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Abstract

This thesis presents a 3-D least-squares wave-equation migration that yields regularized 

common image gathers for amplitude versus angle (AVA) analysis. It is an extension of

2-D least-squares migration to the 3-D case using the common-azimuth approximation.

The thesis generalizes least-squares wave-equation migration with various types of 

regularization. In particular, an efficient preconditioning strategy is adopted to decrease 

the cost of the iterative inversion. The thesis also proposes a new scheme that combines 

a smoothness regularization in the ray parameter direction with a sparseness regulariza­

tion in the depth direction to further improve the resolution of seismic images. The prob­

lem is solved by an iterative re-weighted least-squares conjugate gradients algorithm 

(IRLS).

Extensive tests on synthetic and real data show that regularized iterative migration/ 

inversion enhances event continuity in common image gathers. More importantly, the 

method is validated by a careful comparison of the inverted common image gathers and 

synthetics obtained from well log data. In addition, the vertical resolution of the inverted 

image is also improved as a consequence of increased coherence in common image gath­
ers, sparse regularization in the depth direction, and by implicitly introducing migration 

deconvolution in the inversion.
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Chapter 1 

Introduction

Seismic data contain information about traveltimes and waveform amplitudes. The for­

mer is tightly related to geological structures, and the latter is controlled by elastic rock 

properties. In structural exploration, geophysicists mainly focus on the structural imag­

ing problem to find favorable structures. However these structures do not always con­

tain hydrocarbons. More information should be used to decrease the risk of oil/gas ex­

ploration. For this reason, efforts have been made to use seismic amplitudes to infer 

rock properties and/or hydrocarbon indicators. For P-wave (compressional wave) ex­

ploration, the angle-dependent reflectivity can be expressed explicitly in terms of three 

rock parameters, compressional wave velocity perturbation, shear wave velocity per­

turbation and density perturbation (Aki and Richards, 1980). With redundant angle- 

dependent amplitude arising from multi-channel seismic data, we can use Zoeppritz 

equations (1980) to invert the aforementioned media parameters. Since the existence 

of oil and gas could significantly change the media parameters and consequently intro­

duce anomalies on the angle-dependent amplitudes, such anomalies have become an 

important tool as direct hydrocarbon indicators. The success of these techniques rely on 

high-quality angle-dependent amplitudes, efficient extraction of media properties from 

amplitude information and good attribute-analysis strategies.

Considering a simple flat interface, an incidence P wave ( compressional wave) on 

one side will result in both S wave and P wave responses on the other side in the form of 

reflected energy and transmitted energy (see Figure 1.1). The reflectivity of the PP  wave 

(the reflectivity in respect to downgoing P wave and upgoing P wave) can be approxi-

1
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Figure 1.1: Incident P wave and the reflected and transmitted waves at an interface be­
tween two media. P: compressional wave. S: shear wave. 9: the incident angle, cp: P 
wave velocity, cs : shear wave velocity, p: density. The subscript 1 and 2 denote the upper 
medium and the lower medium, respectively.

mated by the following formula (Aki and Richards, 1980)

/„x 1/, y t  - 2  sec2 9 ATA 4K2 . 2„AVS
Rpptf) * 2(1 “ 4i J sm + ~2 Vp ~ ^ f Sm 1~  ( }

where

=  (Vp2 - V pi),

Vp = (Vp l+Vp2)/2,

&Vs = (Vs2- V sl), 

vs = (Vsi +  Vs2)/2,

Ap =  (p2 - p i ) ,  

p =  (P2 +  Pi)/2,

where the subscript 1 denotes the medium above the interface, and subscript 2 denotes 

the medium bellow the interface. The task of AVA analysis by PP  wave is to invert the 

rock properties: density perturbation, P wave velocity perturbation and S wave velocity 

perturbation, given multiple measurements of angle-dependent reflectivity.

This thesis focuses on providing accurate angle-dependent amplitude ('true ampli­

tude') using inverse theory and wave-equation based operators. The concept 'true am­

plitude' means all recovered amplitudes are in proportion to the true reflection response 

of the earth model.
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Conventional AVA (Angle Versus Amplitude) analysis uses data that are prepro­

cessed by Normal Moveout (NMO), an operator correcting far offset traveltimes to match 

the near offset traveltimes. This operator assumes flat layers. In NMO processing, seismic 

data are sorted in CMP (Common Midpoint) gathers, and each CMP gather is processed 

independently. The goal of NMO correction is to align seismic events to their normal inci­

dent (zero-offset) traveltimes, which makes it easier to pick the amplitude along the offset 

direction. After extracting the amplitude of different offsets, we can convert AVO (Am­

plitude Variation with Offset) to AVA (Amplitude Variation with Angle) by ray-tracing 

methods. Figure 1.2 displays the basic NMO procedure that produces an AVO panel with 
only a flat event.

The shortcoming of NMO method is obvious. First, the assumption of flat layers is 

violated in most cases, which means that the traveltime correction and ray-tracing esti­

mation of incident angles is inaccurate. For this reason, NMO can not correcdy locate 

dipping events and complex structures. Second, the application of this method is ham­

pered by NMO stretching introduced in the wavelet and tuning effects1 caused by thin 

layers.

For dipping events, the accuracy of travel time correction can be increased by Dip 

Moveout (DMO) correction. Hale (1984) developed a Fourier DMO algorithm to preserve 

the amplitude of events with conflicting dips. The method uses constant-offset gathers 

and transports energy across midpoints. Therefore it can be regarded as a partial migra­

tion. More accurate DMO methods with geometry calibrations were proposed by Notfors 

et al. (1987), Liner, C. L. (1990) and Black et al. (1993). Zhou et al. (1996) presented an 

efficient algorithm by implementing Black's DMO algorithm in the log-stretch F —K2 do­

main. DMO theory is based on a simple media, one upper layer and one subspace, which 

is improper since usually the earth model has more than two layers. Therefore the DMO 

processed result can also be unsatisfactory. On the other hand, migration/inversion can 

better address the problem by solving the wave-equation in various ways.

The migration of P wave seismic data is to solve zero time wavefield (p(x, y,z , t  = 0))

‘Overlapping of neighboring events
2Frequency-wavenumber domain

3
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Figure 1.2: A simple example of NMO correction, (a) The geometry for the data acquisi­
tion. The data were produced by many experiments by burying sources (symbolized in 
stars) to the left of the midpoint at different offsets. The receivers (symbolized in trian­
gles) were buried at the other side. The lines connecting sources and receivers are the ray 
paths of the seismic experiments, (b) The relevant Common Midpoint (CMP) gather, (c) 
The CMP gather after NMO correction.

from the following acoustic approximate wave equation:

c2 d t 2 ax2 dy2 d z 2 '  ’ '  J

where p denotes 3-D seismic response (p = p(x, y , 2 , t)), c denotes 3-D velocity model 

(c = c(x, y, z)), given p(x, y ,z  = 0, t), i.e., migration reconstructs the initial wavefield in

3-D volume from the observed time-lapse seismic response at the surface.

There are two kinds of methods to solve the above problem. One is based on ray and 

scattering theory, called Kirchhoff migration. This kind of methods use high-frequency 

approximation and solve amplitude and phase separately (Bleistein et al., 2000). The
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amplitude can be improved by an asymptotic inversion (Bleistein and Gray, 2002) or the 

least-squares method (Nemeth et al., 1999; Xu et al., 1998). The accuracy of Kirchhoff 

style methods is limited by the high-frequency approximation and the effects of multi ar­

rivals. The other kind of methods are called wave-equation migration that directly solves 

the wave equation with numerical implementation. Among them are finite difference 

migration (Claerbout, 1985; Mufti et al., 1996), Fourier finite difference migration (Ris- 

tow and Ruhl, 1994), Fourier migration (Stolt, 1978) and phase shift migration (Gazdag, 

1978; Gazdag, 1984). Generally, wave-equation migration is more accurate than Kirch­

hoff migration since no high-frequency approximation is involved, and multi arrivals are 

automatically considered.

No matter what method is used, we can assume the earth as a linear system. This 

is justified by removing multiples from the original seismic data. De-multiple is an im­

portant preprocessing before inverting the seismic data for structural and petrophysical 

features. However the linearization of the system may be understood in different ways 

as of the involved operators. In Kirchhoff methods, as explained in Chapter 2, lineariza­

tion means truncating higher orders of the expansions series of the traveltimes and am­

plitudes. In wave equation based methods, the coupling between upgoing waves and 

downgoing waves is ignored, which allows us to solve the upgoing waves in a linear 

way. In this thesis, I am interested in implementing wave equation based methods for 

structure and amplitude studies.

Wave-equation migration can be applied with different strategies considering the 

acquisition geometry. Shot-profile migration is more suitable for wide-azimuth land 

data, and shot-geophone (DSR) migration is good for marine data (Biondi, 2003b). The­

oretically, it has been proved that these two methods will produce equivalent results 

(Berkhout, 1982; Wapenaar et al., 1987; Biondi, 2003b). However we should take spe­

cial care of the aperture for shot-profile migration (Huang et al., 2003). Therefore, in this 

thesis I use DSR operators for migration/inversion.

In wave-equation migration, there are basically two steps toward AVA imaging. First 

we can use any method to extrapolate the wavefield to different depths. Therefore the 

data are kept in a prestack data volume (Mosher et al., 1996). The second step is to 

apply the imaging condition to produce local angle/ray-parameter image gathers. For

5
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shot-profile migration, de Bruin, et al.(1990) use local slant stack to convert offset domain 

data to ray-parameter domain image. Similarly, this technique is used for shot-geophone 

(DSR) migration (Prucha et al., 1999). The ray-parameter domain image gathers can be 

converted to angle-domain gather by a simple formulation (Prucha et al., 1999; Fomel, 

2004). However the formula is dependent on structural dip and interval velocity, which 
can be often inconvenient.

One alternative way of producing angle-domain image gathers is to apply a trans­

form in the offset image domain. Sava and Fomel (2003) proposed a method directly 

converting image gathers from offset domain to angle domain. The method is indepen­

dent of structural dip and interval velocity. However it is sensitive to migration velocity 

mismatch. In my least-squares migration implementation, I use Prucha's method since it 

is less sensitive to velocity errors.

The described two steps of wave-equation migration are the conventional routine of 

imaging processing for AVA analysis. It is better than NMO and DMO at handling com­

plex geological structure. However, the seismic data deserve further application. In the 

viewpoint of inversion, the conventional migration is called the adjoint of the modelling 

procedure, which only provides an approximate solution. One drawback of this method 

is that the produced result does not fit the data. Although the solution can provide a 

good framework for structural imaging, it does not produce good amplitudes. An eco­

nomical remedy is to apply some corrections (the inverse of the imaging Jacobian) to the 

wavefield before the imaging condition is applied. However the application of this ap­

proach is hampered by the data quality and the complexity of the earth model. First, the 

data can be irregularly sampled, which brings aliasing in the solution. Second, when the 

velocity variation is too large, the assumption of the imaging Jacobian theory is violated. 

On the other hand, iterative inversion methods can efficiently address these problems.

Posing migration as an inverse problem and solving it by iterative methods have 

three major advantages. First by inverting a linear system, the seismic observations are 

properly honored. The solution is optimized to be accurate both kinematically and dy­

namically. Second, efficient iterative algorithm like Conjugate Gradients (CG) (Hestenes 

and Steifel, 1952) can be used, which avoids the need of assembling large matrices for the 

inversion. Third, a priori information of the data and the model can be utilized to regular-

6
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ize the inversion. For example, smooth regularization has been used to develop robust 

least-squares migration (Ehinger and Lailly, 1991; Kuehl and Sacchi, 1999; Prucha and 

Biondi, 2002; Kuehl and Sacchi, 2003). The geometry of data acquisition can be simulated 

by a sampling matrix (Duquet et al., 2000; Kuehl and Sacchi, 1999; Prucha and Biondi, 

2002; Kuehl and Sacchi, 2003). Inverting this matrix helps to alleviate the artifacts due to 
data acquisition footprints.

This thesis is organized as follows. In Chapter 2 ,1 review two styles of seismic mod­

elling and the adjoint operators. The Kirchhoff method is briefly discussed and used to 

exemplify the concept of migration and inversion. On the other hand, the wave equation 

based operators are given in full detail. The derivation of wave-equation AVP mod­

elling/migration starts from a review of two-way and one-way representation of the 

acoustic wave equation. Then the one-way wave-equation formula is implemented into 

shot-profile modelling/ migration. The shot-profile and DSR continuation methods are 

unified by analyzing the dispersion relationship of the two methods. The equivalence 

of these two methods are confirmed by a toy example of AVP imaging problem. The 

formulas of common-azimuth modelling/ migration are included, which are the fun­

damental operators of this thesis to address 3-D common-azimuth data. In Chapter 3, 

I generalize the theory of least-squares migration with various tastes of regularization. 

The problems are solved by the CG algorithm in an iterative way. To test the inversion 

method, I present two simple examples. One is the inversion of a smooth model from 

a noisy dataset, which is used to examine the robustness of smooth regularization. The 

other example is a multi-channel deconvolution problem to test the idea of combining 

smooth regularization and sparse regularization. The former regularization is forced in 

the ray parameter direction, and the latter is applied in the depth direction. A routine of 

Iterative Reweighted Least-Squares (IRLS) (Scales and Smith, 1994)is described in detail 

to solve the sparsely-regularized problem. The choice of hyperparameters is examined 

by a test of sparse deconvolution. In Chapter 4 and Chapter 5, some synthetic and field 

data are used to test the theory of migration and regularized inversion. Finally, major 

contributions of this thesis are provided in the discussions and conclusions. Difficulties 

and future directions are also discussed.

7

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



Chapter 2

Seismic modelling and migration/the 
adjoint

2.1 Introduction

Seismic modelling is a forward problem. In the geophysical community it is used to 

simulate seismic survey from an earth model, which can be expressed in terms of rock 

properties (velocities, densities, etc) or reflectivities. Oppositely, the migration/inversion 

is an inverse problem. Given observations at the surface of the earth, we try to reconstruct 

the earth model. Although modelling and migration are different, they are connected by 

the theory of wave propagation. For simplicity the wavefield can be represented by an 

acoustic wave equation. Both modelling and migration involve solving the wave equa­

tion but with different conditions. The modelling problem is an initial condition problem 

that predicts the seismic response given properties of the media and the source. The 

migration problem is a boundary condition problem in the sense that we know the tem­

poral seismic response at the surface. The product of migration is an image or image 

gathers representing a scaled reflectivity model of the subsurface. This model can be af­

terwards used to invert for rock properties and/or to estimate hydrocarbon indicators. 

Conventional migration is usually not the real inverse operator of the forward problem 

but the so-called adjoint operator. If we use the model produced by the adjoint operator 

for modelling, the output data can not fit the observed data. For this reason, I would 

rather regard inversion as the procedure to find a solution honoring the data. Broader 

views of migration/inversion are discussed by some authors (Weglein and Stolt, 1999;

8
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2.2. KIRCHHOFF MODELLING AND MIGRATION/THE ADJOINT

Bleistein et al., 2000).

In chapter 3 ,1 will show that modelling and migration/the adjoint are essential oper­

ators for linear and non-linear inversion. Before moving onto the application of inverse 

theory, it is necessary to clarify these operators. The choice of modelling and the adjoint 

is fundamental to the accuracy of inversion. Therefore, in this chapter I first explain the 

concept of seismic modelling and migration by the Kirchhoff approach, which is most fre­

quently used in the industry. I discuss the advantage and disadvantage of this method, 

which motivates the use of wave equation based techniques. A comparison of migra­

tion and inversion is previewed by an experiment with 1-D seismic data. Then I will 

provide a detailed study of the wave-equation approach, including the basic theory of 

two-way/one-way wave equation modelling/migration, shot profile vs. DSR operator, 

common-azimuth approximation, angle-domain imaging condition and velocity correc­

tion techniques to handle complex earth models with strong lateral velocity variations.

2.2 Kirchhoff modelling and migration/the adjoint

2.2.1 WKBJ approximation

Kirchhoff method is based on ray theory, which solves the wave equation by decompos­

ing it into two equations, eikonal equation and transport equation, for travel time and 

amplitude respectively. Here the words 'solves wave equation' mean that we can analyt­

ically express the wavefield in terms of some kernels of travel time and amplitude. Or we 

can say that the solution given by ray theory represents the wavefield in a more explicit 

way than the original wave equation. The representation allows us to simulate seismic re­

sponse by some transformation of the earth model that we are interested in. With further 

approximation (Kirchhoff approximation), we can derive a formula that links seismic re­

sponse to a reflectivity model. In the Kirchhoff theory, we assume that the wavefield can 

be represented in the following form (WKBJ approximation):

j—'j

where x denotes the 3-D location, w is the temporal frequency, Aj is the j  th order ampli­

tude and 0 is an integer number. In the temporal frequency and space domain, the wave

3  J ut(x] (2.1)

9
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2.2. KIRCHHOFF MODELLING AND MIGRATION/THE ADJOINT

equation can be expressed as follow:

(2.2)

Substituting a trial solution in the WKBJ form in equation 2.2 leads to (Bleistein et al., 

2000):

Usually different powers of the temporal frequency u  can not cancel each other. So by 

setting the first two terms to zeros, we have the following two equations:

where t  is the travel time, and Aq is the leading order amplitude. Equation 2.4 is called 

the eikonal equation, and equation 2.5 is called the transport equation. Higher order 

amplitude terms can be calculated by recursively solving

where j  and j  — 1 are order numbers of the amplitude term ( j >  0). In imaging applica­

tions only the leading order transport equation is required to represent the amplitude.

The eikonal equation 2.4 can be solved by the method of characteristics (Bleistein 

et al., 2000). This method converts the partial derivative equation to a sets of ordinary 

equations. The ordinary equations may have various forms depending parameterization. 

One often used pair of equations are listed as follows

where p is the vector of wavefield gradient (p= {ux\ ,uX2 ,uX3 ))r r  is the travel time at 

location x, and c(x) is the wave speed. These equations can be solved by raytracing 

methods.

j=0

(2.4)

2 V r (x ) - V A q(x ) +  AqV 2t (x ) =  0, (2-5)

2 V r • VAj + AjV 2t = (2.6)

(2.7)

10
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2.2. KIRCHHOFF MODELLING AND MIGRATION/THE ADJOINT

The transport equation can be solved by dynamic raytracing (Cerveny 2000). Alter­

natively, an economical way of calculating amplitude is to use a geometrical spreading 

factor by assuming constant velocity (Aki and Richards, 1980):

for 3-D case and

for 2-D case, where x symbolize the location where we measure the amplitude and xo is 

the source position.

The above geometrical spreading formulas can be modified by changing the distance 

to the accumulated length of the ray path, which is available from the travel time ray- 

tracing routine. In general, we assume all amplitude have a same scale with respect to 

the geometrical spreading factor, therefore for simplicity we can replace "a"  with "=" in 

the above relationship.

2.2.2 Green's function for linear partial differential operators and derivation 
of Kirchhoff modelling

The Green function is a integral kernel that can be used to solve differential equations. It 

can be defined in a general way as follows (Arfken, 1985). Given a linear partial differen­

tial operator L, if we can find a function G such that

and G is called the Green's function of the linear operator L.
For the acoustic wave equation, the operator L is replaced with the Laplacian operator 

V. Given a macro velocity model, we can calculate the Green's function by solving for 

amplitude and travel time terms separately as previously described. The wave equation 

can be formulated in the temporal frequency and space domain as follows:

(2.9)

LG(r,r') = 5(r — r'), (2-10)

then the solution to Lu — f  is

(2.11)

Lu(x, xs, cj) = —jF(w)<5(x — xs) (2.12)

11
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_____________ 2.2. KIRCHHOFF MODELLING AND MIGRATION/THE ADJOINT

The total wave field u can be decomposed into two parts, the unperturbed incident wave 

Ui and the perturbed wavefield or the reflection us. The incident wave is closely related 

to the source, therefore we decompose equation 2.12 into two equations:

Luj = —F ( uj) 8 ( x  — xs) 

Lus(x,xs,u;) =  0

A Green function is defined for the receiver xg by

LG(x, xg, c j )  = -6 (x  -  X g )

Now we apply Green's theorem to G and u.

J (GLu — uLG)dv = J  ~  u~^~)ds,

(2.13)

(2.14)

(2.15)

(2.16)
Da

where Da is the upper hemisphere volume shown in Figure 2.1, Sa is the upper surface 

of the sphere, and Sr is the enclosed part of S  by the surface of the sphere.

s
Figure 2.1: Diagram for deriving the Kirchhoff integral operator (Bleistein et al., 2000).

To continue the derivation, we can calculate the left side of equation 2.16 as the following:
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2.2. KIRCHHOFF MODELLING AND MIGRATION/THE ADJOINT

Da

and

J  GLu = j  G(x,xg,u)(-F(u}) - 5 ( x - x s))dV = - G ( x s , x 9 , uj) ■ F(u>), (2.17)

J  —uLGdv =  J  —u(x,xs,w)(—delta(x — x g))dV = u(xg, x s,u;) (2.18)
Da Da

Using 2.17 and 2.18 in 2.16, we have

/ dtt dG 
^Gdn ~ U~dn^dS

Sa+SR

uj + us -F (u j ) -G (xs,Xg,u:)= J  ( G ^ - u ^ ) d S  (2.19)
So+S r

Similar equation can be derived by applying Green's theorem to uj  and G:

Ui(xg, x s,u) -  F ( u ) G ( x s ,X g ,u ) =  J  (2-2°)
Sr +S o.

Combining 2.19 and 2.20, we find

us(xg,x s, u ) =  I  ( G ^ - u s^ ) d S  (2.21)
SR+Sa

According to Somerfield condition, the integral over the surface Sa should be zero when 

the sphere is infinite in size (R —» oo). Therefore, 2.21 becomes

us(xg, x s,ui) = J ( G ^ -  - u s^ ) d S  (2.22)
S

By adopting the Kirchhoff approximation us  = Rut, the above equation can be changed 

to

us(xg, x s, cj) = J  +  G ~ ^ > dS  ’ (2‘23)

1 3
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2.2. KIRCHHOFF MODELLING AND MIGRATION/THE ADJOINT

where R  is the angle-dependent reflectivity.

From 2.13 we know the incident wave can expressed in the following form:

uj =  F(w)A(x, xs, uj) • eiur(x'x*) (2.24)

The green's function of the receiver, G(x, xg, ui), is in the following form:

G(x, xg, oj) =  A(xg, x)eiu!T(x,x^  . (2.25)

Substituting 2.24 and 2.25 in 2.23 leads to

us(xg,xs, u ) = iuF{u) J R A ( x g,x)A(x ,xs) • (n- V[r(xs,x) +  r(x ,x s)]) •
S

e ^ ( r ( x s ,x ) + r ( x ,x a)) . d g  ( 2 .2 6 )

Equation 2.26 can be further simplified into the following general form (Bleistein and

Gray, 2002):

us(x9,x s,oj) = S(u) f  R(x,6)A(xg,x , x s) \ IeiulT̂Xs,x,Xĝ dS, (2.27)

where

—iuF(u)  for 3D
5 ( w ) = i  ____  for 2D

v/H \ / ^ ; e3i7r59n(“)/4-F(a;) for2.5D,

A(xg, x, x s) = A(x, xs)A(xs, x) 

r(xs, x, x g) = t ( x s , x )  +  r(x , Xg)

The symbol 6 is the reflection angle. By far, we have derived a forward modelling scheme 

that links the model, angle-dependent reflectivity, with the seismic data. The Kirchhoff 

modelling involves linear summation of wave perturbation throughout an earth sub­

volume. For a source and receiver pair, we need to calculate the Green functions of all

1 4
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2.2. KIRCHHOFF MODELLING AND MIGRATION/THE ADJOINT

combinations of source (xs), imaging point (x) and the receiver (xfl). For each combi­

nation, we can calculate the contribution from this ray path using the reflectivity model 

and the Green function. Then the contributions of all rays are summed up to simulate 

the seismic response. Oppositely, inversion reconstructs the reflectivity model from the 

seismic data, given a background velocity model. Similar to modelling, inversion also 

needs Green functions.

There are two kinds of methods to solve the inverse problem: direct and indirect 
methods. The direct method attempts to transform data to model by using a formula. 

Usually some approximation theory is involved in such manipulation (Bleistein and Co­

hen, 1979; Cohen and Bleistein, 1979; Clayton and Stolt, 1981; Beylkin, 1985; Miller et 

al., 1987; Beylkin and Burridge, 1990). These methods are attractive since they are more 

economical than the second way of inversion: iterative optimization methods. How­

ever, direct methods requires high-quality data (Bleistein et al., 2000) and may lead to 

instabilities (Jin et al., 1992). Especially when data are incomplete, the solution can be 

unsatisfactory. The second type of methods, iterative methods, involve fitting the seis­

mic data by recursively switching between data space and model space to seek a solution 

that can fit the data. The advantage of iterative methods are obvious: the solution is con­

structed to honor the data. Furthermore, a priori information can be used in the inversion. 

For example smoothness across the midpoints and the quality of the acquired data can 

be incorporated as model and data space prior information, respectively (Duquet et al., 

2000). The shortcoming of iterative methods is that they can be quite demanding from 

the computational point of view. However, this will not be an an issue with large high- 

performance computing facilities being more and more accessible. Moreover, as shown 

in this thesis, it is possible to acquire promising results in only a few of iterations by 

proper preconditioning of the problem.

