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Abstract

Stochastic simulation of rock types is a major area of continuing research. Rock types

account for the majority of heterogeneity in mineral/ petroleum deposits, and a good

understanding of the geometry and spatial distribution of natural phenomena is re-

quired for reliable resource and reserve estimation. Integrating geological concepts in

geostatistical modeling is important in order to provide realistic geological models. The

resulting models are practical and reasonable if they provide a reliable reproduction of

the true underlying structure of the subsurface.

A methodology has been developed to construct geostatistical models that repro-

duce features inferred from data and are consistent with geologic understanding of the

deposit. The main idea is to transfer essential geological features to the geostatistical

models, particularly when there is a clear ordering between categories. In deposits

with complicated ordering structures, truncated plurigaussian simulation (TPG) is a

flexible method for simulating facies categories. This is a modeling technique which

relies on simulating multiple underlying Gaussian variables to represent a categorical

variable. TPG simulation utilizes truncation masks for mapping categorical variables

to a continuous space. Therefore, an optimized truncation mask is required to best

represent the contacts and transitions between facies categories with respect to the

geological interpretations.

In addition, continuity of the categories is controlled by the variogram of each

Gaussian variable. Finding the variogram model of the underlying Gaussian variable

is essential to reproduce the target indicator variograms of facies categories and is an

important challenge of TPG simulation.
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TPG simulation is improved through adopting optimization techniques for model-

ing the underlying Gaussian variables and the categorical variable. A novel technique

is developed which allows for the reproduction of the spatial continuity of facies cat-

egories by automatically inferring the optimum variogram models for the underlying

Gaussian deviates. Implementation of this methodology demonstrates improvement in

the modeling of complicated geologic features and in accounting for changes in the cat-

egories proportions. Reasonable reproductions of the transitions observed in the data

as well as the categorical data observations from the production data are achieved.
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Chapter1

Introduction

Therearelimitednaturalresourcesintheworld. Generallyforthepurposeofcost-

efficiencyinthepetroleumorminingindustries,propertiesofinterestsuchasminerals

andhydrocarbonsaremeasuredforalimitednumberoflocations,andlater,areesti-

matedorpredictedfortheremaininglargerareasofdepositorreservoir.Therefore,a

goodunderstandingofthebehaviorofthesesourcesisessentialtobestpredicttherock

propertiesatunsampledlocations.Geostatisticsisastatisticalmethodologythathas

beenappliedtogeologicalphenomenaandquantitativenumericalmodelsforusesof

planning(A.JournelandHuijbregts(1978);Matheron(1971)).Geostatisticsconsiders

alltheavailableinformationtoallowresearcherstopredictthepropertiesofinterest

atunsampledlocationsforthewholeareaofinterestandtoassesstheuncertaintyin

thepredictions.Dealingwithdifferenttypesofdatawithcomplexvariationispossible

throughgeostatistics.

Simulationofcategoriesisacommonchallengeingeostatistics.Definingthecate-

goricalvariablesthatencoderocktypes,mineralization,facies,orveinoccurrencesis

oftenthefirststepinanymodelinginmining,petroleumengineeringandenvironmental

sciencesstudies.Categoricalvariablesrepresentaspecificenvironmentorunits,which

aregeologicallyhomogeneous.Inotherwords,categoricalvariablesseparatestationary

domains.Categoricalvariablessuchasclassesofgradeorporosity(rich,mediumand

poor),orrocklithotype(silt,limestone,sandstone,shale)definetheareainadeposit

thatcanbeseparatedintoastationarysetofcategories.Thevariabilityofcontentious
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properties, such as grade, is higher between the rock types than within a rock type.

Therefore, attention should be paid to the categorical modeling first for accurate and

effective models of the continuous variables.

1.1 Motivation and Problem Statement

Categorical variable modeling has a significant impact on resource estimation as

the heterogeneity between categories is often significantly larger than the heterogeneity

within a category; accurate categorical variable modeling is important. Characteriza-

tion of complex geological features and patterns is challenging. This work focuses on

three challenges related to categorical variable modeling. First, the categorical variable

model should reproduce known geological features of a domain to obtain a realistic and

reliable model. The development of geostatistical methods to simulate models that

result in realistic geological distributions of heterogeneities which match the spatial

continuity of available data is an important contribution.

Second, stationarity is a crucial assumption required by most geostatistical tech-

niques. The wrong decision of stationarity can lead to unrealistic models when data

belong to separate populations with different statistics. Due to different mineralization

systems, the geological phenomena may alter changes through the areal extent. Also,

it is possible to have multiple mineralization settings connected vertically in a deposit

which result in various transitions between rock types. These changes have to be taken

into account in modeling.

In categorical variable modeling, proportions of categories are essential input pa-

rameters and frequently follow a trend calculated from available data. One way to

account for changes in the depositional setting is the use of non-stationarity statistics.

Non-stationarity statistics allows for consistency with the conceptual model and vari-

ables. Proper modeling should be adapted to account for these transitions and impose

trends in the simulation.

Lastly, capturing the correct ordering of categories that are genetically ordered be-

cause of the depositional process in the domains is another important key in categorical

2



variablemodeling. Whentheorderingrelationshipsortransitionprobabilitiesbetween

rocktypesareknown,forinstancewhensandstoneisfollowedbyshaleandthenvol-

canicrock,geostatisticaltechniquesshouldhonorandreproducethesetransitionsin

thefinalgeostatisticalmodel;thesetypesoforderingrelationshipsareusuallydifficult

tocontrol.

Todemonstratetheconceptoftheaboveissues,considerFigure1.1whichdis-

playsthePennsylvanianstratawithverycomplextransitionsbetweenrocktypes.Due

todiversegeologicalconditions,therearelateralandverticalvariationsinthickness

andcomposition. Thesandstonesandshalesfrequentlytransitionlaterallyintoeach

otherandtheshalesmayconnectlaterallyandverticallyintolimestonesandcoals.

Reproductionofthesecomplexorderingstructureswhileaccountingforthevariation

ofproportionofrocktypesisessentialwhenusinganygeostatisticaltechniquesto

generatereliablemodels.

Figure1.1:ThePennsylvanianstrata.Left:thegeologicaldescription.Right:typi-
callayeringwithlaterallydiscontinuousfeature(Pennsylvanian,n.d.).
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Truncatedplurigauussian(TPG)simulationisoneofthecategoricalvariablemod-

elingalgorithmswhichiscapableofaddressing mentionedchallengesincategorical

variablemodeling.Developmentofthistechniqueisthefundamentalobjectiveofthis

thesis.

TruncatedPlurigauussianSimulation

TPGsimulationisavariogrambasedtechniqueandisapowerfulmethodformod-

elinggeologywithknownorderingofcategories.Themainbenefitisitsflexibilityin

representingcomplexlateralandverticalcategoriestransitions.TPGsimulationsim-

ulatesanumberofcontinuousstandardnormalvariablesthatarethendiscretizedinto

categoricalvariablesbasedontruncationrulesormaskswhichdefinethegeological

relationshipbetweencategories.TruncatedGaussiansimulation(TGS)wasdeveloped

inthelate1980sforsimulatinglithotypesinoilreservoirs(Matheronetal.,1987)using

onlyoneGaussianvariableandthengeneralizedtoTPGsimulation(Galli,Beucher,

LeLoch,Doligez,etal.,1994)formorethanoneGaussianvariable.

1.2 ThesisStatement

ThemaingoalofthisthesisistoimprovecategoricalvariablemodelingwithTPG

simulationthroughaddressingthefollowingmajorissues:

1.Honoringthecorrectorderingofcategorieswithoptimizationofflexibletrunca-

tionrules;

2.Honoringlocallyvaryingproportionswithdifferenttruncationrules;

3.Capturingthespatialcontinuityofindividualcategoriesbyvariogramoptimiza-

tionofunderlyingGaussianfunctions;

AddressingtheaboveissueswillallowforTPGsimulationtoconstructmorereliable

categoricalvariablemodels.Improvementismeasuredbycrossvalidationanalysesas

wellascomparisonofthemodeltotheexistingmethodologies.
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1.3 Approach

TPG simulation is capable of dealing with complexly ordered spatial structures by

simulating a number of Gaussian realizations and then using the mask to convert the

continuous values into categories. Honoring the correct ordering of categories in TPG

simulation is achieved by optimization of these truncation rules. Geological interpre-

tation can be transferred to modeling through the truncation mask. The masks also

control categorical proportions; therefore having a methodology that is able to account

for locally varying proportions (LVP) of categories in the domain is necessary.

TPG simulation requires the generation of a number of Gaussian realizations to

be truncated to categorical models. To do so, the variogram model of the underlying

variogram/covariance function for each of the underlying Gaussian functions is required.

These variograms should be selected in such a way that the categorical variables in the

simulated realizations have the correct spatial continuity after truncation. A novel

optimization is proposed in this thesis that attempts to select the optimum input

variograms to best reproduce the spatial structure of each categorical variable.

A TPG framework that automatically generates the required mask to reproduce

known input statistics is developed. This mask matches the known relationships from

existing data and also accounts for LVP of categories in the domain.

A simple demonstration of TPG simulation to simulate three rock types is provided

in Figure 1.2. First indicator variograms of rock types are calculated from the available

data set. In this example, two underlying Gaussian deviates are employed to define

the contacts between rock types. The correct ordering of rock types is achieved by

optimization of the truncation rules. The next step after defining a mask is to find

the optimum variogram model to simulate two underlying Gaussian deviates. In the

optimized mask, distribution of the rock type one versus the other two is controlled by

Gaussian realization one (horizontal axis), and the distribution of rock type two and

three are controlled by Gaussian realization two (vertical axis) of Figure 1.2(c).

Variogram optimization of the underlying Gaussian realization is necessary to find

the optimum variogram models that best reproduce the spatial distribution of rock
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Figure 1.2: Simple demonstration of modeling deposits with TPG simulation with
two underlying Gaussian deviates for three rock types.

6



types after truncation. In the final step, simulated Gaussian realizations are truncated

to categorical variables using the optimized mask.

TPG simulation is performed in Gaussian units. The truncation mask can be

established based on the global proportion or LVP of categories. In TPG simulation

process, several conditions and statistics have to be satisfied. The final truncated

realization should reproduce the transition probability between categories, global/ local

proportions as well as indicator variogram of categories. In Chapter 2, TPG simulation

is explained in detail.

1.4 Outline

Chapter 2 presents the necessary background on geostatistical categorical variable

modeling and describes TPG simulation framework. This chapter presents reviews of

different methodologies for categorical variable modeling.

Chapter 3 demonstrates the generation and optimization of two different flexible

types of truncation rules: a discretized mask and an object based mask in the content

of TPG simulation. The implementations of the proposed masks are tested using a

synthetic 2D example.

Chapter 4 introduces two additional masks: a threshold mask and multidimen-

sional scaling (MDS) mask. A methodology to handle spatial changes in the categories’

proportions is proposed. LVP of categories in the domain is considered for both masks

and is demonstrated on a porphyry deposit.

Chapter 5 describes the effect of the correlation between underlying Gaussian

functions in TPG simulation. The impacts on simulation, the mask, as well as the

variograms are demonstrated.

Chapter 6 presents three methodologies for variogram optimization. A novel op-

timization method is developed to find the optimum variogram parameters in TPG

simulation that results in models that match the spatial continuity of categories.

Chapter 7 demonstrates the developed methodologies on an illustrative case study

based on a porphyry deposit. Production data in the form of blast holes are used
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to verify and confirm TPG models generated. Comparison to traditional work flow

demonstrates the improvement obtained using the proposed TPG implementation.

Finally, Chapter 8 summarizes the main contributions of this dissertation. Fu-

ture work is also discussed. The description of developed software is provided in Ap-

pendix A.
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Chapter2

BackgroundandLiterature
Review

ThefollowingchapterexplainsthebackgroundsforTPGsimulationandpresentscom-

mongeostatisticaltechniquesforcategoricalvariablemodeling.

Geostatisticaltechniquesmodeltheuncertaintyatunsampledlocationsandsimu-

laterealizationsofthejointuncertaintyatmanyunsampledlocationsusingstatistical

modelsthatarebasedontherandomfunction(RF)theory.

GeostatisticsisasetofthetheoreticalconceptsofspatialRFmodelingthatMath-

eron(1962)establishedandfirstappliedtomineraldeposits.Theoriginsofgeostatistics

arealsoduetothepioneeringworkofD.G.Krigeinthe Witwatersrandgoldfieldsin

SouthAfricainthelate1950swhenhewaschallengedwiththeproblemofestimat-

inggrades(Sichel(1952);Krige(1951)).Matheron(1962,1965)providedtheoretical

supportfortheestimationofunbiasedmineralresources.

Krigingisabestlinearunbiasedprediction(BLUP)inspatialstatisticsthatleads

toproperpredictionsfromobserveddata.Thewordkriginginspatialstatisticsissyn-

onymouswithoptimallypredictingoroptimalpredictionatunsampledlocationsusing

nearbycorrelateddata.Matheron(1963)andGandinandHardin(1965)werethefirst

topublishadefinitivedevelopmentofspatialkriging.Also,theconceptofaregionalized

variablewasdevelopedbyMatheron(1965)andconstitutesthefoundationalelements

ofgeostatistics.

Animportantdevelopmentingeostatisticsistheuseofsimulationmethods(Math-
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eron(1973);A.G.Journel(1974);David(1977)).Simulationprovidesequallyprobable

realizationsofthedistributionsofregionalizedvariableandcreatesagroupofstochastic

modelsorrealizationswhichdescribethenaturalphenomenawithapracticalfluctua-

tionsandvariability.Simulationsareutilizedasameasureofuncertaintythatcomes

fromalimitedamountofdataanddemonstratehigherlocalvariability.

2.1 RandomFunction

ThetheoreticalformalismofgeostatisticswasestablishedbyMatheron(1962).Of-

ten,arandomvariable(RV)referstoonevariable.Basically,characterizationofany

unsampledvaluezisintroducedasaRVofZ.Theuncertaintyofanunknownvalueis

definedbytheprobabilitydistributionofZmodels(Pyrcz&Deutsch,2014). WhenRV

islocationdependent,thentheresultisoftencalledanRF.Thespatiallydistributed

variableiscalledaregionalizedvariable.

ForacertaindomainD⊂Rnandaprobabilityspace(Ω,a,P),anRFisafunction

oftwovariablesZ(u,ω)sothatforeachu∈DthevariableZ(u,.)isaRVon(Ω,a,P).

EachofthefunctionsZ(.,ω)specifiedonDasthevariableoftheRFatω∈Ωisa

realizationoftheRF(z(u)).

TheprobabilitythatthevalueofanRVislessthanaspecifiedthresholdisa

cumulativedistributionfunction(CDF)(Eq.2.1).

Fz(u;z)=Prob{Z(u)≤z} (2.1)

TheCDFcouldbesummarizedbyparameterssuchastheexpectedvalue. The

weightedaverageofanRVwhichcanbethoughtofasthecenterofmassinaprobability

densityfunction(PDF)iscalledtheexpectedvalue.Theexpectedvalueisalsonamed

asthefirstmoment(Eq.2.2).

E{Z(u)}=m(u),u∈D (2.2)
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The second moment or variance is the other key parameters in probability theory

which measures how far a set of numbers are spread in Eq. 2.3.

V ar{Z(u)} = σ2(u) = E{(Z(u)−m(u))2},u ∈ D (2.3)

Covariance also shows how much two RVs or two locations (u1&u2) change together

and measures the relation between them. In other words, the expected value of the

difference in one RV from its mean multiplied by the difference in the other RV from

its mean is defined as the covariance between two RVs (Eq. 2.4).

Cov{Z(u1), Z(u2)} = E{(Z(u1)−m(u1))(Z(u2)−m(u2))},u1,u2 ∈ D (2.4)

Usually, probability distribution is summarized with the mean, variance and covari-

ance functions.

2.2 Stationarity

When multiple categories are involved in modeling, it is important to be able to

show whether or not the statistical properties, such as the mean, histogram, correlation,

and variogram, are constant within a given category. All statistical analysis requires

a decision of how to pool data. Pooling data in a histogram assumes they come from

the same population and the global histogram is the same for all locations in modeling

domain (first order stationarity). The decision of stationarity gives significance to the

CDF of the variable (Fz(u; z)) which shows that at any certain location, there can

be only one realization. There is a need to identify separate domains with separate

stationary random function (SRF) models that are deemed more consistent with the

mathematical assumptions of a SRF (i.e. stationarity). When a RF is stationary, its

moments are invariant under translation and the phenomenon is homogeneous in space.

Therefore, stationarity entails that the statistical properties of a variable of interest is
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constant within the domain.

Usually there is non-stationarity in proportions of categories due to geological trends

and changes in depositional setting. This non-stationarity is considered in the simula-

tion by adopting locally varying statistics in this work.

2.3 Indicator Variables

Different geological classifications such as structure, mineralogy, alteration and

lithology are considered in different geological domains, and the data are subset within

them. Categorical variable models are created to separate stationary domains of the

subsurface and encode rock types, mineralization, or facies.

Consider having K mutually exclusive and exhaustive categories, k = 1, 2, . . . ,K.

The list of categories is exhaustive which means location u belongs to one and only

one of these K categories. Ik(u) is the indicator variable related to category k. The

indicator is set to 1 if u in k and zero otherwise (Eq. 2.5):

Ik(u) =


1 if category k is present at location u

0 otherwise

(2.5)

Generating the spatial models for discrete classes is the main purpose of simulating

categorical variables.

Indicator Statistics

The expected value of an indicator variable is equal to the proportion of that variable

(E{Ik} = pk) . The second moment or variance of an indicator is another important

parameter which shows the variability of the variable and is also a function of the

proportion (Eq. 2.6).
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Var{Ik(u)} = E{(Ik(u)−pk))
2} (2.6)

= E{Ik(u)
2}−(pk)

2=pk(1−pk), u∈D

Entropyisanothermeasurementwhichisusefultocomputethevariabilityofall

valuestogether.

Entropy

Theideaofentropyisintroducedingeologytoquantifytheuncertaintyofproba-

bilitydensityfunctions(Christakos,1990).ForacategoricalvariablewithKprobable

eventsoroutcomes,entropy(H)iscalculatedbyEq.2.7:

H=−
K

k=1

pkln(pk) (2.7)

Theprobabilityofoccurrenceofeachpossibleeventsisdefinedaspkhereandthe

sumofalltheprobabilitiesshouldbeequaltoone( K
k=1pk=1). Whenthereis

enoughknowledgetodeterminewhichoutcome(categoricalvariables)exactlywillbe

atacertainlocation,theentropyisminimum(zero)forthisinstance(pk=1forIk=1

andpk=0forIk=0). Whenthereisnoinformationregardingwhatthetrueoutcome

couldbe,thenpk=
1
kforallk=1,2,...,Kresultinthemaximumpossibleentropy.

IndicatorVariogramsandCovariances

Anindicatorvariogram(Eq.2.8)isusedtocharacterizethespatialrelationships

betweenthebinaryvariablesthroughindicatorkriging,whichpredictstheprobability

ofoccurrenceofacategoricalvariableatanunsampledlocation(ChilesandDelfiner

(2009);Goovaerts(1997)).

2γk(h)=E [Ik(u)−Ik(u+h)]
2 k=1,2,...,K (2.8)
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Onlytheaveragetransitionfromcategoryktoanyothercategorysuchaskand

fromanyothercategory(k)tocategorykfromonelocationtoanotherlocationiscon-

sideredinthedirectindicatorvariogramofcategoryk.Thecrossindicatorvariogram

betweentwocategories(kandk)isdefinedasEq.2.9:

2γkk(h)=E{[Ik(u)−Ik(u+h)][Ik(u)−Ik(u+h)]} k=k (2.9)

Theindicatorcovariancemodelisusuallygivenbyindicatorvariogrammodel.An

indicatorcovarianceandanindicatorcrosscovariancebetweentwocategories(kand

k)aredefinedasEq.2.10-2.11,respectively.

Ck(h)=C(0)−γk(h) k=1,2,...,K (2.10)

where:

C(0) -thecovarianceatlagzeroorvariance;

Ckk(h)=E{[Ik(u)−Ik(u+h)][Ik(u)−Ik(u+h)]} k=k (2.11)

2.4 TransitionProbabilities

Theglobalproportionofeachcategorycanbecalculatedfromexperimentaldata.

Thetransitionprobabilityisasubsetofthemultiplepointhistogramforthespecific

caseoftwopoints,wherethetwopointsarenormallyadjacent.Thetransitionproba-

bilitymatrixcanbedefinedasabivariateprobabilityandistheprobabilityofbeing

categorykatlocationu+handlocationubelongstocategoryk. Thetransition

probabilitycanbeameasureofspatialvariability(Carle&Fogg,1996). Transition

probabilitytpkk(h)isdefinedbyaconditionalprobabilityEq.2.12orEq.2.13:
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tpkk′ = Prob{k′ occurs at u + h|k occurs at u} (2.12)

Prob(u + h ∈ Ik′ |u ∈ Ik) = Prob(Ik′(u + h) = 1|Ik(u) = 1) (2.13)

=
Prob(Ik′(u + h) = 1 & Ik(u) = 1)

Prob(Ik(u) = 1)

=
E(Ik′(u + h).Ik(u))

E(Ik(u))

=
Ckk′(u,u + h)

pk(u)

where:

tpkk′ - transition probability between location k and k′;

u - a spatial location;

h - the lag (separation vector);

k, k′ - mutually exclusive categories such as geologic units or categories;

The transition probability matrix with K categories is defined as Eq.2.14. Simplified

notation of tp is used in the rest of thesis to represent transition probability matrix.

tp(h) =



tp11 tp12 tp13 . . . tp1K

tp21 tp22 tp23 . . . tp2K

tp31 tp32 tp33 . . . tp3K

. . .

. . .

. . .

tpK1 tpK2 tpK3 . . . tpKK



(2.14)

Figure 2.1 displays a synthetic example of a string of data by downward transi-
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tionsforK =3categoriesandthetransitionprobabilitymatrixrelativetoonelag

distance.Thediagonaltermsaretheautotransitionprobabilities,orprobabilitythat

thecategorydoesnottransition.Crosstermsaretheprobabilitiesoftransitioningfrom

categoryktok.Thesematricesarecommonlycollectedbothupanddownadrillhole.

Figure2.1:AstringofdatashowingtransitionbetweenK=3categoriesandrelative
transitionprobabilitymatrix.

2.5 GradientOptimizationTechnique

Differentoptimizationtechniquesareusedinthisthesis.Inthissection,gradient

optimizationisintroduced.Inanyoptimizationmethod,asetofnvariablesX =

{x1,···,xn}thatinfluencetheobjectivefunction(O)areadjustedinsuchawayto

minimizeO(X). Thegradientoptimizationusesgradientinformationrelatedtothe

objectivefunction,suchasfirstandsecondderivativesofO(X)withrespecttothen

variables(Eq.2.15).

g(X)=
∂O

∂x1

∂O

∂x2
···
∂O

∂xn

T

(2.15)

Thegradient methodisaclassofoptimization methodswhichdependsonthe

functionandgradientvaluesateachiteration(Chong&Zak,2013).Conjugategradient

isaniterativemethodwhichcanbeappliedtosparsesystemsthataretoolargetobe
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handledbydirectmethods.Thedirectionofsearchineachiterationdependsonthe

localpropertiesoftheobjectivefunction. Aneffectivemethodforthegenerationof

conjugatedirectionsisproposedbyHestenesandStiefel(1952).

TheFletcher-Reeves methodisaconjugatedirection method.Inthis method,

directionsaregeneratedsequentiallyineachiteration.Parameterα,whichisaninde-

pendentsearchparameter,isthekeyparameterinthismethod.Auniqueminimumfor

functionO(x)isobtainedforsomepositivevalueofα.Theparametersofαaredeter-

minedbyminimizingO(x+αidi)withrespecttoαi.Generally,alinesearchmethod

isadoptedtofindtheseparameters.Here,diisaconjugatedirectionwithrespectto

di−1,di−2,...,d0andcanbefoundforconvexandquadraticproblemsusingEq.2.16:

di+1 = −gi+1+βidi (2.16)

βi =
gTi+1gi+1

gTigi

where:

di -conjugatedirectionatthepointxi;

gi -gradientatthepointxi;

gTi -transposegradientatthepointxi;

βi -parametertobeaddedtothenegativeofthegradientatthenew

pointtogeneratenewdirection;

So,fori=1,2,...theconjugacyofthesetofdirectionsguaranteesthat(Eq.2.17):

df(xi+αidj)

djαi
= gTi+1di=0, for 0≤j≤i (2.17)

gTi+1dj = 0, for 0≤j≤i

where:
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αi - step size at the point xi;

The Golden-section search method is a line search method that is used to determine

α. This search method can be performed in each iteration until the desired accuracy

in the minimum value of the objective function is achieved.

An implementation of the gradient algorithm is as follows:

1. Input x0 variables should be defined and the tolerance ε be initialized to stop the

algorithm when the changes are not significant for all the variables.

2. Set i = 0 and compute gradient in the initial points g0 and set direction as

d0 = g0. Here if ∂O(a)
∂xj

=
O(a+∆xj)−O(a)

∆xj
exist, then O has partial derivative with

respect to xj at a. A row vector whose elements are partial derivatives for xj is

the gradient (Eq. 2.15).

