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Abstract

This thesis examines low energy consequences of extensions of the Standard Model 

that call for new particle content and symmetries. In particular, we examine the rami­

fications of new scalar interactions on pion physics, of induced lepton flavour violation 

(LFV) in the constrained minimal supersymmetric standard model (CMSSM) with see­

saw generated neutrino masses, and of induced LFV in lopsided 50(10) models.

New interactions with Lorentz scalar structure, arising from physics beyond the stan­

dard model of electroweak interactions, will induce effective pseudoscalar interactions 

after renormalization by weak interaction loop corrections. Such induced pseudoscalar 

interactions are strongly constrained by data on 7r* —*• decay. These limits on

induced pseudoscalar interactions imply limits on the underlying fundamental scalar in­

teractions that in many cases are substantially stronger than limits on scalar interactions 

from direct /?-decay searches.

The see-saw mechanism of neutrino mass generation, when incorporated in super- 

symmetric theories with supergravity mediated supersymmetry breaking, results in low- 

energy lepton-flavour violation arising from the soft supersymmetry breaking slepton 

masses. The parameter space of supergravity theories with conserved i?-parity is severely 

constrained by the requirement that the LSP provide cold dark matter with a relic density 

in the range indicated by the recent Wilkinson Microwave Anisotropy Probe (WMAP) 

measurements, as well as by laboratory constraints. We calculate the fi —>■ ey branching 

ratio for the CMSSM, over the range of parameters consistent with WMAP and labora­

tory constraints, in families of see-saw model parameterizations which fit the low energy 

neutrino measurements.

A class of predictive 50(10) grand unified theories with highly asymmetric mass 

matrices, known as lopsided textures, which was developed to accommodate the observed 

mixing in the neutrino sector, can effectively determine the rate for charged lepton 

flavour violation, and in particular the branching ratio for p  —> ey. Assuming that
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the supersymmetric GUT breaks directly to the CMSSM, we find that in light of the 

combined constraints on the CMSSM parameters from direct searches and from the 

WMAP satellite observations, the resulting predicted rate for /x —> e7  in this model 

class can be within the current experimental bounds for low tan/?, but that the next 

generation of /u —»• e'y experiments would effectively rule out this model class if LFV is 

not detected.
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Preface

This thesis is organized into two parts. Part I, containing chapters 1 -3 , provides the 
reader the necessary preliminary background detail for exploring the phenomenological 
implications of the models in Part II. As the underlying framework of the Standard 
Model, quantum field theory with an emphasis on quantum gauge theories is developed 
in chapter 1. Since at present supersymmetry provides the best known solution to the 
gauge hierarchy problem, chapter 2 gives an introduction to supersymmetric field theory 
and the minimal supersymmetric standard model (MSSM). Finally, chapter 3 is devoted 
to neutrino mass, neutrino oscillations, and grand unification. As the subject material 
of the background chapters is vast and has developed greatly over the past 25 years, 
no attempt has been made at providing an exhaustive (or exhausting) review. Further 
details may be found in the references cited.

Part II is essentially the heart of this thesis. Each chapter (4-6) contains original 
contributions to research in the form of three published papers over the coruse of the 
author’s Ph.D. program at the University of Alberta between September 1999 and April 
2005. Part II is based on the following published works:

• Bruce A. Campbell and David Maybury, Constraints on Scalar Couplings from 
tt* —> Iv, Nucl. Phys. B709, 419 (2005), preprint: hep-ph/0303046

• Bruce A. Campbell, David Maybury and Brandon Murakami, See-Saw Induced 
CMSSM Lepton Flavour Violation Post-WMAP, JHEP 0403, 052 (2004), pre­
print: hep-ph/0311244

• Ernest Jankowski and David Maybury, Lepton Flavour Violation in a Class of Lop­
sided SO(10) Models, Phys. Rev. D70, 035004 (2004), pre-print: hep-ph/0401132
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From Gauge Theories to  Grand 
Unification
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2

Chapter 1

Gauge Field Theory

1.1 A  Geometrical Picture of Fundamental Interactions

The strong, the weak, and the electromagnetic forces, mediated by spin 1 fields, form the 
basis of non-gravitational physics. Remarkably, these interactions can be understood in 
the geometrical language of gauge theories [1, 2, 3, 4, 5, 6], which completely specify how 
these forces interact. Reformulated as quantum field theories [7, 8, 9], gauge theories 
and the principle of local gauge invariance form the foundation of the Standard Model 
- a gauge theory based on SU(3)C x SU(2)l x  £7(1)y - and moreover, all of elementary 
particle theory. As gauge theories play a central role in modern theoretical physics, it is 
worth exploring the structure of gauge theories in some detail.

The earliest and simplest gauge theory is quantum electrodynamics (QED). Starting 
with the Lagrangian for a free Dirac field,

£  =  -  rri)ij} (1.1)

we see that the global phase transformation,

tp(x) —» e~igAib{x) (1.2)

leaves eq.(l.l) invariant provided that A, an arbitrary real parameter, does not depend 
on spacetime and g is some real constant. Let us examine the consequences of relaxing 
the spacetime independence requirement of A by promoting A to a local phase; i.e. 
A —» A (a:). Clearly, the free Dirac Lagrangian will no longer be invariant under this new 
local transformation,

£ —*•£ +  grp^-'ipd^A. (1.3)

However, we may construct a Lagrangian that remains invariant under the local trans­
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CHAPTER 1. GAUGE FIELD THEORY 3

formation by adding new terms that cancel the unwanted contributions. Suppose we 
replace the derivative with a covariant derivative,

du Dp =  +  igA^ (1.4)

where the new field in eq.(1.4), called a gauge field, transforms as,

Ap —> A^i +  d^A. (1.5)

Using this property, together with the local phase transformation on ip, we see that the 
term D^ip transforms in the same way as ip (hence the name covariant),

which by construction remains invariant under the transformation of eq.(1.2). Having 
introduced the new field A^,  there now appears another object that remains invariant 
under the local phase transformation. Clearly, the term

The object has been contracted with itself to form a Lorentz invariant and the factor 
of 1/4 is chosen for future convenience. The Lagrangian of eq.(l.lO) is fully invariant 
under the local transformation.

Systems that remain invariant under local phase rotations, called gauge transforma­
tions, possess a gauge symmetry. In the case under discussion, the phase parameterizes 
the Abelian group 17(1). Thus, this Lagrangian describes a massless U(l) vector field 
interacting with Dirac fermions and therefore serves as the Lagrangian for QED. The 
electromagnetic field and its interactions with fermions arise simply by insisting on local 
gauge invariance. This amazing result has far reaching consequences. Gauge theories 
characterize all the forces of nature, including gravity. Gravity, as described by Gen­
eral Relativity (for review see [10]), is a gauge theory of local spacetime transformations

D„ip -> e~igADnip. (1.6)

The free Dirac Lagrangian becomes,

C - iplij^D^ — m)ip

= ip(i/ylidft -  g^Afj,  -  m)ip

(1.7)

(1.8)

(1.9)

is invariant under eq.(1.5) and, as a result, should be included in the theory, namely,

C =  W v f D p  -  m )ip  -  ~ F ^ F ^ . (1.10)
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CHAPTER 1. GAUGE FIELD THEORY 4

[11], mediated by a spin 2 field with the dimensionful coupling G n - (The dimension­
ful coupling presents subtle problems for quantization and as a result render gravity 
unrenormalizable. We will discuss aspects of renormalization in following sections.)

Having constructed an Abelian gauge theory, we can generalize to the non-Abelian 
case. Instead of the Abelian phase in eq.(1.2) we may write,

ip(x) —► e~‘l9TaAa<'x', if!(x) (1-11)

where T a are p x p matrices forming a Lie Algebra in the representation under which 
the fermions, ip(x), transform, (if; is a p dimensional column vector). Again, we would 
like to construct a Lagrangian that remains invariant under local gauge transformations. 
Let us begin by generalizing the covariant derivative from the Abelian case, leading to,

DtJ,ip(x) =  (&1 +  igT ■ A,J‘)i(;(x) (1-12)

where T  • A11 =  T aAa. Now, consider an infinitesimal gauge transformation using 
eq .(l.ll) ,

ib(x) -* (I — igT  - A)if;(x) (1.13)

which implies
d9if;(x) —> (I — igT ■ A)dIJ‘ijj(x) — ig(T  - dA)if;(x). (1-14)

As in the Abelian case, we require the covariant derivative, D ixib(x), to transform in the
same way as if>(x). If the gauge field, A%, transforms according to

A» -> A» + +  g l o b e d  (1.15)

where f abc are the structure constants of the Lie Algebra ([Ta,T&] =  i / Q5CT c), the 
appropriate terms will cancel leaving us with the desired result.

It will be useful to consider finite gauge transformations as well. Defining U(a:) =  
e-igT-A(x), we can rewrite eq .(l.ll) as

if}(x) —»■ XJ(x)ip(x). (1-16)

If we multiply eq.(1.15) by T a we find that,

A M —> ■+■ T  • d^A — ig[T - A, AM] (1.17)

where A^ is a p x  p matrix defined as =  AaT a and it becomes clear that eq.(1.17)
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CHAPTER 1. GAUGE FIELD THEORY 5

corresponds to the linear (in AQ(x)) expansion of the gauge transformation,

A**(x) -*> U(x)(A^(z) +  ig -1 d^XJ-' ix ) .  (1.18)

Finally, we can construct the gauge invariant field strength - the generalization of 
the last term in eq.(l.lO). We require a two indexed Lorentz tensor that transforms 
covariantly. Of the objects we have at our disposal, and using the Abelian case as a 
guide, we can construct,

= F^ T a  =  _ ig - i  ̂  (L19)

Clearly F^" transforms covariantly since does. Expanding out the commutator we 
find

F T  =  & K  ~ -  gfabcA^A" (1.20)

and using eq.(1.18) we learn that F transforms as,

F^" —> U (x)FM1/(x)U- 1(x). (1.21)

We see that the term FaUF^in called the Yang-Mills Lagrangian, also remains gauge 
invariant under a gauge transformation and allows us to write the full non-Abelian gauge 
invariant Lagrangian,

L  =  # 7^  ~  m)Vr -  \ F ^ F ; V. (1.22)

Notice tha t the gauge fields belong to the adjoint representation of the gauge group, 
whereas the fermions transform under some arbitrary representation determined empir­
ically. In fact, the chiral components of the Dirac fields are permitted to fall under 
different representations of the gauge group - a fact of which nature seems keenly aware 
with the weak interactions.

In the preceding discussion, we approached the construction of gauge theories in­
tuitively by examining the consequence of local phase transformations. We may also 
understand gauge theories more directly through modern differential geometry in the 
language fibre bundles [11]. Although we will not explore these aspects of differential 
geometry here, it is useful to examine the connection between gauge theories and geom­
etry through the concept of parallel transport [11]. Consider a vector, V^(x), tangent 
to some curve on a manifold at a point p. The set of all tangent vectors at a point p on 
the manifold forms a vector space, called the tangent space. A distinct tangent space 
exists at each point and how a tangent vector changes as we move along some curve 
reveals intrinsic properties of the manifold. However, we cannot naively compare two 
different vectors at different points because they belong to separate tangent spaces. We
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CHAPTER 1. GAUGE FIELD THEORY 6

Path I

Path 2

Figure 1.1: Parallel transporting a vector on the globe: Starting with vector V  at point 
p. the two distinct paths lead to different vectors at q.

require a mechanism whereby we can transport a vector in one tangent space into the 
tangent space of the other without change and then make the comparison; i.e. a parallel
transport. Let V ,fl (x +  Ax) denote the vector V^(x) parallel transported to r  +  A i. Let
us insist that the vectors satisfy,

V //X(x +  Ax) — V*{x) oc Ax (1-23)

and
(V"* +  W'^)(x +  Ax) =  V'»(x +  Ax) +  W'»(x +  Ax). (1.24)

We can satisfy these conditions if we take,

V ' ^ x  +  Ax) =  V ^ x )  -  y A(x)r()A(x)Ax,/ (1.25)

where the object r^ A, called the connection coefficients, define the rules of the parallel
transport. For our purposes, it can be shown that F|)A may be formed from combinations
of derivatives of the metric tensor. Now we see how to make the appropriate comparison 
of two vectors at the same point,

^ ( *  +  Ax) - y n *  +  A*) _  SV*
Arc1' —*0 A x "  d x v

or more succinctly,
D V^ = +  V xTtxl/X)dx''. (1.27)

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



CHAPTER 1. GAUGE FIELD THEORY 7

The part in parenthesis is the covariant derivative of the vector in curved space. 
Notice the similarity to the covariant derivative that we constructed using local phase 
transformations in the preceding discussion. This suggests that somehow the gauge field 
that we introduced earlier in order to obtain the correct transformation properties for 
our Lagrangian serves as a  connection coefficient.

Using eq.(1.26) it can be shown [12] that if a vector is parallel transported along 
a curve, c(t), then it satisfies

dVt1 dxu(c(t) ) .+ T \ -  K̂ V X = 0. 
dt vX di (1.28)

If we parallel transport over an infinitesimal distance, eM, we see that eq.(1.28) implies,

V ^ ix  +  e) =  V»{x) -  V x(x)T»x ( x y .  (1.29)

In order to gain a deeper appreciation of parallel transport, consider figure 1.1. If we

V(r)[psr]
V(s)

V(r)[pqr]

V(q)

Figure 1.2: Parallel transporting vector Vo around an infinitesimal parallelogram on a 
curved manifold along two distinct paths.

start with a vector at the point p and parallel transport to the point q along a longitude 
line, we see that the resulting vector is different from a transport along the equator to 
point q. The resulting vector depends on the parallel transport path - a situation unlike 
usual flat Euclidean space. Let us examine this feature of parallel transport more closely 
by considering transporting a vector from one corner of a closed, infinitesimal parallel­
ogram to the opposite comer. Figure 1.2 shows a parallelogram pqrs (with coordinates 
{xM}, {x^ +  e^}, {x^ +  +  (V1}, {x^ +  <5M}) and an initial vector, Vq, parallel transported
from p to r  by two different paths. Consider the first path, pqr. Transporting from p  to
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q gives,

v ll(q) = v £ - v £ r z x(Py .  (i-so)

Transporting this new vector to r  gives,

V»(r)  =

=  K  -  v xKx<s>V -  [ v ?  -  + a T r ; A w e T ] sr
»  K - v f f i & Y - v f r t x W

~va [DrKM -  rfA(p)r;: » ]  es> (1.31)

where up to order e5 terms have been kept. Transporting along the other path, psr, we 
find,

V“(r) «  vs  -  v S r ^ w *  -  v„X kip y  -  v„A[ s ^ »  -  (1.32)

The two vectors of eq.(1.31) and eq.(1.32) differ at the final point r by,

a v * = v'0A[9j ; A(p)-^r!:J(!. ) - r ' AWrsp(p)+r;A(p)r?p(p)]eTi" (1.33) 
=  (1-34)

The Riemann tensor, R^TU, indicates intrinsic curvature of the manifold. Again, notice 
the similarity to the earlier discussion of non-Abelian gauge invariance. The Riemann 
curvature tensor has the same structure as F^". The similarities between the gauge 
field theory discussion and parallel transport point toward a deep connection between 
geometry and nature. In fact, we can show that serves as the “Riemann tensor” 
for the internal “gauge-charge” space. Recall the covariant derivative of eq.(1.12). The 
covariant derivative indicates that an infinitesimal coordinate transformation generates 
the change,

Stp(x) =  igA^ipdx^ (1.35)

since,
ip(x +  dx) — (1 +  igA/xdxIJ/)ip(x) (1.36)

where A^ = TaA“. For parallel transport over a finite interval we can write the trans­
formation as an exponential,

P{x' ,x) = exp ^  J  A^(y) dy^j  (1.37)

where x'  and x  define the endpoints of some path. Transporting ip around a parallelogram
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CHAPTER 1. GAUGE FIELD THEORY 9

with sides e and <5 with one comer at x^, the parallel transportation matrix becomes,

V  =  P (x1x + dx)P(x + dx,x  + dx + 5x)P(x + dx + 5x,x + Sx)P(x + 5x,x)

=  P1P2-P3P4 (1-38)

We see that,

P1P2 =  exp[igAfl(x)dxIJ'] exp[igAl/(x +  dx)5xL>]
a2ig(AfJ,dx11 + A M V +  dtlA udx^bu x) -  ^ - [A ^  Aj\dx>15xv=  exp

where the B aker- C ampb ell-Hausdorff theorem

(1.39)

exp(AA) exp(AP) =  exp ^A(A +  B)  +  B]j  +  0 ( A3) (1-40)

has been used. Similarly, applying the Baker-Campbell-Hausdorff theorem on P3P4 and 
then to the final result, we find,

V  =  exp[ig(dlxA1/- d uAlx- ig [ A ll,Au])dxIJ'5x1'} (1-41)

= exp [igF^ dx118xu] (1-42)

Indeed, plays the role of the Riemann curvature tensor for the internal gauge-charge
space and AM behaves as the connection coefficients. This signals that gauge fields have 
a physical effect and cannot be simply transformed away by some gauge choice.

1.2 A Brief Overview of Path Integral Quantization of Gauge 
Theories

In the preceding section, we used gauge invariance to understand the interactions of 
massless spin 1 fields. While gauge theories have given us deep insight into the nature 
of these interactions, the description thus far has been purely classical. In order to 
use gauge theories as a candidate for the strong, the weak, and the electromagnetic 
forces, the uncertainty principle of quantum mechanics must be incorporated - i.e. gauge 
theories must be quantized. Not all the degrees of freedom in gauge theories axe physical. 
Consider the case of electromagnetism. The photon has two physical degrees of freedom 
yet the photon appears in the Abelian gauge theory as A^  which has four degrees of 
freedom. This does not lead to a contradiction since the gauge field is restricted by some 
gauge choice, resulting in the physical two degrees of freedom. Thus, gauge theories
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CHAPTER 1. GAUGE FIELD THEORY 10

are systems of constrained dynamical variables and this makes their quantization a non­
trivial matter. To see the problems that arise, consider the generating functional,

where Cy m  =  —\F a UF*v and J “ is an external source current. The free field part of 
the action in eq.(1.43) is,

Written in this form, the usual approach of path integral quantization of eq.(1.43) 
involves evaluating a series of Gaussian intergals using the inverse of the operator 
D pu = (gpL/d2 — dpdv). However, this approach fails because D pu has no inverse. To 
see this, suppose that Dpu had an inverse, such that

diction: i.e. D pv has no inverse and thus the path integral becomes ill defined. Gauge 
invariance creates this problem. The path integral sums over all possible field config­
urations including paths connected by gauge field transformations. Since the gauge 
connected paths are not distinct, an over counting occurs rendering the path integral 
singular. In essence, we need to isolate the volume factor in group space that leads to 
the over counting. Integrating over the gauge group elements while making a particular 
gauge class choice solves this problem [6, 13, 14, 15]. First, observe that the unitary 
gauge transformation U{A(x)) =  exp(—igTaAa(x)) implies,

(1.43)

(1.44)

Dill/Gt'x( x - y )  = 5x5i ( x - y ) . (1.45)

Fourier transforming this expression we have,

( - f t  V  +  W G ^ i k )  = sx (1.46)

with the invariant decomposition of the inverse

GvX =  a{k2)gvX +  b{k2)kvk (1.47)

for some a{k2) and b{k2). Inserting the decomposition into eq(1.46) leads us to a contra-

U(A)U(A') = U{ AA') (1.48)
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and restricting to an infinitesimal region in the neighbourhood of the identity we have,

17(A) =  1 +  igTaAa +  0(g2). (1.49)

We can define an integral of some functional of A over the gauge group elements as.

J v A f [ A ]  (1.50)

where,
V A  = l [ V A a. (1.51)

a

Observe that eq.(1.48) implies,
V(A) = V(AA'). (1.52)

As discussed earlier, we must restrict the path integral over the Yang-Mills action by 
fixing the gauge to eliminate the over counting. A useful gauge choice consists of the 
generalized Lorentz gauge class,

Fa(AZ) = dllA Z - f a(x )=  0 (1.53)

for some set of functions / a (x). We can now isolate the gauge group volume factor by 
writing the gauge invariant functional,

A [Aafl] = f v  A £[FaC<J]. (1.54)

where the delta function fixes the gauge. Inserting the identity, A - 1[.Aa;JA[AaAt], into 
eq.(1.43), we have,

J  VA»  =  J  V  A11 A ~ l [AajI] j  VK 5{Fa( ) ] ei5vM̂ 1  (1.55)

where the gauge invariance of A -1 [AaiJ] has been used. Re-writing the gauge group 
measure as.

/ M . / n w . . / n ® . * ( ^ )  d . 56)

we find,

A - 1^ ]  =  det ( j $ $ ) (1.57)
Fa= 0
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The generating functional has become

w \Ja\ =  J  det S[Fa\ exp ( i  J  d4x [CYM + (1-58)

and the over counting has been eliminated. If we multiply the the generating functional 
of eq.(1.58) by.

Furthermore, the determinant may be re-expressed as an integral over complex Grass- 
mann variables [4],

where eq.(1.15) and eq.(1.53) have been used to carry out the functional differentiation. 
Finally the generating functional reads,

called the Faddeev-Popov ghost Lagrangian [15], contains ghost fields rj and g* that 
facilitate a perturbative evaluation of the path integral. Note that the ghost fields are 
not real particles - they behave as scalar fields with Fermi-Dirac statistics. The ghost 
fields provide a calculational technique that removes the over counting problem through 
gauge fixing.

The Faddeev-Popov gauge fixed Lagrangian enables us to write down a sensible path 
integral that avoids the over counting of the gauge degrees of freedom. The price we pay 
for handling the gauge group volume factor is the abandonment of a manifestly gauge 
invariant action. However, the quantum theory is still aware of the underlying gauge 
invariance and it appears through various relations among Green’s functions, called Ward 
identities [16, 17], or, more generally Slavnov-Taylor identities [18, 19]. These identities

(1.59)

the delta function will disappear, leaving the expression,

W[J£] =  JvA„ det exp (i J  d*x \cY„  + -  ^ K ? \ \  • (1-60)

(̂ i J  d4x d tlr)*(dlxria + g f abcr]bA£)Sj  (1.61)

W[J£] =  J V A „  'DrfDrjexp ( i  j  d4x  CYM +  J£A% -  ^ A * ) 2 + £ FP )  (1.62)

where
£ f p  =  d ^ d ^ r j a  + g f abcrjbA £ ) , (1.63)
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CHAPTER J. GAUGE FIELD THEORY 13

are crucial in proving the renormalizability of the full quantum gauge theory. To sketch 
the program, consider the full effective quantum Lagrangian,

£ eff =  Gym — ^  (c^A^)2 +  £pp (1-64)

where from eq.(1.63)

£ fP =  (<V7a)(-Da6%)- C1-65)

It can be shown that the effective action,

=  J  cAxCeft, ( 1. 66)'S'eff J  d  X

remains invariant under a special type of gauge transformation, called BRST transfor­
mations [20],

s a ;  =  (i.67)

=  —ig9Tar]a*p (1.68)

K  =  - C t y f y A S )  (1.69)

<5% =  gQfabcVbVc (i-70)

where 6 is a spacetime independent real Grassmann parameter. The BRST transfor­
mations of eq.(1.67) can be thought of as a usual gauge transformation with gauge 
parameter Aa =  6rja. Applying the BRST transformations to the generating functional, 
W[E] (where E denotes all of the external currents for the fields in Ceg) yields the nec­
essary generalized Ward identities which define relationships amongst Green’s functions 
in accordance with the underlying gauge invariance of the theory.

1.3 A Survey of Renormalization

Using the results of the previous section, we can write the full quantum Lagrangian for 
a gauge theory with fermions,

£  =  ^ ( i y * ^  -  m )u  -  -  ~ { d ^ f  +  d r f i & v a  +  g fa b c V b A t ) .  (1.71)

Calculating with this Lagrangian results in primitively divergent Feynman graphs indi­
cating that the theory must be renormalized. One method of handling the divergences 
involves dimensional regularization [9] - a method of analytically continuing in dimension 
in order to isolate pole terms in the Laurent series expansion of one-particle-irreducible
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graphs. The initial Lagrangian, eq.(1.71), called the bare Lagrangian, contains unphysi­
cal quantities and may be symbolically written as,

CB = C + AC.  (1.72)

The object AC  contains counter terms that cancel against the pole parts of the Laurent 
series expansion, which amounts to redefinitions of fields and coupling constants, after 
employing a renormalization prescription that sets boundary conditions on the prim­
itively divergent one-particle-irreducible graphs. The counter terms can be evaluated 
perturbatively in (4 — e) dimensions through Feynman diagrams. If the field theory is 
renormalizable, the counter term Lagrangian will have the same structure as the original 
Lagrangian - new interactions will not be required in order to cancel the pole parts of 
some divergent graph [21]. Furthermore a renormalizable theory will contain operators 
of mass dimension four or less as in eq.(1.71). In addition, there exist a number of rela­
tionships among the counter terms provided by the generalized Ward identities. These 
relationships are necessary for consistency. Continuing in dimension introduces a mass 
scale, M,  through the coupling constant, g —> g M t/2, which keeps the action dimen- 
sionless and results in a relationship between bare and renormalized Green’s functions

[4],.

f n(pi,...,pn;5(M ),e>m (M ),M ) =  Z n/ /2Z ^ /2f nB(Pi:- ,Pn,gB^ B:mB). (1.73)

The object denotes a one-particle-irreducible Green’s function with n external legs of 
which na are gauge fields and are fermions and the subscript B  denotes the unphysical 
bare quantities. The coefficients Z a and Z^  are wavefunction renormalization factors 
derived perturbatively from the counter term Lagrangian. Since F’g on the right-hand 
side of eq.(1.73) does not depend on M.  we may write.

„ rd f n „ rdg(M) d f n „ r Sf df '* , r dm d f nM  1- M — —  ---------- h M —-------- b M -----------
dM  d M  dg{M) d M  d£ d M  dm

  rp-nijl/'Z ryT lA ll 17— 1  J| / f ^ Z A  t t y  r y n ^ /2  r y U A ^  r?— 1  71 r  9Z ^  .  .

- ~ 2 Z+ A A ~ d M B ~2 * A * ~dM' B: ( }

leading to the compact renormalization group equation,

71 t d 0 d d d
M r n  + l3sa~9+l3fW ( -  ■ nAlA -  w

x f  =  0 (1-75)
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where

Tm

M ds
d M (1.76)

M p -dm (1.77)

M  dm
(1.78)m  dM

Z ~a '  M  I tA dM (1.79)

1/2 d z TV T\ /f ^
* dM  ' (1.80)

Evaluating the coefficients of eq.(1.76) - eq.(1.80) perturbatively through dimensional 
regularization, we obtain at the one-loop level

(3g  =  - b g

fk  =

1m = 

T A  =

7 -

13 £2\  _  4 ■-V it 87T2

87r2

it 16tt2

167T2

(1.81)

(1.82)

(1.83)

(1.84)

(1.85)

where R  denote the particular representation of Lie Algebra to which the fermions belong 
and

'  1 - ,16tt2 (1 .86)
it

The group theory factors C\. C2 , C3 are defined by,

Ci5ab

C^ab

Cz

fa c d fb c d

Tl(TaTb)
dGn  
d~F C2

(1.87)

(1.88) 

(1.89)

where do and dF are the dimensions of the adjoint representation and the representation 
of the fermions respectively. The Green’s function f n is a homogenous function in 
p i, ...pn;m ,M  of the degree of its mass dimension, dp =  (4 — e) +  (n^ +  n^,)(e — 2)/2. If
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we rescale all external leg momentum as, pi —> spi, where s is dimensionless we have,

(
d t? ^ \

+ m dm  +  M m )  r n(sP i>-,sPn;5(M ),^m ,M ) (1.90)

=  df r n(spi,...,spn',g(M),Z,m,M). (1.91)

The differential operator M d /d M  of eq.(1.75) can be eliminated with the use of eq.(1.90),

(  $ d $ d \
V~5as +  ^9d g ^ d i ,  ~ ^ 1 + lrn)md^. ~ UAlA ~  n +  ) ^ ‘92^

xT n(spi,...,spn-,g,£,m,M) =  0 (1.93)

where the /^-functions are now regarded as functions of s,

s ^  =  A ,SW ) ; s m = s ( M )

ŝ  = /3f6(s)) ; 
s~ ^s  =  '• r7t(1) =  (1.94)

Solving eq.(1.92) with the relations of eqs.(1.94) using method of characteristic curves 
leads to,

f n(sp i,...,sp„;s,£ .m ,M ) =  s ^ e x p ^ - ^  [ r a ^ ^ s ' ) , ^ ' ) )  +  n ^ ^ s ' ) , £ ( s ' ) ) ] ^

x f n(p1,...,p„;p (s),f(s),m (s),M ) (1.95)

Notice tha t the system scales unexpectedly. Not only does the coupling constant, g, mass 
parameter, m, and gauge parameter, £, scale with energy but their scaling is relayed to 
the Green’s function itself through the anomalous dimension factors, 7 ^ and 7 ,̂, causing 
the Green’s function to scale non-trivially. The physical effects of renormalization are 
now apparent. Finite contributions of loop diagrams contribute measurable shifts to tree 
level quantities and from anomalous scaling of the Green’s functions are reflected in the 
energy dependence of various processes. Furthermore, the preceding analysis extends 
to composite operators [4, 3] where we may write an inserted Green’s function with n a 
external gauge field legs, n^ external fermion legs and one external leg at zero momentum 
denoting the composite operator itself, 0*. In general, there may exist many operators 
of the same type that will mix during the renormalization process and thus Oi becomes 
one of a set of operators. Analogous to eq.(1.73) we have,

Toi{Pii->Pn;g,t™ ,M ) = Zi j Z”A / 2 0j B{pi,  - ,P n ;g B ^ B ,m B) (1.96)
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where Zij is the renormalization matrix calculated, from Feynman diagrams that mixes 
the composite operators. Proceeding as before, the renormalization group equation for 
the inserted Green’s function becomes,

M m +f>‘T g + h e r  ~ nA1A ~  “  7«

xToj (pi,- ,Pn',9 ,Z,m ,M )  =  0 (1.97)

where

(L98)

While the techniques of renormalized perturbation theory are successful in dealing 
mathematically with the divergent behaviour of quantum field theories, the origin of the 
divergences themselves seems devoid of a physical context. Let us explore these issues 
more closely. In reality, all field theories must come with an ultra-violet cutoff [22, 3], 
above which the field theory breaks down as a complete description of nature. In the 
previous analysis, we assumed that the loop integral momenta in Feynman diagrams 
could be infinite - the source of the divergences - yet this must be artifical since the 
theory must break down near the cutoff scale. Let us approach the problem from a 
more physical perspective, called the Wilsonian approach to renormalization [22], and 
restrict the generating functional by some hard ultra-violet cutoff, A. (This should not be 
confused with Pauli-Villars regularization where a hard momentum cutoff is introduced 
to facilitate loop integration only to take the A —» oo limit as soon as possible). That 
is, we will prevent the fields in the path integral from depending on momentum above 
this scale. Consider a generating functional containing only renormalizable terms and 
assume that all the couplings are sufficiently weak ,

W =  J  [:D4>]A exp J  d4x  C(4>) ^  (1.99)

where 4> represents all the fields that £  depends on and A denotes the ultra-violet mo­
mentum cutoff. Instead of immediately writing down a number of Feynman diagrams 
for one-particle-irreducible graphs, where the divergent behaviour suddenly appears at 
one loop, suppose we split the path integral into a tower of small momentum slices up 
to A and path integrate out each successive slice in turn. In effect we will remove high 
momentum fluctuations from the theory systematically. Heuristically, the first iteration, 
consisting of a momentum slice 6 A <  jfc| < A where 6 < 1. would appear as,

W  = I  I^V-Ic&a] J  [^>̂ 6A<IA:|<a] exp J  d4x  £{(p\k\<bA +  ^6A<1/c[<a)^ (1.100)
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which becomes

W  = J  [D(j>|At|<6a] exp ( i  J  d4x £{<t>\k\<bh) +  correction terms^ . (1.101)

The correction terms contain shifts to tree level constants in the original theory, in agree­
ment with renormalized perturbation theory, and the terms also contain an infinite series 
of all higher dimensional operators that are not renormalizable. Continuing slicing in 
this manner down to the scale of interest, the momentum slice integrations continuously 
transform the Lagrangian in a process called the renormalization group. It may seem 
odd that even though we started with a renormalizable Lagrangian, we generated all 
possible nonrenormalizable interactions, yet this is the heart of the physical meaning of 
renormalization itself. To understand this, consider how terms of various mass dimension 
change as we proceed to integrate out more and more momentum slices. A term with 
mass dimension di has a coefficient with mass dimension 4 -  d{, in order to keep the 
action dimensionless. For any operator, the mass in the coefficient will naturally be of 
the order of cutoff scale A. Thus operators with di < d become increasingly important as 
we integrate out momentum slices while operators with d i>  d becomes less important. 
Operators of these types are referred to as relevant and irrelevant respectively [3, 22, 23]. 
Operators with di = 4, called marginal operators, require the effects of the higher or­
der corrections to determine how the operator will evolve. We can now understand the 
physical origin of the divergences resulting from the original method - they were never 
truly part of the theory. We simply calculated with the “wrong” Lagrangian. In reality, 
whatever the form of the true Lagrangian at the cutoff scale, we will always be left with 
the relevant and some of the marginal operators at the low scale. The Standard Model 
is based on renormalizable interactions not because of some lucky circumstance, but 
because all of the irrelevant operators beyond the Standard Model decoupled near the 
cutoff of the theory; a  scale presumably much higher than the scale of Standard Model 
interactions themselves.