2.2.3 Migration/the adjoint and a preview of inversion

A stable and often practice of Kirchhoff imaging is to apply the adjoint of the modelling 

operator to seismic data. It can be formulated as follows:

(2.28)

1 5

/ 2 cos
S * ( w ) A ( x 5 , x , x s ) | - ^
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2.3. SOME COMMENTS ON THE KIRCHHOFF OPERATOR

where S*(u>) is the adjoint of S(u) in 2.27. This method is cheaper than the aforemen­

tioned direct inversion, but the image is often smeared and the amplitude information is 

distorted. The output is usually only suitable for structural studies. However by mod­

elling and the adjoint of modelling, we can develop an inversion scheme to fit the seismic 

data and provide more accurate solution, both kinematically (for structures) and dynam­

ically (for amplitudes).

To clarify the above assertion, I present an example of 1-D Kirchhoff migration/ in­

version. The modelling operator is a simplified version of equation 2.27 by setting 6 to 

zero. I prepare a model with constant velocity c =  2000m f  s. The forward modelling 

operator is

where xo =  xp =  xs(zero-offset geometry), A =  -^/(1/lx — xo|) and r  = 2 * |x -  xo|/c. 

The adjoint operator is

Please note that in equation 2.30 the variable x is hidden in r  (x). Five reflectors are placed 

at z = 200 m, 350 m, 415 m, 550 m and 700 m respectively. The synthetic seismic trace is 

shown in Figure 2.2b.

Figure 2.2c shows that the adjoint operator provides a smeared version of the model, 

and the effects of the wavelet is obvious. The reflector position is correctly placed at the 

peak of the waveform, but the amplitude is far from that of the true model. On the other 

hand, the wavelet is suppressed in the iteratively inverted model (see Figure 2.2d), and 

the reflectivity is in proportion to the true value. Some spurious sidelobes are still present 

around the spikes. Such artifacts can be further suppressed by sparse regularization of 

the model, which will be discussed in future chapters.

2.3 Some comments on the Kirchhoff operator

Kirchhoff method will still be used for a while due to two practical reasons. First, the 

method can be implemented for economical inversion. The most difficult part is the cal-

e l“ r d x . (2.29)

(2.30)

16

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow ner. Further reproduction  prohibited w ithout p erm issio n .



2.3. SOME COMMENTS ON THE KIRCHHOFF OPERATOR

-05

100 200 300 400 500 600 700 800 900 1000
Depth [m]

0.02

,0.01

- 0.02
0.4 0.5

Time [s]
0.1 0.2 0.6 0.7 0.8 0.90.3

0.5

- 0.5
100 200 300 400 500 600 700 800 900 1000

Depth [m]

0.5

- 0.5

100 200 300 400 500 600 700 800 900 1000
Depth [m]

Figure 2.2: An example of 1-D Kirchhoff inversion, (a) The true reflectivity model, (b) The 
synthetic seismic trace with a sampling rate of 0.004s. (c) The calculated reflectivity model by the 
adjoint operator, (d) The reconstructed reflectivity model by a linear iterative inversion.
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2.3. SOME COMMENTS ON THE KIRCHHOFF OPERATOR

culation of Green's functions, which involves raytracing for travel times and amplitudes. 

Once these functions have been calculated, we can use them repeatedly. Kirchhoff mod­

elling and migration are economical since only linear summations are needed. The cost 

can be further decreased by controlling the summation aperture (Biondi, 2003a). Second, 

Kirchhoff method can be operated in a target-oriented mode, and it is flexible in handling 

irregular data acquisition.

D istance [km] Distance [km]
0 2 4 6 8 10 12 14 0 2 4 6 8 XO 12 14

0-j---------- 1----------»---------1---------1--------»-------- 1--------- 1-------   OH---------- 1----------«---------1--------- 1--------1---------»---------»-

Distance [km]

(c) (d)

Figure 2.3: Velocity profile A-A' from the SEG/EAGE data, (a) Original model, (b) Smoothed 
model (square width=5). (c) Smoothed model (square width=10). (d) Smoothed model (square 
width=50).

The shortcomings of Kirchhoff method are also obvious. First, the method is based 

on high-frequency approximation, which requires large distance between diffractors and 

sources or receivers. This makes near-surface image inaccurate (Gray et al., 2001). Sec­

ond, more than one raypath may exist between the source and the receiver, which causes
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Figure 2.4: Zero-offset data for the profile A-A' from SEG/EAGE model.

confusion during data summation. Especially, when the structure is complicated, the 

method will fail to accurately show structural details. The multipathing problem can be 

alleviated by some local Kirchhoff methods (Hill, 1990; Hill, 2001; Bevc, 1997), but the 

image quality is generally not so good as that obtained via wave-equation methods like 

split-step (Popovici, 1996) or PSPI (Gazdag, 1984).

To end this section, I evaluate the performance of Kirchhoff method by a benchmark 

data set: poststack 2-D SEG/EAGE data set. The model contains some faults and a big 

salt body. It is a challenge to illuminate the subsalt reflectors and accurately resolve 

the salt body. The zero-offset data were produced by an exploding reflector modelling 

method using the velocity model shown in Figure 2.3a. The density is set to a constant. 

The synthetic seismic section (Figure 2.4) includes the signature of all reflectors, but direct 

interpretation of the data is difficult without migration.

Before applying Kirchhoff migration, usually the velocity model is smoothed to es­

timate the macro velocity field. No one can tell that what kind of smoothing method is 

perfect, and it is interesting that even when the macro velocity is far from the real model, 

the Kirchhoff method can still produce an approximate solution. In this test, I use the
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2.3. SOME COMMENTS ON THE KIRCHHOFF OPERATOR

average velocity of points within a square to represent the macro velocity at the center 

of that square. The larger is the square, the smoother is the calculated macro velocity 

model. Figure 2.3 b, c, and d show the smoothed velocity models by using squares with 

widths of 5,10,50, respectively. The migrated images 2.5 show that both under smooth­

ing and over smoothing of the velocity field give inferior results. In all cases, the subsalt 

reflections cannot be accurately mapped in the image. The edge of the salt body is not 

satisfactory either. This is often a problem when we use Kirchhoff methods to image com­

plex media. Please note that a better result of this data set has been shown by O'Brien 

and Gray (1996). However, as that result shows, complex structure imposes a challenge 

to Kirchhoff imaging methods. The point here is to show the difficulty of preparing ve­

locity model for ray tracing that is required by the algorithm. For this reason, I prefer 

wave equation operators, which are discussed in the next few sections. Wave-equation 

migration methods usually need more accurate velocity information, and they are sensi­

tive to velocity mismatch, which makes these methods suitable for velocity analysis.

2 0
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Distance [km] D istance [km]

Distance [km] Distance [km]

(C) ( d )

Figure 2.5: Migrated images by Kirchhoff method using different macro velocity models, (a) 
Result using the true velocity model, (b) Result using velocity model shown in Figure 2.3b. (c) 
Result using velocity model shown in Figure 2.3c. (d) Result using velocity model shown in 
Figure 2.3d.
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2.4. WAVE-EQUATION MODELLING/MIGRATION

2.4 Wave-equation modelling/migration

Wave equation based methods are derived in a more formal way than Kirchhoff meth­

ods. In this kind of methods, amplitude and travel time is solved at the same time in 

contrast to the Kirchhoff style approach of solving the decomposed eikonal equation and 

transport equation. No high-frequency approximation is involved. Furthermore, multi- 

pathing problem is implicitly solved. For these reasons, wave-equation methods usually 

provide better results than ray-based methods especially for complex media.

2.4.1 Two-way versus one-way wave-equation representation

In a seismic experiment, an impulse is triggered at the source and the wave propagates 

down to the sub-volume. When the wavefront hits a reflector (an interface between two 

contacting media), some part of the energy transmits through the interface and continues 

its journey to the deeper area. Some part is reflected back toward the surface. There­

fore, we can think the total wavefield as a combination of downgoing wave and upgo-

ing wave. These two waves may couple each other at high angles in inhomogeneous 

media (Wapenaar and Berkhout, 1985). Depending on the way of treating these waves, 

two-way and one-way wave-equation methods were proposed (Wapenaar and Berkhout, 

1985; Wapenaar and Berkhout, 1986a; Wapenaar and Berkhout, 1986b).

By ignoring the source, the equation of motion can be formulated in the temporal 

frequency domain as follows:

VP = - iupV ,  (2.31)

where P is the pressure, u  is the temporal frequency and V is the velocity vector. The 

stress-displacement equation reads

K V - V  = - iuP,  (2.32)

where K  is the bulk compression modulus. For acoustic media, K  ■=■<?■ p. From equation

2 2
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2.31 we have

dPdx =  -iupVx (2.33)

—  =  —iuipVy (2.34)

8z

Equation 2.32 can be rearranged into

dP 
dy 

dP = —iiopV. (2.35)

dz K  dx dy
(2.36)

Using 2.34 and 2.35 in 2.36, we have

dV. iu d . 1 d P . d . 1 dP.
— — —zpP+ ~o~(~— ~z~ ) +  — ~a~) (2.37)dz K  dx lu p  dx dy i u p  dy

Equation 2.35 and equation 2.37 can be combined in matrix form:

where

and

where

f £  =  AQ, (2.38)

Q = (  y_ ] P-39)

A = l * 7  I- <M0>

k2 = u 2/c2 (2.42)

The propagation matrix A can be decomposed into the following form by eigenvalue 

decomposition:

A =  L a L“ \  (2.43)
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2.4. WAVE-EQUATION MODELLING/MIGRATION

where

(2.45)

(2.44)

and

(2.46)

where Hi = s/Th- If the pressure field P  can be decomposed into the downgoing wave

P + and the updoing wave P  , i.ev P = P+ + P~, then we can easily verify that

Equation 2.47 composes the total field from the upgoing and the dowgoing waves, and 

equation 2.48 decomposes the total wavefield into the downgoing wave and the upgoing 

wave. Therefore I call the two operators, L and L-1 given in equation 2.44 and 2.46, 

wave composition and wave decomposition operators respectively. Inserting equation 

2.47 into 2.38 yields

Using the expressions of P /, A, L and L-1 in equation 2.50, we have two equations for 

upgoing and downgoing waves, respectively:

Q = LPj, 

P  i =  L-1Q

(2.47)

(2.48)

where

(2.49)

(2.50)

(2.51)

(2.52)
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It can be seen that if the term p-jjzO^Hi) can be ignored, for example for a homogeneous 

medium, then we can completely decompose the wavefield into downgoing and upgoing 

waves. If only primary waves are considered, by ignoring the coupling between P+ and 

P~, then the decomposition is also valid, but only for sub-critical angles (Wapenaar and 

Berkhout, 1985). More general solution including critical angle events can be derived by 

adopting WKBJ representation, but the topic is beyond the scope of this thesis.

Equation 2.38 is called two-way wave equation, and the combination of 2.51 and 2.52 

is called one-way wave equation. If the coupling is not ignored, two-way wave equa­

tion and one-way equation are equivalent. In practice, usually coupling of upgoing and 

downgoing is not considered for one-way wave equation. Therefore, two-way wave 

equation method is more accurate in modelling since multiples, transmission loss is au­

tomatically considered.

The solution of the two-way wave equation can be conveniently derived in the Fourier 

domain. In this domain, the two-way equation 2.38 can be formulated as:

(2.53)

where

(2.54)

(2.55)

H2 = k2z = k2 - k 2x -  k2y. (2.56)

By eigenvalue decomposition, the matrix A can be decomposed into A = LaL- 1. The 

operators, A, L and L-1, are wavenumber-frequency domain counterparts of previously 

defined operators A, L and L-1. These operators read

(2.57)

(2.58)

(2.59)

2 5
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where H\ =  \f~Hi =  yjk2 — k% — fcj*. For the wavenumber-frequency domain wave 

equation, Ursin (1983) proposed an extrapolation formula by assuming a homogeneous 
medium:

Q(z) = W (z,z0)Q(z0), (2.60)

where

W (z,z0)= e ( AA2\  (2.61)

where zq is the depth of the surface, z  is an arbitrary depth and Az  = z  — z0 is the 

thickness. Some manipulations of equation 2.61 yields (see Appendix A):

where

W)(z,z0) =  cos(#iA z), (2.63)

Wn (z,z0) = ^ s i n ^ A z ) ,  (2.64)
H\

Wm (z,zq) = 7 - — H 2W t i (Z , zo) ,  (2.65)
(up)2

WIV(z,z0) =  Wr(z,z0). (2.66)

The extrapolation method can be applied in an iterative way using:

Q(zi)= W (z i,zi_1)Q(zi_1) (2.67)

Using above formula we can calculate the wavefield at depth z = Zi from depth z = z,_i. 

Similarly, we can derive a formula to calculate the wavefield at depth z =  Zj_i from

z = Z{, which is used for modelling. The formula is

Q(zi_1) =  W(zi_1,zi)Q(zi), (2.68)

where W  (zi_i, Zj) is in the same form as equation 2.62, but its components are computed 

by using Az =  z*_i -  z(i). It is interesting to see that when Hi —>■ 0, W(z, z q )  in equation 

2.64 does not break down. The value of Wu  converges to iupAz, which allows us to use 

the formula to simulate head waves.
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It is straightforward to show that the solution for one-way equation 2.51 and 2.52 are 

given by the following extrapolation formulas by assuming homogenous media:

P+(zi) = P + t e - O - e - ^ * 5, (2.69)

p-(zi)  =  p - (z i_1) .e +i^ As. (2.70)

Alternatively, equation 2.70 can be written as

P~(zi-i)  = (2.71)

These formulas can be used to propagate downgoing and upgoing waves independently 

in seismic simulation.

2.4.2 Two-way vs. one-way wave-equation modelling/migration

Two-way wave-equation modelling/migration

The recursive two-way representation of wave equation given by equation 2.68 can 

be utilized for seismic modelling. The wave extrapolation should not start from the sur­

face since we don't have knowledge about the upgoing wave, the received reflection.

Actually, if we know the upgoing wave at the surface, there is no need to do seismic

modelling anymore. Therefore a rational scheme should start from the half space bellow 

the deepest layer. We can assume there is no upgoging wave in that area. The downgoing 

wave there is assumed to be an impulse response. The modelling procedure by two-way 

extrapolation operator is generalized as follows (Wapenaar and Berkhout, 1986b):

1. Prepare the total wavefield at the maximum depth z = zm by

Q W  = LP(zm), (2.72)

where P(zm) =  [P+(zm),P~(zm)]T- The downgoing wave P 'r (27n) is set to an 
impulse response, and the upgoing wave P~(zm) is set to zeros.

2. Use the recursive extrapolation equation 2.68 to propagate wavefield to the surface

z =  Z Q .
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2.4. WAVE-EQUATION MODELLING/MIGRATION

3. Apply the following sequential equations:

P ( z o )  =  [ P + ( z o ) , P - ( z o ) f  =  i - ' M Q i z o ) ,

XM(z0) = p - (z 0) /P +(z0),

X ( z o )  =  [ l - X W p - C z o ) ] - 1^ ^ ^ )

(2.73)

(2.74)

(2.75)

where the wavenumber-frequency domain upgoing reflectivity R ~ ( zq) is given by

f t - , z \ _  p{zq)Hi (zi) - p ( z 1)JI1(zo) 
° p{z0)Hi(zi) +  p(zx)i?i(z0)

(2.76)

4. Add signature of the source and receiver by

P CSG =  S { z 0) X ( z 0) D ( z 0), (2.77)

where S ( zq) is the source signature, and D ( zq) is the detector signature.

5. Repeat 1 ~  4 for all wavenumbers and frequencies, then apply inverse Fourier 

transform to produce the common shot gather.

The extrapolation for two-way wave-equation migration starts from the surface. We 

assume that we can completely decompose the total wavefield at the surface into down- 

going wave and upgoing wave. The former is set to an impulse response S ( zq)+ , and 

the latter is the received reflection P c s g (zo) ~ ■ The two-way wave equation migration 

involves the following steps:

1. Calculate the total field Q(zq) by the formula

For simplicity, we can use S ( zq)+  as P + ( zq) and P c s g (zq) as P  ( z 0).

2. Use the recursive extrapolation equation 2.67 to calculate the total field at each 

depth z = Zi-

3. At this depth, we can calculate local downgoing and upgoing waves by

Q(z0) =  L(zo)P(z0) =  L ( zq) { P + (zo) , P - ( z0)]t . (2.78)

[P + (^ i), P~(Zi)]T =  £<(Zi)- 1 Q (Z j). (2.79)
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4. Apply the zero-offset imaging condition at this depth:

R(x,y,Zi) =  ^ X ( s , 2/,zi,a;), (2.80)
UJ

where

v / n P~{x,y,zuu)  /nMXX (x,!/,zi. a , ) = p+(x_!)i2j_ij) , (2.81)

where P “ (s, y, w) and P +(x, y, zi, w) are the space and temporal frequency do­

main wavefields converted from wavenumber-frequency domain wavefields 

P~(kx>ky,Zi,u) and P+(kx,ky,Zi,uj), respectively, by inverse Fourier transform. 

Equation 2.81 may be unstable due to zero denominators. A more stable formula is 

as follows,

............. i P+*(x,y,Zi,u)-P-(x,y,Zi,uj) ,n on,
X (x ' ---------IP+fi.j/.Zi.wJP + o-2------' ■ <2'82)

where P +*(x,y,Zt,o;) is the adjoint of P +(x,y,Zi,ui), and a is a small constant to 

avoid infinite value of X  (x, y, zi, u>).

5. Repeat 2 ~  4 for all depths.

Although the above two-way wave-equation migration has potential to address mul­

tiples, transmission loss and converted waves, the method requires detail information 

about the velocity (Wapenaar and Berkhout, 1986b). Small velocity errors can make the 

algorithm unstable. For this reason, two-way wave-equation migration is not so robust 

as one-way wave equation migration described bellow.

One-way wave-equation modelling/migration

Berkhout (1984) proposed a scheme for one-way wave-equation modelling, which is 

portrayed in Figure 2.6. The procedure is given as follows:

1. The extrapolation starts from an impulse response at the source, symbolized with 

S +(z0).

2. This wavefield is downward propagated by applying the recursive operator 2.69.
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S ( z  =  0 ,<n,kx ) Pi ( z  = 0 ,(o,kx)
Z_______

2
r

R; (z  =  z i,(£>,kx)

Figure 2.6: The scheme for one-way wave equation modelling. In the wavenumber-frequency 
domain, the contribution of each layer is considered a product of the source wavefield, downgo­
ing operator, local reflectivity wavefield and upgoing propagator. The contributions of all depths 
are summed up to calculate the seismogram at the receiver. Finally, multi-dimensional inverse 
Fourier transform is applied to convert tire data to the space and time domain.

3. When the wavefield reach a reflector (each depth is regarded as a reflector) at depth 

z =  it is multiplied by the reflectivity wavefield RZi, which is calculated by

4. Upward propagate the result wavefield of step 3 using the recursive operator 2.71 

until it reaches the surface. The result wavefield is denoted by %  (z0), which is the 

upgoing wave or the reflection excited by the reflector, Ri.

5. Repeat step 1 ~  4 for all reflectors (depths). Then sum up all reflected waves. The 

total reflection is calculated by

n _  p{zj)Hi(zj-i) -  p{zj-i)Hi(zj) 
p{zi)Hi(zi~i) +  p(zi-i)Hi(zi)

(2.83)

(2.84)
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6. Convert P  (zo) to the space and time domain by inverse Fourier transform.

It can be seen that in the above scheme, we have ignored the transmission loss since we 

actually model the seismic response for each depth as if overlying layers do not exist, 

which is always violated in the real world. This is one disadvantage of this method.

One-way wave-equation migration also starts from the surface. It involves forward 

propagation of the source wavefield and backward propagation of the received reflection 

and application of imaging condition at each depth. The routine is generalized as bellow:

1. Calculate an impulse response at the receiver S +(zq) in wavenumber-frequency 

domain. Convert the received reflection data to the same domain by Fourier trans­

form. The result receiver wavefield is denoted as P~ (zo).

2. Use the recursive extrapolation formulas 2.69 and 2.70 to forward propagate the 

source wave and backward propagate the receiver wave, respectively. The result 

wavefields are denoted with P +(zj) and P “ (zj)

3. At each depth, the zero-offset imaging condition is applied:

R ( x , y , Z i )  =  ^ X (z ,2 / ,z i ,a ; ) ,  (2.85)
U?

where

W_  ̂ P~fay,Zi,U) ,r, onX{x, y, zu u) = ——----------- -, (2.86)
P+(x, y ,zu u)

where P~(x, y, zj, u) and P +(x, y, Zi, u) are the space and temporal frequency do­

main wavefields converted from wavenumber-frequency domain wavefields 

P~(kx,ky,Zi, u) and P+(kx, ky, Zi,uj), respectively, by inverse Fourier transform. 

The more stable way to calculate X{x, y, Zi, w) is as follows:

 n P +* { x , y ,Z i , u ) - P - { x , y ,Z i , u j )
-------- \P*(x,y,zi , ^ + ^ ------• • (2'87)

where P +*{x, y, Zi,cu) is the adjoint of P +(x, y, Zi, u), and cr is a small constant to

avoid infinite value of X(x, y, Zi, oS).

4. Repeat 2 and 3 for all depth.
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In this section, I have shown that the two-way and one-way wave equations are suit­

able for shot migration. However, as I have shown, both modelling and migration by the 

one-way approach are more explicitly related to the reflectivity. As a consequence, one­

way wave-equation operators are more suitable for iterative inversion discussed in the 

next chapter, which aims at recovering a reflectivity model that can fit the seismic data. 

Since the described one-way method ignores multiples, multiples should be removed 

before migration/inversion.

For structural imaging, the described zero-offset imaging scheme is applied to all shot 

records. The contributions of all shots are added to produce an image cube (for 3-D) or a 

seismic profile (for 2-D). The summation can be formulated as bellow:

«<*,y,z) = y  Y S (X'y'Z'“\X£P,+*; *■’ ■, (2.88)P +(x,y, z ,07,xs)P+*(z, y, z, u ,x*) +  a2
X j  tv

The normalized imaging condition usually provides better solution than the conven­

tional cross-correlation imaging condition (Claerbout, 1971) that does not consider the 

normalization of amplitude of downgoing waves. This is verified by a test of shot mi­

gration in Figure 2.7. The event especially at far offsets is better illuminated with the 

normalization. As shown later in this Chapter, the amplitude accuracy is also improved.

The imaging condition with amplitude normalization improves the image quality by 

introducing imaging deconvolution (Valenciano and Biondi, 2003). However, for itera­

tive inversion, we should think the problem in a different way. By assuming the source

wavefield as an impulse response, the one-way wave-equation modelling can be recast 

as:

P = Y ^ W r R iW+, (2.89)

where P  is the surface observation in the Fourier domain, Wi is the upgoing propagation 

operator for the i th layer, Ri is the reflector wavefield of the ith layer, and W*  is the 

downgoing propagation operator for the zth layer. Therefore, the adjoint (migration) can 

be formulated as:

Ri =  w r * p w + m, (2.90)

where Wf*  is the adjoint of W~,  and Wf*  is the adjoint of W f “.
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Offset [m]
0 400 800 1200

Distance [m]
0 400 800 1200

Distance [m]
0 400 800 1200

(a) (b) (C)

Figure 2.7: Migration of a single shot gather, (a) A shot gather with 61 offsets in a spacing of 25 m, 
sampled every 0.004s. (b) Image obtained with cross-correlation imaging, (c) Image normalized 
by the amplitude of source wavefield.

2.5 Angle-dependent reflectivity

In the previous derivation of wave-equation modelling/adjoint, the concept of reflectiv­

ity is frequently used. It is important to understand the physical meaning of reflectivity 

before we use it for the forward and inverse problems. In an seismic experiment, usually 

we have many receivers at different lateral distance from the shot to detect the under­

ground geological structure. The data acquisition system allows us to cover a survey 

range with rays of different angles. To understand this, we regard the seismic shot as a 

point source. Once the source is triggered, the energy is propagated toward all directions. 

One approach is to decompose the wavefield into plane waves and treat rays separately 

(Miiler, 1971; Tygel and Hubral, 1984; Yilmaz and Taner, 1994). These rays impinge the 

reflector at different angles and rebound back to the surface. It is straight-forward to 

see that the received seismic response at receivers contains angle information. The more 

energy is reflected from the reflector, the stronger is the seismic response, which is rep­
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r
z

P2’c:

Pi>C Medium 1

Medium 2

Figure 2.8: Diagram to derive angle-dependent reflectivity of a plane wave. P*: the incident 
plane wave. Pr: the reflected plane wave. Pt: the transmitted plane wave, a: the incident angle. 
a': the reflection angle. /3: the transmission angle.

resented by the amplitude of the seismic trace. By analyzing the boundary conditions of 

acoustic media at the reflector or the interface between two contacting layers, Berkhout 

(1984) proved that the amplitude can be angle-dependent.