3. Find αi using golden-section search. The value of α minimizes O(x+αidi). In this

search, successive intervals are independent of n and iteration can be performed

until the range of uncertainty or change in the value of the objective function is

reduced below some tolerance ε. Then set xi+1 = x + αidi for the next iteration

which defines the new points that satisfy the conditions.

4. This step is about stop criteria. The above process is continued, until there is

not any significant improvement or the objective function has become lower than

tolerance ε. If ‖αidi‖ < ε, then output x∗ = xi+1 and O(x∗) = O(xi+1), and

stop.

5. If i = n− 1, set x0 = xi+1 and go to step 2.

6. Now the gradient of new points gi+1 and βi has to be calculated (Eq. 2.18):

βi =
gTi+1gi+1

gTi gi
(2.18)

The new direction is di+1 = −gi+1 + βidi. Finally, Set i = i + 1 and repeat

from step 3.
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2.6 CategoricalVariable Modeling

Thereareanumberoftechniquesforthestochasticsimulationofacategorical

variable.Thetwomainfamiliesmethodsarethecellbasedandobjectbasedmethods

(Lantúejoul(2013);Mattfeldt(1996)). Whenthecategoricalvariablecanbeidentified

fromfieldobservations,therearealargenumberof methodsthatcanbeusedto

generateamodel(seereviewinKoltermannandGorelick(1996);De Marsilyetal.

(2005)).Inacellbasedmodel,thecategoricalvaluesaredirectlysimulatedcell-by-cell.

Themodelisdefinedbyagroupofcellsintwoorthreedimensions.Simulatingcell-by-

cellusingavariogram/spatialcovariancemodelsuppliedbytheuseriscommon(Pyrcz

&Deutsch,2014).Sequentialindicatorsimulation(SIS)(A.G.Journel,1983),multiple

pointstatistics(MPS)(Alabertetal.,1989),andtruncatedGaussiansimulation(TGS)

orTPGsimulation(Gallietal.,1994)arethethreemaincellbasedmethods.Object

basedmodelingandeventbasedmodelingarethetwocommontechniquesofobject

basedmethodsforsimulatingcategoricalvariables. Choosingthebestapproachfor

categoricalvariablemodelingishighlydependentontheapplication(C.V.Deutsch,

2002).

2.7 SequentialIndicatorSimulation

SISwasproposedbyAlabert(1987)andA.G.Journel(1983)intheearly1980s.

InSIS,simulatedvaluesareintheoriginalspaceandinferredfromthelocalindicator

kriging-derivedconditionaldistributions. Conventionalcategoricalvariablemodeling

approaches,suchasSIS,arewidelyusedandappliedbeforegrades,porosity,andper-

meabilitymodellingtoreproducethespatialandgeometricconfigurationofrocktypes

(A.JournelandIsaaks(1984);Dubrule(1989);Dubrule(1993);LanglaisandDoyle

(1993);Murray (1994);W.Xu (1995)).SISdoesnotconsiderGaussianassumptions

andtheconditionalprobabilityfunctionsareinferreddirectlyfromthedata.Thisnon-

parametricalgorithmrequiresthebinarytransformationofcontinuous(eg.porosity

orpermeability)orcategorical(eg.rocktype)dataintoaseriesofindicatorvariables

(Goovaerts(1997);C.V.Deutsch,Journel,etal.(1992)). Toexpressthecategorical
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variable,SISusestheindicatortransform,andkrigingisappliedtothebinaryindicator

transformsofthedatatodirectlyestimateconditionalprobabilities.SISmethodhas

beenusedinmanydifferentstudiesascategoricalsoilvariablesimulation(C.Zhang

&Li,2007),simulationofcategoriesforgroundwaterflow(Moysey&Knight,2003),

reservoirfluidflows(Seifert&Jensen,1999)anduncertaintyassessmentofthespatial

distributionofsoilorganiccarbon(Delbari,Loiskandl,&Afrasiab,2010),tonamea

few.Theworkflowisasfollows:

1.Createarandompathoverthegridandforeachcell:

2.Lookforpreviouslysimulatedvaluesandnearbyconditioningdata

3.Usesimplekrigingorordinarykrigingtoestimatetheconditionalprobabilityfor

eachcategoryk=1,...,K

4.Simulateacategoricalvaluefromthesetofprobabilities

5.Returntostep2untilsimulatingallnodesofthegrid

Indicatorbasedkrigingandsimulationmethodshaveseveralweaknessesandlimita-

tions,asdocumentedbyseveralauthors(ChilesandDelfiner(2009);Christakos(2012)

Emery(2004)). This methodgenerallyisunabletocapturethegeometryofcom-

plexgeologicalfeatures(e.g.successivedepositionanderosion). Whenthecategorical

variablesfollowobviousgeometricforms,SISisnotrecommended.

2.8 MultiplePointStatistics(MPS)

MPSisoneapproachforcategoricalvariablemodelinganddoesnotrelyonvari-

ogrammodels.ThistechniquewasfirstproposedbyA.G.JournelandAlabert(1989)

andthenusedinsimulationbyC.V.Deutsch(1992);GuardianoandSrivastava(1993);

StrebelleandJournel(2000);Lyster(2009),tonameafew. MPSaccountsforthere-

lationsbetweenmorethantwopointsatatimeandisanalternativetothetraditional

krigingbasedmethods. Unliketraditionalgeostatistics, MPSavoidstheexplicitdef-

initionofanRF.Categoricalmodelsthatcontainthecomplexnonlinearfeaturesin

mineraldepositsaregeneratedbythesetechniques(GuardianoandSrivastava(1993);
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A.G.Journel(2004)).Thetechniqueisbasedontheconceptofsinglenormalequations

(SNE).Singlenormalequationsimulation(SNESIM)isanefficientMPSalgorithmthat

wasfirstproposedbyGuardianoandSrivastava(1993).Strebelle(2002)providesare-

viewoftheevolutionofthese MPSalgorithmsandaproposedefficientnon-iterative

algorithm(SNESIM).

InMPS,informationregardingspatialheterogeneityofthereservoirisinferredfrom

atrainingimagethatisarasterizedillustrationofthecategoricalvariablesunderstudy

(Boucher,2009)andcanbeviewedasthepriormodelofspatialstructure(A.G.Journel

&Zhang,2006).Atrainingimagerepresentsthegeologicalheterogeneityandisarock

typemodelthatisexhaustivelypopulatedbytherocktypesofinterest(Boisvert,Pyrcz,

andDeutsch(2007);C.V.Deutsch(1992)).Theuseofadatasetasatrainingimage

guaranteesthatMPSisgeologicallyrealistic.However,anexhaustivedatasetthatis

representativeofthedepositofinterestisnotoftenavailable.

Dimitrakopoulos, Mustapha,andGloaguen(2010)introduceddata-drivenalgo-

rithmsbasedonhigherorder momentsknownascumulantsforreproducingcom-

plexgeologicpatternswithoutappealingtotrainingimages. Otherapproachesim-

plementsecondaryinformationforhandlingthereproductionoftrendsinsimulations

(ChugunovaandHu(2008);Straubhaar,Renard,Mariethoz,Froidevaux,andBesson

(2011)).D.A.SilvaandDeutsch(2014)usedmultipletrainingimagessimultaneously

toreproducegeologicfeaturesfromtrainingimageswiththeprecisecontinuityand

variability.

MPSfacilitatesconditioning. However,itisstillcomputationallydemanding(es-

peciallyintermsofmemoryrequirements). Moreover,asignificantdrawbackofim-

plementing MPSistheinferenceofatrainingimagethataccuratelyrepresentsthe

characteristicsandstatisticsofthedomainofinterest. Togeneraterealisticrealiza-

tionsthataccuratelyrepresentthephenomenaunderstudy,adoptingarepresentative

trainingimageisimportant(Boisvertetal.(2007);A.G.JournelandZhang(2006)).

Also,theselectionoftemplateconfigurationsandtheavailabilityofpatternsinthe

trainingimageareothercomplicationsofMPS(Arpat(2003);Lyster(2009)).

21



2.9 TruncatedGaussian/PlurigaussianSimulation

TheTGSmethodsimulatesacontinuousstandardnormalvariablethatisthen

discretizedintocategoricalvariablesbasedonthresholds. Thismethodiscapableof

dealingwithorderedspatialstructures.Inthelate1980s,TGSwasdevelopedwiththe

applicationinoilreservoirs(Matheronetal.,1987). TGSsimulationmodelsprovide

morestraightforwardandrealistictransitionsbetweencategoriesthanSIS(Gallietal.,

1994).Tosimulatethegeometryandinternalarchitectureofastratigraphicreservoir,

TGSisanoption. Aftertruncation,appropriatevaluesofporosityandpermeability

canbeassignedtotheknownlithotype. Whenthecategoriesappearinasequential

orderinreservoirs,forinstance,whensandstoneisfollowedbyshalysandstonethen

shale,TGSisuseful.

TPGsimulationisanextensionofTGSandisapowerfulmethodformodeling

geologyandflexibileinrepresentingcomplexlateralandverticalcategoriestransitions.

TheprincipleofthismethodwasestablishedbyGallietal.(1994).Normally,amaxi-

mumoftwoGaussianfunctionsareconsideredtorepresentrelevantgeologicalfeatures

inthemodels(Rondon(2009);Carrasco,Ibarra,Rojas,LeLoch,andŚeguret(2007);

FontaineandBeucher(2006)).Inthebigaussianmethod,truncationischaracterized

bythepartitionofarectangledefinedbytheGaussianrealization,oftenreferredtoas

themask.Anynumberofcombinationsofcategoriescanbeconsideredinthemodel.

Astherelationshipsbetweencategoriesbecomeincreasinglymorecomplex,thetrun-

cationtechniquehastobeflexibletoaccountfortheserelationships.Themainideaof

thetruncationisbasedmostlyonpermittingornotpermittingsomecategorycontacts

witheitherverticalorhorizontalthresholds.

Somecomplexreservoirexamplesofprimarydiagenesiseffectscharacteristicof

carbonatesedimentarysystemsareexplainedby(Armstrongetal.,2011).TPGmodel

isusedforsimulatinggeologicaldomainsinpetroleumreservoirsandmineraldeposits

withtheaimofassessingtheuncertaintyinthedomainboundariesandimproving

thegeologicalcontrolsinthecharacterizationofquantitativeattributes(Remacreand

Zapparolli(2003);FontaineandBeucher(2006)).
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TheimprovementofaquiferflowsimulationresponsesusingTPGmodelisshown

bySerrano,Guadagnini,Giudici,Guadagnini,andRiva(2012);Serrano,Guadagnini,

Riva,Giudici,andGuadagnini(2014).Also,amodelformineralproportionevaluation

inanoredepositisconsideredbyEmery(2010).TPGsimulationalsohasbeenusedfor

faultfaciesmodelingbyFachri,Tveranger,Braathen,andSchueller(2013).Carrillat

etal.(2010)comparedtheapplicationofdifferentcategoricalvariablemodelingand

TPGonamassivecarbonateoilfield.Distributionoffaciesforcomplicatedreservoir

modelshasbeendescribedbyTPGsimulation.

Figure2.2displaysthesedimentaryoilbearingformationsincanyonsalongtheSan

JuanRiverinUtahwherephylloidalalgalmoundsofthePennsylvanianageareexposed

andcanbemodeledusingTPGmethod(Grammer,Eberli,VanBuchem,Stevenson,

andHomewood(1996);VanBuchemetal.(1998)).Thethresholdmaskscorresponding

tothiscomplexgeologicalsettingareillustratedinFigure2.3.Twodifferentmasksare

considered.Thelowerpartisrelatedtotheplatformprogradation,andintheupper

zone,algalmoundscanbefound. OneGaussianfunctionisusedforthesimulation

ofthelowerpart,whileintheupperpart,becauseofthespatialorganizationofthe

moundsandintermound,categorieshaveamorecomplextruncationrule.

Handelingthelocallyvaryingproportionsofcategoriesinthethresholdmaskis

stightforward.C.Xu,Dowd,Mardia,andFowell(2006)increasedthenumberofun-

derlingGaussianrealizationsofthethresholdbasedmasktohandlemorecomplicated

relationshipsbetweencategoricalvariables.Ageneralmethodologyusingkernelregres-

sionisdevelopedbyAllard,Dor,Biver,andFroidevaux(2012)forthetruncationmask

toconsidercategoricalvariablesandauxiliarylatentvariables.Thismethodinvolves

jointobservationofthecategoricalandtheGaussianvariablesatthewelllocations

andtruncationisnon-parametrictosimultaneouslyconsidermorecomplexrelations

betweencategoricalvariables. Also,J.L.DeutschandDeutsch(2014)considereda

parametrizedtruncationmaskwithVoronoitessellation.

ThenextsectionsexplaintheTGSandTPGmethodologyfromamathematical

pointofview.

23



(a)Carbonatereservoir

(b)Geologicalmodel

Figure2.2:Top:outcropofatypicalcarbonatereservoiralongtheSanJuanRiver
inUtah.Bottom:ageologicalmodelofthePennsylvanianalgalmounds
inoutcrops(Gallietal.,2006).

2.9.1 One-GaussianFunction

InTGS,thecategoricalassignmentcomesfromoneunderlyingcontinuousvariable.

AstandardGaussianRF(N(0,1)distribution)andthentheclassificationofcategorical

domainsarebasedontruncatingthefunctionaccordingtoaspecifiedmask(thresholds)

forrepresentingdifferentgeometricpatternsandcontactsbetweengeologicdomains.

AnRV(Z)hasaGaussiandistributionifithasPDFasEq.2.19:
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Figure2.3:MasksforParadoxbasin(Armstrongetal.,2011).Right:maskforthe
upperpartandleft:maskforlowerpart.

f(z)=
1

σ
√
2π
e−

1
2
(z−µ
σ
)2 (2.19)

where:

µ -meanofthedistribution;

σ2 -varianceofthedistribution;

µandσ2canfullycharacterizetheGaussiandistributionandtherefore,byestima-

tionofthesetwoparameters,characterizingtheconditionalCDFatanypointinDis

simple.If{Z(u),u∈D}isaGaussianRFwithcovarianceCZ(h),themultivariate

GaussianRFhasfollowingproperties:

1.AnysubsetoftheRFisalsomultivariateGaussian

2.AnymarginaldistributionofZ(u)hasaGaussiandistribution

3.DistributionbetweenanypairsofRVs(Z(u),Z(u+h))isGaussianandfully

determinedbythecovariancefunctionCZ(h)

4.AllconditionaldistributionsofanysubsetoftheRFZwithnknowndataare

Gaussian(Eq.2.20):
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GZ(u|(n))(z(u|(n))) = G(
z − E{Z(u)|(n)}
σ{Z(u)|(n)}

) (2.20)

where:

G - the standard Gaussian (Normal) CDF;

To be able to apply TGS, a mask for representing geometric patterns and contacts

between the geologic domains is required. The mask links the categorical variables (Ik,

k = 1, 2, . . . ,K) and the continuous variable Z(u). Rectangular partitions (threshold

based) for the mask are the most common type of masks. Figure 2.4 demonstrates a

simple sketch for a domain with K=3 categories. In this domain, category one is in

contact with category two, whereas category two is in contact with both category one

and category three. This ordering of contacts between categories can be represented

by partitioning a Gaussian RF that is divided by two lines (thresholds; t1 and t2), as in

Figure 2.5. In this case, one Gaussian function is able to capture the spatial ordering

relation between the geological categories.

Figure 2.4: Sketch of a synthetic 2D geological region with K = 3 categories.

2.9.2 Threshold Definition

The thresholds define an area/volume of the multivariate Gaussian distribution

assigned to categories. For two categories, consider Z(u) as the simulated Gaussian

function at location u and I1(u) and I2(u) can be the indicators of the category one
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Figure 2.5: Truncation of a Gaussian distribution with two thresholds (t1 & t2).

and two, respectively. The mathematical equation of the truncation is Eq. 2.21:

I1(u) = 1 ⇔ −∞ ≤ Z(u) < t1 (2.21)

To simulate a variable with K possible categorical values, K− 1 thresholds have to

be defined. The ith category is defined by Eq. 2.22:

u ∈ Ii ⇔ ti−1 ≤ Z(u) < ti (2.22)

There is an ordering relationship between the thresholds andK categories (Eq. 2.23).

t1 ≤ t2 ≤ · · · ≤ ti ≤ ti+1 ≤ · · · ≤ tK−1 (2.23)

2.9.3 Link between Thresholds and Proportions

The proportion of categories are usually obtained from the available drill hole or

well data. There is a one-to-one relation between the proportion of categories and the

threshold values for each of the masks. As for TGS, the probability of having category
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k at u defines the proportion of this category at that location (Eq. 2.24).

E{Ik(u)} = pk(u) (2.24)

Ik(u) = 1 ⇔ tk−1 ≤ Z(u) < tk

where:

Ik(u) - indicator of the category k;

Z(u) - the simulated Gaussian function at location u;

tk−1 - the (k − 1)th threshold on Gaussian function;

tk - the kth threshold on Gaussian function;

Therefore:

pk(u) = P (tk−1 ≤ Z(u) ≤ tk) (2.25)

= P (−∞ < Z(u) ≤ ti)− P (−∞ < Z(u) ≤ tk−1)

= G(tk)−G(tk−1)

Using the normal distribution is conventional to generate the underlying Gaussian

realization. The thresholds can be specified by the target global proportions for each

category or with local proportions. Assuming the known proportions of each category

experimentally pk(u) (k = 1, · · · ,K), one can calculate the cumulative proportions

(cpk) (Eq. 2.26):

cpk(u) = [
k∑
i=1

pi(u)] u ∈ D (2.26)

By construction, cp0 = 0 and cpK = 1. K − 1 thresholds are required for trans-

forming the continuous Gaussian variables to K categories. The inversion of Eq. 2.25
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results in the thresholds (Eq. 2.27):

t1 = G−1[p1(u)] (2.27)

t2 = G−1[p1(u) + p2(u)]

...

tj = G−1[p1(u) + p2(u) + · · · pj(u)]

= G−1[cpj(u)], j=1,2,. . . ,K-1

Where tj are the thresholds for the TGS and by construction t0 = −∞ , tK =∞.

Therefore, for the example that is shown in Figure 2.4 the ordering relation be-

tween three categories can be defined by one Gaussian deviate. By using the specified

mask in Figure 2.5 and considering the proportion of category one, two, and three as

0.159, 0.682, and 0.159, respectively, one can estimate the truncation of a Gaussian

distribution with two thresholds (t1 and t2), as follows:


z(u) ∈ I3 ↔ Z(u) < t1

z(u) ∈ I2 ↔ t1 ≤ Z(u) < t2

z(u) ∈ I1 ↔ Z(u) ≥ t2

(2.28)

t1 = G−1[p1(u) = 0.159] = −1.0

t2 = G−1[p1(u) + p2(u) = 0.159 + 0.682] = 1.0

2.9.4 M-Gaussian Functions

To simulate the categories in a domain with more complicated ordered geologi-

cal features, TPG simulation (≥ 2 Gaussian deviates) is a reasonable method. The

area/volume of the multivariate Gaussian distribution between the variables is defined

by thresholds. As we have Ik(u) = 1 ⇔ (Z1(u), Z2(u), · · · , ZM (u)) ∈ Dk, the proba-

bility of having category k at location u when there are M Gaussian realizations can
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bewrittenasEq.2.29:

pk(u) = P{[Z1(u),Z2(u),···,ZM(u)]∈Dk} (2.29)

=
Dk

g (Z1,···,ZM)dzM

where:

Dk -thesubsetoftheGaussianspacewhichisassignedascategoryk;

g -theM-variatestandardGaussianfunctionwithmeanof0andvari-

anceof1;

-thecorrelationmatrix;

2.10 ObjectBased Modeling

Animportantobjectbasedcategoricalvariablemodelingmethodisobjectbased

modeling.Intheobjectbasedmethods,parametrizedgeometriesareplacedsequen-

tiallyintoadomainmodelinitializedwithabackgroundcategory.Somecriteriasuch

astargetglobalproportionanddataconditioningareappliedtothemodeltostop

thealgorithm. Tolayoutatypicalobjectbasedmodel,threekeyissuesshouldbe

addressed(C.V.Deutsch,2002): Geologicalshapes, methodforobjectplacement

modification,andrelevantdatatoconstraintheresultingrealization. Unconditional

simulationwithanobjectbasedalgorithmisstraight-forwardandfast. Geometries

areplacedsequentiallyintoadomainmodeluntiltheglobalproportionsofcategories

arereproduced. However,reproductionofdensedataconditioningisdifficultand

needstime-consumingiterativeprocedures.Foreasierdataconditioning,thesemeth-

odshavebeencombinedwithvariogrambasedtechniques(e.g.,Holden,Hauge,Skare,

andSkorstad(1998);ShmaryanandDeutsch(1999);Viseur(1999);Oliver(2002);

Vargas-GuzḿanandAl-Qassab(2006)).

Objectbasedfaciesmodelsarevisuallyattractive,andthecategoriesrepresented
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bygeologicalshapesandrealisticnonlinearcontinuity matchtheknowngeological

features. Figure2.6showsacomplexdeepwaterwhichwasmodeledbycomplicated

channelsusingtheobjectbasedmethodbyPyrczetal.(2012). Withintheobject,con-

tinuouspropertytrendscanbemodeledthatcannotusuallybemodeledwithcellbased

methods.Ifgeometrieswithinthedomainarewellunderstood,objectbasedmodels

areappropriate.Objectbasedmodelinghasbeenappliedtoanumberofdifferentge-

ologicalsettingsandispopularinfluvialsettings.A.D.Miall(1985)classifiedfluvial

architecturalelementsbasedontheirscales,boundingsurfaces,texture,andinternal

geometries.Also,heexplainedfluvialsedimentaryfacies,basinanalysis,andpetroleum

geologywithmorethan500figuresand1000references(A.Miall,2013). Withthework

ofHaldorsenandothers(H.HaldorsenandChang(1986);H.H.Haldorsen,Lake,et

al.(1984);Chiu,Stoyan,Kendall,andMecke(2013)),inthemid-1980sobjectbased

modelingbecamepopularinpetroleumreservoirmodeling.H.Haldorsen,MacDonald,

etal.(1987)modeledshalebarriersasrectangularobjects. Therearemanydiffer-

entexamplesofgeologicalmodelingoffluvialreservoirsusingobjectbasedmodeling.

ThemathematicalmodelofafluvialreservoirwasstudiedbyHoldenetal.Intheir

studythereservoirwasdividedintofourdiscretefacies:channel,crevasses,barrier,and

background.RealizationsfromthemodelaregeneratedusingtheMetropolis-Hastings

simulationalgorithmwithsimulatedannealingconditioningonthevolumeratiosand

wellobservations(Holdenetal.,1998).

Oftenobjectbasedmodelsareconstructedwithoutconsideringlocaldataandused

astrainingimages.Improvedconditioningisnecessaryforobjectbasedmodeling.

Figure2.6:Complexdeepwatergeologicalfeatures(Pyrczetal.,2012).
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2.11 EventBased Modeling

Eventbasedmodelling,alsoknownasprocessbased,pseudogenetic,processmim-

ickingoradvancedobjectbasedmodels,isanextensionofobjectbasedmodellingin

whichtheobjectsareplacedinthemodelinatemporalsequencewithrulestomimicthe

geologicprocessesassociatedwiththeirdeposition(Sun,Meakin,Jøssang,andSchwarz

(1996);Xie,Cullick,Deutsch,etal.(2001);Pyrcz(2004);Pyrczetal.(2012)).Thege-

ologicalcomplexitygeneratedbyeventbasedmodelingisappealingtomanygeologists.

Conditionedeventbasedmodelsaredifficulttoconstructandmatchingseismicdata

israre. Theresultisthedevelopmentofmorecomplexmodelsofheterogeneityand

objectinter-relationships,butconditioningisnearlyimpossible.Eventbasedmodelling

hasbeenusedtogeneraterealisticmodelsoffluvialsystems(Pyrcz,2004). Process

basedforwardsimulation(TetzlaffandHarbaugh(1989);Boisvert(2007)),eventbased

modelling(Pyrcz,2004),andunconditionalobject-basedsimulations(Pyrcz(2004);

Maharaja(2008))havebeenusedtogenerate3Dtrainingimages.

AprocessbasedstochasticapproachhasalsobeenusedbyHu,Joseph,Dubrule,

etal.(1994)tosimulatetheinternalgeometryofdeltaicsandstonebodies. Process

basedmodelshavebeencombinedwithobjectbasedandvariogrambasedtechniques

(e.g.,Xieetal.(2001);PyrczandDeutsch(2005);Teles,Delay,andDeMarsily(2004);

PyrczandStrebelle(2006);Reza,Pranter,and Weimer(2006)),thoughwithlimited

successindataconditioning.