In the preceding discussion, we tacitly assumed that the theory was governed by a free 
field fixed point (the requirement that the couplings were sufficiently weak). At the free 
field fixed point all the interactions vanish - all the tree level couplings and masses vanish - 
and the Lagrangian remains unchanged under the renormalization group flow. In general, 
places in coupling space where the theory remains unchanged under the momentum 
slice integrations axe referred to as fixed points [3]. There may exist other fixed points 
in coupling space, including points that axe strongly coupled such that higher order 
corrections become large and radically change the direction of the renormalization group 
flow. These effects may push the theory toward other non-free field fixed points. If these 
other fixed points are places where the theory becomes strongly coupled, the theory would
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no longer have a perturbative description in terms of a Feynman diagram analysis. For 
reasons that are not currently understood, all field theories that are physically relevant 
are close to a free field theory fixed point in the ultraviolet or by a fixed point that 
reduces to the free fixed point in a certain limit.

1.4 Spontaneous Sym m etry Breaking

Thus far, we have considered the properties of gauge theories with massless vector bosons. 
While we are free to  write mass terms for scalar fields and fermions (provided that both 
chiralities transform under the same representation of the gauge group), gauge invariance 
forbids us from writing a mass term for the gauge fields. The term A^A^  is not a gauge 
invariant field bilinear. Although completely consistent for QED and QCD, where the 
photon and gluons are massless, it is an empirical fact tha t the vector bosons responsible 
for the weak force are massive and violate chirality - implying that the chiral parts of each 
fermion belong to a different representation of the gauge group. Furthermore, even if we 
decided to give up on a completely gauge invariant theory by adding a gauge field mass 
term by hand, we will find that the resulting physical longitudinal mode will in general 
render the theory unrenormalizable. These issues present us with a serious challenge if 
we wish to interpret the weak force as a gauge theory interacting with massive fermions.

Spontaneous symmetry breaking [24, 25, 26, 27] provides the solution to this problem 
by hiding the overall gauge symmetry and generating a mass term for the gauge bosons 
while preserving the renormalizablity of the theory. To understand how this works, 
consider a global, in general, non-Abelian symmetry group, G and some real scalar fields 
that belong to some representation,

f 4>i(z)  ̂
<f> 2(z)

( 1 .102)

V • /

Under an infinitesimal global transformation, we have,

4> —» 4> — gTaAa(j>{x) (1.103)

where a =  1, Now, if the Lagrangian,

(1.104)
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with some potential V(cj>), remains invariant under eq.(1.103), then by Noether’s theorem 
the current,

3l =  x)iT a<p{x) (1.105)

with
dC

~  a ( ^ )  (L106)

must be conserved. The Euler-Largrange equations together with current conservation 
implies

( ^ j  iTa<p + t f i T ad»<j> = 0. (1.107)

Using the Lagrangian for the scalar fields and eq.(1.107), we obtain,

f d V \ T
(w) rv = 0 ( 1 ' 1 0 8 )

and this relation expresses the symmetry of the theory. Let us now suppose that V (&) 
has a minimum at some 4> ^  0 such that,

(0|c6|0> =  v (1.109)
dV

=  0 (1.110)
W |0 ) = vd(j>

where (0 |<p|0) denotes the ground state vacuum expectation value of the field operator. 
In general, the ground state defined by the vacuum expectation value will not remain 
invariant under the global symmetry transformation,

(1 -  igAaT a)v ^  v (1-111)

implying that,
iT av ^  0 (1-U2)

for some set of a. Shifting the scalar fields, <$ = <p — v so that,

(0[ ĵ0> =  0 (1.113)

the Lagrangian of eq.(1.104) becomes,

-  V(v) +  0{ct>z). (1.114)
<b=v )
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We find that a mass matrix for the scalar fields appear,

(1.115)

and that by differentiating eq. (1.108) we find that,

M ^ iT av = 0 (1.116)

for all a. However, in light of eq. (1.112), there must be at least one eigenvector with a 
zero eigenvalue, that is, there must be at least one massless linear combination. This is 
an important observation. If a theory has a ground state that is not invariant under the 
full symmetry group, a massless mode, referred to as a Goldston boson [28], will appear 
for each broken symmetry generator. More concretely, suppose that the ground state 
remains invariant under a subset of the generators of some group G, which generate some 
maximal subgroup H. In that case, we have,

where the first M  generators define H. This leaves us with N  — M  massless modes 
which corresponding to N  — M  Goldstone bosons. The vacuum expectation value has 
spontaneously broken the full global symmetry.

Promoting the global symmetry group, G, to a local gauge symmetry, we can use 
spontaneous symmetry breaking to provide mass terms for the gauge fields in a process 
called the Higgs mechanism [26, 27]. Again, if a scalar field (or fields) acquires a non­
zero vacuum expectation value which minimizes the potential and leaves the ground 
state non-invariant, there will appear a massless Goldstone mode associated with each 
broken generator. However, in the local symmetry case, these Goldstone modes are not 
manifest - they are “eaten” by the gauge fields, and in so doing, supply a mass term 
along with a longitudinal degree of freedom for the gauge fields. Let us first explore how 
this mechanism works with an Abelian gauge symmetry. Consider the Lagrangian of 
scalar-electrodynamics,

remains unbroken. We have the expected situation - a charged scalar field interacting

T av = 0 {a = 1, ...M) (1.117)

and
(1.118)

(1.119)

For n2 > 0 the potential has a minimum at (O|0|O) =  0 and the 17(1) gauge symmetry
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with a massless photon. Now, consider fj? < 0. In this case, the potential no longer has 
a  minimum at (0 |(£|0) =  0, but has a ring of minima located at,

(O|0]O) =  | veiS (1.120)

where 5 is an arbitrary phase. Let us re-write the covariant derivative of eq.(1.119) with 
the shifted field,

4> = (f>- (1-121)

Dn<j) =  4- i{dfj.4>2 +  qvAp) +  iq A ^ fa  -f h£2)], (1.122)

where d>i and 4>o are the real and imaginary parts of the shifted complex scalar respec­
tively. Notice how A^ and d>2 enter in eq.(1.122). Apart from the interaction term, 
and Afj, enter in the combination,

A ; =  +  - ^ < £ .  (1.123)

We see that the mode <po and the gauge field mix and, if we expand out eq.(1.119) with 
the shifted fields, we find that the gauge field, A'^, acquires a mass m  = qv. The mixing 
has provide the gauge field with a longitudinal degree of freedom as can readily be seen 
in eq.(1.123) upon converting to momentum space. Note that in order for the gauge field 
to acquire a mass, the scalar field had to gain a non-zero vacuum expectation value and 
be coupled to the gauge field itself.

It seems as though the field is not physical in the sense that it has become absorbed 
by the gauge field A'^. There exists a particular gauge that makes this observation 
apparent - a gauge choice with gauge parameter A(x) as a function of </>2. Under any 
gauge transformation we have, in terms of the shifted fields,

=  -j=(v + + i4>2)elS. (1.124)

Choosing,

qA(x) =  arctan —^ = - , (1.125)
v + 4>i

<p2  disappears, i.e. =  0. Re-writing the gauge transformed and shifted field di as H,  
we find

<f>' = -j=(v + H) (1.126)
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and therefore the covariant derivative of eq.(1.122) becomes,

( D ^ ) '  = ^ { d p H  +  igvA'p +  iqA'^H) (1.127)

where the gauge field A 1̂ is the field A^ transformed according to eq.(1.125). Using these 
results, we can re-write eq.(1.119) in this gauge,

£  =  ^ H X d ^  + ^ A ^ i v  + H )2

- \ f { v  + H ? - ± ( v  + H )a -  \ F ' ^ F l u. (1.128)

The gauge field’s mass term results from absorbing the scalar degree of freedom d>2 - We 
are left with one physical massive scalar H, the Higgs scalar, and a massive gauge field 
A'^. Note that the total number of degrees of freedom remain the same both before
and after spontaneous symmetry breaking. Initially we had four degrees of freedom
- a massless gauge field with two physical transverse degrees of freedom and a massive 
complex scalar field with two degrees of freedom. After spontaneous symmetry breaking, 
again we have four degrees of freedom - one massive gauge field with one longitudinal and 
two transverse and degrees of freedom, and a massive real scalar field with one degree of 
freedom.

The renormalizability of theories with spontaneous symmetry breaking is not an 
obvious or trivial point [8]. The gauge that we have chosen above tha t explicity removes 
<p2  from the theory, called the unitary gauge since only actual physical particles appear, is 
not manifestly renormalizable. In order to show that renormalizablity has not been lost, 
it is necessary to use a more general class of gauge choices called the gauges (for more 
details see [3]). The R% gauges are a specific gauge choice and there exists a particularly 
useful one, called t h e ’t  Hooft gauge. The gauge fixing part of the Lagrangian for the 
Abelian case under discusson in this gauge becomes,

Cgf = -  ^ 2)- (1-129)

While th e ’t  Hooft gauge is not manifestly unitary, (the unphysical Goldstone mode now 
propagates), it can be shown that the theory is manifestly renormalizable.

In order to build a realistic theory of the weak interactions, we will need to extend 
the Higgs mechanism to the non-Abelian case. It is useful to sketch how the argument 
follows. Recall that the covariant derivative for a non-Abelian theory is,

Du = d„ +  igTaA “ (1.130)
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where Ta (a =  1,..., N )  are the generators of the gauge group (Lie algebra) and are 
represented b y n x n  dimensional matrices corresponding to the representation of the 
matter multiplets. The Lagrangian for N  scalar fields interacting with a non-Abelian 
gauge theory is,

C =  -  V tf) -  j f r  J *  (1.131)

where V(<f>) is the scalar potential and contains all of the renormalizable gauge invariant 
self interactions, including the scalar mass term, and satisfies eq.(1.108). (It is assumed 
that (j> is a column vector containing the n scalar fields.) As before, the gauge symmetry 
becomes spontaneously broken when some or all of the scalar fields in the multiplet 
acquire a non-zero vacuum expectation value. Writing the first term of eq.(1.131) with 
the shifted fields, =  4> — v, we have

( D ^ )  = ( S ^ ) r (<fyd) +  2g(d^4>fiTavAai1 +  g2A l A b̂ vTT aT bv +  ... (1.132)

As in the global case, there will be N  — M  Goldstone bosons corresponding to d>TiT av 
with a = M  +  1,..., N. As a result, we are left with n — N  + M  physical scalars. We see 
tha t these modes mix with the gauge fields, A“ , and moving to the unitary gauge, we 
can arrange, <j/r iT av =  0 for a =  M  +  1,..., N. This is the non-Abelian generalization 
of eq.(1.125). Clearly, the last term of eq.(1.132) behaves as a mass term for the gauge 
fields, allowing us to write

{M \)ah = g2vTT aT bv (a, b = 1,..., N). (1.133)

The sub-matrix (M \)ab a, b =  1,..., M  vanishes since the generators in this range satisfy 
eq.(1.117), implying that the unbroken subgroup’s gauge bosons remain massless. The 
lower (N  — M)  x (IV — M) sub-matrix, (M ^)ab a, b — M  +  1,..., N, is symmetric and 
positive definite and can therefore be diagonalized by an orthogonal transformation. The 
eigenvalues of this sub-matrix correspond to the masses of the left-over N  — M  gauge 
bosons which acquired their mass by absorbing the massless Goldstone modes. Perform­
ing calculations beyond leading order requires us to use the gauge class where the 
unphysical Goldstone modes propagate. Using the orthogonal matrix that diagonalizes 
the (N  — M)  x (N — M) sub-matrix, we may write the scalars in a basis where the 
physical Higgs scalars axe separated from the Goldstone modes [4],

Cg- h = -  \ Y J{pb? HbHb + \{ d txGa){dt,Ga) -  ^ £ ( l U a)2GaGa
jL Zd Z* £b a

(1.134)
where i  = G +  H. As a result of the gauge choice, the gauge fixing part of the
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Lagrangian becomes more complicated, although it is straightforward (if not somewhat 
tedious) to write the ghost field couplings to the Goldstone modes, the physical Higgs 
scalars, and the gauge fields respectively [2, 3, 4].

Note that the selection of a non-trivial ground state minimum through the vacuum 
expectation of a  scalar field chooses a specific direction in “group space”. While this 
selection violates the underlying gauge symmetry, allowing gauge boson mass terms, the 
symmetry is merely hidden. There are other equally valid directions in group space that
the scalar vacuum expectation could have selected. As an example, we saw explicitly in
the Abelian case that there was a ring of degenerate minima, encoded by a phase, of 
which the vacuum expectation picks one. The theory is aware that the underlying gauge 
symmetry is only hidden and it is this awareness that preserves renormalizability.

While the Higgs mechanism provides a theoretical framework for understanding the 
massive gauge bosons of the weak interaction, we must address the implications of the 
empirical observation that the weak force violates parity. Consider the Lagrangian,

£  =  (dn +  i g T l A ^ L  +  {dp +  igT%A“)ipR (1.135)

where i>L,R =  |(1  ^ 75)^  and each chiral component transforms under a  different repre­
sentation of the gauge group,

tpL -*• exp ( - ig T lA a) ipL

tpR -> exp (—igTftAa) ipR. (1.136)

Under a parity transformation, ip —» 7of/>, we find that ipL —*■ 7oi>R and ipR —> 70ipL which 
implies that the Lagrangian of eq.(1.135) is parity invariant if and only if T[ = Tg. 
Therefore, the parity violating weak interactions require that the chiral components 
of the fermions belong to different representations of the gauge group. This presents 
us with another problem. The fermion mass term, mipip mixes chiralities, implying 
that the fermion mass term remains gauge invariant if and only if - a parity
invariant theory. It appears that the weak interactions demand only massless fermions - 
a prediction incongruent with empirical fact. (Recently, neutrino oscillations have been 
confirmed, which naturally imply neutrino mass. For the moment we will ignore this 
point and assume that neutrinos are massless. We will return to a proper discussion of 
neutrino mass in chapter 3.) We may overcome this difficulty by once again appealing 
to the Higgs mechanism. Consider a general Yukawa type interaction of N  real scalar 
fields with fermions,

Gy = ipiYpipRCpp + ^ rY^ iPl 4>p (1.137)

where ipL, ipR transform as eq.(1.136) and p =  1, . . . ,  N .  The scalar fields transform under
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some representation of the gauge group as,

4> -  exp {-igT%Aa) <j>. (1.138)

Once spontaneous symmetry breaking occurs, the scalar fields are shifted by the vacuum
expectation values leading to,

£ y  = $ l YptPr {v +  <jip) +  i ) R Y ^ L(v +  4>p). (1.139)

We see that a mass term for the fermions emerges, namely, Ypv = M r .
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Chapter 2

Supersym m etry for M odel 
Building

2.1 Naturalness and th e Standard M odel

While the Standard Model, based on the spontaneously broken gauge theory SU (3) c x 
SU (2)l x U{l)y  —► SU(3)c x U( 1)em, successfully describes fundamental particle inter­
actions at laboratory energies, the Standard Model must nevertheless provide an incom­
plete description of nature. In the first instance, the Standard Model does not include a 
quantum description gravity, which, at the very least, will be necessary for a complete 
picture of physics near Planck scale, Mp\ 2 x 1018eV. Yet, as we will see, there exist 
compelling reasons [1, 2, 3] to believe that the Standard Model will break down at energy 
scales well below the gravitational scale. Furthermore, the Standard Model contains 19 
free parameters that require laboratory measurement to fix. While the consistency of 
thousands of observations [4] with these 19 parameters presents a huge success for the 
Standard Model, it is widely believed that there must be some underlying relationships 
that explain the parameter set’s origin.

The Higgs mechanism [5,6], used to break SU (2)l  x  U{1)y down to U(1)em ? requires 
a fundamental scalar - the Higgs particle - with a mass of ~  100 GeV. In principle, this 
presents no problem for the Standard Model. The Higgs particle mass is an input 
parameter and the theory retains renormalizabilty and predictability as outlined in the 
previous chapter. However, the renormalization group flow of scalar fields tends to push 
scalar masses towards the highest mass scale possible in the theory, namely, the field 
theory’s cutoff. In the case of the Standard Model, the cutoff is presumably well above 
the electroweak unification scale. Heuristically, we can understand the poor ultra-violet 
behaviour of massive scalar fields by considering the self energy diagrams of Figure (2.1).

If we impose a UV cutoff of A (interpreted as the scale where new physics appears),
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H

H,x
/

H

Figure 2.1: Feynman diagrams that contribute quadratic divergences to the Higgs mass.

we find that the scalar self energy diagrams of figure 2.1 depend on the cutoff through A2, 
i.e. a quadratic divergence develops. On the other hand, fermion and gauge boson self 
energy corrections do not depend on A in this manner. We see that the scalar self energy 
graphs provide a large radiative correction to the scalar mass. Therefore, in order for a 
scalar to appear at the low scale after renormalization group running with a mass much 
less than the cutoff requires delicate and somewhat bizarre cancellations. In the Standard 
Model, a light Higgs mass can be achieved by fine tuning at each order in perturbation 
(to one part in 1028), a theoretically unsatisfactory situation. Naturally, the Higgs mass 
should be ~  A2. Embarrassingly, the Standard Model contains a relevant operator that 
fails to explain its small size - the naturalness problem of high energy physics. We can 
understand this situation from a slightly different angle. If we add a fermion mass term 
to a model Lagrangian (e.g. massless QED), the mass term reduces the symmetry of the 
theory by removing the ability to perform independent chiral rotation on the fermion 
fields. As a result, radiative corrections shift the fermion masses by a small amount as 
compared to other scales in the theory. In general, operators that reduce the symmetry 
of a  theory tend to behave well under renormalization group flow [3]. Scalar mass terms, 
on the other hand, in general do not violate any symmetries and therefore the radiative 
corrections shift the scalar masses by a large factor, naturally of the order of the cutoff 
scale.

To escape the difficulties of fundamental scalars, strongly coupled models such as 
technicolour [7, 8, 9] have been suggested. In technicolour models, the Standard Model 
Higgs is no longer considered a fundamental scalar, but instead consists of a  strongly- 
coupled bound state of techni-fermions. Since technicolour models do not contain fun­
damental scalars, they elude the naturalness problem and the scale of new physics is not 
much greater than Higgs mass itself. While such models are appealing, technicolour is 
plagued with its own set of problems [10].

Alternatively, the naturalness problem has a solution through a symmetry principle 
that maintains a weakly coupled theory - supersymmetry [11, 12, 13, 14, 15, 16, 17]. 
The bizarre cancellations previously discussed are easily understood as the result of
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supersymmetric contributions. Supersymmetry demands that for every scalar (fermion)

quadratic divergences. Since we have not observed super-partners in nature, (at least

the quadratic divergences resulting in a light Higgs mass that can naturally and easily 
be understood.

2.2 T he Super sym m etry Algebra

Consider the Poincare Algebra that encodes Lorentz transformations and local spacetime 
translations,

theory these generators, along with currents associated with Lorentz invariant quantum 
numbers generated by internal symmetries, are the only conserved quantities that trans­
form as tensors. While this theorem places strong restrictions on the construction of new 
conserved quantities, the Coleman-Mandula theorem does not forbid conserved charges 
that transform as spinors. Consider a generator, Q, that carries one-half unit of spin. 
Using the two component Weyl spinors and the Van der Waerden notation (see Appendix 
I), the Jacobi identity

there exists a fermionic (scalar) super-partner with the same mass. Roughly speaking, 
the closed loop fermionic contributions to the scalar mass cancel against the scalar loop

not yet!) supersymmetry must be broken. Broken supersymmetry will partially cancel

[P \P ^ ]  =  0 (2 .1)

(2.2)

(2.3)M pa] = i (rjupM fla +  r f TM vp -  r f pM vc -  r f a M pp) .

The Coleman-Mandula theorem [18] states that in any four dimensional Lorentz-invariant

[Pp, \PV■) Qa]] +  [PV, [Qa,Pn]  +  IQ«, [P^P^]} = 0 (2.4)

implies,

[P^Qa] =  0 

[ p ^ , g 6 ] =  o . (2.5)

Performing an infinitesimal Lorentz transformation on Qa, we find that,

[M^,Qa] = - i i r n J t Q p  
[M^.,Qa] =

(2.6)

(2.7)
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The spinorial generators obey anti-commutator relationships, as they are fermionic, 
and the anti-commutator itself is therefore bosonic. The only possibilities for the anti­
commutators axe,

{Q«,Q0} =  (2.8)

{Qa,Q&} =  (2-9)

•where s and t  are undetermined constants. We already learned from eq.(2.5) that P^ com­
mutes with all Q and Q. Therefore, P^ must also commute with the anti-commutators 
and since P M does not commute with , s must necessarily vanish. On the other hand, 
t remains an undetermined positive number and the usual convention in the literature 
fixes t =  2,

{Qa,Q&} = 2(cfi)a$Plt. (2.10)

Furthermore, there exists an important corollary of the supersymmetry algebra. Since, 
by Appendix A we have Tr (<7mct") =  2r/x", eq.(2.10) implies

(&1)0a{Qa,Qp} =  4P'1. (2.11)

Consequently, the Hamiltonian is positive semi-definite, since for u =  0,

P° =  H  =  — (QiQj +  QiQi + Q2 Q2  +  Q2 Q2 ) — 0 (2-12)

This result tells us that supersymmetric theories possess a well defined vacuum bounded 
below by zero. Furthermore, eq.(2.12) implies that if a supersymmetric vacuum state 
exists, it is at the global minimum of the effective potential satisfying E vac =  (0[ H  |0) =
0. This is in contrast to non-supersymmetric theories where the symmetric state is not 
necessarily the ground state. We will explore the implications of eq.(2.12) further when 
we discuss the spontaneous breaking of supersymmetry.

Another important consequence of the supersymmetry algebra is the existence of an 
equal number of fermionic and bosonic fields in a given supermultiplet [16,17]. Let us see 
how this emerges. First, observe that Q, Q transform a bosonic state into a fermionic one, 
and visa versa. Two states are said to inhabit the same irreducible supermultiplet if they 
are proportional to one another through some combination of the Q and Q operators. In 
addition, since P M, and therefore P 2, commutes with each of Q and Q each state shares 
the same eigenvalue of P 2 - the states are mass degenerate. In passing, we note that the 
generators Q and Q also commute with any gauge group symmetry generator and thus 
each member of the supermultiplet has the same gauge charge. According to the spin- 
statistics theorem [19], the operator (—l) 2s (where s is the spin angular momentum) has
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eigenvalues +1 and —1 acting on a bosonic and fermionic state respectively. Since Q and 
Q change fermion number by one unit, each of these operators must anti-commute with 
(—l)2s. Let us now consider a set of supermultiplet states, \k), with the same eigenvalue 
j f ' 0 of the operator P^. We can write,

5 > | ( - l ) 2sP ^ )  =  ^ T r { ( - l ) 2s} (2.13)
k

= J > | ( - i ) 2sQQ|fc> +  £ £ M - i ) 2sQiO<^|fc)
k k I

= E w - ^ ’wii-j + E w h )2’^') <2.14)
k I

=  -  E < i i ( - 1 ) 2 , < 5 |? i ! > ( 2 - 1 5 )
k I

= 0 (2.16)

where the anti-commutation of ( -1 )25 with Q and Q, and the completion of states, 
10(^5 was used. Since the trace over (—l)2s in eq.(2.13) vanishes, there must be an 

equal number of fermions and bosons in the supermultiplet.
Thus far, we have only considered simple supersymmetry - an algebra with one spino- 

rial generator along with its hermitian conjugate. (Also called N  =  1 supersymmetry). 
We may also construct other supersymmetry algebras, called extended supersymmetry
[20], that contain more than one spinorial generator. Consider a set of N  supersym­
metry generators Q£, where A  labels some internal symmetry group, with the usual 
commutation and anti-commutation relationship

[ P ^ Q A  = 0 (2.17)

[ i i r , Q / ]  =  - i K V Q /  (2.18)

= (2.19)

The hermitian generators of the internal symmetry group obey the algebra,

[Tr,T s] = i f rstT t (2.20)

such that,

[ T \ Q aA} =  - ( T r)AcQ«C (2-21)

[Tr,Q«A] = Qac(Tr)cA (2.22)

[Tr, P^] =  [Tr , M H  =  0 (2.23)
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where T r inhabits a specific representation of the group and it can be shown that the 
anti-commutator has the form,

{Q cxiQp b} = (2.24)

As a result of internal symmetry, it is no longer necessary that {<5, Q} = 0. In general, 
we have,

{QaA,Ql3B} = eapZAB (2.25)

where Z AB, called central charges, have the property Z AB =  —Z BA, and commute 
with all the spinorial generators, all the internal symmetry generators and themselves. 
Furthermore, the extended supersymmetry enlarges the particle content of the supermul- 
tiplets. While extended supersymmetry has a rich structure, it is unlikely to have any 
direct application to low energy phenomenology. In supersymmetry algebras with N  > 2, 
it can be shown [20] tha t supermultipets containing helicity |  are TCP-self-conjugate 
and hence are automatically non-chiral. Since the weak interaction is realized differ­
ently between left and right chiral states, it appears that only N  =  1 supersymmetry is 
suitable for embedding the Standard Model.

Finally, we should note that the supersymmetry algebras form Super Algebras - alge­
bras that contain both commutation and anti-commutation relations. It has been shown
[21] that these Super Algebras of symmetries of the S-matrix are the only extensions of 
the Poincare group that are consistent with relativistic quantum mechanics. In some 
sense, it would be remarkable if nature was unaware of this amazing fact.

