

UNIVERSITY OF ALBERTA

Master of Science in Internetworking

MINT 709 Capstone Project

-Implementation of the OAM (Operations, Administration, and Maintenance) over Provider Backbone Bridge (802.1ah) etwork.

By

Arsh Saini

June 28-2012

Acknowledgement

I take immense pleasure in thanking Dr. Mike MacGregor - Professor and Chair, Department of Computing Science, University of Alberta for the vision and foresight, which inspired me to conceive this project.

Needless to mention Mr. Shahnawaz Meer, MINT Program Coordinator and Mr. Uzair Rehman, Test Engineer Cisco Systems who had been a source of inspiration and for their timely guidance in the conduct of project work.

Finally, yet importantly, I would like to express my heartfelt thanks to my beloved parents for their blessings, my friends/classmates for their help and wishes for the successful completion of this project.

Arsh Saini

TABLE OF CONTENTS

CHAPTER NO.	TOPIC	PAGES				
1.	Introduction to OAM					
	1.1Introduction	5				
	1.2 OAM for Ethernet	5				
	1.3 Ethernet in the First Mile(EFM)OAM (802.3ah)	6				
	1.3.1 EFM OAM PDUs	6				
	1.4 Ethernet Connectivity Fault Management	7				
	1.4.1 CFM terminology	8				
	1.4.2 CFM Messages	9				
2	CFM Functions	11				
	2.1 Loopback test	11				
	2.2Link Trace Test	12				
	2.3 Continuity Check test	13				
3.	OAM Functions (IP/ MPLS network)					
	3.1 Introduction					
	3.2 OAM Tools					
	3.2.1 LSP - Ping					
	3.2.2 LSP - Trace					
	3.2.3 SDP – Ping					
	3.3.4 Service Ping					
4.	OAM Functions (VPLS Network)					
	4.1 Introduction					
	4.2 Mac Ping					
	4.3 Mac trace					
5	Network Topology	21				
	5.1 Summary	21				
	5.2 Wiring	21				
	5.3 Implementation	23				
	5.4 Network Diagram	25				
6	Wire shark traces and Conclusion	26				
	6.1 Packet Walkthrough	26				
	6.2 Conclusion	31				
	Appendix – A	32				
	Appendix - B	57				
	References	78				

List of Figures and Tables

Figure 1.1 OAM Sub layer in the OSI Model Figure 1.2 Packet format for EFM OAM PDU Figure 1.3 Ethernet CFM Components Figure 1.4 CFM Message header

Figure 2.1 CFM Stack table for UPE-1

Figure 2.2 CFM Stack table for UPE-2

Figure 2.3 CFM Loopback test on UPE-1

Figure 2.4 Test Command for CFM Loopback on UPE-1 and UPE-2

Figure 2.5 CFM Link Trace test for UPE-1 and UPE-2

Figure 2.6 CFM Link Trace Test result for UPE-1

Figure 3.1 LSP test on UPE1 towards UPE2

Figure 3.2 LSP Trace on UPE1 and UPE2

Figure 3.3 SDP - Ping Tests on UPE1 from SDP 20 to SDP 14

Figure 3.4 SDP - Ping test on PE2 from SDP 12 to SDP 15

Figure 3.5 SVC - Ping on PE1 and PE2

Figure 4.1 MAC Ping for SDP 50 to broadcast MAC address Figure 4.2 MAC Ping for SDP 30 to broadcast MAC address Figure 4.3 Mac Trace for SDP 50 on UPE1

Figure 6.1 Packets from the Client

Figure 6.2 Packets with VLAN 41 and VLAN 50

Figure 6.3 OAM Packets

Figure 6.4 CFM Packet with 802.1ah packet format

Figure 6.5 CFM Packet with 802.1ag packet format

Figure 6.6 Packets with MPLS Details

Figure 6.7 MPLS Label Switching

Figure 6.8 Reply ICMP packets with both S-VLAN and C-VLAN

 Table 1.1 802.1ag CFM Message Types

Table 2.2 CFM CCM Error Flags

Table 3.1 OAM Tools in IP/MPLS networks

Table 4.1 VPLS FDB OAM Tools

Table 5.1 Types of Port

Table 5.2 IP addressing and VLAN associated.

 Table 5.3 Initiation and termination of tests

Chapter 1 Introduction to OAM

1.1 Introduction

OAM (Operation, Administration, and Maintenance) is a protocol, which can be used for monitoring the networks for faults and errors. OAM can be used to detect the faults and then raise the alarms, which can help in lowering the downtime of the network. If the OAM is not configured there will be requirement of more manual intervention, which in terms raises the expenses.

The OAM can be implemented as per various network end points such as Service provider, ISP and customer network domains without intervention of each other. We can run the OAM in three different networks without the intervention of other networks.

OAM has various functions, which include Fault Indication, Security management, Performance indication, diagnostic Functions.

1.2 OAM for Ethernet

In the increasing world of more deployment of vast enterprise Virtual Networks there is a huge need for maintaining the networks and is very critical. These networks can be maintained if there is a very good understanding between all the providers and OAM which helps in reducing the down time and make the packets flow smoothly, it is like the stethoscope which monitors the traffic and generates the unusual noise/alarm when something bad/ faults are Detected.

The OAM functions such as MPLS and VPLS OAM tools are used by the service providers for troubleshooting of networks. It also performs the continuity verification from one end of the customer to the Service provider network. It covers multiple domains.

With the increasing demand of Ethernet services in the backbone / core networks, providing Layer 2 VPN services brings more challenging to maintain then even. The OAM is an Ethernet tool to find out the faults in the entire network. Some of the functions of the OAM are discovery (Demark Point discovery and loopback capabilities), Remote Failure Indication (Faults in link), Fault Isolation (Network fault identification), Performance and Status Monitoring (Generates Alarm).

The tools used for OAM for monitoring and finding the faults are:

EFM OAM (802.3ah) – This is a Link layer protocol, monitors and troubleshooting any point-to-point Ethernet link used for connectivity verification between two locations.

CFM (802.1ag) – This is a Plain Ethernet, end-to-end protocol, monitors and troubleshooting all endpoints with the other domain or levels such as customer and Service provider. Customer, Service providers and ISP can define OAM as per their requirements in the same Network and this will not interfere with any other.

1.3 Ethernet in the First Mile (EFM) OAM (802.3ah)

This is a Link layer protocol, monitors and troubleshooting any point-to-point Ethernet link used for connectivity verification between two locations .Link Failure and Faults can be found by the Operators or service providers. EFM OAM is categorized in the Data Link layer of the OSI model.

Figure 1.1 OAM Sub layer in the Data Link Layer of OSI Model

OAM PDU's are the hello packets that are sent to the peering devices to find the failure and health of the link, if there is no response in a certain time limit from the other end of the device then it puts the local port to down state. This can then generate the alarm too which will signify there is a faulty in the link.

1.3.1 EFM OAM PDUs

EFM OAM Protocol Data Units (PDUs) carry the information for the EFM OAM that is being sent form one device to the other device. When broadcasting the PDU's they are sent to the broadcast address of the OAM. All EFM OAM PDUs must be untagged.

The PDU are Ethernet frames slow protocols (protocol type 0x8809) with a subtype of 0x03 (OAM).

There are three critical events that can affect the operation of link which are necessary to include in OAM PDU flag fields and need to be signaled. The events are Link Fault, Dying Gasp and critical Event. Link Fault signals if there is any fault in the receive direction flow of the local device, dying gasp indicates if there is unrecoverable failure and Critical Event tells us about unspecified critical Event

The code field in the OAM PDU indicates the types and EFM OAM peer signals other events using the type-length value (TLV) in the OAM PDUs.

Reference: Zhou Xu [5] says on page 777

"The informational OAM PDU (0x00) is used in the discovery process, and as the Hello packet to monitor the link health. The event notification OAM PDU (0x01) is used to signal link events (other than the three critical events represented in the flag bits)."

1.4 Ethernet Connectivity Fault Management

To monitor one or more than one service instance in terms of health conditions Ethernet CFM is used as it has the capability to cross multiple domains. CFM which is connectivity fault management is a connectivity checking mechanism with its own Ether-type value and hardware address to validate the health of EVC. We can also deploy in various network such as broadband where it becomes easy to detect any circuit failure in service domain and customer domain.

1.4.1 CFM Terminology

Reference: Zhou Xu [5] says on page 787

- **Maintenance Association (MA)** A set of MEPs that have the same MA identifier and MD level within one service instance to verify the integrity of the service.
- "

"

- Maintenance Domain (MD) The Management Domain owned by maintenance entity and a management space for monitoring and administration of the network a unique maintenance level from 0 to 7 is assigned to each domain. The value depends on the type of domain; larger is the domain higher is the value. For the customer the value will be 7 and for the operator the value will be 0.
- **MA Endpoint** (**MEP**) It defines the Boundary of a MD, initiate and terminate CFM messages.
- **MD Intermediate Point** (**MIP**) It responds to Originating MEP. MIP only initiates the messages which are the response of loopback and link trace messages.
- MIP Half-Function (MHF) It only gives the response to received PDU.

The following diagram shows the Ethernet CFM components described above with the MIP and MEP for the Customer network, provider network, Operator 1 and operator 2 networks. The largest domain is for customer and has the level 7

Figure 1.3 Ethernet CFM Components

1.4.2 CFM Messages

It has the protocol type 0x8902 for the CFM messages. All the CFM messages contain the common CFM header after every MAC header and CFM Opcode indicates the type of message. The CFM Message header is shown below which contains MD-level, CFM version, CFM Opcode and CFM PDU. It is of 32 bit long.

Figure 1.4 CFM Message Header

All the different PDU have different types associated with them and consists of five different CFM messages.

The following table describes the CFM Message types

Reference: Zhou Xu [5] says on page 791

Table 1.1802.1ag CFM Message Types						
OpCode	Туре	PDUs in the Message	Function			
1	Continuity	CCM PDU contains	A MEP generates CCM messages to announce			
	Check	flag, MAID, MEP-id,	its local port and interface status. If the CCM is			
	Message	and status counters	enabled, an MA tracks CCM messages from all			
	(CCM)	defined by ITU-T	MEPs. If an MA finds a CCM message			
		Y.1731. Contains CFM	missing or receives unexpected CCM			
		TLV: port status TLV,	messages, it sets corresponding error flags.			
		interface status TLV.	CCM messages always use a protocol			
			multicast MAC address as the destination			
			MAC address.			
2	Loopback	CFM LBR PDU with 8-	A MEP/MIP responds with a CFM LBR			
	Reply	bit flags contains an End	message when it receives an LBM destined to			
	(LBR)	TLV.	its own MAC address. The packet destination			
			MAC address is the source MAC address of			
			the LBM.			
3	Loopback	CFM LBM PDU with 8-	A MEP generates a CFM LBM when the CFM			
	Message	bit flags contains an End	loopback test is performed. The packet is			
	(LBM)	TLV.	destined to the MAC address the loopback test			
			intends to reach.			
4	Link Trace	CFM LTR PDU	A MEP responds with a CFM LTR message			

	Reply	contains an LTR Egress	when it receives a Link Trace Message (LTM)		
	(LTR)	Identifier TLV, a Reply	destined to its own MAC address. The packet		
		Egress TLV, an LTM	destination MAC address is the source MAC		
		Egress Identifier TLV,	address of the LTM.		
		and an End TLV.			
5	Link Trace	CFM LTM PDU	A MEP generates a CFM LTM message when		
	Message	contains an LTM Egress	the CFM link trace test is performed. The		
	(LTM)	Identifier TLV and an	packet is destined to the protocol multicast		
		End TLV.	MAC address		

Chapter 2 CFM Functions

2.1 Introduction

The three basic functions supported by CFM are

- 1. Loopback test
- 2. Link Trace Test
- 3. Continuity test

To perform the end to end fault management it is important to use these tests to find the failure point.

2.1.1 Loopback Test

This is a test to perform the availability of a MAC address destination as we perform the IP ping test normally. When the loopback test is performed we need to know the MAC address of the destination. The MIP in front of the fault in the path will report and LBR which indicates us what is the failure point. By issuing the command show *eth-efm cfm-stack-table* we can determine the different management points are configured in the system. The following figures show the stack stable table for both the UPE Routers.

