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CHAPTER 1

Introduction

‘ The physics of laser-plasme interactions is an important
part of the controlled thermonuclear r"‘ﬁECh progras. While most of
the effort in laccr-élulnn interaction research is directed towards
the écvolop-ont of laser-pellet implgsion fusion, a considerable effort
1s being devoted to the study of pln?dymaicn and laser-plasma inter-
actions in solenoids. In such a device a solenoidal magnetic field
provides radial confinement of the plasma and inhibits thermal conductio

in the radial direction. Dawson et gl} have suggested that CO, laser

2

heated plasma columns may offer an alternative approach to controlled

thermonuclear fusion. In this scheme the plasma is heated through the
-

absorption of a high intensity CO_, laser beam that is directed down the

2
solenoid axis. The beam is guided down the solenoid axis by an on-
axis density nininui which 1s created by a high on-axis heating rate;
Additignal hcitin. may be provided by an adiabatic compression achieved
by increasing the strength of the solenoidal magnetic field after laser
heating is ter-inatedz. In the simplest concept the plasma confinement
t%ge is limited to the time required for the plasma to stream freely out
of the solenoid ends. Solenoid lengths of about 1 km are required to
achieve adequate confinement tinela. It has been suggested that endloss
could be reduced, and hence the device shortened by plugging the ends

with solid material or high density gas. Heat loss to the ends through

thermal conduction then becomes a serious problem.

Problems and ideas related to this concept of laser fusion

are being investigated in several laboratories using short (< 1 m)



solenoids. However, these experiments and reactor concepts are difficult
to analyze theoretically. This 1; because a good theoretical understanding
requires the simultaneous solution to the equations thet govern many
differeng but inter-related physical phenomena. Because of the complexity
of this type of problem, computer simulations have become an essential

tool for plasma physics research. Computer codes can incorporate -ad§/~\\)
different but inter-related physical phcno;nna. This can be useful in
testing simplified theories as vell as providing a better undorntaﬁdin;

of experimental observations. In addition to explaining experimental
results, computer models can predict unexpected phenomena, and be useful

in the design of new experiments and reactor concepts.

The rapid advance of computer technology in the past few
years has resulted in larger and faster computers being available to
plasma researchers. Thi{s allous for the numerical solution to more

sophisticated mathematical nodei) leading to more realistic computer

/
simulations.

In Chapter 2 of this thesis a two-dimensional computational
model developed by Dr. J.N. McMullin and the suthor is described. This
model has been designed to simulate the magnetohydrodynamic behaviour of
a laser-heated plasma in a solenoidal magnetic field. An attempt has
been made to make the computer code sufficiently versatile so that the
one program can be used to study short experimental devices as well as

reactor design concepts.

Electron thermal conductivity and fluid flow in a plasms in
a strong magnetic field is markedly anisotropic. The thermal conductivity

is much larger along the field lines than across it and plasma flow is



A4

doninsntly along the field 1imse. Dedause of this, & larpe amswmt of
numericsl diffusien is experienced vhes mormal dmo ing techniques
ore wayloyed ie salve the MD oquetions.' 28 utﬂly;,.ﬂn computetional
grid, resulting ia an excessive amoumnt of computer time needed to do

[

long simulations, is then required ia order to attaia‘rcacounblo acecuracy.
This problem has been eliminated in the present model by transforming
all of the equations into a moving non-orthogonal coordinate system

defined by the magnetic field lines.

A#othcr feature built into the present numerical model is
the opttdn of assuming radial pressure balance or calculating full
radial dynamice. In many cases the time .scales of interest are much longer
than the time required for a magneto-acoustic wave to propagate across
the solenoid radius. When this is true any pressure imbalance in the
radial diroétion is quickly smoothed out and the assumption of radial
pressure balance in a numerical model is valid. The main advantage of
making this assumption is that it eliminates what can be a very restrictive
stability condition. The present model treats diffusion terms implicitly
and all other terms are treated explicitly. Conacqucntly; the timestep
size 1s limited by the Courant-Friedricks-Lewy conditiona. If'full
r;dial dynamics are calculated the timestep size is limited by the

following two conditions:

4t < Min { %5— } 1.1)
aa
At :_M1; { %5 } 1.2)



vhers it 10 the timestep sise, C__ 1s sagnete-esoust ie veloeity,
AR 1s the smerical .uf sise ian the radial dttmin. c. te the

sound velecity, ud?a 1; the sumerical grid sise ia the axisl directionm.
Por slmost all simulations of plasmas ia s eolesoidsl magmetic field
comdition (1.1) is wech mors restrictive thaa cendities (1.2). The
sssumption of radial pressure balance elimimstes condition (1.1) and
timestep size is limited omly by condition (1.2). Yor the simulations

of long solenoids such as reactors this reduces the required number

of calculations by several orders of -‘initudo.

Flux coordinates were used in a sumerical model daveloped by
Hertweck and Schncidors and used by Schnudcr6 snd Bodin et 2L.7 in
the ltqu of end-loss from 0-pinches. However, their model assumed
1uf1n1€c electrical conductivity so that the effeets of magnetic diffusion
in thl plasms were not included. Although this approximation was adequate
for ;hoir studies, {t breaks down co-plltdly at lov temperatures during
the early stages of heating 6f the plasma. Magnetic diffusion is also
expected to affect the end-loss from long, high 8 roactorca even at very
high temperatures so finite conductivity has been included in the present
model. Other improvemsnts in this model are (1) the inclusion of full
radial dynamics using an implicit scheme for calculating th: motion of
flux surfaces; (2) the use of a direct (rather than iterative) method
for advancing the equations vhen radial pressure balance is assumed;
(3) the li-plifiﬁntion of the equations of motion by assuming only minor

distortion of the field lines.

Sample calculations, using this computational model, are
presented in Chapter 3. The versatility of the code is demonstrated

through the presentation of results from solenoids of lengh 5 cm, 1 ®,



end 1 W,

‘The cods has also besn wsed te previde smeries] deckwp for
experimsats performed by Dr. A.A. ﬂ!mr’. Ia Chapter 4 some
results from a computer etudy of the hydrodynamics of gas target experimeats
sre presented. In these simulstions a CO, laser beem 18 sssumed to de
focussed into a semi-infinite slad of wnmagnetined plasma. The laser
heating of the plasma and resulting hydrodynamic expansion are modelled.
Because the plasma is unmegnetised aqd the model uses s coordinate
system based on the motion of magnetic llﬁx lines some small alteratioms

- A
had to be made to the code for these simulations.

The results of Chapter 3 suggest that a laser heated plasma
in s 1 p solencid can have very long axial scale lengths. Simulations
shov that a plasma can be created with parameters ideal for the beat
frequancy mixing of antiparallel laser radiation. It 1is suggested in this
thesis that this process could be used to create a very efficient broad-

10

band amplifier of infared radiation  as well as a device capadble of

creating or amplifying extremely short bursts of infrared radiation.

Krupt‘ll has demonstrated that a short pulse of laser
radiation can be amplified through the absorption of energy from a longer
;uloc of laser radiation propagating antiparallel to the short pulse.
The radiation in the longer, or pump, pulse has a slightly higher frequency
than the short pulse. The process works as follows: a high intensity
pulse of laser radiation is directed into a mixing medium, in this case
Cl‘ gas. A short pulse of lower frequency laser radiation is directed
antiparall;l to the original pulse. Energy is transferred fro-'thc high

frequency pulse to the low frequency pulse through a Raman process. Thus

rd

-



mocwmmumxmuum”mu-xgu.
If the precess 1o fest encugh wset of the esvgy of Whe pump will be
trenaferred to the freat of the amplified pho In this wvay emsrgy .
from a longer Mt‘;‘lu 1s used te creste em entremsly high istessity
short pulse. It is feasible that such a process could be weed to )
efficiently create the short pulees of radistion ;oodod for laser pallet

fusion.

. In Krupks's experimsat newtral Cl‘ gas wes the mixing sedium
for 259 sm and 268 sm vavelemgth pulses of radistion from Ke? laeers.

In this thesis it is suggested that a plasme could ‘bo used as & mixing
sedium for infrared rediation in the 10.6 ym range. The mixing cas take
place betveen waves vith a differenee frequeacy close t;: the electron
plasma frequency (s Ramsn process) or the ion-acoustic frequency ta

xYTNwuin process). ’ .

Chapter 3 contains a review of some of the theory of the
beat frequency mixing of antiparallel laser Deams and extends this theory
to provide s basis for the analysis of a device capable of smplifying
ultra-short pulses of laser radiatiom. Chapter 6 contains a theoretical
snalysis of two proposed devices which rely on the beat frequency mixing

of laser radiation in a plasma.

AV

e
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4 CHAPTER 2

L]

' 1
A Two-Dimensional Magnetic Flux Shell Model for M.H.D. Simulations
. 4]

This chapter describes a two-dimensional computational wodel
developed by Dr. J.N. McMullin and the author to simulate the magneto-
hydrodynamics of a cylindrically symmetric plasma with an imbedded
solengidal magnetic field. This type of numerical simulation is a
valuable supplement to current laboratory experiments designed to test
the feasibility of using a magnetically confined plasma column as a [
thermonuclear device. Numerical models are also the only way at present
for evaluating propos;d designs of fusion reactbrs and neutron sources
based on linear plasma columns. Because the geometries of current .~
experiments and reactor designs are baaically(the same, both can be

simulated with a single code even though the dimensions and physical 8

parameters vary over wide ranges.

A common feature of all experiments and reactor designs is

the attainment of high electron temperatures (>40eV). Due to the resulting

large electrical conductivity, the motion of plasma particles across

magnetic field lines is strongly inhibited. Strong magnetic fields can

therefore be used to restrain the plasma against expansion during heating

as well as to inhibit logs of heat by conduction to the surrounding walls.

The main losses of internal energy of these plasmas are convection and

3
~

iy

Cdws

heat conduction along the field lines which join the confined plasma region

to the outside world. If the magnetic field lines are used as coordifates,

the motion of the plasma is mainly one-dimensional along these coordinates.

Furthermore, there are no mixed derivatives in the parallel heat conduction

term of the electron temperature equatien so that heat conduction along field !
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lines may be calculated free of errors due to numerical diffusion across
coordin‘tel. For these reasons, the numerical model uses nagnctic field
line, or flux coordinates, (a,x,t),'vhcr? s(r,x,t) is the magnetic flux
through a circle of radius r ceﬁtered on the x-axis, instead of the

regular cylindrical coordinates, (r,x,t).



2.1 The Hydrodynamic Model

The present model is based on the hydrodynamic equations
given by Buginskiiu. The plasma is approximated as a fully 1on1ud4
two-temperature ideal magnetohydrodynamic fluid. The electrons and ions
are assumed to have the same local number density and the same fluid
velocity. Cylindrical symmetry is assumed in the derivation of all the
equations. A‘solenoidal magnetic field is assumed to permeate the plasma
although it may have a vanishing field atrenéth. The magnetic field is
assumed to diffuse due to a classical electrical resistivity with joule
heaﬁing being absorbed by the electrons only. The strong anisotropy of
thermal conduction perpendicular and parallel to the magnetic field lines
is accounted for. Electrons and ions are assumed to exchange energy at
the classical equipaitition rate. An artifical viscosity is introduced
to numerically handle shock waves which may be generated by a strong
expansion. The artificial viscosity has the effect of spreading a shock
front over several mesh points as described by Richtmeyer and Mortona.
The model allows for the heating of electrons through the inverse,
Bremsstrahlung absorption of a laser beam propagating down the solenoid

axis.

The equations used are listed below in cylindrical coordinates

(r,x,t). In these equations n is the electron number density, m, is the

ion mass, p-mino is the mass density,vx and v_ are the axial and radial

components of fluid velocity, Te and Ti are the electron and ion temperatures,
and P=n k_(T +T,) is the scalar pressure. B and B are the axial

o B e 1§ x T
and radial components of the magnetic field. The total derivative, %; ,

is the convective derivative:
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4 9 ) )
dt it M Vx ix + Vr 3
2.1.1 Continuity Equationmn:
dn .
[+] ->
It + n, .9 =0
~ ~
or in cylindrical coordinates:
dn, e 12
q tlam tr s v leo 2.1
2.1.2 Momentum Equation:
-+ 9q_ . ) -
dv 1 * > r U
A T T

where q, and qx represent artificial viscosities in'the radial and axial

directions respectively,

v v
2 r 2
‘arp( or ) or <0
Q. *
3vr
° 7w 20

a_ is a variable having the dimensions of length and is chosen to spread
a shock over several radial mesh pointi.

v v

2 X |2 x
aplsx ) % <0
qx v
0 —= >0
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a_ is a variable having the dimensions of length and'is chosen to
A\
spread a shock over seversl axial mesh points. Splitting the acceleration
. ) > ->
equation into axial end radial components and eliminating J with

+ -+ +
VxB = (4w/c) J yields:

dvx 9P x
Pq T T o ( ax  ar ) - Ix (2'3)

dv : B 9B 9B aq

r qP x ) o x r
Pa " Ve (ax "ar ) T a (2.3)

2.1.3 Temperature Equation:(c = e or 1 for electrons or ions

respectively)
dT_- dn dT
€ o € (y-1
— - —— — - . -+
%o dt (v-1) Tc de "o dt * —1E—L{nocL v Qe Hjull
coll B
i (2.8)

The first term on the right gives the rate of energy transfer between

electrons and ions by collisions. In the electron temperature equation

this term may be approximated as: s .

dTe 1

—= | - = (T,-T)) (2.5)
7 de coll Teq 1 e

/
vhere Teq is the appropriate collision time. The same term with opposite
sign appears in the ion equatlon. The second term represents the inverse
Bremsstrahlung absorption of laser energy while the third term represents

thermal conduction. The last term, which accounts for electron heating

due to magnetic field diffusion can be expressed as:



\

J
njul - o, .

,i

»
vhcre 0 is the perpendicular co-poncut of the clcctrical conductivity

tensor. Only the perpendicular conpo*cnt of the electrical conductivity
ensor is needed since the current is purely azimuthal when the magnetic
-
field is solenoidal. The heat flux vector Qc is given by:
6“& ovT
€ € 13
where Ke is the heat conductivity tensor. Shock heating, which can be
accounted for through the artificial viscosity term, has been neglected

in the present treatment.

2.1.4 Magnetic Field Equations:

Equations for the magnetic field components can be written as:

r 9B
'dr' (2.6)

o
o]
.

]
LI
—
4"
o ]

9B 2 3B 9B

TR LA RIS =3 - o bl RN NCRY

> >
Equation (2.6) can be derived from V°'B = 0 while equation (2.7) is

obtained from Maxwells equations and Ohm's Law,

2.1.5 Laser Absorption and Propagatiom:

A Y
The electron heating rate due to the inverse Bremsstrahlung

absorption of laser energy used in equation (2.4) can be written as:

i
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n ¢ - K. Il(r.:,t) . (2.8)

vhere I1 is the laser beam intensity and K. is the nblorpﬁion coefficient.

The laser beam has a given radial profile, Gaussian for most cases,
which 1s assumed to be unaltered as the beam propagates down the solenoid

axis. The total beam power Pi vhere?

P (x,t) = 2n | IL(r,x,t) rdr 2.9)
[o]

obeys the transfer equation:

) ) =
7t PL + 3% PL - - K‘ PL (2.10)

0 |

c is~¢the speed of light and i; is the absorption coefficient averaged
over radial profile with the weights at each radial position being
proportional to the beam intensity at that point. This scheme reflects
the fact that a 1light ray is refracted through regions of varying

absorption as it propagates through the plasma.

2.1.6 Transport Coefficients:

Values for the transport coefficients that have been used
in this model have been taken from the Revised NRL Plasma Fornulary13
The formula connecting the low nﬁd high magnetic field limits for per-
pendiculsr thermal conductivity comes from Hain €t all% In the following

temperature is measured in eV and ky = 1.6x10"12 ergs/ev.

Thermal Conduction Parallel to i

& - 5/2
e 9 Tq _ergs
kyy = 3.1x10° 55— ( T oec o )

\.




15/2
i 8 i ergs
kyy = 1.25x100 p ( SV sec ca )

->
Thermal Conduction Perpendicular to B

€ 1 5/2
kc - 1l ¢ ( ergs )
gl T332 eV sec cm
€ €
(1 + 62 _—-i )
n
o
vhere
5® ; 3.1:109 61 - 1.25x108
1 tnA 1 LnA
6‘ 2.65:1025 i 7.811022
2 ” 3 §; = 2
(2nA) (tnA)

In the limit of large magnetic fields, Weoe >> vc,(where wcc

+

cyclotron frequency of species ¢, and v is the collision frequency

of spacies €)

6e n2
kif{‘i —
. § B vYT
2 €

In the limit of small magnetic fields, W e << Vo

€ _ € 5/2 A
k=6 T, L

Electrical Conductivity

3/2
13 Tc -

= 8.7x10 Y sec

%@



Electron-lon Equipartition of Energy

N
eq v,
o
n_2LnA
-9 o -1
Vet 3.25x10 T 372 sec
e

Laser Absorption Coefficient

The value given by Johnston and Dawson 13 1s used and for A=10.6um

9.7lox10-'36 noz

T 3/2
e

wvhere

3/2

A =min{2.3 ° T , 12 .1}
e e

15
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2.2 The Magnetic Flux Coordinatq s!ots

A number of different numerical schemes may be used to self-
consistently solve the partial differential equations in Section 2.1.
Since energy transport due to either particle comvection or thermal
conduction is strongly anisotropic, with the dominant energy transport
bei%g along the magnetic field lines, any such scheme will introduce
considerable numerical diffusion in cases where the magnetic field lines
are not parallel to the x axis. In the present model the differemtial
equations are transformed into a time dependent non-orthogonal coordinate
system defined by the magnetic field lines. In this coordinate system

energy transport occurs dominantly along one of the coordinates and the

problem of large numerical diffusion is eliminated.

2.2.1 Definition of the Coordinate System

The transformation of variables from cylindrical coordinates

(r,x,t) to flux coordinates (s,x',t') is defined below.

r -.
s = S(r,x,t) = 2« f Bx(?,x.t) £ dY
0

¥ |
x' = x (2.11)
t' =t
The corresponding inverse transform can be written as:
r = R(s,x',t)
X = " - ‘ (2.12)

t et
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The radius, R(s,x,t), of & flux surface of comstast s nov becomes a

Plasma variable from which the magnetic field components can be determined.

2.2.2 Trnnsfor-atifg of Derivatioms

Relations governing the transformation of derivatives between

the two coordinate systems will now be obtained. J
ds r dr ds
dx' - X x and dx - Y dx' (2.13)
de’ t dt de!
where
lars BxS 3tS Q.R BX,R at,a
X= ,0 1 0 and Y=|0 1 0 (2.14)
L 0 0 1 0 0 1
’\f\ ®
From equation (2.13) X = Y-1 and ~
Q4
f— -
1 i 3R i IS
3 R 3 R a3 R
s s s
-1
Y = (0] 1 0 (2.15)
(0] 0 1
A term wise comparison of X and Y-l yields
a_,R 3 R <

3R x> " " 3R
] [ ]

3rS - , and 3tS -~



9 ) S 9 ) 9
TR T T T 5.[ i1y
9 ,R .

2 2 s 2 _3__x'_ 3
x . ax' *Ix % X 5.[ o (2.18)
3_,3s 3 _ 1 23
or ar 98 a R 3

s A 1

The right hand side of equations (2.16) is now a function of the new
variables. Some other differential operators and quantities that will
be required to express the MHD equations in the new coordinate system

are derived below.

d ) > ) 3s 3 3 3S 9
dat at tvv o~ at’ + at ds + Vx ax' + Vx 3x 28
\ as 2
+ vr or 3s
) ) 3§ , + .. 2
TS ~URS SRR T
or
d 9 9 ds 3
FTIE T MR T NPT T (2.17)
->
For any vector V defined in cylindrical coordinates
-+ -+ v
-l e 4
v -V _y (r Ur) + 5% (2.18)

By using equations (2.16), this transforms to:




<
-
v

- t J
i a:'vx - '%:f At i%:‘ @)

An expression for ve can be obtained.

v = ar ) ty R . ds 3R
r dt Y x X" dc 3

Equations (2.17) and (2.20) bo.’ contain the factor %%,.

can be expressed in terms of the magnetic field components.

coordinates:

ds _ 3s s as

-+ -+ .
From equation (2.11) and V - B = 0,1t can be shown that:

— = ~ 2w%rB
r

From equation (2.11):

~— = 2nrB
x

From equations (2.11) and (2.7):

35 C2 aB_ BBr
—_- - + -
at er(var vr‘x) 20, A ir Ix )

By substituting equations (2.21), (2.22), and (2.24) into equation (2.20):

©

2.19)

(2.20)

factor

In cylindrical

(2.21)

(2.22)

(2.23)

(2.24)
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[
%{--ﬁr(ﬂl-;:l) | (2.29)

2.2.3 Dimensionless Variables
L

Nuserical techniques will be employed to find approximate
solutions to the magnetohydrddynamic oqu‘tifnn in the magnetic flux
coordinate system. It has been found that the algebra can be greatly
simplified and computer time ean be significantly reduced if certain
smsll terms are neglected in the msagnetohydrodynamic equations. Such
small terms can wost easily be identified if the M.H.D. equations are.
expressed in terms of a set of dissmsionless vserisbles. / By using
dimensionless variables in the computer program the number of constant
multipliers in the difference equatiomns is reduced which in turm reduces
the computer time required for a solutionm. In converting equatioms to
dimensionless units, dimensional quantities Q are replaced by Qua
where Qo is a convenient unit and a i{s the dimensionless variable. The

four basic quantities used to define the dimensionless system are defined

below.
(1) Lo - axial length unit x' - Lo x
L A
(11) Rq’ ~ radial: length unit '+ R T
N
. (111) No - number density n* No N X l
(1v) To - temperature Tc.i" To ‘l'..1 ~

The other basic units that will be used are defined in terms of the

above four variables and are listed below,.

) P, - loklro' -  Pressure
(11) 8, = (3'?0)1/2 - Magnetic field
U11) vy, = (kyT /m y1/2 - Axial vélocity

B o i



Ay

’ A
- - '.
(iv) t, Lo/v° Time ¢t t t ¢
2 N
(v) A = ¥R -  Ares .
- o [ !
(vi) So - AoBo * = Magnetic flux
(vii) Eo - NokBToLoAO - Energy
(viii)P = NkTAV - Power
wo o Booo

2.2.4 Expansion Parameter €

The length of a typical solenoidal device that we are interested
in modelling will invariably be much greater than its radius. As a

result Lo >> Ro and a small parameter €, = RO/Lo can be defined. When

1
the MHD equations are expressed in terms of dimensionless units in the
magnetic flux coordinate system, many terms appear that are of order

2

cl . In the present treatment such terms have been neglected. Neglecting

terms of order € 2

1 is equivalent to assuming that the slope of a field

line with respect to the axis of a solenoid is a small quantity € and

that terms of the order of cf can be neglected. For a magnetic field in

a typical solenoid, g << 1 except for small regions near each end where
the field lines are diverging. The axial length of these regions is of
the order of the solenoid diameter which for most experiments and all
reactor designs is a small fraction of the total plasma. In laser heating:
experiments in which a bleaching wave propagates through the plasma, the
approximation should remain valid if any one of the four following

conditions holds:

(1) 82/81 >> P

(2) Absorption length, L‘ >> R Radius of Laser Beam

bs las’

we



(3) Bleaching Wave Velocity, Vb; > V-., Magneto-Acoustic Velocity

2
) /(e V-.ll")~>> o, Electrical Conductivity.

Condition (1) ensures that the magnetic pregsure wvill prevent significant
expansion of the plasma and hence distortion 6f the field lines. If
condition (1) does not hold, then it is reasonable to assume that the
region being heated and still expanding is on the order of L = -1n(vaAt,
Labs) wvhere At = Rl“/V-. is the approximate expansion time of the plasma
under uneven radial heating. Since the displacement of a field line is

las

on the order of the radius of the heated reg . R , the slope of the
r of conditions (2) or (3)

field lines is approximately € Rlan/L' E
v

ensure that £1<< 1. Wwhen condition (4) holds, smoothing of the magnetic

field by diffusion dominates over distortion of the field by fluid

convection.

2.2:5 Transformation of Derivatives and Associated Differential

Operators to Dimensionless Variables

The transformation of the variable S, as defined in equation

(2.11) into dimensionless form yields:

' odr! (2.26)

’
It then follows that:
NN
-a-gc-znwa-—l,c
ar x 3 R
a
'
or
~ 1
B { ——w— (2.27)
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The subscript ; will be dropped on B~ in subsequent analysis. The

x
variable D is deffned as follows:

: 2 . (2.28

S

The variable D is converted into dimensionless variables by using equation

(2.25) and dropping terms of order clz.

2 a”
c B
D=2 8 K- DOB (2.29)
1 or
where
czBo
Do = 20_L ¢

Two other quantities that will be frequently used in subsequent

!
analysis are:

¢
v
d 0 ~ 3
Di—== ¢ D=—
R Y
(2.30)
v
) - P
8 L N [CZD]
o 08

where

The magnetohydrodynamic equations defined in Sectiom 2.1 can
be converted directly from cylindrical coordinates to magnetic flux

coordinates in dimensionless variables by using the differential operators
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in equations (2.16) to (2.17) expressdd ia terms of dimensionless varisbles.

The operators may be shown to take the following form.

»
2 R
v a
a2, -0
o t 3~i s
s
" ~
3~§
-3 _
a_x"il."[a'»"!" 2, ] (2.31) .
(L} x a~n s
s
9 1 1
e X !
or ko 3:& :
d vo .
E*r[3~+v3~+c2D3~]
o t x s
. LY

vhere here and in all oub.oducnt analysis the : aubf!:apt will be dropped

from v, . Eqdhtion (2.19) can be expressed in dimensionless variables as:

N
X
~ 4
M I 3:R M vo 1 NN
V= —[3 V - AV ] +=—Ix 3. R V)] (2.32)
ol g aF % % KX & T
8 ]

An expression Vo defined in equation (2.19),can be written in terms of
‘-, -
dimensionless variables as:

n
DSNR] (2.33)
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2.3 Transformetios of M.N.D. Equstions to the Dimensionless Magnetic

Flux Cooré!inato Systema

&
The equations which define th{ magnetohydrodynamic model of
Section 2.1 will now be converted to the coordinate system defined in

Section 2.2. /

2.3.1 Continuity Equation

By using the transformations indicated in equations (2.31)
in equation (2.1) the following expression for the continuity equation in

dimensionless magnetic flux coordinates is obtained:

at(u-n 3. R) + 3x(v NR 3. R) + 3.(c2D N R 3' R) = 0 (2.34)

-

All variables in equation (2.34) are dimensionless. For the sake of

clarity the ~ over the variables has been droppcd in this equation.

2.3.2 Momentum Equation

~

In converting equations (2.2) and (2.3) to dimensionless
form the variﬂble Br may be vwritten in terms of Bx and R(s,x,t). If s
and t are held constant, lines defined by R(s,x,t) and x define magnetic
-

field lines. That is "~

® 2
ax B *
b 4
Thus,
p_-3 3k



or in terms of dimensionless verisbles

L") 3~
R
.nt ‘1 ‘o‘ 3:
.

Other relationships that will be used are

A Bo. ™
(] liﬂou No( 2)ll
v
o
v R .
- 00
v1:' (L )vt

1y VoA
v’: - 3,\‘1 + va.ﬁ + ;2333
t b 4 ]

TR E.

(2.36):

By using the sbove relationships plus th‘ transformations given by

cqutionl(2.31),eqution (2.3) transforms to

R N
© ") ",
Nk T 2, N+ va e ng) V.-
L t x s
o
n,
3 2B
- O
lwlo 3
<

9B

wvhere the term —7F has been neglected since it 1s of order clz

3B x

than —=, and ‘c\ir is the appropriate axpression in dimensionless var

r
for the artificial viscosity.

=
24
L

.?w

N k_T )
_oBo 1 5 Ba+q
R 3~(P + qr)

L(2.37)

smaller

iables

26

3
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where :r is a dimensionless constant between 1.5 and 2.0 and AR 1is the
radial grid spacing in the numerical calculations. Equation (2.37) can

be re-written as

-
(G +vo +eD3)V o2 1, paesteq)  (2.38)
t x 2 s r ¢ 2 a.n s T *
1

-

vhere all varisbles are dimensionless and the ~'s have been dropped for

clarity in this squation.

The equation for axial momentum, equation (2.2), is converted
to dimensionless variables in a similar manner. By using the transform-

ations given by equations 2.31):

%,
Y
~ * Nk T ‘ N kT
o B o ~ IR Y o B o 9 (.
2RO NG+ VI ¥ DY " T T (P+q,)
o t X s o ax
a R 2 ¥p’ 3
N
uok'!.'ro X ~ By % © 1 B
$ — AP+ ?
L t N L 4n R i A
o am s o o 3, s
s s
‘ (2.39)
aBr ' p4
wvhere the term 3;r-has been neglected since it is of order ¢, smaller

B

than ——5-. and :x is the appropriate expression for the artificial viscosity.

or
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a
A 2 v 2 v
(.xA’) “ ( ix ) ox <0 *
n »
q‘.< »
- "
v
° w 20

'whcrc :x is a dimensionless constant between 1.5 and 2.9 and Ax 1is

the axtal grid spacing used in the numerical calculations. Equation
(2.39) can be siohlified to:

3 R 2

NG+ va 4 D3 ) v = - 2 (P+q) + ‘afi‘ 2, (p+87) (2.40)

)

where all varisbles are dimensionless and the ~'s have been dropped for

clarity in this equation,

2.3.3 Tempetature Equation

The temperature equation for either species (¢ = ¢ or 1 for

electrons or ions) in cylindrical coordinates is given by equation (2.4):

°

T dn_ 21y F* A (T ,~T)
B dt ~ (v-1) Tc ac = k V'Qe+
B eq
N
G-1) -1
+ éec Ky n g+ Gee P Hjul (2.4)

L - - - - - -
where ¢' = ¢ if ¢ = 1, ¢ {1 if ¢ = e, ch O if ¢ = 1, and Gec 1 if e=e.

The most difficult term to resolve in equation (2.4) is the

heat flow term. In the evaluation of an expression for this term ¢ will

be dropped in order to make notation less cumbersome. A technique by which



the heat flux in the radial and x-directions may be evaluated is to
consider an orthogonal coordinate system which is aligned with the magnetic
field as depicted in Figure 2.1. In this figure the unit vectors

-~

€ and €, are defined as:

~ -~ ~

.1 - x cos® + r sind

- - -

e, = - X 8in®é + r cosb

Then energy flow due to thermal conduction can then be written as:
-+ -+ - - -+ - -
Q= - kll[VT . e1] e, - gL[VT . e2] .,

vhere kll and k) are the thermal conductivities parallel and perpendicular

to the magnetic field respectively, and are expressed in units of

[ergs/(sec eV cm)]. Other terms in the above expression can be written as:

oT ° aT *
VT ‘a—r" l'+-a—xx
- -
vT . el - %%- sinf® + %% cosB
- PS
vT - ez = %%- cosd - %5- sin®

The heat flow 6 can then Be d vided into a component in the radial

direction, Qr r,and a component in the axial direction,Qx x*

- q r 4+ Q x (2.41)

o+



where

Q = - kll[3rTcin6+a‘Tco.0]lin6-kLPrICOIO-aleinelcooe
(2.42)

Qx - - kll[3rT-in6+8xTc016]coaﬁ+ kllarTCOQO—aszine]line

The sine and cosine terms may be evaluated by considering Figure 2.2.
If terms of order clz are neglected,
cosd % 1
(2.43)
4V
- siné % € 9, R

X

Equations (2.41) to (2.43) can now be inserted into (2.32) to give an
-+ >
expression for (v:Q) in terms of dimensionless magnetic flux variables.

-+ -+ -+ +
In this step it is convenient to divide (V.Q) into two parts, (V-Q)11

> >
which.is a term accounting for k 1’ and (VoQ)l which is a term involving

1
k

1°

7Q- Q) + @, (2.44)

After some algebraic manipulation and dropping terms of order ei



S

°_ ¢ 1 vV
(V-Q)l‘1 - - L 3 ka ; 3:[(k113;T)(13=l)]} ,
o [ ]
(2.45)
T A
‘. - __O_ 1 _R__. ~
(v.Q)L R 2 N aw ( QNR kL 3~T)
o na@' i s s
s

The diffusion of a magnetic field through a plasma will

lead to an ohmic heating of the electrons in the plasma. This is accounted

for by the term H in equation (2.4). An expression for this term is

jul
evaluated below.
-\ ’
> vxb
g = 3@ 55

-»> -+ '
where J is the induced electrical current, E is the electric field, and
->
v is the fluid velocity. From Ohm's Law and Maxwell's equations the

above expression can be written as:

. 2 - >
J ¢c 21
Hjul - EI (éﬂ) o, (VxB)

2

where 0, is the electrical conductivity perpendicular to the magnetic
-> -

field. For solenoidal fields J has a component in the ¢ direction only.

If terms of order clz are neglected

-+ > BO 1 N

UxB = - — 2 B
R A "
o 3;& s

+ >

Using the above expression for VxB and the definitiom of tz given by

equation (2.30):



Nk Tve .
oBoo2 1 ~2
H - [ —~*x—~ 3. B] (2.46)
jul L A
o 3= R (1

The various transport coefficients that appear in equation

(2.4) are converted to dimensionless values through the following

.

definitions: . \
L
K = kj (————)
k. Nv R
Booo
Ve € 1 -
e GG vL 2-47)
oo o0
" v
[]
eq ch( L° )
L
~ 0
LSS X
Boo

If equation (2.4) is now converted to dimensionless magnetic flux
coordinates with the aid of equations (2.44) to (2.47) and (2.31) the

following expression 1s obtained.

u(at-&vax«:zna.)rc - (Y-I)Tt(a:+vax + czna.) N =
N(T ,~T))
€ € 1 2
Toe + (y-1) N ¢, +-(y-1) czl 7R ?.B] (2.48)

(continued on next page)
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vhere all variables are sssumed to be dimensionless and the A's have

been dropped for clarity.

7
2.3.4 Magnetic Field

Rather than solve equations for the magnetic field as given

{n Section 2.1.4, it is more convenient to solve for a function closely
~

related to R(s,x,t). The derivation of the appropriate equatioms will be

found in Section 2.4.

2.3.5 Laser Absorption and Propagation

The dimensionless units that are defined in comnection with

the description of the propagation and absorption of the laser beam are:

—t
]

",
(NokBTovo) I1

o
]

~N
(!BKBTOAOVO) PL
With tﬁcsc definitions, equations (2.8) and (2.10) transform to the

following two equations

-

(2.49)

33



where all varisbles are sssumed to be dimensionless and ‘the ~'s have

been dropped.

A
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2.4 Shell Equatiouns

The ion density, N, axial fluid velocity, y, electron and

‘ ion temperatures, ‘l‘. and 1'1, and axial magnetic field, Bz. are now
approximated as constants between adjacent discrete flux coordinates

that have been chosen for the radial grid. Thus the plasuma i{_rcprcsented
by a finite number of uniform co-axial shells, each with constant

magnetic flux as depicted schematically in Figure 2.3. The plasma variables
:are now functions x,t,and the shell number wh;ch may be indicated

by an intgger subscript, for example, N.(x,t), vs(x,t), etc. Shell
subscripts will be omitted for the sake of clarity. 1In this approximatibn,
the resulting difference equations are accurate to second order in the
differences between adjacent flux coordinates when the values of the

plasma variables are taken to be the values at the shell centers.

The advnq;aée. of this scheme are two-fold. First, when
radial pressure balance is assumed, it is s simple matter to decouple
the coupled magnetohydrodynamic equations in each shell by using the
constancy of the area inside the cylindrical wall which confines the plasma.
This will be described later in this section. Secondly, the program may
be used for quasi-one-dimensional calculations of high temparature devices
by using a few shells when accuracy in the radial direction is not
essential butwhere the effects of diffuse profiles and magnetic diffusion
need to be considered. It should be noted here that if a coarse

\

numerical grid in the radial direction yere used in a model that did
¥

not employ a coordinate system in whicﬁ one of the coordinates was aligned

with the magnetic field, numerical diffusion would &. a serious problem.

The shell equationq%-or the magnetohydrodynamic equations

)V.
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for each shell will be derived below. Since di-cnli;nlelo variables

are used exclusively in this subsection the A's ovet all variables are
dropped. In these equations, V Q denotes the difference botvocn,‘pe
values of a quantity Q evalusted at the upper and lower boundaries of

a shell., Values on a boundary can be calculated as linear interpolations
or averages of adjacent shell values. The symbol <Q> represents

the average value of Q inside the shell when Q 1s not a simple plasma

variable.

f.b.l Continuity Equation

Multiplicagion of equation (2.34) by two yields:
Bt(N 2R3.R) + 3x(v NZRB‘R) + as(czDNZRB.R) - 0 (2.50)

This equation is now integrated over s from 3 to su where s, is defined

as the lower boundary of the s'th shell and s, is the upper boundary of

the s'th shell. Since N and v are assumed constant over the integration
k]

the first term becomes:

& (n js“ 2R3 Rds) = 2 [N js“ 3 (R%)ds] = & (NA)
at ] ot s ot

‘L "L

where

s [ ]
Az [ Y a2 R%) ds = R |
SL 8 8

u

L

is the area of the shell being integrated over. Similarly the second

term in equation (2.50) becomes:

]

u

2 N vl f U 2R3 Rds] = 3 (NAW) .
8 . - .

L J : v

L4 -t - | 2



With the use of equation (2.27) the last term in equation (2.50) can be

vritten as:

; CZDN
3 (e,D N 233‘3)‘- 3, (3 ')
thus, ) j\
s, €.DN su'
s[ 3,(c,DN2R3 R) ds = ( —5— ) l'
L L

The following definitions are made.

€.DN

2
Fs ( B

)
s+1/2

and

AF = F - F
8

where a subscript s denotes the s'th shell and the subscript (s + 1/3

denotes the boundary betwmsen the s'th and the (s+l1)'th shell.

The continuity equation can now be expressed as:

(NAv) + AF = 0 (2.51)

2l -

d
T (NA) +

[

It 18 noted that since the integration has been performed the continuity
equation has become a function of the area A of each shell rather than

s. The third term can be physically interpreted as a particle flux



£

across the magnetic field lines.

2.4.2 Mowmentum Equation : .;’,

N
If equation (2.40) is multiplied by 213.l and the result
added to 2v times equation (2.34), the following equatiop is obtained:
1 4

. 2NR3.R[3t+ vyt € Da.]v + 2v[3t(n3.k)+ ax(vma.n)

2

. - : 2
3t + 3 (c,DNRD R)] = & 2R3 R 3_(P+q ) + 2R3, R3 (P+B)

S

The above equation can be written as:

3__‘N 3R ]+3 [sz 3R ]‘:—.(CZD'BN—VI

at
2B 2 (P+q_) + 2(R3 a_(p+8d)
3s  3x x zi'lr s

If the above equation is now integrated over a shell s assuming that
N, v, P, and B are conltaht over the shell it is found that:
3 Nv

vl + 2 w?) e, B = -4 g2 (pa,)

[ ]
+ <ax(nz) > A(P+BY)

If the derivatives on the left hand side are expanded and use is made

of equation (2.51) the following equation is obtained. ,

av ) AG - VAP 13 ‘3xR2’ 2
-a—t--V'a—xv- Ty -i-a-;(P‘qu)-# Ty A(P+B")

(2.52)



vhere "£)\' /

tzbu' .

Cg 2 (57 Dga1/2 " V172 Ts (2.53)
2.4.3 Temperature Equation
Equation (2.48) cen be expressed as:
“(T - T)
N2+ viv e P (r-1), —————‘— + (DN e
eq
+ (v-1)e [ = 2 312 ¥ (v-1) 2= > [R3 RS 3 T ]
v 2 B.R s RO R R 11 ' x

>

ot ]
+ (v-1) 05—= [——RLBT]
Ik

1
R9 R s

[}

% For the remainder of this subsection the right hand side of the above
L3
" equation will be referred to as RHS. The above equation is multiplied by

2n(1")aasn to obtg%n the following:
o

l-v

!
2 glcm )= 2N

)
- —+
2N(R3.R)[ e + v €

™ 2 RasR - RHS

From the continuity equation:
-Y -
Tch [3t(2NRB.R) + ax(zvnna'n) + 3.(2c2DNRa'R)] 0

By adding the last two equations the following equatioﬁ can be obtained.



(2-v)
¢, DN
- a1 nE ) L, 2wV ) + 55 2 . T, ]

wlv

- a.nzn(l'V) . RHS

If the above equation 1is integrated over a shell s, noting that N, v, T:,

and B are constants over a shell the following equation is obtained.

) e DN V1
2 a ]
B R

[AN(Z'Y)TC] + %; [AN(Z-Y)vTC] + Af

ol
~

8
- I u 3.R2 N(l‘Y) . (RHS) ds

The variable Is is defined as:

- (w177
(N Tc) |s+1/2 Fs (2.54)

Now, by expanding derivatives the above equation can be written as:

1-v)

(1-v)
N Te[at(NA) + ax(gAV)] + NA[at + vax](N Te)

s
+a1= [ %or 1Y) (rus) ds
s s
A value for the first term in brackets may be obtained from equatiom
(2.51) and is equal to =-AF. By uq&ng this expression and dividing the

above equations by AN

nhrained:

a-v and evaluating RHS, the following equation is

I



'['c +va ] T - (1) T (3 + v J¥+ 3'-‘- (' a1 - uT_ aF]

.

AP

e T + (=) Ne + (v-1) e [ == 2 B)° (2.55)
T.q L 2 a.n s

(y-1) € (y-1) 2R . ¢
* 3 ?‘[A k11 ax Tc] R al 3 R ky a-Tc]

It is convenient to rewrite this equation as:

(r-1) T 3, N

- + . O-1) e 1
at ‘rc N + nc + NA A[2R k TR a' Tc]
. [ ]
51—12 € '
‘ + 0 3 (A Ky, a T,) (2.56)
vhere
a N
.. - x _1 (1) - -
“c v ax Te + (y-1) Tc'v N NA (N Al Te AF] + (y-1) EL
(T .- T) (v-1) ¢
€ 2 1 2
.‘ + Teq + N ( asR asB) (2.57)

The third term on the right hand side of equation (2.56)

tcpuun:tf\uion of heat across the magnetic field while the fourth

term rep a; s heat flow along the field lines.

(4

2.4.4 Closure of the System of Equations

Equations (2.51), (2.52), and (2.56) describe four dynamic



equations for five plasma variables, namsly N, v, T.. 11. and A. To
complete the set of equations, an equation for A wmust be derived tgy-

the equations describing the radial dynamice of the plasma. That is,

an equation for 3A/3t is required. If the time scale over uhich’offcctn
occur is much longer than that required for a magnetosonic vave to travel
across the plasma, then the assumption that pressure balangc’ixiuts is
valid. 1In this case, any proo;ute imbalance is communicated .ufficicntly
rapidly across the plasma foluln so as to insure that pressure balance

’

1: cuuen;ially being maintained. This assumption would apply to physical
situations like ;hat of a long reactor plasma. In the case vhere a
plasma is rapidly heated by a laser, causing both radial and axial shocks,
full radial dynamics must be included. The co-gut:; program has been
developed so that two options exist, namely that ;f using full radial

dynamics or that of pressure balance. The assumption of radial pressure

balance, where it is valid, leads to considerable savings in CPU time.

- "' 2.4.4a Radial Pressure Balance

‘In this subsection radial pressure balance is assumed in the
derivation for an expression for 3A/3t. For this case equation (2.38)
for V. is not used. The assumption of radial pressure balance is

expressed as:

%: (P + BZ) -0 or P+ Bz = n(x,t) (2.58)

©
vhere 7 (x,t) is the totgl kinetic plus magnetic pressure and is not a
function of s. If ¢ is the magnetic fyux in a shell, then B = ¢/A
vhere ¢ is a constant in cncgflholl. By ucie; this expression for B in

equation (2.58), and differentiating with respect to time yields:



N

3

2
-2 3.
2P -2 ; 3 A=, v(xt)

or
A(d P) = 2 32(3 A) + A(3_¥)
t t t
Now the temperature equation can be expressed as:
AN(atTc) = (y-1) 'rc A(atN) + “c
where
Define,
H = He + H1 and T = Te + T1 .

and add the two temperature equation to obtain:

AN(atT) - (yv-1)T A(BtN) + H

3t(P) - 3t(NT) = N BtT + T 3tN

(2.59)

M G 5] _L_L
H = H_ + g A[ZRk_LaRaT]+ 3[Ak axTeI

&3



Combining this with the above oqn;ation yields:
A@P) - YTA@3,N) = H (2.60)
The continuity equation is used to define C as:
C s 3t(NA) - - [Bx(NAv) + AF]
or
atN = [C-N BtA]/A
Substituting this into eqﬁ;tion (2.60) yields:
A3 P) = H+ yT[C - N(atA)]. (2.61)

Comparing equations (2.59) and (2.61) yields an expression for 3tA.

.

Aad
+
(3,A) = [“_ZJIC_] - zt_. (2.62)
2B + yP 2B + yP

Before equation (2.62) can be used an expression for Btﬂ must be derived.
This may be done by noting that the total cross sectional area of the

solenoid is a constant. If equation (2.62) is summed over all shells.

< (3 A)=0
All shells



Thus,

@) = [ i /1 A (2.63)
" All Shells 23" + yP / All Shells 2B + YP

2.4.4b Full Radial Dynamics

In this sub-section an expression for;%%-il derived by

using the appropriate cqultiénl to incorporate full radial dynamics
into the model. First an expression for %;-(lz) 1l4found. It is then
a trivial matter to find an expression for %%-. In order to obtain an
equation for Rz, equation (2.19) is multiplied by 2R. The resulting
‘equation can be written as:

2 2
3, (R) + v 3 (R°) + 2R ¢, D 3 R = 2Rv_

2

The third term in the above equation can be reduced by expanding D through

the use of equations (2.29) and (2.27).

B R R 1 R 1
DR "3r%P"3r% (3R’ "3r% T2
8 8 s [ asR
The third term therefore becomes:
2 2
-2R" e, 3 (RM)
28> €, 3, ( 1 5) = 2 '; - - 2r%82 €, a.‘(nz)
a.R (2R a.n)

The equation for R2 can nov be written as:

9 2 ) 2 2 2 2
TS R7) = -v x ®R") + Zer + 2 <, R™ B 3‘.(R ) (2.64)
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The solution to equation (2.64) requires am expression for Rv .

An equation for lvt can be found as follows. Note th""

(4

dR '
—— L3S [}
at =~ Vr .
Thus, -

Ve ’

\ﬁii- @v ) = W2 + M i

dt T T dt
dvr

An expression for T 1s given by equation (2.38) so that the above

expression can be written as:

2
N(er)
2

<+ -
N[at va_ +¢ Da.] (er)

2

(2.65)

An expression for D is required for equation (2.65). By using equations

4

(2.29) and (2.27), D can be written as:

2
9B R 2R 2
PR3 "R %" " 2o R 9= 2" B3 B. (2.66)

Thus equation (2.65) can be used to find er, and equation (2.64) can be

' 2 ) 2
used to find R“(s,x,t). In a shell model Y (R ).+1/2 is found where

(l?.z)..u/2 is the outer radius of s shell. Then the desired quantity

%% can be found. pS
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2,4.5 Summary of Shell Equatgions

) (2.67)
172 .

In this sub-section the shell equations are summarized
and vritt’p in a forw suggestive of how they might be oolv.d‘thrﬁugh
numerical techniques. In this sub-section the notation é and Q' will
be used for atQ and 3xQ respectively. The first step is a solution

for the area, Al.of a shell.