2.3 Superfields

Since the supersymmetry generators are spinorial, an infinitesimal supersymmetry trans­
formation can be characterized as,

U (0 = l - i ( e Q a  + iaQ&) (2.26)

where £ and £ are anti-commuting complex Grassmann parameters. Using the Grass- 
mann algebra of £, £, we may write the supersymmetry algebra entirely as commutators,

[ P ^ Q ]  =  [PM Q ] = 0

[ M ^ ^ Q ]  = - i ( ^ Q )  (2.27)

[ M ^ ^ Q ]  = - i ( ^ Q )  (2.28)

[ZQ,riQ] = [£Q,f}Q] = 0 (2.29)
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[^Q,fjQ) = 2 ( ^ f j ) P lx (2.30)

with independent Grassmann parameters, £ and rj. The introduction of the Grassmann 
variables facilitates the construction of supersymmetric field theories and, in particular, 
allows us to readily find an explicit representation of the spinorial generators. A finite 
supersymmetry transformation, using arbitrary Grassmann parameters 9 and 9 now 
reads

5  (x», 9,6) S  (a», £ ,f) = 5 '  (s'* +  a» -  i£a»9 + 1 9 ^ 1 9  +  £,9 +  f) • (2.32)

where the Baker-Campbell-Hausdorff formula, eq.(1.40), has been applied. Note that

first commutator. The space of Grassmann parameters together with spacetime coordi­
nates, x 11, that tracks the effects of the spinorial generators is referred to as superspace 
[22, 23] and the functions S  (x 9,9) are called superfields. Upon expanding eq.(2.32) 
we find,

It is straightforward to check that the representation obeys the supersymmetry algebra. 
Fermionic derivatives can also be constructed that anti-commute with all the supersym­
metry generators,

S  (x», 9 ,9 )=  exp [i (9Q + 9 Q -  a ^ ) ]  . (2.31)

Two successive supersymmetry transformations become,

since the parameters Grassmann parameters 6 and £ imply that terms of the form (9)z 
and (£)3 vanish, therefore the Baker-Campbell-Hausdorff formula terminates after the

S  (x^  — i£crIJ'9 +  i9aM'£, 9 +  £, 6 + £)

=  S Or", 9 ,9) +  (a" -  i t o H  +  .9 ^ 1 )  (2 .33)

implying that the generators have the representation,

Pu — idft (2.34)

(2.35)

(2.36)

(2.37)

(2.38)
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and

{Da, Da} =  2i(a/x)aadfl (2.39)

{Da, Dp} = {Dd, Dp} =  0. (2.40)

Since the operators D and D commute with the combinations £,Q and f Q, which ap­
pear with any supersymmetry transformation (see eq.(2.31)), the fermionic derivatives 
behave covariantly and as such, they may be employed to impose covariant constraints 
on superfields. Superfields that obey the covariant condition

Da$ = 0, (2.41)

called left chiral superfields, play an important role in realistic supersymmetric field 
theories by providing matter multiplets. Right chiral superfields obey

Da&  = 0. (2.42)

Let us begin by expanding the superfield in light of eq.(2.41). Notice that any
superfield that obeys this covariant condition may be regarded as a function of 9 and
yV = x11 +  ida^O since,

D&6 = Day" =  0. (2.43)

Thus, we may write =  $(y*S 0) such that,

$(y*\ 9) = <t>(y) +  V29ip{y) -I- 69F{y) (2.44)

where ip is a fermionic field, and <p and F  are complex scalar fields. Substituting = 
x ^ +  iOcr^d into the above expansion, we find,

$(z*\ 6,6) =<p + V2dip +  66F  +  id^ 6 ^ 6  -  - ^ = 6 6 8 ^ ^ 6  -  - d ^ p 6 9 6 6 .  (2.45)
V2 4

Using the exphcit representation of the supersymmetry algebra in eq.(2.34) and eq.(2.36), 
we see that

6$ = i(£Q + HQ)$ (2.46)

which implies the supersymmetry transformations

§cf> = V2£ip (2.47)

dip = V2£F  -  (2.48)

5F = i^d^ipa^d,. (2.49)
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Observe that the highest dimensional field, F  transforms as a total derivative. That F  
transforms in this manner will be crucial in constructing supersymmetric field theories.

The field content of chiral superfields consist of fields of spin 0 and |  which suggests 
their use as matter multiplets for realistic field theories. In order to proceed in the 
construction of a supersymmetric field theory, we will also need a superfield that can 
accommodate the spin 1 fields of gauge theories. Such a superfield exists - the vector 
superfield. The vector superfield satisfies the reality condition,

V  =  y t . (2.50)

and the component field expansion of V  reads [20]

v{x»,e,e) = c(x) + iex - i ex  + ^e(M + iN) -^ed(M- iN)

+9a^evll +  ieee ^  +  \ a ^ d ^  -  ioee ( a  +

+ h e m  ( d  -  (2.51)

where C, M, N , D  are scalar fields, x- ^ are fermionic fields, and is a vector field. 
Writing the vector superfield in this form allows us to extract each component field 
by applying various combinations of the fermionic covariant derivatives to the vector 
superfield and evaluating at 9 =  9 =  0. For example,

V\d,o=Q =  ^  — iXa DaD® DaV\gg—o — 4iAQ etc. (2.52)

As with the chiral superfield, we can determine the transformation properties of each 
component field by applying a supersymmetry transformation to the whole superfield, 
namely, 8$ =  i{E,Q +£Q)V. The details can be found in [17, 20]. However, we should 
note that once again the highest dimension field, in this case D. transforms as a total 
derivative,

8D = d„ ( - ^ A  +  Act^D • (2-53)

Having examined the field content of both the chiral and vector superfields, let us
consider the product of chiral superfields. We will find upon expansion tha t and

are also chiral superfields and that the combination $}%  is a vector super­
field. Recall that the highest dimensionful field of both the chiral and vector superfields 
transform as a total derivative. This suggests that we can construct the Lagrangian,

- £ [ * ! D +  ([W'($)]jr +  h.c.) (2-54)
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where the subscripts F  and D  refer to the 69 and 9996 terms of the superfield products.
Renormalizability ensures that the holomorphic superpotential, W ($), (i.e. W  only

product, we will learn that the D  term part contains all the kinetic terms of the theory

matter. Furthermore, the component bosonic fields F(x ) and D(x) that are contained 
in the superfield expansions (see eq.(2.45) and eq.(2.51)) are auxiliary fields (i.e. they

The derivative acting on W  in eq.(2.55) is with respect to <fi once W(4>) —> W(<p). In 
eq.(2.56), T a refers to the generators of the gauge group in the representation, R. of 
the matter multiplets and g is the gauge field coupling. We will discuss supersymmetric 
gauge theories shortly. Most importantly, the tree-level potential [17, 20, 24] can be 
constructed from eq.(2.55) and eq.(2.56),

- supersymmetric theories generate their own potentials.
Note that we can also write the Lagrangian of eq.(2.54) with the use of superspace

contains left chiral superfield) does not contain terms higher than $ 3. Expanding each

and the F  term of the superpotential contains all the mass terms and couplings to

do not propagate) and as such they can beeliminated through the equations of motion 
[17, 20]:

uyi
Da

(2.55)

(2.56)

(2.57)

variables, 9,9. The Grassmann variables form a calculus with the properties [20],

(2.58)

(2.59)

Multiple integrals can also be defined with the measure,

d29 =  - \ d 9 ad9a
4 (2.60)

d29 = ~ d 9 &d9h (2.61)

such that dA9 =  d29d29. Using the properties of the Grassmann calculus, we find that

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 2. SUPERSYM M ETRY FOR MODEL BUILDING 39

the supersymmetric Lagrangian can be written as,

£  =  J d 49 j 2 $ t $ i +  ^ d2d W ($) +  h-c-) (2-62)

since the integrals project out the appropriate D  and F  terms. Writing the Lagrangian 
in this form reveals an important property of supersymmetric theories. It can be shown 
[25, 26] that radiative corrections to the effective action can always be written as a 
single superspace integration over d49 with no superspace delta functions. Since the 
superpotential part of the Lagrangian in eq.(2.62) can only be written as an integral 
over d49 by introducing delta functions, the superpotential does not receive any direct 
renormalization. However, the D term part is subject to renormalization as this term 
is purely an integral over d49. Since the D  term part contains the kinetic terms of 
the Lagrangian, all renormalization effects in the theory are the result of wavefunction 
renormalizations - coupling constants and masses receive no direct renormalization in 
concordance with the no-renormalization theorems [25, 26].

To gain an appreciation of the supersymmetric Lagrangian eq.(2.54), let us construct 
supersymmetric QED. We will follow this example with a discussion of its extension to 
the non-Abelian case. Recall that a (7(1) gauge transformation acts on a vector field as, 

—r V 11 +  c^A(x) where A(x) is an arbitrary local gauge parameter. We can construct 
an appropriate transformation for the vector superfield by considering the term i($ —$1). 
By construction, this new term satisfies the reality condition and therefore serves as a  
vector superfield. Expanding out in component fields, we find that the vector field in 
$  _  3>t can be identified as = —8^(8 -f <ft). Notice that this term appears not 
unlike a (7(1) gauge transformation. Furthermore, each of C ,M ,N ,x  of eq.(2.51) can 
be identified through various combinations of the component fields of — $L jn light 
of these observations, it was suggested that a (7(1) gauge transformation of a vector 
superfield may be written as,

V  (x, 0 ,0 ) - y V  (x, 9,9) +  i [$(x, 9, 9) -  $ t(x , 9,0)] . (2.63)

Not all the component fields of $  — are physical, but can be gauged away while leaving 
the effective gauge parameter, 8 + 8 \  independent. The particularly useful gauge choice, 
called the Wess-Zumino gauge [15],

Fwz {x, 9,9) = 9a>19Vll(x) +  i999X{x) -  999X{x) +  ^ 9999D(x) (2.64)

removes the extraneous degrees of freedom. In this gauge, the field content of the super- 
symmetric representation consists of a spinor field, A(x), a vector field, V^(x), and an
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auxiliary mass dimension two field, D(x). Since the lowest dimensional gauge covariant 
field is the spinor A, this suggests that the gauge field strength can be constructed from 
a chiral superfield. It can be shown [17, 20] that the chiral superfield,

Wa = D 2DaV  (2.65)

may be used to construct the gauge covariant field strength. Writing W a in component 
fields in terms of +  ida^d, we have

=  4zAQ(y) -  (45 jD ( y )  + 2i ( a ^ ) /  V )  b  +  4* V W ^ A 6 (2.66)

where V^v = d^V^-d^V^. The gauge field kinetic term becomes up to a total divergence,

1  (WaWa) = +  iXa^dfjX +  \ d 2. (2.67)

Notice that A, called the gaugino, serves as the super-partner of the gauge field, V^.
All that remains is to couple the vector superfield to the matter chiral superfields. 

We will need both left and right chiralities to construct the massive fermions of QED, 
which suggests the need for two chiral superfields. Consider the objects,

5  =  7 1  (* 1 +  i* 2) (2'68)

T  = ^ ( * 1 - ^ 2) (2-69)

Given that the vector superfield transforms as V  —» A— where A is an arbitrary chiral 
superfield, it can be shown [17, 20] that the objects 5^ exp (2qV) S  and T~' exp (—2qV) T  
are gauge invariant. Putting all this together and using eq.(2.54), we can finally write 
the Lagrangian for the supersymmetric £7(1) gauge theory,

C = ^  (W aWa)F +  ( >  exp (2qV) S  + T f exp ( -2 qV) T^)D + m ( S T  + 5 fT t) (2.70)

Expanding in the Wess-Zumino gauge, we can write eq.(2.70) in terms of the physical 
component fields and infer the Feynman rules for the theory.

Suffice it to say, the non-Abelian case is somewhat more involved; however the same 
methods are employed. The chiral superfield that serves to construct the gauge field 
strength becomes [17, 20],

=  4zA“ (y) -  ( K D a{y) +  2; K O /  y ^ y ) )  b

+ 4 0 V )ad £ V A ad(y) (2.71)
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where a is the gauge group index and,

=  W v -  8UV„ -  g f abcVt (2-72)

Using supersymmetric QED as an example, it can be shown [17, 20] that the objects 
S' exp(2fyT“Va)5 and T'' exp(—2igTaV a)T  are gauge invariant quantities. Assembhng 
the parts, the non-Abelian supersymmetric Lagrangian becomes,

c  = ^  W$ F +  ( s t  exp (2igTaV a) S  + T t exp ( -2 igTaV a) t )  ̂  +  (W(S, T) + h.cfy
D (2.73)

for some general gauge invariant superpotential, W.

2.4 A Cursory V iew  of Spontaneous Supersym m etry Break­
ing

Since we do not observe super-partners of Standard Model particles, supersymmetry 
cannot be an exact symmetry of the low energy description of Nature. As such, we 
will assume that supersymmetry spontaneously breaks leaving the vacuum state non­
invariant under a supersymmetry transformation, i.e.

. <?a|0)^0. (2.74)

We already observed that the supersymmetric ground state is the global minimum of 
the effective potential and must satisfy Evac =  0. Supersymmetry becomes broken if 
-Evac 0 and the positive semi-definite Hamiltonian implies the vacuum energy must be­
come positive. Lifting the vacuum energy from zero, and thereby spontaneously breaking 
super symmetry, can be accomplished by allowing certain fields to acquire non-zero vac­
uum expectation values that are not invariant under supersymmetry transformations
[27]. A quick inventory of the fields at our disposal reveals that,

<0|{Q,^}|0> =  <<¥#)> ~  <0|F|0) (2.75)

<0|{Q,A}|0) =  (0|<iA|0) ~  (0|P|0) (2.76)

as the only candidate fields that can gain a vacuum expectation value without breaking 
Lorentz invariance. Thus, supersymmetry becomes spontaneously broken if and only 
if the auxiliary fields acquire a non-zero vacuum expectation value. Furthermore, in 
accordance with Goldstone’s theorem, the fermionic partner of the field that receives a 
vacuum expectation value must be massless and can be identified as a Goldstone fermion.
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Let us explore supersymmetry breaking with a couple of examples. First, consider the 
superpotential (the O’Raifeartaigh model) [27, 28],

W ($i, $ 2, $ 3) =  ($3 -  M2) +  /z$2$3 (2.77)

with the Lagrangian,

C = +  [^2^ 2]^ "f" [^3^ 3]iP +  [W($i> ^ 2> $ 3) +  h.c.jp • (2.78)

In this case, the tree-level potential is given by,

v = Y . F<Fi =
i

with,

Ff =  —A($3 — M 2) (2.80)

F2 =  “ M03 (2.81)

F3 =  —2 \<fri(f)3  +  n4> 2. (2.82)

so that,
V  =  A2|$f — M 2|2 +  fj?\<pz\2 +  \fup2 +  2A<ji>î 3|2. (2.83)

Clearly, a solution with all of F i,F 2,F 3 vanishing does not exist which implies that 
supersymmetry must be spontaneously broken. Since only F  terms are involved, breaking 
supersymmetry in this manner is referred to as F-term breaking. Taking M 2 < /z2/ 2A2, 
the global minimum of the tree level potential in eq.(2.83) occurs at (02) =  (<£3) =  0
and with (<pi) undetermined - i.e. the potential has a flat direction indicating a vacuum
degeneracy. Expanding out the component fields of this model, we will find tha t the 
fermionic mass sector appears as,

dW
d(f>i (2.79)

£mass = -(pafo&s +  +  h.c.). (2.84)

and we see that ipi is left massless as anticipated by Goldstone’s theorem [29]. Decom­
posing <p3  as

<pz = -j={a + ib) (2.85)

the bosonic mass sector can be re-written,

c m =  - \ iV 2 -  2A2M 2)a2 -  i ( fi2 +  2A2M 2)b2 -  (2.86)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 2. SUPERSYMMETRY FOR MODEL BUILDING 43

indicating that,

m2a = n2 -  2A2M 2 (2.87)

ml =  ju.2 +  2A2M2 (2.88)

while 4>i remains massless. We find that both 4>\ and remain mass degenerate with 
their respective superpartners even though supersymmetry has been broken. The effects 
of the spontaneously broken supersymmetry are revealed through the splittings of the 
masses of a and b from the mass of their super-partner, ^ 3. The peculiarity of this 
situation results from the fact that only the superfield $3 couples to the superfield $1
which ultimately contains the Goldstone fermion. Note that, while the masses of a and
b are split from ^3, we have the following relationship:

m a + m b = 2/x2 =  2m2,3. (2.89)

This results holds in general [30],

STr M 2 =  ^ ( - 1 ) 2J (2J +  1 )m2j  = 0 (2.90)
J

where STr is called the supertrace and J  refers to the spin of each particle. There exists 
one exception to this relationship, £>-term supersymmetry breaking [31], which we now 
examine.

Let us now examine the case where the D  field acquires a vacuum expectation value 
in the absence of F-term  supersymmetry breaking. To begin, we need to consider the 
supersymmetric (7(1) gauge theory since we can add the gauge invariant term [2£V] d to 
the Lagrangian,

£  = 1  [WaWa]F +  [ s t  exp(29T/)S +  2^v ] ^  . (2.91)

This simple Lagrangian gives, through its equations of motion,

F 1 =  0 (2.92)

D + Z + q^4> = 0. (2.93)

Writing out the component fields, we will find that the tree-level potential becomes,

2 2

There are two cases to consider here: £q < 0 and > 0. The first case implies the 
possibility that D2 can vanish, namely, This situation leaves supersym­
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metry unbroken, but breaks the U(l) gauge symmetry instead. We obtain a massive 
gauge boson as well as a massive scalar - the “Higgs particle” - degenerate in mass 
the with gauge boson. Since supersymmetry is left unbroken, there must also be two 
Weyl fermions with the same mass as the gauge boson and the scalar field. Indeed, 
the two fermion degrees of freedom exist and they mix to form h Dirac fermion with 
the appropriate degenerate mass. This is the generalization of the Higgs mechanism to 
the supersymmetric case. Case two excludes the solution D 2 = 0 and thereby breaks 
supersymmetry. The minimum of the potential now occurs at < <p > =  0, D = — f  and 
therefore the vacuum energy becomes, E ^  =  |£ 2. In this case, the 1/(1) gauge symme­
try remains unbroken and thus V f  remain massless. The field A also remains massless, 
and is interpretation as the Goldstone fermion, or Goldstino, associated with the break­
ing of the global supersymmetry. However, the two real scalar fields that compose 4> 
receive a mass as the result of its coupling to the Goldstino,

m j = q£ (2.95)

while their fermionic partner ip remains massless. Notice that the mass shift for each 
real scalar is in the same direction, unlike the situation with F-term breaking. This 
observation modifies eq.(2.90) to,

ST rM 2 = 2Tr Q(D) (2.96)

where Q is the charge matrix and (D) is the vacuum expectation value of the auxiliary 
D  field. In practice supersymmetry breaking may be achieved through a combination of 
both F-term and F-term  methods.

One other general aspect of supersymmetry breaking is worth mentioning. There 
is no reason to believe that supersymmetry remains a global symmetry. If we allow 
supersymmetry to become a local symmetry, we notice that since {Q. Q} depends on 
P 1*. the local theory becomes a theory of local spacetime coordinate transformations -
i.e. a theory of gravity. Local supersymmetry is therefore referred to as supergravity 
[32, 33, 34]. Although the theory is not renormalizable, supergravity can provide us with 
generalizations of F-term and F-term  supersymmetry breaking. In this case, the super­
partner of the graviton, the gravitino, acquires a mass through supergravity breaking
[35] by absorbing a Goldstino in much the same way that gauge fields acquire their mass 
by absorbing a Goldstone boson. It is not our intent to explore the details of supergrav­
ity theories or supergravity breaking mechanisms (the super-Higgs mechanisms [35]) or 
their alternatives. This would lead us too far from our immediate goals. However, it is 
important to note that in supergravity theories, it is possible to break supersymmetry
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with a vanishing vacuum energy - completely unlike the global case. In fact, we may 
tune the vacuum energy to any value. Although we are free to fine tune supergravity 
theories, they do not provide us with an explanation for the small cosmological con­
stant. If we break supersymmetry supergravitationally, with minimal assumptions (i.e. 
assuming minimal kinetic terms in the Kahler potential), while arranging for a vanishing 
cosmological constant [17, 20], we arrive at a simple relationship [36] involving the mass 
of the gravitino, m3/2, the scale of supersymmetry breaking, M s, and the Planck mass, 
Mpi,

M 2
m z  =  — . (2.97)

5 VZMPl K
Since m3/2 represents the mass splittings in the supergravity multiplet, it is possible 
that splitting may be very small compared to the scale of supersymmetry breaking. If 
low energy supersymmetry exists with supergravity mediated supersymmetry breaking, 
m3/2 should be ~  ITeV in order to stabilize the gauge hierarchy problem.

There exists a variety of supergravity inspired supersymmetry breaking models. Per­
haps one of the most compelling reasons for using such methods is that naturally the 
resulting supersymmetry breaking occurs in a flavour diagonal manner - gravity is ig­
norant of flavour. This desired property naturally explains the supression of flavour 
changing neutral currents in supersymmetric extensions of the Standard Model.

While supergravity provides a successful framework for breaking supersymmetry, 
there exist other methods such as gauge-mediated supersymmetry [37] breaking, anomaly- 
mediated supersymmetry breaking [38, 39, 40], and variations along this theme including 
various forms of strongly interacting physics.

2.5 The Minimal Supersymmetric Standard M odel

It is relatively straightforward, if not somewhat tedious, to construct a suitable super- 
symmetric extension of the Standard Model (for example see [41, 24]). To begin, observe 
that the quarks and leptons of the Standard Model can be considered component fields 
of chiral supermultiplets. Since the weak interactions require different representations 
for the left-handed and right-handed chiralities of the fermions of the Standard Model, 
we will require two types of chiral superfields. Recall that the holomorphicity of the 
superpotential demands that the superpotential consists only of left-handed chiral su­
perfields. Therefore, let us adopt the following notation. First, let La =  (L“,L 2, L^)T 
denote a generation space column vector, of left-handed chiral superfields that transform 
as SU(2) doublets, where a =  1,2 represent 577(2) indices. The superfield L contains 
the 517(2) lepton doublets of the Standard Model plus the scalar 55(2) doublet super- 
partners (sleptons), which will be denoted as L. Second, let us denote the conjugate
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SU(2) singlet chiral superfield, that transforms left handed, as E  =  (Ei,Eo, Eo). i.e. a 
row vector in generation space. The superpartner of E  will be denoted as E. In the same 
way, we define Q“, U, and D to denote the quark 517(2) doublet chiral superfield, the 
conjugate SU(2) singlet up-like quark chiral superfield, and the conjugate 517(2) singlet 
down-like quark chiral superfield respectively. The quark superpartners (squarks) will 
be denoted as Q, U, D.

The supersymmetric extension of the Higgs sector is less obvious. The Standard 
Model contains only one Higgs doublet and uses its complex conjugate to couple with the 
up-like quarks such that the electroweak quantum numbers match. As the superpotential 
must be holomorphic, we can no longer employ the complex conjugate of the Higgs 
doublet. At the very least, a supersymmetric Standard Model will require a second 
Higgs doublet that-couples to the up-like quarks separate from the Higgs doublet that 
couples to the leptons and down-like quarks. Thus, we will need two distinct chiral 
superfields, one for the up-like quark sector, H u. and another for the leptons and the 
down-like quark sector, H d. The Higgs chiral superfields contain the Higgs scalars and 
their fermionic super-partners, the Higgsinos. It is possible that the Higgs sector could be 
more complicated, containing many more Higgs multiplets than just one extra doublet, 
however, we will take the minimal path by adding just one extra doublet.

Let us tentatively write the superpotential for a supersymmetric Standard Model by 
simply promoting the fields of the Standard Model Yukawa sector, along with the new 
Higgs superfields, to their chiral superfield counter-parts,

Wmssm =  ea6̂ E Y EL6 +  eabH ad DY d Q6 + eobH“UYuQb (2.98)

where matrix multiplication over generation space is understood. Just as in the Standard 
Model, we can make field re-definitions such that the lepton and down-like quark Yukawa 
couplings are flavour diagonal leaving the CKM matrix in the up-like quark sector after 
an Iwasawa decomposition. However, as it stands, the superpotential of eq.(2.98) cannot 
describe nature. Let us examine this superpotential in more detail. In addition to 
lepton number, baryon number, and hypercharge charge number, the superpotential 
possesses an underlying Peccei-Quinn symmetry [24]. Since only weak iso-spinors carry 
the Peccei-Quinn symmetry, the Peccei-Quinn symmetry will break through electroweak 
symmetry breaking, resulting in a light axion. Since axions have not been observed, this 
presents a problem for the superpotential of eq.(2.98). Furthermore, there exists another 
symmetry, associated with a global U( 1) transformation of the Grassmann superfields 
themselves. If under the transformation, 6 eia0 the chiral superfields transform as 
$  —► elRa§  such that W  —> e2iaW, the theory then possesses an P-symmetry. The 
superpotential of eq.(2.98) is P-invariant with $  —> el2°734>, where $  represents any
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chiral superfield of the superpotential. R-symmetry implies massless gauginos, which 
presents a phenomenological problem as gauginos have certainly not been observed. 
Thus, the candidate superpotential of eq.(2.98) requires augmentation to ameliorate 
these problems.

Introducing the superpotential term which gives a common mass to the
Higgs, helps solve these issues. Notice that this mass term does not violate supersymme­
try or electroweak symmetry, but it does break both the Peccei-Quinn and R-symmetries, 
leaving an R! symmetry. Once the gauginos become massive from supersymmetry break­
ing effects, the R' symmetry is further reduced to a conserved R-parity. It can be shown 
that R-parity, expressible in terms of lepton number, baryon number, and spin, namely 
R  =  (—i)3(-B--£')+25, implies that superpartners are R-parity odd while Standard Model 
particles are R-parity even. In addition, R-parity points to the absolute stability of the 
lightest supersymmetric particle (LSP). This observation has far reaching consequences 
in cosmology and may explain the presence of dark matter. Furthermore, R-parity con­
strains the form of the superpotential by forbidding operators such as DDU, QDL , 
LLE. and LHU. These terms would mediate Standard Model forbidden processes, such 
as lepton and baryon number violation, at levels inconsistent with observation - unless 
the couplings involved were arranged (perhaps through some other exotic physics) to be 
very small. Since R-parity only permits terms in the superpotential that conserve lepton 
and quark number, while at the same time providing a dark matter candidate, and since 
we have already restricted ourselves to one extra Higgs doublet within the confines of 
N  =  1 supersymmetry, the model under discussion is called the Minimal Supersymmetric 
Standard Model (MSSM).

Unfortunately, while the /x term goes a long way toward creating a more realistic su­
perpotential, the p term is a relevant operator that has no symmetry restriction. Thus, 
in principle, p could have an arbitrarily large mass, inconsistent with the electroweak 
symmetry breaking scale. As a result, the p parameter requires a fine tuning. Presum­
ably, unknown dynamics at a scale higher than the MSSM sets the mass of the p. term. 
However, while a fine tuning is necessary, it is only required once, unlike the Standard 
Model Higgs mass. Supersymmetry then guarantees quantum mechanical stability of the 
theory. The new and improved superpotential for the MSSM has the form,

Wmssm =  eahH adE Y z L b +  eabH ad DYd Q 6 +  ea6R “U Y uQ 6 +  fxeabH^Hbd (2.99)

The gauge interactions of the Standard Model can be made supersymmetric straight­
forwardly by using the techniques of the previous section. As we pointed out, supersym-
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metric theories generate their own potential. In the MSSM, the potential becomes,

Y ,  FjFi + ^ ( D 2 + DaD a + D AD A) (2.100)
i= H u,Hd, L ,Q ,E ,U ,D

where a and A  refer to the electroweak SU (2) index, and strong SU (3) index respectively, 
and D 2 is the Z?-term associated with 17(1) hypercharge. At the electroweak m i n i m u m , 

where the electroweak symmetry becomes broken, and with all other scalar fields set to 
zero, we find that eq.(2.100) implies,

D  =  J 51 ( K |2 -  \vd\2) (2.101)

£>(3) =  — 92 ( k l 2 -  k | 2) (2.102)

Fffu =  (°J • (2.103)

Ffii = - ^ vn (b 0)r  (2.104)

where vu, vd correspond to the vacuum expectation values of the up-like and down-like 
Higgs. We see that the electroweak minimum is not at the supersymmetry preserving 
minimum of the potential. The fi term once again plays an important role. In the
absence of the /x term, the F-terms above vanish and the theory develops an infinite
number of degenerate supersymmetry preserving minima with vanishing 17-terms along 
k l  =  k l -  The /x term prevents this possibility by lifting the vacuum degeneracy - only 
with k |  =  |uu| =  0 does the potential sit at the supersymmetry preserving minimum. 
However, this condition leaves the electroweak symmetry and supersymmetry unbroken, 
which is phenomenologically unacceptable. Thus, as it stands, the MSSM offers no 
explanation for electroweak or supersymmetry breaking and therefore the MSSM requires 
extension.

Fortunately, it is unnecessary to know the exact method by which supersymmetry 
breaks. Supersymmetry breaking can be encoded through a series of soft terms - su­
persymmetry breaking interactions of dimension two and three (see for example [24]). 
Again, we must appeal to some unknown physics at some high scale to explain the origin 
of these soft terms. The soft supersymmetry breaking Lagrangian is given by,

^break ing  =  ~ 5 a 0  L ^ - E m p t

- k e Q k m l Q ' 3 -  D m | D t  -  U m ^ U ^

-m^ScfiSTHi -  wkjapHTHg 
+ (-BfXapHSH* + c. c.)
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+  (-eapH SE A e P  + c. c.)

+  ( - Ĉ f f |D A DQ/?- £ ^ E ? t A u Q's +  c .c.)

+  ( ^ ~ M \ B B  -  \ M 2W aW a -  | MzGbGb +  c. c. j  (2.105)

where B  denotes electroweak U(l) gaugino field; W a, a = 1,2,3, denote electroweak 
SU(2) gaugino fields; Gb. b = 1,..., 8, denote strong interaction, SU(3), gaugino fields; 
m?, m |,  m | ,  m ? , m ^, B, A e ,  A d ,  A u ,  mHd> M2, M3 are the supersymmetry
breaking parameters.

At this point let us examine the Higgs sector and the implications of massive gauginos 
that results from the eq.(2.105). W ith the use of the soft supersymmetry breaking 
Lagrangian, the Higgs potential now appears as,

£  (p2 + my (ff?)2-BA<ffM+c.c+i(sf+sI) ((H2)2 - (HS)2)2 (2.106)
i=u,d

Unlike the Standard Model, where the quartic Higgs coupling is an input parameter, 
we see that the MSSM dictates the quartic coupling in terms of the gauge couplings g± 
and 52- Furthermore, the physical Higgs fields form CP eigenstates [41], leaving us with 
two charged Higgs, H +, H~  a CP-odd neutral Higgs scalar, A, and two CP-even Higgs 
scalars, h and H. The up and down like Higgs vacuum expectation values that sit at the 
electroweak symmetry breaking minimum of the Higgs potential are constrained by the 
Fermi constant such that,

with their ratio defined by,
tan  (3 = — . (2.108)

Vd
In addition, the electroweak breaking minimization implies the relations

fj? +  m?Hu — B/j, cot (3 =  cos 2/? (2.109)

fi2 + rr?Hd -  B/j,taxi{3 = cos2/3 (2.110)

which may be used to eliminate the B  term from the soft supersymmetry breaking
Lagrangian, resulting in the tree-level expression for ft2,

o 1 o m w ~ tan2 8

Evaluating the Higgs potential around the electroweak breaking minimum we find a
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tree-level constraint on the mass the lightest Higgs scalar, h, namely,

m h =  cos22/? — mh ( ( 2  — sin22fi) +  ... (2.112)\ m A J

where m z  and m A are the masses of the Z° gauge boson and the CP-odd Higgs scalar 
respectively. Notice that the constraint eq.(2.112) indicates that the lightest Higgs is 
lighter than the Z° mass. This is a rather embarrassing prediction since the empirical 
constraint on the lightest Higgs scalar points to mh > 114GeV [4]. However, the estimate 
of eq.(2.112) gives only a tree-level constraint. The non-triviality of the top quark loop 
corrections (the top Yukawa is not small) dramatically raises the mass bound on m^, 
comfortably placing the mass of mh above the Z°  mass. However, the bound cannot be 
stretched to arbitrarily high energies and the MSSM prefers a relatively light Higgs have 
a  mass < 130 GeV - a tantalizing prospect for the LHC and Tevatron.