Figure 2.1 CFM Stack Table for UPE-1

*A:uPE1# show	eth-cfm	cfm-s	stack-table				
CFM Stack Table R = <u>Rdi</u> , M = Mo				E = ErrorC	====== СМ, Х	= <u>XconCCM</u> , A = Ai	sRx
		000101000					
CFM SAP Stack 1	able						
CFM SAP Stack 1 Sap		Dir	Md-index	Ma-index	MepIc	1 Mac-address	Defect
		Dir Up	Md-index 1	Ma-index 1		1 Mac–address 00:21:05:db:eb:8f	

Figure 2.2 CFM Stack Table for UPE-2

*A:uPE2# show eth_cfm cfm_stack_table								
CFM Stack Table Defect Legend: R = Rdi, M = MacStatus, C = RemoteCCM, E = ErrorCCM, X = XconCCM, A = AisRx								
CFM SAP Stack Tab	le							
 Sap	Lvl Dir	Md-index	Ma-index	MepId Mac-address	Defect			
1/2/3:50.* 1/2/3:50.*	5 Uj 7 Botl		1 10	30 00:23:3e:0d:4b:1 MIP 00:23:3e:0d:4b:1	-			

The command ' show eth-cfm mep 2- domain 1 association 1 loopback' shows the MEP loopback information .It shows the number of replies that are received by sending the command for the particular mac address and number of counts to be send.

Figure 2.4 Test Command for CFM Loopback on UPE-1 and UPE-2

A:uPE1# oam eth-cfm loopback 00:23:3e:0d:4b:13 mep 20 domain 1 association 1 send-count 5 Eth-Cfm Loopback Test Initiated: Mac-Address: 00:23:3e:0d:4b:13, out sap: 1/2/3:50. Sent 5 packets, received 5 packets [0 out-of-order, 0 Bad Msdu]

A:uPE2# oam eth_cfm loopback 00:21:05:db:eb:8f mep 30 domain 1 association 1 send-count 5 Eth_Cfm Loopback Test Initiated: Mac-Address: 00:21:05:db:eb:8f, out sap: 1/2/3:50. Sent 5 packets, received 5 packets [0 out-of-order, 0 Bad Msdu]

2.1.2 Link Trace Test

This test is used to get the information of the path till the MAC address. In the link trace test the MEP launches the LTM the same way loopback test but in this case MIP or MEP along the path sends a response and if there is a fault then the LBR is sent.

*A:uPE1# show eth-	cfm mep 20 domain 1 associo	ition 1 linktrace		*A:uPE2# show eth-cfm mep 30 domain 1 association 1 Linktrace				
Mep Information				Mep Information				
Md-index Ma-index MepId IfIndex FngState LowestDefectPri Defect Flags Mac Address ComTx Foult Propagation Eth-Alis: Eth-Alis: Eth-fst: ComLastFailure Fro None		Direction Admin CCM-Enable PrimaryVid ControlMep HighestDefect <u>CcmLtmPriority</u> CcmSequenceErr	: Up : Enobled : Enobled : Z6836970 : False : none : 7 : 0	Md-index Ma-index Ma-index MepId IfIndex FngState LowestDefectPri Defect Flags Mac Address ComTx Fault Propagation Eth-10m Threshold Eth-Ais: Eth-Tst: ComLastFailure Fra None		Direction Admin CCM-Enable PrimaryVid ControlHep HighestDefect <u>CcmLtmPriority</u> CcmSequenceErr	: Up : Enabled : Enabled : 268369970 : False : none : 7 : 0	
Mep Linktrace Mess	age Information			Mep Linktrace Mess	age Information			
LtRxUnexplained LtStatus TargIsMepId TargMac EgressId LtFlags	: 0 : False : Ralse : 00:00:00:00:00:00 : 00:00:00:21:05:db:eb:8f : <u>useFDBonly</u>	LtNextSequence LtResult TargMepId TTL SequenceNum Renlie	: 2 : False : 0 : 64 : 1 es received	LtRxUnexplained LtRxUnexplained TargIsMepId TargMac essId Lags	: 0 : False : False : 00:00:00:00:00:00 : 00:00:00:23:3e:0d:4b:13 : useFDBonly	LtNextSequence LtResult TargMepId TTL SequenceNum	: 2 : False : 0 : 64 : 1	
Mep Linktrace Repl	ies	· ·	ac address	Linktras Repl				
SequenceNum Itl LastEgressId ChassisIdSubType ChassisIdSubType ChassisId: None ManAddressDomain: None ManAddress: None	: 1 : 63 : 00:00:21:05:db:eb:0f : 00:00:23:3e:0d:4b:13 : unknown value (0)	Recentreoraer Forwarded TerminalMep Relay	: 1 : False : True : <u>rlyHit</u>	SequenceNum Ttl LastEgnessId NextEgnessId ChassiSId: None ManAddressDomain: None ManAddress:	: 1 : 63 : 00:00:00:23:3e:0d:4b:13 : 00:00:00:21:05:db:eb:8f : unknown value (0)	ReceiveOrder Forwarded TerminalMep Relay	:1 :False :True : <u>rlyHit</u>	
IngressMac IngrPortIdSubType IngressPortId: None	: 00:00:00:00:00:00 : unknown value (0)	Ingress Action	: ingNoTlv	None IngressMac IngrPortIdSubType IngressPortId:	: 00:00:00:00:00:00 : unknown value (0)	Ingress Action	: ingNoTlv	
EgressMac EgrPortIdSubType EgressPortId: None Org Specific TLV:	: 00:23:3e:0d:4b:13 : unknown value (0)	Egress Action	: egr0K	None EgressMac EgrPortIdSubType EgressPortId: None Ora Specific TLV:	: 00:21:05:db:eb:8f : unknown value (0)	Egress Action	: <u>egrOK</u>	

Figure 2.5 CFM Link Trace Test for uPE1 and uPE2

Figure 2.6 CFM Link Trace Test result for UPE-1

2.1.3 Continuity Check Test

The Continuity check test send continuity check message to every MEP in the defined direction as shown below

Continuity check messages use the group destination MAC address as the message destination MAC address to send the messages. These messages are received and seen by the MEP's in the same MA. If the Continuity check test is enabled on both the PE with similar values then they send the continuous messages to all MEP.MA keeps the messages and buy using these received messages check the network failure accordingly. The network failure can be as:

- Loss of Connectivity
- Incorrect Configuration of Service (Merging of Services)
- Forwarding Loops
- Unidirectional Failure

Reference: Zhou Xu [5] says on page 804

"

Error	Priority	Description
None	0	No defect reported.
defRDICCM	1	The last CCM received by this MEP from a remote MEP contained a Remote Defect Indication (RDI) bit.
defMACstatus	2	The last CCM received by this MEP from a remote MEP
		indicated that the MAC address associated with the transmitting MEP is reporting an error status via the Port
		Status TLV or Interface Status TLV.
defRemoteCCM	3	This MEP is not receiving CCMs from other MEPs in its configured list (remote-MEP-id list).
defErrorCCM	4	This MEP is receiving invalid CCMs.
defXconCCM	5	This MEP is receiving CCMs that belong to some other
		MA.

CHAPTER 3 OAM Functions (IP/MPLS network)

3.1 Introduction

In the IP/MPLS network OAM is a tool to verify the connectivity and perform the tests.OAM functions such as IP, LSP, SDP, CPE, SVC Ping and IP, LSP Trace.

3.2 OAM Tools

The following are the OAM tools that are used to check connectivity and report the problem. Some of them are Alcatel-Lucent proprietary tools.

Reference: Zhou Xu [5] says on page 805

Function	Description
IP-ping	Used to test the router's IP connectivity using ICMP Echo Request/Reply packets
IP-trace-	Used to locate the failure in IP routing or to discover the forwarding path to a
route	particular IP prefix
LSP-ping	Used to test the connectivity of the LSP (created by RSVP-TE or LDP) using
	MPLS Echo Request/Reply packets
LSP-trace	Used to locate a failure of an LSP or to discover the path of an LSP
SDP-ping	Used to test the service reachability of the SDP from one PE router to another.
	The SDP-ping packet is always sent through the data plane using the SDP's
	tunnel encapsulation with an MPLS RA (1) label. The reply packet can come
	from the control plane or the data plane depending on the request specified in the
	SDP-ping packet (Alcatel-Lucent proprietary)
CPE-ping	Used to locate a PE router that is locally attached to a particular customer IP
	station (IP address) (Alcatel-Lucent proprietary)
SVC-ping	Used to test the connectivity and attributes of VPN services (Alcatel-Lucent
	proprietary)
((

Table 3.1 OAM Tools in IP/MPLS Networks

"

3.2.1 LSP-ping

LSP ping is a troubleshooting mechanism tool to find data plane failure in MPLS Network. It does not work as the normal ICMP ping because with that it becomes hard to detect any data plane failure in end-to-end LSP. The LSP ping data packet is encapsulated the same way as data traffic is and is sent to the destination of FEC. The Edge LER router responses to the Echo Request packet with the Echo reply packet The figure below shows the Response from the 10.1.1.50/32 with the 0 packet loss.

Figure 3.1 LSP test on UPE 1 towards UPE2

*A:uPE1# oam lsp-ping prefix 10.1.1.50/32 LSP-PING 10.1.1.50/32: 80 bytes MPLS payload Seq=1, send from intf to-PE1, reply from 10.1.1.50 udp-data-len=32 ttl=255 rtt=1.19ms rc=3 (EgressRtr) ---- LSP 10.1.1.50/32 PING Statistics -----1 packets sent, 1 packets received, 0.00% packet loss round-trip min = 1.19ms, avg = 1.19ms, max = 1.19ms, stddev = 0.000ms

3.2.2 LSP-trace

LSP trace is used to find the path and we can use it to get the failure point location to. We will get the reply back till the failure point and using that we can determine the defects. The router sends the MPLS echo request packets with the incremental TTL value from 1. Each router reply backs with MPLS echo reply packets on the receipt f the MPLS request packets. This gives us the information if the router is LSR or the ELSR. We can find the downstream interface as the packets are constantly sent till the recipient of error code or the response from ELSR The following is the figure showing the trace till 10.1.1.50/32, which is the system IP of the UPE2. When it gets the reply from 10.1.1.50 it shows it is the Egress router. The same way is the trace taken from UPE2 towards UPE1.

Figure 3.2 LSP Trace on UPE1 and UPE2

*A:uPE1# com lsp-tr prefix 10.1.1.50/32 lsp-trace to 10.1.1.50/32: 0 hops min, 0 hops max, 104 byte packets 1 10.1.1.15 rtt=1.26ms rc=8(DSRtrMatchLabel) 2 10.1.1.3 rtt=1.21ms rc=8(DSRtrMatchLabel) 3 10.1.1.12 rtt=1.29ms rc=8(DSRtrMatchLabel) 4 10.1.1.50 rtt=1.37ms rc=3(EgressRtr) *A:uPE1# *A:uPE1# *A:uPE2# com lsp-tr prefix 10.1.1.20/32 lsp-trace to 10.1.1.20/32: 0 hops min, 0 hops max, 104 byte packets 1 10.1.1.12 rtt=1.18ms rc=8(DSRtrMatchLabel) 2 10.1.1.2 rtt=1.08ms rc=8(DSRtrMatchLabel)

2 10.1.1.3 rtt=11.2ms rc=8(DSRtrMatchLabel) 3 10.1.1.15 rtt=2.88ms rc=8(DSRtrMatchLabel) 4 10.1.1.20 rtt=1.27ms rc=3(EgressRtr)

*A:uPE2#

3.2.3 SDP-ping

To check the SDP Tunnel connectivity from one PE to other PE we use the SDP Ping. It performs in-band unidirectional or round trip connectivity test by carrying the traffic over the backbone network. The SDP ping response can be received in two ways:

- Out-of-band in the control plane.
- In-band using the data plane for a round-trip test.

Using the SDP transport tunnel encapsulation the packet is generated from one PE for the other end PE, same way the VPN data traffic with only the exception if there is any lag. When the PE receives the SDP ping packet, it removes the transport label and sent to the control panel for processing. Now the PE has two options to reply to the received packet and these are the out of band i.e. Control plane and Out of band i.e. Data plane.

The figure below shows the SDP ping taken from UPE 1 with SDP 20 to SP 14. It shows the actual IP address with the Path MTU. The status both administrative and operative is up. This is a round trip test i.e. data plane test as you can see the profile is out means out of band. The out of band uses the local egress SDP ID and an expected remote SDP ID. The local SDP is 20 and the remote SDP is 14.

