welding).

A blended analytical expression is presented in [34] to compute the aspect ratio of

both fast and slow heat sources:

ÆR =

[︃
1 +

(︃√︃
πe

8
Ro

)︃n]︃1/n
(2.18)

where the blending exponent has an optimized value of n = 1.972.

When Ro > 2.1, the simplified fast asymptotic expression ÆR =
√︁
πe/8Ro ≈ Ro

may be used with minimal (i.e., < 10%) error. The uniaxial stress field criterion
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ÆR ≳ 17, is therefore equivalently expressed in terms of the Rosenthal number as:

Ro ≳ 17 (2.19)

This expression is particularly useful for procedure design, since the Rosenthal num-

ber depends solely on material properties and welding parameters which may all be

determined a priori.

2.6.2 Survey of Typical Welding Procedures

A survey of the typical Rosenthal number for 645 different welding procedures was

conducted using data for arc welding processes from [45] and solid-state friction stir

welding from [52]. The Rosenthal number was computed for each set of steel welding

parameters considering a base material of ASTM A36 structural steel, and for each set

of aluminum welding parameters considering a base material of aluminum alloy 6082-

T6. In total, 369 (57%) of the procedures had a Rosenthal number which satisfied

the criterion of Ro ≳ 17 (Table 2.3).

The range and median value for the Rosenthal number and corresponding aspect

ratio (Equation (2.18)) for each process are shown in Figure 2.8. The median value

satisfies the criterion Ro ≳ 17 for 5 out of the 7 processes on steel, but neither of

the two processes on aluminum. There are some procedures at the lower bound of

each process range which result in a value Ro < 17. The uniaxial model is still

applicable to these cases but Equation (2.16) is expected to overestimate the plastic

zone size. More precise estimates of the plastic zone size are obtainable with the use

of a correction factor such as is provided in Equation (2.17).

2.7 Discussion

The results of the numerical validation show a clear trend that is independent of the

material and heat input. As the aspect ratio increases above ÆR = 17, the correc-
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Table 2.3: Summary data for Rosenthal number of typical welding processes with a
starting temperature of T0 = 20 ◦C on ASTM A36 structural steel (TY1 = 101 ◦C,
k = 53 Wm−1K−1) and aluminum alloy 6082-T6 (TY1 = 80 ◦C, k = 213 Wm−1K−1)
using data from [45] (arc welding) and [52] (friction stir welding of low-carbon steel
and 6xxx series aluminum).

Material Process [53]
# Procedures Median

Total Ro > 17 Ro

ASTM A36

SAW 87 82 (94%) 60.2

GMAW 68 60 (88%) 34.2

FCAW-S 59 49 (83%) 41.4

FCAW-G 60 40 (67%) 22.3

SMAW 248 138 (56%) 18.7

GTAW 41 – 7.1

FSW 9 – 8.9

Al 6082-T6
GMAW 40 – 6.4

FSW 33 – 3.5

All Materials/Processes 645 369 (57%) –

tion factor achieves a constant value of approximately fÆR = 1. As the aspect ratio

decreases, approaching the lower asymptotic limit of ÆR = 1, the correction factor

decreases sharply. Development of an analytical model for the behaviour in the low

aspect ratio regime is beyond the scope of this work, but it should be noted that the

proposed model for the high aspect ratio will represent a conservative estimate of the

plastic zone size for low values of the aspect ratio.

The numerical validation studies confirmed that the error in using a uniaxial model

to estimate the width of the plastic zone is relatively constant for aspect ratios larger

than a critical value of ÆR = 17. There were also observed some relatively small
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Figure 2.8: Typical range and median value for the dimensionless Rosenthal number
based on first yield temperature and the estimated corresponding aspect ratio for
selected welding processes [53] using data from [45] (arc welding) and [52] (friction
stir welding of low-carbon steel and 6xxx series aluminum).

(< 20%) systematic errors in the asymptotic regime. These errors were observed to

be larger for the tests which resulted in larger plastic zone widths indicating that

they could be attributed to the effect of finite plate size. Large dimensions were used

in the numerical validation to minimize the influence of plate size, but small errors

are expected to persist unless the plate dimensions are several orders of magnitude

larger than the plastic zone size, which would require significantly more computational

power and time with diminishing returns. An additional correction factor to account

for finite plate size has been previously proposed by [20] with numerical validation

for butt welds on mild steel plates. A more general formulae for the effect of plate

compliance on the first yield temperature and corresponding plastic zone width is the

subject of a separate ongoing study. A slight decrease in the correction factor for the

highest value of the aspect ratio was observed for aluminum alloy 6082-T6 and to a

lesser extent 316L stainless steel and A36 structural steel at the highest heat input

level. The high aspect ratio in these tests result in a characteristic isotherm length

which exceeds the plate length used for the numerical studies. The observed deviation

may therefore be attributed to the compliance effects of in-plane bending, which are
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expected to be most significant for aluminum due to the lower elastic modulus.

In practice the process window for GMAW (or arc welding in general) would not

permit the use of the extreme values of power and travel speed that were tested in

the simulations. Although all of the parameters could be reproduced using advanced

welding processes (e.g., laser welding), for the extreme low end of the heat source

power (i.e., 60 W) an extremely high density heat source (on the order of σ = 150 µm)

would be necessary to achieve melting of the steel substrate [54]. Although this is

within the capabilities of modern laser optics, operating at such a low travel speed

would be far from optimal. A more likely application of this combination of low power

and travel speed would be in brazing, heat treatment, or friction stir welding where

the heat source is significantly less dense, but melting of the substrate is not desired.

For three processes (P91 alloy steel, aluminum alloy 6082-T6, and ASTM A36

structural steel with Q′ = 120 J/mm), at the lowest travel speed, the simulated heat

source was not sufficiently dense to produce any measurable plastic strain. The low

aspect ratios for these welds correspond to an estimated correction factor (Equa-

tion (2.17)) of fÆR ≈ 0.1, indicating that the temperature change that corresponds

to the onset of plastic strain is approximately 10× larger than the first yield tem-

perature. For the heat source size used in the numerical simulations, the maximum

temperature is greater than the yield temperature, but in these cases not 10× greater

and therefore no yielding or plastic strain occurs.

The analysis presented in this work considers a linear elastic model of material be-

haviour and thus is unable to provide predictions of behaviour within the plastic zone

itself. It is reasonable to assume that if the aspect ratio is sufficient to achieve condi-

tions of uniaxial restraint outside the plastic zone, similar constraint may exist within

the plastic zone. A uniaxial model, such as was presented in [43], might therefore be

expected to provide reasonable estimates of the residual stress distribution, although

additional validation with numerical or experimental results should be performed to

verify.
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This study establishes the foundation for further work to be published separately

on the estimation of forces and distortions induced by welding or other moving heat

sources, and also the analysis of effects of departure from idealizations, such as finite

plate size.

2.8 Conclusions

The thermal stress and strain fields caused by a moving point heat source on large

thin plates were studied using the OMS (Order of Magnitude Scaling) technique.

� An asymptotic analysis of a linear elastic formulation indicates that when

isotherms are elongated the stress and strain fields tend towards a uniaxial

stress state.

� A novel criterion for the threshold of aspect ratio is presented for the first time

(ÆR ≳17, Equation (2.12)). This criterion determines the applicability of the

uniaxial model, which was previously used in residual stress calculations without

a check of validity.

� The aspect ratio is a function of only the Rosenthal number (Equation (2.18))

and the criterion for elongated isotherms can be expressed as Ro ≳ 17. A survey

of 645 typical welding procedures indicates that the majority of welds (57%)

fulfill the conditions of the asymptotic analysis presented here.

� A critical temperature is identified: the first yield temperature (TY1, Equa-

tion (2.13)), corresponding to the lowest temperature in the plate at which

thermal stresses induce plasticity. This temperature is a fundamental material

property, tabulated in Table 2.1 for a wide variety of structural alloys.

� The size of the plastic zone surrounding the heat source trajectory corresponds

to the maximum width of the first yield isotherm (ypl = ymax|TY1
, Equation (2.16)).
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Application of typical materials and process parameters to this equation indi-

cates that the width of the plastic zone is typically much larger than the width

of the weld bead (Figure 2.4).

� The asymptotic model was validated against nonlinear numerical simulations

with a temperature dependent elastic-plastic material model for commonly

welded grades of carbon steel, stainless steel, and aluminum. The results con-

firmed that the maximum width of the first yield isotherm provides appropriate

estimates for the width of the plastic strain region when the proposed criterion

on aspect ratio is met (Figure 2.6).

� Analytical treatment of cases in which the aspect ratio criterion is not met

are outside the scope of this work; however, predictions of plastic width show a

consistent trend of overestimation at small aspect ratios. This trend is captured

accurately by the empirical relationship of Equation (2.17), enabling useful

predictions of plastic width even for aspect ratios close to 1.
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Chapter 3

A General Expression for the
Welding Tendon Force

3.1 Introduction

Residual stress is a significant concern in metal fabrication by thermal processes.

Development of residual stresses is associated with permanent residual plastic strain

which is produced local to the weld seam. In many applications, geometric distortion

and reaction stresses that occur in the overall geometry may be of even more signifi-

cant concern than the residual stresses and strains local to the weld. This has been

shown to be the case in circumferential pipeline welding [37, 55, 56], ship-building

[57, 58], welding of built-up members [14, 26], and additive manufacturing [59].

During the initial design process, it is desirable to know what impact the stresses

and strains local to the heat source trajectory have on the overall geometry; however,

prediction of the exact nature of the complete residual stress distribution requires rel-

atively advanced multi-physics computation modelling packages to achieve sufficient

granularity. To simply such an analysis, it is useful to initially obtain an equivalent

load to describe the local effects of thermal processing followed by a subsequent anal-

ysis applying this equivalent load to the overall geometry to compute the resulting

stresses, strains, and distortions.

Equivalent load models have been shown to provide reasonable estimates of bending

distortion [60] and residual stresses [20, 21] produced during fabrication of longitu-
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dinally welded structural steel members. A similar approach has also been used for

efficient optimization of the weld and assembly sequence for manufacturing of thin

plate structures [57, 61]. Due to the lack of a general analytical formula, these applica-

tions typically require that the effective load be obtained through empirical methods

increasing the cost and complexity, while limiting the generality of the results.

The tendon force model proposed in Ref. [44] establishes an equivalent load which

depends on a limited number of material properties and procedural parameters which

may be obtained a priori. To utilize this approach in modern engineering design prac-

tice, it is necessary that a general expression be obtained that allows for application

to a range of materials with varying properties and behaviour. In addition, the limits

of application of the model must be clearly expressed.

This work utilizes the minimal representation and correction factor (MRCF) ap-

proach, that has been previously applied to address similar issues of generality in

modelling of the moving heat source temperature field [33, 62, 63] as well as solid-

state friction stir welding [52]. The effect of temperature dependence is accounted for

by correction factors on the simplest case of constant material properties. A general

equation is proposed for the tendon force which captures temperature dependent ma-

terial behaviour, thereby expanding the applicability of the tendon force model to a

broad set of real world scenarios.
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3.2 List of Symbols

Symbol SI Unit Description

Roman Letters

Ac m2 Cross-sectional area

Aw m2 Weld fusion zone area

d m Section thickness

E Nm−2 Elastic modulus

FTen N Tendon force

f1 1 Correction factor for CTE and yield strain

f2 1 Correction factor for heat capacity

f3 1 Correction factor for yield temperature ratio

H 1 Normalized tendon force parameter

Iyy m4 Second moment of inertia with respect to y axis

K Nm−2 Bulk modulus

L m HSS member length

NT 1 Dimensionless yield temperature ratio

Nα 1 Normalized rate of change of CTE

Nϵ 1 Normalized rate of change of yield strain

Nρc 1 Normalized rate of change of heat capacity

Q′ Jm−1 Linear energy input (i.e., heat input)

Tlm K Log-mean yield temperature

Tmax K Maximum temperature

TY1 K First yield temperature

TY2 K Second yield temperature

T0 K Starting/ambient temperature

tmax s Time at which maximum temperature is achieved

ymax m Maximum isotherm width

ypl m Plastic zone size (i.e., half-width)

zc m Eccentricity of weld relative to neutral axis
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Symbol SI Unit Description

Greek Letters

α K−1 Linear coefficient of thermal expansion

ᾱ K−1 Mean linear coefficient of thermal expansion

β K−1 Volumetric coefficient of thermal expansion

δ m Maximum deflection of longitudinally welded section

η 1 Heat transfer efficiency

ϵel 1 Elastic strain

ϵinh 1 Inherent strain

ϵpl 1 Plastic strain

ϵres 1 Residual elastic strain

ϵrxn 1 Reaction strain

ϵT 1 Total strain

ϵth 1 Thermal strain

ϵY 1 Yield strain

γ 1 Dimensionless Grüneisen ratio

ν 1 Poisson’s ratio

ρc Jm−3K−1 Volumetric specific heat capacity

σres Nm−2 Residual stress parallel to weld axis

σrxn Nm−2 Reaction stress parallel to weld axis

σY Nm−2 Material yield strength

Symbol Description

Superscripts

∧ Asymptotic behaviour

+ Correction for secondary phenomena

Subscripts

eff Effective property value

I Region I (Tmax < TY1)

II Region II (TY1 < Tmax < TY2)

III Region III (Tmax > TY2)
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3.3 Definition of Tendon Force

Residual stresses develop during non-uniform heating of materials when thermal

strains exceed the material elastic strain limit and produce plasticity [11]. Early anal-

yses of the global response to local plastic behaviour at the weld use an equivalent

shrinkage force computed from the cooling of the deposited metal and surrounding

material [26, 64, 65]. This interpretation has its roots in empirical studies in which a

weld was cast in place using the thermit process [12].

In many practical cases of welding and additive manufacturing, the effects of plas-

ticity are confined to a region near the heat source trajectory which is small compared

to the overall size of the geometry. It is desirable to separate this small region of com-

plex nonlinear material behaviour from the linear response throughout the rest of the

structure.

An idealized analysis of residual stresses was proposed in Ref. [13] as the “three-

bar model”. In this model, a butt joint between two plates is simplified to a system

of three cylindrical bars which are rigidly fixed together at either end. The centre

bar, representing the fusion zone and adjacent material, is assumed to have an un-

stressed length which is shorter than the bars on either side due to shrinkage during

cooling. The resulting tensile force in the centre bar is proportional to the area of

the shrinkage zone as well as the magnitude of the shrinkage strain. The balancing

compressive stresses in the remaining plate area, represented by the left and right

bars, are obtained from equilibrium. The key limitation of the three-bar model is

that it requires separation of the plate area depending on whether the residual stress

is compressive or tensile.

An improved model is proposed in Ref. [44] in which an equivalent “tendon force”

is defined as “the force which is resisted by the whole cross section of the plate.” A

mathematical definition for this force was first presented in Ref. [43], which can be
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rewritten as:

FTen ≡
∫︂
Ac

E(ϵres − ϵrxn) dA (3.1)

where Ac is the cross-section of the whole plate, E is the elastic modulus of the

material, ϵres is the residual elastic strain distribution in the material (strains that

could be measured), and ϵrxn is a “reaction strain” discussed below.

3.3.1 Reaction Strain

The reaction strain is a fictitious strain distribution with important properties. This

distribution corresponds to the strain caused by a concentrated force of magnitude

FTen applied along the heat source trajectory in an unstressed geometry.

Saint-Venant’s principle indicates that in the region far away from the heat source

trajectory, the effect of the tendon force is equivalent to that of the external load.

The reaction strain is therefore associated with the elastic response of the geometry

to the plastic residual strains developed during heating and cooling.

In practice, the equivalence between thermally-induced elastic residual stress and

reaction stress is reached near the boundary of areas affected by plastic deformation,

such that ϵres tends to equal ϵrxn outside the area that experienced thermally-induced

plasticity. Equation (3.1) can then be approximated closely using only the fraction

of cross-sectional area affected by plasticity.

The tendon force model thus enables prediction of the stress and strain distribution

in the overall geometry based on information from only a relatively small area of

interest near the heat source trajectory.
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3.3.2 Inherent Strain

The difference between the the residual elastic strain distribution (ϵres) and the elastic

reaction strain (ϵrxn) is termed the inherent strain [16]:

ϵinh ≡ ϵres − ϵrxn (3.2)

Based on the definition of inherent strain, it is possible to interpret the residual

elastic strain distribution (ϵres = ϵinh + ϵrxn) as the superposition of two components:

(a) an inherent strain (ϵinh), and (b) a reaction strain (ϵrxn).

The reaction strain is present throughout the entire cross-section. Outside the

approximate boundary where heating caused plasticity, the reaction strains and the

residual strains are equivalent; thus, the inherent strain is zero everywhere except

within the plastic zone. The inherent strain may then be considered to capture the

effect of plasticity.

Since it occurs only in a finite area near the heat source trajectory, a powerful

property of the inherent strain is that it can be can be calculated from heat source

parameters, independent from the reaction of the base material, to obtain a tendon

force. After calculating the tendon force, the reaction strain is calculated and su-

perimposed on the inherent strain distribution to obtain the residual elastic strain

distribution throughout the geometry. This process is illustrated schematically for a

flat plate in Figure 3.1.

Although a uniform reaction strain will result in some geometries, such as the flat

plate shown in Figure 3.1, in general this is not a requirement to apply the tendon

force model. The equations presented in this study may be used for any geometry

with a “thin” cross-section (e.g., hollow structural sections).
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Figure 3.1: Superposition of tendon force (i.e., inherent strain) local to the heat source
trajectory with reaction strain throughout the entire geometry.

3.3.3 Total Strain

To evaluate the inherent strain it is necessary to consider the various contributions

to the total strain in a material. In general, the total strain in a material is given by:

ϵT = ϵel + ϵpl + ϵth (3.3)

where ϵel is the elastic strain, ϵpl is the plastic strain, ϵth is the thermal strain, and

ϵT is the total strain distribution parallel to the heat source trajectory. In this work,

the plastic strain is considered as a signed scalar value which is positive for strain

associated with tensile loading and negative for strain under compressive loading.

The goal of this study is to predict the final residual stress distribution at a suf-

ficiently long time after thermal processing is completed for the temperature distri-

bution to achieve equilibrium. For large enough geometries, or by cooling to the

environment, the final temperature resembles the starting temperature (even when

preheat is used), and therefore ϵth ≈ 0 in Equation (3.3).
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Also, the elastic strains in the final state correspond to the residual strains, and

therefore ϵel = ϵres in Equation (3.3). The final total strain can then be expressed as:

ϵT = ϵres + ϵpl (3.4)

Ref. [66] has previously shown that the total strain (ϵT) corresponds to uniaxial

tension in the vast majority of welding applications, and is uniform throughout the

length of a long weld on a substrate of constant cross-section. A similar condition

is proposed in Ref. [43] for the case of edge welded plates, which relates closely to

additive manufacturing of thin-walled structures.

3.3.4 Relationship Between Tendon Force and Plasticity

Outside the plastic zone there is no inherent strain and the residual elastic strain is

equal to the reaction strain (ϵrxn = ϵres). The plastic strain in this region is also zero,

which gives:

ϵT = ϵres = ϵrxn (3.5)

Inside the plastic zone, the residual plastic strain is obtained by combining Equa-

tion (3.4) and Equation (3.5) to give:

ϵpl = ϵrxn − ϵres = −ϵinh (3.6)

Replacing Equation (3.6) into Equation (3.1), and keeping in mind that ϵinh = 0

outside the plastic zone, the tendon force can then be expressed as the integral of the

residual plastic strain produced during thermal processing:

FTen = E

∫︂
Ac

ϵinh dA = −Ed
∫︂
ypl

ϵpl dy (3.7)

where d is the uniform section thickness and ypl is the plastic zone size.
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3.4 Constant Material Properties

The strain equality in Equation (3.3) will be satisfied at all times during the thermal

cycle. In general, computation of the plastic strain is complicated by the presence of

a non-zero total strain in the material (ϵT).

From Equation (3.5) the residual total strain is equivalent to the reaction strain

produced by the tendon force. For very large or very rigid geometries, the magnitude

of the reaction strain will be sufficiently small compared to the elastic, plastic, and

thermal strains that it may be neglected during the thermal processing. The strain

equality of Equation (3.3) may then be rearranged to give:

− ϵth = ϵel + ϵpl (3.8)

Equation (3.8) is exact for an infinitely rigid geometry, and may also be used as a

first estimate for the general case of a geometry which is not sufficiently rigid to neglect

the total strain. An iterative approach can then be applied using the resulting values

of tendon force and reaction strain to correct the previous estimates for the plastic

strain. This study focuses on the case of large rigid geometries such as are common in

welding for structural construction, or large scale wire arc additive manufacturing. A

closed-form expression to correct for the “compliance” effects in smaller or less rigid

geometries is the subject of an ongoing work to be published separately.

3.4.1 Strain Induced by the Thermal Cycle

Figure 3.2 illustrates a typical thermal cycle experienced by a material during ther-

mal processing, consisting of a period of monotonic heating followed by a period

of monotonic cooling. The thermal cycle can be described using two characteristic

temperatures: the starting temperature (T0) and the maximum temperature (Tmax).

There also exists a characteristic time (tmax) which corresponds with the occurrence

of the maximum temperature. In welding, it is generally assumed that all relevant
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regions in the cross-section share the same starting temperature, but the maximum

temperature and characteristic time will depend on the distance from the weld cen-

treline. This assumption remains valid for additive manufacturing of thin-walled

sections, although the starting temperature may vary between subsequent passes.

Figure 3.2: Characteristic thermal cycle.

The thermal strain relative to the starting temperature (T0) is expressed as:

ϵth|T = ᾱ|T (T − Tref)− ᾱ|T0 (T0 − Tref) (3.9)

where ᾱ|T is the mean linear coefficient of thermal expansion (CTE) between the

temperatures Tref and T , and ᾱ|T0 is the mean CTE between the temperatures Tref

and T0. If the reference temperature is chosen to be equal to the starting temperature,

then the second term in Equation (3.9) will be equal to zero. For a material with a

constant CTE, ᾱ|T may be substituted for a constant value α.

In general, the temperature and thermal strain distributions are a function of two

variables: the time (t) and the distance (y). To evaluate the tendon force, it is only
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necessary to obtain the value of the plastic strain in the final or residual state. The

residual plastic strain may be readily obtained by consideration of the material’s

uniaxial thermal yield behaviour.

3.4.2 Thermal-Elastic Strain Relationship

For a rigidly constrained specimen (ϵT = 0), the thermal, elastic, and plastic strains

will always balance. The plastic strain throughout a thermal cycle may be obtained

directly from the difference of the elastic and thermal strain.

In practical applications to material characterization, the elastic strain and ther-

mal strain are typically inferred from direct measurement of force and temperature.

Although force-temperature plots were used by various authors [13, 67] in earlier the-

oretical work, Satoh [35] first presented a suitable experimental apparatus and thus

the force-temperature diagram is commonly associated with the “Satoh Test”.

A typical diagram of elastic strain (force) vs. temperature for a material in which

the onset of plasticity is independent of temperature is shown in Figure 3.3. Three

different thermal cycles are displayed with maximum temperatures corresponding to

points a’, b and b’.

The cycle with the lowest maximum temperature is o - a - a′- c. From point o to

point a, the thermal strain steadily increases and a corresponding elastic compressive

stress is produced in the material. At point a, the compressive stress in the material

reaches yield magnitude.