In addition to the new scalar particles that form the superpartners of the Standard 
Model fermions, the MSSM also introduces new fermions, namely, the Higgsinos,
H J, H%, the weak gauginos, W ± , W°, B. and the strong gauginos, called gluinos, g. 
The weak sector gauginos and Higgsinos mix after electroweak symmetry breaking. In 
particular, after the Higgs scalars acquire their vacuum expectation values, we can write 
the mass term for the charged Higgsinos and charged Winos of the MSSM Lagrangian 
as,

£  =  -  (W + +) M c ^ _ ]  +  c. c. (2.113)

with the mass matrix,

M e  =  (  r M 2
y v2m\v sin/? g J

By diagonalizing the mass matrix M e, we can re-express the Lagrangian in the mass 
eigenbasis, namely,

(S)=o*(S) (2'n5)
with

M c =  O jdiag (M j- , M -- )  Ol . (2.116)

The mass eigenstate fields x f 2  are referred to as charginos and the real orthogonal 
matrices O r  and O l are chosen such that the mass eigenvalues M --. M — are positive.Xl ' X2
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Therefore, the mass term becomes,

C = - M . - x t x i  ~ Mx~xtX2  +  c-c -x2 ■ (2.117)

A similar situation arises with the weak neutral fermions after electroweak symmetry 
breaking. The four neutral fermionic fields, B, and W° mix to form four mass
eigenstates called neutralinos, x®, X-jj X°- The neutralino mass Lagrangian is given 
by

( 6 \
c  = - ( b  h % i? ;)  m „

\

W 3

s i  /

+  c. c. (2.118)

where

Mi 0 —mz cos ft sin 6\\- mz  sin j3 sin 0\\- ^
0 M2 mz cos p  cos $w -m z  sin /3 cos 0\v

—mz cos /? sin m z cos [3 cos #w 0
^ mzsin/?sin0\y -m z  sin/3 cos 6\v — ji 0 /

(2.119)
An orthonormal rotation leads to the mass eigenstates,

(  X? ^

x°
Xs 

\X% J

— CL (2 .120)

where One is a real, orthogonal matrix. Decomposing the mass matrix in terms of real 
mass eigenvalues, 0, a =  1,2,3,4 we obtain,

M ne =  O jediag (^M̂ o M^o 0 Or 

which allows us to write the mass term Lagrangian,

£  =  - ^ S M xgXaXa-

(2 .121)

(2.122)
a = l

Finally, we come to the squaxk and slepton sector. Recall that for each lepton and 
quark in the Standard Model there exist two complex scalar fields associated with the 
two chiral components. Observing the structure of the superpotential and soft supersym­
metry breaking terms respectively, we can schematically write the scalar mass squared
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matrix for the squarks and sleptons (denoted as / )  as.

{ s i  f k ) M l (2.123)

where,

2 _  j ™\,Q + m } + ^L ,q FHmf ,p ,tan0 ,A )  
tan  /?, A) m 2E&i) + rri2f  + A ^ 0D

M i = (2.124)

The terms and A g y p  arise from D-term contributions and depend on the third 
component of isospin as well as hypercharge. The function F(m /,/x,tan/?,j4) results 
from F-term contributions as well as from ^4-terms in the soft supersymmetry breaking 
potential. The full slepton mass matrix for all generations reads,

y/2
s le p to n

m
m

L L
2
RL

m
m

2 t
RL
2
R R

(2.125)

where,

m LL =  mf +  m | +  m | cos 2(3 ^sin2 6 \v  — ^

m RR =  m 2 +  m | — m |  cos 2/3 sin2 6 \ v  ■ I,
o vcos/3 .

m RL =  -/a n ] tan p + -  ^ =- AE

(2.126)

(2.127)

(2.128)

with
mi =  diag {mh m h m h ) , (2.129)

and mjj, mi2, mi3 are electron, muon, and tau masses respectively. The squarks follow 
analogously. The above Lagrangian written in terms of mass eigenstates f \ , —, f$ (six 
complex scalar fields, two for each generation) becomes,

■c =  - E mv £ A
6 = 1

(2.130)

with
( f A

h  
h
h
h  

\ h  J

( ex \

h  
E*

2

\ % /

(2.131)
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and U j is a complex unitary matrix defined by,

)  U f. (2.132)

As we noted in section 2.3, the no-renormalization theorems guarantee better UV 
behaviour of supersymmetric theories as compared to their non-supersymmetric coun­
terparts. In N  =  1 supersymmetry, wavefunction renormalization effects contribute and 
therefore the couplings of the MSSM are subject to renormalization group flow. A com­
plete list of the renormalization group equations for the MSSM appears in Appendix III. 
As we will see, these corrections have profound phenomenological consequences. We have 
already noted that important quantum loop corrections push the mass of the lightest 
Higgs particle to acceptable levels. Most suggestively, consistent gauge coupling con­
stant unification can be achieved with the MSSM. In the MSSM, the renormalization 
group equations for the U(l) hypercharge coupling constant, <?i, the weak SU(2) coupling 
constant g2, the strong SU(3) coupling constant 53, expressed through a* =  gi/An read

gauge group G respectively. For the MSSM (with two Higgs doublets), we have,

(the factor of 5/3 properly normalizes the hypercharge coupling to the unification cou-

[20, 24]

(2.133)

where in general,
(2.134)

The group factors Cj(G) and C2(R,S)  are defined by,

(2.135)

(2.136)C2(R,S)6ab = T r (T ls T bRJ

where R  and S  denote the representation of the Weyl fermions and scalars under the

&i - —10; b2 =  —1; 63 =  3. (2.137)

Integrating eq.(2.133) between Mz and the unification scale Mgut we find,

ai 1{Mz) ~  a{ 1 (M Gu t ) =  InZ7T
h  ^  M qut 
2tt Mz (2.138)

with.

« i(M gu t) =  a2 (M gut) =  <23 (M gut) =  <*gut(Mgut)
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pling constant, see chapter 3 for details). Using eq.(2.138), we can eliminate a gut(-Wgut) 
and In .Mgut/-Mz from the system of equations yielding,

sin2 M M Z) =  i  (3 4- 7 ^ ^ )  =  0.234 (2.140)

where the initial conditions [4] =  128-8 and 03(Mz) =  0.108 have been used.
The predicted value of sin2 #w from eq.(2.140) fits the measured value, [4], remarkably 
well. Furthermore, using the measured value of Mz together with eq.(2.138) yields the 
unification scale Mgut ~  1-5 x 1016GeV, two orders of magnitude below the reduced 
Plank mass. We will comment more on unification issues in chapter 4.

The running of the soft supersymmetry breaking Lagrangian and the superpotential 
are of particular phenomenological importance. A priori, the parameters of the super- 
potential and the soft supersymmetry breaking Lagrangian are unfixed in so far as they 
reproduce the known masses and couplings of the Standard Model. This leaves a huge 
parameter space consisting of undetermined scalar masses with undetermined phases, 
an unknown Higgs vacuum expectation value ratio, tan [3. a large parameter range with 
undetermined sign for the /1 parameter, undetermined gaugino masses along with un­
determined trilinear A-terms. In addition there exists the problem of supersymmetric 
flat directions, or moduli problems, which present certain cosmological challenges (for 
review see [42]). It appears that the MSSM has created more problems than it solves as 
the number of free parameters has jumped significantly from the Standard Model set. 
However, the MSSM cannot be a final theory of nature and presumably the question 
concerning the origin of the MSSM parameter set will be answered by some unknown 
high scale physics. Empirically, the squark and slepton mass matrices must be nearly di­
agonal and nearly degenerate so that flavour changing neutral current processes remain 
suppressed and presicion electroweak fits are not upset. Furthermore the superpart­
ners must be sufficiently massive to have escaped detection. As a result, the following 
simplifying assumptions have been suggested:

• The squark and slepton masses matrices are proportional to the identity giving all 
the squarks and sleptons a universal scalar mass, mo

o All gaugino masses are degenerate with a universal gaugino mass,

• The trilinear A-terms are proportional to the Yukawa matrices with universal A- 
parameter, Ao

These assumptions dramatically reduce the number of free parameters but the condi­
tions must be imposed at some initial scale - the scale where supersymmetry breaks.
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As discussed in the previous section, there are a variety of methods for breaking super­
symmetry and the method employed will determine the initial conditions for the RGEs. 
For the remainder of the discussion, we will restrict to the generic (and perhaps most 
popular) minimal supergravity method - mSUGRA. In the mSUGRA scenario, the sim­
plifying assumptions are imposed at or near the unification scale. The parameters of the 
MSSM are then evolved via the renormalization group equations from the high scale to 
the electroweak scale. The simplifying mSUGRA assumptions are codified at the high 
scale as,

m | =  m | =  m | =  m | =  m | =  mo - 1, (2.141)

™Hd =  ™HU =  m l  (2-142)
Ag =  A d =  Au =  Ao, (2.143)

Mi =  M2 — Ms =  mx/2 (2.144)

where mo and m x/2 denote the universal scalar mass and the universal gaugino mass 
respectively (I is the 3x3 unit matrix). As we will learn in Part II, the running of these 
parameters can lead to the emergence of flavour changing neutral current processes 
which have testable laboratory consequences. Remarkably, the renormalization group 
running of the MSSM parameter set can also trigger electroweak symmetry breaking 
under rather roboust initial conditions [43, 44, 45]. Running from the unification scale, 
the up-like Higgs mass, m # , becomes negative through contributions from the large top 
Yukawa coupling. Interestingly, only m 2Hu turns negative, leaving all the sleptons and 
squarks (mass)2 positive thereby avoiding the embarrassing prediction of the spontaneous 
breakdown of colour or electric charge.
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Chapter 3

Neutrino Mass and a Grand 
Unification Primer

3.1 The Lepton Sector of the Standard M odel

As the only potentially exactly massless fermions of the Standard Model, neutrinos 
occupy a special place in the low energy description of nature. Furthermore, neutrinos 
carry no colour or electric charge. For these reasons, let us consider the leptonic structure 
of the Standard Model in detail.

It can be shown (see [1, 2] for example) that the leptons enter the charged weak 
interaction through the currents,

Jl?P(x ) = ^ 2  e ifahni1 -  TSM *) (3-1)
i= e ,n ,r

J iePt(X) =  £  ~ l$ ) ei{x ) (3.2)
i= e ,/x ,r

where the index i denotes lepton flavour and the fields e(x) and u{x) represent the charged 
lepton and neutrino respectively. Re-writing the currents of eq.(3.1) and eq.(3.2) using 
the projection operators, P r  = |(1  -  75) and P r  = 1(1 +  75), we obtain,

2 Lfi = (3-3)
i

2^'tL ~  5 3  (3-4)
i

N
The Lorentz covariant objects and L \  have the form of SU(2) raising and lowering
operators which can be made manifest by placing the neutrino and the charged lepton
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into an 517(2) doublet.

(3.5)

implying the SU (2) generators,

(3.6)

The charged weak currents may now be written as.

(3.7)

(3.8)

While the 517(2) generators permit the construction of the charged weak leptonic cur­
rents (now with the inclusion of a neutral component), they cannot by themselves account 
for the electromagnetic current,

This observation suggests the enlargement of the SU (2) group. The simplest choice (and 
the empirically correct one) is the extension 517(2) x 17(1) [3, 4]. The 17(1) current reads,

where the right-handed component of the charged leptons, em  transform as S U (2) sin­
glets. The as yet undetermined coefficients Y  are referred to as hypercharge. Notice the 
absence of which, within the confines of the Standard Model, does not exist. Using

implying the relation, Qem = T$ + |Y , between electric charge and hypercharge (T^ 
denotes the eigenvalue of the third component). It is straightforward to see that Yj,i =  — 1 
and YeiR =  —2. Thus, the leptonic part of the Standard Model with the inclusion of 
the SU(2)l x 17(l)y  gauge bosons, and in the absence of fermion masses reads (the 
subscript L  on the 517(2) gauge group denotes that the weak interaction couples only to

(3.9)

— 'y ) (YLiLi'yflLi +  Y6iReiji'y (3.10)

and J^f, the electromagnetic current can be written as,

(3.11)
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left-handed fields and the subscript Y  refers to the U(l) hypercharge gauge group),

The physical gauge bosons - the photon, A^, the W *,  and the Z® - are formed from

As discussed in chapter 1, a Dirac fermion mass term of the form ni'ipip =  +

some gauge group: i.e. the term is not gauge invariant. Since the charged leptons and the 
weak gauge bosons have mass, the gauge group 577(2)l  x  U ( 1 ) y  must be spontaneously 
broken, presumably via the Higgs mechanism. In addition to providing the gauge fields 
with mass, the Higgs scalar, belonging to an 517(2) doublet, can also be coupled to the 
lepton fields,

where eQ(g, the totally anti-symmetric symbol, transforms as an 517(2) tensor. Once the 
Higgs field gains its vacuum expectation value,

£ lep = {Lii'fDpLi  +  eiRi'fD^eut)  -  -  \ b pvB ^  (3.12)

where

D ,Li  =  (dp +  i g \ r aW ;  -  ig '^ B ^ L i (3.13)

DpeiR =  (dp -  ig '^Y^B ^eiR

-  geabcW*WZ

=  djiB,, -  dvBp

(3.14)

(3.15)

(3.16)

linear combinations of Wp 2,z and B p, namely,

(3.17)

(3.18)

(3.19)

(3.20)

Ip Rib l ) cannot be written if the individual chiral components transform differently under

•^ 'L ep ton—Y ukaw a — &Jr H ^ (3.21)

(3.22)
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the Lagrangian eq.(3.21) provides a mass term for the charged leptons, namely,

•^ L e p to n —Mass—Term =: +  h.C. (3.23)

while leaving the neutrino massless due to the absence of a  v r  field. Since the neutrinos 
are massless by construction, and hence degenerate, we can perform an unphysical bi- 
unitary transformation on the lepton fields, diagonalizing the Yukawa matrix without 
loss of generality,

•̂ Lepton—Mass—Term > ^   ̂^^diag) .. ^iLeiR =  Mnen,&iR. (3.24)
'  i

The massless neutrinos render no difference between the gauge and mass eigenstates. 
Therefore, in the Standard Model lepton sector, no non-trivial mixing angles or CP 
violating phases can exist; unlike the quark sector where all six quark flavours have 
mass. Moreover, the lepton mass term Lagrangian remains invariant under three global 
phase transformations - one for each family,

L i  —> e ia%L i  ; eiR  —> eia%e iR . (3.25)

The Standard Model conserves this phase, interpreted as lepton number, in all pertur- 
bative processes.

3.2 Patterns o f Neutrino Mass

Thus far we have considered the Standard Model with massless neutrinos. The absence 
of a right-handed neutrino prevented us from writing Yukawa couplings to the Higgs 
scalar, generating a Dirac mass term. However, the neutrino holds a special place in 
particle theory in that, the neutrino carries no conserved charge (other than global phase 
rotation associated with lepton number). This property allows us to construct another 
type of mass term - the Majorana mass [5]. Let us explore how such a mass term arises. 
Working in the four component spinor formalism, we adopt the conventions,

■<pc = c $ T =  c w * ,  $ c = i f c

1>L = \{  l - 7 5) ^  =  |(1  + 7 5)V’-

such that
^  =  i>L +  i>R. (3.27)
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and where the charge conjugation matrix is defined as C = -i'y°'y2. Translating to 
the two component Van der Warden notation (see Appendix I) we have the translation 
dictionary,

Also we adopt the notation,

(<?DC =  i ( i  +  73)i>‘ =  (i>c)R =

( # ) l  = \ { l - l  5We = ( « e s * .  (3.29)

Recall that the Dirac mass term mixes chiralities,

m D , 7
^ D i r a c  =  rnD{i)Li>R +  fi-c.) =  —  +  {^ l)c{^r)c +  h-c.) =  (3.30)

and as such, only the Dirac mass term provides mass for fermions that carry a conserved 
U( 1) quantity such as electric charge. On the other hand, we can construct other Lorentz 
invariant mass terms, Majorana masses,

-^ M a jo ra n a —T  =  + h.c} (3.31)

^ M a j o r a n a - S  =  { (V ’ r ) 0^  R  +  h-C-} (3.32)

We are now in a position to write the most general mass term for a fermionic field - the 
combined Dirac-Major ana mass,

-C D irac—M a jo ra n a  =  +  m S ( l p R ) c 1pR  +  m D { U L lpR  +  { ^ l ) C{ ^ r ) C) +  h .C

- i i ® 1 ' * ) ( ; ; ; ) ( * . ) * -  «*>
Diagonalizing this matrix leads to the mass eigenstates. The subscripts on the mass 
terms require an explanation. The mass term m p  refers to a Dirac mass term, which, by 
its nature, also conserves Z7(l) quantum numbers. As we have seen, the Standard Model 
accommodates such masses by employing a doublet Higgs field with Yukawa couplings 
to the charged leptons (and quarks). The other terms, m r  and ms, are Majorana mass 
terms and transform as an SU(2)l triplet and an SU(2)r singlet respectively. It is 
obvious that both of these mass terms cannot carry a conserved U( 1) charge, and, as a
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result, these terms violate lepton number by two units. More succinctly, we have

where the bold face index refers to the lepton field’s SU (2) representation and the last 
index refers to the lepton field’s hypercharge.

We now have several options avaliable for constructing neutrino mass terms. Let us 
consider the simplest case: adding a right-handed neutrino (neutrino singlet), ur. to the 
Standard Model, allowing us to construct the usual Dirac mass term involving Yukawa 
couplings to the doublet Higgs field,

we immediately encounter a naturalness problem. Phenomenologically, neutrino masses 
must be in the eV range (for a detailed account see [6]), which would require a Yukawa

value. Such small Yukawa couplings most probably point to an incomplete picture of the 
underlying theory and, at the very least, implies a  theoretically unsatisfying situation. 
This leaves us with essentially three choices for constructing neutrino mass:

• Extend the Higgs sector

• Extend the lepton sector mass terms

• Extend both the lepton mass terms and the Higgs sector

We have already observed that the Majorana mass term transforms as an
SU{2) triplet. Thus, we may construct a Majorana mass by extending the Standard 
Model Higgs sector by including a triplet Higgs, H  ~  (3,2) (for example see [7]),

The gauge invariant Yukawa couplings that induce the neutrino mass terms once the

(3.34)

implying that,

Lefl ~  (2,1) x (1 ,-2 )  =  (2 ,-1 )

LL  ~  (2, -1 )  x (1, -1 )  =  (1, -2 )  +  (3, -2 ) (3.35)

-^ D ira c —M ass — Tij5QgL^ H  +  h .C .  (3.36)

(where icr2H* ~  (2, —1) has been used). If we include only this term for neutrino mass,

coupling on the order of ~  10 11 once the Higgs doublet acquires its vacuum expectation

H + v/2H ++ 
y/2H° - H +

(3.37)
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neutral component of H  acquires a  vacuum expectation read,

-^Triplet-Mass — Y ( iQ)cZ/^H(er)Q/j ■+ h.c. (3.38)

where the flavour indices have been suppressed and (er)ap is totally symmetric. Again, 
we are confronted with phenomenological problems with this scenario. The triplet Higgs 
vacuum expectation contributes to the p parameter [7],

where vt and vq refer to the triplet and doublet Higgs vacuum expectation values respec­
tively. Since experimentally the p parameter is well known {pexp =  1.00412±0.00124) and 
V£> ~  200 GeV, the triplet Higgs vacuum expectation value is highly constrained, namely 
VH < 1 GeV. Assuming that vR saturates this bound (otherwise we encounter another 
naturalness problem in explaining the small ratio vr / vd) the required Yukawa couplings 
still remain tiny, Y  ~  10-9 . Again, the solution appears theoretically unsatisfying.

This leads us to perhaps the most elegant and natural method for providing neutrinos 
with small mass terms: the see-saw mechanism [8, 9]. It its minimal form, this scenario 
only extends the lepton sector physics by including a neutrino singlet Majorana mass mg 
while leaving m x  absent. Since the neutrino singlet lacks any Standard Model quantum 
numbers, its Majorana mass, mgp^z/#, is unconstrained and should naturally be near 
the cutoff of the quantum field theory, presumably mg ~  M gut ~  1016GeV. In this 
case the Yukawa coupling becomes,

where again, flavour indices have been suppressed. Once the doublet Higgs acquires a 
vacuum expectation value, we may re-write this expression as

where =  vjd (Y). Assuming that m o  ~  miepton and that mg ~  M qut, diagonalizing 
the matrix in eq.(3.41) will provide the left-handed neutrinos with tiny Majorana masses,

Strictly speaking, z/g is not a mass eigenstate. However, considering the large discrep­
ancy between the eigenvalues in the mass matrix eq.(3.42), vl closely approximates the

P - M z  cos Qw
M w -f radiative corrections (3.39)

Ct =  Y  N6apLaH*PvR +  m s {vR)cvR +  h.c. (3.40)

■see—s a w (3.41)

m„ =  m ^m s xm p. (3.42)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 3. NEUTRINO MASS AND A GRAND UNIFICATION PRIMER  66

mass eigenstate. The see-saw mechanism also fits nicely with supersymmetry. Super­
symmetry provides, perhaps, the most natural framework for the see-saw mechanism as 
the introduction of a heavy neutrino singlet only compounds the hierarchy problem of 
the Standard Model. Using the notation of chapter 2, the neutrino singlet extension of 
the MSSM lepton sector reads

W m ssm —r n  =  tabH%EYELb +  ea6U £ D Y D Q b +  Y . e ^ N L 5

+ea6̂ U Y u Q b +  ixeahH lH \  +  (3.43)

with the addition terms in the soft supersymmetry breaking Lagrangian displayed in 
Appendix III. As in the non-supersymmetric counter part, the light neutrinos acquire 
their mass once the heavy neutrino singlets are integrated out and once Higgses acquire 
their vacuum expectation values.

It should be acknowledged that there exists other methods that induce a neutrino 
mass term. Examples include scalar see-saw mechanisms, further extensions of the Higgs 
sector, Majoron models that spontaneously break lepton number, and models with ra- 
diatively induced neutrino mass (see [6] for an exhaustive treatment). Regardless of the 
underlying UV complete theory involved, from the point of view of the Standard Model, 
the effective Majorana neutrino mass term appears as the dimension five operator,

Cef f  = £ LL H H  +  h.c. (3.44)

where /  is a dimensionless constant assumed to be of order one, and A is the scale of new 
physics (flavour and SU(2) indices have been suppressed). In the effective field theory 
framework, we should eventually expect such an operator to arise as no gauge symmetry 
forbids it. Since this dimension five operator first appears beyond the renormalizable 
dimension four interactions of the Standard Model, we might naively expect that the dis­
covery of neutrino mass should be the first signal of physics beyond the Standard Model. 
In addition to the direct consequences of neutrino mass (such as neutrino oscillations, 
which we discuss in the next section), neutrino mass can also induce other operators that 
violate lepton flavour. If the neutrino masses are non-degenerate with non-trivial mix­
ings, diagrams of the form shown in Figure (3.1) give rise to the lepton flavour violating 
(LFV) interaction (m —*• e, 7 . Neutrino mass also allows other Standard Model forbidden 
processes such as r  —► /z,7 , r  —*■ e,7 , and neutrinoless double beta decay (see [6] for 
more processes and further details). The process n  —> e,7 , considered in Figure(3.1), 
where we augment the Standard Model by including neutrino mass and where we assume 
that the neutrino masses are on the order of an eV, leads to the hopelessly unobservable
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->
e"v

Figure 3.1: Feynman diagrams that contribute to the process /i —»■ ej.

branching ratio [10, 11, 12],

As we will see in Part II, the situation for /x —► e'j changes drastically in the context of 
supersymmetry.

3.3 Neutrino Oscillations: Experimental Evidence for Neu­
trino Mass

At present, the solar neutrino, and atmospheric neutrino, deficit observations coupled 
with confirmation from reactor, and accelerator, experiments provide the only direct 
evidence for physics beyond the Standard Model [13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 
23, 24, 25, 26, 27], These observations imply that neutrinos oscillate between flavour 
states providing convincing evidence of neutrino mass. As we noted in section 1, no 
non-trivial mixing angles or CP violating phases exist within the lepton sector of the 
Standard Model - all three neutrinos have vanishing mass. If we consider the possibility 
of non-degenerate massive neutrinos, the weak eigenstates and the gauge eigenstates no 
longer align. Thus we expect the appearance of a non-trivial CKM-like matrix, called 
the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix [28, 29], in the lepton sector. As 
a consequence, the principles of quantum mechanics tell us that a neutrino prepared in 
a gauge eigenstate is a superposition of the neutrino’s mass eigenstates. Thus, neutrinos 
may oscillate between different flavours [28, 29, 30]. Let us explore this phenomenon 
in more detail. In the vacuum the time dependence of a neutrino flavour state may be

B{n  -» erf) =
r ( / x - >  evv) V^(327r)
F(/x —» b'y) _  3G f

{ ^ U t i U ^ / M ^ j  < 1 0 "40. (3.45)
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written as,
(3.46)

where a  and % refer to the flavour state and the mass eigenstate respectively and the 
unitary matrix U connects these states. The transition amplitude reads,

( i ' V ) i  =  E  u<*uh  exP ( - ^ ) (3.47)

and assuming small neutrino masses (|p| m*), we can make the approximation

2mf
(3.48)

For illustrative purposes, let us consider only two generations. With the aid of eq.(3.47), 
we may write

/  _ 2  \
0

|i/“ (t)) «  e~iptU
1 12 Et

u y 5} (3.49)

where the state \v^) is prepared at some initial time. In light of U~'m)mU =  mrdiag, we 
obtain

exp —i
mlm, 
2 E  ' a/3

(3.50)

which, up to a phase, reduces to the Schrodinger equation,

• d I anw  mt,72i Q\
’d t ^  (i)> “  "2E "1" >' (3.51)

We should note that, since the expressions contain m )m  and not m Tm , a neutrino oscilla­
tion experiment cannot distinguish between Dirac and Majorana mass terms. Oscillation 
experiments only imply masses and mixings. In the two generation case we may take

U =
cos 0 sin 9 

— sin 9 cos 9
(3.52)

without loss of generality. Using this expression for U we have,

Um2dlagir' = ( mf cos2 9 +  m | sin2 9 \  (m2 — mf) sin 29
| ( m2 — mf) sin 20 mf sin2 9 +  m2 cos2 9

mf +  mf Am2 f  — cos 9 sin 20 \
2 2 I sin 20 cos 0 /

(3.53)
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where Am2 =  m | — m 2. This allows us to re-write eq.(3.50) as,

.Am2\v(t)a) =  exp j - z  (p  + |  exp i ^ r - T arat
A E a/3

\ i f)  (3.54)

where r® are the Pauli matrices and ra =  (sin 26,0, — cos 26). Finally, we find, up to 
irrelevant phase factors,

IU(tr \ = (  C0S^ ' t ~ is in ^ ' tC0s2e ~ ?s i n s i n 26 \  » ̂ — z sin 1 sin 26 cos +  i sin cos 26 J

Denoting the electron flavour state as (l,0 )r  and the muon flavour state as (0, l ) r , we 
find

Am2 Am2
{ue\ue)t =  cos = £ r t  -  i sin cos 26

AE (3.56)

leading to the transition probabilities,

A m 2
Pue-*ve =  \(veWe)\2 =  1 -  sin2 6 sin2 — — t4 E
7-, . . 9 Am2P5/e— =  sin2 26 sin —— t.* AE (3.57)

In the case of N  generations, the transition probability reads,

„ „ Am?-
4 1UeiY" [U ej \  sin *

hi
= 1 — ^ 4 |? 7 e i |2 \U( (3.58)

and in the case of three generations an Iwasawa decomposition in general leads to the 
introduction of two additional CP violating phases (for review see [31]). Taking c =  1, 
the length defined by

AF.
(3.59)T A E  Lo — Am2 'r~ j

called the oscillation length, allows us to re-write the transition probability as,

Pi/e—i/e =  1 — sin2 26 sin2 ( tr— (3.60)

where x — t defines the distance from the source generating the neutrino flux. For 
the sine-squared function averages to one half, leading to,

Pve-**e =   ̂~  9 Ŝn2 (3.61)

At this point we should bear in mind that the oscillation effect inherently results
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from the superposition principle of quantum mechanics. As such, the appropriate treat­
ment should include a derivation of the oscillation phenomena within the wave-packet 
formalism [32, 33]. However, the more rigorous treatment leads to the same results. 
Importantly, remember that if the energy and momentum are measured with sufficient 
accuracy, the transition between neutrino states cannot occur. Let us expand on this 
point. If the error in m u — yjE% — [p^l2, 5mu. is smaller than the mass splitting Am„, 
then |p„| must be measured with an accuracy of <5|p„| such that,

Am2 »  5ml = = 2|p„|$|p„|. (3.62)

By the uncertainty principle, the position becomes undetermined on the order of (5x) (<5jp„|) > 
h/2-jr which implies (taking h[27r =  1)

=  <3-63>

In this case, the position becomes undetermined on the order of the oscillation length 
and thus the oscillation pattern vanishes. Instead, the oscillation phenomenon reduces 
to eq.(3.61) which simply indicates that either of the mass eigenstates selected by the 
observation is the incoherent sum of the two weak eigenstates. The loss of the oscillation 
pattern also occurs if the origin of the beam is sufficiently localized and again leads to 
eq.(3.61).

Thus far, we have discussed neutrino oscillations in vacua, however, matter effects 
also play a role in the neutrino oscillation phenomenon. At tree level, in matter, ve 
interacts via both the charged and neutral currents while z/F and vT interact exclusively 
through the neutral current [34]. This difference in the interaction type alters the effective 
Hamiltonian, leading to a coherent effect, called the MSW effect [34, 35, 36, 37], which 
may radically alter the oscillation pattern. Let us examine the MSW effect in more 
detail.