*A:uPE1# oam sdp-ping 20 r Err SDP-ID Info	esp-sdp 14 Local	Remote
SDP-ID:	20	14
Administrative State:	Up	Up
Operative State:	Up	Up
Path MTU:	9000	N/A
Response SDP Used:		Yes
IP Interface State:	Up	
Actual IP Address:	10.1.1.20	10.1.1.15
Expected Peer IP:	10.1.1.15	10.1.1.20
Forwarding Class	be	be
Profile	Out	Out
Request Result: Sent – Rep RTT: 1.01(ms)	ly Received	

Figure 3.3 SDP – Ping Test on UPE 1 from SDP 20 to SDP 14

This is the other test done from PEW with the local SDP 12 to the Remote SDP 15.

*A:PE2# oam sdp-ping 12 re Err SDP-ID Info	sp-sdp 15 Local	Remote
SDP-ID: Administrative State:	12 Up	 15 Up
Operative State:	Up	Up
Path MTU: Response SDP Used:	9000	N/A Yes
IP Interface State: Actual IP Address:	Up 10.1.1.12	10.1.1.15
Expected Peer IP:	10.1.1.15	10.1.1.12
Forwarding Class	be	be
Profile	Out	Out
Request Result: Sent - Rep RTT: 1.11(ms)	ly Received	

Figure 3.4 SDP – Ping Test on PE 2 from SDP 12 to SDP 15

3.2.4 Service Ping

The type of test performs the end-to-end connectivity test for the specific service instead of bunch of services in the SDP. This is a level higher than SDP ping test as it is more focused on the individual service between the two PE. The service ping verifies the round trip connectivity with the delay from the far-end PE router. It is similar to pseudo wire ping. Some of the tests like round trip path verification, service existence, service dynamic configuration verification, tunnel connectivity and VC label mapping verification is done using the service ping on GRE and MPLS tunnels.

The following figure shows the service ping using the IP address of the Far end PE router on the SDP 100.

	PE2# oam svc-ping 10 vice–ID: 100	.1.1.15 service	100 local-sdp remote-sdp	*A:PE1# <u>oam syc-ping</u> 10.1.1.12 service 100 <u>local-sdp r</u> Service-ID: 100			
Err	Info	Local	Remote	Err	Info	Local	Remote
	Type: Admin State: Oper State: Service-MTU: Customer ID:	VPLS Up Up 1536 1	VPLS Up Up 1536 1		Type: Admin State: Oper State: Service-MTU: Customer ID:	VPLS Up 1536 1	VPLS Up Up 1536 1
	IP Interface State: Actual IP Addr: Expected Peer IP:	10.1.1.12	10.1.1.15 10.1.1.12		IP Interface State: Actual IP Addr: Expected Peer IP:	10.1.1.15	10.1.1.12 10.1.1.15
	SDP Path Used: SDP-ID: Admin State: Operative State: Binding Admin State Binding Oper State: Binding VC ID: Binding Type: Binding Vo-type: Binding Vlan-vc-tag	Up 100 Mesh Ether	Yes 15 Up Up Up 100 Mesh Ether N/A			Up 100 Mesh Ether	Yes 12 Up Up Up 100 Mesh Ether N/A
	Egress Label: Ingress Label: Egress Label Type: Ingress Label Type:	131065 Signaled Signaled	131065 131066 Signaled Signaled		Egress Label: Ingress Label: Egress Label Type: Ingress Label Type:		131066 131065 Signaled Signaled

Figure 3.5 SVC - Ping on PE1 and PE2

*A:PE1# oam svc-ping 10.1.1.12 service 100 local-sdp remote-sdp

Request Result: Sent - Reply Received

Request Result: Sent - Reply Received

CHAPTER 4 OAM Functions (VPLS Network)

4.1 Introduction

Reference: Zhou Xu [5] says on page 820

"Ethernet OAM tools can be used to test the health of the data-forwarding path of the ACs and the pseudo wires. The purpose of VPLS FDB OAM tools is to test the health of the FDB and to verify the forwarding behavior of the VPLS services.

	Table 4.1 VPLS FDB OAM Tools
Function	Description
MAC-ping	Used to find the egress PE router (the router that has a local SAP) for a
	particular customer MAC address.
MAC-trace	Used to find the VPLS forwarding path to the egress PE router to a particular
	customer MAC address.
MAC	Used to add MAC addresses to the FDB of a VSI for OAM purposes.
Populate	
MAC Purge	Used to remove MAC addresses from the FDB of a VSI.
CPE-ping	Used to locate a PE router that is locally attached to a particular customer IP
	station (IP address).
"	·

4.2 MAC-ping

As the UPE routers knows about the MAC address of their customers site, it becomes easy to for the MAC ping from other sides. The MAC ping is a mechanism to know if the particular MAC address exists or not. The MAC ping is the extension of the LSP Ping. The UPE sends the MAC ping packet to the other end UPE and then the router checks if it has the matching MAC address in the local SAP and then it responds to the other UPE. If the destination MAC address is in its own database, it does not forward any packet. The Mac ping is never forwarded to the customer's network. The following figure shows the MAC ping test for the broadcast MAC address in service 30 and 50. When this command is sent with the broadcast mac address it is flooded to all the PE routers will respond to the query if it has in local SAP.

Figure 4.1 MAC Ping for SDP 50 to broadcast MAC Address

*A:uPE1#	oam	mac-ping	service	50	destination	ff:ff:ff:ff:ff

Seq Node-id		Path	RTT
[Send request Seq. 1, Size 162] 1 10.1.1.20:sap1/2/3:50.* 1 10.1.1.50:sap1/2/3:50.*	No FIB on Egress No FIB on Egress		3.65ms 1.03ms
*A:uPE1# oam mac-ping service 30 destination	ff:ff:ff:ff:ff:ff		
Seg Node-id		Path	RTT
[Send request Seq. 1, Size 162] 1 10.1.1.20:sap1/2/3:30.* 1 10.1.1.50:sap1/2/3:30.*	No FIB on Egress No FIB on Egress		2.98ms 3.17ms

Figure 4.2 MAC Ping for SDP 30 to broadcast MAC Address

*A:uPE2# oam mac-ping service 30 destination ff:ff:ff:ff:ff:ff

Seq Node-id		Path	RTT
[Send request Seq. 1, Size 162] 1 10.1.1.50:sap1/2/3:30.* 1 10.1.1.20:sap1/2/3:30.*	No FIB on Egress No FIB on Egress		3.52ms 3.22ms
*A:uPE2# oam mac-ping service 50 destination	ff:ff:ff:ff:ff:ff		
Seq Node-id		Path	RTT
[Send request Seq. 1, Size 162]			
1 10.1.1.50:sap1/2/3:50.*	No FIB on Earess	Self	3.03ms
1 10.1.1.50.Sup1/2/0.50.*	NO FID ON EGIOSS		
1 10.1.1.20:sap1/2/3:50.*	No FIB on Egress		3.25ms

4.3 MAC – Trace

Mac trace is to get the detailed information regarding the packets being sent to the destination PE router. The MAC trace is not sent to the customer's network. The MAC trace increments the TTL value by each hop from source to the destination but this TTL increment is in the CV-label TTL not in the transport label. The MAC trace can be done for both the control plane and the data plane as per the requirement. MAC trace is very helpful in H-VPLS services as there are more PE routers in the path and it becomes easy to find the easy hop in the route to the particular destination. The following figure clearly shows the Mac trace in service 50 to the destination broadcast Mac address. The command is initiated from the UPE1 and trace is made till the UPE2. It clearly shows the type of VPLS service is responding to it and what are the SDP it is being transferred to. It also shows the upstream SDP and downstream SDP VPLS too.

Figure 4.3 Mac trace for SDP 50 on UPE 1

*A:uPE1# oam mac-trace servio	ce 50 destination ff:ff:ff:	ff:ff:ff		
Reply TTL Seq Node-id	Rcvd-on			
[Send request TTL: 1, Seq. 1 1 1 1 10.1.1.20	, Size 186]			
Downstream Spoke-sdp 14:	cpm_bypls 0 To: n/a, Ing_label: 13106 100 To: 10.1.1.20, Egr_labe 10 To: 10.1.1.22, Egr_labe	5, Sig: L 131067	.DP ', Sig: L	DP
Downstream Spoke-sdp 11::		5, Sig: LD 1: 131066	P , Sig: L	DP
		6, Sig: L	.DP	
[Send request TTL: 4, Seq. 1 5 4 1 10.1.1.50	, Size 186] sap:1/2/3:50.*	In–Band	Flood	1.20ms

CHAPTER 5 Network Topology

5.1 Summary

The network consists of Alcatel routers and the cisco switches for configurations and implementation of the network. Alcatel routers are being used as P, PE and UPE because these routers can implement 802.1ah in our lab.

5.2 Wiring

Item	Description
Wired By	Arsh Saini
Cable Type	Twisted Pair Cable CAT-5e
Central Wiring Location	MINT LAB

The Network used for this project has following devices:

- 1. Alcatel 7710 Router
- 2. Alcatel 7750 Router
- 3. Cisco 3560-x Switch
- 4. Cisco 3750 Switch
- 5. PC having Ubuntu OS
- 6. Alcatel Card type iom-9g and mda type c8-10/100eth-tx for PE and UPE routers
- 7. Alcatel Card type iom-20g and mda type m20-1gb-tx for P router

Abbreviations used in the Network Diagram:

- 1. P- Provider Router
- 2. PE- Provider Edge Router
- 3. UPE- User Provider Edge Router
- 4. CE-Customer Edge Router
- 5. SDP- Service Distribution Path
- 6. IP- Internet Protocol
- 7. MPLS- Multi Protocol Label Switching
- 8. R1 Rack

The table below shows the type of ports associated in the network and their type from the end point to the service provider.

Pe	oint	Ether Type	Ports	Tag Type	Port Type	Description
From	То					
	Provider ectivity	0x88e7	uPE: 1/2/1, 1/2/3 PE: 1/2/1, 1/2/4	Tagged	Q-in-Q	802.1ag
UPE	CE Switch	0x88a8	Q-in-Q port 1/2/3	Tagged	Q-in-Q	802.1ad
CE	UPE	0x8100	Trunk Port: 1/0/1	Tagged	Trunk Port: 802.1Q	802.1q
CE	Customer Switch	0x8100	Q-Tunnel port: 1/0/2, 10/3.	Tagged	Tunnel Port: 802.1Q	802.1q
Customer Switch	CE	0x8100	0/2	Tagged	Trunk Port: 802.1Q	802.1q
Customer Switch	End Point	0x800	0/1, 0/3	Tagged	Access port	0x8100

Table 5.1 Types of Port

IP addressing for the end points for two customers in Service - VLAN 50,30 and Customer - VLAN 41, 42are described below. End point was connected to only S-VLAN 50 and C-VLAN 41 for the tests as required by the project.

Customer	Device IP	Device	C-VLAN	S-VLAN
		Mac-address		
1	172.16.4.1	00:22:4d:69:79:0a	41	50
1	172.16.4.2	00:22:4d:6a:05:cb	41	50
1	172.16.4.1	Same Ports	42	50
1	172.16.4.2	(computers) were	42	50
2	172.16.4.1	used for testing	41	30
2	172.16.4.2	purposes.	41	30
2	172.16.4.1		42	30
2	172.16.4.2		42	30

Table 5.2 IP addressing and VLAN associated.

The tests performed in the above chapters has been initiated from and terminated as below:

Test	End Points 1	End Point 2
CFM Stack test	UPE1	UPE2
CFM loopback Test	UPE1	UPE2
CFM Link Trace Test	UPE1	
LSP Test	UPE1	UPE2
LSP Trace	UPE1	UPE2 (10.1.1.50/32)
LSP Trace	UPE2	UPE1 (10.1.1.20/32)
SDP Ping Test	UPE1-SDP 20	UPE1-SDP 14
SDP Ping Test	PE2-SDP 12	PE2 – SDP 15
Service Ping	PE1 – SDP 100	PE2 - SDP100
SVC Ping	PE2 – SDP 100	PE2 - SDP 100
Mac Ping	SDP 50	Broadcast Mac
Mac Ping	SDP 30	Broadcast Mac
Mac Trace	UPE1 – SDP 50	Broadcast Mac

Table 5.3: Initiation and termination of tests

5.3 Implementation

Implementation of 802.1ag and 802.1ah

- 1. Setup a Network so that we have at least two locations for the customer.
- 2. Configure the IP address and run OSPF routing protocol.
- 3. Setup different VLANs for service provider and Customers at CE and customer switch respectively. Here VLAN 50 and 30 has been added as a service provider VLAN for different customer and VLAN 41 and 42.
- 4. Configure MPLS and run LDP or RSVP- TE between PE routers.
- 5. Configure port as access ports if it is connected to the customer end otherwise configure it as network port. Enable efm-oam on the port.