1f rndia} pressure balance is assumed equation (2.62) 1s

used. 4

A_H*-y‘l‘C-A;Lx,t)

) (2.68)
2B + yP
wvhere
-
All ,
Shells
and C = - (NAv)' - AF-

From equation (2.67) - ;f:f

| R
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A= Vo2 ™ Yo . - am-
and from equation (2.64)

. - 2 Lz

We-vW +20+2c, WD y ¥ (2.73)

. s

vhere

V:Rv (2.74)

U can be found through a solution to equation (2.65) which can be

expreised as: ALY

‘s

. 2
U vy czn a’u+ g cztl 3, (P + B tr (2.75)
1

o .
&{ v

« - Once A has be found, ¥ can be found through solution of

the following equation, vhich comes from equations (2.51) and (2.70):

S

Ne (C-NA (2.76)

- Now the temperature equatioms can be solved. With the new

notation equations (2.56) and (2.57) can be written as:

N .
T, = ﬂ‘ + 011 + (v=1) Tt N/N (2.77)

where



A - " _ fJ_L_ (7-1)'_
ﬂt z v Tc + (vy-1) Tt v N'/n XA (% Al Tt AF)

(2.78)

(T I‘T) (Y'l)(

« .
G- € 1
*oha ARk 3R, T
and
o LY=1) € vy

611 NA (A kll Tt] (2.79)

*

Finally, the axial velocity can be found. Equation (2.52)

can-be expressed as:

e — vy =L (- _1 Vo S 2
v vV NA {aG - v AF] N (P + qx] + 7Y A(P + BY)

- (2.80)

-

This set of equations requires the evaluation of Fs, Is,

and Gs on shell boundaries. From equation (2.66):

< p
D 2
B 2R 3.5

Substituting this into the definition of ¥ :

2
F. = 2R tzN 3.5 (2.81)

&9



G, and I, can be evaluated from:

G. - Vet+1/2 F. (2.82)

(1-vy)
Tc) s+1/2 Fn

A computer wodel of a plasma in s solenoidal magnetic

field can be made throdgh the numerical solution of the coupled equations

presented in this sub-section. ‘~—_//)
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2.5  MNumerifal Solutiom

[ 4

j.po-putor simulation based on the shell oquationl of
;hc prcviou'o ":lub-coction has been developed. The -u computer routine
of this .1-u11t£;§ solves the n$propr1¢tc dif!or-ncc equations wvhich have
been vriftcn in di-nnuionicso units. As the solution 1is ndvnncod.in
time the internal variables of ;hc\routinc are output on magnetic tspe
or disk. (This is essentially the only oQtput of the main routine.
Subsequently, post-processor routines regd the output of the sain
routine ané calculate values for various plasma parameters in a more
familiar unit oyltci. Different post-processor routines hsve been
developed to print out values for plasma parameters and perform checks
on the validity of the simulation. Two checks that are done to test &
the validity of a simulation are conservation of energy and conservation
of mass. These will be discussed later in this section. In addition
to these post-processor routines two graphics routines have been
developed. Ome of these routines plots various two-dimensional plots
of plasma parameters as functions of x, r, or t. The other makes three
dimensional plots of various plasma parameters as fungtions of x and r
at givih times. Examples of output from these routines will be presented

{
in chapters t* snd four.

An attempt has been made to make a package of programs

that will allow a user with a iini-nl familiarity with the programming

-

details to solve a variety of problems with little effort. Various
options have been built into the routines and desired options are spccificd

in an input file. A more detailed dolcription of the, routines and some

details of the numerical techniques can be found in Appendix A.
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~ The shell equations have bocn%iéiv“ weing a two-step
second order Euler method. Ia the firet step, the solutiom 4t t is used
to calculate temporary values of the varisbles at t + At/2. fhooo
temporary values are used to calculate the eoifficicnco and spatial
derivatives in the equations and the solution is then advanced from t

A

to t + At 1im the second step.

»
Central differences are used to calculate all spatial

dc;ivativco. The continuity and axial acceleration equations are advanced
explicitly. When radial pressure balance is assumed, the equation for
%%-in also advanced explicitly. However the decoupling piocgdure used

to find %% is similar to an implicit scheme in the sense that changes in
the central pressure due to heating are felt instantly in all the shells.
When full ra&inl dynamics are taken into account, the radial acceleration
equation is solv.d.cxplicitly but the shell boundary equation for W,
esquation (2.73), is solved implicitly. This is necessary since lnrie

magnetic diffusion in regions of low electron temperature .cv:rciy limits

the timestep of an explicit schesme.

For eacﬁ timestep, the temperature equations are a&vanced
in two stages. In the first step, pardlial heat conduction is turn?d of £
and the equations are advanced using 11911c1t differences for the
perpendicular conduction terms. thi—diff.r.ncc between the new gnd old
values of ‘1‘c is taken to be the contributiom to ;;5 At from pctpéndicular
conductign. This quantity is substituted for the perpendicular terms
in t@b o"ond stage in vhich the equations are advanced using implicit

dt“!reﬁcco for the parallel conduction terms.
y
L



v
R The boundary conditions  used at the outer wall are vr =0,
T
W = constant, and 1‘ = constant or -ﬁi- 0. A: the open eads, thq

plasma variables are sssumed to vary linearly with x. The exception
to this rule is thst ;;-1- set equal to a constant in order to get the
flov started at t = 0. The results are insensitive to the particular

value of %2 chosen.
X

Tﬁn code vas tested in several ways. Axial flow without
heat conduction was compsred to analytic similarity solutions from a
one-shell nodells.Axial heat conduction Vll.tlltdd by freezing the
plasma (v=0, l-lo) and assuming a constant conduction cocffiéent for
vhich an analytic solution is easily obtainable from reasonsble initial
conditions. In both cases, excellent agreement was obfained. The full
radial dynamics under axially uniform laser heating was compared with s

results from a one-dimensional code described by Burnett and Offenberger3’,

Essentially identical results were obtained.

A check on conservation of energy and mass is made for
each sisulation. Thik is done by calculating total intcfg;l energy
or mass of the plassa at various times qpé comparing changes in internal
energy or mass with the calculated cncrg; or mass flow through the
solenoid ends. Typically the oilulatiopl conserve energy ;; better

than 5 and mass to better than 1%.

A more detailed description of numerical techniques are
presented in Appendix A.
L
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Figure 2.1 Orthogonal coordinate system
aligned with magnetic field.

Figure 2.2 Angle of magnetic field lines

relati solenoid axis in
unct& coordinate system’



" ,;%p ‘

Figure 2‘ 3

Cutavay of plasma column shovwing
shell structure '
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CRAPTER 3
of P c?

In this chapter some results from the couput.r'progfa-
described in the previous chapter are presented. The versatility of the
code is demonstrated through the simulation of short solenocids (S cm
length) in Section 3.1, intermediate length solemoids (1 = length) in
Section 3.2, and 1f25/:2}39914&—(i—ilr133i:h)-1°-|.ction 3.3. A comparison

“of a simulatiofi in which full radial dynamics have been included to -

a simulation tha; assumes radial frcoourc balance is presented in Section
3.1. Radial pressure balance is assumed for simulations in Section 3.2
and Section 3.3. The parsmeters used for the simulations in Section 3.2
were chosen to test the feasibility of creating plasma conditions ideally
suited for the beat frequency mixing of antiparallel laser beams in a
laser heated solenoid. The required plasma conditions will be discussed
in Chapter 6 where the results from Section 3.2 will be referred to.
Results of Section 3.3 demonstrate the ability of this type of code to

simulate the magnetohydrodynamic behaviour of a 1 km solenoid reactor.
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3.1 Laser Heated Solenoid

In the first sfmulation, n‘pnioniud hydrogea .lu: of
‘radius 1.5 cm 1s heated by a OOz laser with Gaussian cross-section and
half-powver radius 1.77 wm. The laser pover rises linearly from 0 at
t=0 to 100 MW at t=10 nsec and then Yemains constant. The initial

Plasma variables are:

18 c--3

ne 2 x 10
o
Te - T1 = 1 eV

B = 100 kgauss

@

The parameters were chosen to be the same as those used in an experimental

e { ]

and theoretical study by Scudder et al.” with the important d{fference

that theig plasma was formed by the breakdown of neutral gas by the laser.

The code vas run with 60 axial points and 30 shells until
t=0.5 usec was reached. This run required 20 minutes of CPU time on an
Andahl 470 V/6. The size of each timestep was limited by the hydrodynamic

o5

stability condition,

At < Ar/V-.'

3

where 4 r is the shell thiéﬁ&ﬁﬁl and V-. is the magneto-acoustic velocity.
Three dimensional plote 9;£¥0’ Ti,ﬂo, V}.Vx. and Bx are presented in

.

Figures 3.1 to 3.6. Iﬂ’cncﬁkplot. the lines joining the plotted values

~ ok W
Ve .



of the plasms varisdles are drawm st s comstafit axial or redisl position

80 that linesr interpolation between shell values was necessary.

The electron temperature attained, 40-45 eV, 15 gimilar
to those calculated by Scudder st 81.'° {n o two-dimenstonal Lagrangtan
simulation. The io0m temaperature diltributioh is almost identical to
that of the electrons since the collision time is short compared to the
heating time at these densities. The temperature plateau behind the
bleaching front is spparently due to adiabatic cooling which follows

expansion of the heated plasma.

The most significant difference betwveen tliis simulation and
that of Scudder et al. 1s the nature of the plasma dynamics at the
bleaching frant. They have found that after t=140 nsec the laser driven
shock on the axis attenuates and has disappeared at t=280 nsec. Figure
3.3 indicates, however, the presence of a strong shock at the bleaching
front at t=500 nsec. (The jagged edge on the curved shock front is a
plotting routine cffcct.) The shock wave calculated by the aheil code
has been.found to Propagate more as a travelling wave rather than a damped
wave. The discrepancy between the two codes may be due to the different
methods of calculation of the laser beam propagation. Scudder et al.
assumed that the propagation was parallel to the axis so that the rays
in the outer edges are alvays in a region of higher absorption than those
in the center. The effect wvas that the beam became progressively narrower
as it propsgated through the pPlasma. Eventually, the heated region at
the bleaching front may have been too slender to drive a forward moving

shock wave. On the other hand, since the shell c;do assumes a constant
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+

LS

besa radius, the hested regica alvays has the same width. To get a
more sccurate picture of the dymamics at the bleachiang frome, a» better

lcqor.lodnl will Bave to be developed.

®

The radial velocity distridbution is plotted ia Pigure 3.4,
The interesting points are that (1) the velocity is small compared to
the magneto-acoustic velocity so that not much energy goes into radial
. motion and (2) the radial veloeity quickly becomss negligible after the
passage of the region of fast heating indicating the returm Eo radial
equilibrium. These observations lu.“lt that similar densities and
temperatures will be obtained if the plasma is assumad to be in radial

pressure balance at all times.

The computer simulation was rlpoaéod vwith all of the same
inpui'para-ctorl as above, cxc;pt that radial prcoluro_galancc vas assumed
and the number of shells vas reduced to 15. Three 31nnnsiontl photos
of r‘, Ti’no’ vz and Bz are presented 1n Figures 3.7 to 3.11. The
temperatures attained are very similar in the two runs. The densities
are also ninilnr,Acopccially in the quiescent region betveen x = 0 and
x=3 cm. The main differences with- pressure balance are that (1) the

bleaching wave propagates about 10% farther in 500 nsec and (2) the

amplitude of the shock is smaller.

The advantage o; assuming pressure balance is the significant
reduction of computing costs. The rum with presoufc balance required
about 6 minutes of CPU time compared to 20 minutes for full radial dynamics.
This reduction of computing time is possible because the timastep is not
restricted by the hydrodynamic stability condition vhen radisl pressure

balance is assumed. The criterion used for limiting the timestep in this



. ru'm. that the temperature -hotild not rise by more than 30X at sny
point in a single step. The assumption of radial pressure balance leads
to even greater savings in modelling lomger dcvieu and vhen a laser

bean bleaching front is not pushing a shock wave.



3.2

psrallel laser beams in a ho-umo;u phm\'v}u b; resented. In
Chapter 6 the possibility of using shis process to create.a useful
amplifier of ufnrd radistion will be examined. The possibility of
making such an amplifier is dependent on the feasibility of creating a
hot plasma with a uniform density nnd. tesperature in the axial Jdinctin.
In this section computer simulations are used to examine the feasibility
of creating such a plasma thfough the inverse bremsstrahlung abgorption
of laser radiation in a plasma radially confined by a solenoidal magnetic

field.

Results from two simulations are presented. The input par-
smeters for both simulations are identical except for initial plasma
densities. In both cases a preionised hydrogen plasma is uiunod to be
contained by a solenoid of radius 1.5 cm, length 1 m, and is heated byb
a CO2 laser with Caussian cross-section and half-pover radius of 1.77.Il:
The laser power rises linearly from O at t=0 to 1 GW at t=10 ns and then
remains constant. Initially the temperature, density, and magnetic field
are uniform. The temperature is assumed to be 1 eV and the magnetic
field strength is assumed to he 100 kG. The computational grid comsists
of 30 axial points and 15 shells. Under these conditions the code
requires approximstely 1 minute of CPU time on the Amdshl 470 V/6 cowputer
to simulate the plasma for 1 ufioc.

In the first s ation the initial plasma density wvas
7.8:1()16 c-.3.4 FPigures 3.12/to 3.14 are three dimensional plots of
L "ri. and o  at t=0.5 usec, Figure 3.15 is a plot of the axisl values

of T, T, and n_ s s functipan of x. These figures shov that the axisl



valuse of (e gh—) tempergture end duitty ot‘v.unlo nthtt-l

dowa most of the 'eoh- lngth. Yor about 80X of the seleneid 1..!!

the plasms demsity 1is slmoet omtly 7. 5:19“ * while electrom
tespersture varies from about 95 oV to 100 eV and the toa' temperature . .
varies from about 67 eV to fi ov. - I.t vill bo.obo- ia Chepter '6 that
such plasma conditions are ideally uiud to the beat frequescy uixing

of antiparallel electromsgnetic beams with vavelengths of 9.6 ua and 10,6 .
’

The uniform plasms density and tmntur;‘ in tho 'a—xul
direction can be attributed to two mein factors. ‘First, the high lmr
ponn and low initial plasma densities lead Co high lmr .blemghing
ulociud_d«.. In the above simulatioa the laser has yluehodiu way (
through the plasms column in less than 40 ns. This leads to a relatively ° 'Q
uniform laser !{catin. rate dovn the columm axis. The second factor leading
to uniform axial profiles is the large electron thermsl cooductivi:(

in the“axial direction which tends to smooth out any nonunifonitiu.
K ¢

In the second simulation the initial plasmas density was
chosen to be 3Ix.l.017 CI.B. This is a much higher initial density than
that of the previous rum. ~Consequently a much lower b'louching velocicy
is expected. It was’ found that it took about 300 ns for the laset beas
to bleach its wai through the solenoid. Because of the slower bleaching
velocity, the plasma must be heated for a longo£ period of time for 1its
axial pcrm}ﬂ‘l to become uniform. Pigures 3.16 to 3.18 are three
di-‘naiond plots of T, L and n after 1 usec of ‘
laser hcgtin.. _Jogure 3.19 1is & plot of the axial vnluoo of r » T g and
n, as a function of x. These figures show that tho pluc has a density

of bctvun z.mo and 2. suo" c-_:’, an oloctron Zemperature of

>

between 120 and 180 eV nd 1o|| thouturo of between 100 and 140 eV

9 L)
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over an 80 cs length of the 1 meter solenocid. WUhile these paramesters

v

z

are not as unifors as those in the previous sisslation it vill be shown

mﬂn’tor 6 that this phmmuumvctyvdl as the mixing
wedium for nti.panlhl radiations with difference frequencies close

to thc‘ ion-~acoustic tngmcy. : - ‘

The results of these simulations suggest that a lucr hutcd

plasma, radislly confined by a solenoidal -pcqtic field, vill have a

lun'g.for- axial density and temperaturs profile at a time t after the laser

-

is turned on 1if:

o ¢
L L '
<< t <<
vbl- vac

vhare !. is the -olcnoid length, vbl is the bleaching wave velocity
¢
and v__ is the acoustic velocity. The relation L /vy << ¢t allows
ac bl
laser energy to be deposited un Qforlly along the solenoid axis while
the relation t << Lolv.ccnu\tu that the effects of end’loss qr‘ experienced
oniy pnear to the solenoid ends. The above relation can obviously be

satisfied only if the laser intensity and plasms density are such that

Vb1 >> Vaer



3.3 0-Pinch Resctor e

| The -;utodyd,rodyun-cx behaviour of a 1 km 0-pinch reactor
{n radial equilibrium was simulated with a 10 sheil model and 60 axial

"pointl. The initial density and temperature profiles vere \ttihn_;o be:

17 -3

4x10
n, (6,%) = 73 cxplzr-i.§;75.i55

and

'} ’f v‘
- 5000 eV “ -, .
Te'fr,x) T+ CIPWZ.OZF.;!.O‘)I'“ :

T ’

The external magnetic field was set at 405 kguass corresponding .t'b a
value of 8 = 0.98 on the axis and the magnetic field in each shell was
calculated assuming radial pressure balance. Symmetric boundary conditions

around x=500 m were assumed. There was no external heating and a particle

effects were not taken into account.

The results for two ¥imes (0.5 ma and 2 ms) are presented in

; v
'giguru 3.20 to 3.29'.. Because symmetry is assumed around the point

%y
x=500 m, MHD quantities are only plotted in the region defined by
0 < x < 500 m, Figures 3.20 and 3.25 shov the radius of the shell
boundaries used in the numerical calculagions as a function of x. These
shell bouddaries can alsc be thought of as magnetic flux lines.> In the
remaining figures thf« dimensional plots of 'l'..no » Voo and Bx are
presented. The iom temperature is Slmost identical to that of the elect-
rons snd has not been plotted. At t=0.3 -.. tiu .fo_ct, of self-mirroring
are clearly evident 48 Figure 3.20. Figures 3.22 snd 3.23 for the

® '. ‘v: \‘
K8 29 ™.



*

;‘houg \d_-’:,j,tf uﬁ velocity show that the greatest loss of 'shell mass
occurs betweed 1 and 2 cm off-axis. This is in agreement with a
thogntical one shell modell’ which predicts that the mase flux at the

" end i. proportional to (1--’3)]’/2 1.1,2 . This function reaches a maximm °*
for r > 0 since 8 and ‘l'. decrease off-axis. It is also observed from
Figure 3.23 that the effects of the open ends propagate faster in the

region of. lover 8 as cxg,ct;d from one-dimenslonal theory.

~

At t;Z ms, tﬁc effects of the open solenoid ends have reachad
the midplane ;n all shells and 722 of :h’ mass has flowed from the end
of the reactor. Figure 3.25 shovws how the shell boundaries, or magnetic
flux lines, have moved in towards the solenoid center as the plasma flows
out the ;nds. FPigure 3,26 .hé'! thnt'adinbatic expansion has led to a
decrease in plasma temperature from 5000 eV to about 3200 eV, Figure
3.27 shows th#t while 72% of the mass has flowed from the reactor ends,
the on axis density has only decreased by about 122, This is because,
as the mass flows from central po??lopa of the reactor, the magnetic field

compresses the\pluu radially towards the center. This effc;t could be

2
0"

important since the thermonuclear reaction rafc is proportional to'ﬁ
The velocity distribution function, Figure 3.28; as a function of x is
found to be very nearly linear in all shells as fuggcstod in the one shell
theory of McMullin and Capjack18: Figures 3.24 and 3.29 1llustrate

how the magnetic field fills the central portion of the solenoid as the

plasms flows out.

\ - -

/
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CRAPTER &

A Computer Simulatiom of Gas Target Experiments

Laser~induced parametric instabilities in gas target

plasmas have recently been studied experimentally by A.A. Of fenberger

31.19-21 and J.J. Schuss et 51.22. Three main advantages of using gas

targets over solid targets for the study of ].ur-induced parametric
instabilities can be summarized from apaper by A. Ng et 3l.23 1) The
nonlinear interactions can be studied at controllable plasma densities
which can range all the way from critical to well subcritical. 2) Non-
linearities in underdense plasmas may not be obgcured by a critical

layer as in solid tlrgcf experiments. 3) The relatively long character-
istic scale lengths in gas target experiments (as compared to solid
target experiments) make spatial and temporally resolved diagnostics

more accessible.

In this chapter uohz results from two dimensional hydrodynamic
simulations of CO2 laser heated gas target plasmas are reported. These

models can be a valuable supplement to experiments since they give

detailed predictions for the spatial and temporal profiles of the various
hydrodynamic variables calculated. Since these quantities are very
difficult to measure with good spatial and temparal resolution the
simulations can be very valuable in the interpretation of experimental
results. An attempt has been made to make the stmylations correspond as
closely as possible to the experiments of A.A. Of fenberger et gl.19_21,
The experimental details of this gas target can be found in the paper

22

by A. Ng et al.
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4.1 Computer Model .

<

The computer routine used for these simulations has been
ti)tf in Chapter 2. This program vas d;vclopcd for the erpolo of
;Fpe magnetohydrodynamic behaviour of a plasma with an i{mbedded
endidal magnetic field. For reasons described in Chapter 2 the
appropriate MHD equations are solved in a moving coordinate system
defined by magnetic field lines, consequently the routine will only
model a plasma with an imbedded solenoidal magnetic fleld. Howev‘r,
in the gas target experiments no magnetic field ;&ists. This problem
is easily overcome by setting the solenoidal field to a sufficiently
small value that it has essentlially no effect on the plasma dynamics.
Also; since the routine works best for (Br/Bx) small, where Br i{s the
magnetic field in the radial direction, and Bx is the magnetic field
{n the axial direction, the electrical conductivity in the model {is
artificially set to a small value so that movement of the field lines is

small and the factor (Br/Bx) remains very small.

In the simulations the laser beam intensity is assumed to

be of the form:

r

I(x,r,t) = E$!4£l3' exp [ -

— ) ’ (4.1)
2no (x) 20 (x)

where P(x,t) is the calculated total laser power. P(x,t) is calculated
through a numerical solution to equation (2.10). The beam width is

defined through the parameter o(x) which has been defined to reflect the
beam focussing in free space. Refraction of the beam by the plasma has
been neglected in the present model. The parameter o(x) has been set to

conform to the optics of A.A. Offenberger et al.:

83



Ix - L (4.2)

1
o(x) = 0, *+ 7% 3!

where % gives the beam radius at the focal spot, f is the f number of

the optics (which {s set to 2 for these simulations), and L., specifies

3
the position of the focal spot. The laser power input, as a function of
time, is assumed to be T, sec long and of triangular shape. The pulse

‘starts at zera, heches peak power Po in 1/2 T, secs and falls off
c" b ] 3

to zero again at ) ( %
-. ¥ -
In these simulations the appropriate differential equations
are solved numerically in the cylindrical region defined by the following
three boundaries: r = Ro' X = Lo’ and x = 0. The initial density profile

is assumed to be defined as:

L -x
X

-1

no(r,x, t=0) = No[ 1 + exp ( ) ]
where L1 defines the position at which the densitv rises to half of No

and ) defines the scale length over which the density rises.

For these simulations an attempt has been made to place the
boundaries sufficiently far away from the region of interest that the
boundary conditions do not play a significant role in the evolution of
the solution. In fact RO and Lo are sufficiently large that no plasma
motion reaches these boundaries during the simulations. This is not true
however for the x=0 boundary. Here we make the boundary condition that
all quantities are linear (32/3x2 = 0) with two exceptions. 1) Thermal

conductivity is set to zero at x = 0. This is reasonable since there is

1all amount of plasma in the region x < 0 to absorb the heat.
v
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2) 3P/3x = C where P is the plasma pressure (Nkn(T. + Ti)) and C is a

85

pre—-set constant. _Ho find the solution is very insensitive to the value

of C chosen

In this chapter results from four different simulations are

(
presented. The input paramgters for the computer program are specified

below. For all the simulat)ona the plasma is assumed to be pre-ionized

with an initial temperaturtiof 1 eV. All of the simulations assume

N = 9x1018
o

cm

A = 0.0145 cm.

tnitial density profile rising from 3% of N at (L1 - 0.05) cm to

of o at (L1 + 0.05) cm as {llustrated graphically in Figures 4.1

18

4.2. The initial plasma density of 9x10

density for 10.6 um wavelength radiation from a CO2 lager.

parameters

Simulation

Simulation

Simulation

Simulation

for the four simulations are:

#1

#3

#a

.2cm,
.3cm,
.2¢cm;
.S5cm,
.3cm,
.5¢cm,
.2cm,

.3cm,

{8 just below the

.0125cm,
.6 cm, and <
.0125 cm,

.7cm, and -~

.0125cm,
“cm, and T
.0035cm,
.3cm, and Tt

Other

L

r~

These two parameters lead to the

977%
and

critical

{input

- AOxlO—gsec

- anLO-gsec

- éoxlO‘gsec

- 30x10—gsec

In the first three simulations an attempt has been made to

match the experimental conditions of A.A. Offenberger et al.

stable resonator was used on the CO2 laser.

when a

When an unstable resonator
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was used the angular divergence of the output beam was somevhat smaller.
. &

This leads to a smaller laser beam radius at the focal spot. In h
simulation #4 o, has been set to 35 um to see what effect this may have

on the hydrodynamics.

In all of these simulations a two-dimensional computational
grid consisting of thirty radial shells and sixty axial points was used.
The small value of °% in simulation #4 leads to very high laser intensities
and therefore very high heating rates in a very small region in the
vicinity of the focal spot. Because of this a finer computational mesh
1s needed for this simulation. This 1s\achieved by making the region
of solution smaller (smaller values of LO and RO) and concentrating the
shell structure near the solenoid axis. That is the shell spacing is
smaller for r close to zero than it is for r close to RO. The first
three simulations ran with a timestep size of close to leo'll sec and
required approximately 20 minutes CPU time on the Amdah! 470 V/6 computer.
Simulation #4 had to be run with a much smaller timestep size (down to
2x10-12 sec as the laser beam bleached through the fcral! spot) and

required a total of "0 minutes CPl time.

The peak laser intensity in the <'th simulaticn 1is much
higher than in the first three simulations due tc the smaller value of

~

S This can be very desirable for the experimental investigation of
laser-induced parametric instabi{lities, however, it adds complicaticns
to the simulation of the hydrodynamic expansion since ponderomotive forces

24
now become significant. Following the derivation of Chen the ponder-

omotive force can be expressed as:
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~

€
—

0 fou
—

where w, is the frequency of the laser beam, I {s its intensity, and c

1 1

its group velocity. The ponderomotive force is added to the hydrodynamic

model by adding the term:

2
w
f--l_Le.L(L)
r 2 2 ir c
“y 1

to the right hand side of equation (2.2) and adding the term:

2
1 “pe 3 I .
f 2 2 o Y o)

to the right hand si{ide of equation (2.3). The appropriate mrdifications

have been made to the code for simulation #4.
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4.2 Results

The results of these simulations are summarised graphically
in Figures 4.3 to 4.30. The plots are of three types. (1) At a specified
time three dimensional plots of the hydrodynamic quantities

(T, T., n, v_ and v_) are plotted as functioms of r and x. (2) Ac
e i o x r

~

the same time the laser power P(x) and the axial laser inteneity I(o,x)
are plotted as functions of x. (3) The values of T., Tl, and no at
the lader focal spot are plotted as functions ot time.

1
In the three dimensional plots the density peak in the

f

shock fronts has been limited to values of leg¢s than 2!1019c--3 in order
to make scaling convenient. This {s achieved by setting n, to 2x1019c-'3

1f 1t exceeds 2x1019c-.3 in the plot routine.

The three di,.naional plots of plasma density all show a
“hele” in the density profile around the region of laser heating. A
strong axial shock {s seen to propagate just in front of the laser beam,
and strong shocks are also seen to be propagating in the radial direction.
The radial shocks propagate outwards with a velocity of about 4x106Cl/aec
when the peak laser power is 0.1 GW and at about 6.5x106cm’sec when peak
laser power 1s 1.0 GW. The velocity of the axial shock {s seen to be
dependent on the laser beam width but a typical shock velocitv of about
7.5!106 cm/sec is found for the case of the 0.1 GW laser. The higher
powered laser beam is seen to push the axial shock at a higher veloctitv

of between 107 and 2x107 cm/sec.

Plots of the density profiles show a hump in the region just

behind the shock wave. The formation seems to be dependent on the beam

L]
-



width ..-::3r¢"“ by the fnft that 1t te foumd to develop later in the
third of tion, vhere the lsser is focussed further into the plasma,
than it does 1n the second simulation. The fact that the hump ie spread

over about seven axial pointe is an {ndication that this feature is resl

and not due to the discrete numerical wsodel.

An important feature of gas target experiments is the long
-
characteristic scsle lengths over which hydrodynamic quantities vary
significantly. Density plots show that at 20 ns the density changes by
502 over axial distances of sbout 0.05 cwm or radial distances of about
Q.1 cm for the 0.1 GW laser. For the simulations with the higher powered
lasers both the radial and axia! -ralc‘lcn(thl are doubled. Character-

istic scale lengths for both T. and Tl are considerably longer than for

density.

The temperature plots show thst electron temperature rises
very rapidly to its maximus value in the region just behind the axial
shock. This can be explained by the high laser absorption rate in the
higg density region at the back end of the shock. Further back the laser
heating rate is reduced by the lcwer densities and higher electron
temperatures, and must compete vith the cooling effect of adiabatic
expansion. The ion temperature profile {s similar, although the ions
remain considerably colder than the electrons. The ions are heated
rapidly in the high density region just behind the axial shoek due to
eleltron-ion collisions. The subsequent adiabatic expansion causes the
ions to cool somewhat in the region behind the shock. Typical electron

temperatures of 40 to S0 eV and ion temperatures of about 30 eV are

+~hieved Iin the first simulation with the 0.1 GW laser. The second sim-



ulation shows that increasing the laser powver by a factor of 10 leads to
an increase in typical electron and ion temperatures by a factor of about
two. 'Increaning the laser power by a factor of ten leads to a large
change in the volume of the plasma heated rather than making a large
change in the plasma temperature. The third simulation, wvhere the laser
is focussed further into the plasma, shows significantly higher electron
temperatures can be achieved in the region of the focal volume if the
laser beam is focussed sufficiently far into the plasma to cause an axial

shock to be driven through the focal volume.

The plots of laser power versus x show that the beam power
1s fairly constant up to the shock wave. This shows that almost all of
the laser energy is being absorbed in the high density region at the

back %f the axial shock.

~ A knowledge of plasma fluid velocities can be important in
the interpretation of experiments since the fluid velocity can lead to

a doppler shift in the frequency of plasma light emission. The axial
velocity plots show typical axial velocities in the focal volume of about

107 cm/sec. .

The plots of Te, T and n, as a function of time provide a

1
summary of how the values of these variables in the focal volume change
over the duration of the experiment., It {is seen that for the simulation
with the 0.1 GW laser the electron temperature in the focal volume rapidly
rises to 55 eV, and then slowly cools to 40 eV at 30 ns. The ion

temperature, however, rises rapidly to 30 eV and maintains this value

throughout the time og the simulation. The ion heating, due to electron-
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ion collisions, is presumably balanced by the 1on cooling, due to
adiabatic expansion. Increasing the laser power by a factor of ten, as

in the second simulation, leads to electrons in the focal volume heating
e

-

rapidly to 95 eV and ghen cooling to 75 eV at 30 ns. The ions rapidly
heat to about 35 eV, and then continue to rise in temperature until they
reach 50 eV at 30 ns. It is interesting to note that the fluid densities
at the focal volume for these two simulations are almost identical over
the period of 12 ns to 30 ns. These plots also show the importance of

the laser focus position. In the third simulation, where the beam was
focussed further into the plasma, the electron temperature rapidly rose

to 155 eV as the shock wave propagated through the plasma. The plots
indicate that at about 7 ns a hot plasma of critical density existed in
the focal volume. Since this critical layer is part of the shock wave,
characteristic scale lengths®are very short at this time. After the shock
passes through the focal volume, the electron temperature cooled much

more rapidly than was found in the other simulations. By 30 ns the
electron temperature is only 75 eV which is the same as the electron
temperature of the second simulation at 30 ns. The fluid density alsc
fell rapidly and became essentially the same as that of the second
simulation by 22 ns. The ion temperature in the focal volume of the

third simulation rose rapidly to about 50 eV and remained constant for

the duration of the simulation. Another important feature seen in these
plots 1s that the density curve goes through the quarter critical value
fairly quickly before becoming more level at a density of about lO1 cm_3.
The time at which the densitv curve goes through the quarter critical

value depends on both the laser power and the laser focus position.

™~



T%g}thrcc dinensionalzplotu for the fourth simulation are
shown at a time of 12 ns. This is close to the time of peak laser power
and is just after the laser beam has bleachef 1ts way through the focal
volume. A peak electron temperature in excess of 200 eV is seen at this
time while the peak ion temperature is close to 60 eV. The three
dimensional plot of plasma density shows no axial shock, however other
plots not included in this thesis show that an axial shock exists at both
earlier and later times. The reason for this effect is that as the laser
beam bleaching wave propagates through the focal volume, the bleaching
velocity exceeds the acoustic velocity in the hot plasma behind the
bleaching front. This high velocity bleaching wave temporarily d roys
the shock wave. The plots of V. and v, show much larger fluid vkvities
in the region of the bleaching front than that of previous simulations.

This is a reflection of the large pressure gradients that have been set

up.

[ 4
In Figure 4.30, D s Te,and Ti at the position of the laser

focal spot are plotted as a function of time. This plot shows that the
axial shock reaches the focal spot before it is destroyed as indicated by
Figure &4.27. As the back end of the shock wave passes the focal point
of the laser beam, the electron temperature rises very rapidly to reach

a peak of 265 eV. Just after the shock wave passes through the focal

spot the plasma expands rapidly and the electron temperature falls to about

100 eV in a period of about 1 ns, and then continues to drop but at a

much slower rate. This rapid cooling can be attributed to the rapid

adiabatic expansion as well as thermal conduction due to large temperature

gradients.
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4.3 Conclusions

The computer simulations of laser heated gas target plasmas
predict that the hydrodynamic quantities vary over relatively long
characteristic scale lengths. Both axial and radial shocks propagate
away from the region of laser heating. Hoot:Pf the laser energy is
found to be deposited in a small volume of plasma just behind the axial
shock, leading to both electrons and ions reaching their peak temperature
at a short distance behind the shock. The plasma temperature and density
in the laser focal volume is found to be a relatively weak function of

input laser power.

It 1is found that the position of the laser focal spot
relative to the initial density profile can be important to the resulting
hydrodynamics. If the laser is focussed sufficiently far into the
initial density profile that an axial shock wave 1is driven through the
focal volume, the early time electron temperatures and densities are
found to be much higher than temperatures and densities at corresponding
timee for the case where the laser is focussed at-the front edge of the
density profile. These differences could lead to significantly different
observations of laser induced parametric instabilities. The hydrodynamic
behaviour of the plasma at later times (> 25 ns), however, is found to

be relatively insensitive to the position of the laser focal spot.

The reduction of the beam radius at the focal spot can have
dramatic effects on the resulting hydrodynamics. While the electron
temperature at the focal spot rose to a much higher value for the case
of o, = 35 um as compared to when oo = 125 um, it also decreased wuch

moreg rapidly. The plasma density also drops more quickly for smaller

nf =
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Figure 4.1 Initial axial density profile used in

gas target simulations #1, #2, and 3. The
left * denotes the position of laser focus
for simulations #1 and #2. The right * denotes
the position of laser focus for simulation #3.
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Figure 4.2 Initial axial density profile used in gas
target simulation #4. The * denotes the
position of laser focus.
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CHAPTER 5

A Theory of Beat Frequency Mixing

In this chapter a theory for the beat frequency mixing of
antiparallel electromagnetic beams in & plasma is presented. This
theory assumes that the Plasma is uniform and has an isotropic Maxwellian
distribution function. The magnetic field, if present, is assumed to

be parallel to the directions of propagation of the interacting beams.

Theoretical studies on the beat frequency mixing of anti-
parallel electromagnetic beams, where the difference frequency of the
interacting beams is close to the electron plasma frequency, have been
made by Schmidtzs, Fuchs 35_2336, Kaufman and Cohen27, Cohen28, Cohen
et gl?g, and Capjack and James30. Much of the work in referenles 25-29 is
devoted to the theory of beat frequency mixing in .an inhomogeneous plasma.
Capjack and James present a theory for beat frequency mixing in a
homogeneous plasma. It was found, however, that the results of Capjack
and James differed by a factor of about (wpe/w3)a from the calculation

made by Cohen et al?g.The source of this discrepancy 1s explained in

this chapter.

Results from Chapter 3 of this thesis indicate that it may
be possible to create a plasma which is radially confined by a solenoidal

magnetic field with very long density and temperature scale lengths 1in

the axial direction. For these con. - “he theory for beat frequency
10

mixing in a homogeneous plasma is va! Capjack and James have

suggested that the beat frequency - )’tx;,arallel laser beams in

a plasma radially confined by a solon' magnetic field could be used

to create a useful broad-band infrared amplifier. A good theory for the



beat-frequency mixing process in homogeneous plasmas is a valuable tool

for the theoretical study of such a device.

In this chapter beat frequency mixing rates for a homogeneous
plasms are derived. The effects of ion mobility and electron-ion
collisions have been included in this derivation. Inclusion of ion
mobility leads to the calculation of high mixing rates for the case
when the beat frequency is close to the ion-acoustic frequency. This
approach leads to an expression that is valid for difference frequencies
ranging from zero to much greater than the electron-plasma frequency.
Inclusion of the effects of electron-ion collisions makes the results
equally valid for cases where the dominant mechanism for the damping of
the driven electrostatic mode is collisional, collisionless, or the inter-

mediate case where both effects are important.

In Section 5.1 differential equations which describe the
coupling of antiparallel electromagnetic beams in the presence of electron
density fluctuations are derived. This derivation follgws Cohen28 and has
been included here for completeness. In Section 5.2 an integral equation
which defines the electron density fluctuation caused by the beating of
antiparallel electromagnetic beams is derived. The two differential
equations from Section 5.1 and the integral equation from Section 5.2 form
a set of three coupled equations which describe the beat frequency mixing
process. In Section 5.3 these three equations are simplified through an
approximation based on the assumption that the amplitudes of the fields
in the electromagnetic beams vary slowly on the time and length scales
défined by the beat frequency period and wavelength. Beat frequency
heating rates are derived for this particular case. In Section 5.4 the

equations of Section 5.1 and Section 5.2 are cast in an approximate form



vhich allows for easy numerical solution. These nev equations are useful
since they can be used to describe the beat frequency mixing of a beam
with a short pulse while properly accounting for transient effects in

the electrostatic mode. In Section 5.5 the dependence of the beat

frequency mixing rates on plasma parameters are displayed graphically

and discussed.

In the derivation that follows it is assumed that the

interacting beams are plane polarized, however it can be shown that all

the results are e?jj}{;’valid for the case of circular polarization.

13
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5.1 Beam Coupling in the Presence of ZElectron Density Fluctuations

In this section an expression for the coupling of two.anti-
parallel, linearly polarized, electromagnetic beams in the presence of
electron density fluctuat’onl is derived. Effects of collisional damping
(inverse Bremsstrahlung absorption) are included. The frequency of
the electromagnetic beams, wy (1=1,2) 1s assumed to be greater than the

‘
.

electron plasma frequency, wpe.

The vector potential in the transverse gauge due to the two

interacting beams can be written as:

2 1 + *

3, X - 5 o Ah=-2T g (5.1)
¢

where FT is the transverse current. From here on 1t 1s assumed that K

is in the ; direction and that the wave vectors ii (1=1,2) are in the

x direction so that vector notation cad be dropped.

Neglecting higher order terms, A and JT can be expanded as:

A = Al(x,t) ei’:l + Az(x,t) e152 +c.c,
(5.2)

- 18y 18,
JT Jl(x,t) e + Jz(x,t) e + c.c.

where no is the equilibrium density and El - (klx - mlt) and 52 - (kzx -

wzt). It 1s also assumed that electron density can be expanded as:

n = q +(; (x,t) ei£3 + c.c.) (5.3)
e o e



vhere £3 - Cl - 52' Terms of the form oxp[i((l + (2)) have been

neglected since they are off resonant.

The transverse current can be found from the transverse electron

fluid velocity u.

JT =-n,eu (5.4)
The ion comtributionm to the tranaverle‘éurrcnt has been neglected since
it 18 smaller than the electron contribution by a factor of (me/mi).

The transverse electroh fluid velocity u 1is expanded as:

u = ul(x.t) eigl + uz(x.t) e1£2 + c.c. (5.5)
The electron fluid velocity can be derived from:

9, u = - v u-—E ' (5.6)

where Vei is the electron-ion collision frequency and E = - % 3 A 1is
the electric field due to the electromagnetic beams. Magnetic terms

are of order (u/c) and have been neglected. Equation (5.6) can be split
into two parts and written as:

at(u eigi)- - v u

i el

164 , & 164
+ nc at(Aie ) (5.7)

or

e
(3t - iwi) u, - Vei u, + p— (3t - iwi) Ai

for { = 1, 2.

15



1f at u, << wu, the above equation can be approximated as:
e
“lwgug e vy Tt oo Yy
or
‘Ai
Y47 "tmc (3.8)
e
wvhere
2 o
we - iv 1w1 iv N
n = = 1 - (5.9)
i 2 . V2 wy
“1 el
wvhere it is assumed that (v.i/wi)2 << 1.
From (5.3) and (5.4) the transverse co-ponent‘%f the
current may be shown to be:
- - v elf3 .
JT eu[n° + (ne e +c.c.)) (5.10)

Combining (5.8) and (5.10) the resonant current terms are found to be:

a¥
n n n
1 2 2 2 e
Jl(x't) ® T Ivc upe Al T 4mc wpe AZ (n )
(5.11)
R
n n n
2 2 1 2 e
J2("” T 4nc wpeAZ T wpe Al( o)

Equation (5.1) is split into two parts and its harmonic dependence 1is

inserted. Then:

2 2 2
- - - - ]
3.+ (at {w,)". Bt wy 21«»i

N
[

2
3a_ ~» (3x - iki) f 3, - ki - Zik1 ax
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It 10 asoumed that 31 A, < uzA and 32A «< th snd that smell teras
t 1 11 x 1 11

can be meglected. Then:

2 2.2 2 2 2 2
(3t -c 3') - (- w, * kl c - Itu‘it - 21c k13.) (5.12)

By using this relation the component of equatiom (5.1) with an .1(1

dependence can be written a%:

2
iv ,w
(ol vkl el - 2w, - 21en 0 - —2LB )y
1 1 pe 1t 1 x ey 1
x (5.13)
® -n uz A (—!)

~

It is assumed that the waves {n the clcctro-n;nitic beams obey the

dispersion relation:
- wi + k2 c +uw =0

80 the first term in (5.13) can be set to zero. Any error in this
assumpt ion due to nonlinear frequency shifts does not lead to an error
in the nolp}ion. Instead it nﬁovl up in the complex solution of

Ai(x.t)-rotnting in the complex plane.

' Equation (5.13) and the corresponding equation that can be
derived from the component of (5.1) with s ¢1£2 dependence can be expressed

€
'D' Be
[ J

o]

2
S S
(3, +c, 2, + T 1A (D = -

1 ®y AZ(x't)

(5.14)



2
i wgo e
+ = - (= -—
(3, + e, 3, +T,] A (x,t) @) oy 3 A (x,t)
. czk
vhere ci‘- - is the '5°up velocity of the electromagnetic beams
i v W
in the plasmas, Ti - —31523 are the collisional absorption rates for the
2w
i

beams, and * denotes the complex conjugate.

It should be noted that (5.14) makes no assumption on the
magnitude of, or rates of change of the density fluctuation ge(x,t).
In fact the only restriction on the validity of equations (5.14) is
that the magnitude of Ai(x.t) does not change significantly in one period

or wavelength of the electromagnetic beams.

The Manley-Rowe relations (photon conservation) can be
easily derived from equations (5.14). Neglect collisional absorption
and multiply the first equation by wlAl. and the second equation by
szz*. Add each of these equations to its complex conjugate and then add

the two resulting equations. The result is:

-~ . v, 2 2
ul[ot + Clvx] ‘Al‘ + @2[8t + <, ax] A2 0 (5.15)
The intensity in each beam c#h be expressed as:
W1|k1| 2 ergs
11 .4
Iy 7y 1Ayl ( 7 )
sec cm
Substituting this into the above equation yilelds:
I1 I2
+ 3 —_— ) =
(3, *+¢; 3,1 (T_—rkl)+[at +ey 3]« o ) =0
Ky

(5.16)



\
Since the photon density in each beam is proportional to (Ii/ki) this

equation implies photon conservation. An equivalent form for (5.16)
2
is (use ki (wici)/c ?
9

(3, + ¢ 31 (1,/ leyluwy) + (3, +cp3. ] (1,/ |c2|w2)- 0

The Manley~Rowe relations can be cast in a simpler form.

The energy density of a beam in the plasma is Ei - Ii/ lcil. Equation
(5.16) can be rewritten as: ’
k—(at+clax) El+k—( <, ax) E2-O

1 - 2

If Wl is defined as the rate at which energy is being transferred out

of the high frequency beam and W_ is the rate at which energy is being

2

transferred into the low frequency beam,
W, =~ (6 +c, 3 ) E
x

- ®
wZ * (at * €2 ax) EZ

c 2

Using the above definitions and the fact that ;1 = — , the above
w
i i ¢

(o]

equation can be expressed as,

€
x

NE IN

1

1

If the rate at which energy is transferred to the beat frequency electro-

119



static wvave is defined as H3, the conservation of energy principle implies

that:

w

- - -3
Moo= W - W, = W (- wyfey) === W

3 1 2 1 1

Combining the above two equations yields:

o}
o

2 3

.
N
(98]

(5.17)



5.2 Density Fluctuations in the Presence of Antiparallel Electro-

~

magnetic Beams

Equations (5.14) can be used to describe the coupling of two
antiparallel electromagnetic beams in the presence of an electron density
fluctuation. The ponderomotive force from these two beams, however drives

->
a density fluctuation of frequency wq and wave-vector k3whete
-+ - >

w, =W 7w and k3 - kl - k2. In this section a general relation for
the electron density fluctuation resulting from the mixing of two anti-

parallel electromagnetic beams is derived. The effects of ion mobility

and electron-ion collisions are included in this analysis.

In this treatment the following four fo&pel acting on

electrons and ions are accounted for,
A

1) Fcc - Force experienced by specige ¢ (¢ = e or 1 for

electrons or ions) due to the coulomb electric

field resulting from electron and {on density

fluctuations.
(2) Ponderomotive force on electrons.
(3) Fi — Ponderomotive force on lons. Vi
(4) Fcol - Phenomenological force on electrons tg

account for electron-ion collisions. An equal
and opposite force is applied to ions.

In addition to these four forces, we also define:

- <+ -+ -
(1) FTe Fce Fe Fcol Total force acting on

electrons.

(2) F = F + Fi - F - Total force acting on ions.

Ti ci col

The double Fourier transform of all quantities Q(x,t)
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that vary as cxp[i(k3x - u3t)] {s taken. The transform has been defined 3
symmetrically as: '

Qk,w) = % | j Qx,t) 0-1&:-‘“) dt dx

1 (kx-wt)

Qx,t) 3= | Ak e dk d

With this definition taking the transform of a differential equation

in x and t means that:

3 -+ - iw and 3_ -+ ik
t X

The coulomb force on species € can be written as:
Fce(x,t) = q€£EC.(x,t) + Eci(x,t)} (5.18)

where qE is the charge of species ¢, and Ecc is the component of the

coulomb field due to the density fluctuations of species €.