Due to the extra contributions that ve receives from interacting with electrons in 
matter relative to the other neutrino flavours, the Schrodinger equation becomes (again 
assuming two generations for illustrative purposes),

_ (  - ^ c o s 2 «  +  v^G Fn« ^ s m 2 0  \  / V  \
(  ^ S i n 2 9  ^ c o s 2 f l  j  \  )

where the term y/2Gpne modifies the original effective Hamiltonian, where n e denotes 
the electron number density in matter and where Gp refers to the Fermi constant.
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Diagonalizing the Hamiltonian,

( i/e \  f  cos 0 sin 0 , , ~ ,j "  1 — sin0 cos9 I I -  I ' (3-65)

where P1,2 denote energy eigenstates in matter, we obtain

cos 29 =  - i ^ E G p n J & m ^  + cosW ( i m )

y  {—2y/2EGpne/A m 2 — cos 20)2 +  sin2 20

sin 26 =  -    ^Sm 2g „  -  . (3.67)
y  (—2y/2EGFne/A m 2 — cos 20)2 +  sin2 29

with energy eigenvalues,

™a,2  =  -V~ '  2"^  6 T  2 V {'^■EGF'ne — Am2 cos20)2 +  (A m 2)2 sin2 29. (3.68)

Furthermore, the oscillation length in matter reads,

-  _  4ttE  4fE  1
0 ™ 2 __~=.2 A»v>2 r  -  ,  I  (3.69)77̂ 2 — mf Am2

{\[2EG pne/A m 2 — cos 29) 2 +  sin220

which becomes much shorter than the oscillation length in vacua, L q, as ne becomes 
large. Notice that a resonance behaviour appears in eq.(3.67) when y/2EGpnejA m 2 
approaches cos 29 causing sin 20 to approach unity (i.e. 0 =  7t/4) regardless of the value 
of 0. We can re-state the resonance condition in terms of a critical electron number 
density,

1 Am2

" r i ‘ =  i 7 I 5 ^ cos2*- (3 J0 )

At the critical density, the two neutrinos mix maximally. The MSW effect is particularly 
relevant to the study of solar neutrinos as the current favoured solution to the combined 
solar, atmospheric, and reactor neutrino deficit observations is the LMA (Large Mixing 
Angle)-MSW solution [38, 39]. In this scenario, a region exists inside the sun where 
ne =  n^rit. causing the MSW effects as the solar neutrino flux emerges. In addition, 
there are also subtle effects governing the conversion process that depend on the width of 
the resonance region (and hence the sums density profile) as compared to the oscillation 
length. Detailed analysis of these effects can be found in [6] and references therein. 
The combined data also suggests that the mixing angles of the PMNS matrix are large 
(unlike the CKM matrix of the quark sector). Furthermore, the MSW effect may also 
play a small role with neutrino flux passing through the earth, appearing as a diurnal

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



CHAPTER 3. NEUTRINO MASS AND  A GRAND UNIFICATION PRIMER 72

asymmetry for the solar neutrinos.

3.4 The Prototype GUT: S U (5)

While the Standard Model has proven to be an excellent description of low energy particle 
interactions (energies up to ~  100 GeV), the framework leaves us with some unsettling 
issues. As already discussed in chapter 2, the Standard Model suffers from a hierarchy 
problem, for which supersymmetry provides a  natural solution. However, there are a 
number of other curious puzzles. One is that the fermion content is spread out among five 
different representations of the Standard Model gauge groups S U (3)c x SU(2)l  x U ( l)y , 
namely,

fL = N G 3 ,2 ,1 )  +  ^3,1, - | )  +  ( 3 ,1 , |  ) +  (1,2, -1 )  +  (1,1,1) (3.71)

where the first two entries refer to the multiplicities of the 5{/(3)c and SU(2)l groups 
respectively, the last entry refers to the hypercharge assignment, and N G refers to the 
number of generations. The Standard Model provides no explanation for charge quanti­
zation (the U(l)y  quantum numbers are assigned by hand), nor the relative ratio between 
the strong and the electromagnetic coupling constants, nor the fortuitous and somewhat 
magical anomaly cancellation that occurs generation by generation [40]. Further to 
these issues, the Standard Model contains 19 free parameters tha t must be determined 
by observation. In light of the recently confirmed observation of neutrino oscillations 
[13, 14,15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27], it appears that, at the very least, 
the Standard Model must be amended with additional particle content and probably 
with a new energy scale. These are only some of the curious issues that beg for a  more 
complete explanation.

A unified framework with a universal coupling constant exists if we embed the Stan­
dard Model into a semi-simple gauge group (or possibly the product of identical simple 
groups with the same coupling constant) of at least rank four (for reviews see [41, 42]). 
That is, since the Standard Model contains four mutually diagonalizable generators, we 
require a gauge group with at least four mutually commuting generators. If we wish 
to avoid vector-like theories that introduce heavy mirror fermions, we will also require 
a Lie group that admits complex representations since f i  ^  fa- Perhaps the simplest 
group that fulfills these basic requirements is the semi-simple Lie group SU (5) [43]. Let 
us explore to what extent SU(5) may address the shortcomings of the Standard Model.

First we note that the fermions of the Standard Model can be assigned to represen­
tations of 517(5). Since the SU(3)c x SU(2)l content of the 5, 5 and the 10 of SU(5)
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breaks down as,

5 =  ( 3 , 1 ) +  (1 ,2 )

5 =  ( 3 , 1 ) +  (1 ,2 )

10 =  ( 3 , 1 ) +  ( 3 , 2 ) +  (1 ,2 )

(3.72)

(3.73)

(3.74)

we see that these representations can hold all fifteen two component left-handed Weyl 
fermions of eq.(3.71). In particular, we have,

5 : ( f a ) i  =

/ \
d f

d f
zl

\ vl  )

(3.75)

(where the indices on the quark fields refer to SU (3) colour) and

10 : (X i j ) L  =  - j =

/ 0 u f _ o  ,c2
U L U lL d n \

_  ? /c3 
U L 0 n c lU L U2L d2L
d>u f - < 0 UZL d%L

—U l  L ~ U 2 L - U Z L 0 Pce LV ~ d \ L - d i L —d z L - 4 0 /

(3.76)

The SU(5) tensors fa, Xij have been introduced with the upper and lower components 
distinguishing each representation from its complex conjugate. For more details on group 
theory and Lie algebras for particle physics see [44, 45].

Given that we have decided on the fermion representations in 51/(5), at this point 
we must address anomaly cancellation. As the Standard Model is a chiral gauge theory, 
the axial-vector current can couple with two gauge bosons at the one loop level through 
triangle diagrams [46, 47]. These diagrams threaten current conservation, a prerequi­
site for renormalizable gauge theories, and moreover, these diagrams violate the Ward 
identities associated with the amplitude for the process. In fact, the anomaly associated 
with any chiral gauge theory can be stated (see [44, 45]) in terms of the generators of 
the gauge group in the representation of the fermions,

Tr ({T a(R ),Tb(R)}Tc{Rj) = | A(R)dabc (3.77)
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where dabc is an invariant tensor defined by,

i{ T a,T 6} =  dabcT c. (3.78)

In order for the gauge anomaly to vanish, and hence preserve renormalizability, the 
fermion representations must be chosen such that J2r A(R) =  0 or the gauge group 
itself must have A (R) =  0 for all R. The Standard Model accomplishes anomaly cancel­
lation, generation by generation, through the peculiarities of the weak quantum number 
assignments [40, 48]. In 517(5), anomaly cancellation occurs since ,4(5) 4- 71(10) =  0. 
Just as in the Standard Model, anomaly cancellation in 517(5) occurs due to the specifics 
of the fermion representations. While the SU  (5) GUT reduces the number of represen­
tations required for the fermions as compared to the Standard Model, SU  (5) offers no 
essential further insight as to the origin of anomaly cancellation.

As noted in Chapter 1, the gauge fields must belong to the adjoint representation of
the gauge group, which in the 517(5) case is 52 — 1 =  24 dimensional. The 24 adjoint
representation of 517(5) breaks down under 517(3)c x 517(2)/, as,

24 : (Aj-) =  (8,1) +  (1,3) +  (1,1) +  (3,2) +  (3,2). (3.79)

We immediately identify (8,1), (1,3), and (1,1) with the gauge bosons of the Standard 
Models - namely, the 517(3)c gluons, the 517(2)/, vector fields W , and the 17(l)y 27- 
field. This leaves us with twelve remaining gauges fields that belong to the (3,2) and 
the (3,2),

A{ = (Xa,Ya) (3.80)

A f  = (X a, Y a)r  (3.81)

where the Latin and Greek indices refer to SU (2)/, and SU (3)c components respectively. 
We will discuss these additional gauge fields in a moment.

The simple gauge group SU (5) offers a simple explanation for electric charge quan­
tization. Since electric charge is an additive quantum number, the charge operator, Q. 
must be some linear combination of the diagonal generators of 517(5). In particular, 
since

Q = Ts + J  (3-82)

is the charge operator of the Standard Model, we require a linear combination of the 
diagonal generators of 517(5) that belong to the 517(2) /, and 17(1) subgroups, namely,

Q = ^(T3 + cT0). (3.83)
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with the SU  (5) generators T3 and To defined by,

T3 =  diag(0,0 ,0 ,1 ,-1 ) (3.84)

(3.85)To =  - = d ia g ( - 2 ,- 2 ,- 2 ,3 ,3 )

and c of eq.(3.83) is a normalization constant that maps To to Y. A  priori the commu­
tation relations, [Ta/2,T,/2] =  i f abcTc/ 2, fix the normalization of the 577(5) generators 
and this normalization does not correspond to the normalization of Standard Model hy­
percharge. By examining the charges of the fermions of the 5, clearly c — — ̂ /(5/3). 
Since the charge operator of SU (5) contains discrete eigenvalues, charge automatically 
becomes quantized. Specifically, the charge operator in the fundamental representation 
reads,

Determining the charges of other representations becomes straightforward by recognizing 
that any 517(5) tensor shares the same quantum numbers as Thus,
for the adjoint representation we have,

which, when applied to the gauge fields of 51/(5) tells us that not only do the twelve 
additional gauge fields carry colour, but that they also carry fractional electric charge, 
Q (X ) =  —4/3 and Q(Y) =  —1/3. These gauge bosons transform quarks into leptons 
and up-like quarks into down-like quarks (and vice-versa). Thus the X  and Y  bosons 
violate baryon number, B, and lepton number, L  and for this reason, the X  and Y  
bosons are often referred to as lepto-quarks. Various baryon and lepton number violating 
processes are induced by the new 51/(5) gauge bosons - including operators that give 
rise to nucleon decay [49, 50, 51]. As these exotic gauge bosons have not been observed, 
nor their baryon or lepton number violating induced processes, they must have acquired 
larger (presumably GUT scale) masses when SU  (5) spontaneously broke to the Standard 
Model. Incidentally, 51/(5) accidentally preserves the combination B  — L, a point to 
which we will return to shortly.

Spontaneously breaking SU (5) down to the Standard Model through the Higgs mech­
anism is an involved process. Let us consider breaking 51/(5) in stages (see [41, 42]) as, 
51/(5) —► 51/(3)c x SU(2)l x  t/( l)y  —>•'51/(3)c x t / ( l)em. Since the initial breaking 
occurs at M q u t  ~  1016 GeV, it will be difficult to experimentally distinguish between 
particular Higgs manifestations - assuming that the GUT hypothesis is correct. How­
ever, let us briefly describe one, perhaps minimal, mechanism. Using an adjoint and

(3.86)

Q(A}) = Qi — Qj (3.87)
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fundamental representation of Higgs scalars, namely, ffj and Hi, it can be shown that, 

SU (5) ->W~mGv t ^  s u (3)c x SU{2)l  x  U{1)y  SU(3)e x U( 1)Y (3.88)

with the Higgs potential,

V(H, H) =  V(H) + V(H ) + A4 ( m 2)  +  A5 ( h ^H2h )  (3.89)

where

V{H)  =  - m f  ( m 2) + A 1 ( m 2) 2 +  A2 ( m 4) (3.90)

V{H)  =  - m l ^ F ^ + A s ^ i f ) 2 . (3.91)

As we can see, the Higgs potential is already more complicated than, the Standard Model 
and we have yet to discuss fermions. The adjoint of Higgs, H, provides the large masses 
for the X  and Y  gauge bosons by acquiring a vacuum expectation value while leaving the 
twelve Standard Model gauge bosons massless. The Standard Model weak gauge bosons 
acquire their mass through the vacuum expectation value of the SU  (2) doublet contained 
in the fundamental of Higgs and the cross terms in the Higgs potential ensures that the 
Higgs triplet of the fundamental obtains a large (~ M g u t ) mass. Problematically, we 
have a huge disparity of mass scales, namely the difference between the adjoint Higgs 
vacuum expectation value and the weak scale vacuum expectation value in the funda­
mental Higgs. Quantum corrections drive the mass of the light Higgs mass toward the 
high scale, which requires a fine tuning to rectify. In fact, this is simply a reincarnation 
of the gauge hierarchy problem that we discussed in chapter 2. Again, perhaps the most 
natural solution is to embed the grand unified theory framework in supersymmetry. As 
we noted at the end of chapter 2, consistent coupling constant unification can be achieved 
bottom-up using the MSSM field content. Thus, we are naturally led to supersymmetric 
GUTs which have restrictive (and rich) low energy phenomenological predictions e.g. 
[52, 53] (for reviews [41, 42]).

Since the fermions of 517(5) transform as 5 +  10, mass terms can be constructed by 
observing that,

(3.92)

(3.93)

(3.94)

Since these tensor products do not contain the singlet representation, fermion masses

5 x 10 =  5 +  45 

10 x 10 =  5 +  45 +  50 

5 x 5  =  10 +  15.
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must arise from spontaneous symmetry breaking just as in the Standard Model. Further­
more, the Higgs representations we have considered thus far, only H, which transforms 
as a fundamental, (i.e. H  ~  5) which contains the weak SU{2) doublet is suitable for 
fermion mass construction. The adjoint representation, H, fortunately does not couple 
to the fermions as (H) would provide the fermions with unacceptable GUT scale masses. 
In non-minimal incarnations, we could also use a 45 of Higgses to construct fermion 
masses. The other possible representations are unsuitable since they lack a colour sin­
glet direction. Thus, using the minimal Higgs content, may write the Yukawa sector 
symbolically as,

Yukawa =  Vt/10 • 5 • l H  +  Y D10 ■ 10  ■ 5H +  h.c. (3.95)

where all flavour and group indices have been suppressed. After symmetry breaking, the 
Yukawa Lagrangian predicts,

m e = rrid (3.96)

=  m s (3.97)

m T =  mb (3.98)

near the unification scale. These relations are subject to renormalization group flow 
which corrects these values at the weak scale. For example, after renormalization group 
running and assuming three generations, the last relation, m T = mb becomes the ap­
proximately correct relation [54],

m T(mz ) «  ^ m b(m z )• (3.99)

The expressions for the lighter fermions are also corrected, but the predictions are less 
successful owing in part to non-perturbative effects that govern the lighter quark masses.

One of the motivating factors behind grand unification is a context for coupling 
constant unification which would explain the ratios between all the coupling constants 
of the Standard Model. In the SU (5) GUT, the covariant derivative appears as

D„ = +  i g s A ^ Y  (3.100)

where ffe represents the universal coupling constant such that,

9 5  =  9 3  =  9 2  =  9 i -  (3.101)

In eq.(3.101) we identify gz as the strong coupling constant, go as the weak coupling
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constant, and g\ = y/3/Zg' with the U(l)y  hypercharge coupling constant g'. As we
saw in detail in chapter 2, the renormalization group equations imply that each cou­
pling scales logarithmically with energy, resulting in a unification scale of ~  1016 GeV. 
Presumably, the different renormalization group equations of section 2.5, describing sep­
arate trajectories for each coupling constant, result after the grand unified group, in this 
case SU(5), spontaneously breaks and the heavy gauge bosons are integrated out. At 
the unification scale, it can be shown (see for example [41]) that the Weinberg angle is 
uniquely determined,

and its prediction at the low scale after renormalization group running becomes a test 
of the model. As we demonstrated in section 2.5, consistent unification is possible in a 
supersymmetric framework, which provides yet another motive for embedding the grand 
unified theories in supersymmetry.

Conspicuously, we have thus far ignored neutrino mass. As we learned in the previous 
sections, there now exists compelling evidence that neutrinos have mass. Let us explore 
how SU (5) might accommodate this empirical fact. One option would be to look for an 
7 = 1  Higgs field that can couple to the fermions, providing a Majorana mass term for 
the neutrinos. Unfortunately, in the minimal 517(5) model under discussion, only the 
24 contains an I  =  1 Higgs field, and, as we have already learned, the adjoint of Higgs 
scalars does not couple to the fermions. Furthermore, we have already noted that S U (5) 
conserves B  — L  globally which prevents a Majorana mass term of the form M l^ l ^ l -  
However, we are free to add a neutrino singlet field, v r , by hand, placing the field in 
the 1 of 517(5). A large gauge invariant Majorana mass term, M r v r v r . could then be 
written down and the see-saw mechanism could then be employed to provide the z/^s 
with Majorana mass. While this procedure violates global B  — L, we should naturally 
expect that eventually this accidental symmetry would be broken by higher dimensional 
operators. As S U (5) provides no explanation for a right handed mass term, presumably 
the UV completion will also explain the violation of B — L. In a very real sense, neutrino 
mass implies physics beyond SU  (5) for GUT model building.

Let us briefly return to the subject of anomalies. We observed that the fermion rep­
resentation of the Standard Model and SU (5) preserved vector and axial-vector current 
conservation by canceling all the associated triangle diagrams. With just the Standard 
Model fermion content, other currents such as

Y 2  + URl^UR + dR^ d R)

+  eRj^eR.)

(3.103)

(3.104)
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as well as the combination jg +L are also also anomalous. The anomalies associated with 
these currents do not cancel. Fortunately, these anomalies are harmless since both B  
and L  are global U(T) symmetries (although there are various cosmological implications 
[55, 56, 57, 58]); the presence of the anomalies simply tells us that neither 17(1) b 5 U (l)/, 
or U(1)b+l can be gauged. Thus if we wish to develop GUTs that naturally explain 
neutrino mass, we should look for groups that not only naturally accommodate a right- 
handed neutrino in a representation with the other fermions (i.e. without appealing to 
adding a singlet by hand), but we should also look for a gauge group that contains a 
U(1)b - l  factor, such that when U(1)b - l breaks, the right-handed neutrino acquires a 
large Majorana mass.

3.5 A  Larger Group for M odel Building: 50(10)

As we alluded to in the previous section, neutrino mass suggests grand unification be­
yond 517(5). If we also wish to include gauged U(1)b - l , we will require a gauge group 
of at least rank five. Additionally, we will again require a  group that admits complex 
representations and, given the nice features of 517(5), it would also be useful to con­
sider groups that contain 517(5) as a subgroup. The orthogonal groups of the form 
50(4n  +  2) fit our prerequisites of which 50(10) [59] is the smallest. It will be useful to 
decompose representations of 50(10) under 517(5) x 17(1), 517(2)/, x 517(2)/? x 517(4), 
and SU(3)C x 517(2)/, x 517(2)/? x 17(1). Interestingly, the 5 0 (n ) groups admit special 
representations called spinors (see [44, 45]). Perhaps the most familiar examples are 
the spinor representations of 50(3) which has the same algebra as 517(2). In the case
of 50(10), the sixteen dimensional spinor representation transforms under 517(5) and
SU(Z)c x 517(2)/, x 517(2)/? respectively as,

16/, =  5 +  1 0 + 1  (3.105)

16 L =  (3,2,1) +  (1,2,1) +  (3,1,2) +  (1 ,1 ,2 ). (3.106)

Thus we see that the 16 not only accommodates all the Standard Model fermions, but 
also a neutrino singlet which may be used with the see-saw mechanism once 50(10) 
breaks. In fact, all the fermions of a single generation fit into one representation of 
50(10). Furthermore, 50(10) is automatically anomaly free as A(R) = 0 for all R  and 
hence provides a natural explanation for anomaly cancellation. The reduction of the 
number of fermion representations and automatic anomaly cancellation addresses two of 
the aesthetically unpleasing aspects of SU(5).

As the 45 is the adjoint representation, 50(10) predicts forty five gauge bosons.
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Under SU(3)c x 51/(2)/, x  51/(2)#, the adjoint representation breaks down as.

45 =  (8 ,1 ,1) +  (1,3,1) +  (1 ,1 ,3) +  (1,1,1)

+  (3 ,2 ,2 ) +  (3,2,2) +  (3,1,1) +  (3,1,1) (3.107)

We identify the gluons with (8 ,1 ,1 ), the electroweak gauge bosons (W^’2,3) with (1,3,1), 
the X  and Y  gauge bosons of the 517(5) theory with (3 ,2 ,2) and (3 ,2 ,2), and the new 
50(10) gauge bosons with (1 ,1 ,3), (1 ,1 ,1), (3 ,1 ,1), and (3,1,1). Unlike 51/(5) or the 
Standard Model, the combination B —L  is now gauged and can be identified with (1,1,1). 
Interestingly, we see the existence of 51/(2) r  gauge bosons, W^’2’3, with (1,1,3) and 
from eq.(3.106), the fermions also form doublets under 51/(2)#. Thus 50(10) restores 
the left-right symmetry lacking in both 51/(5) and the Standard Model. Presumably, 
the right-handed 5 t/(2)# bosons acquire large masses once 50(10) breaks down to the 
Standard Model.

Symmetry breaking in 50(10) is even more complicated than in 51/(5). There are 
a large number of symmetry breaking patterns tha t can eventually lead to the Standard 
Model. Depending on the symmetry breaking pattern and number of intermediate scales 
desired, Higgses in representations such as 10h, 45h, 16h, 54h, 126h, or the 210h  
may be employed. As an example, the breaking pattern 50(10) —> 51/(3)c x 517(2)# x  

51/(2)# x U(T)B- l  —*■ 51/(3)c x 5t/(2)# x  U(l)y  may be accomplished by using a 45h  
for the first stage, a 126h for the second stage, and finally a IOh for the last stage. 
However, only lower dimensional Higgs representations, i.e., representations no larger 
than the 54h, axe inspired by string theory and, phenomenologically, lower dimensional 
representations might be preferred. Often, the desired textures for the quark and lepton 
mass matrices serve as a  guide for model building. In particular, model building with 
50(10) links the quark and lepton mass matrices in a non-trivial fashion. Generally, this 
leads to the challenging task of incorporating the small mixing angles of the CKM matrix 
with the observationally preferred large mixing angles of the PMNS matrix. Recently, 
progress has been made in this direction [60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71] 
and as we shall see in Part II, some of these model classes also have deep implications 
for lepton flavour violation.
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Part II

Constraints on Extensions o f the  
Standard M odel from  

Observations
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There is a theory which states that if ever anybody discovers exactly what the Universe 
is for and why it is here, it will instantly disappear and be replaced by something even 
more bizarre and inexplicable.

There is another theory which states that this has already happened.

The Restaurant at the End of the Universe
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Preamble

As the research community anticipates the start of the LHC project a t CERN, models 
that extend the Standard Model are being tested by low energy observations. The low 
energy implications of hypothesized new interactions near the electroweak unification 
scale and the implications of new physics that addresses the origin of neutrino mass axe 
currently of particular interest. Precision low energy observations provide a  window into 
physics at high scales as a result of renormalization effects. Prom the low energy point 
of view, new interactions appear as non-renormalizable operators that point toward the 
scale where the theory requires ultra-violet completion. As an example, if the neutrino 
oscillation data is interpreted as evidence for Majorana neutrino mass, the mass operator 
involving Standard Model fields appears as the non-renormalizable operator

tL L H H .  (3.108)

Based on the current observational data neutrino masses are <  eV, which suggests a 
scale of new physics at A ~  1014 GeV - well beyond the reach of any current or proposed 
collider facility. The papers discussed in Part II examine the low energy consequences of 
energy scales where new physics is expected.

The gauge hierarchy problem outlined in Part I strongly suggests that new physics 
will appear in the TeV energy range. It is hoped that the underlying mechanism respon­
sible for electroweak symmetry breaking will be discovered during the LHC program. 
Wide classes of theories that provide an ultra-violet completion of the Standard Model 
call for the existence of new scalar interactions. These scalar interactions may have indi­
rect effects on low energy processes. Ambitiously, an experimental undertaking involving 
positron-neutrino correlation measurements of pure Fermi 0+ —*■ 0+ super allowed transi­
tions in /3-decay of 32 Ar  and 33 Ar  was completed to search for the presence of new scalar 
interactions. As these experiments are difficult, the resulting limits on scalar interactions 
attained were substantially weaker than the already pre-exiting limits on new pseudo- 
scalar interactions. In fight of these experiments, we show in chapter 4 tha t pion physics 
can provide an important testbed for new physics that violates chirality independent of 
whether it violates parity. We demonstrate, model independently, that new scalar inter­
actions originating at scales near electroweak unification can affect the pion branching 
ratio by inducing pseudo-scalar interactions through renormalization group flow. Under 
rather robust assumptions, the experimental limits on induced the pseudo-scalar inter­
actions dramatically improve upon the limits on underlying scalar interactions set from 
positron-neutrino correlation precision measurements of radioactive atoms.

Over the last five years the new experimental results in neutrino physics have be­
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come a  watershed for the high energy physics community. The confirmation of neutrino 
oscillations provides the only direct evidence for physics beyond the Standard Model. 
Much effort has been expended both experimentally and theoretically to gain a deeper 
understanding of the physics involved. As discussed in Part I, the see-saw mechanism 
provides the most elegant method for generating small neutrino masses. Naturally, su­
persymmetry dovetails with the neutrino see-saw, providing a plethora of opportunities 
for low energy observation. In particular, the supersymmetric seosaw with gravity me­
diated supersymmetry breaking predicts flavour violation and in particular the process 
/i —> ey. In addition, the MSSM also predicts the stability of the lightest supersymmetric 
particle (LSP) which may provide an explanation for dark matter. If the LSP composes 
the dark matter, as inferred from the precision observations of the cosmic background 
radiation (CMBR), the MSSM parameter space becomes highly constrained. As we find 
in chapter 5, the see-saw and MSSM parameter spaces will become even further reduced 
by the next generation of /z —*• ey experiments.

Prom a phenomenological perspective, it is an irresistible temptation to build models 
that attempt to explain the origin of the see-saw. The grand unified model supersymmet­
ric SO (10) provides a compelling framework. As discussed in Part I, SO (10) contains a 
neutrino singlet in the 16 spinor representation along with all the fermions of the Stan­
dard Model. By imposing flavour symmetries, it is possible to construct realistic models 
that explain the origin of both the observed PMNS and CKM matrices. However, these 
models also predict lepton flavour violation. As we will learn in chapter 6 the level of 
LFV predicted in a certain class of popular supersymmetric SO(IO) models is danger­
ously close to the experimental limit, assuming MSSM parameters such that the LSP 
forms the dark matter.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



89

Chapter 4

Constraints on Scalar Couplings

4.1 Introduction

While there is strong support for the V  — A  form of the charged weak current, it is 
possible that new physics at or above the weak scale could give rise to scalar interactions 
that would compete with standard model processes. Examples of such possible physics 
include the exchange of extra Higgs multiplets which could enter the theory at scales 
from the Z mass upwards [1], leptoquarks which could be present at scales above 200 
GeV [1], contact interactions from quark/lepton compositeness which could be present 
at the TeV scale [1], or strong gravitational interactions in TeV brane world models [1]. 
Recently, precision experiments [2, 3, 4] have searched for scalar interactions in /5-decay, 
however, direct experimental constraints on scalar couplings still remain relatively weak 
as compared to the corresponding limits on pseudoscalar couplings [1, 5].

The precision of the limits on pseudoscalar couplings comes in part from the fact that 
the pion, a pseudoscalar meson, has a chirally suppressed decay tt± —> V^vi which would 
be sensitive to new pseudoscalar interactions [6]. These pseudoscalar interactions would 
be detected by the failure of the standard model prediction [7] for the chiral suppression 
in the ratio of branching ratios • R is the large chiral suppression factor, by the
square of the electron-muon mass ratio, that allows such a powerful test of new physics 
that violates chirality and parity.

In the standard model, the leading contribution to pion decay occurs through tree 
level W exchange. At the quark level, this is the same process that is involved in the (3- 
decay of a nucleon ignoring the spectator quarks. While the pion cannot decay through 
a scalar interaction, the pion can decay through induced pseudoscalar interactions gen­
erated from the electroweak renormalization of the scalar couplings. It is of considerable

from 7r
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interest to use limits on the induced pseudoscalar couplings to set indirect limits on the 
size of the underlying scalar interactions.

In the following sections we outline our methods and estimate the limits on the size 
of scalar couplings based on the indirect effects from charged pion decay. We use general 
operator techniques to obtain model independent results and we combine these results 
with data from pion decay and also muon capture, to constrain the scalar couplings 
indirectly. We also discuss some of the implications of these results and comment on 
prospects for future searches for scalar interactions.