6. Configure SDP (service distribution point) defining the far end, MTU and signaling method

7. Configure i-VPLS and b-VPLS. Bind the mesh SDP (for other end PE router) and spoke SDP (for UPE router) in b-VPLS.

8. Configure Eth- CFM (Ethernet - Connectivity Fault Management) with two different domains one for the service provider and other for the customer. Here the domain has been created with name arsh_mint with level 5 for service provider network and loopip for the customer network with level 7. The VPLS 50 as a bridge-identifier has been added.

9. MEP (Maintenance End Point) with domain 1 will be added to the VPLS 50 in SAP.

5.4 Network Diagram

CHAPTER 6 Wire Shark Traces and Conclusion

6.1 Packet walkthrough

The packet is generated from client 1 on the Customer 1 Switch 1 VLAN 41. Source IP address \rightarrow 172.16.4.1 Destination IP address \rightarrow 172.16.4.2 Packet Type \rightarrow ICMP (Ping) VLAN \rightarrow 41 Priority \rightarrow Best Effort

Figure 6.1 Packet from the client

Ľ	14 2.999985 172.16.	4.1 172.1	6.4.2	ICMP	102 Echo	(ping)	request	10=0x3ct4,	seq=42407/4	2917, tt
3	rame 14: 102 bytes on	wire (816 bits),	102 bytes capt	ured (81	6 bits)					
100	<pre>thernet II (VLAN tagge Destination: MitacInt Source: MitacInt_6a:(VLAN tag: VLAN=41, Pr Identifier: 802.10 000</pre>	t_69:79:0a (00:22: 05:cb (00:22:4d:6a riority=Best Effor Virtual LAN (0x81	4d:69:79:0a) :05:cb) t (default) 00)		:05:cb), Dst				4d:69:79:0a)	
	0 0000 0010 1001 Type: IP (0x0800)	. = CFI: Canonical		II() (0)		Priorit	101	The mediat	Error MT ANT	41
28	Internet Protocol Versi	ion 4 Src · 172 16	4 1 (172 16 4	(1) Dst	· 172 16 4 2	(172 16	4 2)	- The packet	from VLAN	41
	Version: 4 Header length: 20 byt Differentiated Servit Total Length: 84 Identification: 0x000 Flags: 0x02 (Don't Fr Fragment offset: 0 Time to live: 64 Protocol: ICMP (1) Header checksum: 0xdd Source: 172.16.4.1 (1 Destination: 172.16.4	tes ces Field: 0x00 (D 00 (0) ragment) 1855 [correct] 172.16.4.1)	SCP 0x00: Defa	It; EC	/	ECT (Not		able Transp	ort))	
2	Internet Control Messa									
린	Type: 8 (Echo (ping) Code: 0 Checksum: 0x4c56 [cor Identifier (BE): 1560	request) rrect] 04 (0x3cf4)								
	Identifier (LE): 6252 Sequence number (BE):									

The packet moves from the CE switch to the UPE router. At this point the CE attaches the VLAN 50 tag to VLAN 41 tagged packet. This makes S-Vlan as 50 and C-Vlan as 41. This way we can carry 4096 X 4096 VLANS. The type is 0x08100 ie for 802.1aq for Virtual Vlan.

Figure 6.2 Packets with VLAN 41 and VLAN 50

OAM (operation, administration and management) packet is being send between the routers to get to know about the link status and then can generate the alarm if any issues are found. The OAM protocol has Flags, local information TLV and Remote Information TLV. The Flag bit sets to 0 or 1 as per the fault or event. The local and remote discovery is completed and is shown in the packet below. OAM packets are slow protocols and these protocols are used to control operational characteristics of the Ethernet device.

Figure 6.3 OAM packets

The packet below shows CFM (Connectivity fault management) packet. MPLS Label 131067 as a transport label and 131070 as a VC-label is added to the packet send by UPE router to the PE router. UPE Encapsulates the Received frame in 802.1ah mac-in-mac as shown in figure 7.4. The packet has I-SID= 50 with B-source address and B-destination address. The packet includes the 802.1ag/ITU protocol message, the type is known as Continuity Check Message

Figure 6.4 CFM Packet with 802.1ah packet format

In the figure 6.5 it shows the CFM Packet that shows 802.1ag packet format in extended form. In the Maintenance association Identifier (MEG ID) it shows the packet is being sent for the arsh_mint domain, which is the domain 1. The short name, which is described as Vpls_50, is also included in the packet. The CFM TLV's shows the status of the port and related information. The CFM messages are sent in sequence numbers, which is 99917 for the packet shown here.

Figure 6.5 CFM Packet with 802.1ag packet format

This is the similar packet that is received to the PE on the other end with the transport and the VC label attached to the packet. The MPLS label gets changed as it moves from one MPLS P router to other, until the packet is reached at PE or UPE router, which trims off the MPLS Label. The packet shows the MPLS label as 131067 and 131070 as below.

Figure 6.6 Packets with MPLS Detail

	Source	Destination	Protocol	Length Info	DO: TULOL				
		Alcatela3:84:9d	0x8100		10 Virtua				_
	Alcatel- db:eb:8d		OAM		DU: Infor				
150 10.255050	Areacer abrebiou	5104 11 0202015		00 0/1/1	201 2111 01	ind c rorr			
Ethernet II, Sro MultiProtocol La MPLS Label: 1 MPLS Experimer MPLS Bottom Of MPLS TTL: 255	: Alcateldb:eb:8 abel Switching Head 81067 tal Bits: 0 tabel Stack: 0 abel Switching Head 81070 ttal Bits: 0	bits), 142 bytes c d (00:21:05:db:eb:8 er, Label: 131067, er, Label: 131070,	aptured (d), Dst: Exp: 0, S	Alcatel0d: :: 0, TTL: 25 T :: 1, TTL: 25	5 Transport I):7c)		
MPLS TTL: 255 Ethernet II, Src IEEE 802.1ah, I- ⊡ I-Tag, I-SID:	:: Alcatela3:6c:9 -SID: 50, C-Src: Mi 50	d (00:1a:f0:a3:6c:9 tacInt_69:79:0a (00 = Priorit	:22:4d:69					6a:05:cb)	

In the figure 6.7 if we compare it with Figure 6.6 it shows MPLS tags changed. This is the packet received by the UPE from the PE router. These shows the MPLS labels are exchanged. The new MPLS labels are 131070 and label 131065

Figure 6.7 MPLS Label Switching

In the last step the packet is sent to the CE2, which removes all the extra MPLS and 802.1ag information attached.

l.		III				
Frame 2: 106 bytes on wire (848 bits), 106 bytes	captured (848	bits)			
Ethernet II (VLAN tagged), 5	rc: MitacInt_69:79:0a	(00:22:4d:69	:79:0a), Dst	: MitacInt_6a:	05:cb (00:22:4	ld:6a:05:cb)
Destination: MitacInt_6a:0		cb)				
Source: MitacInt_69:79:0a						
🖃 VLAN tag: VLAN=50, Priorit		t)				
Identifier: 802.10 Virtu						
000 = Pr		default) (0)		Ret	olv Recived fro	m 172.16.4.2 to
0 = CF		G			AN > 50 and	
0000 0011 0010 = VL						
□ VLAN tag: VLAN=41, Priorit		t)		VL	AN - > 41	
Identifier: 802.10 Virtu		(J-E]+) (0)				
000 = Pr		derault) (0)				
$\dots 0 \dots \dots = CF$ $\dots 0000 0010 1001 = VL$						
Type: IP (0x0800)	AN: 41					
Internet Protocol Version 4,	Sec. 172 16 4 2 (172	16 4 3) Det	. 177 16 4 1	(173 16 4 1)		
Internet Control Message Pro		.10.4.2), DSU	. 1/2.10.4.1	(1/2.10.4.1)		
Type: 0 (Echo (ping) reply						
code: 0)					
Checksum: 0xe0fc [correct]						
Identifier (BE): 15604 (0x						
Identifier (LE): 62524 (0x						
Sequence number (BE): 4096						
Sequence number (LE): 1696						
Data (56 bytes)						
Data: 88b1e34f000000000e	34090000000001011121	314151617				
[Length: 56]						

Figure 6.8 Reply ICMP packets with both S-Vlan and C-Vlan

6.2 Conclusion

The OAM is a tool for monitoring and alarming when we get problem in our network. To simplify and make it easy to find the errors and faults in the network is very important. OAM is a tool which intimates about fault indication, performance monitoring, diagnostic functions, security management, configuration and service provision. OAM covers from Management plane to network plane.

802.1ag CFM is an end-to-end service management over any infrastructure. There is no interference of customer domain, service domain and operator's domains and can run on different levels of management tool.CFM uses the Ethernet frames and not sub Ethernet control information. The layer 2 network is increasing and we need to troubleshoot when failure occurs, CFM makes it easy especially when the components networks belong to different organizations

It can perform end to end service manageability which eliminates the finger pointing between carriers along with Physical connectivity verification, proactive service status. This is a simple deployment of Ethernet Wan services as per the increase in the market of resources with less technical sophisticated customers.

There are various tools through which we can manage our network real time without manual intervention and lower downtimes. It is getting important in all the service providers to implement the CFM OAM for better service assurance and quality.

Appendix – A

Configuration of 802.1ag and QOS

Configuration of Provider Router (P router)

A:P# admin display-config exit all configure #----echo "System Security Configuration" #----system security per-peer-queuing cpu-protection policy 254 create exit policy 255 create exit exit exit exit #----echo "Card Configuration" #----card 1 card-type iom-20g mda 1 mda-type m20-1gb-tx exit exit #----echo "Port Configuration" #----port 1/1/1 ethernet efm-oam accept-remote-loopback transmit-interval 1 multiplier 2 no shutdown exit exit no shutdown exit port 1/1/2

```
ethernet
efm-oam
accept-remote-loopback
transmit-interval 1 multiplier 2
no shutdown
exit
exit
no shutdown
exit
```

```
exit
```

```
#-----
```

```
echo "Router (Network Side) Configuration"
#-----
 router
   interface "system"
     address 10.1.1.3/32
   exit
   interface "to-PE1"
     address 10.6.7.2/30
     port 1/1/1
   exit
   interface "to-PE2"
     address 10.6.8.2/30
     port 1/1/2
   exit
#-----
echo "OSPFv2 Configuration"
#-----
   ospf
     traffic-engineering
     area 0.0.0.0
       interface "system"
       exit
       interface "to-PE1"
        interface-type point-to-point
       exit
       interface "to-PE2"
        interface-type point-to-point
       exit
     exit
   exit
#-----
echo "MPLS Configuration"
#-----
   mpls
```

shutdown

interface "system"

exit exit #----echo "RSVP Configuration" #----rsvp shutdown interface "system" exit exit #----echo "MPLS LSP Configuration" #----mpls exit #----echo "LDP Configuration" #----ldp interface-parameters interface "to-PE1" exit interface "to-PE2" exit exit targeted-session exit exit exit #----echo "Service Configuration" #----service customer 1 create description "Default customer" exit exit

Configuration for PE (Provider Edge) Routers.