Angle-dependent reflectivity

Figure 2.8 shows the geometry of one reflection event due to the incidence of a plane 

wave with a single frequency. The incident planar pressure wavefield Pi{x, u>) is repre­

sented by WKBJ approximation in space-frequency domain

where Si is the amplitude term, e~iux/Cx is the phase term, and cxi is the apparent wave 

velocity in x direction. The apprarent velocity can be calculated by cXl = c \ /  sin a, where 

ci is the wave speed in the upper layer, and a is the incident angle. Similarly we can 

express the reflected and transmitted pressure wavefields by the following:

Pi(x,u) = Si(u)e-iux^ (2.91)

Pr (®,o;) =  5r(W)e-“ ^ ,  

Pt{x,u) = St(oj)e~iux/Cx3,

(2.92)

(2.93)
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where ST and St denote the amplitude of the reflected wave and transmitted wave re­

spectively. The apparent velocities are related to the true velocity by:

Cx2 =  c i/ sin a1, (2-94)

Cx 3 = c2/sin/3, (2.95)

where a' is the reflected angle, /3 is the transmission angle. c2 is the true wave speed in 

the lower medium. Call two boundary conditions:

Pi + Pr = Pu (2-96)

Vi cos a — vT cos a' =  vt cos /3. (2.97)

The first condition means that the pressure should be the same on both sides of the inter­

face. The second condition uses the fact that particle velocity in normal direction should 

be continuous. Since the first condition holds for all frequency, the phase of equation 

2.91,2.92 and 2.93 should be consistent, which leads to Snell's law:

sin a  sin a 7 sin/3 = ------ = --------= p, (2.98)
Cl Cl C2

where p is called ray parameter.

Using Snell's law in equation 2.96, we have

Si + Sr = St. (2.99)

The reflection coefficient or reflectivity is defined as R  =  Sr/Si, and the transmission

coefficient is defined as T =  St/Si. By using the definitions, equation 2.99 is reduced to;

1 + R  = T. (2.100)

To continue the derivation, we need a relationship between pressure, acoustic impedance 

and particle velocity (proved in Appendix B):

P = - I v ,  (2.101)

where I  = pc, where p is the density and c is the wave speed. Using equation 2.101 in

equation 2.97, we find

1 _ R =  T - h c o s p  
i 2  cos a
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where I\ =  p\C\ and 12 = P2 C2 - Combining equation 2.100 and equation 2.102, we have 

the formula for the angle dependent reflectivity:

1 2  cos a +1\ cos p 

The variable cos /3 can be replaced by

cos/3 =  \ / l  — sin2 /3

(2.104)

Finally, the reflectivity is expressed as a function of the incident angle:

R ( a )  =  C2-105)
P2C2 cos a  +  pi [cf — C2 sin2 a] 2

Snell's law tells us that the horizontal ray parameter is related to the incident angle. 

Therefore, alternatively we can express the angle dependent reflectivity in terms of the 

lateral ray parameter:

m  =  W l - ^ c j - W c f - j p ^  (2106)
P2C2 y / l  -  p 2c \ + Pi y f c \ - C % P 2c(

Equation 2.106 tells us that when more than four ray parameter dependant reflectivities 

are known (i.e. we have an over-determined system), we can invert the rock properties, 

pi,p2, ci and C2 . However, the inversion of rock properties is not the direct goal of my re­

search. This thesis aims at recovering high-quality ray-parameter-dependent reflectivity 

model, R(p) and puts forward the inversion of rock properties as an afterwards process­

ing. For a discussion on how one can further invert for physical parameters see (Feng, 

2004).
For an elastic earth model, we can similarly analyze the pressure and particle velocity 

of P-waves, S-waves and converted waves (Aki and Richards, 1980). The approximated

solution for PP  wave is given in the introduction. The formula is obviously different

from the acoustic case derived above. However, this does not influence the inversion 

method that I use since these formulas will be only used after the reflectivity model has 

been acquired by migration/inversion. As an early step of AVA analysis, the method
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2.5. ANGLE-DEPENDENT REFLECTIVITY

adopted in this thesis inverts the compressional wave reflectivity by adopting the acous­

tic approximation of the elastic wave equation. Therefore Aki & Richard's formulation of 

AVA response is not involved, 

local wavefield modelling and the adjoint

In the iterative inversion used in this thesis, a pair of conjugated operators should 

be developed to switch between data space and model space. As shown before, in one­

way wave-equation modelling, downgoing wavefield from the source is multiplied by 

the local reflectivity wavefield to produce upgoing field in the wavenumber-frequency 

domain. In migration, the local reflectivity wavefield can be calculated by multiplying 

the upgoing wavefield by the adjoint of downgoing source wavefield. Therefore, the 

wavenumber domain local reflectivity wavefield at each depth can be regarded as the 

model that connects upgoing and downgoing wavefields. Since I am interested in the 

ray parameter dependent reflectivity model instead of the local wavefield, a pair of op­

erators that relate the reflectivity model with the local wavefield are in order. One is 

used to synthesize local wavefield (wavenumber domain) from the reflectivity model 

(ray parameter domain) and the other one is to estimate reflectivity model from the local 

wavefield. These two operators can be designed by considering the Snell's law in the 

Fourier domain:

P = ~ ,  (2.107)ui

To understand the problem, I denote the reflectivity model as R(p, ui, x, z), and the local 

wavefield data as R(k, u>, x, z), where x is the midpoint, and 2  is the depth. In mod­

elling of the local reflectivity wavefield, the amplitude in respect to a ray parameter is 

considered the same for all frequencies. Therefore, for each frequency, we can calculate 

the relative wavenumber k by equation 2.107 and set the amplitude of that wavenumber 

to the same value. Reversely, in the adjoint operation, we can calculate the reflectivity 

of one ray parameter by summing up the amplitude of all elements within the matrix 

R(k, w, x, z) that have same ratio of wavenumber and temporal frequency. In matrix 

form, the modelling procedure can be expressed as:

3 7
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2.5. ANGLE-DEPENDENT REFLECTIVITY

( 1  ̂1

1 R(p,x,z)  =

I 1 )
where kj/wj =  p. The adjoint operation

R(p,x, z) = ( 1  1 -  1 •

R{k2,U2,x,z) 

R[kj,uj,x,z)

(  R{ki,wx,y., z) 
R(k2,W2>3C, z)

1 )

\

R(kj,CJj,X, z )

V R(kNom'9a,u Nu,x,z)  )

(2.108)

where R(p, x, z) is the adjoint reflectivity model in the ray parameter domain. The adjoint 

operation is called radial trace transform (RTT) or slant stacking.

The described radial trace transform looks straight-forward, but it is not easy in 

application. The first problem is the mismatch between regularly sampled frequency, 

wavenumber and ray parameter. For example, we have a common midpoint gather with 

40 offsets in a spacing of 25 m, 400 samples per trace and a sampling rate of 4ms. The dis­

crete frequency is (0,3.927,7.854, ...2^-125). The wavenumber is (0,0.0063,0.0126, ...,27t- 

0.02). As an example, I set the ray parameter to (0,0.002,0.004,...). The relative wavenum­

ber vector of the given ray parameter for the first frequency 3.927 is (0,0.0079,0.0158,...). 

It is clear that most of elements are not exactly equal to any elements of the defined 

wavenumber vector. The solution of this problem is interpolation (Claerbout, 1985). 

The amplitude of one wavenumber is calculated by linearly interpolating the amplitude 

of neighboring wavenumber. For example, the wavenumber 0.0079 is located between 

0.0063 and 0.0126. Therefore, its amplitude is calculated by:

*(0.079) =  & ™ ° g * (0.0063) +  ° r - ° r > -0126). (2-109)v 1 0.0126-0.0063 v 1 0.0126-0.0063 v '

The second problem is the bandlimited nature of wavenumber spectra. According to 

Nyquist law, the maximum offset wavenumber is l/(2dh). This means that when the

3 8
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2.5. ANGLE-DEPENDENT REFLECTIVITY

product of ray parameter and frequency is larger than the wavenumber up-limit, we can 

not calculate the amplitude of this ray parameter at this frequency. The scenario usually 

happens at high angles or large ray parameters, which leads to inaccurate amplitude of 

high angles. This is a very common problem for all kinds of linear imaging problems. In 

Chapter 3 ,1 will show that the accuracy at high angles can be improved by introducing 
non-linear regularization.

A ray parameter sampling rule for aliasing-free image gathers

Since the reflectivity model of each ray parameter gives an image of the earth struc­

ture, we can define a concept, image gather, for the gather of ray parameter dependent 

reflectivity. The gather for one midpoint is called Common Image Gather (CIG). To avoid 

aliasing of CIGs, the ray parameter should be adequately sampled to make full use of 

available information from the given data. To see this, I write the Snell's Law in the 

Fourier domain as bellow,

P h = ~  (2.110)a;

where ph is the ray parameter in offset direction, kh is the offset wavenumber and w is 

the temporal frequency. In the real world, we have discrete signals. Both wavenumber 

kh and ray parameter ph are usually sampled in regular spacings. At a given frequency 

w, they should obey

dph = —  (2.111)(V

where dph is the ray parameter spacing, and dkh is the wavenumber spacing. Equation 

2.111 gives a good sampling standard to avoid aliasing for linear inversion with ray pa­

rameter and wavenumber as the input and output. The good fitting between two sides 

may also facilitate the convergence of iterative inversion. One straightforward applica­

tion is to apply the sampling rule to time-invariant transforms like radial trace stacking 

(Kostov, 1990). If kh is known and we want to solve ph, ray parameter spacing should 

obey:

^ dkh 2Tr/(Nh -dh) 1
i n i  —  -  2W  "  "  N „ - i h - S  (2-U2)
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2.6. ANGLE-DOMAIN IMAGING CONDITION

where Nh is the offset number, d h  is the offset spacing and f is the frequency. This can be 

extended to band-limited signals:

dPh ~  d h  ■ f max ( 2 ' 1 1 3 )

where / mQX is the maximum frequency. It is clear that when the above inequality is ful­

filled, ray parameters for all frequencies f  are well sampled since /  < fmax-

To verify this ray parameter sampling rule, I examine the influence of ray parameter 

sampling on linear slant stacking Radon inversion in the Fourier domain. The data have 

120 offsets with 5 m spacing. Each seismic trace has 500 samples, and the sampling rate is 

4ms. The maximum frequency is 80 Hz. Some hyperbolic events are prepared to simulate 

a common midpoint gather. Using the sampling rule, the largest ray parameter spacing 

is 1/(120 x 5 x 80) =  0.000021s/m =  21 (is/m. A larger interval of the ray parameter will 

introduce aliasing in the solution. Figure 2.9a is the original input data. Figure 2.9 b and 

c display the inverted radon panels with a good sampling and a bad sampling of the ray 

parameter, respectively. It's clear that with good ray parameter sampling, the model is 

better focused.

Figure 2.9d and e show the predicted data by applying the forward operator to the 

inverted radon panels. The result of the well sampled solution successfully recover the 

data and the residual (see Figure 2.9f) is ignorable compared with the original data. On 

the other hand, under-sampled solution introduces many artifacts in the modelled data. 

The data fitting is not acceptable with a significant amount of coherent events present in 

the residual (see Figure 2.9g).

The sampling criterion can be used for AVP (Amplitude Versus ray Parameter) wave- 

equation migration. In AVP migration, the imaging procedure utilizes the radial trace 

transform at each depth, and the spacing of wavenumber does not change for all depths, 

which means once the surface ray parameters are well sampled, so are those of the sub­

volume.

2.6 Angle-domain imaging condition

With the concept of local reflectivity field modelling (the adjoint of RTT) and the ad­

joint (RTT), we can now better understand the procedure of shot profile modelling and
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Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2.6. ANGLE-DOMAIN IMAGING CONDITION

Offset [m]
250 500

Slowness [mu s/m]
0 1000 2000 3000

Slowness [mu s/m]
0 1000 2000 3000

0 .1 M L . . . ! --------------- — 1---------  1-

   i [    ....►in::

 .......*• *»>'• i >i . ;a i.o-

-.....,, IM H
H m i

(b )

Offset [m]Offset [m]
250 500

,n iiaiiiiiiiiiEiiiiiitiiiiasj saws s i s  is fl! » !
(d)

Offset [m] Offset [m] 
0 250

0J---------->

a i .o

L fe l.  HI l >!l'li[;rl l i 1
£1 hfei: m m m s m !i;i

Figure 2.9: A common midpoint gather, the inverted radon panels, reconstructed data and the 
residuals, (a) The synthetic data, (b) Radon panel with good sampling of ray parameter {dp = 
21 ps/m). (c) Radon panel with bad sampling of ray parameter {dp = 84ps/m) (d) Reconstructed 
data with (b). (e) Reconstructed data with (c). (f) Residual (a)-(d). (g) Residual (a)-(e).
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2.6. ANGLE-DOMAIN IMAGING CONDITION

migration. In modelling, we regard each depth as an perturbation source. First we down­

ward continue the impulse response from the source to each depth. At each depth, we 

invoke the the adjoint of RTT to produce a local reflectivity wavefield and multiply it 

with the downward continued source wavefield. Then the result is upward continued to 

the surface. At surface, the contributions from all depths are added to calculate the fi­

nal shot gather. In migration, we forward propagate the source wavefield and backward 

propagate the receiver wavefield to each depth. The local wavefield is calculated by mul­

tiplying the downward continued receiver wavefield with the adjoint of the downward 

continued source wavefield. Then common image gathers can be produced by RTT:

/

R{Px,Py,Zi) = 'Y^X[kx,ky,zi,u\, (2.114)
(J

where

A" [Lx > ky 5 Z{, k?] —P (hx-)kyi * P i ^y i Zi ■, U}*} (2.113)

The prime in equation 2.114 means slant stacking or RTT, which has been described in 

the previous sub-section.

The imaging condition 2.114 contains angle-domain information in terms of ray pa­

rameters. However, it is only suitable for lateral invariant media since different lateral 

positions should have different p —z panels due to velocity variation. The formula cannot 

tell the position of the resulting imaging gathers. Alternatively, Rickett and Sava (2002) 

provided a new scheme to produce angle-domain image gathers for shot-profile migra­

tion, which involves sorting offsets for each midpoint and applying imaging condition 

separately. The scheme can be generalized as the following steps:

1 . Extrapolate the source field and receiver field to each depth. The wavefields are 

denoted as P +(x, y, z, w) and P~ (x, y, z, u), respectively.

2. Apply the cross-correlation image condition using downgoing waves and upgoing 

waves with variant displacement. The formula of the imaging condition reads

R(x., h, z) =  ^  ^ P ~ ( x  — h, 2 , u>, s)P+*(x +  h, z,u , s). (2.116)
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2.6. ANGLE-DOMAIN IMAGING CONDITION

In this way, we can calculate multi-offset versus depth (h — z) panels for all mid­

points. The result is AVO gathers in depth domain, different from traditional AVO 

gathers in time domain by using simpler operators like NMO or DMO..

3. Convert AVO image gathers from the space domain (R(h, z)) to the Fourier domain

kz)).

4. Convert AVO gathers to AVA gathers using the relationship between wavenumber 

and wave incident angle (Sava and Fomel, 2000):

tan (2.117)

where 7  is the incident angle. The conversion is applied in two steps. The first step 

is to use the above equation to calculate amplitude of different angles for each ver­

tical wavenumber, i.e., change the image from (fc-, kh) domain to (kz, 7 ) domain for 

each midpoint. The second step is to apply inverse Fourier transform to compute 

the depth variant angle image gather, i.e., convert the image from (k., 7 ) domain to 

(z , 7 ) domain.

The above approach is called "image-space" method (Sava and Fomel, 2000; Fomel, 

2004) since the offset to angle conversion is applied after migration. Another method 

converts the image in the data space during migration by using the previously discussed 

imaging condition, radial trace transform (Prucha et al., 1999). The method is applied in 

the following steps:

1. Extrapolate the source field and receiver field to each depth. The wavefields are 

denoted as P + (x, y , z, ui) and P~ (x, y, z, u), respectively.

2. Apply the cross-correlation image condition using downgoing waves and upgoing 

waves with variant displacement for each frequency. The formula of the imaging 

condition reads

R(x, h, ui, z) = ^  P~(x — h, z,cj, s)P+*(x +  h, z , c j , s). (2.118)
S

3. Convert offset image gathers to offset wavenumber image gathers by 1-D Fourier 

transform along the offset direction, i.e., change R(x, h, z, cj) to R(x, kh,u, z).
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2.6. ANGLE-DOMAIN IMAGING CONDITION

4. Produce ray parameter image gathers by RTT. The result is denoted as R(x, pk, z)

5. Convert ray parameter image gathers to angle image gather by the following rela­

tionship (Rickett and Sava, 2002):

where phx is the inline offset wavenumber, ph.y is the crossline offset wavenumber, 7  

is the incident angle, 9 is the structural dip, v(x, z) is the wave speed at the reflection 

point and (j> is the azimuth angle of the plane wave. The azimuth angle <j> is defined 

as the angle between inline direction and the maximum down-dip direction at the 

reflector point.

In 3-D common-azimuth migration described in section 2.8, we only need to worry 

about the inline offset ray parameter phx. If we ignore the azimuth angle <f>, then the 

formula is simplified into

Please note that for linear inversion, the adjoint operator (migration) only requires 

step 1 ~  4. When a good model of ray parameter dependent image gathers has been 

acquired by the inversion, we can convert it to the angle dependent model by equation 

2.119 or equation 2.120.

At first glance, the model-space method of producing angle image gathers is more 

attractive since no structural dip information is needed. But the method is more sensitive 

to velocity errors (Sava and Fomel, 2003).

Fomel (2004) proposed a more general form of the relationship between wavenum- 

bers and the incident angle:

where krrix and kmy are inline and crossline midpoint wavenumbers, and khx and khy are 

inline and crossline offset wavenumbers. For a 2-D model, the above dispersion equation

(2.119)

(2.121)
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can be simplified by setting kmy and kh to zeros:

2  uj sin 7
(2 .122)

Interestingly, it can be proved (Fomel, 2004) that common-azimuth migration can use 

the same formula as above to convert ray parameter to incident angle. The formula is 

attractive since no knowledge about the structural dip is required. However it is applied 

in the midpoint wavenumber domain, which implicitly assumes constant velocity in the 

lateral direction. For this reason, it is difficult to link the parameter v to local velocity at 

the imaging point.

2.7 DSR wave-equation modelling/migration

2.7.1 Theory of DSR modelling/migration

Seismic data obtained via a multi-sources multi-receivers experiment can be sorted and 

processed together to image the earth interior (Claerbout, 1985). The data at the surface 

is considered as a function of the source and the receiver position, denoted as P(z = 

0, f, s, g), where P  is the pressure, 2  is the depth, t is the time, s is the source vector, and 

g is the receiver vector. When the recorded data are converted to the Fourier domain, 

extrapolation formulas can be adopted to link wavefields at different depths. The idea 

is used to develop the theory of Double-Square-Root (DSR) wave-equation migration 

(Claerbout, 1985). For simplicity, I show bellow the derivation of this method for 2-D 

case. The 3-D formula (Biondi, 2003a) is given after the derivation. Consider a plane 

wave propagating at an incident angle of 6 (see Figure 2.10). It is clear that the horizontal 

apparent velocity of the wave is vx = v/  sin 9 and the vertical apparent velocity is v. =  

v/  cos 6, which leads to two important relationships:

1 _  dt _  sin# 
vx dx v =  P (2.123)

(2.124)

4 5
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Wavefront at time t

Wavefront at time t+dt

Lw

d wv

Figure 2.10: Derivation of apparent velocities. A plane wave impinges the interface with an 
angle 9. It is clear that the angle between the wavefront and the horizontal direction is identical to 
the incident angle. Simple geometry leads to the relationship between the horizontal and vertical 
apparent velocities (vx and vz) and the true wave speed v: vx = v/ sin 9,vz = v/ cos 6.

If both source and receiver depths are considered, then the vertical slowness should be

dt
dz

dt dt 
dz„ +  dzx

(2.125)
t dg V v2 dsJ

where the second identity is derived by using equation 2.124 for the source and receiver 

respectively. The time-shifting partial-differential equation for the upgoing wave is

dP
dz

dt_8P_ 
dz dt

(2.126)

Inserting equation 2.125 into equation 2.126 yields

dP
dz

/ i _  A 2 +  . / 1 _
v2 dg V v2 ds . dt

(2.127)

One trick to solve partial derivative equations in the Fourier domain is to replace 

the derivative sign with the product of relative wavenumber and the complex number

i. For example, 1/dg is replaced with ikg, and 1 /ds  is replaced with iks. The temporal

4 6
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wavenumber is a little different. The time differential operator 1 /d t  is replaced with - iu .  
Here I use the Claerbout7s sign convention of Fourier transform for time and temporal 

frequency domain. With this sign convention, Fourier transform and inverse Fourier 
transform are listed bellow

P( u) = j  P{t)<?uidt (2.128)

P{t) = -L  [  P(u)e~jujtdu. (2.129)
27T J

On the other hand, spatial and wavenumber domain Fourier transform and inverse 

Fourier transform are defined in the usual way with the familiar sign convention. Take 

the receiver wavefield as an example:

P(kg) = j  P ( g ) e - ^ d g  (2.130)

p (9) =  ^  /  P(kg) ^ d k g (2.131)

By using the wavenumber replacement trick, equation 2.127 is reduced to 

dP
dz

, kg 
uj '

K - % + \ K - k * (2.132)

The equation can be converted to midpoint and offset wavenumber domain by the fol­

lowing relationships:

kg — g (km "F k)j) 

ks =  2  {km kf/),

(2.133)

(2.134)

where km is the midpoint wavenumber and kh. is offset wavenumber.The resulting equa­

tion is

dP
dz 4 - 7 (km + fcfc) 2 + \ K - l ( k m -  kh)2

=  - j k sp , (2.135)

where kz denotes the two square roots. It can also be called the vertical wave number.
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The recursive numerical solution of the above equation is

P (Zi) =  P(zi-i)e~ikz Az (2.136)

For 3-D case, the vertical wave number kz is formulated as (Biondi, 2003a)

+  \ J y 2  4  [ ( k m x  k h x ) 2  +  ( k m . y  ) (2.137)

where kmx and kmy are inline and crossline midpoint wavenumbers respectively. khx 
and khy are inline and crossline offset wavenumbers. The offset here is half offset, which 

means the distance between the midpoint and the source or receiver.

For lateral invariant media, we can further simplify the solution into

This is exactly the same as the local reflectivity wavefield that has been introduced in 

the section of shot-profile migration. I prove the statement as follows.

When the media is laterally invariant, the midpoint wavenumbers disappear accord­

ing to the theory of discrete Fourier transform, i.e., kmx =  0 and kmy =  0. Consequently, 

the above vertical number kzi is reduced to

It is easy to show that if h!x =  2 hx and h!y = 2 hx, then the wavenumber condition 2.140 

and 2.141 are fulfilled. For example, we have two data sets, both of which have nh offsets. 

The spacings of them are dh and 0.5dh, respectively. The wavenumber of one dataset 

should be (0,2Tr/(nh ■ dh),4-K/(nh ■ dh),...). The other one is (0,47r/(n/i • dh),8Tr/(nh ■

P{Zi) = P(zo)e-j ^ = ' k*iAz (2.138)

(2.139)

where

kfix — 0.5/j/^, 

kh>y = 0.5 khy.

(2.140)

(2.141)

dh),...).
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In Claerbout's sign convention, the recursive extrapolation equations for downgoing 

wave and upgoing wave are

The second identity is derived by assuming the source field is an impulse response so 

that P + { z q )  = 1 . Recall that the formula for H u  is

The image grid spacing of a shot gather is two times of that of the common midpoint 

gather. Therefore, kx =  0.5khx = and ky =  0.5/c^ = kĥ . Finally, the local reflectivity 

wavefield can be calculated by

Comparing the formulas of DSR migration and shot-profile migration, we can see that 

when velocity does not change in the lateral direction, two methods should provide iden­

tical result. Please note that a proof in the space and temporal frequency domain is given 

by Biondi (2003b)
Equation 2.136, 2.137 and the previously discussed theory of local reflectivity wave­

field provide the foundation for DSR wave-equation modelling and migration. The mod­

elling is generalized as the following steps:

P+(zi) = #+(*_!)•

p - { Zi) =

(2.142)

(2.143)

As shown before, the local reflectivity wavefield is calculated by

(2.144)

For lateral invariant media, the equation can be reformulated as

R{zi) = P~{z0) • e"J's «=> *llAz ■ P +(zo)  •

=  P ~ ( zq) • ^ ' A z+£ I = i ^ 11^ ) . (2.145)

(2.146)

Zi = p -{ z0)e-j Z U i ^ , (2.147)

where

(2.148)
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2.7. DSR WAVE-EQUATION MODELLING/MIGRATION

1. At each depth, apply the adjoint of Radial Trace Transform (RTT) to calculate the 

local reflectivity wavefield P fe , u>, k^, m). Then apply fourier transform to convert 

the local wavefield to midpoint wavenumber domain, i.e., change from P(zi, w, kh, m) 

to P(Zi, u ,  k h , k m )

2. Recursively use the phase-shift operator to propagate the wavefield to the surface 

( z  =  z q). The formula of recursive DSR modelling is acquired by rearranging equa­

tion 2.136:

P te - 0  =  P(zi)eik^ z. (2.149)

3. Repeat 1 and 2 for all depths. When all wavefields have been propagated to the 

surface, they are summed up and converted to the space and time domain.

The adjoint operator (migration) involves applying the phase-shift wave propagator 

with negative sign. It is done by the following steps:

1. Convert the seismogram received at the surface to the wavenumber and frequency 

domain. The resulting data are denoted by P(z  =  0, u>, km, k^).

2. Recursively apply the downward continuation operator to each depth. The formula 

is given by equation 2.136.

3. At each depth, RTT is used to compute common image gathers.

Figure 2 . 1 1  portrays these two conjugated procedures.

The general form of DSR operator can be changed to operators of 3-D zero-offset mi­

gration, 2-D prestack migration, 2-D poststack migration and 3-D common-azimuth mi­

gration by setting some wavenumbers to zeros or using some approximation (see Table 

2.1). The listed common-azimuth migration method involves a stationary-phase approx­

imation of the crossline offset wavenumber, which provides an efficient solution to the 

3-D imaging problem. More detail about this operator is given in the section "common- 

azimuth approximation".

