
Energy and Reserve Dispatch with Renewable
Generation Using Data-Driven Distributionally

Robust Optimization
Zhichao Shi, Hao Liang, Venkata Dinavahi

Department of Electrical and Computer Engineering
University of Alberta, Edmonton, AB, Canada

Email: zhichao1@ualberta.ca, hao2@ualberta.ca, dinavahi@ualberta.ca

Abstract—With the increasing penetration of renewable gen-
eration such as wind power in modern power systems, there are
many new challenges arising in power system operation with
respect to reliability and economy. In this work, we study a
two-stage data-driven distributionally robust (DR) energy and
reserve dispatch problem with uncertain wind power. Different
from the general moment-based ambiguity set, we design a new
distance-based ambiguity set to describe the uncertain probability
distribution of wind power, which can be constructed in a
data-driven manner from historical data. Base on this new
ambiguity set, the second-stage worst-case expectation of the
problem is reformulated to a combination of conditional value-
at-risk (CVaR) and an expected cost with respect to a reference
distribution. Thus, the proposed two-stage DR model becomes a
two-stage stochastic optimization problem which can be readily
solved. Case studies are carried out to verify the effectiveness of
the proposed method based on the IEEE 6-bus test system and
modified IEEE 118-bus test system. Simulation results show the
value of data in controlling the conservatism of the problem, and
the DR problem converges to the stochastic problem with fixed
distribution as the data size goes to infinity.

Index Terms—Data-Driven, Distributionally Robust Optimiza-
tion, Energy and Reserve Dispatch, Renewable Energy

NOMENCLATURE

The main notations used in this paper are listed below for
quick reference.

A. Parameters

ami , b
m
i Piecewise linear cost coefficients for unit i.

cui , c
d
i Up and down re-dispatch cost coefficients for

unit i.
cwj Wind power curtailment cost coefficient.
cLck Load shedding cost coefficient.
dui , d

d
i Up and down reserve cost coefficients.

fs0/f
s Reference/true probability for scenario s.

fsu/f
s
l Upper/lower bound of the unknown probabil-

ity for scenario s.
Fi() Generation cost function for unit i.
Fl Power flow limit for line l.
Ng, Nw, NL Number of generators, wind farms and loads.
pmin
i , pmax

i Minimum and maximum output of unit i.
pLk Load demand k.
Rui , R

d
i Ramp-up and ramp-down limit for unit i.

wfj Forecasted output for wind generator j.

πgil Power transfer distribution factor (PTDF)
from unit i to line l.

πwjl PTDF from wind generator j to line l.
πLkl PTDF from load k to line l.
θ Tolerance level in the ambiguity set.

B. Variables

pgi Output of unit i in first stage.
pgdi Down re-dispatch power of unit i.
pgui Up re-dispatch power of unit i.
pLck Load shedding in second stage.
rdi Down reserve of unit i in first stage.
rui Up reserve of unit i in first stage.
wcj Wind power curtailment in second stage.
p̃gi Actual power output of unit i.
w̃j Actual power output of wind generator j.
ξj Forecast error of wind generator j.

I. INTRODUCTION

Renewable energies, especially wind power, have been
increasingly integrated into existing power systems in recent
years due to their clean and environmentally friendly advan-
tages. However, with a close relation to the variable weather
or other external factors, they are also inherently uncertain and
hard to forecast [1]. Although short-term wind power forecast
has been well studied in many works and organizations, the
forecast error cannot be totally eliminated. Consequently, the
large-scale integration of stochastic renewable generation will
pose new challenges to power system operational problems
such as the security constrained unit commitment (UC) and
economic dispatch (ED) problem [2]. To ensure the reliability
of power system operation, new types of reserves are consid-
ered to compensate the uncertain renewable generation, which
makes it important to co-optimize the energy and reserve
dispatch from the economic respective [3].