PE-1 Router

A:PE1# admin display-config exit all configure #----echo "System Configuration" #----system name "PE1" ccm 1 exit snmp shutdown exit time sntp shutdown exit zone UTC exit thresholds rmon exit exit exit #----echo "Card Configuration" #----card 1 card-type iom-9g mda 2 mda-type c8-10/100eth-tx exit exit #----echo "Port Configuration" #----port 1/2/1 description "to P" ethernet mtu 9212 efm-oam accept-remote-loopback

```
transmit-interval 1 multiplier 2
        no shutdown
      exit
    exit
    no shutdown
  exit
  port 1/2/2
    shutdown
    ethernet
    exit
  exit
  port 1/2/3
    shutdown
    ethernet
      mode access
      encap-type qinq
    exit
  exit
  port 1/2/4
    ethernet
      mtu 9212
      efm-oam
        accept-remote-loopback
        transmit-interval 1 multiplier 2
        no shutdown
      exit
    exit
    no shutdown
 exit
 port 1/2/8
    ethernet
      mode access
    exit
    no shutdown
  exit
#------
echo "Router (Network Side) Configuration"
#-----
 router
    interface "system"
      address 10.1.1.15/32
    exit
    interface "to-P3"
      address 10.6.7.1/30
      port 1/2/1
    exit
    interface "to-uPE1"
```
```
address 10.6.6.2/30
     port 1/2/4
   exit
#-----
echo "OSPFv2 Configuration"
#-----
   ospf
     traffic-engineering
     area 0.0.0.0
       interface "system"
       exit
       interface "to-P3"
         interface-type point-to-point
       exit
       interface "to-uPE1"
         interface-type point-to-point
       exit
     exit
   exit
#-----
echo "LDP Configuration"
#-----
   ldp
     interface-parameters
       interface "to-P3"
       exit
       interface "to-uPE1"
       exit
     exit
     targeted-session
     exit
   exit
 exit
#-----
echo "Service Configuration"
#-----
 service
   customer 1 create
     description "Default customer"
   exit
   customer 2 create
   exit
   customer 30 create
   exit
   customer 50 create
   exit
```

sdp 14 mpls create description "SDP Connect to uPE router" far-end 10.1.1.20 ldp path-mtu 9000 keep-alive shutdown exit no shutdown exit sdp 15 mpls create description "SDP Connect to Far_END PE router" far-end 10.1.1.12 ldp path-mtu 9000 keep-alive shutdown exit no shutdown exit vpls 100 customer 1 b-vpls create description "Link b/w I-VPLS and PE2" service-mtu 1536 pbb source-bmac 00:21:05:6b:0a:96 exit stp shutdown exit spoke-sdp 14:100 create exit mesh-sdp 15:100 create exit no shutdown exit exit #----echo "Mirror Configuration" #----mirror mirror-dest 99 create sap 1/2/8 create exit no shutdown exit exit

exit all

PE2 Router

A:PE2# admin display-config exit all configure #----echo "System Configuration" #----system name "PE2" ccm 1 exit snmp shutdown exit time sntp shutdown exit zone UTC exit thresholds rmon exit exit exit #----echo "Card Configuration" #----card 1 card-type iom-9g mda 2 mda-type c8-10/100eth-tx exit exit #----echo "Port Configuration" #----port 1/2/1 description "to_p" ethernet mtu 9212 efm-oam

```
accept-remote-loopback
       transmit-interval 1 multiplier 2
       no shutdown
     exit
  exit
  no shutdown
exit
port 1/2/2
  shutdown
  ethernet
  exit
exit
port 1/2/3
  shutdown
  ethernet
     mode access
    encap-type qinq
  exit
exit
port 1/2/4
  ethernet
     mtu 9212
     efm-oam
       accept-remote-loopback
       transmit-interval 1 multiplier 2
       no shutdown
     exit
  exit
  no shutdown
exit
port 1/2/5
  shutdown
  ethernet
  exit
exit
port 1/2/6
  shutdown
  ethernet
  exit
exit
port 1/2/7
  shutdown
  ethernet
  exit
exit
port 1/2/8
  ethernet
```

```
mode access
   exit
   no shutdown
 exit
#-----
echo "Router (Network Side) Configuration"
#-----
 router
   interface "system"
     address 10.1.1.12/32
   exit
   interface "to-P3"
     address 10.6.8.1/30
     port 1/2/1
   exit
   interface "to-uPE3"
     address 10.6.9.2/30
     port 1/2/4
   exit
#-----
echo "OSPFv2 Configuration"
#-----
   ospf
     traffic-engineering
     area 0.0.0.0
       interface "system"
       exit
       interface "to-P3"
         interface-type point-to-point
       exit
       interface "to-uPE3"
         interface-type point-to-point
       exit
     exit
   exit
#------
                     -----
echo "LDP Configuration"
#-----
   ldp
     interface-parameters
       interface "to-P3"
       exit
       interface "to-uPE3"
       exit
     exit
     targeted-session
     exit
```

```
exit
exit
```

#----echo "Service Configuration" #----service customer 1 create description "Default customer" exit customer 10 create exit customer 30 create exit customer 40 create exit customer 50 create exit sdp 11 mpls create description "SDP Connect to uPE router" far-end 10.1.1.50 ldp path-mtu 9000 keep-alive shutdown exit no shutdown exit sdp 12 mpls create description "SDP Connect to Far_END PE router" far-end 10.1.1.15 ldp path-mtu 9000 keep-alive shutdown exit no shutdown exit vpls 100 customer 1 b-vpls create description "Link b/w I-VPLS and B-VPLS" service-mtu 1536 pbb source-bmac 00:1a:f0:a3:98:9d exit stp shutdown exit

spoke-sdp 11:100 create exit mesh-sdp 12:100 create exit no shutdown exit exit #----echo "Mirror Configuration" #----mirror mirror-dest 99 create sap 1/2/8 create exit no shutdown exit exit exit all

Finished SUN MAY 27 12:26:45 2012 UTC A:PE2#

Configuration of UPE Router (User End PE router)

UPE 1 Router

A:uPE1# admin display-config configure #----echo "System Configuration" #----system name "uPE1" ccm 1 exit snmp shutdown exit time sntp shutdown exit zone UTC

exit thresholds rmon exit exit exit #----echo "Card Configuration" #----card 1 card-type iom-9g mda 2 mda-type c8-10/100eth-tx exit exit #----echo "Port Configuration" #----port 1/2/1 ethernet mtu 9212 efm-oam accept-remote-loopback transmit-interval 1 multiplier 2 no shutdown exit exit no shutdown exit port 1/2/2 shutdown ethernet exit exit port 1/2/3 ethernet mode access encap-type qinq mtu 9212 exit no shutdown exit port 1/2/8 ethernet mode access exit no shutdown

exit

#----echo "QoS Policy Configuration" #----qos sap-ingress 2 create description "For Highest priority" queue 1 create exit queue 11 multipoint create exit exit sap-ingress 3 create description "For Low Priority" queue 1 create exit queue 11 multipoint create exit mac-criteria entry 10 create match frame-type ethernet-II dot1p 0 7 exit action fc "af" priority low exit exit exit exit #----echo "Filter Configuration" #----filter mac-filter 4 create default-action forward entry 1 create match frame-type ethernet_II dot1p 0 7 exit action drop exit exit exit #----echo "Eth-CFM Configuration" #----eth-cfm domain 1 name "arsh_mint" level 5

```
association 1 format string name "vpls_50"
       bridge-identifier 50
       exit
       ccm-interval 1
       remote-mepid 30
     exit
   exit
   domain 10 name "loopip" level 7
     association 10 format string name "mip"
       bridge-identifier 50
         mhf-creation explicit
       exit
     exit
   exit
 exit
#-----
echo "Router (Network Side) Configuration"
#-----
 router
   interface "system"
     address 10.1.1.20/32
   exit
   interface "to-PE1"
     address 10.6.6.1/30
     port 1/2/1
   exit
#------
echo "OSPFv2 Configuration"
#-----
   ospf
     traffic-engineering
     area 0.0.0.0
       interface "system"
       exit
       interface "to-PE1"
         interface-type point-to-point
       exit
     exit
   exit
#-----
echo "LDP Configuration"
#------
   ldp
     interface-parameters
       interface "to-PE1"
       exit
```

exit targeted-session exit exit exit #----echo "Service Configuration" #----service customer 1 create description "Default customer" exit customer 2 create exit customer 30 create exit customer 50 create exit customer 100 create exit sdp 20 mpls create description "connect to npe" far-end 10.1.1.15 ldp path-mtu 9000 keep-alive shutdown exit no shutdown exit vpls 30 customer 30 i-vpls create description "Instance for Customer_ID_30" send-flush-on-failure stp shutdown exit sap 1/2/3:30.* create ingress filter mac 4 exit exit no shutdown exit vpls 50 customer 50 i-vpls create description "Instance for Custome_ID_50" send-flush-on-failure

```
stp
        shutdown
      exit
      sap 1/2/3:50.* create
        eth-cfm
          mep 20 domain 1 association 1 direction up
            ccm-enable
            no shutdown
          exit
        exit
        ingress
          qos 2
        exit
      exit
      no shutdown
    exit
    vpls 100 customer 1 b-vpls create
      description "Link b/w I-VPLS and B-VPLS"
      service-mtu 1536
      send-flush-on-failure
      pbb
        source-bmac 00:1a:f0:a3:6c:9d
      exit
      stp
        shutdown
      exit
      spoke-sdp 20:100 create
      exit
      no shutdown
    exit
    vpls 30
      pbb
        backbone-vpls 100
        exit
      exit
   exit
   vpls 50
      pbb
        backbone-vpls 100
        exit
      exit
   exit
 exit
#-----
echo "OSPFv2 Configuration"
#-----
   ospf
```

exit exit

```
#-----
echo "Mirror Configuration"
#-----
mirror
mirror-dest 99 create
    sap 1/2/8 create
    exit
    no shutdown
    exit
exit
```

exit all

UPE-2 Router

```
A:uPE2# admin display-config
exit all
configure
#-----
echo "System Configuration"
#-----
 system
  name "uPE2"
  ccm 1
  exit
   snmp
    shutdown
  exit
  time
    sntp
      shutdown
    exit
    zone UTC
  exit
  thresholds
    rmon
    exit
  exit
 exit
#-----
echo "Card Configuration"
#-----
 card 1
```

```
card-type iom-9g
   mda 2
     mda-type c8-10/100eth-tx
   exit
 exit
#-----
echo "Port Configuration"
#-----
 port 1/2/1
   ethernet
     mtu 9212
     efm-oam
       accept-remote-loopback
       transmit-interval 1 multiplier 2
       no shutdown
     exit
   exit
   no shutdown
 exit
 port 1/2/2
   shutdown
   ethernet
   exit
 exit
 port 1/2/3
   ethernet
     mode access
     encap-type qinq
     mtu 9212
   exit
   no shutdown
 exit
 port 1/2/8
   ethernet
     mode access
   exit
   no shutdown
 exit
#-----
echo "QoS Policy Configuration"
#-----
 qos
   sap-ingress 2 create
     description "For Highest priority"
     queue 1 create
     exit
     queue 11 multipoint create
```

```
exit
      mac-criteria
        entry 10 create
          match frame-type ethernet-II
            dot1p 0 7
          exit
          action fc "ef" priority high
        exit
      exit
    exit
    sap-ingress 3 create
      description "For Low Priority"
      queue 1 create
      exit
      queue 11 multipoint create
      exit
      mac-criteria
        entry 10 create
          match frame-type ethernet-II
            dot1p 0 7
          exit
          action fc "af" priority low
        exit
      exit
    exit
 exit
#-----
echo "Filter Configuration"
#-----
 filter
    mac-filter 4 create
      default-action forward
      entry 1 create
        match frame-type ethernet_II
          dot1p 0 7
        exit
        action drop
      exit
   exit
 exit
#-----
                         -----
echo "Eth-CFM Configuration"
#-----
 eth-cfm
    domain 1 name "arsh_mint" level 5
      association 1 format string name "vpls_50"
        bridge-identifier 50
```

```
exit
       ccm-interval 1
       remote-mepid 20
     exit
   exit
   domain 10 name "loopip" level 7
     association 10 format string name "mip"
       bridge-identifier 50
         mhf-creation explicit
       exit
     exit
   exit
 exit
#-----
echo "Router (Network Side) Configuration"
#-----
 router
   interface "system"
     address 10.1.1.50/32
   exit
   interface "to-PE2"
     address 10.6.9.1/30
     port 1/2/1
   exit
#-----
echo "OSPFv2 Configuration"
#-----
   ospf
     traffic-engineering
     area 0.0.0.0
       interface "system"
       exit
       interface "to-PE2"
         interface-type point-to-point
       exit
     exit
   exit
#-----
echo "LDP Configuration"
#-----
   ldp
     interface-parameters
       interface "to-PE2"
       exit
     exit
     targeted-session
     exit
```

```
exit
exit
```

