Geostatistical Categorical Variable Modeling using
Optimization Techniques with Truncated Plurigaussian
Simulation

by

Samaneh Sadeghi

A thesis submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
in

Mining Engineering

Department of Civil and Environmental Engineering
University of Alberta

© Samaneh Sadeghi, 2017



Abstract

Stochastic simulation of rock types is a major area of continuing research. Rock types
account for the majority of heterogeneity in mineral/ petroleum deposits, and a good
understanding of the geometry and spatial distribution of natural phenomena is re-
quired for reliable resource and reserve estimation. Integrating geological concepts in
geostatistical modeling is important in order to provide realistic geological models. The
resulting models are practical and reasonable if they provide a reliable reproduction of
the true underlying structure of the subsurface.

A methodology has been developed to construct geostatistical models that repro-
duce features inferred from data and are consistent with geologic understanding of the
deposit. The main idea is to transfer essential geological features to the geostatistical
models, particularly when there is a clear ordering between categories. In deposits
with complicated ordering structures, truncated plurigaussian simulation (TPG) is a
flexible method for simulating facies categories. This is a modeling technique which
relies on simulating multiple underlying Gaussian variables to represent a categorical
variable. TPG simulation utilizes truncation masks for mapping categorical variables
to a continuous space. Therefore, an optimized truncation mask is required to best
represent the contacts and transitions between facies categories with respect to the
geological interpretations.

In addition, continuity of the categories is controlled by the variogram of each
Gaussian variable. Finding the variogram model of the underlying Gaussian variable
is essential to reproduce the target indicator variograms of facies categories and is an

important challenge of TPG simulation.

ii



TPG simulation is improved through adopting optimization techniques for model-
ing the underlying Gaussian variables and the categorical variable. A novel technique
is developed which allows for the reproduction of the spatial continuity of facies cat-
egories by automatically inferring the optimum variogram models for the underlying
Gaussian deviates. Implementation of this methodology demonstrates improvement in
the modeling of complicated geologic features and in accounting for changes in the cat-
egories proportions. Reasonable reproductions of the transitions observed in the data

as well as the categorical data observations from the production data are achieved.

iii



To my parents, Noorbanoo and Hoosein, for their support and unconditional love
and

my twin sister, Dr. Samira, for her friendship and words of motivation

v



Acknowledgements

I would like to express my deepest appreciation to my supervisor, Dr. Jeffery B.
Boisvert. It has been a rewarding opportunity for me to work under his supervision.
I thank him for his excellent ideas, for his patience and for all the time he spent with
me. Without his guidance, constant encouragement and support, this thesis could
never have been possible.

I wish to express my sincere appreciation and gratitude to Dr. Clayton V. Deutsch,
director of the Center of Computational Geostatistics (CCG) for his precious assistance,
guidance, and support which built a strong base for my knowledge.

I would like to take this opportunity to extend my gratitude to Dr. Clayton V.
Deutsch, Dr. Juliana Leung and Dr. Yashar Pourrahimian for being part of my su-
pervisory committee and to Dr. Ming Ye for being my external examining committee.
I thank them all for dedicating their time to reviewing this thesis and providing con-
structive and insightful comments.

I acknowledge the financial support of the member companies of the CCG. I also
would like to acknowledge the support of administrative staff of Civil and Environmen-
tal Engineering at University of Alberta, especially, Alice Da Silva and Arlene Figley
for their daily contribution which is essential to the success of the student’s school.

A special note of gratitude goes to my fianc, Navid who is my best friend, for his
love, enthusiasm, strength, companionship, and encouragement to finish my doctoral
studies.

Many thanks to my friends and my great colleagues, Dr. Vahid Dehdari, Dr.
Maryam Hadavand, Dr. Mehdi Rezvandehy, Dr. Daniel A. Silva, Mostafa Hada-
vand, Dr. John Manchuk, Felipe Pinto and Jianan Qu for encouragement and for
making my days in the CCG lab pleasant. And especially thanks to Diogo Silva for his

collaboration, kindness support, and excited discussions during this program.



Special gratitude is extended to my best friends, Mohammad Sharifi, Meisam
Norouzi, and Shaghayegh Hosseinpour for their motivation and support. They were an
important source of distraction when I required it.

Last, but not the least, I would like to thank my family for their unending love and
unconditional support throughout my life. They have always been there for me when

I needed them and have been instrumental in every success of my life.

vi



Table of Contents

1 Introduction

1.1
1.2
1.3
1.4

Motivation and Problem Statement

Thesis Statement

Approach

Outline

2 Background and Literature Review

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9

2.10
2.11
2.12

Random Function

Stationarity

Indicator Variables

Transition Probabilities

Gradient Optimization Technique .
Categorical Variable Modeling . . .
Sequential Indicator Simulation

Multiple Point Statistics (MPS)

Truncated Gaussian/Plurigaussian Simulation

2.9.1
2.9.2
2.9.3
2.94
Object Based Modeling

One-Gaussian Function

Threshold Definition

M-Gaussian Functions . . .

Event Based Modeling

Discussion

vii

Link between Thresholds and Proportions



TPG Framework and Mask Optimization 34

3.1 Mask Optimization . . . . . . . . .. . ... ... ... 34
3.1.1 Discretized Mask . . . . . ... ... 0 34
3.1.2 Object Based Mask . . . .. .. ... ... ... ... .. .... 46

3.2 SUMMATY . . ... e e 51

TPG Simulation with Locally Varying Proportions (LVP) 52

4.1 Conditional Simulation in TPG Simulation . . . . ... ... ... ... 53

4.2  Locally Varying Mask with Thresholds . . . . . .. .. ... ... .. .. 55

4.3 MDS Mask . . . . . .. 58

4.4 Locally Varying Mask with MDS Mask . . . . .. ... ... ... .... 61

4.5 Case Study . . . . . . . e 62

4.6 SUMMATY . . . . o e e e e e e e e 70

Correlation between Underlying Gaussian RFs in TPG Simulation 72

5.1 Correlation Matrix . . . . . . . . . . ... 73
5.2  Effect of Correlated Gaussian RFs on TPG Realizations . . . . . . . .. 78
5.3 Effect of Correlated Gaussian RFson Mask . . . ... ... ... .... 83
B4 Summary . ... ... 90
Variogram Optimization in TPG Simulation 91
6.1 Variogram Optimization . . . . . ... ... ... ... .. .. 91
6.2 Variogram Optimization using Local Refinement . . . .. ... ... .. 93
6.3 Variogram Optimization using a Neural Network . . . . . ... ... .. 102

6.3.1 Artificial Neural Network (ANN) . . ... ... ... ... ... 102

6.3.2 Application . . . . . ... 105
6.4 Variogram Optimization by Iteratively Adding Complexity . . . .. . . 110

6.4.1 Application . . . . . . ... 111
6.5 Summary . . ... oL 120
Case Study 122
7.1 Available Data . . . . . . ... ... 122

7.1.1 DataAnalysis. . . . . . .. ... 124

7.1.2 Global Mask . . . ... ... ... .. 127



7.2
7.3
7.4

Variogram Optimization of Underlying Gaussian Realizations . . . . . .
Locally Varying Proportions . . . . . . . . . . . ... ... ... ... ..

Summary ... ...

8 Summary and Future work

8.1
8.2
8.3
8.4
8.5

Mask Optimization . . . . . . .. ... L
Correlated Gaussian functions . . . . . . . . .. .. .. ... ... ....
Variogram Optimization . . . . . . .. . ... ... .. .
Remarks . . . . . . . .

Future Work . . . . . . .

Bibliography

A Appendix

Al

A2

A3
A4

Locally Varying Mask with Linear Thresholds . . . . . . . .. ... ...
A.1.1 Truncating Conditional Gaussian for Threshold Mask . . . . ..
Locally Varying Mask with MDS . . . . .. ... ... ... ... ....
A.2.1 Truncating Conditional Gaussian for MDS Mask . . . . . .. ..
Correlation Coefficient in Truncated Plurigaussian Simulation . . . . . .

Covariance Map Optimization . . . . . . . . ... .. ... ... . ....

X

149
150
152
153
154
154

156



List of Tables

3.1
3.2
3.3

4.1
4.2

6.1
6.2

7.1

7.2

7.3

7.4

7.5

7.6

7.7
7.8

Summary of input iterations for perturbation. . . . . . . .. ... L.
Objective values for different masks. . . . . .. . ... ... ... ....
Categories proportion of data, initial truncated realization and final

truncated realization. . . . . . . . . . ... Lo

Mineral deposit declustered proportions in DH data. . . . . . ... ...
Summary of the integrated proportions in truncated realization using

TPG method. . . . . . . . . s

Summary of results for created ANN for different activation functions. .
Summary of the percent error in each parameter for each activation

function. . . . . . . L e

Red Dog model coordinate limits. . . . . . . . ... ... ... ...
Red Dog model declustered proportions in DH data and BH data.
Summary of optimized variogram parameters using proposed optimiza-
tion for both Gaussian deviates and one nested structure. . . . . . . ..
Red Dog model reproduced proportions among 100 unconditional simu-
lations. . . . . . . .o
Red Dog model reproduced the declusterd proportions among 100 sim-
ulations with two structures. . . . . ... ... .o oL
Summary of optimized variogram parameters for two Gaussian deviates
and two nested structures. . . . . . ... Lo
Summary of performance in transition probabilities reproduction. . . . .
Summary of performance in reproduction of BH data using different

methods. . . . ...



List of Figures

1.1
1.2

2.1

2.2

2.3

24
2.5
2.6

3.1
3.2
3.3
3.4
3.5

3.6
3.7

The Pennsylvanian strata. . . . . . . . . .. ... .. ... ........
Simple demonstration of modeling deposits with TPG simulation with

two underlying Gaussian deviates for three rock types. . . . . . . . . ..

A string of data showing transition between K = 3 categories and rela-
tive transition probability matrix. . . . . . . . . . .. ... ... L.
Top: outcrop of a typical carbonate reservoir along the San Juan River
in Utah. Bottom: a geological model of the Pennsylvanian algal mounds
in outcrops (Galli, Le Loch, Geffroy, & Eschard, 2006). . ... ... ..
Masks for Paradox basin (Armstrong et al., 2011). Right: mask for the
upper part and left: mask for lower part. . . . . . . ... ... ......
Sketch of a synthetic 2D geological region with K = 3 categories. . . . .
Truncation of a Gaussian distribution with two thresholds (¢; & t2). . .
Complex deepwater geological features (Pyrcz, McHargue, Clark, Sulli-

van, & Strebelle, 2012). . . . . . ... o e

Sample of discretized mask by 23 x 23 = 64 blocks and optimized mask.
Discretization of mask based on different scales. . . . . . . . . .. .. ..
Lag orientations. . . . . . . . . . . . . . ...
Ilustration of how selected locations in the mask are changed . . . . . .
Required CPU time (seconds) for updating transition probabilities in
the objective function. . . . . . . . . . ... ...,
Annealing schedule. . . . . . ... ... ... ... ... ...
Top: two generated realizations of standard Gaussian RV. Bottom left:

bivariate object based mask and bottom right: truncated realization. . .

40

43



3.8
3.9
3.10

3.11
3.12

3.13

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8
4.9

4.10

4.11

Random masks with discretization of 8 x 8 =64 blocks. . . . .. .. .. 43
Final mask and final truncated realization for random mask number one. 45
Annealing temperatures procedure and objective function reduction re-
lated to mask number one. . . . . . . ..o Lo 45
Rotating and Shifting an ellipse. . . . . . ... ... ... ........ 47
Top: two generated realizations of standard Gaussian RV. Bottom left:
bivariate object based mask and bottom right: truncated realization. . . 48
Top left: initial mask and top right: related initial truncated realization.

Bottom left: final mask bottom right: final truncated realization. . . . . 50

Masks for K = 4 categories and M = 2 Gaussian functions (modified
from Armstrong et al. (2011)). . . ... ... ... oo 56
Sample truncation rule for truncating bivariate Gaussian functions for 9
categories (Fi, k =1,2,...,9) with eight thresholds (¢1,--- ,tg).. . . . . 57
Locally varying masks of threshold based mask for one cross section of
a syntheticexample. . . . . . . . . . . ... ... .. 58
Evolution of MDS method for four categories (J. .. Deutsch & Deutsch,
2014). . . e e e e e e e e e e e e e e e e e 61
Locally varying masks in TPG simulation with a MDS mask for one
cross section of a synthetic example. . . . .. . ... ... .. ...... 62
Location map of available drill hole data and projection onto a North-
East and East-Elevation plans. . . . . . . ... ... ... ........ 63
Left: Global threshold based mask and right: MDS mask for a mineral
deposit with four rock types. . . . . . . . ... ... 64
Global VPC for the mineral deposit. . . . . . ... ... ... ...... 65
Plan view of generated trend model for rock types based on the data
sets at elevation 600(m). . . . . . . ... ... 65
Top: plan view of optimized threshold mask and bottom: plan view
of optimized MDS mask at elevation 900(m) for 140 locations in the
simulated domain. . . . . .. ..o L Lo 66
Plan view of generated trend model for rock types based on the data

sets at elevation 900(m) . . . . . . . . ... 67



4.12

4.13

4.14
4.15

5.1
5.2
5.3
5.4

5.5

5.6

5.7

5.8

5.9

5.10
5.11

5.12

5.14

6.1

Left: plan view of trend model and right: plan view of up scaled trend
model for rock types. . . . . ..o 68
Plan view of optimized up scaled MDS mask for composited elevations
870-900(m) for 128 blocks in the simulated domain. . . . . . . . . . . .. 69
3D view of simulated realizations . . . . . . . ... ... ... ...... 70

Simulated realizations at elevation 700 (m) using TPG simulation and

SIS simulation methods. . . . . . .. ... ..o o 0oL 70
Gaussian realization Y7 and Y5 and corresponding variograms . . . . . . 76
Mask for K = 4 categories using two Gaussian deviates. . . . . . . . .. 76
Evaluation of proportion of category one using four thresholds. . . . . . 78

Truncated realization for different correlation between Gaussian deviates

(p € (—0.98,0.98)) when consider global thresholds (mask). . . .. ... 79
Scatter plot of variation of correlation between Gaussian deviates (—0.98,0.98).
Scatter plot of Gaussian deviates with p = 0.98 and global mask. . . . . &1
Categories proportions for each correlation coefficient with same mask. . 81
Variogram map of Gaussian RFs . . . . .. ... ... ... .. ..... 82

Truncated realization for different correlation between Gaussian deviates
(from —0.98 t0 0.98). . . . . . . . . . 84
Variation of thresholds . . . . . . . .. ... ... ... .. ........ 85
Variogram map of category number one with different correlation coef-
ficients. . . . ... 86
Variogram map of category number two with different correlation coef-
ficients. . . . . .. 87
Variogram map of category number three with different correlation co-
efficients. . . . ... 88
Variogram map of category number four with different correlation coef-

ficients. . . . . . . e 89

Schematic of refinement of two parameters. Large Xs represent the value
of parameters for coarse optimization and the highlighted X indicates the
best pare of nugget effect and range parameters. The refinement around

the highlighted X provides optimal values. . . . . ... ... ... ... 94

xiii

80



6.2
6.3

6.4

6.5

6.6

6.7

6.8

6.9
6.10
6.11

6.12

6.13

6.14
6.15

6.16

6.17

6.18
6.19

Location map of availabledata. . . . . . ... ... ... ......... 95
Experimental and fitted variograms in horizontal (red) and vertical (blue)
directions for available rock types. . . . . .. . ... ... .. ... ... 96
Global threshold based mask with four rock types. . . . . . ... .. .. 97
Variogram reproductions of horizontal direction(gray lines). Red and
black lines represent variogram model of rock types and and the average
reproduction of 50 realizations. . . . . . ... ... ... ... ...... 99
Balanced reproduction of model variograms of all four rock types with
TPG method (gray lines), and the average of 50 realizations (black line). 100
Input proportion reproduction for all four categories with TPG simula-
tion for 50 realizations. The input proportions are shown with the black
line. . . . . e 101
Transition probability matrix of data and averaged transition probability

matrix of rock types for 50 simulated realizations colored by transition

probability values from zerotoone. . . . . . . . . ... ... ... ... 101
Schematic representation of ANN . . . . . . .. .. ... ......... 103
McCulloch-Pitts model of a neuron (McCulloch & Pitts, 1943). . . . .. 104

Different types of activation functions. Top from left to right: Gaus-

sian, Piecewise linear. Bottom from left to right: Sigmoid, Softplus and
Rectified linear. . . . . . . . .. ... L 105
Underlying Gaussian realizations (500 x 500 cells). . . . . ... ... .. 106
MDS mask with 3 categories and a corresponding truncated bigaussian
simulation. . . . ... 106
Designed neural network with full connections and one hidden layer. . . 108
Polar plot of the lag vectors to calculate the objective function (C. V. Deutsch
& Cockerham, 1994). . . . . . . . . o e e e e 112

Work flow for covariance map optimization of categorical variable in

TPG simulation method. . . . . . . . .. ... ... ... .. ... ... 113
Underlying Gaussian realizations. . . . . . . . . . ... ... ....... 115
Left: truncation rule using MDS mask and right: categorical data. . . . 115

Slice of representation of covariance of off sets for each available category

colored by covariance values. . . . . . . ... ... ... ... ...... 116



6.20 Experimental and fitted variograms model in major (red) and minor
(blue) horizontal directions. . . . . . . ... ... ... L.
6.21 Input proportion reproduction for all three categories with TPG simu-
lation for 100 realizations. The input proportions are showed with the
black line. . . . . . . . . .
6.22 Reproduction of model variograms with TPG in major (red) and minor
(blue) directions using two Gaussian deviates and one nested structures
(left) and two nested structures (right) for all three categories. . . . . .
6.23 Underlying Gaussian realizations and categorical data. . . . . . . . . ..
6.24 Slice through the representation of covariance of off sets. Top: using the
initial variogram parameters and bottom: using the optimum variogram

parameters for three available categories. . . . . . . . .. ... ... ..

7.1 Experimental indicator and fitted variograms in horizontal direction
(red) and vertical direction (blue). . . . .. .. ... ... ... ... ..
7.2 Top: location map of available DH data, middle: projected onto a North-
East cross section, and bottom: North-Elevation cross sectional view. . .
7.3 Top: location map of available BH and DH data and bottom: DH data
verses BH data an East-North cross sectional view. . . . . . .. .. ...
7.4 Red Dog Global truncation rule . . . . . . ... ... ... ... .....
7.5 slices of 3D representation of covariance of off sets for data for four
available rock types colored by covariance values. . . . . ... ... ...
7.6 Red Dog data variogram parameters for two Gaussian deviates and one
nested structure . . . . . ... oL L

7.7 Slices of a 3D representation of covariance of off sets using optimized var-

116

125

iogram parameters for four available rock types with two nested structures.133

7.8 Reproduction of model variograms with TPG using two Gaussian devi-
ates and two nested structures . . . .. ...

7.9 Truncation rule based on the MDS with three Gaussian deviates. . . . .

7.10 Reproduction of model variograms with TPG using three Gaussian de-

viates . .. L L e

XV



7.11

7.12
7.13
7.14
7.15
7.16

7.17

7.18

7.19

7.20

7.21

Slices of a 3D representation of covariance of off sets using optimized
variogram parameters for four available rock types with three Gaussian
deviates colored by covariance values. . . .. ... ... ... ......
Percent error in varigram reproduction of rock types . . . ... ... ..
Reproduction of model variograms with MCS based method . . . . . . .
3D view of generated trend model for each plate based on the data sets.
Global VPC for the Red Dog deposit. . . . .. ... ... ... .....
Cross section through generated Gaussian realizations with the opti-
mized variograms. . . . . . ...
3D view of simulated realizations (Red Dog data) . . . . . ... .. ...
Global proportion reproduction for all four rocks with TPG simulation
with threshold based mask for 50 unconditional realizations. The declus-
tered global proportions are indicated with the black solid line. . . . . .
Global proportion reproduction for all four rocks with TPG simulation
with MDS mask for 50 unconditional realizations. The declustered global
proportions are indicated with the black solid line. . . . . ... ... ..
Error in transition probability reproduction using TPG methods and
BSIS method colored by absolute error between transition probabilities.
The error in matching categorical observations from BH data in TPG

methods and BSIS method . . . . . . ... .. .. ... ... . .....

xXvi

141

145



List of Symbols

Symbol

RTL

Z(u)

()
F(u;z)
Var{.}
Cov{Z, Z>}

Ii;(u)

Pk
E{Ii}
Var{Iy}

Yk
Yk’
Ck
Chr

Definition First Use

Domain of interest . . . . . . . ... ... 10
N-dimensional space . . . . . .. .. ... ... L. 10
Set of all possible outcomes . . . . . . .. ..o oL 10
Asetofoutcomes. . . . . . ... oL 10
The assignment of probabilities to the outcomes . . . . .. .. 10
Location/Point in the N-dimensional space . . . . .. ... .. 10
Random variable(RV) at location w . . . . . .. ... ... ... 10
A realization/outcome of the RV Z(u) at location v . . . . . . 10
CDF of the RV Z(u) . . . . . . . s 10
Expected valueof a RV . . . . ... ... ... ... ... 10
Varianceof a RV . . . . ... .. oo 11
Covariance function between RVs Z(u1),Z(uz) . . . . . . . .. 11
Number of categories . . . . . . . . . ... ... ... 12
Indicator variable corresponding to category & . . . . . . . .. 12
The probability of occurrence of an outcome/ category . . . . . 12
Expected value of an indicator I, . . . . . ... ... ... ... 12
Variance of an indicator I, . . . .. .. ... ... ....... 13
Entropy . . . . .. . 13
Indicator variogram of I(u) . . . . . . .. ... ... ... .. 13
Cross indicator variogram between I(u) and [r(u+h) . ... 14
Indicator covariance of I(u) . . . . .. .. ... ... ... .. 14
Cross covariance between I(u) and Iyy(u+h) . .. ... ... 14

xvii



~~
S

CPk

Transition probability from category k to category k&' . . . . . . 14

Optimization objective function . . . . . . . . . ... ... ... 16
Gradient of an objective function . . . . .. ... ... ... .. 16
Step size at the point x; . . . . . . . ... oo 18
Mean of the Gaussian distribution . . . . .. ... ... .. .. 25
Variance of the Gaussian distribution. . . . . . ... ... ... 25
Standard Gaussian CDF . . . . . . .. ..o o000 26
ith threshold . . . . . . . . ... 27
Cumulative proportion of category k . . . . . . . .. ... ... 28
Annealing temperature parameter . . . . . .. ... ... ... 36
Probability of change . . . . . . ... ... ... ... ... ... 36
A natural constant which relates temperature to energy . . .. 36
Objective function . . . . . .. .. ... oo 37
Number of directions for scanning the domain . . . . . . . . .. 37
Transition probability of categories in the data . . . . . .. .. 37
Transition probability of categories in the realization . . . . . . 37
A constant scalar in the annealing schedule . . . ... .. ... 41
Number of underlying Gaussian RFs . . . . .. ... ... ... 55
Correlation coefficient . . . . . . . .. ..o 73
Gaussian random function . . . . . .. ..o 74
Probability density function . . . . . ... ... 7

xviii



List of Abbreviations

Abbrv.

TPG
TGS
LVP
MDS
RF
RV
CDF
PDF
SRF
SIS
MPS
TPG
SNESIM
SA
MDS
VPC
NN
ANN
LU
Zn
DH
BH

Definition First Use
Truncated plurigaussian . . . . . . .. . ... ... L. 4
Truncated Gaussian simulation . . . . .. ... ... ... .... 4
Locally varying proportions . . . . . . .. ... ... ... .... )
Multidimensional scaling . . . . . .. ... ... ... ... ... 7
Random function . . . . . .. .. ... oL 9
Random variable . . . .. .. .. ... o 0oL 10
Cumulative distribution function . . . . ... .. ... ... ... 10
Probability density function . . . . . . . ... ... ... ... .. 10
Stationary random function . . . . .. .. .. 0oL 11
Sequential indicator simulation . . . . . ... ... ... ... .. 19

Multiple point statistics . . . . . . . . ... ... L. 19
Truncated Gaussian simulation . . . . ... .. ... ... .... 19
Single normal equation simulation . . . ... ... ..... ... 21
Simulated Annealing . . . . . . ... .. L oL 34
Multidimensional Scaling . . . . ... ... ... ... .. ..., 51
Vertical Proportion Curve . . . . . . . .. ... ... ....... 64
Neural Network . . . . . . . . .. ... 91
Artificial Neural Network . . . . . . . .. ... ... ... .... 102
Lower Triangular Matrix - Upper Triangular Matrix . . . . . .. 111
Zincgrade . . . . . ... 122
Drill holedata . . . . .. .. ... ... L 123
Blasthole data . . . . .. .. ... ... L 123

Xix



BSIS

Block sequential indicator simulation

XX



Chapter 1

Introduction

There are limited natural resources in the world. Generally for the purpose of cost-
efficiency in the petroleum or mining industries, properties of interest such as minerals
and hydrocarbons are measured for a limited number of locations, and later, are esti-
mated or predicted for the remaining larger areas of deposit or reservoir. Therefore, a
good understanding of the behavior of these sources is essential to best predict the rock
properties at unsampled locations. Geostatistics is a statistical methodology that has
been applied to geological phenomena and quantitative numerical models for uses of
planning (A. Journel and Huijbregts (1978); Matheron (1971)). Geostatistics considers
all the available information to allow researchers to predict the properties of interest
at unsampled locations for the whole area of interest and to assess the uncertainty in
the predictions. Dealing with different types of data with complex variation is possible
through geostatistics.