The corresponding critical temperature is defined as the “first yield tempera-

ture,” [66] and for the case of constant material properties may be written as:

TY1 − T0 = ∆TY1 =
ϵY
α

(3.10)

where ϵY = σY/E is the material “yield strain” corresponding to the onset of plastic-

ity. The thermal strain at point a is equal to the yield strain (ϵY).
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Figure 3.3: Relationship between elastic and thermal strain for thermal cycles with
three different maximum temperatures; after [13].

From point a to point a′, the thermal strain is further increased resulting in the

development of a compressive (negative) plastic strain ϵpl = ϵth|∆Ta − ϵth|∆Ta′
. At

point a′, the temperature and thermal strain reach their maximum value. From point

a′ to point c, the thermal strain decreases, the elastic strain increases proportionally

and the plastic strain remains unchanged. The residual plastic strain at point c is

therefore equal to the plastic strain at point a′. The residual elastic strain at point c

is positive (tensile) with a magnitude less than the yield strain (ϵY).

The cycle with the intermediate maximum temperature is o - a - b - e. From point

o to point a′, the material behaviour is identical to the previous cycle. From point a′

to point b, additional compressive (negative) plastic strain develops to a maximum
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value of ϵpl = ϵth|∆Ta − ϵth|∆Tb
at point b. From point b to point e, the thermal

strain decreases and the elastic strain increases proportionally while the plastic strain

remains constant. The plastic strain at point e is therefore equal to the plastic strain

at point b.

This cycle is unique in that the residual elastic strain at point e is equal to the yield

strain (ϵY). Since in the final state the thermal strain is also equal to zero, it follows

that the residual plastic strain is equal and opposite to the residual elastic strain.

The maximum temperature for this cycle at point b marks the minimum temperature

change necessary to produce yield magnitude residual plastic strain during cooling.

This critical temperature is defined as the “second yield temperature,” and for

constant material properties is given by:

TY2 − T0 = ∆TY2 =
2ϵY
α

(3.11)

The cycle with the highest maximum temperature is o - a - b′- d - e. From point o to

point b, the material behaviour is identical to the previous cycle. From point b to

point b′, additional compressive (negative) plastic strain develops to a maximum value

of ϵpl = ϵth|∆Ta − ϵth|∆Tb′
at point b′. From point b′ to point d the temperature and

thermal strain decrease, the elastic strain increases proportionally and the plastic

strain remains constant. At point d, the material begins to yield in tension and

develop tensile (positive) plastic strain. From point d to point e, the thermal strain

decreases back to zero as the temperature returns to ambient. At point e the thermal

strain is zero and the residual elastic strain is equal to the yield strain (ϵY). The

residual plastic strain will therefore also have a magnitude equal to the yield strain.

This result is verified by observing that the tensile plastic strain developed between

point d and point e is equal and opposite to the compressive (negative) plastic strain

developed between point b and point b′.
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3.4.3 Distribution of Residual Plastic Strain

The tendon force depends on the residual plastic strain distribution. The first and

second yield temperatures divide the distribution of residual plastic strain into three

distinct regions as shown in Figure 3.4.

Figure 3.4: Distribution of residual plastic strain.

Region I

If the maximum temperature is less than the first yield temperature (Tmax < TY1)

plastic strain will not be produced in the material. The plastic strain in Region I is

therefore simply:

ϵpl,I = 0 (3.12)

Region II

For maximum temperatures between the first and second yield temperatures (TY1 <

Tmax < TY2), plastic strain will be produced during heating only. The residual plastic

strain when the thermal cycle is complete will be proportional to the difference be-
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tween the thermal strain associated with the maximum temperature and the thermal

strain associated with the first yield temperature. The plastic strain in Region II may

be expressed as:

ϵpl,II = ϵth|TY1
− ϵth|Tmax = α (TY1 − Tmax) (3.13)

Region III

In the region where the maximum temperature is greater than the second yield tem-

perature (Tmax > TY2), plastic strain will be produced during both heating and cool-

ing. The compressive (negative) plastic strain developed during heating, in excess of

the second yield temperature, is balanced by a tensile (positive) plastic strain pro-

duced during cooling. The net residual plastic strain is therefore the same as the

residual plastic strain for a thermal cycle with a maximum temperature equal to the

second yield temperature, which is by definition equal to the yield strain. The plastic

strain in Region III is therefore uniformly equal to the yield strain:

ϵpl,III = ϵth|TY1
− ϵth|TY2

= α (TY1 − TY2) = −ϵY (3.14)

3.4.4 Tendon Force with Constant Properties

The integral of the plastic strain distribution gives the tendon force according to

Equation (3.7). To evaluate this integral, it is necessary to relate the maximum

temperature to the distance from the heat source trajectory. The isotherm half-

width (ymax) of a given temperature (Tmax) for a fast moving heat source in a thin

plate, with negligible heat losses, is given by [33]:

ymax|T =
1√
2πe

Q′

d ρc

1

∆Tmax

(3.15)

where Q′ is the linear energy input (typically referred to as the heat input) and ρc is

the volumetric specific heat capacity.
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Equation (3.15) assumes a symmetric temperature field. For the case of edge

heating (such as in additive manufacturing) an effective heat input of Q′
eff = 2Q′

should be used [34]. The integral covers only one side of the distribution shown in

Figure 3.4 so the tendon force value is unchanged.

For constant material properties, the yield temperature ratio ∆TY2/∆TY1 = 2 and

the tendon force is given by:

ˆ︁FTen =

√︃
2

πe
ln (2)

Eα

ρc
Q′ ≈ 0.335

Eα

ρc
Q′ (3.16)

where the ˆ︁ indicates this is an asymptotic expression for the case in which the

variation of material properties with temperature is negligible. Equation (3.16) is

equivalent to the tendon force proposed in Ref. [43]. This fundamental, but simple,

expression captures the key dependencies between material properties, heat source

parameters, and the tendon force.

As a result of the proportionality between the tendon force and the heat input, in

welding literature the tendon force is often expressed as a dimensionless parameter:

H =
ˆ︁FTen

Q′ =

√︃
2

πe
ln (2)

Eα

ρc
(3.17)

where the group Eα/(ρc) is a combination of thermal and elastic material properties.

Relating these properties is a common issue in geophysics [68]; researchers in this

field use a very similar dimensionless group, the Grüneisen ratio [69]:

γ =
Kβ

ρc
(3.18)

where K = E/[3(1− 2ν)] is the material bulk modulus and β ≈ 3α is the volumetric

coefficient of thermal expansion.
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In metals, the Grüneisen ratio can be expressed in terms of Poisson’s ratio: [70]

γ =
3

2

1 + ν

2− 3ν
(3.19)

Combining Equation (3.18) and Equation (3.19) gives:

Eα

ρc
=

3

2

(1 + ν)(1− 2ν)

2− 3ν
(3.20)

Poisson’s ratio (ν) for metals is provided in Ref. [48], and ranges between 0.25

and 0.35; thus, the corresponding range for Eα/(ρc) is 0.64–0.75 and for H is 0.21–

0.25. In practice, material property variation with temperature and other secondary

phenomena may be expected to result in a slightly larger range for H than this

prediction; however, this relation provides insight into the relatively narrower scatter

in experimental values for H across materials, despite the large variation in the values

of individual properties.

3.5 Computational Simulations

To validate the proposed expression for tendon force, a series of numerical simulations

were performed using the computational weld mechanics software package Simufact

Welding [71]. The validation in this study was performed using numerical methods

due to the lack of literature data related to tendon force measurement in sufficiently

large plates to neglect secondary compliance effects.

3.5.1 Numerical Model

The numerical simulation software implements the proprietary finite element analysis

(FEA) tool sfMarc. Transient, thermal-mechanically coupled studies were performed

with the nonlinear, temperature dependent material models available in the Simufact

Materials database.
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The thermal solutions consider a heat source with constant power moving along

the weld axis at a constant travel speed. Thermal strains corresponding to the in-

stantaneous temperature field from the thermal solution are treated as loads in the

subsequent mechanical solutions.

The resultant stresses and distortion at each time increment are computed from the

force-displacement relations. The stiffness matrix is obtained from the combination

of the strain-displacement relations and nonlinear stress-strain relations based on

tabulated values for the material flow stress. A direct sparse solver implementing the

full Newton-Raphson technique is used to obtain the matrix solution.

All studies utilized the component geometry and mesh shown in Figure 3.5. The

mesh consists of 8-node isoparametric brick elements with a minimum size of 2.5 mm

at the weld axis, increasing to a maximum size of 40 mm at the plate edge. A single

layer of elements in the thickness dimension is sufficient to capture the 2-D behaviour

of the thin plate geometry.

The boundary conditions used for all studies include: (1) a y symmetry plane

coincident with the heat source trajectory, (2) fixed x displacement for a single node

on the bottom surface of the plate in one corner, and (3) fixed z displacement for all

nodes on the bottom surface of the plate. The symmetry plane fixes displacement

of the adjacent nodes in the normal (y) direction but allows free movement of the

nodes in the (xz) plane. The cooling time for each study was selected such that the

temperature deviation across section A-A in the final state was <1 ◦C.

The depth of the heat source was set equal to the thickness of the plate to produce

a 2-D temperature field representative of a full penetration, single pass butt weld.

Under typical conditions, the fusion zone composes only a subset of the plastic zone

and computational efficiencies are possible by using a simple cylindrical heat source.

To prevent instabilities associated with the heat source jumping between subsequent

node, the radius was chosen to be twice the minimum mesh size (i.e., 5 mm).
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Figure 3.5: Top view of mesh used in numerical simulations.

3.5.2 Results from Computational Simulations

Figure 3.6 illustrates the procedure used to compute the tendon force from the residual

stress distribution for an example case of 6082-T6 aluminum alloy (Q′ = 0.36 kJ/mm).

The integral of σres − σrxn was evaluated in MATLAB using trapezoidal numerical

integration with the trapz function [72] within the plastic region (|ϵpl|>1×10−6).

The residual stress distribution parallel to the weld axis (σres = Eϵres) was measured

at the nodes on the top surface of the plate adjacent to the mid section A-A. The

tendon force is equal to the integral of the difference between the residual stress and
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Figure 3.6: Method for estimating tendon force from simulation results for 6082-T6
aluminum alloy with heat input of 0.36 kJ/mm.

the compressive reaction stress (σrxn = Eϵrxn). The reaction stress was obtained with

a linear fit to the residual stress in the region of the plate with negligible plastic strain

(|ϵpl|<1×10−6). The integral assumes a uniform distribution of reaction stress in the

plastic zone, equal to the value at the middle of each half plate (y = 300 mm).

The validation uses five commonly welded structural alloys: ASTM A36 struc-

tural steel, aluminum alloy 6082-T6, 304 stainless steel, P91 alloy steel, and ti-

tanium alloy TiAl6V4. Simulations were performed for each material with a low

(Q′ = 0.12 kJ/mm), moderate (Q′ = 0.24 kJ/mm), and high (Q′ = 0.36 kJ/mm)

heat input. Values of the parameter H were obtained as the linear best-fit to the

results at the three heat input levels. Table 3.1 compares the FEA results to Equa-

tion (3.17) evaluated at ambient temperature (T0 = 20 ◦C).

Although overall the analytical expression provides a good estimate of the com-
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Table 3.1: Comparison of asymptotic expression for tendon force (Equation (3.17))
with computational simulation results (FEA).

Material
H ˆ︁H (︂ ˆ︁H/H − 1

)︂
(FEA) Equation (3.17)

ASTM A36 Structural Steel 0.25 0.24 −5%

P91 Alloy Steel 0.20 0.23 +15%

304 Stainless Steel 0.30 0.27 −11%

Aluminum Alloy 6082-T6 0.21 0.24 +17%

Titanium Alloy TiAl6V4 0.22 0.14 −38%

putational results, the error for most cases exceeds 10% which might be considered

a reasonable threshold for incorporating higher order effects. For large geometries,

such as the plates used in the computational simulations, material property variation

with temperature is expected to be the greatest source of error in Equation (3.17). In

the following section, a correction for the effects of temperature dependent material

properties is derived.

3.6 Temperature Dependent Material Properties

For temperature dependent variation of properties, it is necessary to address both

thermal properties which influence the temperature distribution, and mechanical

properties which influence the relationship between the temperature distribution and

the resulting stress distribution.

The relevant thermal property for determining the relationship between temper-

ature and isotherm width (Equation (3.15)) is the volumetric specific heat capacity

(ρc). The relevant mechanical properties for the calculation of tendon force are the

yield strain (ϵY) and the CTE (α). The elastic modulus (E) is present in the tendon

force expression but it appears outside the integral of plastic strain so the tendon
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force depends only on the value at the final (i.e., ambient) temperature.

3.6.1 Temperature Dependent Yield Strain

The plastic strain in Region II (TY1 < Tmax < TY2) is determined assuming that the

total strain will remain constant between TY1 and Tmax. For the case of constant

properties, the plastic strain difference is proportional to the difference in thermal

strain ϵth|Tmax − ϵth|TY1
. For a material in which the yield strain decreases as the

temperature increases, it is necessary to also consider the elastic strain difference

given by the reduced yield strain capacity ϵY|Tmax − ϵY|TY1
. From the definition of

the first yield strain (Equation (3.10)), ϵY|TY1
= ϵth|TY1

. The residual plastic strain in

Region II may thus be written as:

ϵpl,II = ϵY|Tmax − ϵth|Tmax (3.21)

If the yield strain is assumed to be a linear function of temperature, as illustrated

in Figure 3.7, the rate of plastic strain development will differ from the rate of thermal

strain development by an amount dϵY/dT to account for development of additional

plastic strain due to the decreased elastic strain capacity at elevated temperatures.

Differentiating Equation (3.21) gives a general expression for the rate of plastic strain

development:

dϵpl
dT

=
dϵY
dT

− dϵth
dT

=
dϵY
dT

− α|T (3.22)

where dϵY/dT is the rate of change of the yield strain with respect to temperature.

For real materials, this rate of change will not be constant for all temperatures;

however, within the limited range of interest (TY1 < Tmax < TY2) it is reasonable to
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Figure 3.7: Elastic and plastic strain development in material with temperature de-
pendent yield strain for thermal cycle with Tmax = TY2.

use an average value given by:

dϵY
dT

=
ϵY|TY2

− ϵY|TY1

TY2 − TY1

(3.23)

3.6.2 Temperature Dependent Thermal Expansion

A temperature dependent CTE results in a rate of plastic strain development which

varies as a function temperature. For many materials, the property values at the first
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and second yield temperatures are sufficiently close that the rate of change between

TY1 and TY2 may be approximated as linear.

Effective values for temperature dependent properties can be estimated at an in-

termediate temperature calculated as follows:

Tlm − T0 = ∆Tlm =
TY2 − TY1

ln (∆TY2/∆TY1)
(3.24)

where ∆Tlm is the log-mean temperature change of the first and second yield temper-

atures.

A complete derivation of the effective CTE and justification for the selection of the

log-mean temperature change is provided in Section 3.11.

To match the form of the constant properties expression for tendon force, the

combined effect of variation in the yield strain and CTE is captured by the effective

CTE defined as:

αeff = − dϵpl
dT

⃓⃓⃓⃓
Tlm

= α|Tlm
− dϵY
dT

(3.25)

3.6.3 Temperature Dependent Heat Capacity

The estimation of maximum temperature (Equation (3.15)) is based on the 2-D Rosen-

thal model [40] which assumes constant thermal properties (ρc). In this work, a

representative constant value of ρc is chosen at the log-mean yield temperature:

(ρc)eff = (ρc)|Tlm
(3.26)

For most materials, the temperature range of interest for the yield temperatures is

sufficiently low that the latent heat associated with phase transformations does not

influence the values obtained.

For high strength materials, the yield temperatures can be high enough such that
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phase transformations might play a role. In such cases, an improved estimate of

(ρc)eff may be obtained from the mean rate of change in enthalpy as is presented in

Ref. [33]. The effective volumetric specific heat for a critical temperature change of

∆T = ∆Tlm is therefore given by:

(ρc)eff =
1

∆Tlm

∫︂
Tlm

(ρc) dT (3.27)

3.6.4 Nonlinear Rate of Change for the Yield Strain

In addition to the individual effects of each property, there will also be a combined

effect on the yield temperatures. The tendon force equation depends on the yield

temperature ratio, and therefore these changes must also be considered.

The first yield temperature change is implicitly defined by the point where the

thermal strain is equal to the instantaneous yield strain (ϵY|TY1
):

ᾱ|TY1
(TY1 − Tref)− ᾱ|T0(T0 − Tref) = ϵY|TY1

(3.28)

The first yield temperature is therefore written in general as:

TY1 − T0 = ∆TY1 =
ϵY|TY1

ᾱ|TY1
+ (dᾱ/dT )(T0 − Tref)

(3.29)

The second yield temperature change is implicitly defined by the point where the

thermal strain is equal to the sum of the instantaneous yield strain (ϵY|TY2
) and the

nominal yield strain (ϵY|T0)

ᾱ|TY2
(TY2 − Tref)− ᾱ|T0(T0 − Tref) = ϵY|TY2

+ ϵY|T0 (3.30)
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A general expression for the second yield temperature is thus:

TY2 − T0 = ∆TY2 =
ϵY|TY2

+ ϵY|T0

ᾱ|TY2
+ (dᾱ/dT )(T0 − Tref)

(3.31)

If the reference temperature (Tref) and the starting/ambient temperature (T0)

are equivalent, the second term in the denominators of Equation (3.29) and Equa-

tion (3.31) may be neglected.

The yield temperature ratio is given by the ratio of Equation (3.29) and Equa-

tion (3.31) as:

∆TY2

∆TY1

=
ϵY|TY2

+ ϵY|T0

ϵY|TY1

ᾱ|TY1

ᾱ|TY2

(3.32)

For most materials, the rate of change for CTE is small and the ratio ᾱ|TY1
/ᾱ|TY2

will be close to 1. The deviation of the temperature ratio from the ideal value of 2

can then be approximated as:

∆TY2

∆TY1

− 2 =
ϵY|TY2

− ϵY|TY1

ϵY|TY1

+
ϵY|T0 − ϵY|TY1

ϵY|TY1

(3.33)

If the yield strain has a linear temperature dependence, the terms on the right

hand side of this expression will cancel and the yield temperature ratio will equal

the constant property value of 2. For real materials, the linear temperature depen-

dence of yield strain is only an approximation, and the mean value obtained from

Equation (3.23) should not be applied at T < TY1.

Consideration of a distinct rate of change of yield strain for temperatures below

TY1 results in an overall nonlinear temperature dependence between T0 and TY2 and

adds an additional degree of freedom. The yield temperature ratio obtained from

Equation (3.32) may be considered as an independent dimensionless group associated

with the nonlinear rate of change for the yield strain.
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3.6.5 Tendon Force with Variable Properties

A general form of the normalized tendon force in terms of the effective properties and

yield temperature ratio is obtained as:

H ≈ ˆ︁H+ =

√︃
2

πe
ln

(︃
∆TY2

∆TY1

)︃
Eαeff

(ρc)eff
(3.34)

where ∆TY1 and ∆TY2 are the yield temperature changes given in Equation (3.29)

and Equation (3.31), αeff is the effective CTE from Equation (3.25) and (ρc)eff is the

effective volumetric specific heat given by Equation (3.26) or Equation (3.27).

The + symbol indicates that the asymptotic expression involves correction fac-

tors for additional phenomena. These correction factors are defined explicitly in the

following section.

3.6.6 Correction Factors for Variable Properties

The effective CTE may also be expressed in the form of a correction factor (f1 =

αeff/α) given by:

f1(Nα, Nϵ) = 1−Nα −Nϵ (3.35)

Nα =
α|T0 − α|Tlm

α|T0

(3.36)

Nϵ =
dϵY
dT

1

α|T0

(3.37)

where Nα and Nϵ are dimensionless variables which capture the temperature de-

pendence of CTE and yield strain. These two additional degrees of freedom in the

problem correspond to the two new physical phenomena considered: variation of yield

strain and variation of CTE with temperature.

This factor multiplies the asymptotic tendon force expressions with constant CTE
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and yield strain (Equation (3.17)) to account for the temperature dependence. For

small values of Nα and Nϵ, the factor approaches 1 and the asymptotic expression

may be used without correction.

Temperature dependent material properties for a selection of common structural

alloys were obtained from the MSC Simufact Material database, and corresponding

values of the correction factor are shown in Table 3.2.

Table 3.2: Typical values for the correction factor associated with temperature de-
pendent yield strain and CTE.

Material

α|T0 α|Tlm
dϵY/dT

f1[10−6 K−1]

ASTM A36 12.5 12.9 -1.2 1.13

P91 10.7 11.8 0.2 1.08

SS 304 16.3 17.4 -1.6 1.17

Al 6082-T6 22.7 24.4 0.0 1.07

TiAl6V4 8.8 11.8 -14.2 2.95

The effective thermal properties can similarly be expressed in the form of a correc-

tion factor (f2 = ρc/(ρc)eff) given by:

f2(Nρc) =
1

1−Nρc

(3.38)

Nρc =
(ρc)|T0 − (ρc)|Tlm

(ρc)|T0

(3.39)

where Nρc is a dimensionless variables which captures the temperature dependence

of the heat capacity.

Typical values of the effective heat capacity and correction factor for various struc-

tural alloys are shown in Table 3.3. For titanium alloy TiAl6V4 the alternative
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definition of the effective property (Equation (3.27)) is substituted for (ρc)|Tlm
in

Equation (3.39).

Table 3.3: Typical values for the correction factor associated with the effective heat
capacity.

Material

(ρc)|T0 (ρc)eff

f2[106 Jm−3K−1]

ASTM A36 3.50 3.85 0.91

P91 3.45 4.14 0.83

SS 304 4.10 4.23 0.97

Al 6082-T6 2.40 2.49 0.96

TiAl6V4 2.42 2.90 0.83

The effect of correction factors f1 and f2 are in all cases opposite, and in most cases,

of similar magnitude. Recall that the dimensionless group Eα/(ρc) can be related to

Poisson’s ratio (ν). If the temperature dependence of the elastic parameters E and ν

are relatively small, then the effect of temperature on α and ρc should be expected

to mostly cancel.

The effect of nonlinearity in the dependence of the yield strain with temperature

is expressed in the form of a correction factor (f3) given by:

f3(NT ) =
ln(NT )

ln(2)
(3.40)

NT =
∆TY2

∆TY1

(3.41)

where the dimensionless temperature ratio NT captures the additional degree of free-

dom provided by consideration of a nonlinear rate of change for the yield strain.

Calculated values for the yield temperatures, yield temperature ratio, and corre-
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sponding correction factor for selected materials are shown in Table 3.4.

Table 3.4: Typical values of the yield temperatures, yield temperature ratio, and
nonlinear yield strain correction factor assuming a starting/ambient temperature of
T0 = 20 ◦C.