#----echo "Service Configuration" #----service customer 1 create description "Default customer" exit customer 2 create exit customer 30 create exit customer 50 create exit customer 100 create exit sdp 30 mpls create description "connect to nPE router" far-end 10.1.1.12 ldp path-mtu 9000 keep-alive shutdown exit no shutdown exit vpls 30 customer 30 i-vpls create stp shutdown exit sap 1/2/3:30.* create ingress filter mac 4 exit exit no shutdown exit vpls 50 customer 50 i-vpls create description "Instance for Custome_ID_50" send-flush-on-failure stp shutdown exit sap 1/2/3:50.* create eth-cfm

```
mep 30 domain 1 association 1 direction up
            ccm-enable
            no shutdown
          exit
        exit
        ingress
          qos 2
        exit
      exit
      no shutdown
    exit
    vpls 100 customer 1 b-vpls create
      description "Link b/w I-VPLS and B-VPLS"
      service-mtu 1536
      send-flush-on-failure
      pbb
        source-bmac 00:1a:f0:a3:84:9d
      exit
      stp
        shutdown
      exit
      spoke-sdp 30:100 create
      exit
      no shutdown
    exit
    vpls 30
      pbb
        backbone-vpls 100
        exit
      exit
    exit
    vpls 50
      pbb
        backbone-vpls 100
        exit
      exit
    exit
 exit
#-----
echo "Mirror Configuration"
#-----
  mirror
    mirror-dest 99 create
      sap 1/2/8 create
      exit
      no shutdown
    exit
```

exit

Configuration of 3750 Switch (Customer Edge)

The configuration on the both side of the PE1 and PE2 routers for the CE1 and CE2 switches respectively are the same as the port numbers and the VLAN numbers are kept identical. The VLAN for the Customers are kept different. Customer-1 has a VLAN of 41 and Customer-2 has a VLAN of 42.

```
Demark-R4-Sw1#sh run
hostname Demark-R4-Sw1
۱
system mtu routing 1500
spanning-tree mode pvst
spanning-tree extend system-id
vlan internal allocation policy ascending
interface FastEthernet0
no ip address
!
interface GigabitEthernet0/1
switchport trunk encapsulation dot1q
switchport mode trunk
interface GigabitEthernet0/2
switchport access vlan 50
switchport mode dot1q-tunnel
no cdp enable
!
interface GigabitEthernet0/3
switchport access vlan 30
switchport mode dot1q-tunnel
no cdp enable
!
interface Vlan1
no ip address
١
ip classless
ip http server
ip http secure-server
ip sla enable reaction-alerts
```

monitor session 1 source interface Gi0/1 monitor session 1 destination interface Gi0/10 monitor session 2 source interface Gi0/2 monitor session 2 destination interface Gi0/11

Configuration of Customer Switch Access Layer (3560-x)

The configuration is same for the both sides i.e. for the both sites of both customers. The VLAN has been configured as 30 and 50 for both Customer1 and Customer2 as their Internal VLAN's.

```
Customer 1-Sw1-R2#sh run
hostname Customer 1-Sw1-R2
spanning-tree mode pvst
spanning-tree etherchannel guard misconfig
spanning-tree extend system-id
vlan internal allocation policy ascending
interface GigabitEthernet1/0/1
description "Connected to Cus-1-Vlan41"
switchport access vlan 41
switchport mode access
۱
interface GigabitEthernet1/0/2
description "Connected to Demark-top3560-R2"
switchport trunk encapsulation dot1q
switchport mode trunk
interface GigabitEthernet1/0/3
description "Connected to Cus-1-Vlan42"
switchport access vlan 42
switchport mode access
۱
interface Vlan1
no ip address
١
monitor session 1 source interface Gi1/0/1
monitor session 1 destination interface Gi1/0/10
monitor session 2 source interface Gi1/0/2
monitor session 2 destination interface Gi1/0/11
```

Appendix- B Verification Outputs

UPE1 Outputs

*A: uPE1# show service sdp-using 20

Service Destination Point (Sdp Id : 20)

SvcId	SdpId	Туре	Far End	Opr S* I	.Labe	E.Label	
100	20:100	Spok	10.1.1.15	Up 13	1067	131065	
Number of	of SDPs : 1						

• indicates that the corresponding row element may have been truncated.

*A:uPE1# show service sdp

Services: Service Destination Points							
==== SdpId	Adm	n MTU	Opr MTU IP	address	Adm Opr	Deliver	Signal
20	9000	9000	10.1.1.15	Up Up	LDP	TLDP	
Numb	er of S	DPs:1					

*A:uPE1# show service id 50 fdb detail

ServId	MAC	Source-Identifier Age	Туре	Last Change	
50	00:22:4d:69:7	9:0a sap:1/2/3:50.*	L/0		
50		5:cb b-sdp:20:100	L/0	06/20/2012 21:58:37	
50		b:13 b-sdp:20:100	L/0	06/20/2012 21:58:37	
50		f:01 sap:1/2/3:50.*	L/0	06/20/2012 19:47:42	

Legend: L=Learned; P=MAC is protected

*A:uPE1# show service id 30 fdb detail

Forwa	rding Database	, Service 30		
ServId	MAC	Source-Identifier Age	Туре	Last Change
30	c8:9c:1d:20:3	f:01 sap:1/2/3:30.*	L/0	06/20/2012 19:47:42
No. of	MAC Entries:	1		
Legen	d: L=Learned;	P=MAC is protected		

*A:uPE1# show service id 100 fdb detail

Forwar	orwarding Database, Service 100						
ServId	MAC	Source-Identifier Age	Туре	Last Change			
100	00:1a:f0:a3	3:84:9d sdp:20:100	L/0	06/21/2012 20:26:37			
No. of	MAC Entrie	es: 1					
Legend	l: L=Learne	d; P=MAC is protected					

*A:uPE1# show service fdb-mac

Servic	e Forwarding D	atabase ====================================			
ServId	MAC	Source-Identifier Age	Туре	Last Change	
30	c8:9c:1d:20:3f	:01 sap:1/2/3:30.*	L/0	06/20/2012 19:47:42	
50	00:22:4d:69:79	9:0a sap:1/2/3:50.*	L/0	06/20/2012 19:48:12	
50	00:22:4d:6a:05	5:cb b-sdp:20:100	L/0	06/20/2012 21:58:37	
50	00:23:3e:0d:4t	p:13 b-sdp:20:100	L/0	06/20/2012 21:58:37	
50	c8:9c:1d:20:3f	:01 sap:1/2/3:50.*	L/0	06/20/2012 19:47:42	
100		4:9d sdp:20:100	L/0	06/21/2012 20:26:37	

Legend: L=Learned; P=MAC is protected

*A:uPE1# oam sdp-ping 20 resp-sdp 14

Err SDP-ID Info	Local	Remote
SDP-ID: Administrative State: Operative State: Path MTU: Response SDP Used:	20 Up Up 9000	14 Up Up N/A Yes
IP Interface State: Actual IP Address: Expected Peer IP:	Up 10.1.1.20 10.1.1.15	10.1.1.15 10.1.1.20
Forwarding Class Profile	be Out	be Out

Request Result: Sent - Reply Received RTT: 1.01(ms)

*A:uPE1# oam sdp-ping 20 resp-sdp	o 30	
Err SDP-ID Info	Local	Remote
SDP-ID:	20	N/A
Administrative State:	Up	N/A
Operative State:	Up	N/A
Path MTU:	9000	N/A
==> Response SDP Used:		No
IP Interface State:	Up	
Actual IP Address:	10.1.1.20	10.1.1.15
Expected Peer IP:	10.1.1.15	10.1.1.20
Forwarding Class	be	be
Profile	Out	Out

Request Result: Sent - Reply Received: Responder Sdp Id Unknown RTT: 1.04(ms)

*A:uPE1# oam sdp-ping 20 resp-sdp 14 size 1514 count 5 Request Response RTT

1Success1.39ms2Success1.41ms3Success1.36ms4Success1.44ms5Success1.48ms

Sent: 5 Received: 5 Min: 1.36ms Max: 1.48ms Avg: 1.42ms

_____ *A:uPE1# oam mac-trace service 50 destination ff:ff:ff:ff:ff:ff Reply TTL Seq Node-id Rcvd-on Path Nexthop RTT _____ [Send request TTL: 1, Seq. 1, Size 186] 1 1 1 10.1.1.20 sap:1/2/3:50.* Self Flood 1.44ms 2 1 1 10.1.1.15 cpm-bvpls In-Band Flood 2.15ms Upstream Spoke-sdp 14:100 To: n/a, Ing-label: 131065, Sig: LDP Downstream Spoke-sdp 14:100 To: 10.1.1.20, Egr-label: 131067, Sig: LDP Downstream Mesh-sdp 15:100 To: 10.1.1.12, Egr-label: 131065, Sig: LDP [Send request TTL: 2, Seq. 1, Size 186] 3 2 1 10.1.1.12 cpm-bvpls In-Band Flood 2.29ms Upstream Mesh-sdp 12:100 To: n/a, Ing-label: 131065, Sig: LDP Downstream Spoke-sdp 11:100 To: 10.1.1.50, Egr-label: 131066, Sig: LDP Downstream Mesh-sdp 12:100 To: 10.1.1.15, Egr-label: 131066, Sig: LDP [Send request TTL: 3, Seq. 1, Size 186] 4 3 1 10.1.1.50 cpm In-Band Flood 2.60ms Upstream Spoke-sdp 30:100 To: n/a, Ing-label: 131066, Sig: LDP Downstream Spoke-sdp 30:100 To: 10.1.1.12, Egr-label: 131071, Sig: LDP [Send request TTL: 4, Seq. 1, Size 186] 5 4 1 10.1.1.50 sap:1/2/3:50.* In-Band Flood 1.20ms *A:uPE1# oam mac-trace service 30 destination ff:ff:ff:ff:ff:ff Reply TTL Seq Node-id Rcvd-on Path Nexthop RTT _____ [Send request TTL: 1, Seq. 1, Size 186] 1 1 10.1.1.20 sap:1/2/3:30.* Self Flood 3.16ms 1 2 1 1 10.1.1.15 cpm-bvpls In-Band Flood 2.76ms

Upstream Spoke-sdp 14:100 To: n/a, Ing-label: 131065, Sig: LDP Downstream Spoke-sdp 14:100 To: 10.1.1.20, Egr-label: 131067, Sig: LDP Downstream Mesh-sdp 15:100 To: 10.1.1.12, Egr-label: 131065, Sig: LDP

[Send request TTL: 2, Seq. 1, Size 186]

3	2	1	10.1.1.12	cpm-bvpls	In-Band Flood	2.25ms
	Ups	trea	am Mesh-sdp	12:100 To: n/a	, Ing-label: 131065, Sig	: LDP
	Dov	vns	tream Spoke-	-sdp 11:100 To:	10.1.1.50, Egr-label: 13	31066, Sig: LDP
	Dov	vns	tream Mesh-	sdp 12:100 To:	10.1.1.15, Egr-label: 13	1066, Sig: LDP

[Send request TTL: 3, Seq. 1, Size 186]

4 3 1 10.1.1.50 cpm In-Band Flood 6.40ms Upstream Spoke-sdp 30:100 To: n/a, Ing-label: 131066, Sig: LDP Downstream Spoke-sdp 30:100 To: 10.1.1.12, Egr-label: 131071, Sig: LDP

[Send request TTL: 4, Seq. 1, Size 186] 5 4 1 10.1.1.50 sap:1/2/3:30.* In-Band Flood 1.07ms

*A:uPE1#

*A:uPE1# oam mac-ping service 50 destination ff:ff:ff:ff:ff:ff

Seq Node-id	Path RTT
[Send request Seq. 1, Size 162] 1 10.1.1.20:sap1/2/3:50.* 1 10.1.1.50:sap1/2/3:50.*	No FIB on Egress Self 3.65ms No FIB on Egress In-Band 1.03ms

*A:uPE1# oam mac-ping service 30 destination ff:ff:ff:ff:ff:ff:ff

Seq Node-id	Path RTT
[Send request Seq. 1, Size 162] 1 10.1.1.20:sap1/2/3:30.* 1 10.1.1.50:sap1/2/3:30.*	No FIB on Egress Self 2.98ms No FIB on Egress In-Band 3.17ms

*A:uPE1# oam lsp-ping prefix 10.1.1.50/32 LSP-PING 10.1.1.50/32: 80 bytes MPLS payload Seq=1, send from intf to-PE1, reply from 10.1.1.50 udp-data-len=32 ttl=255 rtt=1.19ms rc=3 (EgressRtr)