Simulation of categories is a common challenge in geostatistics. Defining the cate-
gorical variables that encode rock types, mineralization, facies, or vein occurrences is
often the first step in any modeling in mining, petroleum engineering and environmental
sciences studies. Categorical variables represent a specific environment or units, which
are geologically homogeneous. In other words, categorical variables separate stationary
domains. Categorical variables such as classes of grade or porosity (rich, medium and
poor), or rock lithotype (silt, limestone, sandstone, shale) define the area in a deposit

that can be separated into a stationary set of categories. The variability of contentious



properties, such as grade, is higher between the rock types than within a rock type.
Therefore, attention should be paid to the categorical modeling first for accurate and

effective models of the continuous variables.

1.1 Motivation and Problem Statement

Categorical variable modeling has a significant impact on resource estimation as
the heterogeneity between categories is often significantly larger than the heterogeneity
within a category; accurate categorical variable modeling is important. Characteriza-
tion of complex geological features and patterns is challenging. This work focuses on
three challenges related to categorical variable modeling. First, the categorical variable
model should reproduce known geological features of a domain to obtain a realistic and
reliable model. The development of geostatistical methods to simulate models that
result in realistic geological distributions of heterogeneities which match the spatial
continuity of available data is an important contribution.

Second, stationarity is a crucial assumption required by most geostatistical tech-
niques. The wrong decision of stationarity can lead to unrealistic models when data
belong to separate populations with different statistics. Due to different mineralization
systems, the geological phenomena may alter changes through the areal extent. Also,
it is possible to have multiple mineralization settings connected vertically in a deposit
which result in various transitions between rock types. These changes have to be taken
into account in modeling.

In categorical variable modeling, proportions of categories are essential input pa-
rameters and frequently follow a trend calculated from available data. One way to
account for changes in the depositional setting is the use of non-stationarity statistics.
Non-stationarity statistics allows for consistency with the conceptual model and vari-
ables. Proper modeling should be adapted to account for these transitions and impose
trends in the simulation.

Lastly, capturing the correct ordering of categories that are genetically ordered be-

cause of the depositional process in the domains is another important key in categorical



variable modeling. When the ordering relationships or transition probabilities between
rock types are known, for instance when sandstone is followed by shale and then vol-
canic rock, geostatistical techniques should honor and reproduce these transitions in
the final geostatistical model; these types of ordering relationships are usually difficult
to control.

To demonstrate the concept of the above issues, consider Figure 1.1 which dis-
plays the Pennsylvanian strata with very complex transitions between rock types. Due
to diverse geological conditions, there are lateral and vertical variations in thickness
and composition. The sandstones and shales frequently transition laterally into each
other and the shales may connect laterally and vertically into limestones and coals.
Reproduction of these complex ordering structures while accounting for the variation
of proportion of rock types is essential when using any geostatistical techniques to

generate reliable models.

Shale, gray, sandy al top; contains marine
fossils and ironstone concretions, espeacially
in lower part.

Limestone contains marine fossils.

Shale, black hard, fissile, "slaty”; contains
large black spheroidal concretions and
marine fossils.

Limestone contains marine fossils.

Shale, gray; pyritic nodules and ironstone
concretions common at base; plant fossils
locally commaon at base; marine fossils rare.

Coal; locally contains clay or shale partings.

Underclay, mostly medium to light gray except
al top; upper part noncalcareous,
lower part calcareous.

Limastone, argillaceous; occurs in nodules or
discontinuous beds; usually nonfossiliferous.

Shale, gray, sandy.

o 1L
Sandstone, fine-grained, micaceous, and sill- % 4 b
stone, argillaceous; variable from massive to

thin-bedded; usually with an uneven lower X
surface. :?’3 AL FI:'_, m‘T —L:n@, '%
e

Figure 1.1: The Pennsylvanian strata. Left: the geological description. Right: typi-
cal layering with laterally discontinuous feature (Pennsylvanian, n.d.).



Truncated plurigauussian (TPG) simulation is one of the categorical variable mod-
eling algorithms which is capable of addressing mentioned challenges in categorical
variable modeling. Development of this technique is the fundamental objective of this

thesis.

Truncated Plurigauussian Simulation

TPG simulation is a variogram based technique and is a powerful method for mod-
eling geology with known ordering of categories. The main benefit is its flexibility in
representing complex lateral and vertical categories transitions. TPG simulation sim-
ulates a number of continuous standard normal variables that are then discretized into
categorical variables based on truncation rules or masks which define the geological
relationship between categories. Truncated Gaussian simulation (TGS) was developed
in the late 1980s for simulating lithotypes in oil reservoirs (Matheron et al., 1987) using
only one Gaussian variable and then generalized to TPG simulation (Galli, Beucher,

Le Loch, Doligez, et al., 1994) for more than one Gaussian variable.

1.2 Thesis Statement

The main goal of this thesis is to improve categorical variable modeling with TPG

simulation through addressing the following major issues:

1. Honoring the correct ordering of categories with optimization of flexible trunca-

tion rules;
2. Honoring locally varying proportions with different truncation rules;

3. Capturing the spatial continuity of individual categories by variogram optimiza-

tion of underlying Gaussian functions;

Addressing the above issues will allow for TPG simulation to construct more reliable
categorical variable models. Improvement is measured by cross validation analyses as

well as comparison of the model to the existing methodologies.



1.3 Approach

TPG simulation is capable of dealing with complexly ordered spatial structures by
simulating a number of Gaussian realizations and then using the mask to convert the
continuous values into categories. Honoring the correct ordering of categories in TPG
simulation is achieved by optimization of these truncation rules. Geological interpre-
tation can be transferred to modeling through the truncation mask. The masks also
control categorical proportions; therefore having a methodology that is able to account
for locally varying proportions (LVP) of categories in the domain is necessary.

TPG simulation requires the generation of a number of Gaussian realizations to
be truncated to categorical models. To do so, the variogram model of the underlying
variogram /covariance function for each of the underlying Gaussian functions is required.
These variograms should be selected in such a way that the categorical variables in the
simulated realizations have the correct spatial continuity after truncation. A novel
optimization is proposed in this thesis that attempts to select the optimum input
variograms to best reproduce the spatial structure of each categorical variable.

A TPG framework that automatically generates the required mask to reproduce
known input statistics is developed. This mask matches the known relationships from
existing data and also accounts for LVP of categories in the domain.

A simple demonstration of TPG simulation to simulate three rock types is provided
in Figure 1.2. First indicator variograms of rock types are calculated from the available
data set. In this example, two underlying Gaussian deviates are employed to define
the contacts between rock types. The correct ordering of rock types is achieved by
optimization of the truncation rules. The next step after defining a mask is to find
the optimum variogram model to simulate two underlying Gaussian deviates. In the
optimized mask, distribution of the rock type one versus the other two is controlled by
Gaussian realization one (horizontal axis), and the distribution of rock type two and
three are controlled by Gaussian realization two (vertical axis) of Figure 1.2(c).

Variogram optimization of the underlying Gaussian realization is necessary to find

the optimum variogram models that best reproduce the spatial distribution of rock
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Figure 1.2: Simple demonstration of modeling deposits with TPG simulation with
two underlying Gaussian deviates for three rock types.



types after truncation. In the final step, simulated Gaussian realizations are truncated
to categorical variables using the optimized mask.

TPG simulation is performed in Gaussian units. The truncation mask can be
established based on the global proportion or LVP of categories. In TPG simulation
process, several conditions and statistics have to be satisfied. The final truncated
realization should reproduce the transition probability between categories, global/ local
proportions as well as indicator variogram of categories. In Chapter 2, TPG simulation

is explained in detail.

1.4 Outline

Chapter 2 presents the necessary background on geostatistical categorical variable
modeling and describes TPG simulation framework. This chapter presents reviews of
different methodologies for categorical variable modeling.

Chapter 3 demonstrates the generation and optimization of two different flexible
types of truncation rules: a discretized mask and an object based mask in the content
of TPG simulation. The implementations of the proposed masks are tested using a
synthetic 2D example.

Chapter 4 introduces two additional masks: a threshold mask and multidimen-
sional scaling (MDS) mask. A methodology to handle spatial changes in the categories’
proportions is proposed. LVP of categories in the domain is considered for both masks
and is demonstrated on a porphyry deposit.

Chapter 5 describes the effect of the correlation between underlying Gaussian
functions in TPG simulation. The impacts on simulation, the mask, as well as the
variograms are demonstrated.

Chapter 6 presents three methodologies for variogram optimization. A novel op-
timization method is developed to find the optimum variogram parameters in TPG
simulation that results in models that match the spatial continuity of categories.

Chapter 7 demonstrates the developed methodologies on an illustrative case study

based on a porphyry deposit. Production data in the form of blast holes are used



to verify and confirm TPG models generated. Comparison to traditional work flow

demonstrates the improvement obtained using the proposed TPG implementation.
Finally, Chapter 8 summarizes the main contributions of this dissertation. Fu-

ture work is also discussed. The description of developed software is provided in Ap-

pendix A.



Chapter 2

Background and Literature
Review

The following chapter explains the backgrounds for TPG simulation and presents com-
mon geostatistical techniques for categorical variable modeling.

Geostatistical techniques model the uncertainty at unsampled locations and simu-
late realizations of the joint uncertainty at many unsampled locations using statistical
models that are based on the random function (RF) theory.

Geostatistics is a set of the theoretical concepts of spatial RF modeling that Math-
eron (1962) established and first applied to mineral deposits. The origins of geostatistics
are also due to the pioneering work of D. G. Krige in the Witwatersrand gold fields in
South Africa in the late 1950s when he was challenged with the problem of estimat-
ing grades (Sichel (1952); Krige (1951)). Matheron (1962, 1965) provided theoretical
support for the estimation of unbiased mineral resources.

Kriging is a best linear unbiased prediction (BLUP) in spatial statistics that leads
to proper predictions from observed data. The word kriging in spatial statistics is syn-
onymous with optimally predicting or optimal prediction at unsampled locations using
nearby correlated data. Matheron (1963) and Gandin and Hardin (1965) were the first
to publish a definitive development of spatial kriging. Also, the concept of a regionalized
variable was developed by Matheron (1965) and constitutes the foundational elements
of geostatistics.

An important development in geostatistics is the use of simulation methods (Math-



eron (1973); A. G. Journel (1974); David (1977)). Simulation provides equally probable
realizations of the distributions of regionalized variable and creates a group of stochastic
models or realizations which describe the natural phenomena with a practical fluctua-
tions and variability. Simulations are utilized as a measure of uncertainty that comes

from a limited amount of data and demonstrate higher local variability.

2.1 Random Function

The theoretical formalism of geostatistics was established by Matheron (1962). Of-
ten, a random variable (RV) refers to one variable. Basically, characterization of any
unsampled value z is introduced as a RV of Z. The uncertainty of an unknown value is
defined by the probability distribution of Z models (Pyrcz & Deutsch, 2014). When RV
is location dependent, then the result is often called an RF. The spatially distributed
variable is called a regionalized variable.

For a certain domain D C R" and a probability space (2, a, P) , an RF is a function
of two variables Z(u,w) so that for each u € D the variable Z(u,.) isa RV on (2, a, P).
Each of the functions Z(.,w) specified on D as the variable of the RF at w € Qis a
realization of the RF(z(u)).

The probability that the value of an RV is less than a specified threshold is a

cumulative distribution function (CDF) (Eq. 2.1).

F,(u;z) = Prob{Z(u) < z} (2.1)

The CDF could be summarized by parameters such as the expected value. The
weighted average of an RV which can be thought of as the center of mass in a probability
density function (PDF) is called the expected value. The expected value is also named

as the first moment (Eq. 2.2).

E{Z(n)} = m(u),u € D (2.2)

10



The second moment or variance is the other key parameters in probability theory

which measures how far a set of numbers are spread in Eq. 2.3.

Var{Z(u)} = ¢*(u) = E{(Z(u) — m(u))*},ue D (2.3)

Covariance also shows how much two RVs or two locations (u; &uz) change together
and measures the relation between them. In other words, the expected value of the
difference in one RV from its mean multiplied by the difference in the other RV from

its mean is defined as the covariance between two RVs (Eq. 2.4).

Cov{Z(u1),Z(u2)} = E{(Z(u1) — m(u1))(Z(uz) — m(uz))},us,uz € D (2.4)

Usually, probability distribution is summarized with the mean, variance and covari-

ance functions.

2.2 Stationarity

When multiple categories are involved in modeling, it is important to be able to
show whether or not the statistical properties, such as the mean, histogram, correlation,
and variogram, are constant within a given category. All statistical analysis requires
a decision of how to pool data. Pooling data in a histogram assumes they come from
the same population and the global histogram is the same for all locations in modeling
domain (first order stationarity). The decision of stationarity gives significance to the
CDF of the variable (F,(u;z)) which shows that at any certain location, there can
be only one realization. There is a need to identify separate domains with separate
stationary random function (SRF) models that are deemed more consistent with the
mathematical assumptions of a SRF (i.e. stationarity). When a RF is stationary, its
moments are invariant under translation and the phenomenon is homogeneous in space.

Therefore, stationarity entails that the statistical properties of a variable of interest is
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constant within the domain.
Usually there is non-stationarity in proportions of categories due to geological trends
and changes in depositional setting. This non-stationarity is considered in the simula-

tion by adopting locally varying statistics in this work.

2.3 Indicator Variables

Different geological classifications such as structure, mineralogy, alteration and
lithology are considered in different geological domains, and the data are subset within
them. Categorical variable models are created to separate stationary domains of the
subsurface and encode rock types, mineralization, or facies.

Consider having K mutually exclusive and exhaustive categories, k = 1,2,..., K.
The list of categories is exhaustive which means location u belongs to one and only
one of these K categories. I(u) is the indicator variable related to category k. The

indicator is set to 1 if u in k and zero otherwise (Eq. 2.5):

1 if category k is present at location u
Ix(u) = (25)

0 otherwise

Generating the spatial models for discrete classes is the main purpose of simulating

categorical variables.

Indicator Statistics

The expected value of an indicator variable is equal to the proportion of that variable
(E{I;} = pr) . The second moment or variance of an indicator is another important
parameter which shows the variability of the variable and is also a function of the

proportion (Eq. 2.6).
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Var{Tu(w)} = E{(Ix(w) - p))*} (2.6)

E{I(u)*} — (pr)* =pr(1 —pk), ueD

Entropy is another measurement which is useful to compute the variability of all

values together.

Entropy

The idea of entropy is introduced in geology to quantify the uncertainty of proba-
bility density functions (Christakos, 1990). For a categorical variable with K probable

events or outcomes, entropy (H) is calculated by Eq. 2.7:

K
H=-) " piln(py) (2.7)
k=1

The probability of occurrence of each possible events is defined as p;, here and the
sum of all the probabilities should be equal to one (Ziil pr = 1). When there is
enough knowledge to determine which outcome (categorical variables) exactly will be
at a certain location, the entropy is minimum (zero) for this instance (pp = 1 for I = 1
and pg = 0 for I = 0). When there is no information regarding what the true outcome

could be, then p; = % forall k=1,2,..., K result in the maximum possible entropy.

Indicator Variograms and Covariances

An indicator variogram (Eq. 2.8) is used to characterize the spatial relationships
between the binary variables through indicator kriging, which predicts the probability
of occurrence of a categorical variable at an unsampled location (Chiles and Delfiner

(2009); Goovaerts (1997)).

29k(h) = E {[Ix(u) — k(u + h)]*}  k=1,2,....K (2.8)
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Only the average transition from category k to any other category such as k' and
from any other category (k') to category k from one location to another location is con-
sidered in the direct indicator variogram of category k. The cross indicator variogram

between two categories (k and k') is defined as Eq. 2.9:

29k (h) = E{[Ix(u) — Ix(u + h)][I(0) — I (u+ D)} K #k (2.9)

The indicator covariance model is usually given by indicator variogram model. An
indicator covariance and an indicator cross covariance between two categories (k and

k') are defined as Eq. 2.10- 2.11, respectively.

Cr(h) = C(0) — i (h) k=1,2,....K (2.10)
where:
C(0) - the covariance at lag zero or variance;
Ciao(h) = B {[Tu(w) — Iu(u+ W)|[Te(w) - Te(u+h)]} K £k (210)

2.4 Transition Probabilities

The global proportion of each category can be calculated from experimental data.
The transition probability is a subset of the multiple point histogram for the specific
case of two points, where the two points are normally adjacent. The transition proba-
bility matrix can be defined as a bivariate probability and is the probability of being
category k' at location u 4+ h and location u belongs to category k. The transition
probability can be a measure of spatial variability (Carle & Fogg, 1996). Transition

probability tpy.(h) is defined by a conditional probability Eq. 2.12 or Eq. 2.13:
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tpy = Prob{k’ occurs at u + h|k occurs at u} (2.12)

Prob(u+h e Iyluel) = Prob(lyy(u+h)=1|I(u)=1) (2.13)
Prob(Ipy(u+h)=1 & Ix(u)=1)
Prob(Ix(u) =1)
E(Iiy(u+ h).Ij(u))

E(I(u))
. Ckk/(u, u -+ h)
pr(u)

where:
tpy - transition probability between location k and k’;
u - a spatial location;
h - the lag (separation vector);
k, K - mutually exclusive categories such as geologic units or categories;

The transition probability matrix with K categories is defined as Eq.2.14. Simplified

notation of tp is used in the rest of thesis to represent transition probability matrix.

tpr1 tpi2 tpiz . . . Ipik
tpo1  tpe2  tp2s . . . Ipok
tps1  tps2 tpss . . . ip3k
tp(h) = | . . . (2.14)
|tPr1 tpx2 tPk3 . . . IPKK|

Figure 2.1 displays a synthetic example of a string of data by downward transi-
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tions for K = 3 categories and the transition probability matrix relative to one lag
distance. The diagonal terms are the auto transition probabilities, or probability that
the category does not transition. Cross terms are the probabilities of transitioning from

category k to k’. These matrices are commonly collected both up and down a drill hole.

Category_3

0.50 0.50 0.00
0.00 050 0.50

Category_1

Figure 2.1: A string of data showing transition between K = 3 categories and relative
transition probability matrix.

2.5 Gradient Optimization Technique

Different optimization techniques are used in this thesis. In this section, gradient
optimization is introduced. In any optimization method, a set of n variables X =
{z1,--- ,z,} that influence the objective function (O) are adjusted in such a way to
minimize O(X). The gradient optimization uses gradient information related to the

objective function, such as first and second derivatives of O(X) with respect to the n

variables (Eq. 2.15).

a0 90 2017

g(X)= 9z, Oy  Omn

(2.15)

The gradient method is a class of optimization methods which depends on the
function and gradient values at each iteration (Chong & Zak, 2013). Conjugate gradient

is an iterative method which can be applied to sparse systems that are too large to be
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handled by direct methods. The direction of search in each iteration depends on the
local properties of the objective function. An effective method for the generation of
conjugate directions is proposed by Hestenes and Stiefel (1952).

The Fletcher-Reeves method is a conjugate direction method. In this method,
directions are generated sequentially in each iteration. Parameter a, which is an inde-
pendent search parameter, is the key parameter in this method. A unique minimum for
function O(x) is obtained for some positive value of a. The parameters of a are deter-
mined by minimizing O(x + a;d;) with respect to a;. Generally, a line search method
is adopted to find these parameters. Here, d; is a conjugate direction with respect to

d;_1,d;—2,...,dp and can be found for convex and quadratic problems using Eq. 2.16:

dit1 = —8i+1+ Bid; (2.16)
T
B; gi+18i+1
1 - T ]
g; &i
where:
d; - conjugate direction at the point x;;
gi - gradientat the point x;;
gf{ - transpose gradient at the point x;;
Bi - parameter to be added to the negative of the gradient at the new

point to generate new direction;

So, for i = 1,2,... the conjugacy of the set of directions guarantees that (Eq. 2.17):

df (x; + a4d;)
dja@
ghd; = 0, for 0<j<i

glidi=0, for 0<j<i (2.17)

where:
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Q; - step size at the point x;;

The Golden-section search method is a line search method that is used to determine
«. This search method can be performed in each iteration until the desired accuracy
in the minimum value of the objective function is achieved.

An implementation of the gradient algorithm is as follows:

1. Input x( variables should be defined and the tolerance ¢ be initialized to stop the
algorithm when the changes are not significant for all the variables.

2. Set ¢ = 0 and compute gradient in the initial points gg and set direction as

. O Ax;)—0
dg = gy. Here if 88035?) = Olat A:ch (a)

exist, then O has partial derivative with
respect to x; at a. A row vector whose elements are partial derivatives for x; is

the gradient (Eq. 2.15).

3. Find «; using golden-section search. The value of a minimizes O(x+«a;d;). In this
search, successive intervals are independent of n and iteration can be performed
until the range of uncertainty or change in the value of the objective function is
reduced below some tolerance €. Then set x;11 = x + a;d; for the next iteration

which defines the new points that satisfy the conditions.

4. This step is about stop criteria. The above process is continued, until there is
not any significant improvement or the objective function has become lower than
tolerance e. If ||a;d;|| < e, then output x* = x;41 and O(x*) = O(x;4+1), and
stop.

5. If i =n — 1, set xg = x;41 and go to step 2.

6. Now the gradient of new points g;11 and 5; has to be calculated (Eq. 2.18):

T .
B = ngg’f ! (2.18)
7 7

The new direction is d;+1 = —g;4+1 + B;d;. Finally, Set ¢ = ¢ + 1 and repeat

from step 3.
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2.6 Categorical Variable Modeling

There are a number of techniques for the stochastic simulation of a categorical
variable. The two main families methods are the cell based and object based methods
(Lantuéjoul (2013); Mattfeldt (1996)). When the categorical variable can be identified
from field observations, there are a large number of methods that can be used to
generate a model (see review in Koltermann and Gorelick (1996); De Marsily et al.
(2005)). In a cell based model, the categorical values are directly simulated cell-by-cell.
The model is defined by a group of cells in two or three dimensions. Simulating cell-by-
cell using a variogram /spatial covariance model supplied by the user is common (Pyrcz
& Deutsch, 2014). Sequential indicator simulation (SIS) (A. G. Journel, 1983), multiple
point statistics (MPS) (Alabert et al., 1989), and truncated Gaussian simulation (TGS)
or TPG simulation (Galli et al., 1994) are the three main cell based methods. Object
based modeling and event based modeling are the two common techniques of object
based methods for simulating categorical variables. Choosing the best approach for
categorical variable modeling is highly dependent on the application (C. V. Deutsch,

2002).

2.7 Sequential Indicator Simulation

SIS was proposed by Alabert (1987) and A. G. Journel (1983) in the early 1980s.
In SIS, simulated values are in the original space and inferred from the local indicator
kriging-derived conditional distributions. Conventional categorical variable modeling
approaches, such as SIS, are widely used and applied before grades, porosity, and per-
meability modelling to reproduce the spatial and geometric configuration of rock types
(A. Journel and Isaaks (1984); Dubrule (1989); Dubrule (1993); Langlais and Doyle
(1993); Murray (1994); W. Xu (1995)). SIS does not consider Gaussian assumptions
and the conditional probability functions are inferred directly from the data. This non-
parametric algorithm requires the binary transformation of continuous (eg. porosity
or permeability) or categorical (eg. rock type) data into a series of indicator variables

(Goovaerts (1997); C. V. Deutsch, Journel, et al. (1992)). To express the categorical
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variable, SIS uses the indicator transform, and kriging is applied to the binary indicator
transforms of the data to directly estimate conditional probabilities. SIS method has
been used in many different studies as categorical soil variable simulation (C. Zhang
& Li, 2007), simulation of categories for groundwater flow (Moysey & Knight, 2003),
reservoir fluid flows (Seifert & Jensen, 1999) and uncertainty assessment of the spatial
distribution of soil organic carbon (Delbari, Loiskandl, & Afrasiab, 2010), to name a

few. The workflow is as follows:

1. Create a random path over the grid and for each cell:
2. Look for previously simulated values and nearby conditioning data

3. Use simple kriging or ordinary kriging to estimate the conditional probability for

each category k=1,..., K
4. Simulate a categorical value from the set of probabilities

5. Return to step 2 until simulating all nodes of the grid

Indicator based kriging and simulation methods have several weaknesses and limita-
tions, as documented by several authors (Chiles and Delfiner (2009); Christakos (2012)
Emery (2004)). This method generally is unable to capture the geometry of com-
plex geological features (e.g. successive deposition and erosion). When the categorical

variables follow obvious geometric forms, SIS is not recommended.

2.8 Multiple Point Statistics (MPS)

MPS is one approach for categorical variable modeling and does not rely on vari-
ogram models. This technique was first proposed by A. G. Journel and Alabert (1989)
and then used in simulation by C. V. Deutsch (1992); Guardiano and Srivastava (1993);
Strebelle and Journel (2000); Lyster (2009), to name a few. MPS accounts for the re-
lations between more than two points at a time and is an alternative to the traditional
kriging based methods. Unlike traditional geostatistics, MPS avoids the explicit def-
inition of an RF. Categorical models that contain the complex nonlinear features in

mineral deposits are generated by these techniques (Guardiano and Srivastava (1993);
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AL G. Journel (2004)). The technique is based on the concept of single normal equations
(SNE). Single normal equation simulation (SNESIM) is an efficient MPS algorithm that
was first proposed by Guardiano and Srivastava (1993). Strebelle (2002) provides a re-
view of the evolution of these MPS algorithms and a proposed efficient non-iterative
algorithm (SNESIM).