Material TY1 [ ◦C] TY2 [ ◦C] ∆TY2/∆TY1 f3

ASTM A36 101 190 2.10 1.07

P91 217 417 2.01 1.01

SS 304 84 151 2.05 1.04

Al-6082 80 139 1.97 0.98

TiAl6V4 663 1060 1.62 0.70

The normalized tendon force given in Equation (3.34) can thus be expressed in the

form of correction factors on the asymptotic expression of Equation (3.17)

ˆ︁H+ =

√︃
2

πe
ln(2)

Eα

(ρc)

⃓⃓⃓⃓
T0

f1(Nα, Nϵ) f2(Nρc) f3(NT ) (3.42)

where f1, f2, and f3 are the correction factors given by Equation (3.35), Equa-

tion (3.38), and Equation (3.40).

3.6.7 Numerical Validation

Figure 3.8 compares the computational simulation data to the constant properties ten-

don force expression (Equation (3.17)) and the corrected expression (Equation (3.42)).

The constant properties expression produces a maximum difference of 38% (TiAl6V4)

and a mean difference of 17% compared to the FEA results for the normalized ten-

don force parameter. The corrected expression reduces this difference to a maximum

value of 17% (Al 6082-T6) and a mean value of only 7%.

The correction factors for temperature dependence are observed to produce a con-

sistent trend of a slight overestimate of the tendon force compared to the simulation
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Figure 3.8: Validation of the tendon force for constant material properties (Equa-
tion (3.17), open markers) and for temperature dependent properties (Equa-
tion (3.42), filled markers).

results. The error is most significant for aluminum alloy 6082-T6, where the cumula-

tive effect of all temperature dependent correction factors is found to be negligible.

The systematic error may be attributed to compliance of the large but still finite

plates used in the computational simulations. Aluminum alloy 6082-T6 has the lowest

yield strength of the materials considered in the validation and would be expected to

be most affected by compliance. Additional corrections for the influence of compliance

on the yield temperatures and tendon force will be discussed in a separate publication.

3.7 Example of Application

The tendon force model provides a simple and powerful tool for estimating the effects

of thermal processing of materials in problems of structural design. By decoupling

the transient and temperature dependent phenomena of heating and cooling from
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the reaction in the larger geometry, the tendon force model enables the use of simple

static mechanics equations to estimate distortion.

An example of a hollow structural member with a uniform cross-section is shown

in Figure 3.9. The cross-sectional area is Ac = 1.44× 103 mm2. The second moment

of inertia about the neutral axis is Iyy = 3.55 × 106 mm4. One common method to

fabricate this shape is by bending a flat piece of material into the desired form and

welding the resulting seam. This procedure will result in a bowing distortion of the

final member. The tendon force concept can be utilized to develop a design equation

that relates this bowing distortion to the material properties and welding procedure.

Figure 3.9: Cross-sectional properties of hollow structural section.

The tendon force acts as an eccentric load at the mid-thickness of the top plate.

The maximum deflection (δ) at mid-span of an eccentrically loaded member with a

uniform cross-section is given from classic beam theory [73]:

δ =
FTenL

2zc
8EIyy

(3.43)

where L is the length of the member and zc is the weld eccentricity given by the
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distance between the neutral (y) axis and the mid-thickness of the top plate. The

geometry shown in Figure 3.9 gives zc = (125 mm− 3 mm) /2 = 61 mm.

Consider the design of a welding procedure with the goal to produce a verti-

cal distortion of δ ≤ 1 mm in a member with a length of 1000 mm. Substituting

into Equation (3.43), this condition is found to be equivalent to a requirement that

FTen/E ≤ 0.466 mm2. Using the general expression for the tendon force, with correc-

tion factors for temperature dependent material properties, the maximum allowable

heat inputs to achieve this tolerance for various structural materials are shown in

Table 3.5.

Table 3.5: Maximum allowable heat input (resulting in 1 mm deflection of a 1 m
member) for selected alloys.

Material
ˆ︁H+ ≈ FTen/Q

′ E|20 ◦C Max. Q′

Equation (3.42) [GPa] [kJ/mm]

ASTM A36 0.26 200 0.36

P91 0.21 218 0.48

SS 304 0.31 200 0.30

Al 6082-T6 0.24 75 0.15

TiAl6V4 0.24 116 0.23

In addition to reaction stress associated with the bending distortion, the tensile

tendon force will also produce an axial reaction compressive stress with associated

longitudinal shrinkage of the member. The uniform shrinkage will not produce any

additional lateral deflection of the beam but will influence the compressive load car-

rying capacity of the member, as shown in Ref. [26].

The tendon force model reduces an otherwise complex design problem to a simple

calculation in which the behaviour of various materials may be easily compared. The

suitable welding heat input will not be the same for each of the materials considered
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above but is confined to a relatively narrow operating regime for a given material and

process. For example, assuming a heat transfer efficiency of approximately η =0.8

the recommended heat input for gas metal arc welding (GMAW) on 1/8 in. (3.2 mm)

A36 structural steel is ≈0.3 kJ/mm [45]. The suggested heat input for the GMAW

process on TiAl6V4 titanium alloy of similar thickness is ≈0.5 kJ/mm [74]. The

specified maximum distortion of 1 mm is therefore likely achievable with GMAW on

A36 structural steel, but a lower heat input process than GMAW will be necessary

to achieve the desired results for TiAl6V4 titanium alloy.

The results given in Table 3.5 may be validated by comparison to existing guidance

for structural steel welding. Ref. [60] provides the following general expression for

distortion of a welded longitudinal member:

δ = 0.005
AwL

2zc
Iyy

(3.44)

where Aw is the total cross-sectional area within the weld fusion line. Equation (3.44)

has the same form as Equation (3.43); however, the fusion area is used as a measure

of the tendon force rather than the heat input. Comparing these two equations gives

a reasonable equivalence of Q′/Aw ≈ 30 J/mm3.

Although this example considers a relatively simple geometry compared to what

might be encountered in industrial practice, the approach presented here may be

readily applied to more complex geometries. For larger structures, analytical solutions

to the static behaviour may not be available and the tendon force may be applied

as an external load in a static structural analysis with finite element software. The

tendon force model enables the use of fast and computationally efficient linear FEA

to predict the results of highly nonlinear thermal processing.
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3.8 Discussion

The utility of the expressions for the tendon force presented in Equation (3.17) and

Equation (3.42) are not strictly limited to applications which satisfy all of the as-

sumptions utilized in this work. Many additional phenomena may be accounted for

simply by incorporation of additional correction factors. Unpacking the tendon force

into this modular approach with clear dependencies and limits of validity provides

a powerful basis for estimation of the effect of phase transformations, compliance,

external stresses, surface heat losses, and other secondary considerations.

The MRCF approach is used to provide a simple model of the problem with the

flexibility to address complex phenomena, but only when necessary. For a large flat

plate geometry, it is expected that the largest source of deviation from the simplest

constant properties model will be captured through consideration of the correction

factors related to temperature dependent material properties. For ASTM A36 struc-

tural steel, 304 stainless steel, P91 alloy steel, and TiAl6V4 titanium alloy, these

correction factors produce agreement between the analytical estimate and the com-

putational simulation results within the limits of industrial measurement capabilities

(±10%).

For 6082-T6 aluminum, the constant properties model overestimates the tendon

force compared to the simulation results, and correction for temperature dependent

properties does not reduce the error. Due to the lower yield strength, the tendon force

in aluminum alloys is expected to show the greatest sensitivity to compliance effects

of plate size. Aluminum’s relatively high thermal conductivity will also produce a

lesser first yield isotherm aspect ratio at a given power level which might also be

expected to reduce the plastic zone size and consequently the tendon force [66].

Metallurgical phenomena, such as phase transformations, may result in complex

material behaviour at high temperatures. For most materials, the temperature rel-

evant for these phenomena is sufficiently high that it exceeds the second yield tem-
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perature and therefore influences only a subset of Region III within the plastic zone.

The analysis in this work results in a constant stress distribution in Region III with a

residual stress value equal to the yield stress of the material. Consideration of phase

transformations is beyond the scope of this work but could be readily addressed

through the inclusion of an additional correction factor.

A similar approach could also be used to address the influence of secondary mechan-

ical phenomena such as strain hardening and stress-strain hysteresis (i.e., Bauschinger

effect). Strain hardening will tend to increase the yield strain, and therefore the in-

herent strain of material within Region III. This will typically be opposite to the influ-

ence of the structural changes associated with phase transformations (e.g., austenite

decomposition in steels) which affects a similar subset of the plastic zone. The ex-

act effect of phase transformations and strain hardening will depend on the specific

material composition and microstructure, but it is reasonable to expect that the com-

bination of these two secondary effects will be even less significant than either one

alone.

The assumption that the tendon force is concentrated at the heat source trajectory

may not be suitable for all geometries. As a general rule, it is a good idea to check

the size of the plastic zone before applying this model and correct for distribution

effects if necessary. For the application considered above, distribution effects would

be relevant if the plastic zone exceeds the width of the section. Another example of

a correction for distribution effects is provided for calculation of the local distortion

due to circumferential pipeline welds in Ref. [56].

In general, the yield temperature ratio may be used to account for not just tem-

perature dependent properties, but also other nonlinear phenomena. For example,

consideration of pre-existing stress states in a material can be used to extend the

theory in this work to multiple welds or sequential passes in additive manufacturing.

The presence of pre-existing compressive stress/strain may be considered as a non-

linear effect which reduces the apparent yield strain in compression but increases the
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apparent yield strain in tension. Although these subtleties are beyond the scope of

this work, the fundamental framework derived for the tendon force model provides a

critical basis which may be built upon in future work to account for these and other

practical considerations.

3.9 Conclusions

This work presents a new, practical, and rigorous expression for calculating the tendon

force parameter ( ˆ︁H+, Equation (3.42)) with consideration of temperature dependent

thermal and mechanical material properties. The proposed expression has the form

of an ideal expression multiplied by three correction factors.

� A preliminary treatment considering constant material properties relates the

tendon force to the heat input (Q′) through a single dimensionless property

grouping Eα/(ρc). This property grouping is relatively constant for all metals,

and determines a universal normalized tendon force parameter for constant

material properties of ˆ︁H ≈0.23 for all metals.

� Novel closed-form analytical expressions are presented which provide correction

factors derived from analysis of the governing equations, without the need for

empirical correlations. The first correction factor (f1, Equation (3.35)) captures

the temperature dependence of the yield strain and the coefficient of thermal

expansion. The second correction factor (f2, Equation (3.38)) accounts for

variation in the thermal properties, and the third correction factor (f3, Equa-

tion (3.40)) captures the nonlinear rate of change for the yield strain.

� General expressions are presented for the first yield temperature (TY1, Equa-

tion (3.29)) and the second yield temperature (TY2, Equation (3.31)). The yield

temperature ratio (NT , Equation (3.41)) has an ideal value of 2 for yield strain

that is temperature independent or linearly varying. Pre-existing stress/strain
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fields relevant to additive manufacturing may be considered as additional non-

linear effects through the yield temperature ratio.

� Computational simulations were performed to validate the proposed expressions

for a range of common structural alloys. The normalized values for the tendon

force parameter are in close agreement, with a mean difference of 7%. The small

remaining systematic error is attributed to compliance effects of the finite sub-

strate geometry. Further correction factors to account for both the mechanical

and thermal effects of component geometry are the subject of ongoing work.
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3.11 Appendix: Effective Properties Calculation

The tendon force is proportional to the integral of the total residual plastic strain

over the complete thermal cycle with initial/final temperature (T0) and maximum

temperature (Tmax):

FTen = −E
∫︂
Ac

ϵpl dA = −E
∫︂
Ac

[︃∫︂ Tmax

T0

(︃
dϵpl
dT

)︃
dT

]︃
dy (3.45)

Switching the integration order and recognizing that dϵpl/dT = 0 for temperatures

below TY1 this can be written equivalently as:

FTen = −2Ed

∫︂ ∞

TY1

[︃∫︂ ymax

0

(︃
dϵpl
dT

)︃
dy

]︃
dT (3.46)
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Evaluating the inner integral this expression is reduced to:

FTen = −Q′E

√︃
2

πe

∫︂ ∞

TY1

(︃
dϵpl
dT

1

ρc

1

∆T

)︃
dT (3.47)

Plastic strain during heating above TY2 is cancelled during cooling. The infinite

integral can therefore be reduced to:

FTen = −Q′E

√︃
2

πe

∫︂ TY2

TY1

(︃
dϵpl
dT

1

ρc

1

∆T

)︃
dT (3.48)

It is desirable to define effective properties such that:

αeff

(ρc)eff

∫︂ TY2

TY1

(︃
1

∆T

)︃
dT = −

∫︂ TY2

TY1

(︃
dϵpl
dT

1

ρc

1

∆T

)︃
dT (3.49)

Within the temperature range of interest, the combination of the rate of plas-

tic strain development and heat capacity is approximated as a linear function with

parameters x1 and x0 such that:

− dϵpl
dT

1

ρc
= x1∆T + x0 (3.50)

Evaluating the these two integrals yields an expression for the effective properties:

αeff

(ρc)eff
=
x1(∆TY2 −∆TY1) + x0 ln(∆TY2/∆TY1)

ln(∆TY2/∆TY1)
(3.51)

The above expression results in values for the effective properties which are equiv-

alent to the value at the logarithmic mean temperature (Tlm):

αeff

(ρc)eff
= −

(︃
dϵpl
dT

1

ρc

)︃⃓⃓⃓⃓
Tlm

(3.52)
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The effective CTE may therefore be written as:

αeff = − dϵpl
dT

⃓⃓⃓⃓
Tlm

= α|Tlm
− dϵY
dT

(3.53)

For materials with a CTE that has only a weak temperature dependence, the

difference in the value of the CTE at the arithmetic mean temperature compared to

the logarithmic mean temperature will be small. The effective CTE may therefore be

approximated as:

αeff ≈ α|TY1
+ α|TY2

2
− dϵY
dT

=
ϵY|T0

TY2 − TY1

(3.54)

This approximation may be expected to produce greater error than the expression

based on the logarithmic mean temperature; however, in some situations it may be

preferable since it depends on only the nominal yield strain and yield temperatures,

which may be obtained directly from a Satoh Test.

3.12 Appendix: High Temperature Effects

This chapter includes additional numerical simulation results for P91 alloy steel which

were not previously incorporated into the paper version of this work. Materials with

greater strength at high temperatures, such as P91 alloy steel, tend to display a

smaller plastic zone relative to the weld bead and heat affected zone (HAZ) leading

to the potential for more significant effects of phase transformations on the overall

residual stress distribution. A residual stress level below yield magnitude is expected

in the HAZ of P91 steel due to martensitic phase transformations during cooling.

This reduction, although not entirely negligible, is still of only secondary impor-

tance for the parameters considered in this study. The region with sufficiently high

peak temperatures to produce phase transformations comprises <20% of the total

plastic zone, and is therefore expected to contribute <30% of the total tendon force.
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Assuming a reduction in the residual stress in this region of of up to half of yield mag-

nitude, the total change in the estimate of the tendon force value would not exceed

15%. This difference approaches the limit of what is detectable in industrial practice.

The equations presented here might therefore be expected to provide a small, and

conservative, overestimate of the true tendon force for P91 and other similar alloys.
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Chapter 4

Effect of Compliance on Residual
Stresses in Manufacturing with
Moving Heat Sources

4.1 Introduction

The mechanical effects of thermal fabrication processes such as welding, cutting, heat

treatment, and additive manufacturing are a fundamental consideration for design

with modern engineering materials. An improved understanding of the interaction

between residual stresses and geometry is essential to developing mitigation tech-

niques and determining the fitness-for-service of the overall structure.

The effect of residual stresses and strains on a structure depends on the geom-

etry. The uneven distribution of residual stresses produced during fabrication of

built-up members has been shown to reduce the compressive load capacity of welded

columns [26]; the significance of this behaviour depends on the ratio of the section

width and thickness. Similarly, during manufacturing of structural T-/I-sections, ec-

centric thermal strain and associated residual plastic strain will lead to longitudinal

bending distortion of the member [65]. Ref. [60] provides empirical expressions which

relate distortion to beam length, weld eccentricity, and section moment of inertia.

Even for relatively simple applications, such as welding of flat plates, the threshold

for buckling is related to the geometric aspect ratio of the plate [36].

Although the influence of residual stresses on geometry is well addressed in lit-
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erature, the influence of geometry on development of residual stresses is more often

neglected. This simplification is central to traditional implementation of models based

on the concept of inherent strain [16] which rely on measurements or computations

of thermal-mechanical behaviour in a reduced geometry.

Despite its convenience, this assumption severely limits the potential for under-

standing of modern processes, such as additive manufacturing, where it is not reason-

able to separate the local development of strain from the overall geometry. In such

processes, residual plastic strains will drive deviation in the overall part geometry

which must be accounted for to achieve desired final shape and tolerances [75, 76].

Analytical corrections for the influence of geometry on the tendon force and resid-

ual plastic strain have been previously studied for edge-welded plates [43, 77], flat

plates [20, 44, 50, 78, 79] as well as T-/I-sections [21, 80]. Although similarities exist

within these works, there is a lack of a general model applicable to the practical range

of geometries and materials, nor are there clear limits of validity for the proposed cor-

rections. Further, the existing work is primarily limited to welding applications on

steel, and there is an immediate need for a universal understanding suitable for the

wide range of modern materials and processes involving moving heat sources.

A simple and general methodology for application of blending techniques is pre-

sented in Refs. [51, 81] based on the the theory of blended asymptotics developed by

Ref. [82, 83]. This methodology has been previously applied to successfully predict

characteristic values of the 3-D temperature field [62, 63] relevant for high temper-

ature isotherms and cladding applications, as well as the 2-D temperature field [33,

34] relevant for lower temperature isotherms and thin sections.

This work, for the first time, applies the techniques of asymptotic blending to the

thermal-mechanical theory of residual stress. Novel closed-form correction factors are

derived to capture the effect of substrate size and shape on the critical aspects of the

residual plastic strain distribution. These simple, accurate, and general expressions

provide a powerful and much needed tool for use by engineering practitioners.
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4.2 List of Symbols

Symbol SI Unit Description

Roman Letters

Ac m2 Cross-sectional area

a m2 s−1 Thermal diffusivity

d m Section thickness

E Nm−2 Elastic modulus

F N Equivalent load

Fth N Thermal force

Fpl N Plastic force

FTen N Tendon force

fY1 1 Correction factor for first yield temperature

fY2 1 Correction factor for second yield temperature

fS 1 Correction factor for higher order compliance effects

fTen 1 Correction factor for tendon force

Iyy m4 Second moment of inertia with respect to y axis through c. g.

L m Cylinder axial length

NT 1 Dimensionless yield temperature ratio

Ok 1 Dimensionless Okerblom number

Q′ Jm−1 Linear energy input (i.e., heat input)

r m Cylinder radius

S N−1 Geometric compliance

Teq K Equilibrium temperature

Tmax K Maximum temperature in thermal cycle

TY K Critical temperature associated with plastic zone size

TY1 K First yield temperature

TY2 K Second yield temperature

T0 K Initial/starting temperature

teq s Time for section temperature to reach equilibrium

ti s Time for maximum width of isotherm T (y, t) = Ti

w m Plate half-width

ymax m Maximum isotherm half-width

ypl m Residual plastic zone size (i.e., half-width)

z m Eccentricity of equivalent load with respect to c. g.
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Symbol SI Unit Description

Greek Letters

α K−1 Linear coefficient of thermal expansion

β m−1 Cylinder stiffness parameter

ϵ0 1 Initial/pre-existing strain

ϵel 1 Elastic strain

ϵinh 1 Inherent strain

ϵpl 1 Plastic strain

ϵrxn 1 Reaction strain

ϵT 1 Total strain

ϵth 1 Thermal strain

ϵth,eq 1 Thermal strain in final/equilibrium state

ϵY 1 Yield strain

ρc Jm−3K−1 Volumetric specific heat capacity

σx Nm−2 Normal stress parallel to heat source movement

σY Nm−2 Material yield strength

Symbol Description

Superscripts

� Associated with heating process

� Associated with cooling process

∗ Dimensionless/normalized variable

∧ Asymptotic behaviour

+ Correction for intermediate values

Subscripts

b Property of base material

w Property of filler material

res Residual value

I Asymptotic regime for negligible compliance

II Asymptotic regime for infinite compliance
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4.3 Governing Equations

4.3.1 Residual Strain Distribution

Ref. [84] derives a general model for the tendon force that separates the elastic residual

strain distribution (ϵel) into a driving/inherent strain component (ϵinh) and a reaction

component (ϵrxn). The residual strain distributions and corresponding tendon force

area for several common geometry are shown in Figure 4.1.

The inherent strain is zero except in the plastic zone near the line of heating

(y = 0). In the region away from the line of heating, the elastic strain is equal to

the reaction strain. In the final state, the thermal strain is assumed to be zero so the

elastic strain in the far region is also equal to the total strain (ϵT).

In the asymptotic tendon force model for an infinite geometry, the total strain is

neglected for the purposes of computing the inherent strain. Correcting the tendon

force model for compliance involves consideration of the simultaneous development

of total strain and inherent strain. This is accomplished by defining equivalent loads,

not just for the residual state, but also at intermediate states during the development

of the total and inherent strain.

4.3.2 Concept of Compliance

The concept of compliance is used to relate the total strain with a load concentrated

at the line of heating. The geometric compliance of a structure is defined as:

S = −ϵT|y=0

F
(4.1)

where F is a concentrated load at the line of heating and ϵT|y=0 is the resulting total

strain at the location of the load (y = 0).

As shown in Figure 4.1, for some geometries the total strain may vary within the

plastic zone (0 ≤ y ≤ ypl). In many practical cases, the width of the plastic zone

is sufficiently small compared to the overall component geometry, that this variation
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(a) centre heating on thin flat plate

(b) edge heating on thin flat plate

(c) edge heating of thin cylinder

Figure 4.1: Residual strain distribution for selected common section geometries.
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is negligible and the total strain throughout the plastic zone may be approximated

with the total strain at the line of heating (ϵT|y=0). The following analysis remains

applicable even when this criteria is not satisfied; treatment of these special cases is

discussed in Section 4.10.

The normalized compliance (S∗) is obtained as the ratio of the compliance of a

given section to the compliance of centre heating on a flat plate with equivalent area:

S∗ = S E Ac (4.2)

The compliance of any cross-section may be computed with simple linear FEA.

Analytical closed-form solutions may also be obtained for simple geometries. The

compliance of a selection of common geometric shapes applicable to additive man-

ufacturing, welding, and for the general case are computed in Section 4.15 and the

results are shown in Table 4.1.

Table 4.1: Compliance of typical simple section geometries.

Section Geometry S S∗ = S E Ac

Centre Heating of Thin Flat Section
1

E

1

wd
1

Edge Heating of Thin Flat Section
1

E

4

wd
4

Edge Heating of Thin Cylinder
1

E

2β

d
2βL

Longitudinal Heating of General Thin Section
1

E

(︃
1

Ac

+
z2

Iyy

)︃
1 +

Acz
2

Iyy
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4.3.3 Equivalent Load

A concentrated “equivalent load” can be thought of as a time-dependent tendon

force [84], and is defined as the equivalent load necessary to reproduce, at any time,

the effect of thermal and plastic strains in an otherwise unloaded plate for a given

point along the path of a moving heat source:

F (t) =

∫︂
Ac

E [ϵel(t)− ϵT(t)] dA (4.3)

where ϵel is the elastic strain and ϵT is the total strain distribution. At long times

after the application of heating, the equivalent load becomes the tendon force.