Processbasedandstochasticmodelsprovidesatisfactorymodellingforheteroge-

neousreservoirsbyreproducingthedepositionalprocesses. Whenprocessesareknown,

processbasedstochasticmodelsallowfortherepresentationofrealisticgeometriesand

arrangementsofdifferentgeologicalsets. Softregionalconditioningwithseismicor

hardconditioningatwelldatapointsisachallengingproblem,limitingthepractical

useofeventbasedmodels.
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2.12 Discussion

Three main geostatistical algorithms for simulating categorical variables are SIS,

MPS, TPG simulation and object/process based modeling. Classical geostatistical

techniques condition data and assess uncertainty, but the models often lack geologic

realism. In SIS, transitions between domains or rock types are not easily controlled

and produce models of categorical variables that are fairly unstructured. Increasing

levels of randomness, especially along the boundaries, is common when using SIS.

In MPS, information regarding the spatial heterogeneity is inferred from a training

image. MPS facilitates conditioning. However, the important issue of MPS is adopting

a representative training image which can be very difficult. Also, object based models

are considered when there are distinctive geological units in the domain that can be

characterized with geometric parametrization. The major drawback of object based

models is the honoring conditioning data.

In deposits with complicated ordering structures, when the ordering relationships or

transition probabilities between rock types is known, TPG simulation is a flexible and

powerful method for simulating facies categories. Its flexibility in representing com-

plex lateral and vertical categories transitions is the important key of this simulation

method. This thesis demonstrates the improvement of categorical variable modeling

using TPG simulation through addressing common challenges in this methodology and

improving the geological controls in the characterization of quantitative attributes by

associating more information to the modeling.
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Chapter 3

TPG Framework and Mask
Optimization

Generation of the mask that reproduces the desired ordering structure is a prelimi-

nary step in TPG simulation. In this chapter, mask optimization of TPG modeling is

explained and the optimization of two types of masks is introduced and discussed.

3.1 Mask Optimization

In TPG simulation, having a mask to convert the continuous Gaussian values sim-

ulated to categorical values is important. The layout of the mask must be chosen

to reflect contacts between different categories. In this section, two types of masks

(discretized and object based) are introduced in order to find the optimal mask to

reproduce input statistics and global/local proportions.

3.1.1 Discretized Mask

The layout of the mask must be properly selected to suitably define the relationship

between categories. To determine the ideal mask, an optimization algorithm is proposed

based on simulated annealing (SA). In this approach an initial discretized mask is

generated randomly and SA optimization is adopted to iteratively optimize the mask

to match the spatial features in the final TPG realizations. An example of the initial

discretized mask and optimized mask for three categories using two underlying Gaussian

RFs is shown in Figure 3.1.
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Figure3.1:Sampleofdiscretizedmaskby23×23=64blocksandoptimizedmask.

Intheproposedmethodology,sevendiscretizationscalesareproposedfordiscretiz-

ingamask. Amaskcanbedividedto22×22blocksandK categoriesareassigned

randomlytotheseblocks.Thisdiscretizationiscoarsersincethereareonly16blocks

available. AsillustratedinFigure3.2,forinstance,inthesecondimagethereare

23×23=64blockstobeassignedtothecategories.Thefinestdiscretizationis28×28

with65536blocks.

Figure3.2:Discretizationofmaskbasedondifferentscales.

TheoptimizationofthemaskisapplicableinanyscaleandSAchangesthemask

iterativelyregardingthescaletominimizethedifferencebetweendesiredstatisticsand

currentstatistics.

MaskOptimizationwithSimulatedAnnealing

SAcanbeconsideredasanextensionofthe Metropolisalgorithm(Metropolis,

Rosenbluth,Rosenbluth,Teller,&Teller,1953)andasaglobalminimizationtechnique.

Inoptimizationtechniques,SAhasfoundapplicationinawiderangeofapplication
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areasincludingtheintegrationofdiversedatatypes(C.Deutsch&Tran,2002),com-

binatorialproblems(Rozenberg,Bck,&Kok,2011),computer(VLSI)design(Mead

&Ismail,2012),imageprocessing(Carnevali,Coletti,andPatarnello(1985);Jengand

Woods (1990);AntoniouandLu(2007);Y.Zhang,Yan,Zou,Tao,andZhang(2016)),

geneticstructures(Dupanloup,Schneider,&Excoffier,2002),jobshopscheduling(Xia

& Wu,2005)andmanyotherdifficultoptimizationproblems.SAisoneofthebest

approachesamonglocalsearchalgorithms(Michiels,Aarts,&Korst,2007).

Temperature(TinEq.3.1)isanimportantparameterinSA.Typically,Tstarts

highandtemperatureisreducedgradually.Thestructureofenergy(orobjectivevalue)

O1ischangedtoastructureofenergyO2withprobability(Eq.3.1):

pr=e
−(O2−O1)
kbT (3.1)

where:

pr -theprobabilityofchange;

T -theannealingtemperatureparameter;

kb -anaturalconstantwhichrelatestemperaturetoenergy;

WiththeMetropolisalgorithm(Metropolisetal.,1953),sometimespoorchanges

withahigherobjectivevaluethanthecurrentone(O2>O1)areaccepted.InSA,

therateofreductionoftheoptimizationfunction(O)iscontrolledbythetemperature

distribution(theBoltzmandistribution)usingT. Theprobabilityofacceptingpoor

exchangesincreasesasTincreases.Theacceptprobabilitydistributionisspecifiedby

Eq.3.2:

P(accept)=






1 ifO2≤O1

e(O1−O2T ) otherwise

(3.2)
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In the proposed optimization, special attention is paid to optimize the mask in

order to match the desired input statistic, such as the transition probabilities between

categories. The algorithm randomly accepts some changes that increase the objective

function. Here, replacing a block with a specific category in the mask to another cate-

gory is defined as a change. The application of the SA algorithm to mask optimization

consists of six main steps:

1. The initial discretized mask is selected randomly.

2. The objective function which measures the closeness to the target feature is

based on transition probabilities. Here, the objective function (Eq. 3.3) is de-

fined by the sum of the square differences between transition probability of the

data tpkk′(h)data and the simulated realization tpkk′(h)realization for a specific

number of lag distances.

O(h) =
nD∑
d=1

K∑
k=1

K∑
k′=1

(tpkk′d(h)data − tpkk′d(h)realization)2 (3.3)

where:

nD - number of directions for scanning the domain to calculate tran-

sition probabilities;

K - number of categories;

tpkk′(h)data - transition probability of categories in the data set;

tpkk′(h)real - transition probability of categories in the simulated categorical

realization;

Typically, probability matrices are inferred along the drill hole or wells upward

and downward. Here, calculating the transition probability matrices along six

different directions (θi, i = 1, · · · , 6) as demonstrated in Figure 3.3 is proposed

to add more flexibility for capturing the correct transition between categories.

3. The stopping criteria is needed in the optimization. In an iterative algorithm,
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Figure 3.3: Lag orientations.

procedure should stop when the objective function is minimized. The algorithm

here stops as follows:

� After reaching a specific temperature value

� After a certain number of iterations

� After no improvement in the objective function for number of iterations (no

better solution)

4. Next step is related to the perturbation rules. The SA algorithm proceeds by

visiting all the locations in the discretized mask along a random path. Procedure

starts by truncation of Gaussian realizations into categories using the initial bi-

variate mask. The perturbation procedure is illustrated in Figure 3.4. First the

process proceeds with random selection of one location in the mask at a time

and then continues by checking the category of blocks in its neighborhood. As

shown in Figure 3.4, if there is a difference between the category at a selected

location (center block with yellow color in the figure which represents category

one) and the surrounding categories, then in this step perturbation is accepted

and the category at the selected location in the mask is changed to the one with

a different category.
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Figure 3.4: Illustration of how selected locations in the mask are changed. Yellow
block in the center is the selected category in the mask and four other
blocks in its four sides are considered as its neighbors.

5. The objective function is updated after each accepted perturbation. The objec-

tive function must be updated after each perturbation, but it is a CPU expensive

operation. To improve the speed, the following implementation details are con-

sidered:

� Transition probability matrices are updated locally after each iteration.

Rather than scanning the entire domain to build the transition probabil-

ity matrices after each change, only the transitions between selected blocks
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are updated for the number of considered lags. Figure 3.5 demonstrates the

required CPU time for updating transition probabilities for different number

of changes in the mask. If fewer than half of the blocks are changed, this

improves CPU time.

Figure 3.5: Required CPU time (seconds) for updating transition probabilities in the
objective function.

� The objective function is updated after a specific percentage of changes in

the mask for a certain number of iterations. The total number of iterations

is divided in five steps and in each, a specific percentage of changes in the

mask is applied. Percent of changes in each is considered as follows: 25%,

15%, 10%, 5%, and 1 block at a time of the total number of cells in the

discretized mask. Therefore, in each iteration a specific number of changes

is applied before updating the objective function. This updating procedure

has two advantages. First the algorithm starts by changing 25% of blocks in

the mask which may help to cover more space of uncertainty in the domain

than changing only one block at a time. There is an increased chance to

make large changes in the beginning and then the percentage of changes is

reduced after obtaining an initially good solution. The second advantage

is related to the CPU speed. Here also, the objective function is updated

after each mentioned percentage of changes and it reduces the required CPU

time.

6. The last step regards the annealing schedule. The annealing parameter (T ) is
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controlledbythecoolingschedule.Anumberofannealingsystemscanbeapplied

(Triki,Collette,andSiarry(2005);VanLaarhovenandAarts(1987)).Thechange

isalwaysacceptediftheobjectivefunctiondecreases.Inthiscase,thesimulation

movesclosertothetargetstatistics.However,thereisalsoaprobabilitythatthe

simulationgoestowardalocalminimal.SAattemptstoavoidbecomingtrapped

inthelocalminimalbyacceptingsomelessoptimalsolutions.SAshouldstart

withareasonablyhighinitialtemperatureT0andshouldreducethetemperature

asiterationsprogress.T0canbedefinedaccordingtotheformulaEq.3.4(Busetti,

2003):

T0=
− O+

Ln(pr0)
(3.4)

where:

pr0 -acceptanceprobabilityoffirstincreasedobjectivefunction;

O+ -differencebetweencurrentandpreviousobjectivevalue;

Aftereachiteration,thecoolingtemperatureshouldbeupdated.Themost

commontemperaturedecrementruleisEq.3.5(Busetti,2003):

Ti+1=δTi (3.5)

where:

δ -aconstantscalarintherange(0,1),closeto1;

Also,anupdateforthetemperatureparameterinthestartingpointofeach

mentionedpartissuggestedherebyincreasingthetemperaturetoacoefficientof

thestartingtemperatureofthepreviouspart(Eq.3.6)asshownintheannealing
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scheduleinFigure3.6. Tostartthealgorithm,pr0=0.95andδ=0.95are

adopted.

Tst(i+1)=δTst(i) st=1,···,4 (3.6)

where:

Tst(i) -initialstartingtemperatureofstepi;

Tst(i+1) -initialtemperatureofstepi+1whichisacoefficientofinitialstarting

temperatureofpreviousstagei;

Figure3.6:Annealingschedule.

SyntheticCaseStudyfor MaskOptimizationwithSA

Asyntheticcategoricalrealizationwiththemodelinggridof256×256blocksof

1×1 m2hasbeenusedasthetargetfeature(Figure3.7,bottomright).HereM =

2independentGaussianrealizationsZ1andZ2areused. Theyareunconditionally

simulatedbysequentialGaussiansimulation(SGSIM,(C.V.Deutschetal.,1992))

withasphericalvariogrammodelbutdifferentanisotropy(Figure3.7,top).Basedon

thebivariatemask,therealizationsaretruncated.

Fourrandommaskswithdiscretizationof8×8=64blocksaregeneratedand

proposedoptimizationwithSAisappliedatthisscale(Figure3.8).Inputrealizations

areconsideredtobethesameastheinputrealizationsoftargetcategoricalrealization.
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Figure 3.7: Top: two generated realizations of standard Gaussian RV. Bottom left:
bivariate object based mask and bottom right: truncated realization.

Figure 3.8: Random masks with discretization of 8× 8 = 64 blocks.
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The performance of the method and proposed procedure are evaluated using the

mentioned random masks. In this case, the total number of 10000 iterations is specified

to the optimization. The input number of iterations in each part is summarized in

Table 3.1. Transition probabilities between categories for nL = 10 are considered for

calculating the objective function (Eq. 3.3). Also Table 3.2 summarizes the initial

objective values, final objective values, and iteration number that algorithm stopped

for all four random masks.

Table 3.1: Summary of input parameters for perturbation.

Number of iterations to perturb the mask

Total number of iterations 10000
Number of iterations with 25% changes at a time 1000
Number of iterations with 15% changes at a time 1500
Number of iterations with 10% changes at a time 2000
Number of iterations with 25% changes at a time 2000

Number of iterations with 1 block changes at a time 3500

Table 3.2: Objective values for different masks.

Mask # Start obj. End obj. # of iterations

1 13.03 0.00 5154
2 8.74 0.00 5247
3 8.97 0.00 5850
4 21.64 0.00 5464

As shown in Table 3.2, the algorithm stopped with an objective equal to zero, indi-

cating that the algorithm reproduced the optimum mask and the truncated realization

shown in Figure 3.7. Figure 3.9 shows the final mask and final optimized truncated

realization for mask number one as an example. The blue dots in the mask show the

scatter plot of the underlying Gaussian realizations. Also, Figure 3.10 demonstrates

the objective value reduction and annealing temperatures procedure related to mask

number one.

The objective function started by value 13.03 and after around 2000 iterations

reached close to zero (Figure 3.10(b)). In this example the optimum mask is reproduced.

There are two locations in the mask which are different from the target mask (see
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Figure 3.9: Final mask and final truncated realization for random mask number one.

(a) Annealing temperatures procedure

(b) Objective function reduction

Figure 3.10: Annealing temperatures procedure and objective function reduction re-
lated to mask number one.

Figure 3.9), but the frequency of the underlying Gaussian realizations in these areas is

zero and those locations in the mask do not impact on the simulated realization.
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The proposed methodology is an automatic mask optimization, which relies on the

use of transition probabilities of categories to find the best mask’s configuration. This

mask starts with a random discretized mask and allows defining complex masks, but it

is not efficient time-wise when the number of categories increases. Another limitation

comes when the complexity of the relation between categories increases and more than

two underlying Gaussian deviates are required to explain the transitions and contacts

of categories. In the next section, an object based mask is introduced as an alternative

to find the optimum truncation rule.

3.1.2 Object Based Mask

This section describes an object based mask to model spatial distributions between

the categories in TPG realizations. Basically, any configuration can be considered for

defining the relation between categories. Introducing objects into the mask can add

flexibility for reproducing features observed in data and map the continuous variables

to a categorical space. Here, objects control the contacts and transitions between

categories. The proposed mask allows the use of any number of objects with different

directions in the mask to capture the spatial distributions between the categories. The

key to the approach is adapting objects with appropriate sizes and directions. The

objects are characterized by some function or geometric shape and would be moved

and scaled to get close to the configuration in the original model. In this work, objects

are ellipses which are characterized by their center location in the X axis and Y axis,

orientation and radius size. Each object can be shifted or rotated to produce different

masks (Figure 3.11). An ellipse is defined as Eq. 3.7.

(x− x0)2

R2
a

+
(y − y0)2

R2
b

= 1 (3.7)

which is centered at some point (x0, y0) with radius (Ra, Rb). The coordinates of

the center point in an ellipse rotated by θ are found by Eq. 3.8:
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Figure 3.11: Rotating and Shifting an ellipse.


xnew = xcosθ + ysinθ

ynew = ycosθ − xsinθ
(3.8)

Compared to the discretized mask explained in the Section 3.1.1, the object based

mask reduces the randomness of initial masks. The optimization approach is based

on gradient methods which are explained in Section 2.5 and the emphasis is placed on

generating objects in the mask to find the optimum mask which honors the pattern

statistics in the original model.

The number of shapes, initial coordinates, angel rotation, and radiuses are input

parameters in the proposed procedure. Initially, shapes are randomly placed in the

mask. The input realizations are discretized into categories by applying the mask. Also

here, transition probabilities are used as the measure of spatial variability. Figure 3.12

shows the generated mask with three shapes and three categories and the related TPG

realization.
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Figure3.12:Top:twogeneratedrealizationsofstandardGaussianRV.Bottomleft:
bivariateobjectbasedmaskandbottomright:truncatedrealization.

MaskOptimizationwithGradientDecent

Gradientalgorithmissuitableforsolvingnonlinearoptimizationandunconstraint

problemswhichthegradientcanbecalculatedfromobjectivefunction(O).Thecon-

jugategradientmethodisaniterativemethod,soitcanbeappliedtosparsesystems

thataretoolargetobehandledbydirectmethodsandisusedhereformaskoptimiza-

tion.Thisisafastoptimizationandasolutioncanbefoundafterafinitenumberof

iterations.Theobjectivefunction(O)isdefinedasinEq.3.3.

Here,theFletcher-Reevesmethod(Fletcher&Reeves,1964),whichisatypeofthe

conjugategradientmethod,isused.Theoptimizationisperformedbyusingsequential

searchdirectionsthatallowastrictmathematicalrelationshipbetweenvariables.The

Fletcher-Reeves methodattemptstoapproximatelylocatealocal minimumofthe

objectivefunction.Sinceonlythefirstderivativeterm(∂O(a)∂xj
=
O(a+∆xj)−O(a)

∆xj
)in

theTaylorseriesisavailablefromthedefinedobjectivefunctionandthehistoryofthe
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gradients to move is important to consider, the Fletcher-Reeves method is a suitable

method.

In mask optimization, the very first step is to define the number of ellipses to

be generated in the mask using initial random parameters. Gradient optimization is

adopted to continuously and iteratively modify the initial parameters of ellipses in the

mask until the objective function is minimized and target statistics of the truncated

realization are close to the available data set. Each ellipse can be shifted or rotated in

the mask (see Figure 3.11).

Synthetic Case Study for Mask Optimization with Gradient Optimiza-

tion

Two Gaussian realizations with the modeling grid of 256× 256 blocks of 1× 1 m2

are considered and truncated by the bivariate objects based mask into categories to

generate a realization (Figure 3.12). The objective function is formulated to measure a

mismatch between the transition probability of categories in the data set and simulated

truncated realization. The initial parameters of the mask, center points, radiuses, and

angels of objects are continuously modified until the objective function is minimized.

Three shapes with three categories are randomly placed into the mask. The objec-

tive value is calculated along 20 lags along six different directions (θi, i = 1, · · · , 6 in

Figure 3.3). The percent mismatch between the simulated realization with the object

based mask optimization and the target categorical realization is calculated. There

is a 5% mismatch between the simulated categories in the final truncated realization

and target realization. Also, visually it is observed that the spatial feature of data is

reproduced in simulated realization. The final TPG realization is shown in Figures 3.13.

Optimization began with the objective value of 245.69 and stopped with 1.45 in 20

iterations. A significant reduction is observed in the objective value, and the truncation

of Gaussian realizations using the optimized mask reproduced the spatial distribution

of target realization in the truncated simulated realization with small error. In general,

there is no unique solution for the mask, but it could be seen that the method of

object based mask optimization reproduced the simple categorical relationship in this
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Figure 3.13: Top left: initial mask and top right: related initial truncated realization.
Bottom left: final mask bottom right: final truncated realization.

example. The proposed algorithm also preserved the global proportion of categories in

optimized truncated realization. Table 3.3 displays the proportions of categories in the

target realization and the optimized truncated realization.

Table 3.3: Categories proportion of data, initial truncated realization and final trun-
cated realization.

Category Cat. 1 Cat. 2 Cat. 3

Proportion of data 0.093 0.118 0.789
Proportion of optimized realization 0.107 0.102 0.791

The object based mask is an automatic mask optimization method which uses

gradient decent algorithm to find the optimum mask. This a fast optimization program

for three to four categories. A different number of objects could be placed in the mask

and the optimization procedure manages the size and number. Convex optimization

problems can be solved quickly and reliably with a very large size of variables and

constraints, but this efficiency is not true for non-convex optimization problems. Since
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the defined objective function is not convex, the complexity of optimization increases

as the number of objects and categories increases, and it becomes difficult to solve

exactly in a reasonable time.

3.2 Summary

In this chapter, two methods for finding the truncation rule for TPG simulation

are introduced. Depending on the complexity of ordering between categories in the

data, the use of more complex masks to allow for flexible transition between categories

is an option. The proposed masks work for truncation with two underlying Gaussian

deviates. Limitation comes from the required CPU time for a more complex relationship

between categories. When there is a complicated relation between categories, these

masks may not be efficient.

Considering LVP is an important aspect of TPG simulation. In the next chapter,

the threshold based mask and multidimensional scaling mask (MDS) are introduced.

They are able to deal with the locally varying proportion of categories and allow for

complex relationships between categories.
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Chapter4

TPGSimulationwithLocally
VaryingProportions(LVP)

TheTPGmodelhasbeenwidelyusedtocharacterizeheterogeneityinaquifers(Ma-

riethoz,Renard,Cornaton,&Jaquet,2009),oilreservoirs(Emery(2007);Gallietal.

(2006)),andmineraldeposits(Armstrongetal.,2011).Handlingspatialchangesinthe

categoriesproportionisanimportantrequirementforcategoricalvariabletechniques.

Thedeterminationofatruncationprocedureforcomplicatedgeologicalenvironments

isnotobvious.Thetruncationrulescontroltheproportionsandorderingofcategories

inthesimulation.Inmostcases,thereisnon-stationarityinproportionsduetoge-

ologicaltrends,andmodelswithaglobalproportionofcategoriesmaynotyieldto

therealisticresults.Theplurigaussianmodelcanbegeneralizedtoaccountforlateral

andverticalchangesinthecategoriesproportions.Relativeproportionsofcategories

needtobedefined. Usually,thisinformationcomesfromtheanalysisofwells/drill

holes,outcrops,orremotesensingdata. Beucheretal.(1993)andRavenne,Galli,

Doligez,Beucher,andEschard(2002)usedempiricalproportionsofobserveddataand

interpolatedtothewholespace.Emery,Ortiz,andĆaceres(2008)proposedtomodel

faciesproportionswithrandomfieldsratherthandeterministicfields.Here,theuseof

locallyvaryingmasksisconsideredfortheincorporationoftrends.Twodifferentmask

frameworksareconsideredandprograms(AppendixA.1,A.2)forTPGsimulationwith

LVParedeveloped.

Thefirstmaskframeworkisdefinedbylinearthresholdsandisthetypicaltype
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ofmaskinstandardTPGsimulationalgorithms. Thesecondframeworkuses MDS

method(Wickelmaier,2003)toautomaticallycalculatetheoptimalmask(J.L.Deutsch

&Deutsch,2014)andisgeneralizedheretoaccountforLVP.

AkeyrequirementoftheTPGmethodistobeabletoconditiontheGaussian

RFstoactualcategoricalobservations. Thefirstavailablemethodsforconditional

simulationinTPGareintroduced. Then,theuseoflocallyvaryingmasksforboth

thresholdbasedandMDSmaskstodealwithnon-stationarityindomainareexplained

andtheoptimizationofthesetwotypeofmasksisdiscussed. Finally,acasestudy

simulatingrocktypesatamineraldepositdemonstratesthebenefitsofthismethod.

4.1 ConditionalSimulationinTPGSimulation

Theuseofavailabledatainthesimulationisanimportantpartofanygeostatistical

technique.Inreality,categoricaldata,faciesorrocktypes,areobservedfromwellor

drillholes.Transferringcategoricaldatatocontinuousvaluesforconditionalsimulation

ofunderlyingGaussiandeviatesisanessentialstepintheTPGmethod.Forcondi-

tioning,categoricaldatamustbetransferredintocontinuousGaussianconditioning

data.

Therearetwoconcernshere(C.V.Deutsch,2002).Thefirstissueisthatthecorrect

categoriesaremaintainedonbacktransformation.Therefore,thelocalproportionsand

correspondingthresholdsmustbeconsidered.Second,sincecategoricalvariablesare

involved,spikes/tiesmayoccurandshouldbedealtwithbyconstraining. Tosolve

theproblemofdespiking,thesimplestsolutionistoleavethespikesunaffectedand

considerthenormalscoretransformofeachcategorytothecenteroftheclassinthe

normaldistribution(Eq.4.1):

y(u)=G−1(
cpk−1(u)+cpk(u)

2
) (4.1)

where:
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K -numberofcategories;

y(u) -thenormalscoretransformatlocationu;

cpk(u) -thecumulativeproportions;

So,onemethodistheuseofthecentroidofeachcategoricalclasswithrespectto

thetruncationrule(C.V.Deutsch,2002).Butusingfixedvaluesmayleadtoincorrect

uncertaintyassessment. Theuseofcentroidmethodisequivalenttoassumingthat

underlyingvariablesareknownatsampledlocations,butinreality,thevaluesare

unknown.

AnothermethodforconditionalsimulationoftheGaussianvariablesinTPGis

obtainedusingastochasticapproach,theGibbssampler,asproposedbyLeLochand

Galli(1997).IntheGibbssampleralgorithm,multigaussianvaluesatexperimental

pointsaregeneratediterativelyfromrandomGaussianvalues. Krigingisappliedat

eachpointusingthepreviouscovariancemodelandanewvalueisallocatedbyadding

thekrigedvaluetoastandardGaussianvariablewithrespecttothethresholds.