To cope with the uncertainty involved in power system
operation, two major approaches, stochastic optimization and
robust optimization, have been widely investigated. In stochas-
tic optimization method, the probability distribution of random
variables is usually assumed to be known in advance, and
the objective is to minimize the expected cost based on sam-
pling technique [4]. However, this scenario-based stochastic
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method will lead to a large computational burden, and the
true probability distribution is hard to estimate in practice.
For robust optimization method, less distribution information
is required with the introduction of uncertainty sets [5]. Since
it aims to minimize the cost for the worst-case scenario over
the uncertainty set which rarely occurs in practice, the solution
of this method may be over-conservative.

Considering the deficiencies of stochastic and robust op-
timization methods, another new technique, distributionally
robust optimization (DRO), has been proposed recently [6]
to deal with uncertainty according to partial distribution
information. In DRO method, the worst-case expected cost
is minimized over a set of probability distributions called
ambiguity set which is characterized by partial distribution
information such as the moments and support of random
variables. DRO has been applied to different power system
optimization problems recently including unit commitment[7],
optimal power flow [8], microgrid energy management [9], and
energy and reserve co-dispatch [10]. In [11], a distributionally
robust reserve model is proposed to minimize the cost of
generation and reserves, and the uncertainty from wind power
forecast error is captured by an ambiguity set based on first
and second-order moment information. In [12], a two-stage
hydro-thermal-wind economic dispatch model considering dis-
tributional robustness is studied, and the uncertain probability
distribution of wind power is also described by moment-based
ambiguity set.

In addition to the moment-based DRO approach mentioned
above, statistical-distance-based DRO method has also been
reported in the literature. With the application of a certain
statistical distance calculated from historical data, this method
can use more distributional information than the moment-
based method. In [13], a distributionally robust UC model is
studied based on Kullback-Leibler (KL) divergence which is
used to measure the distance between unknown true distribu-
tion and an estimated reference distribution. By constructing
confidence sets based on two norms, a data-driven risk-averse
stochastic UC model is studied in [14]. Similarly, distance-
based DRO methods have also been studied for energy and
reserve dispatch problems. In [15], a two-stage data-driven
distributionally robust energy and reserve scheduling model
with wind power is studied, and the Wasserstein ball based
ambiguity set is used to contain all possible probability dis-
tributions. Also, a two-stage risk-averse stochastic model is
proposed for energy and reserve dispatch problem in [16], and
Kernel density estimation is used to estimate the probability
distributions of wind power captured by the L1-norm based
ambiguity set.

In this work, we study a data-driven two-stage energy
and reserve dispatch problem using DRO method. First, we
formulate a two-stage model which minimizes the generation
and reserve cost with forecasted wind power in the first
stage and minimizes the expected re-dispatch cost considering
the worst-case probability distribution in the second stage.
Second, an ambiguity set based on L∞ norm is designed to
capture the uncertain probability distribution of wind power

which is different from those studied in previous literature.
We focus on the distance-based DRO method here since it
can use more distributional information from historical data.
Third, based on the proposed ambiguity set, the second-stage
worst-case expectation is reformulated into a combination of
the conditional value-at-risk (CVaR) and expected cost with
respect to a reference distribution, thus the original two-stage
DRO problem becomes a two-stage stochastic linear program
problem which can be readily solved. In summary, the main
contributions of this work are as follows: (1) a data-driven
two-stage distributionally robust model is proposed for energy
and reserve dispatch problem with wind power, and we design
a new ambiguity set based on L∞ norm to describe the
uncertainty of wind power probability distribution; (2) we
reformulate the second-stage worst-case expectation into a
convex combination of CVaR and an expected cost so that the
original problem can be solved as a stochastic linear program
problem, the effectiveness of the proposed method, especially
the value of data, is validated by experiments based on IEEE
6-bus test system and 118-bus test system.

The remainder of this paper is organized as follows. In
Section II, we formulate the two-stage DR model for energy
and reserve dispatch problem and design the ambiguity set. In
Section III, the solution methodology based on reformulation
technique is presented. Case studies are carried out to verify
the effectiveness of the proposed method in Section IV. Finally,
Section V concludes the paper.

II. PROBLEM FORMULATION

In this section, we first formulate the studied two-stage DR
energy and reserve dispatch model with uncertain renewable
generation. Without loss of generality, we consider wind power
as the renewable generation here. Then, the ambiguity set
construction is introduced.