4.2 P ion  Physics and N ew  Pseudoscalar Interactions

Consider constructing an effective Lagrangian and matrix element for the process » 
in the presence of pseudoscalar interactions. We can set limits on the strength of the 

pseudoscalar interactions from their interference with tree level W exchange. Since the 
pion is a pseudoscalar, we can use the following relations for current matrix elements,

(01^75^1 t t (p )) = iVzfvPn 

(0 |u75d| 7r(p)) = iV2fir =  iV2
mu + rrid

(0 |ucr^75d| 7r(p)} =  0

(0 {ua^dl 7r(p)) =  0, (4.1)

where f n  =  93 MeV and / f  =  1.8 x 105 MeV2. The matrix element for the tree level W 
contribution can easily be constructed by using eq.(4.1), giving:

M w ± = GFfv  cos ~  75)n]Pii, (4.2)

where p^ is the pion momentum and 9C is the Cabibbo angle. A pseudoscalar contribution 
with left-handed neutrinos in the final state can be expressed as a four-fermi contact 
operator,

Op =  -*2A2 (4.3)

where p is the pseudoscalar coupling constant. This expression can be converted to a
matrix element using eq.(4.1),

Mp = P̂ [I{1 ~ 75̂ ‘ ^
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In the presence of a pseudoscalax interaction, the overall matrix element for the process 
is the coherent sum, M p  + M w ±  = M p

M i = Gf U  cos 6c$ ' f (  1 -  75)vi]Pn +  -  75 M  (4.5)

Having constructed the matrix element, we can now estimate the ratio of branching 
ratios

r(7T~ ->■ eve) { m l - m l )  ( |M ei/\2)
r(7r- -» nvp) (m2 -  m2) (|M ^ |2) '

Summing over final states of the squared matrix element we have

( \M i \2) =  4 G j f l cos2dcm f{m l  -  mf) +  8 9cPm l(m f  -  mf)

(4.7)

For simplicity we have assumed that the pseudoscalar coupling is real, however, in general 
p may be complex. The more general expression is obtained by making the following
replacements,

P  - >  =

M 2 -  l/f". (4.8)

We find that the brandling ratio is given by 

r(7i- -»• eve) (m l  -  ml)
F(tt- -> nvn) (m% -  m2)

m%(ml -  mf)  +  R e
mp(m l — m^) +  R u (4.9)

where the R ei/J. functions are

Thus far we have only discussed interactions with left-handed neutrinos in the final 
state. The inclusion of right-handed neutrinos requires a modification since pseudoscalar 
contributions to decays with right-handed neutrinos in the final state cannot interfere 
with the W  exchange graph; hence the contributions to the rate add incoherently. With 
right-handed neutrinos, the expression for the matrix element becomes,

M p  =  v f e  f t 1 + 75M ’ (4 J1 )
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where p' is the pseudoscalar coupling involving right-handed neutrinos. Defining

M ^ | i 4  =  l.28xlO ^. (4.12)(m2 -  m2)2 m2

we can express the branching ratio as 

t v  -  x ( 1  I \ / 2  4 R e(p ;) i .. 1*12#  i l ^ l 2^  \
r ( 7 T  - >  e u e ) _  1 ^  V  * G 7 a 2L  cos9cm e ^  2G'^.A4/ |  cos2 0cm% ~ r  2 G | . / |A 4 cos2 gem g

r(7T- -► “  L  hrRe(Pu) , |pu|2/ 2 , IPiil2/!
\  V  ~ G f A 2 / *  c o s  0cm M ' r  2 G |.A 4/ 2  c o s 2  0cm 2 ^  2G 2.A4 / 2 cos2 0c7n2 /

(4.13)

If we assume either universal scalar couplings or else scalar couplings involving only the 
first generation, we obtain the following approximation for the ratio of decay widths,

r f r -  -  «/«) ^  T ( [ ^  ARe(p) | |p|2/2 | |p f / 2
r(vr —>■ jiv^) y Gf A2/tt cos 9cm e 2GpA4f% cos2 0cm2 2G|.A4/ 2 cos2 0cm2 y

(4.14)

We will discuss the effects of more general generation dependence of the scalar couplings 
in section 4.6. The theoretical standard model calculation including radiative corrections 
is B r ^  =  (1.2352 ±  .0005) x 1CT4 [7] and the measured experimental branching ratio is 
Brexp =  (1-230±-0040) x 10~4 [1, 8, 9,10]. Combining the experimental and theoretical 
uncertainties in quadrature, we can obtain a bound on the pseudoscalar couplings at 2a,

—l.OxlO-2 <  42  ^ Re(p) I |p|2^  I |p/|2^  <  2.2X10"3.
GF^f-K cos 9cm e 2G2FA4f% cos2 0cra2 2G|,A4/ 2 cos2 6cm \

(4.15)

4.3 Local Scalar Operator Analysis

Electroweak interactions can radiatively induce pseudoscalar operators from pure scalar 
interactions. Suppose that at some scale A there exists new physics that generates a 
purely scalar four-fermi interaction. It may be due to the exchange of fundamental 
scalars or it may be due to a variety of other physics such as compositeness, extra 
dimensions, leptoquarks, et cetera. Independent of the details of the new physics that 
generates the scalar interactions, they will appear as non-renormalizable four-fermi scalar 
contact operators below the scale A.

In order to facilitate power counting, the MS scheme is most often used with effec­
tive field theory [11]. The MS scheme (or any mass independent subtraction scheme)
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presents the subtlety that heavy particles do not decouple in beta function calculations. 
That is, mass independent renormalization schemes do not satisfy the conditions of the 
Applequist-Carazzone theorem [11]. This is dealt with by simply integrating out the 
heavy fields by hand at their associated scale. Thus whether we analyze the effective 
interactions in a UV complete theory or in the effective theory, we will arrive at the same 
renormalization group running (up to threshold corrections) provided that we are only 
interested in results below A and only up to some finite power of ( j ) .

We start by considering SU(2) x U(l) invariant four-fermion contact interactions 
that are generation independent and flavour diagonal (see figure 4.1 and figure 4.4). 
We will discuss the effects of generation dependence in section 4.6. We consider two 
types of scalar operators in order to facilitate comparison with the direct experimental 
constraints. Type A (Oa ) have left-handed neutrinos in the final state while Type B 
(Ob ) have right-handed (sterile) neutrinos. These interactions appear as extensions to 
the standard model Lagrangian involving non-renormalizable operators,

•^scalar =  ~h?^A (4-16)

where sa and sb  are undetermined scalar couplings. Prom these interactions, electroweak 
radiative corrections (see figure 4.2 and figure 4.5) can in principle induce pseudoscalar 
interactions. We retain corrections up to order and from this analysis we extract the 
anomalous dimension matrix.

4.3 .1  T ype A  O perator A nalysis: O a

The operators of Type A are as follows,

01 = [eRL][QdR] (4.17)

02 =  [eRL][uRQ], (4.18)

(where the SU(2) indices have been suppressed) such that the pure scalar interaction is

Oa =  0 i  +  02- (4.19)

Since we are assuming that at the scale A there is a pure scalar interaction, we take 0 \  
and 02 to enter the theory at the high scale with equal weight.

In calculating the anomalous dimension matrix a third operator is generated through 
renormalization: the operator O' =  [ejiQ] [urL] mixes with the other two. However, in 
order to construct the matrix element for the pion decay amplitude, we need to rotate
the operators to a basis that has a definite matrix element between the vacuum and the
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Figure 4.1: 0 \  and Oo. Type A contact interactions

Figure 4.2: Example of electroweak corrections to Type A contact interactions. All 
permutations are required including wavefunction renormalization; the vector bosons 
are the W^’2,3 and B u

on-shell pion state. This requires Fierz reordering,

O' =  - \ 0 2 +  (-~)[eRa^L}[uRa^Q]

where we define
0 3 =  (-^[encr^LWuRcr^Q].

Note that <  OIO3|tt(p) > =  0. This leaves us with the following beta functions,

M-
d{Q) 1 

d/x 32 -a2

(4.20)

(4.21)

(4.22)

where.

0 =

(  Oi \  
02 

\ 03)
(4.23)

and
0

7 = (4.24)

-.2 _l 98 „/2

- 6 f  + ± fg v  Qg2 +  10/

The constants g' and g are the U(l) and SU(2) coupling constants, respectively. The

65 +  f g ' 2 0
0  - f i -2  _L 128 „/2

0
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results of the numerical integration of the renormalization group equations are displayed 
in figure 4.3. 0 \  and O2  start out with equal amplitude at the scale A. They are then 
renormalized to the weak scale of roughly 100 GeV. In the first panel the x-axis indicates 
the starting scale A, i.e. the scale of new physics. The y-axis indicates the amount each 
operator is suppressed in running from the scale A to the weak scale. Each operator 
renormalizes differently and the splittings give rise to the pseudoscalar interaction. If 
the scale A is at or very near the weak scale then threshold effects become important, 
which we will discuss in the following section. The second panel plots the difference 
of 0 \  and O2  as a function of scale. This difference is proportional to the amount of 
pseudoscalar interaction induced.

1.4--.o,
1.02

„ 1.015
- 0.8

<  1.01

0.4
1.005

0.2

150 200
A  (G eV )

250 350300 150 200 250 300 350
A(GcV)

(a) (b)

Figure 4.3: Type A operator RGE analysis. Panel (a) shows how each operator evolves 
with scale. Panel (b) displays the induced pseudoscalar proportionality factor.

4 .3 .2  T yp e B  O perator A nalysis: O b

The Type B operators are as follows,

01 =  {LvR){Qdft\ (4-25)

0 2 =  [ L v r ]  [ u r Q \  (4-26)

(where the SU(2) indices have been suppressed) with

0 B = Oi + O2 . (4.27)

We assume that the interaction at the scale A is purely scalar as in the Type A
scenario. Again operator mixing is present with a third induced operator, namely
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Figure 4.4: 0 \  and Cb, Type B contact interactions

Figure 4.5: Example of electroweak corrections to Type B contact interactions. All 
permutations are required including wavefunction renormalization; the vector bosons

- 5O2 +  ( - § ) [Lu^ i/r ][Qa^dji} where 0 3 =  ( -  §) [Qa^dn ]. We extract the

The results of the numerical integration of the renormalization group equations are 
displayed in figure 4.6. As we have seen before in section 4.3.1 the graphs in figure 4.6 
illustrate the effects of renormalization on the operators 0 1 and O2  when they enter with 
the same amplitude at the scale A.

In both Type A and B scalar interactions we see that renormalization effects induce

are the W^’2,3 and B^.

O' = [Ldfi][QisR] which must be rotated as before into the appropriate basis: O' =

following anomalous dimension matrix:

(4.28)

where,
( ° i \

0 = 0 2

V ° 3  /

(4.29)

and
’ Qg2 +  f  g'2 0 0

7 = 0 6g2 + ^g12 6g2 -  |g12
0 b 2~ \ ^  12 g2 + %g'2

(4.30)
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Figure 4.6: Type B operator RGE analysis. Panel (a) shows how each operator evolves 
with scale. Panel (b) displays the induced pseudoscalar proportionality factor.

a pseudoscalar interaction. The size of the pseudoscalar interaction depends on how 
far the scale A is from the weak scale. The larger the scale separation is, the larger 
the induced pseudoscalar proportionality factor becomes. The effective pseudoscalar 
couplings, which we denoted as p and p' in section 4.2 , are given by,

P =  s a A a {A )

p '  = s^A B(A) (4-31)

where A/t and Ab  are the renormalization group factors induced from the running from 
the scale A down to the weak scale (A^ and Ab  are plotted in the second panel of figure 
4.3 and figure 4.6). The factors and sq are the undetermined scalar coupling constants 
introduced in eq.(4.16). Since the pseudoscalar is induced from a scalar interaction we 
are now in a position to place limits on the magnitude of the scalar coupling from pion 
physics; the scalar couplings syi and sb  at the scale of the new physics A are now 
constrained by the requirement that p and p' satisfy eq.(4.15).

A comment on QCD corrections is in order. QCD is a parity invariant theory and
therefore QCD corrections cannot induce a pseudoscalar interaction by themselves. In
our analysis, the induced pseudoscalar arises from the difference of two operators that 
initially combined to give a purely scalar interaction and the QCD corrections will affect 
the two operators in the same way. The QCD corrections can only adjust this differ­
ence by an overall multiplicative factor. This is true for both operators of Type A and
B. However, in section 4.5 we compare the direct experimental constraints on scalar 
couplings from /3 decay to the indirect constraints on the renormalization induced pseu­
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doscalar interactions from pion decay. Since the same scalar operators are involved in 
both processes, the QCD effects are the same for each case and therefore will cancel in 
a comparison of the relative strengths of the limits from the two processes. The largest 
part of the QCD renormalization of the scalar operators (and hence of their weak inter­
action induced pseudoscalar difference) will come from the QCD induced running from 
the weak scale down to the chiral symmetry breaking scale, of order 4 «  lGeV [12], 
where we take the pion decay matrix element using PCAC. The correction to each of the 
operators can be computed through the QCD renormalization group running of these 
operators,

° « (1GeV) =

«  1.3 Oa ,b {Mw) (4.32)

for Aq c d  =  200MeV. The induced pseudoscalar, which is proportional to A a ,b , will be 
enhanced by this factor of 1.3.

4.4 Pseudoscalar Interactions From Threshold Effects

A limitation of the renormalization group operator analysis of the last section is its 
inapplicability if the scale of new physics is at or very near the electroweak scale. In 
this case, threshold effects become the dominate contribution. To estimate the threshold 
effects, we consider a toy model where a VEVless scalar doublet is added to the standard 
model. Indeed it is only for the exchange of a scalar doublet that we need to consider a 
possible scale for new physics near the electroweak scale. For leptoquarks, compositeness, 
and extra dimensional gravity, direct experimental constraints imply [1] that the scale A 
of new physics is sufficiently above the electroweak scale that RGE running dominates 
threshold effects. In principle, the addition of a VEVless scalar doublet can lead to both 
scalar and pseudoscalar interactions in the tree level Lagrangian. Since pseudoscalar 
interactions are directly constrained by tree level contributions to pion decay and we are 
presently interested in limits on pure scalar interactions, we arrange the couplings such 
that only scalar interactions arise at the scale of new physics,

£  =  (A)LeRS  +  (A')QdRS  -  (Ar)QuRS  +  h.c. (4.33)

where, A and X' are the scalar couplings to the quarks and leptons respectively, and 
S  =  ia2S. In this working example, the scalar interactions have the property that 
they couple in a universal and flavour diagonal manner with undetermined scalar cou­
plings to quarks and leptons. It is the charged scalar couplings that the (3-decay ex-
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S ~ k

' f u

Figure 4.7: Dressed Z°  exchange diagrams.

periments constrain directly. The pseudoscalar interaction can potentially be induced 
at one loop through three classes of diagrams: scalar-dressed Z exchange box diagrams, 
scalar-dressed W exchange box diagrams and radiative corrections to the quark vertex 
(see figure 4.7, figure 4.8 and figure 4.9). The weak interactions do not respect parity 
and the scalar interactions change chirality, thus diagrams of this form can potentially 
induce a pseudoscalar interaction. To estimate the effect of the scalar on the branching 
ratio, we will make the approximation that the quarks are massless and ignore external 
momenta. Box diagrams that involve the Higgs or the Goldstone modes can be ignored 
since the couplings are mass proportional and hence their contribution is small.

By explicit calculation we can show that while both the dressed W and Z exchange 
box diagrams give non-zero amplitudes, their tensor structure is such that after taking 
the matrix element between the pion and the vacuum they give vanishing contributions. 
In the vertex correction class of diagrams we are dealing with primitively divergent graphs 
(see figure 4.9). In order to obtain a conservative estimate of the induced pseudoscalar 
arising already from threshold effects, we can regulate the loop diagrams by cutting off 
the loop momentum at the weak scale and integrate from 0 to M z-  Cutting off the loop
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Figure 4.8: Dressed W  exchange diagrams.

Figure 4.9: Radiative corrections to the quark-scalar vertex.

momentum at M z  represents a conservative estimate, in that the scale of new physics 
is at the weak scale and therefore there is no scale separation for renormalization group 
running proper. In this case we find a non-vanishing contribution. The three graphs in 
figure 4.9 give the following result for the pion decay matrix element,

-^Vertex —
V2g2U  XX’ 

64tr2 cos2 9WM%VyjiVlg I

n , o  V V / U A '  r7/1

° 3647T2 cos2^ M 2[ ( 7sM]

sin2 9y^j ln(2) +  cos(29W) ^ln(2) -  0 [Z(l -  75)»i] 

(4.34)

To get a second, independent, estimate of the threshold corrections, in a different 
renormalization prescription, we will imagine integrating out the weak scale degrees of 
freedom (W, Z and scalars) to get an effective low-energy theory. The resulting theory- 
wili have only dimension six four-fermion operators; to simplify our calculation let us 
imagine setting the scalar masses just below the mass of the W  and Z and integrating 
out the W and Z first and then immediately integrating out the scalars, thus inducing 
the four-fermion operators. If we use a dimensionless regulator, the effective fermion-
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scalar theory after integrating out the W and Z will have Yukawa couplings shifted 
by threshold effects neccessaxy to  reproduce the residual effects of the W and Z in 
the resulting effective theory in which they are absent. These threshold corrections 
have been computed in [13, 14]. We then immediately integrate out the scalars, with 
their corrected Yukawa couplings, to get the final low-energy effective theory of fermions 
with four-fermion couplings. Using the results for the threshold corrections for Yukawa 
couplings from [13, 14], with the gauge charge representations of our particles, and then 
immediately integrating out the scalars at the weak scale (which we take to be M z)  we 
get an effective induced interaction from the vertex corrections of:

(4.35)

That the estimates of eq.(4.34) and eq.(4.35), which use two entirely different regulariza­
tion and renormalization prescriptions, agree to within a factor of two gives us confidence 
that estimates of the threshold corrections are of this order and are not artifacts of the 
regulator chosen. To be conservative, we will use the estimate of eq.(4.35) which in 
conjunction with eq.(4.15) and in the absence of right-handed neutrinos gives,

- 3  x 10-2 < ^ < 6 x  10-3 (4.36)
G  p

where,
\ \ f

M - J j f  ( « 7 )

The above calculation gives a conservative estimate of the amplitude, including only 
contributions from threshold effects. We see in this toy example that even from threshold 
effects alone a pseudoscalar interaction will be radiatively induced.

4.5 Comparison with /5-Decay Constraints

We can compare our bounds on scalar currents, with those arising in nuclear /3-decay. 
The effective Hamiltonian for allowed /3-decay has the general Lorentz form [15],

Gp -  — —

H  =  ~j={ + CvdeWslltv)

+  (^p^n)(Cs^ei/G +

+  o $P a^ n )  {CTi>e<7\^v + C,T'ibeaxfjn^i>u) } • (4-38)
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A pseudoscalar term has not been included since it vanishes to leading order in nuclear 
13 becay. In the absence of right-handed currents. Ci = C[ and as we have mentioned 
before, we consider purely scalar interactions. (Note that in the above, Mp2- is taken 
to be the left projector. This is opposite to our convention in the preceding sections. 
However by using this convention in this section, it will be easier to compare with the 
(3-decay literature.) The transition probability per unit time is given by [15],

Wif =  ~ p eE e(Emaj: -  Ee) ^1 +  ave cos 9 + sin6 dQ (4.39)

where E rnax is the maximum energy of the electron in beta decay, ve = pe/E e and,

f  =  2 ^ p \2 0 '̂1H2 + \C'v\2 +  \C s\2 +  |Csl2) +  2 ^ g t \2 ( \ ° M 2 +  \C 'a \2 +  |C t |2 +  |C^|2)

<  =  \ \M f \2 {\Cv \2 +  |C{,|2 -  |C5 |2 -  | ^ | 2) -  ±\MGT\2 (\CA\2 + |C ^|2 -  \Ct \2 -  \Or\2)

bt; =  ^Re (CSQ  + C'SC$) \MF\2 + ^Re {CTC \ + C'TC'£) \MGT\2. (4.40)

The angle, 9, is the angle between the electron and neutrino momenta and b is the Fierz 
interference term. The direct searches [2, 3, 4] for scalar interactions in /3-decay consider 
pure Fermi transitions 0+ —» 0+ as the parameter a has a particulary simple form. In 
this case the Gamow-Teller matrix elements are absent and the Fermi matrix elements 
divide out,

Q =  l £ M 2_+ l c y l 2 -  I f o l 2 -  lc 's\2 ( 4 4 1 )
ICvP +  W  +  I C s P d - W  ^  ;

Since in the standard model Cy  =  C ’v =  1, a 1 implies evidence for an effective scalar 
interaction.

We need to rewrite our expressions for scalar interactions in terms of Cs and C's 
where Ci — C ijCy. The scalar couplings can be re-expressed,

S , =  ^ p ( f t  +  c ;)  (4.42)

Sb =  A‘g ( H ‘5V . - c ; )  (4-43)

where the S a , S b  denote scalar interactions at the nucleon level. The operator analysis of 
section 4.3 was completed with quarks, thus we need to include the scalar form factor < 
p\ud\n >  which can be estimated from lattice calculations [16], <  p\ud\n > «  0.65 ±0.09.
By saturating the error in this quantity, we can obtain a conservative 2 a  constraint
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equation on the scalar couplings from pion decay (see eq.(4.15)),

- L 0 x 1 0 ' 2 £  -  2'2X10'
(4.44)

If we include only left-handed neutrinos in the theory, we are constrained to lie along 
the line Cs = C's whereas if we include only right-handed neutrinos we are forced to he 
along Cs = —C's. We can now examine a few special cases.

Figure 4.10: Constraint plots on the real parts of Cs and C's at A =200 GeV. Panel 
(a) corresponds to a phase of 0°; panel (b) to ±45°; and panel (c) to 45° and —45° for 
C.5 and C's respectively. The diagonal band is the experimental limit set by the b-Fierz 
interference term from /3-decay at the 90% confidence level and the solid annulus is the 
approximate experimental bound given in [3]. In all cases, the allowed region is the band 
between the two ellipses. An enlargement of the figures is displayed in figure 4.11.

In the absence of right-handed neutrinos, if we consider Cs and C's to be purely real 
and the scale A of the order of 200 GeV, the indirect limits from i —> Uvi decay give
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Figure 4.11: Constraint plots on the real parts of Cs and C's at A =200 GeV. Panel
(a) corresponds to a phase of 0°; panel (b) to ±45°; and panel (c) to 45° and —45° for 
Cs and C's respectively. The diagonal band is the experimental limit set by the b-Fierz 
interference term from /3-decay at the 90% confidence level. In all cases, the allowed 
region is the band between the two ellipses. The enlarged area more clearly shows the 
width of the region.

us the limit
-1 .2  x 10-3 < C S < 2.7 x 10“4. (4.45)

For comparison, the experimental 90% confidence limit determined from the b-Fierz 
interference term in /3-decay (see eq.(4.40)) is |Re(C's)| <  8 x 10“3 [3, 5j. We see that the 
indirect limit from pion decay is stronger by over an order of magnitude. On the other 
hand, if we consider Cs and C's to be purely imaginary: again in the limit, of left-handed 
couplings we obtain,

\Ca\ < 1.2 x 10”2 (4.46)

where the scale A is of the order of 200 GeV. Again for comparison, the experimental 
limit on the size of the imaginary part at the 95% confidence level, with only left-handed
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Figure 4.12: Constraint plots on the imaginary parts of Cs and C's at A =200 GeV. Panel
(a) corresponds to a phase of ±90°; panel (b) to ±45°; and panel (c) to 45° and —45° 
for Cs and C's respectively. The solid ellipse is the approximate experimental bound on 
the imaginary part of the couplings assuming nothing about the phase [3]. In panel (a), 
the unshaded interior ellipse is the constraint from pion decay. In the remaining plots, 
the allowed region is the band between the two ellipses. An enlargement of the figures 
is displayed in figure 4.13.

neutrinos, is approximately |Im((7s)| < 1 x 10-1 [3]. The indirect tt* —> V^vi limit is 
stronger by approximately an order of magnitude. If we take Cs — —C's so that we are 
in the limit of right-handed couplings and the b-Fierz interference term vanishes we find,

\Ca\ < 1-0 x lO-2 . (4.47)

Again for comparison, at lcr, the direct experimental constraint is |CS| <  6 x 10-2 [3]. 
In each case presented the scale of new physics was at A =  200 GeV corresponding 
to A^(200 GeV) «  7.7 x 10-4 , A.g(200 GeV) «  8.9 x 10-4 . Because the pseudoscalar 
interactions are induced through renormalization group running from A down to the elec-
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Figure 4.13: Constraint plots on the imaginary parts of Cs and C's at A =200 GeV. Panel 
(a) corresponds to a phase of ±90°; panel (b) to ±45°; and panel (c) to 45° and —45° for 
Cs and C's respectively. In panel (a), the interior of the ellipse is the constraint. In the 
remaining plots, the allowed region is the band between the two ellipses. The enlarged 
area more clearly shows the width of the region.

troweak scale, the higher the scale of new physics is, the more competitive our results 
become relative to beta decay. As the scale of new physics is lowered, the constraints 
from w* —» become less stringent. However even in the worst case limit where the 
new scale is at the Z-mass and therefore we would no longer have an interval of renormal­
ization group running, the renormalization threshold effects calculated in eq.(4.36) are 
still competitive. As an example, if we take Cs and C's to be real and ignore right-handed 
neutrinos we find that,

- 2  x 10“2 < Cs < 4 x  1(T3. (4.48)

Plots of the pion physics constraints for the more general situation (where the real 
and imaginary parts of Cs and C' vary independently) are given in figures 4.10, 4.11 4.12, 
and 4.13. We plot the constraints for the real and imaginary parts separately. Note from
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eq.(4.44) that the phases of Cs and C's are important when constructing these separate 
plots. In order to convey the effects of the phases most clearly, we have chosen three 
interesting cases. In the real plots we consider: Cs and C ' to each have a phase of 0°; 
Cs and C ' to each have a phase of ±45°; and the situation where Cs has as a phase of 
45° and C's has a phase of —45°. In the imaginary plots we consider: Cs and C's to each 
have a phase of ±90°; Cs and C's each have a phase of ±45°; and the case where Cs has 
a  phase of 45° and C's has a phase of —45°. All three plots in the imaginary case are 
well within the region allowed by the direct experimental bounds [3, 17].

There are two points of interest that warrant further discussion. First, note that 
in the limit of sufficiently large phases (i.e. >  85°) the ellipse bound in figure 4.11 
moves entirely inside the b-Fierz interference limit, allowed region. This is expected since 
phases approaching 90° imply tha t Cs and C' are almost completely imaginary. When 
this situation occurs and we are in the limit of left-handed couplings (i.e. along the line 
Cs =  C '), there are two solutions consistent with the pion physics constraints and the 
b-Fierz interference bound. One solution is centered around 0 and the other is centered 
off 0 along the line Cs =  C's yet inside the b-Fierz interference limits. Even in these cases, 
the width of the ellipse bound is still of the order of 2 x 10~3. Secondly, in order to move 
from the origin along the ellipse by more than the width of the allowed region requires a 
delicate cancellation between the terms in eq.(4.44). If we ignore the possibility of this
cancellation, the region allowed by pion decay would collapse to  a small region near the
origin of length given by the width of the ellipse bounds.

4.6 Flavour Dependent Couplings

Thus far we have obtained limits on scalar interactions in the limit of universal flavour 
couplings. Let us now relax this assumption. One case that deserves attention is the limit 
of mass proportional couplings. This implies that R e/ — m 2)) =  Rli/[mjl {rr^r — 
m3)) in eq.(4.10) and therefore there is no effect on the pion branching ratio,

r(7r~ -» eve) = {ml -  m*) I m 2{ml -  m2) + Se~
F ( t t -  ->  /j.i/fi) {ml  -  m 2 ) [_m.2(m2 -  m 2) +  SfJL_

=  T. (4.49)

This observation also holds in the presence of right-handed neutrinos. However, in 
this case, we still can bound the scalar couplings involved in /3-decay by combining 
the 7r± —»• limits with data from muon capture experiments. Recent experiments 
and analysis of muon capture on 3He indicate that the muon-nucleon scalar coupling is
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bounded by [18]

^ < 4 x  10-2Gf  (4.50)

with a neutrino of left-handed chirality. Therefore, in the limit of mass proportional
couplings, Se/ A2 must be of the order of 200 times smaller due to the electron-muon
mass ratio. This implies tha t Cs is bounded,

| |  < 2 x 1(T4. (4.51)
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Figure 4.14: Constraint plots on the |Ce| and |CM| couplings at A =  200 GeV. Panel (a) 
corresponds to phases for Ce and of 0°, 0°; panel (b) to 90°, 90°; panel (c) to 180°, 
180°; panel (d) to ±45°, ±45° respectively. The allowed region is the bounded area in 
the lower left corner. The horizontal line is the muon capture bound [18].

In order to estimate the degree to which the presence of muon scalar interactions 
can weaken the limits that we infer from ir± —> fiv i, let us assume that the muon 
scalar coupling saturates the experimental bound eq.(4.50). Substituting this into the 
expression for the pion branching ratio eq.(4.13), ignoring right-handed neutrinos and
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assuming a scale A of 200 Gev, eq.(4.15) is modified to the following form,

-3 .3  x 10"2 < V 2~  A{>Re(p)fl +  - „ 2 7 4 ^ 2/3 2 ^  73 x 10_3• (4-52)GjrA2/* cos 9cm e 2G^A4/ f  cos2 0cm 2

We find this conservative approach has the effect of weakening our limits a factor of 
three at most compared to the analysis in section 4.5. The limits on scalar couplings 
with A =  200 GeV, from n± —> V^vi combined with muon capture scalar limits, are 
substantially stronger than limits on scalar couplings from direct /3-decay searches.

Finally, we consider the allowed region for the electron-scalar and muon-scalar cou­
plings in a model independent manner. Again the constraint equation derived from 
eq.(4.13) is,

-1 .0  x 10-2 <
/ 1 , KUKz(Cc)Aa , \cc\2n2J l  \

V  A  cos 9cm c ~l~ 2 / |  cos2 9cm f  ^

1 -1- i f*
\  f i r cos Qcrrip. "f* 2 / ;  cos2 0c J

< 2.2 x 10~3, (4.53)

where,

C<x GfA2 ° e Gf A2' 4̂'54')
We display the results in figure 6.2 for a number of different phase conditions. We 
consider the cases where the complex phase of Ce and are 0°, 0°; 90°, 90°; 180°, 180°: 
±45°, ±45°, respectively.

4.7 Discussion

By considering renormalization effects on universal (or alternatively first generation), 
and flavour diagonal scalar operators, we have derived limits on the size of the ratio 
between scalar and vector couplings from precision measurements of 7^  —*• V^vi decay. 
As a typical constraint value, in the absence right-handed neutrinos, we find that —1.2 x 
10"3 < C S < 2.7xl0-4 for A of the order of 200 GeV. A more general comparison with the 
/3-decay experiments (with the inclusion of right-handed neutrinos) is made in the plots 
in figure 4.11 and figure 4.13. We note that the most conservative estimate of the limits 
occurs when the new physics arises at the electroweak scale. In this case, the contribution 
to the induced pseudoscalar comes entirely from threshold corrections which we estimate 
from the calculations in section 4.4. The limit for real couplings in the absence of right- 
handed neutrinos from threshold contributions is —3 x 10-2 <  Cs < 6 x 10-3 . In 
the scenario where we have arbitrary generation dependence of the scalar couplings, 
tt* —> ftv i limits can be combined with limits on scalar interactions in muon capture 
to bound the first generation scalar couplings. These limits are illustrated in particular
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cases in figure 6.2.
These observations have implications for current /3-decay experiments. Direct searches 

for scalar interactions in /3-decay will be most competitive if the new physics responsi­
ble for the effective scalar interactions arises at the electroweak scale in the explicit 
exchange of new scalar particles. In these circumstances, the indirect limits from thresh­
old induced pseudoscalar interactions, eq.(4.48), are comparable to the direct /3-decay 
scalar searches. Therefore, interest in searches for new scalar interactions with /3-decay 
experiments remains undiminished.