The total strain is equal to the sum of its thermal (ϵth), elastic, and plastic (ϵpl)

strain components:

ϵT = ϵth + ϵel + ϵpl (4.4)

Combining Equation (4.3) and Equation (4.4) gives:

F (t) = Fth(t) + Fpl(t) (4.5)

Fth(t) = −E
∫︂
Ac

ϵth(t) dA (4.6)

Fpl(t) = −E
∫︂
Ac

ϵpl(t) dA (4.7)

where Fth and Fpl are the equivalent thermal and plastic forces.
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4.4 Thermal Strain

Thermal strain is proportional to the temperature increase from the initial condition:

ϵth = α∆T = α (T − T0) (4.8)

where α is the coefficient of thermal expansion and T0 is the temperature of the

component in the broad area before the moving heat source arrives. A constant value

is assumed for the coefficient of thermal expansion, but variable properties may be

readily considered through the use of effective values as outlined in Ref. [84].

4.4.1 Temperature Distribution

The approximation of manufacturing processes as fast moving point heat sources on

a 2-D substrate has been previously shown to provide reasonably accurate predictions

in the temperature range relevant for thermal stresses and the power typically con-

sidered for welding and similar processes (103−104 W) [33, 34, 66]. The temperature

distribution at a given time after the application of heating (t), across the width (y)

of a thin section is therefore [40]:

T (y, t)− T0 = ∆T (y, t) = ∆T (0, t) exp

(︃
−y2

4at

)︃
(4.9)

∆T (0, t) =
Q′

dρc

1√
4πat

(4.10)

where T0 is the initial temperature, ∆T (0, t) is the temperature at the line of heating,

a = k/(ρc) is the thermal diffusivity of the material, Q′ is the energy input to the

cross-section per unit length (typically referred to as the heat input), d is the section

thickness, and ρc is the volumetric heat capacity of the material.

Each point in a section, normal to the travel direction of the heat source, will

experience a distinct thermal cycle with a unique maximum temperature. For the
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fast moving heat sources typical of manufacturing, this maximum temperature is

given by [34]:

∆Tmax(y) =
1√
2πe

Q′

dρc

1

y
(4.11)

4.4.2 Thermal Force

The thermal force Fth is defined as an equivalent load balancing the elastic effect of

the thermal strains induced by the moving heat source:

Fth = −E
∫︂
Ac

ϵth dA (4.12)

Equation (4.9) has the form of a normal distribution with constant area which

flattens over time and the net thermal strain thus has a constant value of:

∫︂
ϵth dA = α

∫︂
Ac

∆T dA =
αQ′

ρc
(4.13)

which yields the following thermal force that is independent of time:

Fth = −Eα
ρc
Q′ (4.14)

4.5 Plastic Strain

For the conditions typical of manufacturing with moving heat sources on 2-D sub-

strates (such as additive manufacturing of walls or welding of relatively thin plates),

it has been shown that the thermal stress field is equivalent to that of a uniaxial

stress test [66], and the conditions of validity of this approximation are established

and validated. It is assumed here that the uniaxial state of stress is also applica-

ble during plasticity; this approximation is standard in the analytical treatment of

residual stresses and tendon force in welding [43, 44].
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In this work, the material will be considered elastic-plastic with no strain hardening

and no phase transformations. The theoretical foundation presented here can be

extended with small effort to account for those effects, and it is the subject of current

ongoing research.

4.5.1 Plastic Strain During Heating

Figure 4.2 illustrates the development of strain as temperature changes due to the

moving heat source. The thermal cycle starts with zero elastic strain, developing

compressive elastic strain as temperature increases. This elastic strain will increase

until it reaches the yield strain (ϵel = −ϵY), and plasticity starts. In the elastic regime

ϵpl = 0, and considering Equation (4.4), the onset of plasticity during heating can be

determined when:

ϵth = ϵY + ϵT (4.15)

Thermal strain during heating in excess of that in Equation (4.15) results in the

development of a heating (indicated as �) plastic strain, which can be expressed in

general form as:

ϵ�pl(y, t) = −max {0, ϵth(y, t)− ϵT(t)− ϵY} (4.16)

The residual plastic strain during heating corresponds to the maximum plastic

strain occurring at each point. For a point at a given distance (y) from the line of

heating, the maximum thermal strain occurs at time (tmax(y)), thus:

ϵ�pl,res(y) = ϵ�pl[y, tmax(y)]

= ϵT[tmax(y)]− ϵth[y, tmax(y)] + ϵY
(4.17)
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(a) temperature change vs. time

(b) elastic strain vs. temperature change

Figure 4.2: Temperature and elastic strain evolution over time.
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4.5.2 First Yield Temperature

The onset of plasticity during heating is associated with a particular temperature

termed the “first yield temperature” (TY1) illustrated in Figure 4.2, and defined as:

∆TY1 = TY1 − T0 =
ϵ�th,Y1

α
(4.18)

where ϵ�th,Y1 is the thermal strain when yield is first obtained during heating.

Considering the threshold for heating plastic strain development given in Equa-

tion (4.16), the first yield temperature can be expressed as:

∆TY1 =
ϵY + ϵ�T,Y1

α
(4.19)

where ϵ�T,Y1 is the total strain when yield is first obtained during heating. Equa-

tion (4.19) accounts for the effect of compliance. When compliance is negligible, this

equation reduces to the definition used in Ref. [84] and can be determined experi-

mentally with a Satoh Test [35].

4.5.3 Plastic Strain During Cooling

Figure 4.2 also illustrates the mechanism for development of plastic strain during

cooling (t > tmax). For thermal cycles with a maximum temperature that exceeds the

first yield temperature, elastic unloading starts from an initial state of compression at

the level of yield strain. As the temperature decreases, the elastic unloading becomes

elastic loading in tension. When the temperature decrease is sufficient to produce

an elastic tensile strain equal to the yield strain, plasticity will begin again, but this

time in tension. The total amount of elastic strain to reach plasticity during cooling

is thus 2ϵY, and the onset of plasticity during cooling is given by:

ϵel(y, t)− ϵel[y, tmax(y)] = 2ϵY (4.20)
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Representing the criterion for plasticity development as a change in elastic strain

relative to the maximum temperature state is convenient since it eliminates the need

to consider the magnitude of the heating plastic strain in development of equations

for the cooling plastic strain. An identical result is obtained by using a criterion for

plasticity of ϵel = ϵY (similar to the case of heating).

For any given state, the elastic strain can be expressed as an equivalent sum of

the thermal, plastic, and total strain components according to Equation (4.4). Rec-

ognizing that additional plastic strain will not develop during cooling until the onset

of yielding (and therefore the associated terms will cancel), Equation (4.20) is equiv-

alently expressed as:

{ϵth[y, tmax(y)]− ϵth(y, t)} − {ϵT[tmax(y)]− ϵT(t)} = 2ϵY (4.21)

The cooling plastic strain produced when the thermal strain exceeds the elastic

capacity of the material is thus:

ϵ�pl(y, t) = max {0, ϵth[y, tmax(y)]− ϵth(y, t)− ϵT[tmax(y)] + ϵT(t)− 2ϵY} (4.22)

4.5.4 Second Yield Temperature

The onset of plasticity during cooling to equilibrium is associated with a particular

temperature termed the “second yield temperature” (TY2) illustrated in Figure 4.2,

and defined as:

∆TY2 = TY2 − T0 =
ϵ�th,Y2

α
(4.23)

where ϵ�th,Y2 is the maximum thermal strain required to produce yielding during cool-

ing to the equilibrium state at teq.

Unlike the heating plastic zone, the cooling plastic zone size will vary throughout
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the duration of the thermal cycle as the substrate continually cools. It is therefore

also necessary to develop an expression for the temperature which governs the size at

an arbitrary non-residual state.

This general plasticity temperature is denoted here as ∆T �
Y, defined by:

∆T �
Y(t) = T �

Y(t)− T0 =
ϵ�th,Y(t)

α
(4.24)

where ϵ�th,Y(t) is the maximum thermal strain required to produce yielding during

cooling to any arbitrary state.

In the residual state (t ≥ teq) the cooling plasticity temperature reduces to the

second yield temperature such that:

lim
t→teq

∆T �
Y(t) = ∆TY2 (4.25)

Considering the threshold for cooling plastic strain development given in Equa-

tion (4.22), the general plasticity temperature can be expressed as:

∆T �
Y(y, t) = ∆T (y, t) +

2ϵY + ϵT(t
�
Y)− ϵT(t)

α
(4.26)

where t�Y is the time at which the isotherm T (y, t) = ∆T �
Y(y, t) + T0 achieves its

maximum width and ∆T (y, t) is the instantaneous temperature distribution for any

time t ≥ tY1.

The dependence of ∆T �
Y on the spatial variable (y) complicates further analysis

since it implies plasticity temperature will vary across the section width. To address

this, it is observed that cooling plastic strain will only occur in a region which is

relatively close to the line of heating (y = 0). It is therefore reasonable to approximate

∆T (y, t) ≈ ∆T (0, t) =
√
e∆Tmax(t) which gives:

∆T �
Y(t) =

√
e∆Tmax(t) +

2ϵY + ϵT(t
�
Y)− ϵT(t)

α
(4.27)
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4.5.5 Plastic Force

For any time t ≥ tY1, the heating plastic strain is equal to the residual value. Sub-

stituting Equation (4.19) into Equation (4.17), the distribution of residual heating

plastic strain is written in terms of the maximum temperature as:

ϵ�pl,res(y) =

⎧⎨⎩0 ∆Tmax(y) ≤ ∆TY1

α [∆TY1 −∆Tmax(y)] ∆Tmax(y) > ∆TY1

(4.28)

Similarly, substituting Equation (4.27) into Equation (4.22), the distribution of

cooling plastic strain distribution is written in terms of the maximum temperature

as:

ϵ�pl(y, t) =

⎧⎨⎩0 ∆Tmax(y) < ∆T �
Y(t)

α
[︁
∆Tmax(y)−∆T �

Y(t)
]︁

∆Tmax(y) ≥ ∆T �
Y(t)

(4.29)

Combining Equation (4.28) and Equation (4.29) gives a net plastic strain of:

ϵpl(y, t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 ∆Tmax(y) ≤ ∆TY1

α [∆TY1 −∆Tmax(y)] ∆TY1 < ∆Tmax(y) < ∆T �
Y(t)

α
[︁
∆TY1 −∆T �

Y(t)
]︁

∆Tmax(y) ≥ ∆T �
Y(t)

(4.30)

The integral of the net plastic strain results in a plastic force which is given by:

Fpl(t) = −E
∫︂
ϵpl dA =

√︃
2

πe
ln

(︃
∆T �

Y(t)

∆TY1

)︃
Eα

ρc
Q′ (4.31)

The plastic force is a function of time through the temperature ratio ∆T �
Y(t)/∆TY1.

In residual (t ≥ teq) state, the cooling plasticity temperature is replaced by the second

yield temperature and the plastic force is equal to the tendon force [44, 84]:

FTen = lim
t→teq

Fpl(t) =

√︃
2

πe
ln

(︃
∆TY2

∆TY1

)︃
Eα

ρc
Q′ (4.32)
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The relationship between the thermal force, plastic force, tendon force, and critical

temperatures is illustrated in Figure 4.3.

Figure 4.3: Plastic and thermal strain at the instant tY1.

4.6 Total Strain

Using the concept of compliance, at any given time the total strain can be obtained

from the thermal force and plastic force. As shown in Figure 4.4, the two critical times

tY1 and teq can be used to divide the total strain into three regions of behaviour.

When the temperatures in the cross-section are relatively low (t > tY1, t ≪ teq),

the plastic zone size is constant and thermal strain is concentrated near the line of

heating and can be treated as a point load. When the temperatures in the cross-

section are relatively high (t < tY1), the plastic zone size has not yet reached its
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Figure 4.4: Total strain evolution over time.

final size. At equilibrium (t = teq), the temperature and thermal strain is distributed

evenly over the section.

This analysis assumes that for t < teq the total energy in the substrate remains

approximately constant (i.e., negligible surface losses). For any real geometry, at

times t≫ teq even small surface losses by convection and radiation to the surrounding

environment will eventually lead to uniform cooling of the substrate to the ambient

temperature. However, in the absence of external restraint, uniform cooling will not

impact the residual stress state of the substrate and need not be considered here.

4.6.1 Total Strain - Low Temperatures

Using the concept of compliance, the total strain at any time tY1 ≤ t≪ teq is:

ϵT(t) = −S(Fth + Fpl) (4.33)

Substituting Equation (4.14) and Equation (4.31) into the above expression gives:

ϵT(t) =

(︃
Eα

ρc

)︃
Q′S

[︄
1−

√︃
2

πe
ln

(︃
∆T �

Y(t)

∆TY1

)︃]︄
(4.34)
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Equation (4.34) is not a closed-form expression since ∆T �
Y(t) is itself a function of

ϵT(t) as given by Equation (4.27).

4.6.2 Total Strain - High Temperatures

For t < tY1, the plastic heating strain zone will not have achieved its maximum width

and therefore both the plastic heating strain and plastic cooling strain will change

with time. Although the relative magnitude of these changes are not identical, they

will tend to partially cancel and thus it may be assumed that:

ϵT(tY1 − δt) ≈ ϵT(tY1) (4.35)

when δt is positive and relatively small.

Substituting Equation (4.35) into Equation (4.27), the plastic zone width at the

instant tY1 is associated with the critical temperature:

∆T �
Y(tY1) =

√
e∆TY1 +

2ϵY
α

(4.36)

Substituting Equation (4.36) into Equation (4.34), the total strain for any time

t ≤ tY1 is then equal to the constant value:

ϵT(tY1) =

(︃
Eα

ρc

)︃
Q′S

[︄
1−

√︃
2

πe
ln

(︃√
e +

2ϵY
α∆TY1

)︃]︄
(4.37)

4.6.3 Total Strain - Equilibrium

Equation (4.34) assumes that Fth(t) and Fpl(t) are both sufficiently concentrated

near the heat source trajectory that the resulting strains may be estimated using

the compliance concept. The validity of this assumption does not change with time

for the plastic force, however the same cannot be said of the thermal force. As the

temperature distribution tends to an equilibrium state (i.e., t → teq), the thermal
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force becomes evenly distributed over the cross-sectional area (Ac) with an associated

uniform thermal strain of:

lim
t→teq

ϵth(y, t) = α∆Teq (4.38)

where ∆Teq is the uniform equilibrium temperature change.

The total strain in the equilibrium state is therefore:

ϵT,eq = lim
t→teq

ϵT(t) = α∆Teq − S FTen (4.39)

Substituting Equation (4.32) into Equation (4.39) results in an expression for the

equilibrium total strain in terms of the yield temperature ratio:

ϵT,eq = α∆Teq −
(︃
Eα

ρc

)︃
Q′S

√︃
2

πe
ln

(︃
∆TY2

∆TY1

)︃
(4.40)

4.7 Compliance Effect on 1st Yield Temperature

4.7.1 Implicit Expression

The first yield temperature depends on the total strain at the instant tY1 when the

heating plastic zone achieves its maximum width. Substituting Equation (4.37) into

Equation (4.19) results in the implicit expression for the first yield temperature with

compliance:

α∆TY1 = ϵY +

(︃
Eα

ρc

)︃
Q′S

[︄
1−

√︃
2

πe
ln

(︃√
e +

2ϵY
α∆TY1

)︃]︄
(4.41)

This can also be expressed in dimensionless form as:

T ∗
Y1 =

α∆TY1

ϵY
= 1 + Ok

[︄
1−

√︃
2

πe
ln

(︃√
e +

2

T ∗
Y1

)︃]︄
(4.42)
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where the dimensionless Okerblom number (Ok) is defined as:

Ok =
Eα

ρc

Q′S

ϵY
(4.43)

For the case of a centre weld on a flat substrate, the dimensionless parameter Ok

is equivalent to the normalized average temperature rise. The average temperature

was first identified by Okerblom [43] as significant in determining the effect of finite

plate size on the curvature distortion produced in edge heated plates.

4.7.2 Blended Asymptotics

Asymptotic analysis of Equation (4.42) results in power laws for each of the two

asymptotic regimes:

ˆ︂T ∗
Y1,I = 1 Regime I (Ok ≪ 1) (4.44)

ˆ︂T ∗
Y1,II = Ok

(︃
1− 1√

2πe

)︃
Regime II (Ok ≫ 1) (4.45)

where the asymptotic Regime I (Ok ≪ 1) is associated with negligible compliance

and Regime II (Ok ≫ 1) corresponds to infinite compliance.

An explicit analytical solution for the first yield temperature is obtained using the

traditional method of blended asymptotics as described in Ref. [34]. The resulting

correction factors are:

fY1,I/II(Ok) =

{︄
1 +

[︃
Ok

(︃
1− 1√

2πe

)︃]︃±n
}︄1/n

+ n for Ok ≪ 1

− n for Ok ≫ 1
(4.46)

where an optimized value for the blending parameter of n = 1.3581 results in a

maximum error of 2.18% compared to the exact numerical solution obtained using

MATLAB. The crossover point for the correction factors is Ok=1.3192. Asymptotic

expressions without correction factors result in an error less than 10% for Ok<0.31904
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or Ok>5.4548.

The corresponding engineering expressions with units for the first yield temperature

are obtained by substituting Equation (4.43) into Equation (4.44) and Equation (4.45)

and combining with Equation (4.46):

∆ˆ︂TY+

1 = ∆ˆ︂TY1,I fY1,I(Ok)

=
ϵY
α
fY1,I(Ok)

Regime I (Ok ≪ 1) (4.47)

∆ˆ︂TY+

1 = ∆ˆ︂TY1,II fY1,II(Ok)

=
Q′SE

ρc

(︃
1− 1√

2πe

)︃
fY1,II(Ok)

Regime II (Ok ≫ 1) (4.48)

4.8 Compliance Effect on 2nd Yield Temperature

4.8.1 Implicit Expression

The second yield temperature corresponds to the residual (t ≥ teq) width of the

cooling plastic strain zone. The second yield temperature is given from the limit of

Equation (4.27) as:

∆TY2 = lim
t→teq

∆T �
Y(t) = ∆Teq +

2ϵY + ϵT(tY2)− ϵT,eq

α
(4.49)

where tY2 is the time at which the isotherm T (y, t) = ∆TY2+T0 achieves its maximum

width.

From Equation (4.35) the total strain at the instant tY2 is approximately equal to

the total strain at the instant tY1. Substituting Equation (4.19) into Equation (4.49)

therefore gives:

α∆TY2 = ϵY + α∆TY1 + [α∆Teq − ϵT,eq] (4.50)
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The second yield temperature depends on the total strain in the equilibrium state.

Substituting Equation (4.40) into Equation (4.50) produces an implicit expression for

the second yield temperature:

α∆TY2 = ϵY + α∆TY1 +

(︃
Eα

ρc

)︃
Q′S

√︃
2

πe
ln

(︃
∆TY2

∆TY1

)︃
(4.51)

This can also be expressed in dimensionless form as:

T ∗
Y2 =

α∆TY2

ϵY
= 1 + T ∗

Y1 +Ok

√︃
2

πe
ln

(︃
T ∗
Y2

T ∗
Y1

)︃
(4.52)

4.8.2 Blended Asymptotics

The two normalized asymptotic equations for the second yield temperature are given

by the following power laws:

ˆ︂T ∗
Y2,I = 2 Regime I (Ok ≪ 1) (4.53)

ˆ︂T ∗
Y2,II = Ok

(︃
1− 1√

2πe

)︃
Regime II (Ok ≫ 1) (4.54)

An explicit analytical solution for the second yield temperature is obtained using

the same traditional blending techniques as the first yield temperature. The resulting

correction factors are:

fY2,I/II(Ok) =

{︄
1 +

[︃
Ok

2

(︃
1− 1√

2πe

)︃]︃±n
}︄1/n

+ n for Ok ≪ 1

− n for Ok ≫ 1
(4.55)

where an optimized value for the blending parameter of n =0.95378 results in a

maximum error of 2.47% compared to the exact numerical solution obtained using

MATLAB. The crossover point for the correction factors is Ok=2.6384. Asymptotic

expressions without correction factors result in an error less than 10% for Ok<0.23617
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or Ok>29.476.

The corresponding engineering expressions with units for the second yield temper-

ature are obtained by substituting Equation (4.43) into Equation (4.53) and Equa-

tion (4.54) and combining with Equation (4.55):

∆ˆ︂TY+

2 = ∆ˆ︂TY2,I fY2,I(Ok)

=
2ϵY
α

fY2,I(Ok)

Regime I (Ok ≪ 1) (4.56)

∆ˆ︂TY+

2 = ∆ˆ︂TY2,II fY2,II(Ok)

=
Q′SE

ρc

(︃
1− 1√

2πe

)︃
fY2,II(Ok)

Regime II (Ok ≫ 1) (4.57)

4.9 Compliance Effect on Tendon Force

4.9.1 Implicit Expression

The tendon force is equal to the residual value of the plastic force as shown in Equa-

tion (4.32).

Equation (4.32) can also be expressed in dimensionless form as:

F ∗
Ten =

FTen

Q′
ρc

Eα
=

√︃
2

πe
ln(NT) (4.58)

NT =
∆TY2

∆TY1

=
∆T ∗

Y2

∆T ∗
Y1

(4.59)

where NT is the dimensionless yield temperature ratio. The value of this ratio, with

consideration of compliance, is obtained by solution of the system of equations formed

from Equation (4.42) and Equation (4.52).
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4.9.2 Blended Asymptotics

Asymptotic analysis of Equation (4.58) produces the following power laws for the

tendon force:

ˆ︃F ∗
Ten,I =

√︃
2

πe
ln(2) Regime I (Ok ≪ 1) (4.60)

ˆ︃F ∗
Ten,II =

1

Ok

2√
2πe− 3

Regime II (Ok ≫ 1) (4.61)

An explicit analytical solution for the tendon force is obtained using the same

traditional blending techniques as the yield temperatures. The resulting correction

factors are given by:

fTen,I/II(Ok) =

{︄
1 +

[︃
Ok

(︃
1− 3√

2πe

)︃
ln(2)

]︃±n
}︄−1/n

+ n for Ok ≪ 1

− n for Ok ≫ 1
(4.62)

where an optimized value for the blending parameter of n=1.1125 results in a maxi-

mum error of 5.01% compared to the exact numerical solution obtained using MAT-

LAB. The crossover point for the correction factors is Ok=5.2636. Asymptotic ex-

pressions without correction factors result in an error less than 10% for Ok<0.76908

or Ok>36.025.