Thereareseveraladvantagestousingthestochasticapproach,suchasthetheoret-

icalconsistency,speedandflexibility,especiallywhendealingwithexternalgeological

information(Gallietal.,1994).Ontheotherhand,therearesomedisadvantagessuch

asconsideringaparticularcovariancemodelwiththesameanisotropydirectionsfor

allcategories. TheuseofiterativefittingalgorithmofgenerationofGaussianvalues

atconditioningpointsissuggestedbyRemacreandZapparolli(2003).Inthismethod-

ology,thespatialvariationofthecategoriesisconsideredingenerationofGaussian

valueswiththeGibbssampleralgorithm.

TheGibbssamplerhasanissuerelatedtotheinversionofthecovariancematrix

and movingsearchneighborhoodwhentherearealargenumberofdataavailable.

Lantúejoul,Desassis,andFouedjio(2012)solvedthisissuebyusingapropagative

versionoftheGibbssampler. Also,Emery,Arroyo,andPeĺaez(2014)modifiedthe

approachanduseditinaTPGsimulationwithlinearinequalityconstraints.

Theproblemofkeepingfaciesobservationsatwelllocationsusingthedataassimi-

lationprocedureismentionedbyAstrakovaandOliver(2015)asanimportantlimita-
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tionintheapplicationofTPG.Mergingthedataassimilationalgorithm(Levenberg-

Marquardtapproach(F.Zhang,Reynolds,Oliver,etal.,2003))withaninteriorpoint

formulationhasbeensuggestedtotheproduceasagoodhistorymatchingalgorithm.

Asmentionedearlier,consideringaspecificcovariancemodelwiththesameanisotropy

directionsforallcategoriesisadrawbackofusingthestochasticapproach. Theuse

oftherightspatialstructuretosimulatetheunknownGaussianvaluesissuggestedby

(Astrakova,Oliver,andLantúejoul(2015);Emeryetal.(2014);Arroyo,Emery,and

Peĺaez(2012);Lantúejouletal.(2012);Gallietal.(1994)).However,theuseofasin-

glerealizationofunderlyingGaussianvariablesmayresultintheunderestimationof

uncertainty.D.S.SilvaandDeutsch(2016a)proposedtheuseofmultiplerealizations

fortransferringcategoricalvaluestoGaussianvaluesatthesampledatalocationssince

therearemultiplerealizationsfortheunderlyingvariablesthatgivethecorrectcate-

goriesonbacktransformationwiththesamespatialstructureandthesametruncation

rule.

Inthiswork,Eq.4.1isusedtotransformeachcategorytothecenteroftheclass

inthenormaldistributionbutanydatatransformationcanbeused.

4.2 LocallyVarying MaskwithThresholds

Thresholdbasedorrectangularpartitionsforthemaskarethemostcommonge-

ometry.Theoretically,onecanusedifferentgeometry,butthelayoutofthemaskmust

beproperlyselected. Whenthecorrelationmatrix( )andthedomainofinterest

(Dk)areknown,findingthethresholdsandproportionofcategories(pk)issimple,but

evenwithknowingallthepkitisnotpossibletofindthecorrelationmatrixandDkas

therearemanypossiblesolutions.Here,aspecificpartitioningofGaussianspaceinto

rectangles(withtwoGaussianfunctions)isproposed.Figure4.1demonstratesanex-

ampleofpartitioningwithtwoGaussiandeviatesandfourcategories.Theprojectionof

rectangularboxesontheGaussianaxesdefinestheareaofeachboxandthethresholds

areassignedtoeachrectangularbox.ForM Gaussianfunctions,byknowing2M −1

ofthethresholds.Itiseasytofindthelastunknownthresholdnumericallyusingthe
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inversionoftheEq.4.2.

pk(u) = P{[Z1(u),Z2(u),···,ZM(u)]∈Dk} (4.2)

=
Dk

g (Z1,···,ZM)dzM

Figure4.1:Masksfor K =4categoriesandM =2Gaussianfunctions(modified
fromArmstrongetal.(2011)).

ForM GaussianfunctionsandKcategories,thereareK×2M thresholds.There

aremanypossibleconfigurationsevenforarectangularpartition.Asdemonstratedin

Figure4.1,forK=4categoriesandM =2Gaussianfunctionsthereare11possible

masks(Armstrongetal.,2011). Maskswithlinearthresholdscanbedefinedbasedon

geologicalknowledgeofthefrequencyofintersectionsbetweencategories.Aprogram

(”tpgsim”)(Appendix,A.1)isdevelopedtogeneratethethresholdmask.Thisprogram

isflexibleandcoversthemostcommoncombinationsbetweencategories. Thismask

isdefinedwiththreemainzones(left,center,right).Inthisprogramuserscaneasily

definethemaskbetweencategoriesbasedontheirgeologicalknowledge.Thisrelation

isonlydefinedwithtwoparameters:thenumberofrectanglesandthepositionof

rectanglesineachzone.ThesamplemaskthatisshowninFigure4.2isdefinedusing
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the relationship between nine categories. Notice that the number of rectangles should

be equal to the number of categories. There are four categories in the left zone, two

categories in the center zone, and three categories in the right zone. The order of

categories to be placed in the mask in this program for the vertical position is from

the left side to the right side and in the horizontal position is from bottom to the top.

The thresholds can be specified by the target global proportions for each category or

the local proportion. This local proportion could come from an aerial trend map or

vertical trend.

Figure 4.2: Sample truncation rule for truncating bivariate Gaussian functions for 9
categories (Fk, k = 1, 2, . . . , 9) with eight thresholds (t1, · · · , t8).

There is a one to one relation between the proportions and the thresholds. In the

presence of a trend, thresholds of the mask are adjusted to match the local proportion of

categories at each location. As explained in Section 4.1, the centroid of each categorical

class with respect to the local truncation rules is used to transfer categorical data into

continuous Gaussian conditioning data. Data and mask are paired based on the nearest

neighbor. At each data location, the nearest local truncation rule based on the trend

model is used for transformation. Figure 4.3 shows an example of how a mask can vary

in a domain. For instance, category one has a higher proportion in lower elevations

in the domain. As the proportion increases or decreases, thresholds are adjusted and

created a new mask.

After one finds the locally varying masks and the conditioning data values, trun-

cation using these outputs is straightforward. Output of the locally varying mask can

be used as an input to another small utility program ”truncation − tp” (Appendix,
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Figure4.3:Locallyvaryingmasksofthresholdbasedmaskforonecrosssectionofa
syntheticexample.

A.1.1)fortruncatingconditionalGaussianrealizationstocategoricalrealizations.In

thestandardlinearthresholdframework,theuserisabletoapplygeologicalknowledge

ofthenatureofthecontactsbetweencategories.

4.3 MDS Mask

InMDSmask,dissimilarcategoriesareplacedfartherapartandsimilarcategories

closetogetherbasedonthedistancebetweencategories.Themultivariatespaceisthen

mappedusinganeigen-decomposition.Inthismethod,Kcategoriesareprojectedon

M Gaussianvariablesusingmetric MDS(Wickelmaier,2003)ofthecorrectednot-

transitionprobabilitymatrix.TheseprojectedcoordinatesproduceKM-dimensional

controlpoints.TheseKcontrolpointslocationareoptimizediterativelytoreducethe

deviationbetweenthedesiredproportionsandintegratedprobabilities(J.L.Deutsch

&Deutsch,2014). Thetransitionprobabilitiesareusedforthedeterminationofa

truncationstructureusing MDS.Theprobabilityoftransitioningfromcategorykto

categorykcanbecalculated(Eq.4.3):

tpkk=Prob{koccursatu+h|koccursatu} (4.3)
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The transition probability matrix with K categories is defined as Eq.4.4:

tp(h) =



tp11 tp12 tp13 . . . tp1K

tp21 tp22 tp23 . . . tp2K

tp31 tp32 tp33 . . . tp3K

. . .

. . .

. . .

tpK1 tpK2 tpK3 . . . tpKK



(4.4)

Transition probabilities are calculated from the transition between categories both

upward and downward in a drill hole as illustrated in Figure 2.1. A symmetric MDS

algorithm is considered in this method. To use the metric MDS method, a symmetric

dissimilar matrix is required. The idea here is to convert the transition probability

matrix from measuring similarity to a corrected not-transition probability matrix (tpcs)

to measure dissimilarity between categories. The steps include the following:

1. After finding K×K transition probability matrix (tp), convert it to not-transition

probability matrix by calculating tpc = 1− tp;

tpc(h) =



1− tp11 1− tp12 1− tp13 . . . 1− tp1K

1− tp21 1− tp22 1− tp23 . . . 1− tp2K

1− tp31 tp32 1− tp33 . . . 1− tp3K

. . .

. . .

. . .

1− tpK1 1− tpK2 1− tpK3 . . . 1− tpKK



(4.5)

2. Correct the not-transition probability matrix by averaging cross terms and setting

the diagonal to zero ( tpcs);
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tpcs(h) =



0 1− ( tp12+tp212 ) . . . 1− ( tp1K+tpK1
2 )

1− ( tp12+tp212 ) 0 . . . 1− ( tp2K+tpK2
2 )

1− ( tp13+tp312 ) 1− ( tp32+tp232 ) . . . 1− ( tp3K+tpK3
2 )

. . .

. . .

. . .

1− ( tp1K+tpK1
2 ) 1− ( tp2K+tpK2

2 ) . . . 0



(4.6)

Now using a standard MDS algorithm, a centered not-transition probability matrix

(tpcs) can be spectrally decomposed and projected on to M Gaussian deviates. Gen-

erally, the number of dimensions for projection is less than the number of categories

K (at most K − 1). So, projected coordinates create K M-dimensional control points.

These control points are rescaled to be mapped into a standard Gaussian unit.

In the last step, control point locations are optimized iteratively. A Voronoi de-

composition of the control points is performed to define the polygon related to each

category, and the multivariate Gaussian distribution is integrated over each Voronoi

polygon. The control point locations are optimized to reduce the difference between

the desired proportions and integrated probabilities.

For any location in the multivariate Gaussian domain, the category associated with

this location is equal to the category associated with the nearest control point (Eq. 4.7):

Z(u) =
{
Z(uk′)|(u− uk′) ≤ (u− uk) k = 1, · · · ,K k 6= k′

}
(4.7)

This framework has the benefit of requiring no user input regarding the nature of

the mask. Figure 4.4 shows an example of the evolution of the MDS method for four

categories and two Gaussian deviates.
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(a)Initial maskintegratedtotheglobalpro-
portions

(b)RescaledMDScoordinates

(c)Optimizedcontrolpoints

Figure4.4:EvolutionofMDSmethodforfourcategories(J.L.Deutsch&Deutsch,
2014).

4.4 LocallyVarying Maskwith MDS Mask

InthepresenceofLVP,optimizationbeginswithdeterminationofthetruncation

maskforthefirstlocationinthegrideddomain.TheKcategoriesareprojectedonto

M GaussianvariablesusingMDS.Theseprojectedcoordinatescomposecontrolpoints

whichwillbeusedfortruncationofM underlyingGaussianrealizations. Thenopti-

mizationcontinuestodeterminethetruncationmaskforthenextandotherlocations.

Ineachstep,theoptimizedcontrolpointsofthepreviouslocationareconsideredas

initialsolutiontotheoptimization.Bytheendoftheoptimizationprocess,optimized

MDSmasksareconstructedbasedontheLVPofcategoriesateverylocation.

Figure4.5showsthelocallyvaryingmaskinadomainwithabigaussianMDSmask.

Anoptimizationisperformedateachlocationinthemodeltomatchtheintegrated
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proportion of categories to the local proportions. A program ”mds tpg LVP” is devel-

oped (Appendix, A.2) to deal with trends. Due to the nature of trend models which

are smooth, finding the mask for every location may not be required. An up-scaling

of the trend model while honoring the local heterogeneities in category properties is

proposed as an option since proportions vary smoothly in the domain.

Figure 4.5: Locally varying masks in TPG simulation with a MDS mask for one cross
section of a synthetic example.

After finding the locally varying mask and conditioning data values, truncating M

underlying Gaussian functions using these outputs is straightforward. The output of

a locally varying mask can be used as an input to ”trans tpg LVP” (Appendix, A.2.1)

for truncating conditional Gaussian realizations to categorical realization.

4.5 Case Study

A mineral deposit is simulated with data from 31 drill holes. The deposit has a

number of well-defined layers. Drill holes contain measurements for the four different

rock types. Figure 4.6 shows the available drill hole data and the projection onto

East-North and North-Elevation slices. The geostatistical models are simulated at

10.0 × 10.0 × 10.0 (m)3 resolution. The vertical drill holes are regularly spaced. The

global proportion of rock types using cell declustering is summarized in Table 4.1.

Simulating the different rock types is the first step in geostatistical modeling before
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Figure 4.6: Location map of available drill hole data and projection onto a North-East
and East-Elevation plans.

Table 4.1: Summary of rock types’ declustered proportions in drill hole data.

Rock Type 1 Rock Type 2 Rock Type 3 Rock Type 4

DH Prop. 0.048 0.497 0.081 0.382

assigning and simulating grades within the rock types. For this deposit, the transition

probability matrix is calculated (Eq. 4.8). The transition probability matrix shows that

rock type one is linked to rock type four, and we expect occasionally to see this rock

type linked to rock type two. Also rock type three is related to rock type four more

frequently. Figure 4.7 shows the global threshold mask and MDS mask.
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tp(h)=












0.9090 0.0050 0.0000 0.0860

0.0004 0.9816 0.0000 0.0180

0.0000 0.0000 0.9520 0.0490

0.0090 0.0240 0.0110 0.9570












(4.8)

Figure4.7:Left: Globalthresholdbasedmaskandright: MDSmaskforamineral
depositwithfourrocktypes.

Duetonoclearhorizontalanisotropy,ahorizontalomnidirectionaliscalculatedfor

allfourrocktypes. Thereisanon-stationaryintheproportionofrocktypesinthe

depositandsomerocktypesaremoreprobabletoprevailinsomeareasthaninothers.

Forbuildingaconceptualmodelofadeposit,understandingthespatialdistributionof

thecategoriesandthegeometryofthedomainisessential.Verticalproportioncurves

(VPCs) provideinformationonthecategorieswithinthesequences.Thismethodis

usefultospecifywheretheimportantverticalvariationislikelytobe,todecideabout

thenon-stationarity. Whentherelativeproportionsofcategoriesvarysignificantly

withinadomain,consequentlynon-stationarityexists.Thespatialdistributionofthe

proportionsisshowninFigure4.8.

Variationoftheproportionofrocktypesintheverticaldirectionisobservedclearly

inFigure4.8.Figure4.9showsthetrendmodelthathasbeengeneratedbasedonthe

datausingtheGSLIB”maketrend”program(Manchuk&Deutsch,2011).Thetrend
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Figure 4.8: Global VPC for the mineral deposit.

model demonstrates the locally varying proportion of each plate in different locations

of the area of interest.

Figure 4.9: Plan view of generated trend model for rock types based on the data sets
at elevation 600(m).
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The locally varying mask is calculated for each mask in the model. To illustrate the

reproduction of rock types’ proportions in the simulated realization, Table 4.2 summa-

rizes the proportion reproduction of the bench of elevation 600 (m) in the simulated

realization using threshold based and MDS masks. Local proportions of rock types

have been reproduced well.

Table 4.2: Summary of the integrated proportions in truncated realization using TPG
method at elevation 600(m).

Proportion at elevation 600(m) RT 1 RT 2 RT 3 RT 4

Trend model 0.000 0.372 0.221 0.407
Simulation with threshold mask 0.000 0.393 0.261 0.346

Simulation with MDS mask 0.000 0.335 0.246 0.419

Optimized locally varying masks at elevation 900(m) for 140 locations for both

mask frameworks are shown in Figure 4.10. At this elevation, the probability of rock

type three is very small and three other proportions vary smoothly (Figure 4.11). The

proportion of rock type four increases gradually from East to West, while the proportion

of rock type two decreases.

Figure 4.10: Top: plan view of optimized threshold mask and bottom: plan view
of optimized MDS mask at elevation 900(m) for 140 locations in the
simulated domain.
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Figure 4.11: Plan view of generated trend model for rock types based on the data
sets at elevation 900(m)

Since the trend is varying smoothly, the trend model is composited to 30×50×30m3.

Figure 4.12 right side demonstrates the up scaled trend model for composited elevations

870-900(m). The plan view of the MDS mask with the up scaled trend model for

composited elevations is shown in Figure 4.12. Gradual variation of the mask based on

the LVP is clearer in this Figure 4.13.
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Figure 4.12: Left: plan view of trend model and right: plan view of up scaled trend
model for rock types.
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Figure 4.13: Plan view of optimized up scaled MDS mask for composited elevations
870-900(m) for 128 blocks in the simulated domain.

A comparison is performed between the results of TPG simulation using the pro-

posed algorithm with SIS. A 3D view of TPG realization using these two type of masks

and generated realization with SIS is demonstrated in Figure 4.14. To show the im-

portance of considering a locally varying mask, simulated realizations without a trend

model using only the global proportion of categories are shown in Figure 4.14. It is

clear that simulated realization did not respect the observed trend in the data and did

not reproduce the right transitioning structures. For instance, rock type one is not ex-

pected to be observed in the lower elevations as it simulated in the model using global

mask. Figure 4.15 shows a comparison of local proportion reproduction using TPG

methods and SIS method at elevation 700(m). Local proportions for this elevation are

as follows: 0.000, 0.442, 0.075, and 0.483 for rock types one to four, respectively. The

average percent errors in proportion reproduction of all four rock types using the TPG

method with threshold based and MDS masks are 4.25% and 6.3%, respectively, and

for SIS method, 7.13%. There is less error in reproduction of rock types’ proportions

using TPG methods than with SIS method, but not a very significant difference.
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Figure 4.14: 3D view of simulated realizations. Top left: realization using TPG
method with threshold based mask and top right: using MDS mask.
Bottom left: generated realization with SIS method and bottom right:
TPG realization using global mask.

Figure 4.15: Simulated realizations at elevation 700 (m) using TPG simulation and
SIS simulation methods.

4.6 Summary

In this chapter, the importance of using a locally varying mask in the presence of a

trend has been demonstrated through a case study. It is usually not realistic to consider
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a global truncation mask when there is a higher probability of having some rock types

in some areas than in others. TPG simulation is able to impose spatial changes in the

categories proportions by adopting an appropriate mask for every location. Simulation

with locally varying mask generates realistic images of deposits with a complex geology.

LVP with the threshold based mask is fast but required more CPU time in use of LVP

with MDS mask. To address this limitation, use of an up scaled trend is possible.
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Chapter5

CorrelationbetweenUnderlying
GaussianRFsinTPGSimulation

UnderlyingGaussianRFsinTPGsimulationshouldbedefinedinawaythatdescribes

differentspatialbehaviorofacategoryorgroupofcategoriesaftertruncation.Usually,

GaussianRFsareconsideredasindependentvariablesinTPGsimulation.Correlation

dependsontheconstructionofcategories.CorrelationbetweenGaussianRFsimpacts

thecalculationofvariogramsandmaskthresholdsfromtheexperimentalproportions.

Dependingonthecase,TPGmodelscanbeobtainedbyusingdependentorindepen-

dentGaussianRFs,oranylineartransformofRFs,ortranslatedRFs.Thischapter

investigatestheeffectsofcorrelatedunderlyingGaussianRFsonTPGsimulation.

Generally,averycomplextruncationmethodorcorrelationbetweentheunderlying

GaussianRFscanbeselectedifitisrequiredfororderingorforallowingallpossible

transitionsbetweencategories.Complexgeologicalrelationshipbetweencategoriescan

beproducedbychoosingdifferentGaussianRFs.

InTPGsimulation,Gaussiandeviatescanbecorrelated.Gallietal.(1994)showed

thepotentialofTPGmethodtoproducegeologicallyrealisticimagesbytruncationof

twoormoreGaussianRFs,whichcanbeeithercorrelatedornot.LeLoch,Beucher,

Galli,andDoligez(1994)usedthelinearmodelofcoregionalisationtogeneratecor-

relatedGaussianRFsandshowedthattransitionbetweencategoriesapproximately

dependsoncategoryproportionandthecorrelationbetweenGaussiandeviates.They

foundthatevenusinguncorrelatedGaussianRFs,thecategoriesintruncatedsimula-
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tionarenotindependent.LeLochandGalli(1997)addressedthestructuralanalysis

andconditionalsimulationsintwostepswhenunderlyingGaussiandeviatesarelinked

bythelinearmodelofcorreginalisation. ArmstrongandGalli(1999)explainedthe

mathematicaltheoryoftruncatedbigaussiansimulationwhenthesecondGaussian

realizationisapartialderivativeofthefirstGaussianrealization.

Dowd,Pardo-Iǵuzquiza,andXu(2003)introducedthecorrelationcoefficientasa

tuningparameterthatcanbeusedtoimprovethefitoftheexperimentalindicator

semivariogramandcrosssemivariograms.Theydevelopedaprogramtocalculatethe

goodness-of-fitbetweentheexperimentalandtheoreticalindicatorsemivariogramsand

crosssemivariogramsbasedonsemivariogramsandthecorrelationcoefficientofthe

GaussianRFs. Liu,Oliver,etal.(2003)usedcorrelatedRFsforhistoricproduction

(history-matching)togeneratetheconditionalsimulationoffaciesboundariesbyTPG

method. Theypointedoutthatresultsareconsistentwiththegeologicalmodelof

observedfaciesaswellashistoricproduction. Gallietal.(2006)usedanexample

involvingalgalbioconstructionsintheoutcropsoftheParadoxbasin(Utah). They

consideredcomplexhorizontalandverticaltransitionsbetweenthemoundandinter

moundfacies,togetherwiththecomplexgeometryofthealgalmounds. Theyused

differentthresholdbasedmasksfordifferentareas;toaccentuatethedrapingofthe

onefaciesoveranother,acorrelationcoefficientof−0.5betweenthetwoGaussianRFs

wasconsidered.Inthiscase,correlationbetweenGaussianRFsisusedtoreproduce

theobservedgeologicalfeatureinthedata.

Thecorrelationcoefficientρcanbeusedtointroduceanadditionaldegreeoffree-

domandmoreflexibilityinthemodeling.TheconstrainedpropagativeGibbssampler

(Emeryetal.,2014)hasbeengeneralizedbyAstrakovaetal.(2015)toaddressthe

problemofconditioningofcorrelatedGaussianRFstocategoricaldata.

5.1 Correlation Matrix

Correlationvariesbetween−1<ρ<1.ThecorrelationmatrixfortwoGaussian

RFsisformulatedasEq.5.1:
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=





1 ρ

ρ 1




 (5.1)

TherearecoregionalizationmodelswithtwoGaussianRFs(Z1,Z2)inbivariate

Gaussiansimulation.Forinstance,thestandardlinearcoregionalizationmodelwhere

Z1andZ2arelinearcombinationsofindependentfactorscanbeused.ConsiderY1(u)

andY2(u)astwoindependentGaussianRFs(N(0,1))withthecovariancesρY1(h)and

ρY2(h).ThereforeZ1(u)andZ2(u)canbedefinedasEq.5.2(LeLoch&Galli,1997):

Z1(u)=Y1(u) and Z2(u)=ρY1(u)+ 1−ρ2Y2(u) (5.2)

where:

ρZ1(h)=ρY1(h) and ρZ2(h)=ρ
2ρY1(h)+(1−ρ

2)ρY2(h) (5.3)

or

ρY1(h)=ρZ1(h) and ρY2(h)=
ρZ2(h)−ρ

2ρY1(h)

1−ρ2

ρZ1Z2(h)=ρρZ1(h)isthecross-covariance,andthecovariancematrix isdefined

asEq.5.4:

=












1 ρ ρZ1(h) ρρZ1(h)

ρ 1 ρρZ1(h) ρZ2(h)

ρZ1(h) ρρZ1(h) 1 ρ

ρρZ1(h) ρZ2(h) ρ 1












(5.4)

Generally,whenthecorrelationcoefficientiszero,Z1(u),Z2(u)correspondtoY1(u),

Y2(u). Whenthecorrelationcoefficientis1,Z1(u),Z2(u)bothcorrespondtoY1(u)
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andisthesimpletruncatedGaussianmethod. Whenthecorrelationcoefficientis−1,

Z1(u)correspondtoY1(u)andZ2(u)correspondto−Y1(u).ItmeansthatZ2(u)is

likeZ1(u),butwithanoppositecategoricalranking,forinstance1,2,3becomes3,2,1.

AsyntheticexampleisconsideredheretoillustratetheeffectofcorrelatedGaussian

RFsontheproportionofthecategories,thresholdsofthe mask,variogramofthe

correlatedGaussianvariable,andvariogramofindicatorvariables.

TwoindependentandunconditionalGaussianrealizations(M =2)Y1andY2are

simulatedbyasequentialGaussiansimulationprogram(SGSIM,(C.V.Deutschet

al.,1992))withasphericalvariogrammodelbutadifferentanisotropy(Figure5.1).

Themodelinggridiscomposedof256×256blocksof10×10m2forbothrealiza-

tions. Considerglobalproportionsofcategoriestobe0.304,0.175,0.205and0.319,

respectivelyfork=1,···,4andFigure5.2asthetruncationruletotruncateGaus-

siandeviatesintocategories. Here,partitionsdefinedbyrectanglesareparallelto

theaxesanddefinedbyfourthresholds(twothresholdsforeachRFZ1andZ2).