The ponderomotive force on species ¢ has been derived in

Appendix C as:

1qz «
Fe(x,t) -- k3A1(x.t)AZ(x,t)expLJ(k3x - w3t)] +c.c.

m C
€

(5.19)
vhere L 1s the particle mass of species ¢ and ¢ = speed of light.
F (k,w) can be expressed as a function of & (k,w) and
col ce

!Ci(k,w). The average force on electrons due to electron-ion collisions

can be expressed as:
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g
Fol " ™1 ™ V) ¢ Veu (5.20)
vhere Ve is the average velocity of particles of species ¢, and Vo1
is the electron-ion collision frequency. However fr& the relations:
]
Je
ve " o % ;v Ecc(x.t) = 4m pc(x,t) ; and
o
/
3pc
Y + v . Jc = 0 where Jc is the current due to species
€, and Pe is the charge density due to perturbations in thg,nﬁ;ber
density of species € it is found that
h 3
iw!cc(k,w)
vc(k,w) - —41l_n—q—— (5.21)
o€
Combining (5.20) and (5.21) yields:
hmew Vey
Fcol(k’w) - 'Z?E;Z" (Eci(k’w) + Ece(k’w}
or
wvei
- E .
Flop(kow) = le 2 {Eci(k.w) + ce(k,w)} (5.22)
wpe
47n e 1/2
where wpe = ——;r——-) is the electron plasma frequency. Combining
e
equations (5.18) and (5.22):
1wvei
F (k,w) = - F (k,w) (5.23)
col 2 ce
wpe




Then from the definitions of ¥ and P_.:
Te T1

FTe - [Fe + b/'ﬁe]

FTi - lti -b 1"ce]
Using a kinetic approach,
equation (see Appendix B) it is found

from fluctuations of species a can be

1
Eo (k) = = = X (@,k) Pr (k)

€

(5.24)

and solving the linearized Vlasov
that the coulomb field resulting

expressed as:

o

>

(5.25)

where Xe is the linear susceptability of species €. From Appendix B:
2
w € 1 €
X, (w,k) = 2 —27— —~ {1+1a _F") (5.26)
k v
e
where 2
2 Awnoe ZKBTc 1/2
w - y v, = ( ) ,
pE€ m f¢e m
€ . €
_vz/v 2
¢
. w € b 3 e
oe . kv ’ Fo - j (w. - k.v) dv,
fe /T -w 3 3
\7

and Te is the temperature of species ¢,

Techniques of evaluating FoE

are discussed in St1x3l(Chlpt¢r 8).From equations (5.18), (5.24), and

(5.25):

F

. ‘ e
E o (kyw) = - xe{- T tb ¢ zci)}

F

(5.27)

i
E , (kuw) = - xi( T tb(E _+ zci)}



ay

Solving equations (5.27) for lc. and !ci yields:

I Xg(F (L +bx) +bx, P )
ce e(1+bx¢+bx1)

(5.28)
Xg(F@+byx)+byx, FJ

ed e(l + b X * b xi)

\
Writing the total species density nTt(x,t) as:

nTefx,t) = + ne(x,t)
and using,

v . Ece(x't) = 47 q. ne(x,t)
yields,

ik E  (k,w)
ce

ar q (5.29)

n (k,w) =
€
€

[ o

Combining (5.28) and (5.29) and ignoring Fi since F1 << Fe yields:

ik xe Fe(l +b xi)
e2 d+0b X, * b xi)

n (k,w) = - (5.30)
e

4n

The Fourier transform of Fe(x,t) defined in equation (5.19) mav be

shown tg be: .. ’ S
ie2k3 te’k
Fe(k.w) - - 5 flk,w) + 3 g (k,w)
m C mc
e
where “\
« @ 1(k, x~w.t)
* - -
£, =57 [ AL Aty e 0 3 grhlkxmet)

(5 11\
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de
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and

g(-k,~w) = £ (kyw)

If D(k,w) is defined by:

kk Xe(l +b xi)

3
D(k,w) = - (5.32)
‘“mecz 1 +0b X, +b xe3

*
it may be shown that D(-k,-w) = - D (k,w). If the inverse Fourier
transform of equation (5.30) is now taken and use made of equations

(5.31) and (5.32), the electron density perturbation may be written as:

n (t) = 3= [ [ Dlkw) f(k,w) e

Lx-wt) gy + c.c.

(5.33)

The expression for ;e(x,t) as required for equation (5.14) mav be

written as:

-1 (k3x-w3t )

Ee(x,c) -e %; [ ] Do) £hqu)el X8 g,

(5.34)
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5.3 Case of Slowly Varying Electromagnetic Beam Amplitudes

If both Al(x,t) and Az(x,t) vary slowly on a time scale
defined by the damping rate of the beat wave and on a length scale
defined by the wavelength of the beat wave, equation (5.34) can be

approximated. Under these conditions f(k,w) is sharply resonant and

has significant vnlq:: only for k = + k3 and w > + wye Equa{}if (5.34)

can be approximated as:
)

~ // ’

-1(k3x—w3t)

"
ne(x.t) - e D(k3,w3) f(x,t)

where f(x,t) is the double Fourier transform of f(k,w) defined in

equation (5.31). Using this definition:

5 (6, 0) = Dlcy,u,) A (x, ) A *x.t) (5.35)

2

Equations (5.14) and (5.35) form a set of three coupled equations that

describe the beat-frequency mixing process for slowly varying A1 and A2.

By inserting (5.35) into (5.14) it is found that:

i ”gi 1 *
(3,4 3+ Ml &) = - (3) o, m Dikyyuq)AjAna,

(5.36)
© 2

- - (L, pe .1 *
3+ Tz]Az(x,t) ) = D (k

[8t+ c
2 %o

*
2 3uy)A A Ay

* *
Multiplying the top equation by Al and the bottom equation by A2 ,

and adding each to its complex conjugate yilelds:



3V e

[D.+c,da + 2r. ] |A ( t)l2 =L - 8.) |A |2 |A |2
e’ 1% 1 1'% wy 1 2
(5.37)
2 i 2 Q
[at+ c23x+ 2r2] lAz(x,t)I - - ;;(8 - s*)|51| lﬂzl
where,
1 2 1
B = -7 Ype D(ky,04)
Now using:
P
2 2n
where Ii is the beam intensity;
. 2mi *
[at+ clox+ zrl] 11 ] (B -8) 1112
“1%21%2
. 2ni *
[3t+ CZax + 2F2] 12 - - ——Zr]::—? (B8 - 8 ) 1112
“1¥2'h
or if,
*
s 2 —2mi g - gh (5.39)
wjwy tkyley
[Bt + cla + ZTl] I1 = acy 1112
(5.40)
k2
[8t + czax + 2T2] 12 - - | ;I | ac, 1112

The coupling coefficient a can be rewritten as:
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2
2vw
- —P®
@ = Im (D(k3,w3)} (5.41)
ol2271
The parameter a must be multiplied by 10“7 if I1 is expressed in
w/cnz.

The rate that energy is deposited in the plasma dac to
beat freguency mixing, W3, can be calculated from the conservation of
energy principle through the use of equations (5.40) and (5.41). The
deposited energy w3 is set equal to the difference in the transfer rate
of energy from the first beam and the transfer rate of energy into the
second beam. The energy density of a beam in the plasma ii>é1- Iillci|
ergs/cm3. Neglecting collisional absorption of the beams, equations

(5.40) can be rewritten as:

+ -
(3t c Bx) El a I.1

1 172
k c
2 1
(B, + 3 ) B = - | k) | E; e 1)1,

The left hand side of these equations is clearly the rate of energy

transfer into the beams. Thus, from the definition of W3:

W, = - [(at+ clax) E1 + (at+ CZax) EZ]

3

or
k c
2 1
W, =-alLl 1-|=|]=0D
3 172 kl <,
Czki kz C1 w
Using ¢, = , | — | ‘ —-I can be rewritten as — . Then:
i wy kl ¢, wy
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w w.c T

3 - 31
UJ * - ;; a Illz - a Illz
c kl

Using the definition of a from equation (5.41) this expression becomes:

2

-2 920 u3

W3 - 3 In(D(k3,w3)} Il(x,t) Iz(x,t) (5.42)
ncwwkk
o 1727172

It is interesting to note that equation (5.42) can also be
derived by the more direct method of setting the plasma heating rate to
the ponderomotive force on the clgctronl times the electron particle
flux. The electron particle flux Ie can be found from the continuity

equation:

3 ]
3 D (x,t) = - Fry I, (x,t) (5.43)
and equation (5.30):
x (1L +bx,)
iw e i
I (k,w) = - F (k,w)
e A'QZ 1+0b Xq +b X, e
or, using (5.32):
ium c2
I, (kyw) = -——‘——T D(k,w) F(k,u) (5.44)
k k3e

For slowly varying Fe(x,t), F.(k,u) is sharply resonant in k and wu,

and the inverse transform of (5.44) can be approximated so:

N
- Ie(x,t) - Ie(x,t) exp{i(k3x - w3t)] + c.c. (5.45)




in

vhere, . 2 -
T (x.t) “2% D(k,,u.) F x.0) (5.46)
X, - 1 X, .
L 2.2 3%y o
3
and,
~ 2
rLx,t) - - :—‘-? ky A, (x,0) 8 (x,t) (5.47)
[ ]

The rate that energy is deposited in the plasmas, "3- is set to the

pondcro-otivc force on the electrehs tipes the electron particle flux.

. -

N ’\:.
H3 = 2 Re{1 F } (5.48)
e e
ing equations (5.46) and (5.47) in equation (5.48) yields: .
1w3¢2 a «
Wy = 2 Re{ —=r= D(kyug) AjA) Ak } P W
mc
Using equation (5.38)
4!21w3.2
H3 = 2 Ref{ 1 D(k3.w3)} Il(x,t) Iz(x.t)
e 1927172
or
27w .2w3'
w, = - —& Im{D(k,,w)} I (x,t) I (x,t)
3 a czm ek 3'3 1 2
o “1¥2M1 72

which is identical to (5.42).

It is interesting to compare the results of this derivation
30
with the results of Capjack and James where a different type of
derivation was used. For this comparison collisional effects are

neglected since they are accounted for in a different manner in the two
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treatments. The present work accounts for electron-ion collisions
in a more conni!:ant manner. Firet, the beat frequency electric field

t3 z (!c‘ + !ci) is found. From equations (5.28):

\

X F
E,(w,k) = — s (5.49)
e

+x, +
. 1Hxg+xq

wvhere b has been set to 1 and Fi hae been set to zero. Again, if

Fe(m,k) is sharply resonant around w = 3 Wy and k = ¢ k3 the inverse

Fourier transform of (5.49) can be approximated.

n
23(x,t)~- !3(x.t) exp[i(ka - w3t)] +c.c. (5.50)
where ~
" X; Fg(!.t)
23(x.c) -1 X; + x:' " ‘ (5.51)
\

X, = xo(w3.k3)

A

and F.(x.t) is defined 1in (5.47).

¥

Fe(x,t) must be cast in a different form to compare with the results of

Capjack and James. Assuming w, >> wpe or w, = cki, equation (5.38) can
be approximated as:

MEXE- Y124

w2 1
Then:
\
®
NV L T :
172 wiw, 172

" where ¢ 1s a phase factor which can be neglected in this treatment.

ETs

.3 ¢

gr!. ' .
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Substitution of the above equation into equation (5.47) yields:

2

~ k
e - - 12 21 e et
ac 172

Again the assumption that wyg >> w  Or W = ¢ ki is made and (“1'2)-1

pe i
is approximated as:

A
-1 172
(wow,) ~ =
172 (ch)z
Then:
n 1e2
Fe(x,t) - - k3 Xlkz VIII2
2nc m
e
or:
~ -16
Fe(x.t)/e = - 1(3.11 x 10 ) k3 xlxz v’III2 (5.52)

where A, is expressed in im and Ii is expressed in w/cmz. From (5.26):

i
2
® 1
x' =2 L& {1 + 1 af F€}
s « 2 2 o o
3 Voe .
After some algebra:
x; 1+ ia: FZ
: . T (5.53)
L4 Xt x4 [x2+{1+1a°r‘}+-£{1+1u11=}]
o o T1 o o
where K = k3XD and }D - ve./v'Zwpe is the Debye wavelength. From
equations (5.51), (5.52), and (5.53):
N £(3.11 x 10 %)k, 2. A (1 + 1a_F%) /PP (5.54)
3 12 oe o 12
E3(x,t) - T
(K2 +(1+1a® P+ 201+ 1ol Py
o o ‘l'i o p
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For ‘1‘e - Ti this 1s in exact agreement with the value for the coulomb

field found by Capjack and Jll‘l3o. .

The plasma heating rate 93 can also ba cast into a foth

similar to that of Capjack and Ju-el3o. It is most convenient to express
~ n N
Ie(x,t) and Fe(x,t) in terms of Ece(x’t) before using (5.48) to find W,.

By using the continuity equation:

3t ne(x,t) - - 8x Ie(x,t)
and Gauss' Law:

3 E (x,t) = -4men

X ce e
it is found that:

iw
Ie(k,w) = Ive Ece(k,w) (5.55)

Taking the inverse Fourier transform yields:

"
I (x,t) = -~
e

[
€
(V%)

A
Ece(x,t)

&
=
"

2V
where Ie(x,t) is defjined in (5.45).

Letting b=1 and xi-O in equation (5.28) and approximating

the inverse Fourier transform yields:

N X; +1 ~
F (x,t) = —— e E (x,t) (5.56)
e X, ce

where x; H xe(k3.w3). Substituting (5.55) and (5.56) into (5.48) yields:
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Ly
» w3 - -2- ’.-[‘»3 xe} l .|2
x.

2 2 2 '
“oe Pon 2 |E,l
Wy = I%——'— /7 sgn (ky) e7 o8 ——— (5.57)
3 fe |X;'

The heating rate given by (5.57) is smaller by a factor of

;] |)<;|-2 from that derived by Capjack and Janel3o. For a cold plasma
\!f.‘
a factor of (w,/w )4. The

o g
™.y (@ << 1) the two results differ by
e e oe 3 pe

discrepancy can be attributed to an error in'the definition of the

heating rate used by Capjack and Jamel30.

® h
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5.4 ' Transient Analysis

o In cases where the emplitude of one of the electromagnetic
vaves changes rapidly in time the quasi-static approximation breaks
down. In this section, equations (5.14) and (5.34) sre cast in a ferm

such that they can easily be solved numerically.

s 2
w (x,t)
4 _pe Dg'%»
[3t+ c13x+ r1] Al(x,t) - - (7)“1 o Az(x,t)
2 e \ (5.14)
w n (x,t)
i, _pe e \
[3t+ c23x+ r2] A2(x,t) - - (E)m2 _—“o Al(x,t) ]

-1 ¢k x~w, t) . :
ge(x,t) - e 3 3. i? f f D(k,w)f(k,m)ei(kx_mt)dkdw

(5.34)
where: -

£(k,0)'= 3= ;o Al(x,t)A;(x,t)ei(k3x.wt)e-i(kx-wt)dxdt
and

D(kyu) = - S DL S (5.32)

+ +
Aﬂmecz 1 bxe bxi

where )(e and Xi are the usual elegtron and ion linear susceptabilities ¥

as calculated from the linear Vlasov equations. The validity of these
equations is dependent on the following inequalities.

lat Ai(x,t)l << |w, * Ai(x,t)l

i
i=1,2

|ax Ai(x,t)l << lki . Ai(x,t)|

Since for the mixing of antiparallel beams |k3| = |k1| + Ikzl, the
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second of the above inequalities implies that in the region of wvalidity
of the above equations f(k,») will be sharply resonant in k, and has
significant values only for k near t k,. The function f(k,w) is not

necessarily sharply resonant in «.

As an example consider the mixing of a beam of wavelength
10.6um with a pulse with a wavelength of 10.612uym. For this.case the
frequency and wavevector of the driven electrostatic wvave almost
satisfies the dispersion relation of an ion-acoustic vnQo in a lpOcV_

plasma. The frequency wy = 2:1011 uec.1 and the wavevector

k3 - 1.2x104 cn—l or T3 - 3.1x10-llocc. and 13 = 5.3x10-6cn vhere T3
and A3 are the period and wavelength of the driven electro-static wave.

If the pulse is 10-11 seconds or 0.3 cm long,

1 11
Aw " 107" » Aw/u3 = 0.5

Ak a %‘; = 3.3 ~ 8k/k, = 2.8x10°

Such a pulse is highly resonant in k but the frequency spread is

almost as large as the frequency itself.

When f(k,w) is sharply resonant in k around k3 so that
D(k,w) does not change much over the range of k, the k integration 1in

(5.34) can be approximated:

-i(k3x-m3t)

- ! f(x,w)D(k3,w)e-1“t dw (5.58)

x (x,t)- e
" [T -

vhere

dk (5.59)



&

By the Comvolution Theorem, (5.58) can be rewritten as:

: -1(k i-u t) t
A 3 3 1
/ n (x,t)a ¢ f(x,t) D(k,,t-1)dt (5.60)
. /Ir -I-, 3
wvhere
© 1wt
D(k,,t) = D(k,,u) @ dw (5.61)
¥ " P
Now 1if
A -iksx - -1w3t
f(x,t) = f(x,t) e - Al(x,t) A2(x,t) e (5.62)
ge(x,t) can be expressed as:
lw,t t
L ] N 1
Ng (x,t) = @ [ ¥x,t) D(k,,t-1) dr (5.63)
vy 2 - 3

In principle equations (5.14) and (5.63) can be solved
self-consistently to yield an approximate solution to the evolution of

two interacting beams.

In order to numerically calculate the solution to these
equations for a short pulse, it is most convenient to transform the
equations into a coordinate system where the pulse is stationary. The

appropriate variables are t' and x' where:

2
t' =t 3.+ 2

(5.64)

x' = x-c,t 3 + 23 ,

Equatieas (5.14) t:‘ﬁlforl to:
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lat.+(c1-c2)3x.+ PllAi(x'.t')- llg"(x'.t')Ai(x'.t') (5.65)
(3 0+ T,JA5(x",t") = Ry 4" (x',t A} (x',t") (5.66)
wvhere
w2
R - - (—1— L
1 2 wln
o "
) (5.67)
w2
R2 - - (-;— —2‘—
wzn
[o]

The variables Ai;12< andne have been primed to emphasize the fact that

they have a new functional form in the new coordinate system.

In terms of the new variables, equation (5.63) can be

written as:

iw t' -
3 1 J't £ (x ' +c

Zt ,r)D(kB,t -1) dt

")
The functional dependence of,x‘and f 18 changed in the primed coordinate

system so that:
vy ' ' - v * ' '
ne(x ,th) ne(x +oc,th,t )

N v A
f£'(x',t') = f(x'" + c,t',t') or f(x',t') = £'(x' - ¢, t',t")

| 2 2
4€}‘

" 4"} *
f(x' + c,t',1) = f'(€,1) = A (E,T) AZ(E.T)‘G

Thus,

-iw3t'
(5.68)
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The integral equation \for :. can nov be expressed as:

1w3t' 1 ft'

2n t'+x'/c2

Ny ’\"
n‘(x',t')- e £'(€,T) D(k3,t' - 1) dt

(5.69)

The lower limit on the integral comes from assuming Aé(x',t') = 0 for

4

x' < 0 and also assuming that ¢, < 0 and ey > 0. Substitution of

(5.68) into (5.69) yields:

1 t' x iw3(t'-r)
n'(x',t') = — f A{(E.T)AZ'(C.T) e D(ka,t'-r)dr
Y2n  t'+x'/c

Changing the variable of integration from 1 to 7' = t' - 1 yields:

"~ 1 -x'/CZ *
n'(x',t')= — f Al (x'+c 1", t"'-T"A! (x"+c,T',t'=1")
1 2 2 2
v2m o '
iw3T
e D(k3,t') dt' (5.70)

Equations (5.65), (5.66) and (5.70) form a set of coupled
equations from which an approximate solution can be obtained numerically.

A numerical solution to these equations will be presented in Chapter 6.



5.5 Results ]

In this section the dependence of the beat fro;;.ncy mixing
rate (defined through the parameter a) on plasmsa parameters and the
laser difference freqﬁcncy is displayed graphically. The figures in

this chapter were chosen to show the dependence of a on plasma parameters,

and to provide numerical data that will be needed in Chapter 6.

Figures 5.1, 5.2, and 5.3 show the beat frequency mixing
rate a, the electrgg denstty fluctuation level ;e’ and the ion density
fluctuation level ;1, as a function of the laser difference frequency wqe
Here the density fluctuation levels are normalized to be independent of

laser beam intensities. That {is:

v ARl
€ v I.I.n
7172 o

where I1 and I2 are expressed in W ° cm-z. All of these plots show

"
a sharp peak in a, and Ne for wy close to the Langmuir frquency. In

~ "

Figure 5.1, Te >> Ti and there is a sharp peak in Ne, Ni and a for Wy

close to the ion-acoustic frequency. It is interesting to note that in

1l

Figures 5.2 and 5.3, the plasma density fluctuations are almost independent

of wy over a wide range while the parameter o increases monotonically

with increasing w Another interesting feature of these plots 1s the

3
~ 2 1/2
sharp minimum in N_ and a for w, close to w_, vhere w_ = (4mn _e"/m )
e 3 pi pi o i
is the ion plasma frequency. The minimum results from the fact that
near the ion plasma frequency, the ions move in such a way that their

coulomb field cancels the driving field on the electromns.

Figures 5.4, 5.5, and 5.6 show a versus ng for various



difference frequencies, and plasms temperatures. These plots show that
at higher temperatures, where Landau damping is strong, o is not nearly
as strongly despendent on density as it is at‘lovur temperatures vhere
damping is weaker. Also, for larger difference frequencies, higher

temperatures are needed to broaden the resonance.

Figures 5.7, 5.8, and 5.9 show the dependence of a on density
and temperature for beat frequency mixing near ghc ion-acoustic frequency.
In these plots it was assumad that Al = 10.247u1 and Xz = 10.2605um.

These wavelengths correspond to the R(20) and 1118) transitions in a 002
laser respectively. Figure 5.7 shows that a increases monotonically
with increasing density over a wide range of densities. Figures 5.8 and
5.9 show a as a function of temperatures. For cases of Ti << Te sharp

peaks are seen in a for Wy close to the ion-acoustic frequency.
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Some m&tlm of Beat Frequency lling

f’n beat frequency mixing of antiparaliel laser beams leads
to energy being transferred from the high frequency electromagnetic wave
to the lower fro’qpcocy electromsgnetic wave and to the beat frequency
cloctreoutic vave. The electrostatic wave is damped by collisional,
and collisionless hanisms and is eventually converted to plasma ‘thermal
energy. The utio.:z energy transferred to the electromsgnetic wave to
energy transferred to the electrostatic wave is givea by the Manley-Rowe
relations (5.17) as (u2/w3). This process has often been considered as
a possible mechanisa for heating underdense plasmas. From the Manlegsfove
relations beat frequency heating can be much more efficient for wy close
to the Langmuir frequency than it 1is for w, close to the ion-acoustic

frequency.

In this chapter, some applications of the amplification of
the lower frequency electromagnetic wave will be considered. A device
is proposed which could be capable of efficiently amplifying coherent
rad&tion in the 11-14um range. This same device could also be capable

L4
*

of auplify“ very short pulses of infrared radiation.
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6.1 A Plasma-Laser Amplifier im the 1l1l-lépm Vevelength Range

A laser amplifier in the infrared is of interest for
applications in laser heating of plasmas confined magnetically in
solenoids and recently for nuclear isotope separation. In this study a
laser amplifier is proposed Yhich relies on a 10.6um laser to serve as
a pump for a-pl?fying laser beams in the range 1ll-14 um with a high.
conversion efficiency. The proposed scheme is shown to be ideally suited
for amplification of radiation in the range 12-13um which includes the
12.1um line which is of interest in nuclear isotope lcpata{}on (see

Jensen et 3}.32).

The basis of operation for the proposed amplifier is the
nonlinear interaction in a plasma between a strong 10.6um laser beam which
serves as a pump and a lover frequency laser beam which is to be amplified.

The two beams fqrce an electron plasma wave at their beat frequency.

The analysis of Chapter 5 shows that for a plasma with a
tenper;ture greater than ~ 100eV, the mechanism for the transfer of
energy to the lover frequency laser beam is very insensitive to variations
in the plasma density and temperature. That is, this technique for
transferring energy to a lover frequency laser beam does not need to be
restricted only to cases vhere the difference frequency of the laser
besms is very close to the Langmuir frequency. Based on this observation,
a laser smplifier in the far infrared with plasma serving as a nonlinear
mixing wedium appears experimentally realizable. The proposed scheme is
otarqtiﬂlly a parametric smplifier with the crystal replaced by a plasma.

_lSvcvor. this amplifier would operate at much higher beam intensities



1%
A\’
than ‘perametric amplifiers which use & crystal as their beam uixisg
medium. The amount of energy transferred from the pump to the lower
frequency vaves is found to obey a Manley-Rowe typs of relatiomship,

equation (5.17).

vhere Ul is the energy transferred from the high frequency beanm, "2 and
H3.ate the energies transferred into the lov frequency beam and the

plasma wave respectively. wy and w, are the frequencies of the high and
lov frequency electromagnetic beams respectively and W, Wy is the
frequency of the driven plasma wave.

X
v

A schematic of a simple optical amplifier is shown in Figure
6.1(a). In this device plasma is radially confined by a solenoidal
magnetic field. Even though the 10.6um laser beam enters the solenoid
at a slight angle it will be guided down the axis of the solenoid due to
a density minimum on the axis. Such a density minimum could be created
during the plasma formation or by thchbz laser itself (see Stcinhauer33

’

1976). The required physical lemgth of such a device is dependent on

-
the plasma density and temperature profiles as vell as the wavelength and
initial intensity of the beam to be amplified. These factors are discussed

in detail later.

Ccttitn advantages can be gained by placing the smplifier in
an optical resomator. Two possible configurations are shown in Figures

6.1(b) and 6.1(c). The mirror configuration in Figure 6.1(b) is the



i

'
sase as that of a laser. Part of the low frequemcy beam 1is reflected
back iato the plasss by partially reflsctisg mirror K,. The low
frequency beam pronptiﬂ. antiparallel to the 10, M N“p smplified
at the cxponio of the 10. Gu- beam, The portion of the Lau ftiquoncy
bean propq.ting parallel to the 10.6um beam does not m&;b ¥ith the
10.6um beam (see Capjack and Ju-.n?o).An optical rcnonnto;';inbloo "J,
the low frequency beam (ffcqucncy uz) to be of rciséivaly'hi;h intcniity
and thus enhances the .nc;;y transfer process. A second major advantage
of placing the amplifier in an optical resonator is that the low
frequency beam can continue to be emitted long after the initial low
frequency beam has shut off. Thus s short Q-switched pulse signal can
be used to start thoxbroco-a which will then continue lon‘ after the
initial low frequency signal has died avay. There is also a possibility
that the low frequency signal could be generated spontaneously, thus
eliminating the need ;or the injected signal. In this case however
precise frequency control could not.bc achieved. The principle of opctn;}on
;;\}bo device with the mirror configuration shown in Figure 6.1(c) 1is
much the same as that of Pigure 6.1(b). The main difference 1n.that the
low'frcqucncy beam now only traverses the plasma in one direction. This

has the advantage of reducing the absorption of the beam by the plasma

through inverse Bremsstrahlung absorption.

For either of the mirror configurations the ratio of the
intensity of the low frequency beam as it enters the plasma to that of

the high frequency beam as it enters the plasma is given by:
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"I‘i .

k

where R is the fraction of energy reflected by the partially reflecting
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litror, 1 (x) and I (x) are the intensities of the pulp beam and the beam
to be amplified respectively in W/c- , and L is the length of the ‘
solenoid. In deriving this relation it has been assumed that inverse

Bremsstrahlung absorption is negligible and that all of the energy in the

high frequency wave has been transferred to the two lower frequency waves.

Optimal efficiency in energy conversion from the high
frequency beam can be achieved by making the physical length of the
solenoid longer than the abqorption length of the first beam. By neglecting
absorption through inverse Bremsstrahlung (valid for high plasma temper-

3/2 dependence) a theoretical

atures since absorption length as a Te
~
estimate of the spatial dependence of the intensities of the two beams in

the plasma can be written as:

all(x)
I - - cIl(x)Iz(x),
(6.1)
al, (x) w
2 ---2 aIl(x)Iz(x)

%} w,

a2

These equations are obtained from (5.40) by assuming 1‘1 1‘2-0 € = = cp=c

and Ikz/kll = (uy/w;). The last two relations are valid 1f w) > .

Note that the high frequency beam propagates in the +x direction
and is sttenuated vhile the low frequency beam propagates in the -x direction

h and grows. Solving (6.1) for Il(x)
N

4
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’ = oblu(O)up(-abx)
L& - ut#ﬂ(\mglul)ll(())(l-oxp(-cbx)]

6.2)

vhere b'[Iz(L)-(uz/ul)ll(L)]-

Theoretical estimates of the parameter a have been made
in Chapter S. Figure 5.5 indicates that for s 12 um beam mixing
with a 10.6 um beam, a coyld bg expected to be greater than 10712
for a density near 1017 cn-3 ) d a temperature near 200 eV. Figure
5.6 shows that much higher tcﬁpcraturcl and densities are needed to
achieve a broad resonance and high value of a for the amplification of
a 14 um line. However high temperatures may be achieved in such a device

since the plasma is heated by both inverse Bremsstrahlung absorption of

the electromagnetic waves and by the beat frequency mixing process.

If a 14 ym beam is being amplified and o = 10-12,equation
(6.2) predicts that the first beam will be 90% absorbed in 20 cm if both

1 U/cmz. 1f the first

beams enter the plasma with an intensity of 10
beam enters the plasma with an intensity of 1012 w/cm2 and the second
beam enters with an intensity of 109 U/cm2 the first beam will be 90%

absorbed in 60 cm. N

This work could be extended through the development of a
computer subroutine which numerically solves equations (5.40) in a time
and spatially varying plasma and which is then interfaced with the two
dimensional simulation described in’ Chapter 2. In this way the plasma
parameters could be calculated self-consistently with the beat frequency

heating rate.
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6.2 Short Pulse Amplification

In this -Qction. the possibility of using the beat froqu:;cy

o

uixing process to amplify and temporally shorten’ pulses of infrared

er radiation is considered. Consideration is given to cases where
the t frequency is close to the electron plasma frequency and to
cases re the beat frequency is close to the iom-scoustic frequency.
The basis of operation for such a device is as follows: A signal
oscillator injoctl a pulse of electromagnetic radiation into the plasma
antiparallel to the pump besam. The beat frequency mixing process then
causes an energy transfer out of the pump beam, and into the signal to

be amplified and the electrostatic mixing mode. If this mixing occurs
rapidly the pump beam may be rapidly depleted causing only the leading
edge of the signal beam to be amplified. This leads to a comparatively
long signal pulse growing into a sharp burst of intense radiation. Also
considered 1s the case where this device is used to amplify an ultra-
shor?® (5 100ps) pulse of laser radiation. Ways of generating such

short pulses have been developed by Yablonovitch and Goldhar3“, and later

by Fisher and Fieldnan35.

In the previous section it was suggested that a plasma
could be a useful nonlinear medium foﬁ'@he parametric amplification of
infrared radiation. This analysis assumed a steady state condition (no
temporal dependence) for the plasma“and interacting beams and consequently
is not valid for doccribieg the amplification of short pulses of
radiation. While the féﬁgqt analysis considered only the case where
the beat frequency -odéf;l; an electron plasma mode, the present analysis
concentrates more og tg; case vhere the beat frequemcy mode is an ion-

acoustic mode.
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Again, Figure 6.1(a) can serve as a schematic diagram
for the proposed amplifier. For purposes of this thesis, it is assumed
that a pulse of radiation with a wavelength of approximately 10.61m
is to be amplified. If the pump besam has a wavelength of spproximately
9.6um and the pulse to be amplified has a wavelength of 10.6im, the
beat frequency of these two waves is close to the electron plasma

17c1-3. If the appropriate plasma

frequency of a plasma of density 10
conditions exist an electron plasma wave can be driven and the 10.6um
pulse is amplified at the expense of the 9.6um beanm. Similarly, 1if the

pump beam has a wavelength of 10.247um (R(20) transition for a CO._ laser),

2
and the pulse to be amplified has a wavelength of 10.2605um (R(18)
transition for a CO2 laser), the beat frequency of these two waves is
close to the ion-acoustic frequency of a plasma of 350eV. If the

appropriate plasma conditions exist a large ion-acoustic wave can be

driven as a beat frequency mixing mode.

The energy that is transferred from the pump beam to the
pulse to be amplified is dependent on the device length, the mixing
rate, the frequencies of the two beams as well as inverse Bremsstrahlung
absorption rates. If inverse Bremsstrahlung absorption is neglected,
and it is assumed that the mixing rate is sufficiently rapid so that
essentially all of the energy is transferred out of the higher frequency
beam, the principle of éonoervation of energy and the Manley-Rowe re-

lations yield the following expression for the energy gained by the pulse.

AE = 2I_A —= = L (6.3)
w -
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wvhere AE is the energy gained by the pulso; I1 is the average cross-
sectional intensity of the pump beam, A is the cross-sectional area of
the p\.;-p beam, ¢ is the speed of light and L 1o‘th¢ plasma length. In
the design of this device, the device length, the pump beam intensity,
and the plasma conditions must be chosen in such a way that Brillouin
backscatter is not a serious problem. Since this device is intended to
anplify back-travelling radiation, threshold conditions for parametric
instabilities must, by definition, be exceeded. Since these instabilities
must grow from thermal plasma fluctuasions (vhich may be incoherent)

no problem will be created if the device 1is sufficiently short. éxactly
what conditions must be met before these instabilities create a problem
cannot be determined at the present time. Fo; the purposes of this
analysis, it is assumed that a sufficient condition to prevent problems

Wwith parametric instabilities 1is:
< 4
exp(asllL) L 10 (6.4)

where as 1s the growth rate for the back-scattered radiation. ag can
be found as the maximum on a curve of a versus wq for given plasma
conditions. Since this analysis uses the linearized Vlasov equation,
we must be careful to ensure that plasma and beam conditions are always

such that:

(6.5)

o:’ b:’?
A
A
—

where R. is the magnitude of the density fluctuations due to the beat

frequency mixing process and o, is the equilibrium density.
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Again, certain advantages can be gained by placing the
amplifier in an optical resonator such as those illustrated schematically
in Figures 1(b) and 1(c). This can greatly increass the interaction
length for a pulse allowing it to grow to larger amplitudes. Since
higher amplitude pulses tend to sharpen quicker due to pump depletion,
optical resonators could lead to shorter pulses. After the signal
oscillator has injected one pulse into the amplifier s whole series of
pulses would be emitted. The temporal separation of these pulses would
be Lp/c vhere Lp is the optical pathlength of one round trip in the
device. In order to prevent parametric instabilitiel from becoming a

problem in this case, a saturable absorber would have to be placed in

the path of the pulse.
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6.2.1 Quasi-Static Anslysds . -
, \" :
From Section 5.3, equatioms (Sa40) are valid 1f the
resonance width of f(k,w) {s much narrower than the resonance width
of D(k,w) so that equation (5.34) can be approximsted. The resomance
vidth of D(k,w) is of the order of the damping rate of the electrestatic
mode e and the resonance width of f(k,w) 1s 5“3- Therefore, oquaci;nl

(5.4) are valid for:

Buy << vy
Aw3 can be approximated as: R
Buy = bw) + Bu,
vhere Aul is the frequency spread of the pump beam and Amz is the

frequency spread of the pulse being amplified. Considering the pump

beam and the pulse to have minimum frequency lprcads.Aul<<Aw2 so:

Am3 %.Auz

Thus the quasi-static analysis is valid 1f:

A”Z << YL
or

A ,L'l (6.6)
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where Tp is the temporal width of the pulse. When (6.6) 1is true, the

- evolutiom of the pulse cas be found by solving (5.40):

[at + Y 3x + zrll 11 ®acy 1112
(6.7)
ks
(3, + e, 3 + 2r2] I, = - | ;; | a ¢ L1,
’
In this analysis it is assumed that the plasma 1is well underdense
so that:
cg=-¢cy=c=m 3x101°cn/l¢c 4.
(6.8)
k) “1

Equations (6.7) can be integrated numer}cally, however
it is useful to notic:'thnt the amplification factor of the back
travelling pulse in the pulse front (before pump depletion becowes
important) is simply given by exp[alll] where £ is the distance this

portion of the pulse has travelled in the plasma,

r
Figure 5.4 1is a plot of a as a function of n for various

plasma temperatures for the case of ) =9.6um and ) ~10.6um. A value of

1 2
a?> 6x10~12 is expected for the case of T. close to 100qV and plasma

density between 7i1016 and Oxlolec--s. Chapter 3 discusses s M.H.D.
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comput er simiTation of a lager heated plasms in » onoé.lt.r solenoid with

3

an intisl density of 7.8:1016c-_ . After 0.5u-sec of heating with a

16

1GW laser the plasms‘-had an on axis density of 7.5x10 Ch-3 snd an
[ 3

electron temperature between 95 and 100eV over a distance of more than



80ce. Ia other words, the plasms cosditions are such that d:oog

optimum values of ¢ exist over most of the length of the ome mster

solemoid. TFigure 5.) shews a as a fumction of w, for theee plasss

3
coaditions. It 1is seea that the pask value of & dus to the Irillouin

process is less tham the ;.lu of a predicted for the Raman process.
Consequently, Brillioun scattering would mot be expected to be a problem

for this case.

\

- Another M.H.D. simulation reported in Chapter 3 is that of a

laser hested plasms in & one meter Bolenoid and an initial demsity of 2

17 -3

3.0x10 . After one ysec of heating with a one CW laser the plasma

has a density between 2.611017 and 2.5:1017fc--3. an electron temperature

of between 120 and 180eV, and an ion temperature of between 100 and ,
140eV over an 80cm length of the -one meter solenoid. Figure 5.2 shovs
a as a function of “, for these plasma conditions. It is seen that a

l large value of o is achieved due to mixing with the ion-acoustic mode
if uy is close to 2.6:10113«:-1. Beat frequency mixing of CO2 laser
beams with vavelengths of A, = 10.2670 (R(20)) and ), = 10.2605, R(18))
ylelds uy = 2.62x10' sec™ . From Figures 5.2, 5.7, 5.8 and 5.9 it 1s
seen that the resonance for this mode is very broad and a value of

2

a > 6:10-1 could be expected over at least 80cm of the 1 meter solenoid.

¥ The sbove discussion indicates that suitable plasma
conditions could be attained in s laboratory to yield values of a > a’oxlO-12
. !9: the dxm of vadiation with engths of either 9.6im and 10.6um,
or 10-.247\- -‘ 10.2605um.  PYor either case the evolutiom of the inter-

scting weves theuld be similar, as predicted by equatioms (6.7). A

-
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condition for the validity of the guasi-static approximation is given

by equation (6.6). The plasms conditisss sssumed for the beat frequency

aixing of 9.6vm and 10.6um radiation (T =100V and u =7.75x10'°ca™)
1

imply & valus of k,kn-o.n and 1‘-3.0310 uc-l. Por thaé\gase of

mixing radiation vi;h wvavelongths of 10.247ym & quasi -od- (damping

rate is almost as large as the frequency) is driven and YL~ .J.hlouuc-l. o

-

Thus for either of these cases the quui-otntic*npptoxinum.ﬁ valid

1f the temporal width of the pulse to be amplified, Tp. satisfies

e, > x10 P eee N . (6.9)
. .
.:, t,.' ,;’ ,

v"'

In order to illustrste the amplification of a pulse using
this process, equations (6.7) have been integrated numerically assuming

the following condit fons:

i

Xl = 9.6um

)‘2 = 10.6um

n = 1.5 x1016c.-3' ’

° .. . J

Plasma length = 80cm ?

Initisl pump intensity = 1.6x10'0W/cm

Input pulse intensity = Iz(t) where

210’ Ip't ? < .5x1077 sec .
9 -9 -9 -9 .
I,(¢) {leo 1),(1077-t) .5x107 < ¢ < 10
. o : t > 1077 sec
n S 104 ' °

That is the injected pulse is of trismgular fore risigg to s peak pover .
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of 12p H/cnz at 0.5 ns and falling off to sero again &§ 1 ns. The above

2

parameters yield 0-5.7310-1 and in the sbsence of pump depletion the

whole pulse would be amplified by a factor of 1500

The results of these simmlations arq’ illustrated graphically

in Figures 6.2, 6.3, and 6.4. In each of thco:}fi;urcl the intensity
1s plotted on a logarithmic scale as a function of axial digtance down
_ the, solenoid axis at ;hx;c different times., Plasma is assumed to exist
only in the interval 0-80cm snd a 1is therefore set to zero in the
interval of 80-120ca (i.e. no mixing takes place in this region). Figure
6.2.111ultratoo the pulse propagating down the solenoid for a case vhere
there vas no beat frequency mixing. The pump beam intensity was set
to zero for this case. TFigure 6.3 illustrates the growth of a pulse
vhich inftially had a peak intemsity of 10° W/cm?. In this case the
peak pulse ppver has been amplified by a factor of about 250. This 1is
considerably less than what would be attained if pump depletion were not
| important. The pusp intensityvat the three different times 1is also
‘plotted in this figure. Figure 6.4 is a similar plot except the peak
power 1in {2. pulse was 109 H/c-2 before it was injected into the
amplifier. The interesting feature of thio calculaéion is that the front
end of the pulse has sharpened considerably during amplification.
Initially the pulse rose from zero to its peak power in 0.5ns. After
amplificstion it rises to peak power in 0.13ns. In fact the rise time

of this pulse is becoming sufficiently rapid that the validity of the
quasi-static approximation is becoming guootionnblo. The reason the pulse
oharp,ﬁn in this ;.thod 24 -plific.tion 1s that the pump is depleted
near the leading edgs of the pulse. As a réeult omly the lesding edge

F‘ )
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of the pulse is smplified. The higher the intemsity of the injected
pulse the steeper the leading edge becomss during smplificstion. For
pulses with very shdrp leading edges, the quasi-static n»iozl_ntion

breaks down and & mors sophistiqgred transient analysis must be done.



6.2.2 Trassiges Anglyste
Wy

In Chapter 5 & set of eeaaticas vhich describe the
evolution of & pulse of slectromagnetic radistiom propegating anti-
parallel £° another electromsgnetic besm with s gifferent frequemcy ia &
plasma wers derfved. Thess equaticas ((5.65), (5.66), asd (3.70)) sccount
for transient effects in the electrostatic -od. Befors these equatioms

are solved two additional spproximations are nade.
L)

1. !In the integration of (3.70)
.1(:«:21.:-1) % Ai(x«:zt »t), This is valid vhen A,
- »
and :.aro slovly varying functions in the moving coordinate

system. . .
’ 4 ‘
r .7 2- = . Thi' 1. ‘1“ f >> .
- czl - v el 0,2 up‘
£
. A} *
wWith th‘ appto"_;iution.,. the cquat‘ionl"to‘be solved are gummarized -

L 4 . .
below. Primes have been dyopped Ny clari.ty. - ﬂt L«

~ o
[3,42¢,2 +T)] A (x,8) = Ry (x,5) 8,0 (6.10)
(34,1 A0 = Xy or (x,t) A, (x,t) | (6.11)
X/eq 1.1
A 1 3
ng (x,t)= = o] Al(x*") A, (x-c T, t)e D(k,,7)dt
(6.12)

wulnavra
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2 - 2 .
5--(7)49— Le-Gh R (6413)
o L8 Ry ‘
’ ’2 2
< ' v ..
R rge B . (6.14)
1 = .
29y sy
vy, = 2.9x10°% o 10 asr ()2 (6.15)
: 2
° ¢k ,
¢~ (6.16)
- 1
y
T dw ~ (6.17)
Ay ¢
(6.18)
> <
6.19)
‘and X, and x, are defined in Appendix B. A}

The above squations are equally valid for beat frequency
M a différence frequency near the electron plasma frequency or
the 1on-oustic frcqgincy. However, in the numerical 1nt‘ration a
‘ultop 1s limited to being mh less than the period of :iu beat wave
and consequeatly s prohibitive amount of computer time would be required
to integrate the nquaéi‘ono if the beat frequency is close to the electron
plasmé frequency. In this section solutions for the case of the beat

fsequency being close to the iom-acoustic frequency are reported.

For Che purposes of shess computations the nuuud plasma
v uulittou correspond te those of m MID simmlation u,ortod 1n Chaptcr
3“&@1&&1“&!“‘“" “ﬂ-«nuuvus.tu‘! cate

.
-



e

£
that ¢he iom mode is very broad, it is resscmsble to approximate the
Plasms being wmiforn. A plasms vith T, “166e¥, T,-120a7, and v =2.5x10""ca”
uuq-‘. thQ!m’qhauwuh- 0,) snd the
wavelemgth of the pulee to bé-dnplified u’nt\o 10.2605 ym (3)). This
yields a difference frequency of @ -2 61:10 uc{ aa‘ cloesely eorvopoudc
to a maximum in the plot of a versws u, in Ptgnro S. 2. Yor these
conditions a=6.06x10 12. By assuming an utonem lcngth of 80 cm,
the input pump intensity must be less than 1. ml‘bvlc‘ :o?'uwy
equation (6.4).

u.un 6.5 shows the resl and imaginary paru of D(ka.i‘).

as s funet*‘l w for T,160aV, T -120eV and m =2 sx10*7ca™3. Figure
6.6 shows D'J.T) as a function of t for these same conditions. It is
noted that tt;o r?al part of D(ks.u) is even, vhile the imaginary part
is odd a0.1s required to gnh D(k3.t) real. The plot of D(k3,t) versus
7 shows that tha densit tuation _lovcl at time t is only dependent
on the ;rivin. forces h she time interval from t-T to t wvhere T 1} the
period ‘of the beat frequency wave. .‘l'his is characteristic of a huv\;iy g

damped oscillator. To illustrate the effects of reducing the damping

rate -1-11.7 Notl of n(ka.uﬂnd n(k3.t) are shown inﬂu ‘..

and 6.8 for the case of T _=160eV, T =20e¥, svd n_=2. 5x1017. Here a much

shaxper strueturc 1is seen ‘in the frequency spectrum and D(ks,T) is seen
‘. ‘ ol
to damp out after several periods.

To illustrate the importance of transient cffoct' without
h R

.

the complicatiows of pump depletion and inverse Bremsstrahlung absorption,
e calculation has beep done which sseumes an input pulse which rises
isstantanecusly to a cegstant value of 105 H/c-z vas injected iato the
' !

»
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.
solenoid Antipaulh‘l to s beam vith an intensity of 1.5:101°H/c-2.

For this calculation the effects of imnverse Bremsstrahlung sbsorption

have been uilocto_d. The initisl pulse intemsity (10’ H/-z) is
.ufficiontly‘;a.~thd§jthc effects of pump depletion are negligible.

Figures 6.9 and 6.10 shov I,, I,, and l:.l as a function of x (vhere x ‘
1-;thc diltnnccsin ca from the pulse fropt) after the pulse front has
travelled 40cm and 80cm in the plasma. For the case of Figure 6.10

s quasi-static nqalylin predicts that the pulse front should have
experienced an amplification of a factor of 1440 and that the portion
of the pulse near ;-3 cm,vhich has only travelled 77 cm in the plasma,
should be a-p1§ficd by a factor of 1090. The transient analysis snd
‘m'i-lutic analysis agree at ;-3 ca but transient effects lead to a
smaller amplification in the pulse front. Comparison of Figures 6.9
and 6.10 shows that the furthct.thc pulse has travelled in the plasma -

the larger the value X must be before the transient analysis agrees with

the quasi-static analysis.