5 0
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2.7. DSR WAVE-EQUATION MODELLING/MIGRATION

Migration type Wavenumber values
3-D zero-offset (poststack) migration 

2-D prestack migration 
2-D poststack migration 

3-D prestack common-azimuth migration

khs = 0 / khy = 0

kfTly = = 0

kmv = 0 , khx =  0 , khy = 0  

Replace khv with kK

Table 2.1: Some migration operators and their wavenumber values

& Modelling

ik.dsx e  1 ttt
i *  ds

x e  H “T f
ik ds 4

xe  ^ *

P(0,co,k) = P(zv a ,k )  x e*** + P(z2, co, k) x

P(0,co,k) 

P(zv G),k) 

P(z2,(a,k)

P(0,©,*)

P(Zi,(o,k)

P(z2,a>,k)

P(zJ,G>,k)=P(zJ_l,<»,k)xe~ik:i*

Figure 2.11: Schemes of Double-Square-Root (DSR) wave equation modeling and migration. In 
modeling, the surface wavecan be considered as the summation of propagated waves from all 
depths. The steps of propagations vary with the depth. In migration (the adjoint of modeling), 
the wave of each depth is calculated by downward continuing the surface wave recursively.

Migration

-ikdsxe  '
-ik_ ds

xe  ‘1
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2.7. DSR WAVE-EQUATION MODELLING/MIGRATION

2.7.2 A toy exam ple of AVP m igration

To show the similarity between shot-profile migration and DSR migration, I prepared a

2-D synthetic data set. The model consists of one layer and one half-space. Their param­

eters are listed in Table 2.2.

5 2
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Velocity (m/s) Density (g/crm?) Thickness (m)
2 0 0 0 2.25 500
2350 1 .6 Half-space

Table 2.2: Model parameters for the 2-D synthetic data.

A shot record with 61 offsets was produced by a reflectivity modelling method for 

acoustic media. The shot gather is displayed in Figure 2.7a. The shot gather was copied 

ten times to simulate a 2-D survey inline. I compare the ray parameter dependent (AVP) 

image gathers from shot-profile migration and DSR migration (see Figure 2.12). They are 

almost identical in shape.

Ray parameter [mu s/m] Ray parameter [mu s/m]
0 200 400 600 800 0 200 400 600 800

(a )  (b)

Figure 2.12: Ray parameter dependent image gathers by wave-equation migration, (a) Shot- 
profile migration, (b) DSR migration. The arrows point the tailing artifacts caused by limited 
aperture of discrete Fourier transform. These artifacts can be attenuated by tapering and padding 
zeros (see Figure 2.13)

The tailing artifacts present in the image gathers is a common problem caused by the 

limited aperture rooted in the discrete Fourier transform. Obviously, if these artifacts are

5 3
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2.7. DSR WAVE-EQUATION MODELLING/MIGRATION

not properly suppressed, the amplitude of deeper events will be disturbed, which ham­

pers further amplitude analysis. One commonly used treatment is to pad zero traces after 

the large offsets to improve the accuracy of discrete Fourier transform. Theoretically, if 

infinite zeros are padded, the wrap around effect will disappear (Claerbout, 1985). How­

ever, this is too expensive and impractical in application. Another treatment is tapering. 

In this method, far offsets are muffled gradually, which avoids the sharper change of am­

plitude along the offset direction. In this thesis, I combine zero padding and tapering to 

attenuate the high-angle artifacts. For this example, I padded 67 zero traces after the far 

offsets and apply 20 percent tapering to alleviate the wrap-around effect. The improved 

image gathers are shown in Figure 2.13

Ray parameter [mu s/m] Ray parameter [mu s/m]

(a) (b)

Figure 2.13: Ray parameter dependent image gathers by wave-equation migration, (a) Shot- 
profile migration, (b) DSR migration. The tailing artifacts are suppressed by zero padding and 
tapering.

For rock property studies, the dynamic information, represented by amplitude vari­

ation, is very important to the application of seismic data in oil & gas exploration. An 

imaging algorithm can be especially valuable if it can preserve amplitudes, which are in
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2.8. COMMON-AZIMUTH APPROXIMATION

proportion to the true reflectivities of the subvolume. For this reason, I evaluate the am­

plitude accuracy of previously described methods by comparing angle dependent am­

plitude of the relative results. In this toy example, the peak amplitude of the event at 

depth z =  500 m is extracted, normalized and converted to the angle domain using equa­

tion 2.120. The curves of angle dependent amplitude by different methods are displayed 

in Figure 2.14. It can be seen that both shot-profile migration and DSR migration pro­

vide accurate amplitude information about interface. Their results are superior to that 

of the conventional zero-offset imaging method. The performance of zero-offset imaging 

method can be improved by introducing the amplitude normalization using the source 

wavefield. The amplitude of the implemented zero-offset image is closer to the theoreti­

cal value at medium and high angles. However, the near-offset accuracy deteriorates as 

a price.

2.8 Common-azimuth approximation

The application of DSR wave-equation operators can be very expensive for 3-D data. The 

major computational cost lies on multi-dimensional Fourier transforms that convert data 

back and forth between the space-time domain and the wavenumber-frequency domain. 

As an example, I analyze the expense of 3-D prestack migration by adopting the zero- 

offset imaging condition. The data is sampled in five dimensions: inline midpoint (mx), 

crossline midpoint (% ), inline offset (hx), crossline offset (hy) and travel time (t). Their 

dimensions are denoted as Nmx, Nmy, Nhx, N ^  and Nt. First at the surface, the data are 

converted to the Former domain, which involves 5-D forward Fourier transform. Then 

the wavefield is propagated to each depth using the described DSR downward contin­

uation method. At each depth, before applying the zero-offset imaging condition, the 

data are converted to the space and temporal frequency domain by 4-D inverse Fourier 

transform, i.e. change P(kmx), which is repeated for all frequencies. After the imaging 

condition is applied, the images of all frequencies are summed up to form the final im­

age. To get a sense of the computational cost, I specify the dimension of a 3-D survey that
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0.15

0.1

O h

0.05

Incident angle [degrees]

Figure 2.14: AVA curves by different imaging methods. Red dashed: theoretical AVA curve. 
Blue solid: DSR migration. Black solid: shot-profile migration using plane-wave imaging con­
dition. Green solid: shot-profile migration using zero-offset imaging condition. Black circled: 
shot-profile migration using normalized zero-offset imaging condition. All amplitudes have been 
corrected by the inverse of the imaging Jacobian (see Chapter 3).
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2.8. COMMON-AZIMUTH APPROXIMATION

covers an area of 8  km x 8  km as bellow:

Nmx = 400,

Nm, = 400,

Nhx = 24,

N*V = 16,

Nt = 600,

Nu = 300,

Nz = 300,

where Nu is the Nyquist temporal frequency number, and N~ is the depth number.

At the surface, the 5-D Fourier transform (FT) can be regarded as a chain of 1-D FT 

in the time domain and 4-D FT in the space domain. The computational time for the 

transforms using a MIPS R160000 CPU (700 MHz) with the FFTW software (version 2.1.5) 

is listed as follows:

600 x 1 : 208.66^s 

400 x 400 x 24 x 16 : 92s

Therefore the cost for the surface data conversion is:

400 x 400 x 24 x 16 x 208.66^s +  92 x 300s =  40420s w 11 hrs

The cost for imaging at all depths is

92 x 300 x 300 «  2280 hrs (2.150)

The total cost is about 2291 hours or three months! A real 3-D survey can have tens of 

such areas, and the cost is prohibitive, which hampers the application of full 3-D DSR 

migration. To overcome this difficulty, we can resort to two approaches, parallel comput­

ing and economical algorithms. The former method entails decomposing a big task into 

many small tasks that can be done separately in different computers. For example, we 

can allocate each frequency to a single CPU and calculate the final image by retrieving 

and summing up the results of all CPUs. The related research is called high performance

57

R ep ro d u ced  with p erm iss io n  o f  th e  copyright ow n er. Further reproduction  prohibited w ithout p erm issio n .



2.8. COMMON-AZIMUTH APPROXIMATION

computing, which is beyond the major interest of this thesis. In this thesis, I use an eco­

nomical operator, common-azimuth migration (Biondi and Palacharla, 1996), which cuts 

the computational cost by reducing one dimension of the data, the crossline offset. Only 

a subset of data with zero crossline offset is utilized to calculate the subvolume wave- 

fields by implementing the DSR operator with a stationary-phase approximation, which 

greatly cuts the cost. Using this algorithm, about 1/16 of the estimated time is required 

for the above example.

For notational convenience, common-azimuth data are denoted in the Fourier do­

main as P(u, kmx, kmy, khx). A modelling/migration scheme can be developed by using 

a recursive formula that links two neighboring depths:

Since the crossline offset wavenumber khy is present in the formula of the vertical wavenum­

ber, it should be eliminated by an integral over the wavenumber for the common-azimuth 

data. According to the discrete Fourier theory, this procedure means evaluating the 

wavefield at zero crossline offset. Consequently, the recursive wave propagator is re­

formulated into

where the second identity is derived by using the fact that common-azimuth data is in­

dependent of the crossline offset wavenumber.The integral is in a typical Fourier form, 

which can be solved by the stationary-phase approximation (Scales, 1997):

P{u>, kmx, kmy, khx, Zi) — P(u, kTrtx, k (2.151)

where

kz — DSR(u}, fcTOl, k-m̂ , khx, kfty, z)

(2.152)

-P(w,kmx, kmy,k^-, Zi) — j  P{to,km,x.,krriy,k}lx, Zi—i) e - i k zdz (2.153)

(2.154)
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2.8. COMMON-AZIMUTH APPROXIMATION

where kz is the vertical wavenumber k. evaluated at a stationary point khy such that

dk-
dkhy 
d2kz
dkifry

Solving equation 2.155 leads to

k h y — k h y

khy khy

= 0, (2.155)

#  0 (2.156)

. 4h ( kmx +  khx)2 -  4 ^ ( kmx ~ khx)2
khy(z) =  kmy ■■■;■............................    (2-157)

_ ^ ( k m :  + khx ) 2 + \ J ^ ~  4^ js ( k m x — k h . ) 2

For stability, the amplitude term in equation 2.154 is ignored. This is reasonable since 

the cumulative product of a number larger than one will blow up the wavefield. On the 

other hand, a number smaller than one will decimate the wavefield with the propaga­

tion of the wavefield. Actually the amplitude term is used to convert the amplitude of 

recorded common-azimuth data with point sources to 2-D amplitude with line sources 

(Biondi, 2003a). To verify this statement, I consider the situation of V(z ) 1 media. In 

this case, the crossline offset wavenumber disappears. The vertical wavenumber kz de­

grades into a 2-D version DSR operator. Therefore, for amplitude fidelity the amplitude 

of seismic data should be corrected to before applying common-azimuth wave-equation 

migration. For constant-velocity media, the geometrical spreading factor is the inverse 

of the wave-propagation distance for point sources and the square root of the distance 

for line sources (Berkhout, 1984). It is clear that multiplication with the square root of the 

distance or travel time approximately converts 3-D amplitudes to 2-D amplitudes. This 

is often used in the industry even when the constant-velocity assumption is violated.

By ignoring the amplitude correction term, the downward continuation formula for

3-D common-azimuth data is reformulated as follows:

kmx, kmy, khx, Zi) =  P{ui, kmx, kmy, khx, Zj_i) • e * , (2.158)

where

kz — DSR(u, kmx i kmy, khx, khy, z) , (2.159)

'Velocity only changes in the vertical direction
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2.8. COMMON-AZIMUTH APPROXIMATION

where khy is given by equation 2.157.

The common-azimuth approximation provides an efficient tool for seismic migra­

tion and modelling. In migration, the surface wavefield is backward propagated to each 

depth by downward continuation. Then at each depth AVP common image gathers can 

be calculated by applying the radial-trace transform. Since only inline offset wavenum­

ber is available, the resulting imaging gathers are in the inline offset ray parameter do­

main. The image gathers can be converted to apparent angle domain in the inline di­

rection using equation 2.120. If the crossline structural dip can be ignored, the angle 

is readily the true incident angle. On the other hand, when the crossline wavenumber 

fcmv is not zero, the dispersion relationship defined by the vertical wavenumber devi­

ates from the 2-D case. The larger is the crossline structural dip, the larger is the error. 

The common-azimuth modelling starts from each depth where the adjoint of radial-trace 

transform is applied to the AVP common image gathers to calculate local wavefield. Then 

the wavefield is upward continued to the surface. At the surface, waves arising from all 

depths are summed up to simulate the seismic response.

Although common-azimuth migration is not the exact solution of full 3-D wave equa­

tion, it is better than 2-D migration since it uses crossline information. It can be re­

garded as the chaining of inline 2-D prestack migration and crossline poststack migration 

(Biondi, 2003a).

The strategy of common-azimuth approximation is especially useful for marine data, 

which usually have a narrow-azimuth geometry. The data can be converted to a common 

azimuth without losing much accuracy (Biondi et al., 1998). Furthermore, the method 

may also be beneficial for land data. One possible application is to apply the imaging 

algorithm to data of various azimuths and study the amplitude variation with angle and 

azimuth. The analysis of Amplitude Versus Angle and aZimuth (AVAZ) can be used to 

measure fracture density and fracture strike within carbonates (Ruger, 1996; Alhavas et 

al., 2003; Gray and Head, 2000).
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2.9. IMPLEMENTATION FOR LATERALLY VARIANT MEDIA

2.9 Implementation for laterally variant media

By far, wave-equation style operators have been introduced for laterally invariant me­

dia. In the real world, the laterally invariance assumption is almost always violated. 

Therefore the solution is usually unsatisfactory due to the operator mismatch. Many 

geophysicists have attempted to improve the operator accuracy by numerical methods.

One straight-forward wavefield calibration is to employ interpolation technique to fit 

lateral velocity variations (Gazdag, 1984). The method is called Phase Shift Plus Interpo­

lation or abbreviated as PSPI. The method entails downward continuing the wavefield 

with some reference velocities in the wavenumber-frequency domain, inverse Fourier 

transform to the space-frequency domain and interpolation in the space-frequency do­

main. With proper choice of reference velocities, the algorithm can effectively image 

complex media with strong velocity variations. The forward Fourier transform and in­

verse Fourier transform are applied to the wavefields in respect to different reference 

velocities. As a result, the computational cost is multiplied compared with the simple 

phase-shift migration for V (z) media (Gazdag, 1978).

For efficiency, when the velocity variation is slight, Split-step correction (Stoffa et al., 

1990; Popovici, 1996) is preferred. In this method the wave continuation is conducted in 

two steps. In the first step, the wavefield is phase-shifted using a constant macro veloc­

ity in the wavenumber-frequency domain. In the second step, velocity correction is ap­

plied in the space-frequency domain. Similar to PSPI, The accuracy of Split-step methods 

can be enhanced by an interpolation approach called Extended Split-step Fourier Migration 

(ESFM) (Kessinger, 1992) or split-step PSPI. This method is also robust in handling large 

lateral velocity variations.
As shown further bellow, the split-step method attempts to correct the first order er­

ror that is brought by the velocity mismatch. An alternative way to further improve 

split-step migration is to decrease higher order errors. For example, Fourier Finite Dif­

ference (FFD) method (Ristow and Ruhl, 1994) splits the problem into three steps. The 

first step is the same as the well-known phase-shift method, propagating the wavefield 

in the wavenumber-frequency domain using a constant background velocity. The second 

step is to apply split-step correction in the space-frequency domain. The third step is to
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correct higher order wavenumber errors in the space-frequency domain by finite differ­

ence numerical methods. Similar strategy is adopted in pseudo-screen methods (Xie and 

Wu, 1998; Huang and Wu, 1996; Jin et al., 2002). One drawback of FFD and pseudo­

screen methods is the frequency dispersion artifacts brought by the finite difference step. 

Biondi (2002) proposed an efficient interpolation method to address this issue.

Since finite difference methods are not easy to implement for iterative inversion, I 

adopt split-step and extended split-step corrections for different levels of lateral velocity 

variations. The detail of these two methods is described as bellow. For completeness, 

I also show the scheme of PSPI migration. Some tests of these operators on the 2-D 

poststack SEG/EAGE salt data are shown in Chapter 4. According to the tests, the image 

quality given by PSPI and extended split-step methods are very similar.

Split-step Fourier migration

The accuracy of DSR wave equation migration is dependent on the calculation of the 

two single square roots (see equation 2.137), or vertical wavenumbers in the Fourier do­

main. One big challenge is the lateral velocity variation. The general problem of velocity 

correction can be posed as bellow in the temporal frequency and space domain:

where SSR  denotes the single square root, -u(m) is the true velocity at midpoint m, and 

c(m) is the reference velocity or the macro velocity, which is usually the average velocity 

at the current depth where wave is propagated. For simplicity, I refer to the formula for 

the 2-D case given by Ristow and Ruhl (1994) to account for lateral velocity variations:

The expression is derived by analyzing the Taylor series of the single square root. The 

calculation of the single root can be split into three steps in honor of the three terms re­

spectively. The first step is usually done in the wavenumer-frequency domain. Applying

SSR(oj, w(m), m) =  SSR(u, c(m), m) + A SSR, (2.160)

Term  1

(2.161)

where

a 2

b
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the spatial Fourier transform leads to

kzc = (2.162)

It is clear that this is the vertical wavenumber for phase shift migration using the constant 
reference velocity. The second term is the first order correction, which is done in the space 

and temporal frequency domain. The third term is the higher order correction, which is 

done by finite difference methods in the space and temporal frequency domain.

The standard Split-step Fourier migration only takes into account the first two terms 

of equation 2.161. The algorithm splits the velocity corrections into two steps as discussed 

earlier. The processing flow of the standard split-step Fourier migration is portrayed in 

Figure 2.15.The scheme can be further implemented for the DSR operator, which involves 

correcting velocity variations in two single squares roots (Popovici, 1996). These two 

square roots are related to the source and the receiver respectively. Therefore the split- 

step correction is conducted at two locations, x +  h  for the receiver and x — h for the 

source.

The extended split-step Fourier migration (Kessinger, 1992) is based on the standard 

split-step migration. The method applies split-step migrations using several reference 

velocities instead of only one constant velocity. Several copies of propagated wavefields 

calculated by these reference velocities are interpolated to match local velocities. The 

interpolation is conducted in the space and temporal frequency domain. Figure 2.16 

displays the scheme of the extended split-step Fourier migration using two reference 

velocities c\ and C2- Since separate interpolation of phase and amplitude may lead to in­

stability (Etgen, 1994), linear interpolation of complex numbers is adopted. For example, 

if we know that the velocity wavefield of a location is v(x, z), then the wavefield at this 

point is calculated by a linear interpolation of those propagated wavefields using two 

neighboring reference velocities c\ and 02 (ci < C2):

C2 —V
a  =  ------------ ,

C2 -  ci
P (x ,v ,z ) =  a-P (x ,c i,z )  + (l — a)-P(x,C 2 ,z),

where P  denotes the wavefield in the wavenumbe and temporal frequency domain. 

Phase Shift Plus Interpolation migration
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FFT

v  IFFT

Imaging

Figure 2.15: The scheme of the split-step Fourier migration. FFT: Fast Fourier Transform. IFFT: 
Inverse Fast Fourier Transform.

PSPI migration (Gazdag, 1984) is similar to the extended split-step Fourier migration 

by using multiple reference velocities to interpolate the wavefields. For each reference 

velocity c, the split-step correction is rearranged into

a;2 Q2 u) / oj2 d2 ui
1?  +  f a?  ~  ^  W ^ 2 + d x 2 (2-163)

T erm l T erm l

The first term is applied in the space and temporal frequency domain, and the second 

term is applied in the wavenumber and temporal frequency domain. Explicitly, the sec­

ond step can be expressed as

kzc- k 0 = y j ^ - k 2 - ^ .  (2.164)

Figure 2.17 explains the scheme of PSPI using two reference velocities ci and co. Since
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v  FFT

v  IFFT IFFT r

Interpolation

Imaging

i (  )Az

Figure 2.16: The scheme of the extended split-step Fourier migration (split-step PSPI). FFT: Fast 
Fourier Transform. IFFT: Inverse Fast Fourier Transform.

separate interpolation of phase and amplitude may lead to instability (Etgen, 1994), linear 

interpolation of complex wavefields is used to fit the local wave speed.

Optimization of reference velocities

In the extended split-step (split-step PSPI) and PSPI migration, proper reference ve­

locities should be chosen to provide satisfactory results. It is obvious that for complex 

media, more reference velocities lead to higher accuracy, but also higher computational 

cost. To balance between accuracy and efficiency, we should optimize the reference ve­

locities to adequately represent all velocities. One idea is to analyze the distribution of 

the reference velocities so that we can estimate some representative velocities, which 

most velocities cluster around. This can be done numerically by using the entropy as the
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FFT

v  IFFT IFFT ir

Interpolation

Imaging

Figure 2.17: The scheme of the PSPI migration. FFT: Fast Fourier Transform. IFFT: Inverse Fast 
Fourier Transform.

measurement of the velocity dispersion (Bagaini et al., 1995).

The entropy is defined as

L

s =  -  ^ Pk ln Pk ’ (2.165)
Jfc=l

where pk is the probability of the k th event. The entropy can be used to evaluate the 

simplicity of the distribution of a variable. The smaller is the entropy, the simpler is the 

distribution. Taking the migration velocity as an example, we like the velocity structure 

to be simple since only a few reference velocities are necessary for PSPI methods. The 

easiest case is constant velocity. Then the entropy is zero. For non-constant velocity 

model, we can study the velocity distribution by counting the number of velocities that 

locate in the prepared velocity bins and then calculating the probability that velocity 

locates in each specific velocity bin. For simplicity, at each depth of wave extrapolation,
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the velocity bins are prepared with a constant spacing, Ac = (cmax — Cm^/L, where L 

is the total bin number, Cmax is the maximum velocity, and cmjn is the minimum velocity. 

Therefore, the velocity bins are: [ci C 2 ],[c2  03] , [cl  cl+ i ], where c ^ + i  — ck = Ac. 

The probability for these bins are denoted as pk, k =  1 , L.

The optimal velocity number can be estimated by the following formula:

where int means take the closest integer number. It is easy to verify that the velocity 

number is one for constant velocity model and L for the worst case when all bins have 

the same probability 1 /L. After calculating the reference velocity number Nc, we can 

estimate the optimal reference velocities such that

where k is the index such that yk < < yk+1, where yk is a probability defined as

Nc = int(es), (2.166)

(2.167)

where K e f  is the (i +  1 ) th reference velocity. It is clear that the anticipated optimal 

reference velocities satisfy the following relationships:

(2.168)

with an extra reference velocity defined.

The reference velocities are calculated in an iterative way as follows

(2.169)

(2.170)
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Equation 2.169 can be understood as an interpolation in the original velocity bin [c* Cfc+i] 

using the difference of cumulative velocity probabilities. Figure 2.18 shows the distribu­

tion of velocities of the 2-D SEG/EAGE model at depth z =  6520/t. It is dear that the cal­

culated optimal velodties represent most of the velodties. However, there are still some 

missing velodties around 9000/i/m. Better strategy of velodty optimization should be 

able to detect such velodty of local probability extrema.

1 2 3 4^  '»X> <•

% 200

Vl =6778 
V2 =7106.98 
vz =7354.83 

=7663.79 
v5 =14714.7

1 1.2 
Velocity [ft/m ]

I
1.4

xlO4

Figure 2.18: Velodty distribution of the 2-D SEG/EAGE salt model at depth z = 2520ft.  The red 
stars represent the calculated optimal reference velodties for PSPI migration.

2.10 Summary

In this chapter, I have gone through theoretical aspects of seismic modelling and migra­

tion induding ray based and wave equation based methods. Espedally, an economical 

strategy for f 3-D AVP modelling and migration is derived by adopting the common az­

imuth approximation. Almost all the machinery is now ready for the iterative inversion 

that will be discussed in the next chapter. To dose this chapter, I will generalize the
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forward modelling and the adjoint operators in matrix form. This will bring a Linear 

Algebra flavour to our problem, and facilitate the description of the numerical inverse 

problem tackled in Chapter 3. The modelling operator L is defined as:

L : d =  W sLuAm, (2.171)

where d is the seismic data in 3-D common-azimuth volume, W s is the source signature 

that is added in the frequency domain, Lw is the wave propagator, which can be the 

split-step or split-step PSPI wave extrapolator accounting for lateral velocity variations, 

A is the adjoint of radial trace transform, and m is the 3-D common-azimuth AVP image 

gathers. The operators are applied on the fly from the right to the left for each single 

frequency. The resulting wavefields are accumulated to produce the final seismic data. 
The adjoint operator I/, or AVP migration, can be cast as:

1 /: m =  A 'L^W 'd, (2.172)

where the tildes symbolize the adjoints of the operators used in the seismic modelling. 