Sincethereisalinearrelationshipbetween(Z1,Z2)and(Y1,Y2)basedonEq.5.2,

therectanglesintheplane(Z1,Z2)becomeparallelogramsintheplane(Y1,Y2).

ThelinesparalleltoZ2(Eq.5.2;Z1= constant)remainparalleltoY2(Eq.5.2;

Y1=constant),andthelinesparalleltoZ1(Eq.5.2;Z2=constant)becomeoblique

(Eq.5.2;ρY1(u)+ 1−ρ2Y2(u)=constant).

Considerfourthresholdstodefinetheareaofeachrectangle,twothreshold[a1,a2]

relatedtoZ1andtwothreshold[b1,b2]relatedtoZ2. Considerρasthecorrelation

betweenGaussianRFs.Therefore,theproportionofcategoriesatucanbecalculated

byEq.5.5(LeLoch&Galli,1997):

pk = P(a1≤Z1(u)<a2 & b1≤Z2(u)<b2) (5.5)

= P(a1≤Y1(u)<a2 & b1≤ρY1(u)+ 1−ρ2Y2(u)<b2)

= P(a1≤Y1(u)<a2 &
b1−ρY1(u)

1−ρ2
≤Y2(u)<

b2−ρY1(u)

1−ρ2
)
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Figure5.1:Top:twoindependentGaussianvariablesY1andY2. Bottom:related
variogrammodelsofeachGaussianvariables.Bluecolorisusedforthe
horizontalminordirectionandredisusedforthehorizontalmajordirec-
tion.

Figure5.2:MaskforK=4categoriesusingtwoGaussiandeviates.

Therefore,whenoneknowsthethresholdsandusestheindependencyofGaussian

variables,Y1andY2have(Eq.5.6):
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pk =
a2

a1

b2−ρw√
1−ρ2

b1−ρw√
1−ρ2

f(v)f(w)dvdw (5.6)

=
a2

a1

[G(
b2−ρw

1−ρ2
)−G(

b1−ρw

1−ρ2
)]f(w)dw

where:

pk -proportionofcategoryk;

f(.) -probabilitydensityofGaussiandistributionf(v)= 1√
2πσ
e−12(

v−µ
σ )

2;

G(.) -cumulativeGaussiandistribution;

SincethereisnoclosedformforthecumulativeGaussiandistribution,numerical

approximationmethods(Beasley&Springer,1985)areusedtocalculatetheproportion

ofzpforthelowertailareaofGaussiandistributionrelatedtospecifiedvaluep(Eq.5.7).

Thisrule(Eq.5.6)istrueforallthepossibleconfigurationsofthresholdbasedofmasks.

Forinstance,inFigure5.3proportionofcategoryonewithknownρ=0,a2=−0.825,

andb2=−0.521canbefoundbyEq.5.8. Thesameruleisappliedforallother

categories.

pk=
zp

−∞

1
√
2πσ
e−
1

2
(
v−µ

σ
)2≡G(zp) (5.7)

zp=G
−1(pk)

p1 =
a2

−∞

b2

−∞
f(v)f(w)dvdw=

−0.825

−∞

−0.521

−∞
f(v)f(w)dvdw (5.8)

=
−0.825

−∞
[G(−0.521)−G(−∞)]f(w)dw=0.304

Thereisaone-to-onerelationbetweentheproportionofcategoriesandthethreshold

valuesofthemaskwhenρ=0.Therefore,byusingtheproportionofcategoriesand
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Figure 5.3: Evaluation of proportion of category one using four thresholds.

correlation between Gaussian RFs, the threshold values can be computed.

For the specified mask, distribution of the categories three and four versus the

others are controlled by a threshold on Gaussian number one Z1. The distribution

of categories one and two are controlled by a threshold on Gaussian number two Z2.

In the next two sections, the effect of correlation on the simulated realizations and

threshold mask are investigated.

5.2 Effect of Correlated Gaussian RFs on TPG Realiza-

tions

Consider using the global thresholds which are defined based on the global pro-

portions of categories regardless of correlation between Gaussian deviates (ρ = 0.0).

Figure 5.4 shows the behavior of the realizations when correlation ranges from −0.98

to 0.98 (Figure 5.5). In this case the Gaussian RFs are truncated based on the global

thresholds regardless of correlation. In all cases the mask is constant but the propor-

tions of categories are different for each correlation value.

As the correlation increases to positive values, category two almost disappears. Due
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Figure 5.4: Truncated realization for different correlation between Gaussian deviates
(ρ ∈ (−0.98, 0.98)) when consider global thresholds (mask).
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Figure 5.5: Scatter plot of variation of correlation between Gaussian deviates
(−0.98,0.98).

to the completely linear relation between the Gaussian RF when ρ = 0.98 (Figure 5.6),

there are no points in the area representing category two. Therefore, by fixing the mask

and correlation coefficient between Gaussian deviates, the proportions of categories are

changed. Based on the Eq. 5.2, Z1 and Z2 correspond to Y1(u) and a simple truncated

Gaussian simulation (category 1, category 3, and then category 4) is the result.

80



Figure 5.6: Scatter plot of Gaussian deviates with ρ = 0.98 and global mask.

Figure 5.7 demonstrates how the global proportion of categories vary for the men-

tioned mask to have fix thresholds regardless of the correlation coefficient value between

Gaussian RFs. Since categories three and four are controlled by only Z1, correlation

has no impact on the proportions of these categories as expected (Z1(u) = Y1(u)).

Figure 5.7: Categories proportions for each correlation coefficient with same mask.

Also, correlation has an impact on the variogram of Z2. As the correlation increases,

the variogram of Z2 tends to be similar to the variogram of Z1 (Figure 5.8). When the

correlation is −1, Z1 corresponds to Y1(u) and Z2 corresponds to −Y1(u).
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Figure 5.8: Top left: the variogram map of Gaussian RF number one. The rest are
the variogram map of correlated Gaussian RF number two with different
correlation coefficients.
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5.3 Effect of Correlated Gaussian RFs on Mask

For a specific mask, the proportion of each category and the correlation between

the underlying Gaussian RFs determine the thresholds. Consider using the global

proportion of categories. To honor the global proportions of categories, if the ρ 6= 0, the

thresholds of mask are changed. Figure 5.9 shows the behavior of truncated realization

when correlation between Gaussian deviates is changing from −0.98 to 0.98.

When the correlation is −1, Z1 corresponds to Y1(u) and Z2 corresponds to −Y1(u).

Therefore, Z2 is similar Z1, but with an opposite categories ranking (2,1,4,3 becomes

1,2,3,4). An increasing border effect from ρ = 0.0 to ρ = 0.98 is obvious and the

category two progressively wraps around the category one. The category one progres-

sively wraps around the category two. Also, category two and three rarely transition

to each other and they are almost separated by category one when the correlation is

around −0.98 while the transition increases as the correlation become closer to pos-

itive value 0.98. Figure 5.10 shows the variation of the threshold in the mask to be

matched to the global proportions by changing correlation. When Gaussian one and

two are independent (ρ = 0.0), the threshold display looks like the masks weighted by

the proportions.

The correlation impacts the variogram of categories. In Figure 5.9 when the corre-

lation is −0.98 (first image top left), it is obvious that category two is more continuous

than category one, but by raising the correlation to 0.98, opposite continuity can be

seen (last image in bottom right) and category one is more continuous than category

two. Variogram maps of categories by changing the correlation coefficient between the

underlying Gaussian realizations are shown in Figure 5.11 to Figure 5.14.

Correlation plays an important role in the variogram of category one and two, but

not three and four. The mask also is an important factor in the behavior of the var-

iogram. Since categories three and four are controlled only by Z1, having constant

threshold values, constant proportion and the same variogram map for these two cate-

gories, regardless of the correlation coefficient between Gaussian RFs, is predicted and

expected.
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Figure 5.9: Truncated realization for different correlation between Gaussian deviates
(from −0.98 to 0.98).
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Figure 5.10: Variation of mask (thresholds) for corresponding correlation coefficient.
Top left: threshold mask with ρ = −0.98 and top right: threshold mask
with ρ = 0.0. Bottom: threshold mask with ρ = 0.98.

To honor the global proportion of categories, thresholds are adjusted based on the

correlation between Gaussian functions. A program ”corr tpgsim” (Appendix, section

A.3) is developed to simulate with correlation. The user can define any configuration of

a threshold based mask and test how correlation between Gaussian RFs will change the

thresholds of the mask and the resulting truncated realization. The mask thresholds

and the final truncated realization are outputs of this program. In addition, for a

fixed threshold mask, the user is able to check how the global proportions of categories

change in TPG simulation with respect to the correlation between Gaussian RFs.
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Figure 5.11: Variogram map of category number one with different correlation coef-
ficients.

86



Variogram Map cat2 rho=-0.98

East

N
or

th

0.0 410.000
0.0

410.000

0.0

0.2000

0.4000

0.6000

0.8000

1.000

1.200

1.400

Variogram Map cat2 rho=-0.8

East

N
or

th

0.0 410.000
0.0

410.000

0.0

0.2000

0.4000

0.6000

0.8000

1.000

1.200

1.400

Variogram Map cat2 rho=-0.4

East

N
or

th

0.0 410.000
0.0

410.000

0.0

0.2000

0.4000

0.6000

0.8000

1.000

1.200

1.400

Variogram Map cat2 rho=0.0

East

N
or

th

0.0 410.000
0.0

410.000

0.0

0.2000

0.4000

0.6000

0.8000

1.000

1.200

1.400

Variogram Map cat2 rho=0.4

East

N
or

th

0.0 410.000
0.0

410.000

0.0

0.2000

0.4000

0.6000

0.8000

1.000

1.200

1.400

Variogram Map cat2 rho=0.8

East

N
or

th

0.0 410.000
0.0

410.000

0.0

0.2000

0.4000

0.6000

0.8000

1.000

1.200

1.400

Variogram Map cat2 rho=0.98

East

N
or

th

0.0 410.000
0.0

410.000

0.0

0.2000

0.4000

0.6000

0.8000

1.000

1.200

1.400

Figure 5.12: Variogram map of category number two with different correlation coef-
ficients.
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Figure 5.13: Variogram map of category number three with different correlation co-
efficients.
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Figure 5.14: Variogram map of category number four with different correlation coef-
ficients.
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5.4 Summary

This chapter investigated the impact of correlated underlying Gaussian RFs on

the threshold mask which is the most common type of mask and truncated realization.

Correlation affects the mask thresholds from the experimental proportions and changes

the variograms of indicator variables. Here, a specific threshold based mask is consid-

ered as an example to demonstrate the effects and a program is presented to calculate

thresholds and proportions for any other configurations.

Different studies have shown that correlation between RFs can be considered due

to different reasons, such as improving the fit of experimental indicator variograms,

capturing observed specific geological feature, and sometimes allowing some transitions

between categories. As Section 5.3 demonstrated, correlation can input the continuity

of categories after truncation. Depending on the data set, correlation between RFs can

make the categories more or less continuous in truncated realization. It may help to

transfer the observed short rage of continuity of the categorical data to the categorical

model.

Correlation between Gaussian functions can change the global proportion of the

categories or the thresholds of the mask and accordingly the transition between cate-

gories. Also, correlation can affect the variogram of the correlated Gaussian variable

as well as the variogram of the desired indicator variables by changing the proportion

of categories or mask thresholds.

In summary, considering correlated or uncorrelated Gaussian realizations is a choice

that has to be made depending on whether a strong border effect is observed in the

available data set. The general recommendation is to use uncorrelated Gaussian RFs

to avoid any complications unless the use is helping to model some natural phenomena.

The impact of the correlation between Gaussian RFs can be tested using the developed

program.
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Chapter 6

Variogram Optimization in TPG
Simulation

The inference of the variogram models for the underlying Gaussian realizations is an

important aspect of TPG simulation method. Continuity of the categories is controlled

by the variogram of each Gaussian variable. The relations between all these variograms

are complex functions of the truncation. These variograms should be selected in such

a way that the original categorical variables have the correct spatial structure after

truncation. In this chapter, three different methodologies are proposed to address this

problem. In the first methodology, an optimization framework is introduced to deter-

mine the input variograms. Initially, the optimization is brute force with the best set

of variograms carried forward; the second local refinement step is important in obtain-

ing reasonable variogram reproduction models. In the second methodology, a neural

network (NN) is presented to help determine the optimal input variograms. Finally,

in the last methodology an optimization is proposed which targets the covariance or

variance map of each categorical variable and attempts to select the optimum input

variograms to best reproduce the spatial structure of each categorical variable. This

method best reproduced the target categorical variable variograms.

6.1 Variogram Optimization

Variogram modeling of underlying Gaussian deviates in TPG method is very im-

portant for simulating geological domains. Direct adjustment to the experimental
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variogramsisnotpossiblesincetheonlyavailableexperimentalindicatorvariograms

arethoseoftheindicatorfunctionsdescribingthecategories. Kyriakidis,Deutsch,

andGrant(1999)consideredapproximatelytransformingthecalculatedindicatorvar-

iogramstonormalscoresvariogramswithtwocategories. Therefore,thevariogram

inversioniscalculatedusingnumericalintegrationofthebivariateGaussiandistribu-

tion.RemacreandZapparolli(2003)usedaniterativeinversionapproachtofindthe

relationshipbetweenexperimentalindicatorvariogramsandthecovariancemodelof

theunderlyingGaussianvariables.Also,Mariethozetal.(2009)proposedtoadjustthe

rangesofthevariogramsofthemulti-Gaussianfieldsiterativelythroughaninversepro-

cedureuntiltheindicatorvariogramsoftheresultingtruncatedsimulationmatchesthe

experimentalindicatorvariogramsofthefielddata.AnANSIcomputerprogramwas

developedbyDowdetal.(2003)toperformconditionalorunconditionalTPGsimula-

tionsusingathresholdbasedmaskandindicatorcovarianceandcross-covariances.But

theimportantquestionhereis:howthecategories’variogramshouldbeassignedtothe

underlyingGaussiandeviates? Directadjustmentfromtheexperimentalvariograms

isnotpossibleandtheinferenceofthespatialstructureoftheGaussianvariablesto

obtainthedistributionofcategoricalvariablesisverydifficult.

ThetheoreticallinkbetweenthevariogramoftheunderlyingGaussianvariables

andtheindicatorvariogramofthecategoricalvariablesforthethresholdbasedmask

isexplainedbyArmstrongetal.(2011). Tobettermatchtheindicatorvariogram

ofcategories,aniterativeapproachisusedtodefinethevariogramforunderlying

Gaussianvariables. Thismethodislimitedtothethresholdbasedmaskandisnot

appropriatetoothertypesoftruncationrules. Also,anumericalderivationofthe

variogramoftheunderlyingGaussianvariablesbasedontheMonteCarlosimulation

isproposedbyZagayevskiyandDeutsch(2015). Asequenceoflagdistanceswhich

discretizesthecorrelationrangeofthecategoricalvariablesisindependentlyoptimized

andforeachlagdistancethousandsofpairsaresimulatedandtheaverageindicator

correlationaftertruncationiscalculated.Untiltheconvergence,thespatialcorrelation

oftheunderlyingGaussianvariablesisadjusted.Thismethodusesthemajordirection

ofcontinuityofthefirstimportantcategorytooptimizethespatialcorrelationofthe
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underlying Gaussian variables.

In this chapter, three different techniques are adopted to address the challenge

of finding the optimum spatial structure of underlying Gaussian realizations to best

reproduce the spatial structure and distribution of target categorical variables.

6.2 Variogram Optimization using Local Refinement

An optimization is proposed to iteratively adjust the parameters of the variograms

of the underlying Gaussian realizations. To start, the parameters of the initial vari-

ogram model, such as ranges of continuity, are defined from the experimental indicator

variograms of the categorical data. Using these variogram models, a TPG simulation

is constructed. Then, the indicator variogram of the categories from the simulated

truncated realization is calculated. The adjustment of the initial parameters of the

variograms is based on the objective function until an acceptable match between the

indicator variogram model of data and the computed indicator variograms from sim-

ulated realization is achieved. Figure 6.1 represents a sketch of the refinement of the

nugget effect and horizontal range of a Gaussian deviates.

The objective function (Eq. 6.1) is defined by the sum of the squared difference

between the modeled indicator variogram of the input data (Figure 6.3) and the in-

dicator variogram of categories in the simulated realization. The objective function is

considered for sequence of lag distances which discretize the range of the categorical

data lags weighted by lag separations to match target indicator variogram models for

both horizontal and vertical directions.

O(h) =

K∑
k=1

nD∑
j=1

1

h
× (γk(h; j)model − γk(h; j)realization)2 (6.1)

where:
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K - the number of categories;

nD - the number of directions for variograms (horizontal, vertical);

h - lag distance;

Figure 6.1: Schematic of refinement of two parameters. Large Xs represent the value
of parameters for coarse optimization and the highlighted X indicates the
best pare of nugget effect and range parameters. The refinement around
the highlighted X provides optimal values.

Usually, the short range variogram structure is more important since it gives insight

into the the variability of variables of interest. So, an inverse distance weighting, 1
h , is

incorporated to assign higher weights to the objective function for shorter ranges. This

weight is adjusted to give more or less weight to the vertical/ horizontal variograms as

needed for particular applications.

As the number of categories and underlying Gaussian realizations to project in-

creases, reproducing the variograms becomes more difficult because of the reduced

flexibility using a limited number of Gaussian deviates. If certain categories are deemed

more important, they could be given more weight in this scheme.

First, the optimization is constrained with the best set of variograms for the initial

step. Then a second local refinement is considered to obtain a reasonable model. A

case study simulating rock types at a mineral deposit is presented to illustrate the

implementation of the proposed methodology.
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A mineral deposit is simulated with data from drill holes with measurements for four

different rock types. Figures 6.2- 6.3 demonstrates the location map of available data

and the variogram models of these rock types, respectively. The transition probability

between the rock types is used to define a truncation rule between the rock types in

the data. The transition probability matrix (Eq. 6.2) for this data is as follows:

tp(h) =



0.9089 0.0067 0.0000 0.0844

0.0002 0.9778 0.0002 0.0219

0.0000 0.0010 0.9369 0.0621

0.0036 0.0390 0.0168 0.9406


(6.2)

Figure 6.2: Location map of available data.

From the transition probability matrix, it is expected that rock types two and four

are connected to all other rock types and rock type one is connected occasionally to rock

type three. Figure 6.4 shows the truncation mask for this data set (see Section 4.2);
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Figure6.3:Experimentalandfittedvariogramsinhorizontal(red)andvertical(blue)
directionsforavailablerocktypes.

thetwoaxescorrespondtothevaluesoftheunderlyingGaussianrealizations(Y1and

Y2)withmeanzeroandvarianceofone,N(0,1),andthecolorcodescorrespondtothe

domainofthedifferentrocktypes.

Thesurfaceareaofthedifferentrocktypesinthethresholdbasedmaskcorresponds

totheirrespectiveglobalproportionsthatareestimatedbyanalyzingtheavailabledrill

holedata.Theglobalproportionsofrocktypeone,two,three,andfourare0.014,0.57,

0.086,and0.33,respectively.Thecorrespondingthresholdsofthethresholdbasedmask

areshowninFigure6.4(t1=0.176,t2=−1.84,andt3=0.84).

TwoGaussianrandomrealizations,Y1andY2,areconsidered,withGaussianvari-

ogrammodelswithtwostructuresforbothunderlyingGaussianrealizations.Generally,

Gaussiancovarianceprovidessmootherboundariesbetweentherocktypesthanother

typesofvariograms(Pyrcz&Deutsch,2014).TheGaussianmodelhastheparabolic

shapeattheshortdistancesandprovidesmorecontinuity. AsFigure6.4illustrated,

transitionbetweenrocktypesone,three,andfourarecontrolledmorebyY2andtran-
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Figure 6.4: Global threshold based mask with four rock types.

sition of rock type two to other rock types is controlled more by Y1.

To reproduce the variogram model of all the rock types, the determination of the

initial input variograms to generate the Gaussian realizations is important. To achieve

this goal, a N-dimensional space for variogram parameters of the underlying Gaussian

deviates is created for each underlying Gaussian variable and a simultaneous optimiza-

tion is considered. Here, N is the number of parameters that is required to build an

isotropic variogram model with two nested structures. Consider N = 6, which repre-

sents the horizontal and vertical directions’ ranges for each structures, nugget effect,

and contribution of the first structure. Boundaries of this space for horizontal and

vertical directions are selected based on the maximum and minimum ranges between

all four rock types. In the first step, to achieve the best initial solution, optimization is

carried forward with possible combinations of parameters for the underlying variogram

model. Improvement of variogram reproduction of rock types is checked through the

objective function in each combination. The set of parameters with the lowest objective

value is considered as the best initial solution. In the next step, a local refinement is

implemented and optimization is brute forced with the best set of variograms carried

forward. In this step, an optimization search to obtain the optimum solution is limited

to the neighborhood of the best set of variograms from the previous step.

Finding a balance between the variogram reproductions of all rock types is necessary
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and local refinement is applied for this purpose. Depending on the importance of the

rock types, the final variograms can be selected.

Figure 6.5(a) puts higher weight on the variogram reproduction of rock type four,

Figure 6.5(b) puts higher weight on the variogram reproduction of rock types one and

three, and Figure 6.6 shows a balanced approach that attempts to reproduce all four

rock types for both horizontal and vertical directions. Based on the results, rock type

two always shows good reproduction.

With optimized parameters, Gaussian function Y1 is modeled with a Gaussian co-

variance model with two nested structures with ranges of 600 (ft.) in the horizontal

direction and 180 (ft.) vertically with a nugget effect of 0.05. The ranges of Gaussian

function Y2 are longer than Y1 in all directions. The ranges are 700 (ft.) and 280 (ft.)

in horizontal and vertical directions, respectively. Y2 also has a Gaussian variogram.

Reproduction of input proportions of the rock types is shown in Figure 6.7. The input

proportions are reproduced well. In addition, transition probabilities are calculated

from the final TPG realization to compare to the transition probability matrix calcu-

lated from the data. TPG simulation reproduced the data transition probabilities from

rock types two and four to other rock types well. There is a slight error in transition

reproduction of data for rock types one and three to other rock types that is the result

of the low global proportion of these rock types (Eq. 6.3 and Figure 6.8).

tp(h) =



0.5704 0.1627 0.0000 0.2669

0.0024 0.8757 0.0285 0.0934

0.0000 0.1384 0.7108 0.1507

0.0061 0.1445 0.0480 0.8014


(6.3)
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(a) Good variogram reproduction of rock types two and four

(b) Good variogram reproduction of rock types one and three

Figure 6.5: Variogram reproductions of horizontal direction(gray lines). Red and
black lines represent variogram model of rock types and and the average
reproduction of 50 realizations.
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(a) Variogram reproductions of horizontal direction

(b) Variogram reproductions of vertical direction

Figure 6.6: Balanced reproduction of model variograms of all four rock types with
TPG method (gray lines), and the average of 50 realizations (black line).
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Figure 6.7: Input proportion reproduction for all four categories with TPG simulation
for 50 realizations. The input proportions are shown with the black line.

Figure 6.8: Transition probability matrix of data and averaged transition probability
matrix of rock types for 50 simulated realizations colored by transition
probability values from zero to one.

Remarks

The proposed optimization finds reasonable local optimums for a given set of indica-

tor variograms but depends on the initial parameters; random restarts are important.
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The proposed method is iterative and provides reasonable variograms for the Gaus-

sian variables in TPG simulation in an effort to reproduce the desired variograms and

often can be used directly; in some cases, the practitioner may want to manually ad-

just the final variogram fit depending on site specific concerns. The limitation of this

work flow is the required computational time for optimization as the number of rock

types increase. Also, defining the best set of variograms to start the optimization is a

challenge. The entire solution space is not fully explored as this is found to be very

computationally expensive.

6.3 Variogram Optimization using a Neural Network

NN offers a non-algorithmic approach to geostatistical simulation with the possibil-

ity of automatic recognition of correlation structure. A NN is presented in this section

to help determine the optimal input variograms used to generate the underlying Gaus-

sian realizations.

The field of NNs has been applied widely in the past fifteen years and is still de-

veloping quickly. NNs have been trained to perform complex functions in several fields

of application such as pattern recognition, identification, classification, speech, vision

and control systems. Currently, problems that are difficult for human or conventional

computers can be addressed by NNs.

6.3.1 Artificial Neural Network (ANN)

Figure 6.9 shows a typical network diagram. Each processing element (or unit) in

the network can be schematically represented as a node. Also, connections between

units are indicated by the arcs. The arrowheads on the connections represent the

direction of information flow in the network. An input on the left layer of processors

can activate many units of the hidden-layer (second-layer). The activity on the hidden

layer activates the units that are recognized on the output layer. The comparison of

the output and the target is used as a measurement to adjust the network until the

network output matches the target. Simple elements are working in a parallel way in

the form of a directed graph in NNs. The connections between elements define the
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networkfunction. Whenoneadjuststhevaluesoftheconnectionsbetweenelements,a

NNcanbetrainedtoperformacertainfunction.TheNNcanofferafeasiblesolution

andbetterunderstandingoftheproblem.Totrainanetworkinthesupervisedlearning,

manyinput/outputpairsareusuallyused.