The corresponding engineering expressions with units for the tendon force are ob-

tained by substituting Equation (4.43) into Equation (4.60) and Equation (4.61) and
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combining with Equation (4.62):

ˆ︃FTen

+
= ˆ︃FTen,I fTen,I(Ok)

=

√︃
2

πe
ln(2)

Eα

ρc
Q′ fTen,I(Ok)

Regime I (Ok ≪ 1) (4.63)

ˆ︃FTen

+
= ˆ︃FTen,II fTen,II(Ok)

=
ϵY
S

2√
2πe− 3

fTen,II(Ok)

Regime II (Ok ≫ 1) (4.64)

4.10 Limits of Applicability

4.10.1 Equilibrium Temperature Distribution

The 2-D Rosenthal temperature distribution assumes an infinite substrate resulting

in a thermal cycle with a final (i.e., equilibrium) temperature equal to the starting

temperature (T0) [40]. Consideration of a finite geometry will result in an equilibrium

temperature change of ∆Teq. For the case of a material with a constant cross-sectional

area and negligible thermal losses, the equilibrium temperature is equal to the average

temperature rise given by:

Teq − T0 = ∆Teq =
Q′

ρcAc

(4.65)

Refs. [43, 44, 78, 85] have previously correlated the average temperature rise

with deviations from asymptotic models for inherent strain and tendon force (Equa-

tion (4.60)). A normalized average temperature is also presented by Ref. [50] as one

of several thermal elastic-plastic parameters relevant to understanding the influence

of the plate geometry on the tendon force in centre heating of flat plates:

T ∗
eq =

α∆Teq
ϵY

=
Eα

ρc

Q′

Ac

1

σY
(4.66)
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For centre heating of a flat plate, the dimensionless parameters T ∗
eq and Ok are

equivalent. For any other geometry, the dimensionless parameter Ok may be calcu-

lated as:

Ok = T ∗
eq S

∗ (4.67)

Refs. [11, 14, 86] propose that the true temperature distribution in a finite plate

of half-width (w/2) may be obtained by superposition of the temperature field from

a second imaginary heat source, moving on a parallel trajectory at a distance of ±w

from the actual heating line. This so-called mirror-method is equivalent to considering

the temperature distribution to be reflected by the plate edge with negligible loss.

For sufficiently small plates, it may be necessary to consider additional reflections

by superimposing heat sources at distances ±nw for n = 2, 3, . . . until the value of

the remaining temperature distribution is negligible. Numerical approximation of

the infinite series solution indicates that the finite size influence on isotherm width is

relatively minor for characteristic temperatures which do not exceed the equilibrium

temperature rise. A necessary criterion for application of the infinite plate solution

is thus:

∆Teq
∆Tmax

≲ 1 (4.68)

The lowest temperature relevant for tendon force is the first yield temperature

(∆TY1). Substituting in the corrected asymptotic expression for first yield tempera-

ture gives:

∆Teq
∆TY1

=
T ∗
eq

fY1,I(Ok)
≲ 1 (4.69)

117



For centre heating of a flat plate (T ∗
eq = Ok) this gives T ∗

eq ≲ fY1,I(T
∗
eq) which is

equivalent to:

T ∗
eq ≲ 2.3 (4.70)

For a general thin section geometry, S∗ ≥ 1 which gives Ok ≥ T ∗
eq. The correction

factor fY1,I(T
∗
eq) will therefore be less than fY1,I(Ok) (see Figure 4.6). The condition

given by Equation (4.70) is thus sufficient, but not necessary, to ensure applicability

of the proposed equations to any general thin section.

4.10.2 Assumption of Concentrated Force

The theory presented here assumes that the total strain is approximately uniform

throughout the plastic zone. For a general closed thin section it is thus required

that the plastic zone be sufficiently flat and located at an approximately constant

perpendicular distance from the section centre of gravity. This criterion is expressed

as:

∆z ≪ z (4.71)

where z is the eccentric distance between the centre of gravity (c.g.) and the midsec-

tion at the line of heating and ∆z is the deviation in z from the line of heating to the

edge of the plastic zone width. This condition is illustrated in Figure 4.5.

The eccentric distance (z) and relevant section moment of inertia (Iyy) are defined

relative to the body coordinates, which are denoted z′ and y′ here to distinguish

from the local quasi-static coordinate system employed to describe the temperature

field. The z′ axis is given by the line intersecting both the centre of gravity and

the application of heating. The y′ axis is oriented perpendicular to the z′ axis and

intersects the centre of gravity.
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Figure 4.5: Illustration of flat plastic zone criterion.
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Although in general, the criterion given in Equation (4.71) is more likely to be

satisfied for larger sections with less local curvature, the size of the plastic zone also

exerts a strong influence. This is particularly true when the plastic zone and the z′

axis are not oriented perpendicular. The limiting case is edge heating of a flat plate

where the z′ axis is parallel to the plastic zone. The criterion for an approximately

uniform strain thus becomes analogous to a condition that ypl≪w.

Considering the asymptotic case of negligible compliance, ypl/w∝T ∗
eq. As a result,

the condition for uniform strain is the same as the criterion for negligible compliance

Ok≈T ∗
eq≪1. A similar condition exists for edge heating of a thin cylinder due to its

mathematical equivalence with a flat plate on an elastic foundation [56].

For these practical geometries, a higher order correction for compliance can be

applied to improve the accuracy of the predictions. This higher order correction

takes the form of a correction factor on the compliance (S).

Development of this correction considers both the distribution of the load over

the plastic width (ypl) as well as the variation of the total strain within the plastic

width. Examples for the development of this higher order correction are given for

several typical geometric sections in Section 4.16. The expressions are not implicit

as they depend on the normalized plastic width (y∗pl), and thus necessitate iterative

approaches or computational techniques.

4.11 Validation

The proposed compliance correction factors are validated against available published

data of residual stresses in weldments. Literature data includes a combination of both

experimental data and numerical simulations.

Validation is limited to the first yield temperature and tendon force which are both

the most critical in practice and the most readily measured attributes of the residual

stress distribution. The second yield temperature is associated with the cooling plastic

strain region. This point may not be accurately measured from the residual stress
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distribution due to more limited data points nearer to the melted region, as well as

the potential for interaction with secondary phenomena such as strain hardening,

phase transformations, and mixing between the filler and base material.

4.11.1 First Yield Temperature

Figure 4.6 plots literature data against the proposed blended formula as well as the

exact numerical solution.

Figure 4.6: Validation of correction factor for first yield temperature with literature
data for plastic zone size [20, 21, 87].

Although the first yield temperature cannot be obtained directly from the residual

stress distribution, the proposed correction factor for first yield temperature can be

validated using the plastic zone size. As shown in Equation (4.11), the temperature

of a given isotherm is inversely proportional to the maximum width. The plastic

zone size corresponds to the half-width of the first yield temperature isotherm. The
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correction factor for the first yield temperature is therefore equivalent to the inverse

ratio of the measured plastic zone size to the predicted plastic zone size from the

asymptotic formula. The higher order correction derived in Section 4.16 was used to

calculate compliance of the circumferential pipe joints considered in Ref. [87].

4.11.2 Tendon Force

The proposed blended expression for the tendon force compliance correction factor is

compared to literature data and the exact numerical solution in Figure 4.7.

Figure 4.7: Validation of correction factor for tendon force with literature data [20,
21, 50].

In some literature sources, the tendon force value is reported with the residual

stress distribution. For sources in which the tendon force is not provided, the data

was digitized and the area between the residual stress and the reaction stress was

integrated numerically. The reaction stress curve was obtained by a linear fit to the
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stress distribution outside the plastic zone. The experimental correction factors were

obtained by dividing the integrated value by the asymptotic estimate from Equa-

tion (4.32).

Some studies utilized a higher strength filler material which requires an additional

correction to the asymptotic formula. This behaviour can be approximated as a spe-

cial case of the general analysis for variable material properties described in Ref. [84].

This is only an approximation since the higher strength filler material represents a

property variation with position rather than temperature. In general, this approxi-

mation should still give a reasonable estimate for the tendon force, although not exact

given that the region of filler material is typically smaller than the residual cooling

plastic zone size.

The higher strength of the filler material compared to the base material is a non-

linear change, but only represents a single additional degree of freedom, with an

associated single independent parameter. The nonlinear and linear components of

the property variation are thus coupled. The single independent parameter is cho-

sen as the asymptotic yield temperature ratio (NT) with adjustment for the variable

properties. The corresponding correction factor is [84]:

f(NT) =
ln(NT)

2 (1− 1/NT) ln(2)
(4.72)

NT ≈ 2σY,w

σY,b

(4.73)

where σY,w is the nominal yield strength of the filler material and σY,b is the nominal

yield strength of the base plate.

4.12 Discussion

In general, the proposed blended asymptotic expressions agree closely with the exist-

ing literature data. The single outlier data point for the tendon force in the flat plate
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studies from Ref. [50] may be attributed to the relatively high value of the dimension-

less parameter Ok = T ∗
eq > 2.3. In this case, the plate dimensions are not sufficiently

large to use the maximum temperature distribution proposed by Rosenthal and an

over prediction of the tendon force (i.e., under prediction of the plate size effect) is

expected and observed.

The traditional (i.e., single parameter) blending technique is used to obtain cor-

rection factors for the first yield temperature (TY1, Equation (4.46)), the second yield

temperature (TY2, Equation (4.55)) and the tendon force (FTen, Equation (4.62)). The

maximum error in the blended correction factor for yield temperatures (≈3%) and

tendon force (≈5%) is less than the repeatability of measurements and properties

associated with thermo-physical phenomena, which is on the order of 10%. How-

ever, consideration of higher order effects in compliance could lead to amplification

of these errors as the correction factor for first yield temperature is used as an in-

put for subsequent computations. Ref. [34] presents a modified technique which uses

up to two additional blending parameters to improve the fit for intermediate values.

Three parameter blending results in an order of magnitude reduction of error for a

maximum error in the correction factor for first yield temperature of only 0.2%. In

computational algorithms, the additional complexity associated with encoding three

parameter correction factors is negligible, but for practical representation in design

guidelines the simplified single parameter formulae are preferred.

This analysis assumes an initial state of zero stress/strain in the substrate. The

potential exists for pre-existing stresses due to both external forces as well as prior

heating. Provided that the line of heating does not intersect with any prior plastic

region, both of these situations can be readily treated with only a minor modification

to the theory presented here. The formula for the total strain is adjusted to give

ϵT = ϵ0 − S F , where ϵ0 is the initial or pre-existing strain parallel to the heat source

trajectory.

The implicit formula for the first yield temperature (Equation (4.42)) is thus mod-
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ified by adding an additional term of ϵ∗0 = ϵ0/ϵY. A initial tensile strain field (ϵ0 > 0)

will increase the first yield temperature while an initial compressive stress field will

decrease it. A similar correction is not necessary for the second yield temperature

since the total strain terms cancel. Closed-form corrections for the first yield temper-

ature and tendon force as a function of Ok, at a given value of the parameter ϵ∗0, may

be obtained using the same techniques of blended asymptotics as shown in this work.

A general blended solution for an arbitrary value of both Ok and ϵ∗0 necessitates a

multi-dimensional blending technique which is still under development.

The methodology and engineering expressions presented here are applicable to a

wide range of thermal processes and geometries. The cases of edge heating of a thin,

flat section and cylinder are particularly relevant for processes such as wire arc ad-

ditive manufacturing, and it should be acknowledged that comprehensive treatment

of these applications may give rise to some minor additional complexity. In addition

to the potential for transient starting temperature and initial elastic strain as men-

tioned above, it may also be necessary to account for the influence of initial plastic

strain in the previously deposited material. Consideration of such cases in efficient

computational implementations is possible with minimal adjustment to the present

theory. Development of improved analytical formula to address these subtleties is the

subject of ongoing work.

4.13 Conclusions

For the first time, the effects of compliance are considered in general for processes

involving moving heat sources such additive manufacturing, welding, and laser pro-

cessing. The predictions require no calibrations or fitting to previous experiments

and are based only on the component geometry and tabulated material properties.

� Simple and accurate closed-form expressions are provided for the first yield

temperature (∆TY1, Equations (4.47) and (4.48)), the second yield tempera-
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ture (∆TY2, Equations (4.56) and (4.57)), and the tendon force (FTen, Equa-

tions (4.63) and (4.64)). These expressions are valid for general geometries and

materials beyond steels or flat plates.

� Rigorous mathematical treatment of the thermal-mechanical theory of resid-

ual stress using dimensional analysis, asymptotics, and blending demonstrates

that for fast moving heat sources (as is the near universal case) the effect of

compliance depends on a single dimensionless group, the Okerblom number

(Equation (4.43)), which captures all effects of material and geometry.

� The proposed expressions are validated by comparison to published literature

data for the plastic zone width (Figure 4.6) and tendon force (Figure 4.7) in butt

welded flat plates, T-sections, and circumferential joints. The results reduce

to particular cases to reproduce previous empirical expressions developed for

specific materials, such as structural steel.

� This fundamental work provides a foundation for future consideration of the

effects of consecutive thermal cycles, phase transformations, and pre-existing

residual stresses. Because of their closed form, these expressions are ideally

suited for use in metamodels, practical engineering calculations, as well as codes

and standards.
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4.15 Appendix: Calculation of Compliance

Centre heating of a thin flat section

The compliance for heating at the centreline of a thin flat section with thickness (d),

width (w), and cross-sectional area (Ac) is associated with the uniform axial strain

given by:

ϵax =
F

EAc

(4.74)

where F is a unit load at the line of heating.

The compliance (S) is therefore:

S =
ϵax
F

=
1

E

1

wd
(4.75)

Longitudinal heating of a general thin section geometry

The total strain for longitudinal heating of a general thin section can be written as

the sum of the axial strain and bending strain.

The axial strain is given by Equation (4.74). The bending strain is obtained as [73]:

ϵbend|y0 =
Mz

EIyy
=
Fz2

Iyy
(4.76)

where M = Fz is the bending moment produced by the unit load, z is the eccentric

distance between the heat source trajectory and the centre of gravity, and Iyy is the

area moment of inertia of the section.

The compliance (S) is therefore:

S =
ϵax + ϵbend|y0

F
=

1

E

(︃
1

Ac

+
z2

Iyy

)︃
(4.77)

This expression may be used for a variety of open or closed sections, provided
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that the geometry is sufficiently thin that the 2-D Rosenthal heat source model is

appropriate.

Edge heating of a thin flat section

The compliance for edge heating of a thin flat section with thickness (d) and width

(w) may be considered as a special case of the general thin section above, where the

moment of inertia is Iyy = w3d/12 and the eccentric distance between the load and

centre of gravity is z = w/2.

The compliance (S) is therefore:

S =
1

E

(︃
1

Ac

+
z2

Iyy

)︃
=

1

E

(︃
1

wd
+

3w2

w3d

)︃
=

1

E

4

wd
(4.78)

Edge heating of a thin cylinder

The compliance for edge (i.e., circumferential) heating of a thin cylinder with length

(L), radius (r), and thickness (d) is related to the cylinder stiffness parameter (β)

defined as:

β =

[︃
2(1− ν2)

r2d2

]︃0.25
(4.79)

A unit hoop load (F ) at the cylinder end produces an equivalent stress state to a

unit radial load (F/r). The resulting hoop strain at the end of the cylinder is thus

given by [88]:

ϵhoop|y0 =
2Fβ

Ed
(4.80)

The compliance (S) is therefore:

S =
ϵhoop|y0
F

=
1

E

2β

d
(4.81)

128



A similar expression may also be used to consider a circumferential joint between

two cylinders (or pipes) although the compliance will be exactly half of the value

shown above since the unit load is distributed between the two pipe halves.

Additional considerations for bending stresses developed at the location of the joint

may also be necessary, and will depend on whether it is a partial penetration (i.e.,

root weld) or single pass, full penetration joint.

4.16 Appendix: Higher Order Correction

Consideration of the tendon force as a distributed load necessitates a higher order

correction factor (fS) which is applied to the compliance itself. Analytical estimates

of this factor are obtained for two example geometries below which are particularly

relevant in welding and additive manufacturing applications.

A reasonable improvement over the concentrated force assumption is obtained by

considering a uniform distribution of the net residual plastic strain (i.e., the tendon

force) throughout the plastic zone size. In practice, the distribution of residual plastic

strain within the plastic zone is expected to be non-uniform with a higher value in the

region immediately adjacent to the line of heating as shown in Ref. [84]. The analytical

correction factors below may thus be expected to somewhat over compensate for the

distribution effect with the true compliance value somewhere between this estimate

and the value predicted for a concentrated load (i.e., fS = 1).

Edge heating of a thin flat section

Distribution of a unit load (F ) over the region 0 ≤ y ≤ ypl from the edge of a plate

with width (w) gives rise to a bending moment:

M = (w/2− ypl/2)F (4.82)
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The total strain at the edge of the plastic zone (z = w/2− ypl) is thus given by:

ϵbend|ypl =
Mz

EIyy
=

12(w/2− ypl/2)(w/2− ypl)F

Ew3d
(4.83)

The axial strain (ϵax) is unchanged by the distribution, so the compliance (S) is

then obtained as:

S =
1

Ewd
[1 + 3(1− ypl/w)(1− 2ypl/w)] (4.84)

The correction factor (fS) is obtained from dividing Equation (4.84) by Equa-

tion (4.78) to give:

fS(y
∗
pl) = 1 + (3/2 y∗pl)(y

∗
pl − 3/2) (4.85)

y∗pl =
ypl
w

(4.86)

Edge heating of a thin cylinder

The hoop strain due to a load (P ) acting at a distance (ε) from the end of a thin

cylinder of thickness (d) and radius (r) is given by [89]:

ϵhoop =
Pβr

2Ed
[θ(βy − βε) + ζ(βy − βε) + 2 θ(βy)θ(βε) + ψ(βy)ψ(βε)] (4.87)

where for convenience the following notation is used:

θ(x) = exp(−x) cos(x) (4.88)

ζ(x) = exp(−x) sin(x) (4.89)

ψ(x) = exp(−x) [cos(x)− sin(x)] (4.90)
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An expression for the hoop strain due to the distributed unit hoop load (F ) is

obtained by substituting Pr = (F/ypl)dε into Equation (4.87) and integrating across

0 ≤ ϵ ≤ ypl. The resulting hoop strain at the edge of the plastic zone (y = ypl) is

given by:

ϵhoop|ypl =
1

E

F

2ypld
[1 + 2θ(βypl)ζ(βypl)− exp(−2βypl)] (4.91)

The compliance is therefore:

S =
1

E

2β

d

1 + exp(−2βypl) [2 cos(βypl) sin(βypl)− 1]

4βypl
(4.92)

The correction factor (fS) is obtained from dividing Equation (4.92) by Equa-

tion (4.81) to give:

fS(y
∗
pl) =

1 + exp(−2y∗pl)
[︁
2 sin(y∗pl) cos(y

∗
pl)− 1

]︁
4y∗pl

(4.93)

y∗pl = βypl (4.94)
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Chapter 5

A Quantitative Index to Assess the
Influence of Joint Fit-Up on
Pipeline Weld Root Discontinuities

5.1 Introduction

Manual shielded metal arc welding (SMAW) remains one of the most common pro-

cesses used to weld field tie-in circumferential joints on oil and gas pipelines in North

America. During the deposition of the root weld pass, significant plastic strains are

produced in the hoop direction of the pipe as a result of the constrained thermal

expansion and shrinkage in the weld fusion zone and surrounding material. After the

material has cooled to a uniform temperature, this plastic strain results in a residual

tensile hoop stress which will tend to produce local bending across the weld joint. In

production welds, the presence of non-ideal joint geometry at the weld root has the

potential to produce more severe conditions for latent discontinuity formation than

those present during qualification.

In reference to high-low offset, both American (API 1104) [90] and Canadian (CSA

Z662) [6] pipeline welding and construction codes provide only a single recommended

tolerance regardless of values experienced during procedure qualification. These nom-

inal permissible values of high-low offset vary between the two codes, but both have

caveats that larger values are acceptable if the deviation is the result of manufactur-
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ing tolerances on pipe end dimensions. These tolerances present a significant concern

since allowable deviations on pipe radius or ovality (∆a) and wall thickness (∆d) can

combine to produce significant levels of high-low offset as shown in Figure 5.1.

Figure 5.1: High-low offset at weld root (δ) due to local pipe radius mismatch or
ovality (∆a) combined with local wall thickness mismatch (∆d).

There is limited fundamental work addressing the role of non-ideal joint geometry

in the susceptibility of girth welds to root pass discontinuities. Ref. [91] conducted

several numerical and experimental studies in the 1970s considering the effect of resid-

ual stresses and high-low offset on root pass integrity. This work was primarily focused

on understanding the interaction between these factors and the large lifting stresses

imposed by historical construction practices. In addition, the use of relatively early

numerical techniques for validation poses limitations on any attempt to generalize the

results obtained to modern pipeline materials, joint configurations, pipe dimensions,

and welding procedures. More recent work considering the influence of non-ideal ge-

ometry on the integrity of circumferential welds is heavily focused on the assessment

of completed welds under in-service loading conditions [92–94].

The goal of this study is to provide a general model applicable to the wide range

of different welding conditions present in North American pipeline construction. The

parameters considered include: pipe wall thickness, pipe diameter, weld bead width,

weld bead thickness, welding heat input, and high-low offset. This study focuses on
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the susceptibility to latent root discontinuities directly following the completion of

the root pass weld. The root pass typically combines a relatively low heat input

(i.e., high cooling rate), with a small weld pass and a cellulosic (i.e., high hydrogen)

welding consumable. These factors combine to produce the highest susceptibility to

formation of latent discontinuities, such as cracks, in this time period.

Fundamental concepts of heat transfer and solid mechanics are used to derive

an analytical expression for the angular distortion of a pipe end due to the plastic

strains produced by welding. Both the theoretical analysis and numerical validation

presented in this work assume that the processes of local plastic strain development

and the resulting overall structural distortion may be treated separately. In reality,

these processes occur simultaneously and there is the potential for the structural

distortion to influence the size of the plastic strain region. This effect is expected

to be small for pipes due to the relatively rigid geometry. The angular distortion

is applied to the weld root to obtain an estimate of the tensile strain on the inner

surface under ideal fit-up conditions. A stress concentration factor is introduced to

account for the presence of a high-low offset. This strain is treated as a numerical

index which can be computed prior to welding and requires input of only a small

number of welding parameters and fit-up dimensions which are readily attainable by

industrial practitioners under field conditions.
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5.2 List of Symbols

Symbol SI Unit Description

Roman Letters

a m Pipe radius

2c m Weld bead thickness

D Nm Pipe flexural rigidity

d m Pipe wall thickness

E Nm−2 Elastic modulus

FTen N Tendon force

fD 1 Correction factor for load distribution

fG 1 Correction factor for non-ideal fit-up

fM 1 Correction factor for weld bead moment

g m Weld bead width

Iroot 1 Root susceptibility index

Q′ Jm−1 Linear energy input (i.e., heat input)

r m Weld bead radius of curvature

T0 K Preheat temperature

TY1 K First yield temperature

TY2 K Second yield temperature

w′ rad Angular rotation at pipe end

ypl m Plastic zone size (i.e., half-width)

Greek Letters

α K−1 Coefficient of thermal expansion

β m−1 Geometric stiffness parameter

δ m High-low offset (i.e., non-ideal fit-up)

η 1 Heat transfer efficiency

Π1 1 Normalized plastic zone width

Π2 1 Normalized weld bead resistance parameter

Π3 1 Dimensionless fit-up parameter

ρc Jm−3K−1 Volumetric specific heat capacity

θ rad Total angular distortion of weld bead

σY Nm−2 Material yield strength
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5.3 Ideal Model

5.3.1 Tendon Force

Ref. [44] first proposed that the plastic strains produced during welding might be

substituted for an equivalent external load for the purposes of predicting the resulting

distortion. This equivalent external load is termed the “tendon force”. Building on

the work of Ref. [43], the authors have previously proposed the following general

expression for the welding tendon force [95]:

FTen =

√︃
2

πe
ln

(︃
∆TY2

∆TY1

)︃
Eαeff

ρc
Q′ (5.1)

where ∆TY1 and ∆TY2 are the first and second yield temperatures for the material,

E is the elastic modulus, αeff is the effective coefficient of thermal expansion (CTE),

ρc is the volumetric specific heat capacity, and Q′ is the welding heat input.