In MPS, information regarding spatial heterogeneity of the reservoir is inferred from
a training image that is a rasterized illustration of the categorical variables under study
(Boucher, 2009) and can be viewed as the prior model of spatial structure (A. G. Journel
& Zhang, 2006). A training image represents the geological heterogeneity and is a rock
type model that is exhaustively populated by the rock types of interest (Boisvert, Pyrcz,
and Deutsch (2007); C. V. Deutsch (1992)). The use of a data set as a training image
guarantees that MPS is geologically realistic. However, an exhaustive data set that is
representative of the deposit of interest is not often available.

Dimitrakopoulos, Mustapha, and Gloaguen (2010) introduced data-driven algo-
rithms based on higher order moments known as cumulants for reproducing com-
plex geologic patterns without appealing to training images. Other approaches im-
plement secondary information for handling the reproduction of trends in simulations
(Chugunova and Hu (2008); Straubhaar, Renard, Mariethoz, Froidevaux, and Besson
(2011)). D. A. Silva and Deutsch (2014) used multiple training images simultaneously
to reproduce geologic features from training images with the precise continuity and
variability.

MPS facilitates conditioning. However, it is still computationally demanding (es-
pecially in terms of memory requirements). Moreover, a significant drawback of im-
plementing MPS is the inference of a training image that accurately represents the
characteristics and statistics of the domain of interest. To generate realistic realiza-
tions that accurately represent the phenomena under study, adopting a representative
training image is important (Boisvert et al. (2007); A. G. Journel and Zhang (2006)).
Also, the selection of template configurations and the availability of patterns in the

training image are other complications of MPS (Arpat (2003); Lyster (2009)).
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2.9 Truncated Gaussian/Plurigaussian Simulation

The TGS method simulates a continuous standard normal variable that is then
discretized into categorical variables based on thresholds. This method is capable of
dealing with ordered spatial structures. In the late 1980s, TGS was developed with the
application in oil reservoirs (Matheron et al., 1987). TGS simulation models provide
more straightforward and realistic transitions between categories than SIS (Galli et al.,
1994). To simulate the geometry and internal architecture of a stratigraphic reservoir,
TGS is an option. After truncation, appropriate values of porosity and permeability
can be assigned to the known lithotype. When the categories appear in a sequential
order in reservoirs, for instance, when sandstone is followed by shaly sandstone then
shale, TGS is useful.

TPG simulation is an extension of TGS and is a powerful method for modeling
geology and flexibile in representing complex lateral and vertical categories transitions.
The principle of this method was established by Galli et al. (1994). Normally, a maxi-
mum of two Gaussian functions are considered to represent relevant geological features
in the models (Rondon (2009); Carrasco, Ibarra, Rojas, Le Loch, and Séguret (2007);
Fontaine and Beucher (2006)). In the bigaussian method, truncation is characterized
by the partition of a rectangle defined by the Gaussian realization, often referred to as
the mask. Any number of combinations of categories can be considered in the model.
As the relationships between categories become increasingly more complex, the trun-
cation technique has to be flexible to account for these relationships. The main idea of
the truncation is based mostly on permitting or not permitting some category contacts
with either vertical or horizontal thresholds.

Some complex reservoir examples of primary diagenesis effects characteristic of
carbonate sedimentary systems are explained by (Armstrong et al., 2011). TPG model
is used for simulating geological domains in petroleum reservoirs and mineral deposits
with the aim of assessing the uncertainty in the domain boundaries and improving
the geological controls in the characterization of quantitative attributes (Remacre and

Zapparolli (2003); Fontaine and Beucher (2006)).
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The improvement of aquifer flow simulation responses using TPG model is shown
by Serrano, Guadagnini, Giudici, Guadagnini, and Riva (2012); Serrano, Guadagnini,
Riva, Giudici, and Guadagnini (2014). Also, a model for mineral proportion evaluation
in an ore deposit is considered by Emery (2010). TPG simulation also has been used for
fault facies modeling by Fachri, Tveranger, Braathen, and Schueller (2013). Carrillat
et al. (2010) compared the application of different categorical variable modeling and
TPG on a massive carbonate oil field. Distribution of facies for complicated reservoir
models has been described by TPG simulation.

Figure 2.2 displays the sedimentary oil bearing formations in canyons along the San
Juan River in Utah where phylloidal algal mounds of the Pennsylvanian age are exposed
and can be modeled using TPG method (Grammer, Eberli, Van Buchem, Stevenson,
and Homewood (1996); Van Buchem et al. (1998)). The threshold masks corresponding
to this complex geological setting are illustrated in Figure 2.3. Two different masks are
considered. The lower part is related to the platform progradation, and in the upper
zone, algal mounds can be found. One Gaussian function is used for the simulation
of the lower part, while in the upper part, because of the spatial organization of the
mounds and intermound, categories have a more complex truncation rule.

Handeling the locally varying proportions of categories in the threshold mask is
stightforward. C. Xu, Dowd, Mardia, and Fowell (2006) increased the number of un-
derling Gaussian realizations of the threshold based mask to handle more complicated
relationships between categorical variables. A general methodology using kernel regres-
sion is developed by Allard, Dor, Biver, and Froidevaux (2012) for the truncation mask
to consider categorical variables and auxiliary latent variables. This method involves
joint observation of the categorical and the Gaussian variables at the well locations
and truncation is non-parametric to simultaneously consider more complex relations
between categorical variables. Also,J. .. Deutsch and Deutsch (2014) considered a
parametrized truncation mask with Voronoi tessellation.

The next sections explain the TGS and TPG methodology from a mathematical

point of view.
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(b) Geological model

Figure 2.2: Top: outcrop of a typical carbonate reservoir along the San Juan River
in Utah. Bottom: a geological model of the Pennsylvanian algal mounds
in outcrops (Galli et al., 2006).

2.9.1 One-Gaussian Function

In TGS, the categorical assignment comes from one underlying continuous variable.
A standard Gaussian RF (N (0, 1) distribution) and then the classification of categorical
domains are based on truncating the function according to a specified mask (thresholds)
for representing different geometric patterns and contacts between geologic domains.

An RV (Z) has a Gaussian distribution if it has PDF as Eq. 2.19:
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Figure 2.3: Masks for Paradox basin (Armstrong et al., 2011). Right: mask for the
upper part and left: mask for lower part.

1 _1z-py
f(Z) = me 2( o ) (2.19)
where:
I - mean of the distribution;
o? - variance of the distribution;

w1 and o2 can fully characterize the Gaussian distribution and therefore, by estima-
tion of these two parameters, characterizing the conditional CDF at any point in D is

simple. If {Z(u),u € D} is a Gaussian RF with covariance Cz(h), the multivariate
Gaussian RF has following properties:

1. Any subset of the RF is also multivariate Gaussian

2. Any marginal distribution of Z(u) has a Gaussian distribution

3. Distribution between any pairs of RVs (Z(u) , Z(u+ h)) is Gaussian and fully

determined by the covariance function Cz(h)

4. All conditional distributions of any subset of the RF Z with n known data are
Gaussian (Eq. 2.20):
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z = E{Z(uw)|(n)}
o{Z(u)|(n)}

Gz (2(ul(n))) = G( ) (2.20)

where:

G - the standard Gaussian (Normal) CDF;

To be able to apply TGS, a mask for representing geometric patterns and contacts
between the geologic domains is required. The mask links the categorical variables (I,
k=1,2,...,K) and the continuous variable Z(u). Rectangular partitions (threshold
based) for the mask are the most common type of masks. Figure 2.4 demonstrates a
simple sketch for a domain with K=3 categories. In this domain, category one is in
contact with category two, whereas category two is in contact with both category one
and category three. This ordering of contacts between categories can be represented
by partitioning a Gaussian RF that is divided by two lines (thresholds; ¢; and ¢2), as in
Figure 2.5. In this case, one Gaussian function is able to capture the spatial ordering

relation between the geological categories.

[ Category 3
I Category 2
[ category 1

North

East

Figure 2.4: Sketch of a synthetic 2D geological region with K = 3 categories.

2.9.2 Threshold Definition

The thresholds define an area/volume of the multivariate Gaussian distribution
assigned to categories. For two categories, consider Z(u) as the simulated Gaussian

function at location u and I;(u) and I3(u) can be the indicators of the category one
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Figure 2.5: Truncation of a Gaussian distribution with two thresholds (t; & t2).

and two, respectively. The mathematical equation of the truncation is Eq. 2.21:

Ii(u)=1 & —oco<Z(u) <t (2.21)

To simulate a variable with K possible categorical values, K — 1 thresholds have to

be defined. The i*" category is defined by Eq. 2.22:

uel; = tii1 < Z(u) <t; (2.22)

There is an ordering relationship between the thresholds and K categories (Eq. 2.23).

) <tg <o <ty <tjy1 <o <tk (2.23)

2.9.3 Link between Thresholds and Proportions

The proportion of categories are usually obtained from the available drill hole or
well data. There is a one-to-one relation between the proportion of categories and the

threshold values for each of the masks. As for TGS, the probability of having category
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k at u defines the proportion of this category at that location (Eq. 2.24).

E{ly(0)} = pi(u) (2.24)
Ip(u) =1 & g1 < Z(u) <ty

where
I (u) - indicator of the category k;
Z(u) - the simulated Gaussian function at location u;
th—1 - the (k — 1)"* threshold on Gaussian function;
(7 - the k" threshold on Gaussian function;
Therefore:

pr(u) = P(tp—1 < Z(u) <ty) (2.25)

= P(-oo< Z(u) <t;) — P(—oo < Z(u) <tp_1)

= G(tg) — G(tg—1)

Using the normal distribution is conventional to generate the underlying Gaussian
realization. The thresholds can be specified by the target global proportions for each
category or with local proportions. Assuming the known proportions of each category

experimentally pi(u) (k = 1,---, K), one can calculate the cumulative proportions

(cpr) (Eq. 2.26):

k
cpk(u) = [Zp,(u)] ueD (2.26)
i=1

By construction, c¢pg = 0 and cpg = 1. K — 1 thresholds are required for trans-

forming the continuous Gaussian variables to K categories. The inversion of Eq. 2.25
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results in the thresholds (Eq. 2.27):

tl = G_l[pl(u)] (2.27)
ta = G '[pi(u) + p2(u)]
ti = G 'pi(u)+p2(u) + - -pj(u)]

= G lep;(u)), i=1,2,...,K-1

Where t; are the thresholds for the TGS and by construction tg = —oo , tx = 0.
Therefore, for the example that is shown in Figure 2.4 the ordering relation be-
tween three categories can be defined by one Gaussian deviate. By using the specified
mask in Figure 2.5 and considering the proportion of category one, two, and three as
0.159, 0.682, and 0.159, respectively, one can estimate the truncation of a Gaussian

distribution with two thresholds (¢; and t2), as follows:

z(u) elz+ Z(u) <t
z(u) € Ir & t1 < Z(u) < ty (2.28)

z(u) € 1 <» Z(u) > to

t1 = G [p1(u) = 0.159] = —1.0

ty = G [p1(u) 4 p2(u) = 0.159 + 0.682] = 1.0

2.9.4 M-Gaussian Functions

To simulate the categories in a domain with more complicated ordered geologi-
cal features, TPG simulation (> 2 Gaussian deviates) is a reasonable method. The
area/volume of the multivariate Gaussian distribution between the variables is defined
by thresholds. As we have [(u) = 1 < (Z1(u), Z2(u), -+, Zy(u)) € Dy, the proba-

bility of having category k at location u when there are M Gaussian realizations can
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be written as Eq. 2.29:

pr(u) = P{[Zi(u),Z3(u),---,Zp(u)] € D} (2.29)

= / a5~ (Z1,- -+, Zym)dzy
Dy,

where:

Dy, - the subset of the Gaussian space which is assigned as category k;

g5 - the M-variate standard Gaussian function with mean of 0 and vari-
ance of 1;

> - the correlation matrix;

2.10 Object Based Modeling

An important object based categorical variable modeling method is object based
modeling. In the object based methods, parametrized geometries are placed sequen-
tially into a domain model initialized with a background category. Some criteria such
as target global proportion and data conditioning are applied to the model to stop
the algorithm. To lay out a typical object based model, three key issues should be
addressed (C. V. Deutsch, 2002): Geological shapes, method for object placement
modification, and relevant data to constrain the resulting realization. Unconditional
simulation with an object based algorithm is straight-forward and fast. Geometries
are placed sequentially into a domain model until the global proportions of categories
are reproduced. However, reproduction of dense data conditioning is difficult and
needs time-consuming iterative procedures. For easier data conditioning, these meth-
ods have been combined with variogrambased techniques (e.g., Holden, Hauge, Skare,
and Skorstad (1998); Shmaryan and Deutsch (1999); Viseur (1999); Oliver (2002);
Vargas-Guzmén and Al-Qassab (2006)).

Object based facies models are visually attractive, and the categories represented
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by geological shapes and realistic nonlinear continuity match the known geological
features. Figure 2.6 shows a complex deepwater which was modeled by complicated
channels using the object based method by Pyrez et al. (2012). Within the object, con-
tinuous property trends can be modeled that cannot usually be modeled with cell based
methods. If geometries within the domain are well understood, object based models
are appropriate. Object based modeling has been applied to a number of different ge-
ological settings and is popular in fluvial settings. A. D. Miall (1985) classified fluvial
architectural elements based on their scales, bounding surfaces, texture, and internal
geometries. Also, he explained fluvial sedimentary facies, basin analysis, and petroleum
geology with more than 500 figures and 1000 references (A. Miall, 2013). With the work
of Haldorsen and others (H. Haldorsen and Chang (1986); H. H. Haldorsen, Lake, et
al. (1984); Chiu, Stoyan, Kendall, and Mecke (2013)), in the mid-1980s object based
modeling became popular in petroleum reservoir modeling. H. Haldorsen, MacDonald,
et al. (1987) modeled shale barriers as rectangular objects. There are many differ-
ent examples of geological modeling of fluvial reservoirs using object based modeling.
The mathematical model of a fluvial reservoir was studied by Holden et al. In their
study the reservoir was divided into four discrete facies: channel, crevasses, barrier, and
background. Realizations from the model are generated using the Metropolis-Hastings
simulation algorithm with simulated annealing conditioning on the volume ratios and
well observations (Holden et al., 1998).

Often object based models are constructed without considering local data and used

as training images. Improved conditioning is necessary for object based modeling.

Forward Stepping

L - e
T e
" Variable Paleoflow q
Primary Flow

Figure 2.6: Complex deepwater geological features (Pyrcz et al., 2012).

31



2.11 Event Based Modeling

Event based modelling, also known as process based, pseudo genetic, process mim-
icking or advanced object based models, is an extension of object based modelling in
which the objects are placed in the model in a temporal sequence with rules to mimic the
geologic processes associated with their deposition (Sun, Meakin, Jossang, and Schwarz
(1996); Xie, Cullick, Deutsch, et al. (2001); Pyrcz (2004); Pyrcz et al. (2012)). The ge-
ological complexity generated by event based modeling is appealing to many geologists.
Conditioned event based models are difficult to construct and matching seismic data
is rare. The result is the development of more complex models of heterogeneity and
object inter-relationships, but conditioning is nearly impossible. Event based modelling
has been used to generate realistic models of fluvial systems (Pyrcz, 2004). Process
based forward simulation (Tetzlaff and Harbaugh (1989); Boisvert (2007)), event based
modelling (Pyrcz, 2004), and unconditional object-based simulations (Pyrcz (2004);
Maharaja (2008)) have been used to generate 3D training images.

A process based stochastic approach has also been used by Hu, Joseph, Dubrule,
et al. (1994) to simulate the internal geometry of deltaic sandstone bodies. Process
based models have been combined with object based and variogram based techniques
(e.g., Xie et al. (2001); Pyrcz and Deutsch (2005); Teles, Delay, and De Marsily (2004);
Pyrcz and Strebelle (2006); Reza, Pranter, and Weimer (2006)), though with limited
success in data conditioning.

Process based and stochastic models provide satisfactory modelling for heteroge-
neous reservoirs by reproducing the depositional processes. When processes are known,
process based stochastic models allow for the representation of realistic geometries and
arrangements of different geological sets. Soft regional conditioning with seismic or
hard conditioning at well data points is a challenging problem, limiting the practical

use of event based models.
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2.12 Discussion

Three main geostatistical algorithms for simulating categorical variables are SIS,
MPS, TPG simulation and object/process based modeling. Classical geostatistical
techniques condition data and assess uncertainty, but the models often lack geologic
realism. In SIS, transitions between domains or rock types are not easily controlled
and produce models of categorical variables that are fairly unstructured. Increasing
levels of randomness, especially along the boundaries, is common when using SIS.
In MPS, information regarding the spatial heterogeneity is inferred from a training
image. MPS facilitates conditioning. However, the important issue of MPS is adopting
a representative training image which can be very difficult. Also, object based models
are considered when there are distinctive geological units in the domain that can be
characterized with geometric parametrization. The major drawback of object based
models is the honoring conditioning data.

In deposits with complicated ordering structures, when the ordering relationships or
transition probabilities between rock types is known, TPG simulation is a flexible and
powerful method for simulating facies categories. Its flexibility in representing com-
plex lateral and vertical categories transitions is the important key of this simulation
method. This thesis demonstrates the improvement of categorical variable modeling
using TPG simulation through addressing common challenges in this methodology and
improving the geological controls in the characterization of quantitative attributes by

associating more information to the modeling.
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Chapter 3

TPG Framework and Mask
Optimization

Generation of the mask that reproduces the desired ordering structure is a prelimi-
nary step in TPG simulation. In this chapter, mask optimization of TPG modeling is

explained and the optimization of two types of masks is introduced and discussed.

3.1 Mask Optimization

In TPG simulation, having a mask to convert the continuous Gaussian values sim-
ulated to categorical values is important. The layout of the mask must be chosen
to reflect contacts between different categories. In this section, two types of masks
(discretized and object based) are introduced in order to find the optimal mask to

reproduce input statistics and global /local proportions.

3.1.1 Discretized Mask

The layout of the mask must be properly selected to suitably define the relationship
between categories. To determine the ideal mask, an optimization algorithm is proposed
based on simulated annealing (SA). In this approach an initial discretized mask is
generated randomly and SA optimization is adopted to iteratively optimize the mask
to match the spatial features in the final TPG realizations. An example of the initial
discretized mask and optimized mask for three categories using two underlying Gaussian

RFs is shown in Figure 3.1.
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Figure 3.1: Sample of discretized mask by 23 x 23 = 64 blocks and optimized mask.

In the proposed methodology, seven discretization scales are proposed for discretiz-
ing a mask. A mask can be divided to 22 x 22 blocks and K categories are assigned
randomly to these blocks. This discretization is coarser since there are only 16 blocks
available. As illustrated in Figure 3.2, for instance, in the second image there are

23 x 23 = 64 blocks to be assigned to the categories. The finest discretization is 28 x 28

with 65536 blocks.
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Figure 3.2: Discretization of mask based on different scales.

The optimization of the mask is applicable in any scale and SA changes the mask

iteratively regarding the scale to minimize the difference between desired statistics and
current statistics.
Mask Optimization with Simulated Annealing

SA can be considered as an extension of the Metropolis algorithm (Metropolis,
Rosenbluth, Rosenbluth, Teller, & Teller, 1953) and as a global minimization technique.

In optimization techniques, SA has found application in a wide range of application
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areas including the integration of diverse data types (C. Deutsch & Tran, 2002), com-
binatorial problems (Rozenberg, Bek, & Kok, 2011), computer (VLSI) design (Mead
& Ismail, 2012), image processing (Carnevali, Coletti, and Patarnello (1985); Jeng and
Woods (1990); Antoniou and Lu (2007); Y. Zhang, Yan, Zou, Tao, and Zhang (2016)),
genetic structures (Dupanloup, Schneider, & Excoffier, 2002), job shop scheduling (Xia
& Wu, 2005) and many other difficult optimization problems. SA is one of the best
approaches among local search algorithms (Michiels, Aarts, & Korst, 2007).
Temperature (T in Eq. 3.1) is an important parameter in SA. Typically, T starts
high and temperature is reduced gradually. The structure of energy (or objective value)

O is changed to a structure of energy Oz with probability (Eq. 3.1):

—(02—0y)

pr=e =T (3.1)
where:
pr - the probability of change;
T - the annealing temperature parameter;
ky - a natural constant which relates temperature to energy;

With the Metropolis algorithm (Metropolis et al., 1953), sometimes poor changes
with a higher objective value than the current one (O2 > O;) are accepted. In SA,
the rate of reduction of the optimization function (O) is controlled by the temperature
distribution (the Boltzman distribution) using 7. The probability of accepting poor
exchanges increases as T' increases. The accept probability distribution is specified by

Eq. 3.2:

1 if Oy < Oy
P(accept) = (3.2)

e(@) otherwise
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In the proposed optimization, special attention is paid to optimize the mask in
order to match the desired input statistic, such as the transition probabilities between
categories. The algorithm randomly accepts some changes that increase the objective
function. Here, replacing a block with a specific category in the mask to another cate-
gory is defined as a change. The application of the SA algorithm to mask optimization

consists of six main steps:

1. The initial discretized mask is selected randomly.

2. The objective function which measures the closeness to the target feature is
based on transition probabilities. Here, the objective function (Eq. 3.3) is de-
fined by the sum of the square differences between transition probability of the
data tpy (h)9* and the simulated realization tpj (h)"¢##eon for a specific

number of lag distances.

nD K K
_ Z Z tpkk’d _ tpkk/d(h)realzzatwn)Q (3.3)
d=1k=1k'=1
where:
nD - number of directions for scanning the domain to calculate tran-
sition probabilities;
K - number of categories;

tpyp (h)9ete- transition probability of categories in the data set;
tpy (h)7¢% - transition probability of categories in the simulated categorical

realization;

Typically, probability matrices are inferred along the drill hole or wells upward
and downward. Here, calculating the transition probability matrices along six
different directions (6;, i = 1,---,6) as demonstrated in Figure 3.3 is proposed

to add more flexibility for capturing the correct transition between categories.

3. The stopping criteria is needed in the optimization. In an iterative algorithm,
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Figure 3.3: Lag orientations.

procedure should stop when the objective function is minimized. The algorithm

here stops as follows:

e After reaching a specific temperature value
e After a certain number of iterations

e After no improvement in the objective function for number of iterations (no

better solution)

4. Next step is related to the perturbation rules. The SA algorithm proceeds by
visiting all the locations in the discretized mask along a random path. Procedure
starts by truncation of Gaussian realizations into categories using the initial bi-
variate mask. The perturbation procedure is illustrated in Figure 3.4. First the
process proceeds with random selection of one location in the mask at a time
and then continues by checking the category of blocks in its neighborhood. As
shown in Figure 3.4, if there is a difference between the category at a selected
location (center block with yellow color in the figure which represents category
one) and the surrounding categories, then in this step perturbation is accepted
and the category at the selected location in the mask is changed to the one with

a different category.
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Figure 3.4: Illustration of how selected locations in the mask are changed. Yellow
block in the center is the selected category in the mask and four other
blocks in its four sides are considered as its neighbors.

5. The objective function is updated after each accepted perturbation. The objec-
tive function must be updated after each perturbation, but it is a CPU expensive
operation. To improve the speed, the following implementation details are con-

sidered:

e Transition probability matrices are updated locally after each iteration.
Rather than scanning the entire domain to build the transition probabil-

ity matrices after each change, only the transitions between selected blocks
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are updated for the number of considered lags. Figure 3.5 demonstrates the
required CPU time for updating transition probabilities for different number
of changes in the mask. If fewer than half of the blocks are changed, this

improves CPU time.
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Figure 3.5: Required CPU time (seconds) for updating transition probabilities in the
objective function.

e The objective function is updated after a specific percentage of changes in
the mask for a certain number of iterations. The total number of iterations
is divided in five steps and in each, a specific percentage of changes in the
mask is applied. Percent of changes in each is considered as follows: 25%,
15%, 10%, 5%, and 1 block at a time of the total number of cells in the
discretized mask. Therefore, in each iteration a specific number of changes
is applied before updating the objective function. This updating procedure
has two advantages. First the algorithm starts by changing 25% of blocks in
the mask which may help to cover more space of uncertainty in the domain
than changing only one block at a time. There is an increased chance to
make large changes in the beginning and then the percentage of changes is
reduced after obtaining an initially good solution. The second advantage
is related to the CPU speed. Here also, the objective function is updated
after each mentioned percentage of changes and it reduces the required CPU

time.