Figure6.9:SchematicrepresentationofANN.(Tadiou,n.d.)

Therearedifferenttrainingmethods,butthesupervisedtrainingmethodsarefre-

quentlyused.Othernetworkscanbeobtainedfromunsupervisedtrainingtechniques

orfromdirectdesignmethods(Hastie,Tibshirani,&Friedman,2009).Forinstance,

toidentifygroupsofdataanunsupervisednetworkcanbeused. Abinarythreshold

unitasacomputationalmodelforanartificialneuronisproposedbyMcCullochand

Pitts(1943)(Figure6.10).Thismathematicalneuroncomputesaweightedsumofits

ninputsignals,xij=1,2,···,nandgeneratesanoutputof1ifthissumisabovea

certainthresholdu.Otherwise,anoutputof0results. Mathematically,Eq.6.4:

y=θ




n

j=1

wjxj−u



 (6.4)

where:
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θ -aunitstepfunctionat0;

wj -thesynapseweightassociatedwiththejthinput;

Figure6.10:McCulloch-Pittsmodelofaneuron(McCulloch&Pitts,1943).

Apositiveweights modelrelatestoexcitatorysynapsesandanegativeweights

modelrelatestoinhibitorysynapses.TheMcCulloch-Pittsmethodhasbeendeveloped

inseveraldifferentmodels,forinstance,intheuseofotheractivationfunctionsinstead

ofthethresholdfunction(Gaussian,Piecewiselinear,Sigmoid,SoftplusandRectified

linear),asshowninFigure6.11.ANNscanbegroupedintotwogroupsbasedonthe

connectiondesign:

❼Feed-forwardnetworks:havenoloopsingraphs

❼Recurrent(orfeedback)networks:haveloopsduetofeedbackconnections

Differentnetworkbehaviorsarefoundbasedondifferentconnectivities.Ingeneral,

feed-forwardnetworksarestaticandonesetofoutputvaluesisproducedinsteadof

asequenceofvaluesfromacertaininput. Theimportantpropertyoffeed-forward

networksisthattheyarememory-lesswhichmeanstheirresponsetoaninputisin-

dependentofthepreviousnetworkstate.Alternatively,feedback(recurrent)networks

aredynamicorganizations. Theneuronoutputsarecalculated,onceanewinputis

presented.Becauseofthefeedbackpaths,theinputstoeachneuronarethenmodified,

whichleadsthenetworktoenteranewstate.Differentlearningalgorithmsarerequired

fordifferentnetworkdesigns.

Theabilitytolearnisanimportantattributeofintelligence.IntheANNforlearn-
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Figure 6.11: Different types of activation functions. Top from left to right: Gaus-
sian, Piecewise linear. Bottom from left to right: Sigmoid, Softplus and
Rectified linear.

ing, network design and connection weights should be updated properly. From the

available training data, the network must learn the connection weights. By iteratively

updating the weights in the network, performance is improved. One of the most impor-

tant advantages of ANN is that it learns the underlying rules between the variables of

an interested population from the relation of a given input/ output instead of following

the rules that assigned by humans.

6.3.2 Application

Section 6.3.1 introduced the basic concepts of an ANN model and its learning

algorithms. Now an application of ANN is discussed to illustrate how a one layer

feed-forward network is used in variogram parameters optimization. Categorical data

are available and the proportions of categories and the transition probability between

the data set are known from the available data. The relations between the categories

can be different depending on the type of geology, and the selected mask imposes the

relations and contacts between the categories. Here, the transition probability between

the categories is used to characterize the spatial distributions between the categories

in the data.
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In this study a synthetic 2D example with three categories and two underlying

Gaussian random realizations is considered to test the potential of ANN in variogram

optimization. Figure 6.12 shows two reference realizations that are generated with

spherical variogram models.

Figure 6.12: Underlying Gaussian realizations (500× 500 cells).

Gaussian function Y1 is modeled with a spherical covariance model with one nested

structures with the ranges of 1318 ft. in the minor horizontal direction and 2010 ft.

in the major horizontal direction. The nugget effect equal to 0.30 has been selected

for this realization. The ranges of Gaussian function Y2 are shorter than Y1 on all

directions. The ranges are 416 ft. and 1527 ft. in minor and major horizontal directions

with azimuth of 153◦ degree from north for both realizations. Y2 also has a spherical

variogram with nugget effect equal to 0.27. These two realizations are truncated using

an MDS mask to create interested categories (Figure 6.13).

Figure 6.13: MDS mask with 3 categories and a corresponding truncated bigaussian
simulation.
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Afeed-forwardANNisusedforANNmodeling.Thenodesareconsideredascom-

putationalunitsandANNconsidersthenodesasartificialneurons.Inthefirststepa

databasethatdefinestherelationbetweeninputandoutputisbuilt.Theinputsofthis

networkaretheindicatorvariogramparametersofcategoriesinthecategoricaldata

set. Thenetworkistrainedfordifferentrangesofinputs.Fora2Dcategoricaldata

set,therearefourrelevantparametersforeachcategorywithonesphericalstructure:

Nuggeteffect,strike,maximumrangeofcontinuity,andminimumrangeofcontinuity.

ThreehundredpairsofGaussianrealizationswithrandomvariogramparametersare

generated.Aspecifictransitionprobabilitymatrixandmaskforsequencesetofpro-

portionsofcategoriesareconsideredfortruncationofsimulatedGaussianrealizations.

TheindicatorvariogramsofcategoriesarecalculatedandfedasinputstotheANN,

whiletheoutputofANNisthevariogramparametersthathavebeenusedtogenerate

theunderlyingGaussianrealizations.

Connectionstrengthsandtransferfunctionscontrolhowmuchoftheactivation

valueispassedontothenextnode.Theaccumulatedactivationvaluethateachnode

receivesfromitsownactivationfunctionismodifiedbasedonitstransferfunctionand

passedthroughthenetworktothenextnode. TodevelopagoodANN,thetransfer

functionmustbeselectedproperly.Forinstance,aneuronmayhaveabell-curvestyle

firingpattern,threshold,sumitsinputs,oraveragethem,orsomethingcompletely

complicated. Theactivationflowsthroughthenetworkinonedirection,frominput

nodes,throughthehiddenlayers,untileventuallytheoutputnodesareactivated.If

anetworkissuitablytrained,thisoutputshould matchtheknownvaluesinsome

meaningfulway.Inthisstudy,afullconnectionisconsidered. Thenetworkhas12

inputsand8outputs(Figures6.14). Basedontheserelations,connectionstrengths,

inhibition/excitationconditions,andtransferfunctionscanbedetermined.Table6.1

summarizestheresultsoftheANNbasedonfivedifferentactivationfunctions.

ThemostpopularmethodoflearningisBack-Propagation.Tobegin,thenetwork

isinitialized;alltheconnectionsaresetrandomly.Anetworkthathastwelveinputs,

onehiddenlayerwithtennodesandeightoutputneuronscreatedinPyBrain(Schaul
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Figure 6.14: Designed neural network with full connections and one hidden layer.

Table 6.1: Summary of results for created ANN based on different activation func-
tions.

SigmoidL GaussianL LinearL TanhL SoftmaxL True

NE1 0.35 0.22 0.34 0.23 0.23 0.3
Strike1 186.9 273.3 182.2 210.3 187.9 153.0
hmin1 998.3 1238.3 991.3 1164.8 944.8 1318.0
hmax1 2040.4 2031.7 1907.5 2029.2 2072.0 2010.0
NE2 0.26 0.21 0.25 0.26 0.22 0.27

Strike2 186.3 311.8 189.0 200.5 187.5 239.0
hmin2 474.5 473.1 442.3 453.7 480.5 416.0
hmax2 1319.4 1286.0 1251.3 1260.1 1268.1 1527.0
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etal.,2010). Thenumberofnodesinahiddenlayerisusuallybetweenthesizeof

thenodeintheinputandtheoutputlayers. Hiddenlayersareconnectedwithfull

connectionobjects. Thenetworkistrainedfor1000epochs. Anepochisaforward

andonebackwardpassthroughtheentiretrainingset. Abackpropagationtrainer

(Rumelhart,McClelland,Group,etal.,1988)isusedforsetupatrainerthatbasically

takesthenetworkandtrainingdatasetasinput. FivedifferentPyBrainsupervised

trainersareused.Table6.2summarizesthepercenterrorineachparameterforeach

activationfunction. ANNwithsigmoidandhyperbolictangentactivationfunctions

predictstheoutputswithfewererrors.

Table6.2: Summaryofthepercenterrorineachparameterforeachactivationfunc-
tion

SigmoidL GaussianL LinearL TanhL SoftmaxL

NE1 17.52 23.86 15.96 10.00 22.18
Strike1 22.17 78.63 19.09 37.45 22.81
hmin1 24.25 6.04 24.78 11.61 28.31
hmax1 1.51 1.08 5.09 0.95 3.09
NE2 1.74 22.69 6.51 1.40 20.16
Strike2 21.82 103.79 23.54 1.40 20.16
hmin2 14.08 13.73 6.33 9.07 15.51
hmax2 13.59 15.78 18.04 17.48 16.95

Average %Error 14.58 33.20 14.92 14.88 18.94

Remarks

ANNalgorithmscanbeusedtodetectcomplexnonlinearrelationshipsbetween

inputvariablesandallpossibleinteractionsbetweenoutputvariables. Theproposed

optimizationaddressestheproblemofvariogramreproductionfortwoGaussianvari-

ablesina2Dcaseforaspecificmask.Themajordisadvantagesofthisalgorithmare

itsblackboxnatureandlimitedflexibilityinhandlingaverityofinputs.Itcanbe

hardtoadjustandverifythatthenetworkiswelltrained.
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6.4 Variogram Optimization by Iteratively Adding Com-

plexity

The key to the modeling approach presented in this section is adopting an opti-

mization to find the optimum variograms of underlying Gaussian deviates to obtain

the appropriate indicator variogram reproduction of each category after truncation.

The proposed optimization targets the covariance or variance map of each categorical

variable and attempts to select the optimum input variograms to best reproduce the

spatial structure of each categorical variable. A novel optimization method is proposed

which iteratively increases the complexity of the covariance functions to obtain the best

fit for the original categories.

Optimization begins with a simple initial random covariance function; optimization

is used to obtain a local minimum. The initial parameterization of the variogram

is as simple as possible (one structure and no horizontal anisotropy for each Gaussian

deviate). Gradient optimization or simulated annealing optimization can be selected to

find the optimal covariance map for the underlying Gaussian realizations. As with any

optimization methods, the important part is the formulation of an objective function.

The emphasis of the proposed optimization is on finding the appropriate covariance map

for underlying Gaussian realizations that honor the pattern statistics in the original

model and minimize the objective function. In successive iterations, complexity is

added to the variogram in the form of additional variogram structures and anisotropy,

improving the fit to the desired categorical variable variograms. This procedure is

repeated for the desired number of variogram structures. Each step increases the

difficulty of optimization and always results in a closer match to the desired categorical

variograms. The balance between simplicity and better variogram reproduction is

discussed. A synthetic example is presented to illustrate the implementation of the

proposed method.
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6.4.1 Application

This section explains the use of the proposed method to optimize variograms of

underlying Gaussian deviates. In the first step, a simple random variogram model with

one structure and no horizontal anisotropy for each Gaussian deviate is considered

as the initial parameterization. The next step is the integration of the multivariate

Gaussian probability distribution to simulate Gaussian values. LU simulation (LU)

is applied here to simulate the Gaussian deviates using the spatial covariance matrix

with a large number of points. In this method, the covariance matrix C is decomposed

by Cholesky decomposition to the lower matrix (L) and upper matrix (U). A random

number generator generates a vector of uncorrelated standard normal values (W ), and

then the correlated values are calculated by Eq. 6.5:

Y (u) = LW (u), u ∈ D (6.5)

A TPG simulation is constructed by truncation of the generated Gaussian realiza-

tions using an appropriate mask. Here, an MDS mask is used to obtain the truncation

mask automatically from the transition probabilities determined from the input data;

thus, in the proposed work flow, the truncation rules are automatically calculated as

well as the input variograms for each Gaussian deviate.

The adjustment of the initial parameters of the variogram is based on the objective

function until an acceptable match between the covariance map of data and the com-

puted covariance map from the simulation results for each category is achieved. The

objective function (Eq. 6.6) is the difference between the modeled covariance maps of

the indicator variables (Covmodelk (hi)) and the covariance maps of unconditional trun-

cated simulation (Covrealizationk (hi)) weighted by the inverse lag distance of covariance

points in the covariance map to center of covariance map and also weighted by categories

proportions. The N lag separation vectors (h) which are the most compact arrange-

ment (see Figure 6.15) are used to calculate objective function. Based on Eq. 6.7, for

each category, any lag vector between two points is considered by decomposing the
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separationvectorintothreeprincipalcomponents(xi,yi,andzi)whicharewithin3

dimensionalrangeofspatialcontinuity.Optimizationandrandomrestartsareusedto

obtaintheoptimalparametersoftheinitialsimplifiedcovariancestructure.

O=

K

k=1

pk

N

i=1

1

(hi(k))w
(Covmodelk (hi(k))−Cov

realization
k (hi(k)))

2 (6.6)

hi(k)= (
xi

ahmax(k)
)2+(

yi
ahmin(k)

)2+(
zi

avert(k)
)2 (6.7)

where:

a -thespatialextent(i.e.,ranges)ofvariabilityforeachprincipaldi-

rection;

K -thenumberofcategories;

w -theweightterm;

Figure6.15:Polarplotofthelagvectorstocalculatetheobjectivefunction
(C.V.Deutsch&Cockerham,1994).

Thespatialextentofthevariabilityforeachprincipaldirectionisdifferentforeach

nestedstructureandeachcategory. Theserangesareoftenreferredtoasthemajor

horizontaldirection, minorhorizontaldirectionandverticaldirection,accordingto

112



theGSLIBconvention(C.V.Deutsch&Cockerham,1994).Byconvention,wvaries

between0and2andaseriesofstudiesindicatethatw=1worksthebest.Higherthe

wvalue,assignslessweighttothecovariancevaluesthatarefarfromtheorigin,and

thosepointsmakeverylittlecontributiontotheoutcome.

Twotypesofoptimizationareconsideredhere:theFletcher-Reevesmethod,which

isagradientbaseoptimization,andtheSAalgorithm. Optimizationbeginswith

arandomsetofvariogramparameterstobuildtheinitialcovariancemapandthen

iterativelyadjuststheparameterstominimizetheobjectivefunction.Afterobtaining

theinitialsolutionforvariablesusingthementionedoptimization,morecomplexitycan

beaddedtothealgorithminthenextstepbyaddingmorestructures.Theoptimum

solutionandobjectivevalueofthepreviousstepisusedasaninitialinputandobjective

valuetotheprocess. Thenewsetofparametersisadjustediterativelyforacertain

numberofiterationsoruntilthebestmatchisachieved.Figure6.16showstheworkflow

fortheoptimizationusingacovariancemapofcategoricalvariablesinTPGsimulation

method.

Figure6.16:Workflowforcovariancemapoptimizationofcategoricalvariablein
TPGsimulationmethod.

Theproposedoptimizationisdevelopedinaprogram”vargopttpg”(Appendix,

sectionA.4)toobtainthebestfitforthevariogrammodelsofunderlyingGaussian
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deviatesinTPGsimulation. Thisprogramisabletodealwiththecomplexspatial

continuityofcategoricalvariables. Twotypesofsemivariogrammodelsarespecified

inthisprogramtomodelGaussianvariables:theGaussiantypeandstablevariogram

type. TheGaussianmodelisdefinedbyaneffectiverangeaandpositivevariance

contributionvaluec(Eq.6.8). Notethatinstabilityproblemsareoftenencountered

withtheGaussian modelwithnonuggeteffect(Posa(1989);SteinandHandcock

(1989)). Therefore,usingaverysmallnuggeteffectissuggestedinthiscase. The

stablevariogrammodelisdefinedbyEq.6.9,withpowertermwtwhichvariesbetween

1and2(Chiles&Delfiner,2009).Foranisotropicvariogrammodels,theinnerratioha

ismodifiedasshowninEq.6.10,whereamax,amin,andamed aretherangesofspatial

continuityinprincipaldirectionsofmajor,minor,andmediumcontinuities.Inthis

case,wtisaddedasaparametertooptimizationalgorithm.

γ(h)=c.1−exp(−
(3h)2

a2
) (6.8)

γ(h)=c.1−exp(−3(
h

a
)wt) (6.9)

h

a
= (

hmax
ahmax(k)

)2+(
hmin
ahmin(k)

)2+(
hmed
amed(k)

)2 (6.10)

CaseStudy

TwoGaussianvariablesaresimulatedandtruncatedtogenerateacategoricalmodel

thatisusedasreference(Figure6.17).TheGaussianvariableY1issimulatedusinga

Gaussianvariogramwithrangesof16unitsinthemajordirection(West-East)andeight

unitsintheminordirection(South-North).TheGaussianvariableY2issimulatedwith

aisotropicGaussianvariogramwitharangeof16units.Thetruncationruleisdefined
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by the MDS mask with proportions of 0.5, 0.25 and 0.25 for categories one, two and

three, respectively. The transition probability matrix is calculated from the available

data (Eq. 6.11). Figure 6.18 shows the MDS based mask and reference categorical data.

tp(h) =


0.9268 0.0461 0.0271

0.0720 0.8733 0.048

0.0784 0.1014 0.8201

 (6.11)
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Figure 6.17: Underlying Gaussian realizations.
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Figure 6.18: Left: truncation rule using MDS mask and right: categorical data.

Figure 6.19 and Figure 6.20 show a slice of 3D representation of covariance of the

off sets for three available categories and the experimental indicator variograms of the

resultant categorical model.
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Figure6.19:
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Figure6.20:Experimentalandfittedvariogramsmodelinmajor(red)andminor
(blue)horizontaldirections.
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In the first step, one anisotropic Gaussian structure with random variogram pa-

rameters of underlying Gaussian deviates is considered. The optimization method

continuously modified the initial parameters until the objective function optimized.

This procedure is optimized for 100 different random restarts and the one with the

smallest objective value is considered as the best match. The algorithm started with

an objective value of 7.18 and stopped with a final objective value of 2.45. Here, the

Gaussian function Y1 is modeled with a Gaussian covariance model with one nested

structure with a horizontally anisotropic variogram. A nugget effect of 0.01 has been

selected for these realizations. In the next step, another structure is added to the previ-

ous covariance/variogram model. The optimization algorithm begins with the optimum

parameters from the previous step. A contribution for each nested structure is added as

an optimization parameter. Input proportions of categories among 100 unconditional

simulations is reproduced very well and presented in Figure 6.21. The final variograms

reproduction among 100 simulations with optimized parameters for both structures is

shown in Figure 6.22. By adding one more structure, the final objective value reduced

to 0.226 and the variogram reproduction of categories improved by 5%.

Figure 6.21: Input proportion reproduction for all three categories with TPG simu-
lation for 100 realizations. The input proportions are showed with the
black line.
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Figure6.22:ReproductionofmodelvariogramswithTPGinmajor(red)andminor
(blue)directionsusingtwoGaussiandeviatesandonenestedstructures
(left)andtwonestedstructures(right)forallthreecategories.

Figure6.23showsthereference,initialandoptimizedunderlyingGaussianreal-

izationsandcategoricaldata.TheoptimizedrangesforY1are16unitsinthemajor

direction(90◦degree)and11unitsintheminordirection. Y2alsohasaGaussian

covariancewithoptimizedrangesof12unitsinthemajordirection(173◦degree)and

10unitsintheminordirection.Figure6.23(c)showsthatspatialdistributionofref-

erencecategories(Figure6.23(a))arepreservedinTPGsimulationusingoptimized

underlyingvariogramsmodels.
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Figure 6.23: Underlying Gaussian realizations and categorical data.

A slice through the representation of covariance of the off sets using initial and

optimized variogram parameters for three available categories is shown in Figure 6.24.

Figure demonstrates how the optimization started with a very different covariance map

as categorical data and converged to the target covariance map of categories in finite

steps.
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Figure 6.24: Slice through the representation of covariance of off sets. Top: using the
initial variogram parameters and bottom: using the optimum variogram
parameters for three available categories.

6.5 Summary

Three different methodologies for inferring the variogram of the underlying Gaussian

deviates are explained in this chapter. The first relies on iteratively adjusting the

set of variograms parameters of the underlying Gaussian realizations to obtain the

initial optimum solution and then a local refinement is applied to balance variogram

reproduction of all the categories. In this method, initial sets of parameters are required

that can be difficult to assign.

In the second optimization methodology, an ANN algorithm is adopted to find the

optimum parameters of the variograms of the underlying Gaussian deviates. This a

learning algorithm which learns the underlying rules between given input/ output vari-

ables. ANN is a powerful method which can be trained to perform complex functions

in different fields. However, it is a black box and can be hard to adjust and ensure that

the network is well trained. Also, this is a training process and requires a huge data

base which is not always available. In variogram optimization, there are many differ-

ent scenarios that an ANN should be trained for, such as different masks, transition

120



probabilities and categories proportions. It is very difficult to build this data base for

all possible scenarios.

Lastly, a variogram optimization is introduced which targets the covariance map of

each categorical variable. The procedure begins with a simple variogram model which

is easier to optimize and find a reasonable local minimum. Variogram reproduction is

mapped in successive iterations as complexity is added to the variogram model. In the

proposed work flow, the truncation rules are automatically calculated as well as the

input variograms for each Gaussian deviate. The relationships between the parameters

are complex and the objective function is non-convex; therefore the use of random

restarts is required. The limitation of this method comes with the required CPU time.

Time does increase linearly with the increasing number of random restarts.
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Chapter7

CaseStudy

ThefollowingchapterusesdatafromtheRedDogmine,Alaskatostudytheperfor-

manceofthedevelopedmethodologiesinacomplexgeologicalsetting. Thechapter

beginswithanoverviewofthegeologyandbackgroundofdataandcontinueswith

showingtheapplicationofTPGsimulationonthedataset.

Section7.1explainsthesettings,descriptionofthedata,thegeologyandthege-

ologicdomainsofthecasestudy.Sections7.2and7.3documentdetailsoftheimple-

mentationoftheproposedmethod.Also,geostatisticalmodelsareevaluatedinterms

ofaccuracy,precisionandpredictionofthegeologicdomainsinSection7.3.Theresults

arecomparedtotheproductiondata.

7.1 AvailableData

ThedatasetinthiscasestudyisfromtheRedDogmineraldeposit. RedDog

mineisthelargestzinc(Zn)producerintheworldanditislocated90milesnorth

ofKotzebue,Alaska,USA.Thedepositconsistsofsulphideorezonesinsedimentary

exhalative(sedex)deposits,andischaracterizedbythepresenceofmultiplemetalsand

multipleoretypes(Ayusoetal.(2004);DeVera, McClay,andKing(2004);Moore,

Young,Modene,andPlahuta(1986)).Thismineconsistsoffivegeologicalmineralized

platesbasedonstructuralandsedimentarycharacteristics:Upper,median,lower,sub

lower,andhostrock.Intotal,thereare31geologycodesbasedontheblockmodel

geologycodes.Forthiscasestudy,theselectedareacontainsfourgeologicalmineralized
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plates (median, lower, sub lower, and host rock) and each is the combination of different

rock types. The median plate is the combination of median plate lower grade exhalite

(< 15%Zn) including silica rock and silicified Ikalukrok shale, median plate Ikalukrok

vein unit, median plate higher grade exhalite (> 15%Zn), and median plate Ikalukrok

barite. The lower plate is the combination of lower plate lower grade exhalite (<

15%Zn) and includes silica rock and silicified Ikalukrok shale, lower plate lower grade

exhalite (< 15%Zn), lower plate Ikalukrok barite, and lower plate higher grade exhalite

(> 15%Zn). The sub lower plate consists sub lower Plate barite, sub lower plate vein

unit, and sub lower plate lower grade exhalite (< 15%Zn) and includes silica rock

and silicified Ikalukrok shale. The host plate is the combination of the remaining rock

types in the selected area. Figure 7.1 shows the experimental indicator variogram and

variogram model of these rock types in the horizontal and vertical directions. There is

no clear horizontal anisotropy to consider directional variograms; therefore horizontal

omnidirectional and vertical indicator variograms are calculated for the four rock types.

Figure 7.2 shows the projection of the available drill hole data (DH) onto different cross

sections.

The selected area for this case study is based on the production data. The coordi-

nate limits of the model for this study are summarized in Table 7.1 and the geostatisti-

cal models will be simulated at 12.5(ft.)× 12.5(ft.)× 12.5(ft.) resolution. This model

consisted of a total of 3,590,400 blocks.

Table 7.1: Dimension parameters of the block model utilized for the construction of
the implementation of TPG simulation.

Direction Origin Block Model Number of Block Block Size(ft.)