A similar calculation has been made to illustrate the
importance of pump depletion. Again, it 1is assumed that the injected
pulse rises to a constant value instantaneously, however this time the .

10 W/cn2 and the intensity

initial intensity of the injected beam is 10
of the pump is 1.8:1010 V/ciz. For these conditions a quasi-static

analysis of the pulse fromt predicts an amplification of a factor of
6163 after it has interacted over a region of 80cm. Figures 6.11 to

6.14 show Il.— I, and ﬂ:.l has a function of : after the pulse has travelled

2
40, 60, 7dj.nd 80en respectively. From Figure 6.14 it is seen that the

\

o«
saxisum ,-ﬂlific‘tion i¢ a factor of 100 and occurs at %=0.6ca. It is (’~“

4



interesting to note that up to the time the pulse has travelled 70cm

in the plasms Il(x) is a womotounically decressing fumction, whereas

after the pulse has travelled 80ca I (3) experiences some regrowth behind
the peak of the pulse. If the pulse is sufficiemt ' rp the phase
relationship between the electrostatic wave and the two electromagnetic
wvaves can be such that energy is tnuf'orud from the lower frequency

waves to the high frequency wave in this regionm.

A calculation with anyinjected pulse vith a morey realistic
initial profile has also been made. The injected pulse is:essumed
to be of triangular shape rising from O at t=0 to 1010 U&z at t=50ps and
falling off to sero at 100 ps. The intensity of the pump wave is again

assuned to be 1.8x10'0 Wea?. Pigures 6.15 and 6.16 ghov 1, I, and

2
IS.I as a function of X after the pulse has travelled 40 and 80 cm in the
- plasma. It can be seen that the maximum value of the signal intensity
has woved ahead u;d has a value of about 80 thc'u the peak value before
amplification. It {s aloo seen that the pulse width has decreased from

50 ps to about 30 ps during amplification.

The above analysis indicates that the process of beat
frequency mixing in a plasma could be used for the .qnﬁ%tion,md in
soms cases, the shortening of pulses of electromagnetic radiation. This
type of analysis could also be used to examine Brillioun backscattering

from a laser hasted plasma.

\
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Pigure 6.7 Real and imaginary perts of ) X Figure 6.8 D(kj,t) as a function of ¢t
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Conclwsions . A '

»

-

A two dimensional numerical wmodel of a laser heated plasms
in a oo}:noidal magnetic field has been successfully developed. The
-o‘:!_cl is based on one fluid two temperature MED equations. By solving
the MHD equations in a moving coordinate system defined by the magnetic
field lines, numerical diffusion arising from the strong anisotropy
of the plasma has been eliminated. This sllows for a more coarse

computational grid to be ﬁ.od which - leads to savings in CPU time.

Care has been taken to make the computer routine as versatile
as possible. One example of this is that,to a large extent,initial
conditions as well as paramsters that control some of the internal
processing are specified through an input file. In this way the routine
can be a flexible and useful tool for users not familiar with the

numerical techniques used to solve the equations.

e

Results from semple calculations made by this routine indicate
that the assumption of radial pressure balance is valid for a wide
variety of problems. The routine has been co&ntructcd so that full

radial dynamics can be calculated or radial pressure balance can be

assumed.

\ -
P

The routine has been used to provide numerical backup for
gas tnr'ct.;xpcrinontu performsd by A.A, Offenberger et 2}§9—21Rcou1tl
from this study indicate that laser heated gas targets can provide an
attractive plasmsa soucgg/lbt the study of laser-plasma interactionms.

Current near future plans for this routine include more gas target studies

im
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and the numerical modelling of the short (1/2 m) solemoid experiments

planned by A.A. Offenberger et 2;_? @

A plasma parametric amplifier has been proposed for smplifying
laser beams in the 11-14 um wavelength range to very high intensities.
The plasma lcztion of the amplifying device can be relatively short
(less than one meter) and only a very coarse control on plasma density
and temperature needs to be maintained. Because the idler wvave is an
electron plasma vave and is Landau damped the process of energy transfer
from the pump beam to the signal beam becomss irreversibla. Fustbcr
analysis suggests !L;t this device could also be used to amplify and
temporally shorten ultra-short pulses of infrared laser radiation.

Pulse amplification could take place through beat frequency mixing
with a beat frequency mear the ‘tlectron plasma frequency or the ion-

acoustic frequency.
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Appendix A Some Prograsming Details for 2-D MHD Code

This Appendix contains some of ‘the programming details of
nuserical model described in Chapter 2. All equations are writtem in

disensionless form as described in Chapter 2. The derived quantities are:

N - Plasma density, n,

TE - Flectron temperature, Tc

TI - Ion temperature, Ti

% - Axial fluid velocity, A

A -  Area between shells

R - Shell radii '
W - Square of ghell radii, R2

B - Magnetic field, Bz

4] - Radial fluid velocity times radius, Rv

Any two of A, R, and W can be derived from the third
however all three are kept as internal variables in the numerical
solution for convenience. When the solution .enrploys full radial dynamics,
W is solved for, and A and R are derived from W. When radial pressure
balance is assumed A is solved for, and R and W are derived from A.
The magnetic field B can also be derived directly from A. Initial
conditions specify the magnetic flux in each uﬁell, ‘s‘ and this is a

constant. B can then be derived from

>|‘0

The difference equations are solved on a computational

grid consisting of M shells and NX x-points.
182
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A-1l Grid Structure and Tv"StqgﬁSchc-.

The position at wvhich the variables are calculated on the
x, s grid is {llustrated in Figure A.1l. Note, x and s have been
declared as integers 1q the r;utinc and are used to specify the location
of a quantity on the computational grid. The quantities N, V, TE, and
T! are calculated at the cell centers while U, W, and R are calculated
on the shell boundaries. The quantity A denotes the cross sectionsl area
of a cell at a particular x-point. Quantities that are calculated at
the shell centers and are subscripted with an (s,x) are assumed to be
at the x'th x-point and between the (s-1)'th and s'th shell boundaries

as 1llustrated in Figure A.l.

All variables are calculated at the same time t. In order
to obtain second order accuracy in the timestep size, 4t, a two-step
method was used to solve the equations. First the solution at time ¢
i{s used to find temporary values at time t + 4t/2. These temporary values
are used to calculate transport coefficients and spatial derivatives in the

equations. The solution is then advanced a full timestep from t to t + At.

At time t the value of all quantities Q are stored in arrays

denoted by Qs and (Q2) . After the first step in the two step
, X 8,X
scheme Q‘ x contains the temporary solution at time t + 4t/2. Based on
these values of Q' <’ transport coefficients and spatial derivatives are
calculated. Based on these, and the values in (QZ)‘ <’ the solution is
advanced from time t to t + At and placed in array Q‘ . (92) is
» X 8, X

then set equal to Q‘ x and the process is repeated. A flov-chu;t

1llustrating the gross features of the two-step scheme can be found in

Figure A.2.

-’



A.2 Difference Equatiome

+

The difference equations used in the routine are based oa

the p.rthi differential equations in s.ition 2.4.5. All of the equations

are of the form:

Q = RmHS (A.1)

vhere RHS has terms involving first and second order spatial derivatives
and time derivatives of other variables. In the code the equations

are solved in a sequence such that the required £ime derivatives of
other variables are evalusted first. Expressing the time derivative of
the above equation:

S S

st

.Q-

= RHS

or

Q;‘-Q;xfét-kﬂs

or (A.2)

AL

vhere Q,x is the value of Q'.x at time t and Q;" is the value of
Q' . L time t + &t and &t is the timestep size. In the two-step
scheme 6t = % At for a half step and 6t = At for a full step where At

is the timestep size for a full step.
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Central differences sre employed throughout whea evaluating

y

spatial derivatives. In all cases the partial derivative of Q with

respect to x is vritten as:

4, _91,:»1'%,:-1 .

IX ‘8,x 2Ax

(A.3)

where Ax is the grid spacing in the x-directjon. In the present

version the computational grid is uniform ip the axial direction so

Ax 1is a constant. Differencing in the radipl direction is somewhat

less straight-forwvard since shell spacing 1i\not uniform and derivatives

on the shell boundaries as viil as at the cell centers are required.

When the value of s Quantity that {s known on shell boundaries must be

calculated at a shell center, simple averaging is used. When the value
/

of a quanfi:y that is known in shell centers wust be calculated on shell

boundaries a weighted average is used. Two varia¥es are defined as:

(4R) (8R)
s

s+l
R2 =»
[(AR)‘ + (Al).*ll

Rl =
(@), + &, 7

(A.6)

Here (AR). is the radial grid spacing of the s'th shell. The value

of Q on the s'th shell is given by Q'¢1/2 i

Q!+l/2,x - Rl Q',x ML Q‘*l,x (A.3)

When Q is known in shell centers and %8‘1. required on a shell boundary,

the necessary differencing is straight forwvard.
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Rere ‘. 1s the dimsusionlese velus of magnetic flux ia the o'th shell,
snd is equal to u seroes the a'th ehell. 0. 10 mctud'by' iaicisl
conditions and is independent of x and t i the flux coerdinste msdel.
For cases vhere Q 1s Tnowa st shell centers end %% 1s requived ot
shell centers, the ‘oﬂnttn‘ is firet found oun the boumdary sad thea
averages tsken to find values in cell cemters. The quemtity (lla.l)
appears in several expressions in Sectiom 2.4.5. This 1is easily

evaluated from equatioa (2.27).
= =213 (A.7)

Bquations which do not involve diffusion terms (second
order spatial derivatives) are evaluated usimg a straight forwvard
wxplicit differencing echeme. That 1is RES of (A.1) 1s evaluated using
differences of the types described above and then the value of the
desired quantity is found at the new timsstep through spplications of

equation (A.2).

* The use of an explicit formation on the equations that
have diffusion terms would introduce a8 very restrictive stability
L]

condition on the program. If an equation of the form:

-

is solved using explicit differencing, the timestep sise in she

' 4
difference equations must satisfy (see Richtmyer and Mortom )



This condition would be very restrictive in the preseat model and render
1t essentislly useless. The use of an implicit formaligm um

this stability condition. The implicit formalism used in the present
routine is.as described by Richtmyer and xorton‘, When equations for
a variable Q involve a diffusion term in the x direction the term on

the RHS of (A.2) is of the form:
. ‘\
r

RHS = a QI,x-l +b Qt,x +c Q:.x+1 + other terms

where the coefficients a, b, c may be spatially dependent and may

-

also depend on other variables. Thus equation (A.2) can be expressed as:

A
; x ; X St 2‘ x-1 Qt x Q: x+]1 other terms}
[ [ ’ , .

.
In  an explicit formalism the terms Q' x in brackets would be the sanme

as Q; x in the first step of the tvo-stip scheme. In the second step

of the two step scheme, these as well as (other terms) would be based

on the results of the first step.

-
In the implicit formalism used in the present routine

however the former equation is re-written as:

¢
- Q; x Q; x ¥ otla Q:ii.z/:rb Qi/i tc Q:/i*l + other terms)

vhere

AL )
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Here the value of 9, x 8 found in the first step is not directly used
»

to advance the equation in the second step, however it msy be required

for transport coefficients and for other equatioms. The results fros

the first step are used in the evaluation of other terms in the second

4
step.
/
The above equation can be re-written in a form:
- A ' + ' - ' -
8,X Q‘,x+1 Bl.x Q',x Cn.x Qi,x-l vs,x
where
A =2
s, x 2 St >
b
By x =128
c
Cs'x 7 St
-

e

fw
[}

6. x Q;.J>+ % St{a Q;,x—l + b Q;,x + c Q;,x+l + other terms)

+

The solution of this system of equations and the application
of boundary conditions followed the procedures outlined by Richtmyer

4
and Morton .

A completely analogous technique can be employed to solve
equations that contain a diffusion term in the radial direction. However,

a somevhat more complex technique must be employed to solve the electron



R

temparature equation which hes diffwsion terms in both the radial and
axial directions. The ion tempersture equaticn has been simplified by

neglecting thermal conduction in the axisl directica.

[ 4

One msthod of numerically solving partuf differential
equations that have diffusion terms in two directions is through the
use of Alternating Direction Implicit (ADI) techniques. An example of
the use of such a technique can be found in Lindemuth and Killecn36.
Basically this technique works by setting up two levels of difference
equations. In one level the equation is advanced implicitly W
direction and in the other level it is sdvanced implicitly in the other
direction. Then one timestep uses one set of equations and the next
uses the other. It is not clear how such a scheme could be used in the
present two step scheme and so another closely related technique was
used to advance the electron temperature equation. AS-:quation of this
form can be written in the simplified form:

AN

Q = RD + AD + OT

where RD represents terms in RHS of (A.1) that involve radial diffusion
terms (second order derivatives in the radial direction), AD represents
terms that involve axial diffusion terms (second order derivatives in
the axial direction), and OT represents other terms. The above c%pation

then ;plit into two parts:
(Q) = RD

.Q- (.Q1)+AD+0T



A solution for (Ql) is found by using implicit techniques and this
solution is inserted into the second equation replacing RD. The
solution for (Q1) involves advancing Q a :l-notop assuming radial

diffusion terps are the only terms on the RES.
.

(3
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A.) Laser Hesat

The equations-that govern the propagatiom and sbeorption
of the laser basm are gives ia dimemsionless waits is Secticn 2.3.5.
The MHD oqufim are solved on a computatiomsl gr’td with KX ‘axul
points. The laser beam is assumed to be input at the end of the
/colcnoid specified by the MX'th axial point. Laser besm powver, specified
/ 1n“di-c'nnion1¢u units. P(x), is calculated on axial grid boundaries,
) and the power absorbed per unit length, E(x) is calculated in cell g
centers. The indexing of P and E relative to the indexing of MHD

quantities is illustrated in Figure A.3. *

The routine contains the option of two types of axial

boundary conditions at the point‘x-l.

(1) Boundary conditions are the same as those at
the other end of the solenoid. This boypfidary
condition allows for free ltrmiﬁ/“\ of plasma
out the end.

(2) Symmetric boundary conditions. This boundary
condjition assumés that the solution is symmetric
fout the point x=2. i.e. the point x=2 represents
solenoid center and by symmetry arguments, the
solution is required only for half of the solenoid.

A wore detailed description of these beundary conditonns can be found

in Section A.4. When symmstric boundary conditions are employed the
R TR

beamn is assumed to fold over on/itulf around the point x=2, This {is

because in a symmetric problem a beam is assumed to be injected from

both ends of the solenoid.



The total cross-sectiomal laser p;vor is ;1v;n on the sxial
grid points as ’x' The relative intensity of the besm in each shell is
specified by an array (’l>o,x vhich is used to.defise the radial profile
of the beam (Gaussian for examples in this thesis) and allows for an \

axial dependence as vas required in Chapter 4.

Using the laser absorption coefficient given by Johnston

and Daw-on15 and results of Section 2.3.S, k. is given in dimensionless

L 2

units as:
k‘ = K 377 In A .
T
e
vhere
9.74x10 38 NﬁQ
K = L
3/2 o
To

As described in Section 2.1.5 the absorption coefficient
was obtained by averaging over the radial profile. A weighted average
1s used with the weight at each radial position proportional to the
beam intensity at that point. In the finite difference scheme the
averaging 1is over discrete shells and weighting is proportional to
total beam power in each shell. The beam power in each shell is proportional

to[(PR). x A, x], thus:

wvhere
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G- E (P‘)..x ) A.’*_'

The propagation of the laser beam is described by:

{

lcv

3 .
P’ax’ -k P (2.49)

\ V 4 \

-

1
c

@

t

Normal differencing techniques described earlier -in this
appendix can be employed to'oolv; this eqﬁation,hovcvcr it {s found that
the sharp discontimuities expected in the bleaching front lead to great
difficulties for this casc.: There.is also a problem in the propagation
of a sharp wavefront through a semi-transparent plasma. Instead the

following ;bptOlch is employed. The tfioltdp size is restricted to:

where m is an even integer. At is not the same size as At, the timestep
size for hydrodynamic quantities,however m is cont:nually adjusted so
the time in laser calculations never differs from the time in MHD
calculations by more tha % éi . With this definition the beam,
propagating at a speed c, propagates an integer number of space-step

in each timestep Ar.

The beam profile Px is calculated by advancing it by m
snall timesteps of size ﬁl for each fuwll timestep of the main routine
and by %-.nall timestep for each half step of the main routine. The

laser powver P‘ is advanced in each of the small timesteps through the

sol‘on of:
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{

P P;-l E;
- - — [ °

Ax 2 {Px + Px-l)
or
1-1% ax]
' o 2 a

Px - Px-l 1l -~

[1+ik. Ax]

where P; represents the new value of Px and P; represents the old value.

The laser power that is absorbed per unit length by the
plasma, E, is defined in such a way that energy is conserved in spite
of numerical errors which may be made in the first two or three shells

of the beam front. E is defined as:

In each of the m small timesteps an Ei is defined as:

i i-1 1
= (P -

Ex for a full timestep is then given by:

Now the emergy absorption rate per particle (cL)s . must be

’

defined. The total power absorbed in a shell is nroportional to both
3/2
/2y

N - A - (g,) x and [Ni x/(TE)' x

* . . A :
8,X s,X L’'s, (PR)s,x A In A 1so

8,X



Ex - Z ((CL)I.X ) Nl.x ) Al.x]

All of these conditions can be satisfied only if:

N2
8,x
( TE3/2 ) PRs A

8,X
N A : - 2
s,X s, X (CL)s,x N' Ex

x
Z ( E372 ) PRs,x Aa,x
s, X

’ 8,x

8 T

The denominator of this equation can be rewritten as, X so:

K Moo = Mg x " B
R (TE) /2
x' a’'x 8,Xx

195
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A.b4 A Users Manual for MHD-2D Routine

In this section some of the various festures and options
incorporated into the computer routine are described. An explanation
qf the parameters that are specified through the main input file are
given. A listing of the input file, which contains a brief description

of each of the parameters, can be found at the end of this sectfon.

A.4.1 Start, Stop and Restart

When a simulation is started at a time of th/fhE*pQranctcr
NTIME must be set to 0. The simulation will then rﬁﬁ/gntil either‘NTOTAL
timesteps have been taken, or the simulation tln; reaches TMAX seconds.
1f NTIME¥ O the routine attempts to read input data from Fortran unit
#2 so that it can start from the NTIME'th timestep of a previous
i

simulation. Fortran unit #2 must be attached to a file or device which

contains the unformatted output of a previous simulation.

A.4.2 Initial Conditions

If the simulation is started at a time of t=0 the initial
conditions are calculated from various parameters irput througn the
input file. If the routine is being restarted from a previous simulation
these parameters are ignored and the {nitial conditions are read directly

from Fortran unit #2 as explained in Section A.4.1.

The computational grid used for the numerical calculation
consists of NX x-points and M shells. The spacing of the x-points 1is
always uniform however the shell spacing can vary. The initial shell
spacing is specified through the parameters ROl and W. The first shell
has a radius of ROl cm and the width of the second shell is W cm. The

width of the 1'th shell is ai-l W where a is calculated by the routine
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5 be such as to make the outer radius of the last shell equal to the
specified radius of the solemoid. The solenoid is LO cm long and has a
radius of RO. These values of LO and RO are also used as the bdasic
units of length and radius for the transformation to dimensionless
variables. The other two basic units needed for the transformation to
dimensionless variables (see Section 2.2.3), are given by NO c--3 and
TO eV. If the initial,dcnoitx and temperature profile is to be uniforw,
the plasma will have an 1n1tiai density of NO cn-3, an initial temp-

erature of TINT eV and an initial magnetic field of BINT Gauss.

The density and temperature can be given an initial profile.

The density is specified through parameters NO, RIN, and R2N as:

-3

N(r, t=0) = NO
s T+ expl(r - RIN)/R2N] %

RIN, and R2N are input in units of cm. The temperature profile is

specified through parameters TINT, R1T, and R2T as:

¢

TINT
Te g(ms t 0) = I+ expl(r - RIT)/R2T] eV

A uniform density and temperature profile in the radial direction is
specified by setting RIN >> RO, R2N << RO, R1T >> RO and R2T << RO. The
magnetic field is set to BINT Gauss at r = RO and is adjusted for

r < RO so that radial pressure balance exists.

An initial density profile can be specified in the axial

direction through parameters L1, L2, L4, and L5. The initial axial

”.

density profile is given by:



399 - WO .f’% ..
.("t.O)‘(l¢onl-l.1)L2 *.Nl)‘(1¢.. ~ 8 - LA)/LS

+ .001 )

L1, L2, Ls and LS are input in units of cm. Initial density profiles
such as those used in Chapter 4 can be specified with these pcr;;l(g::.
A uniform axial profile can be specified by setting Ll = -10, L4 = - L0,

-

L2 << LO, and LS << LO.

A.4.3 OQutput

The main output from the routine is written in unformatted
form on Fortran unit #3. It is intended that this unit be attached to
a disk file or a magnetic tape. This output consists of the calculated
hydrodynamic and laser quantities as well as various other parameters
that may be needed to restart the simulation ox by other post-processor
routines. This data is output after the initial conditions are
calculated and after every subsequent NTAPE'th timestep. The output

is suppressed if NTAPE = 999.

Formatted output intended for a printer is vritten on
Fortran unit #6. This output consists of the hydrodynamic and laser
variables written in dimensionless form. The output is in matrix form
and provision is made for only part of the information to be printed. This
{s controlled by parameters NXI, NXF, M1, MF and MS. Output is from
x-points specified by MXI < x < NxF and from every MS'th shell for
Ml < s < MF. This data 1is output after initial conditions are calculated,

and after every subsequent NPRT'th timestep. Output is suppreased 1if

19¢
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¥PRI = 999.

A.4.4 Timestep Control

The timestep size is adjusted after every timsstep. The
timestep size At 1is the maximum allowed by the following four conditioms:
1. At must be less than a fraction Al of the maximum

allowed by the stability coqdition. The etability
condition is specified by equations (1.1) and (1.2).
2. The electron temperature in any cell camnot change
by more than a fraction A2 in s single timestep.
3. Timestep size cannot increase to more than AJ times
the previous timestep size.

4. At must be less than DTMAX seconds.

The first timestep must only satisfy condicions 1 (with

Al replaced by All) and 4.

A.4.5 Laser Parameters

The laser beam power as it enters the solenoid is specdfied
through parameters PWRI, PWR2, PWR3, T1, T2, T3, and Té. The beanm
power is O at t = O, PWR]l at t = Tl, PWR2 at t = T2, PWR3 at t = 13_nd
0 at t = T4. Power levels between the specified times are calculated by
linear interpolation. Power is specified in Watts and time is specified

in seconds.

The radial intensity profile is Gaussian as specified by
equations (4.1) and (4.2). Parameters needed in equation (4.2) are

1
input as 0 _ = RLO, 3F " BS, and L3 = L3.

Sometimes it may be desirable to artificially control the bleaching
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velocity of the lgser freat. This 10 sceemplished by settiang VLAS
to the desired blesching veloeity. If so 1imit ie Gasived ViAS 1s

set to the speed of light.

In Sectios A.), ea enplemation is given of how the laser
beam tramsport equation is sdvanced ia small timesstepe for every cl‘oup
of the main routine. Under some conditisns M can be s very large
number and essentially no changes result from linith' M to a emaller
number. This can result in significemt sgvings in CPU time. N is
limited to being less than MIMAX. Care must be taken when setting
this parameter to a smsll number since it cam lead to errors including
loss of energy conservation. It 1s very unlikely for significant errors

to result from this feature if MEMAX > NX.

A.4.6 Boundary Conditions

Options exist on some boundary conditions as specified in
.
Section 2.5. If TRBC = . TRUE ., the temperature Tt remsins a constant
at r = RO. 1If TRBC = . FALSE . 3'!"/30 = 0 at r = RO, This {is
equivalent to assuming a thermslly insulated boundary. The thermsl
pressure P is assumed to satisfy a boundary condition at the solenoid
ends of the form 3P/3x = constant. This boundary condition is imposed
by assuming the pressure at x-point O is (1 - TDP1l) times the pressure
at x-point 2 and the pressure at x-point (NK+l1) is (1-TDP2) times the
pressure at x-point (MX-1). If NBOUND = 1 the solencid is assumed to be
open ended and similar boundary conditions are imposed on each end. If

NBOUND = 2 symmetric axial boundary conditions are imposed around

x-point 2.
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A.4.7 Miscellaneous “

Artificial viscosity coefficients :r and :x defined in
Section 2.3, are set to values AVR and AVX. If these Quantities are
set to values between 1.5 and 2.0 shocks will be spread over several
-glﬁ points. Artificial viscosity is turned off by setting these values

to zero.
)

When a laser beam is bleaching its way through a cold plasma
there is no MHD motion vell ahead of the beam front,and it is just a
vaste of CPU time to do calculations in this region. Initially, calculations
are not done for x-points 1 to NXMIN1. Then as the beam bleaches its
way through the plasma more x-points are added to the region in which
calculations are made. Calculations are made up to NXMIN x&nts

ahead of the laser front. This feature is dissabled if NXMINI < NBOUND.

The ratio of ion mass to proton mass is specified by
parameter RH.‘A deuterium plasma can be simulated by setting RM = 2,
Before the program can be used for higher 2 gasses the transport co-

efficients must be uoqified to include the z dependence.
—_

~.

~ \‘\\\ﬁ_iggtfﬁi::1onl on laser propagatign and heating are made only

for simulation time t < T4. Thus, if the simulation is to be run with

no laser heating, setting T4 to a value less than 0 will save CPU tige.

A,.4.8 Post Processor Routines

Readable output from the main.routine is very limited.
Additional information can be obtained from other routines which read the

unformatted data from the main routine and do additional processing.

Routine TAPRINT reads unformatted data from disk or tape



and prints results from pre-selected timssteps.

Routine ENERGY checkes validity of the results of a
simulation by calculating the extent to which energy and mass vere
conserved during the simulation. A more complete description of this

routine can be found in the next section.

Routine MPLT3ID reads unformatted data from disk or tape
and creates three dimensional plots of Te’ Ti' Vs Voo B, and n_ as vell
as a plot of the radius of shell boundaries as a function of x. All
variables are converted to natural units and scaling is done automatically.
Features such as perspecive plotting and removsl of hidden lines are
{ncluded. The routine works interactively on a Tektronix 4013 or 4015
terminal or will create Calcomp files. The routine automatically
determines if output is to a Tektronix terminal or a Calcomp file. If
it is writing on a terminal each plot is scaled to fill the screen. By
pressing return on the terminal the plot 1s erased ;;d the next one is
drawn. If output is to a Calcomp file, plots are automatically spaced

to use a minimum amount of plotter paper.

Routine MPLT1D reads unformatted data from disk or tape,
and creates the following plots at specified times; (1) laser beam
pover and axial beam intensity as a function of x; 22) axial values of

T, T

, and n_ as a function of x; (3) values of T, T,, and n_at a
e i o e i o

given x as a function—ef r; and (4) the axial values of v_are plotted
as a function of x. In addition, the axial values of Te‘ Ti' and n
at a specified x are plotted as a function of simulation time. In the
same manner as MPLT3D, the routine determines 1f the output is to a

Tektronix terminal or a Calcomp file and adjusts its format appropriately.

\

N

AR
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A.4.8 Listing of Input File
BT18B Isitial tisestep. It UTIAB=0 progras stacts at tel,

NTOTAL

TaAX

¥PRT

UTAPE

P Ri

Ti

YLAS

AYR

AVX

a

A2

L3
RLO
BS
OTAAX

uxsIn

NERNAX

If ¥TINE=s progras starts from 8°'th tisestep. Imitial coaditions
acte read off rortras Uait 02.

Nazisus assber of timesteps to take. Proyras will take
(VTOTAL-UTINR) tisesteps unless t=THAX tirst.

Saxiwsa tise (im secosis) for calculatioa to rea.

priat outpet frequemcy; - oa Fortraas Gait 06,
¥o output if NPET=999.

Uaforsatted output freqeeacy oa Portraa Uait 83, Used for
plottiag, emergy comservatioa check amd restactiag proyras, [ 1]
output 1f FTAPE=999,

Lasec povers is Vatts at tises Ti. VYalues are calculated by
linear iaterpolatiom betveea values of ti. Laser pover is V.0 at
tizme=0, PURY at TV, PWR2 at T2, P¥R) at T3, aad 0.0 at tine=14,

sSee PHERL.

Sleaching velocity of laser ia ca/sec. Value is actificially
lisited to accouat for emecgy used ia plassa forsation. If ao lisit
is desired set VLAS=3.0D¢10, .

Paraseter for averagimg oa half timesteps. Quantity Q givea by
Q(S.X)"P'(QZ(syll)'02(3-17))000‘02(3.1)0021‘0001

where QU=1.0-2.0%PP.

Disensionless cosstant aultipls for artificial viscosity
in the radial directioa. (Good value betveea 1.5 and 2.0).

Dineasionless constant sultiple for actificial viscosity
1s the axial ditection. (Good value betvees 1.5 and 2.0).

Fraction of stability coaditioa that first timestesp must satisfy.
Practioa of stability coaditios that other timesteps aust satisfy.

nax. fraction electrom tespecature in ceatral saells caa
increase by in a siagle timestep.

dar. }thCLOI tisestep cas iacrease by in a single tisestep.
Distance fros ianpet esd of solesoid (in cs) that laser 1s focussed.
Hin. beas radius. (at po.&t%on L3).

Beas slope. Li.e. rate of coaveryeace or divergence of beas.

Bax. tisestep size that is allowed. (ia secoands)

Juaber of x poiats ia fraat of beas froat that calculatioas
are to be sade.

Nazxisus musber of tisesteps to be takup in LEEAT per saia
tisestap. Ssall values save CPU tise but cas lead to suserical
.ttotuilclldllq lass of emergy comsecrvatioa. Ssall values are



T20C

ToRY

Pr2

LI

e

LB

ar

a3

KBGUND

| B ¢
[ ]

Lo
RO

¥o

TO,

ROT & ¥

BINT
TIaT

RIT

R2T

{ ] ]

good Af the laser beas profile does mot change sech ia & siagle
tisestep. There is oaly need for tiis to de greatec thas X is
extreene Cases suCh as a pulse travelliag through a, plasaa that
is optically thia before laser boating.

If TR8C=.1R0%., Teaperatucre oa Badial Bowadacy t‘ Coastaat.

If TROC=.IALSE., Teapersture &yb. assuses thersal iassulatioa oa
cadial bouadary.

Ratio of (iom sass)/(protoa sass). (i.e. RE=2 for desteriam

Pressece at x-poiat 0 is assumed to de (1.0-20P1) times
pressure at x-poist 2.

Pressere at z-poist (Nlel) is asssaed to de (1.0-TDP2)
times pressure at x-poiat (NX-1).

Initial x-poiat at which data should be printed.
Initial output for I=ININ if FXI=999.

Pisal zrpoiat at vhich data shouwd be pristed.
rinal output for X=BX if NXP=999.

Isitial shell for vhich ostput is priated.

rinal shell for which output is priated.
rinal shell foc S=&k if 8P=999.

Every 4S°th shell is output om priatec.

Type of bouadary coaditios dpplied to L.U.S.
Indepeadeat if NBOCUD=Y, Symetric if WBOUND=2.

usber of x - points.

susber of shells. .
Leagth of solemolid iam ca.
Radies of solenoid is cs.

Initial plassa deasity and value usod in nocrsalizatioa; i
pacticles/ca®®]},

VYalue used ia morsalizatioa Qf plassa tesperature in eV.

201 is the radius of the first shell. V¥ is the vidth of

the second shell im cs. Width of other shélls iacrease lineacly
in such a vay as to sake tadius of last shell BO.

Initial valee of B - field ia Gauss.

Initial values for electroa asd ioca tespecatures in eV.

Radius at vhich teaperature decreases to 1/2 of its value in the
imitial coaditioas.

Scale leagth over vhich tempecatuce decreases.

adius at which dessity decreases to 1/2 of its value ia the



3
L )
isttial cosditioas.
L ¥]] scale leagth over which density decceases.
Lt Distance fxos laser iaput end of solesoid that iaicial deasity
inoreases te 1/2 of its full vales.
L2 scale leagth ovec vhich dessity iacreases.
Ls Distasce fres other esd of soleseid tdat iaitial deasity

incceases to 1/2 of its full valee.

N

vy Scale leagth ever wvhich deasity iscceases.’

13398 R Iaitial valee for the aumber of x-poimts BOT te calcslate.
If this value i3 less thas of egqual to' BD this featuce
is dissabled.

208 Badial Dydasics. If 0us.TRUE. full cradial-dysasics ate calculated,
If R0N=.PALSE. Radial Pressuce Baladce is assused. This
can save CP0 tise sisce the stability cosditios 18 such
less severe 80 latrgerl tisesteps can be tasel. 1t seosething
other thaa radial hydrodysasic stability is the lisiting
factoc oa the, timestep sige this will NOT lead to sigaificaat
savings.

SINPJT UTINE=O0 SRND

¢I8PUT NTOTAL=1000, TaAI=1.5D-06, WPRYT=20, BTARD=10,
PuRI=1,0D¢09, PUR2=1_0D0Y; PERI=1.0009, T1=210.00-9, £240.0D0-09, T3=2.00-6,
The2,20-6, YLAS=3.0De%0, PP=0.0, AVR=0.0, AVI=0.0,

A11=0.01, A1=0.8, A2=0.5, Adei. 2, LI=25.0, 2L0=0.15, 88=0.0
DTHAX=1.0D-08, NINIUs6, BENAX=A0, TROC=.PALSE., aa=1.0,

0P 120.25, T0P2=0.23, ALI=999, NIP=999, 8=}, Ar=999, Ns=2
cRaD

¢INPUT LBOUND=1, BXI=30, a=15, LO=100.0, RO=1.5, 830=3.817,
£0=1.0002, RO1=0.08500, 3=0.08500, BINT=1.00405, tIur=1.0,
R1T=10.0, 22T=0.1, 218=10.0, %28=0.15,

L1=-100.0, L2=10.0, L&=-100.0, L5=10.0, pINly1=2%,) RDE=.FALSE.
% § 1) v




A.5 Conservation of Energy snd Masse

The routine ENERCY reads unformatted data from disk or tape,
and calculates the total energy and mass of the Plasma. After every

«
I'th input record (where I is an input parameter) the following data

NI

is printed; (1) total plasma energy; (2) éotal Plasma mass; (3) the
amount the plasma energy has changed from previcus timestep; (4) the
amount of energy that has escaped through lolqnoid ends; (5) the amount
’the plasma mass has changed from prcvibu- timestep; (6) the amount of
mass that has escaped throuﬁh solenoid ends; (7) the difference between

(3) and (4) divided by total plasma energy; and (8) the difference

between (5) and (6) divided by total plasma mass. —

Energy and mass are calculated and printed out in dimensionless
units. A unit of ogcrgy\il given by Eo - NokBToLvo and a unit of mass
is Mo - AoLoﬂiNo. Two parameters, N1 and N4, specify the axial region
in which mass and energy conservation is checked. The rate‘at which
energy and mass is flowing out of the left end of the solenoid is
calculated at the x-point N1 while the rate at which energy and mass are
flowing out of the right end of the solenoid is calculated at the x-point
N4. The total energy and mass is the sum of that calculated at each
x-point in the region specified by (NI + 1) < x < (N4 ~ 1) plus half of the
energy at x-points N1 and N4. If NBOUND = 2 an axis of symmetry exists
around the point x = 2 and there is no energy flow past this point. For
this case the routine automatically sets N1 = 2 and cglculates energy and

mass flow past the point x = N4 only.

The total emergy (or mass) is found by summing the energy (or mass)
calculated in each of the computational cells in the region of interest.

In dimensionless units the mass in a cell specified by H' x is:



H.,t - (M)I.X Ax

In dimensionless units the energy in a cell is the sum of the following

components:

Thermal Energy = (v-1)"1 Ny g~ (T* Ti).gx "t Ay gt Bx
Magnetic Energy = (Bs,x)z . An,x © Ax .
Kinetic Energy - % N"x[vi’x + ci(vr)i’x] A.,x Ax

Cross-Sectional Laser Energy = :.1 Px Ax (: - c/vo)

The total energy U is:

~\ ’\./—1 _1
, U=8x] ¢ P E Ay x (OFDT N

The mass flow out of a solenoid end in a time At is (mass
density) - (AV) where AVis the volume of plasma in a shell that has

flowed past the solenoid end. AV for a computational cell is given by:

(AV). x

*

- (Av)‘ x At
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In dimensionless units the mass flow past a x-point in a time 4t 1is given

by (AH)x wvhere:

(aM) = a¢ Z (ruw)s'x

The energy flow past an x-point can bt found by summing the

following terms:

-1
Thermal Energy - Z (yv=1) = [N(T_ + Ti) AV]S,X At
1 2 2 2
Kinetic Energy E 5 [N(v™ + € Vr) AV]S'X ot )
o>

(Pressure) AV term = work done in pushing gas out the end of the solenoid:

- L IN@T, +T) AVl bt

»

" s
5/2 At
Thermal Conduction § g AT D, [T 1 ™ Tdg xa! 2
where & = (k T—S/z)
11 e 8,X
1
Laser Energy Flow = 7[an+1-x '
if NBOUND = 1, anc =
-1 + P - P - P ]
2 nx+l-x nx+2-x ax=-2+x nx-3+x

1f NBOUND = 2.
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(av)_.
x

Summing these terms yields the energy flow past an x-point

- X 1 uw? + e2 2
(8v) Z ([ NT A1) + 5 NOT + ) vl A V) b
/2 At
-6 E (A Ti )s.x [(Te)s,x+1 - (Te)s,x—ll 24x

+ Laser Energy Flow.
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Figure A.l Spatial positions at which variables are
calculated. N, Te, T4, Vx, and B are
calculated at shell centers denoted by o.
R, W, and u are calculated on shell
boundaries denoted by x. The indexing
of variables is indicated on the bottom
and right hand side of the figure.




STEP 1

‘llgi!liil’ initalize
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advance
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DT=At

Figure A.2 Flow chart illustrating two-step scheme.



212

1 2 3 ‘ NX-2 NX-1 NX
—— - fﬁ—r—*——o-ss-t--nh ey}
P NX NX-1 NX-2 4 3 2 1

NX N X! 2NX-2
E Nx NX-1 NX-2 3 2 1

Figure A.3 Position and indexing of numerical grid for
calculation of laser power P, and absorbed
energy E, relative to positioning and indexing

of MHD variables.



Appendix B Linear Susceptabilities

In the following analysis, F (x,t) 1s the total force

Te
acting species ¢ (¢t = ¢ or 1) and !cc (x,t) 1is the component of the
Coulomb field resulting from density fluctuations of species ¢. The
distribution function fc(x. v, t) can be split into two parts; the

equilibrium distribution fuﬂition f:(v), and the perturbation f;(x, v, t).

fc(x,v,t) - f; (v) + f;(x.V.t)

The linearized Vliasov equation can be written as:

~ o F
~twf +1kvf =~- & 3 ¢°
€ € m v
3
A ~
where f and F are the double Fourier transforms of f' and F
€ Te € Te
respectively. Thus:
A
A iF
f - —TE 5 ge (B.1)
3 me(w - kv) v €

From Gauss' Law:

= 4
ax Ecc(x’t) TP Y

A3



where q_ is the species charge asd n 1s the demsity perturbatiom

defined bdy:
a (x,t) = 0 _‘!' £ (x,v,t) dv

which {mplies: .

~

(3.2)

vhere Ec:(k'“) is the double Fourier transforw of !c((x.t). Substitution

of (B.1) into (B.2) yields:

N 1 N
!ct(u.k) - - ;—'xt(w.k) th(”'k)

€
»

wvhere

(:JLE e Kk av f;
o L ey

andw = (v n_q /= )1/2“
pe p e €

Assuming f;(v&’iu Maxwellian:

' f;(V) - 1

2,2
exp(~- v /vec]
v

fc

*

. 1/
vhere Yoe © (ZkBT‘ﬁlt) 2 i{s the thermsl velocity of species c.

this value of f;. x, can be expressed as:

(8.3)

(B.4)

With
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'2»2 ® v exp(- vz/§2 ]
x = - pe 13 av
€ k/;'v:t - w - kv

<

Using techniques discussed in Stix,xC can be re-written as:

2
w
- pe .-_1 € :
xc(m,k) 2 5 > {1 +1 a . Fo) (B.S)
k Voe

o«

whére @ " w/(kvee) and

- exp[-vzlv2 ]
€ ik f¢
F - _.[. o =) dv (B.6)

Techniques for evaluating F; are discusled in Stix 2 (Chapter 8).



Appendix C Ponderomotive Force Due to Antiparallel Beams
P .

In this Appendix the ponderomotive force resulting from the
mixing of two antiparallel electromagnetic beams is found. Only terms

at the beat frequency of the beams are retained.

The force on a particle (electron or ion) is given by
- 1 -+ -+
F=gq (E+ Tvx B) € = e or 1 (C.1)

- - ->

where q, is the species charge, E and B are the total electric and
magnetic fields due to the interacting beams and v 1s the particle
velocity. The total vector potential due to the interacting beams can

be written as

1§, 182

X =A, e y+A, e y + c.c.
where Ei - (kix - wit), i1i=1,2.

Then to first order the particle velocity is given by

- q hd
€ dt d at
or
->
. aA
vV = —;—E . (C.2)
£

The ponderomotive force now comes from the second term in (C.1) where v

216
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K_J"’/‘

is approximated 88 in (C.2). This force is given by

-+ € -+ q‘ -+ -+ -+
Fc = cvx B = T vx (VxA) \\\
or
q2
P € 18 1£2 1€y
Fc mcz (Ale + Aze + c.c.)(iklAle

1€, -
+ iszze +c.c.) x

Retaining only terms at the beat frequency in this expression leads to

2

- 1q€ R
B - ——— * -
Fc - c2 AlAz kaexpli(k3x w3t)] x + c.c.

€
]

where k3 - kl - k2 and w3 - wl - wz.



Appendix D Listing of Computer Routings

c“‘.‘....‘.‘...“........‘.‘..‘..‘..".............“,...‘...“...“..‘;

c . A TNO PIRENSIONAL BAGNETOSYDRODYNASIC SINULATION OF A L4

C . PLASHA IN A SOLEBOIDAL HAGNETIC FILLD. .

c . BICHARD D. NILROY & J. 3. NCHULLIN 1977. .

CO0800000080300000¢00000C0000000000C0TCETRE08000C000008000008888308804800
INPLICIT RBAL (A-R,0-3) *

REAL §S,N88D,BTY32,¥DOT,SQRY,LO, N0

8EAL ¥(30,60),A(30,60),V(30,60),TE (30,60),2I(30,60),
¥2(30,60) ,A2(30,60),v2(30,60) ,282(30,60),%X2(30,60),
AA(30,60) ,85(30,60),CC(30,60) ,0D(30,60),
PRI(31),P(31),6(31),I8(31),I(31),C(31),VDOY(3),
BI(31),8B(31),GR(31),GP (31) ,BSTAR(J1),u(IY),
Atll()t).ltll()l).'tlu()i),tltl"ll),ID(JO.CO),KI.KI.
P(120),P2(120),TE 1S (30, 60)
#T83(31),TI3(31),DDE(31),0DI(31),AR(31) ,AL(31),BE(31),B1(31)
+CE(31) (,CI(31),08(31),DI(31),28(31) ,EI(31),2B(31),71(3Y)
. P8(30,60),0(30,60),02(30,60) ,4 (30, 60),%2(30,60) ,UDOT (31)
. UTBA (31) ,R(30,60) ,ATEN1(31) ,EPS2(31) ,BA(31),28 (31) ,HS0,NSH

INTEGER S,SP,SH,X, XN, XP,STEP,XNIN, XBPY,Xa8)

LOGICAL TRSC,RDN,RPD

DATA P/120¢0.0D0/,P2/12090.000/,S2KP/1/,PR/1800%0.0D0/

1,8P/1800¢0.000/, RPB/. TROL. /

LO,R0,N0,TO,PURY,PUR2,PUR], T1,72,T3,76,THAX,ViAS, TDP1,TDP2
: AV AVX, PP ,NX,8, NTOTAL, NBOUND, NTINE, NPRT, BTAPL, NXNIN, RDN, TRBC

Ceosse 0000800800000 0008000000000800800008300808000883000080800888880¢
c BTINE = MUABER OF TINESTEPS TAKEN S0 PAR. g
[ o MPRT = PRINT OUTPUT PPREQUERNCY. B0 O0TPUT IP EPRT=999. .
Cc ETAPE = TAPE OUTPUT PREQUEECIY. B0 OUTIPUT IF NIAPER=999. o
(o NTOTAL = TOTAL TINESTIPS TO TAKE. 4

Ce80888 4890000808 C00030¢35000CP0PI0OTCESOPEEEPOCIsNSOOEEPECRIESINCEPICRISEISTYS

CALL INIT(DT,DX,DEL, PCOLL,EPS20,PHI,V,H,A, TR, 71
1,DBLE1,DELE2,DELIY,DELI2,ABJ,CS,TINE,THO,XLAS,8,0,¥,X0LN)

I? (NTIRE.NE.O)
eCALL REST(DT,DX,DEL,PCOLL,EPS20,PHI,V,N,A, TR, TI
1,DBLE1,DELE2,DBLIV,DELI2,AB0,CS, P, P2,TINE, THO, XLAS,R, 0,0, XALN)
IP(RDS) RPB=.FPALSE.

GAN=S.0D0/3.0D0

EPS1 = (20/10)

EPS12= (RO/LO) *¢2

AVE2 = (AVeEPS1) ee2

Anteg-1

BXBl=gz~1

BIPV=gXe

BIP2eEXe2

#07=0.5¢D7

TDI=2. 000X

BL2=2e0X
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[ T8

1128 1=8X2-1
21202=9K201-1
Exgisnx-1
GuisGAN-1
ppp=1.0
QQu=2.0-20P
P (1) =0.0
p(8e1)=0.0
G (1) =0.0
G (ne1)=0.0
1E(1)=0.90
IE(ne1) =0.0
11({1)=0.0
11(Re1)=0.0
B0OT = 0.0

C----- S oI INITIALIZE TEEPORARY ARRAYS
po S0 S=1,4
ATRN(S) = O. * N
ursn(s) = 0. '
vrea(s) = 0.

50 r;;sn(s) = 0.
GOoYO825 -

Come——==-=---RETURE poINT OF TINE LOOP

7% contTinvue
TIAE = TIRRDT
ETIAE = NTIABe?
¥DT = 0,5DT
pT3e1.000/(3.000°0T)

C-===-== CALCULATE XnIn.

1P (X818.LT.BBOUND) s7orP

1P (XAIN.GT.NBOUND)

caLL sntts(xaxs.r,ux.lnound.:xuxl)

gapt = XBRINSD

1any = xarE-1

ppAx = BRei-IAIN

85 CONTINUE

27 1=ADT¢STRP

GDTI=GE 1#DTY

pPe=(2-STEP) * PP

0Q=1.000-2.0D0¢PP

. Ce—--==-— DRFIME rgee1.5 AS TEI5.
po 18 X=1,8X
po ta S=1,8
18 TE15{S.X) = n(s.x)tsonuus,xn

1P (TINE.LB.T5)

1CALL Luzur(n.ux.srzr,txnx.tt,12,13,rn,unouuo.tz1s,xux|
2,?3!1,?3!2.?0!3.XLAS,VLAS,IO,ADO,P,P2,Pl,l.l,A,TE,EP,DX,IXPI.TO)

C-1-—-=--—-MXIAL LOOP

po 300 X=XuIb, X

3R = 1

I7(x.2Q.1) 18R = 2 -
17(X.8Q.¥X) IBR = 3

s = 1-1

Ip = Xe

sony = O.

som2 = 0.