6. The last step regards the annealing schedule. The annealing parameter (T) is
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controlled by the cooling schedule. A number of annealing systems can be applied
(Triki, Collette, and Siarry (2005); Van Laarhoven and Aarts (1987)). The change
is always accepted if the objective function decreases. In this case, the simulation
moves closer to the target statistics. However, there is also a probability that the
simulation goes toward a local minimal. SA attempts to avoid becoming trapped
in the local minimal by accepting some less optimal solutions. SA should start
with a reasonably high initial temperature Ty and should reduce the temperature

as iterations progress. Ty can be defined according to the formula Eq. 3.4 (Busetti,

2003):
—_ANOt
Th= ——— (3.4)
Ln(pro)
where:
pro - acceptance probability of first increased objective function;
AOT - difference between current and previous objective value;

After each iteration, the cooling temperature should be updated. The most

common temperature decrement rule is Eq. 3.5 (Busetti, 2003):

Tip1 = 6T; (3.5)

where:

) - a constant scalar in the range (0,1), close to 1;

Also, an update for the temperature parameter in the starting point of each
mentioned part is suggested here by increasing the temperature to a coefficient of

the starting temperature of the previous part (Eq. 3.6) as shown in the annealing
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schedule in Figure 3.6. To start the algorithm, prg = 0.95 and 6 = 0.95 are

adopted.
Tst(®'+l) = 5Tst(i} st=1,---,4 (3‘6)
where:
Tat(s) - initial starting temperature of step i ;
Tst(i+1) - initial temperature of step 7+1 which is a coefficient of initial starting
temperature of previous stage 1 ;
N
s 25% of mask is changed
: \ ; 15% of mask is changed
A -
B "\( \ K 10% of mask is changed
mw
5 ‘\ ‘l \ : 5% of maskis changed
g‘ \ \x \ - " _1 cell of mask is changed
S AN \ T g
N b I W B T
sty st, St sty st

Number of Iterations

Figure 3.6: Annealing schedule.

Synthetic Case Study for Mask Optimization with SA

A synthetic categorical realization with the modeling grid of 256 x 256 blocks of
1 x 1 m? has been used as the target feature (Figure 3.7, bottom right). Here M =
2 independent Gaussian realizations Z; and Z5 are used. They are unconditionally
simulated by sequential Gaussian simulation (SGSIM, (C. V. Deutsch et al., 1992))
with a spherical variogram model but different anisotropy (Figure 3.7, top). Based on
the bivariate mask, the realizations are truncated.

Four random masks with discretization of 8 x 8 = 64 blocks are generated and
proposed optimization with SA is applied at this scale (Figure 3.8). Input realizations

are considered to be the same as the input realizations of target categorical realization.
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Figure 3.7: Top: two generated realizations of standard Gaussian RV. Bottom left:

bivariate object based mask and bottom right: truncated realization.
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Figure 3.8: Random masks with discretization of 8 x 8 = 64 blocks.
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The performance of the method and proposed procedure are evaluated using the
mentioned random masks. In this case, the total number of 10000 iterations is specified
to the optimization. The input number of iterations in each part is summarized in
Table 3.1. Transition probabilities between categories for nL = 10 are considered for
calculating the objective function (Eq. 3.3). Also Table 3.2 summarizes the initial
objective values, final objective values, and iteration number that algorithm stopped

for all four random masks.

Table 3.1: Summary of input parameters for perturbation.

Number of iterations to perturb the mask

Total number of iterations 10000
Number of iterations with 25% changes at a time 1000
Number of iterations with 15% changes at a time 1500

Number of iterations with 10% changes at a time 2000
Number of iterations with 25% changes at a time 2000
Number of iterations with 1 block changes at a time 3500

Table 3.2: Objective values for different masks.

Mask # Start obj. End obj. # of iterations

1 13.03 0.00 5154
2 8.74 0.00 5247
3 8.97 0.00 5850
4 21.64 0.00 5464

As shown in Table 3.2, the algorithm stopped with an objective equal to zero, indi-
cating that the algorithm reproduced the optimum mask and the truncated realization
shown in Figure 3.7. Figure 3.9 shows the final mask and final optimized truncated
realization for mask number one as an example. The blue dots in the mask show the
scatter plot of the underlying Gaussian realizations. Also, Figure 3.10 demonstrates
the objective value reduction and annealing temperatures procedure related to mask
number one.

The objective function started by value 13.03 and after around 2000 iterations
reached close to zero (Figure 3.10(b)). In this example the optimum mask is reproduced.

There are two locations in the mask which are different from the target mask (see
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Figure 3.9: Final mask and final truncated realization for random mask number one.
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Figure 3.10: Annealing temperatures procedure and objective function reduction re-
lated to mask number one.

Figure 3.9), but the frequency of the underlying Gaussian realizations in these areas is

zero and those locations in the mask do not impact on the simulated realization.
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The proposed methodology is an automatic mask optimization, which relies on the
use of transition probabilities of categories to find the best mask’s configuration. This
mask starts with a random discretized mask and allows defining complex masks, but it
is not efficient time-wise when the number of categories increases. Another limitation
comes when the complexity of the relation between categories increases and more than
two underlying Gaussian deviates are required to explain the transitions and contacts
of categories. In the next section, an object based mask is introduced as an alternative

to find the optimum truncation rule.

3.1.2 Object Based Mask

This section describes an object based mask to model spatial distributions between
the categories in TPG realizations. Basically, any configuration can be considered for
defining the relation between categories. Introducing objects into the mask can add
flexibility for reproducing features observed in data and map the continuous variables
to a categorical space. Here, objects control the contacts and transitions between
categories. The proposed mask allows the use of any number of objects with different
directions in the mask to capture the spatial distributions between the categories. The
key to the approach is adapting objects with appropriate sizes and directions. The
objects are characterized by some function or geometric shape and would be moved
and scaled to get close to the configuration in the original model. In this work, objects
are ellipses which are characterized by their center location in the X axis and Y axis,
orientation and radius size. Each object can be shifted or rotated to produce different

masks (Figure 3.11). An ellipse is defined as Eq. 3.7.

(95 - fL‘o)2 4 (y - yo)2
R?L Rg

—1 (3.7)

which is centered at some point (xg,yo) with radius (R,, Rp). The coordinates of

the center point in an ellipse rotated by # are found by Eq. 3.8:
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Figure 3.11: Rotating and Shifting an ellipse.

Tnew = xTCosO + ysinb

(3.8)

Ynew = ycost — xsinf

Compared to the discretized mask explained in the Section 3.1.1, the object based
mask reduces the randomness of initial masks. The optimization approach is based
on gradient methods which are explained in Section 2.5 and the emphasis is placed on
generating objects in the mask to find the optimum mask which honors the pattern
statistics in the original model.

The number of shapes, initial coordinates, angel rotation, and radiuses are input
parameters in the proposed procedure. Initially, shapes are randomly placed in the
mask. The input realizations are discretized into categories by applying the mask. Also
here, transition probabilities are used as the measure of spatial variability. Figure 3.12

shows the generated mask with three shapes and three categories and the related TPG

realization.
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Figure 3.12: Top: two generated realizations of standard Gaussian RV. Bottom left:
bivariate object based mask and bottom right: truncated realization.

Mask Optimization with Gradient Decent

Gradient algorithm is suitable for solving nonlinear optimization and unconstraint
problems which the gradient can be calculated from objective function (O). The con-
jugate gradient method is an iterative method, so it can be applied to sparse systems
that are too large to be handled by direct methods and is used here for mask optimiza-
tion. This is a fast optimization and a solution can be found after a finite number of
iterations. The objective function (O) is defined as in Eq. 3.3.

Here, the Fletcher-Reeves method (Fletcher & Reeves, 1964), which is a type of the
conjugate gradient method, is used. The optimization is performed by using sequential
search directions that allow a strict mathematical relationship between variables. The

Fletcher-Reeves method attempts to approximately locate a local minimum of the

objective function. Since only the first derivative term (agf) _ Olet+Ax;)—O(a)

AXj ) i[l.

the Taylor series is available from the defined objective function and the history of the
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gradients to move is important to consider, the Fletcher-Reeves method is a suitable
method.

In mask optimization, the very first step is to define the number of ellipses to
be generated in the mask using initial random parameters. Gradient optimization is
adopted to continuously and iteratively modify the initial parameters of ellipses in the
mask until the objective function is minimized and target statistics of the truncated
realization are close to the available data set. Each ellipse can be shifted or rotated in

the mask (see Figure 3.11).

Synthetic Case Study for Mask Optimization with Gradient Optimiza-
tion

Two Gaussian realizations with the modeling grid of 256 x 256 blocks of 1 x1 m?
are considered and truncated by the bivariate objects based mask into categories to
generate a realization (Figure 3.12). The objective function is formulated to measure a
mismatch between the transition probability of categories in the data set and simulated
truncated realization. The initial parameters of the mask, center points, radiuses, and
angels of objects are continuously modified until the objective function is minimized.

Three shapes with three categories are randomly placed into the mask. The objec-
tive value is calculated along 20 lags along six different directions (6;, i = 1,---,6 in
Figure 3.3). The percent mismatch between the simulated realization with the object
based mask optimization and the target categorical realization is calculated. There
is a 5% mismatch between the simulated categories in the final truncated realization
and target realization. Also, visually it is observed that the spatial feature of data is
reproduced in simulated realization. The final TPG realization is shown in Figures 3.13.

Optimization began with the objective value of 245.69 and stopped with 1.45 in 20
iterations. A significant reduction is observed in the objective value, and the truncation
of Gaussian realizations using the optimized mask reproduced the spatial distribution
of target realization in the truncated simulated realization with small error. In general,
there is no unique solution for the mask, but it could be seen that the method of

object based mask optimization reproduced the simple categorical relationship in this
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Figure 3.13: Top left: initial mask and top right: related initial truncated realization.
Bottom left: final mask bottom right: final truncated realization.

example. The proposed algorithm also preserved the global proportion of categories in
optimized truncated realization. Table 3.3 displays the proportions of categories in the

target realization and the optimized truncated realization.

Table 3.3: Categories proportion of data, initial truncated realization and final trun-
cated realization.

Category Cat. 1 Cat. 2 Cat. 3
Proportion of data 0.093 0.118 0.789
Proportion of optimized realization 0.107 0.102 0.791

The object based mask is an automatic mask optimization method which uses
gradient decent algorithm to find the optimum mask. This a fast optimization program
for three to four categories. A different number of objects could be placed in the mask
and the optimization procedure manages the size and number. Convex optimization
problems can be solved quickly and reliably with a very large size of variables and

constraints, but this efficiency is not true for non-convex optimization problems. Since
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the defined objective function is not convex, the complexity of optimization increases
as the number of objects and categories increases, and it becomes difficult to solve

exactly in a reasonable time.

3.2 Summary

In this chapter, two methods for finding the truncation rule for TPG simulation
are introduced. Depending on the complexity of ordering between categories in the
data, the use of more complex masks to allow for flexible transition between categories
is an option. The proposed masks work for truncation with two underlying Gaussian
deviates. Limitation comes from the required CPU time for a more complex relationship
between categories. When there is a complicated relation between categories, these
masks may not be efficient.

Considering LVP is an important aspect of TPG simulation. In the next chapter,
the threshold based mask and multidimensional scaling mask (MDS) are introduced.
They are able to deal with the locally varying proportion of categories and allow for

complex relationships between categories.

51



Chapter 4

TPG Simulation with Locally
Varying Proportions (LVP)

The TPG model has been widely used to characterize heterogeneity in aquifers (Ma-
riethoz, Renard, Cornaton, & Jaquet, 2009), oil reservoirs (Emery (2007); Galli et al.
(2006)), and mineral deposits (Armstrong et al., 2011). Handling spatial changes in the
categories proportion is an important requirement for categorical variable techniques.
The determination of a truncation procedure for complicated geological environments
is not obvious. The truncation rules control the proportions and ordering of categories
in the simulation. In most cases, there is non-stationarity in proportions due to ge-
ological trends, and models with a global proportion of categories may not yield to
the realistic results. The plurigaussian model can be generalized to account for lateral
and vertical changes in the categories proportions. Relative proportions of categories
need to be defined. Usually, this information comes from the analysis of wells/drill
holes, outcrops, or remote sensing data. Beucher et al. (1993) and Ravenne, Galli,
Doligez, Beucher, and Eschard (2002) used empirical proportions of observed data and
interpolated to the whole space. Emery, Ortiz, and Céaceres (2008) proposed to model
facies proportions with random fields rather than deterministic fields. Here, the use of
locally varying masks is considered for the incorporation of trends. Two different mask
frameworks are considered and programs (Appendix A.1, A.2) for TPG simulation with
LVP are developed.

The first mask framework is defined by linear thresholds and is the typical type
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of mask in standard TPG simulation algorithms. The second framework uses MDS
method (Wickelmaier, 2003) to automatically calculate the optimal mask (J. L. Deutsch
& Deutsch, 2014) and is generalized here to account for LVP.

A key requirement of the TPG method is to be able to condition the Gaussian
RFs to actual categorical observations. The first available methods for conditional
simulation in TPG are introduced. Then, the use of locally varying masks for both
threshold based and MDS masks to deal with non-stationarity in domain are explained
and the optimization of these two type of masks is discussed. Finally, a case study

simulating rock types at a mineral deposit demonstrates the benefits of this method.

4.1 Conditional Simulation in TPG Simulation

The use of available data in the simulation is an important part of any geostatistical
technique. In reality, categorical data, facies or rock types, are observed from well or
drill holes. Transferring categorical data to continuous values for conditional simulation
of underlying Gaussian deviates is an essential step in the TPG method. For condi-
tioning, categorical data must be transferred into continuous Gaussian conditioning
data.

There are two concerns here (C. V. Deutsch, 2002). The first issue is that the correct
categories are maintained on back transformation. Therefore, the local proportions and
corresponding thresholds must be considered. Second, since categorical variables are
involved, spikes/ ties may occur and should be dealt with by constraining. To solve
the problem of despiking, the simplest solution is to leave the spikes unaffected and
consider the normal score transform of each category to the center of the class in the

normal distribution (Eq. 4.1):

G_l(CPk—l(U) + Cpk(u))

> (4.1)

y(u) =

where:
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K - number of categories;
y(u) - the normal score transform at location u;

cpi(u) - the cumulative proportions;

So, one method is the use of the centroid of each categorical class with respect to
the truncation rule (C. V. Deuntsch, 2002). But using fixed values may lead to incorrect
uncertainty assessment. The use of centroid method is equivalent to assuming that
underlying variables are known at sampled locations, but in reality, the values are
unknown.

Another method for conditional simulation of the Gaussian variables in TPG is
obtained using a stochastic approach, the Gibbs sampler, as proposed by Le Loch and
Galli (1997). In the Gibbs sampler algorithm, multigaussian values at experimental
points are generated iteratively from random Gaussian values. Kriging is applied at
each point using the previous covariance model and a new value is allocated by adding
the kriged value to a standard Gaussian variable with respect to the thresholds.

There are several advantages to using the stochastic approach, such as the theoret-
ical consistency, speed and flexibility, especially when dealing with external geological
information (Galli et al., 1994). On the other hand, there are some disadvantages such
as considering a particular covariance model with the same anisotropy directions for
all categories. The use of iterative fitting algorithm of generation of Gaussian values
at conditioning points is suggested by Remacre and Zapparolli (2003). In this method-
ology, the spatial variation of the categories is considered in generation of Gaussian
values with the Gibbs sampler algorithm.

The Gibbs sampler has an issue related to the inversion of the covariance matrix
and moving search neighborhood when there are a large number of data available.
Lantuéjoul, Desassis, and Fouedjio (2012) solved this issue by using a propagative
version of the Gibbs sampler. Also, Emery, Arroyo, and Peliez (2014) modified the
approach and used it in a TPG simulation with linear inequality constraints.

The problem of keeping facies observations at well locations using the data assimi-

lation procedure is mentioned by Astrakova and Oliver (2015) as an important limita-
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tion in the application of TPG. Merging the data assimilation algorithm (Levenberg-
Marquardt approach (F. Zhang, Reynolds, Oliver, et al., 2003)) with an interior point
formulation has been suggested to the produce as a good history matching algorithm.

As mentioned earlier, considering a specific covariance model with the same anisotropy
directions for all categories is a drawback of using the stochastic approach. The use
of the right spatial structure to simulate the unknown Gaussian values is suggested by
(Astrakova, Oliver, and Lantuéjoul (2015); Emery et al. (2014); Arroyo, Emery, and
Peldez (2012); Lantuéjoul et al. (2012); Galli et al. (1994)). However, the use of a sin-
gle realization of underlying Gaussian variables may result in the underestimation of
uncertainty. D. 5. Silva and Deutsch (2016a) proposed the use of multiple realizations
for transferring categorical values to Gaussian values at the sample data locations since
there are multiple realizations for the underlying variables that give the correct cate-
gories on back transformation with the same spatial structure and the same truncation
rule.

In this work, Eq. 4.1 is used to transform each category to the center of the class

in the normal distribution but any data transformation can be used.

4.2 Locally Varying Mask with Thresholds

Threshold based or rectangular partitions for the mask are the most common ge-
ometry. Theoretically, one can use different geometry, but the layout of the mask must
be properly selected. When the correlation matrix (D)) and the domain of interest
(Dy.) are known, finding the thresholds and proportion of categories (py) is simple, but
even with knowing all the py it is not possible to find the correlation matrix and Dy, as
there are many possible solutions. Here, a specific partitioning of Gaussian space into
rectangles (with two Gaussian functions) is proposed. Figure 4.1 demonstrates an ex-
ample of partitioning with two Gaussian deviates and four categories. The projection of
rectangular boxes on the Gaussian axes defines the area of each box and the thresholds
are assigned to each rectangular box. For M Gaussian functions, by knowing 2M — 1

of the thresholds. It is easy to find the last unknown threshold numerically using the
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inversion of the Eq. 4.2.

— P{(Zi(w), Zo(w), - , Zas(w)] € Dy} (4.2)
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Figure 4.1: Masks for K = 4 categories and M = 2 Gaussian functions (modified
from Armstrong et al. (2011)).

For M Gaussian functions and K categories, there are K x 2M thresholds. There
are many possible configurations even for a rectangular partition. As demonstrated in
Figure 4.1, for K = 4 categories and M = 2 Gaussian functions there are 11 possible
masks (Armstrong et al., 2011). Masks with linear thresholds can be defined based on
geological knowledge of the frequency of intersections between categories. A program
(" tpgsim”) (Appendix, A.1) is developed to generate the threshold mask. This program
is flexible and covers the most common combinations between categories. This mask
is defined with three main zones (left, center, right). In this program users can easily
define the mask between categories based on their geological knowledge. This relation
is only defined with two parameters: the number of rectangles and the position of

rectangles in each zone. The sample mask that is shown in Figure 4.2 is defined using
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the relationship between nine categories. Notice that the number of rectangles should
be equal to the number of categories. There are four categories in the left zone, two
categories in the center zone, and three categories in the right zone. The order of
categories to be placed in the mask in this program for the vertical position is from
the left side to the right side and in the horizontal position is from bottom to the top.
The thresholds can be specified by the target global proportions for each category or
the local proportion. This local proportion could come from an aerial trend map or

vertical trend.
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Figure 4.2: Sample truncation rule for truncating bivariate Gaussian functions for 9
categories (Fy, k =1,2,...,9) with eight thresholds (t1,--- ,ts).

There is a one to one relation between the proportions and the thresholds. In the
presence of a trend, thresholds of the mask are adjusted to match the local proportion of
categories at each location. As explained in Section 4.1, the centroid of each categorical
class with respect to the local truncation rules is used to transfer categorical data into
continuous Gaussian conditioning data. Data and mask are paired based on the nearest
neighbor. At each data location, the nearest local truncation rule based on the trend
model is used for transformation. Figure 4.3 shows an example of how a mask can vary
in a domain. For instance, category one has a higher proportion in lower elevations
in the domain. As the proportion increases or decreases, thresholds are adjusted and
created a new mask.

After one finds the locally varying masks and the conditioning data values, trun-
cation using these outputs is straightforward. Output of the locally varying mask can

be used as an input to another small utility program ”truncation — tp” (Appendix,
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Figure 4.3: Locally varying masks of threshold based mask for one cross section of a
synthetic example.

A.1.1) for truncating conditional Gaussian realizations to categorical realizations. In
the standard linear threshold framework, the user is able to apply geological knowledge

of the nature of the contacts between categories.

4.3 MDS Mask

In MDS mask, dissimilar categories are placed farther apart and similar categories
close together based on the distance between categories. The multivariate space is then
mapped using an eigen-decomposition. In this method, K categories are projected on
M Gaussian variables using metric MDS (Wickelmaier, 2003) of the corrected not-
transition probability matrix. These projected coordinates produce K M-dimensional
control points. These K control points location are optimized iteratively to reduce the
deviation between the desired proportions and integrated probabilities (J. L. Deutsch
& Deutsch, 2014). The transition probabilities are used for the determination of a
truncation structure using MDS. The probability of transitioning from category k to

category k' can be calculated (Eq. 4.3):

tpp = Prob{k’ occurs at u + h|k occurs at u} (4.3)
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The transition probability matrix with K categories is defined as Eq.4.4:

tp11 tpi2 tpis . . . I;ik
tpo1  tpa2  tp2s . . . ipok
tp31  tps2  tpsz . . . Ip3Kk
tp(h) = | . . . (4.4)
|tpr1 tpx2 tprs . . . IPKK]|

Transition probabilities are calculated from the transition between categories both
upward and downward in a drill hole as illustrated in Figure 2.1. A symmetric MDS
algorithm is considered in this method. To use the metric MDS method, a symmetric
dissimilar matrix is required. The idea here is to convert the transition probability
matrix from measuring similarity to a corrected not-transition probability matrix (tp®®)

to measure dissimilarity between categories. The steps include the following:

1. After finding K x K transition probability matrix (tp), convert it to not-transition

probability matrix by calculating tp® =1 — tp;

1—tpn 1—tpia 1—tpis . . . 1—tpik
1—tpar 1—tpea 1—tpes . . . 1—tpog
1 —tpsi tp32 1—tpsz . . . 1—tpsg
tp°(h) = (4.5)
| 1—tpxk1 1—tpgas 1—tpgs . . . 1—tpgk

2. Correct the not-transition probability matrix by averaging cross terms and setting

the diagonal to zero ( tp®);
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i tp1ott ¢ tpran |
0 1_(?12-51721) o 1_( PlK-;-PKl)
1— (tpm;tpzl) 0 T (tsz-gtpKz)
1— (tplsgtpm) 1— (tp3242rtp23) 1= (tPSKJgtPKs)
tp”(h) = (4.6)
_1 _ (tle;‘tpKl) 1— (tp2K-5tpK2) o 0 ]

Now using a standard MDS algorithm, a centered not-transition probability matrix
(tp®®) can be spectrally decomposed and projected on to M Gaussian deviates. Gen-
erally, the number of dimensions for projection is less than the number of categories
K (at most K —1). So, projected coordinates create K M-dimensional control points.
These control points are rescaled to be mapped into a standard Gaussian unit.

In the last step, control point locations are optimized iteratively. A Voronoi de-
composition of the control points is performed to define the polygon related to each
category, and the multivariate Gaussian distribution is integrated over each Voronoi
polygon. The control point locations are optimized to reduce the difference between
the desired proportions and integrated probabilities.

For any location in the multivariate Gaussian domain, the category associated with

this location is equal to the category associated with the nearest control point (Eq. 4.7):

Zw)={Z(w)|(u-—uww)<(u—wx) k=1,---, K k#k} (4.7)

This framework has the benefit of requiring no user input regarding the nature of
the mask. Figure 4.4 shows an example of the evolution of the MDS method for four

categories and two Gaussian deviates.
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Figure 4.4: Evolution of MDS method for four categories (J. L. Deutsch & Deutsch,
2014).

4.4 Locally Varying Mask with MDS Mask

In the presence of LVP, optimization begins with determination of the truncation
mask for the first location in the grided domain. The K categories are projected on to
M Gaussian variables using MDS. These projected coordinates compose control points
which will be used for truncation of M underlying Gaussian realizations. Then opti-
mization continues to determine the truncation mask for the next and other locations.
In each step, the optimized control points of the previous location are considered as
initial solution to the optimization. By the end of the optimization process, optimized
MDS masks are constructed based on the LVP of categories at every location.

Figure 4.5 shows the locally varying mask in a domain with a bigaussian MDS mask.

An optimization is performed at each location in the model to match the integrated
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7 is devel-

proportion of categories to the local proportions. A program ”mds_tpg_LV.
oped (Appendix, A.2) to deal with trends. Due to the nature of trend models which
are smooth, finding the mask for every location may not be required. An up-scaling

of the trend model while honoring the local heterogeneities in category properties is

proposed as an option since proportions vary smoothly in the domain.
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Figure 4.5: Locally varying masks in TPG simulation with a MDS mask for one cross
section of a synthetic example.

After finding the locally varying mask and conditioning data values, truncating M
underlying Gaussian functions using these outputs is straightforward. The output of
a locally varying mask can be used as an input to ”trans_tpg LVP” (Appendix, A.2.1)

for truncating conditional Gaussian realizations to categorical realization.

4.5 Case Study

A mineral deposit is simulated with data from 31 drill holes. The deposit has a
number of well-defined layers. Drill holes contain measurements for the four different
rock types. Figure 4.6 shows the available drill hole data and the projection onto
East-North and North-Elevation slices. The geostatistical models are simulated at
10.0 x 10.0 x 10.0 (m)? resolution. The vertical drill holes are regularly spaced. The

global proportion of rock types using cell declustering is summarized in Table 4.1.

Simulating the different rock types is the first step in geostatistical modeling before
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Figure 4.6: Location map of available drill hole data and projection onto a North-East
and East-Elevation plans.

Table 4.1: Summary of rock types’ declustered proportions in drill hole data.