A. Two-stage Dispatch Model

Different from the previous stochastic or robust economic
dispatch problem [17], we study a DR dispatch problem in this
work. As mentioned above, the proposed two-stage dispatch
model determines the generation and reserve with forecasted
wind power in the first stage and finds re-dispatch decisions
against any uncertainty realization in the second stage. The
first-stage decision can be seen as a base-case dispatch plan.
As done in the references [15] [16], we also consider an
hourly-ahead dispatch problem in this work. Mathematically,
the two-stage DR energy and reserve dispatch model can be
expressed as follows:

min
pg,ru,rd

[
∑
i

Fi(p
g
i ) + dui r

u
i + ddi r

d
i ]

+ max
P∈D

EP [Q(pg, ru, rd, ξ)] (1)

s.t.
Ng∑
i

pgi +

Nw∑
j

wfj =

NL∑
k

pLk (2)

pmin
i ≤ pgi − r

d
i , p

g
i + rui ≤ pmax

i , ∀i (3)
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−Fl ≤
Ng∑
i

πgilp
g
i +

Nw∑
j

πwjlw
f
j −

NL∑
k

πLklp
L
k ≤ Fl, ∀l (4)

0 ≤ rdi ≤ Rdi , 0 ≤ rui ≤ Rui , ∀i (5)
Fi(p

g
i ) ≥ a

m
i p

g
i + bmi , ∀i, ∀m (6)

where the objective function in (1) includes the fuel cost, spin-
ning reserve cost and second-stage worst-case expected cost.
Q(·) represents the second-stage cost and D is the ambiguity
set which will be introduced later. Constraint (2) is the power
balance equation. Constraint (3) limits the generation output.
Constraint (4) ensures the DC power flow limit. Constraint (5)
limits the up and down reserve capacities. Constraint (6) is the
piecewise linear approximation with m pieces of the common
quadratic fuel cost function.

In the second stage, when the forecast errors ξ of wind
generation are revealed, we can adopt corrective actions by re-
dispatching. In this case, the real wind power and generation
output can be expressed as below:

w̃j = wfj + ξj , ∀j (7)

p̃gi = pgi + pgui − p
gd
i , ∀i (8)

Furthermore, the second-stage problem can be stated as fol-
lows:

Q(pg, ru, rd, ξ) = min
Ng∑
i

(cui p
gu
i + cdi p

gd
i )

+

Nw∑
j

cwj w
c
j +

NL∑
k

cLck pLck (9)

Ng∑
i

p̃gi +

Nw∑
j

(w̃j − wcj) =
Nk∑
k

(pLk − pLck ) (10)

−Fl ≤
Ng∑
i

πgilp̃
g
i +

Nw∑
j

πwjl(w̃j − wcj)

−
NL∑
k

πLkl(p
L
k − pLck ) ≤ Fl, ∀l (11)

0 ≤ pgui ≤ r
u
i , 0 ≤ pgdi ≤ r

d
i , ∀i (12)

0 ≤ pLck ≤ pLk , 0 ≤ wcj ≤ w
f
j , ∀k, ∀j (13)

where the second-stage cost in (9) includes the re-dispatch
cost of generators, wind power curtailment cost and load
shedding cost. Constraint (10) limits the power balance in
the second stage problem. Constraint (11) is the transmission
line flow limit. Constraint(12) ensures that the generator re-
dispatch capability is limited by the first-stage reserve capacity.
Constraint (13) restricts the load shedding and wind power
curtailment.

In this study, the uncertainty source is the wind power
generation, which is demonstrated by ξ in above formulations.
In addition, we assume that the uncertain wind power has a
finite support [14], i.e., the number of possible realizations
ξs is finite (e.g., ξ1, ξ2, ..., ξS). However, the true probability

distribution is unknown and is restricted by the constraints in
the ambiguity set D.