The first and second yield temperatures correspond to the temperature changes

necessary to produce plastic strain during heating and cooling respectively, under con-

ditions of uniaxial constraint. Exact values for these temperatures may be obtained

through experimental or numerical methods, but the simple analytical expressions

shown below provide reasonable accuracy for the purposes of estimation:

∆TY1 =
σY
Eᾱ

⃓⃓⃓
∆TY1+T0

(5.2)

∆TY2 =
1

ᾱ

⃓⃓⃓⃓
∆TY2+T0

(︃
σY
E

⃓⃓⃓
T0

+
σY
E

⃓⃓⃓
∆TY2+T0

)︃
(5.3)

where ᾱ|T denotes the mean CTE between T0 and T . For a material with a constant

CTE as well as a yield stress and elastic modulus which are either constant or linear

functions of temperature, the ratio of the two yield temperatures is equal to 2.

A key advantage of the tendon force approach over alternative concepts, such as
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the shrinkage force [64], is that it depends solely on material properties and welding

parameters and is approximately independent of the structural geometry. This ap-

proximation is known to be only exact for infinitely rigid geometries [43, 50] and a

generalized extension of the tendon force model to account for these so-called com-

pliance effects is under development.

The effective CTE is introduced to account for the temperature dependence of

relevant material properties. Considering a material with a temperature dependent

uniaxial yield strain (σY/E), the effective CTE may be calculated as:

αeff =
σY
E

⃓⃓⃓
T0

1

∆TY2 −∆TY1

(5.4)

With the exception of the welding heat input, all other variables in Equation (5.1)

are material properties. For application to a particular class of material, such as line

pipe, it is convenient to combine these material properties in a single non-dimensional

material parameter:

H =

√︃
2

πe
ln

(︃
∆TY2

∆TY1

)︃
Eαeff

ρc
(5.5)

The non-dimensional grouping 3Eα/ρc arises in the field of solid state physics and

is termed the Grüneisen parameter [69]. This parameter is known to be only a weak

function of temperature and typically has a value of ≈2 for metals [68]. Considering a

material with both a CTE and yield strain that are independent of temperature (i.e.,

αeff = α and ∆TY2/∆TY1 = 2) the parameter H has a theoretical value of ≈0.22.

To obtain a more precise value for H, specific to line pipe materials, the materials

software JMatPro [46] was used to determine the temperature dependence of all

relevant mechanical and thermal properties. The results are shown in Figure 5.2.

Ref. [96] provides experimental data for the high temperature strength of 4 differ-

ent acceptable compositions of CSA Gr.483 (X70) line pipe steel. An approximate
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Figure 5.2: Calculated properties for CSA Gr.483 (X70) pipe material from JMatPro.

curve for the temperature dependence of the yield stress was obtained for each com-

position by linear interpolation between the data points at test temperatures of 25◦C,

200◦C, and 350◦C. The four samples of pipe exhibit significant variation in the room

temperature yield strength (505-575 MPa) as well as the change in strength from

25–200◦C (−0.17 to +0.03 MPa/◦C) and from 200–350◦C (−0.63 to −0.13 MPa/◦C).

This observed change in strength is in approximate agreement with the limiting values

proposed in other literature; the DNV offshore submarine pipe design standard [97]

specifies a factor equivalent to −0.46 MPa/◦C for C-Mn steels within a temperature

range of 50–200◦C.

Table 5.1 contains estimates for the yield temperatures, effective CTE, and factor

H using the combined data from Ref. [96] and Figure 5.2. The calculation of H

uses a value for the elastic modulus at the preheat temperature (T0) and for the

volumetric specific heat capacity (ρc) at the first yield temperature (∆TY1 + T0).

Values were obtained for preheat temperatures ranging from ambient to 150◦C. A
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value ofH = 0.23 was found to result in an error of <10% throughout this range. This

value is in close agreement with the theoretical estimate as well as the approximate

value of H = 0.2 proposed in existing theoretical and experimental work on C-Mn

structural steels [44].

Table 5.1: Calculated values of the first yield temperature change ∆TY1 (Equa-
tion (5.2)) and non-dimensional coefficient H (Equation (5.5)) for CSA Gr.483 (X70)
pipe with a preheat of T0 = 25− 150◦C.

ID T0 [◦C] ∆TY1 [◦C] ∆TY2/∆TY1 Eαeff/ρc H

483A 25 190 1.77 0.874 0.242

50 185 1.79 0.863 0.244

100 174 1.84 0.838 0.246

150 164 1.88 0.810 0.248

483B 25 193 1.91 0.756 0.236

50 190 1.91 0.743 0.233

100 186 1.92 0.715 0.227

150 182 1.94 0.684 0.219

483C 25 211 1.82 0.807 0.234

50 207 1.84 0.794 0.233

100 199 1.87 0.767 0.232

150 191 1.90 0.737 0.229

483D 25 177 1.95 0.748 0.242

50 175 1.95 0.735 0.238

100 172 1.95 0.708 0.229

150 169 1.95 0.677 0.220
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It should be noted that the higher preheats result in values for TY1 and TY2 that

exceed the range of experimental data from Ref. [96]. Approximate values for the

yield stress at temperatures in excess of 350◦C were obtained from linear extrapolation

using the same rate of decrease as from 200–350◦C. If rather than remaining constant,

this rate is assumed to increase at higher temperatures, the resulting values of H are

closer to the room temperature values. If this rate were instead to decrease, the effect

of preheat on the value of H would be slightly magnified. Data on high temperature

derating factors for in-service pipelines provides some evidence to suggest that the

latter case is more likely [98]. The potential error due to extrapolation was bounded

by recalculating values for H at the highest preheat (T0 = 150◦C) and the limiting

case of a constant yield strength above 350◦. The average value of the first yield

temperature was unaffected (∆TY1 = 176◦C) while the average value of the second

yield temperature increased by 19◦C (from ∆TY2 = 339◦C to 358◦C). This resulted in

an increase to the average value of the yield temperature ratio (from 1.92 to 2.03) and

a decrease in the average value of Eαeff/ρc (from 0.727 to 0.649). The resulting effect

on the mean value of H was found to be minimal (≈3% decrease) therefore verifying

that the extrapolated values are acceptable. Ref. [44] also proposes a modifier for

preheat which is equivalent to a reduction factor of 0.95 for a preheat temperature

of T0 = 150◦C. Although there is some lack of clarity on the methodology used to

validate this modifier, the values of H at 150 ◦C in Table 5.1 are on average ≈95%

of the values at 25 ◦C. The similarity with the literature value further supports the

viability of the results obtained here.

In industrial practice, the welding heat input is typically calculated based on the

linear rate of electrical energy input according to the formula Q′ = V I/U where V

is the welding voltage, I is the welding current, and U is the welding travel speed.

Substituting this heat input directly into Equation (5.1) would produce erroneous

results as it does not account for the losses incurred during transfer of the electrical

energy in the arc to thermal energy in the plate. The standard method to account for
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these losses is to include an arc efficiency factor (η) which can range anywhere from

0.2–0.99 depending on the welding process. For the SMAW process, the arc efficiency

factor on steel varies from 0.75–0.85 with a mean value of 0.8 [99]. This results in a

final practical formula for pipeline welding of FTen = HηQ′ ≈ 0.18Q′.

5.3.2 Angular Distortion

Application of the tendon force concept to pipe geometry results in a circumferential

load that tends to produce radial displacement and angular rotation as shown in

Figure 5.3. The reactionary bending stresses accompanying this distortion have been

previously studied for full penetration, single pass welds on tubular joints [37, 55], as

well as for a multi-pass, partial penetration joint with dissimilar filler material [100].

In the former case, it is appropriate to treat the joint as a continuous cylinder with

a load applied at the midpoint, and in the latter, each half of the joint is considered

separately with the weld treated as a plastic hinge.

Figure 5.3: Deflection profile due to distributed radial load (P ) over a distance (yc)
from the pipe end.

Consideration of a partially complete (i.e., root pass only) pipeline girth weld

requires a modified mathematical formulation since this geometry lies between the
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two cases studied formerly. The angular rotation of a semi-infinite thin cylindrical

shell with a concentrated radial load (P ) at one end (y = 0) is given by the following

expression [88]:

w′(y) =
P

2β2D
exp(−βy) (cos βy + sin βy) (5.6)

The parameter D is the flexural rigidity of the pipe and has units of force × length.

The geometric parameter β has units of inverse length. These parameters are defined

as:

β4 =
3(1− ν2)

a2d2
and D =

Ed3

12(1− ν2)

where ν is Poisson’s ratio, a is the pipe radius, d is the pipe wall thickness, and E is

the elastic modulus.

The tendon force given in Equation (5.1) is transformed into an equivalent radial

load by dividing by the pipe diameter such that P = FTen/2a. Applying this load

independently to each end of the two joining pipe segments results in a symmetric

angular distortion of:

w′|y=0 =

√︁
3(1− ν2)

E

HηQ′

d2
(5.7)

The above formulae are valid if two conditions are met: (1) the pipe must have a

sufficient length to be treated as semi-infinite (L >5/β [88]); and (2) the ratio of pipe

radius/wall thickness must be sufficient to treat it as a thin shell (a/d >20 [101]).

5.3.3 Correction Factor for Tendon Force Distribution

Consideration of the tendon force as a concentrated line load is only suitable if the

plastic strain zone from welding is relatively small compared to the characteristic

length 1/β, which may not always be true for pipeline welding. It is necessary there-
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fore to apply a correction to Equation (5.7) which accounts for the distribution of the

tendon force over a critical length (yc) as shown in Figure 5.3. An expression for this

correction factor is obtained as [88]:

fD(Π1) =
exp(−Π1) sinΠ1

Π1

(5.8)

Π1 = βyc (5.9)

The plastic strain distribution used to derive the tendon force in Equation (5.1)

yields yc ≈ ln(2)ypl where the size of the plastic region (ypl) corresponds to the

maximum half-width of the first yield temperature isotherm (∆TY1). This dimension

may be approximated for a 2-D temperature field using the asymptotic Rosenthal

equation [40]:

ypl =
1√
2πe

ηQ′

d

1

ρc

1

∆TY1

(5.10)

Note that for CSA Gr.483 (X70) line pipe it is a reasonable to use
√
2πe ρc∆TY1 ≈

1/330 kJ/mm3.

The non-dimensional parameter Π1 may be interpreted as the normalized width

of the effective plastic zone. The 2-D Rosenthal model captures the primary factors

which control the size and shape of the thermal field produced under typical pipeline

welding conditions. Secondary effects, such as heat dissipation and the possibility for

an uneven distribution of heat between the pipe segments are not considered here,

but may be compensated with additional correction factors if necessary.

5.3.4 Correction Factor for Resistance of Weld Bead

Equation (5.7) assumes each of the two pipe segments are free to deform indepen-

dently. In reality, the presence of the weld metal joining these two components will

influence the distortion at the pipe end due to reactionary bending stresses and strains
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which develop in the weld metal.

Figure 5.4 illustrates the relevant geometry and resulting strain distribution from

treatment of the root pass as a 1-D beam. This simplified representation is well

suited to identification of the parametric dependence for stress and strain developed

in the weld metal. The bending stress is proportional to the ratio of weld bead

thickness/width (c/g) and the total angular distortion of the weld bead (θ = 2w′|y=0).

Figure 5.4: Geometry and bending stress distribution resulting from 1-D beam ap-
proximation of weld root pass.

The maximum tensile bending strain is expected to occur at the inside surface of

the weld root with a magnitude of σb,max/E = (θ/2)(c/g). This estimate requires

correction for the 2-D weld bead geometry as well as the presence of a bevel at the

pipe end. This is done by introducing the empirical fitting parameters m and n so

that the relationship between the root strain and deflection may be fit to a general

power law of the form:

σb,max

E
=
θ

2
m

(︃
c

g

)︃n

(5.11)

Assuming bending stress is linearly distributed over the thickness, the bending
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moment associated with this maximum stress level is given by:

M =
θEc2

3
m

(︃
c

g

)︃n

(5.12)

Equation (5.12) is substituted into the expression given by Ref. [88] for a moment

applied to the end of a semi-infinite cylinder to obtain a correction factor for the

effect of the weld moment:

fM(Π2) =
1

1 + Π2

(5.13)

Π2 =
8(1− ν2)

βd

(︂ c
d

)︂2

m

(︃
c

g

)︃n

(5.14)

Values ofm = 0.625 and n = 0.5 were selected based on the results of the numerical

validation performed in the following section. The non-dimensional parameter Π2 may

be interpreted as the ratio of the rotational bending stiffness of the weld bead to the

rotational bending stiffness of the pipe wall.

Under certain conditions, the stresses predicted by Equation (5.11) may produce

yielding in the weld material. In this case, the bending stress will not follow a linear

distribution through the thickness, but will be truncated at the maximum allowable

value limited by yield. Significant hoop stresses may also be present and the resulting

biaxial stress state must be considered to identify the yield criterion. The “true”

correction factor could therefore be somewhat higher than the value predicted by

Equation (5.13). The limiting case of fM = 1 corresponds to a condition in which

yielding limits the reaction moment to a value that it is negligible compared to the

tendon force. This is the case for the low melting point dissimilar weld metal studied

by Ref. [100] in which the weld was assumed to behave as a plastic hinge.
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5.3.5 Susceptibility Index

Including the effects of the above correction factors, the total angular distortion of

the weld bead (θ = 2w′|y=0) is:

θ =
2
√︁

3(1− ν2)

E

HηQ′

d2
fD fM (5.15)

It is expected that the propensity for latent discontinuity formation is related to

the magnitude of the strain at the weld root (Equation (5.11)). Substituting in

Equation (5.15) the weld root strain is therefore expressed as the susceptibility index:

Iroot =
HηQ′c0.5

Ed2g0.5
fD fM (5.16)

Note that the coefficient from Equation (5.15) has been eliminated by substituting

in the Poisson’s ratio for steel (ν = 0.3) which gives 2
√︁

3(1− ν2) (0.625/2) ≈ 1. A

higher index value corresponds to greater strain and indicates a weld that is more

susceptible to latent discontinuities.

5.3.6 Numerical Validation

Validation of the susceptibility index (Equation (5.16)) and related correction factors

(Equation (5.8) and Equation (5.13)) is performed using an axisymmetric numerical

simulation in COMSOL Multiphysics [102]. Validation of the model relating the

tendon force (Equation (5.1)) to the welding parameters is presented elsewhere [44,

50] and is beyond the scope of this work. All simulations in this study employ a static

structural analysis with constant material properties. The pipe is assumed to be a

homogeneous, isotropic, linear elastic material with an elastic modulus of E = 2×105

MPa and Poisson’s ratio of ν = 0.3. The tendon force is applied as a distributed

radial load to the pipe body with a magnitude according to Equation (5.1). These

simulations use the theoretical distribution of plastic strain proposed in Ref. [43],
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which is constant from y = 0 to ypl/2 and varies inversely with distance between

ypl/2 and ypl, where the plastic zone width (ypl) is computed using Equation (5.10).

Appropriate ranges for each of the relevant welding parameters and geometric vari-

ables were selected based on typical modern North American construction practices

as shown in Table 5.2. The simulations were performed for selected combinations of

wall thickness (d = {6.35, 12.7, 15.9} mm), pipe diameter (2a = {0.51, 0.91, 1.2} m),

heat input (Q′ = {0.60, 1.2, 1.8} kJ/mm), weld thickness (2c = {1.2, 3.2} mm), and

weld width/thickness ratios of (g/c = {2, 4}). The weld width/thickness ratio is

parametrized rather than varying g directly to ensure all tests used realistic weld

shapes. A pipe wall thickness in excess of 15.9 mm is possible for larger diameter

pipes. This analysis is applicable to wall thickness beyond the range used for valida-

tion provided the thin shell condition (a/d > 20) is satisfied.

The correction factor for the distribution of the tendon force is validated by plotting

the results of the numerical simulations against the normalized plastic zone width

Π1 in Figure 5.5. The independent parameter Π1 has a functional dependence on

Q′ a−0.5 d−1.5. For the parameter range tested, the lowest value for this correction

factor was ≈0.14. The two strongest dependencies (heat input, wall thickness) also

correspond to variables which have significant allowable variation per the typical

industrial practice for development of weld procedures.

The correction factor for the weld moment is validated by plotting the results of the

numerical simulations against the normalized weld bead resistance Π2 in Figure 5.6.

The best fit was obtained for a value of the empirical factor of n = 0.5 and therefore

the independent parameter Π2 has a functional dependence on d−2.5 g−0.5 c2.5 a0.5.

The lowest value for this correction factor (≈0.4) is greater than for the distribution

correction factor but overall the significance of fD and fM are comparable. The

pipe wall thickness (d) and pipe radius (a) appear in both parameters Π1 and Π2.

Considering together the correction factors fD and fM, the influence of pipe wall

thickness is magnified while the effect of pipe radius is lessened.
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Figure 5.5: Numerical validation of the correction factor on the susceptibility index
to account for distribution of the tendon force over a length (yc) from the pipe end.
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Figure 5.6: Numerical validation of the correction factor on the susceptibility index
to account for the effect of a reactionary moment in the weld bead.
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Table 5.2: Parameter ranges for root pass welding with SMAW on CSA Gr.483 (X70)
pipe material.

Parameter Typical Minimum Maximum

Pipe Diameter, 2a
0.91 m 0.51 m 1.2 m

(36 in.) (20 in.) (48 in.)

Wall Thickness, d
12.7 mm 6.35 mm 15.9 mm

(0.500 in.) (0.250 in.) (0.625 in.)

Heat Input, Q′ 1.2 kJ/mm 0.60 kJ/mm 1.8 kJ/mm

(30 kJ/in.) (15 kJ/in.) (45 kJ/in.)

Weld Thickness, 2c
2.4 mm 1.2 mm 3.2 mm

(3/32 in.) (3/64 in.) (1/8 in.)

Weld Width, g
3.2 mm 1.2 mm 6.4 mm

(1/8 in.) (3/64 in.) (1/4 in.)

The maximum deviation from the predicted correction factors is observed to be

on the order of ≈10% with a significant negative bias (i.e., overcorrection). These

deviations are primarily associated with values for the ratio of pipe radius to wall

thickness which fail to satisfy the thin shell criterion (a/d > 20). Under such condi-

tions the pipe will be more resistant to deformation than expected resulting in less

angular distortion and higher apparent correction factors.
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5.4 Non-Ideal Geometry

5.4.1 Weld Profile

The exact profile of the root weld geometry may be influenced by a variety of factors

including variations in the bevel profile, welding technique, and even the location

around the pipe diameter. This generalized treatment of the effect of non-ideal joint

fit-up necessitates that some assumptions be made regarding the exact profile of the

weld root. Figure 5.7 illustrates the simplified geometry that is intended to capture

the most important characteristics relevant to consideration of high-low offset.

Figure 5.7: Key parameters for determining weld geometry in joint fit-up with high-
low offset.

5.4.2 Stress Concentration Factor

The effect of high-low offset is addressed using a stress/strain concentration factor.

Tabulated values for stress concentration factors exist for a variety of generic geomet-

ric configurations and loading conditions. To estimate the stress concentration factor

due to the presence of high-low offset, the weld root geometry is considered analogous

to a rectangular curved beam. The corresponding stress concentration factor is shown

in Figure 5.8.

This comparison relies on the computation of a radius of curvature (r) associated
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Figure 5.8: Stress concentration factor for a curved beam in bending. Source: Pilkey
1997, chart 5.14, p. 425 [103]. Reproduced with permission of John Wiley & Sons Inc.

with the mid-line of the weld bead. The relationship between this radius and the

weld bead geometry is given by:

r = c+ δ

√︁
1 + (g/δ)2

2 sin(ϕ/2)

ϕ = π − 2 tan−1(g/δ)

g/δ ≥ 1 (5.17)

Note that if Equation (5.17) is normalized by the weld thickness, the ratio r/c

may be expressed as a function of only the two parameters g/δ and c/δ. These

parameters are the ratios of the weld bead width and thickness to high-low offset.

Equation (5.17) is valid within the restricted domain g/δ ≥ 1. This should not be

interpreted as a limit on high-low offset, but rather a limit on the bead width so it

is not less than the offset. This condition is appropriate as a larger high-low offset

will typically necessitate a larger root gap and consequently a larger weld width to

achieve adequate penetration.
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An analytical expression for the stress concentration factor is obtained by fitting

a power law of the form 1 + ax−b to the data reported by Ref. [103] for values of

r/c > 2. The best fit coefficients are obtained as a = 1.296 and b = 1.362. The

limited domain for fitting was selected to provide the optimal fit within the range

of interest. Referring to Equation (5.17), values of r/c < 2 correspond to relatively

small values of the ratio g/δ coupled with relatively large values of the ratio c/δ.

Given that the weld thickness and weld width are typically similar in magnitude, the

range r/c > 2 then encompasses most conditions of practical relevance.

The stress concentration factor (Kt ≥ 1) can be converted into an equivalent

correction factor (0 < fG < 1) by inverting the expression such that fG = 1/Kt. The

correction factor for non-ideal geometry is therefore:

fG(Π3) =
1

1 + 1.296Π1.362
3

(5.18)

Π3 = c/r (5.19)

The independent parameter Π3 is the ratio of the weld bead thickness to the

effective radius of curvature (Equation (5.17)).

5.4.3 Modified Susceptibility Index

The susceptibility index proposed for ideal geometry (Equation (5.16)) is adapted to

consider high-low offset by introducing the non-ideal geometry correction factor (fG):

Iroot =
HηQ′c0.5

Ed2g0.5
fD fM
fG

(5.20)

where for CSA Gr.483 (X70) line pipe material Hη ≈ 0.18 and E ≈ 2 × 105 MPa

(based on Figure 5.2 at typical preheat temperature).

Note that the non-ideal geometry correction factor (Equation (5.18)) depends on

only the parameter Π3 = c/r. Since this parameter is a unique function of the
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normalized weld bead width (g/δ) and thickness (c/δ), the influence of the high-low

offset may not be separated from the bead geometry. A single acceptable tolerance

for δ will result in dramatically different stress concentration factors depending on

the size of the weld bead. This is a key distinction from the existing methodologies

for assessing high-low offset which specify a limiting value irrespective of the welding

procedure and fit-up.

5.4.4 Numerical Validation

Validation of the proposed non-ideal geometry correction factor was performed using

a 2-D plane stress analysis with COMSOL Multiphysics. To isolate the effect of

non-ideal geometry, these simulations only considered a reduced portion of the weld

cross-section in the immediate vicinity of the weld joint. A specified angular distortion

(θ) was applied to the cross-section and the resulting maximum strain on the bottom

surface of the weld root was recorded. Preliminary testing verified that the results

were independent of pipe wall thickness and angular distortion so constant values of

d = 12.7 mm and θ = 0.01 rad were used.