Rock Type 1 Rock Type 2 Rock Type 3 Rock Type 4
DH Prop. 0.048 0.497 0.081 0.382

assigning and simulating grades within the rock types. For this deposit, the transition
probability matrix is calculated (Eq. 4.8). The transition probability matrix shows that
rock type one is linked to rock type four, and we expect occasionally to see this rock
type linked to rock type two. Also rock type three is related to rock type four more

frequently. Figure 4.7 shows the global threshold mask and MDS mask.
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Figure 4.7: Left: Global threshold based mask and right: MDS mask for a mineral
deposit with four rock types.

Due to no clear horizontal anisotropy, a horizontal omnidirectional is calculated for
all four rock types. There is a non-stationary in the proportion of rock types in the
deposit and some rock types are more probable to prevail in some areas than in others.
For building a conceptual model of a deposit, understanding the spatial distribution of
the categories and the geometry of the domain is essential. Vertical proportion curves
(VPCs) provide information on the categories within the sequences. This method is
useful to specify where the important vertical variation is likely to be, to decide about
the non-stationarity. When the relative proportions of categories vary significantly
within a domain, consequently non-stationarity exists. The spatial distribution of the
proportions is shown in Figure 4.8.

Variation of the proportion of rock types in the vertical direction is observed clearly
in Figure 4.8. Figure 4.9 shows the trend model that has been generated based on the

data using the GSLIB ” maketrend” program (Manchuk & Deutsch, 2011). The trend
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Figure 4.8: Global VPC for the mineral deposit.

model demonstrates the locally varying proportion of each plate in different locations

of the area of interest.
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Figure 4.9: Plan view of generated trend model for rock types based on the data sets
at elevation 600(m).
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The locally varying mask is calculated for each mask in the model. To illustrate the
reproduction of rock types’ proportions in the simulated realization, Table 4.2 summa-
rizes the proportion reproduction of the bench of elevation 600 (m) in the simulated
realization using threshold based and MDS masks. Local proportions of rock types

have been reproduced well.

Table 4.2: Summary of the integrated proportions in truncated realization using TPG
method at elevation 600(m).

Proportion at elevation 600(m) RT 1 RT 2 RT3 RT 4
Trend model 0.000 0.372 0.221 0.407
Simulation with threshold mask 0.000 0.393 0.261 0.346
Simulation with MDS mask 0.000 0.335 0.246 0.419

Optimized locally varying masks at elevation 900(m) for 140 locations for both
mask frameworks are shown in Figure 4.10. At this elevation, the probability of rock
type three is very small and three other proportions vary smoothly (Figure 4.11). The
proportion of rock type four increases gradually from East to West, while the proportion

of rock type two decreases.
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Figure 4.10: Top: plan view of optimized threshold mask and bottom: plan view
of optimized MDS mask at elevation 900(m) for 140 locations in the
simulated domain.
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Figure 4.11: Plan view of generated trend model for rock types based on the data
sets at elevation 900(m)

Since the trend is varying smoothly, the trend model is composited to 30 x 50 x 30m3.
Figure 4.12 right side demonstrates the up scaled trend model for composited elevations
870-900(m). The plan view of the MDS mask with the up scaled trend model for

composited elevations is shown in Figure 4.12. Gradual variation of the mask based on

the LVP is clearer in this Figure 4.13.
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Figure 4.12: Left: plan view of trend model and right: plan view of up scaled trend
model for rock types.
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Figure 4.13: Plan view of optimized up scaled MDS mask for composited elevations
870-900(m) for 128 blocks in the simulated domain.

A comparison is performed between the results of TPG simulation using the pro-
posed algorithm with SIS. A 3D view of TPG realization using these two type of masks
and generated realization with SIS is demonstrated in Figure 4.14. To show the im-
portance of considering a locally varying mask, simulated realizations without a trend
model using only the global proportion of categories are shown in Figure 4.14. It is
clear that simulated realization did not respect the observed trend in the data and did
not reproduce the right transitioning structures. For instance, rock type one is not ex-
pected to be observed in the lower elevations as it simulated in the model using global
mask. Figure 4.15 shows a comparison of local proportion reproduction using TPG
methods and SIS method at elevation 700(m). Local proportions for this elevation are
as follows: 0.000, 0.442, 0.075, and 0.483 for rock types one to four, respectively. The
average percent errors in proportion reproduction of all four rock types using the TPG
method with threshold based and MDS masks are 4.25% and 6.3%, respectively, and
for SIS method, 7.13%. There is less error in reproduction of rock types’ proportions

using TPG methods than with SIS method, but not a very significant difference.
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Figure 4.14: 3D view of simulated realizations. Top left: realization using TPG
method with threshold based mask and top right: using MDS mask.

Bottom left: generated realization with SIS method and bottom right:
TPG realization using global mask.
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Figure 4.15: Simulated realizations at elevation 700 (m) using TPG simulation and
SIS simulation methods.

4.6 Summary

In this chapter, the importance of using a locally varying mask in the presence of a

trend has been demonstrated through a case study. It is usually not realistic to consider

70



a global truncation mask when there is a higher probability of having some rock types
in some areas than in others. TPG simulation is able to impose spatial changes in the
categories proportions by adopting an appropriate mask for every location. Simulation
with locally varying mask generates realistic images of deposits with a complex geology.
LVP with the threshold based mask is fast but required more CPU time in use of LVP

with MDS mask. To address this limitation, use of an up scaled trend is possible.
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Chapter 5

Correlation between Underlying
Gaussian RFs in TPG Simulation

Underlying Gaussian RFs in TPG simulation should be defined in a way that describes
different spatial behavior of a category or group of categories after truncation. Usually,
Gaussian RF's are considered as independent variables in TPG simulation. Correlation
depends on the construction of categories. Correlation between Gaussian RF's impacts
the calculation of variograms and mask thresholds from the experimental proportions.
Depending on the case, TPG models can be obtained by using dependent or indepen-
dent Gaussian RF's, or any linear transform of RFs, or translated RFs. This chapter
investigates the effects of correlated underlying Gaussian RFs on TPG simulation.
Generally, a very complex truncation method or correlation between the underlying
Gaussian RF's can be selected if it is required for ordering or for allowing all possible
transitions between categories. Complex geological relationship between categories can
be produced by choosing different Gaussian RFs.

In TPG simulation, Gaussian deviates can be correlated. Galli et al. (1994) showed
the potential of TPG method to produce geologically realistic images by truncation of
two or more Gaussian RF's, which can be either correlated or not. Le Loch, Beucher,
Galli, and Doligez (1994) used the linear model of coregionalisation to generate cor-
related Gaussian RFs and showed that transition between categories approximately
depends on category proportion and the correlation between Gaussian deviates. They

found that even using uncorrelated Gaussian RF's, the categories in truncated simula-
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tion are not independent. Le Loch and Galli (1997) addressed the structural analysis
and conditional simulations in two steps when underlying Gaussian deviates are linked
by the linear model of correginalisation. Armstrong and Galli (1999) explained the
mathematical theory of truncated bigaussian simulation when the second Gaussian
realization is a partial derivative of the first Gaussian realization.

Dowd, Pardo-Igtizquiza, and Xu (2003) introduced the correlation coefficient as a
tuning parameter that can be used to improve the fit of the experimental indicator
semivariogram and cross semivariograms. They developed a program to calculate the
goodness-of-fit between the experimental and theoretical indicator semivariograms and
cross semivariograms based on semivariograms and the correlation coefficient of the
Gaussian RFs. Lin, Oliver, et al. (2003) used correlated RFs for historic production
(history-matching) to generate the conditional simulation of facies boundaries by TPG
method. They pointed out that results are consistent with the geological model of
observed facies as well as historic production. Galli et al. (2006) used an example
involving algal bioconstructions in the outcrops of the Paradox basin (Utah). They
considered complex horizontal and vertical transitions between the mound and inter
mound facies, together with the complex geometry of the algal mounds. They used
different threshold based masks for different areas; to accentuate the draping of the
one facies over another, a correlation coefficient of —0.5 between the two Gaussian RFs
was considered. In this case, correlation between Gaussian RFs is used to reproduce
the observed geological feature in the data.

The correlation coefficient p can be used to introduce an additional degree of free-
dom and more flexibility in the modeling. The constrained propagative Gibbs sampler
(Emery et al., 2014) has been generalized by Astrakova et al. (2015) to address the

problem of conditioning of correlated Gaussian RF's to categorical data.

5.1 Correlation Matrix

Correlation varies between —1 < p < 1. The correlation matrix for two Gaussian

RFs is formulated as Eq. 5.1:
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1
= ’: (5.1)

There are coregionalization models with two Gaussian RFs (Z;, Z5) in bivariate
Gaussian simulation. For instance, the standard linear coregionalization model where
Zy1 and Z3 are linear combinations of independent factors can be used. Consider Yi(u)
and Y5(u) as two independent Gaussian RFs (N (0,1)) with the covariances py, (h) and
py,(h). Therefore Z;(u) and Z3(u) can be defined as Eq. 5.2 (Le Loch & Galli, 1997):

Zi(u) =Yi(u) and Zy(u)=pYi(u)+ v1— p?Y5(u) (5.2)
where:
pz,(h) = py;(h) and  pz,(h) = p°py; (h) + (1 — p*)py, (h) (5.3)

py,(h) = pz,(h) and py,(h) = PZz(h}l—_,chpyl(h)

pz17,(h) = ppz, (h) is the cross-covariance, and the covariance matrix ) is defined

as Eq. 5.4:

1 p pz,(h) ppz,(h)
3= P 1 ppzi(h) pzy(h) (5.4
pzy(h)  ppz,(h) 1 p
ppz;(h)  pz,(h) p 1

Generally, when the correlation coefficient is zero, Z1(u), Z2(u) correspond to Yi(u),

Y5(u). When the correlation coefficient is 1, Z;(u), Z3(u) both correspond to Y;(u)
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and is the simple truncated Gaussian method. When the correlation coefficient is —1,
Zi(u) correspond to Yi(u) and Zz(u) correspond to —Yi(u). It means that Zz(u) is
like Z;(u), but with an opposite categorical ranking, for instance 1,2, 3 becomes 3, 2, 1.

A synthetic example is considered here to illustrate the effect of correlated Gaussian
RFs on the proportion of the categories, thresholds of the mask, variogram of the
correlated Gaussian variable, and variogram of indicator variables.

Two independent and unconditional Gaussian realizations (M = 2) Y; and Y3 are
simulated by a sequential Gaussian simulation program (SGSIM, (C. V. Deutsch et
al., 1992)) with a spherical variogram model but a different anisotropy (Figure 5.1).
The modeling grid is composed of 256 x 256 blocks of 10 x 10m? for both realiza-
tions. Consider global proportions of categories to be 0.304, 0.175, 0.205 and 0.319,
respectively for k = 1,--- ,4 and Figure 5.2 as the truncation rule to truncate Gaus-
sian deviates into categories. Here, partitions defined by rectangles are parallel to
the axes and defined by four thresholds (two thresholds for each RF Z; and Z3).
Since there is a linear relationship between (Z;, Z5) and (Y7, Y3) based on Eq. 5.2,
the rectangles in the plane (Z;, Z3) become parallelograms in the plane (Y1, Y3).
The lines parallel to Zs (Eq. 5.2; Z1 = constant) remain parallel to Y2 (Eq. 5.2;
Y] = constant), and the lines parallel to Z, (Eq. 5.2; Z5 = constant) become oblique
(Eq. 5.2; pYi(u) + /1 — p?Ya(u) = constant).

Consider four thresholds to define the area of each rectangle, two threshold [a1, as]
related to Z; and two threshold [by, by| related to Z,. Consider p as the correlation
between Gaussian RF's. Therefore, the proportion of categories at u can be calculated

by Eq. 5.5 (Le Loch & Galli, 1997):

P = P(al < Z](U.) <as & b1 < ZQ(U.) < 52} (5.5)
= P(al <Y (u) <az & b1 < le(u) ++/1— pQYQ(ll} < bz)
= Pla <Yi(u)<ay & blLYl(“) <Ys(u) < M}
1—p? 1—p2?
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Figure 5.2: Mask for K = 4 categories using two Gaussian deviates.

Therefore, when one knows the thresholds and uses the independency of Gaussian

variables, Y7 and Y3 have (Eq. 5.6):
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bop—pw

P = ] / VI f(v) f(w)dvdw (5.6)
ai b —pw
\/ﬁf
(].2 b
/ \/—) G( \/—}]f(w)dw
where:
Dk - proportion of category k;
() - probability density of Gaussian distribution f(v) = m _E(”;“" 2.
G(.) - cumulative Gaussian distribution;

Since there is no closed form for the cumulative Gaussian distribution, numerical
approximation methods (Beasley & Springer, 1985) are used to calculate the proportion
of z,, for the lower tail area of Gaussian distribution related to specified value p (Eq. 5.7).
This rule (Eq. 5.6) is true for all the possible configurations of threshold based of masks.

For instance, in Figure 5.3 proportion of category one with known p = 0, as = —0.825,

and by = —0.521 can be found by Eq. 5.8. The same rule is applied for all other
categories.
1 _lwv—p,
= e — =G(z 5.7
= [ e =C) (57)
Zp = l(pk:)

m = [m / b;f(V)f(w}dvdw= / :’825 / :‘521 FVf(w)dvdw  (5.8)

—0.825
- f [G(—0.521) — G(—00)] f(w)dw = 0.304

—od

There is a one-to-one relation between the proportion of categories and the threshold

values of the mask when p = 0. Therefore, by using the proportion of categories and
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Figure 5.3: Evaluation of proportion of category one using four thresholds.

correlation between Gaussian RF's, the threshold values can be computed.

For the specified mask, distribution of the categories three and four versus the
others are controlled by a threshold on Gaussian number one Z;. The distribution
of categories one and two are controlled by a threshold on Gaussian number two Zs.
In the next two sections, the effect of correlation on the simulated realizations and

threshold mask are investigated.

5.2 Effect of Correlated Gaussian RFs on TPG Realiza-
tions

Consider using the global thresholds which are defined based on the global pro-
portions of categories regardless of correlation between Gaussian deviates (p = 0.0).
Figure 5.4 shows the behavior of the realizations when correlation ranges from —0.98
to 0.98 (Figure 5.5). In this case the Gaussian RFs are truncated based on the global
thresholds regardless of correlation. In all cases the mask is constant but the propor-
tions of categories are different for each correlation value.

As the correlation increases to positive values, category two almost disappears. Due
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Figure 5.4: Truncated realization for different correlation between Gaussian deviates
(p € (—0.98,0.98)) when consider global thresholds (mask).
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Figure 5.5: Scatter plot of variation of correlation between Gaussian deviates
(—0.98,0.98).

to the completely linear relation between the Gaussian RF when p = 0.98 (Figure 5.6),
there are no points in the area representing category two. Therefore, by fixing the mask
and correlation coefficient between Gaussian deviates, the proportions of categories are
changed. Based on the Eq. 5.2, Z; and Z3 correspond to Y;(u) and a simple truncated

Gaussian simulation (category 1, category 3, and then category 4) is the result.
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Figure 5.6: Scatter plot of Gaussian deviates with p = 0.98 and global mask.

Figure 5.7 demonstrates how the global proportion of categories vary for the men-
tioned mask to have fix thresholds regardless of the correlation coefficient value between
Gaussian RFs. Since categories three and four are controlled by only Z;, correlation

has no impact on the proportions of these categories as expected (Z1(u) = Yi(u)).
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Figure 5.7: Categories proportions for each correlation coefficient with same mask.

Also, correlation has an impact on the variogram of Z5. As the correlation increases,
the variogram of Zs tends to be similar to the variogram of Z; (Figure 5.8). When the

correlation is —1, Z; corresponds to Y;(u) and Zs corresponds to —Y7(u).
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5.3 Effect of Correlated Gaussian RFs on Mask

For a specific mask, the proportion of each category and the correlation between
the underlying Gaussian RFs determine the thresholds. Consider using the global
proportion of categories. To honor the global proportions of categories, if the p # 0, the
thresholds of mask are changed. Figure 5.9 shows the behavior of truncated realization
when correlation between Gaussian deviates is changing from —0.98 to 0.98.

When the correlation is —1, Z; corresponds to Y7 (u) and Z5 corresponds to —Y7(u).
Therefore, Zs is similar Z;, but with an opposite categories ranking (2,1,4,3 becomes
1,2,3,4). An increasing border effect from p = 0.0 to p = 0.98 is obvious and the
category two progressively wraps around the category one. The category one progres-
sively wraps around the category two. Also, category two and three rarely transition
to each other and they are almost separated by category one when the correlation is
around —0.98 while the transition increases as the correlation become closer to pos-
itive value 0.98. Figure 5.10 shows the variation of the threshold in the mask to be
matched to the global proportions by changing correlation. When Gaussian one and
two are independent (p = 0.0), the threshold display looks like the masks weighted by
the proportions.

The correlation impacts the variogram of categories. In Figure 5.9 when the corre-
lation is —0.98 (first image top left), it is obvious that category two is more continuous
than category one, but by raising the correlation to 0.98, opposite continuity can be
seen (last image in bottom right) and category one is more continuous than category
two. Variogram maps of categories by changing the correlation coefficient between the
underlying Gaussian realizations are shown in Figure 5.11 to Figure 5.14.

Correlation plays an important role in the variogram of category one and two, but
not three and four. The mask also is an important factor in the behavior of the var-
iogram. Since categories three and four are controlled only by Z;, having constant
threshold values, constant proportion and the same variogram map for these two cate-
gories, regardless of the correlation coefficient between Gaussian RFs, is predicted and

expected.
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To honor the global proportion of categories, thresholds are adjusted based on the
correlation between Gaussian functions. A program ” corr_tpgsim” (Appendix, section
A.3) is developed to simulate with correlation. The user can define any configuration of
a threshold based mask and test how correlation between Gaussian RFs will change the
thresholds of the mask and the resulting truncated realization. The mask thresholds
and the final truncated realization are outputs of this program. In addition, for a

fixed threshold mask, the user is able to check how the global proportions of categories

change in TPG simulation with respect to the correlation between Gaussian RF's.
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Figure 5.11: Variogram map of category number one with different correlation coef-
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Figure 5.14: Variogram map of category number four with different correlation coef-
ficients.
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5.4 Summary

This chapter investigated the impact of correlated underlying Gaussian RFs on
the threshold mask which is the most common type of mask and truncated realization.
Correlation affects the mask thresholds from the experimental proportions and changes
the variograms of indicator variables. Here, a specific threshold based mask is consid-
ered as an example to demonstrate the effects and a program is presented to calculate
thresholds and proportions for any other configurations.

Different studies have shown that correlation between RFs can be considered due
to different reasons, such as improving the fit of experimental indicator variograms,
capturing observed specific geological feature, and sometimes allowing some transitions
between categories. As Section 5.3 demonstrated, correlation can input the continuity
of categories after truncation. Depending on the data set, correlation between RF's can
make the categories more or less continuous in truncated realization. It may help to
transfer the observed short rage of continuity of the categorical data to the categorical
model.

Correlation between Gaussian functions can change the global proportion of the
categories or the thresholds of the mask and accordingly the transition between cate-
gories. Also, correlation can affect the variogram of the correlated Gaussian variable
as well as the variogram of the desired indicator variables by changing the proportion
of categories or mask thresholds.

In summary, considering correlated or uncorrelated Gaussian realizations is a choice
that has to be made depending on whether a strong border effect is observed in the
available data set. The general recommendation is to use uncorrelated Gaussian RFs
to avoid any complications unless the use is helping to model some natural phenomena.
The impact of the correlation between Gaussian RFs can be tested using the developed

program.

90



Chapter 6

Variogram Optimization in TPG
Simulation

The inference of the variogram models for the underlying Gaussian realizations is an
important aspect of TPG simulation method. Continuity of the categories is controlled
by the variogram of each Gaussian variable. The relations between all these variograms
are complex functions of the truncation. These variograms should be selected in such
a way that the original categorical variables have the correct spatial structure after
truncation. In this chapter, three different methodologies are proposed to address this
problem. In the first methodology, an optimization framework is introduced to deter-
mine the input variograms. Initially, the optimization is brute force with the best set
of variograms carried forward; the second local refinement step is important in obtain-
ing reasonable variogram reproduction models. In the second methodology, a neural
network (NN) is presented to help determine the optimal input variograms. Finally,
in the last methodology an optimization is proposed which targets the covariance or
variance map of each categorical variable and attempts to select the optimum input
variograms to best reproduce the spatial structure of each categorical variable. This

method best reproduced the target categorical variable variograms.

6.1 Variogram Optimization

Variogram modeling of underlying Gaussian deviates in TPG method is very im-

portant for simulating geological domains. Direct adjustment to the experimental
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variograms is not possible since the only available experimental indicator variograms
are those of the indicator functions describing the categories. Kyriakidis, Deutsch,
and Grant (1999) considered approximately transforming the calculated indicator var-
iograms to normal scores variograms with two categories. Therefore, the variogram
inversion is calculated using numerical integration of the bivariate Gaussian distribu-
tion. Remacre and Zapparolli (2003) used an iterative inversion approach to find the
relationship between experimental indicator variograms and the covariance model of
the underlying Gaussian variables. Also, Mariethoz et al. (2009) proposed to adjust the
ranges of the variograms of the multi-Gaussian fields iteratively through an inverse pro-
cedure until the indicator variograms of the resulting truncated simulation matches the
experimental indicator variograms of the field data. An ANSI computer program was
developed by Dowd et al. (2003) to perform conditional or unconditional TPG simula-
tions using a threshold based mask and indicator covariance and cross-covariances. But
the important question here is: how the categories’ variogram should be assigned to the
underlying Gaussian deviates? Direct adjustment from the experimental variograms
is not possible and the inference of the spatial structure of the Gaussian variables to
obtain the distribution of categorical variables is very difficult.

The theoretical link between the variogram of the underlying Gaussian variables
and the indicator variogram of the categorical variables for the threshold based mask
is explained by Armstrong et al. (2011). To better match the indicator variogram
of categories, an iterative approach is used to define the variogram for underlying
Gaussian variables. This method is limited to the threshold based mask and is not
appropriate to other types of truncation rules. Also, a numerical derivation of the
variogram of the underlying Gaussian variables based on the Monte Carlo simulation
is proposed by Zagayevskiy and Deutsch (2015). A sequence of lag distances which
discretizes the correlation range of the categorical variables is independently optimized
and for each lag distance thousands of pairs are simulated and the average indicator
correlation after truncation is calculated. Until the convergence, the spatial correlation
of the underlying Gaussian variables is adjusted. This method uses the major direction

of continuity of the first important category to optimize the spatial correlation of the
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underlying Gaussian variables.
In this chapter, three different techniques are adopted to address the challenge
of finding the optimum spatial structure of underlying Gaussian realizations to best

reproduce the spatial structure and distribution of target categorical variables.

6.2 Variogram Optimization using Local Refinement

An optimization is proposed to iteratively adjust the parameters of the variograms
of the underlying Gaussian realizations. To start, the parameters of the initial vari-
ogram model, such as ranges of continuity, are defined from the experimental indicator
variograms of the categorical data. Using these variogram models, a TPG simulation
is constructed. Then, the indicator variogram of the categories from the simulated
truncated realization is calculated. The adjustment of the initial parameters of the
variograms is based on the objective function until an acceptable match between the
indicator variogram model of data and the computed indicator variograms from sim-
ulated realization is achieved. Figure 6.1 represents a sketch of the refinement of the
nugget effect and horizontal range of a Gaussian deviates.

The objective function (Eq. 6.1) is defined by the sum of the squared difference
between the modeled indicator variogram of the input data (Figure 6.3) and the in-
dicator variogram of categories in the simulated realization. The objective function is
considered for sequence of lag distances which discretize the range of the categorical
data lags weighted by lag separations to match target indicator variogram models for

both horizontal and vertical directions.

KnD1

O(h) — ZZ E % (,yk(h;j)model . ,yk(h;j)realization)2 (61)

k=1 j=1

where:
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K - the number of categories;

nD - the number of directions for variograms (horizontal, vertical);
h - lag distance;
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Figure 6.1: Schematic of refinement of two parameters. Large Xs represent the value
of parameters for coarse optimization and the highlighted X indicates the
best pare of nugget effect and range parameters. The refinement around
the highlighted X provides optimal values.

Usually, the short range variogram structure is more important since it gives insight
into the the variability of variables of interest. So, an inverse distance weighting, %, is
incorporated to assign higher weights to the objective function for shorter ranges. This
weight is adjusted to give more or less weight to the vertical/ horizontal variograms as
needed for particular applications.

As the number of categories and underlying Gaussian realizations to project in-
creases, reproducing the variograms becomes more difficult because of the reduced
flexibility using a limited number of Gaussian deviates. If certain categories are deemed
more important, they could be given more weight in this scheme.

First, the optimization is constrained with the best set of variograms for the initial
step. Then a second local refinement is considered to obtain a reasonable model. A
case study simulating rock types at a mineral deposit is presented to illustrate the

implementation of the proposed methodology.
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A mineral deposit is simulated with data from drill holes with measurements for four

different rock types. Figures 6.2- 6.3 demonstrates the location map of available data

and the variogram models of these rock types, respectively. The transition probability

between the rock types is used to define a truncation rule between the rock types in

the data. The transition probability matrix (Eq. 6.2) for this data is as follows:
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Figure 6.2: Location map of available data.
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Rock Type 1
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Rock Type 3
Rock Type 4

From the transition probability matrix, it is expected that rock types two and four

are connected to all other rock types and rock type one is connected occasionally to rock

type three. Figure 6.4 shows the truncation mask for this data set (see Section 4.2);
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Figure 6.3: Experimental and fitted variograms in horizontal (red) and vertical (blue)
directions for available rock types.

the two axes correspond to the values of the underlying Gaussian realizations (Y7 and
Y5) with mean zero and variance of one, N(0,1), and the color codes correspond to the
domain of the different rock types.