B. Ambiguity Set Construction

As mentioned above, the true probability distribution of
wind power is unknown. In this study, we design a distance-
based ambiguity set to constrain the true distribution, i.e., we
use a distance measure between two distributions to describe
the ambiguity set. Specifically, the general ambiguity set can
be defined as: D = {P ∈ P : dist(P ||P0) ≤ θ}, where
P is the set of all distributions, dist() is a distance measure
between the true distribution P and a reference distribution
P0, and θ is the tolerance level. In this work, we adopt the
L∞ norm as the distance function which has not been studied
for energy and reserve dispatch problem before. Accordingly,
the studied ambiguity set is given as follows:

D∞ = {P ∈ P : ||P − P0||∞ ≤ θ}. (14)

The advantage of using the L∞ norm is that the convergence
between the true distribution and reference distribution can be
guaranteed as the data size goes to infinity.

In above ambiguity set, the reference distribution can be
derived with the histogram method from historical data [14]
[18]. For example, we assume that there are N data samples
in total, and the sample space can be partitioned into S bins.
Then, we can count the frequency of samples in each bin (e.g.,
Ns) and the reference distribution can be obtained as P0 =
(f10 , f

2
0 , ..., f

S
0 ) with the element fs = Ns/N . In addition, the

tolerance level θ can be adjusted to control the conservatism.
According to the Proposition 9 in [19], θ can be determined
as follows:

θ = (zα/2/
√
N) maxs=1,...,S

√
fs0 (1− fs0 ) (15)

where zα/2 is the 100(1−α/2)th percentile of standard normal
distribution. In this case, the ambiguity set contains the true
distribution with a (1− α) confidence level.

III. SOLUTION METHODOLOGY

For better description, we first express the two-stage DR
dispatch model in a compact form as follows:

min c>x+ max
P∈D∞

EP [Q(x, ξ)] (16)

s.t. Q(x, ξ) = min q>y (17)
Ax ≤ h (18)
Bx+Cy+Dξ ≤ d (19)
Ex+ Fy ≤ e (20)
x ≥ 0, y ≥ 0 (21)

where x represents the first-stage decision variables including
pgi , r

u
i and rdi , y is the second-stage variables including

pgui , p
gd
i , w

c
j and pLck . In addition, constraint (18) represents

the first-stage constraints, (19) includes (10)-(11), and (20)
includes (12)-(13).

To solve the above complex two-stage DR dispatch problem,
a general idea is to reformulate the worst-case second-stage
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expected cost, and this is also the basic idea of our solution
method. For the ambiguity set introduced in (14), we can write
it equivalently as fs0 −θ ≤ fs ≤ fs0 +θ, for all s = 1, 2, ..., S.
Furthermore, let fsl = fs0 − θ and fsu = fs0 + θ by introducing
two auxiliary variables fsl and fsu, we can get the following
equivalent L∞ norm based ambiguity set:

D∞ = {f ≥ 0 : fsl ≤ fs ≤ fsu,∀s,
S∑
s=1

fs = 1} (22)

where fl and fu are the lower and upper bound of the unknown
probability distribution, respectively. In addition, it is assumed
that Pl :=

∑S
s=1 f

s
l ∈ (0, 1) and Pu :=

∑S
s=1 f

s
u > 1 to avert

trivial cases.
Based on the above ambiguity set, we can induce two new

probability measures from fl and fu− fl, respectively, which
are given below:

Pl =
∑

s∈{1,...,S}

fsl
Pl

(23)

Pu−l =
∑

s∈{1,...,S}

fsu − fsl
Pu − Pl

. (24)

With these two probability measures, we can reformulate
the worst-case second-stage expectation in (16) to a convex
combination of an expectation and the CVaR [19] as follows:

max
P∈D∞

EP [Q(x, ξ)] = PlEPl
[Q(x, ξ)]

+(1−Pl)CVaRPu−l

(Pu−1)/(Pu−Pl)
[Q(x, ξ)]. (25)

Considering the definition of CVaR [20], the right-hand second
term of (25) can be further written as below:

(1−Pl)CVaR = min
φ∈R

(1−Pl)φ+(Pu−Pl)EPu−l
[Q(x, ξ)−φ]+

(26)
where [τ ]+ = max{τ, 0}.