The geometry was varied parametrically to consider the same combinations of weld

bead thickness (2c) and width/thickness ratios (g/c) that were used for the previous

numerical validation. Each combination of parameters was tested with values of high-

low offset which resulted in the ratios δ/c = {0.1, 0.25, 0.5, 0.75, 1, 2}. The correction

factor was computed for each case as the magnitude of the maximum strain divided

by the maximum strain with the same geometry and a negligible level of high-low

offset (i.e., δ/c = 0.01) .

The high-low offset was parametrized relative to the weld thickness to test the

widest range of possible values for δ while maintaining a weld geometry which is

representative of reality. These ranges also ensured that for all tests the ratio δ/g

was within the allowable domain of Equation (5.18) (i.e., δ/g ≤ 1). The results of

the parametric study are shown in Figure 5.9.
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Figure 5.9: Numerical validation of the proposed correction factor on the susceptibil-
ity index to account for the effect of high-low offset.

In all cases, good agreement was obtained between the numerical simulations and

the theoretical curve given by Equation (5.18). As may be expected, the highest

values for the correction factor (i.e., fG ≈ 1) were associated with decreased high-low

offset. Note that some values of the high-low offset above the recommended limit in

CSA Z662 of 1.6 mm (indicated in Figure 5.9 with solid markers) resulted in a larger

correction factor (i.e., less susceptible weld) than tests with a high-low offset below the

recommended limit. Equation (5.17) shows that the effect of the non-ideal geometry

depends on the ratio of high-low offset to the weld bead width and height rather than

the value of the high-low offset itself. The results of these simulations highlight the

utility of the proposed susceptibility index compared to a single permissible limit for

the high-low offset.
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5.5 Case Study

The root susceptibility index (Equation (5.20)) provides a quantitative measure of the

propensity for latent discontinuities in a given welding procedure and joint geometry.

Comparison of this index to a threshold value may be used as a go/no-go assessment

prior to welding, or as a tool for practitioners to rank and compare different welding

practices.

Figure 5.10 presents two procedures on a pipe with a diameter of 0.91 m and a

wall thickness of 12.7 mm. Table 5.3 contains values of the susceptibility index for

these procedures with varying amounts of high-low offset.

(a)

(b)

Figure 5.10: Welding variables and geometry for (a) a procedure with a higher heat
input and a thinner, wider weld bead; and (b) a procedure with a lower heat input
and a thicker, narrower weld bead.
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Table 5.3: Comparison of latent discontinuity susceptibility for two different SMAW
root pass weld procedures on 36 in. (0.91 m) diameter, CSA Gr.483 (X70) pipe
material with varying levels of high-low offset.

Procedure A Procedure B

Π1 / fD 0.44 / 0.63 0.29 / 0.74

Π2 / fM 0.09 / 0.91 0.24 / 0.81

δ [mm] 0 1.6 3.2 0 1.6 3.2

Π3 – 0.13 0.19 – 0.29 0.33

fG 1 0.93 0.88 1 0.81 0.78

Iroot [mm/m] 2.9 3.1 3.3 2.8 3.5 3.6

With negligible high-low offset (δ = 0 mm), the value of the index is larger for

procedure A than procedure B indicating that procedure A has a higher probability

of latent discontinuity formation. However, with moderate (δ = 1.6 mm) or severe

(δ = 3.2 mm) amounts of high-low offset, the index for procedure A is observed to

be smaller than procedure B. Without an experimentally established threshold value,

neither of these indices should be considered unacceptable. It is however demon-

strated that procedure B is more sensitive to high-low offset than procedure A. In

addition, the qualification weld for procedure B, if made with ideal fit-up, may not

give a good indication of the latent discontinuity susceptibility of field welds that

experience significant high-low offset.

Incorporation of this index in a simple app or software tool could be used to help

facilitate rapid computation in the field. Acceptable ranges for the necessary input

data (i.e., heat input, ideal joint fit-up, and bead geometry) could be pre-loaded for a

given joint. In addition to a maximum allowable high-low offset, this would provide

field engineers and quality inspectors with recommended limits on the procedural

ranges to compensate for any larger high-low offset measured in the field.
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Consider a hypothetical situation where it has been verified that an index of Iroot ≤

3.1 will lead to an acceptably low occurrence of latent discontinuities. For procedure

B, it may be readily calculated that the high-low offset should be kept to a maximum

of 0.6 mm. Alternatively, limiting the heat input of procedure B to 0.96 kJ/mm

will result in acceptable values of the susceptibility index with a high-low offset up

to 3.2 mm. The susceptibility index provides practitioners with the flexibility to

compute adjustments to their procedures or set limits on fit-up geometry depending

on the requirements of a specific job.

5.6 Discussion

To arrive at a practical index, a number of simplifying assumptions were necessary.

The mechanical restraint of the root pass was considered as a 1-D beam; however,

for the typical width/thickness ratio of root passes, a 2-D formulation might be more

appropriate. Equation (5.11) aims to capture empirically (based on computer simu-

lations) 2-D implications of actual roots. This correction has so far been tested on

root passes with a width/thickness (g/c) ratio between 2 and 4.

The joint preparation bevel has mechanical and thermal implications. In formula-

tion of the index, the pipe wall thickness was considered constant, allowing the use

of existing solutions for the thermal and solid mechanics problems. The computer

simulations considered a bevel of 60 deg, as is typical in practice. The thermal effect

of the bevel is expected to be secondary, as the width of the plastic zone is typically

larger than the size of the bevel. Welds done at relatively small heat input for a given

wall thickness may show larger effects, with Equation (5.10) under predicting the size

of the plastic zone. Less material at the bevel would create a smaller tendon force,

causing a systematic error in the opposite (compensating) direction of the thermal

error.

The index is based on stress concentration at the root of the weld due to high-

low offset assuming linear elastic behaviour. Deviation from the simplified geometry
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shown in Figure 5.7 may introduce additional local notching effects due to undercut

at the weld root. These effects may be present in all welds, including those with

minimal high-low offset. The presence of local stress concentrators may be considered

using superposition but is complicated by the likelihood of plasticity at the weld root.

Ongoing research aims to extend the proposed criterion to include strain concentration

in elastic-plastic behaviour. This extension will allow the proper treatment of the weld

toe profile at the root, which cannot be incorporated within the current framework.

The proposed index provides a way to rank susceptibility to latent discontinuities,

but the determination of a concrete threshold for rejection of a weld requires a large

effort of controlled full-scale experiments and data from field welding. As cold cracking

and rejection are uncommon, a large number of tests are necessary to propose a

statistically significant threshold. Validation of the susceptibility index for a given

joint necessitates knowledge of both the weld procedure and fit-up. Application of the

index retrospectively has not been possible because rejected field welds are discarded

and not all necessary parameters are recorded. Modern integrity and data retention

practices should enable the use of future field data to help determine a threshold.

5.7 Conclusions

A study of root pass susceptibility to latent discontinuity formation during tie-in

welding of pipelines was carried out based on the fundamental theories of heat transfer

and solid mechanics. The conclusions are as follows:

� An index is proposed to quantify the susceptibility to latent root discontinuities

under conditions of high-low offset. This index is displayed in Equation (5.20)

and includes the effect of interactions between bending stresses due to welding

plastic strains and a stress concentration at the root. Higher values of this index

correspond to a more severe risk of latent discontinuity formation.
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� The key variables needed to evaluate the index are the welding heat input, the

thickness and width of the root pass, and the pipe wall thickness. In general,

the severity of the index is reduced for procedures with decreased heat input,

increased wall thickness, and a higher ratio of weld width/thickness.

� The effect of high-low offset is considered with a correction factor shown in Equa-

tion (5.18) that depends on the ratio of high-low offset to both the weld bead

width and thickness. Correction factors are also presented in Equation (5.8)

and Equation (5.13) to account for the secondary effects of the tendon force

distribution and the weld bead stiffness.

� Manual welding processes contain an element of operator dependence which

should not be ignored. Changes in welding technique in response to non-ideal

geometry may result in variation in the weld bead profile and heat input. The

effects of these changes may be readily anticipated using the theory presented

here.

� The index proposed has been validated against numerical simulations, and is

ready to be tested against field data for further validation under industrial

conditions, and to determine a practical threshold of acceptance.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

A general analytical model is presented for prediction of residual stress and distortion

produced due to thermal manufacturing processes. The complex interactions between

various thermal-mechanical phenomena are distilled into simple engineering equations

suitable for use in procedure development and process design.

The OMS (Order of Magnitude Scaling) technique was used to produce a dimen-

sionless formulation of the thermal stress and strain fields around a moving point

heat source. The 2-D Rosenthal model provides analytical expressions for charac-

teristic values of the temperature field. Typical heat source parameters produce a

dominant balance that corresponds to uniaxial constraint in the direction of heat

source movement. Plasticity effects are incorporated into the linear elastic theory by

consideration of plastic strain development when the instantaneous thermal strain

exceeds the elastic yield point.

For the first time, a simple, accurate, and general methodology is presented for

computing the residual net plastic strain and the associated residual stress distribu-

tion. This analytical theory has two key advantages over competing experimental

and numerical approaches: (1) there is a clear understanding of the relationship and

dependency between input parameters and output characteristic values; and (2) it

may be readily adapted to consider the effect of changing heat source properties, new
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materials, or variations of any other essential input parameters.

Formal definitions are provided and general formulae are derived for three key

attributes of the residual plastic strain distribution: the first yield temperature, the

second yield temperature, and the tendon force. The yield temperatures are material

properties which describe the respective boundaries of the plastic strain zone during

heating and cooling. The aspect ratio of the first yield isotherm is proposed as a

novel criterion to confirm the suitability of the uniaxial stress model. The tendon

force is proportional to the integral of the residual plastic strain and characterizes the

driving force for reaction stresses and geometric distortion. This value is a function

of the linear energy input (i.e., heat input), the dimensionless Grüneisen material

parameter, and the ratio of the two yield temperatures. In the asymptotic case, a

universal factor of ˆ︁H ≈ 0.23 is found to approximate the relationship between the

heat input and tendon force for all metals.

General engineering equations for each characteristic value are presented as the

combination of a simple closed-form expression, based on idealized treatment, and

correction factors to account for additional complexity. The asymptotic ideal case

corresponds to instantaneous line heating of an infinite thin section with constant (i.e.,

temperature independent) material properties. Secondary phenomena considered ex-

pressly in this work include: incomplete thermal constraint, temperature dependent

thermal and mechanical properties, and limited rigidity of finite section geometry.

Slower moving, lower power heat sources produce shallower thermal gradients

which are not sufficient to establish the complete uniaxial constraint considered for

the asymptotic case. An approximate fit is provided to correct for this effect as a

function of the aspect ratio of the first yield isotherm. Explicit, exact correction

factors for temperature dependent material behaviour are derived based on rigorous

mathematical treatment without the need for empirical correlations. The variation

of all relevant thermal and mechanical properties is captured accurately using effec-

tive values which relate to four independent dimensionless groups. The concept of
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compliance is introduced as a measure of the tendency for less rigid sections to consid-

erably deform in reaction to an applied force. Correction factors for the compliance

effect are found to be fundamentally dependent on a novel dimensionless parame-

ter, the Okerblom number (Ok). For symmetric flat plate geometry, this parameter

has a physical interpretation as the normalized equilibrium temperature rise. For all

other geometries, this parameter may be calculated as the product of the equilibrium

temperature rise and the normalized compliance.

Verification of the theory and assumptions in this work, as well as validation of the

results, were carried out at each stage. Comparisons were made with industrial data,

experimental results from literature, and simulations performed with state-of-the-

art computational weld mechanics software tools. In almost all cases, the deviation

between the results and model predictions did not exceed the typical limits for mea-

surement precision (±10%) in industrial practice. To demonstrate their practical

utility, the new engineering formulae were applied to several case studies including

estimation of the plastic zone size, prediction of distortion during welded fabrication,

and design of procedures to achieve specified manufacturing tolerances.

A detailed investigation was also undertaken which applies the proposed method-

ology to the concrete and immediate industrial concern of non-ideal fit-up in circum-

ferential pipeline joints. A novel index is proposed as a quantitative criterion for

acceptance of high-low offset, ranking the susceptibility to latent discontinuities as

a function of variables available to practitioners during field welding. The estima-

tions of this index both broadly agree with institutional knowledge and also bring a

generality that addresses the uncertainty and limitations of existing guidance.

The analytical procedure, equations, and results presented here represent a pow-

erful and much needed tool to address critical issues in a wide range of industries,

including the rapidly developing field of additive manufacturing. The fundamental

nature of this work produces a depth of understanding that is unmatched by con-

ventional empirical based approaches. This understanding is embodied in simple,
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general, and accurate engineering equations that are ideally suited for incorporation

into engineering design guidelines, or codes and standards.

6.2 Future Work

The theory presented here provides a fundamental framework for consideration of

additional applications and complexity in the future. In particular, the following

potential opportunities for expansion upon this work are identified:

� Incorporate the general expressions for tendon force and compliance correction

into a linear FEA package; apply this methodology to problems of weld sequence

optimization and distortion mitigation.

� Explore the distribution of thermal stress around slow moving heat sources;

replace empirical fit for low aspect ratios with blended asymptotic expression.

� Apply the tendon force model to 3-D temperature fields relevant for cladding

or deposition of initial passes in additive manufacturing on a thick substrate.

� Develop an explicit criterion for consideration of phase transformations in high

strength alloys; derive additional correction factors to compensate for these

effects when necessary.

� Extend the compliance concept to include the influence of pre-existing strain

relevant for additive manufacturing and multi-pass weld procedures.

� Perform full-scale experimental trials to validate the proposed pipeline root

discontinuity susceptibility index.
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parameter: Fundamentals and applications to high pressure physics and geo-
physics,” Phys. Earth Planet. Inter., vol. 286, no. 1, pp. 42–68, Jan. 2019. doi:
10.1016/j.pepi.2018.10.006.
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Appendix A: Experimental Data

A.1 Plastic Zone and Tendon Force in Flat Plates

Table A.1: Correction factors for plastic zone and tendon force for centre weld on
flat plate; data after Ref. [20], given α = 1.2× 10−5 K−1, ϵY,0 = 1.57× 10−3, σY,w =

460 MPa, σY,b = 330 MPa, ˆ︁ypl ≈ 50 mm, ˆ︁FTen ≈ 158 kN, S∗ = 1.

ID Teq [◦C] Ok = T ∗
eq ypl [mm] fY1 FTen [kN] fTen

01 30 0.229 47.3 0.946 164 1.04
02 50 0.382 45.0 0.900 167 1.06
03 100 0.764 39.1 0.781 156 0.984
04 150 1.145 33.4 0.668 146 0.919
05 200 1.527 28.8 0.577 139 0.878

Table A.2: Correction factor for tendon force in aluminum for centre weld on flat
plate (d = 10 mm, l = 1500 mm, w = 200 − 1500 mm); data after Ref. [50], given
α = 2.4× 10−5 K−1, ϵY,0 = 2.0× 10−3, E ≈ 75 GPa, ρc = 0.0022 Jmm−3K−1.

ID
Q′ = 0.60 [kJ/mm] Q′ = 1.2 [kJ/mm]

T ∗
eq fTen T ∗

eq fTen

01 0.20 0.99 0.41 1.00
02 0.25 0.99 0.50 0.99
03 0.34 0.99 0.67 1.00
04 0.50 1.00 1.01 1.00
05 0.67 0.99 1.35 0.94
06 1.01 0.95 2.02 0.84
07 1.51 0.91 3.03 0.45
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Table A.3: Correction factor for tendon force in lower strength structural steel for
centre weld on flat plate (d = 10 mm, l = 1500 mm, w = 200 − 1500 mm); data
after Ref. [50], given α = 1.2 × 10−5 K−1, ϵY,0 = 2.0 × 10−3, E ≈ 200 GPa, ρc =
0.0040 Jmm−3K−1.

ID
Q′ = 0.60 [kJ/mm] Q′ = 1.2 [kJ/mm]

T ∗
eq fTen T ∗

eq fTen

01 0.06 0.99 0.12 1.01
02 0.07 0.99 0.15 1.01
03 0.10 0.99 0.20 1.01
04 0.15 0.98 0.30 1.01
05 0.20 0.98 0.40 1.01
06 0.30 0.99 0.60 1.01
07 0.45 1.00 0.90 1.00

Table A.4: Correction factor for tendon force in higher strength structural steel for
centre weld on flat plate (d = 10 mm, l = 1500 mm, width w = 200 − 1500 mm);
data after Ref. [50], given α = 1.2 × 10−5 K−1, ϵY,0 = 4.0 × 10−3, E ≈ 200 GPa,
ρc = 0.0040 Jmm−3K−1.

ID
Q′ = 0.60 [kJ/mm] Q′ = 1.2 [kJ/mm]

T ∗
eq fTen T ∗

eq fTen

01 0.03 1.01 0.07 1.01
02 0.04 1.01 0.08 1.01
03 0.05 1.00 0.10 1.01
04 0.07 1.00 0.15 1.00
05 0.10 0.99 0.20 1.00
06 0.15 1.00 0.30 1.00
07 0.22 1.01 0.45 1.00
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Table A.5: Correction factor for tendon force in austenitic stainless steel for centre
weld on flat plate (d = 10 mm, l = 1500 mm, width w = 200 − 1500 mm); data
after Ref. [50], given α = 1.8 × 10−5 K−1, ϵY,0 = 1.4 × 10−3, E ≈ 200 GPa, ρc =
0.0040 Jmm−3K−1.

ID
Q′ = 0.60 [kJ/mm] Q′ = 1.2 [kJ/mm]

T ∗
eq fTen T ∗

eq fTen

01 0.13 0.99 0.26 0.99
02 0.16 0.99 0.32 1.00
03 0.21 1.00 0.43 1.00
04 0.32 0.99 0.64 0.99
05 0.43 1.00 0.86 0.98
06 0.64 0.99 1.28 0.94
07 0.96 0.97 1.93 0.86
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A.2 Plastic Zone and Tendon Force in T-Sections

Table A.6: Geometry of T-sections fabricated from two plates with thickness (d),
vertical plate height (h), horizontal plate width (w), and distance (z) between mid-
thickness of horizontal plate and section centre of gravity; data after Ref. [21].

ID d [mm] h [mm] w [mm] z [mm] Ac [mm2] Iyy [mm4] S∗

01 12 800 600 232 1.68×104 1.19×109 1.76
02 12 1000 400 361 1.68×104 1.88×109 2.17
03 12 500 300 160 9.60×103 2.73×108 1.90
04 12 220 200 61 5.04×103 2.76×107 1.67
05 12 300 120 111 5.04×103 5.21×107 2.20
06 12 190 100 66 3.48×103 1.49×107 2.02
07 12 90 120 22 2.52×103 2.35×106 1.51
08 12 130 80 44 2.52×103 5.20×106 1.94
09 12 100 70 33 2.04×103 2.56×106 1.86
10 12 250 200 73 5.40×103 3.85×107 1.74
11 12 300 150 104 5.40×103 5.62×107 2.04

Table A.7: Correction factors for plastic zone size and tendon force; data after
Ref. [21], given α = 1.2×10−5 K−1, E = 210 GPa, σY,w = 520 MPa, σY,b = 330 MPa,ˆ︁ypl = 50 mm, ˆ︁FTen = 499 kN.

ID Teq [◦C] T ∗
eq S∗ Ok ypl [mm] fY1 FTen [kN] fTen

01 30 0.229 1.76 0.403 46.6 0.932 – –
02 30 0.229 2.17 0.497 46.3 0.926 – –
03 50 0.382 1.90 0.726 40.2 0.804 – –
04 100 0.764 1.67 1.28 34.1 0.682 – –
05 100 0.764 2.20 1.68 28.7 0.574 – –
06 150 1.145 2.02 2.32 23.0 0.460 412 0.824
07 200 1.527 1.51 2.31 24.2 0.484 – –
08 200 1.527 1.94 2.96 19.0 0.380 378 0.756
09 250 1.909 1.86 3.56 20.0 0.400 – –
10 90 0.687 1.74 1.20 35.0 0.700 – –
11 90 0.687 2.04 1.40 33.0 0.660 – –
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A.3 Plastic Zone in Circumferential Joints

Table A.8: Geometry and compliance for circumferential joint between two thin cylin-
ders; data after Ref. [87], given ν = 0.3.

ID d [mm] r [mm] L [mm] β S∗

01 6.0 487 1524 0.024 36
02 8.2 104 292 0.044 13
03 4.5 68 349 0.074 26
04 4.5 106 218 0.059 13
05 4.5 106 328 0.059 19
06 4.5 106 371 0.059 22
07 8.2 104 292 0.044 13
08 8.2 104 292 0.044 13
09 8.2 104 584 0.044 26
10 4.5 80 380 0.068 26
11 4.5 80 190 0.068 13
12 8.2 104 292 0.044 13

Table A.9: Correction factor for plastic zone size; data after Ref. [87], given α =
1.2× 10−5, ϵY ≈ 1.81× 10−3 (σY = 380 MPa, E = 210 GPa), ∆TY1 ≈ ϵY/α = 151 ◦C.

ID Teq [◦C] T ∗
eq fS Ok ˆ︁ypl [mm] ypl [mm] fY1

01 14 0.093 0.52 1.8 34.2 18.1 0.53
02 50 0.332 0.43 1.8 23.4 12.7 0.54
03 50 0.332 0.19 1.6 28.0 17.3 0.62
04 77 0.511 0.31 2.0 26.9 13.7 0.51
05 87 0.577 0.19 2.1 45.8 21.5 0.47
06 94 0.623 0.14 1.9 56.0 29.3 0.52
07 100 0.663 0.23 2.0 46.9 23.9 0.51
08 100 0.663 0.22 1.9 46.9 25.0 0.53
09 100 0.663 – – 93.7 – –
10 100 0.663 – – 61.0 – –
11 150 0.995 0.17 2.2 45.7 20.7 0.45
12 200 1.326 0.18 3.0 93.7 30.7 0.33
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Appendix B: Simulation Data

B.1 Effect of Aspect Ratio on Plastic Zone Size

Table B.1: Welding parameters used for numerical studies of plastic zone size for
centre weld on flat plate (d = 3 mm, l = 2400 mm, w = 2000 mm).

ID q [W]
U [mm/s] for Q′ [kJ/mm]=

0.12 0.24 0.48

01 60 0.50 0.25 0.125
02 120 1.0 0.50 0.25
03 240 2.0 1.0 0.50
04 480 4.0 2.0 1.0
05 960 8.0 4.0 2.0
06 1.92×103 16 8.0 4.0
07 3.84×103 32 16 8.0
08 7.68×103 64 32 16
09 1.536×104 128 64 32
10 3.072×104 256 128 64
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Table B.2: Numerical results for first yield aspect ratio, plastic zone size, and correc-
tion factor for ASTM A36 structural steel (ρc = 0.0037 Jmm−3K−1, ∆TY1 = 80 ◦C,ˆ︁ypl ≈ 33 mm), and Q′ = 0.12 kJ/mm.

ID ÆR ymax|TY1
[mm] ypl [mm] fÆR

02 1.41 19.7 6.25 0.32
03 2.04 27.8 16.3 0.59
04 3.59 31.1 27.5 0.88
05 6.82 32.5 32.5 1.0
06 13.4 33.1 32.5 0.98
07 26.7 33.1 32.5 0.98
08 53.5 32.8 32.5 0.99
09 108 32.3 32.5 1.0
10 218 32.0 32.5 1.0

Table B.3: Numerical results for first yield aspect ratio, plastic zone size, and correc-
tion factor for ASTM A36 structural steel (ρc = 0.0037 Jmm−3K−1, ∆TY1 = 80 ◦C,ˆ︁ypl ≈ 65 mm), and Q′ = 0.24 kJ/mm.