---- LSP 10.1.1.50/32 PING Statistics ----

*A:uPE1# oam lsp-tr prefix 10.1.1.50/32 lsp-trace to 10.1.1.50/32: 0 hops min, 0 hops max, 104 byte packets 1 10.1.1.15 rtt=1.26ms rc=8(DSRtrMatchLabel) 2 10.1.1.3 rtt=1.21ms rc=8(DSRtrMatchLabel) 3 10.1.1.12 rtt=1.29ms rc=8(DSRtrMatchLabel) 4 10.1.1.50 rtt=1.37ms rc=3(EgressRtr) *A:uPE1#

*A:uPE1# show eth-cfm mep 20 domain 1 association 1 _____ Mep Information _____ :1 Md-index Direction : Up Ma-index :1 Admin : Enabled MepId :20 CCM-Enable : Enabled : 37847040 IfIndex PrimaryVid : 268369970 FngState : fngReset ControlMep : False LowestDefectPri HighestDefect : macRemErrXcon : none Defect Flags : None Mac Address : 00:21:05:db:eb:8f CcmLtmPriority :7 CcmSequenceErr CcmTx : 83927 :0 Fault Propagation : disabled Eth-1Dm Threshold : 3(sec) Eth-Ais: : Disabled Eth-Tst: : Disabled CcmLastFailure Frame: None **XconCcmFailure Frame:** None

*A:uPE1# show eth-cfm cfm-stack-table

CFM Stack Table Defect Legend: R = Rdi, M = MacStatus, C = RemoteCCM, E = ErrorCCM, X = XconCCM, A = AisRx

CFM SAP Stack Table

Sap	Lvl Dir Md-index Ma-index MepId Mac-address Defect	
1/2/3:50.* 1/2/3:50.*	5 Up 1 1 20 00:21:05:db:eb:8f 7 Both 10 10 MIP 00:21:05:db:eb:8f	
CFM Ether	net Tunnel Stack Table	
Eth-tunnel	Lvl Dir Md-index Ma-index MepId Mac-address Defect	
No Matchin	ng Entries	
		====
CFM SDP S	stack Table	
======= Sdp	Lvl Dir Md-index Ma-index MepId Mac-address Defect	====
No Matchin	ng Entries	
CFM Virtua	al Stack Table	====
Service	Lvl Dir Md-index Ma-index MepId Mac-address Defect	====
No Matchin	ng Entries	
======================================		

*A:uPE1# show eth-cfm mep 20 domain 1 association 1 loopback Mep Information Md-index : 1 Direction : Up

Ma-index	:1	Admin	: Enabled
MepId	: 20	CCM-Enable	: Enabled
IfIndex	: 37847040	PrimaryVid	: 268369970
FngState	: fngReset	ControlMep	: False
LowestDefectPri	: macRemErrXco	n HighestDefect	: none
Defect Flags	: None		
Mac Address	: 00:21:05:db:eb:8	Sf CcmLtmPriority	: 7
CcmTx	: 84441	CcmSequenceErr	:0
Fault Propagation	: disabled		
Eth-1Dm Threshold	: 3(sec)		
Eth-Ais:	: Disabled		
Eth-Tst:	: Disabled		
CcmLastFailure Fran	ne:		
None			
XconCcmFailure Fra	me:		
None			
LbRxReply	: 10	LbRxBadOrder	: 0
LbRxBadMsdu	: 0	LbTxReply	: 5
LbSequence	:11	LbNextSequence	: 16
LbStatus	: False	LbResultOk	: True
DestIsMepId	: False	DestMepId	: 0
DestMac	: 00:00:00	:00:00:00 SendCount	: 0
VlanDropEnable	: True	VlanPriority	: 7
Data TLV:			
Eth-Tst: CcmLastFailure Fran None XconCcmFailure Fra None Mep Loopback Inform LbRxReply LbRxBadMsdu LbSequence LbStatus DestIsMepId DestMac VlanDropEnable	: Disabled ne: me: mation : 10 : 0 : 11 : False : False : 00:00:00	LbRxBadOrder LbTxReply LbNextSequence LbResultOk DestMepId :00:00:00 SendCount	: 5 : 16 : True : 0 : 0

None

*A:uPE1# show eth-cfm mep 20 domain 1 association 1 linktrace

Mep Information

FngState LowestDefectPri Defect Flags	: disabled : 3(sec) : Disabled	: none
CcmLastFailure Fran None XconCcmFailure Fra None	ne: me:	
LtRxUnexplained LtStatus TargIsMepId TargMac EgressId LtFlags	: 0 LtNextSequence : False LtResult : False TargMepId : 00:00:00:00:00 TTL : 00:00:00:21:05:db:eb:8f SequenceNum : useFDBonly	: 64
SequenceNum	: 1 ReceiveOrder : 63 Forwarded : 00:00:00:21:05:db:eb:8f TerminalMep : 00:00:00:23:3e:0d:4b:13 Relay : unknown value (0)	: 1 : False : True : rlyHit
ManAddress: None IngressMac : 00 IngrPortIdSubType : IngressPortId: None	unknown value (0) :23:3e:0d:4b:13 Egress Action : egrOI	

None Org Specific TLV: None

*A:uPE1# show eth-cfm mep 20 domain 1 association 1					
Mep Information					
Md-index Ma-index	: 1 D : 1 A	irection dmin CCM-Enable	: Up : Enabled : Enabled		
FngState LowestDefectPri	: 37847040 : fngReset : macRemErrXcon : None	ControlMep	: False		
Mac Address	: 00:21:05:db:eb:8f : 84817 : disabled	CcmLtmPriority CcmSequenceErr			
Eth-Ais: Eth-Tst: CcmLastFailure Fram	: Disabled : Disabled				
None XconCcmFailure Fra None	me:				

UPE2 OUTPUTS

*A:u	PE2# sł	now serv	ice sdp				
Servi	Services: Service Destination Points						
SdpIc	l Adn	n MTU	Opr MTU IP	address	Adm Opr	Deliver	Signal
30	9000	9000	10.1.1.12	Up Up	LDP	TLDP	
Numl	per of S	DPs:1					

*A:uPE2# oam sdp-ping 30 resp-sdp 11

Err SDP-ID Info	Local	Remote
SDP-ID:	30	11
Administrative State:	Up	Up
Operative State:	Up	Up
Path MTU:	9000	N/A
Response SDP Used:		Yes
IP Interface State:	Up	
Actual IP Address:	10.1.1	.50 10.1.1.12
Expected Peer IP:	10.1.1	.12 10.1.1.50
Forwarding Class Profile	be Out	be Out

Request Result: Sent - Reply Received RTT: 1.08(ms)

*A:uPE2# oam mac-trace service 50 destination ff:ff:ff:ff:ff:ff

Re	Reply TTL Seq Node-id Rcvd-on			Pa	th N	Nexthop RTT			
-			uest TTL: 1,		-				
1	1	1	10.1.1.50	sap:1	/2/3:50.*	Sel	f	Flood	1.52ms

2 1 1 10.1.1.12 cpm-bvpls In-Band Flood 2.15ms Upstream Spoke-sdp 11:100 To: n/a, Ing-label: 131071, Sig: LDP Downstream Spoke-sdp 11:100 To: 10.1.1.50, Egr-label: 131066, Sig: LDP Downstream Mesh-sdp 12:100 To: 10.1.1.15, Egr-label: 131066, Sig: LDP

[Send request TTL: 2, Seq. 1, Size 186]
3 2 1 10.1.1.15 cpm-bvpls In-Band Flood 2.28ms Upstream Mesh-sdp 15:100 To: n/a, Ing-label: 131066, Sig: LDP Downstream Spoke-sdp 14:100 To: 10.1.1.20, Egr-label: 131067, Sig: LDP Downstream Mesh-sdp 15:100 To: 10.1.1.12, Egr-label: 131065, Sig: LDP
[Send request TTL: 3, Seq. 1, Size 186]
4 3 1 10.1.1.20 cpm In-Band Flood 2.58ms Upstream Spoke-sdp 20:100 To: n/a, Ing-label: 131067, Sig: LDP Downstream Spoke-sdp 20:100 To: 10.1.1.15, Egr-label: 131065, Sig: LDP
[Send request TTL: 4, Seq. 1, Size 186]
5 4 1 10.1.1.20 sap:1/2/3:50.* In-Band Flood 1.08ms

*A:uPE2# oam mac-trace service 30 destination ff:ff:ff:ff:ff:ff

Reply TTL Seq Node-id		Path	Nexthop RTT		
[Send request TTL: 1, Seq 1 1 1 10.1.1.50 sa	<u>.</u>	Self Floo	od 1.47ms		
21110.1.1.12cpm-bvplsIn-Band Flood2.17msUpstream Spoke-sdp11:100 To: n/a, Ing-label:131071, Sig: LDPDownstream Spoke-sdp11:100 To: 10.1.1.50, Egr-label:131066, Sig: LDPDownstream Mesh-sdp12:100 To: 10.1.1.15, Egr-label:131066, Sig: LDP					
[Send request TTL: 2, Seq 3 2 1 10.1.1.15 cp Upstream Mesh-sdp 15 Downstream Spoke-sdp Downstream Mesh-sdp	pm-bvpls :100 To: n/a, Ing-la p 14:100 To: 10.1.1	bel: 131066 .20, Egr-lab	, Sig: LDP el: 131067, Sig: LDP		
[Send request TTL: 3, Seq 4 3 1 10.1.1.20 cp Upstream Spoke-sdp 20 Downstream Spoke-sdp	pm In D:100 To: n/a, Ing-la	abel: 13106	7, Sig: LDP		
[Send request TTL: 4, Seq 5 4 1 10.1.1.20 sa	· · ·	In-Band F	lood 1.03ms		

*A:uPE2# oam mac-ping service 30 destination ff:ff:ff:ff:ff:ff:ff

Seq Node-id	Path	RTT

[Send request Seq. 1, Size 162] 1 10.1.1.50:sap1/2/3:30.*

No FIB on Egress Self 3.52ms

1 10.1.1.20:sap1/2/3:30.* No FIB on Egress In-Band 3.22ms

*A:uPE2# oam mac-ping service 50 destination ff:ff:ff:ff:ff:ff

Seq Node-id

RTT Path

[Send request Seq. 1, Size 162] 1 10.1.1.50:sap1/2/3:50.* 1 10.1.1.20:sap1/2/3:50.*

No FIB on Egress Self 3.03ms No FIB on Egress In-Band 3.25ms

*A:uPE2# oam lsp-tr prefix 10.1.1.20/32 lsp-trace to 10.1.1.20/32: 0 hops min, 0 hops max, 104 byte packets 1 10.1.1.12 rtt=1.18ms rc=8(DSRtrMatchLabel) 2 10.1.1.3 rtt=11.2ms rc=8(DSRtrMatchLabel) 3 10.1.1.15 rtt=2.88ms rc=8(DSRtrMatchLabel) 4 10.1.1.20 rtt=1.27ms rc=3(EgressRtr) *A:uPE2#

*A:uPE2# show eth-cfm mep 30 domain 1 association 1

Mep Information			
Md-index Ma-index	: 1 : 1	Direction Admin	: Up : Enabled
MepId IfIndex FngState	: 30 : 37847040 : fngReset	CCM-Enable PrimaryVid ControlMep	: Enabled : 268369970 : False
LowestDefectPri Defect Flags Mac Address	: macRemErrX : None : 00:23:3e:0d:4	C	: none
CcmTx Fault Propagation	: 83905	b:13 CcmLtmPriority CcmSequenceErr	: 7 : 0
Eth-1Dm Threshold Eth-Ais:	: Disabled		
Eth-Tst: CcmLastFailure Fran None	: Disabled ne:		
XconCcmFailure Fra None	me:		

	Table Defect Legend: = MacStatus, C = RemoteCCM, E = ErrorCCM, X = XconCCM, A = AisRx
CFM SAP S	tack Table
Sap	Lvl Dir Md-index Ma-index MepId Mac-address Defect
1/2/3:50.* 1/2/3:50.*	5 Up 1 1 30 00:23:3e:0d:4b:13 7 Both 10 10 MIP 00:23:3e:0d:4b:13
CFM Etherr	net Tunnel Stack Table
Eth-tunnel	Lvl Dir Md-index Ma-index MepId Mac-address Defect
No Matchin	g Entries
CFM SDP S	tack Table
Sdp	Lvl Dir Md-index Ma-index MepId Mac-address Defect
No Matchin	g Entries
====== CFM Virtua	l Stack Table
Service	Lvl Dir Md-index Ma-index MepId Mac-address Defect
No Matchin	g Entries