Combining (25) and (16), we can find that the original two-
stage DR problem is transformed into a two-stage stochastic
linear program problem. In addition, since there is only
min operator in this two-stage problem, the problem can be
readily solved by available solvers without decomposition.
More specifically, we need to solve a scenario-based stochastic
problem for the second-stage cost and CVaR term in (26) [16],
which can be described as follows:

min
φ,βs,ys

(1− Pl)φ+ (Pu − Pl)EPu−l
(βs) (27)

βs ≥ 0, βs ≥ q>ys − φ, ∀s (28)
Bx+Cys +Dξs ≤ d, ∀s (29)
Ex+ Fys ≤ e,ys ≥ 0, ∀s (30)

where βs is the auxiliary variable for scenario s. Different
from the common two-stage DR or robust problem solved
by decomposition method such as Benders decomposition
and column and constraint generation method, the proposed
two-stage model is reformulated to a two-stage stochastic
linear program problem which can be solved directly based
on scenarios.

G2G1
L1

L2 L3W1 G3

B1 B2 B3

B4 B5 B6

W2

Fig. 1. Structure of 6-bus test system

IV. CASE STUDIES

In this section, we carry out case studies based on IEEE
6-bus test system and 118-bus test system to verify the effec-
tiveness of the proposed method. The problem is programmed
in Matlab with YALMIP toolbox and solved by GUROBI
solver. All the simulation experiments are implemented on a
Windows-based PC with an Intel Core i7-6700 CPU 3.40 GHz
and 8 GB of RAM.

A. IEEE 6-bus system

The case study with IEEE 6-bus system is used as an
illustrative example and the structure of 6-bus system is shown
in Fig. 1. There are 3 generators connected to buses 1, 2 and
6, seven transmission lines and three loads in this test system.
Detailed data about this system can be found in [21]. The
generation units are assumed to be on for dispatch problem.
For the cost coefficients of each unit, dui and ddi in the first
stage are assumed to be 10% of the first-order coefficients
of the quadratic fuel cost function, cui and cdi are equal to
the per-unit production cost at maximum output [3]. The cost
coefficients of wind power curtailment and load shedding are
100 $/MW and 200 $/MW, respectively. Three loads at buses
3, 4 and 5 have a demand of 100MW, 100MW and 150MW,
respectively.

In addition, we assume that there are two wind farms
connected to buses 4 and 6, and each has a forecasted output
of 50 MW [15]. To generate historical data of wind power,
normal distribution is used where the mean equals to the
forecasted value and the variance is 10% of the mean. Note
that historical data can be collected directly in practice. In
addition, the number of bins is set to be 5 [14]. Then we can
estimate the reference distribution with the histogram method.
For the piecewise linear function, the number of pieces is 3
in this study.

1) Effects of historical data size: Based on the above
parameter settings, we first validate the value of data in
influencing the conservatism of the problem. We set α in (15)
to be 0.05 and the data size ranges from 100 to 5000. The
numerical results of distributionally robust ED (DRED) are
summarized in Table I. In addition, we also give the cost result
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TABLE I
EFFECTS OF DATA SIZE FOR 6-BUS SYSTEM

Data size Cost ($) θ SED cost ($)

100 7969.51 0.0821 7744.02
500 7837.29 0.0367 7744.02

1000 7807.93 0.0258 7744.02
2000 7777.29 0.0183 7744.02
5000 7768.88 0.0116 7744.02

0.6 0.7 0.8 0.9 0.95
Confidence Level

7700

7750

7800

7850

C
os

t (
$)

0

0.01

0.02

0.03

V
al

ue
 o

f 

Cost
 value

Fig. 2. Influence of confidence level for 6-bus system

with 50000 data size as a benchmark which can be seen as
the stochastic economic dispatch (SED) problem with perfect
information, i.e., we use this case to estimate the problem
with true distribution. From this table, we can see that the
total average cost decreases as the data size increases, thus the
problem becomes less conservative. Considering the change of
θ value, it can also be derived that the ambiguity set shrinks
with more data information involved, and the DRED problem
is expected to converge to the SED problem with perfect
information when the data size goes to infinity. In summary,
the results show the value of additional data in controlling the
conservatism of the problem.