ABERD = 0.

2J1s0.0

¥432=0.0 '

2SPe0.5°R (1, X)

1




Vs - ngl.x)/ngt.x)
Q2 = 0.
IP(VPS.12.0.0) 02 = (1,0 *AVR20Vpsesy
PYL = B(1,X)%(TE(1,X)0TX(1,X)) ¢ (M (W /A (1,1)) 002
DEDXL = 0.0
C~2~~——-~~pInsy MeLL LOOP
" DO 130 $s1,1
SP & S¢
S » 8=
S = ¥(S,X)
AS = aA(S,X)
VS = v(s,1)
TES = TR(S,X)
TIS = TI(S,X)
£S = TES ¢ IS
S = useys
PUS = PNI(S)
3S = PAS,/AS
¥S = ¥(S,y) p
US = 0(s,x)
€=2-1---=-=CALCULATION OF PLUXES TNRU UPpEa BOUNDARY
IP(S.2Q.8) GO TO 101 :
A 3se = pEI(SP)/A (SP, 1)
P2 = PAI(SP)
PH12 = PHSePR2
ABED = ABND + AS
RS=23p
RSP=0.5¢ (R(S,1)eR(S¢1,1))
DR1=AS/{2.0¢2s)
DR2=A($%1,X) /(2.0%0sP)
DR12=DR1¢DR2
R1=DR2/DR12
R2=DR1/DR12
BBND=R1¢BSeR2¢PH2/4(SP, X)
DBYB = Q,.*ABND® (PHUA(SP,X)'!S)/PH\Z
- NBED = Rleys IZ‘I(SP,X)
YBED = R1eVS + R26V(SP.1)
TIBED = RISTIS o R2eTI(SP,Y)
TEBND = RISTES ¢ R2eTE(SP.Y)
SQTEBD = SQRT(TEBND)
EPS2(S) = EPS20/(TEBNDeSQTEBD)
F(SP) = RPS2 (S)*NBRD*DBYB
G(SP) = VBNDer(SP)
PBYN = P (SP) /NBED*eGRY
I1(SP) = TIBND*PBYN
IE(SP) = TEBMDePPTN
lJz.ls.o‘lfsz(S) SABNDs (((PH2/A {Se1 X))~ (PHS/AS) )/(ASeA (S“,X} })oe2
Go T0 100
101 BJI2=0.0
100 ¥T32 = ¥s/TR15 (S, )
BJIUL=0.5¢ (HJ 148 2)
NJ1=RJ2 '
XBU=PCOLLONT 32
1P(X¥0.GT.DT3) XNu=DT3
TEQ=XNU® (TES-TIS)
€=2-2---——-CALCULATR SPACT DERIV'S AND sET SuzLL FLUXES
DELP = P (Sp)-p(S)
DELG = G(SP)~G(S)
PrEGAY = NSeegy
DELIZ = PEGAYe (IR(SP)-Ip(s))



k14

20

40

ra

DELII = PEGN1S (I1(3P)-1X(S))

AN = AS®NS ‘

GO 20 (J0,80,20) , IBR

TON = N (S, XP)-B(S,IR)

TDV = V(3,XP)-V (S, XN)

TDTE = TR(S,.XIP)~-TIB(S,IN)

TOTI = TI(S,XP)-TI(S,1R)
DP = N (S,XP)® (TE(S,XP) *+TI (STIP))~B(S,XN)® (TB(S,KN)*TL (S,XN))
DUAY = o+ (NSOAS® (V(S,XP)~Y (S,XR)) ¢ USOVS® (A(S,XP)-A(S,XN))

1 * ASSVYSS (R (S,XP)-H (S,XH)))

ATH = A(S,XR)*TR(S,IN)*TR15(S, XR)

ATO = ASSIBS*TER1S(S,I) -

ATP = A(S,XP)*TE(S,XP)*TR15(S,XP)

TDU = U(S,XP) - U(S,1H)

TDR = W(S,XP) ~ U (S, XN)

VIN=V (S, KR)

YXP=Y (S, XP) .
QPr=0.0

Qu=0.0 )

IP(VIP.LT.VS) QP= (AVX® (VXP-VS))®e2 & (.5 (8SeN(S,XP))
IP(VS.LT.VXH) QU= (AVX® (VS~-VXN))®e2 & 0.5¢(N (S, XkN)+NS)
GO0 10 21

00 = 2,08 (N (S, X)-0(S,XR))

TDV = 2.0% (V(S,X)~V(S,XN))

TDTE = 2.0 (TR (S,X)-TR(S,XN))

0TI = 2.0% (2L (S,X)-TI(S,XN)) *

TDP = ~N (S, XH)® (TR (S,XN) ¢TI (S,IN)) *TDP2

TDNAY=2,0D0® (NHSOASO(VS-¥ (S, XH) ) *BSOYSe (AS-A (S, XN))

1eASOVSe (NS0 (S,XN)))

ATH = A(S,XB)*TR(S,IN)*TR15(S,X8)

ATO = ASSTESSTE15(S,X)

ATP = ATO

TOU = 2.0° (U(S,X)-0(S,XH))
D4 = 2.0% (N (S, X)~U(S,IN))
QP = 0.0

gn = 0.0

60 10 21

DN = 2.0¢ (8 (S,IP)-¥ ($,X))

TDY = 2.0%(V(S,XP)-V (3,X))

TOTE = 2.0® (T (S,XP)-TE(S,I))

TDTI = 2.0 (TX (S,XP) -TI(S,X))

2OP = K($,XP)® (TE(S, XP) +2I (S,IP))*TDP}
TONAY=2,0DO® (NS*KS*(V (S, XP)-VS) + USEYS® (A (S, LP) -AS)
14ASSYS® (N (S, XP)-NS)) '

ATH = ASSTES®TEIS(S,X)

ATO = ATH

ATP = A(S,XP)eTE (S, XP)OTRI5(S,XP)
TD0 = 2.0* (U (S,XP)-D(S,X))

00 = 2.0 (N (S,XP)-¥ (S,X))

o’ = 0,0

Q. - °o°

CoNTINUE

PTU = NBED® (TEBRD+TIBED) ¢ BBED®e2
PUDXU = TDW/TIDX

DPY = PTU - PTL

D¥DXE = O.5¢ (DWDXL+DMDXU)

PTL = PTU

DUDXL = DWDIU

ET = DYDXNeDPT/AN

bQDXY = (QP-QN) /DX



C(S) = —( TPUAV/IDIX o DEL? )

VDOT(S) = ~-( VSeIDVeTDP/ES ) /7TDX - (DEALG-VS®DELYF) /AN - pQDX/BS

1 ¢+ BT
NE(S) = -VS® (TDTR-OA 19TES*TDN/US)/TDX -~ (DELIR-TRES®DELP) /AN

1 -~-TEQ ¢ GHISRP(S,X) ¢+ GBI*NJUL/NS .

AI(S) = -VS® (TDTI-GRICTISSTON/NS)/TDX - (DELIX-TIS®DELZ) /AN

1 eTRQ
G? = 0.9%GR1¢DEL*DT/ (RS*AS*DKes2)

GH(S) = GPe (ATR*ATO0)

GP(S) = GPs (ATP+ATO)

------ CALCULATE COEPICIENTS POR QUASI-INPLICIY PRRP. BEAT PLOV.
IP(S.EQ.H) 60 TO 5
KE = DELEVSTESNDCTEBRD*SQTRBD
1 / (1.0 ¢ DELB2®TEBND®#3¢BBAED**2/(NBND**2))
KL = DELIVSTIBNDSTIBYD®SQRT (TIBND)

1 / (1.0 ¢ DELI2®TIBNDes3¢BBND**2/(NBED®42))
2=84.0D0SABUD/ (AS*A (SP,X)) .
DDE(S) =1*KB
DDI (S) =g *K1
I7(S.EQ¢1) GO TO 5
22GDT1/(NS*AS)

AZ(S)=X*DDE (S) *PPP

AL (S)=2*DDI(S) *PPP

BE(S)=1,0¢3® (DDE (S) *DDE(S-1)) ¢PPP

BI(S)=1.0¢2¢ (DDI (S) +DDI (5=1) ) *PPP

CR(S)=Z°*DDE(S—1) *sPPP

CI(S)=2¢DDI (S-1)*PPP

DI(S)-TEZ(S,I)Oli(bol(S)‘112(501,1)-(002(5)0008(S-l))‘tlZ(S,l)
¢ ) +DDE (S-1) *TB2(S-1,X)) *QQQ

ox(S)-rxz(s,X)ozc(nnt(S)0:12(501,1)-(001(5)ooox(5—1))-rlz(s.x)

1 +DDY (S-1) *TI2(S=1,X))*QQQ ¢ HI(S)*dT!

S CONTINUE

1P (RPB) GO TO 150

------ SOLYEZ 2QWS. ASSOCIATED WITH RADIAL DYMWABICS.

C-wommm- PIRST PIND ARTIPICIAL VISCOSITY.

. IP(S.BQ.M) GO TO 150
YPSP = O (SP,X)/R(SP,X)
oV = 0.0
IP(VPSP.LT.VYPS) Q1 = NWS®AVE2® (YPSP-VPS)ee2
pQDS = 2.0¢(Q1-Q2) /PH12
Q2 = Q1
YPS = VPSP
IP(S.2E.1) GO TO 161
puDS = U(2,X)/PH 12
GO TO 162 €

161 DUDS = (U (SP,X)-0(Sm,X))/PR12
162 DUDX = TDU/TDX

D = 4, 0°uWSeBBED® (BSP-3S) /PH12
2 = 2.0¢BBED*WS/ (EPS12*NBUD)
DPDS = ((¥(SP,X)®(TE(SP,X)*TI(SP,X))) - (N5°TS))*2.0/PH12
DBP2DS = ((BSP®e2) - (BS*92))*2.0/PH12
UDOT(S) = ~VBEDeDUDX - EPS2(S)*DeDUDS ¢ (US5%*2)/¥5
1 -3¢ (DPDS ¢ DB2DS ¢ DQDS)

Cmmmmmm SOLVE POR ¥ SEMI-IRPLICITLY.
pu¥LX = TDU/TDX
2 = 2.08FpPS2(S)* (BDBED*®2) NS
IP(S.¥E. 1) GO TO 163
AN = DTV®ZI/(PH2°PH12)
P8 = 1.0 ¢ DI1sze (1.0/ (PH2¢PH12) + 1.0/(PHS®PHI2))
DB = W2(S,X) ¢ DT1%(2,0eUS - VBED* DNDX)



1 ¢ AN®H2 (SP,X) -~ (BM-1)*¥2(S,X)
BN (S) = AN/BA
re(s) = D/
GO 10 150
163 AR = DTIeL/(PH2oPH12)
CH = DT1¢Z/(ERS*PN12)
BA = 1,0 ¢« AN + CH
DA = ¥W2(S,X) ¢ DTI1®(2,0%US ~ VBYD®* DNDX)
1 ¢ AR®U2 (SP,X) - (BR~1)*V¥W2(S,X) ¢ CA®W2(SH,X)
EN(S) = AB/ (DM - CHA®*EZn(SN))
PA(S) = (DS ¢ CASPE(SH)) /(BN -CHSRA(SH))
150 CONTINOE
I1r(RPB) GO TO 102
C-~=== ~-- SOLVEZ POR W (S,X).
B(N,X) = ¥W2(",X)
DO 168 Jw=i,B8H1)
S = N-J - *
SP = Se)
W(S,X) = EN(S)*R(SP,X)+Fn(S)
168 CONTINUE
Crmmrm—— USE NER VALUER OFP ¥ TO PIND ATENI(S).
ATERY (1) = W (1,X)
DO 165 S$S=2,n
165 ATENYI(S) = (0 (S,X) - 8(5-1,X))
Comwore - PIND HORE CORFICIENTS FOR IMPLICIT EQUATIONS.
102 ZaGDTV/ (N (1,X)*A(1,X))
EEE=1¢DDE (1) *PPP
FPP=1.0¢ERE
GGG=TE2(1,X) *+ELE® (TE2 (2,X)-TB2(1,X)) *QQQ/PPP
EE(V)=EEE/FP?
PR (1) =GGG/PPYP
EEE=2*DDI (1) *PPP
PPr=1,0+REE
GGG=TI2(1,X) ¢ERBE*(TI2(2,X)-TI2(1,X)) *QQu/PPP ¢ HI (1)®DT?
EI(Y)=RER/IF?
PI(1) =GGG/rrPYP
DG 6 S=2,4181
ER(S)=AE(S)/ (BE(S)-CE(S) *EE(5-1))
BI(S)=ALl(S)/ (BI(S)-CI(S)*EI (S-1))
PR(S)=(DE(S) +CE(S) PR (S-1) )/ (BE(S) ~CE(S)*EE(5-1))
PI(S)=(DI(S) +CI(S)*PI(S5-1))/(BI(S)-CI(S)*2l(5-1))
6 CONTINUE
Cr==m==== PIND TZ3 (M) AND TII(W).
IP (TRBC) GO TO 15
2aGDTV/ (W (M, X)*A (N, X))
FPPPsZ¢DDE (N-1) *PPP
LEE=1.0ePP?
GGG=TE2(B,X)~FPPs (TE2(N,X)-TE2(8-1,X)) *QQQ/PPP
TRI (W)= (GGG FPPOoPE (NN1)) /(EEE-PPIsRE(NN)))
PPP=2¢DDI (KN 1) *PPP
EEE=1.0erPP?
GGG=TI2 (A, X)-FPPe (TI2(A,X)-TI2(NNR1,X)) *QQQ/PPP ¢ HI(B)e*DTI
TI3(N) = (GGGePPPoP]I (RN1)) /(EEE-PPPeL] (BH)))
GO TO 16
15 TBI(N) = TR2(8,1)
TI3(A) = TI2(N8,X)
16 ComNTINOE
C====-~=~ PIND TEI(S) AMD TI3(S) - S=aBY TO 1.
PO 7 J=1,8A1
S=j-J



7 CONTINDE
C~——==~—= ADD RATE OF CHANGE OF TR ABD TI TO NR(S) AND RI1(S).
DO & S=1,N
TROT= (T3 (S)-TR2 (S,X)) /DTY
TI0T=(TI3(S)~-TI2(S,X))/DT
HE(S)=MER (S) *TEDT
¥1(S)=TIDT
8 COMTINOZ
IP (RDX) GO TO 103
C-2-4~—~--—CALCULATE TERAS POR ADOT SUAS
DO 9 S=1,8
GO ‘TO (J&,%4,28) , IBR
36 THETA = (GP(S)*TE(S,XIP)~(GA(S)*GP(S))*TE(S,X)*Gn(S)*TE(S,XN)) /DT
GO0 T0 25
28 TARTA = (GP(S)*TE(S,X)-(GM(S)+GP (S))*TE (S,X)+GA(S)*TL(5,X8)) /DT
GO0 10 25
o8 THETA = (GP(S)*TE(S,XP)~-(GA(S)*GP(S))*TE(S,X)*GA(S)*TL(S,I)) /DT
25 CONTINUE
BSTAR(S) = N (S,X)*A(S,X)*(BE(S)¢HI (S) ¢*TRETA)
PISTAR = 2.9 (PHI(S)/A(S.X))®*2 ¢ GAR®MN(S,X)®(TE(S,I)+TI (S,X)})
SUNY = SUMT ¢ (HSTAR (S)*GAM® (TE(S,X) +TI (S,X))*C(S))/PLSTAR
SUN2 = SUB2 ¢ A(S,X) /PISTAR
9 COMTINUE
PIDOT = SUM1/SUNM2
C-3-m~mmnm- SECOND SHELL LOOP
103 CONTINUE
ATO?=0.0
DO 275 S=1,M
NS = W (S,X)
AS = A(S,IX)
¥S = ¥(5,I)
TES = TE(S,X)
IS = TI(S,X)
TS = TES + TIS
PS = NS*TS
PHS = PHI(S)
BS = PHS/AS
C-3-1~—=-~-CALCULATE TINE DERIVATIVES

TBI(S) =BB(S) *TRI (Se1)+PR(S)
TI3I(S)=RI(S)*TI)(S+1)ePI(S)

1P (RPB) ;

1ADOT = (MSTAR(S) ¢GAR®TS®C(S)-AS*PIDOT) /(2.%BS*BS+GAN®PS)
IP(RDN) ADOT = (ATEN1(S)-A2(S,X))/DT1

NDOT = (C(S) ~NS®ADOT)/AS

DLNDOT = GH1®NDOT/NS

TIDOT = HI(S) + TIS®DLNDOT

C-3-2------Q IS ¥ON-CONDOCTIVE PART OF TEDOT

Q(S) = HE(S) ¢ TES*DLNDOT

Coeowe- TRAWSFER TEBRP. TO PERA.

17 (X.EQ.XAIN) GO TO 60
A(S,XN) = ATEM(S)

ATOT = ATOT+A(S,XN)

IP (BPB) W (S,IN) = ATOT
¥(S,XH) = NTEM(S)

v (S,XN) = VTER(S)
TI(S,XM) = TITEA(S)

1P (RDN) U(S,IB) = UTE&(S)
R(S,XIH) = SQRT(V(S,XN))

Comowne- ADVANCE TEBP. QUARTITIES TO Te (HDT*STEP).

60

CONTINUE

24



225

GU TO (37,87,87) ,IBR

37 CONTiNUR
IP(RDN) ATRA(S) = ATER1(S)
IP(RDN) UTRN(S) = PP®(U2(S,XN)+02(S,XP)) ¢ QUeU2(S,X) ¢DT1*0DOT(S)
12(uPB) ATEN(S) = PP (A2(S,XK)*A2(S,XP))+QQ%a2(S,X) ¢ DT1%ADOT
NTER(S) = PP (B2 (S,XN)eN2(S,XP)) +QCeNZ(S,X) ¢ LT 1e¥DOT
YTEA(S) = PP® (V2 (S,XR)+V2(S,XP)) QUeV2(S,X) ¢ DT1VDOT(S)
TITEN(S) = PPe (T12(S,IN)*TI2(S,XP))*QUeTI2 (5,X) ¢ DT1sT1DOT
6o TO 27

«7 CONTINOR
1Z(RDY) ATEA(S) = ATEM1(S)
IFP(RDN) UTEA(S) = U2(S,X) ¢ DT1*UDOT(S)
IP(RPB) ATEN(S) = A2(S,X) ¢ DTI®ADOY
NTEA(S) = N2(S,X) ¢ DTIsEDOT
VTER(S) = V2(S,I) + DT1sYDOT(S)
TITZN(S) = TI2(S,X) ¢ DT1*TIDOY

27 cofriwue

C-3-5------COEPP'S POR INPLICIT SCHEAR

GO TO (38,%8,28) , IBR

38 CC(S,X)m¢0.25¢STRPGA (S) , N
AA(S,X)=¢0.25¢STEP*G P (S)
BB(S,X) = 1.4AA(S,X)+CC(S,X)
DD(S,X) = 0.5%STEP®DT®Q(S) ¢ (PPeCC(S,X)) STE2(S,XM) ¢ (PPeAA(S,X))*

C TE2(S,XP) ¢ (QQ-CC(S,X)-AA(S,X))*TB2(S,IX)

GO TO 29

28 AA(S,X)=0.0
BB(S,X)=1.0¢0,.25¢STEP*GN (S)
CC(S,X)=0.25%STEP*GA (S)
DD(S,X) = 0.5STEP®DT*Q (S)+ (CC(S,X)) STB2(S,XH)+ (AA(S,X))®

C TE2(S,X) ¢(1.0-CC(S,X)-AA(S,X))*TRB2(S,I)

GO T0 29

48 AA(S,X) = 0.258STEP*GP(S)
BB(S,X) = 1.0eAA(S,X)
cc(s,x) = 0.0

DD(S,X) = 0.S®STEP®DT*Q (S) ¢+ (CC(S,X)) $TE2(S,X)+ (AA(S,X))*
C TE2(S,XP) #(1.0-CC(S,X)-AA(5,X)) ®TE22(S,L)
29 CONTINUE
275 CoNTINUE
300 CONTINUE
C-3-6-----~TRANSPER TENP TO PERY AT XX
ATOT = 0.0
DO 310 S=1,n
N(S,NX) = NTEA(S)
A(5,MX) = ATEN(S)
ATOT = ATOT¢A(S,NX)
IP(RPB) W (S,MX) = ATOT
V(S,NX) = VTEM(S)
1P(RDN) OU(S,NX) = UTEA(S)
R(S,¥L) = SQRT(W(S,NX))
310 TI(S.NX) = TITEN(S)
C“““““““““"‘“"“““"“”““““““‘“““,,“““”“““‘

o . IAPLICIT EQOATIONS .

C ® AS SOLVED BY RICHTAMYER AND HORGAN, - PAGR 198. 4

C * T(S,X)=E(S,X)*T(S,Xe1)eP (S,X) .

C * SET E(S,X) TO AA(S,X) AND P(S,X) TO BB(S,X) .

COO20000000040000500880000000005000000000CIs0SEROEINEINISEtE0COOINPEERPIREISE
Rl = p

I? (TRBC) N1 = R~
GO TO (52,51) , uBoOND
5t cosTINve



Ceeemme—eeee—m=e= CASE WITH STSRTRIC BOUEDARY CONDITIONS.
I? (X8IN.2Q.2) GO TO 2
DO § $=1,A -
AA(S,XALN) = AA(S,XNLN)/BO(S,XRIN)
1 ll(’,l:ll) = (DD ($,XAIN)CC(S,INIB)STE2(S, XALN)) /BB(S, XN1K)
G0 70
2 DO 380 S=1,R '
AA(S,2)= (AA(S,2) *CC(S,2)) /BB (S,2) ¢
380 BB(S,2) =DD (S,2) /BB (S,2)
773 DO IS0 Xex3Pl, NIl
Do 350 S=1,R
AA(s.x)-Al(3,!)/(!!(3,:)—CC(3.:)OAA(s.x-l))
350 ..(s.l).(nn(S.!) 0CC(S,!)‘I.(S,X' ‘))/('I(S,H'CC(S,K} ‘ll(S.X-‘))
C-2-=======APPLY RIGNT B.C.
Do 370 S=1,a1
370 TE(S,UX) = (Db (S,NX) ¢CC (S, NX) *BB (S,NI-1))/ (BB (S, NX) ~CC(S,4X)
1 o AA(S,BX-1))
DO 800 J=2,uPMX
XeNXx-J¢1
DO 800 S=1,A1
400 TR(S,X)=AA (S,X)*TE (S,X+1)+BD (S.X)
C-fmmmmmmmm APPLY LEPT B.C.
IP(XRIN.GT.2) GO TO 63
DO %10 S=1,1
A(S,1) = A(S,3)

B(S.1) = B(S,3)
V(S.1) = -V(S,))
U(Se)) = U(S,3)
(s, = ¥(s,3)

R(S,V) = R(S,I)
T3(s,1) = TE(S,3)
810 TI(S,!) = TI(S,})
GO TO 65
$2 CONTINUE
o CASE WITH EACH END TEEATED IMDIVIDUALLY.
Commmememm e m e e APPLY LEPT B.C.
IP(XUIN.EQ.1) GO TO 12
DO 1) S=1,8
AA(S,XBIN) = AA(S,XNIN)/BB(S,X8IN
11 BB(S,XBIN) = (DD(S,XALN)-CC(S,IBIN)*TE2(S,I8LN)) BB (5, X81N)
Go 10 13
12 DO 381 S=1,n
AA(S,1) = AA(S,1)/BB(S,1)
31 BB(S,1) = DD(S,1)/BB(S,V)
13 DO 351 X=XHP1,NXB1
DO 351 S=1,M
AA(S,X) =AA (S,X)/ (BB(S,X)=CC(S,X) *AA(S,I-1))
351 B3(S,X)=(DD(S,X) +CC(S,X)*BB(S,X-1) )/ (BB¢5,X) ~CC(5,K)*AL(S,L-1))
C-2---~---<APPLY RIGHT B.C. .
Do 371 Ss=1,81
371 TE(S,4X) = (DD (S,NX)*CC (S, ¥X)*BB(S,Hk-1))/(BB(S,NX)~CC(5,¥X)
1 & AN(S,NX-1))
DO 801 J=2,¥PHX
X=ux-Je1
DO 40t S=1,m1
801 TEB(S,X)=AA(S,X)*TE(S,X+1)+BB(S,X)
C-=e-===—=-CHANGE STEP
65 STRP = 3}-STAP
1P (STEP.2Q.2) GOTO 85
Com—====— ADJUST TINESTEP SIIE I? NECRSSARY,

226



CALL D’lll(b!.l!.l.fl.?!.?ll.l.'l},A,l.l'l'.llll,l"..l)
Co==eem=-=<COPY UB¥ 3SOLUTION
423 CowTINUg
DU 850 I=1,8X
DO 450 S=1,M

A2(3,X) = A(S.X)
N2(S,X) = ¥(S,X)
V2(S,X) = ¥(S,X)
02(3,X) = U(S.X)
§2(S,X) = ¥(S,X)

TR2(S,X) = TB(S,X)
450 TI2(S,X) = TX(3,.X)
C-—====—==0UTPET AOUTINE

IP(((VPRY® (RTIBE/NPET) ). IQ. NTIAE) . ABD. (WPAT. BR. 999))

ACALL RITE{NTINE,TIAEZ,8,81,A,TE,T1,0,PHI,V,P,T80,07,0,8,80,28108
2,kP8)

1P (((STAPE® (FTINE/BTAPE)). EQ.NTIAR).AND. (NZAPE.E.999))
1CALL TPOUT (NTAPE,BNTINE,TINE,R,8X,L0,00,80,70,07,A
2,18,71,48,PHI,V,P,W0008D, ILAS U, 4 , KNI N, RDY, BR)

IP ((WTIBE.GE.WTOTAL) ,.OR. (TINE.GE.TRAX)) STOP

C--~======-END OF OUTPUT .

GO TO 7%

11

SUBROUTINE INIT(DY,0X,DEL,PCOLL,BPS20,PH1,V,8,A, T8, TI
1, pELZ1,DELE2,DELIY,DELI2,ADO,CS,TIAR,TAO,XLAS,RD,U,¥0,X81N)

c.‘...........“.. 90000000 9SS00SSS000000 .‘......“.‘...“....‘..........
C SUBROUTINE INPUTS INITIAL COMDITIONS. .
C RICHARD D. AILROY 77-08-23 )
c...“....‘.“......‘...“ ‘........“....‘........‘....‘....‘.....O...‘.

INPLICIT REAL (A-N,0-2)

REAL PRI(31),V¥(30,60),¥(30,60),A(30,60),TE(30,60),T1(30,60)
1,%0,10,KB, 81 ,LADA, LLADA, 8(31) ,PR (30,60) , NINT (3 1) ,RD(}0,60)
2,0(30,60),¥0(30,60),L1,L2,1L3,18,15,BCRIT

IsTEGER S,X, INID

LOGICAL TRBC,RDN
CORAUN LO, RO, N0, TO,PURT,PUR2,P¥R3, T1,T2, T3, T4, TAAX,VLAS,TOP!,TDP2
s, g0

1,;S,AVI,A'X,PP,IX,H.ITOTIL.IDODID,ITIHB.IPIT,ITAP!.IXIII,IDI,IIIC
2,tSS/A11 ,A1,A2,A3, DT NAX/LASP/L3,BLO, BS, WCRIT, TL, DTL, 8 RAAX

3/PRT/NYX1,HXP,H1,BP,AS

WARELISY /ISPOUT/ NTIAR,NTOTAL, NPT ,NTAPE, PR, PURY,PNR2,PUR)

1,71,72,73,7¢ ,TAAL, ¥BOUBD,¥X,8,L0,R0, 80, TO, RU1, ¥, VLAS

2,3INT,TINT,UINT, 2P, AVR,AT1,A0,A42,43,L1,L2,L3,L8,L5,RL0,BS,0T3A2

3, MXNIN,SXRIB1,RON,TOP1, TDP2, BXI, WX P, 81,07, 85, AVE, SRAAX

4«,TRBC,R1T,R2T,R1N,R28,RA

TINK=0.0D0

ILAS=0.0

REZAD (5, IRPUT)

IP(WTINE.¥R.0) GO TO 2

READ (S, INPUT)

TR

RZIAD (S, INPUT)

DO 6 I=1,8
6 sINT(I) = 1.0

Li=L1/L0

L2=L2/L0

L3=L3/L0

Le=La/L0

15=15/10

RIT = R1T/R0



222 = R23%/00
213 = BVR/0
22 = R20/00
scaz? § 9.9640¢ 10,90
zege = sxu}el
12 (IAIE.LE. BO0USN) ur.oun
RLO=2L0O/08 .
28+034L0,80
£9e1.60~-12
C=3.00010
Nre1.670-20000 '
POROORDOTS
30=3QRT (0. 0e 159¢90)
V0=8Q87 (E9OT )
Tao=L0/70 )
1023, YR 159ep @00 -
PUGSPOSA 02 70 1. 00=-07 .
s = (RO10) > +
cS=C/ve
LADA=1, I368¢ 200 ( (KDOTO) 223/ (3. 18139°00) ) *20.5
LLADASALOG (LEOA)
DiLs1.9921020003,3/(LLABNSNOCVOSLD)
DELEY = (1.90¢23/LLEDA) *(T00¢2,50L0) /(80700000 22)
DELE2 = (2.890025/LLRDACEZ) ¢ ($90€)000022) / (B0®*2) ¢
PELIY = (7.85¢19/LLE0A) * (0*o2, 5oL 0) / (N0OY (0eRQ**2) *3QRY (88)
BELIZ = (7.8D022/LLABACED) ¢ (F0ee 3¢ R0002) /(BO®®2)
SIGEA=S.7013070001,3/LLABA - &
EP320=Ce920L0/ (6.28) 19 081GRASROC®2¢V0) . ‘
PCOLL=3. 299~ 09oN0CLLADA/ (X0021,.5)°L0/(V0%RN)
48029, TeB=30op00030L0,/T090 1.8
DI=1.0/(11-400GR0)
PYRY = PERI/PUG
PER2 = PUR2/PNO
pun) = puni/Pné
T - 21 /TH0
T2 = T2/T00 .
13 = 23/tR0
Ta = TO/THO
TS = I8 ¢ 3.0/C3
TRAX = TEAL/THO
VLASSYLAS/VO
201=201/00
- you/me
BINTSBINT/B0
TIVT»TINT/T0
C---===== SPRCIPY 38BLL RADII.
2221,0-001
AA= (RR/¥)®e (1. 0/ @-2))
DO 99 I»1,100
99 AA=(((RE® (AA=1.0))+¥)/N)*¢ (1.0/(0~ D)
R(1)=8.0 .
R(2) =201
2(J) =R01e¥
BPinget
90 100 Ie8, 801
100 R(I) =R (I-1) *AB® (R (X~ 1)-R (X-2))
C---=w==- SET IBITIAL VALUZ POR DT. N
DINAX = DTAAR/TRO
Cee=we=- SET IPITIAL VALUR OF DT AT A11 © VALUS ALLOWED BY STABILIRY,
€ & (2.001.66675TINT) ¢ (2.0°3INTeO2/UINT(Y))

\



.

C = SR D)
8 = M
102 (RDN) DE=20198PS81
T = AVTIS (PR AC)
L?(02.6T.0THAI) PT=BTUAL
5O 1 I=1,84
90 1 S=1,0
T8 (8,1)=21I8T -
TI(3.X) 1107
B (3, X) =BIB%(9)
AS.I)=(R(Be1)#s2-2(S) ]

1 7(3,X)=0.0
PO & Ivi,iX
DO & $=V,8
RO(S,X) = R(SeY)
U (3,X) *0.0

§ S0(S, X)mR(Se1)ee2

Cee—==ee BAKR SABIAL PROFILE POR YRAPRRATSEE ABD DESSITI.

DO 7 S=1,4

T R(S) = G-S-(tmotann

ATV = 1,./7(7190000)
AT2 = 1.0-ATY
Al = 0,001 :
AN2 = 1.0-201 .
DO & S=1,8
237 = (3 - R1?
220 = R(S) - W
ENT = AT2/(1.°RIP(22T/R2T)) + AT
NS = AN2/(1.¢RXP(XTU/R20)) ¢ ANY
DO 8 1=1,8X
TR(S,X) = XBT*TR (3,X)
‘IX(S X) = XNTeTI (8,1)

8 B(S,X) = XBBOB (S,X)
K=Nx/2
COUST=UINT (8)® (TR (R, K) ¢TI (N, K)) ¢RI UNT®*2

3 s=1,a
JE:us) = SQRY(CORST-¥ (S,K)* (TE(S,K)*TI (S5.K)))*A (S,K)
Ce===i=- PgT I INITIAL DRNSITY PROPILE POR GAS TARGET.
/ MEPY = BXo N
, DO S Jw1,EX
SR - BIPY=J ‘
/ 3 = DIe (X-1) ’
/ 3351=L1-3
‘ Y = DXe(J-1)
‘ IYY = (LA-T)
/ Zs(.999/(1.¢EXP (333/L2))¢.001)% (. 999/ (1.¢RKP (TII/L5)) +.001)
\ D0 S s=1,8
N, S BS,J) = X8%§(S,J)
C-—=nm= IRITIALIZE LEEAT.
T120.0
”2La0L/C3
v BRZ2E(6,601)
601 POREAT(°1°,* IBITIAL CONDITIONS')
SRITR(6,602) LO,R0,N0,TO0,B0,P0,Y0
602 PORBAT (*0LO=", !ﬁ;s.z tn.-u--,n.z T32,'00%°,29.2,T07,°T0=0,
129.2,792,'50=°,59.2,%77,'P0=" ,89.2,792,°V0=" ,£9.2)
BRITR{6,603) BX,B,00,D1,00 ,PBO,TH0
603 PORBAT (' u-'.xi.tn 8=, T3,732,400=", 1PR9.2

‘.f"."l".l’.).“l.'n".l’.) '"0-',19 2 ,”2,".0..,‘9 2)

BRITE(6,608) DEL,SIGHA,RP520,0C DO

"
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608 PORBAT(® DEL=’,1P89. 2.!".'ltcu-',l’;l.ﬂ‘.'l't”o'.l’.l
1,153,'PCOI.L-'.”.ZJ‘M,'Ml',l’.l) .
¥aITZ(6,605) DELEY,DELE2,0RLIV,DRLI2,LLEDA

605 FORMAT (' DELEV=*,1PBY.2,219, ‘DELE2s’ 009.2,236,'0R0iI1="* B9.2
1.:53.-ozuz-nn.z.no.-nun',n.z)

1P (mDY) WRITE(6,606)

606 POREAT('0 FULL RADIAL DYRNABICS ARE CALCULATED.')
1P(.MOT.RON) WRITR(6,607)
607 PURBAT ('O BADIAL PRESSURE BALANCE IS ASSONED.’)
2 ngTERN

b {7])

SUBROUTIEE TPOUT (NTAPE,NTINR,TINE,R,¥X,L0,R0,80,T0,D07,4
1, 72,11, 0,PNI,V,P,EBO0ND, XLAS ,U,¥ , XX N, RDY, RO)

co‘.“OO...O.......0..‘.‘0..‘..0.‘.0..‘0“0..“.0.‘......O“...“...O..‘
c OUTPUT DATA PROS SMELL OSTO DISK OB TAPE 1N ONFORNATTED PORE. .
C aICHARD D. HILDOY 77-08-2% .
C“"““.“‘.“.‘.“...“.‘.‘-‘....“‘..”“.‘“..‘.....‘.‘.‘.“.“.“
REAL TINE,LO0,20,80,70,D7,A(30,60),TR(30,60),71(30,60) ,8(30,63)
1,PHI(31),VY(30,60),2(120),XLAS,0(30,60) ,¥(30,60)
INTEGER XHIN
LOGICAL RDS -
WAITE(3) NTAPE,NTINE,TIAR,N,9X,L0,N0,80,%0,0T, FBOUND,XLAS
1 ,181I8,8D0,80 i
SRITE(3) A
¥RITE(3) T8
¥RITE()) TI
NRITE(3) B
VRITE(3) PUI
¥RITE(3) V
vRITR(3) P
MRITE(3) ©
NRITER(D) ¥
RETURM
E¥D
SUBAOUTINE lxrz(lrxnx,rxnt.l,lx,A,rl,rx.l,i‘x,v,e.ruo,nr,u,u,lr
1 LXNIN,RPB)
REAL PHI(31),A(30,60),TE(30,60),TI (30,60),8(30,60),Y(30,60)
1,B(31) ,TIBE, PRESS(31),P(120) ,T80,D7,0(30,60) ,EP(30,60)
2,R(30,60),YP(31)
INTEGER S,X, INIB
LOGICAL RPB
consos /PRT/ BIX,NXF,R1,AF,HS
WNX1l = WXI
N8I = NKP
IP(8XI.2Q.999) ¥NII = XAIN
IP(NIP.EQ.999) NUX = BX
ANP=AP
IP(Nr.2Q.999) EAr=8
TH=STIARZ*TRO
DTS = DY*THO
WRITE(6,601) ¥TINZ,TIAE,TH,DT, DTS
601 PORBAT (*~NTIAB=',IN,? TIAB=*,1PD9.2,"° og°',09.2,*' SECOMDS'

1, pT=',D9.2,' OR',D9.2,*' SBCOMDS®)

NRITE(6,602)
602 FORMBAT ('O AY)

00 1 X=aNXI, NNX

1 YRITE(6,603) (A(S,X),S=R1,ENP, AS)

603 rOAmAT(® °*,1P20010.2)

VRITE(6,608) -
608 PORBAT ('O 18°) K



PO 2 X=BNIL,NNX
2 WRITE(6,603) (TS(S,X),9=N1,800,08)
WRITE (6, 609)
$05 POREAT('0 1)
. DO 3 X=pBXI,uux
3 WRITE(6,603) (TI(S.X),S=R1,88F,08)
"BRITE(6,608)
606 PORNAT ('O B°)
DO & ZsBBXI, 80X
& URITE(6,603) (N(S,D) ,S=R1,BA7,8S)
YRITE(6,607)
607 PORRAT ('O V*)
DO S X=¥urI,Nux .
5 WRITE(6,603) (Y(S,X) ,5=R1,8487F,HS)
IP(RPB) GO 20 9
VRITE(6,612)
612 FPORNAT('0 VP?)
DO 13 X=BUXE,B8X
DO 18 S=1,1
18 YP(S) = U(S,X) /R (S,X)
13 NRITE(6,603) (VP (S),S=H1,R87,HS)
9 BRITE(6,600)
608 PORBAT('0 B°)
DO ¢ X=NEXI,NEX
DO 7 $=1,8
7 B (3)=PUX(S) /A (S, X)
6 WRITE(6,603) (B(S),$=n1,Mr,uS)
PRITR(6,609)
609 PORNAT('0 R BOUNDARIBS')
DO & X=NNXI,BENX )
8 SRITR(6,603) (R(S,X),S=R1,M0P,BS)
¥RTTE(6,610)
610 PORNAT(*0  PRESSURZ®)
DO 10 X=BBXI,NEX
DO 11 $S=1,8

11 PRESS(S) =8 (S.X)® (TX (S, X) ¢TI (S, 1))+ (PUI(S) /A(S, X ) SfE W

10 WAITE(6,003) (PRESS(S) ,S=B1,RA7,NS)
URITE(6,618)
618 PORNAT('0  BP')
DO 1S X=WaxI, Nux
1S WRITE(6,603) (EP(S,X),S=u1,EAP,AS)
iR (6,611)
611 PORAAT (0  LASER PONER’)
BIAP IS RI-UNITe )

DO 12 X1, N1aP? v
12 BRITE(6,603) P(X),P(XeNX)
acTURY \\
38D \

1,0ELB1,DELR2,DBLYY,DELI2,AB0,CS,P,P2,TIAE,T

0,XLAS,R,0,40

SUBROVYTINE REST(DT,DI,DEL, PCOLL, BPS20, PIII.."I A, TR, T1

2,501I0)
c.‘.....“‘....‘..‘O...........‘......‘..“.‘.‘..

C s MEADS OFF FORTIAN ONIT 92 TU RESIART PRUG

C . RICHARD D. HILBOY &0{"11.
CP880000080000080808000008806000000000880¢ 9004050550080 005808800 0000000

INPLICIT RBAL (A-B,0-3) ~
2BAL A (20,60),75(30,60),71(30,60) ,8(30,60)

e,p (120) ,LNDA,LLYDA,LO,N0,81,KD,P2(3Y) «PR(30,60) ,0(30,60) ,0(30,60)

*,40(30,60),L4%,12,L3,BCHRIY
1IST8GER XALN

XYY IS IR LTI Y ]}

lx AT BECORD ¥T.

JPUI (31),7(30,60)

231
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LOGICAL TROC,RES

connor I.D.IG.IO.ﬂ."li."ll."l).!l,fl.f).",“u.'b“.m'.ml
".' ’
l.”.l'l.l'l.".ll.l.'fﬂll-.l.ﬂl..'uh.m.lf”‘.lllu.lﬂ.ﬂ“
znuan.Al,u.u.lﬂu/uu/u.u.o.u.‘u.u.ou.luu

/0087 LI, UXF, NY,BP, NS

RANBLIST /IupUL/ lnll.MAL,l’l‘l‘.lfl'l.’l,_'lll,"lz.”l,
1,71,72,73,%8,THAX, BDOUED,BX,0N,L0 ,20,80,20, DY, N,VLA8,08

2,010, TLET, PR, AVR AV, A,A2,A3,LY,12,L3,0.0,D08, DPEAX
3,lllll.llllli.ul.ﬂ",f"?.l!l.“'.l'.l'.u.l'l,l“u,fln
1 READ(2) l‘l’l’l.H,!IJI,I.IX,LO.IO,IO.To.DT.l.OUID.lLAS

1 +XNIN,RDN,BR

READ(2) A

READ(2) T2

RAAD(2) TI

READ(2)

READ(2) PuT

RRAD(2) V

READ(2) P

READ(2) ©

READ (2) WO

IP(NT.BR.BTINR) GO 20 1

READ (S, XNPUT)

DO 2 J=1,MX

DO 2 I=\,N

R(I,J) = SQRY (W0 (1,J))
2 CONTINOR

NX2=2epX Fod

DO & I=1,NX2

8 P2(I)=P(I)
L3=L)/LO0
BCRIT = 9.96D¢18/%0 :

RLO=RLO/RO

BS=BS*LO/RO

DI=1.0/(8X-BBOUND)

KBs1,6D~12

C=3,00+4%0

HI=1,679-28e08

PUsROsKDOTO

B0=SQRT (8.0%3. 18 15¢P0).

YO0=SQRT (KB*T0/R1)

TAO=L0/¥0

2023,181590p0992

PEO=POSAO*YV0*1,.08-07

CS=C /%0
L3DA=1,3568¢20%( (KB*TO) *43/ (3. 18159050} ) ¢¢0.5 @
LLBDA=ALOG (LBDA)
DEL=1.9021¢70292,5/(LLADA®NQ*VOSLO) .
DELEY = (1.9D421/LLEOA) ®(T0%¢2,.50L0) /(ROSYOeR0s¢2)
DELE2 » (2.85D¢25/LLNDA®82) ® (T0ee)sR0se2) / (N0 2)
DELIV = (7.8D¢19/LLADA) *(T0®e2,5¢,0) /(NUSYO*RO®®2) *SCAT (RN)
DELI2 = (7.0D+22/LLRDA®®2) & (T0ss3050%02) /(N0®e2)
SIGEA=8,.7D139T0¢e 1, S/LLNDA

EPS20sC®92¢L0/ (6.20319°SIGRA SRO®*2 ¢7V0)

PCOLL®»3. 250~ 09%N0SLLEDA/ (T0*41.5)* L0/ (YOsRN)
ABO=9, TuE-36°N002eL0/T00e1, 5 A

PUBY = PURI/PNO

PER2 = PHR2/PNO

PURD = PURI/PEO

T1 = T1/7800
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.
£2 = 22/740
73 = T3/T00 . .
T8 = 20/200 '

TS = 2403, 0/C8
T8AX = tinx/THO
YLASSYLAR/O
DYEAX = DTRAN/TNO
Co=ivewe IBITIALIZE LEEAT.
' TL = TINB 4
DTL = DX /CS
S WRITR(6,601)

6017 PORNAT(*1',° INITIAL CONDITIONS®)
URITR(6,602) LO,20,H0,10,80,00,¥0 |

602 FORNAT (*OLO=*,1089.2,T17,°R0%°,089. 2,232, 'N0=',89.2,T87, T0=’,
1l’.2.ﬂ2.'l0" .”o:.ﬂ’,’""..’.2.”1..'0..,"02,
VaITs(6,603) UX,R,A0,D1,00,PE0,TN0 )

603 POBNAT(® 8Xs°,X3,717,°8=°,13,232,%a0%°,1089.2
1,1'7.'.!".!’.2.‘3.'.f".l'.l.r".‘”“'.l’.l .”1,.’.0-.3.’02’
¥R1TE (6,608) DEL, 51684, E9820, PCOLL, ADO )

608 POREAT(® ORL=',1PED, 19,'31084n° .”.2.?)6.'”320—'.”.2
‘.!SJ.'KO&P'.I’.J. '.m..'”.z)

v BRITR(6,60%) DELEY,PBLE2,0ELIY,DELIZ2,LLEDA

60S PORBAT(* DELEV=",1PR9.2,T19,'DELE2=",29.2,736, DELI1=",R9.2
1,1753,°08L12%°,89.2,270,°LLUDA=*,39.2) .
I7 (RDU)YC WRIZR(6,6068) . '

6‘“ PORSAT (*O POLL RADIAL DYBANIZS ARR CALCOLAZED. )
1?7 (.00T.RDE) URLITS (6,607)

607 FOREAT(*O RADIAL PRESSURE BALABCE IS ASSUARD.’)
serUAN
b { 1)

SOBUOUTINE LNEAT (N,BX,STEP,TINE,T1,22,73,14,00000D,T7E15, ALY
. . 1,"'l'."lz."u,ll"."l',.o.l”.’.’z.’l..'l,l.fl.3’.Dx..l",ﬂ)
c‘...‘...“....“..“..‘............“‘...........'.‘......"......‘....

c b FIND LASER POUER. . .
C L d P IS PONER IV UBITS OF (WOSKI*TO*A0*V0) *
c . B=(UNITS OF POVER)/(UNIT OF LENOTH) DEPOSITED IN PLASSA. *
c L RICHARD D. NILROY BAY 13, 1977. o

C*OO......‘ SO0 030800600 SS 0000000000 SSIPSSSSCCS0P0BOCIEIOBEE00SCRIISS
© IAPLICIT REAL(A-N.0-3)

BEAL P(120),PR(J0480) ,R(X0,60) ,¥(30,60) ,A(30,60),28(30,60) e
1,29(30,60) ,PSI (120) ,P2(120) ,E(120) ,KA (120) ,LBOA,LLEDA(30,60),L]
2,BCHIT,NCOR,TR15(30,60) ,KA1 (120)

REAL TOIP

INTZGER S,X,STEP,XNIN
COo8NOB/LASP/L3,2L0,0S,CRIT, TL,DTL HRNAX
T015 « TO*SQRT (10)

Cocomem- CALCOLATE SR = §O. OF LASER TIARSTRPS TO TAKE.