The surface area of the different rock types in the threshold based mask corresponds
to their respective global proportions that are estimated by analyzing the available drill
hole data. The global proportions of rock type one, two, three, and four are 0.014, 0.57,
0.086, and 0.33, respectively. The corresponding thresholds of the threshold based mask
are shown in Figure 6.4 (t; = 0.176, t = —1.84, and t3 = 0.84).

Two Gaussian random realizations, Y7 and Y5, are considered, with Gaussian vari-
ogram models with two structures for both underlying Gaussian realizations. Generally,
Gaussian covariance provides smoother boundaries between the rock types than other
types of variograms (Pyrcz & Deutsch, 2014). The Gaussian model has the parabolic
shape at the short distances and provides more continuity. As Figure 6.4 illustrated,

transition between rock types one, three, and four are controlled more by Y5 and tran-
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Figure 6.4: Global threshold based mask with four rock types.

sition of rock type two to other rock types is controlled more by Y7.

To reproduce the variogram model of all the rock types, the determination of the
initial input variograms to generate the Gaussian realizations is important. To achieve
this goal, a N-dimensional space for variogram parameters of the underlying Gaussian
deviates is created for each underlying Gaussian variable and a simultaneous optimiza-
tion is considered. Here, N is the number of parameters that is required to build an
isotropic variogram model with two nested structures. Consider N = 6, which repre-
sents the horizontal and vertical directions’ ranges for each structures, nugget effect,
and contribution of the first structure. Boundaries of this space for horizontal and
vertical directions are selected based on the maximum and minimum ranges between
all four rock types. In the first step, to achieve the best initial solution, optimization is
carried forward with possible combinations of parameters for the underlying variogram
model. Improvement of variogram reproduction of rock types is checked through the
objective function in each combination. The set of parameters with the lowest objective
value is considered as the best initial solution. In the next step, a local refinement is
implemented and optimization is brute forced with the best set of variograms carried
forward. In this step, an optimization search to obtain the optimum solution is limited
to the neighborhood of the best set of variograms from the previous step.

Finding a balance between the variogram reproductions of all rock types is necessary
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and local refinement is applied for this purpose. Depending on the importance of the
rock types, the final variograms can be selected.

Figure 6.5(a) puts higher weight on the variogram reproduction of rock type four,
Figure 6.5(b) puts higher weight on the variogram reproduction of rock types one and
three, and Figure 6.6 shows a balanced approach that attempts to reproduce all four
rock types for both horizontal and vertical directions. Based on the results, rock type
two always shows good reproduction.

With optimized parameters, Gaussian function Y7 is modeled with a Gaussian co-
variance model with two nested structures with ranges of 600 (ft.) in the horizontal
direction and 180 (ft.) vertically with a nugget effect of 0.05. The ranges of Gaussian
function Y5 are longer than Y] in all directions. The ranges are 700 (ft.) and 280 (ft.)
in horizontal and vertical directions, respectively. Y5 also has a Gaussian variogram.
Reproduction of input proportions of the rock types is shown in Figure 6.7. The input
proportions are reproduced well. In addition, transition probabilities are calculated
from the final TPG realization to compare to the transition probability matrix calcu-
lated from the data. TPG simulation reproduced the data transition probabilities from
rock types two and four to other rock types well. There is a slight error in transition
reproduction of data for rock types one and three to other rock types that is the result

of the low global proportion of these rock types (Eq. 6.3 and Figure 6.8).

0.5704 0.1627 0.0000 0.2669
0.0024 0.8757 0.0285 0.0934
0.0000 0.1384 0.7108 0.1507

0.0061 0.1445 0.0480 0.8014

98



1.z0_ Indicator Variogram Rock Type 1 120_ Indicator Variogram Rock Type 2

1.00.] = ——— _"—:_7', ] S ——
0.80_] 080_]
0.60_] x Reproduction 060 :
7 1 . ¥ E Reproduction
0.40_] 0.40_]
0.20.] 020
0.00 T T T T T 1 000 T T T T T 1
0. 200. 400, 600. 800. 1000. 1200. Q. 200. 400. 600. 800. 1000. 1200.
Distance Distance
P 2(]_1'.|'r|i't‘c.-auor Variogram Rock Type 3 120 Indicator Variogram Rock Type 4
1.00] s —— = on] - : —
0.80_] 0.80_|
Y 90 . ’Y bt Reproduction
x Reproduction 1
0.40_] 0.40_]
0.20] 020}
0.00 1 T T T T T 1 0.00 1 T T T T T 1
0. 200. 400. 600. 800. 1000. 1200. 0. 200. 400. 600. 800. 1000. 1200.
Distance Distance
(a) Good variogram reproduction of rock types two and four
1.20_ Indicator Variogram Rock Type 1 120_ Indicator Variogram Rock Type 2
1.00.] - P == = = 100 . —
0.80_] 080_]
0.60_] % Reproduction 060 :
7 1 R ¥ 1 Reproduction
0.40_] 0.40_]
0.20.] 020
0.00 T T T T T 1 000 T T T T T 1
0. 200. 400, 600. 800. 1000. 1200. Q. 200. 400. 600. B0O. 1000. 1200.
Distance Distance
5 m_fndicator Variogram Rock Type 3 120 Indicator Variogram Rock Type 4
1.00] — 1.00_] ——
0.80_] 080_]
Y S0 . ’Y ki Reproduction
1 x Reproduction 1
0.40_] 040 ]
0.20] 020 ]
0.00 1 T T T T T 1 0.00 1 T T T T T 1
0. 200. 400. 600. 800. 1000. 1200. 0. 200. 400. 600. 800. 1000. 1200.
Distance Distance

(b) Good variogram reproduction of rock types one and three
Figure 6.5: Variogram reproductions of horizontal direction(gray lines). Red and

black lines represent variogram model of rock types and and the average
reproduction of 50 realizations.
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Figure 6.6: Balanced reproduction of model variograms of all four rock types with
TPG method (gray lines), and the average of 50 realizations (black line).
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for 50 realizations. The input proportions are shown with the black line.
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Remarks

The proposed optimization finds reasonable local optimums for a given set of indica-

tor variograms but depends on the initial parameters; random restarts are important.
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The proposed method is iterative and provides reasonable variograms for the Gaus-
sian variables in TPG simulation in an effort to reproduce the desired variograms and
often can be used directly; in some cases, the practitioner may want to manually ad-
just the final variogram fit depending on site specific concerns. The limitation of this
work flow is the required computational time for optimization as the number of rock
types increase. Also, defining the best set of variograms to start the optimization is a
challenge. The entire solution space is not fully explored as this is found to be very

computationally expensive.

6.3 Variogram Optimization using a Neural Network

NN offers a non-algorithmic approach to geostatistical simulation with the possibil-
ity of automatic recognition of correlation structure. A NN is presented in this section
to help determine the optimal input variograms used to generate the underlying Gaus-
sian realizations.

The field of NNs has been applied widely in the past fifteen years and is still de-
veloping quickly. NNs have been trained to perform complex functions in several fields
of application such as pattern recognition, identification, classification, speech, vision
and control systems. Currently, problems that are difficult for human or conventional

computers can be addressed by NNs.

6.3.1 Artificial Neural Network (ANN)

Figure 6.9 shows a typical network diagram. Each processing element (or unit) in
the network can be schematically represented as a node. Also, connections between
units are indicated by the arcs. The arrowheads on the connections represent the
direction of information flow in the network. An input on the left layer of processors
can activate many units of the hidden-layer (second-layer). The activity on the hidden
layer activates the units that are recognized on the output layer. The comparison of
the output and the target is used as a measurement to adjust the network until the
network output matches the target. Simple elements are working in a parallel way in

the form of a directed graph in NNs. The connections between elements define the
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network function. When one adjusts the values of the connections between elements, a
NN can be trained to perform a certain function. The NN can offer a feasible solution
and better understanding of the problem. To train a network in the supervised learning,

many input/output pairs are usually used.

Hidden nodes layer

Input nodes layer

Input x1 __ . Output nodes layer
p N Qutput y1
Input x2 |
Output y2

Input x3

’ . N/ Neuron

Figure 6.9: Schematic representation of ANN. (Tadioun, n.d.)

There are different training methods, but the supervised training methods are fre-
quently used. Other networks can be obtained from unsupervised training techniques
or from direct design methods (Hastie, Tibshirani, & Friedman, 2009). For instance,
to identify groups of data an unsupervised network can be used. A binary threshold
unit as a computational model for an artificial neuron is proposed by McCulloch and
Pitts (1943) (Figure 6.10). This mathematical neuron computes a weighted sum of its
n input signals, x;; = 1,2,--- ,n and generates an output of 1 if this sum is above a

certain threshold u. Otherwise, an output of 0 results. Mathematically, Eq. 6.4:

y=2~0 ij;t:j —u (6.4)
j=1

where:
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0 - a unit step function at 0;

wj - the synapse weight associated with the %" input;
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Figure 6.10: McCulloch-Pitts model of a neuron (McCulloch & Pitts, 1943).

A positive weights model relates to excitatory synapses and a negative weights
model relates to inhibitory synapses. The McCulloch-Pitts method has been developed
in several different models, for instance, in the use of other activation functions instead
of the threshold function (Gaussian, Piecewise linear, Sigmoid, Softplus and Rectified

linear), as shown in Figure 6.11. ANNs can be grouped into two groups based on the

connection design:

e Feed-forward networks: have no loops in graphs

e Recurrent (or feedback) networks: have loops due to feedback connections

Different network behaviors are found based on different connectivities. In general,
feed-forward networks are static and one set of output values is produced instead of
a sequence of values from a certain input. The important property of feed-forward
networks is that they are memory-less which means their response to an input is in-
dependent of the previous network state. Alternatively, feedback (recurrent) networks
are dynamic organizations. The neuron outputs are calculated, once a new input is
presented. Because of the feedback paths, the inputs to each neuron are then modified,
which leads the network to enter a new state. Different learning algorithms are required

for different network designs.

The ability to learn is an important attribute of intelligence. In the ANN for learn-
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Figure 6.11: Different types of activation functions. Top from left to right: Gaus-
sian, Piecewise linear. Bottom from left to right: Sigmoid, Softplus and
Rectified linear.

ing, network design and connection weights should be updated properly. From the
available training data, the network must learn the connection weights. By iteratively
updating the weights in the network, performance is improved. One of the most impor-
tant advantages of ANN is that it learns the underlying rules between the variables of
an interested population from the relation of a given input/ output instead of following

the rules that assigned by humans.

6.3.2 Application

Section 6.3.1 introduced the basic concepts of an ANN model and its learning
algorithms. Now an application of ANN is discussed to illustrate how a one layer
feed-forward network is used in variogram parameters optimization. Categorical data
are available and the proportions of categories and the transition probability between
the data set are known from the available data. The relations between the categories
can be different depending on the type of geology, and the selected mask imposes the
relations and contacts between the categories. Here, the transition probability between
the categories is used to characterize the spatial distributions between the categories

in the data.

105



In this study a synthetic 2D example with three categories and two underlying
Gaussian random realizations is considered to test the potential of ANN in variogram

optimization. Figure 6.12 shows two reference realizations that are generated with

spherical variogram models.

ussian R

Gaussian Realization 2

3.000

North

0.0

-1.000
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-3.000
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Figure 6.12: Underlying Gaussian realizations (500 x 500 cells).

Gaussian function Y; is modeled with a spherical covariance model with one nested
structures with the ranges of 1318 ft. in the minor horizontal direction and 2010 ft.
in the major horizontal direction. The nugget effect equal to 0.30 has been selected
for this realization. The ranges of Gaussian function Yo are shorter than Y7 on all
directions. The ranges are 416 ft. and 1527 ft. in minor and major horizontal directions
with azimuth of 153° degree from north for both realizations. Y5 also has a spherical
variogram with nugget effect equal to 0.27. These two realizations are truncated using

an MDS mask to create interested categories (Figure 6.13).

Global MDS Mask TPG alizatioq

Code_Three Code_Three
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Gaussian 2

Code_One Code_One
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Figure 6.13: MDS mask with 3 categories and a corresponding truncated bigaussian
simulation.
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A feed-forward ANN is used for ANN modeling. The nodes are considered as com-
putational units and ANN considers the nodes as artificial neurons. In the first step a
data base that defines the relation between input and output is built. The inputs of this
network are the indicator variogram parameters of categories in the categorical data
set. The network is trained for different ranges of inputs. For a 2D categorical data
set, there are four relevant parameters for each category with one spherical structure:
Nugget effect, strike, maximum range of continuity, and minimum range of continuity.
Three hundred pairs of Gaussian realizations with random variogram parameters are
generated. A specific transition probability matrix and mask for sequence set of pro-
portions of categories are considered for truncation of simulated Gaussian realizations.
The indicator variograms of categories are calculated and fed as inputs to the ANN,
while the output of ANN is the variogram parameters that have been used to generate
the underlying Gaussian realizations.

Connection strengths and transfer functions control how much of the activation
value is passed on to the next node. The accumulated activation value that each node
receives from its own activation function is modified based on its transfer function and
passed through the network to the next node. To develop a good ANN, the transfer
function must be selected properly. For instance, a neuron may have a bell-curve style
firing pattern, threshold, sum its inputs, or average them, or something completely
complicated. The activation flows through the network in one direction, from input
nodes, through the hidden layers, until eventually the output nodes are activated. If
a network is suitably trained, this output should match the known values in some
meaningful way. In this study, a full connection is considered. The network has 12
inputs and 8 outputs (Figures 6.14). Based on these relations, connection strengths,
inhibition/excitation conditions, and transfer functions can be determined. Table 6.1

summarizes the results of the ANN based on five different activation functions.

The most popular method of learning is Back-Propagation. To begin, the network
is initialized; all the connections are set randomly. A network that has twelve inputs,

one hidden layer with ten nodes and eight output neurons created in PyBrain (Schaul
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Designed neural network with full connections and one hidden layer.

Table 6.1: Summary of results for created ANN based on different activation func-

tions.

SigmoidLL. GaussianL. Linearl. TanhL. SoftmaxL || True

NE1 0.35 0.22 0.34 0.23 0.23 0.3
Strikel 186.9 273.3 182.2 210.3 187.9 153.0
hminl 998.3 1238.3 991.3 1164.8 944.8 1318.0
hmax1 2040.4 2031.7 1907.5 2029.2 2072.0 2010.0

NE2 0.26 0.21 0.25 0.26 0.22 0.27
Strike2 186.3 311.8 189.0 200.5 187.5 239.0
hmin2 474.5 473.1 442.3 453.7 480.5 416.0
hmax2 1319.4 1286.0 1251.3 1260.1 1268.1 1527.0
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et al,, 2010). The number of nodes in a hidden layer is usually between the size of
the node in the input and the output layers. Hidden layers are connected with full
connection objects. The network is trained for 1000 epochs. An epoch is a forward
and one backward pass through the entire training set. A back propagation trainer
(Rumelhart, McClelland, Group, et al., 1988) is used for set up a trainer that basically
takes the network and training data set as input. Five different PyBrain supervised
trainers are used. Table 6.2 summarizes the percent error in each parameter for each
activation function. ANN with sigmoid and hyperbolic tangent activation functions

predicts the outputs with fewer errors.

Table 6.2: Summary of the percent error in each parameter for each activation func-

tion
SigmoidlL. Gaussianl. Linear. TanhL SoftmaxL

NE1 17.52 23.86 15.96 10.00 22.18
Strikel 22.17 78.63 19.09 37.45 22.81
hminl 24.25 6.04 24.78 11.61 28.31
hmax1 1.51 1.08 5.09 0.95 3.09
NE2 1.74 22.69 6.51 1.40 20.16
Strike2 21.82 103.79 23.54 1.40 20.16
hmin2 14.08 13.73 6.33 9.07 15.51
hmax2 13.59 15.78 18.04 17.48 16.95
Average % Error 14.58 33.20 14.92 14.88 18.94

Remarks

ANN algorithms can be used to detect complex nonlinear relationships between
input variables and all possible interactions between output variables. The proposed
optimization addresses the problem of variogram reproduction for two Gaussian vari-
ables in a 2D case for a specific mask. The major disadvantages of this algorithm are
its black box nature and limited flexibility in handling a verity of inputs. It can be

hard to adjust and verify that the network is well trained.
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6.4 Variogram Optimization by Iteratively Adding Com-
plexity

The key to the modeling approach presented in this section is adopting an opti-
mization to find the optimum variograms of underlying Gaussian deviates to obtain
the appropriate indicator variogram reproduction of each category after truncation.
The proposed optimization targets the covariance or variance map of each categorical
variable and attempts to select the optimum input variograms to best reproduce the
spatial structure of each categorical variable. A novel optimization method is proposed
which iteratively increases the complexity of the covariance functions to obtain the best
fit for the original categories.

Optimization begins with a simple initial random covariance function; optimization
is used to obtain a local minimum. The initial parameterization of the variogram
is as simple as possible (one structure and no horizontal anisotropy for each Gaussian
deviate). Gradient optimization or simulated annealing optimization can be selected to
find the optimal covariance map for the underlying Gaussian realizations. As with any
optimization methods, the important part is the formulation of an objective function.
The emphasis of the proposed optimization is on finding the appropriate covariance map
for underlying Gaussian realizations that honor the pattern statistics in the original
model and minimize the objective function. In successive iterations, complexity is
added to the variogram in the form of additional variogram structures and anisotropy,
improving the fit to the desired categorical variable variograms. This procedure is
repeated for the desired number of variogram structures. Each step increases the
difficulty of optimization and always results in a closer match to the desired categorical
variograms. The balance between simplicity and better variogram reproduction is
discussed. A synthetic example is presented to illustrate the implementation of the

proposed method.
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6.4.1 Application

This section explains the use of the proposed method to optimize variograms of
underlying Gaussian deviates. In the first step, a simple random variogram model with
one structure and no horizontal anisotropy for each Gaussian deviate is considered
as the initial parameterization. The next step is the integration of the multivariate
Gaussian probability distribution to simulate Gaussian values. LU simulation (LU)
is applied here to simulate the Gaussian deviates using the spatial covariance matrix
with a large number of points. In this method, the covariance matrix C' is decomposed
by Cholesky decomposition to the lower matrix (L) and upper matrix (U). A random
number generator generates a vector of uncorrelated standard normal values (W), and

then the correlated values are calculated by Eq. 6.5:

Y(u)=LW(u), ueD (6.5)

A TPG simulation is constructed by truncation of the generated Gaussian realiza-
tions using an appropriate mask. Here, an MDS mask is used to obtain the truncation
mask automatically from the transition probabilities determined from the input data;
thus, in the proposed work flow, the truncation rules are automatically calculated as
well as the input variograms for each Gaussian deviate.

The adjustment of the initial parameters of the variogram is based on the objective
function until an acceptable match between the covariance map of data and the com-
puted covariance map from the simulation results for each category is achieved. The
objective function (Eq. 6.6) is the difference between the modeled covariance maps of
the indicator variables (Cov™%!(h;)) and the covariance maps of unconditional trun-
cated simulation (Covjealization(p,)) weighted by the inverse lag distance of covariance
points in the covariance map to center of covariance map and also weighted by categories
proportions. The N lag separation vectors (h) which are the most compact arrange-
ment (see Figure 6.15) are used to calculate objective function. Based on Eq. 6.7, for

each category, any lag vector between two points is considered by decomposing the
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separation vector into three principal components (z;, ¥;, and z;) which are within 3
dimensional range of spatial continuity. Optimization and random restarts are used to

obtain the optimal parameters of the initial simplified covariance structure.

0= Zmz & (k} s (Covf ™! (hy(k)) — Couvfe@=e5om (hy(k)))? (6.6)
1
k) =[G ) (6.7)
ahmaa:(k) ahmm(k} aveﬂ(k)
where:
a - the spatial extent (i.e., ranges) of variability for each principal di-
rection;
K - the number of categories;
w - the weight term;
4 Covari M
A 414 (2 6 ovariance Map
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Figure 6.15: Polar plot of the lag vectors to calculate the objective function
(C. V. Deutsch & Cockerham, 1994).

The spatial extent of the variability for each principal direction is different for each

nested structure and each category. These ranges are often referred to as the major

horizontal direction, minor horizontal direction and vertical direction, according to
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the GSLIB convention (C. V. Deutsch & Cockerham, 1994). By convention, w varies
between 0 and 2 and a series of studies indicate that w = 1 works the best. Higher the
w value, assigns less weight to the covariance values that are far from the origin, and
those points make very little contribution to the outcome.

Two types of optimization are considered here: the Fletcher-Reeves method, which
is a gradient base optimization, and the SA algorithm. Optimization begins with
a random set of variogram parameters to build the initial covariance map and then
iteratively adjusts the parameters to minimize the objective function. After obtaining
the initial solution for variables using the mentioned optimization, more complexity can
be added to the algorithm in the next step by adding more structures. The optimum
solution and objective value of the previous step is used as an initial input and objective
value to the process. The new set of parameters is adjusted iteratively for a certain
number of iterations or until the best match is achieved. Figure 6.16 shows the work flow
for the optimization using a covariance map of categorical variables in TPG simulation

method.
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Figure 6.16: Work flow for covariance map optimization of categorical variable in
TPG simulation method.

The proposed optimization is developed in a program ”vargopt_tpg” (Appendix,

section A.4) to obtain the best fit for the variogram models of underlying Gaussian
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deviates in TPG simulation. This program is able to deal with the complex spatial
continuity of categorical variables. Two types of semivariogram models are specified
in this program to model Gaussian variables: the Gaussian type and stable variogram
type. The Gaussian model is defined by an effective range a and positive variance
contribution value ¢ (Eq. 6.8). Note that instability problems are often encountered
with the Gaussian model with no nugget effect (Posa (1989); Stein and Handcock
(1989)). Therefore, using a very small nugget effect is suggested in this case. The
stable variogram model is defined by Eq. 6.9, with power term wt which varies between
1 and 2 (Chiles & Delfiner, 2009). For anisotropic variogram models, the inner ratio %
is modified as shown in Eq. 6.10, where @maz, Gmin, and a;,eq4 are the ranges of spatial
continuity in principal directions of major, minor, and medium continuities. In this

case, wt is added as a parameter to optimization algorithm.

2
v(h) = c. [1 — exp(— (3;;) )] (6.8)
() = . 1 can(-3(0)™)| (69)
h o hma.?: hm@‘n hmed
E - \/( ahmaa:(k) }2 + (ahmin(k})2 + (amed(k) )2 (6.10)

Case Study

Two Gaussian variables are simulated and truncated to generate a categorical model
that is used as reference (Figure 6.17). The Gaussian variable Y7 is simulated using a
Gaussian variogram with ranges of 16 units in the major direction (West-East) and eight
units in the minor direction (South-North). The Gaussian variable Y3 is simulated with

a isotropic Gaussian variogram with a range of 16 units. The truncation rule is defined
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by the MDS mask with proportions of 0.5, 0.25 and 0.25 for categories one, two and
three, respectively. The transition probability matrix is calculated from the available

data (Eq. 6.11). Figure 6.18 shows the MDS based mask and reference categorical data.

0.9268 0.0461 0.0271
tp(h) = [0.0720 0.8733 0.048 (6.11)
0.0784 0.1014 0.8201

Gaussian Realization # 1
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1.500 1.500

0.5000 0.5000

North

-0.5000 -0.5000

-1.500 -1.500
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| 0.0l
East 100.000 00 East

Figure 6.17: Underlying Gaussian realizations.
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Figure 6.18: Left: truncation rule using MDS mask and right: categorical data.

Figure 6.19 and Figure 6.20 show a slice of 3D representation of covariance of the

off sets for three available categories and the experimental indicator variograms of the

resultant categorical model.
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Figure 6.19: Slice of representation of covariance of off sets for each available category
colored by covariance values.
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In the first step, one anisotropic Gaussian structure with random variogram pa-
rameters of underlying Gaussian deviates is considered. The optimization method
continuously modified the initial parameters until the objective function optimized.
This procedure is optimized for 100 different random restarts and the one with the
smallest objective value is considered as the best match. The algorithm started with
an objective value of 7.18 and stopped with a final objective value of 2.45. Here, the
Gaussian function Y7 is modeled with a Gaussian covariance model with one nested
structure with a horizontally anisotropic variogram. A nugget effect of 0.01 has been
selected for these realizations. In the next step, another structure is added to the previ-
ous covariance/variogram model. The optimization algorithm begins with the optimum
parameters from the previous step. A contribution for each nested structure is added as
an optimization parameter. Input proportions of categories among 100 unconditional
simulations is reproduced very well and presented in Figure 6.21. The final variograms
reproduction among 100 simulations with optimized parameters for both structures is
shown in Figure 6.22. By adding one more structure, the final objective value reduced

to 0.226 and the variogram reproduction of categories improved by 5%.

Category 1 Category 2 Category 3

T I L
—Mean Prop. = 0.499 — Mean Prop. = 0.249 — Mean Prop. = 0.250

Frequency
Frequency
Frequency

035

Proportion Proportion Proportion

Figure 6.21: Input proportion reproduction for all three categories with TPG simu-
lation for 100 realizations. The input proportions are showed with the
black line.
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Figure 6.22: Reproduction of model variograms with TPG in major (red) and minor
(blue) directions using two Gaussian deviates and one nested structures
(left) and two nested structures (right) for all three categories.