Again, the operators are applied in a row from the right to the left, which is opposite to 

the order of seismic modelling. Since the source signature, especially its phase, is difficult 

to estimate, it is usually not considered in the iterative inversion, which implicitly limits 

the resolution due to the wavelet mismatch. This is discussed later in Chapter 4.
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Chapter 3

Regularized common-azimuth 
least-squares AVP migration

3.1 Introduction

Posing migration as an regularized inverse problem can lead to high resolution solutions 

(Ehinger and Lailly, 1991; Nemeth et al., 1999; Kuehl and Sacchi, 1999; Duquet et al., 2000; 

Prucha and Biondi, 2002). These methods can provide promising results since they can 

fit the seismic data and at the same time impose specific properties on the solution. This 

features are consistent with a priori information about the model. This strategy has two 

benefits. First, by fitting the seismic data, we try to invert the linearized earth system de­

fined by some approximate transforms. These transforms are usually band-limited and 

they provide limited information of the earth model. During inversion, this drawback 

can be alleviated by recovering higher-frequency attributes. Furthermore the geometry 

of data acquisition can be encoded in the operator. This is fundamental since the data 

acquisition footprint can be removed by incorporating a data covariance matrix (Taran- 

tola, 1987). Second, our knowledge of the model is taken into account by regularizing the 

solution, which essentially narrows down the family of feasible models.

In the geophysical community, the idea of constrained or regularized inversion has 

been widely used in seismic data processing. These methods vary according to the prob­

lem at hand and the adopted approaches to regularization. For example, the classical de- 

convolution problem inverts the convolution matrix to reconstruct the reflectivity model 

from band-limited seismograms. In the linear deconvolution problem, the minimum
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norm assumption (regularization) of the reflectivity model is often applied to stabilize 

the solution and suppress the noise. As shown in the text bellow, in the explicit form of 

the least-squares solution, this is accomplished by introducing pre-whitening or damp­

ing in the solution. Although the linear inversion improve the solution, high frequency 

information in the original model can not be retrieved. On the other hand, non-quadratic 

regularization methods can be used to attained high resolution solutions. For example, 

by assuming sparseness (sparse reflectivity assumption), one can use sparse regulariza­

tion to improve the resolution of solution. Among these sparse regularization meth­

ods we can cite: regularization with the li norm (Claerbout, 1985; Taylor et al., 1979), 

and Cauchy norm (Sacchi, 1997) and, the well-known minimum entropy deconvolution 

where the solution is obtained by maximizing the varimax norm (Wiggins, 1978).

Obviously, migration is more difficult than deconvolution. First of all, migration 

is more expensive due to the model and data dimensions. Especially, the DSR wave- 

equation migration inverts the full volume of data simultaneously, which requires large 

memory and high computational cost. Second, the problem does not have an explicit 

matrix form for the operator, the wave equation based migration usually cannot be ex­

pressed in matrix form or even in a closed mathematical formula. However, it can be 

decomposed into a cascade of linear operators.

In this chapter, I first describe regularized least-squares migration. Then an iterative 

inversion method based in the method of Conjugate Gradients (CG) is described. Both 

quadratic and non-quadratic regularization methods are discussed. Simple test examples 

are provided to examine the validness of these methods. Their application in migration 

is tested in Chapters 4 and 5.

3.2 Regularized least-squares migration

Consider seismic data as the result of a linear transformation on an earth model m

d = Lm +  n , (3.1)

where d denotes the pre-processed seismic data, L is the common-azimuth forward op­

erator described in the previous chapter, m  is the earth model, a set of ray-parameter
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3.2. REGULARIZED LEAST-SQUARES MIGRATION

dependent common image gathers (CIGs), and n denotes additive noise. Conventional 

migration entails applying L ', the adjoint of L, to the observed data. The adjoint operator 

L' can be decomposed into two steps: wavefield extrapolation and ray-parameter imag­

ing (full detail is given in Chapter 2). The second step amounts to a change of variables 

by a radial-trace transform (Sava et al., 2001). When the data are properly sampled, the 

amplitude in the CIG can be corrected by applying an approximate inverse of the imag­

ing Jacobian. This implemented method is called true-amplitude migration. The theory 

is briefly introduced at the end of this chapter. The Jacobian weighting attempts to make 

the adjoint operator behave like the inverse. However, this correction is not sufficient to 

achieve good amplitude fidelity in situations where the image is corrupted by aliasing 

artifacts introduced by inadequate spatial sampling. These artifacts can be alleviated, 

however, by minimizing a cost function of the form:

F{m) =  ||W (d -  Lm)||2 + A2i?(m), (3.2)

where W  is a diagonal weighting matrix (data-space weighting) used to decrease the 

influence of missing observations in the migrated image. The diagonal elements of W  

consist of zeros and ones, weighting dead traces and live traces, respectively. R  is the 

regularization function, and A is a trade-off parameter that controls the amount of regu­

larization.

The regularization operator R  can be defined in different ways:

• R(m) =  ||m ||2 , the quadratic norm of the model. The solution is called the mini­

mum quadratic norm solution.

• R(m) =  UDi^mll^, also a quadratic norm, where D ihx is the first order deriva­

tive operator applied along the offset ray parameter direction. Since the derivative 

is a high-pass filter, minimizing the cost function is identical to penalizing high- 

frequency solutions. As a result, the final solution is a smooth solution.

• R(m) =  YiiLi l"w|/ the h  norm. M  is the length of the model vector. This regular­
ization introduces sparseness in the solution.

• R(m) =  Z Z i  *n(l +  mi/°m )' Cauchy norm. M  is the length of the model 
vector. The implemented cost function also provides a sparse solution.
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The above cost functions can be generalized under a Bayesian scheme by assuming dif­

ferent a -priori distributions of the unknown model parameters (Youzwishen, 2001). The 

two aforementioned quadratic regularization terms can be derived by assuming a Gaus­

sian a priori distribution of the model or the derivative of the model. The cost function 

for non-quadratic regularization for sparse solutions can be derived by assuming an ex­

ponential or Cauchy a priori distribution of the model parameters.

The optimization problem entails solving:

The respective solutions of the above cost functions are listed as follows:

• m  =  (L'W 'W L -I- A2I)-1L 'd06S, where d0&s is the observed incomplete data and I 

is an identity matrix. This is the classic Damped Least-Squares (DLS) solution. The 

trade-off parameter can also be called pre-whitening coefficient which is used to 

stabilize the solution and to attenuate noise.

• m  =  (L'W 'W L +  A2D'1̂ D i/ll)-1L'd06S. This is a smooth solution. The trade-off 

parameter A controls the amount of smoothness.

• m  =  (L'W 'W L +  A2Q(m))-1L'do{,s, where Q is a diagonal matrix defined by

where Qa is the i th diagonal element, and e is a threshold value to detect sparse-

• m  =  (L'W 'W L +  A2Q(m)) 1L'd06S, where Q is a diagonal matrix defined by

where Qa is the ith diagonal element, and am is a scaling factor.

It can be seen that the first two problems are linear, in other words, the use of a quadratic 

cost function has led to a linear system of equations. The major task is to invert the two 

Hessian matrices, which are independent of the model. On the other hand, the solution 

with sparse regularization is non-linear since the expression contains the solution itself.

(3.4)

ness.
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The non-linear problem can be solved iteratively by solving a series of linear problems. In 

each linear problem, the model-dependent diagonal weighting matrix is estimated from 

the previous solution. Since the diagonal weighting matrix is updated gradually, the 

algorithm is called Iterative Reweighted Least-Squares (IRLS) method (Scales and Smith, 

1994). The solution can be expressed as mi =  (L'W'WL +  A2Q(m;_i))-1L'd0i,s/ where 

mi and mi_i are the solutions at the i th and (i -  1) th iteration, respectively.

The least-squares solution can be understood as a de-blurred version of the adjoint 

solution. To make this clear, I denote the adjoint solution L'd„6S as m. Then the least- 

squares solution can be reformulated as

m =  H -1m, (3.6)

where the Hessian matrix H varies with different regularization. Therefore, the essence 

of least-squares inversion is to calculate the inverse of the Hessian matrix and use it to 

filter the adjoint solution.

In this thesis, I choose two kinds of regularization methods. One is the smooth regu­

larization using the quadratic norm of the model derivative, and the other is the sparse 

regularization using the Cauchy norm. The smoothness is forced along the offset ray 

parameter direction, and the sparseness is applied in the depth direction of the stacked 

image. This is reasonable since the amplitude variation versus ray parameter is smooth, 

and the theoretical full-band reflectivity series in the vertical direction should be sparse.

As explained earlier, the direct inversion of large ill-posed problems is difficult and 

expensive. Therefore, in this thesis I use an efficient iterative inversion method, Conju­

gate Gradients (CG) (Hestenes and Steifel, 1952), to solve these problems.

3.3 Conjugate gradients algorithm

The original CG algorithm (Hestenes and Steifel, 1952) attempts to solve the following 

system of equations:

Ax =  b, (3.7)

where A is a positive-definite symmetric matrix, x is a model vector, and b is a data 

vector. However a typical seismic inversion problem is to solve a rectangular, often un-
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derdetermined, system like

Lm = d. (3-8)

The latter can be reformulated for the standard CG algorithm

L'Lm =  I/d , (3.9)

by recognizing that L'L is a symmetric matrix and assuming it is positive definite. A 

modified CG algorithm called CGLS (Scales, 1987), generalized further below, can solve 

the problem without constructing the matrix L'L.

The regularized least-squares migration is more complicated due to the data weight­

ing matrix and the regularization operator. To apply the CGLS algorithm, the system 

can be expressed in augmented matrix form. For example, the smooth regularization 

problem can be recast as:

Denoting the left side augmented matrix as W  and the right side augmented data vector 

as d yields

which is the standard inversion problem.

The CGLS algorithm for the problem 3.8 is generalized as bellow:

First the model is initiated with zeros, and the data vector is initiated with the ob­

servation, i.e., mo =  0, so = d. Two supplementary model vectors are calculated by the 

adjoint operation: ro =  po =  L'so- A data vector q is started with: qo =  Lpo- Then repeat 

the following steps for i = 0,1,2...

(3.10)

Lm = d, (3.11)

mi+i

«!+!
r i - r ,
q* -q*
mi +  di+iPi

S i+ i — Sj O i+ iq i

Ti+l — L'Sj+l

Pi+l =  T +  P p i

q*+i =  Lpi+i.
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_______ 3.4. LEAST-SQUARES MIGRATION WITH SMOOTH REGULARIZATION

3.4 Least-squares migration with smooth regularization

For convenience, I denote the least-squares migration with smooth regularization as 

RLSM and the least-squares migration with sparse regularization as SLSM. As analyzed 

previously, the problem can be reformulated in the augmented matrix form 3.11. The 

CG algorithm reduces to the sequential application of the following operators: migration 

I /, de-migration L, un-smoothing D i^ ,  and the adjoint of un-smoothing D 'i^ .  If we 

express the data vector in two parts

d = di
d2

(3.12)

then the modelling procedure L can be regarded as two steps:

di =  WLm, 

d2 =  ADi^m.

The adjoint operator £/ is the combination of two adjoints:

m =  L 'W 'di +  XD[k d2.

(3.13)

(3.14)

(3.15)

The operator Dihx is a discrete derivative (high-pass filter), and the transpose opera­

tor is a discrete negative derivative (Claerbout, 2004). For example, if the length of 

ray parameter image gather at each depth of the common image gather is four, then the 

forward derivative operator is

Di hx =
/ -1 i 0 0 \

0 - l 1 0
0 0 -1 1

V 0 0 0 -1 )
and the adjoint is

VlHr =

( -1 0 0 0 >
1 -1 0 0
0 1 -1 0

\ 0 0 1 -1 )
The choice of trade-off parameter A in equation 3.14 and 3.15 can pose a challenge 

for a large-scale linear problem like regularized least-squares migration. It is obviously
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3.5. PRECONDITIONED IMPLEMENTATION OF RLSM

not feasible to determine A from a trade-off curve (L curve method (Hansen, 1998)). In 

practice, I therefore iterate the following procedure until a good value for A is found. I 

run least-squares migration for a couple of iterations for only a few frequencies starting 

with a small trade-off parameter, for example A = 0.0001, and monitor the data misfit of a 

few common midpoint (CMP) gathers. If, within the first two iterations, the data residual 

norm has been reduced to 30-60 percent of input data norm, the trade-off parameter is 

accepted. If the fit is poor, I decrease the trade-off parameter by 1/10. Conversely, if the 

algorithm overfits the data, I increase A by a factor of 10.

3.5 Preconditioned implementation of RLSM

A negative aspect of RLSM is its computational cost. Each CG iteration requires one full 

migration and de-migration sequence, which clearly limits the feasibility of RLSM for 

industrial applications.
Preconditioning strategies for iterative solvers can help to speed up convergence and 

have been extensively studied in applied mathematics (Saad, 1991; Hanke and Hansen, 

1993). Indeed, preconditioning schemes have been successfully applied in prestack imag­

ing by coupled linearized inversion (Ehinger and Lailly, 1991), wave-equation least-squares 

migration (Prucha and Biondi, 2002), interpolation problems (Fomel and Claerbout, 2003) 

and Radon processing (Trad et al., 2003). In my implementation, equation 3.2 is solved 

with the addition of a simple change of variable:

where P, in theory, is the inverse of Dih.x- Here, rather than inverting D ^ ,  I replace 

P  by an operator that behaves similarly as the inverse of D ^ .  If D ^  is a discrete 

operator, we can think of it as a high-pass operator or filter. Therefore, P  must be a 

low-pass operator. In my implementation, applying P  is equivalent to applying a 1- 

D low-pass filter (Hamming window) to the image gathers. The convolution, in this

z =  Di/^m . (3.16)

The substitution of m  in equation 3.2 leads to

(3.17)
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3.6. A TOY EXAMPLE: INVERSION OF A SMOOTH MODEL

context, is used to remove artifacts arising from incomplete sampling, additive noise in 

the original data and operator artifacts (Kuehl and Sacchi, 2003; Wang et al., 2004; Wang 

et al., 2005). The new cost function is similar but not identical to equation 3.2, since P 

is not exactly equivalent to the inverse of D ^ .  However, the solutions are expected to 

be of similar character and quality. Indeed, my tests confirm that both techniques yield 

almost indistinguishable results, but the preconditioned solution is reached significantly 

faster.

Mathematically, the logic behind this step is that a good preconditioner will change 

the distribution of eigenvalues of the operator L'L (Saad, 1991). Proper preconditioning 

will introduce clustering of large eigenvalues and, consequently, the CG method will 

require fewer iterations to minimize the cost function F. Although I have no formal 

proof of this, I found that a low-pass filter as the preconditioner provides a good solution 

within only a few CG iterations of least-squares migration. My preconditioning strategy 

is similar to the "good-pass" operator (Ronen et al., 1995) for de-aliasing the dip moveout 

operator (DMO). Here, the "good-pass" operator is the Hamming smoothing window, 

and the "bad-pass" operator is the first-order derivative.

Furthermore, preconditioned least-squares migration (PLSM) allows us to set the 

trade-off parameter A to zero and let the number of CG iterations control the data fit­

ting (Hanke and Hansen, 1993). This saves the time otherwise required for finding a 

proper trade-off parameter.

3.6 A toy example: inversion of a smooth model

To evaluate the performance of the regularized least-squares inversion methods, I pre­

pared a simple dataset by convolving a ricker wavelet with a sine style model (see Figure 

3.1). Five percent white noise is added to see if the algorithms can deal with inaccurate 

observations.

The first test is to monitor the inverted model at different CG iterations of the regular­

ized least-square inversion, which is similar to previously described RLSM, but I replace 

the one-way wave-equation operator with a simple convolution matrix. The result is 

displayed in Figure 3.2. It is clear that with more CG iterations, the solution becomes
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Figure 3.1: A smooth model and the simulated noisy data, (a) Model, (b) Noisy data prepared 
by convolving (a) with a Ricker wavelet and adding 5% white noise.

smoother and closer to the real model. After 30 iterations, a satisfactory result is ob­

tained. Please note that a good trade-off parameter A = 1.0 is found by the trial-and-error 

strategy.

The second test is to analyze the behavior of the algorithm with the number of pre­

conditioned CG iterations. A Hamming filter with a length of 15 is used as the precon­

ditioner. The inverted model behaves differently as that of the regularized least-squares 

inversion without preconditioning. As shown in Figure 3.3 With more CG iterations, the 

solution first improves, and then converges to a sub-optimal solution. The reason is that 

the trade-off parameter is set to zero, and the data fitting is controlled by CG iterations. 

With too many iterations, the algorithm will try to fit the noise. However, a few Pre­

conditioned CG (PCG) iterations are sufficient to achieve a result similar to that of the
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3.6. A TOY EXAMPLE: INVERSION OF A SMOOTH MODEL

convergent regularized CG algorithm. In this example, only four iterations of PCG are 

required to produce a good-matching result.

The advantage of PCG is evident in a comparison of the data misfit (see Figure 3.4). 

PCG algorithm fits the data much faster than the Regularized CG (RCG). Five iterations 

of PCG provides the same level of data fitting as 30 iterations of RCG. Usually, the algo­

rithm is stop when the misfit curve becomes flat. The normalized eigenvalues of L'L for 

the two methods are compared in Figure 3.5, which confirms that preconditioning has 

caused clustering of eigenvalues.

The third test is to examine the influence of the Hamming filter length on the solution 

of the preconditioned CG. Three filters (NF = 4, N F  = 15 and N F  = 30) were used to 

analyze the behavior of the algorithm. Four PCG iterations are completed for each test. 

The solutions are displayed in Figure 3.6. It can be seen that with the increase of filter 

length, the accuracy first increases, and then decreases. Empirically, a filter with a length 

from one quarter to one third of the model length provides a satisfactory solution.
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Figure 3.2: Reconstructed model (Blue) vs. the true model (Red) at different regularized CG 
iterations, (a) The fourth iteration, (b) The 15th iteration, (c) The 30th iteration.
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Figure 3.3: Reconstructed model (Blue) vs. the true model (Red) at different preconditioned CG 
iterations, (a) The second iteration, (b) The fourth iteration, (c) The eighth iteration.
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Figure 3.4: Data misfit comparison between the regularized CG (Blue, A = 1.0) and the precon­
ditioned CG (Red dashed, NF = 13).
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Figure 3.5: Eigenvalue comparison between the regularized CG (Blue, A = 1.0) and the precon­
ditioned CG (Red dashed, NF  = 13)
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Figure 3.6: The reconstructed model (Blue) vs. the true model (Red) by the preconditioned CG 
iterations using different filter length (NF). (a) NF = 3. (b) NF = 1 .(c) NF  =  31.
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3.7. SPARSE LEAST-SQUARES MIGRATION

3.7 Sparse least-squares migration

One possible way to further enhance the resolution and attenuate artifacts is by taking 

advantage of the solution itself. Iteratively using the result as a model-space regular­

ization can lead to high-resolution artifact-free seismic images. This idea has been used 

in many fields of signal and image processing (Sacchi and Ulrych, 1995; Charbonnier et 

al., 1997; Youzwishen, 2001; Sacchi et al., 2003; Trad et al., 2003; Downton and Lines, 

2004). In this thesis, I combine a model-dependent sparse regularization and a model- 

independent smoothing regularization to estimate AVP common image gathers. Model- 

dependent sparse regularization is introduced via a non-quadratic norm (Cauchy norm). 

Smoothing is implemented via a convolutional operator applied to AVP common image 

gathers along the ray parameter direction. This idea is used to develop an algorithm to si­

multaneously improve the structural interpretability and amplitude accuracy of seismic 

images.

It is important to point out the similarities between this algorithm and methods for 

impedance inversion based on sparse spike deconvolution of post-stack cubes (Olden­

burg et al., 1983; Debeye and van Riel, 1990). In principle, I use very similar concepts to 

find a solution that exhibits pre-defined properties such as sparseness, smoothness,etc. 

The main difference of the proposed method with respect to sparse spike inversion strate­

gies is that the operator is a one-way forward modelling operator rather than a convo­

lutional kernel. In addition, the inversion results are in depth and the input data are 

prestack volumes as opposed to time-domain reflectivity estimates and post stack vol­

umes, respectively. I believe that the proposed method provides a unifying thread be­

tween convolution-based sparse spike inversion and regularized migration/inversion 

methods.

Combining the smooth regularization in the ray parameter direction and the sparse 

regularization in the depth direction, the following new cost function is proposed:

F{m) =  j|W(Lm -  d )||| +  A2fl(SH(m)), (3.18)

where H is a high-pass filter to penalize rapid variations along the ray parameter axis, S 

is a stacking operator that converts common image gathers to a stacked image, and R  is 

a model-dependent functional (Cauchy norm) used to enforce sparseness.
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3.7. SPARSE LEAST-SQUARES MIGRATION

By adopting the aforementioned preconditioning strategy (Prucha and Biondi, 2002; 

Wang et al., 2004), the cost function can be expressed as follows

F = ||W (LPz -  d ) ||| +  X2R(Sz), (3.19)

where P  is the preconditioning matrix, and z is the model modified by the precondi­

tioner. It is clear that the final solution is m  =  Pz. The problem can be efficiently solved 

by Iterative Re-weighted Least-squares (IRLS) (Scales and Smith, 1994). The cost function 

at the k-th iteration of the IRLS algorithm is given by

F( zfc) =  |jW(LPzfc — d)i i| +  M2|l\/Qfc-iSzfci|2 , (3-20)

where Qk-i is a diagonal weighting matrix with diagonal elements given by

<5“' 1 =  ( 3 ' 2 1 )1 +  {m si M - n s  j

In the above expression, m^-1 is the i-th element of the vector Sz at the (k — l)-th iteration 

of IRLS. Finally, c r^ 1 is a scale parameter, which is empirically set to some percentage 

of the maximum amplitude of the aforementioned vector Sz. Application of the IRLS 

method involves properly choosing two hyperparameters, n  and cr^1. The latter can be 

reduced to selecting one hyperparameter, 5, by using the following expression: a ^ 1 = 

S • maxdm*-1!), where ms =  Sz.

The IRLS algorithm with two regularizations is summarized as follows:

• Initialize z with zeros and compute Q

• Minimize cost function 3.20 via the CG algorithm.

• Update the diagonal matrix Q , and restart the CG algorithm.

The above procedure requires about 3-4 updates (iterations) to obtain a solution that 

is sparse in depth and smooth with respect to the ray parameter.

It can be seen that the first iteration of IRLS algorithm is identical to PLSM with a 

trade-off parameter control. The solution is prewhitened, and therefore, it is more stable 

than the previously described PLSM.
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The two hyperparameters, fx and 8, can be related to each other. Consider two pairs 

of hyperparameters fx, 8 and ja', 8' such that

fjf = C/X,

8' =  (3.22)
c

where c is a constant. The i th element of the diagonal weighting matrix for the second 

pair of hyperparameters can be derived as bellow

q L = ------------1------------
"  1 + (msi/ (mM -S'))2

_  1__________
”  1 +  ( msi/{mM ■ <5))2 • c2
_  1_ 1_______
~  c2 1 + -8)2)

= ^ Q u , (3.23)

where ulm — max( |ms|). The approximation is achieved by using the fact that the term 

{mSi/(tom • <S)2) dominates the denominator for non-zero m si. Therefore,

m'2IIv^ U - Sz*II2 «  c2 -M2 - ^ l l v / Q ^ - s z fc|!i

=  u2 | |A/o i“ r-S z* ||i. (3.24)

The regularization norm is calculated from non-zero image points since the contribution 

of zero image points is zero. Equation 3.24 shows that pairs of 8 and jj, with a constant

product lead to similar solutions. However the tests on sparse deconvolution further

bellow show that too large values of 8 yield low-resolution results. Therefore in practice, 

8 is set to a small value, for example, 0.02, whereas, the the other hyperparameter jx is 
adjusted to obtain a satisfactory fitting.

3.8 Hyperparameter tests

To examine the influence of the hyperparameters on the inversion result, I played with 

a sparse deconvolution problem by varying the parameters. The data were prepared 

by convolving a sparse reflectivity model with a Ricker wavelet and adding some white 

noise (see Figure 3.7).
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Figure 3.7: Sparse reflectivity model and the simulated noisy seismic data, (a) The reflectivity 
model, (b) The noisy data prepared by convolving (a) with a Ricker wavelet and adding 5% white 
noise.

The first test is to fix the trade-off parameter p and change the scaling parameter 

5. As shown in Figure 3.8, a too small scaling parameter may cause instability of the 

algorithm. Many oscillatory artifacts are present in the solution. With the increase of the 

scaling parameter, the solution becomes cleaner, but a too large value will also suppress 

tiny detail of the model. This is a typical trade-off situation.

The second test is to fix the scaling parameter 5 and only vary the trade-off parameter 

p. Similar phenomenon is observed in Figure 3.9. A proper trade-off parameter should 

be found to avoid instability or over regularization.

The third test is to fix the product of two hyperparameters. The result (see Figure 

3.10) confirms the previously proved rule about the relationship between the trade-off 

and scaling parameters. However, the scaling parameter can not be too large. As shown 

in Figure 3.10e, resolution is lost with a large scaling parameter. In practice, usually we
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3.9. A SIMPLE EXAMPLE: MULTI-CHANNEL DECONVOLUTION

- f f f Y i r p — r n / ^ n n r  <a)

Figure 3.8: True reflectivity model vs. inverted models by using a constant trade-off parameter 
(/x — 4.0). (a) The true model, (b) 5 = 0.2. (c) S = 0.02. (d) 5 = 0.002.

can fix the scaling parameter to some percentage, for example, 0.02, and adjust the trade­

off parameter to fit the data.

3.9 A simple example: multi-channel deconvolution

I tested the idea of forcing sparseness and smoothness at the same time by a simple multi­

channel deconvolution problem. This is an unrealistic scenario in seismic deconvolution 

but yet it is a good example to test the algorithm. The procedure, however, could be used 

to deconvolve time-migrated common image gathers. Figure la  is a time domain model 

with 20 offsets. I convolved the model with a zero-phase wavelet, and removed three 

offsets (trace number equals 2,6 and 9) to also test the procedure in situations of missing 

information. The data are portrayed in Figure 3.11b.