On the other hand, for new effective scalar interactions arising as effective SU(2) 
x U(l) invariant operators at mass scales above 200 GeV (as expected in models with 
leptoquarks, composite quarks/leptons, or low scale quantum gravity) the constraints 
arising from the precision measurements of w* —> decay, combined with limits
on scalar interactions in muon capture, can be stronger by an order of magnitude or 
more than the direct experimental searches. Furthermore, the relative strength of these 
searches becomes better, the higher the mass scale of the new physics compared to the 
electroweak scale. This argues strongly for improved experimental precision in measure­
ments of muon capture, and ^  —> V^vi decay. In particular we note that in the case of 
pion decay, the experimental error exceeds the uncertainty in the theoretical calculation 
by a factor of eight. A new measurement of —s- Z± i/j decay with an order of mag­
nitude greater precision would not only constrain physics beyond the standard model 
which could potentially contribute to tree level pion decay, but as we have argued above, 
will also indirectly provide tests of new scalar interactions of unparalleled precision.
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Chapter 5

See-Saw Induced CM SSM  Lepton  
Flavour V iolation Post-W M A P

5.1 Introduction

The standard model contains three continuous global symmetries associated with lepton 
flavour. Neglecting non-perturbative effects arising from the weak SU(2) anomaly, the 
standard model conserves lepton flavour exactly, as the charged Yukawa matrix Y e and 
the gauge interactions can simultaneously be made flavour diagonal. The solar [1]—[5], 
and atmospheric [6], neutrino deficit observations, which imply neutrino mass and mix­
ing, (and their confirmation by reactor [7], and accelerator [8], experiments), presently 
provide the only direct observation of physics that cannot be accommodated within 
the standard model. The smallness of the inferred neutrino masses can be understood 
through the see-saw mechanism [9], which involves the introduction of a heavy Majorana 
fermion in a gauge singlet (right-handed neutrino) for each generation. The light neu­
trino masses are then induced through a Yukawa interaction of the form N ^ Y ^ L jH ,  
once the right-handed neutrinos are integrated out at the Majorana scale, M r . The 
resulting induced neutrino mass operator arises at dimension 5 (H H LL ) and, on di­
mensional grounds, would be expected to be the first observable extension beyond the 
renormalizable dimension 4 operators that compose the standard model interactions, 
given the standard model particle content at low energies.

Even without the addition of a see-saw sector generating neutrino masses, the stan­
dard model suffers from a gauge hierarchy problem, with quadratic divergences in ra­
diative corrections to the Higgs mass parameter. These require unnatural fine-tuning of 
the input Higgs parameters, readjusted at each order in perturbation theory, in order to 
maintain the hierarchy of scales between the gravitational energy scale Mpi, and the scale 
of electroweak breaking Mw- A natural solution to this problem is the supersymmetric
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extension of the standard model, where the extra particles and interactions necessitated 
by supersymmetry contribute cancelling contributions to the destabilizing quadratic di­
vergences in the Higgs potential, as required by the supersymmetry non-renormalization 
theorems. After soft supersymmetry breaking the cancellation of the quadratic diver­
gences will still remain, though there will be finite shifts of the Higgs mass parameters 
by an amount proportional to the soft supersymmetry breaking. Model dependence 
enters in the choice of mechanism to impose the soft supersymmetry breaking. An es­
pecially attractive and well-motivated possibility is that the supersymmetry breaking is 
communicated (super-)gravitationally from a hidden sector in which supersymmetry is 
spontaneously broken, to the observable sector of the supersymmetric standard model 
(mSUGRA). Models with soft supersymmetry breaking masses of the form that this 
mechanism would impose, and where each of the soft supersymmetry breaking scalar 
masses, gaugino masses and trilinear couplings are universal and flavour diagonal at 
the Planck scale, comprise the constrained minimal supersymmetric standard model 
(CMSSM).

To incorporate see-saw neutrino masses in a supersymmetric extension of the stan­
dard model, we consider the minimal supersymmetric standard model with additional 
right-handed (singlet) neutrino supermultiplets and their superpotential interactions, 
where each of the soft supersymmetry breaking scalar masses, gaugino masses and tri­
linear couplings are universal and flavour diagonal at the Planck scale. New indirect 
sources of low-energy lepton-flavour violation (LFV) appear with the introduction of the 
singlet neutrino supermultiplets. Renormalization group running of the slepton mass 
matrices and trilinear couplings in the presence of right-handed neutrinos generates off 
diagonal elements that contribute to LFV processes [10],

(Am£)y «  - g ^ ( 3  +  a2)m l(Y ^ Y ^ y  In (5.1)

where M r  is the Majorana scale. As the see-saw mechanism violates lepton number 
by two units, the CMSSM with right-handed neutrino singlets continues to conserve im­
parity: therefore the lightest supersymmetric particle (LSP) is stable. If it is assumed 
that the dark matter is composed of the LSP (which is expected to be the lightest 
neutralino), the CMSSM parameter space becomes tightly constrained by the WMAP 
satellite observations [11], as well as by laboratory searches. These constraints [12,13,14] 
have important implications for the rates of lepton-flavour violating processes.

In this study, we examine CMSSM lepton-flavour violation [15, 16, 17] in simple 
general classes [18] of see-saw models which are constructed to fit the low energy neutrino 
oscillation data. The parametrization of see-saw models is considered in Section 2. Two 
specific classes [18] of them (corresponding to hierarchical or degenerate Majorana masses
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for the singlet right-handed neutrinos) form the model range of our calculations in Section
4. The models considered have their neutrino Yukawa couplings (and Majorana mass 
scale) chosen as large as reasonable, to maximize the rates for lepton-flavour violating 
decays; this is a conservative assumption, as we wish to consider how much of CMSSM 
parameter space (and see-saw model space) is still consistent -with experimental limits on 
lepton-flavour violation, and this is conservatively determined under assumptions that 
maximize its calculated rate.

In Section 3 we discuss the range of parameter space of the CMSSM over which we 
perform our calculations. The CMSSM parameters are chosen such that their renormal­
ization group running to low energies yields radiative electroweak symmetry breaking, 
and a resulting spectrum of particle masses that is consistent with experiment. In partic­
ular, we display our results over CMSSM parameter ranges determined by [12] and [13], 
which impose that the resulting models have LSP relic densities in the region determined 
by WMAP [11], and are consistent with the LEP direct search limits, and the rate for 
b —*• s j .  See also [14] for other parameter determinations using WMAP and laboratory 
data.

In Section 4 we compute the branching ratio for the decay p —> ey [15, 16], in the 
classes of see-saw models considered, over the allowed range of CMSSM parameter space, 
and compare to present [19], and prospective [20], data for this process. We consider 
p —> ey because with the present level of experimental precision, lepton-flavour violation 
in the models and parameter ranges we consider would only be detectable in muon decays. 
Of the muon decays, since the rates for p —* eee, and fiN  —> eN, are largely dominated 
by electromagnetic penguin contributions (again, in the models and parameter ranges 
we consider), they are suppressed with respect to the rate for p  —*■ ey by an extra factor 
of a. Since at the present time the experimental limit on BR(p —> ey) <  1.2 x 10_ n
[19], is of comparable strength to the limits on BR(p —> eee) < 1.0 x 10-12 [21], and 
BR(piV —> eN) <  6.1 x 10-13 [22], the model class that we study will be consistent with 
all the present lepton-flavour violation data if it satisfies the present limit on BR(p —»■ 
ey). We will find that even for a choice of neutrino Yukawa coupling (and Majorana 
scale) that maximizes the rates for lepton-flavour violation, that much of the model 
space and parameter range is consistent with present experimental limits, though future 
experiments should probe these ranges thoroughly, at least for the largest choices of 
Yukawa couplings.

In Section 5 we present our conclusions. For a thorough review of muon physics and 
muon flavour violation, see [25].
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5.2 Supersymmetric See-Saw Parameterization

The leptonic part of the CMSSM see-saw superpotential is

C =  Y  +  Y  (5.2)

above the Majorana scale. Here, L{, i =  e,ji, r , is the left handed weak doublet, e? is 
the charged lepton weak singlet, and Hu and Hd are the two Higgs doublets of opposite 
hypercharge. The anti-symmetric SU(2) tensor is defined by e \ 2  =  +1. N  denotes the 
right-handed neutrino singlet. The Yukawa matrices Y e and Y„ give masses to the 
charged leptons and Dirac masses to the neutrinos respectively. The Majorana matrix, 
A4y , gives the right-handed neutrinos their heavy Majorana mass. Below the Majorana 
scale the right-handed neutrinos are integrated out, and after renormalization down to 
the scale of electroweak symmetry breaking, induce a Majorana mass for the light left- 
handed neutrinos via the see-saw mechanism,

n v  =  Y j r M ~ 1Y v < H i  > 2 (5.3)

where < H i > 2=  v \ =  v2 sin2 /? and v =  (174 GeV)2 as set by the Fermi constant Gf - 
By transforming to a basis where Y e and the gauge interactions are flavour diagonal, 
the left-handed neutrino mass matrix is diagonalized by the PMNS matrix U,

UTm I/U  - diag(mi, m2, m3) (5.4)

where U is a unitary matrix that connects flavour states to the 
possible to parameterize the PMNS matrix as follows,

U  =  U,diag(e-i*/2,e " ^ ', l )

( C13C12 C13S12
—C23S12 — S23Sl3Ci2el5 C23C12 — S23S13S126^

S23S12 — c23s 13<'12e^  ~S23C12 — C2ZS\zS\2elS

where d and <p' are additional CP violating phases and U 7 has 
CKM matrix. It was shown in [18] that the Yukawa matrix Y„ can be re-expressed in a 
simple general form. By defining,

K ^ T ^ = Y l'T M ~lYl' (5J)

mass eigenbasis. It is 

(5.5)

s ize 'iS \
S23C13 • (5-6)
C23C13 /

the usual form of the
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and using the PMNS matrix, it is possible to diagonalize k,

Kd = TJt Y ut M ~ 1Y i/'U. (5.8)

where the d subscript denotes diagonalization. It is always possible to make an ar­
bitrary field re-definition to rotate to a basis such that M. is diagonal, hence M .d =  
d i a g ( A 4 i , I n  this case,

1 =  y T j 7)  (5.9)

where a square root over a diagonal matrix denotes the positive square root of its entries. 
One then identifies

R ^ V ^ W ^  (5.10)

as an arbitrary orthogonal matrix. Then, the most general form of Y„ is [18]

Y v =  (5.11)

As pointed out by the authors of [18], the physical low-energy observables contained 
in U  and Kd are augmented by three positive mass eigenvalues associated with M. and 
three (in general complex) parameters that define the orthogonal matrix R. It should 
be stressed that the above equation is defined at the Majorana scale, M r . It is useful 
to parameterize the neutrino Yukawa couplings with the use of an arbitrary orthogonal 
matrix, R , as it allows a general examination of the origin of flavour violation in see-saw 
models.

Following [18] we will consider two classes of neutrino hierarchy models. In the first 
case we will examine a strong right-handed neutrino hierarchy and in the second, we 
will consider degenerate right-handed neutrinos. In both cases we will assume that the 
Yukawa couplings of the left-handed neutrinos are hierarchical. We will impose the 
condition tha t the largest eigenvalue of the Y j Y u matrix (denoted |Yo|2) coincide with 
the square of the top quark Yukawa coupling |Y(|2 at the unification scale M qut- This 
Yukawa unification condition is suggested in simple 50(10) models, and has the effect of 
making the neutrino Yukawa couplings, and hence the rates for lepton-flavour violating 
processes, as large as reasonably possible. Since we are interested in the degree to which 
present experimental limits rule out regions of model and CMSSM parameter space, 
maximizing the expected rates gives us a conservative determination of the models and
parameter ranges that are still viable. More specific details of the classes of models to
be analyzed will be discussed in Section 4.
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5.3 Supersym m etry Breaking and the CMSSM

Since supersymmetric particles have not yet been observed, the model Lagrangian must 
contain terms that break supersymmetry. If we assume that supersymmetry is broken 
softly, in that the supersymmetry violating terms are of mass dimension 2 and 3, then 
the Lagrangian has the following supersymmetry breaking terms,

- C a o f t  =  ( m | ) i j L \ L j  +  ( m  l) ije * R iejR  +  ( m l)iji>*Rii>R j

+ (m %)ijQtQj +  {mDijU^UjR +  (m ^ i jd^d jR

+  (B f iH d H u  4- - B v M i jV R iV R j  +  h .c . )

[(Acj)jjHddfftQj +  ( A u)ijHuuRiQj +  (A; +  (A

+ lM lB lB l  + ±M 2WZW£ + ±MzGaGa + h.c.} (5.12)

Note the presence of terms containing m ^2 and A y in eq.(5.12). These terms are only 
included above the Majorana scale. Below the Majorana scale, the soft part of the 
Lagrangian returns to that of the CMSSM. In the CMSSM scenario, supersymmetry is 
broken in a universal i.e., flavour independent, manner giving the following relations

(m pjj =  m ol m l. = m l A  uj =  am0Yf, (5.13)

where mo is a universal scalar mass and a is a dimensionless constant. We restrict to the 
CMSSM in our studies and set the trilinear A-term soft parameter a =  0. The ranges 
for the other non-zero, Planck-scale, inputs to the CMSSM are chosen such that tlieir 
renormalization group running to low energies yields radiative electroweak symmetry 
breaking, and a resulting spectrum of particle masses that is consistent with experiment. 
In particular, we display our results over CMSSM parameter ranges determined by [12] 
and [13], which not only impose that the resulting model have LSP relic densities in the 
range determined by WMAP [11], but that they have spectra consistent with the LEP 
direct search limits, as well as the rate for b —► sy. Following these authors we ignore the 
focus point region in parameter space which occurs at very large mo and whose location 
depends on m t and M# in an extremely sensitive manner.

Note that the absence of off-diagonal terms leads to flavour conservation (up to effects 
of light neutrino mass splittings). However, these relations are imposed at the GUT 
scale and are therefore subject to renormalization group running. Above the Majorana 
scale, the neutrino sector modifies the CMSSM renormalization group equations (RGEs). 
In fact, the flavour violation is controlled by the off-diagonal terms in Y ^ Y ,, which 
contribute to the off-diagonal terms of m f. In the leading log approximation to the
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RGEs we have,

(5.14)

where denotes the Yukawa coupling of the charged lepton Zj. It is the presence of such

much flavour violation we should expect, and how the branching ratio for the process 
fi —» ery is affected. The branching ratio for ji e7  can be estimated through mass 
insertion techniques [15, 16]:

where m s is a typical slepton mass. We note that the branching ratio is proportional to

Following [18] we consider two classes of neutrino hierarchy models. In both cases the

In the first class of models the Majorana mass terms for the singlet right-handed see-saw 
neutrinos are assumed to be strongly hierarchical. In the second, we will assume that 
the right-handed singlet neutrinos have degenerate Majorana masses. We numerically 
integrate the one loop CMSSM RGEs with right-handed neutrino supermultiplets. In 
addition, we have re-derived the expressions [15] for the amplitude for fi —> ery, and we 
use the resulting full expressions (see Appendix) to calculate the branching ratios.

terms that leads to significant flavour violation. We will see in the following sections how

BR(jU —► ery)

( Y ^ Y ^ J ^ a n 2/? (5.15)

tan2 /?, which will give an increasing dependence on the ratio of Higgs vevs tan /?, and 
will be evident in our detailed results in the next section.

5.4 [i —> e j  In The CM SSM  See-Saw

neutrino Yukawa couplings to the left-handed neutrinos are assumed to be hierarchical.
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5.4 .1  H ierarchical i/ r s

As we saw in Section 2, Y u can be expressed using an orthogonal matrix, R. Following 
[18], and ignoring possible phases, it is useful to parameterize R as,

Since we are assuming that the left-handed neutrinos are hierarchical, we take

and based on the bi-maximal LMA mixing solution we take the PMNS matrix to be,

The largest eigenvalue of eq.(5.19) is Y0  =  ^ 3 (^ 3 2 |2k2 +  [R-3312/̂ 3). We identify this 
with the top coupling at M q u t  as in the case of many 50(10) models. By identifying 
the largest Yukawa in the neutrino sector with the top coupling LFV is maximized. 
We assume that R 32 ^  0 or R33 ^  0. The pathology of the case where R 32 =  0 or 
R33 =  0 is discussed in [18], which forms a small region of parameter space. With these 
assumptions, M r  ~  1015 GeV. This leaves us with one complex parameter. Following
[18], we will assume that this parameter is real. Therefore, Y„ will depend on one angle, 
denoted by #1 in eq.(5.16).

First, consider figure 5.1. This plot shows BR(fj, —> ey) as a function of 8 1 and is 
made with parameters typical of the WMAP regions of [12], as indicated in the caption. 
The angle 8 1  varies over 0 to tt and we only show the n > 0 case as the plots with 
H < 0 are very similar. Most of 8 \ is allowed for low to moderate tan (3 < 40. Notice 
that there are two special places where the branching ratio becomes highly suppressed. 
These choices for 8 1  correspond to the vanishing of the off diagonal element (Yi/''Yl/)12

(5.16)

( A t7T2 ) so]
(5.17)

/  .866 .500 0 \
U pm ns «  -.354 .612 .707

V -354 -.612 . 707 J
(5.18)

If we assume a strong hierarchy in the right-handed sector, then

(Y ,,)ij =  \ /  A43<5i3R3;(\/v )iU j?.. (5.19)
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which results in large flavour suppression. The special angles are,

/ H H 13
V « 2  V*12 0 tan «  — 23

V « 2  U ^ 2
(5.20)

In order to quantify and further illustrate the regions that are both LFV and CMSSM 
compliant in this scenario, consider figures 5.2 and 5.3. The regions considered are a 
parameterization of the WMAP data from [12]. In figure 5.2, the bands correspond 
to tan/3 =  5,10,15,20,25,30,35,40,45,50,55 for [x > 0 and each colour represents the 
percentage of the 6\ range that is allowed by the current bound on /z —* ery, BR(/z —► 
erf) < 1.2 x 10-11. Grey indicates that less than 25% of 9\ is allowed, while red, green 
and blue illustrate that between 25% and 50%, 50% and 75%, and between 75% and 
100% is allowed respectively. Notice that there are two competing effects controlling 
the amount of LFV in these plots. As we move higher in tan /3, the branching ratio, 
BR(/z —»■ erf) increases as eq.(6.16). At the same time, the rate becomes suppressed at 
larger mo and m 1/2. As figure 5.2 illustrates, there are portions of the parameter space 
at high tan/3, (i.e. > 45), that are consistent with the current LFV bound due to the 
high universal scalar and gaugino mass in those regions. Figure 5.3 shows the situation 
after a possible null result from MEG, (BR(/x —> ey) < 5 x  10-14). We see that a large 
portion of the parameter space would be highly restricted, with most of the parameter 
space relegated to less than 25%. Therefore, the 0i range will be throughly probed by 
the up coming experiments, given this see-saw scenario. In the /z < 0 case, the situation 
is slightly different. While the branching ratio of /z —> e j  is largely insensitive to the sign 
of /x, the WMAP compliant parameter space is not [13]. Figure 5.4 shows the constraints 
from lepton flavour violation with the current limit on BR(/z —> erf) < 1.2 x 10- n  over 
the WMAP range for /z < 0 and a = 0 with tan/3 =  10,35. Grey indicates that less than 
25% of 0i is allowed, while red, green and blue illustrate that between 25% and 50%, 
50% and 75%, and between 75% and 100% is allowed respectively. The funnel structure 
in figure 5.4 for /z < 0 appears at lower tan (3 (i.e. ~  35) compared to figure 5.2. This 
pushes the parameter space to larger values of mo and m ^  at lower tan /3 and therefore 
allows more room where the WMAP region is LFV compliant. Figure 5.5 shows how 
figure 5.4 changes after the expected results from MEG. If LFV is not observed in the 
near future, this scenario will only allow a small region of Q\ corresponding to values near 
those given in eq.(5.20) with /z > 0, or a relatively moderate region of 0i with /z < 0.

5.4 .2  D egen erate  i/ r s

Ignoring possible phases in R, lepton-flavour violation becomes R-independent, in the 
case of degenerate singlet right-handed neutrino Majorana masses. We see from eq.(5.11)
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that, which controls the amount of lepton flavour violation becomes

Y ^ Y ,, =  MTJKdU \  (5.21)

which is independent of R . Again, we use the GUT relation |Yol ~  M k3 =  |Y (M gut)| 
as in [18]. The situation here is quite different from the hierarchical case. Figure 5.6 
shows the currently allowed region for /x —» e7  consistent with the CMSSM for fx > 0 [12], 
Notice that most of the parameter space is ruled out in this scenario; only tan /5 <  5 
and a small region at tan/5 ~  50 are consistent with the current LFV bounds. The 
upcoming limits will probe all of this currently allowed region. In the jx < 0 [13] case 
more of the parameter space is allowed as the region is pushed to higher soft mass scales 
and therefore the LFV rates become suppressed as before. Figure 5.7 illustrates the 
allowed region consistent with the current LFV bounds for /x <  0. Clearly the degenerate 
case, with maximized “unification” neutrino Yukawa couplings, is strongly constrained 
by the present data and will be be severely probed by the forth-coming generation of 
experiments.

5.5 Conclusion

In this chapter, we examined CMSSM lepton-flavour violation in simple general classes 
of see-saw models [18] which had been constructed to fit the d ata  on low energy neutrino 
oscillations. The models considered have had their neutrino Yukawa couplings (and 
Majorana mass scale) chosen as large as reasonable, to maximize the rates for lepton- 
flavour violating decays. Nevertheless, when the CMSSM parameters for the models were 
restricted (following [12, 13]) to have LSP relic densities in the region determined by 
WMAP, and to be consistent with the LEP direct search limits, and the rate for b —»• sq, 
the resulting rate for lepton-flavour violation was such that over much of the allowed 
WMAP range, much of the model parameter space was consistent with the present 
experimental limit on BR(/x —*• e j)  (and so, a fortiori, with present limits on the other 
(charged) lepton-flavour violating processes). We also noted tha t the next generation of 
/x —► e7 experiments should definitively probe the range of branching ratios suggested 
by these models at maximal Yukawa couplings, and also for ranges of smaller Yukawas 
depending on the CMSSM parameters and the exact see-saw model details.

A future detection of fx —> e'y would, however, represent not the end of lepton-flavour 
violation studies of these models, but rather just the beginning. To disentangle the 
details of CMSSM see-saw lepton flavour violation will require comparisons of rates for 
different LFV muon decays, including /x —> eee, and jxN —> eN . It will also require the 
observation of (charged) lepton-flavour violation in different generations, such as r  —»/ry,

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



CHAPTER 5. SEE-SAW INDUCED CMSSM LF V POST-WMAP 123

,-8

,-10

/ / ',-'2

/f
,-13

-1 4

,-15

0.5 1.5
0

2.5
l

Figure 5.1: H ierarchical v r s : BR(/z —> ey) as a function of the seesaw parameter 
0i; /i >  0 and a =  0. The solid curve corresponds to tan/3 =  5. mo = 140 GeV, 
777.1/2 — 700 GeV. The dash-dot curve corresponds to tan /3 =  10, mo =  125 GeV, mj/o = 
560 GeV. The dashed curve corresponds to tan/3 =  20, mo =  200 GeV, m =  760 
GeV. The dotted curve corresponds to tan/3 =  40, mo =  390 GeV, m i/2 =  900 GeV. 
Each parameter set is chosen to lie inside the CMSSM allowed region [12]. The upper 
horizontal line indicates the present experimental bound and the lower line indicates the 
expected upcoming experimental sensitivity from MEG.

r  —> ey, r  —> fill, and r  —> ell, with I either e or fi. With a combination of observed rates 
for different LFV ^-decays, and the observation of LFV in r  decays, one can hope to 
begin to uncover both the precise nature of the low-energy soft supersymmetry breaking, 
as well as the origin of the lepton-flavour violating interactions responsible for inducing 
these decays. Fortunately, we can look forward to a new generation of dedicated fi —> ey
[20], and fiN  —> eN  [23],[24] experiments, as well as to r  sources of unprecedented flux, 
to help us find the experimental signatures of this new realm of physics.
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Figure 5.2: H ierarchical vrs: WMAP and laboratory constraint parameterization of 
the CMSSM, and LFV compliance, based on the current LFV bound. BR(p —> e'y) <
1.2 x 10_ u  for tan/3 =  5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, p > 0 and a = 0. Grey 
indicates that less than 25% of the range of 9\ is allowed. Red indicates that between 
25% and 50% of 9\ is allowed. Green and blue illustrate that 50% to 75%, and 75% to 
100%, are allowed respectively. The constraint regions are reproduced from [12].
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Figure 5.3: H ierarchical v r s : WMAP and laboratory constraint parameterization of 
the CMSSM. and LFV compliance, based on the expected LFV bound from MEG, 
BRGu -* erf) < 5 x 10~14 for tan/3 =  5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, n > 0 and 
a =  0. Grey indicates that less than 25% of the range of Q\ is allowed. Red indicates 
that between 25% and 50% of 6\ is allowed. Green and blue illustrate that 50% to 75%, 
and 75% to 100%, axe allowed respectively. The constraint regions are reproduced from 
[12].
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Figure 5.4: H ierarchical iy?s: WMAP and laboratory constraint parameterization of 
the CMSSM. and LFV compliance, based on the current LFV bound. BR(p —> ey) <
1.2 x 10-11 for tan/3 =  10.35, fi < 0 and a =  0. Grey indicates that less than 25% of 
the range of 6\ is allowed. Red indicates that between 25% and 50% of 6\ is allowed. 
Green and blue illustrate that 50% to 75%, and 75% to 100%, are allowed respectively. 
The constraint regions are reproduced from [13].
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Figure 5.5: H ierarchical i/ rs: WMAP and laboratory constraint parameterization of 
the CMSSM. and LFV compliance, based on the expected LFV bound from MEG. 
BR(p. —> ey) < 5 x  10-14 for tan/3 =  10,35. p <  0 and a =  0. Grey indicates that less 
than 25% of the range of 6\ is allowed. Red indicates that between 25% and 50% of 0\ 
is allowed. Green and blue illustrate that 50% to 75% and 75% to 100% are allowed 
respectively. The constraint regions are reproduced from [13].
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Figure 5.6: D egenerate vrs: WMAP and laboratory constraint parameterization of 
the CMSSM. and LFV compliance, based on the current LFV bound. BR(/i —> e-y) <
1.2 x 10~u  for tan ,3 =  5,10,15,20,25,30,35,40,45,50,55, n > 0 and a =  0. Blue 
indicates the allowed region. The constraint regions are reproduced from [12].
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Figure 5.7: D egenerate  vrs: WMAP and laboratory constraint parameterization of 
the CMSSM, and LFV compliance, based on the current LFV bound, BR(/z —> ey) <
1.2 x 10-11 for tan/3 =  10,35, ix < 0 and a — 0. Blue indicates the allowed region. The 
constraint regions axe reproduced from [13].
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Chapter 6

Lepton Flavour Violation in a 
Class of Lopsided SO(IO) M odels

6.1 Introduction

Neutrinos have been observed to oscillate between flavour states [1]—[S], which implies 
neutrino mass and mixing. In addition, the combined observations suggest that both the 
atmospheric and solar mixing angles are nearly maximal, known as the large angle mixing 
solution (LMA). Interestingly, the LMA solution implies that the lepton mixing scenario 
is radically different from the quark sector. Specifically, | U^z | of the MNS matrix is much 
larger than |V^| of the CKM matrix. Over the last few years a number of models that 
employ the see-saw mechanism [9] in conjunction with various flavour symmetries have 
been developed to address this difference [10]—[21]. Recently, a particularly interesting 
and highly successful class of supersymmetric SO (10) GUTs has emerged that makes use 
of asymmetric mass matrices known as lopsided textures [11, 12, 13]. In these models, 
the charged lepton sector is responsible for the large atmospheric mixing angle while the 
Majorana singlet neutrino matrix has a  simple form that results in the large solar mixing 
angle. Throughout this chapter we will refer to these models as the AB model class [11].

After GUT breaking, these models can reduce to the R-parity conserving minimal 
supersymmetric standard model (MSSM) with specific model dependent relationships 
amongst the Yukawa couplings. In addition to the see-saw constraints already provided 
by the neutrino physics (and the demand that these models reproduce all the low energy 
physics of the standard model), the WMAP satellite observations [22] provide strong 
constraints on the available supersymmetric parameter space if the lightest supersym- 
metic particle (LSP) is assumed to compose the dark matter [23, 24, 25]. For a choice 
of CMSSM parameters, the definite flavour structure of the AB model class results in 
specific predictions of lepton flavour violation and in particular the rate for fi —> e'y. We
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determine how much of the presently viable CMSSM parameter space, as allowed by the 
WMAP observations, results in a jx —► ey rate consistent with experimental limits for 
the AB model class.

We organize this chapter as follows. In section 6.2 we outline the essential details of 
the AB models, the supersymmetric parameter space, and the calculation for ji —► ey. We 
consider p —* ey since at the present time, with the current bound [26] of BR(/x —» ey) <
1.2 x 10—11, this process gives the strongest constraints on lepton flavour violation in the 
class of models that we discuss. Furthermore, the MEG experiment at PSI [27] expects 
to improve on this bound with the expected sensitivity of BR(p —> ey) < 5 x 10-14. This 
experiment will provide stringent limits on models with charged lepton flavour violation. 
In section 6.3 we display our numerical results on p —̂ ey together with the combined 
constraints from the WMAP satellite observations and direct search limits, and in section 
6.4 we present our conclusions. The appendix provides further calculational details.

6.2 The AB M odel Definition

The AB model class is based on an SO(IO) GUT with a U(l) x Z 2 x Z2 flavour 
symmetry and uses a minimum set of Higgs fields to solve the doublet-triplet splitting 
problem [11, 12, 13]. The interesting feature of these models is the use of a lopsided 
texture. The approximate form of the charged lepton and the down quark mass matrix 
in these models is given by

( ° 0 0 \
(  °

0
° ^

Y e ~  I 0 0 e 1 Yd ~ 0 0 cr

\ o a 1 ) l o e 1 /

where cr ~  1 and e < l .  As pointed out by the authors of [11], this asymmetric structure 
naturally occurs within a minimal SU(5) GUT where the Yukawa interaction for the 
down quarks and leptons is of the form A^5jl0j5H (5h denotes the Higgs scalars). In 
an SU(5) GUT, the left-handed leptons and the charge conjugate right-handed down 
quarks belong to the 5 while the 10 contains the charge conjugate right-handed leptons 
and the left-handed down quarks. Therefore the lepton and down quark mass matrices 
are related to each other by a left-right transpose. Since SU(5) is a subgroup of SO(IO), 
this feature is retained in an SO(IO) GUT. This lopsided texture has the ability to explain 
why 117̂ 31 > >  \Vcb\. Making use of this observation, the AB models contain the Dirac 
matrices U ,N ,D ,L  for the up-like quarks, Dirac neutrino interaction, down-like quarks,
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and the leptons respectively [13],

D =

where

(  V
0 0 \ f  V 0 0 \

u 0 e/3 Mu, N  = 0 0 - e Mu,

\  0 - e /3  1 I V 0 e 1

(  0
5 \ 0 6 S'e** \

5 0 cr -1- e/3 IIiJ 5 0 —e
 ̂ 5'e^ - e /3 1 ) \  8'el<i> cr -he 1 /

Mu »  113 GeV, m d *  1 GeV,
a II l—i e =  0.145,
5 =  8.6 xlO "5 8' =  7.9 x lO -3 ,

=  126°, V =  8 x 10~6.