BXP2 = BX ¢ 2

X2 = 200y

X282 = ¥X2 - 2
TOIF = TINE - TL

BR = (TDIP/DTIL ¢ 0.3)

Iz (WR.LT.0) STOP
E8=AXN0 (N8, N RUAX)

IP(STEP.RQ.1) EA=AR/2

17 (8R.BQ.0) RETERY

0T = 0.000

IP (STEP.BQ.2) DPT=HRSDTIL
Th = TLOPY

C=e====- LASER PROP. -DIST. LINITED BY BLEACHMING MAVE VRLOCLIY - VLAS.
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XLASSILASCYLASSDE
BLAS=(XLAS/PX) ¢ 2
EXP28X = WXe¢2-XENIN
NLAS = HINO(MXP1,NLAS,NIP2BX)

C--e=e—- DBPINE PR(S,X). RELATIVE RADIAL INTRESITI. .
Ce-—-=- ASSONE GAUSSIAN PROPILE.

15

16

17

13
85

Cmm——

14

1

DO ¢ X=XRIN, NI

J= #xPl - X

2 = DI (J-1)

SIGNA = RLO o BSeABS (L3-3)

S1G2 = 2.0SIGRA®e2

RS = 0.0

DO 6 S=1,8

2S = 0.5 (RS*R (S, X))

EIZ2 = RSe2/31G2
17(EX23.GT.100.0) BXII = 100.0D0
P2(S,X) = BXP(-2X3%) :
RS = R(S,X)

CONTINUE

--- DEPINE LASER POSER AT PIRST X - ROINT.
I? (TIAR.GZ. T1) GO TO 19

P1 = PURISTIEE/T!

GO TO 85

CONTINUE .

1r (TI35.GT.T2) GO TO 16

P1 = PUR1 (PNR2-PER1)® (TINE-T1)/ (T2-T1)
GO 10 85

CONTINUE

IP (TINE.GT.T3) GO TO 17

P1 = PUR2¢ (PUR3-PUR2) ® (TIAE-T2)/ (TI-22)
GO TO 85

coNTINUE

17 (TIAE.GT.I¥) GO TO 18

P1 = PER3-PWRI® (TINE-T3)/(T8-T3)
GO TO 85 )
P1 = 0.0D00 :

CONTINIE

-—-- DEPINE PSI(X) .
DO 13 X=XNIN,NX

PSI(X)=0.0

DO 13 S=1,8

LADA=18.7*TB (S,X) #T0

1P (TE(S, ) *T0.LT.27.0) LADA=2.3% (TO1SeTEI5(S,X))

1P (¥ (S,X).GT. (0.9999UCRIT)) GO TO 20

NCOR = 1.0/SQRT(1.0-B(S,X)/BCRIT)

Go TO 21

§COR=100.0

CONTINGE

LLEDA (S, k) =ALOG (LADA) *¥COR

PSI(X)=PR(S,X) *A (S,X)+PSI(X)

———- DEPINE KA(X) - LASER ABSORPTION BATZ AT I-POINTS.

DO 1 XsX&IN,BX -

KA (X)=0.0

Do 14 S=1,8

KA (K) *KA (X) $ B (S, X) $6 28 PR (S, X) *A (S, X) SLLADA (S, 1) /TB15(S5,)

KA (X) KA (X) ®ABO/PSI (X)

EAT(X) = KA(X)

1P (KA(X).GT. (2.0,00)) K4 (X)=2.0/DX

cosTINUE

C--==--= IBITIALIZIR E(X) TO 0.0.
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L]
DO ? !-l.m
7 B(X)=Q.0
Ce-——=== PIUD LASER POTER.
DO 2 IT=1,NR
PI=pY
DO ) X=2,NLAS
'0"(1'1)‘(1.0'0.5“!(.‘02’!)‘D!)/(‘.OOO-S“&(I302°x)‘Dl)
l(l-')-l(l°‘)0"(X“)"O)/Dx
P (X-1)=P2
3 Pi=p0O
P (BLAS) =P3
IP(B800UD.BQ. 1) GO TO
IP(WLAS.LT.¥K) GO TO
20 & X=B{P1, BX2R2 :
POapP (X~ 1) 1.0-0,5% x'lx02)‘Dx)/(‘.o’o.s“‘(l‘ll02)‘DX)
B(X-1) =B (X5Q) ¢ (P (X~ 1 ~P0) /DX
? (x-1) =P}
8§ PI=PO
P(NX242)=P)
2 CONTIND:
I=BLAS
LT (¥BOTBD.BQ.2) I=5Xx282
IP(STEP.2Q.1) GO TO 10
DO 23 X=1,I
23 P2(X)=P(X)
GO TO 26
10 CONTINOR
DO 22 x=1,I
22 P(1)=P2(X)
26 CONTINUR
DO S K=XHIN,NX
DO S $=1,A
‘?1'!'0/((!‘(X)"sx(l))"(s.x)"l(s.l)‘LL‘D!(S,!)/f‘Is(!,X)
EP(S,X) = EP1eB(NX+1-X) /08
1P (NBOUND.BQ.2) B'(S,l)"'(3,1)0"|‘l(l1°3’x)/31

S cosTINUE
RETURD
Tad

SUBROUTINE Dtlnl(DT,IX.H,TI,TI,TI2.l.!lx,l.l,lr:i.lull,IDI,DX)
coooooooo.oootocooooo.oo:oooo.ooooooooo.oooooooo.coocooooocooooooooooooo

C g CALCULATE SAXIINUA ALLOWABLE TIRLSTEP 2-D ROUTIBE CAN BAZR. ¢
C . STABILITY CONDITION IS BASED O3 RADIAL DY NARICS. .
C * SICRARD D. BRILROY DECBABLR 15, 1977, .

cooaoooo‘oooooooooooooo-‘ooooooooopo..tooooooooo.oocoooooocooooooootooo‘
. INPLICIT REAL (A-H,0-2)
R2AL 73(30,60).11(30.60),tlZ(JO,SO),I(JO,bO),l(30,60)
1,8I8T(31) ,PH1(31),4(30,60)
ISTEGRER XBIN,S,IX
LOGICAL RDE .
CORRON/TSS/A 1 ,A1,A2,A3,DRHAX
pTO0 = DT
= 2
an2 = 1
uEsg = 1
DTST = 1.00+30
DTTIER = 1.0D0¢50
DL = DX
Cm=o—~ == WAKE DT SATISZPY BADIAL STABILITY CONDITIOB.
DO 1 X=XRIN,NI,NXS
$=1



236

~

BS = PUI(S)/A(S.X)
C » (1.6667¢ (TE(S,X)*TI(3,X))) ¢ (2.00D8¢%2/¥(3,X})
C = SQRT(C)
I7(R0N) DIsk(S,X)*RPS1?
DTN = A1eDZ/C
IP(DTN.LT.DTST) DTST = DTH
IrP(AK1.LT.2) GO TO
DO 2 s=2,n01
BS = PHI(S)/A(S, )
C= (1.6667% (TB(S,X)*TI(S,X))) ¢ (2.09BS*+2/K(S,X))
C = SQ17T(C)
IZ(RDN) DI=(R(S,X)~-R(S-1,X))*2PS}
DTN = A1*D3Z/C
17{(DTE.LT.DZST) DTST = DTN

2 CONTINUB

1 CONTINGE

. C======= LINIT DY SO ELECTROM TRAP, DOES NOT CHANGE TOO FAST.

DO 3 X=XMIB,NX,NXS
po 3 s= 1 ,AN2
DTE = ABS(TE(S,X) - TE2(S,X))

+ IP(DTE.LT.1.00-20) DIE = 1.00-20
pTR = A2eTR2 (3,X) *DTO/DTE
IZ(DTH.LT.DTTEN) DTTEN = DTN

3 comTINDE
Commom=- PREVENT DY PROA INCRBASING BY NORE THAN A PACTOR OF Al.
DTE = AJ*DTO
C-==--== SET DT TO ROST RESTRICTIVE CASB.

DT = AMINV (DTST,DTTEH,DTN)
IP(0OT.GT.DTHAX) DT=DTHAX
RETURN
E#D
SUBROUTINZ NDPTS (XNIN,P,RX,NBOUND, NXEIN)
COs0SEEEN 0000800020 I00EI0000000RRRRTESRER0REIRININIREIINIIOOIIIIEIIRSSIEISSS

(o . CALCULATE XuIN. .
C . PREVENTS PROGRAN PROS DOIANG CALCULATIONS IN SECTIONS .
(o L4 WHERE THERE IS 8O PLASHA BOTIOMN. .
C b TO REDUCE CPU COSTS, g
C . RICHARD D. MILROT, 78-01-06 .
COSOIEIIEPIONEEsEtOIPIOETITRERIOtIttRPORIEsTIRIRIstItasstonsssesssssis

REAL P (120)
INTEGEZR XBIN
BIPY = NXe¢2-NBOUND-NXAILN
Y1 = NX-XNIMe3I-WXNIN
K=¥1-1 ’
DO 1 J=N1, BXP1
IP(P(J).LT.1.0D-10) GO TO 2
1 K=J
2 N2 = BX-K+2
NI2 = MX2-MXBIN
IP(XMLU.GT.NX2) XNIN=WX2
RETORY )
2ND

Ak}_



C...‘..‘.‘.‘.....‘............‘..........‘....‘.“..‘.‘...‘.‘....“....‘

Cc

C . MARCN, 2
C b a00DIPIED
C .

c b 0¥ JANOA
o . MRITTER
C

REAL A (30,60
1,v(30,60),L0
LOGICAL RDWN

hd TEST POR CONSERVATION OP RNENGY IN 2-D 2.H.D. ROUTINR.

7, 1977.
APRIL, 30, 1977.

Y, 18, 1978.
ARD MODIYIERD BY RICRARD J. HILROY.

). TR (30,60) ,TI (30,60),8(30,60) ,PRI (31)
L,H0,LLADA, P (120) ,¥(30,60),VP(30,60)

NODIFIED AGAIN (TO INCLUDER CHECK ON CONSEZRVATION OF RBASS)

005000000008 00000EEN0000OE0E0ICECI0S0E000EBEPO0PSIESEC00000000800000

coanow A,TL,TI,N,PHI,V,LO,N04V0,T,85,82,D0Z,0LL,G811,GC,P,5,V0

COBBON /CONST

Cmmmmmm —2READ I.

VRITE (6,601

601 PORMAT (*-°*,?
READ (5,501)

501 PORMAT(I3,B1
GAN=%5.0/3.0

GA1I=1.0/(GA
GGaGAN®GAII

/ WBOUND,¥BR,NBL,NY,N2,03,08,05,06,07,088,8PS1
WILL CALCULATE ENZRGY OF ZVERY I°'TU RECORD.

E: I - I3 PORNAT. - AND ZP'/* *,* I
11,

0.3)

5-1.0)

Co=mm—- ~=CALCULATE DEL POR THRERNAL COWDUCTIVITY OOJT EMD.

READ(3) WTAP
1,X0I8,RDN, 28
T80 = 1.02E-
usL=2
ubk=2
1P (WBOUND.EQ
N1sNBL+
¥2=uBL+2
N3=pZ-NBR-1
Ne=NZ-NBR
US=NBR+2
¥6=NZ-¥BL
BT7s20)T-3-08
Bo=Nu-N1
BACKSPACE 3
ZPS1 = R0/LO
DUl = 0.0
DG1 = 0.0
LLADA=ALOG (1
YOsSQRT (1.6E
DEL=1.9Z221e7T
1T=1
IP(IX.NE.Y)
Lo e CALCULAT
CALL RD(DO,D
12=1
CALL ENG (U1,
DUT=DU
DGT=DG
TIBE = T*TNO
VRITE(6,602)
602 PORNAT(® °*,°
G0 T0(3,2),I
2 coNTINUE
R PIND DU
Int=Ix-1
DO 1 Isi1,INN

E,NTINR,T,RS,82,L0,20,80,T0,DT,B0U0ND,XLAS

06*L0/SQRT (TO) *SQRT (1H)

-2) NBL=1

L356E¢28% ((1.6E-126T0) #23/(3.14159080)) *#0.5)
-12¢10/(1.672-28%R8))
Gee2.S/(LLADASNO®YO*L0)

IT=2
E BUERGY BTC. IN 1°'ST RECORD.
G, 68)

G1)

TINE,U1,G1

')

AT *,1PEV0.3,' SEC. U= *,210.),° 8ASS = *,210.3)

T

AT INTRRHEDIATE TINESTEPS.

L]
L
L]
[ J
]
]
| J

a3?



CALL 2D {DU,DG,%8)
T V=T .
DELYT=T1-T2
T2=71
DUT=DU1¢0.3*DELTYT® (DUT+DU)
DG1=D¢ 1+0.5¢DELTT® (DGT+DG)
DUT=DVY
1 DGT=DG
3 CoNTINDR
Ce~==—====PLND ENERGY RTC. IN¥ I‘TH RECORD.
CALL RD(DU,DG,E4)
Ti=T
DELTT=TI1-T2
T2sTY
DU1=DU1¢0.5*DELTT® (DUT+DD)
DGV=DG 140, 5*CELTT® (DGT+DG)
DUT=DY
DGT=DG
CALL EN¥G (02,G2)
DIPP=U2-01%
DIPG=G2-GY
FRACT=(DIFP+DU1) ¢2.0/(01+02)
PRACG= (DIPG*DG1) 2.0/ (G1+G2)
4RITE(6,603) DIFP,DUT,PRACT
603 PORAAT (' *,*'DIPP= ', 1PLE10.3,°' ENERGY LOST OGT E3D = *,E10.3,
1 FRACTIONAL ER3OR=',R210.3)
WRITE(6,608) DIPG,DG1,FRACG ’
608 PORMAT (* *,'DIPP= *,1PE10.3,"' BASS LOST OUT END = *,210.3,
1e FRACTIONAL ERROR=',R10.1)
TIAE = TeTHO
WRITZ2(6,602) TINE,02,G2
01=y2 .
G1=G2
DU1=0.0
DG 1=0.0
IP(T.GT.TF) 1IT=)
GO T0(J,2,%) ,IT

4 STOP
END ~
SUBROUTINE RD(DU,DG,*)
C~—<~--=-=-=READS GATA & CALCULATZS ENERGY & BASS LOST FROMN ZNDS.

REAL A (30,60),TE(30,60),TI (30,60),M(30,60) ,PHI (3V)
1,V (30,60),L0,%0,P(120) ,¥(30,60),YP(30,60) .
CONNOS A,TR,TI,M,PHI,V,LO,N0,Y0,T,%5,¥.,02,D2L,GB1I,GG,P,¥,VP
COABOM/CONST/ BBOUSD ,MBR,NBL, N1, ¥2,03,H68,45,06,87,08, EPS|
READ (3,END=1) NTAPE,NTINE,T,NS,N3,L0,R0,8U,T0, DT, ¥BOUND
DZ*1.0/(NZ~-NBOUND)
READ(3) A
READ(3) T2
READ (3) I
READ(3) ©
READ (3) PHI
READ(3) ¥
RZAD(3) P
AEAD(3) VP
READ(3) ¥
DO 7.J=1,¥3
DO 7 I=1,uS
7 V@(1,J) = VYP(I,J)/SQRT (W (I,J))
DO 5 J=1,82

238



239

YPS1 = 0.5¢VP(1,J)
DO 6 I=2,8S
YPS2 = 0.5¢ (VP (I=-1,J) ¢ YP(X,J))
VP (I-1,3) = VPS?
6 YPS1 = YPS2
S V2(uS,J)=YPST .
D0=0.0
DO 2 I=1,uS
DU=DUs (A(I,N8)®(GGON (I, N8)® (TR (X, N8) +TL (I,N8)) *0.5¢N(I,B8)0
1(V (X, 06)%e20 (ZPS16TP (I,88))®02)) oV (1,88) *DT)
20DELOA (I, N8) *TE(1,H8)*92,500.59 (TR (I,08-1)-TR(I,08¢1))® (DT/D3)
2 CONTINUE .
I7(¥BOUND.BQ.2) GO TO &
po 3 I=1,88
DU=DU- (A (I, N1)®(GGoN (I,B1)® (TR(I 8 1) ¢TI (X,81))+0.9¢B (L, H1)®
1(V(I,B1)®e2¢ (EPS1eVP (I,N1))002) (Z,¥1)*DT)
2-DEL®A (I,81)STE(I,N1)*02,560,5¢ (PR (I, H1-1)-22(1,N1¢1))*(DT/D2)
3 CONTINUE
[ ADD LASER ENERGY INPUT.
s CONTINGE
1P (NBOUND.XQ.1) DU=DU~0.5% (P (WBRe1)+P(NBR+2) ~P (N6)=-P (N6e1)) DY
IP (NBOUND. BY.2) DU=DU-0.5% (P (MBR#1)¢P(NIR¢2)~P(NT)=-P(87¢1)) D2
L CALCULATE MASS LOST PROM SOLENOID BNDS.
DG = 0.0
DO 8 I=1,¥s8
8 DG = DG + A(I,U8)*V(I,N8)eN(I,H8)e0T
IZ(8BOUND.BQ.2) GO TO 9
DO 10 I=1,us ‘
10 DG = DG ~ A{I,N1)eV(I, B1)eN (I, N1)eDT
9 CONTINUE
DU=DU/DT
DG=DG/DT
aETuURN
1 WRITR(6,601)
601 FORMAT (' *,*EBDPILE OB UNIT #3?)
azTURNY
END
SUBROUTINE ENG({U,G)
Comm e CALCULATE TOTAL ENERGY & HASS IN SOLENOID.
REAL A(30,60),TE(30,60),TI (30,60),¥(30,60) ,PHI (31)
1,v(30,60),L0,%0,P(120) ,9(30,60),VP (30,60)
RIAL®S UD,DBLR,GD
COMNOM A,TE,TI,N,PHI,Y,L0,%0,Y0,T,NS,%3,0Z,DEL,GN1I,GG,P,¥,VP
COMHOE/CONST/ WBOUND,NBR,NBL,N1,N2,83,34,45,46,H7,K8, 8PS
UD=0.0D0
DO 1 J=¥2,M3
DO 1 I=1,H8S
B=PRI(I) /A (I ,J) ]
UsA(1,J) ¢ (GBII®N(I,J)* (TB(1,J)+TL(I,J))¢B®*2+0.5*0(1,J)
1o (V(I,J) %2+ (EPSISVP (I,J)) **2))
UD=UD*DBLE (U)
T CONTINGE
DO 2 J=i1,84,08
D0 2 I=1,s8
B=PHI(I) /A (L.J)
UsA (I,J)®(GBIT®N (I,J)¢(TE(I,J)+TI(L,J)) *B*e2¢0.5°u(I,J)
16 (V(I,J)*e2¢ (EPS10YP (I,J))**2))
UD=0D* 0.5D0¢DBLE (V)
2 CONTINUE
Cemmmm ADD ENEZRGY OF LASER BEAA.



PENG=0.0D0

DO ) J=83,06

3 PENGePRNGOP(J)
1?7 (850O0ED.8Q.1) GO 820 S
DO § J=pg, 87 R

o PENG=PENG P (J)

5 C$S=).0D+10/¥0
PEBG=PRUG/CS
UD=yYD+ PENG

C-~=w—=== CALCOULATE PINAL VALUE OF BEERGI.

U=3paL (UD)
U=0eD3

C-====== CALCULATE AL BAASS IN SOLENOID.
GD = 0.0
00 6 J~84,0)

DO 6 I=1,NS8

G = A(I,J)*N(1,J)
6 GD = GDeDDILE (G)

DO 7 JsN1,s8,88

DO 7 I=1,¥S

G = A(I,J)*n(I,J)
7 GD = GD40.54DBLE (G)

G=3¥GL (GD)

G=Go04

RETURS

END



&

CO008000000000000000000400008000000000000806800000800000008000804000000000
c . SRAN 3=D PLOYS FOR 2-D uND ROVTINR. - ' ®
C &  RICEARD b. RILROY 17 .
COS08000000000000880000800000000000000000806088000000000008000600000606000
REAL A(30,60),78(30,60),TI(30,60),8()0,60),8(30,680)
1,9(30,60),0(30,60) ,PNI (30) ,1(62) ,2X(62)
2,D(100,100),RT(30,60),RX1(10,60)
3,P(120) ,P2(30) ,L0,00,8(30,60),YP5(30,60),08AX
LOGICAL BDPD
CORNON/ARBAY/DIST,PITCH,SIZR,R0DE, BGH,NIR, BIQ, NIL

Kng = 60
¥R=30

134 01

NiL=s

NIQ=S

NAAX * 1.999E¢19
DIST = $5.0
YA = 85.0
PITCY = 30.0
s112 = S$.0
XODR = 0

BGH = 2
VRITE(6,601)

601 PORAAT (' IBPUT ¥O OF PLOTSETS - I3 FOREAT')
RZAD (5,501) NPLTS
501 PORAAT (I3)
WRITR(6,602) °
602 FORNAT(® INPUT DESIRED PLOT TINES®)
READ (5,502) (PT(I), I=1,0PLTS)
502 PURNAT (10810.3)
READ (3) ltAll.l?Ill.t.l!,ll,Lo,lo.IO tO,Dt.lDOUlD,!LAS
1,XRIN, R0 0, s -

rno-w/son( suoﬁhw csolw) ‘ 'a,
D0 1 t=1,8PLfS . ~ Ao )

1 PT(1)=P1(P)/TH0" : *
NS2uySel . ‘“Zi ¢ . . ’ "
ltleW - ' = . L . Aoy
WR2=8R#2 ooy 4 ey ' -

2
1o

CALL PLOTS “

CALL ORG1($I11E,3IZK)

CALL NPLT2 (RS, N2, UNI,R¥ pz.ha.eil',-ms uu.uu
LAZZ, TI,0,8, 90, Pux,l fx,b.lr.l

2.-:: u,vrs,rau.nl »y

CALE PLOT(0.0,0.0,999) P
SToP : R !
11 ‘
suUdzodRRNE APLT2 (WS, N2, N0, N0
1,:;2 +FT, NPLYS, ST2R,HMNX '

2,A vI.B,Y,R rlx.z RX,D, ET,RXV, 802

J,U.v eTA¥, RN, RDE)

R2AL A (DO, 60),?!(10.60) +T1(30,60),8(30,60) ,0(30,60)
),1(10.60),llx(JO).z(lzz),lx(lzz)

0) ,«0, 80,D (¥R, 0N ,2X1 (30, @)
n(Joy.v(Jo 60)."3(3. 60) ,UMAX

1 1] ]

| 2 ]




‘ b 44

2. e
.

l’ll'olltilb'.ll.ll.l..l‘.l‘.l’.l‘blll‘ll

L. 00~

tv 'glulmuna- . !

nwm
8EAB(S)
8840 {J)
- BBABLY)
R8A0 {J)
ASAD (3D
R3AD(3)
lll:}li

L E L K
3

I2(A06 (PR (BP)~T) .OT. ADS(PT(ED)-2OL M) GO 7O 21

(1 od Lol
23D (3) A
ABAD(]) T8
R8AD()) 12
~ RBAD(3) ¥

28AB{)) PNl
RBAD()) V
RBAD()) @
READ{]) VIS
ABAD()) ¥
¢o T0 22

21 BACKSPACE 3
T=T0LD
BPelipe
60 70 22

2) NpuEPLES !

22 cosriaen

L 3

\...;\’

CJ'“""."‘.. [ ] “p', . -

50 11 Jei, 8
[ ” " l.‘.u

" {1, J).'llm/l(l J)

C=—-

DO & J.‘..‘
JJ = pge1=g
AT=0.0
A20=0.0

DO S I=1,08
AT=AT0A (1,J)

" 2es,3)

R(1,3J7)%0.9¢ (SQRT (ATQ) * SQRT (AT) )
REV(1,JJ)=8Q8T(AT)

ATO=AT
S CoUTINGS
& CONTINUR

Ce==e=== PLOT CURRENT TINR IN 3SBCOBSS.
TINE=T*LO/SQRT (9.58B011°70) °*SQRY (MA)
SRXP=ALOG V0 (TIAR)

BRAP=RRXP-1
BXP=NEXP

BASESTINE/ (10, 00 ERXP) .
NPe ($1235~-2.0)/15.0
Cll.l- Slmt.(‘... 1....’,'“..‘ } 10',0.0, ‘., &

YRe1,005,0°87

CALL WUSBRR(VI,1.0,8T,BA88,0.0,2)

Vi=1,0018.0002
YI=1.000.5%8¢



Bt=0,.9082
Cl“ l..lll"l.'l.ﬂ.ll'gl.‘ "',
CALL 006 (3138,5188)
Cowamce=e CHIVEET QUANTITIES TO N0RE BATWRAL qu.
C— 136 2T 18 8V, .V ID Wee) Ca/SBC. 8 1IN k8. B I8 We*1] Caee-3,
Vo = ’.7...0“‘.“’(”)/‘.’ (an)
50 = 6,.3818-9903082(R0°10)
PO 12 J=1,83
50 12 §=V,08 -
TR(1,J5 = TOCTR(I,J)
TI(I,3) = TO*TX (I,
Y(I,3) = vOeV(1,J)
"PS(1,3) = VR0 /L00VRS (I,J) /RX1 (1,d)
(I, N = 80°8(1,J)
N(1,J) = BOeN(I,J)
IP(N(1,J) .G, BHAX) B (2,J) = BBAX
12 cosrin®es
DO 13 JI=1,48
B "_S(‘.J)..o.
-== PLOT VARIOUS BTITINS
CALL PL3IDS (BS,BS, '.g.ﬂ.“'“.fl.’.l.!u 20,L0,°28°,2)
CALL 'u.‘(.’on...gﬂu.m.lﬂ.f!.'.',ll‘.”.u.'f!' 2)
CALL PLIDS (NS, NZ,UB,UDE, BDOUED,V,D,B,TA¥,00,10,°V3,2)
kP (odm)
oCALL !l..”l(ll.lt,ll.llz.llolln.V”,D.I,IAI,IO,LO,"l',1)
YAU = 360.0-%A8
CALL PL3DS (RS, ¥3,NR,0%1,800080,8,D0,R,YA0,00,10,°8°,1)
CALL PLIDS (NS, 23,0R, N2, B000ED,8,0,R,TAN,00,L0,°0°,1)
TIAY = 360.0-1A8
CALL LASPLZ(P,32,80,T0,20,L0,880880)
IP(Np.1L2.871.18) 60 70
9299 ARTURS
¥}
i SUBROUTIBE RORG(Q,Q0,8,88,82,08,802, BROUND)
C"'""" S$EB00UTINE RE-ONGABITES DATA TO BECTANGULAR GCRID Q8.
Co=w-==< LISRAR ISTERRPOLATION IS WSED.
BEBAL Q(30,60),2(30,60) ,QE(5R,0BZ)
Co=—==== QREYERSE OLKDES OF 2°PD ISDEXI IN ARRAT Q.
a=p2 .
DO 1 J=1,2
A = §get1~-J
DO | I=Y,Ns
T8aP = Q(I,J)
Q(l.J = Q(1,9Y)
1 Q(1,81) = TRAP
-- PLED Q8.
pRE = 1.0/(¥8%~Y)
D20 = 1.0/(N2~-5800)D) “
PO 2 J=1,083
T = (J=1)*B18.
L = m“ L2 |
IP(L.BQ.N3) GO YO0 7
LoV = Lo
21 = (L~%)*080
£2 = L*9%0
A2 = (2~31)/¢22-81%)
AV = 1,0 - A2
¢0 T0 8
7L = 8-

C

i

C

243



as s (1-v)yeomw ° ‘

20 = AVSR(K,L) ¢ AZ2°B(K,LPY)
I7(RO.GT.2H) GO 70 &

17(k.GE.88) 60 10 3

K= Ked

GO 20 3

Kut = k-1 -
1°(K.3Q.1) @0 10 S

201 = AJSR(ES1,L) ¢ A2°R(KB1,LPY)
B = (29-301)/(BO~201)

QU = A1eQ(KEY,L) ¢ A2°Q(RN1,LPY)
QP = A10Q(K,L) ¢ A2°Q(K,LPY)
Qu(I.J) = Q8 ¢ Be(QP-QN)

Go TO 2

QU(X,J) = 21°Q(K,L) ¢ A2eQ (K,LPY)
CoutrInes

ssToRS

1T

SEBROUTINE 0BG 1 (XLES,YLEN)

Crmom== «——BOVR ORIGIN 1B A WAY TO NININILE PLOTTER PAPER WASTE.
C——e==-—POR TEKTRONIX, BE-SCALL PLOT AND NALYT ONTILL RETURN RNTERRD.

CALL TCLEAR(SY)

CALL TERASB(81)
7=ARINY (30.0/XLED,20.0/YLEH)
CALL PACTOR(D)

CALL PLOT(2.0,2.0,-))
Go %0 10

CALL PLOT(3.0,3.0,-3)
10=0.0

10=0.0

IL=XL88

IL=1LES

G0 TO 10

ESTRY ORG (XLEW,YLEW)

¢----—--—BHTEIR MERE POR ALL BUT 1°ST CALL YO THIS BROUTINE.

CALL TCLEAR(S2)

2EAD (6,601) BOTHG
POREAT (I5)

CALL TERASE(62)
TEAD(6,601) BOTEG

Go 10 10

VI=6.0¢XL

VI=6.0°1L
I=Y0eVYeYLED

TL=YLEN

1P (1.GT.33.0) GO TO 3
CALL PLOT(0.0,7Y,-3)
JO=Y0e VY

L7 (ILED.GT.XL) XL=XLBS
Go 70 10

vY=—10

CALL PLOT(VE,VY,~3)
IL=ILES



. “_ \

-
¢ Bomz0eVE
v 10e8.0
9 agteRy
)
SESBOUTINE PLIDS (NS, DS,52,808,800000,9,08, 8
1,10,00,%8,/8888/,0CHAR)
BEAL Q(30,60),08 (82, B33) .2 (30,060)
COSRO#/ARRA1/DIST, PLECR ,S128,KODE, 06N, DI R, BRQ, VIL.
CAAL PILTIN(Q,8S,8%)
Cl:‘ 8086 (Q, 00, 0,88,0%,02,803, 8808 M)
[ 7]
C=1.0 'Y
CaLL Cn’)'(“.....uqzm’.'l'.'na.’x‘t.lo...m,’c
1,058,81Q,51L,00,50 ,8888,3CRAR)
CALL ONG (3132,8138)
AETSARD
| 1 1]
SUBRCUTINE LASPLT (P, 0%,80,70,R00,10,0000080)
c....‘.‘...‘.....‘.............‘.......‘..“...‘.‘.........“.“.‘.....‘

c . PLOT LASER POUER VERSES 2. - 1N GN. .
c ) BAY, 23,1977, _ .
€ ) RICEARD D,. SILROY & A .

c000‘0..0..‘....0.““00..00‘.“.“0.0.‘0.“0...0'..‘.‘.0.00.....‘O..OO.
REAL P(120),3(120),80,L0
B=Nge?
IP(BBOUND.BQ.2) Be2ep3-2
aPtane
Ap2=ne2
ILEN=G. 0
TLEE=4. 0
PO 2 I=1,8 €
2 P(1)=8.928-220000T000, s-u-looux)
AXDELY=NBOUND/XLERUCLO
DTICaXLEE/S.0
CALL AX182(0.0,0.0,°8¢,-1,ILE0,0.0,0.0,AXDELY,DTIC)
CALL SCALB(P,YLEN,N, 1)
T8l = P(APY) -
IDELY = P (8P2) '
CALL AXIS2(VU.,0.,°LASER PONRR (V) ', 16,YLEN,90.,ININ, TOBLY,-1.)
pi=1.0/(NZ-NDOURD) .
PO V I=1,8 .
1 2(1)=(I-1.9)*D3
“ 3 (021) =0.0
. 2 (8P2)=¥DOSED/XLES
CALL LENE(Z,P,8,1,0,9)
CALL ORG(XLBE,YLRN)
2sTERY
1]
SUBROUTINE RDED (SIZS,RX1,.RX,3,88,03,012, u.lo)
REAL RX1430,60),8X(532),10,3 (B22)
Cree——=e== PLOT B8{S,3) : SHELL CERETEARS.
ILES = SI38
TLEE = $I3R/2.0
IOELT=1.0/KLEBOLO
IOTIC™ELEO/N .0 . -
I0TIC=-YLBN/8. 0
cELL uuuo.o.o.o.'x' -%,11.88,8.0,0.0, XD2LT, XDTLC)
CALL AXIS2(0.0,YLEBE,® °,1,KL88,0.0,0.0,XDELY,XPPIC)
I9ELY=1.0/7LENORO
Clu llxu(.-.,o.o.' .".'u."...'°-°'".L’,'"‘c’
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1=0.19

s VE==0.8

VYe (YLB8/2,0) 0. Seq?
CALL SYBDOL(VX, VY, NY,°8°,0.0,1)
CALL ARIS2(%580,0.0,° ',~1,YL88,90.0,0.0,208LE, YPRIC)
RX (BZe V) =0,.0
RE (R0 2)=1,0/TLED
-— DEP1NE % - VECTOR.
1g=1,.0/82 .
2 (1) =0.501K3
b0 & I=2,28
6 3(X)=s(I~-1)*X2
2 (REe1)»0. 0
3(8302)=1,0/2L80
DO 7 X=1,08
b0 § J=1,83
8 RX(J)=RX1(X,J)
7 CALL LIBB(S,RX,0%8,1,0,1)
ACHAR=16
"“"o.
ll‘(lLll/l.O)-O.S‘lClll‘l‘l
CALL SYRDOL (VX , VY, NT,°'SEELL POUBDARIES®,0.0,0CHAR)
CALL ORG (SISB,SI1R)
RETURS
RED
SUBROUTINE CPLTID(A,N,0,K,D1IST +IAN,PITCH,SITR,EODR, RGN, SCAL)
DRAS A PERSPECYIVRE VIRE OF A CONTOURED SOURFACR.

SHIS SKT OF SUBROUTINES (6 OF THER), BAVING TNR NAARS:
CPLT 3D, AUXO60, AUX061, AUX062, ASX06], AND AUXO6S, ¥EAR GIVEN
€0 STANPORD BY BOVARD JESPERSON OF IONA STATE UNIVERSIZY.

THMZY NAVE SEBE EXTEESIVELY SOODIFIES BECAUSE: . )
THR NABES OF OUR PLOTTING SUBROUTINAS ASE DIFFEazN?.
THE ASTNOD OF SCALIBG BAS BEES CEANGED.

SONE SEN PEATURES NAVE IRV ADOND.
SONE OL® PEATURES NAVE BDEREF BADE OPTIONAL.

I¥ SPITEZ OF TEE ABOUST OF NODIPICATION, TER ALGORITAA USBD TO
DO THE PROJBCTION, AND T0 DETRRNINR TRE VISIBILITY OF TUR POINTS
SRIFLECTS THE NOBRK DONE AT IONA.

SODIPIRD FOR SSE AT STANPORD BY: ROBERT J. BREDE, CAHPUS 'FACILITY,
STABPORD VEIVERSITY.

DATE OF LAST RRVISIOB: BAY 1, 1969

A IS THS 2-DIARESIONED ABAAI CONTAINING TER
PUBCTION VALORS.

EARDING... THE COUTESTS OF TMIS ARRAY ARE TRANSFORNED INSIDE TURSE
BOUTINES (SOSE PIOPLE YOULD USE THE TERN “DESTROTIED®).

N IS THUER BUNSER OF ROSS IF THER ARBAY A.
f IS THE BUSDER OF COLUGNS IN TEE ARRAY A.
K IS A CODZ THAT TELLS SAETRER TO PRAY THB GRID LINES:

K=1s ALOBG THE 3-3IREESION OBLY.,
§22: ALONG TRE 8-DISRNSION OBLY.
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8=33 ALOSG BOTH PINBESIONS.

S0ISTS TELLS 80F PAR ABAY TR SURPACE IS PROS YOUR BYAR.
TER UEIT OF ARBASUENEST 2O2 THLS BISZNSION IS 288
OIASONAL OF A CUSE TUAT ERBCLOSES TER SSAF)CE.

THIS DOSS NOT CEANSE TBE SIIE OF TER PICTURR, BUT ONLY
P8R DIsTORTION.
SDISTS >6 USUALLY BOS’T SHOU ANY DISTORTION D¥E 70
PARALAX.
$0ISTS <1 NATY CAUSE GEPREDICTABLE SCALING R2AORS.

TAE (I8 DEGRERS) SROWS NOV TNE OBJECY IS TSREED ABAY Faos

THE VIBEBA.
POSITIVE AN WILL TEBD T0 BRING TER RIGNT BOGR 15TO VIES.
IRR0 TAY SNOSS THER SURPACE NITH A(1,1) AT TuNE LEFT FRONY coasse,
A(1,N) AT TEE LEPT REAR CORNER, AND A(N,1) AT THR RIGMT FRONT.

PITCHN (IR DBGRERS) SNONS NOW THE SURPACE IS LONERRD OR RALISED AT THR
FRONT BAGE., .
POSITIVE PIICR TENDS TO RXPOSE TNE UPPRR SURFACE,
IF TEE BAGUITUDE OF PITCN RICEEDS 90 O0SGRZES, PUNNY TAINGS
SAPPEN TO TNR ORIBNTATION OF TN PICTURE,

SIZE (IV ISCEBS) TELLS BOF LARGE TO BAXE TAE PROJBCTION OF ™R "COsR®
TNAT ENCLOSES THER SORPACE. -3
INIS "CUBB™ THAT NE BAVE SEBD TALKING A30UT BAS THE P0LLOUTNG
DINRNSIONS: 5,8,MAX(V,N). THE PUNCTION VALURS ABS SCALD 70 rIir
INSIDE TEIS CUBE BEFORE ANY ROTATION IS BONA.
APTER ROTATION, TEE COBR IS SCALD Y0 PIT IasIdg
TRAE SQUARE PROJECTION PLAEE (SIZE BY $138). BOTR
RORIZONTAL, AND VERTICAL SCAL PACTYORS ARE CORPOTRY,
AND JOTH ARE SET EQUAL TO THEZ SEALLER OF TAR TVO.
INIS REANS THAT, ALTNOUGE TER PROJECTION BAY BSOT ALNAYS
APPEAR TO B3 THE SASE SIZE, IT NILL ALUAYS WAVE TN3
SASR SBEAPE.

KODE TELLS YNETNER T0 DRAB TME "NIDDEW" LINRS:
KODE=0: ASSUAZ THE SPRPACE IS OPAQUE, SO DOB'Y DRAW TAE
“SIDDEE" LINES.
KODB=1: ASSUNE TMRSURPACE IS TRANSPARZNT, SO ALL TME LISES
ARE PLOTTED:

BGE TELLS BEETHER TO DRAS THE OUTLINE OF t!f COBS TO HELP
ORIZST THE VIZVER.

BGE=0: DO NOT DRAW THE OUTLINE OF TME CUBE AT ALL.

HGN=1: DRAS THE OUTLISE OF TME CUBE, BUT PUT IT IN ITS OVWN
TUO-INCE PRANE JUST TO TNE LIPT OF Tis SURPACEK PLOT.
DO NOT DEAN TNIS CUBK PULL SITE, DUT NAKE IT ASOUT
THO INCHNES ACROSS,

8GU=2: DEAV TAEZ OUTLINE OF TNE CUBE SUPZRINPOSED O THNE
SURFACE PLOT. CPL2ID WILL NOT NIDE ANY OF TME ZDGRS
OF THNE CJUBEK, REGARDLESS OF VMETNER OR NOT ANY OF TMB
LINES IN THE SURFACE PLOT ARE MIDOXS.

NGE=3: DRAV ONLY THR TNEER EDGRS OF THZ CUBER TNAT NERT AT TEE
ORIGIN, SUPERINPOSED OB THE SURZACE PLOT.

.

SCAL TELLS TR ROUTINES ROV TALL TEXY SBOULD NAKE TAR SURPACSE,
RELATIVE TO THE MRIGHT OF THE CUBR.
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SCAL=0,: DO NOT SCAL TNE DATA AT ALL, BUT TRUST [ 338 TaA?
TEAR DATA IS NOT SO NIGE THAT IP RURS OFF AR,

SCAL=1.: SCAL THE DATA SO TER TOP OF THE DATA Jﬁi: lllCllS
THE TOP OF THE CUBR. K] '
SCAL=.3: SCAL THE DATA SO THE TOP OF TEE SURFACS 43 .
THRLKE TENTHS AS MIGN AS THR CUBS. . JI

SCAL=8.: SCAL THR DATA SO TR TOP OF TR SURFACK IS
POUR TINRS AS NIGE AS TAE CUsR. (DANGEDOUS)

WARNING... IT IS VERY EXPENSIVYE TO DRAW OPAQUE SURFACES, BICAUSE
THE PROGBAN NAS TO DETERAINE THRR VISIBILITY OF AVERY
POINT. TUE COAPUTER TISE DOUMLES OR TRIPLES, DEPLNDING
ON NOS NANY LINE SEGARZBTS ARE PARTIALLY VISIBLE.

ees THIS IS BOT A STAND-ALOME PACKAGE, BOT IT IS INTERNDRED
TAAT THIS SUBROUTINE(S) WILL BE USED ALONG VITM OTNRR
SUBROUTINES PRON THE CALCOKP PLOTTING PACKAGE.
TEE OUTPUT ROUTINES NUST BR INITIALIZZD BEFORE USING
THIS PACKAGE. SEE THE WRITEIDP POZ PROGRAN MNUNBER CO2).

e DO WOT USE SUBROUTINES, OR NANRD CORROE, WITN ANY
OF THE POLLOWING BANES:
CPLTID, AUXO6O, AUXO63, AUX062, AUXO6N
(THESE ARE SOBROUTINES I THEE CPLTID PACKAGE)
-—0R-~
coms02s, ©on02%
(THESE ARE POR NANED CONNON USED BY TME CPLTID
PACKAGE) .

naNOAARAANNNANONNNDACAONOONNONNANNAN

ee. DO NOT PORGET, THZ CONTESTS OF TNE ARRAY A GET CLOBBNSED.
SUBROUTINE CPLY3D(A,¥,H,K,DIST,YA4 ,PITCR,SIZZ,KODE,AGH,SCAL
1,0I8,81Q,MIL,R0,%0,/HESS/, NCHAR)
COBNON /CONO28/ ANGA , ANGB , HY , D, Su,SV .
commom ,COMO025/S8L , $8 , $M , CX ,CY , CZ , QX , QY , Q% , $D
DIMENSION H{ 10 ) , Y( 10 ) , X(2), Y(2), 2(2), XP( 8 ),
: A (¥,H),DZ (W) :
Cesoses 20080880
$DISTS=DIST
ANGA = (YAN®270.) & 0178532
. ANGS = PITCH * .01784532
HY = SIZB
C UVIRECTION CORPONEWNTS TO THEX EYR. ,
JL = ~=COS( ANGA ) ¢ COS( ANGB )
S8 = -SIN( ABGA ) ® COS( ANGB )
S8 = -SIN ( ANGD )
I? (ABS( S8 ) .WE. 1.0 ) GO TO 10
MITE( 6 . 2
20 PORMAT( '1°' , 20X , 20('®*) , / *0°, "YOU ARR ATTESPTING TO LOO
:K STRAIGHT DONN { OR UP ) AT THE SURPACE * )
G0 70 2150
10 CONTINUB
$0 = 1.0 / SQUIT( Y f~, SN %¢ 2 )
(1) = &E
X(2) =
(Y =
-

1
»

1
1(2) = 8
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T=NIN0 (N, V)
€ 7IND TIE BIAGOSAL OF THR *CUBR".
p-.o‘)ol.‘)of.‘)
D = S8SQRY (D)
SCL = 3D13TS * D
C COORDINATES OF YOUR BYER.
Cx = -3L & SCL
Ct = -3a ¢ oCL
Cl= -$8 ® SCL
C COORDINATES OF THE PROJECTION PLANE,
QX = CX ¢ D * $L
Qi =CY e D * g2
Qs = Cz ¢ D * 3)
2060 CALL ADX060 ( A, W, B, T ,KODE)
c
DZ (1) = Z(V)
D23(2) = 2(2) A
YUQ = NIQ
CALL SCALE(D2,YUQ,2,1)
(1) = ()
3(2) = YOQeD3I({8) ¢ 2 (V)

ll=°l' (3(2)-3(1))
$=1, .
I?( SCAL .BE, O ) $=T/RANGR®SCAL
C SCAL THE SURPAC! TO HAKE A "CUBE™.
P03 I =1, 8
DO J =1, 8
A (1l ,Jd)= (A{(I,Jd)~-3 (1) )=+
30 cowrINUR .
QBIu=Z (1)
QBAX=Z (2)
(1) = 0.0 ©
2(2) = ¢
2080 CALL AUX06% (X, Y, 2, XP , M , ¥ ,KODE)
DO 2130 I =1, 8
B(I) = ( (XP(I) - QX ) ® S8 - ( M(I) - QT ) * SL ) * $D
Y(I)=( Y(I)-Q3) * $D
2130 CONTLNOE
2100 CALL AUX060 ( 4, 8, 1, H(3) ,KODE)
2120 CALL AUX060 ( V, 8, 1, V(9) ,KODE)
3} I7( 8GN .EQ. 0) GO TO 2180
. SwHY
LZ(BGH .EQ. 1) S=1.S
SH = S/ (H(10)~K(9) )
SV = S/ (Y(10)~-Y(9) )
SH = SIGN( ABINY(SE,SV),SN )
SV = SIGN(SK,SV)
1P (#GN.EQ. 1) CALL PLOT(0.0,2.0,-3)
CALL AXDR(H,V, 38,5V, AESS,NCEAR,TAS ,BIR,NIQ, BIL,R0,X0,Q8KN,QuAX)
2139  IP(BGE .¥E. 1) GO TO 2180
CALL PLOT (AINT((N(10)-M(9))*SNe2.),~-2.05,~3)
2180 CALL ABZ063 (X, Y, A, % , 8 , 8,V , K ,KODE)
2150 cowrInes
aETORN
E®D
c
SUBBOUTINE AUXO60 ( A, ¥, ¥, 3 ,KODE)

DINBUSION Z (1), A(N,
C FPIND THR HAX, AND HIN g
+
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1050 3(1) = A( 1, V)
1060 2(2) = Z(V)

1080 DO 1190 J = 1 , &
1100 DO 1180 X = 1, B

(1) = ARINY( Z(V), A(I,d))
Z(2) = ABAXV( 2(2), A(LI,d))

1180 CONTINUE
1190 cConTInUE
1230 AETURE

4 b
SUBROUTINR AUXO6Y ( X, ¥, 2, IP , B , ¥ ,KODEK)
PIND THE CORNERS OF THE ROTATED CUBL.
DIMEBNSION X (1) ,Y(V),Z(1),B(1),V()) , XP{V)

050 L =0
070 DO 180 I = 1, 2

090 DO 1703 = 1, 2

110 DO 160 K = 1, 2

130 L=L ¢ 1
140 CALL AUX062 ¢ X(I), Y(J), Z(K), XP( L),
1 M(L) , Y( L ),KODR )

160 CONTINUE
170  COWTINUE
180 COMTINUE
190 RETURN
LD
SUBROUTINE AUX062 ( X, Y, 2, XP , IP , 2P ,KODB)
PIND TME LOCATION OP A POIKT 1IN THE ROTATED CUBE.
CONNON /CONO28/ ANGA , ANGB , HY , D, SH,SV
commom ,Cos02%/SL , s® , $¥ , CXI ,CY , C2 , QX , QT , QZ , $D
$Kk = D / ( (X -CX) oSL ¢ (Y -CY) ® SA + (L -C2) *$W)
IP = CX + 3K ¢ (X - CI)
TP = CY » Sk (T - CY)
IP = Ci1 ¢ 3K ¢ (% - C2)
RETORY
2ND
SUBROUTINE AOX063 (X,Y,A,N,A,H,Y,K,KODE)
DRAS THE PIGURE.
CoNnoN /CONO028/ ABGA , ANGB , HY , D, SH,SV
coanom ,/CON02S/SL , S8 , 8 , CX ,CY , CZ, QX , QY , Q% , $D

DINBXSION X(1),Y (1), H(V),V (1) ,A(N,8)
INTEGER OP , DOWN , PEN , P , Q
INTRGER PV , PO

END = 1,0 / 16.0
CAN 0SE V / 32 00 1 /7 64 POR PINER INTERPOLATION



u»p =3

powN = 2

SEe WY ,/ (M (W) -0 (
SY s AY /. (V (10 ) -V (
SH = SIGU(ANIN?Y(SH,SV),SN)

SY = SIGH(S¥,SYV)
yuf = §
24 = 3
080 IP ( XK - 1) 100 , 120, WO

100 IP ( K - 3 ) 1110, 120, V100

DRAV LI NES ALONG THE Y- AXIS
120 CONTiNUBR
L=20
LD = 1}
DD = 0.9 ¢ LD

180 DO 1060 J = 1, A

Q =0
1J=J
160 DO 1030 I = 1, kNN
L =L ¢ LD
LI = L
. CALL AUXOS& { A ,XI ,YJ , 3,
PLN = U?