I compared two methods of inversion, preconditioned LS inversion and sparse LS 

inversion. Figure lc  is the result of the preconditioned LS inversion after 50 iterations 

of the CG algorithm. It is evident that the inversion successfully fill in the gap in the 

incomplete data. However, the vertical resolution is not satisfactory. Spurious sidelobes
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Figure 3.9: True reflectivity model vs. inverted models by using a constant scaling parameter 
(5 = 0.02). (a) The true model, (b) fj, = 0.4. (c) n = 4.0. (d) /z = 40.

inryin*" - j \A _
~v~*~ (a)

(b)
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Figure 3.10: True reflectivity model vs. inverted models by different sets of hyperparameters 
with a constant product, (a) The true model, (b) /z = 400, 5  =  0.0002. (c) /z = 40, 5  =  0.002. (d) 
H = 4, 5 =  0.02. (e) /z = 0.4, 6  =  0.2
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______________________________________ 3.10. TRUE AMPLITUDE MIGRATION

are present in the inverted reflectivity model. On the other hand, the sparse inversion 

provides a superior result (Figure 3.11d). It is almost identical to the real reflectivity 

model. The wavelet is properly compressed. In addition, the AVO signature is preserved.

3.10 True amplitude migration

In the last few sections, I have described a few iterative inversion methods to reconstruct 

angle dependent reflectivity. There exist more economical ways to approximately solve 

the inverse problem. For example, if seismic data are well sampled and the velocity 

structure is not very complex, an approximate solution can be acquired by applying cor­

rection weights in the downward continued wavefield to preserve the amplitudes. The 

correction aims at removing the effects introduced by the imaging Jacobian as a conse­

quence of the imaging procedure. Mathematically, the correction estimates the inverse 

of the smearing operator LTL. This idea was first introduced by Stolt and Benson (1986) 

to address the conversion of integral variables during migration. The theory was further 

developed and applied to angle-domain and ray parameter domain imaging methods 

(Sava et al., 2001a). As shown bellow, the imaging Jacobian can also be explained as a

scaling factor of the forward and inverse Fourier transforms involved in the modelling

and migration procedures (Biondi, 2003a; Sava et al., 2001b).

The imaging condition of the wave continuation method can be expressed as:
4*00

R{z)= J  due~ikzZP(u), (3.25)
—OO

where R  is the estimated local reflectivity wavefield, and P  is the recorded seismic re­

sponse in the surface, both of which are expressed in the Fourier domain. As previously 

discussed, the seismic data can be considered as the summation of propagated waves 

from all depth, i.e.
+00

P{uj) = j  dzeikzZR(z), (3.26)
—00

where R(z) is the true local reflectivity wavefield in the Fourier domain. Please note that 

the integral range is extended to negative infinity by assuming the reflectivities are zeros
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Figure 3.11: A multi-channel deconvolution example to compare linear inversion and non-linear 
inversion, (a) Incomplete multi-channel data, (b) Reflectivity model, (c) Linearly inverted model, 
(d) non-linearly inverted model (sparse solution)
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3.10. TRUE AMPLITUDE MIGRATION

above the surface. This is reasonable since above the surface there is just air, and the 

seismic wave dies away quickly in the air. Combining the above two equations leads to
+ 0 0  + 0 0

R{z) =  J  due~ik*z J  dz'eik*zR(z'), (3.27)
—00 —00

The physical meaning of this equation is clear if we change the integral variable from the 

temporal frequency to the vertical wavenumber:
+00  +00

R(z) = J f  dz'eik*:R(z')
— OO — OO

H-oc -f-00

= Jr J  dk~~e~ik'~Z f  dz'eikzZR{z')
—00 —00

=  <3 -2 8 >

by recognizing the chaining of the forward and inverse Fourier transforms in the manipu­

lation. This equation tells us that the reflectivity model calculated by the adjoint operator 

or migration is a non-constantly scaled version of the true reflectivity model. Therefore, 

amplitude fidelity can be acquired by removing such scaling factor. To preserve ampli­

tude during DSR wave-equation migration, the downward continued wavefield should 

be divided by the imaging Jacobian, dwjdkz.

The formula of the imaging Jacobian for true amplitude migration can be derived 

right away given the expression of the vertical wavenumber. The derivation entails cal­

culating the derivative of the vertical wavenumber over the temporal frequency. How­

ever, the solution can be different for different imaging conditions. For example, angle- 

domain imaging condition (Wapenaar and Berkhout, 1986b; Wapenaar et al., 1999; Sava 

et al., 2001a) maps common image gathers (CIGs) from the local wavefield in terms of 

offset wavenumbers. Therefore the derivative is calculated by assuming constant off­

set wavenumbers. Similarly the imaging Jacobian can be derived by assuming constant 

offset ray parameter for ray parameter domain imaging methods (Prucha et al., 1999). 

Appendix C provides the imaging Jacobian formulas for both methods.

Compared with the conventional migration, the described true amplitude migration 

provides more accurate result and requires only a little extra computational effort. There-
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3.11. SUMMARY

fore, the method provides an attractive option for calculating models that may be suit­
able for amplitude analysis. However two reasons hamper the wide application of this 

method. First, the method is derived by assuming constant velocity. Thus it can not 

properly handle the situation when there exist velocity variations. Second, the ampli­

tude correction does nothing to suppress the effects of data missing and noise, which is 

a very common challenge for real seismic data processing.

3.11 Summary

In this chapter, I analyzed regularized least-squares migration. Both quadratic and non­

quadratic regularizations are formulated and tested via a simple deconvolution problem. 

The acquired experience on parameter selection is especially valuable since migration is 

a much more expensive procedure, and a good parameter-selection strategy saves trial- 

and-error time. Important amount of work, especially in the statistics literature, has been 

done to deal with the problem of automatic parameter selection (Akaike, 1974). Unfortu­

nately, this research often deals with the solution of small parameter fitting problems, as 

the ones arising in time series analysis.

In the next two chapters, I will test the methods on migration problems with synthetic 

and real data to further validate the application of regularized migration.

9 4
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Chapter 4

Synthetic data examples

In this chapter, I test the theory of wave-equation migration/inversion with synthetic 

data examples including the 2-D zero-offset SEG/EAGE data, the 3-D SEG/EAGE narrow- 

azimuth data, the 2-D prestack Marmousi data, and the 3-D common-azimuth data of a 

flat model and 2-D data of a wedge model. The quality of structural imaging capability 

and amplitude fidelity of various imaging methods is extensively examined.

4.1 Migration

SEG/EAGE salt body model

The efficiency for dealing with complex geological structure and velocity variations 

is an important criterion at the time of evaluating an imaging algorithm. For this reason, 

it is important to produce some benchmark data so that any developed imaging methods 

can be fairly evaluated and compared. With the joint effort of many geologists, geophysi­

cists and various organizations, the 3-D SEG/EAGE salt body data were created in the 

90's. The model simulates a typical geological setting in the U.S. Gulf of Mexico that con­

tains a big salt dome surrounded by a balanced cross section (see Figure 4.1, Aminizadeh 

et al., (1994)). The sharp velocity contrast between the salt dome and the background 

rock poses a challenge to seismic imaging since most energy is reflected back to the sur­

face. It is especially difficult to illuminate the area beneath the salt body. Furthermore 

numerous faults and thrusts were included to simulate a complicated situation. An ideal 

imaging method should be able to address these two issues.

For 2-D migration test, a zero-offset data were produced based on the 'exploding re-
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4.1. MIGRATION

Figure 4.1: 3-D SEG/EAGE salt model (Aminzadeh et al., 1994). The model embodies typical 
complex gulf structures like salt domes, faults and sand bodies and lenses. The dimensions of the 
model are 13.5 x 13.5 x 4.2 km in the x , y ,  z  directions, respectively. The 2-D velocity profile AA' 
is shown in Figure 2.3, which is used to synthesize the 'exploding reflector' zero-offset dataset

flector' theory for the profile AA'. The relative data have been shown in Chapter 2 and 

used to test the Kirchhoff migration method. In this chapter, this dataset is used to com­

pare velocity correction techniques including split-step, split-step PSPI, PSPI and FFD 

(Fourier Finite Difference), etc. As shown before, 2-D or 3-D DSR migration actually 

involves calculating two square roots. The velocity correction for 2-D/3-D prestack mi­

gration can be regarded as two single-square-root corrections. Therefore the quality com­

parison for 2-D poststack cases also hold for 3-D cases though 3-D is more complicated 

with a larger space of velocity candidates.

The main frame of the geological setting of 3-D SEG/EAGE salt body model is made 

up of layers with gradually changing velocities and some spiky velocity perturbations 

(for example, see Figure 2.3). The density is set to a constant everywhere due to the 

limitation of the adopted finite difference modelling m ethod. Therefore, the data are not 

suitable for amplitude studies (no distinct AVA phenomena), but excellent for structural 

analysis.
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2-D SEG/EAGE poststack data

The 2-D SEG/EAGE poststack data contain 1290 zero-offset seismic traces. The sam­

ple interval is 0.008 second, and each trace has 626 samples. The peak frequency is 15Hz. 
For accuracy, the migration frequency range is picked between 0 and 55Hz. Figure 4.2 is 

the result provided by the split-step zero-offset migration algorithm. The method suc­

cessfully resolves the faults above the salt body and salt flank with high dip angles. 

However, the sub-salt structure is not properly placed. Obviously, the flat layer at depth 

z = 3.6 km is distorted under the salt dome. The discontinuity at the distance x  =  7 km 

could be mistakenly explained as a fault. Besides, the fault system under the salt dome is 

disturbed by many high frequency artifacts. On the other hand these artifacts are cleaned 

up by interpolation methods like split-step PSPI (Figure 4.3 ) and PSPI (Figure 4.4). The 

latter two methods provide very similar result. Both methods accurately image the faults 

under the salt dome. However, the dipping salt flank on the left is not preserved so well 

as the simple split-step method.
The result of FFD is shown in Figure 4.5. Since higher-order approximation is adopted 

in the algorithm, the high angle dipping events are better preserved. However, some 

spurious artifacts are present throughout the whole image. This is a drawback of the 

algorithm. Furthermore, the involved finite difference method is difficult to implement 

for iterative inversion. Therefore, the method is not used for inversion in this thesis.
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Distance [km]

Figure 4.2: Migrated image of the 'exploding-reflector' data by split-step zero-offset migration.

Distance [km]
4 6 8 10 12 14

Figure 4.3: Migrated image of the 'exploding-reflector' data by split-step PSPI zero-offset migra­
tion.
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Distance [km]

Figure 4.4: Migrated image of the 'exploding-reflector' data by PSPI zero-offset migration.

Distance [km]

Figure 4.5: Migrated image of the 'exploding-reflector' data by Fourier Finite Difference zero- 
offset migration.
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4.1. MIGRATION

3-D SEG/EAGE narrow-azimuth data

Narrow-azimuth marine data are usually acquired at the surface of an ocean with 

floating geophones that are attached to parallel streamers (see Figure 4.6). A boat tugs 

the streamer back and forth in the survey area to scan the geological structure under the 

ocean bottom. This geometry allows us to well sample the seismic response in the inline 

direction and record that in the crossline direction with a much narrower aperture.

* source
o receiver •■inline

Figure 4.6: The geometry of marine data acquisition for 3-D SEG/EAGE salt model. Eight 
streamers are tugged by a tugboat (not shown in the figure). Each steamers contains 68 receivers 
in a spacing of 40 m..

The classic 3-D SEG/EAGE narrow-azimuth data (Phase C) were synthesized by us­

ing a typical marine acquisition geometry (Aminzadeh et al., 1994). The survey covered 

an area of 8 km x8 km (see Figure 4.7). There are 50 shot lines with 160 m crossline 

spacing. Within each shot line, there are 95 shots every 80 m. Each streamer contains 68 

receivers with 40 m spacing. The distance between two neighboring streams is 40 m. The 

boat sailed in the same direction for each shot line. With this survey design, the binned 

data have 17 folds and a half offset of 80 m. The inline and crossline intervals are both 20 

m.

The data were calculated by a 3-D acoustic finite-difference modelling method and re­

sampled with an interval of 0.008s. To test the 3-D common-azimuth migration, I binned 

the data into a common azimuth ( y direction). This simple treatment surely introduces
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4.1. MIGRATION

some errors due to the trace rotation. However, the survey was conducted with a narrow- 

azimuth geometry, the errors should be minor. Despite this concern, the data provide 

good basis for testing the algorithm with the related complex geological structure. Fur­

thermore, for the previously mentioned reason (spiky velocity perturbation), I focus on 

the structure instead of amplitude in this case. To alleviate aliasing, I interpolated the 

inline offsets so that the half offset spacing is 40 m.

15000

0 ' ' i i ' ' ' i i i 1 i l_' i
0 5000 10000

Y, m

Figure 4.7: The survey area of 3-D SEG/EAGE Narrow azimuth data for the salt model (online 
figure provided by Sandia National Laboratories (1998)). x: crossline direction, y: inline direction. 
The asteroids symbolize the shot positions. The salt model is displayed in red as a reference. The 
longer color lines (5 inlines and 5 crosslines) show the location, x = 5060 m, 6760 m, 7400 m, 
8440 m, 10140m, and y = 1680 m, 3380 m, 5060 m, 6760 m, 8440 m, where seismic images were 
extracted by Sandia National Laboratories.

Figure 4.8b and d show the stacked images at inline x  =  5460 m, obtained with 2- 

D and 3-D common-azimuth migration respectively. It is obvious that the 3-D image is
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cleaner than the 2-D image. The structural accuracy is confirmed by checking with the 

velocity profile (see Figure 4.8a). The 2-D imaging method can not accurately place the 

normal fault on the right. Even the top of the salt body is distorted. The bottom of the 

salt body at depth z =  3000 m is imaged at a shallower depth.

Figure 4.8c and e are the common image gathers at x  =  5460 m, y = 6000 m produced 

by 2-D and 3-D common-azimuth migration, respectively. The 3-D imaging method pro­

vides more coherent information in the ray parameter domain. Especially the event at 
depth z = 1000 m is less disturbed by the imaging artifacts in the 3-D result. The shallow 

events are obviously aliased in the 2-D result. On the contrary, 3-D result is much less 

affected. Under the salt body, some spurious events are present in the result of 2-D mi­

gration, while the true event at depth z  = 3500 m stands out in the 3-D common image 

gather.

The Sandia National Laboratories (SNL) (1998) conducted a benchmark test on the 

narrow-azimuth and wide-azimuth data of the SEG/EAGE salt model using 3-D shot 

record migration (F-X (frequency-space) domain migration). They argued that narrow- 

azimuth acquisition does not provide more significant information than wide-azimuth 

acquisition for the SEG/EAGE salt model. If this is true, my comparison bellow shows 

that the common-azimuth migration improves over the benchmark short-record migra­

tion. In the following, I compare the migrated images by 3-D common-azimuth migra­

tion, applied to the narrow-azimuth data, and by 3-D shot record migration, applied to 

the wide-azimuth data. Note that the online benchmark results provided by SNL (1998) 

were calculated using a larger imaging aperture. For convenience of comparison, I have 

clipped the major part of the images.

Figure 4.9 compares the stacked images of inline x = 6760 m calculated by 3-D 

common-azimuth migration and shot migration. The common-azimuth migration is 

obviously better focused. In particular, the subsalt area is better illuminated and less 

affected by spurious imaging artifacts. The method provides a sharper shape of the shal­

low faults.

Figure 4.10 compares the stacked images at a different location (x  =  8440 m), obtained 

with the two 3-D imaging methods. Note that the salt edge is not clear in the solution 

of 3-D shot migration (see Figure 4.10c). On the other hand, the salt flank in the middle
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4.1. MIGRATION

is better resolved by the common-azimuth migration (see Figure 4.10b). Furthermore, 
we can see that common-azimuth migration improves the shallow fault image extending 

rom y =  1000 m to y =  2000 m.

Figure 4.11 shows the stacked images of a crossline (y =  3380 m). The result of 

common-azimuth migration (Figure 4.11b) is much cleaner than the 3-D shot migration. 

Even some of the weak events related to layers with small velocity contrast are resolved. 

The top of the salt body is more accurately placed, in contrast to the result of shot migra­

tion, which underestimates the size of the salt body by cutting the salt top.
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Figure 4.8: Image comparison between 2-D and 3-D migration at x =  5460 m. (a) velocity model, 
(b) Stacked image with 2-D migration, (c) Common image gather (CIG) with 2-D migration at 
x  =  5460 m, y  =  6000 m. (d) Stacked image with 3-D common-azimuth migration, (e) CIG with 
3-D common-azimuth migration. Both methods use the split-step PSPI velocity correction.
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Figure 4.9: Images at x  =  6760 m, obtained with 3-D common-azimuth migration and 3-D shot 
migration (online figure provided by Sandia National Laboratories), (a) Velocity profile (b) 3-D 
common-azimuth migration, (c) 3-D shot migration.
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Figure 4.10: Images at x  =  8440 m, obtained with 3-D common-azimuth migration and 3-D shot 
migration (online figure provided by Sandia National Laboratories), (a) Velocity profile (b) 3-D 
common-azimuth migration, (c) 3-D shot migration.
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Figure 4.11: Images at y  =  3380 m, obtained with 3-D common-azimuth migration and 3-D shot 
migration (online figure provided by Sandia National Laboratories), (a) Velocity profile (b) 3-D 
common-azimuth migration, (c) 3-D shot migration.
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The Marmousi data set

The 2-D Marmousi data are also frequently used to test prestack migration algo­

rithms. The data were originally produced to test velocity analysis methods. The pro­

totype of this model was designed to simulate the geological profile through the North 

Quenguela Trough in the Cuanza Basin in Angola (Versteeg, 1994). The model consists 

of a set of slightly folded marls and carbonates. A growth fault system developed within 

the marls and carbonates. The velocity and density profile (see Figure 4.12) portrays the 

complex geological settings. As these profiles show, the model change rapidly in x  and 2  

directions, which poses a challenge to seismic imaging and velocity analysis. Especially, 

a good imaging algorithm should illuminate the carbonate trap at around 2  =  2.5 km 

and the underneath layered anticline.

The data were synthesized by an acoustic finite difference modelling method with 

second order accuracy. The source wavelet is a filtered real field wavelet. With blocky 

structure of velocity and density, the acquired data are suitable for tests of both structural 

imaging and AVA studies. The data were acquired with a marine data geometry by using 

a single cable. A total of 240 shots with 25 m spacing were simulated, each of which has 

96 receivers, placed every 25 m. The offset varies from 200 m to 2575 m. The recording 

time is 2.896 s, and the data were resampled every 0.004 s.

The lateral velocity variation of the Marmousi model is not very large. Therefore, 

usually the split-step correction is good enough to preserve the structural information. 

As shown in Figure 4.13a, the split-step DSR migration clearly images the faults and the 

anticline structure. However, some events are smeared due to limited accuracy of the 

split-step correction. On the other hand, the split-step PSPI migration (see Figure 4.13b) 

helps to focus these locations. The image is cleaner than that of standard split-step DSR 

migration. The resolution enhancement is also evident in a comparison of the common 

image gathers. It is clear that the split-step PSPI migration better aligns the seismic events 

and helps to suppress imaging artifacts at high angles (see Figure 4.14). Note that the 

split-step DSR migration over corrects some events at high angles and the image gather 

displays a 'smile' shape. The split-step PSPI migration flattens such depth residual with 

more accurate velocity corrections.
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Figure 4.12: The velocity and density profiles of the Marmousi model, (a) Velocity, (b) Density. 
The hydrocarbon trap locates at z = 2.5 km and, on the top of the anticline and covered by the 
above folded carbonates.

1 0 9

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



4.1. MIGRATION

Distance [m)

Distance [m] 
6000

(b)

Figure 4.13: Migrated images of the Marmousi data, (a) Split-step DSR migration, (b) Split-step 
PSPI migration. Averagely, four reference velocities were used for wavefield interpolation at each 
depth.
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Figure 4.14: Common image gathers of the Marmousi data at x = 7500 m . (a) Split-step DSR 
migration, (b) Split-step PSPI migration.

4.2 Least-squares migration

4.2.1 Least-square migration with smooth regularization

To glean the benefits of least-squares migration, I created a simple 2-D acoustic data set 

using a ray tracer that accounts for the correct reflector AVA, cylindrical divergence (line 

sources), and interface transmission losses in a laterally invariant earth model. The data 

were then copied to a number of inlines to simulate 3-D common-azimuth data gener­

ated by line sources. The model consists of four flat layers and a half-space. Table 4.1 

describes the model in terms of velocity and density. Note that cylindrical divergence is 
in agreement with the assumptions made for the common-azimuth migration operator 

(Biondi and Palacharla, 1996). When dealing with real data, I approximately transform 

point sources to line sources by multiplying the data with the square root of the two-way 

traveltime.

Each CMP gather has 61 offsets with a spacing of 25 m. The data set consists of 10 

inlines, each of which has 10 CMP gathers. Both inline and crossline CMP spacings are
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4.2. LEAST-SQUARES MIGRATION

Velocity (m/ s) Density (gfcrri6) Thickness (m)
2000 2.25 500
2350 1.6 300
1900 2.3 300
2500 1.7 300
2500 2.0 Half-space

Table 4.1: Model parameters for the 3-D synthetic data.

25 m.
Noise-free incomplete data

To see if the algorithm can deal with incomplete data, I randomly removed 70% of the 

traces to simulate a very sparse 3-D survey.

Figure 4.15 illustrates the capability of RLSM to reconstruct 3-D seismic data. Figure 

4.15a displays four CMP gathers of the original data, and Figure 4.15b shows the recon­

structed CMP gathers after 15 CG iterations. The residuals (Figure 4.15c) are insignificant. 

This is a reassuring, albeit expected, result. Obviously, successful data reconstruction 

prior to conventional migration would be a more efficient alternative to least-squares mi­

gration in this case. Many schemes for wavefield reconstruction have been proposed and 

successfully applied. For example, Liu et al. (2003) have devised a Fourier reconstruc­

tion method that can deal with sparse data similar to the example shown in this section. 

However, the purpose of this study is to glean the benefits of least-squares migration 

without resorting to other processing techniques. This is not only of academic interest, 

since least-squares migration promises to achieve benefits beyond data reconstruction. 

Hu et al. (2001) have demonstrated that migration deconvolution, implicitly accounted 

for in least-squares migration, can help to sharpen the seismic image by deconvolving the 

migration point-spread function. The point-spread function results from the bandlimited 

nature of the imaging process and tends to blur the seismic image. In the real data exam­

ple in the next chapter, least-squares migration does generate a higher resolution image 

than the conventional migration, which is in agreement with the assertion made by Hu 

etal. (2001).
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Trace number 
120

Trace number 
120

Trace number 
120

Figure 4.15: Comparison between observed and reconstructed data, (a) Four neighboring CMP 
gathers. Each gather has 61 offsets with 25 m spacing, (b) Reconstructed CMP gathers after 15 CG 
iterations, (c) Difference between the original live traces and the corresponding reconstructions.

Figure 4.16 compares common image gathers (at the same spatial location) computed 

via migration, RLSM after 4 CG iterations, and RLSM after 15 iterations. With more 

CG iterations the coherency of the CIG is gradually improved, and aliasing artifacts are 

further mitigated. Notice the limited aperture effect in the migration result manifesting
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4.2. LEAST-SQUARES MIGRATION

itself as spurious tails. Part of the problem lies in the fact that the highest invertible, full 

bandwidth ray-parameter is determined by the upper limit of the offset wavenumber. 

Going beyond this limit in the radial-trace transform reduces the wavelet bandwidth. 

This is particularly obvious for the first event in our example. One has to be aware of 

this, and muting the CIGs at the upper ray-parameter limit may be advisable. However, 

a suppression of this effect would be preferable. For a linear approach, refer to Sava and 

Fomel (2003) for a more detailed discussion on angle and ray-parameter domain imaging. 

In this thesis, I attack this problem by introducing a sparse regularization in the depth 

direction in conjunct with the smooth regularization in the ray parameter direction. In a 

test of a wedge model further bellow, accurate amplitude can be acquired for very high 

angles.

Figure 4.17 compares the extracted AVA curves of the four events by two different 

methods. The top and bottom panels show the migration (with the imaging Jacobian cor­

rection applied) and the RLSM result, respectively. For better comparison, the smoothed 

migrated AVA curves are also shown in the top row. The migrated amplitudes are ob­

viously distorted by missing data. On the other hand, RLSM retrieves the AVA closely 

within the invertible angle range.Notice that the effect of the imaging Jacobian is inherent 

in the inversion.

The data were also processed with PLSM to compare its performance with RLSM. I 

found that PLSM is more efficient considering the computational cost. Figure 4.18 com­

pares calculated common image gathers by the conventional migration, RLSM (after 15 

CG iterations) and PLSM (only after 6 CG iterations). It is clear that both inversion meth­

ods provide more coherent results than the conventional migration. Since the time spent 

on each iteration of RLSM and PLSM is almost the same (actually PLSM is slightly faster), 

the total amount of computational time is saved by using PLSM. As shown in Figure 4.18, 

the quality of the solution given by PLSM is comparable as that by RLSM. To further 

compare these two methods, I plot the AVA curves for all four events (see Figure 4.19). 

Basically, both methods provide promising amplitude within the invertible angle range.