(6 .2)

Md . (6.3)

(6.4)

The given values of M d and M u  best fit the low energy data with tan/3 «  5. However, 
the mass scale itself is set only after electroweak symmetry breaking and it is therefore 
possible, with the use of tan /3, to extract dimensionless Yukawa matrices Y u ,Y n , Y d , 
and Ye- It is advantageous to use dimensionless couplings since the renormalization 
group equations are initialized above the electroweak symmetry breaking scale. The 
corresponding dimensionless up and down-like Yukawa matrices retain the form of equa­
tions (6.2, 6.3) but are scaled by overall dimensionless factors: M'0- and M'D. By varying 
the overall dimensionless scale factors, other values of tan/3 can be accommodated while 
retaining accurate fits to the low energy data after renormalization group running. Our 
code implements the one-loop beta functions [28, 29, 30] for the CMSSM with neu­
trino singlets and reproduces the results of [11, 12, 13]. Futhermore, we obtain accurate 
(within the stated errors in [31]) fits to the low energy data for tan /3 =  5 -  50 which 
corresponds to M{j = 0.82 -  0.85 and M'D = 0.016 -  0.20.

The lopsided texture of the AB model class nicely fits the large atmospheric mixing 
angle; however, in order to obtain the large solar mixing angle a specific hierarchical 
form of the heavy Majorana singlet neutrino matrix needs to be chosen [12, 13], namely,

(  b2r f —her]
M n = —berj

at)
e
—e

(6.5)

where the parameters e and rj are as defined in equation (6.4). The parameters a and b 
are of order 1 and ~ 2 x 1014 GeV. Since the Majorana singlet neutrino matrix is not 
related to the Dirac Yukawa structure, it is not surprising that this matrix should take
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on a form independent from the rest of the model. Once these choices have been made, 
the AB model class is highly predictive and accurately fits all the low energy standard 
model physics and the neutrino mixing observations.

It should be emphasized that all these relations are defined at the GUT scale and 
are therefore subject to renormalization group running. If we assume that the GUT 
symmetry breaks to the standard model gauge symmetries, SU(3)xSU(2)xU(l), and 
that supersymmetry is broken super-gravitionally through a hidden sector in a flavour 
independent manner, the AB model class will give well defined predictions for charged 
lepton flavour violation. There may also be contributions to the off-diagonal elements 
from renormalization group running between the GUT and gravity scales [32, 33]. Since 
the particulars of GUT and supersymmetry breaking -  as well as the possibility of new 
physics above the GUT scale -  can have model dependent effects on the branching ratio 
for /x —► ey, we do not consider an interval of running between the GUT and gravity 
scales.

The specific model predictions for the Dirac Yukawa couplings and the form of the 
Majorana singlet neutrino matrix will feed into the soft supersymmetry breaking slepton 
mass terms through renormalization group running, generating off diagonal elements 
that will contribute to flavour changing neutral currents [34]. The amount of flavour 
violation contained in the AB model class can be examined through the branching ratio 
of the process fx —» ey.

6.3 Numerical R esults for —> e7

After GUT and supersymmetry breaking, the model class reduces to the constrained 
minimal supersymmetric standard model (CMSSM) with heavy gauge singlet neutrinos 
to  make use of the see-saw mechanism. It should be noted that given our assumptions 
about how the GUT and supersymmetry breaks, the CMSSM studies of [23, 24, 25] 
directly impact this model class. As discussed in the previous section, the renormalization 
group running from the supersymmetry breaking scale to the weak scale alters the simple 
GUT relationship for the sfermion mass matrices. The diagonal part of the sfermion mass 
matrices is not strongly model dependent. The model dependence appears in the off- 
diagonal parts of the sfermion mass matrices which come from the particular textures of 
the model class - i.e. the mixings. Therefore, flavour changing neutral current processes 
are of primary interest, since they test the off-diagonal sfermion mass matrix structure. 
As discussed in the introduction, fx —> ey is the best constraining process for this model 
class. We note that the prediction for the anomalous magnetic moment of the muon in 
this model class is consistent with the CMSSM analysis found in [23].
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The leptonic part of the superpotential is

W  =  e ^ f ^ E Y E l /  +  ea/3tf£ N Y Nl /  +  J n M n N  (6.6)

where Y e, Yn are Yukawa matrices, and M u is the singlet Majorana neutrino mass 
matrix. The totally antisymmetric symbol is defined ej2 =  +1- We explain our notation 
in detail in the appendix. On integrating out the heavy singlet neutrinos, equation (6 .6) 
reduces to

W  = ea0H2E Y eI /  -  V m ^  (6.7)

where
v2

sin2 (3 (6 .8)

is the see-saw induced light neutrino mass matrix. The coefficients /? and v are defined 
in terms of Higgs fields expectation values by

d  =  (ff°>2 +  =  (174 GeV)2 , tan /* =  t § | -  (6.9)

The neutrino mass matrix, equation (6.8), is in general not diagonal and this is the 
source of lepton flavour violating interactions.

We assume that supersymmetry is broken softly in that breaking occurs through
operators of mass dimension 2 and 3. The soft supersymmetry breaking Lagrangian
relevant to LFV studies is

^ b r e a k in g  =  -< 5 a /3 L a t m ? L ' 3 -  E m p t  -  N m | N t

-  mnJapH** H$

+ ( -b e af}HSHfl -  ^N B jjN  +  c. c.)

+  (-eapH gEA eL^ -  eQ/3i f “N A NUfl +  c. c.)

+  i M 2W aW a +  c. c. j  (6.10)

(see the appendix for the notational details). The CMSSM assumes universal soft su­
persymmetry breaking parameters at the supersymmetry breaking scale, which we take 
to be of order the GUT scale, leading to the following GUT relations:

m £ =  m I  =  m !  =  m0 • (6-11)

= ™HU =  m l  (6-12)

A e =  A n =  0, (6.13)
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Mi =  M2 =  m Xj 2 (6-14)

where mo and m  1/2 denote the universal scalar mass and the universal gaugino mass 
respectively (I is the 3x3 unit matrix). We conservatively assume that the trilinear 
terms Ae and An vanish at the supersymmetry breaking scale.

We run the parameters of the CMSSM using the renormalization group equations 
[28, 29, 30] working in a basis where the Majorana neutrino singlet matrix is diagonal, 
integrating out each heavy neutrino singlet at its associated scale. After integrating 
down to the electroweak scale, we rotate the Yukawa couplings to the mass eigenbasis. 
In order to understand the origin of flavour violation in this model class, we first give 
a qualitative estimate. The leading log approximation of the off-diagonal slepton mass 
term is given by

( M ) „  "> ( i f S E )  , (6.15)

(assuming that the trilinears vanish at the GUT scale), and using this approximation
together with mass insertion techniques [33, 28], the branching ratio for p —>• &y is

BR(M—>67) ~  ^ 2  - ^ 8 tan2 P
G rp  m °

Q3
G fm f

3 2 1 M gut;-m0In
87t2 An

2
( y ^ Y n )  |2 tan2^  (6.16)

where m s is a typical sparticle mass. We see that since the flavour structure of the AB 
model class is specified so precisely, the branching ratio for p —► eq is well determined. 
In our calculation of the decay rate, we use the full one-loop expressions derived from 
the diagrams in figure 6.1 (see the appendix for more details).

The WMAP satellite observations [22] strongly limit the available CMSSM parameter 
space if the LSP composes the dark matter [23, 24, 25]. We display our results over 
CMSSM parameter ranges determined by [23] and [24], which not only impose that the 
resulting model have LSP relic densities in the range determined by WMAP [22], but 
that they have spectra consistent with the LEP direct search limits [31], as well as the 
rate for b —► 57. Following these authors we ignore the focus point region in parameter 
space which occurs at very large mo and whose location depends on m t and M h in an 
extremely sensitive manner.

In figure 6.2, we show contours of the branching ratio p —> e7  in the m1(/2-mo plane 
for a variety of tan/? with the p parameter both positive and negative. The parameters 
of the AB model class have been chosen such that all the low energy predictions fit the
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Figure 6.1: Feynman diagrams contributing to j i  —* erf.

standard model data, and we have chosen a =  1 and b = 2 for the Majorana singlet 
neutrino mass matrix given in equation (6.5). As indicated in [13], there are a number of 
possible model choices for the Majorana singlet parameters a and b that are consistent 
with the LMA solution. However, we find tha t the rate for /x —» e7  is largely unaffected 
by the allowed range [13] for these parameters, 1.0 < a < 2.4 and 1.8 <  b < 5.2. Panel
(a) demonstrates the lepton flavour bounds for tan 0 = 5  with fj, > 0 . The small line­
like shaded area in the lower part of the panel is the allowed region from the combined 
WMAP and laboratory limits. The remaining panels show that the contours of constant 
branching ratio migrate to the right of the plots (i.e. to high values of and mo) 
as tan 0  is increased. In each case we overlay the approximate WMAP and laboratory 
constraint bounds represented by a shaded region [23]. The choice for the sign of p, is 
indicated in each panel. As tan/3 is pushed up, larger portions of the parameter space 
become excluded. This is an expected feature since the branching ratio is proportional 
to tan2 0. Notice tha t by tan/3 ~  25, /x >  0, the branching ratio allowed contours no 
longer have a significant overlap with the WMAP region. As a result, we find that the 
AB model class is consistent with the current experimental bound on p —> e'y for low 
tan/3 (i.e. ta n 0  < 20) for /x > 0. For completeness, in panels (b) and (e), we show two 
cases where /x <  0. The branching ratio of /j, —> e*y is largely insensitive to the sign of 
fi, however the WMAP region is moderately affected [24]. A small part of the allowed 
WMAP region is currently permitted for larger tan 0  (i.e. ~  35) as indicated in panel 
(e). The upcoming limits [27] that MEG will establish, BR (fi —► ej) < 5 x 10—14, will
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effectively rule out this model class if LFV is not seen. Interestingly, if LFV is seen at 
MEG, this model will suggest that tan  /? is low based on flavour bounds alone.

6.4 Conclusions

The AB model class [11, 12, 13], based on a U (l)xZ 2 XZ2 flavour symmetry, is a highly 
successful and predictive GUT scenario. This model class has the ability to accommo­
date all the observed neutrino phenomena and reproduce the low energy physics of the 
standard model. If it is assumed that supersymmetry is broken via mSUGRA and that 
the GUT breaks directly to the CMSSM, the AB model class is highly restrictive and 
hence allows for a precise determination for the rate of charged lepton flavour violation. 
In particular, we examined the process /z —> ey, since at the present time this flavour 
violating muon decay channel gives the strongest constraints on flavour changing neutral 
currents in the lepton sector.

As the WMAP satellite data [22] and laboratory direct searches [31] have already 
severely restricted the available CMSSM parameter space, the /z — ey flavour bounds 
allow a strong test of the AB model class. We find that given the current bounds [26] 
on /z —> e7 , BR(/z —> ey) <  1.2 x 10-11, the AB model class favours low to moderate 
tan/? (i.e. < 20) with /z > 0, however, there is a small region that is not excluded for 
tan /? <  35 with the sign of /z negative. If MEG at PSI [27] does not detect a positive 
LFV signal, BR(/z —»• ey) < 5 x 10-14, the AB model class will be effectively ruled 
out, given our conservative assumptions concerning GUT and supersymmetry breaking. 
It remains an open question as to whether or not other supersymmetry and/or GUT 
breaking schemes within the AB model class will be able to avoid these flavour violating 
bounds.
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Figure 6 .2: Contour Plots of BR{p. —*• e'j) in the mo — plane: Panels (a).(c),(d). 
and (f) show the contours of the branching ratio for tan /3 = 5,15,25,50 respectively 
with n > 0. Panels (b) and (e) show the contours with tan [3 =  10,35 respectively with 
fj. < 0. In all cases the shaded region corresponds to the approximate combined WMAP 
and laboratory constraints.
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Summary

In the last three chapters we have considered the effects of new scalar interactions 
on pion physics, the implications of the supersymmetric see-saw with MSSM LSP dark 
matter constraints for /x —> erf, and the predictions of lepton flavour violation from a 
class of lopsided 50(10) grand unified models.

By considering renormalization effects on universal (or alternatively first generation), 
and flavour diagonal scalar operators, we have derived limits on the size of the ratio be­
tween scalar and vector couplings from precision measurements of 7T* —> decay. 
We note that the most conservative estimate of the limits occurs when the new physics 
arises at the electroweak scale. In this case, the contribution to the induced pseudoscalar 
comes entirely from threshold corrections. In the scenario where we have arbitrary gen­
eration dependence of the scalar couplings, —> limits can be combined with 
limits on scalar interactions in muon capture to bound the first generation scalar cou­
plings. These observations have implications for current /3-decay experiments. Direct 
searches for scalar interactions in /3-decay will be most competitive if the new physics 
responsible for the effective scalar interactions arises at the electroweak scale in the ex­
plicit exchange of new scalar particles. In these circumstances, the indirect limits from 
threshold induced pseudoscalar interactions are comparable to the direct 5 -decay scalar 
searches [1, 2], Therefore, interest in searches for new scalar interactions with 5-decay 
experiments remains undiminished. On the other hand, for new effective scalar inter­
actions arising as effective SU(2) x U(l) invariant operators at mass scales above 200 
GeV (as expected in models with leptoquarks, composite quarks/leptons, or low scale 
quantum gravity) the constraints arising from the precision measurements of tt± —> l^i/f 
decay, combined with limits on scalar interactions in muon capture, can be stronger by 
an order of magnitude or more than the direct experimental searches. Furthermore, the 
relative strength of these searches becomes better, the higher the mass scale of the new 
physics compared to the electroweak scale. This argues strongly for improved experi­
mental precision in measurements of muon capture, and ^  l^ui decay. In particular 
we note that in the case of pion decay, the experimental error exceeds the uncertainty 
in the theoretical calculation by a factor of eight. A new measurement of x ± —* 
decay with an order of magnitude greater precision would not only constrain physics 
beyond the standard model which could potentially contribute to tree level pion decay, 
but as we have argued above, will also indirectly provide tests of new scalar interactions 
of unparalleled precision.

We examined CMSSM lepton-flavour violation in simple general classes of see-saw 
models [3] which had been constructed to fit the data on low energy neutrino oscillations. 
The models considered have had their neutrino Yukawa couplings (and Majorana mass
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scale) chosen as large as reasonable, to maximize the rates for lepton-flavour violating 
decays. Nevertheless, when the CMSSM parameters for the models were restricted to 
have LSP relic densities in the region determined by WMAP, and to be consistent with 
the LEP direct search limits, and the rate for b —>■ sy, the resulting rate for lepton-flavour 
violation was such that over much of the allowed WMAP range, much of the model 
parameter space was consistent with the present experimental limit on BR(/z —*• ey) 
(and so, a fortiori, with present limits on the other (charged) lepton-flavour violating 
processes). We also noted that the next generation of // —>■ ey experiments should 
definitively probe the range of branching ratios suggested by these models at maximal 
Yukawa couplings, and also for ranges of smaller Yukawas depending on the CMSSM 
parameters and the exact see-saw model details.

The AB model class [4, 5, 6], based on a U (l)xZ 2 XZ2 flavour symmetry, is a highly 
successful and predictive GUT scenario. This model class has the ability to accommodate 
all the observed neutrino phenomena and reproduce the low energy physics of the stan­
dard model. If it is assumed that supersymmetry is broken via mSUGRA and that the 
GUT breaks directly to the CMSSM, the AB model class is highly restrictive and hence 
allows for a precise determination of the rate of charged lepton flavour violation. In par­
ticular, we examined the process /x —> ey, since at the present time this flavour violating 
muon decay channel gives the strongest constraints on flavour changing neutral currents 
in the lepton sector. As the WMAP satellite data and laboratory direct searches have 
already severely restricted the available CMSSM parameter space, the p  —*■ ey flavour 
bounds allow a strong test of the AB model class. We find that given the current bounds
[8] on fj, —y ey, BR(p —* ey) <  1.2 x 10-11, the AB model class favours low to moderate 
tan /3 (i.e. < 20) with p > 0, however, there is a small region that is not excluded for 
tan/? < 35 with the sign of p. negative. If MEG at PSI [9] does not detect a positive 
LFV signal, BR(p —► ey) <  5 x 10-14, the AB model class will be effectively ruled 
out, given our conservative assumptions concerning GUT and supersymmetry breaking. 
It remains an open question as to whether or not other supersymmetry and/or GUT 
breaking schemes within the AB model class will be able to avoid these flavour violating 
bounds.
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A ppendix A

Spinors

The Lorentz group satisfies the Lie algebra

[Mpv, M pa] = i (rjt/pM p(7 + r fa M up -  r f pM va -  r faM pp) (A.l)

and can be identified with the Lie algebra 50(3 ,1). Therefore, writing the Hermitian
generators M y , i , j  = 1, 2,3  as

Ji = \ e ijkM jk ,, (A.2)

the Lorentz algebra of eq.(A.l) guarantees that the operators Ji obey the usual 517(2) 
commutation relations,

[Ji, Jj] =  itijkJlc- (A.3)

Defining the non-compact boost generators as,

Ki = M 0i (A.4)

we find that,

[Ki, K j  ] =  i^ijkJk (A.5)

[Ji,Kj] =  idijkK k. (A. 6)

We may separate the these algebras by constructing the linear combination,

Ni — —(Ji + iK i) (A. 7)

leading to the commutation relations

W i,N j] = 0  (A.8)
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[Ni,N j ] = ieijkN k (A.9)

[N j,N ]}= ieijkN k\  (A.10)

We see that the Lorentz group can be decomposed into two S U (2) algebras and thus we 
may label states according to Casimir invariant of these two algebras. In particular we 
have the two basic irreducible representations (§ ,0), and (0, | ) .  Let us consider these 
representations more closely.

The Lorentz algebra is satisfied by the operator,

=  (A .n)

where the 7^ matrices obey the Clifford algebra,

{ ' f , ' f }  = 2 rT  (A.12)

with

s a* 0

where,

7 = ( i H I (A.13)

^  =  (I2,a )  (A.14)

a* =  (I2, ~o)  =  (A.15)

The matrices cr are the usual Pauli spin matrices. States that belong to this representa­
tion are formed by ( | ,0 )  +  (0, | )  =  $£> = and are called Dirac spinors. The
Dirac spinor may be separated into its individual components ^  l and by applying 
the projection operators,

*L =  ^ ( l - 7 s ) ^ D  (A.16)

^ r  =  + 75)^0  (A.17)

where 75 =  n o 7 i7 2 7 3 -  

Since

1 I uk
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both spinors $ l and transform in the same way under rotations but differently under 
boosts. Thus, we may write each state as

H = $ i = ( 1o )  (A-2o)

°’5) = * * = ( x ° )  <A-21>

where a = 1 , 2. The two component spinors ip and x are referred to a Weyl spinors and 
thus we my write the Dirac spinor as

*D = j  • (A.22)

Introducing the charge conjugation operator C =  such that,

C " V < ?  =  - 7^  (A.23)

n  = C * l  (A.24)

leads to,
-ct2x*

^  )  (A'25) 

It is easy to see that a2ip* ~  (0, | )  and a2x* ~  ( | ,  0) i.e. a2ip* transforms right-handed 
and cr2x* transforms left-handed. We may separately track the left and right-handed 
Weyl spinors by introducing the Van der Warden notation,

4  =  Xa =  (x T  (A.26)

such that,

( i a 2) ^  =  eaP  =  ( J J  (A.27)

and

(~ia2f P  =  e&* = (  J ^  j  . (A.28)

We may raise an lower the spinor indices using eap and

Xa =  (A.29)

> (A.30)
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Using the Weyl spinors, the Dirac spinor may be written as,

*»-[£) **-(£) (A-31)
Evidently, using the Van der Warden notation, the self conjugate Majorana spinor can 
be written as

j  • (A.32)

We may always trade spinor indices for vector indices as we shall now see. The 
Lorentz transformation acting on the Dirac equation yields,

5(A )-17^5(A) =  A ^  (A.33)

where,

S  (A) =  exp |  -  ̂ wAjI/E/x" |  (A.34)

with = —oJufjt- In the Weyl representation, we may re-express as,

^  ° \  (A.35)
2 \  0 ia^u J  V '

where

( T  =  (A.36)

=  | ( a V - a V ) .  (A.37)

By examining the action of the Lorentz group on the Weyl spinors, namely,

<  =  Si (A)q%  (A.38)

Xd =  S2(A f0x 0 (A.39)

with

Si (A) =  exp (A.40)

S2(A) =  exp | | Ŵ ?AU,|  (A.41)

we see that a ^  and atiU control the spinor transformation properties and therefore they
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carry the spinor indices,

As a result, we also have 

and it is not hard to show that,

{ c V ) i  ( O V  (A.42)

<C, (5“)“  (A.43)

Si(A) =  52(A)+. (A.44)

We may now construct Lorentz invariant quantities by contracting the spinor indices 
using eap and e“^, and using the Grassmann algebra of the spinors themselves,

Xa^a  =  =  X'P (A.45)

Xai>a =  i>aXa =  xi> (A.46)

X a (^ )“Q̂ a  =  - ^ a (^)adX a =  W 'V  (A.47)

X ^ O H a  #  =  - ^ “ ( O / x / ?  =  X ^ i p  ■ (A.48)

= X ^ i ’ (A.49)

with

and

(X^)f. =  ^ t xt = tpX = x4> (A.50)

(xcrfJ"tP)1' =  v ^ x  =  ~ (^° 'Mx)t (A.51)

(Xcr̂ I/̂ ,)t =  X ^ V  =  -(V’o ^ x )1'- (A.52)

Prom the completeness relations,

= 2 (^q<5̂7/3 "b (A.53)

(A.54)

we may construct the complete set of Fierz identities.
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A ppendix B

The interactions leading to the lepton flavour violating process lj —> k  + 7  involve two 
effective Lagrangians: neutralino-lepton-slepton and chargino-lepton-sneutrino. Written 
in the mass eigenbasis they are

3 4 6

£  =  E E E  +  + C.C. (B.l)
i= 1 a=l b= 1

and

where

3 2 3

C =  E  E  E  + C & P fc x i  +  c. c. (B.2)
i=l a=l 6=1

N t b  ^  ( 2tan6>W (U f)&(i+3) (0 n e)ai  +  m w C QS ^  (U f)6t (°n e)a 3 ^  • (B ‘3)

N iab =  ^  ^tan^W (Uj)^ (One)al +  (Uj)K (One)a2 -  (U f)6(i+3) (One)a3  ̂ (B-4)

and

c -  =  v & ^ ( 0 l ) - (Ua)-  ( B ' 5 )

c £ „  =  -92  (O r),,, (U s);. . (B.6)

The on-shell amplitude for lj k + 7 can be written in the general form

M  =  ee*li (p -  q) (Al L +  Ar R)) (p); (B.7)

here we have used Dirac spinors h{p — q) and lj (p) for the charged leptons i and j  with
momenta p -  q and p, respectively; L =  (l -  7 s) /2  and R =  (l +  75) /2. Each of the
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dipole coefficients A l and have contributions from the neutralino-lepton-slepton and 
the chargino-lepton-sneutrino interaction, namely,

a l = a P  + a £ \

a r = A m  + A u

(B.8)

(B-9)

where 4 ^ ,  A ^ \  4 ^  can be evaluated from the Feynman diagrams in figure 6.1;

a P  = —  V V  1 ( n l n l*j  ( M*°W2 [ NiabNiabJl — 232-rr2 m-
a= 1 6=1 fj,

' M L
, AtL ATR * 4 x 2  I T I ~ ~ X a  '■̂ iab̂  jab — J2 ( ---2

A(c)L

m h
2 3

m=

32^2 E 2 2 m ? (  C h i C y a iy k

4"> =

4  =

o = l  6 = 1  "6

M — /M ?_
I (~<L (~<R* _ X a  T { X a

' iai j'a6 m,. 4 ^ m \

4 n) 2h L^R
j(°) (

mfk

' M L '
Xa

The functions Ji (x), J2 (x), J 3 (x), / 4 (x) are defined as

1 — 6x 4- 3x2 +  2x3 — 6x2 In xJi (x) =

J 2 (x) =

J 3 (x) =

J 4 (x) —

6 (1 — x)4
1 — x2 +  2x In x

( 1 - 4  ’
2 +  3x — 6x2 +  x3 +  6x In x

6(1 —x)4 
—3 +  4x — x2 +  2 In x

( i - 4  '

Finally, the decay rate for /■ —»Zi +  7  is given by

1 ( Z7 li + t )  =  (I^ lI2 +  I^rJ2)  ,

and i =  1, j  =  2 for /1 —► e +  7 .

(B.10)

(B-ll)

(B-12)

(B.13)

(B-14)

(B-15)

(B.16)

(B-17)

(B.18)
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A ppendix C

The One-Loop RGEs for the  
M SSM -RN

The general form of the supersymmetric renormalization group equations [12, 11, 10] are

f -15?* (ai)
where X  is any of gi, g2 , gz, Y n, Ye, Yp, Yp, M i, M 2 , M3, m |d, m ?, m ? , m |,
m ^, m ? , m ?, An , A e , Ap, Ap, and the dotted quantities are listed below:

91 =  115?, (C.2)

9 2  =  flf, (C.3)

93 =  -3 ^ |,  (C.4)

(C.5)

Y n =  Y n ( - 5?I -  35| I  +  3Tr (y JjY u)  I  +  Tr (y J jY n) I  +  3Y ^Y N +  Y+YE) ,
(C.6)

Y e =  Y e (-3<?2I -  3 y |l +  3Tr ( y J,Yd) I  +  Tr (y | y e ) I  +  3Yj,YE +  y J y n ) ,
(C.7)

Y p =  Yp -  3522I -  y 5s2I  +  3Tr (y JjY u)  I  +  Tr (y J,Yn ) I

+  3Y{jY u +  y J)Y d) ,  (C.8)

Y p =  YD ^ - ^ 12I - 3 ^ I - y 5 | l  +  3 T t ( Y iY p ) l  +  T :(Y ^ Y E) l

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



APPENDIX C. THE ONE-LOOP RGES FOR THE MSSM-RN 157

+  3Y ^Y d +  Y ^Y u)  , (C.9)

Mi =  22g\Mx, (C.10)

M2 =  2& M 2, (C .ll)

M3 =  — 6 5 3  M 3 , (C.12)

s  = ™HU -  ™Hd +  ^  ( m |  -  2 m l  +  -  m | +  m |)  , (C.13)

m |u = eTk^lY jjY u + Yjjm^Yu + m ^YtYu + AjjAu)

+2Tr (m ?y JjYn +  Y ^-m |Y N +  tô y JtY n +  a {jAn)

- 2 g{M l -  Qg\Ml +  g\S, (C.14)

< d = 2TDr(m|Y|.YB + Y jm |Y E + m ^Y|.YE + A tA B)

+6TV (m ^Y pY D +  Y ^ Y o  +  m |d Y{>Yd +  A ^A D)

- 2 g \M l  -  6g \M l -  gjS, (C.15)

m? = m? Y^Ye + Yj,YEm? + m? Y}jYn + Y ^ m ?
+2Yj,m|YE + 2m| d Y^YE + 2A^AE 
+ 2 Y {jm |Y N +  2 m |uYjjYN +  2A{jAn

-2 g \M i l  -  QglM%I -  gfSI,  (C. 16)

m | =  2m |Y NY^ + 2YNY^m? + 4YNm? Y{j + 4m |uYNYjj + 4ANAfN, (C.17)

m | = 2m |YEY]j= + 2YEY£m! + 4YEm?Yjs + 4m£dYEYj= + 4AEAjs
—8<?f M f I 4- 2gxSI,  (C.18)

=  m |Y {JY u +  Y ^Y um | +  2Y ^m jY u +  2m2uY{JY u +  2AtuA u 

H -m ^ Y o  + Y^Ycxnl + 2Y{)m |Y D + 2mfJdYj)YD + 2AfDAD 

- \ d l M l I  -  65|M |I  -  j g j M l l  + ^ 5?SI, (C.19)
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=  2m^YuYjj +  2YuY{Jm |  +  4Yu m |Y {J +  4 m |uYuY{j +  4AuA{j 

- f g f M * !  -  f g j M i l  -  t f i S l ,  (C.20)

r h l  = 2m ?Y DY j) +  2YDY{)m |  +  4YDm |Y {) +  4m^dYDY{) +  4ADA{)

-  y 532M |l  +  51, (C.21)

A n =  - 9l2A N -  39|A n +  3Tr (y ^ Y u )  An +  Tr (y J ,Y n)  A n

- 2 5i2MxY n -  6 ^M 2Yn +  6Tr (y ^-Au)  Y n +  2Tr (y ], AN) Y n 

+4Y nY{,An +  5ANYjjYN +  2Y nY |,A e +  A ny Jy e , (C.22)

A e =  - 3 92A E -  352A E +  3Tr (y ^Y d) A e +  Tr (y £ Y E) A E

- 6 52M!Ye -  69|M 2Ye +  6Tr (y {,Ad) Y e +  2Tr (y * AE)  Y E 

+4Y EYgAE +  5AEY gY E +  2Y ey JjA n +  A ey JjY n , (C.23)

A u =  - y 9f Au -  35|A u  -  y s iA u  +  3TV (y J,Yu)  Au +  Tr (y {jY n) Au

- y ^ M x Y u  -  652M2Yu -  j g 23M3Y v  + 6Tr (y JjA u) Yu +  2Tr (y J jA n) Yu 

+4Yu Y{jAu + SAuYyYu +  2 Y u Y £ ad +  AuY{,Yd , (C.24)

A d =  - ^ 5?A d -  3922A d -  y 92AD +  3T1 (y ^ Y d )  A d +  Tr (y ^ Y e) A d

- j g f l V A Y v  -  6g2M2Y D -  j 9|M 3Y d +  6Tr (yJ>Ad ) Y d +  2Tr (y ^ A e)  Y d 

' +4YdY{, A D + 5Ad Y ^Y d + 2YD Y{, A u +  Ad y{jYu. (C.25)
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