2) Influence of confidence level: In this section, we test
the influence of the confidence level in ambiguity set on the
conservatism of the problems. From (15), we can see that the
confidence level will influence the θ value which indicates the
size of the ambiguity set. In this case study, we fix the number
of data as 1000 and adjust the value of confidence level (1−α)
from 0.6 to 0.95. The results of corresponding cost and θ value
are illustrated in Fig. 2. As can be seen from this figure, both
the total cost and the θ value increase with the increment of
confidence level. This is reasonable since higher confidence
level means a higher chance that the ambiguity set contains the
true distribution. Therefore, θ should become larger to enlarge
the ambiguity set when confidence level increases, which also
results in a more conservative problem.

B. IEEE 118-bus system

In this section, we further test the performance of the
proposed method with a larger system, a modified IEEE 118-

TABLE II
EFFECTS OF DATA SIZE FOR 118-BUS SYSTEM

Data size Cost ($) θ SED cost ($)

100 105278.57 0.0821 102405.63
500 103803.66 0.0367 102405.63
1000 103397.21 0.0258 102405.63
2000 103003.38 0.0183 102405.63
5000 102771.85 0.0116 102405.63

0.6 0.7 0.8 0.9 0.95
Confidence Level

1.02

1.025

1.03

1.035

C
os

t (
$)

105

0

0.01

0.02

0.03

V
al

ue
 o

f 

Cost
 value

Fig. 3. Influence of confidence level for 118-bus system

bus test system, which can also be used to verify the potential
application of the approach in practice. The detailed data about
this system can be found in [22] and the total load demand is
4720 MW. Related parameters such as the cost coefficients are
the same with those in 6-bus system case study. In addition,
we assume that six wind farms are connected to the system
at buses 12, 17, 49, 59, 80 and 92, and each has a 100 MW
forecasted output [15]. The wind farms are assumed to have
the same support set for simplicity, and the historical data are
also generated from normal distribution.

With a similar simulation experiment, we also validate
the effectiveness of the proposed method by checking the
influence of historical data size and confidence level. The
simulation results are given in Table II and Fig. 3, respectively.
From analyzing these results, we can derive the same conclu-
sions as before which are omitted. The computation time for
this case study is only several seconds, and this also confirms
the potential application of the proposed method on a practical
power system.

In addition, we test the proposed method with more data
sets, i.e., Weibull distribution and log-normal distribution are
also used to generate historical data except for the above
normal distribution. For these various distributions, we study
the influence of the data size similarly and compare the
obtained average total costs with the cost of SED with perfect
information. More specifically, the gap between the DRED
cost (e.g., zdr) and optimal SED cost (z∗) is calculated which
is defined as (zdr − z∗)/z∗. The results are illustrated in
Fig. 4. As can be seen from this figure, the cost of DRED
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Fig. 4. Influence of data size under different distributions

problem converges to that of perfect SED problem with the
increase of historical data size under different distributional
settings. Consequently, the conservatism of the DRED problem
decreases with more data information.

V. CONCLUSION

A two-stage data-driven distributionally robust energy and
reserve dispatch problem is studied in this work, which consid-
ers the base-case dispatch plan and reserve in the first stage and
worst-case re-dispatch in the second stage. Unlike the common
moment-based ambiguity set, we design a new distance-based
ambiguity set, i.e., L∞ norm based set, which has not been
studied for such problem before. Based on this new ambiguity
set, the second-stage worst-case expected cost is reformulated
into a combination of CVaR and an expectation with respect to
a reference distribution, which makes the proposed two-stage
distributionally robust model become a two-stage stochastic
optimization problem. The results of simulation experiments
validate the effectiveness of the proposed approach, especially
the value of data in controlling the conservatism of the
problem. We also show that the distributionally robust problem
converges to the stochastic problem with perfect information
as the historical data size goes to infinity.
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