The data fitting of RLSM and PLSM is also compared (see Figure 4.20). It can be 

seen that PLSM converges faster than RLSM. The algorithm starts to converge after 6 

iterations.
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Figure 4.16: CIGs with varying CG iterations, (a) CIG after migration, (b) CIG after 4 CG itera­
tions. (c) CIG after 15 CG iterations.
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Figure 4.17: Extracted AVA curves, (a) - (d) are produced by migration, (a), (b), (c) and (d) 
are AVA curves for the events at depths 500 m, 800 m,1100 m and 1400 m, respectively. The 
red dashed lines are the theoretical AVA, the solid lines are the migration result, and the doted 
lines are the smoothed migration result (Hamming filtered), (e) - (h) are produced by RLSM (15 
iterations). The solid lines are the RLSM inverted AVA.
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Figure 4.18: CIGs by Regularized Least-Squares Migration (RLSM) and Preconditioned Least- 
Squares Migration (PLSM). (a) RLSM (15 iterations), (b) PLSM (6 iterations)
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Figure 4.19: Extracted AVA curves, (a) - (d) are produced by RLSM (15 iterations), (a), (b)/ (c) 
and (d) are AVA curves for the events at depths 500 m, 800 m,1100 m and 1400 m, respectively. 
The red dashed lines are the theoretical AVA, the blue solid lines are the migration result, (e) - (h) 
are produced by PLSM (6 iterations). The red dashed lines are the theoretical AVA, and the blue 
solid lines are the PLSM inverted AVA.
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Figure 4.20: Data misfit of two inversion methods. Blue solid: RLSM. Red dashed: PLSM.
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4.2. LEAST-SQUARES MIGRATION

Noisy incomplete data

As shown in the previous chapter, regularized least-square inversion is efficient in 

suppressing noise in the deconvolution problem. In the example of inverting the smooth 

model, the smooth regularization was used for one single trace. The point was to conduct 

a fast test of the inversion prototype. This is not realistic for a single seismic trace. How­
ever, the idea of forcing smoothness can be adopted for prestack angle domain imag­

ing problems. The method can be understood as a multi-channel inversion, in which 

neighboring coherent useful information are enforced. To verify this point, I added some 

white noise with moderate signal-to-noise ratio (S /N  =  10) to the previously synthe­

sized common azimuth data and re-ran the program. For efficiency, I only tested the 

PLSM algorithm. It has been shown that (Kuehl, 2002) RLSM is not sensitive to this 

level of white noise for moderate signal-to-noise ratios. Please note that I assume that 

coherent noise like multiples have been properly removed before applying least-squares 

migration. Therefore, the influence of coherent noise is not examined here.

Figure 4.21 compares the common image gathers produced by the conventional mi­

gration and PLSM. Obviously, the result of the conventional method is not easy to use 

due to the contained severe aliasing and noise. It is difficult to identify the coherent pat­

tern and pick the events. Especially the third event with small amplitude is immersed 

in the noise. The picked AVA (see Figure 4.22a-d )deviates significantly from the theo­

retical value, and simple smoothing of the amplitude does not help much. On the other 

hand, PLSM efficiently suppresses the white noise and aliasing artifacts caused by data 

missing. All four events are resolved in a crisp manner. The amplitude is still accurate as 

shown in Figure4.22e-h though the fitting angle range shrinks slightly.

The evolution of the data fitting in the PLSM method is shown in Figure 4.23. It can 

be seen that the data fitting improves during the first four CG iterations, then deterio­

rates. The reason is two-fold. First, the preconditioning without trade-off control entails 

dealing with a rank-deficient problem. Full convergence is not advised if one seeks a 

good solution. Second, with too many iterations, the algorithm tries to fit the noise, and 

therefore, the creation of artifacts representing date noise mapped to the model space and 

not real desirable features of our inverted model. Therefore, an optimal solution should 

be selected from the first few iterations. After examining the data misfit curve, I found
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4.2. LEAST-SQUARES MIGRATION

that the solution at the fourth iteration best honors the observation.

The efficiency of PLSM is further confirmed in a comparison of the original data and 

the reconstructed data (see Figure 4.24). The reconstructed data are very clean and the 

coherent information is preserved nicely. The residual, or the predicted noise, consists 

mainly the random noise. The difference between this predicted and the true noise is 

slight. As portrayed in Figure 4.25, no significant valuable information is contained in the 

predicted noise panel. Only far offset energy in the the first event leaked in the residual 

panel.
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F igure 4.21: CIGs by migration and Preconditioned Least-Squares Migration (PLSM). (a) Migra­
tion. (b) PLSM (4 iterations). The input data were randomly decimated (70% traces removed) and 
contaminated by some significant white noise (S / N  =  10).
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Figure 4.22: Extracted AVA curves of the noisy incomplete data, (a) - (d) are produced by migra­
tion. (a), (b), (c) and (d) are AVA curves for the events at depths 500 m, 800 m, 1100 m and 1400 m, 
respectively. The red dashed lines are the theoretical AVA, the solid lines are the migration result, 
and the doted lines are the smoothed migration result (Hamming filtered), (e) - (h) are produced 
by PLSM (4 iterations). The solid blue lines are the PLSM inverted AVA.
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Figure 4.23: Data misfit of the preconditioned least-squares migration applied to the noisy in­
complete data. The optimal solution is chosen at the fourth iteration.
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Figure 4.24: Comparison of the observed, reconstructed data and the residual (a) The original 
data, (b) The reconstructed complete data, (c) The difference between the live traces and the 
corresponding reconstructed traces
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Figure 4.25: Comparison of the predicted noise, the real additive noise and the residual, (a) The 
predicted noise, (b) The real additive noise, (c) The residual.
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4.2. LEAST-SQUARES MIGRATION

4.2.2 Sparse least-squares migration

As shown in the toy example of multi-channel deconvolution in Chapter 3, combining 

sparse and smooth regularization can lead to high resolution in two directions. The goal 

is to acquire sparseness in the depth direction and smoothness in the ray parameter di­

rection. Now I test the idea with a 2-D wedge model. A 3-D test on the field data is 

shown in the next chapter. The 2-D wedge model gives an economical way to study the 

behavior of this method. With tapering thickness between two neighboring reflectors, 

the model is useful for examining the influence of inversion on the tuning effect, which 

is rooted in the band-limited nature of seismic data. Figure 4.26 portrays the geometry of 

the wedge model. The thickness changes gradually from 0 m to 100 m with a step of 5 m. 

The midpoint spacing is 25 m. The step in the vertical direction is 5 m.

Distance [m]
0 250 500 750

250-

c
500-c .CJa

750-

Figure 4.26: The geological structure of the wedge model.

Two sets of data were prepared to examine the effects of wavelet mismatch. The first 

dataset was prepared using the following forward modeling operator:

L : d =  LuAm, (4.1)

where d is the seismic data, Lu is a band-limited wave propagator, A is the adjoint of 

the radial trace transform, and m is the AVP image gather. The AVP of the first of the
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Figure 4.27: Synthesized common midpoint gathers at midpoint x = 500 m of the wedge model, 
(a) Data without the source signature, (b) Data with the source signature.

previous model is used for the tilted reflector of the wedge model, The AVP of the flat 

reflector at depth z =  500 m is set to a negative constant. Compared with equation 2.171, 

the above equation ignores the source signature W s. The second dataset was prepared 

considering the source signature, exactly following equation 2.171. A Ricker wavelet is 

used to represent the source signature. Both datasets were produced for a frequency 

range, from 0 to 50 Hz, and sampled every 0.004 second in the time domain. The record­

ing time is 2.148 s ( 538 samples each trace). The CMP gathers at midpoint x = 500 m 

are displayed in Figure 4.27. The tuning effects are evident in both datasets. Hereafter, 

the dataset without source signature is denoted as dataset 1, and the one with source 
signature is denoted as dataset 2.

Noise free dataset 1

I processed dataset 1 by three methods: conventional migration (the adjoint of the 

modeling operator), preconditioned least-squares migration (PLSM) and the sparse least- 

squares migration (SLSM).

Figure 4.28 shows the stacked images. The result of the adjoint is quite blurry since
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Figure 4.28: Stacked images of the wedge model, inverted from noise-free dataset 1. (a) Migra­
tion. (b) PLSM. (c) SLSM.

the algorithm is not capable of reconstructing high frequencies absent from the data. 

On the other hand, both PLSM and SLSM are efficient at recovering the structural im­

ages. Especially, the SLSM algorithm has produced a highly resolved image. This is a 

consequence of using a sparseness constraint that attempts to collapse the band-limiting 

seismic wavelet into a broad-band impulsive signal.

Figure 4.29a-c displays a zoomed view of three common image gathers produced by 

these methods. The SLSM method has the ability of suppressing the sidelobes introduced 

by the band-limited nature of the data. To complete the analysis, I have extracted the am­

plitude of the tilted event and plotted AVA curves for the three methods in Figure 4.29d. 

I can observe that both PLSM and SLSM are able to preserve the amplitude response of 

the reflection. SLSM provides a larger fitting angle range than PLSM.

Figure 4.30 compares the data misfit of two inversion methods. The PLSM starts to 

converge at the seventh iteration. As shown in Figure 4.29d, the method provides ac­

curate amplitude for an angle range between 0 and 40 degrees. However, the structural 

image is not satisfactory due to the tuning effects. The SLSM method needs four itera-
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Figure 4.29: Common image gathers (CIGs) and AVA curves at x = 500 m for the wedge model, 
(a) Migration, (b) Preconditioned least-squares migration (PLSM). (c) Sparse least-squares mi­
gration (SLSM). (d) AVA curves for the first event Red dashed: the theoretical curve. Green: 
migration. Blue: PLSM. Black: SLSM.
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Figure 4.30: Data misfit of two inversion methods. Blue: PLSM. Red: SLSM.

tions of ERLS algorithm to acquire convergent sparse solution. The data fitting improves 

with more ERLS iterations. In this test, the amplitude completely fits the theoretical AVA 

value. The wavelet has collapsed completely with the sparse regularization.

Figure 4.31 compares the original data, reconstructed data by PLSM and the residual. 

Again, we can see the efficiency of PLSM at fitting the data. The residual is very dean. 

The data fitting of SLSM (see Figure 4.32) is also impressive though slightly inferior to 

PLSM. A small amount of data are not fitted.
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Figure 4.31: The original data, reconstructed data by PLSM and the residual at x = 500 m. (a) 
Original, (b) Reconstructed, (c) Residual.
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Figure 4.32: The original data, reconstructed data by SLSM and the residual at x = 500 m. (a) 
Original, (b) Reconstructed, (c) Residual.
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4.2. LEAST-SQUARES MIGRATION

Noise-free dataset 2
Similar comparison was conducted on the noise-free dataset 2. Since the source sig­

nature is included in the data, but it is not taken into account in the inversion operator, 

we can not expect so much high resolution as the previous experiment provides. On the 

other hand, if we include the source simulation in the operator, the bar can also be lifted.

The first test is to examine the performance of least-squares migration without con­

sidering the source signature. Figure 4.33 compares the stacked images by migration, 
PLSM and SLSM. It can be seen that both PLSM and SLSM provide higher solution than 

the conventional migration. SLSM better resolves the two events, but it is not so good as 

the previous example.The reason is that the source wavelet is not encoded in the model­

ing/ adjoint pairs. As a result, the algorithm mainly aims at inverting the implicit wavelet 

of the wave propagator (Lw)and removing small artifacts.

Distance [m] Distance [m] Distance [m]

(a) (b) (c)

Figure 4.33: Stacked images of the wedge model, inverted from noise-free dataset 2. The source 
wavelet is not considered, (a) Migration, (b) PLSM (4 iterations), (c) SLSM (3 IRLS iterations). 
The source signature is not considered in PLSM and SLSM.

The detail comparison of the common image gathers also supports the above explana­

tion. The PLSM does less than in the previous example to improve the vertical solution 

though some de-blurring effects can be observed in the stacked image. In SLSM, the
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4.2. LEAST-SQUARES MIGRATION

wavelet is slightly suppressed. The amplitude of PLSM and SLSM is better than the con­

ventional migration (Figure 4.34). Furthermore, SLSM gives better result at high angles 

than PLSM.

The second test is to encode the source signature (wavelet) in three methods: mi­

gration, PLSM and SLSM. In migration, the adjoint of the wavelet is used to correct the 

wavefield before downward continuation of the algorithm. This is just to give a complete 

comparison of the adjoint and the inversion operators. The correction does not invert the 

source wavelet, and the amplitude in the vertical direction is turned off as seen in Figure 

4.35a. On the other hand, iteratively applying source wavelet and its adjoint in PLSM and 

SLSM helps to suppress the tuning effects (See Figure 4.35b and c). With better match of 

the operator, SLSM provides both exact structure and angle dependent amplitude (Figure 

4.35c and d).

The observed resolution discrepancy of various methods can be explained by analyz­

ing the least-squares problem. For simplicity, I first ignore the regularization and start 

from the linear system defined by equation 2.171 as bellow:

L : d = W sLuAm. (4.2)

By using the pseudo inverse of the wavelet w] ,  the modeling system can be rewritten as:

W ]d =  LuAm

d =  Lm. (4.3)

where d = wj d,  and L =  LWA. The least-squares solution of the problem is

m  =  (L'fO^L'd. (4.4)

On the other hand, the solution without considering the source wavelet is

m  =  (L 'L ^ L 'd . (4.5)

Comparing above two solutions, I find the only difference exists in the last term, the data 

vector. The second solution is a smeared version due to the source signature. The solution

can be probably improved by applying a bandlimited inverse to the observation before
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4.2. LEAST-SQUARES MIGRATION

the inversion. In the Fourier domain, this may lead to instability. Consequently, the least- 

squares problem would try to fit oscillatory data, which is risky. For this concern, a better 

strategy is to encode the source wavelet in the inversion and stabilize the algorithm by 

regularizing the model, for example, force the solution to be smooth or sparse. The idea 

is fully employed in this thesis.

Noisy dataset 1

The SLSM algorithm is not sensitive to white noise either. I added some moderate 

noise (S/N  =  10) and ran migration, PLSM and SLSM. The resulting common image 

gathers and AVA curves are shown in Figure 4.36. We can see that SLSM is the most 

robust method by properly imaging the simple structure and accurately retrieving the 

amplitude signature.

Both PLSM and SLSM are efficient at reconstructing the data (see Figure 4.37 and 

Figure 4.38). There is almost no coherent signal in the residual.
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Figure 4.34: Common image gathers (QGs) and AVA curves of the noise-free dataset 2 at x = 500 
m of the wedge model. The source wavelet is not considered, (a) Migration, (b) Preconditioned 
least-squares migration (PLSM, 4 iterations), (c) Sparse least-squares migration (SLSM, 3 IRLS it­
erations). (d) AVA curves for the first event. Red dashed: the theoretical curve. Green: migration. 
Blue: PLSM. Black: SLSM.
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Figure 4.35: Common image gathers (QGs) and AVA curves at x  = 500 m of the wedge 
model. The source wavelet is considered (a) Migration, (b) Preconditioned least-squares mi­
gration (PLSM, 4 iterations), (c) Sparse least-squares migration (SLSM, 4 IRLS iterations), (d) 
AVA curves for the first event. Source signature is considered in all methods. Red dashed: the 
theoretical curve. Green: migration. Blue: PLSM. Black: SLSM.
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Figure 4.36: Common image gathers (CIGs) and AVA curves of the noisy dataset 1 at x = 500 
m of the wedge model, (a) Migration, (b) Preconditioned least-squares migration (PLSM, 5 iter­
ations). (c) Sparse least-squares migration (SLSM, 4 ERLS iterations), (d) AVA curves for the first 
event. Red dashed: the theoretical curve. Green: migration. Blue: PLSM. Blade SLSM.
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Figure 4.37: Comparison between observed, reconstructed data and the residual (a) The original 
data, (b) The reconstructed complete data (PLSM, 6 iterations), (c) The residual (predicted noise)
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Figure 4.38: Comparison between observed, reconstructed data and the residual, (a) The original 
data, (b) The reconstructed complete data (SLSM, 4 IRLS iterations), (c) The residual (predicted 
noise)
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4.2. LEAST-SQUARES MIGRATION

Marmousi model

To see if SLSM can handle complex structures and data acquisition footprint, I applied 

the algorithm to a re-sampled version of the Marmousi dataset. I carried out data deci­

mation by removing 70% of traces of the Marmousi data. The decimation was done in a 

random manner. Migration and PLSM were also applied for comparison. The split-step 

PSPI operator was used in all methods to decrease operator mis-match. In migration, 

only the adjoint of the modelling operator was applied. In PLSM, four iterations of pre­

conditioned CG were required to acquire reasonable data fitting, which cost about 8 times 

of the expense for migration. Finally, SLSM involved 3 iterations of IRLS algorithm, each 

of which cost 6 iterations of preconditioned CG algorithm. Therefore, the total cost of 

SLSM in this case is about 36 times of the conventional migration. Since I did not know 

the source wavelet, it is not included in the SLSM processing.

To compare the image quality, I extracted the common image gathers at x — 7500 

m from the results given by the three methods. The wiggle plots in Figure 4.39 portray 

the general view of the inverted local model. It is clear that a many artifacts are present 

in the common image gather obtained with the migration algorithm. These artifacts are 

substantially removed from the images obtained with PLSM and SLSM. The latter cleans 

up further the image gather by suppressing sidelobes. A better comparison is given in the 

detail image of first few ray parameters (see Figure 4.40). For the purpose of comparison, 

I calculated the reflectivity series by using the true velocity and density model. A side- 

by-side comparison confirms that the SLSM has properly reconstructed the model. I 

observe again, as in the previous wedge example, an important attenuation of ringing 

arising from the band-limiting wavelet in the data. To evaluate the amplitude preserving 

properties of our algorithm, I have obtained AVA curves for the event at depth 2  = 800 

m. The amplitude response obtained via the migrated image is difficult to extract due to 

sampling artifacts. The inverted AVA responses (PLSM and SLSM), on the other hand, 

are in good agreement with the theoretical value.
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Figure 4.39: Common image gathers of migration, the Preconditioned Least-Squares Migration 
(PLSM) and the Sparse Least-Squares Migration (SLSM) for the incomplete Marmousi data (70% 
traces randomly removed), at x = 7500 m. (a) Migration, (b) PLSM. (c) SLSM

(a) (b) (c) (d) (e)

m u m

Ray parameter [/is/m] Ray parameter ]ps/m) Ray parameter [/js/m] Incident angle [degree]

Figure 4.40: Zoomed-in common image gathers (CIGs) and AVA curves at x =  7500 m for the 
Marmousi data, (a) Migration, (b) PLSM. (c) SLSM. (d) Zero-offset reflectivity from the density 
and velocity model, (e) AVA curves for the event at depth 800 m.Red dashed: the theoretical 
curve. Green: migration. Blue: PLSM. Black SLSM.
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Figure 4.41: Stacked image by migration of the incomplete Marmousi data. 70% traces were 
randomly decimated from the original data.

Figure 4.41 shows the stacked images acquired by the conventional migration. It can 

be seen that the data missing has introduced some high-frequency artifacts in the mi­

grated image. The deeper events are less affected. Two reasons might account for that. 

First, high-frequency waves are more attenuated than low-frequency waves. Second, in a 

common midpoint gather of seismic data, shallower events usually have larger moveout, 

the difference of arrival time between near offset and far offset. As we know, more dip­

ping events are more vulnerable to aliasing introduced by sparse sampling of the offsets. 

With the disturbance of imaging artifacts, the fault system is blurred. These artifacts are 

suppressed by PLSM and SLSM (see Figure 4.42 and Figure 4.43). The deep anticline is 

better focused. It is clear that SLSM provides a cleaner and sharper image than PLSM. 

Flowever, since the source wavelet is not included in the inversion, I couldn't push the 

regularization too hard. For this reason, I do not expect SLSM to give a very spiky image.
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Figure 4.42: Stacked image by the preconditioned least-squares migration of the incomplete 
Marmousi data. 70% traces were randomly decimated from the original data.
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Figure 4.43: Stacked image by the sparse least-squares migration of the incomplete Marmousi 
data. 70% traces were randomly decimated from the original data.
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Distance [m] 
6000

Figure 4.44: Image of constant ray parameter (p/,0 = 0ps/m) by migration of the incomplete 
Marmousi data. 70% traces were randomly decimated from the original data.

As a bonus of least-squares migration, I found that the inversion can fill in the near 

offset gaps of the seismic survey. Note that it is difficult for the conventional migration 

to acquire near offset information since even the complete data are lack of near offset 

traces (the minimum offset of the Marmousi data is 200 m). In real seismic surveys, 

this is very common because we usually do not put receivers too close to the source for 

security of the instrument. Therefore a straight-forward thought is that the migration 

will poorly illuminate the image of low ray parameters. On the other hand, least-squares 

migration takes advantage of the physical model (subvolume velocity information) and 

the regularization of the model to interpolate and extrapolate the wavefield. These naive 

ideas are supported by a comparison of the resolved image of a constant ray parameter, 

pkx =  Ops/m (see Figure 4.44, Figure 4.45 and Figure 4.46). In the migration result, it is 

difficult to recognize the geological structure, and the image is seriously aliased. On the 

contrast, the images provided by PLSM and SLSM fundamentally improve the solution.
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Distance [m]

Figure 4.45: Image of constant ray parameter (pho = 0us/m) by the preconditioned least-squares 
migration of the incomplete Marmousi data. 70% traces were randomly decimated from the orig­
inal data.
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Figure 4.46: Image of constant ray parameter (ph.0 = 0fis/m) by the sparse least-squares migra­
tion of the incomplete Marmousi data. 70% traces were randomly decimated from the original 
data.
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4.3 Summary

I have conducted extensive tests on the wave equation based methods of migration /in ­

version. As the examples have shown, the operator can efficiently handle complex ge­

ological settings and models with strong velocity variations. Regularized least-squares 

migration can remove the artifacts due to data acquisition footprint and operator mis­

match. The computational cost of the inversion can be greatly decreased by a precondi­

tioning strategy.

The combination of smoothing regularization and sparse regularization is robust at 

reconstructing high-frequency information about the earth model. The implemented in­

version improves the image quality in both the ray parameter direction and the depth 

direction. However we may have two difficulties when we apply this method. First we 

should find a proper trade-off parameter to avoid over regularization, which may result 

in loss of valuable information. Second, very sparse solution can only acquired with the 

good knowledge of the wavelet. This is a difficult problem especially for the real data.
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Chapter 5

Field data example

5.1 Introduction

In Chapter 4 ,1 have compared the wave-equation migration and the least-squares migra­

tion with various synthetic datasets. As the results have shown, least-squares migration 

is more robust than the conventional migration in providing accurate structure and am­

plitude information. The nice point of synthetic data is that we know the model origi­

nating the data. Therefore the synthetic data allow us to conduct fair and well controlled 

comparison between the inverted model and the real model. On the other hand, field 

data are more complicated. First we do not know the real model. Second, the modelling 

mechanism is much more complicated than the formulas we have used. Third, the noise 

behavior could be unpredictable. Fortunately, we can utilize well log data, with higher 

resolution than seismic reflection data, to control the uncertainties of seismic processing 

and interpretation. In this chapter, I first evaluate the performance of various migra­

tion/ inversion methods that has discussed in previous chapters with a field dataset from 

the Western Canadian Sedimentary Basin (WCSB). Then the accuracy of the inversion 

is evaluated by the synthetics from well log data. This is an important step toward the 

application of 3-D least-squares migration..

By far, in the geophysical community most case studies of AVO/AVA analysis have 

been based on the data preprocessed by NMO/DMO methods or the approximate model 

obtained with migration, the adjoint of the modelling. The result can be unsatisfac­

tory due to model complexity and data loss. On the contrast, the regularized migra­

tion/inversion proposed in this thesis has the potential to provide coherent and accurate
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structure and amplitude for petrophysical feature extractions. The tests bellow are not a 

fully detailed case history but an evaluation of the algorithm with the support of well log 

data. To my knowledge, this is the first time this type of migration/inversion methods 

are calibrated with and tested against well log data.

5.2 Erskine data from WCSB

The data were gathered near a small town, Erskine, Southern Alberta, Canada. An 

orthogonal acquisition geometry was adopted to cover the survey area. 'Orthogonal'' 

means the source lines are normal to the receiver lines. The small 3-D survey targets 

the Leduc reef, a carbonate play in the Western Canadian Sedimentary Basin (WCSB). 

The data were first binned, and a constant common-azimuth subset was extracted. The 

binned data consist of 157 inlines and 40 crosslines. The offset ranges from 75 m to 3000 

m, with a highly uneven and sparse distribution (Figure 5.1). Each trace of the Erskine

x-CMP bin

Number of offers per CMP bin

0 5 10 15 20 25 30 35 40 45

Figure 5.1: Offset distribution per CMP bin for the Erskine dataset (WCSB). The number of 
offsets in each bin is color coded.

dataset contains 1000 samples with 2 ms interval. The inline CMP (common midpoint
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gather) spacing is 33.5 m, and the cross line spacing is 50.29 m. The azimuth direction 

is NE 180.58786°. Some preprocessings, including spherical divergence, deconvolution, 

surface consistent statics and a band-pass filtering (10/15 Hz-65/80 Hz), have been con­

ducted before applying the following tests of migration/inversion.

This particular dataset was also used for studies of data regularization by (Liu and 

Sacchi, 2004). These authors have analyzed the impact of data regularization, prior to 

wave-equation migration, on the quality of angle-domain common image gathers. Both 

interpolation and least-squares migration can address the problem of data incomplete­

ness. However it is clear that least-squares migration should promise more than interpo­

lation since it inverts not only the data sampling matrix but also the wave equation based 

modeling kernel. Detailed comparison of interpolation and least-squares migration will 

be considered in the near future.