*A:uPE2# show eth-cfm mep 30 domain 1 association 1 loopback					
Mep Inform	nation				
Md-index Ma-index MepId	: 1	: 1 : 30	Direction Admin CCM-	1	: Enabled : Enabled

IfIndex	: 37847040	Primary	Vid	: 268369970
FngState	: fngReset	-		
LowestDefectPr	i : macRemErrX	Con Highest	tDefect	: none
Defect Flags	: None			
Mac Address	: 00:23:3e:0d:4b	:13 CcmLtmP	riority	: 7
CcmTx	: 84363	CcmSeque	enceErr	: 0
Fault Propagatio	n : disabled			
Eth-1Dm Thresh	nold : $3(sec)$			
Eth-Ais:	: Disabled			
Eth-Tst: :	Disabled			
CcmLastFailure	Frame:			
None				
XconCcmFailur	e Frame:			
None				
Mep Loopback I				
LbRxReply	: 5	LbRxBadOrder	:0	
	: 0	LbTxReply	:10	
LbSequence	:1	LbNextSequence	:6	
LbStatus :	False	LbResultOk :	True	
DestIsMepId	: False	DestMepId	: 0	
DestMac	: 00:00:00:00:00:00:0	00 SendCount	: 0	
VlanDropEnable	e : True	VlanPriority	:7	
Data TLV:				
None				
*A:uPE2#				

*A:uPE2# oam eth-cfm loopback 00:21:05:db:eb:8f mep 30 domain 1 association 1 send-count 5

Eth-Cfm Loopback Test Initiated: Mac-Address: 00:21:05:db:eb:8f, out sap: 1/2/3:50.* Sent 5 packets, received 5 packets [0 out-of-order, 0 Bad Msdu]

*A:uPE2# show eth-cfm mep 30 domain 1 association 1 linktrace

Mep Information					
Md-index	: 1	Direction	: Up		
Ma-index	: 1	Admin	: Enabled		

MepId :30 CCM-Enable : Enabled IfIndex : 37847040 PrimaryVid : 268369970 FngState : fngReset ControlMep : False LowestDefectPri : macRemErrXcon HighestDefect : none Defect Flags : None Mac Address : 00:23:3e:0d:4b:13 CcmLtmPriority : 7 CcmTx CcmSequenceErr : 0 : 84573 Fault Propagation : disabled Eth-1Dm Threshold : 3(sec) Eth-Ais: : Disabled Eth-Tst: : Disabled CcmLastFailure Frame: None **XconCcmFailure Frame:** None _____ Mep Linktrace Message Information _____ LtRxUnexplained : 0 LtNextSequence : 2 LtStatus : False LtResult : False TargMepId TargIsMepId : False :0 TTL TargMac : 00:00:00:00:00:00 : 64 EgressId : 00:00:00:23:3e:0d:4b:13 SequenceNum :1 LtFlags : useFDBonly _____ Mep Linktrace Replies _____ SequenceNum :1 ReceiveOrder :1 Forwarded Ttl : 63 : False : 00:00:00:23:3e:0d:4b:13 TerminalMep LastEgressId : True NextEgressId : 00:00:00:21:05:db:eb:8f Relay : rlyHit ChassisIdSubType : unknown value (0) ChassisId: None ManAddressDomain: None ManAddress: None IngressMac : 00:00:00:00:00:00 Ingress Action : ingNoTlv IngrPortIdSubType : unknown value (0) IngressPortId: None EgressMac :00:21:05:db:eb:8f Egress Action : egrOK EgrPortIdSubType : unknown value (0) EgressPortId: None Org Specific TLV:

None

*A:uPE2# show eth-cfm mep 30 domain 1 association 1

_____ Mep Information -----Md-index :1 Direction : Up Ma-index :1 Admin : Enabled MepId :30 CCM-Enable : Enabled : 37847040 IfIndex PrimaryVid : 268369970 FngState : fngReset ControlMep : False LowestDefectPri : macRemErrXcon HighestDefect : none Defect Flags : None Mac Address : 00:23:3e:0d:4b:13 CcmLtmPriority : 7 CcmTx :84763 CcmSequenceErr : 0 Fault Propagation : disabled Eth-1Dm Threshold : 3(sec) Eth-Ais: : Disabled Eth-Tst: : Disabled CcmLastFailure Frame: None XconCcmFailure Frame: None

PE1 and PE2 OUTPUTS

*A:PE	E1# sho	w serv	ice sdp		==				
==== Servic	es: Ser	vice De	estination Po	ints	==				 ;=====
==== SdpId	Adm	n MTU	Opr MTU	IP address	==	Adm Opr	Deliver	Signal	 :=====
14 15			10.1.1.20 10.1.1.12	-	-		TLDP TLDP		
Numb	er of S	DPs : 2							
*A:PF	==== E2# sho	w serv	ice sdp		==				 :=====
			estination Po						
			Opr MTU			Adm Opr		Signal	
11	9000	9000	10.1.1.50	Up L	Jp	LDP 73	TLDP		

Number of SDPs : 2

*A:PE1# show service id 100 fdb detail

Forwarding Database, Service 100					
===== ServId	MAC	Source-Identifier Age	Туре	Last Change	
100	00:1a:f0:a	3:6c:9d sdp:14:100	L/0	06/20/2012 21:32:50	
100	00:1a:f0:a	3:84:9d sdp:15:100	L/0	06/20/2012 21:32:51	
No. of	MAC Entri	es: 2			
Legend	l: L=Learne	d; P=MAC is protected			

*A:PE1# oam svc-ping 10.1.1.12 service 100 local-sdp remote-sdp Service-ID: 100

Err Info	Local	Remote	e
Type: Admin State: Oper State: Service-MTU: Customer ID:	Up Up) U	VPLS Jp Jp 1536
IP Interface St Actual IP Add Expected Peer	r: 10) .1.1.15 .1.1.12	10.1.1.12 10.1.1.15
SDP Path Used SDP-ID: Admin State: Operative Stat Binding Admi Binding Oper Binding VC II Binding Type: Binding Vc-ty Binding Vlan-	15 Up e: Up n State:Up State: Up D: 10 Ma pe: Etl	12 12 12 12 12 12 12 12 12 12	Zes 2 Jp Jp Jp 00 Mesh Ether N/A
Egress Label: Ingress Label: Egress Label 7 Ingress Label 7	13 Type: Sign		131066 131065 Signaled Signaled

*A:PE2# oam svc-ping 10.1.1.15 service 100 local-sdp remote-sdp
Service-ID: 100

Err Info	Local	Re	mote
Туре:		VPLS	VPLS
Admin State:		Up	Up
Oper State:		Up	Up
Service-MTU	•	1536	1536
Customer ID:		1	1
IP Interface S	tate: Up		
Actual IP Add	lr:	10.1.1.12	2 10.1.1.15
Expected Pee	r IP:	10.1.1.1	5 10.1.1.12
SDP Path Use	ed:	Yes	Yes
SDP-ID:		12	15
Admin State:		Up	Up
Operative Sta	te:	Up	Up
Binding Adm	in State:	Up	Up
Binding Oper	State:	Up	Up
Binding VC I	D:	100	100
Binding Type	:	Mesh	Mesh
Binding Vc-ty	pe:	Ether	Ether
Binding Vlan	-vc-tag:	N/A	N/A
Egress Label:		131066	131065
Ingress Label	:	131065	131066
Egress Label	Type: S	ignaled	Signaled
Ingress Label			Signaled

Request Result: Sent - Reply Received

*A:PE1# oam sdp-pin Err SDP-ID Info	g 15 resp-s Local	-
SDP-ID:	15 1	2
Administrative Stat	e: Up	Up
Operative State:	Up	Up
Path MTU:	9000	Ń/A
Response SDP Use	d:	Yes
IP Interface State: Actual IP Address: Expected Peer IP:	Up 10.1.1.1 10.1.1.12	

Forwarding Class be be Profile Out Out

Request Result: Sent - Reply Received RTT: 1.06(ms)

*A:PE2# oam sdp-ping 12 resp-sdp 15 Err SDP-ID Info Local Remote

SDP-ID: Administrative Sta		15 Up
Operative State:	Up	Up
Path MTU:	9000	Ň/A
Response SDP Us	ed:	Yes
IP Interface State:	Up	
Actual IP Address	: 10.1.1.1	2 10.1.1.15
Expected Peer IP:	10.1.1.15	5 10.1.1.12
Forwarding Class Profile (be Dut O	be put

Request Result: Sent - Reply Received RTT: 1.11(ms)

*A:PE1# oam mac-trace service 100 destination ff:ff:ff:ff:ff:ff Reply TTL Seq Node-id Rcvd-on Path Nexthop RTT

[Send request TTL: 1, Seq. 1, Size 198]

- 1 1 1 10.1.1.20 cpm-bvpls In-Band Flood 0.100ms Upstream Spoke-sdp 20:100 To: n/a, Ing-label: 131067, Sig: LDP Downstream Spoke-sdp 20:100 To: 10.1.1.15, Egr-label: 131065, Sig: LDP
- 2 1 1 10.1.1.12 cpm-bvpls In-Band Flood 0.170ms Upstream Mesh-sdp 12:100 To: n/a, Ing-label: 131065, Sig: LDP Downstream Spoke-sdp 11:100 To: 10.1.1.50, Egr-label: 131066, Sig: LDP Downstream Mesh-sdp 12:100 To: 10.1.1.15, Egr-label: 131066, Sig: LDP

[Send request TTL: 2, Seq. 1, Size 198]

3 2 1 10.1.1.50 cpm-bvpls In-Band Flood 0.230ms Upstream Spoke-sdp 30:100 To: n/a, Ing-label: 131066, Sig: LDP Downstream Spoke-sdp 30:100 To: 10.1.1.12, Egr-label: 131071, Sig: LDP

[Send request TTL: 3, Seq. 1, Size 198] [Send request TTL: 4, Seq. 1, Size 198] Request TTL: 3, Seq. 1 timed out. Sending Size 198 Request TTL: 4, Seq. 1 timed out. Sending Size 198 *A:PE2# oam mac-trace service 100 destination ff:ff:ff:ff:ff:ff

Reply TTL Seq Node-id	Rcvd-on	Path	Nexthop RTT			
[Send request TTL: 1, Seq. 1, Size 198] 1 1 1 10.1.1.15 cpm-bvpls In-Band Flood 0.180ms Upstream Mesh-sdp 15:100 To: n/a, Ing-label: 131066, Sig: LDP Downstream Spoke-sdp 14:100 To: 10.1.1.20, Egr-label: 131067, Sig: LDP Downstream Mesh-sdp 15:100 To: 10.1.1.12, Egr-label: 131065, Sig: LDP						
2 1 1 10.1.1.50 cpm Upstream Spoke-sdp 30: Downstream Spoke-sdp 3	100 To: n/a, Ing-l	abel: 13106	6, Sig: LDP			
[Send request TTL: 2, Seq. 1, Size 198] 3 2 1 10.1.1.20 cpm-bvpls In-Band Flood 0.230ms Upstream Spoke-sdp 20:100 To: n/a, Ing-label: 131067, Sig: LDP Downstream Spoke-sdp 20:100 To: 10.1.1.15, Egr-label: 131065, Sig: LDP						
[Send request TTL: 3, Seq. [Send request TTL: 4, Seq. Request TTL: 3, Seq. 1 time Request TTL: 4, Seq. 1 time	1, Size 198] ed out. Sending S					

REFERENCES

- 1. Balakrishnan, R. "Advance QoS for Multi-Service IP/MPLS Networks" Wiley Publishing Inc.
- 2. Brocade.com "Offering Scalable Layer2 Services with VPLS and VLL"
- 3. SERVICES GUIDE, Service Aggregation Router OS Release 5.0, Service Guide, Alcatel-Lucent 7705
- 4. OAM AND DIAGNOSTICS GUIDE, Service Aggregation Router OS Release 5.0, Alcatel-Lucent 7705
- 5. Xu, Z "Designing and Implementating IP/MPLS Based Ethernet Layer 2 VPN Services" Wiley Publishing Inc.
- 6. Ali Sajassi, "ECMP Operation, Bridge Model, and OAM" Weekly ECMP Conf. Call April 28, 2011
- 7. Srinath Beldona, Yogesh Jiandani, "Ethernet OAM Tutorials" 2008
- 8. Knowledge base From website Amit Cisco Zone link <u>https://sites.google.com/site/amitsciscozone/home/network-management/ethernet-cfm</u>