Easting 585400 264 12.5
Northing 145000 200 12.5
Elevation 450 68 12.5

The predictive ability of the resulting models is tested by dense blasthole (BH)

data since often there are a plenty of exhaustive data available. There are a total

82355 available BH data for comparison. Figure 7.3 shows the projection of DH data

versus BH data onto an East-North cross sectional view.
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Figure7.1:Experimentalindicatorandfittedvariogramsinhorizontaldirection(red)
andverticaldirection(blue).

7.1.1 DataAnalysis

TheglobalproportionsofrocktypesinthedataaresummarizedinTable7.2.

Transitionprobability(Eq.7.1)isusedasthemeasureofspatialvariabilityforthe

truncationrule. Fromthetransitionprobabilitymatrix,itisnotexpecttoseethe

lowerplateandhostrockbeconnectedtoallotherrocktypes,andthemedianplate

andsublowerplatetobeconnectedoccasionally.

tp(h)=

Median

Lower

Sublower

Host












0.9455 0.0034 0.0000 0.0511

0.0005 0.9798 0.0001 0.0196

0.0000 0.0024 0.9446 0.0530

0.0054 0.0138 0.0010 0.9798












(7.1)
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Figure 7.2: Top: location map of available DH data, middle: projected onto a North-
East cross section, and bottom: North-Elevation cross sectional view.
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Figure 7.3: Top: location map of available BH and DH data and bottom: DH data
verses BH data an East-North cross sectional view.
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Table 7.2: Summary of rock types’ declustered proportions in DH data and BH data.

Rock Type Median Plate Lower Plate SubLower Plate Host Rock

DH Prop. 0.043 0.327 0.018 0.612
BH Prop. 0.089 0.399 0.000 0.511

7.1.2 Global Mask

The threshold mask and MDS mask are two mask frameworks that are considered

in this study. Figure 7.4 demonstrates the truncation rule with MDS and threshold

based method.
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Figure 7.4: Global truncation rules for Red Dog data set with four rock types. The
two axes correspond to the values of the underlying Gaussian realizations
(Y1 and Y2), and the color codes correspond to the domain of the different
rock types.
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7.2 Variogram Optimization of Underlying Gaussian Re-

alizations

Variogram modeling of underlying Gaussian deviates in TPG method is very im-

portant for simulating geological domains. After the definition of the truncation rule,

the next step is to define the spatial structure of the Gaussian variables in a way that

they match the indicator variograms of the categories after truncation. For this study,

variogram optimization using the covariance map as explained in section 6.4 is consid-

ered and variogram reproduction of rock types with two and three Gaussian deviates

is checked. The addition of more Gaussian deviates is discussed and compared.

Optimization begins with an initial random covariance function; optimization is

used to obtain a local minimum. The initial parameterization of the variogram is

as simple as possible (one structure and no horizontal anisotropy for each Gaussian

deviate). The adjustment of the initial variogram parameters is based on the objective

function using SA optimization until an acceptable match between the variogram model

of rock types in the data set and the computed variogram model of rock types from the

simulation results is achieved. As mentioned in Section 6.4, the objective function is the

difference between the modeled covariance maps of the rock types and the covariance

maps of truncated simulations. Figure 7.5 shows the a slices of 3D representation of

covariance of off sets for data onto X-Y and Y-Z cross sections for the four available

rock types.

Results have been compared by using two and three Gaussian realizations. All

the Gaussian realizations have Gaussian covariance/variogram models and a Gaussian

distribution with mean zero and variance of one (N (0, 1)).

Variogram Optimization using Two Gaussian Deviates

In the first step of variogram optimization, one isotropic Gaussian structure is con-

sidered and SA is used to optimise the variogram of the underlying Gaussian deviates

until the objective function is minimized and the target covariance map of rock types

is reproduced. A Gaussian covariance model characterizes phenomena with very high
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(a) X-Y cross sectional view

(b) Y-Z cross sectional view

Figure 7.5: slices of 3D representation of covariance of off sets for data for four avail-
able rock types colored by covariance values.
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spatialcontinuityandhasthesmallernuggetvarianceduetoitsparabolicbehaviorat

theorigin. Thenuggeteffectof0.01hasbeenselectedfortheserealizationssincea

matrixinstabilityproblemmayoccurbytheGaussiancovariancemodel(Posa(1989);

SteinandHandcock(1989)).

Optimizationisperformedwith500differentrandomrestartsandtheonewith

thesmallestobjectivevalueisconsideredasthebestmatch. Table7.3summarizes

theoptimizedparameterswiththeproposedmethod.Thealgorithmstartedwithan

objectivevalueof2.15andstoppedwithafinalobjectivevalueof0.99.

Here,theGaussianfunctionY1ismodeledwithaGaussiancovariancemodelwith

onenestedstructurewithahorizontallyisotropicvariogram.Theoptimizedrangesfor

Y1are890ft.and526ft.inthehorizontalandverticaldirections,respectively.Y2

alsohasaGaussiancovariancewithoptimizedrangesof1038ft.and703ft.inthe

horizontalandverticaldirections,respectively. Thefinalreproductionofvariograms

withoptimizedparametersforbothhorizontalandverticaldirectionsisshowninFig-

ure7.6.Thereisanoticeablefluctuationinvariogramreproductionofthemedianplate

andsublowerplatewhichisexpectedduetothelowproportionsofthesetworock

types. Reproductionofinputproportionsofthecategoriesamong100unconditional

simulationsispresentedinTable7.4.Theinputproportionsarereproducedwell.

Table7.3: Summaryofoptimizedvariogramparametersusingproposedoptimization
forbothGaussiandeviatesandonenestedstructure.

γParameters haofG1 hvofG1 haofG2 hvofG2
Optimized 890(ft.) 526(ft.) 1038(ft.) 703(ft.)

Table7.4: Reproductionofinputproportionsofthecategoriesusing100uncondi-
tionalsimulationswithonenestedstructure.

Plate Median Lower SubLower HostRock

DHProp. 0.058 0.382 0.010 0.550
ReproducedProp. 0.057 0.377 0.010 0.556
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Figure 7.6: Reproduction of model variograms with TPG in horizontal (red) and
vertical (blue) directions using two Gaussian deviates and one nested
structure. Gray lines are the variograms of 100 unconditional simulated
realizations.
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Here, optimization began with a simple variogram model and one structure to find

the local minimum but indicator variograms of all rock types are not well reproduced.

Therefore, another step is required to improve variogram reproduction.

So, in the second step, another Gaussian structure is added to the variogram model

of optimum solution and the optimization algorithm is started with the optimum so-

lution from the previous step. Contribution for each nested structure is another op-

timization parameter. The new set of parameters is iteratively adjusted to minimize

the objective function and find the global minimum. Slices of a 3D representation

of covariance of off sets for data using optimized variogram parameters of categories

onto X-Y and Y-Z cross sections for four available rock types are shown in Figure 7.7.

For instance, it is noticeable how the covariance map of the indicator variable which

represents the sub lower plate in the simulation came close to covariance map of sub

lower plate in data. Also, the final variogram reproduction with optimized parameters

for both horizontal and vertical directions is shown in Figure 7.8. By adding one more

structure, the objective value reduced to 0.84 and the results represent an improvement

by 7%. Input proportions of the rock types among 100 simulations are reproduced well

and presented in Table 7.5. Table 7.6 summarizes the optimized covariance/variogram

parameters from the proposed methods.

Table 7.5: Reproduction of input proportions of the categories using 100 uncondi-
tional simulations with two nested structures.

Plate Median Lower SubLower Host Rock

DH Prop. 0.058 0.382 0.010 0.550
Reproduced Prop. 0.056 0.381 0.009 0.554

Table 7.6: Summary of optimized variogram parameters for both Gaussian deviates
and two nested structures.

γ Parameters ha of G1 hv of G1 C-G1 ha of G2 hv of G2 C-G2

Optimized-St1 826 (ft.) 103 (ft.) 0.54 859 (ft.) 617 (ft.) 0.39
Optimized-St2 1844 (ft.) 809 (ft.) 0.45 1028 (ft.) 668 (ft.) 0.60
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(a) X-Y cross section

(b) Y-Z cross section

Figure 7.7: Slices of a 3D representation of covariance of off sets using optimized vari-
ogram parameters for four available rock types with two nested structures.

133



Figure 7.8: Reproduction of model variograms with TPG in horizontal (red) and
vertical (blue) directions using two Gaussian deviates and two nested
structures. Gray lines are the variograms of 100 unconditional simulated
realizations.
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Variogram Optimization using Three Gaussian Deviates

Variogram reproduction of rock types is also checked with use of three underlying

Gaussian deviates. Figure 7.9 demonstrates the global MDS mask for three Gaussian

deviates. Here, Gaussian functions Y1, Y21, and Y3 are first modeled with a Gaussian

covariance model with one nested structure with a horizontally isotropic variogram and

then a second nested structure is added. A nugget effect of 0.01 is selected for these re-

alizations. Final reproduction of model variograms with optimized parameters for both

horizontal and vertical directions with three Gaussian deviates is shown in Figure 7.10

and Figure 7.11. The input proportions are reproduced well. By comparing the mis-

match between the target indicator variogram model and the averaged variogram of the

resulting 100 simulated indicator values for the successive lag distances, the variogram

reproduction is found to be improved by 16% with three Gaussian deviates. Figure 7.12

shows the improvement in variogram reproduction (Eq. 7.2) for all four rock types in

vertical and horizontal directions.

Figure 7.9: Truncation rule based on the MDS with three Gaussian deviates.

Error%(h; k) =

∣∣γk(h)model − γk(h)Average
∣∣

γk(h)model
× 100, k = 1, · · ·K (7.2)
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Figure 7.10: Reproduction of model variograms with TPG in horizontal (red) and
vertical (blue) directions using three Gaussian deviates. Gray lines are
the variograms of 100 unconditional simulated realizations.
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(a) X-Y cross section

(b) Y-Z cross section

Figure 7.11: Slices of a 3D representation of covariance of off sets using optimized
variogram parameters for four available rock types with three Gaussian
deviates colored by covariance values.
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Figure7.12:Percenterrorinvarigramreproductionofrocktypes.Top:inhorizontal
directionandbottom:verticaldirection.Redcolorusingthreeunder-
lyingGaussianDeviatesandbluecolorusingtwounderlyingGaussian
Deviates.

VariogramReproductionComparison

Here,variogramreproductionofTPGsimulationiscomparedwiththeresultsof

theproposed MCSbasedmethodologybyZagayevskiyandDeutsch(2015)whichis

developedbyD.S.SilvaandDeutsch(2016b). ThisapproachobtainstheGaussian

variogramsnumericallyusingMonteCarlosimulation.Variogramsreproductionofthe

MCSbasedmethodforbothhorizontalandverticaldirectionsusingthreeunderlying

GaussianrealizationsisshowninFigure7.13.

Usingtheproposedcovarianceoptimization,anexcellentvariogramreproduction

forthe medianplate,lowerplateinthehorizontaldirectionandthe medianplate

andsublowerplateintheverticaldirectionisachieved.Variogramreproductionsfor

othertworocktypesinbothdirectionsarereasonable.Also,theMCSbasedapproach
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Figure 7.13: Reproduction of model variograms in horizontal (red) and vertical (blue)
directions using MCS based methodology using three underlying Gaus-
sian realizations. The solid black lines are the average variograms cal-
culated from all realizations. Markers in violet and light blue color are
the optimized points from MCS based method for the indicator vari-
ograms. Gray lines are the variograms of 100 unconditional simulated
realizations.
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obtainedagoodreproductionforthementionedrocktypes.

Findingthecovariance/variogramoftheunderlyingGaussiandeviatesinTPGsim-

ulationtoreproducetheindicatorvariogramofallindicatorvariablesischallenging.

Inthisstudy,anovelideawithoptimizationmethodsaddressedthisbarrier.

7.3 LocallyVaryingProportions

Theuseoflocallyvarying masksfortheincorporationoftrendisdiscussedin

thissection.Comparisonsaremadebetweenthesimulatedcategoricalmodelusinga

thresholdbasedmaskandaMDSmaskframeworkaswellasblocksequentialindicator

simulation(BSIS)model. Resultsdemonstratethattherelationshipsbetweenrock

typesarebetterreproducedinTPGmodels.BHdataisusedtovalidatethemodels

generatedfromtheavailableDHdata.

Figure7.14showsthetrendmodelthathasbeengeneratedusingaGSLIBpro-

gram”maketrend”(Manchuk&Deutsch,2011)forfourrocktypes.Thetrendmodel

demonstratesthelocallyvaryingproportionofeachplateindifferentlocationsofthe

areaofinterest.Thespatialdistributionoftheproportionsofrocktypesisshownin

Figure7.15. Thevariationoftherocktypes’proportionintheverticaldirectionis

clear.ThelocallyvaryingmaskisusedtohandleLVPandtruncateunderlyingGaus-

sianrealizations.TogeneratetheGaussianrealizations,theoptimizedvariogoramof

theprevioussectionfortwounderlyingGaussianrealizationswithtwonestedstruc-

turesareused.AcrosssectionthroughtwogeneratedGaussianrealizationsisshown

inFigure7.16.

BSISmethodisalsousedtosimulatetheplatesinthepresenceofthetrend.Fig-

ure7.17showsa3Dviewofoneindividualsimulatedrealizationforallfourmethods.

Visually,itisclearthattheTPGrealizationsforbothtypesofmaskappearmuch

smootherthanBSISrealization.
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(a) Trend model for median plate

(b) Trend model for lower plate

(c) Trend model for sublower plate

(d) Trend model for host rock

Figure 7.14: 3D view of generated trend model for each plate based on the data sets.
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Figure 7.15: Global VPC for the Red Dog deposit.
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Figure 7.16: Cross section through generated Gaussian realizations with the opti-
mized variograms.

An important check is the histogram of the simulated values. Statistical fluctuations

are natural in stochastic simulation; however, these fluctuations should be reasonable

and unbiased. In total, 50 realizations are generated and the summary statistics checked

for reproduction. Histograms of all four plates were reproduced within reasonable

statistical fluctuations for both threshold based mask and MDS based mask (Figure 7.18

and Figure 7.19).

In addition to visual inspection of the realization and histogram, the error in the

reproduction of observed transition probabilities in data is calculated using 50 realiza-

tions. Both TPG simulations reproduced the data transition probabilities well. When

BSIS is used, transitions that are not expected to exist are present; transitions from

median to sub lower and median to host are observed. Direct transitions of plates are

reproduced better in TPG methods. The summary of the absolute error in transition

probability reproduction (Error =
∣∣tpdatakk′ − tprealizationkk′

∣∣) between rock types is shown

in Figure 7.20.
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(a) TPG simulation with threshold based mask

(b) TPG simulation with MDS mask

(c) BSIS method

Figure 7.17: 3D view of simulated realizations using TPG simulation with threshold
based mask, TPG simulation with MDS mask, BSIS method.
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Figure 7.18: Global proportion reproduction for all four rocks with TPG simula-
tion with threshold based mask for 50 unconditional realizations. The
declustered global proportions are indicated with the black solid line.

Figure 7.19: Global proportion reproduction for all four rocks with TPG simula-
tion with MDS mask for 50 unconditional realizations. The declustered
global proportions are indicated with the black solid line.
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Figure 7.20: Error in transition probability reproduction using TPG methods and
BSIS method colored by absolute error between transition probabilities.

The color scale characterizes the amount of error in transition probability reproduc-

tion. Darker green represents more error in tp reproductions. In total, TPG models

have lower error than BSIS models. Also, Table 7.7 shows the total error in the repro-

duction of transition probabilities observed in data for the direct and cross transitions.

Table 7.7: Summary of performance in transition probabilities reproduction using
TPG simulation and BSIS method.

Method Total Error

Threshold Mask 0.369
MDS Mask 0.629

BSIS 1.301
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Validation using BH Data

Cross validation is one of the most important steps in a geostatistical modeling. BH

data was excluded from the input data so that it can be used to check the models and

compare techniques. The error estimate refers to the expected value at each location,

calculated based on the local distribution constructed using the 50 realizations. For

all 50 realizations, the percentage of errors of the model to predict the expected value

at BH locations is measured and then an average is calculated. Figure 7.21 shows the

error estimate in a threshold based mask, MDS mask, BSIS methods. Diagonal values

indicate the percentage of correctly simulated rock types at BH locations, while off

diagonal terms are the percentage of incorrectly simulated rock types at BH locations.

The sub lower plate does not exist in the BH area and it is not simulated in the models.

The summary of the performance of each method in matching categorical observations

from BH data is shown in Table 7.8.

Table 7.8: Summary of performance in reproduction of BH data using TPG sim-
ulation and BSIS method. Results are relative to TPG technique with
threshold mask.

Method % Correct % Error

Threshold Mask 100.0 0.0
MDS Mask 99.9 0.1

BSIS 87.8 12.2

The total error in BSIS method is 1.332, while both TPG methods have smaller

error in reproduction of BH rock types. The total error in classification of rock types

using TPG method with threshold based mask and MDS mask is 0.369 and 0.726,

respectively. Therefore, ordering relationships is reproduced better in TPG simulations.

TPG models are constructed using the threshold and MDS masks to account for the

trend and outperformed BSIS. Each model is validated by checking the reproduction

of representative histogram and with additional data (BH). The comparison shows the

improvement of the geologic representation of the models simulated by developed TPG

simulation. The relationships between rock types are better reproduced in the TPG

models.
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Figure 7.21: Error in matching categorical observations from BH data. Diagonal
values indicate the percentage of correctly simulated rock types at BH
locations, while off diagonal terms are the percentage of incorrectly sim-
ulated rock types at BH locations. The sub lower plate is not exist in
the BH area.

7.4 Summary

An illustrative case study has been presented and applied to a real data set with four

rock types. A new development is proposed here for categorical variable modeling using

TPG simulation. Some barriers in TPG simulation such as determining the variogram

of the underlying Gaussian realizations and locally varying proportions in categorical

data have been addressed and the improvement using proposed methodology is shown

through this case study.
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The developed TPG improvements are used to create reasonable realizations that

are more accurate and precise than SIS model, for instance. Also, simulated models

provide better matches to the transitions observed in data and the categorical data

observations from production data.
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Chapter8

SummaryandFuturework

Thereareanumberoftechniquesavailableforthestochasticsimulationofacategorical

variable. Achoicebetweenthedifferenttechniquesforstochasticcategoricalmodel-

ingisbasedonseveralfactors:thescaleoftheproblem,theobjectiveofthemodel,

thetypeanddensityofavailabledata,andtheconceptualdepositionalmodeltobe

reproduced(C.V.Deutsch,2002).SISisawell-knowncategoricalvariablemodeling

techniqueinthepetroleumandminingindustry.SISdoesnotaccountforordering

relationshipbetweencategoriesandisusefulfordiageneticallycontrolledfaciesorrock

typesduetotheinherenthighvariability.Thisisatwopointstatisticalmethodwhich

isparameterizedbyrange,directionandtwopointsineachlagvector. MPSisanother

categoricalvariablemodelingmethodwhichiswidelyusedtocharacterizecurvilinear

featurescommoninnaturallyoccurringdeposits.Usingmultipleratherthantwopoint

statisticsmakesthismethodcapableofcapturingcomplexfeaturessuchassinuous

fluvialanddeepwaterchannels,dispersivepatternsinlobes,andmoundsassociated

withpatchreefs.Still,findingarepresentativetrainingimageisoftendifficultandis

themaindrawbackofthismethod.

TPGsimulationisanothermethodinvariogrambasedmodeling.Sometimescate-

goriesaregeneticallyorderedduetodepositionalprocesses,climatechangesandgeo-

logicalsettingsresultsinconsistentordering.Forinstance,aretrogradingcoastleads

inanaturalupwardtransitionfromfluvialtoshorefacetomarine.TPGsimulationis

apowerfulmethodforsimulatingcategorieswithknownorderingrelationship.Ifthe
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availablemethodsareappliedproperly,accuratemodelsofcategoriescanbeobtained.

TheaimistoimproveTPGsimulationtofacilitatetheuseofthistechniquefor

categoricalvariablemodeling. TPGmethodisreasonabletobeappliedtoheteroge-

neousfaciesorrocktypesthathavebeengeneticallyorderedbecauseofdepositional

process(Pyrcz&Deutsch,2014)andhavenocleargeometricshapes. Whenthereisa

visibleorderingbetweengeometries,TPGsimulationcanbeimplementedtoreproduce

thesenaturalorderingsaswellasthespatialcontinuityofeachcategory.Thischapter

summarizesthemaincontributionsandendswithfuturework.

8.1 MaskOptimization

AdifficultprobleminTPGsimulationistheinferenceofamaskthatreproduces

thedesiredspatialarrangementofthecategories.Thedeterminationofatruncation

procedureforcomplicatedgeologicalenvironmentsisnotanobvioustask.Thetrunca-

tionrulescontroltheproportionsandorderingofcategoriesinthesimulation.Thelay

outofthemaskmustbesuitablychosentoreflectcontactsbetweendifferentcategories.

FourdifferentmethodologieshavebeendiscussedinChapter3andChapter4.

1.Discretizedmask: ArandomdiscretizedmaskisiterativelycorrectedusingSA

toimpartthedesiredspatialfeaturesinthefinalTPGrealization. Thisisan

automaticmaskoptimizationfortwounderlyingGaussianRFswhichrelieson

theuseofthetransitionprobabilitiesofcategoriestofindthebestconfiguration

automatically.SAisusedasanoptimizationtechniqueinthediscretizedmask

optimization.SAisapowerfulprobabilistictechniquewhichavoidsbeingtrapped

inthelocalminimalandattemptstofindtheglobalminimal.However,limitation

comesfromtherequiredCPUtimefortheconvergencetotheoptimalmaskusing

SA.

2.Objectbased mask: Anobjectbased maskplacesanumberofshapesas

objectsrandomlyinthebigaussianmask. Gradientoptimizationisadoptedto

iterativelyadjusttheobjectsusingsequentialsearchdirectionstoobtainthe

optimummask. Thisisafastautomaticmaskoptimization. However,asthe
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numberofobjectsandcategoriesincreases,complexityofoptimizationincreases

andsincetheobjectivefunctionisnotconvexfunction,itwouldbehardto

handle. Manydifferentexampleswithdifferentcomplexitiesareconsideredand

itisfoundthatobtainingtheoptimalsolutionformorethanfivecategoriesis

difficultduetothefactthatthegradienttechniqueusesthegradientvalueof

alltheparameterssimultaneouslyforfindingtheoptimumdirections,andmore

categoriesandshapesresultinmoreparametersinanon-convexoptimization

space.

3.Thresholdbased mask:Thethresholdbasedmaskisthemostcommontype

ofmask(Armstrongetal.,2011).Aprogram(”tpgsim”,Appendix,A.1)isdevel-

opedwhichisflexibleandcoversmostcommoncombinationsbetweencategories.

Thelayoutofthethresholdbasedmaskisdeterminedfromthepractitioners’ge-

ologicalknowledge.Themaincontributionofthisworkisinthehandlingofthe

spatialchangesinthecategoriesproportion. Usually,thereisnon-stationarity

inproportionsduetogeologicaltrends,andthethresholdbasedmaskisableto

dealwithLVPandisveryfast.Itisnecessarytouseapropertruncationmask

whichrepresentsthecorrectrelationshipbetweenthecategoriesineachlocation

ofadomaininthepresenceofatrend.Adevelopedmaskisabletoaddressthe

trendefficiently.

4.MDSmask: TheMDSmaskisinitiallydevelopedbyJ.L.DeutschandDeutsch

(2014)andthengeneralizedtohandleLVPincategories.Thismethodattempts

tooptimizethetruncationmaskparametrizedwithVoronoipolygonatevery

locationinthepresenceofLVP.Themethodologycanbescaledtoanynumber

ofunderlyingGaussianvariablesforTPGsimulation.Aprogram”mdstpgLVP”

isdeveloped(Appendix,A.2)todealwithLVP.Duetotheoptimizationprocess,

CPUtimecanbeanissue. Tohandlethislimitation,useofascaledtrendis

proposed.
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Recommendations for Mask Selection

When the geological architecture of a deposit or reservoir is well understood the use

of the threshold based mask is recommended to impose the known geological knowledge.

This type of mask also has the advantage of considering geological trend in categories

proportion.

MDS mask, discretized mask and object based mask are three proposed masks

optimization that do not require input from the practitioner; they rely solely on the

transition probability between the categories calculated from data. This is an important

advantage which makes TPG simulation easier to implement when the transitions are

complex. However, the involvement of geological knowledge in the mask is reduced in

these methodologies.

The discretized mask and object based mask account for two underlying Gaussian

deviates and are useful to define the contact between up to five categories. When the

relationship between categories are very complicated or the use of more than two un-

derlying Gaussian realizations is required, the MDS mask is ideal because it can be

automatically scaled to any number of underlying Gaussian variables for TPG simula-

tion.

8.2 Correlated Gaussian functions

TPG simulation is based on the truncation of Gaussian variables. Gaussian RFs

should be defined in a way that describes the different spatial behavior of a category or

group of categories after truncation. These Gaussian variables can be considered corre-

lated or independent variables in TPG simulation. The effects of correlated underlying

Gaussian RFs on TPG simulation are investigated in Chapter 5.