Figure 6.23 shows the reference, initial and optimized underlying Gaussian real-
izations and categorical data. The optimized ranges for Y; are 16 units in the major
direction (90° degree) and 11 units in the minor direction. Y5 also has a Gaussian
covariance with optimized ranges of 12 units in the major direction (173° degree) and
10 units in the minor direction. Figure 6.23(c) shows that spatial distribution of ref-
erence categories (Figure 6.23(a)) are preserved in TPG simulation using optimized

underlying variograms models.
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Figure 6.23: Underlying Gaussian realizations and categorical data.

A slice through the representation of covariance of the off sets using initial and
optimized variogram parameters for three available categories is shown in Figure 6.24.
Figure demonstrates how the optimization started with a very different covariance map
as categorical data and converged to the target covariance map of categories in finite

steps.

119



Initial Covariance Map Category 2 Initial Covariance Map Category 3

Initial Covariance Map Category 1
08 0.9 08
= : 3 '
c . 3
E] 1
-40 40 40 X
-10

-20 -10 0 . 10 -20 -10 0 10
X (unit) X (unit)

Y (unit)
Y (unit)

10
X(umt

Optimized Covariance Map Categoryz Optimized Covariance Map Category 3

Optimized Covariance Map Category 1

09
X 08
07
. 06
= = =
< s 2 = 0s
= 3 =
= = = 04
> > - -
_ 5 r 03
e & e 02
40 . 40 40 04
o
X(umt) X(umt) X(umt)

Figure 6.24: Slice through the representation of covariance of off sets. Top: using the
initial variogram parameters and bottom: using the optimum variogram
parameters for three available categories.

6.5 Summary

Three different methodologies for inferring the variogram of the underlying Gaussian
deviates are explained in this chapter. The first relies on iteratively adjusting the
set of variograms parameters of the underlying Gaussian realizations to obtain the
initial optimum solution and then a local refinement is applied to balance variogram
reproduction of all the categories. In this method, initial sets of parameters are required
that can be difficult to assign.

In the second optimization methodology, an ANN algorithm is adopted to find the
optimum parameters of the variograms of the underlying Gaussian deviates. This a
learning algorithm which learns the underlying rules between given input/ output vari-
ables. ANN is a powerful method which can be trained to perform complex functions
in different fields. However, it is a black box and can be hard to adjust and ensure that
the network is well trained. Also, this is a training process and requires a huge data
base which is not always available. In variogram optimization, there are many differ-

ent scenarios that an ANN should be trained for, such as different masks, transition
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probabilities and categories proportions. It is very difficult to build this data base for
all possible scenarios.

Lastly, a variogram optimization is introduced which targets the covariance map of
each categorical variable. The procedure begins with a simple variogram model which
is easier to optimize and find a reasonable local minimum. Variogram reproduction is
mapped in successive iterations as complexity is added to the variogram model. In the
proposed work flow, the truncation rules are automatically calculated as well as the
input variograms for each Gaussian deviate. The relationships between the parameters
are complex and the objective function is non-convex; therefore the use of random
restarts is required. The limitation of this method comes with the required CPU time.

Time does increase linearly with the increasing number of random restarts.
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Chapter 7

Case Study

The following chapter uses data from the Red Dog mine, Alaska to study the perfor-
mance of the developed methodologies in a complex geological setting. The chapter
begins with an overview of the geology and background of data and continues with
showing the application of TPG simulation on the data set.

Section 7.1 explains the settings, description of the data, the geology and the ge-
ologic domains of the case study. Sections 7.2 and 7.3 document details of the imple-
mentation of the proposed method. Also, geostatistical models are evaluated in terms
of accuracy, precision and prediction of the geologic domains in Section 7.3. The results

are compared to the production data.

7.1 Available Data

The data set in this case study is from the Red Dog mineral deposit. Red Dog
mine is the largest zinc (Zn) producer in the world and it is located 90 miles north
of Kotzebue, Alaska, USA. The deposit consists of sulphide ore zones in sedimentary
exhalative (sedex) deposits, and is characterized by the presence of multiple metals and
multiple ore types (Ayuso et al. (2004); De Vera, McClay, and King (2004); Moore,
Young, Modene, and Plahuta (1986)). This mine consists of five geological mineralized
plates based on structural and sedimentary characteristics: Upper, median, lower, sub
lower, and host rock. In total, there are 31 geology codes based on the block model

geology codes. For this case study, the selected area contains four geological mineralized
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plates (median, lower, sub lower, and host rock) and each is the combination of different
rock types. The median plate is the combination of median plate lower grade exhalite
(< 15%Zn) including silica rock and silicified Ikalukrok shale, median plate Ikalukrok
vein unit, median plate higher grade exhalite (> 15%Zn), and median plate Ikalukrok
barite. The lower plate is the combination of lower plate lower grade exhalite (<
15%Zn) and includes silica rock and silicified Ikalukrok shale, lower plate lower grade
exhalite (< 15%Zn), lower plate Ikalukrok barite, and lower plate higher grade exhalite
(> 15%2Zn). The sub lower plate consists sub lower Plate barite, sub lower plate vein
unit, and sub lower plate lower grade exhalite (< 15%Zn) and includes silica rock
and silicified Ikalukrok shale. The host plate is the combination of the remaining rock
types in the selected area. Figure 7.1 shows the experimental indicator variogram and
variogram model of these rock types in the horizontal and vertical directions. There is
no clear horizontal anisotropy to consider directional variograms; therefore horizontal
omnidirectional and vertical indicator variograms are calculated for the four rock types.
Figure 7.2 shows the projection of the available drill hole data (DH) onto different cross
sections.

The selected area for this case study is based on the production data. The coordi-
nate limits of the model for this study are summarized in Table 7.1 and the geostatisti-
cal models will be simulated at 12.5(ft.) x 12.5(ft.) x 12.5(ft.) resolution. This model

consisted of a total of 3,590,400 blocks.

Table 7.1: Dimension parameters of the block model utilized for the construction of
the implementation of TPG simulation.

Direction Origin Block Model Number of Block Block Size(ft.)

Easting 585400 264 12.5
Northing 145000 200 12.5
Elevation 450 68 12.5

The predictive ability of the resulting models is tested by dense blasthole (BH)
data since often there are a plenty of exhaustive data available. There are a total
82355 available BH data for comparison. Figure 7.3 shows the projection of DH data

versus BH data onto an East-North cross sectional view.
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Figure 7.1: Experimental indicator and fitted variograms in horizontal direction (red)
and vertical direction (blue).

7.1.1 Data Analysis

The global proportions of rock types in the data are summarized in Table 7.2.
Transition probability (Eq. 7.1) is used as the measure of spatial variability for the
truncation rule. From the transition probability matrix, it is not expect to see the
lower plate and host rock be connected to all other rock types, and the median plate

and sub lower plate to be connected occasionally.

Median (0.9455 0.0034 0.0000 0.0511

Lower [0.0005 0.9798 0.0001 0.0196
tp(h) = (7.1)
Sublower [0.0000 0.0024 0.9446 0.0530

Host 0.0054 0.0138 0.0010 0.9798
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125



+  Median Plate
Lower Plate
SublLower Plate
Host Rock

1200

1000

g

Elevation(ft.)

g

5.885

%10°

5.865

North(ft.) East(ft.)

XU~

1.47

)

. 1.465

North(ft

1.455

& . " e e . .

5.86 5.865 5.87 5875 5.88 5.885
East(ft.) <10®

Figure 7.3: Top: location map of available BH and DH data and bottom: DH data
verses BH data an East-North cross sectional view.

126



Table 7.2: Summary of rock types’ declustered proportions in DH data and BH data.

Rock Type Median Plate Lower Plate SubLower Plate Host Rock
DH Prop. 0.043 0.327 0.018 0.612
BH Prop. 0.089 0.399 0.000 0.511

7.1.2 Global Mask

The threshold mask and MDS mask are two mask frameworks that are considered
in this study. Figure 7.4 demonstrates the truncation rule with MDS and threshold
based method.
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Figure 7.4: Global truncation rules for Red Dog data set with four rock types. The
two axes correspond to the values of the underlying Gaussian realizations
(Y7 and Y3), and the color codes correspond to the domain of the different
rock types.
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7.2 Variogram Optimization of Underlying Gaussian Re-
alizations

Variogram modeling of underlying Gaussian deviates in TPG method is very im-
portant for simulating geological domains. After the definition of the truncation rule,
the next step is to define the spatial structure of the Gaussian variables in a way that
they match the indicator variograms of the categories after truncation. For this study,
variogram optimization using the covariance map as explained in section 6.4 is consid-
ered and variogram reproduction of rock types with two and three Gaussian deviates
is checked. The addition of more Gaussian deviates is discussed and compared.

Optimization begins with an initial random covariance function; optimization is
used to obtain a local minimum. The initial parameterization of the variogram is
as simple as possible (one structure and no horizontal anisotropy for each Gaussian
deviate). The adjustment of the initial variogram parameters is based on the objective
function using SA optimization until an acceptable match between the variogram model
of rock types in the data set and the computed variogram model of rock types from the
simulation results is achieved. As mentioned in Section 6.4, the objective function is the
difference between the modeled covariance maps of the rock types and the covariance
maps of truncated simulations. Figure 7.5 shows the a slices of 3D representation of
covariance of off sets for data onto X-Y and Y-Z cross sections for the four available
rock types.

Results have been compared by using two and three Gaussian realizations. All
the Gaussian realizations have Gaussian covariance/variogram models and a Gaussian

distribution with mean zero and variance of one (N (0, 1)).

Variogram Optimization using Two Gaussian Deviates

In the first step of variogram optimization, one isotropic Gaussian structure is con-
sidered and SA is used to optimise the variogram of the underlying Gaussian deviates
until the objective function is minimized and the target covariance map of rock types

is reproduced. A Gaussian covariance model characterizes phenomena with very high
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spatial continuity and has the smaller nugget variance due to its parabolic behavior at
the origin. The nugget effect of 0.01 has been selected for these realizations since a
matrix instability problem may occur by the Gaussian covariance model (Posa (1989);
Stein and Handcock (1989)).

Optimization is performed with 500 different random restarts and the one with
the smallest objective value is considered as the best match. Table 7.3 summarizes
the optimized parameters with the proposed method. The algorithm started with an
objective value of 2.15 and stopped with a final objective value of 0.99.

Here, the Gaussian function Y; is modeled with a Gaussian covariance model with
one nested structure with a horizontally isotropic variogram. The optimized ranges for
Y1 are 890 ft. and 526 ft. in the horizontal and vertical directions, respectively. Ya
also has a Gaussian covariance with optimized ranges of 1038 ft. and 703 ft. in the
horizontal and vertical directions, respectively. The final reproduction of variograms
with optimized parameters for both horizontal and vertical directions is shown in Fig-
ure 7.6. There is a noticeable fluctuation in variogram reproduction of the median plate
and sub lower plate which is expected due to the low proportions of these two rock
types. Reproduction of input proportions of the categories among 100 unconditional

simulations is presented in Table 7.4. The input proportions are reproduced well.

Table 7.3: Summary of optimized variogram parameters using proposed optimization
for both Gaussian deviates and one nested structure.

v Parameters hy, of G; h, of G; hg of G5 h, of Gy
Optimized 890 (ft.) 526 (ft.) 1038 (ft.) 703 (ft.)

Table 7.4: Reproduction of input proportions of the categories using 100 uncondi-
tional simulations with one nested structure.

Plate Median Lower SubLower Host Rock
DH Prop. 0.058 0.382 0.010 0.550
Reproduced Prop. 0.057 0.377 0.010 0.556

130



Median Plate pr = Lower Plate

0.200 ]

0.150 ]

Yiny

0.100_]

0.050_]

0.000 ]

Distance Distance

SublLower Plate Host Rock

0.250

0.200_]

0.050 ]

o 400, B0O. 1200.

Median Plate

T T T T
0. 100 200.  300. 400, 500.  600.  700. 800

SubLower Plate Host Rock
] 0.250

0.200_]

0,150 ]

0.050_]

0.000_]

T T T T
100. 200. 300. 400. 500. B00. 700. 800.
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vertical (blue) directions using two Gaussian deviates and one nested
structure. Gray lines are the variograms of 100 unconditional simulated
realizations.
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Here, optimization began with a simple variogram model and one structure to find
the local minimum but indicator variograms of all rock types are not well reproduced.
Therefore, another step is required to improve variogram reproduction.

So, in the second step, another Gaussian structure is added to the variogram model
of optimum solution and the optimization algorithm is started with the optimum so-
lution from the previous step. Contribution for each nested structure is another op-
timization parameter. The new set of parameters is iteratively adjusted to minimize
the objective function and find the global minimum. Slices of a 3D representation
of covariance of off sets for data using optimized variogram parameters of categories
onto X-Y and Y-Z cross sections for four available rock types are shown in Figure 7.7.
For instance, it is noticeable how the covariance map of the indicator variable which
represents the sub lower plate in the simulation came close to covariance map of sub
lower plate in data. Also, the final variogram reproduction with optimized parameters
for both horizontal and vertical directions is shown in Figure 7.8. By adding one more
structure, the objective value reduced to 0.84 and the results represent an improvement
by 7%. Input proportions of the rock types among 100 simulations are reproduced well
and presented in Table 7.5. Table 7.6 summarizes the optimized covariance/variogram

parameters from the proposed methods.

Table 7.5: Reproduction of input proportions of the categories using 100 uncondi-
tional simulations with two nested structures.

Plate Median Lower SubLower Host Rock
DH Prop. 0.058 0.382 0.010 0.550
Reproduced Prop. 0.056 0.381 0.009 0.554

Table 7.6: Summary of optimized variogram parameters for both Gaussian deviates
and two nested structures.

v Parameters h, of G h, of G C-G; hgof G2 h, of Go C-Gs
Optimized-St; 826 (ft.) 103 (ft.) 0.54 859 (ft.) 617 (ft.) 0.39
Optimized-St, 1844 (ft.) 809 (ft.) 0.45 1028 (ft.) 668 (ft.) 0.60
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Figure 7.7: Slices of a 3D representation of covariance of off sets using optimized vari-
ogram parameters for four available rock types with two nested structures.
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Variogram Optimization using Three Gaussian Deviates

Variogram reproduction of rock types is also checked with use of three underlying
Gaussian deviates. Figure 7.9 demonstrates the global MDS mask for three Gaussian
deviates. Here, Gaussian functions Y7, Yo7, and Y3 are first modeled with a Gaussian
covariance model with one nested structure with a horizontally isotropic variogram and
then a second nested structure is added. A nugget effect of 0.01 is selected for these re-
alizations. Final reproduction of model variograms with optimized parameters for both
horizontal and vertical directions with three Gaussian deviates is shown in Figure 7.10
and Figure 7.11. The input proportions are reproduced well. By comparing the mis-
match between the target indicator variogram model and the averaged variogram of the
resulting 100 simulated indicator values for the successive lag distances, the variogram
reproduction is found to be improved by 16% with three Gaussian deviates. Figure 7.12
shows the improvement in variogram reproduction (Eq. 7.2) for all four rock types in

vertical and horizontal directions.

Host
Sublower

Lower

Gaussian 3

Median

Gaussian 1

2
Gaussian 2 @ A

Figure 7.9: Truncation rule based on the MDS with three Gaussian deviates.

Vi (h)model _ ,.Yk(h)Average
Error%(h; k) = | (ol | x 100, k=1,---K (7.2)
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deviates colored by covariance values.
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Variogram Reproduction Comparison

Here, variogram reproduction of TPG simulation is compared with the results of
the proposed MCS based methodology by Zagayevskiy and Deutsch (2015) which is
developed by D. S. Silva and Deutsch (2016b). This approach obtains the Gaussian
variograms numerically using Monte Carlo simulation. Variograms reproduction of the
MCS based method for both horizontal and vertical directions using three underlying
Gaussian realizations is shown in Figure 7.13.

Using the proposed covariance optimization, an excellent variogram reproduction
for the median plate, lower plate in the horizontal direction and the median plate
and sub lower plate in the vertical direction is achieved. Variogram reproductions for

other two rock types in both directions are reasonable. Also, the MCS based approach
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obtained a good reproduction for the mentioned rock types.
Finding the covariance/variogram of the underlying Gaussian deviates in TPG sim-
ulation to reproduce the indicator variogram of all indicator variables is challenging.

In this study, a novel idea with optimization methods addressed this barrier.

7.3 Locally Varying Proportions

The use of locally varying masks for the incorporation of trend is discussed in
this section. Comparisons are made between the simulated categorical model using a
threshold based mask and a MDS mask framework as well as block sequential indicator
simulation (BSIS) model. Results demonstrate that the relationships between rock
types are better reproduced in TPG models. BH data is used to validate the models
generated from the available DH data.

Figure 7.14 shows the trend model that has been generated using a GSLIB pro-
gram " maketrend” (Manchuk & Deutsch, 2011) for four rock types. The trend model
demonstrates the locally varying proportion of each plate in different locations of the
area of interest. The spatial distribution of the proportions of rock types is shown in
Figure 7.15. The variation of the rock types’ proportion in the vertical direction is
clear. The locally varying mask is used to handle LVP and truncate underlying Gaus-
sian realizations. To generate the Gaussian realizations, the optimized variogoram of
the previous section for two underlying Gaussian realizations with two nested struc-
tures are used. A cross section through two generated Gaussian realizations is shown
in Figure 7.16.

BSIS method is also used to simulate the plates in the presence of the trend. Fig-
ure 7.17 shows a 3D view of one individual simulated realization for all four methods.
Visually, it is clear that the TPG realizations for both types of mask appear much

smoother than BSIS realization.
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Figure 7.16: Cross section through generated Gaussian realizations with the opti-
mized variograms.

An important check is the histogram of the simulated values. Statistical fluctuations
are natural in stochastic simulation; however, these fluctuations should be reasonable
and unbiased. In total, 50 realizations are generated and the summary statistics checked
for reproduction. Histograms of all four plates were reproduced within reasonable
statistical fluctuations for both threshold based mask and MDS based mask (Figure 7.18
and Figure 7.19).

In addition to visual inspection of the realization and histogram, the error in the
reproduction of observed transition probabilities in data is calculated using 50 realiza-
tions. Both TPG simulations reproduced the data transition probabilities well. When
BSIS is used, transitions that are not expected to exist are present; transitions from
median to sub lower and median to host are observed. Direct transitions of plates are
reproduced better in TPG methods. The summary of the absolute error in transition
probability reproduction (Error = |tpz%’fa — tp’,;‘fc‘}lizati‘mb between rock types is shown

in Figure 7.20.
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Figure 7.20: Error in transition probability reproduction using TPG methods and
BSIS method colored by absolute error between transition probabilities.

The color scale characterizes the amount of error in transition probability reproduc-
tion. Darker green represents more error in tp reproductions. In total, TPG models
have lower error than BSIS models. Also, Table 7.7 shows the total error in the repro-

duction of transition probabilities observed in data for the direct and cross transitions.

Table 7.7: Summary of performance in transition probabilities reproduction using
TPG simulation and BSIS method.

Method Total Error
Threshold Mask 0.369
MDS Mask 0.629
BSIS 1.301
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Validation using BH Data

Cross validation is one of the most important steps in a geostatistical modeling. BH
data was excluded from the input data so that it can be used to check the models and
compare techniques. The error estimate refers to the expected value at each location,
calculated based on the local distribution constructed using the 50 realizations. For
all 50 realizations, the percentage of errors of the model to predict the expected value
at BH locations is measured and then an average is calculated. Figure 7.21 shows the
error estimate in a threshold based mask, MDS mask, BSIS methods. Diagonal values
indicate the percentage of correctly simulated rock types at BH locations, while off
diagonal terms are the percentage of incorrectly simulated rock types at BH locations.
The sub lower plate does not exist in the BH area and it is not simulated in the models.
The summary of the performance of each method in matching categorical observations

from BH data is shown in Table 7.8.

Table 7.8: Summary of performance in reproduction of BH data using TPG sim-
ulation and BSIS method. Results are relative to TPG technique with
threshold mask.

Method % Correct % Error
Threshold Mask 100.0 0.0
MDS Mask 99.9 0.1
BSIS 87.8 12.2

The total error in BSIS method is 1.332, while both TPG methods have smaller
error in reproduction of BH rock types. The total error in classification of rock types
using TPG method with threshold based mask and MDS mask is 0.369 and 0.726,
respectively. Therefore, ordering relationships is reproduced better in TPG simulations.

TPG models are constructed using the threshold and MDS masks to account for the
trend and outperformed BSIS. Each model is validated by checking the reproduction
of representative histogram and with additional data (BH). The comparison shows the
improvement of the geologic representation of the models simulated by developed TPG
simulation. The relationships between rock types are better reproduced in the TPG

models.
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Figure 7.21: Error in matching categorical observations from BH data. Diagonal
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locations, while off diagonal terms are the percentage of incorrectly sim-
ulated rock types at BH locations. The sub lower plate is not exist in
the BH area.

7.4 Summary

An illustrative case study has been presented and applied to a real data set with four
rock types. A new development is proposed here for categorical variable modeling using
TPG simulation. Some barriers in TPG simulation such as determining the variogram
of the underlying Gaussian realizations and locally varying proportions in categorical
data have been addressed and the improvement using proposed methodology is shown

through this case study.
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The developed TPG improvements are used to create reasonable realizations that
are more accurate and precise than SIS model, for instance. Also, simulated models
provide better matches to the transitions observed in data and the categorical data

observations from production data.

148



Chapter 8

Summary and Future work

There are a number of techniques available for the stochastic simulation of a categorical
variable. A choice between the different techniques for stochastic categorical model-
ing is based on several factors: the scale of the problem, the objective of the model,
the type and density of available data, and the conceptual depositional model to be
reproduced (C. V. Deutsch, 2002). SIS is a well-known categorical variable modeling
technique in the petroleum and mining industry. SIS does not account for ordering
relationship between categories and is useful for diagenetically controlled facies or rock
types due to the inherent high variability. This is a two point statistical method which
is parameterized by range, direction and two points in each lag vector. MPS is another
categorical variable modeling method which is widely used to characterize curvilinear
features common in naturally occurring deposits. Using multiple rather than two point
statistics makes this method capable of capturing complex features such as sinuous
fluvial and deep water channels, dispersive patterns in lobes, and mounds associated
with patch reefs. Still, finding a representative training image is often difficult and is
the main drawback of this method.

TPG simulation is another method in variogram based modeling. Sometimes cate-
gories are genetically ordered due to depositional processes, climate changes and geo-
logical settings results in consistent ordering. For instance, a retrograding coast leads
in a natural upward transition from fluvial to shore face to marine. TPG simulation is

a powerful method for simulating categories with known ordering relationship. If the
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available methods are applied properly, accurate models of categories can be obtained.

The aim is to improve TPG simulation to facilitate the use of this technique for
categorical variable modeling. TPG method is reasonable to be applied to heteroge-
neous facies or rock types that have been genetically ordered because of depositional
process (Pyrcz & Deutsch, 2014) and have no clear geometric shapes. When there is a
visible ordering between geometries, TPG simulation can be implemented to reproduce
these natural orderings as well as the spatial continuity of each category. This chapter

summarizes the main contributions and ends with future work.

8.1 Mask Optimization

A difficult problem in TPG simulation is the inference of a mask that reproduces
the desired spatial arrangement of the categories. The determination of a truncation
procedure for complicated geological environments is not an obvious task. The trunca-
tion rules control the proportions and ordering of categories in the simulation. The lay
out of the mask must be suitably chosen to reflect contacts between different categories.

Four different methodologies have been discussed in Chapter 3 and Chapter 4.

1. Discretized mask: A random discretized mask is iteratively corrected using SA
to impart the desired spatial features in the final TPG realization. This is an
automatic mask optimization for two underlying Gaussian RFs which relies on
the use of the transition probabilities of categories to find the best configuration
automatically. SA is used as an optimization technique in the discretized mask
optimization. SA is a powerful probabilistic technique which avoids being trapped
in the local minimal and attempts to find the global minimal. However, limitation

comes from the required CPU time for the convergence to the optimal mask using

SA.

2. Object based mask: An object based mask places a number of shapes as
objects randomly in the bigaussian mask. Gradient optimization is adopted to
iteratively adjust the objects using sequential search directions to obtain the

optimum mask. This is a fast automatic mask optimization. However, as the
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number of objects and categories increases, complexity of optimization increases
and since the objective function is not convex function, it would be hard to
handle. Many different examples with different complexities are considered and
it is found that obtaining the optimal solution for more than five categories is
difficult due to the fact that the gradient technique uses the gradient value of
all the parameters simultaneously for finding the optimum directions, and more
categories and shapes result in more parameters in a non-convex optimization

space.

. Threshold based mask: The threshold based mask is the most common type
of mask (Armstrong et al., 2011). A program (” tpgsim”, Appendix, A.1) is devel-
oped which is flexible and covers most common combinations between categories.
The layout of the threshold based mask is determined from the practitioners’ ge-
ological knowledge. The main contribution of this work is in the handling of the
spatial changes in the categories proportion. Usually, there is non-stationarity
in proportions due to geological trends, and the threshold based mask is able to
deal with LVP and is very fast. It is necessary to use a proper truncation mask
which represents the correct relationship between the categories in each location
of a domain in the presence of a trend. A developed mask is able to address the

trend efficiently.