Ir () S10, 520 , 530
510 CONTINUR
IP ( Q) 580 , 550 , 53580
520 CONTINUER
I? ( Q) 610, 1020 , 610
530 CouTINUB
IP ( Q) 580 , 550 , 580
580 COXTINUER
PEW = DOEN
GO TO 170
550 COoWTINUE

)
)

)

Vi

Ir (I .EQ. 1V ) GO TO 170

DI = DD
0o = | - LD
T = TO ¢ OI
P1 = Q ;L
So0 IP ( ABS( DI ) .YLY. ruD
CALL AUX068 (A , T, YJ , ¥
DI = DI ® 0.5

)

I? (PO .BQ. O ) GO TO 565

0= T

Pl = PO

T = 7T - DI
GO 70 560

565 1T = ¢ DI
GO 560
570 CoO sus
T = W
IP g PY o P ) 170 , 170 ,
580 CONETNUE

590 CORSINUR

ZP = A(L-LD,J) ¢ (T=LeLD)*(A(L,J)-A(L-LD,J)) /LD

3580

? ,KODEK)

GO T0 9370

a8,

CALL AUX062(T,YJ,2P,XP NN, VY, XODN)

PO ,40DK)

2351



C

no

v C
C

C

AN = ( ( XP-QX)*SN- (NR - QY )°3L ) * 1

Y e (VW -0Q3) * 8D
AN = ( NE - N(9) ) * 8i
Y9 = ( YV - V(9) ) & SY
CALL PLOT ( WN , VV , PRE )
600 P2 = S - PRN
GO T0 170 .
610 CONTINUR
PR = DOEN
bl = DD
79 s L~ LD
T = T0 ¢+ DI
Pl = Q
62Q IF ( ABS( DI ) +LT. EW0 )
CALL AUXO68 (A , T , YJ , 8
DI = DI ¢ 0.9
iy ( PO .EQ. O )
720 = T
P! = PO
Ts= 7T ¢ DI
GO TO 620
625 T=17°- D01
GO T0 620
630 COoNtTINuUE
. T = TO
IP ( PV ¢ Q) 600 , 600
170 CALL AODX062 ( XI, YJ, A( L,
YY = (VY -QZ) * $D

GO TO0 4130
., PO ,KODK)

GO TO 625

. 359
J), xp , AR ,VY

HH = ( ( IP-QX)*SH- (HN - QY )*SL ) * $D

190 HY = ( AN -~ H(9) ) * SH
200 PV = (VY - V(9) ) * SY
CALL PLOT ( BN , YV , PEN )

1020 Q = P
1030 CONTINUB

L=1L+1LD

LD = -LD

DD =-DD
1060 CONTINUER
1090 IF ( K - 3 ) 2060, 1110 , 2060
DRA¥ LINES ALONG THE X-AXIS.

1110 CONTINUE

L=0
LD = 1
DD = 0.5 ¢ LD
1140 DO 2040 I = 1 , B
XL = I
Q=0
1160 DO 2020 J = 1 , WA
L =L+ LD
YJ =L
CALL AUXO068 ( A ,XI ,YJ , »,
PEBN = 0P

I?P (P ) 1510 , 1520 ,

1930

P ,X0DE)

,K0DE)

252
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1510 CONTINUE <
I? ( Q) 1540 , 1550 , 1580
1520 CONTINUE
I? ( Q) 1610 , 2010 , 1610
1530 CONTINUE
1P ( Q) 1580 , 1550 , 1580
1540 CONTINUE
PEW = DOWS
Go YO 1170
1550 CONTINOE
I? (J .2Q. 1 ) GO TO 1170
01 = DD .

1560

1565

1570

1540
1590

1600

1610

1620

1625

1630

v

T0 = L - LD

T = 10 ¢ DI
PY = Q
I? ( ABS{ DI ) .LT. mDp ) GO TO 1570
CALL AUXO68 (A , XI , T, ¥ , 8, PO ,KODE)
DI = DI * 0.5
I? (PO .EQ. O ) GO TO 1365
t0 > 1T
PV = PO
T= T - DI
GO TO 1560
Te7T ¢+ DI
G0 TO 1560
CONTLNUR
T = 10
Ir (PVY e P ) 1170, 170, 1580
CONTIBUE
CONTINUER

1P (I,4-LD) ¢ (T-LeLD) & (A(I,L) - MI,L-LD))/LD

CALL AUX062 ( XI , T , 2P , XP,HH, VY ,KODE)
Hi = ( ( XP-QX)*38- (MH - QY )*3L ) * 30
V¢ = (VY -Q2 ) * $D
M = ( M4 - H(9) ) * SM
YY = (VY - Y(9) ) * s¥
CALL PLOT ( Bd , YV , PE¥ )

PEN = S - PLN

GO TO 1170
CONTINUE
PEN = DOWN
DI = DD
10 = L - LD
T =10 ¢+ DI
PV = Q
Ir (ABS( DI ) .LT. EED ) GO To 1630
CALL AUXQ64 ( A , XI , T , ¥ , 8, PO ,KODE)
pr = DI & 0.5 -
I? (PO .2Q. O )} GO TO 1625
T0 = T
Pl = PO
tT=1 9+ DI
GO TO 1620
T =T- DI
Go TO 1620
CONTINOB
T = TO
IP ( P1 ¢ Q) 1600 , 1600 , 15%
CALL ADIO62 ( XI, YJ, A( I, L), X , WM VY ,KODE)
WH = ( ( XP-QK) *SR~ (NN - QY )°*3L ) * $D



1180
1190

2010
2020

2080
C
2060

(o
2130

254

VWe (VV~-QF ) 80
MR e (NN - WN(9) ) ° 3B
WY e (VU - V(9) ) *3Y
CALL PLOT ( NN , VYV , PR )
Q=0
conrInes

L= L ¢ LD

LD = - 1D
D8 =-pp

couTINUS

coutrliaus
RETURD

exd
SUBROUTINE AUXO6S (3, XI. YJ. &, B, P, KODEK)

Cc SEE IP A pOrINT 1S VISIBLE.

2

[ )

Y10

coanon OR028/ ANGA , ANGD , HY , D, su, sy

conuos $20l°23/3L , 88 . 88 , cx , €t , €2, Q1. Qr , Q8 , 8D
INTRGRR CUB , C¥T , P )

BEBAL T » 3 . 12, JJ

plsgusios 3(u,¥)
17( xopg .8Q. V) Go ro 78
IR = 1t
a IR, JC )

b = 3 | .

.8Q. IR GO 10 2

x:.(. :ixn s JC ) ¢ % X1 -IR) s (I(IR* 1, JC) - 2 IR ,JO))

Ir -8Q. JC ) GO 10 &
18 '(tiil , JC) o (1J-JC)e (L (IR, 0C*V) - 3(IR,JC))
CONTINUER
XB¥D = 0.0
DX = 0.0
.TAULT = 0.0
InuLr = 0.0
1?7 (xI -EQ. cx ) GO TO 10
YRULT = (YJ - CY ) ,/ (K - CX)
znoLyr = (33 -Ct ) /7 ( XL - cX )
DX = 1,0
XEwp - A * 1
Ir ( 11 -LT. CX) GO TO 1o
DX = -1.0
XEND = 0.0
CONTINUE
TEND = 0.0
“ - 0.0
IayLT = 0.0
Ir ( 19 -2Q. Cx } (gg toc:o)
= I - Cx -
!:th z:uur .IQ.) 0.0 ) 2ayLT=(38 -Cz) / (1 -~ CI )
DY = 1.0
IRND = ¥ ¢ )
IP ( YJ L% CY) 60 T0 20
D' - °‘|-°
IEND = 0.0

4o cosrisus

con = 9
CutT = ¢



P=0
X8 = 11
1 I K]
30 conriveR
II = AZNT( XB )
JJ = AINT( YB )
ISTEP = DX
1STED = DY
IP (X3 .3Q. II)
IP (DX .LT., 0.0 )
GO TO &S
80 IZ (Y .RQ. JJ)
IP (DY ,LT. 0.0 )
45 costTINUR
I = IT ¢ XSTRP
J = JJ ¢+ r5TRP
I? (I .mQ. 1IXEND )
I? (J .xQ. YRZND )

G0 YO »0
ISTRP = 0.0

60 TO a3
ISTEP = 0.0

Q0 TO 80
@ T0 80

I8 = CI ¢ XNUL? ¢ (J - CY )
ID = CY *» YRULY * (I - X )

I?7 ( OX .LT. 0.0 )
IP (X3 .iT. T )
SO X9 = £
60 70 ¢S

€0 TO 5S
GO 70 6O

55 Ir (I8 .LT. I ) GO TO S0

60 Y3 = 3
65 cCosrianc:

Z¥ = CI ¢ Z80LY ¢ ( XD - CX )

IR = I

JC =
I? (I8 .mR. J)
IDI = I - px

GO T0 70

13 = I( IR, UC ) - DX ¢ (I8 - X ) & (2(IDL,dC) -~ 2(1R,JC))

GO TO 75
70 JDY = J - pY

Z3 = 3( IR, JC ) -~ DY ( IB~J ) * (Z( I4,J07 ) - 1(1I2,dC ) )

15 comriNug
SGy = 1
IP ( 28 .LT. 133 )
CUn = CUn ¢+ sGN
CET = CNT ¢+

Gy = -1

IP ( IABS ( CcU& ) - EQ. C¥? ) GO0 TO 30

GO TO 90
78 P=1
GO 10 95
80 cosriNU:R
P =

IP (Cun ) 88 , 86 , 90

68 P = -
GO 1O 90
86 CONTINUR
Ir (33 .LR.
P o -3 ’
90 co¥TINOR
95 (13 ¢ ]]
1 47

SUsROUTINE AXDR(B,V¥,3K,SV,/3ESS/,0CHAD

1,Q81IF, QAAX)

CZ ) GO 10 9

5

DIBRNSION R(10),v(10),x(8),7(Q)

C-=====- PUT THNZ COORDINATES

OF EACHN OPF TNE 8 CUBE CORNEAS I 18T,

-

+YAB,BIR, BIQ,NIL,R0,20

255



Do 1
(e

1(1)
' Congéne

CcAlL
caLL
CALL
CALL
CALL
cALL
CALL
caLL
CALL
C-~—=<- D2
CALL
1P (Ya

[ — ORAS TR APPROPRIATE AIIS POR 0.LP.TAN.L2.43.

CALL
CALL

x"i: 0)) s )

s { ) -

: faasn

PLOT (M LT}, )) ’ e
PLOT (X (3) 4% (8),2)

PLOT (X(23,5¢3).2)

nor(a(n, M.2 .

PLOT (X(0),¥ (0), 2)

PLOT (X(8) ,X (0),2)

notrrhul),:u

PLOT (2{6) ,¥ (6), D)

PLOT (X(2),Y(2),2)

AV TNB BABISS ALlS.
AHL(!.S.I,I.0.0.IO.'nnu'.-‘..ll,l."
.67, !.0.0) GO %0 2

Al'& ". 7.:. Y.0.0.l.,'l' .".u‘. '..’
AXPL (‘.3.'.'.“‘..0.', Il!'.lau ..“.-'00’

Co=<---< DAA¥ LINRS TO FIniss pox.

CALL
CALL
CALL
CALL
RETUR
2 comrl

PLOT (X(S) ,X (S),3)
PLOZ (X (6),X(6),2) - ., Re
PLOT(X(1),(1),3) ,
PLOT(X(3),Y(3),2)

]

C-————=<- DRAN TN} APPROPRIATE AIIS POR 325.LT.Ta¥.LY. 360,

CALL
. BCH =
CALL
Co-v—=- os
CALL
CALL
CMlL
CALL
axTUR
Rup
sUBRO

AXPL(},1,1,7,20,0,0,'2" e=1,01L,1.0)
-NCHAR

AXPL(S,6, x.1.onn.onx.uss.la.lu.-l.»
AV LINES TO PINIsm ®OX.

PLOT (X(3),¥(S),]) ¢

PLOT (X(7),¥(7),2)

PLOT(X( 1) I(N, 9

PLOT (X(2) .Y(2),2)

]

UTIER AXPL(R,J,I, T,08X1N8,Q8AX, /81337, 3CuAR,B1Q, 02s)

DInsasIos x(e),y (8)

L(3)=-x(I)

BY = Y (J)-x(I)

o« SILRP = 3QRT (Dyee2 *pgee))

ARGLE = 57.29%*atrn (02 /B1)

AXale = Quiy |
. AXDELY = (QUAX-QBINW) /AZLEM

OTIC = axtLpu/m1 .

c CALL szzv(nrxc.z.t,o.l.nbo.n.o.o,n.on :

CaLL lllsl(l(l}.l(l}.ll'!.lCl’l.AlLll.llﬁLl{lllIl.AxDlLl,ltIC)

RETRN .

 T'TY ) .

Suss008TINE PIL23ID(Q, B8 ,8N) ‘
c.‘.“..“‘...‘...”.‘“‘0.‘..“‘0...‘..‘... .“0...“”00.0.“““.‘.
C e F1LT22 MNNY -BBYTRR 14 | oUsPEr OF 2-0 aup AO0TINS. L
c L AB® 5. B1LROY =1 L
coomoouoooomonmoo“oon00“00“oo_oooo”oooooonnoooouo““ooo
— RBAL Q()0,00)

rehse 3,1 . L‘

Co—eeeas PILYER 1D I=-0IRDCTION
5E8Y = 3x -

50 1 g=y,4s8



] -

SIGELI © 0. 2OTeIQ B L))

a

<



?

r,\

C000 040000000 08000 00 000009000000 00 000000

(4
(4

e

v

L]

. 28A8 sONg
. SICRARD B, WTLAGP

Y0S(38,69) ,? ﬂlo
BT ’om(
U1 (508), T8 {909) .l!'
+BEAK,LO, DO, ,VPLY (%00, 0
INTRSEE X1IST,RIBT,TINT
LOGICAL BDOS
ILEE = 8.0
L8 = so‘
I8 = §,.0-7
TINC = $,8-7
TPIR & 0.0~
TING = 1.5 v 0‘
" BEAR w 3.Be .
e -Fé' . .
IIVE » § o
RINE = )
TINe = §
10 = 30.0

& N -

“m“m

Ce90000000005¢ 00000000 .
REAL A(30,68),78 (”0“’0' o80) , (30,68

00000000 00

~— e

L e

«

READ(3) UTAPS,FTINE,T,8S,82,L0,R0, ¥0,70, DZ,UB0VND,ILAS

1,815,008, 80
BACKSPACE 3

v = sou(:‘":o 11470) /SQRT (RA)

T80 = LO/3
X = L0/ (4% -BOOUND)
K& = X0/9X ¢ 0.9
KX = pgef-kX
IT? = &
EK = ¢
, - -'oc..“
CALL PLOTS
CALL outgul.nu)

2 KK =KEeY "
IF(T.62.7P1N) oo 9%
O = Y1 o {KE~=1)s2XBC

1200 = 2
RBAD (3,28D=99) NTAPR, NTIRR
T s o000
IP(T.L2,1.8-30) 2=1,00~30
xnt.cr.n) 90 70 3
REAR (I)

REBAD (3) 'rl

READ()) I 4
READ(D)

READ (3) PEIX ‘
READ(I) V¥

READ(3) »

READ(3) VIPS

AZAD(NH ¢

I? = LT P

T(IT) = ¥ (1,KX)*N0
TBT(IT) = TEB(V,KX) *TO
TIZ(IT) = TI (1,KX) no
TUIT) =

GO 0 1

‘

«2,08,M3,L0, IO,IO.'I‘O,”.INUID

9.580¢ 11°70) *SQuT (RE)

MW
s

PRE(3T),7(30,609

o

-

‘.;

P
L ]

8



[ ]
. 259
3 .
[ ]
b ] .
AL A8 (E-00LE) ) .60 T4 &
&
S8 ”
Mt 7T
SBA D)) 8
28} M3 .
'm ’ " <
. St °
s 3) oS
AWMLY ©.
I o 1309
ED = ¥(1,EX) *80
TER(IT) = TR (1,KX) R0
LIT(IT) = TX (1,80 o0
TN » ¥
o0 10 3
o BAGKSPACS 3
g o 2040
. so 20 S
29 2718 = 0.0
s corrines
Cooe—eea PLOT CSREST TI&E 1B S2COU0S.
SEIP=aLo0 18 (TXR8)
SEIPeEsEP-1
SXPeRSEP
&  pASEEIER/ (10.008EXP)
ges (Y180-2.0)/18.0 - .
CALL STEIOL(1.6,1.0,8%,°TI18B" X 149,0.0,18)
""o“’.m .
CALL SOEBSR(VE).0,8%,8A58,0.0,2)
vis1,00 10,0002 .
'1‘1.0‘,_&-“7
m.”'
N CALL BORBSR(VE,VT,N7,819,0.0,-1) SN—
CilL 09 (ILSW, $LON)
c-«-;...:uu YECTORS PO8 PLOTTING BADIAL PLOTS.
A . ’ . ¢
AT 1=0.0 ’
0 0 I=4,088
ag = uoux.u;.
(L * 2087 (0. (l”lt‘n
10 ATY = A%
. 6 6 L=},08
2¢X) = (D)

L

at(l) = B(I,EX)°00

(1) = TE(X, LX)
6 TXV(I) = TE(T,EK)O%0

c‘u l'm".':'.""""1"‘”.'&.0 ll.t' ..“‘ .x.t" l',“,lﬂ)

Coee—== BRFISE VECTUNS S98 PLOETING AIIAL PLOTS.
30 7 I=330880,98
L
)
:ﬂ;‘? ﬂ‘ -\ 'n"..:l)‘"
| J
i,

? e1v(S) = LY , )
u,st»um (gz:a.nmmﬁf-.uu. BINT, BEAX, XXBT,°8°,~1,L0)
cadd u:m'u.u.l , Mol ¥S0UN D, XLBS, TLEE, X30Y,50)

o

4 v

e o, . \ U



v
3
00 .
_
Cowmeeee GARS M‘t 3 T00CTIN0 OF TING.
CALL EPWLOT (LT, 72,08, P82 ,952, KLES S 108, BLDT, BAAL,210T, * ¥ ,~ 1 ,2200)

Coesnnes PLOT ALIAL VELOCITY 98 1.

CALL VP30T n.x.nu.u.u.mxxu.u.m
CALL §L0%¢0.0,0.0,996)

sroe

zup

SUBROUTING AJDB(XLES,YLES,/ZAL/, NTIX,2010,XBELS, XD

L +« 2818, ,708L8 , 700 , 5425, BOBLE, 80D
ABAL BALIS,EDELY, 3BT

CALL ALIS2 (9.8,0.0,ZAL,071T,3LEN,0.0,5820,I00LY,X08)
CALL AZXIS2 (0.0,0,.0,°%',1,YLE0,90,0,7014,79LLT,307)
CALL AXISQ (RLBU,0.0,°0°,-1,TL85,900.0,8820, YDRLY,HDT)

CALL PLOT(0.0,%L0L838,))
CALL ‘PLOT(ILSE,TLES,2)
anToRs

2N

SUBROUTIEE XMOT (SP,X,¥,78,T1,ILE88 ,TLEN, BINT,NEAS, 318 ,/EAR/, NTIT

REAL l (358) , 8 (500) ,2B1500) ,21 (30®) ,lm. BR1E,9PBLT,UDT,SC (8)

IntRéRa

Calk PILETD(2B,ND)
CALL PILTID(TI,.BD)
CALL PILTID(N,BP)
TRIE = 1.83%0

TEAX = ~-1.2%0

00 { Isi,Np ~

IP(T8(I).LY. T8IN) TRIN=TR(I)
IP (23(1) o 1%. THIN) TRIN=TI(I)
IZ(TB(I) .GT.TNAX) THAX=TE(I)
IF(TI(I) .GT. TEAR) THAReTI(1)
IP(N(I).GL.2NAX) B(I) = BNAX
CoNTINNS
SC(l) = TaIs
SC(2) = TMAX ¥
catL scars(sc,fums,2,1)

INIB © 0.0

IDELE® X8/1ILBY

107 & ILEB/X1INT
T8I & SC(I)

TORLT » SC(N)

T = 1.0

BEID = 0.0

sosLy = mmax/vias
39T = ~TLER/DINY
TE(EPeY) = SC()
TE(Pe2) = SC(3)
TI(EPe1) = TR(WPe1)
TIBPIT) =TR (BPe2)
R(NPe1) = BAIN

B (BPe2) = EDBLY
X(EPel) = XBIN
I(UPe2) = XDELY
CALL AIDR(YLBP,YLEN,ZAZ,BPIT,XNIN,S00LY, XDT

. <2219, TP8LE, TP, BELN, $08LS, D)
Clu lx..".u.”".."’
CALL LINES(X,N,5P,%,0,0)

.
«
(]
* &
»
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s I3 A ll! 0 llllllll PLORTESR PADRE BASTR.

{ .
uoa 2.0,-3)

1 CALL PLOE{(1.0,3,0,-))

%0=0,.0

'Mo. ' .-
EL=3L88

14=T380

G0 20 10

S5TRY OAS (ILRN,TLE0)

CALL TCLEAS(S
READ (6,600)
FORNAT (I9)
CAtY nnn(n)
lmn.un BOTHG

G0 20 W -

2 YE=6. 0018 &~

3 n-to * %

10

Vi=g 001k Py
1oT0eVYTLEE ;
1L=3LED

12(Y.67.33.0) 00 70 3

CALL PLOT(0.0,VY,~))
Y0=Y03 VY

4 4 (ll*lgf.ll) XL=ILBY

»

CALL 'lﬂ’('l.'!.-))
IL=XLB8

TSI B

Y0u8,0

ASTURS

114

.l-ICllelbﬂf_ll. SALS SaTiLL BSTSRF NTERED,

e

--S5988 EE28 POR m BOT 19ST CALL 70 TUXS ROUTINE.
‘e '

v

SUBROUTINE LASPLT (P, ¥I,N0,70, IO.‘LO D, XLEN, YLEN,XINT X0}

Co00000 0000080000000 00 ...“.O....O.“... 080090000 PTO00900 08000080

4 PLOT LASER PONER " Us 2. - I8 6N, .
. "'.z’,"”. L ]

™ RICEADD

C9000000000008084008400040000000004

BILROY .
S6600000006008800000880000880000008

REAL P (120),2(120),40,L0,10728 (120) ™S
um:nz:xn

BS = 0, .

2L0 = 0.003% . -

T "" *

17 (POO0ND.BQ.2) -z-u-z
BPinge

BP2=Re2

D0 2 Iwi,n

P (L) =8.928-220 000900 ¢ 1 .S‘l”l.‘l (X)

ALDRLE=S008ED/XLEY LD
PEICSELER/XI T



a

ﬁ G-“ ‘, *nu.o.o.o.o.mu.mq

I198LY = P
CALL AXIS2(0.,0.,°LASBR POUSR (GW) *, V6AMLED,90.,YRZE, YO8LY,~1.)
0821.0/(NS-B00000)
8 { 2ei,8 !

1 S(I)=(2-1.9) *p8
8 (801) =0.0
g (A9 2) =RDOW/TLES
CALL LINE(S,0,8,1,0,1)
CALL vma.o.uu.n

AR 0SsARS (XYO-3(X) *10)
B/ (. 263932681 042) 01,89 Ay

’..l.l”

( .0...'1.!“81!".".!&3! ’0..!.{!.!..&’.’1.)
" A Il(l.l.ﬂl.l. 'c.pu
CALL ‘036 (XiB, TLEN) :
asTens ™
1 {1 ] =
SUDAOSTINE PILTID(Q,¥) ‘
c...“.‘.m...‘““‘.“.....‘“....‘.“.’“........‘....‘.0.........‘.‘
C L4 PILEED JITTEIR PROE RRSULYS BRIORE PLOTTING. d
" C | SICHARD B. NILNOY 78-02-14 .
c..‘“.“...“......‘..‘......““..‘....l“...‘...‘.......‘...‘......‘..
8BAL Q¢Y)
281 = g=%
Q2 = Q(1)
00 1 X=2,881
Q1 = () .
QL) = 0.30Q(I) ¢ 0.25%(Q2+Q(I¢1))

“ 02 ;09
\ 1 courluee

BETURY
o sm J
SIBROGTINE nmu.x V21T, XLEN,YLEN, XXNT, KK, X
c..‘.‘...0..0..‘.0”.0..‘0.‘.0.0.0..“““‘0‘...0.0!0.....0‘OO‘O.‘.0.0..
c . PLOT VBLOCITY FOR SEVESAL TINES. .
[ L4 2ICNARD B. RILDOY 78-02-15 ®

CROPPS 00500050000 080003800000080000005 0000008000080 0800068900888800000888
REAL VOLY (100, 10), ¥ (100),3C (8) ,% (500)
1078888 XINT
£ = RR-Y

C-=meo=ee FINO BAL. AND RIN. OF ¥V AND SCALR.
VEAZI = =1.230 -

018 = 1,890

D0 1V J=1,R

20 l-‘.I

IP(VPLE(I,J) -LT.VRIE) VHIN & ¥PLT(I, )

IP(VPLY (X,Jd) .G2. YHAX) VEAX » ¥PLTY(I,J)
$ conrinul

(V) = vars

$C(2) = vEAX

CALL BCALBR(SC,YLRN,2,1)

vazs = sc(d)

oA _’,



g L

K4

aL * IBMN) . .

Igs - oa )

I0ELT = XO/kLRn

I9T o ILEN/ElNT

"wee-1.0

CALL AXIS2(0.0,0.0,°3°,-1,1LE8,0.0,X080, 10852, s0ef

CALL AXIS2(0,0,0.0,°V,1,1188,90.0 H~NULE,VDNLE, VOT)
CALL PLOT(0.0,1LD8,9) .

CALL PLUT(ZLEN,9L8N,2) o . - - @
CALL PLOT(XLBS,0.0.3) - _
20 2 Jo1,K %

‘00 3 Ts1,8 Ty
(I) = YALE(Z,0) . oYL, e '

CALL FILTID(V,N)
v(BeY) = vaLl

¥(Ne2) = VDBLY

CALL LINB(X,V,¥,1,0,0)

COUTINUR . . B

.3

o

- 5.

263



L Y

€
€
(<

-

-y .
Ngj?‘“c 000060 $0000000082000 0800000008 P0 8608 0000000000000000008080080

/" READ DATA FEDS SISK O3 TAPE ABD PRINT BESELYS. .
@  RICHARD NILBSY - JuEB 16, 1M )
“Q“.."...‘...“““O.‘..‘“‘OO‘.‘OO“”O‘..‘.O..‘O.“00..‘00““0..
BEAL & (30,60), T8 (239,60) ,7T (30,60),8(30,60) ,#uL (JY)
©1,7(30,60) ,P(120) ,8(30) ,2(30) ,PARSS (I0) , 0, L0,8(30,00),¥(30,60)
IVTEGER X,8, IAIN
v B(6,621)
('}, ] SAT(* IPPUT RABCO, RBCE, AND SKIP RATR'/® ] » »)
BEAD(S,501) BICO,BRCH,NSH
S01 POSBAT (319)
101 BEAD (3, BND=102) FTAPS,SRINE,T,H,8X,LO0,R0,¥0,T0,DT,BR, XLAS, XALN
- BBAD(I) A
READ()) T8
BRAD (3) 2%
e (3) ®
' () mz

.,Fom v N
’(3) P _ v
BAD ()M : : ' . .

. 28AB(Q)) ¥ .

IP(YTIAB. 38 B8CO) 60 TO W1
“PRCO=NNCO+USH
IP(NTINR.0T. ) 60 T0 W2
VRITR(7,622) FTINE,T,DT,ER ..
622 PORGAY(°~PTINE=’ I8, TINE=',1089.2,"* Dr=*,89.2,' BR=*,0P[3)
"n.( .‘3’) l.ll,nl'l,u,lO,lO.fO
623 PORBAY(® B=°,1),° §X=¢,13,' DBTAPR,',13,°' LO=',1PR9.2,' ROw’
‘.”.2.' '0-."".2.. 1‘0"..’.2) N
B0X=6d ¢
BEXI=XNXD
n3=12
ans=1
Ruz=1
DO 13 X=BuXI ,¥8X
DO 13 S=aNI, Ny, 8HS -
¥ (S,X) =3QRT (¥ (S,X)) .
13 U(S,X) =0 (S,X)/0(3, 0 -
609 PORBAT(" *,1P20210.2)
VRITE(7,608)
60 PORBAT('O 1m®°*)
DO 2 Xs¥uxI, suXx
2 WRITR(7,603) (TE(S,X),S=RAI,dn,ANS)
YRITR(?,605)
605 PORAAT('O n')
DO 3 XsNENI, NNX
3 WRITB(7,603) (TI(S,X),S=BAI,us,Hus)
URITR(7,606)
606 PORBAR(‘0 ')
PO & A®™BBXI, NUIX
o WRITE(7,683) (N(S,X),S=BAI,NE, BAS)
URITR{7,607)
607 reREAR(‘e V°)
50 9 X=aixI, NNz v
S BONTR(7,60)3) (V(S,X) ,5=BNI,NA,0AS%)
YaITE(7,4600)
608 PORBAT('0 "we)
DO ¢ I~NUXI, 88X
6 WRITR(7,603) (U(S,X),.S=RNI, N, n43)



; 265

y [ ]
YRITR(7,609)
609 POREAT('0 B DOJEDARIRSY)

DO 0 Xeg3LI,pNX
8 YAITER(7,603) (W(S,K),S=NR1, 80, 008
IP(NZINB.LR.URCH) OO 2O W1

GO T0 103 ! &
102 URETE(6,699) NTINR
699 POREAT(*~ LAST RBCORD OF TAPR NAS STIEB=',I18,°.°%)
103 RETURN -
131 ~
- N



coooooooouoooooooooooooooooooooooooooooooooa.oooovooooooooooooooooooooo
C . PLOT BEAS INTERSITIES VS, X AT VARIOUS TIASS.

C . SEASS ARS BEAY PRRQURNCY BIXES & COLLISIOSALLY DAAPRD.

c . 2ICRARD B. AILROY sgrr. 13, 1977,

C‘0.."‘...........O......"..”...........O.... 080000000000 880000805000¢

BEAL T (1900) ,TT (1000) B (1000) ,L1(1000) , L2 (1000) ,X1(1000)
1,12(1000) , K1 (1000) ,K2 (1000) ,K3 (1030) ,&8(1000) ,LLEDA,LO,LP,LT,H0
2.810,190,120,110,120,201 (1000) ,102(1000)
$0=s.08+ 16
1102106
120210.618
£80=100.0
£10=100.0
110=1.08+11
1201.02+10
1P=300
§PLTS=3
L°-1°°.° -
LPe20.0 .
LTsLOSLY
DXsLT/ (BP-1)
¥P1=uPe (LO/LY)
BP1PI=EPIY
BPAI=EP-1
Co===--~ PIND K1. .
LLEDA=ALOG (ABIN1(2.35780%¢1.5,12.09TR0))
K108, 672-300800020L 1009 20LLEDA/2B0%®1. S
C-ommem= ISITIALISE SONR ARRAYS.
DO 1 Is1,NP ,
TR(I) =70
TI(1)=710 G
¥ (1) =N0y
L1(I)=L10
L2(I)=L20
' CONTINUR
D0 2 I=1,NP1
X= (§P1P1-I) *DX
K1(I)=K10
K3 (I)=K10® (L20/110) **2
I1(I)=T10¢BXP(-K 10°X)
12(1)=1.0
2 CONTINUR
DO 3 Is¥P1PY, NP
. X1 (I)=0.0
X2(1)=0.0
K3(I)=0.0
Ka(I)=0.0 Py
I1(I)=I10
12(I)=1.0 ,
3 cosrinoe .
12(1)=120
DO 9 Is=1, NP
101 (X) =X (1)
9 102(I)=12(I)
Ce==——-=- PIN® K2 AND KA.
CALL sPER (L1,L27H,TE,TI1,2,K2)
DO & Xe1,8P1
K2(I)=K2(1)
K8 (I)=K2(1)® (L10/L20)

«

266



s corrinvs
Cee~=-== IBIPIALISS PLOTEING AND DBAS AXIS.
CALL PLIDY (L2,BX,0P)
STOTAL=SP-2
PPLTe (NTOTAL/UPLYS)~ 1
C-----=- CALCOLATE INTEUSITISS.
DO 5 J=1,NTOTAL
DO 6 Isi,NPR1
2%0.5¢ (K9 (1) *K2 (1) *302(I)) *DX
6 11(I)=101(Xe1)®(1-3) /(o)

DO 7 I=2,NP n
30, 5¢ (K3 (I) ~K8 (1) *1017¥H)) *DX
7 12(1) =102 (1-1) *(1-2) /(1*D)
DO & L=, NP
101 (1) =11 (1)
8 102{I)=X2(I)
C---<=== PLOT IPF DISIRED. .
IP(((d-1) /8PLY) *BPLT.BQ. (J-1)) CALL PLY (I1,12)
s corTIwol
CALL PLOT(0.0,0.0,999)
stor
END
SUBROUTINE PLINT (LT, DI, ¥P) -
,11(1000) ,I2(1000) ,X(1000), LININ,LINAX,LE1(1000) ,L12(1000)

¥ES IC (2) /0, 1000000/
&.1816e9.0

LIMX=18.0

CALL PLOTS . .

CALL BRASE(SY)
CALL TUAXZ(0,08B3KC)
CALL PLOT(20.0,10.0,-])
P-ll!l\(J0.0/!LII,)0.0/YLII)
CALL ZACTOR(D)
GO T0 2
2 CONTINUEB
Cowmme=- DAAN THR AXIS.
DRLZLO=LIBIN-LINAX
CAld LO.IX(..0.0.0.'1'.‘,!Lll.’ﬂ.o.LIIII.DILTLG,0.0)
AXDELY=L2/XLEN
CALL 51112(0-0.0.0.'1',-‘,lLll,0.0.0.0.lXDI&!,1.0)
CALL PLOT(0.0,YLES,))
CALL PLOT(XLEN,YILEN,2)
CALL PLOT(KLB®,0.0,3)

L SET OB X - VECTOR.

DO 3 I=1,0P

3 X (I)=(I-1)*DX
GO 20 999
ENTRY PLE(IV,I12)

C--~——=- TAKE LOG OF INTRESITIES.
DO & I=1,8P
LIV(X)=ALOGI0 (11 (1))

LI2(I) *ALOG10(12(I))

XP(LIV(X).LT.LININ) LIV (X)eLININ
1P (LX2(X).LT.LIALIN) LX2(X)=LINLD
1P (LI1{L).GT.LINAX) LIV (D) =LINAX
1P (LI2(1)«6T-LINAX) LI2(X)=LIBAX

s CONTINGR

2



‘l.o l

uuun; - mnu-&xntqmu“’
L22(B0e2) = LEV(WPI)
Z(ePeY) = 0.0
E(80e2) = LT,
CALL LIBR(X,522,00,1,0,0)
CALL LIWB(X,L31,89,1,0,0)
999 2av9Ne .
1Y
SOPBOUTINS BPAR(LY,L2,0,78,71,0P,AL00))
CO880080000008000000000000000000000800000000000000000000000038008000000090¢
c s  CALCULATE DRAT FRBQURICY #IXINS BASES,
c s  OTN RLITTRGN § 108 ROTION 1S ACCNUETED POd.
c e  SLECTROA - IOB COLLISIONS ARE PELLY ACCOSNTED POA.,
c ¢ PONDERONOTIVE POSCE O8 BOTE BLECTRONS AND I0NS.
< s  BICHARP B, BILROY ABOUSE, 19, 1977,
C 8880000000080 0000500003000088000080008000 0000000000800 0000000888000858000
COuPLEX J3/(0.0,1.0)/,K8(1000),KX (1008) ,82(1000) ,ED8 (1000)
1,891 (1000) , BCR (1088) ,BCI (1000) ,IB( ) o JX (1900) , X,8(1000)
BRAL L1(1000),32(? o8 (1000) ,T3( W00) , ¥X (1800) ,03(1000) , K3 (1008)
1,-1(1.00).nnm).u (1000) , X1, K2
C=3,. 0@e 10 .
Cmemmmmme 3 am 13,
PO t Iet,B0
T >
V1(1)=1.8838+13/021(1))
W2(1)=1.0038+15/(L2(1))
U3 (Z) w1 (2) -2 (L)
VPE=S. 638080 90RT (R (X))
1P (WPE.GR.02(I)) 6O %O 8
K1a8Q8T (N1 {5) 0+2-UPBee2) /C
E2=S002 (82 {X)002-uPRee2) X
1 EI(X)=8V¢K2
G0 10 9
8 Epegk-~1
C-=——v== PIEP LINEAR SUSCEPTABILITIRS.
9 CALL LSUS(¥),X),N,TR,TI,80,K8,KI)
Comwmme ~~"CALCULATE COLLISIONAL CORRECYION PACTOR.
DO 7 I=V, 8P
YEI=2,53R-0598 (I)/ (TR (X)** 1. 3)
UPR=3,.6IR08¢ SQRT (R (X))
B(I)=1,0-J°u)3(I) *VYRI/ (UPB**2) - !
KR(XI)=B (I) *KE (L)
KI(I) =8 (I)*KI(I)
7 CONTINVE -
Coconeon SPECIPY DIBLECTRIC CONSTANT RP.
DO 2 I=1,8P .
2 BP(1)=1.06KE (1) ¢KX (1)
Coeeme== SPRCIPY- POSDEROROTIVE *FIELDS’. POR [1=I2=1.9
50 3 I=1,2P
X=K3 (X)SLY (X)*L2(X)*d .
BOR(I)=3,118-160 @
3 BAL(R)==1.69D~ 1902
ST cwum rm
50 8 L=V, 00
ulm-nm‘(uux %
8 BCI(I)s-RI(I)® (BDX @)+ (t.
-~ SPECIFY RLECTRON AND 10N CURASE T
PO 5 I=1,8P . .- !

c



oo (2 <908
‘ uumom _
$ 23(z)=8o801 (2)
Cm=evne R 1Y 186 RATES, s .
920 6 304,00
2=2,00=-7001(X) NNI(T)
A8 = ZoRZAL (RDEB(X)
AJ28 = XOBBAL (BCI(X
AJII = IORBAL (BDI{
2321 = XORBAL (BCH(
AJR = AJVROANES
A1 = A)V20ANS
ALPRA(I) = AJBOANL
C ¥8ITE(6,601) L3(X) ,a378,0028,838,A311,4321,A01,ALP0A(2)
S0 POBEAT(* ', 108811.8)
6 courianes
. T .

]

::-onxu Lﬂ!(ll.l).l.ﬂ.’t,l!,l&ll)
c.““‘“.‘.....“."..‘..".0“"O..0‘..“OOOQO‘.......“.....““m“
C  .CALCULAYA LINEAZ BOSCEPTABILITIES FOR BOTM SLACTROES § PakyoES, ©
c o m: 5 aItaor A08ust, 18, 1977, .
c..“..‘.....’ 0000000000000 084509000000 0000000000000000800500000000

cosbLRx ) KX (1000),3/ (0.0,1.0)/, M0

8BAL ¥3(1000),K3 (1800) , ¥ (1000) ,2E( ¥00) ,TX (1000)

Cmve=we= FIBO® KR. ) p

90 Y ol P

SPe3,. 0380008087 (B (T))

¥0=$.938¢+ 708002 (TR (1))

AD=i](2)/ (K3 (1) *V0)

57 (A0.02.50.0) 60 %0

S8 (X)=2.0° (WPPAO NI ( 20 (V.00 000PQ (A0))

60 70 1

3 KB (X))~ (BP/BI (1)) P2
1 corriaes :
C~—-—~-= 7189 KI.

DO 2 Ist,BP

Pe 1, J1R¢308QRT (N (1))

v081,388¢6*8QR2(TX (1))

A0=¥3 (1) /(K3 (1) *¥0)

IP(20.G67.%0.0) €0 0 &

EX(I)»2.00 (UPOAO NI (1)) *%20(1,00J0200P0(A0D))

¢0 70 2 /

A KI(I)e-(W0/83(1))%e2
. 2 cossInus

BRTUAS

BED

CONPLRX PUSCTION PO(AQ) . ]
Ce—==w<e~= CALCULATE PO AS DERPISED ON PAGR 178 OF STII.

COAPLRY J/(0.0,1.0)/

2%AL POSPL(12,9)

* PATA Y0891/0.2,0.5,0.8, 1.0, l.l.1.'.1.7,2.0.2.&,3.0.1.5.6.0.

1 .3098,0.7 1,068, 1.076, 1.013,0. 913,0. 7451,0, 6027,0. 8862,0.3363

2,0.2992,6.2867,1.003,1.299,0.5498, <0.2165,-0.8 162, -0. 5633, -0.632,

30.8114,-0.2316,-0.1393,~0.0931,0.0,0.0,0.987,~3.8911,-0.320%,

4-0.6701,-0.06606,90,1709,0,231,0.1207,0,.95918-1,0.03682,0.0,1.0%
$,~8, 976 -5.212.—0.!0".‘-007.0.2631.0.00\13,-0.06.21.-0.0033,

6-0.01201,-0.02828,08. 0/

20820

IP(AGR.GT. 10.) A0D=10.0 .

(IR(I}))) -
(J8(L)))
(J1(8)))
% (IT(D))
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CO0000 000050000000 00000000000 oood(o'ooou 080009060000 0000000000600000088000

(=
c
C
C
C
(o

SIBULATE IBTERACTION OF THO ASTIPABALLEL BEAMS

I8 A PLASEA

.
. FITR A DIFPPEREICE PREQUEBNCY OF THR ORDEs OF THR I10B-M00STIC
.
.

PREQUENCIES.  BNATE CALCULATIONS IN SUBDROUTIEZ PCDA.

DEVEBLOPED BY RICEARD 0. RILROY. OCTOJER 26 1977,

.
.
PREQUEBECY. COST BAY B} PROMINATIVE POK LARGER DIPPERENCE 4
.
.
S050080000000000000080000000000000000CC000TCE800E00EPI0OE0000000008000

CONPLERX *16 0(100).11(165),12(100),!(100),ll,dl.l1llD.C02.CDtl

1,093,02a80K,0/(0.000,1.000) /,7,CKINY,CKID2
COoAPLEX CAPLX
REAL 80,L0V,LD2,K3,KAY,KA2,KIDY,K182,LLA0A

~===- SPRCIPY ISDEPESDERET VARIADLIES.

N0=2,58017 °
T80=160.0

210=120.0
LD1=10,2870
LD2=10,2609
13AX=00.0

¥NAX=6. 0B 11 -
¥P=99.

NIETs=8

HP¥=900

¥DP=10

uPhTad0

ATAP=S

NREST=0

P1=1.8B¢10

P2V = 1,0

P22 1.210

P23
P28
P25
21
222
23
228

—————— CALCULATE SONE DEPENDENT VARIABLES.

¥3=1,8852+15¢ (1. /LD1-1, /LD2)
DZ=PiLEB/ (NP-1)
¥1=1,885L+15/LD1
¥2=1.8858+15/LD2
UP=5.632+0ue SQRT (¥O)

C1 = C®*SQRT (1.0~ (¥P/W1) ss2)
DT = DZ/(2.0CY)

DT2 = 2.0eD7T

TAAX = 2MAX/C1

KA1 = SQRT(W1e®2-4pee2) /C
KA2 = SQURT(U1982-§Pee2) /C

TX3Ie KAV ¢ KA2

T=(0.000,0.000)
NTINE=0

----- CALCULATE INVERSE BREASSTRANLOUNG COEPICIENIS.

LLNDA = ALOG (12.0°TE0)

IP(TEO0.LT.27.0) LLADA = ALOG (2.3°TR0%e¢1.5)
GAR = 2,9E-06°*N0°LLRDA/ (TRO**1.5)

KIBY = GANSRPes2/(2.00010e2)

2n



1 . v
KIB2 = GANCUPeO2/(2, 0°U2¥e2) ?
Ceo—= PR TO CALL PCOR - 7TAR AAIN SSBEOUTLINS-
CALL 98T (P, 8N, 30044382320, 710, 0000} -

XV = SQRT(6.283E7 /(N %KAT))

12 = 80l2(6ﬂ30131/(020llm)

DO 1 I=V, NP

¥ ({I)=(0. 000, 6.0D0)

AN(L) = xnscn(n)ou;(-unouun;
CONTINUE

C~~==-== SPECIPY INITIAL PROFILE POR PULSE.’

DO 2 I=1,Np

2= (I-1)eD3

17P{2.67.322) GO 70 3

A2(I) = P21 ¢ ((:-:21)/(:22 221) ) (P22-921)
GO T0 &

cosrinoe

IP(2.67.22]) GO T0 &

A2(I) = P22 ¢ ((3-322)/(223-322) )% (P23-022)
GO 10 & v N

costingz &

17(3.GT.228) GO v s

A2(1) = P23 o (430223)/(320-323))°% (P28-P2))
60 0 & - )
cowrisue

-~

1P7(2.67.225) SYOP -

2

A2¢I) = P28 ¢ ((T-328)/(225-328)) (P25~P28)

GO TO 6

A2(I) = xz-cosolr(uz(x))

coyrinoe

IP{vREST.NER. Q)

1CALL REST(BREST,STINER,T,AV,A2,¥) °

AT1BED = X1*3SQRT{PI)

K1s-JsRpPes2/ (2,000 1%)0)

K2su 1okl /42

CWI=CHPLX(93,0.0)

CTEAX=CHPLX (TRAX,0.0) . :
CDT=CHPLX (DT,0.0)
CUT2=CHPLX (§22,0.0)
CKIRY = CAPLX(KID1,0.0)
c41d2 = cHPLX(KID2,0.0)

CALL PCOR(AY,A2,N,D,CDT, CDT2,IDT,IIIT,IP.II K2,A180D,C¥3,CTAAX

1,¥1,62,8007, lfl! +T,NTINE, KAV ,KA2,CKIBY,CKID2)
II?UII
LD ”

SUBRGUTING PCOA(AV,A2,8,D,DT,DT2,80% ,8L8T, 0P, K),K2,ABSD

1,93, TRAX, V) ,82,8P00, NTAP,T VT INE, KAY, KA2,KIBY,K1B2)

COPPSS0U0CL0 8000003000000 SSPE080SCSOCI000C00S00000SS000ITE0EIPRISSLIITGS

C
C
C
C
C
C

. CALCULATE BEAN COBPRESSION DUER TO TWO ANTIPARALLEL
L BLECTROBAGNETIC BEAAS WITHN A DIPFEZAENCE FREQUERNCY
. CLOSE TO TME NATU2AL IOWN-ACOUSTIC FREQURNCT.