A complex geological relationship between categories can be produced by choosing

different Gaussian RFs. Studies showed that correlation between them can introduce

more flexibility and freedom in the modeling to capture observed specific geological

features, and also can be used as a tuning parameter to improve the fit of experimen-

tal indicator variograms. However, a number of considerations has to be taken into
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account. Correlation between RFs (1) can change the global proportion of the cate-

gories in the final truncated simulation; (2) can change the thresholds of the mask and

accordingly the transition between categories.

Considering correlated or uncorrelated Gaussian realization is a choice that has to

be made based on the observed feature in the available data set and there is no general

extension to all deposits. An example is demonstrated in Chapter 5 to show different

scenarios. A program ”corr tpgsim” (Appendix, section A.3) is developed to deal with

correlation and the user is able to test these relationships for any configuration of the

threshold mask.

8.3 Variogram Optimization

Another important aspect of TPG simulation is the inference of the variogram mod-

els for the underlying Gaussian RFs. Since only the indicator functions describing the

categories are available, direct adjustment of the experimental variograms is difficult.

In Chapter 6, three different methodologies are proposed to address this problem.

The proposed covariance map optimization (”vargopt tpg”, Appendix, A.4) targets

the covariance or variance map of each categorical variable to optimize the variogram

of the underlying Gaussian RFs. This method attempts to find the optimum input var-

iogram parameters to best reproduce the spatial structure of each categorical variable

by iteratively adding complexity to the variogram model of underlying Gaussian RFs.

The optimization relies on a global mask. A case study demonstrated the potential of

this method and results showed a reasonable match between the indicator variogram

models of the categories in the data and simulated realization. However, it can be

computational expensive to find the optimum solution since the methodology relies on

finding the global minimum using random restarts. The convergence time for finding

the optimum results in the case study was about 16 hours with 500 random restarts
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8.4 Remarks

The main practical challenge in the application of TPG simulation is the inference of

the variogram models for the underlying Gaussian deviates. This is achieved through

the proposed technique in Chapter 6. The procedure may fall into local optimums

depending on the initial set of parameters. Therefore, the use of many random restarts

to avoid trapping is proposed, this requires a significant amount of CPU time. The

other limitation of the method is that the variogram of underlying Gaussian deviates

are not defined with respect to locally varying proportion of categories. TPG simulation

relies on a stationary application of the Gaussian model.

8.5 Future Work

In the he following section, some ideas are suggested for future research to improve

categorical variable modeling using TPG simulation as follow:

� Conditional simulation is always important in geostatistical modeling. Usually,

the only available variables are those of the indicator functions describing rock

types or facies which are observed in drill holes or wells. Transferring categorical

data to continuous values for conditional simulation of underlying Gaussian devi-

ates is an essential step in TPG simulation. There are some techniques available

(Chapter 4), but still there are limitations in the application of TPG simulation.

Accordingly, improvement is necessary to obtain the correct categories on the

back transformation with the same spatial structure.

� In this work new methodologies have been developed for obtaining an optimum

mask that implies global optimization. However, still there are limited numbers

of truncation rules in their flexibility. Developing an automatic fully arbitrary

truncation mask to back transform continuous variables to categorical simulation

would be interesting.

� The flexibility of TPG technique comes from the use of multiple underlying Gaus-

sian RFs to transfer categorical variables to a continuous space. In reality, any
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number of Gaussian realizations can be used to simulate and define the rela-

tionship between categories. However, visualization of more than three Gaussian

variables is very difficult. One area for future work is to facilitate the use of

multiple underlying Gaussian RFs to model many categories with respect to the

geological knowledge and also remain practical.

� Incorporating any sort of secondary data in TPG simulation, whether the data

are coming from another source of sampled data, such as production data, or

whether they are coming from exhaustive geophysical surveys, such as magnetic,

seismic, or gravitational data, would improve modeling to generate a geological

model that looks more realistic and represents geological complexity better.
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De Marsily, G., Delay, F., Gonçalvès, J., Renard, P., Teles, V., & Violette, S. (2005).

Dealing with spatial heterogeneity. Hydrogeology Journal , 13 (1), 161–183.

Deutsch, C., & Tran, T. (2002). Fluvsim: a program for object-based stochastic

modeling of fluvial depositional systems. Computers & Geosciences, 28 (4), 525–

535.

Deutsch, C. V. (1992). Annealing techniques applied to reservoir modeling and the

integration of geological and engineering (well test) data (Unpublished doctoral

dissertation). stanford university.

Deutsch, C. V. (2002). Geostatistical reservoir modeling. Oxford university press.

Deutsch, C. V., & Cockerham, P. W. (1994). Practical considerations in the application

of simulated annealing to stochastic simulation. Mathematical Geology , 26 (1),

67–82.

Deutsch, C. V., Journel, A. G., et al. (1992). Geostatistical software library and users

guide. New York , 119 , 147.

158



Deutsch, J. L., & Deutsch, C. V. (2014). A multidimensional scaling approach to enforce

reproduction of transition probabilities in truncated plurigaussian simulation.

Stochastic environmental research and risk assessment , 28 (3), 707–716.

De Vera, J., McClay, K., & King, A. (2004). Structure of the red dog district, western

brooks range, alaska. Economic Geology , 99 (7), 1415–1434.

Dimitrakopoulos, R., Mustapha, H., & Gloaguen, E. (2010). High-order statistics of

spatial random fields: exploring spatial cumulants for modeling complex non-

gaussian and non-linear phenomena. Mathematical Geosciences, 42 (1), 65–99.
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Appendix A

TPG Simulation Software

In this chapter parameter files of all the developed programs for TPG simulation are

explained in details. Origin for gridded data files is the same as all of the GSLIB data

files.

A.1 Locally Varying Mask with Linear Thresholds

The ”tpgsim” program operates in the GSLIB fashion. With this program, threshold

based masks are generated based on the LVP of categories. The parameter file used by

the program is shown below and a detailed line by line description is given.

1 START OF PARAMETERS:

2 Southern.dat - file with data

3 4 - number of categories to include

4 2 1 5 3 - category identifiers (integers)

5 2 3 4 - columns for X, Y, Z coordinates

6 1 5 - columns for drill hole , category

7 1 - type of mask :0= Global; 1=LVP

8 .5 .04 .08 .38 - category Global prop.(if option =0)

9 trend.out - input trend file (if option =1)

10 50 587350 10 - nx ,xmn ,xsiz

11 120 143085 10 - ny ,ymn ,ysiz
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12 75 300 10 - nz ,zmn ,zsiz

13 1 2 3 4 - column number of prop.(if option =1)

14 2 2 0 - numbers of rectangles (nL ,nC ,nR)

15 0 1 1 - position of rectangles :1=V.;0=H.

16 mask.out - mask output for trend/global prop.

17 mask -data.out - mask output for input data

18 gauss -data.out - output(transfer cat. to Gaussian)

19

20 NOTES:

21

22 Order of categories in this program is

23 In vertical position:from left side to right side

24 In horizontal position:from bottom to up

25 Mask:

26 If nL=2, nC=2, nR=2 & position:left=0,center=0,right=1

27 Number of categories =6

28

29 |--- |------|---|---|

30 | 2 | 4 | 5 | 6 |

31 t3| |------| | |

32 t1|----| 3 | | |

33 | 1 | | | |

34 |--- |------|---|---|

35 t2 t4 t5

1. Indicates start of parameter and must be present.

2. Specifies data file, which can be from drill hole data set or well data set.

3-4. Specifies the number of categories on line 4 and category identifiers on line 5.

5-6. Specifies the column numbers for coordinates of data on line 5 and columns for

drill hole id and categories on line 6.
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7. Specifies the type of mask. If the mask is based on the global proportions

(option= 0), the output file contains only the threshold values for the global

mask.

8. Specifies the category global proportions. It is necessary input if the global mask

(option= 0) has been selected.

9. Specifies the input trend model file. It is necessary input file if the LVP mask

(option= 1) has been selected.

10-12. Next three lines are reserved for the grid specification: number of cells in X

direction with minimum value of X and cell size is entered on line 10, number

of cells in Y direction with minimum value of Y and cell size is entered on line

11, and number of cells in Z direction with minimum value of Z and cell size is

specified on line 12.

13. Specifies column number for proportion of categories in the input trend file.

14. Specifies the number of rectangles in each three zones (Left, center, and right).

15. Specifies the position of rectangles in the each zones (1= vertical, 0= horizontal).

16. Specifies the output file for the mask based on the global proportions or trend

model. In case of trend model, this output file contains the local mask (threshold

values) for all locations and in the case of global proportions contains only one

mask that is representing the threshold values for global proportions.

17. Specifies the corresponding mask output file for data values and is shown the

local mask at each location with data values.

18. Specifies the corresponding Gaussian values for data. The categorical data must

be transferred into continuous Gaussian conditioning data for conditional simu-

lation of the Gaussian variables. This output file contains the data value (which

is the category) and the corresponded Gaussian values with respect to the trun-

cation rule.

A.1.1 Truncating Conditional Gaussian for Threshold Mask

The ”truncation − tp” program operates in the GSLIB fashion. This program takes

the truncation mask output by ”tpgsim” and truncates bivariate Gaussian values to
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categorical values. The parameter file used by the program is shown below and a

detailed line by line description is given.

1 START OF PARAMETERS:

2 realz1.out - input data file (Gaussian #1)

3 realz2.out - input data file (Gaussian #2)

4 50 587350 10 - nx ,xmn ,xsiz

5 120 143085 10 - ny ,ymn ,ysiz

6 75 300 10 - nz ,zmn ,zsiz

7 1 - column for value

8 1 - input mask size ;1: realz 2:data

9 mask.out - input file with thresholds (mask)

10 1 2 3 - columns for X, Y, Z coordinates

11 4 - number of categories to include

12 4 5 6 - column numbers for thresholds

13 2 2 0 - numbers of rectangles (nL ,nC ,nR)

14 0 1 1 - position of rectangles :1=V.;0=H.

15 Newmask.out - output file(if option =2)

16 cat -thre.dat - output file truncated realization

17

18 NOTES:

19

20 Order of categories in this program is

21 In vertical position:from left side to right side

22 In horizontal position:from bottom to up

23 Mask:

24 If nL=2, nC=2, nR=2 & position:left=0,center=0,right=1

25 Number of categories =6

26
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27 |--- |------|---|---|

28 | 2 | 4 | 5 | 6 |

29 t3| |------| | |

30 t1|----| 3 | | |

31 | 1 | | | |

32 |--- |------|---|---|

33 t2 t4 t5

1. Indicates start of parameter and must be present.

2-3. Specifies input realization files to be truncated using the mask that comes from

the ”tpgsim” program. Generally, conditional/ unconditional simulation results

using GSLIB ”sgsim” program can be considered as input files.

4-7. Next three lines are reserved for the grid specification: number of cells in X

direction with minimum value of X and cell size is entered on line 4, number

of cells in Y direction with minimum value of Y and cell size is entered on line

5, and number of cells in Z direction with minimum value of Z and cell size is

specified on line 7.

7. Specifies the column number of input realizations. It assumed that the column

number in both realizations is the same.

8. the status of input mask. If there is a threshold based mask for any location of

input realizations, then option one should be selected. In this case, the LVP mask

is available for the whole simulation grids and there are K − 1 threshold values

for each location in the mask file. If the input threshold masks are calculated

only for those locations with data value, then option two should be selected. In

this case, the nearest mask to the location of input realizations is selected to be

used as the truncation rule.

9. Defines the input file for the mask for LVP.

10. Contains the column numbers for X, Y, Z coordinated if thresholds of mask are

defined for available data and coordinates of data are specified; otherwise put 0

as column numbers.
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11. Specifies number of categories to include.

12. Specifies column number for threshold values in the input mask file.

13. Specifies the number of rectangles in each three zones (Left, center, and right).

14. Specifies the position of rectangles in the each zones (1= vertical, 0= horizontal).

15-16. The output files are specified. The output file for the mask at each location with

data values on line 15 and the truncated realization output file on line 16.

A.2 Locally Varying Mask with MDS

The ”mds tpg LVP” program operates in the GSLIB fashion. This program is MDS

of the transition probability matrix and optimization for TPG simulation using LVP

of categories. The first version of program is written by Jared L. Deutsch for global

mask and it is modified for considering trend. The parameter file used by the program

is shown below and a detailed line by line description is given.

1 START OF PARAMETERS:

2 Southern.dat - input data file

3 2 3 4 - columns for X, Y, Z

4 1 5 - columns for drill hole ,category

5 tpmat -South.dat - input transition prop. matrix

6 4 - number of categories (K)

7 1 2 3 5 - category identifiers(integers)

8 .04 .5 .08 .38 - category proportions (Global)

9 trend.dat - input trend model (prop.)

10 50 587350 10 - nx ,xmn ,xsiz

11 120 143085 10 - ny ,ymn ,ysiz

12 75 300 10 - nz ,zmn ,zsiz

13 1 2 3 4 - column numbers for LVP prop.

14 0 - upscale trend model :0=No;1= Yes

15 5 5 3 - number of grid to upscale trend
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16 2 - number of Gaussian to project(M)

17 tpg_points.out - file for control point output

18 2 - debugging level (0, 1 or 2)

19 mds_tpg.dbg - file for debugging output

20 10000 - number of points for MC integration

21 3 - optimization level (0, 1)

22 200 0.03 - max. iterations;early exit level

23 0.4 - move magnitude

24 trendcoord.out - output trend model with coordinates

25 data -trend.dbg - output with data and their trend

26 upscaled -t.dbg - output with up scaled trend data

27

28

29 NOTES:

30 The number of points for MC integration directly

31 affects the speed of the program

32 1: very low number of points <10000 -->not recommended

33 2: low number of points 20000 -40000 -->do recommended

34 3: medium number of points 50000 -10000 -->recommended

35 4: high number of points >11000 --> is not recommended

(very time consuming)

1. Indicates start of parameter and must be present.

2. Specifies a data file, which can be from the drill hole data set or well data set.

3-4. Specifies the column number for coordinates (X, Y, Z) of data on line 3 and drill

hole id and categories on line 4.

5. Specifies a data file with the transition probability matrix, which can be calcu-

lated from drill hole data using a GSLIB program ”tpmat tpg”.

6-8. Specifies the number of categories on line 6, category identifiers on line 7 and

global proportions of categories on line 8.
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9. Specifies the trend model (local proportions) as an input file.

10-12. Next three lines are reserved for the grid specification: Number of cells in X

direction with minimum value of X and cell size are entered on line 10, number

of cells in Y direction with minimum value of Y and cell size are entered on line

11, and number of cells in Z direction with minimum value of Z and cell size are

specified on line 12.

13. Contains the column numbers for the local proportions for each category.

14. Specifies option for re-sizing the trend model. If upscale trend is requested, put

1; otherwise put 0.

15. Specifies number of cells to be merged in X, Y, and Z directions.

16. Specifies the number of Gaussian variables to project on, which must be less

than the number of categories.

17. Specifies the output file which contains the control points.

18-19. The debugging level and output file, which can used to output intermediate

matrices and optimization steps, are specified on lines 21 and 22, respectively.

20. Specifies the number of points to use for Monte Carlo integration.

Integration of the multivariate Gaussian probability distribution is necessary

to optimize the control points. Monte Carlo integration is used in this program.

After each movement of the control points, Monte Carlo integration is performed

again and the objective function is checked. The number of Monte Carlo inte-

gration directly affects the speed of the program and may cause some error in

proportion optimization. The wise decision should be made about this number.

There are two main factors that should be considered. First, the number of

categories with low proportions (1% − 5%). Second, the percentage of error in

proportion that is acceptable for your work. Based on the experience, in terms of

time and possible error level in proportion reproduction, the Monte Carlo points

between (10000, 40000) will be optimum. For instance, the average percent error

(Eq. A.1) for these numbers is around 1% to 4% when there is one category with

low proportion and the possible error on that category would be around 2% to

6%. When there are two categories with low proportions, the average percent
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error would be around 3% to 6% and the possible error on those low proportion

categories would be around 8%.

Error% =
K∑
k=1

|p∗k − pk|
pk

(A.1)

where:

p∗k - estimated proportion;

pk - desired proportion [global or local];

As the number of categories with low proportion increases, the percentage

of error increases. In this case using more points for Monte Carlo integration

is recommended. Using more than 100000 points, however, will be very time

consuming and would result in little gain in accuracy.

21. Specifies the optimization level (0= no optimization, 1= optimization for inte-

gration).

22-23. Specifies the optimization parameters. Maximum iterations and early exit level

for objective function on line 22. Move magnitude (modify if optimization diffi-

cult) on line 23.

24-26. Specifies output file with the trend model with coordinates on line 24, the de-

bugging files for data with their corresponding local proportions on line 25 and

the up scaled trend on line 26.

A.2.1 Truncating Conditional Gaussian for MDS Mask

The ”trans tpg LVP” program operates in the GSLIB fashion. This program takes

the truncation mask output by ”mds tpg LVP” and truncates a set of Gaussian values

to categorical values. The parameter file used by the program is shown below and a

detailed line by line description is given.
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1 START OF PARAMETERS:

2 5 - number of category

3 2 - number of Gaussian variables(M)

4 gaussdata.dat - input data(Simulated realizations)

5 0 1 2 3 0 - columns for dh ,x,y,z,secvar

6 4 5 - column for Gaussians m=1,...,M

7 tpg_points.out - input with tpg points

8 catvalue.dat - output for transformed data

9

10 NOTES:

11

12 Corresponding Gaussian variables must be ordered

13 All the Gaussian variables should be in one file.

1. Indicates start of parameter and must be present.

2. Specifies number of categories.

3. Specifies the number of Gaussian variables to truncate, which must be less than

the number of categories.

4. Specifies an input file corresponding to Gaussian variables and must be ordered as

m = 1, · · · ,M . If ”sgsim” program is used for individual Gaussian simulations,

then a CCG merging utility such as ”merge multi” should be used to collect

Gaussian variables in one file.

5. Specifies the data file name. This file must contain Gaussian realization number

two.

6. Contains the column number for drill hole id and coordinates (X, Y, Z) of Gaus-

sian realizations and secondary variable if it is available.

7. Specifies column number for Gaussian variables

8. Specifies the input file which contains the control points comes from ”mds tpg LVP”

program.
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9. Specifies the truncated realization output file.

A.3 Correlation Coefficient in Truncated Plurigaussian

Simulation

The ”corr tpgsim” program operates in the GSLIB fashion. This program is de-

veloped to deal with correlation between underlying Gaussian RFs. Practitioners can

define any of the explained cases in the parameter file for any configuration of threshold

based mask and receive the global proportions and the mask thresholds as well as the

final truncated realization. The parameter file used by the program is shown below

and a detailed line by line description is given.

1 START OF PARAMETERS:

2 1 - 1: Gaussians input 2: generate MC

3 R1.out - if 1;file for Gaussian real. #1

4 R2.out - if 1;file for Gaussian real. #2

5 256 10.0 10.0 - nx ,xmn ,xsiz

6 256 10.0 10.0 - ny ,ymn ,ysiz

7 1 0.0 1.0 - nz ,zmn ,zsiz

8 1 - column for value

9 100000 - if 2; number of points for MC

10 4 - number of categories in tpmat (K)

11 1 2 3 4 - category identifiers(integers)

12 .30 .18 .21 .32 - category global proportions

13 2 2 0 - numbers of rectangle in L,C,R

14 0 1 1 - position of rectangle in L,C,R

15 69058 - random number to generate MC points

16 0.8 - correlation between two Gaussians

17 2 - 1: matching global thr. 2: global P.

18 mask.out - mask output; 1: local; 2: global P.
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19 prop.out - output of cat. proportions in sim.

20 Gauss -Trun.out - output of Gaussians & truncated

21

22 NOTES:

23

24 Order of categories in this program is

25 In horizontal position:from left side to right side

26 In vertical position:from bottom to top

27 Mask example:

28 If nL=2, nC=2, nR=2 & position:left=0,center=0,right=1

29 Number of categories =6

30

31 |--- |------|---|---|

32 | 2 | 4 | 5 | 6 |

33 t3| |------| | |

34 t1|----| 3 | | |

35 | 1 | | | |

36 |--- |------|---|---|

37 t2 t4 t5

1. Indicates start of parameter and must be present.

2. Option for 1: giving Gaussian realizations as input files or 2: generating them

internally.

3. Specifies the data file name. This file must contain Gaussian realization number

one.

4. Specifies the data file name. This file must contain Gaussian realization number

two.

5-7. Next three lines are reserved for the grid specification: number of cells in X

direction with minimum value of X and cell size is entered on line 5, number

of cells in Y direction with minimum value of Y and cell size is entered on line
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6, and number of cells in Z direction with minimum value of Z and cell size is

specified on line 7.

8. Specifies the column number of Gaussian variables (should be the same in both

files)

9. Specifies the number of points to use for Monte Carlo integration

10. Specifies number of available categories.

11. Specifies category identifiers (ID)

12. Global proportion of categories should be defined in this line.

13. Specifies the number of rectangles in each three zones (Left, center, and right)

in the mask.

14. Specifies the position of rectangles in the mask for each zones (1= vertical, 0=

horizontal).

15. Seed number for the generation of random numbers. This is used to generate

points for Monte Carlo integration.

16. Specifies correlation coefficient between underlying Gaussian realizations.

17. Specifies the option for matching global thresholds and finding a new proportion

of categories with respect to correlation between Gaussian realizations (option

= 1) or matching the global proportions and finding the new threshold values

with respect to correlation between Gaussian realizations (option = 2).

18. Specifies the output file for the mask which contains the threshold values which

is based on the new proportions (option = 1) or based on the global proportions

(option = 2).

19. Specifies the output file for proportion of categories for selected option.

20. Specifies the output file for Gaussian realizations and truncated simulation with

respect to correlation coefficient and selected option for matching global thresh-

olds values or global proportion of categories.
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A.4 Covariance Map Optimization

The ”vargopt tpg” program operates in the GSLIB fashion. This program is devel-

oped to obtain the best fit for the variogram models of underlying Gaussian deviates in

TPG simulation with a flexible methodology. The parameter file used by the program

is shown below and a detailed line by line description is given.

1 START OF PARAMETERS:

2 tpg_points.dat - File for control point input

3 vargsmodel.var - File for categories ’varg models

4 4 - Number of categories

5 2 - number of Gaussian variables(M)

6 2 - Number of structures

7 1 - 0: start with nst; 1:use sequential

8 1 - 0: Anisotropic ;1: Isotropic

9 0 - 0:3D case; 1:2D case

10 50 - Number of random restart

11 1 - Optimization; 0:GA 1:SA

12 1500 - If SA:number of iterations

13 40 - If GA:number of iterations

14 0 - Gaussian type; 0: regular ;1: stable

15 0 - Power of inverse distance weight

16 600 - Number of point for LU simulation

17 10 10 10 - The lowest possible range(a1 ,a2 ,v)

18 2700 2700 1400 - The highest possible range(a1 ,a2 ,v)

19 69069 - Random number seed

20 parameter.dat - Output of initial/final parameters

21 objective.dat - Output of initial/final objective

22 optimum.dat - Output parameters for optimum run
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1. Indicates start of parameter and must be present.

2. Specifies an input file which contains the control points of the mask which is the

output file of ”mds tpg” program.

3. Specifies an input file which contains the variogram model of categories in one

file.

4-5. Specifies the number of categories and underlying Gaussian deviates to truncate,

which must be less than the number of categories.

6. Specifies number of structures of variogram/covariance model.

7. Specifies the way that optimization should deal with structures. To use proposed

sequential methodology for structures (first st=1, then adding st=2, then ...),

select option 1; otherwise option 0. With option 0, optimization starts directly

with mentioned number of structures.

8. Specifies option for considering anisotropy in covariance model for underlying

Gaussian realizations. Option 0 uses anisotropic variogram model and option 1

uses isotropic variogram model.

9. Specifies the dimension of data set (3 dimensional or 2 dimensional) for opti-

mization. In case of 3D (option 0), there is a vertical range to be optimized for

each underlying Gaussian.

10. Specifies number of random restart for optimization. Since there is no unique

solution, program uses different random restart in each step and the one with

the smallest objective value is considered as the best match.

11. Specifies type of optimization. By selecting 0, Gradient optimization is used and

by selecting 1, SA is applied.

12. Specifies the number of iterations in each random restart for SA optimization.

The number of iterations for this type of optimization should be more than 1000.

SA requires a large number of iterations to converge.

13. Specifies the number of iterations in each random restart for Gradient optimiza-

tion. This type of optimization does not need too many iterations (¡100).

14. Specifies the variogram/ covariance type to use. Two models are considered in

this program to build the covariance of Gaussian variables; Gaussian type and
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stable type. Option 0: regular Gaussian type; 1: stable Gaussian type.

15. Specifies power of inverse distance in objective function (weight to the covariance

values from the origin).

16. Specifies the number of points to use for LU simulation.

17-18. Specifies the lowest and highest possible values for variogram ranges (ahmax,

ahmin, avert) for optimization. These values can be defined based on the lowest

and highest indicator variogram ranges of categories (from data set) ± sufficient

variation.

19. Specifies seed number for the generation of random numbers. This is used to

generate points for simulation of underlying Gaussian deviates using LU method.

20. Specifies output file of initial and final parameters for each structure in each

random restart.

21. Specifies output file of initial and final objective values for each structures in

each random restart.

22. Specifies output file of initial and final parameters for optimum run.
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