. MDS mask: The MDS mask is initially developed by J. L.. Deutsch and Deutsch
(2014) and then generalized to handle LVP in categories. This method attempts
to optimize the truncation mask parametrized with Voronoi polygon at every
location in the presence of LVP. The methodology can be scaled to any number
of underlying Gaussian variables for TPG simulation. A program ” mds_tpg_LVP”
is developed (Appendix, A.2) to deal with LVP. Due to the optimization process,
CPU time can be an issue. To handle this limitation, use of a scaled trend is

proposed.
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Recommendations for Mask Selection

When the geological architecture of a deposit or reservoir is well understood the use
of the threshold based mask is recommended to impose the known geological knowledge.
This type of mask also has the advantage of considering geological trend in categories
proportion.

MDS mask, discretized mask and object based mask are three proposed masks
optimization that do not require input from the practitioner; they rely solely on the
transition probability between the categories calculated from data. This is an important
advantage which makes TPG simulation easier to implement when the transitions are
complex. However, the involvement of geological knowledge in the mask is reduced in
these methodologies.

The discretized mask and object based mask account for two underlying Gaussian
deviates and are useful to define the contact between up to five categories. When the
relationship between categories are very complicated or the use of more than two un-
derlying Gaussian realizations is required, the MDS mask is ideal because it can be
automatically scaled to any number of underlying Gaussian variables for TPG simula-~

tion.

8.2 Correlated Gaussian functions

TPG simulation is based on the truncation of Gaussian variables. Gaussian RFs
should be defined in a way that describes the different spatial behavior of a category or
group of categories after truncation. These Gaussian variables can be considered corre-
lated or independent variables in TPG simulation. The effects of correlated underlying
Gaussian RFs on TPG simulation are investigated in Chapter 5.

A complex geological relationship between categories can be produced by choosing
different Gaussian RFs. Studies showed that correlation between them can introduce
more flexibility and freedom in the modeling to capture observed specific geological
features, and also can be used as a tuning parameter to improve the fit of experimen-

tal indicator variograms. However, a number of considerations has to be taken into
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account. Correlation between RFs (1) can change the global proportion of the cate-
gories in the final truncated simulation; (2) can change the thresholds of the mask and
accordingly the transition between categories.

Considering correlated or uncorrelated Gaussian realization is a choice that has to
be made based on the observed feature in the available data set and there is no general
extension to all deposits. An example is demonstrated in Chapter 5 to show different
scenarios. A program ” corr_tpgsim” (Appendix, section A.3) is developed to deal with
correlation and the user is able to test these relationships for any configuration of the

threshold mask.

8.3 Variogram Optimization

Another important aspect of TPG simulation is the inference of the variogram mod-
els for the underlying Gaussian RFs. Since only the indicator functions describing the
categories are available, direct adjustment of the experimental variograms is difficult.
In Chapter 6, three different methodologies are proposed to address this problem.

The proposed covariance map optimization (”vargopt_tpg”, Appendix, A.4) targets
the covariance or variance map of each categorical variable to optimize the variogram
of the underlying Gaussian RFs. This method attempts to find the optimum input var-
iogram parameters to best reproduce the spatial structure of each categorical variable
by iteratively adding complexity to the variogram model of underlying Gaussian RFs.
The optimization relies on a global mask. A case study demonstrated the potential of
this method and results showed a reasonable match between the indicator variogram
models of the categories in the data and simulated realization. However, it can be
computational expensive to find the optimum solution since the methodology relies on
finding the global minimum using random restarts. The convergence time for finding

the optimum results in the case study was about 16 hours with 500 random restarts
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8.4 Remarks

The main practical challenge in the application of TPG simulation is the inference of
the variogram models for the underlying Gaussian deviates. This is achieved through
the proposed technique in Chapter 6. The procedure may fall into local optimums
depending on the initial set of parameters. Therefore, the use of many random restarts
to avoid trapping is proposed, this requires a significant amount of CPU time. The
other limitation of the method is that the variogram of underlying Gaussian deviates
are not defined with respect to locally varying proportion of categories. TPG simulation

relies on a stationary application of the Gaussian model.

8.5 Future Work

In the he following section, some ideas are suggested for future research to improve

categorical variable modeling using TPG simulation as follow:

e Conditional simulation is always important in geostatistical modeling. Usually,
the only available variables are those of the indicator functions describing rock
types or facies which are observed in drill holes or wells. Transferring categorical
data to continuous values for conditional simulation of underlying Gaussian devi-
ates is an essential step in TPG simulation. There are some techniques available
(Chapter 4), but still there are limitations in the application of TPG simulation.
Accordingly, improvement is necessary to obtain the correct categories on the

back transformation with the same spatial structure.

e In this work new methodologies have been developed for obtaining an optimum
mask that implies global optimization. However, still there are limited numbers
of truncation rules in their flexibility. Developing an automatic fully arbitrary
truncation mask to back transform continuous variables to categorical simulation

would be interesting.

e The flexibility of TPG technique comes from the use of multiple underlying Gaus-

sian RFs to transfer categorical variables to a continuous space. In reality, any
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number of Gaussian realizations can be used to simulate and define the rela-
tionship between categories. However, visualization of more than three Gaussian
variables is very difficult. One area for future work is to facilitate the use of
multiple underlying Gaussian RFs to model many categories with respect to the

geological knowledge and also remain practical.

Incorporating any sort of secondary data in TPG simulation, whether the data
are coming from another source of sampled data, such as production data, or
whether they are coming from exhaustive geophysical surveys, such as magnetic,
seismic, or gravitational data, would improve modeling to generate a geological

model that looks more realistic and represents geological complexity better.
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Appendix A

TPG Simulation Software

In this chapter parameter files of all the developed programs for TPG simulation are
explained in details. Origin for gridded data files is the same as all of the GSLIB data
files.

A.1 Locally Varying Mask with Linear Thresholds

The ” tpgsim” program operates in the GSLIB fashion. With this program, threshold
based masks are generated based on the LVP of categories. The parameter file used by

the program is shown below and a detailed line by line description is given.

1 START OF PARAMETERS:

2 Southern.dat - file with data

3 4 - number of categories to include
4 2153 - category identifiers (integers)
5 2 3 4 - columns for X, Y, Z coordinates
6 1 b5 - columns for drill hole, category
7 1 - type of mask:0=Global; 1=LVP

8 .5 .04 .08 .38 - category Global prop.(if option=0)
9 trend.out - input trend file (if option=1)
10 50 587350 10 - nx,xmn,xsiz

11 120 143085 10 - ny,ymn,ysiz
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12 75 300 10 - nz,zmn,zsiz

131 2 3 4 - column number of prop.(if option=1)
14 2 2 0 - numbers of rectangles (nL,nC,nR)

15 0 1 1 - position of rectangles:1=V.;0=H.

16 mask.out - mask output for trend/global prop.
17 mask-data.out - mask output for input data

18 gauss-data.out - output(transfer cat. to Gaussian)

19

20 NOTES:

21

22 0Order of categories in this program is

23 In vertical position:from left side to right side

24 In horizontal position:from bottom to up

256 Mask:

26 If nL=2, nC=2, nR=2 & position:left=0,center=0,right=1
27 Number of categories=6

28

29 i e |-==1---1

30 2 | 4 | 51 6 |

31 t3]| | ------ I | I

32 t1|----| 3 | | |

33 1 | | | |

34 === |------ l===1--=I

35 t2 t4 tb

1. Indicates start of parameter and must be present.

2. Specifies data file, which can be from drill hole data set or well data set.

3-4. Specifies the number of categories on line 4 and category identifiers on line 5.
5-6. Specifies the column numbers for coordinates of data on line 5 and columns for

drill hole id and categories on line 6.
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10-12.

13.
14.
15.
16.

17.

18.

Specifies the type of mask. If the mask is based on the global proportions
(option= 0), the output file contains only the threshold values for the global
mask.

Specifies the category global proportions. It is necessary input if the global mask
(option= 0) has been selected.

Specifies the input trend model file. It is necessary input file if the LVP mask
(option= 1) has been selected.

Next three lines are reserved for the grid specification: number of cells in X
direction with minimum value of X and cell size is entered on line 10, number
of cells in Y direction with minimum value of Y and cell size is entered on line
11, and number of cells in Z direction with minimum value of Z and cell size is
specified on line 12.

Specifies column number for proportion of categories in the input trend file.
Specifies the number of rectangles in each three zones (Left, center, and right).
Specifies the position of rectangles in the each zones (1= vertical, 0= horizontal).
Specifies the output file for the mask based on the global proportions or trend
model. In case of trend model, this output file contains the local mask (threshold
values) for all locations and in the case of global proportions contains only one
mask that is representing the threshold values for global proportions.

Specifies the corresponding mask output file for data values and is shown the
local mask at each location with data values.

Specifies the corresponding Gaussian values for data. The categorical data must
be transferred into continuous Gaussian conditioning data for conditional simu-
lation of the Gaussian variables. This output file contains the data value (which
is the category) and the corresponded Gaussian values with respect to the trun-

cation rule.

A.1.1 Truncating Conditional Gaussian for Threshold Mask

The " truncation — tp” program operates in the GSLIB fashion. This program takes

the truncation mask output by ”tpgsim” and truncates bivariate Gaussian values to
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categorical values. The parameter file used by the program is shown below and

detailed line by line description is given.

1 START OF PARAMETERS:

2 realzl.out - input data file (Gaussian#1)

3 realz2.out - input data file (Gaussian#2)

4 50 587350 10 - nx,xmn,xsiz

5 120 143085 10 - ny,ymn,ysiz

6 75 300 10 - nz,zmn,zsiz

71 - column for value

8 1 - input mask size;l:realz 2:data

9 mask.out - input file with thresholds (mask)
10 1 2 3 - columns for X, Y, Z coordinates
11 4 - number of categories to include
12 4 5 6 - column numbers for thresholds

13 2 2 0 - numbers of rectangles (nL,nC,nR)
14 0 1 1 - position of rectangles:1=V.;0=H.
15 Newmask.out - output file(if option=2)

16 cat-thre.dat - output file truncated realization
17

18 NOTES:

19

20 Order of categories in this program is

21 In vertical position:from left side to right side

22 In horizontal position:from bottom to up

23 Mask:

24 If nL=2, nC=2, nR=2 & position:left=0,center=0,right=1
25 Number of categories=6

26

171




27 [--=- |-=-=---- |---1---1

28 I 2 | 4 | 51 6 |

29 t3] |-==--- | | |

30 t1|----| 3 | | |

31 1 | | | |

32 [--- |------ |---1---1

33 t2 t4 tb

1. Indicates start of parameter and must be present.

2-3. Specifies input realization files to be truncated using the mask that comes from
the ”tpgsim” program. Generally, conditional/ unconditional simulation results
using GSLIB 7 sgsim” program can be considered as input files.

4-7. Next three lines are reserved for the grid specification: number of cells in X
direction with minimum value of X and cell size is entered on line 4, number
of cells in Y direction with minimum value of Y and cell size is entered on line
5, and number of cells in Z direction with minimum value of Z and cell size is
specified on line 7.

7. Specifies the column number of input realizations. It assumed that the column

10.

number in both realizations is the same.

the status of input mask. If there is a threshold based mask for any location of
input realizations, then option one should be selected. In this case, the LVP mask
is available for the whole simulation grids and there are K — 1 threshold values
for each location in the mask file. If the input threshold masks are calculated
only for those locations with data value, then option two should be selected. In
this case, the nearest mask to the location of input realizations is selected to be
used as the truncation rule.

Defines the input file for the mask for LVP.

Contains the column numbers for X, Y, Z coordinated if thresholds of mask are
defined for available data and coordinates of data are specified; otherwise put 0

as column numbers.

172



11.
12.
13.
14.
15-16.

Specifies number of categories to include.

Specifies column number for threshold values in the input mask file.

Specifies the number of rectangles in each three zones (Left, center, and right).
Specifies the position of rectangles in the each zones (1= vertical, 0= horizontal).
The output files are specified. The output file for the mask at each location with

data values on line 15 and the truncated realization output file on line 16.

A.2 Locally Varying Mask with MDS

The ”mds_tpg_LVP” program operates in the GSLIB fashion. This program is MDS

of the transition probability matrix and optimization for TPG simulation using LVP

of categories. The first version of program is written by Jared L. Deutsch for global

mask and it is modified for considering trend. The parameter file used by the program

is shown below and a detailed line by line description is given.

10

11

12

13

14

15

START OF PARAMETERS:

Southern.dat - input data file

2 3 4 - columns for X, Y, Z

1 5 - columns for drill hole,category
tpmat -South.dat - input transition prop. matrix

4 - number of categories (K)

1 2 3 5 - category identifiers(integers)

.04 .5 .08 .38 - category proportions (Global)

trend.dat - input trend model (prop.)

50 587350 10 - nx,xmn,xsiz

120 143085 10 - ny,ymn,ysiz

75 300 10 - nz,zmn,zsiz

1 2 3 4 - column numbers for LVP prop.

0 - upscale trend model:0=No;1l=Yes
55 3 - number of grid to upscale trend
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16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

2 - number of Gaussian to project (M)

tpg_points.out - file for control point output

2 - debugging level (0, 1 or 2)
mds_tpg.dbg - file for debugging output

10000 - number of points for MC integration
3 - optimization level (0, 1)

200 0.03 - max. iterations;early exit level
0.4 - move magnitude

trendcoord.out - output trend model with coordinates
data-trend.dbg - output with data and their trend
upscaled-t.dbg - output with up scaled trend data
NOTES:

The number of points for MC integration directly

affects the speed of the program
1: very low number of points <10000

2: low number of points 20000-40000

-->not recommended

-->do recommended

3: medium number of points 50000-10000 -->recommended

4: high number of points >11000 -->

(very time consuming)

is not recommended

3-4.

Indicates start of parameter and must be present.

Specifies a data file, which can be from the drill hole data set or well data set.

Specifies the column number for coordinates (X, Y, Z) of data on line 3 and drill

hole id and categories on line 4.

Specifies a data file with the transition probability matrix, which can be calcu-

lated from drill hole data using a GSLIB program ” tpmat_tpg”.

Specifies the number of categories on line 6, category identifiers on line 7 and

global proportions of categories on line 8.
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9.
10-12.

13.
14.

15.
16.

17.
18-19.

20.

Specifies the trend model (local proportions) as an input file.

Next three lines are reserved for the grid specification: Number of cells in X
direction with minimum value of X and cell size are entered on line 10, number
of cells in Y direction with minimum value of Y and cell size are entered on line
11, and number of cells in Z direction with minimum value of Z and cell size are
specified on line 12.

Contains the column numbers for the local proportions for each category.
Specifies option for re-sizing the trend model. If upscale trend is requested, put
1; otherwise put 0.

Specifies number of cells to be merged in X, Y, and Z directions.

Specifies the number of Gaussian variables to project on, which must be less
than the number of categories.

Specifies the output file which contains the control points.

The debugging level and output file, which can used to output intermediate
matrices and optimization steps, are specified on lines 21 and 22, respectively.
Specifies the number of points to use for Monte Carlo integration.

Integration of the multivariate Gaussian probability distribution is necessary
to optimize the control points. Monte Carlo integration is used in this program.
After each movement of the control points, Monte Carlo integration is performed
again and the objective function is checked. The number of Monte Carlo inte-
gration directly affects the speed of the program and may cause some error in
proportion optimization. The wise decision should be made about this number.

There are two main factors that should be considered. First, the number of
categories with low proportions (1% — 5%). Second, the percentage of error in
proportion that is acceptable for your work. Based on the experience, in terms of
time and possible error level in proportion reproduction, the Monte Carlo points
between (10000, 40000) will be optimum. For instance, the average percent error
(Eq. A.1) for these numbers is around 1% to 4% when there is one category with
low proportion and the possible error on that category would be around 2% to

6%. When there are two categories with low proportions, the average percent
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21.

22-23.

24-26.

error would be around 3% to 6% and the possible error on those low proportion

categories would be around 8%.

I oy v
Error% = Z =k _—% (A.1)
el Pk
where:
D - estimated proportion;
Dk - desired proportion [global or locall;

As the number of categories with low proportion increases, the percentage
of error increases. In this case using more points for Monte Carlo integration
is recommended. Using more than 100000 points, however, will be very time
consuming and would result in little gain in accuracy.

Specifies the optimization level (0= no optimization, 1= optimization for inte-
gration).

Specifies the optimization parameters. Maximum iterations and early exit level
for objective function on line 22. Move magnitude (modify if optimization diffi-
cult) on line 23.

Specifies output file with the trend model with coordinates on line 24, the de-
bugging files for data with their corresponding local proportions on line 25 and

the up scaled trend on line 26.

A.2.1 Truncating Conditional Gaussian for MDS Mask

The ”trans_tpg_LVP” program operates in the GSLIB fashion. This program takes

the truncation mask output by ”"mds_tpg_LVP” and truncates a set of Gaussian values

to categorical values. The parameter file used by the program is shown below and a

detailed line by line description is given.

176



[y

START OF PARAMETERS:

2 5 - number of category

3 2 - number of Gaussian variables (M)

4 gaussdata.dat - input data(Simulated realizations)

5 01 2 3 0 - columns for dh,x,y,z,secvar

6 4 5 - column for Gaussians m=1,...,M

7 tpg_points.out - input with tpg points

8 catvalue.dat - output for transformed data

9

10 NOTES:

11

12 Corresponding Gaussian variables must be ordered
13 All the Gaussian variables should be in one file.

1. Indicates start of parameter and must be present.

2. Specifies number of categories.

3. Specifies the number of Gaussian variables to truncate, which must be less than
the number of categories.

4. Specifies an input file corresponding to Gaussian variables and must be ordered as
m=1,---, M. If ”sgsim” program is used for individual Gaussian simulations,
then a CCG merging utility such as ”merge_multi” should be used to collect
Gaussian variables in one file.

5. Specifies the data file name. This file must contain Gaussian realization number
two.

6. Contains the column number for drill hole id and coordinates (X, Y, Z) of Gaus-
sian realizations and secondary variable if it is available.

7. Specifies column number for Gaussian variables

8. Specifies the input file which contains the control points comes from ” mds_tpg_LVP”

program.
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9. Specifies the truncated realization output file.

A.3 Correlation Coefficient in Truncated Plurigaussian
Simulation

The ” corr_tpgsim” program operates in the GSLIB fashion. This program is de-
veloped to deal with correlation between underlying Gaussian RFs. Practitioners can
define any of the explained cases in the parameter file for any configuration of threshold
based mask and receive the global proportions and the mask thresholds as well as the
final truncated realization. The parameter file used by the program is shown below

and a detailed line by line description is given.

1 START OF PARAMETERS:

2 1 - 1:Gaussians input 2:generate MC
3 R1l.out - if 1;file for Gaussian real. #1
4 R2.out - if 1;file for Gaussian real. #2

5 2566 10.0 10.0

nx ,xmn,xsiz

6 256 10.0 10.0

ny,ymn,ysiz

7 1 0.0 1.0 - nz,zmn,zsiz

8 1 - column for value

9 100000 - if 2;number of points for MC

10 4 - number of categories in tpmat (K)
11 1 2 3 4 - category identifiers(integers)

12 .30 .18 .21 .32 - category global proportions

13 2 2 O - numbers of rectangle in L,C,R

14 0 1 1 - position of rectangle in L,C,R

15 69058 - random number to generate MC points
16 0.8 - correlation between two Gaussians
17 2 - l:matching global thr. 2: global P.
18 mask.out - mask output; 1:local; 2:global P.
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19 prop.out - output of cat. proportions in sim.
20 Gauss-Trun.out - output of Gaussians & truncated
21
22 NOTES:
23
24 Order of categories in this program is
25 In horizontal position:from left side to right side
26 In vertical position:from bottom to top
27 Mask example:
28 If nlL=2, nC=2, nR=2 & position:left=0,center=0,right=1
29 Number of categories=6
30
31 l--- |-=----- |-=-=-1---1
32 2 | 4 | 51 6 |
33 t3| | -=---- I I I
34 t1|----| 3 | | |
35 1 | I I I
36 i e | -=--1---1
37 t2 t4 t5
1. Indicates start of parameter and must be present.
2. Option for 1: giving Gaussian realizations as input files or 2: generating them
internally.
3. Specifies the data file name. This file must contain Gaussian realization number
one.
4. Specifies the data file name. This file must contain Gaussian realization number
two.
5-7. Next three lines are reserved for the grid specification: number of cells in X

direction with minimum value of X and cell size is entered on line 5, number

of cells in Y direction with minimum value of Y and cell size is entered on line
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10.

11.

12.

13.

14.

15.

16.
17.

18.

19.
20.

6, and number of cells in Z direction with minimum value of Z and cell size is
specified on line 7.

Specifies the column number of Gaussian variables (should be the same in both
files)

Specifies the number of points to use for Monte Carlo integration

Specifies number of available categories.

Specifies category identifiers (ID)

Global proportion of categories should be defined in this line.

Specifies the number of rectangles in each three zones (Left, center, and right)
in the mask.

Specifies the position of rectangles in the mask for each zones (1= vertical, 0=
horizontal).

Seed number for the generation of random numbers. This is used to generate
points for Monte Carlo integration.

Specifies correlation coefficient between underlying Gaussian realizations.
Specifies the option for matching global thresholds and finding a new proportion
of categories with respect to correlation between Gaussian realizations (option
= 1) or matching the global proportions and finding the new threshold values
with respect to correlation between Gaussian realizations (option = 2).
Specifies the output file for the mask which contains the threshold values which
is based on the new proportions (option = 1) or based on the global proportions
(option = 2).

Specifies the output file for proportion of categories for selected option.
Specifies the output file for Gaussian realizations and truncated simulation with
respect to correlation coefficient and selected option for matching global thresh-

olds values or global proportion of categories.
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A.4 Covariance Map Optimization

The ” vargopt_tpg” program operates in the GSLIB fashion. This program is devel-
oped to obtain the best fit for the variogram models of underlying Gaussian deviates in
TPG simulation with a flexible methodology. The parameter file used by the program

is shown below and a detailed line by line description is given.

1 START OF PARAMETERS:

2 tpg_points.dat File for control point input

3 vargsmodel.var File for categories’varg models

4 4 Number of categories

5 2 number of Gaussian variables (M)

6 2 Number of structures

7 1 O:start with nst; 1l:use sequential
8 1 O:Anisotropic;1l:Isotropic

9 0 0:3D case; 1:2D case

10 50 Number of random restart

11 1 Optimization; O0:GA 1:SA

12 1500 If SA:number of iterations

13 40 If GA:number of iterations

14 0O Gaussian type; O:regular;l:stable
15 0 Power of inverse distance weight
16 600 Number of point for LU simulation
17 10 10 10 The lowest possible range(al,a2,v)
18 2700 2700 1400 The highest possible range(al,a2,v)
19 69069 Random number seed

20 parameter.dat Output of initial/final parameters
21 objective.dat Output of initial/final objective
22 optimum.dat OQutput parameters for optimum run
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4-5.

10.

11.

12.

13.

14.

Indicates start of parameter and must be present.

Specifies an input file which contains the control points of the mask which is the
output file of ”mds_tpg” program.

Specifies an input file which contains the variogram model of categories in one
file.

Specifies the number of categories and underlying Gaussian deviates to truncate,
which must be less than the number of categories.

Specifies number of structures of variogram/covariance model.

Specifies the way that optimization should deal with structures. To use proposed
sequential methodology for structures (first st=1, then adding st=2, then ...),
select option 1; otherwise option 0. With option 0, optimization starts directly
with mentioned number of structures.

Specifies option for considering anisotropy in covariance model for underlying
Gaussian realizations. Option 0 uses anisotropic variogram model and option 1
uses isotropic variogram model.

Specifies the dimension of data set (3 dimensional or 2 dimensional) for opti-
mization. In case of 3D (option 0), there is a vertical range to be optimized for
each underlying Gaussian.

Specifies number of random restart for optimization. Since there is no unique
solution, program uses different random restart in each step and the one with
the smallest objective value is considered as the best match.

Specifies type of optimization. By selecting 0, Gradient optimization is used and
by selecting 1, SA is applied.

Specifies the number of iterations in each random restart for SA optimization.
The number of iterations for this type of optimization should be more than 1000.
SA requires a large number of iterations to converge.

Specifies the number of iterations in each random restart for Gradient optimiza-
tion. This type of optimization does not need too many iterations (j100).
Specifies the variogram/ covariance type to use. Two models are considered in

this program to build the covariance of Gaussian variables; Gaussian type and
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15.

16.
17-18.

19.

20.

21.

22.

stable type. Option 0: regular Gaussian type; 1: stable Gaussian type.
Specifies power of inverse distance in objective function (weight to the covariance
values from the origin).

Specifies the number of points to use for LU simulation.

Specifies the lowest and highest possible values for variogram ranges (apmaz,
Qhmin, Guert) for optimization. These values can be defined based on the lowest
and highest indicator variogram ranges of categories (from data set) + sufficient
variation.

Specifies seed number for the generation of random numbers. This is used to
generate points for simulation of underlying Gaussian deviates using LU method.
Specifies output file of initial and final parameters for each structure in each
random restart.

Specifies output file of initial and final objective values for each structures in
each random restart.

Specifies output file of initial and final parameters for optimum run.
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