. TRABSIENY @ERAVIOOR IS IWCLUDED.

i RICHARD D. BILROY ocrosgR 23, 1977.

ISPLICIT COAPLEX®16 (A-H,0-3)

CORPLEX® 16 A1(100),A2(100) ,0(100),D(100),K1,K2
1,A%(100) ,P(100) ,1J/(0.0D0,1.0D0)/,K181,KID2
REAL ¥1,¥2,KA1,KA2

¥DT1=¥DY

npT=1 -

Do 9 I=1,¥P

S80S0 0SSOV O PICBCP SOOIV 000SPS00 000000000000 000090083882000008000



9 AV0(I)=A(I)
1 cCoONTINGS . .

AYBAD = qplxr(ctlilt(tllx-r))-Alll

STINR=uTINE Y
12 (FTINR.GT.NP®2) BDT=UDT!
orn‘Er'lot »
T=T+DTH
Ce=-=—=== ADVANCE A¥‘BY DT - ¥DT TIEES.

A1(1) = AVBED
DO 3 J=1,¥DT
ANTIRY=A 180D )
DO 2 1Is=2,8P
Ini=I-1
ANIsA(I)
At(x)-ltxntovr'x1o(l(xn|)-nz(xnt)ol(x)onz(l))-n1-lxllon1x|t
AVIRtI=AY]
2 courINvS
3 cONTINGE
C———~—-~ ADVANCE A2 BY DTB.
- wE s RINO((MIINEe1)/2,0P)
DO & I=1,uN
AZ(I)-AZ(I)0VTI‘I2‘DC0IJG(I(I))‘llO(l)-Dfl'lllZ‘A)(l)
8 CORTINUE
C-»-=-==- SAKR OLD A1 EQUAL TO BV Al.
DO S I=1, NP . !
A10(XI)=A1(I) )
S COFTINGS
Comwom=- BECALCULATE ¥ (I).

B=3XIN0 (NTIBR/2,8P) /

Ir(sn.LT.2) 60 70 8 _ N //

DO 7 I=2,U8 N

BEUSNINO (I,BINT)

DO 6 J=1,ENM

!(J)-li(1‘401)‘DCOIJG(AZ(!-JO‘))‘D‘J)'CDIXP\IJ'IJ‘(J-l)0012)'.3909
6 CoBTINOR .

CALL SIAP(ANS,P?, BNE,DT2)

B(I) =aBS
7 coyTisue .
8 CONTINGR

IP((ITIHI.IQ.1).OI.(((ITI!B/ITAP)‘ITAP).IQ.ITIII))

1HRITR(3) T,ITIAE,NP,DT2,A1,02,8,¥1,02,K41, KA2 .

IP((ITI!!.!Q.1).OI.(((ITIH!/IPIt)'IPIT].iQ.I?IB!))

YCALL BITRE(AV,A2,¥,NTINE,¥P,T,61,U2,KAL, KAZ)

1P(COABS(T).LT.CDABS (TBAX)) GO TO 1

CALL RITE(A1,A2,5,NTIRE, NP, T, W1, N2 fAV, KA2)

REZTURN .

1 471] .

SUBROUTINE DET (D,WINT,WAAX,K3,DT 0L, T, 8, NPY)
C.....“‘..‘0.‘......‘.....“ ....‘...‘O“......‘ .‘...‘..0‘.‘..‘.0.‘...‘.
c - CALCULATE D D(K,%) - .
C . RICHARD D. MILROY OCTOBRR 28, 1977. . .
C....‘O‘.‘...‘.........‘.‘...‘.O.‘..‘.....O..O....““........0..‘.....‘

COBPLEX*16 D (100),ANS
COBPLEX DV (1000) ,?(1000),3/(0.0,1.0)/
RZAL 43(1000),T(100) ,K3,8
Cmm=---- CALCULATE DW; D(K,¥).
DELU=2.0¢UNA L/ (NPU-1)
DO 1 1I=1,uP¥
93(I)=~-¥HAX+DELN® (I-1)
1P (ABS (¢3(I)).LT.1.0E¢08) W3 (I)=1.08¢08

-

“

0y



. ‘ | -
CALL DRV l'l.‘!}ij.fl;tl,li’l) ) .

C-=—==== CALCULATE D; D(l.”o
DO 2 JJ=1,BIDT ] .
TT=DT* (J3-1)
T (JJ) =TT
DO 3 I=1,¥PE
. WTsWI(I)eTT
P (1) =0.39899DU(I) *CRXP (-J*DT)
3 cowrlmue
CALL SIEPt(ANS,?,UP¥,DELY)
D{JJ) =ANS
2 CONTINUE *
P{1)=(0.000,0.0D0) .
Cmmwmmm- AAKE PLOTS OF DV AND D IF DRSIAND,
CALL PLT(¥3,2,0V,D,RPN,NINT)
2ETURS
230 )
SIBROUTINE OEW (WP,¥),K3,TR,TI,0,09)
CO“..‘...‘..“...........‘....‘....‘..‘...‘.......‘............".....‘

c . CALCOLATER D¥; D (X,8) .
¢ L] RICH D. RILROY ocrosmm 24, 1977. L
C““..‘....‘.‘....‘. ....00....‘..0..‘..‘..‘0..0‘...0‘..““‘.‘...‘.‘

COSPLEX DW (1000) ,K2¢1000),KI (1000) ,8,J/(0.0,1.0}/,C
REAL ¥3(1000),9,K3 N
Commom=- PIND LINEAR susc:rf?\i&}txxs.
CALL Lsus(!J,l).l.rl,rx,lrygg.lx)
C-----=- CALCULATE DN, - "
Y21=2.538-03%R/(TR®¢ 1. 3) ~.
YPE=S.61R0088SQRT ()
Ce-K30®209_ 7168¢08
DO 1 1=, NP
B=1.0-Jo¥3 (1)oVEY/ (VPES*2)
DU (I)=C*KR (I)® (1.0¢B*KI(1))/ (1.0+B*KE(I) +B*KI(I))
1 CoNTINUR
RETORY
F 17
SOBROUTING LSUS(¥3,XK3,¥,TE,TX,9P,EE,KI)
C‘...‘......O.....‘..‘....‘O.‘...O.C‘.O‘.‘...Ot.“.0‘.....0..‘0.0...‘...

~

C e C)LCULATE LINEAR SOUSCEPTABILITIES POR BOTH BLECTRONS & PROTOMS., -

C . RICMARD D. HILROY AOGUST, 18, 1977. .
C........‘...‘.......“.............‘.....“‘..‘...‘.‘...“‘...“‘..‘.“
CONPLEI KE (1000) ,KI(1000),J/(0.0,1.0)/,P0
REAL ¥3(1030),K3,8
Cemmmm-= PIND KE.
¥P=5,63E+4¢SQRT(¥) .
105,912+ 7eSQRT (TE)
DO 1 I=1,MP .ot
A0=¥I(I}/ (K3*V0)
I?P (A0.GT.50.0) GO TO 3
KE(I)=2.0® (WP*AO/¥3 (1)) **2¢(1.06J%20070 (A0))
G0 10 1
3 KB(I)=- (VP/U3(I))*®2
1 CONTINUE
Cmmmommm rIup xI.
¥P=1,312¢3%SQRT(N)

YO=1,.382¢693QRT(TI) =

D0 2 I=1,NP
AO=E3(I)/ (K3*Y0)
I7(A0.GT.50.0) GO TO &

274



\

lx(x)-z 0% (UPSAO/VWI (1)) *2%(1.0+J°A020 (AD))
60 10
8 ll(l)--(lr/il(l)"‘l '
2 coNTINGSR
RETORN .
ZuD ‘
COMPLEX PHNCTION FO(AAD)
C-=-~=-<= CALCUBATE FO AS DEPIEED ON PAGE 178 OF SIIK.
CONPLERX J/(0.0,1.0)/
REAL POSPL(iz.S)
DATA POSPL/D.2,0.5,0.8,1. o 1.2,1.8,1.7,2.0,2.5,3.0,3.5,8.0,
1 .3€95,0.7139,1.068,1,076, ons 0. 913, 0.7051 J. 6027 0.4862,0.3%65
2.0.2992,0.25.7.1.003.!.299,0.5!7.,-0.2165,—0.0162,-0.5635,-0.532.
3-0.8118,-0.2316,-0.1393,-0.0931,0.0,0.0,0.907,-3.8911,-0.3248,
4-0.6701,-0.06606,0,1709,0.231,0.1287,0.55932-1,0.03642,0.0,1.097
5,-8.976 ,5.272,-0.5696,1.007,0.2633,0.06673,-0.06821,~0.0885,
6-0.,01301,-0,02828,0.0/
AO = ABS (AAO)
AOE=A0
IP(AOE.GT. 10.)A0E=10.0
AOES=AQR*AQR
c SPLINE APPROXIBATION POR PO
I?P(A0.LT.0.21) GO TO 90
IP(A0.GT.3.25)60 TO 12

Do7 I=1,12

IP (AV.LT.POSPL(I,1))GO T0 8
7 coErTINUSR
8 I=I-1

DA=AO-FOSPL(I,1)
PO=POSPL(I,2)+POSPL(I,3) SDA¢POSPL(I,8) SDASDA+POSPL (I 4) *DA®S]
P0=Jepo
G0 10 11
12 £0=J/A0% (1,000.5/(A0®AD) +0.75/(A0*®4)+1.875/(A0®6) +6.563/(A0*98))
Go to M
90 FO=2.00J% (A0-0.666667910%%3+,.2666670A0%25~,0761905%40%97)
6o T N
11 DARF=1.772e23P (~AORS)
PO = (AAO/AQ)ePO
PO=POeDANP
pETURS |
LsD

SUBROUTINE SIAP(ANS,P,N,DT)
cooooooooooooooocooooo.o-.ootooo-tooooocoooooooo.coooo‘ogoooooo.oooooooo

o * TETEGRATR P USING SIHPSON'S RULE. .
C. L Ir u IS BOT ODD INTEGRATE TO ¥-1V AND ADD BRENAINDER, .
C g RICHARD D. RILROY OCTOBER 23, 1977, ) .

CO00e 0800834200800 00800030¢0¢080030800350050088808088¢08¢00808883808308888088¢

IBPLICIT COMPLEX*16 (A-H,0-2)
COonPLEX®*16 P (100)
1P (¥.2Q.2) GO 'TO 1
GO T0 2

1 ANS=(0.5D0,0.0D0)*DY® (P(1)+F(2))
GO TO 6

2 ITEST=)
IP(((%/2)%2) .2Q.¥) NTEST=2
Bisy
IP(NTEST.2Q.2) W i=)y-1 s
RS RE) , .
Ba2=N1-2
PisP (1) eP(81)

275



P2=(0. 800, 0.000)

.#3+ (0. 000, 0. 000)

DO J I=2,8m1,2

P2=P2ep (1)

DO & 1e3,N82,2

Pi=pler (1)
ANS=(DT/(3.0D00,0.0D0)) ®(Ple (4,0DD,0.0D0)*P2+(2.000,0.000)°P))
GO TO (o,%) ., NTESY

ANSsANSe (P (B1)eP (R)) *DT* (0.5D0,0.0D0)

2RTURD

1 {1.]

SJBROUTINR SIAPY (ANS,P,N,DT)

CO080300B30008008000000000000080000000000000800000000000080000000088008880088

C
Cc
(o

INTEGRATE P USING SINPSOK'S RULE. .
I?P % IS ¥OT ODD IVWTEGRATE TO N1 AND ADD REAAINDIR. .
RICHARD D. SILBOY OCTOBER 23, 1977. .

CO8C00 8000200000000 0800CCP00300800800000008580080000080020800000000888086¢6090

PLEX®16 ANS

f:%m 7(1000) ,71,P2,73

17(8.2Q.2) GO 10 1 .

Go 10 2

ANS=(0.5,0.0)*DT* (P (1) *P(2)) )

GO TO 6

NTEST="

IZ(((8/2)%2) .2Q.¥) NTEST=2

Ni=pn

IP(STEST.EQ.2) ¥1=¥-)

Fateni-

"n2=01-2

Pi=r (1) ep (N1)

72=(0.0,0.0) )
£3=(0.0,0.0) J
DO 3 I=2,m81,2

P2=F2+P (1)

DO 4 I=3,Nnz,2

Pi=rler (1) :
ANS= (DT/(}0,0.0))®(P1+(8.0,0.0)*r2+(2.0,0.0)r2)
Go TO (6,9) ,NTEST

ANS=ANSe (H(B1) +P{N)) *DT*(0.5,0.0)

agTURN

14 1]

SUBROUTINE REST(NREST,NTIAR,T,A1,A2, W)

COO000 000000800003 0C000050883000000000000008 0800000080080 00880000C800¢00808088

C
C

READ DATA PROY DISK TO ALLOW BOUTISE TO RESTART. g
RICHARD D. AILROY ocTOBER 26, 1977. s

‘C.......‘..O“..‘.‘..‘...‘.........‘..‘...‘....‘...“.....J.....‘...‘...

1

999
601

CONPLEX®16 A1(100),A2(100),5(100),1,0T2
READ(2,EED=Y99) &, FTIAE

IP(NTIAE.NE.NREST) GO TO

BACKSPACE 2

READ(2) T,MTINE,NP,DT2,AV,A2,H,¥1,82

ARTURS

RRITE(6,601) WRES?

PORBAT(*1°,° RECORD NREST=',IS,' IS §OT OB UNIT 2.°)
stop

zZ8D

SUBROUTINE PLT (¥3,T,0W,DT, NPV, NPT)

CO8PLEI®* 16 DT (100)

COnPLEX DV¥(1000) ,2322.

REAL ¥3(1000),7(100) ,BY¥ (1000) ,Ik (1000),IT(1000),P (2000)

276



CALL PLOTS
CALL ORG1(XILEN,YLEN)
CALL TBRASE(81)
CALL TUALIT(0,0¥EBSIC)
1 CoNTINOR
00 2 I=1,NP¥
W (I) = RBAL(D¥(I))
2 IW(I) = AINAG (DU (I))
DO 3 I= 1,807
233=DT (I)
3 IT(I) = REAL (328)

Commowm== SCALE QUANTITIES TO BF PLOTTRD.

DO & Ia=t, UPY
(L) = BRO(D)
s P(Ienp8) = IN(I)
§PN2 = 20NPW
CALL SCALE(N3,XINT,NpV,1)
, CALL SCALE(T,IINTI, NPT,Y)
CALL SCALEB{F,YINT, NPP2,1)
CALL SCALE(IT,YINT ,NPT,1)
W) (UPWe2) = W3 (WPE2) SXINT/XLEN
T(NPTe2) = T (NPT+2)*XINTI/ILEN

P (UP¥2+2) = P(NPU262) *YINT/YLEN
IT(NPT#2) = IT(NPTe2)STINT/YLES
R (YPVUO1) = P(NP¥2e1)
I (RPU+1) = P (NPR241)
RU(NPUe2) = P (WPU22)
I (NPV+2) = F(NPV2e2)
Commmme= - DRAS THE AXIS POR PREQUZNCY SPECTRUA PLOT.
AXALN = W3 {NPEe1)
AXDELT = 83 (NPU+2)

DTIC = ILER/XINT
. CALL AX182(0.0,0.0,'V¥",-1,XLEN,0.0 ,AXNIN,AXDELT,DTIC)
CALL PLOT(0.0,YLEN,))
CALL PLOT (XLEN,YLEN,2)
CALL PLOT(XLEN,0.0,2)
AXBIB = R4 (NPUeY)
AXDELT = RE (UPH+2)
DTIC = -TILBE/XINT A
CALL AXIS2(0.0,0.0,'D*,1,TLEN,90.0,AX8IN,AKDELT,DTIC)
o PLOTL THE PLOT.
CALL LINB(¥3,RH,NP¥,1,0,0)
CALL LIME(93,I¥ NPH,1,0,0)
CALL ORG (ILEN,YLER)
C————--~ DRAW AXIS PFOR T PLOT.
AXHIN = T(NPTe1)
AXDELT = T (NPT¢2)
DTIC = XLEN/XINTI
CALL AXIS2(0.0,0.0,°T*,-1,XLEF,0.0,AKNIN, XDELY,DTIC)
CALL PLOT (0.0, YLER,3)
CALL PLOT (XLEX,YLRYX,2)
CALL PLOT(ILEN,0.0,2) )
ALRIN = IT(NPT+Y) \
AIDELT = IT(WPT+2)



DTIC = -YLEN/XINT
CALL AXIS$2(0.0,0.0,°D*,1,YLEN,90.0,AXNIN,AXDELT,DTIC)
C------<« PLOT THE PLOT.
: CALM LIWR(T,IT,NPY,1,0,0)
CALM PLOT{(0.0,0.0,999)

RETURD

END

SUMRJOTINE ORG)(XLEN,YLES)
Cmmmomeee NOYE ORIGIN IN A WAY TO NININIZE VLOTTER PAPER WASTE.
Crmmomm—ae POR TEKTRONIX, RE-

sg‘k: PLOT AND HALT UNTILL RETURN BETERED.
CALL TCLEAR(EY) . ;
CALL TERASE (81) "«
P=ANINY (30.0/XLEN,
CALL PACTOR(P) .
CALL PLOT(2.9,2.0,-3)
GO TO 10
1 CALL PLOT(3.0,3.0,-3)
X0=0.0
Y0s0.0
XL=XLEW
YLsYLRN
GO T0 10
E¥TRY O&G (XLEN,TLEN)
C-—memm - ENTER NERE POR ALL BUT 1°ST CALL TO THIS BOUTINEZ,
CALL TCLEAR(E2)
READ (6,601) MOTNG
601 PORAAT (I5)
CALL TERASE (82)
- GO TO 10
T vis6.0011
Vis6.0eTL
Y=Y0evYYSYLERN
YLsYLEN
IP(Y.6T.25.0) GO TO 3
CALL PLOT(0.0,VY,-3)
YO0sYOe VY
17(XLEN.GT.XL) XL=XLEN
G0 10 10
3 VYYs=-Y0
CALL PLOT(VX,VY,-))
XL=XLEN
X0=X0e VX
YO0=0.0
10 RETURN
END
SUBROUTINE RITE(AV,A2,N, NTINEZ, NP,TINE,¥1,92,K00,KA2)
CUNPLEX®16 A1(100),A2(100) ,¥ (100), TINE
CONPLEX T1
REAL P1,P2,T,KAV,KA2
C=).0E¢10
TI1=TINE
T=REAL (T1)
WRITR(6,601) NTIAR,T
601 FORMAT 40, "NTIAE=*,IS,' T=¢,1PL£10.2,' SBC.')
uPpi1=yp
NSKIP=10
DO 1 I=1,NP1,NSKIP
Pl = H1SKA 1S (COABS(A1(I)]) **2/6.2838+07
P2 = W2*KA2% (CDABS (A2(I))) **2/6.°283E+0Q7
XNsCDABS (N (I))

27



VRITE(6,602) I,P1,P2,X1
\ cosrinog
602 PORMAT(* °*,I5,1P3210.2)
acTURY
1)

<5



Cess0s0000000e 0000000000008 00060000000000308808000080000000000000808000000

C . PLOT TAR OJTPUT PRON PCOA -~ PULSE CORPRESSION. .
C . RICWARD D. RILPOY ocTOsER 26, 1977, .
COre0008000000000000000000000000000000000000000¢0000080808000000000000000

CORPLRX®*16 T,DT2,AV(100),A2(100) ,¥ (100)

COnPLRX 1
REAL P1(1%02) ,P2(102),81(%02) ,1(102),KA1,KA2
ILES = J.9
TLEN = 3.9
ITET = 6.0
LenIN = 7
LPAAX = 1]
LEAIN = 12
LBBAX s 17

C = 3.08¢10
READ(3) T,NTIAE,WP,DT2,A1,A2,8,¥1,92,KA1,KA2
BACKSPACE 3
Cl = KAl uleCee?
CalL PLOTS
CALL ORG1(XLEN,YLEN)
ALI=0.0
ALT=800
Ta=10.0
1 courimoe
CALL SETAL (ALX,ALY,1,8100,8100)
100 ¥RITE(6,601)
601 FORNAT (*OINPUT 3°)
READ(S,501) OISY
17 (DIST.LT.0.0) GO TO 999
SO1 PORAAT (E10.3)
TPLT = DIST/CI
I#(TPLT.LT.TR) REVIND )}
Commme- - BEAD IN VALOZ PROM DISK CLOSEST TO DESIRZD PLOT TINE.
2 ToLD=TR
READ (3,END=8) T
TR=COABS (T)
IP(TR.LT.TPLT) GO TO 2
1#((TPLT-TOLD) .GT. (TR-TPLY)) GO 70 7
8 BACKSPACE 3
7 BACKSPACE 3
READ (3)%T,NTIAE,NP,DT2,A1,A2,¥,01,92,KA1,KA2
C------- DEPINE X - VECTOR.
TW=CDABS (T)
. DT=CDABS (DT2)
DIsC1eDT
DO 3 I=1,8P
X (I)=(I-1) D3
3 CONTINOE
Cemmmomn DEPINE T - VICTORS.
DO & I=1,np
P1(I) = G1eKA1® (CDABS (A1 (I)))*¢2/6.2838+07
P2(I) = W2°KA2* (CDABS (A2(I)))*®2/6.283K8¢07
B1(I)=2.06CDABS(N(I)) & 1.0
& CuFtInvs
‘ C---=--- TAKE LOG OF QUANTITIES TO BE PLOTTED.
DO 5 I=1,Np
P1(I)=ALOG 10 (P1(I))
2(I)=ALOG10 (P2(I)) .
*“in(xp-nuoc101|1(1)) _

-\



S cusriavs

C--——-- RAKER SOB8 ALL QUABTITIES STAY SITNIS caars solusasizs.

DO 6 ley, NP

IP(PI(1).LT.LPALN) PV (I)sLPALR

IPEPI(X).6T. LPEAX) P1({I)sLPEAL

IP(P2(I).LE.LPEIN) PI(X)oLPELN

IP(P2(1) .62.LPEAX) P2(1)=LPBAX

LP(RI(L) . L2.LBALIR) BI(I)=LBNZS

IP(N1(1).6T.LEBAX) B1(I)=LBBAX

6 COBT1INUB

C---==<< SCALB THE VWCT083 70 32 PLOTIRD.

CALL SCALB (I, XINY,BP,V)

X(NPe2) = X (BP+2)*XINT/ILEN

Pl(upeY)uiLpaln ’

P2(BPe1)eLPUIN

Bi(RPeY)mLualy

PI(BPV2) sPLOAY (LPRAX-LPEIN) /TLES

P2(BPe2) =PI (BPe2)

BI(EPe2) =PLOATY (LURAX~-LWNIN) /XLEN -
C-=====- PLOT TUB AXIS.

AINIE =K(NPe 1Y)

AIDBLY=X (BP+2)

DTIC = XARB/XINT

CALL AX192(0.0,0.0,°X (CH)*,-6,XLEE,0.0,AX8IN,AXDELY,DTIC)

CALL PLOT(0.0,YLEN,])

CALL PLOT(ZLRS,TLEN,2)

DELTLG=PLOAT (LPAID~-LPRAT)

AIRINI=ZLOAT (LPHIN)

CALL LOGAX (0.0,0.0,'P (W/CH®*®2)"* 11,YLEN,90.0,AXRINL,0BLTLG,3.0)

DILTLG=PLOAT (LNRIN-LESAX)
AXRINI=PLOAT (LBNIN)
CALL LOGAX (XL22,0.0,°9*,~1,7LE0,90.0,AX8IN1,DELTL6,3.0)

Comomme- SRITR POSITION OF SEABPRONT IN LOVWER LEPT COREER.
DIST = Clere
¥I=0.0
vy=—0.93
211=0.1
CALL BUNBRR (VX VY, R?,D0I57,0.0,1)
Crmemme=e D2AN THE L1NBS,

CALL LINBR(X,PV,NP,1,0,1)
CALL LIBE(X,02,8P,1,0,1)
CALL LINEB(X,N1,8P,1,10,3)
C—wo==-" HOYR ORIGIN UWLESS ON TEKTHONIX.
CALL ORG (XLRD,YLRYN)
G0 TO I
999 CALL PLOT(0.0,0.0,999)
srof
E¥D
SUBROUTING ONG Y (XLEN,YLEN)
[ MOVE ORIGIN #W A VAY TO BININIZIE PLOTTER PAPER BASTE.

Co—mnmm—- FOR TEKTRONII, RE-SCALE PLOT ABD RALT USTILL RETURN ENTERED.

INTEGER ONESEC(2) /0, 1000000/
CALL TCLEAR(8Y)
CAiLL TEBASE(S1)
CALL TWAI?(0,0N%SEC)
PSARINY(30.0/1L2N,20.0/YLES)
CALL PACYOR(?)
CALL PLOT(3.0,2.0,-3)
Go T0 V0

! CALL PLOT(5.0,5.0,-3)



200.0
1020.0
ILeXLBD
YLeYLRS
6o T0 10
BETR8Y 0BG (XL2N,TLEH)
------ ---ZVTER UERE POR ALL BUT 1°'ST CALL TO TEXS BOURINLR.
CALL TCLBAB(S2)
READ (0,601) BOTNG
601 PORRAT (19) 7/
CALL TRRASE (82)
CALL TUALY(0,00838C)
40 0 10
2 VI=6.00XL
Vr=6.001L
YeT0eVYoYLRS
TL=TLEY
IP(Y.67.20.0) GO0 YO0 ) \
CALL PLOT(0.0,7Y,~)) |
T0=30e7Y \
IP(XLEN.GT.XL) IL=ILRE AN
60 TO 10
) vre-10
CALL PLOT(VX,VY,-))
IL=xL2S .
X0=X0+ VX
Y0=20.0
10 sgroas
1 17



coooooooomuuoo‘“oo”oo“nnnoooonu*oooonooo“ouooooo““noo.
¥ILL PLOT ALPERA VS, ABT VASIABLE. (PRPDNOINS 00 °'CONB°).
Coss = 0 FTOP
el 08 -t PLOT ALPHA V8. T8.
©e2 08 -2 PLOT ALPMA VS. TI.
o) OR -3 PLOT ALPHMA V8. 4.
208 08 -8 PLOT ALPERA VS, L2,
eeS OR -3 PLOT ALPNA VS. TE. (S8R TieTR/B.)
IP (CODR.LT.0) PO IBS AXIS 13 BADE. NOES OVEBERLAY.
ICRARD B, BILADY aggestE, 13, 1977, .
00000000000 00000800000000080000 000800000 00000000000000000000000000000009
BBAL LV (1008),L2(1000) ,0(1000),TR(%000) , T1 (1009) ,1(1000) ,1(1000)
1,0LP8A (1000) ,L2020,120A1,80,L20,L1Q,80,L20,L20K0P,L20A1P,0(1000)
2,88 (1000) , 43 (1000)
ISTEGER CODE,C1,00B38C (2)/0, 1000008/
ITIAB=0
20=998 N
[T T
IL88=).9
1080=3.9
184 BULY)
LTBRAX =S
L2I010=0
LTINAK=S
Laarm=14¢
LIBAK=YY
Luaze=10
LEIBA L= V0
L2uIm=10.6
L2002°10.606
Co~~==<< LIMLEP ADD L2BAXP 033D ol I-AI1S LIBITS SUBE CODB=S,
L2018Pe10.6
LIRAZIP=10.606
LYNIg=~1%
LIBAZI=~10
LI28INe-16
LY2aAE=-11
L10=9,.6 .
ALI=0.0
AL1=000.0
TED=PLUAT (LYRBAAX-LTERIN) /NP
TID=PLOAT (LYINAX-LYIALIN) /NP
SD=PLOAT (LIRAZ-LBRLE) /DD
L2D= (L2AX~-L2RIR)/BP
CALL PLOY
CALL onct}\xll,rxll)
CALL TERASE(84)

[ 3 3 3 2 I M I N J
4
o8 0000000

<
<
C
4
C
C
(4
c
4
<

Co==——=<- PAUSE ONR SBECOND SAILE TEKTRONIX SCREZN IS RRASED.
CALL TUAZIT{(0,0883EC)
1 CONTINGE .
=81
STIAB=NTIABe Y

ALY=ALY-60.0

* CALL SETAL (ALX,ALY,1,86100,8100)

100 CorTIBJE
URITER(6,601)

601 POBRAT (°0°,° INPUT CODB 1-T8; 2-TI; 3-8 &-1L2; 5-T; 6-¥;*%)
READ (5,501) ComR

501 POREAY (1))



.d‘."::.:?a! i

saANSTERS,
€ 70 (11,12,13, 18,15, 18),C1
11 IRIT8(6,602)
402 PORSAT(*  IEPET TIO, N0 L20°)
2BAD(5,302) TI0,B0,L20
S02 PORBAT (3810. 3) .
G0 10 16 : \
12 WRITE(6,60))
603 PORBAT (' INPUT TRO, RO, L20°)
RBAD (3,502) 120,30,L20
G0 t0 16
13 nazre($,608) »
608 FORNAT(' 1ENPUT TRO, TIO, L20°)
READ(5,502) 720,710,130
Go r0 16
18 BRITR(6,609)
605 PORBAT(' INPUT TEO, TIO, 30°)
RRAD(5,302) TRO,TIO,.NO N
GO 0 16
15 SRITE(6,610)
610 FORSAT(' TINPUT MO, L20, TE/TI')
_RBAD(S,502) ®O0,L20,R
6 CONTINGS '
Covmmwee IP(CODE.GT.0) RRASE SCREEEN & RE—VRITE INITIAL CONDITIONS,
17 (CODE.1L20) GO TO 70
CALL TZRASE(870)
C--=~-~- PAUSE ONE SECOND WHAILE TEKTRONIX SCREEZN IS ERASED.
CALL TWAIT (0,0NRSEQ)
ALYI=780
CALL SETAL (ALX,ALY,1,8670,870)
NRITE(6,601)
¥RITE(G,606) CoDER
606 PORRAT (' *,I3)
GO 20(61,62,63,648,65,68) ,C1
61 YRITR(6,602)
VRITZ(6,607) TIO,NO,L20
607 POREAT(' °*,P7.0,1PE9.1,0PP8. &
G0 10 70 -
62 ERITE(6,603)
MRITE(6,607) TEO,N¥O,L20
G0 T0 70
63 NRITR(6,608)
WRITE(6,608) TRO,TIO,L20
608 PORMAT(* °*,2r7.0,P8.8)
GO 70 70
68 QIITI(G,GOS) n
WRITE(6,609) TEO,TIO,NO
609 PORNAT(' *,2r7.0,1PE9.1)
G0 10 70 .
65 ¥RITE(6,610)
HRITR(6,611) ,L20,12
611 PORBAT(' *,YPR9.1,0078.8,P6.2)
70 conrINo: =
C-===~=~ HOVE ORIGIE AND PLOT NES AXIS 1P DESIEED.
1P (CODR.LT.0) GO ¥0 3



3

285

N\

IP(NTIBR.NE.1) CALL ORG (XLER,TLEN) )

CALL AXPL(CV,XLEN,YLER,LYAIN,LYNAX ,LYERIN, LYREAX,LTININ
1,LYIRAX ,LUNI OV, LYRAX, L20INP,L20ALP, LUSIN, LUNAX
2,LY2018,LY28AX)
cosTIan: he

Cree=—== SPECIPY PLASHNA PARAABTRARS.

IP((C1.2Q.1).0R, (C1.2Q.5)) GO TO & -

00 S I=1,np

TE(1)=720 ‘
CONTINUB '
IP((C1.8Q.2f .OR. (C1. 2Q.5)) GO 10 6

Do 7 I=1,mp

TI(1)=TI0

CONTINUER

I7(C1.2Q.3) GO TO 8

DO 9 I=1,Np

¥(I)=80

CONTINUE :
IV ((C1.RQ.4).0R, (C1.BQ.6)) GO 0 10
DO 20 I=1, 8P

L2(I)=L20

coNtINOR

DO 21 I=1,NP

L1(I)=L10

Crmmomme— SPECIPY VARYING PARANEITER,

GO TO (31,32,33,38,35,83),C1
DO 36 I=1,mp

TE(I)=10.0%¢ (LTERIN+TED®I)
GO TO &0

D0 37 I=1, e

TI(I)=10.0%¢ (LTIRINGTID®I)
GO TO %0

DO 38 I=1,np >
B(I)=10.00¢ (LUAIN+ND®])

GO TO 80

DO 39 I=t1,mp
L2(I)=L28InsL20D°]

G0 TO %0

DO 82 I=1, NP

TR(I)=10.0%% (LTEAIN+TED®])
TI(I)=TE (1) /R

GO TO &0

DLV = PLOAT(LURAX-LVAIR) /NP
RO &8 I=1,Np

¥(I)=10.00e (LEAIB+DLU®I)
L2(I) = 1.385SE+15¢L10/(1.885E+15-8 (I) *L 10
cowtiNUe

Coemmmm—— CALCULATE AIXING RATE (ALPHA).

CALL BPOR(LY,L2,N,TE,TI, WP, ALPHA B, N])

Cmeer=-- SPECIPY Y-YECTOR POR PLOTTING

DO &1 I=1,4P

T(I)=ALOG10 (ALPUA(I))
IP(Y(I).GT.LYRAX) Y(I)=LYNAIX
IP(Y(I).LT.LYNIN) Y(X)=LYBRIN
BECI)=ALOG10 (¥R (I))
BI(I)=ALOG10 (NI (X))
IP(NE(X).GT.LY2RAX) NE(I)sLY2NAX
IP(UEB(I).LT.LY2RIN) WE(I)=LY2ALN
IP(NI(I).GT.LY28AX) NI (I)sLY2RAX
IP(NI(I).LY.LY28IN) BI(I)=LY2RIN



&1 CONTINUE
Y(UPe1) sLYNID
Y (NP+2) sFLOAT(LTRAX-LYRIN) /YLES
BE(NPe1)=LY2ALN
BI(NPe1)=LY2UIE
ll(lPOZ).'LOAt(LIZ!A!-L!!III)/YLII
BI(NPe2) sPLOAT (LYZBAX-LY2FIN) /YLES

C--m===-- SPECIPY X-VECTOR FOR PLOTYIBG.

G0 TO (5!,52.5).5!.51.66),C|

S1 T (NP+1)=LTEAILN
x(lroz)-rLOAt(Ltzllx-erlxl)/xLll
DO 56 I=1,¥P 3

56 X (I)=ALOG10 (7B (1))
GO T0 60

52 X(BP+1)=LTIAXN
X($P+2)sPLOAT (LTIAAX-LTIAIN) /XpdN
DO $7 I=1,NP

$7 X (I)=ALOG10 (T (I))
GO TO 60

§3 X (NPe1)=LBHEIN
X(NP+2)=PLOAY (SWAAX-LWAIN) /ILEN
DO 58 I=1,NP

S8 X (I)=ALOGIO(N(I))
GO TO 60

sS4 X (NPe1)=L2AINP
X (NP¢2) = (L2ZRAXP-L2AINP) /ILEN
DO 59 Is=1V,¥P

59 X (I)=L2(I)
60 TO 60

66 X (NPe1)s=LUAIN
X (WPe¢2) = PLOAT (LWAAX-LUALN)/XLEN
DO 67 I=1,BP

67 X(I) = ALOGIO(¥(I))

60 CONTINUE

C-=-—=—- pRAS THE LINE.

CALL LINE(X,Y,8P,1,0,0)
ICHREP = WP/20
CALL LINE(X,NE, NP, 1, ICHREP,Y)
CALL LINE(X,BI,NP,),ICHREP,))
CALL TCLEAR(E1)
GO 10 1V
ZuD
SUBROUTIME AXPL(C?,XLEN,YLES, LYBIN,

LYZAX,LTEAIN,LTRAAX

1,LTXHXI,LTIBlX,LllIl,LlBl!,LZlIIP,LZHAXP,&IBII,LI!AX

2,L1281I0,LY2K8AX)

REAL L2RINP,L2BAXP

1wTEGER C1I

L-=rmm==- PLOT THE Y-AIXI1S.
AXBIN=LYSIN
DELIG=LYAIB-LYNAX

CALL LOGAX(0.0,0.0,'ALPII’.S,ILII.90.0,AllII.D!LTG.3.0)

AXMI¥=LY2ALN

DELTGaLY2RIN-LY28AX

CALL LOGAZX (£LEN,0.0,°8°,-1,YLEB,90.
C~==—=-- PLOT THE IX-AXIS.

GO TO (1,2,3,%,1,6),CH

1 AXRINSLTEAIN
DELTG=LTERIN-LTENAX
CALL LOGAX (0.0,0.0,°TB*,-2,XLEN,0.0

0,AXal1¥,DELTG,3.0)

JAXBIN,D3LTG,0.0)

CALL LOGAX (0.0,YLEN,* ',1,XLEI,0.0,AXSII,DELTG,0.0)

286



.G0 70 10 . : ‘L
2 AXRIB=LYINLIN
DELTGC=LTININ-LTIAAX
CALL LOGAX (0.0, 0.0.‘11' -2,1L88,0.0,AX818,08L76,0.0)
CALL LOGAX (0.0,YLER,® *,1,XLBE,0.0,AZR1N,DRLEG,0.0)
G0 70 10
) AIRLE=LENLD '
DELTG=LENIN-LNEAX
CALL LOGAX (0.0,0.0,°B°, -2.1f‘3,0 0,AXBIN,DRLYG,0.0) .
CALL LOGAX (0.0,YLENW,® °*,9,ILEN,0.0,AXNIN,DELTG,08.0)
GO TO 10
8 ALAIN=L28LINP !
DELTG= (L2BAXP-L2AINP) /XLEN
CALL AXIS2(0.0,0. o,'Lz' -2, XL!I.D.O,AX!II.DIL!G 1.0)
CALL AXIS2(0.0,YLES,' ',1, XLII.O 0,AXBIN,DELTG, 1.0)
GO TO 10
6 AXBIV=LNNIB
DELTG=LWAIN-LUNAX
CALL LOGAX (0.0,0.0,°¥',~1,XLRN,0.0,AXAIN,DELYG,0.0)
CALL LOGAX (0.0,YLEN,® *,1,ILEN,0.0,AXNLIN,DELTG,0.0)

10 RETURD .-
E¥D
SUBROUTINE ORGY(ILEN,ILEN)
C-==-—=-—-HOVE ORIGIN IN A WAY TO HININIZE PLOTTER PAPIER WASTSE.
Cromemme== POR TEXTRONIX, RE-SCALE PLOT.

CALL TCLEBAR(S®1)
CALL PLOT (20.0,10.0,-3)
P=ANIN1(30.0/ILEN,20.0/TLEN)

1?1.1. PACTOR(D)
- G0 T0 10

1 CALL PLOT(J.0,3.0,-3)
X0=0.0
Y0=0.0
XL=XLEN
TL=YLEN
GO TO 10
ENTRY ORG (XLEN,YLEN)
Comm e ENTER HERE POR ALL BUT 1°'ST CALL TO TSIS ROUTINE.
CALL TCLEAR(E2)
GO TO 10
2 VX=5.0¢1L
VY=5.0¢7L
Y=YO0+VE+YLEN
IL=YLEN
17(Y.GT.25.0) GO TO 3
CALL PLOT(0.0,7YY,-3)
YO=YOo VY
17 (XLEN.GT.XL) XL=XLEW
G0 TO 10
3 vy=-Y0
CALL PLOT(VX,VY,-3)
XL=XLES
X0=X0e VI
J0=0.0
10 RETURE
z¥D
SUBROUTINE BPNR(LY,L2,H,TE,TI,NP,ALPHA,NE, BI)
C........‘...‘..“““.‘ [(TYIXISIYEEST IR IRIT IR AR YA R 02 2 ..“O...‘.‘.....
c ¢ CALCOLATE BEAT PREQUESCY AIXING RATES. .
c ¢  BOTHM ELECTRON & ION BOTION IS ACCOUNTED POR. .



.
Cc L4 ELECTRON -~ 108 COLLISIONS ARE PULLY ACCOUNTED POR. .
c L POSPEROSOTIVE FOBCE O BOTE BLECTROES AND 10BS. : L4
c . RICHNARD D. NILROY ASGuUST, 18, 1977, L
CE00005008000000030000800008000000008800 000004800000 0000000850080 0000000
COBPLEX J/ (0.0,1.0)/,KB(10080) ,KI (1000) ,BP ( 10u0) ,EDE(1008)
1,80X (1000) ,KCE2 (1000) ,BCI (1000) ,JB( 1000) ,JX (1000) ,X,8({1000)
REBAL L1(1900),L2(1000) ,u(1300) ,2TE( 1000) ,TL {1000) ,¥3(1000) ,X3 (1000)
1,41(1000),82(1000) ,ALPRA(1000) ,X1, K2,88(1000) , NI (1000)

C=3,02¢10
----- PIND ¥3 AND K3, \
DO 1 I=1,up
KKeX :
) ~N1(I)=1.885R¢1S/ (L1(I))

// nz(}p-t.slsxo's)cxztx))

w W3 (I)=¥w1(I)-82(I) .
BPE=5.63808030RT (N (I))
IP(WPR.GE.H2(I)) GO TO &
K1=SQRT (U1 (1) 902-4PE®e2) /C
K2sSQRT (82 (1) **2-RPE**2) /C

1 K3(I)=K1eK2
GoTO 9
8 WpaKg-1 :
C-—--~~ PIND LIBEAR SUSCEPTABILITIES.
9 CALL LSUS(¥),K),»,TE,TI,NP,KE,KI)
Ce===—==- CALCULATE COLLISIONAL CORRECTION PACTOB.
DO 7 I=1 NP
VEI=2,53R-05¢N (1) /(TE(I)%®1. %)
NPE=5,61B¢8¢SQRT (N (I))
B(I)=1.0-Jou3(I)ovEX/ (WPRPe2)
KR (I)=B (I) *KEB(I)
KI(X)=B(I)*KI(I)
7 cosrinve .
B SPECIFY DIELECTRIC CONSTANY BP.
DO 2 I=V, NP :
2 EBP(X)=1.0¢KE (I)+KI(I)
C-—-——-=~ SPECIFY PONDRRONOTIVE *PIELDS'. PFOR I1sI2=1.0
DO 3 I=1,NP
¥PE2 = 3.17K¢09*¥ (1)
C1 = C*SQRT(1.0-UPE2/ (W1 (I)*e2))
C2 = C*SQRT(1.0-WPR2/(¥2(1)*+2))
X=K3 (I) *L1(I)*L2 (I)*J*C/3QRT (C1%C2)
EDE(I)=3.11R-162X
3 EDI(I)=-1.69B-19X .
C--~~-=- SPECIPY COULOMB PIELDS.
DO & I=Y, 2P
. ECB(X) =~KB(I)® (EDR(X)* (1.04KI(I))=-KI(L)*EDI(I))/(BP(L)*B(I))
& ECI(I)=~KI(I)®(BDI(I)®(1.0¢KR(I))-Kp(L)*RDE(I))/(EP(L)*B(I))
T SPECIPY BLECTROB AND IOB CURREETS.
PO S I=1,np
X=JoW3(I)/12.566
JE(L)=X*2CE(I)
S JI(E)*X*3CX (1)
C-==——=~ SPECIPY BEAT PABQUENCY NIXING BRATES. .
DO & I=s1, NP :
X=2,0E-T7%41(I)/¥3(X)
AJIE = XeREAL (EDE(I) *CORJG (JR(I)})
A32E = XSREAL (BCI (I) *CORJG (JR(I)))
A311 = ISREAL (EDX (I) *COBJG (JI (I)))
A32I = XeREAL (ECE(I) *CORJIG (JI (I)))
A3E = A31BeAd2E

N



A3 = MdIIead2L
ALPEA(X) = AJBeANS
BB(Z) * K (I)*2.0°CADS (BCE (X)) /(6. 038-0903 (1))
BI(I) = K3(I)%2.06CABS (BCI(I))/ (6. 038~09°8(I))
c BRITR(6,601) 12(I),AJI8,A328,A38,A311,A321,A38, ALPUA (I)
607 PORRAT(S *, 1POB12.8)
¢ CONYINGS
axToRy
T
SUBROUTINE LSUS(¥3,X3,8,7E,21,8P,K8,K1)
COv000 908808000083 300800005008000000008800008080000000000800080080000000¢
C ' CALCULATS LISEAR SUSCEPTABILITIES FOR BOTH BLECTRONS & PROTONS. ®
c o RICNARD D. NILROY >  AOGUST, 18, 1977. .
c.......‘....‘....““...‘...“....“‘....‘.....“............‘......‘.
CORPLEX KE (1000) ,KI (1000),J/(0.0,1.0) 7,20
REAL ¥3(1000),K3(1000) ,8(1000) , TE( 1000) , TI (1000)
C——===- FIND KB.
DO 1 I=1,np
EP=S.63E+8eSQRT (N (I))
Y0=5.938+79SQRT (TE (I))
20=¥3 (I) /(K3 (1) %p0) _ .
17(20.67.50.0) GO 70 3
EEB(I)=2.00 (NPeAO /W3 (T)) **2¢ (1.0¢J9A0*PO0 (AQ))
GO 70 1
3 KE(I)=- (§R/¥3(I))*®2
1 costInus N
C-—---- PIND KI.
D0 2 I=q,NP
¥P=1.318¢303QRT (N (I))
YO=1.38%+6°SQRT (71 (I))
AO=§3(I) /(K3 (1) *V0)
I7(A0.GT.50.0) GO TO &
KI(I)=2.00 (NPeAO/N3(I))®e2¢ (1.0¢J* AOSPO (A0))
GO 10 2
& KI(I)=- (NP/N3(I))e®®2
2 CONTINUE
RETURE . .
E8D
COAPLEX PONCTION PO (AO)
Comommm-m CALCULATE PO AS DEPTNED ON PAGE 178 OF STII.
CONPLRX J/(0.0,1.0)/
REAL POSPL(12,5)
DATA POSPL/0.2,0.5,06.8,1.0,1.2,1.8,1.7,2.0,2.5,3.0,3.5,8.0,
1 .3895,0.7199,1.068,1.076,1.015,0. 913, 0.7851,0.6027,0. 4462.0. 3565
+2,0.2992,0.2587,1.003,1.299,0.5874,-0.2165,-0.84162,-0. 5635,~0. 532,
3-0.8118,-0.2316,-0.1393,~0.0931,0.0,0. 0, 0.987,~3.4911,-0. 3288,
4-0.6701,-0.06606,0.1709,0.231,0.1287,0.55932-1,0,03642,9.0,1.097
$,-4.976 ,5.272,-0.5696,1.007,0.2633,0. 06673,~0.06821,-0. 0435,
6-0.01301,-0.02828,0.0/ ,

AOR=A0
17 (A08.GT.10.)A0E= 10,0
AOES=AQZ®AOR
c SPLINB APPROIINATION FOR PO

IP(A0.1LT.0.21) GO TO 90
17 (00.67.3.25)G0 7O 12 .
DO? I=1,12
IP(AO.LT.POSPL(I,1))GO TO 8

7 costINeR

s IsI-d

DA=AO-POSPLIT. 1}



12
%0
"

F0=rOSPL (1,2)*POSPL (I,3) *DA*POSPL(I,8) *DACDACPOSPL (1,3) *DASe)
™ S

A obdd
¢0 T0 11

70=J /0% (1.0¢0.3/(A0*A0) oo.n;ﬁloo *8) ¢ 1. 875/ (A09%6) ¢6. 361/ (A0°°8))

GO0 70 1

2022.0800 (A0-0.6646667°000+)
GO TO 11

DAAP=1,772°R1P (~-AORS)
PU=POeDAND

RETORN
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