ID ÆR ymax|TY1
[mm] ypl [mm] fÆR

01 1.32 41.0 13.8 0.34
02 1.99 56.2 32.5 0.58
03 3.53 62.7 47.5 0.76
04 6.76 65.0 57.5 0.88
05 13.4 66.2 62.5 0.94
06 27.2 67.4 62.5 0.93
07 54.9 67.7 62.5 0.92
08 109 67.2 62.5 0.93
09 217 66.7 62.5 0.94
10 430 66.0 62.5 0.95
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Table B.4: Numerical results for first yield aspect ratio, plastic zone size, and correc-
tion factor for ASTM A36 structural steel (ρc = 0.0037 Jmm−3K−1, ∆TY1 = 80 ◦C,ˆ︁ypl ≈ 130 mm), and Q′ = 0.48 kJ/mm.

ID ÆR ymax|TY1
[mm] ypl [mm] fÆR

01 1.97 113 52.5 0.47
02 3.50 126 87.5 0.70
03 6.74 131 103 0.78
04 13.4 133 113 0.85
05 26.9 134 113 0.84
06 54.0 135 118 0.87
07 108 135 118 0.87
08 217 135 113 0.83
09 432 134 113 0.84
10 863 135 113 0.84

Table B.5: Numerical results for first yield aspect ratio, plastic zone size, and cor-
rection factor for aluminum alloy 6082-T6 (ρc = 0.0025 Jmm−3K−1, ∆TY1 = 59 ◦C,ˆ︁ypl ≈ 133 mm), and Q′ = 0.24 kJ/mm.

ID ÆR ymax|TY1
[mm] ypl [mm] fÆR

02 1.12 57.0 6.25 0.11
03 1.51 99.6 32.5 0.33
04 2.45 122 62.5 0.51
05 4.51 131 92.5 0.70
06 8.76 134 108 0.80
07 17.5 134 113 0.84
08 35.4 135 113 0.83
09 70.3 134 113 0.84
10 123 132 97.5 0.74
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Table B.6: Numerical results for first yield aspect ratio, plastic zone size, and cor-
rection factor for 316L stainless steel (ρc = 0.0040 Jmm−3K−1, ∆TY1 = 66 ◦C,ˆ︁ypl ≈ 73 mm), and Q′ = 0.24 kJ/mm.

ID ÆR ymax|TY1
[mm] ypl [mm] fÆR

01 3.62 71.5 52.5 0.73
02 6.87 73.9 62.5 0.85
03 13.5 74.8 67.5 0.90
04 27.0 75.5 72.5 0.96
05 55.0 77.0 72.5 0.94
06 109 75.9 72.5 0.95
07 215 75.0 72.5 0.97
08 425 74.4 72.5 0.98
09 844 73.9 67.5 0.91
10 1689 74.0 67.5 0.91

Table B.7: Numerical results for first yield aspect ratio, plastic zone size, and
correction factor for P91 alloy steel (ρc = 0.0039 Jmm−3K−1, ∆TY1 = 191 ◦C,ˆ︁ypl ≈ 26 mm), and Q′ = 0.24 kJ/mm.

ID ÆR ymax|TY1
[mm] ypl [mm] fÆR

02 1.84 21.6 8.75 0.41
03 3.09 25.4 16.3 0.64
04 5.71 26.9 21.3 0.79
05 11.1 27.4 23.8 0.87
06 22.2 28.0 27.5 0.98
07 44.4 27.9 27.5 0.98
08 88.9 27.6 27.5 1.0
09 178 27.2 27.5 1.0
10 357 27.0 27.5 1.0
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B.2 Tendon Force

Table B.8: Summary of results from Simufact numerical studies of tendon force for
centre weld on flat plate (d = 3 mm, l = 2400 mm, w = 1200 mm).

Material Q′ [kJ/mm] ypl [mm] σrxn [MPa] FTen [kN] H

ASTM A36
0.12 32.5 -8.58 30.5

0.250.24 62.5 -17.5 62.2
0.36 87.5 -25.3 89.9

P91
0.12 11.3 -6.48 22.4

0.200.24 27.5 -13.7 48.9
0.36 37.5 -20.3 72.2

SS 304
0.12 37.5 -10.5 37.8

0.300.24 67.5 -20.8 74.3
0.36 92.5 -30.0 107

Al 6082-T6
0.12 57.5 -7.40 26.4

0.210.24 108. -14.3 51.1
0.36 143. -20.2 72.2

TiAl6V4
0.12 6.25 -7.41 27.5

0.220.24 11.3 -15.7 53.4
0.36 16.3 -22.9 80.9
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B.3 Pipe Root Strain

Table B.9: Input geometry and plastic zone size used for numerical simulations of
circumferential pipe joint, given η = 0.8, 1/ρc = 250 J−1mm3K and ∆TY1 = 180 ◦C.

ID 2a [m] d [mm] a/d 2c [mm] g [mm] β
ypl [mm] for Q′ [kJ/mm] =
0.60 1.2 1.8

01 0.508 6.35 40.0 1.2 1.2 0.032 25.4 50.8 76.2
02 0.508 6.35 40.0 3.2 3.2 0.032 25.4 50.8 76.2
03 0.508 12.7 20.0 1.2 1.2 0.023 12.7 25.4 38.1
04 0.508 12.7 20.0 3.2 3.2 0.023 12.7 25.4 38.1
05 0.508 15.9 16.0 1.2 1.2 0.020 10.1 20.3 30.4
06 0.508 15.9 16.0 3.2 3.2 0.020 10.1 20.3 30.4
07 0.508 6.35 40.0 1.2 2.4 0.032 25.4 50.8 76.2
08 0.508 6.35 40.0 3.2 6.4 0.032 25.4 50.8 76.2
09 0.508 12.7 20.0 1.2 2.4 0.023 12.7 25.4 38.1
10 0.508 12.7 20.0 3.2 6.4 0.023 12.7 25.4 38.1
11 0.508 15.9 16.0 1.2 2.4 0.020 10.1 20.3 30.4
12 0.508 15.9 16.0 3.2 6.4 0.020 10.1 20.3 30.4
13 0.914 6.35 72.0 1.2 1.2 0.024 25.4 50.8 76.2
14 0.914 6.35 72.0 3.2 3.2 0.024 25.4 50.8 76.2
15 0.914 12.7 36.0 1.2 1.2 0.017 12.7 25.4 38.1
16 0.914 12.7 36.0 3.2 3.2 0.017 12.7 25.4 38.1
17 0.914 15.9 28.7 1.2 1.2 0.015 10.1 20.3 30.4
18 0.914 15.9 28.7 3.2 3.2 0.015 10.1 20.3 30.4
19 0.914 6.35 72.0 1.2 2.4 0.024 25.4 50.8 76.2
20 0.914 6.35 72.0 3.2 6.4 0.024 25.4 50.8 76.2
21 0.914 12.7 36.0 1.2 2.4 0.017 12.7 25.4 38.1
22 0.914 12.7 36.0 3.2 6.4 0.017 12.7 25.4 38.1
23 0.914 15.9 28.7 1.2 2.4 0.015 10.1 20.3 30.4
24 0.914 15.9 28.7 3.2 6.4 0.015 10.1 20.3 30.4
25 1.22 6.35 96.1 1.2 1.2 0.021 25.4 50.8 76.2
26 1.22 6.35 96.1 3.2 3.2 0.021 25.4 50.8 76.2
27 1.22 12.7 48.0 1.2 1.2 0.015 12.7 25.4 38.1
28 1.22 12.7 48.0 3.2 3.2 0.015 12.7 25.4 38.1
29 1.22 15.9 38.4 1.2 1.2 0.013 10.1 20.3 30.4
30 1.22 15.9 38.4 3.2 3.2 0.013 10.1 20.3 30.4
31 1.22 6.35 96.1 1.2 2.4 0.021 25.4 50.8 76.2
32 1.22 6.35 96.1 3.2 6.4 0.021 25.4 50.8 76.2
33 1.22 12.7 48.0 1.2 2.4 0.015 12.7 25.4 38.1
34 1.22 12.7 48.0 3.2 6.4 0.015 12.7 25.4 38.1
35 1.22 15.9 38.4 1.2 2.4 0.013 10.1 20.3 30.4
36 1.22 15.9 38.4 3.2 6.4 0.013 10.1 20.3 30.4
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Table B.10: Comparison of model predictions with numerical results of pipe root
strain, for tests with Q′ = 0.6 kJ/mm, given Hη = 0.18 and E = 200 GPa. Values
for fD (Sim.) are estimated using the theoretical moment correction factor fM(Π2);
values for fM (Sim.) assume the theoretical distribution correction factor fD(Π1).

ID
ˆ︁θ ˆ︁σb,max Π1

fD Π2
fM Iroot = σb,max/E [mm/m]

[mrad] [MPa] Sim. Sim. Sim. Eq. Rel. Err.

01 44.3 1956 0.56 0.55 0.14 0.90 4.7 4.6 -2%
02 44.3 1956 0.56 0.57 1.0 0.53 2.8 2.6 -6%
03 11.1 489 0.20 0.89 0.025 1.1 2.1 1.9 -9%
04 11.1 489 0.20 0.88 0.18 0.92 1.8 1.7 -8%
05 7.06 312 0.14 1.0 0.014 1.2 1.6 1.3 -16%
06 7.06 312 0.14 0.98 0.10 1.0 1.4 1.2 -12%
07 44.3 1383 0.56 0.57 0.10 0.95 3.6 3.4 -5%
08 44.3 1383 0.56 0.56 0.71 0.60 2.2 2.2 –
09 11.1 346 0.20 0.93 0.018 1.1 1.6 1.4 -13%
10 11.1 346 0.20 0.90 0.13 0.98 1.4 1.3 -10%
11 7.06 221 0.14 1.1 0.010 1.2 1.2 0.94 -20%
12 7.06 221 0.14 1.0 0.072 1.1 1.0 0.89 -15%
13 44.3 1956 0.42 0.62 0.19 0.82 5.1 5.2 +3%
14 44.3 1956 0.42 0.65 1.3 0.43 2.7 2.7 –
15 11.1 489 0.15 0.89 0.034 1.0 2.1 2.0 -3%
16 11.1 489 0.15 0.88 0.24 0.83 1.7 1.7 –
17 7.06 312 0.11 0.97 0.019 1.1 1.5 1.4 -8%
18 7.06 312 0.11 0.95 0.14 0.93 1.3 1.2 -6%
19 44.3 1383 0.42 0.63 0.13 0.87 3.8 3.9 +1%
20 44.3 1383 0.42 0.64 0.95 0.51 2.3 2.3 –
21 11.1 346 0.15 0.91 0.024 1.0 1.5 1.5 –
22 11.1 346 0.15 0.89 0.17 0.89 1.3 1.3 –
23 7.06 221 0.11 1.0 0.014 1.1 1.1 0.98 -11%
24 7.06 221 0.11 0.97 0.096 0.99 0.98 0.90 -8%
25 44.3 1956 0.36 0.65 0.22 0.79 5.2 5.5 +4%
26 44.3 1956 0.36 0.68 1.6 0.39 2.6 2.6 –
27 11.1 489 0.13 0.88 0.039 0.97 2.1 2.1 –
28 11.1 489 0.13 0.88 0.28 0.79 1.7 1.7 –
29 7.06 312 0.092 0.95 0.022 1.0 1.5 1.4 -4%
30 7.06 312 0.092 0.94 0.16 0.89 1.3 1.2 -3%
31 44.3 1383 0.36 0.66 0.15 0.84 3.9 4.1 +3%
32 44.3 1383 0.36 0.67 1.1 0.47 2.2 2.2 –
33 11.1 346 0.13 0.90 0.027 1.0 1.5 1.5 –
34 11.1 346 0.13 0.89 0.19 0.85 1.3 1.3 –
35 7.06 221 0.092 0.98 0.016 1.1 1.1 0.99 -7%
36 7.06 221 0.092 0.96 0.11 0.94 0.95 0.90 -5%
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Table B.11: Comparison of model predictions with numerical results of pipe root
strain, for tests with Q′ = 1.2 kJ/mm, given Hη = 0.18 and E = 200 GPa. Values
for fD (Sim.) are estimated using the theoretical moment correction factor fM(Π2);
values for fM (Sim.) assume the theoretical distribution correction factor fD(Π1).

ID
ˆ︁θ ˆ︁σb,max Π1

fD Π2
fM Iroot = σb,max/E [mm/m]

[mrad] [MPa] Sim. Sim. Sim. Eq. Rel. Err.

01 88.5 3912 1.1 0.28 0.14 0.95 4.8 4.4 -8%
02 88.5 3912 1.1 0.29 1.0 0.57 2.9 2.5 -13%
03 22.1 978 0.40 0.71 0.025 1.1 3.4 3.1 -9%
04 22.1 978 0.40 0.71 0.18 0.92 2.9 2.7 -8%
05 14.1 624 0.28 0.84 0.014 1.1 2.6 2.3 -12%
06 14.1 624 0.28 0.82 0.10 1.0 2.3 2.1 -10%
07 88.5 2766 1.1 0.29 0.10 1.0 3.7 3.3 -12%
08 88.5 2766 1.1 0.28 0.71 0.64 2.3 2.1 -9%
09 22.1 691 0.40 0.74 0.018 1.1 2.5 2.2 -13%
10 22.1 691 0.40 0.72 0.13 0.98 2.2 2.0 -10%
11 14.1 441 0.28 0.88 0.010 1.2 1.9 1.6 -17%
12 14.1 441 0.28 0.85 0.072 1.1 1.7 1.5 -13%
13 88.5 3912 0.84 0.38 0.19 0.84 6.3 6.3 –
14 88.5 3912 0.84 0.40 1.3 0.45 3.3 3.2 -5%
15 22.1 978 0.30 0.75 0.034 0.99 3.5 3.5 –
16 22.1 978 0.30 0.75 0.24 0.83 3.0 2.9 -3%
17 14.1 624 0.21 0.84 0.019 1.0 2.6 2.5 -5%
18 14.1 624 0.21 0.84 0.14 0.92 2.3 2.2 -4%
19 88.5 2766 0.84 0.39 0.13 0.90 4.7 4.7 –
20 88.5 2766 0.84 0.39 0.95 0.52 2.8 2.7 -3%
21 22.1 691 0.30 0.77 0.024 1.0 2.6 2.5 -5%
22 22.1 691 0.30 0.76 0.17 0.89 2.3 2.2 -4%
23 14.1 441 0.21 0.87 0.014 1.1 1.9 1.7 -8%
24 14.1 441 0.21 0.86 0.096 0.97 1.7 1.6 -6%
25 88.5 3912 0.73 0.43 0.22 0.80 6.9 7.1 +3%
26 88.5 3912 0.73 0.45 1.6 0.40 3.5 3.4 -2%
27 22.1 978 0.26 0.76 0.039 0.96 3.6 3.6 –
28 22.1 978 0.26 0.77 0.28 0.79 2.9 2.9 –
29 14.1 624 0.18 0.85 0.022 1.0 2.6 2.5 -2%
30 14.1 624 0.18 0.84 0.16 0.88 2.3 2.2 -2%
31 88.5 2766 0.73 0.43 0.15 0.85 5.2 5.3 +2%
32 88.5 2766 0.73 0.44 1.1 0.48 2.9 2.9 –
33 22.1 691 0.26 0.78 0.027 1.0 2.6 2.6 –
34 22.1 691 0.26 0.78 0.19 0.85 2.2 2.2 –
35 14.1 441 0.18 0.87 0.016 1.0 1.9 1.8 -5%
36 14.1 441 0.18 0.86 0.11 0.93 1.7 1.6 -4%
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Table B.12: Comparison of model predictions with numerical results of pipe root
strain, for tests with Q′ = 1.8 kJ/mm, given Hη = 0.18 and E = 200 GPa. Values
for fD (Sim.) are estimated using the theoretical moment correction factor fM(Π2);
values for fM (Sim.) assume the theoretical distribution correction factor fD(Π1).

ID
ˆ︁θ ˆ︁σb,max Π1

fD Π2
fM Iroot = σb,max/E [mm/m]

[mrad] [MPa] Sim. Sim. Sim. Eq. Rel. Err.

01 133 5867 1.7 0.14 0.14 1.1 3.5 2.8 -22%
02 133 5867 1.7 0.14 1.0 0.67 2.1 1.6 -29%
03 33.2 1467 0.60 0.57 0.025 1.1 4.1 3.7 -10%
04 33.2 1467 0.60 0.57 0.18 0.93 3.5 3.2 -9%
05 21.2 936 0.43 0.71 0.014 1.1 3.3 2.9 -12%
06 21.2 936 0.43 0.70 0.10 1.0 3.0 2.7 -10%
07 133 4149 1.7 0.14 0.10 1.2 2.7 2.0 -28%
08 133 4149 1.7 0.14 0.71 0.75 1.7 1.3 -25%
09 33.2 1037 0.60 0.60 0.018 1.1 3.1 2.6 -15%
10 33.2 1037 0.60 0.58 0.13 1.0 2.7 2.4 -12%
11 21.2 662 0.43 0.75 0.010 1.2 2.5 2.1 -17%
12 21.2 662 0.43 0.73 0.072 1.1 2.2 2.0 -14%
13 133 5867 1.3 0.22 0.19 0.88 5.5 5.3 -5%
14 133 5867 1.3 0.24 1.3 0.48 3.0 2.7 -12%
15 33.2 1467 0.45 0.64 0.034 0.99 4.5 4.4 -3%
16 33.2 1467 0.45 0.64 0.24 0.83 3.8 3.7 -3%
17 21.2 936 0.32 0.75 0.019 1.0 3.4 3.3 -5%
18 21.2 936 0.32 0.75 0.14 0.92 3.1 2.9 -4%
19 133 4149 1.3 0.23 0.13 0.95 4.2 3.9 -8%
20 133 4149 1.3 0.23 0.95 0.56 2.5 2.3 -9%
21 33.2 1037 0.45 0.66 0.024 1.0 3.3 3.1 -6%
22 33.2 1037 0.45 0.65 0.17 0.89 2.9 2.7 -5%
23 21.2 662 0.32 0.78 0.014 1.1 2.5 2.3 -8%
24 21.2 662 0.32 0.76 0.096 0.97 2.3 2.2 -7%
25 133 5867 1.1 0.27 0.22 0.82 6.6 6.6 –
26 133 5867 1.1 0.29 1.6 0.42 3.4 3.1 -7%
27 33.2 1467 0.39 0.66 0.039 0.96 4.7 4.7 –
28 33.2 1467 0.39 0.67 0.28 0.79 3.8 3.8 –
29 21.2 936 0.28 0.76 0.022 1.0 3.5 3.4 -2%
30 21.2 936 0.28 0.76 0.16 0.88 3.1 3.0 -2%
31 133 4149 1.1 0.28 0.15 0.88 5.0 4.9 -2%
32 133 4149 1.1 0.29 1.1 0.50 2.8 2.7 -5%
33 33.2 1037 0.39 0.68 0.027 1.0 3.4 3.3 -3%
34 33.2 1037 0.39 0.68 0.19 0.85 2.9 2.9 –
35 21.2 662 0.28 0.79 0.016 1.0 2.6 2.4 -5%
36 21.2 662 0.28 0.78 0.11 0.93 2.3 2.2 -4%

191



B.4 Non-Ideal Stress Concentration

Table B.13: Numerical results for non-ideal susceptibility index and geometry stress
concentration factor, given a = 0.914 m, d = 12.7 mm, and θ = 0.01 rad.

ID c [mm] g [mm] δ [mm] δ/c ϕ [rad] Π3 = c/r Iroot [mm/m] fG

01 0.60 1.2 0.006 0.01 0.01 0.005 2.15 1
02 0.60 2.4 0.006 0.01 0.005 0.001 1.50 1
03 1.6 3.2 0.016 0.01 0.01 0.005 2.17 1
04 1.6 6.4 0.016 0.01 0.005 0.001 1.51 1
05 0.60 1.2 0.060 0.10 0.10 0.048 2.22 0.97
06 0.60 2.4 0.060 0.10 0.050 0.012 1.52 0.99
07 1.6 3.2 0.16 0.10 0.10 0.048 2.24 0.97
08 1.6 6.4 0.16 0.10 0.050 0.012 1.52 0.99
09 0.60 1.2 0.15 0.25 0.25 0.110 2.33 0.92
10 0.60 2.4 0.15 0.25 0.12 0.030 1.54 0.98
11 1.6 3.2 0.40 0.25 0.25 0.110 2.34 0.93
12 1.6 6.4 0.40 0.25 0.12 0.030 1.54 0.98
13 0.60 1.2 0.30 0.50 0.49 0.190 2.48 0.87
14 0.60 2.4 0.30 0.50 0.25 0.058 1.57 0.96
15 1.6 3.2 0.80 0.50 0.49 0.190 2.48 0.88
16 1.6 6.4 0.80 0.50 0.25 0.058 1.57 0.96
17 0.60 1.2 0.45 0.75 0.72 0.247 2.59 0.83
18 0.60 2.4 0.45 0.75 0.37 0.083 1.59 0.94
19 1.6 3.2 1.2 0.75 0.72 0.247 2.59 0.84
20 1.6 6.4 1.2 0.75 0.37 0.083 1.59 0.95
21 0.60 1.2 0.60 1.0 0.93 0.286 2.68 0.80
22 0.60 2.4 0.60 1.0 0.49 0.105 1.62 0.93
23 1.6 3.2 1.6 1.0 0.93 0.286 2.66 0.82
24 1.6 6.4 1.6 1.0 0.49 0.105 1.61 0.94
25 0.60 1.2 1.2 2.0 1.6 0.333 2.67 0.81
26 0.60 2.4 1.2 2.0 0.93 0.167 1.66 0.91
27 1.6 3.2 3.2 2.0 1.6 0.333 2.66 0.82
28 1.6 6.4 3.2 2.0 0.93 0.167 1.65 0.92
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Appendix C: Material Properties

C.1 ASTM A36 Structural Steel
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Figure C.1: Thermal property data for ASTM A36 structural steel.
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Figure C.2: Mechanical property data for ASTM A36 structural steel.
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C.2 Aluminum Alloy 6082-T6
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Figure C.3: Thermal property data for aluminum alloy 6082-T6.
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Figure C.4: Mechanical property data for aluminum alloy 6082-T6.
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C.3 304 Stainless Steel
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Figure C.5: Thermal property data for 304 stainless steel.
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Figure C.6: Mechanical property data for 304 stainless steel.
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C.4 316L Stainless Steel
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Figure C.7: Thermal property data for 316L stainless steel.
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Figure C.8: Mechanical property data for 316L stainless steel.
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C.5 P91 Alloy Steel
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Figure C.9: Thermal property data for P91 alloy steel.
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Figure C.10: Mechanical property data for P91 alloy steel.

202



C.6 Titanium Alloy TiAl6V4
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Figure C.11: Thermal property data for titanium alloy TiAl6V4.
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Figure C.12: Mechanical property data for titanium alloy TiAl6V4.
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