5.3 Migration vs. LSM with smooth regularization

The Erskine dataset was used to compare the performance of migration, RLSM, and 

PLSM. As shown in the synthetic examples, the smooth regularization, adopted by RLSM 

and PLSM, is very efficient at reconstructing the data. It is important to test the validness 

of this technique in handling a sparse 3-D field data like Erskine dataset. Figure 5.2a 

shows 4 adjacent CMP gathers extracted from inline No. 10. Forward modeling, after 

inversion, is used to recover the data on the complete input grid. The resulting recon­

structed gathers are depicted in Figures 5.2b (RLSM) and 5.2c (preconditioned RLSM). It 

is clear that both methods help to fill in the gaps between live traces. Furthermore, miss­

ing information in near offset and far offset is partially retrieved. Figures 5.3 shows the 

CIGs with offset ray-parameters ranging from 0-500 with an interval of 6.25 fis/rn 
at inline No. 71, and crossline No. 10. Figure 5.3a portrays the migrated CIG with obvi­

ous aliasing artifacts and Figures 5.3b and 5.3c depict the least-squares inverted CIG after 

4 and 11 iterations, respectively. Figure 5.3d shows the result of preconditioned RLSM 

after only 4 iterations with a quality similar to that of Figure 5.3c.
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(C)

Figure 5.2: Comparison between observed and reconstructed data at inline No.10. (a) Original 
CMP gathers, (b) Reconstructed CMP gathers after 11 CG iterations, (c) Reconstructed CMP 
gathers after 4 preconditioned CG iterations.
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Ray parameter [s/km] 
0.2

Ray parameter [s/km] 
0.2

Ray parameter [s/km] 
0.2

Ray parameter [s/km] 
0.2

Figure 5.3: Common image gathers at crossline No. 10, inline No. 71. (a) CIG produced by 
migration, (b) CIG after 4 CG iterations, (c) CIG after 11 CG iterations, (d) CIG after 4 precondi­
tioned CG iterations.
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Figure 5.4: Normalized residual norm | |W(Lm — d)| |2 versus CG iteration. Red dashed: precon­
ditioned CG. Solid: CG.

The evolution of the normalized residual norm, | |W (Lm — d)| |2, versus CG iteration 

can be seen in Figure 5.4. As expected, the preconditioned RLSM converges faster than 

RLSM with no preconditioning.

In general, in order to limit the computational cost of the inversion, the CG algorithm 

is stopped before complete convergence. In this case, I monitored a small subset of the 

reconstructed data (see Figures 5.2a, 5.2b and 5.2c) to control the degree of fitting. This is 

important since over-fitting leads to the formation of artifacts. Conversely, under-fitting 

leads to incomplete recovery of the missing observations.

The structural image is computed by stacking the CIGs along the offset ray-parameter. 

The stacked images obtained with migration, the regularized least-squares migration 

(RLSM) and the preconditioned regularized least-squares migration (PLSM) are displayed 

in Figure 5.5a, b and c, respectively. Both RLSM and preconditioned RLSM lead to better 

reflector continuity in low fold areas.
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Figure 5.5: Common image gathers at crossline No. 10, inline No. 71. (a) CIG produced by migration, (b) CIG after 4 CG iterations, (c) 
CIG after 11 CG iterations.(d) CIG after 4 preconditioned CG iterations.
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,, rrrrr frrrfrrrnvr̂  ■, > >

. 01,1v; ►■►Cvvv► Vi►► ► ► >  II 
I j t » t t « : c / f  ■!-r>yyr»>>-:>>>':<i t .

1200

E,
•s
D.uQ

1400

I GOO

1800-

2000

(C)

Distance [m]
200 400 000 800 1000 1200 1400 1000 1800
11 ,‘ >y‘ >i>> > t > > t > >) »,►>>>>|>i >). ■; i {>j | (
’ • : f  rr'rfr f p ^ ^ F H f  f ft) i
i rrrrr tuu ft i *>:rr rrrrrrrrr’rrc i r f

, i *>>»►►►►►k i » s k►s►►►►►►►►►►k kVk ki tk!; 11 {.►»!»»►► k >»»I > ► k k > ► ►t  '  '  ' t  t * > > ► ► > > > > > . »  i . , , . . . . '.
►►►►kk) kl>»>/>y»'i /

!!
'[!

V:

1

Ray parameter [s/km]
0.1 0.2 0.3

2000

2000

(e)

I S I B i i W
fHiiil!) m i•S 1000

Ray parameter [s/kmj 
0.1 0.2 0.3

tiuntft/
■5 1600

t \ ( ( H i

Ray parameter [s/km]
0.1 0.2 0.3

I, ! ■ ■ ■ t ........  I

> i mY

S 1600

F ig u re  5.6: Detailed image of inline No.71 with CIG at crossline No. 10. (a) Stack after migration, (b) CIG corresponding to (a), (c) 
Stack after 11 CG iterations, (d) CIG corresponding to (c). (e) Stack after 4 preconditioned CG iterations, (f) CIG corresponding to (e).

5.3. 
M

IGRATION 
VS. LSM 

W
ITH 

SM
OOTH 

R
EG

U
LA

R
IZA

TIO
N



R
eproduced 

with 
perm

ission 
of the 

copyright 
ow

ner. 
Further 

reproduction 
prohibited 

w
ithout 

perm
ission.

ui
to

Distance [m] 
1500 3000 4500

500

1000-

■5 1500-

s.*',wu  ___ ;/$

2000 '

2500'

(a)

Distance [in] 
1500 3000

.1. I . M . I  .Ml. I
4500

500

1000

1500-i

2000 '

2500-

TtrfffTna iiiiiiiiwllliiim
H H M N n H B H

m M D |
iw B B S m W m B B w iB M l

(b )

Distance [in] 
1500 3000

500'

1000 -

1500'

2000-

2500-

[• . , 1.. ■■ '■• >•*>>■'->•■.>a
jV v 7 . t ;-1 i - V ;? tV v *  *>,■ .*

tjaa.*..---,. . . ' | .■ --. . ---------   ■,• J

I     ■ ■ • I — ' - ' III ' .. , 1
r - — '•'■ • - 1. i    '• • . 4I’;   ....\[[ ' ,• 11 >l—*

'*** **'■ :y$j
(c)

F igure  5.7: Stacked images of crossline No. 24. (a) M igration, (b) Least-squares m igration after 11 CG iterations, (c) Preconditioned 
least-squares m igration after 4 iterations.

5.3. 
M

IGRATION 
VS. LSM 

W
ITH 

SM
OOTH 

R
EG

U
LA

R
IZA

TIO
N



5.3. MIGRATION VS. LSM WITH SMOOTH REGULARIZATION

Figure 5.6a, c and e show details of the stacked images displayed in Figure 5.5 and 

their associated CIGs (5.6b, d and f) at crossline No. 10. Note the considerably improved 

resolution. This effect can be explained as follows: First, by imposing smoothness on the 

inverted CIG, individual traces stack more coherently. In particular, part of the smear­

ing produced by the aperture limitation (non-flatness at high ray-parameters) is atten­

uated and, therefore, the stacked CIG better preserves the high frequencies. Second, as 

mentioned earlier, least-squares migration automatically accounts for migration decon­

volution described by Hu et al. (2001), which helps to sharpen the image. This is an 

important concept that can lead to higher resolution. As shown later, the addition of a 

vertical sparseness constraint can further increase the vertical resolution. The deconvo­

lution effect is also visible in Figure 5.7 where I compare stacked images at crossline No. 

24.

For better performance assessment, I generated a synthetic CIG based on available 

sonic log data from a well located at inline No. 76 and crossline No. 24. A second well, 

located outside the survey area, had density and sonic log information. Correlation of the 

two sonic logs allowed us to match the density log to the log located within the survey. 

This relatively crude approach appears to be justified, since the sonic logs agree very well 

(Figure 5.8).

The shear wave velocities are assumed to follow Castagna's mud-rock regression 

Vs =  {Vp — 1360m/s)/1.16 (Castagna et al., 1985). Since Castagna's formula is not valid 

for carbonates, I restrict the AVA analysis to the Ellerslie (sandstone) and Banff forma­

tion (shale) (see Figure 5.9) as indicated in the stratigraphic column (Mossop and Shet- 

sen, 1994). Unfortunately, by disregarding the deeper carbonates, I exclude the Leduc 

reef which is the actual exploration target. However, this way I do not introduce fur­

ther uncertainties by attempting to estimate the carbonate shear wave velocities. With 

the compressional wave velocities, estimated shear wave velocities and the calibrated 

densities, I calculate the angle-dependent reflectivity traces using the Aki and Richards 

approximation of Zoeppritz's equations (Aki and Richards, 1980).
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5.3. MIGRATION VS. LSM WITH SMOOTH REGULARIZATION
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Figure 5.8: Depth correlation of log traces, (a) Sonic log trace (Vp) outside the survey area. The 
red curve is the trace at the original depth. The blue curve is the same trace with depth calibrated 
to the local trace shown in (b). (b) Sonic log trace at inline No. 76, crossline No. 24. (c) Density 
log outside the survey area. The depth has been adjusted to match the sonic log trace within the 
survey area.
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5.3. MIGRATION VS. LSM WITH SMOOTH REGULARIZATION

Distance [m]

Figure 5.9: Strata correlation for the survey area of the Erskine dataset. The background is the 
stack of inline No. 76 and the blue curve is the local sonic log (same as Figure 5.8b). The stack 
and the sonic log correlate relatively well.

1 5 5

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithou t p erm issio n .



5.4. PLSM VS. SLSM

Ray parameter [s/km]

Figure 5.10: CIG at inline No. 76, crossline No. 24. See Figure 5.11b for the AVA and time 
conversion of the highlighted area.

The inverted CIG at the well location is displayed in Figure 5.10. Figure 5.11 compares 

the time converted Aki and Richards synthetic CIG and the inverted and time converted 

CIG in more detail. Given the degree of uncertainty associated with the synthetic and 

the sparseness of the field data, the match is acceptable, despite some discrepancies. The 

picked AVA for the prominent Ellerslie/Banff event at 0.7s in Figure 5.12 fits the synthetic 

AVA well within 12 to 27 degrees. Outside this angle range, it is difficult to acquire 

reliable amplitude due to the lack of data support.

5.4 PLSM vs. SLSM

As an experiment, I also processed the field data with the sparse least-squares migration 

(SLSM). To save computational time and avoid overfitting of the noisy data, I only ran the 

IRLS program for three iterations, each of which involved 5 iterations of preconditioned 

least-squares migration (PLSM).
Similar to what the test of the Marmousi data has shown, the sparse regularization 

suppresses the spurious imaging artifacts efficiently (see Figure 5.13). On the other hand, 

coherent signal is enforced. It is clear that the seismic events obtained with SLSM look 

cleaner and thinner than those with PLSM. Overlaping events are better resolved and
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5.4. PLSM VS. SLSM
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Figure 5.11: Comparison between the synthetic CIG and the inverted CIG. (a) Synthetic CIG. 
(b) Inverted CIG. Both CIGs are displayed in time domain. AVA curves for the event at 0.7s are 
shown in Figure 5.10. Since the events are quite flat, AVA is calculated from AVP using equation 
(A-5) with a zero inline dip angle.
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Figure 5.12: Comparison between the synthetic AVA and the inverted AVA. Dashed: synthetic 
AVA for the event at depth 1500 m. Solid: inverted AVA for the same event (see Figure refsyn- 
thetic:vs:inverted)
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5.4. PLSM VS. SLSM
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Figure 5.13: Stacked images obtained by the preconditioned least-squares migration (PLSM) and 
the sparse least-squares migration (SLSM) (a) PLSM. (b) SLSM.

separated from each other. Figure 5.14 compares the common image gathers at inline no. 

76 and crossline no. 24. Note that the overlapping events at depth in the result of PLSM 

are nicely separated by SLSM.

However, there are some traps in the application of SLSM processing. As shown in 

the stacked images, some original discontinuities in the result of PLSM, which display 

smearing and weak amplitude, are decimated together with the imaging artifacts. Three 

reasons may account for such information loss. First, big gaps in the data introduce 
aliasing in the solution. Second, velocity errors lead to smearing of the image. Third, 

over regularization will remove events of small amplitude, which has been examined in 

Chapter 3.
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5.4. PLSM VS. SLSM
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Figure 5.14: Inverted common image gathers by the preconditioned least-squares migration 
(PLSM) and the sparse least-squares migration (SLSM). (a) PLSM. (b) SLSM.
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5.5. STACKED CUBES AND DEPTH SLICES

5.5 Stacked cubes and depth slices

As an output of the 3-D migration/inversion, stacked cubes are often used to locate po­

tential hydrocarbon traps in reference to typical favorable structures. Therefore the reso­

lution enhancement of the stacked cube is beneficial to the structure analysis. Figure 5.15 

displays the results calculated by four methods: migration, regularized least-squares mi­

gration (RLSM), preconditioned least-squares migration and sparse least-squares migra­

tion (SLSM). It is evident that the least-squares migration methods provide much higher 

resolution than the standard migration. Even the edge area with low data folds are highly 

resolved. SLSM provides the highest resolution among four imaging methods. Similar 

phenomena is observed in the comparison of the depth slices at z =  1800 m (see Figure 

5.16). The image edge of the depth slice is best preserved by SLSM.

5.6 Summary

In this Chapter, I have used a field dataset to test the proposed least-squares migration 

algorithms. The tests further confirm that the regularized migration/inversion improves 

the coherence of the image gathers. More importantly, the amplitude accuracy is sig­

nificantly improved with the inversion of the modelling kernels. This is supported by a 

side-by-side comparison of the inverted image gathers and the synthetic gathers with the 

well log data. The test of real data and verification by well log synthetics is an important 

step towards applications of these methods.
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5.6. SUMMARY
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Figure 5.15: Stacked cubes obtained by migration, regularized least-squares migration (RLSM), 
preconditioned least-squares migration (PLSM) and sparse least-squares migration (SLSM). (a) 
Migration, (b) RLSM (11 iterations) (c) PLSM ( 4 iterations) (d) SLSM. 3 iterations of the IRLS 
algorithm.
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Figure 5.16: Stacked depth slices at z  =  1800 m, obtained by migration, regularized least-squares migration (RLSM), preconditioned 
least-squares migration (PLSM) and sparse least-squares migration (SLSM). (a) Migration, (b) RLSM (11 iterations) (c) PLSM (4  itera­
tions) (d) SLSM. 3 iterations of the IRLS algorithm.



Discussion and conclusions

The goals of seismic migration/inversion is two-fold. First, we would like to image 

highly resolved structures of the earth's interior. Second, we want to make full use of 

the data in the prestack volume to retrieve physical parameters (rock properties and/or 

hydrocarbon indicators) by using angle dependent reflectivity. However, seismic migra­

tion/inversion is difficult. The main difficulties lie in the complexity of the earth model, 

the unknown modeling mechanism and limited resolution of the recorded data. It is al­

ways challenging to find a precise representation of the earth. The earth is not acoustic 

and not even strictly elastic. But for practical reasons, we explore the earth based on 

elastic or acoustic wave theory. Especially, since the compressional reflection waves are 

usually stronger than shear waves, the acoustic theory proved to be a robust tool to study 

the subsurface. Even after assuming acoustic media, the problem is still complex due to 

the existence of multiples, which leads to a non-linear inverse problem. Furthermore, the 

recorded data always contain unpredictable noise, and we can only record data within a 

limited aperture. All these problems limit our ability to fully solve the inverse problem.

Geophysicists have provided various solutions to solve these problems. First before 

seismic migration/inversion, the data are preprocessed to remove multiples. As a result, 

the problem is changed into a linear problem. Second, various signal processing meth­

ods, for example deconvolution, coherent noise suppression, etc, are used to increase the 

signal-to-noise ratio. Furthermore, interpolation methods are adopted to treat the data 

aliasing problem.

In this thesis, I have proposed a strategy to deal with 3-D prestack data imaging us­

ing iterative inversion. I use an economical 3-D wave equation based operator, common- 

azimuth seismic modelling/migration that can handle real data size situations. Imple­

mented with the split-step and split-step PSPI corrections, the operator can be used to

163

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm issio n .



image complex structures.
As a benefit, a priori information about the model is encoded in the inversion to reg­

ularize the solution. Two kinds of regularization have been adopted to contribute to the 

resolution enhancement. First, I force smoothness of the amplitude in the inline offset 

ray-parameter direction, which abounds in coherence of common image gathers. Sec­

ond, I suppress the wavelet effects in the depth direction by minimizing Cauchy norm 

of the stacked image. The field data test supports the assertion that regularized least- 

squares migration provides improved amplitude robustness and image resolution even 

when the data are very sparse and aliasing hampers the AVA analysis.

Good quality CIGs with accurate amplitude are key for amplitude supported seis­

mic interpretation that aims at rock and fluid properties estimation. I have conducted 

extensive tests to show that the regularized least-squares migration can properly pre­

serve the amplitude even when data aliasing and noise is present. More tests on 3-D data 

with complex structure might be necessary to further confirm the accuracy of common- 

azimuth operator. For example, the 3-D Marmousi data are suitable both for structure 

and amplitude studies.

Care should be taken when we apply the sparse least-squares migration. Some tests 

have shown that over emphasis of sparseness leads to loss of valuable information that 

is often contained in events with small amplitudes. This problem is also encountered in 

techniques for post stack inversion of seismic data that are based on the sparse reflectivity 

assumption. To obtain very sparse solutions, a quite accurate model of the wavelet is 

required.

The iterative inversion is implemented with preconditioned conjugate gradients (CG) 

methods. Preconditioning is utilized to cut computational costs. In my tests of quadrat- 

ically regularized least-squares migration, good convergence can be achieved within 4 

iterations or so of preconditioned RLSM, which is a cost equivalent to 8 conventional mi­

grations. This is a dramatic improvement over regularized least-squares migration with 

a cost on the order of 20 migrations. The sparse least-squares migration is more expen­

sive. Usually it takes 3-4 iterations of iterative reweighted least-squares (IRLS) algorithm, 

and each IRLS iteration needs convergence of the CG algorithm. Therefore, at this stage, 

perhaps this method is currently more suitable for 2-D applications or for target oriented
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studies of 3-D data sets.

A potential application of this technique is to acquire high resolution azimuthal com­

mon image gathers (land data). We can apply the algorithm to different azimuths. Given 

proper azimuthal velocity models, we can invert for azimuthal amplitude variations. 

The latter can be used to measure fracture density and fracture strike within carbonates 

(Ruger, 1996; Alhavas et al., 2003; Gray and Head, 2000). Furthermore, the technique can 

be used for carbon dioxide sequestration studies. In recent years, new efficient ways for 

carbon dioxide disposal have been proposed. The gas can be injected to depleted oil and 

gas reservoirs (Holloway et al., 1996; Wong et al., 1999). It is clear that detail information 

about the fracture distribution of the subsurface is of chief importance when planning a 

gas injection operation. Time-lapse analysis of multi-azimuth data can be used to help to 

monitor the disposal site.

Clearly, there exist computationally less demanding techniques, like interpolation 

prior to migration, that attempt to address some of the data issues discussed in this dis­

sertation. The amplitude is then corrected by the inverse of imaging Jacobian during 

migration. Hence, to better appreciate the added benefits of least-squares migration, a 

careful comparative study between more conventional processing and least-squares mi­

gration is in order.

In spite of this caveat, least-squares migration deserves special attention as it is the 

unifying link between imaging and inversion. It allows us to fit the seismic data and, at 

the same time, impose geophysically sensible constraints on the seismic model.

The main contributions of this thesis can be summarized as follows:

• Following ideas proposed in the literature (Nemeth et al., 1999; Kuehl and Sacchi, 

1999; Prucha and Biondi, 2002), the thesis extended 2-D least-squares AVP/AVA 

migration to the 3-D case. An efficient common-azimuth operator was adopted to 

process 3-D seismic data in a computationally feasible manner

• I have introduced a sparseness constraint to enhance the resolution of seismic events 

in the inverted CIGs.

• I calibrated the algorithm with synthetics obtained via well log data. This appears 

to be the first serious attempt to validate true amplitude AVA responses against
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well log data.

I expect that other regularization schemes will be proposed in the future. For in­

stance, inversion of CIGs that are parameterized in terms of AVA intercept and gradient 

combined with a spatial smoothness constraint that conforms to the geological structure 

may be one avenue to further develop least-squares migration. In this case, the problem 

becomes over-determined with a considerable reduction of model parameters. Steps in 

this direction were started by Feng (2004), using kirchhoff operators. The idea can also 

be adopted with wave-equation operators and iterative inversion.
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Appendix A

Propagation matrix for two-way wave 
equation

The two-way wave equation can be expressed in the wavenumber-frequency domain as:

§  =  AQ,

where

A = ( £  x %Ui P )  , (A.2)- H 2/(iujp) 0 J

Q =  I T-f V  (A.3)v z

H2 = k: = k2 - k 2x -  k2 (A.4)

The eigenvalue composition of A reads,

A = LAL- \  (A.5)

where

l  =  { j i  l  v  (A.6)
\  upHi uipHi J

A =  (  - f  , 1  )  , (A.7)

£_1 - Kl )• <A-8)
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If the medium is homogeneous, the solution of equation A.l is given by:

Q ( z )  =  W (z,z0)Q(zo),

where

W (z,z0) =  e(AA-'\

The phase-shift operator W(z, z0) can be expanded to Taylor's:

W(z, z0) = I  + (AAz) +  i ( AA z f  +  ■ • •

Using the eigenvalue decomposition of A, we can rewrite the series as 

W (z,z0) =  I +  L(aAz)L-1 + iL(AAz)L-1L(AAz)L-1 H----

(A .9 )

(A.10)

(A.ll)

= L
2

I  +  (a A z ) +  ^ ( a A z ) 2 +  . :- l

=  L exp{7\Az) L 1
exp(—iH\Az)  0

0 exp{iH\Az)= L ■-i

1 1 ■ exp(—iH\Az) 0 1 1 —uH 1 1p
—  1 1 

upH \ upH\ . 0 exp{iH\Az) 2 1 uiH^p

where

where

W r ( z , z o )  W / / ( z , z 0) 
W n r ( z , z 0) W i v {z , zq) _

W'Kz.zo) = cos(ffiAz), 

W n ( z , z o )  =  s m ( H \ A z ) ,

Wn j (z,z0) =  - r ^ H i W n & z o ) ,  [upY
WJV(z,z0) =  W>(z,z0),

H 1 =  y [F 2 =  y / t f - k l - k *

(A.12)

(A.13)

(A.14)

(A.15)

(A.16)

The matrix W(z,zo) is called the propagation matrix for the two-way wave equation. 

General form of the propagation matrix for arbitrary inhomogeneous media is given by 

Wapenaar and Berhout (Wapenaar and Berkhout, 1986a).
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Appendix B

Relationship between pressure, 
acoustic impedance and particle 
velocity for plane waves

The stress-displacement equation for acoustic media can be written as

P = - K V  • u, (B.l)

where P is the pressure, K  is bulk modulus, and u  is the displacement vector. The bulk 

modulus of a acoustic medium is calculated by

where p is the density and c is the wave speed.

Assuming a plane wave is propagating along z direction, we can simplify the stress- 

displacement equation B.l into:

P  =  — pc2 • uz 

=  - p c ( c ^ )
Fir Fin.

(B.2)

—pc - v

(B.3)
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where I  is the acoustic impedance, and v is the particle velocity.

It is clear that the above equation can also be used for a plane wave in an arbitrary 

direction by just rotating the axis.
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Appendix C

Imaging Jacobian for 
common-azimuth migration

This Appendix gives the imaging Jacobian for common-azimuth migration without con­

sidering the amplitude correction term of the vertical wavenumber for the common- 

azimuth migration. For the formulas including the amplitude correction, please refer 

to Sava and Biondi (2001b).

The vertical wavenumber of common-azimuth downward continuation can be ex­

pressed as the sum of two square roots:

kz =  SSRi  +  SSRi, (C .l)

where

(C.2)

s s r 2 ~~ 4 [ ^ mi + ^hx )2 +  ^ +  ^hy )2] ’ (C.3)

where khy is the stationary phase point of the crossline offset wavenumber:

\ J l ? ~  \ ( kmx +  khx)2 +  ~ \{kmx ~ khx)2
m  — n (C.4)
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where

m -  Y v2 4 (kmx -‘r k hx)2, 

n = \j~2 -  - ( t : -  khx)2

The inverse of imaging Jacobian is

du) . _j _  dkz .
(d k j  = ~ckJ'kh*

1 % -  i t * - ,  -  K )  ■ ( - & ) , 1 f t  -  i t * - ,  +  K )  ■ ( ^ )
2 SSRi  2

_  %  +  K fc™ y  ~  *fry) • , I? -  \ ( k rn y  + k h y )  ' ~ £ t  ( c  ̂
S S R i S S R 2 '

The derivative of the stationary wavenumber over frequency is calculated as follows:

d k h y (m — n)'(m + n) — (m — n)(m + n)'
, —  fcrriy , 19 > — O)duj ^ (m +  n y

where

(m n) — ( ] j v 2  +  fc/ix)2 \j v 2  *k.)2)

=  “  ( 1 1 )  
”2 +
w n — m
v2 mn (C.7)

and similarly,

(m +  n); =  • n +  m . (C.8)
v- mn

Using equation C.7 and C.8 in equation C.6 leads to

n- y y .  (c.9)aw y v* m n m + n 

Inserting equation C.9 and C.4 into equation C.5 yields

7 , 1 J .I1 .2  . n - m  . 1 1 _  7-2 . n —m  . 1
. _ 1  _  d k -  Ul f  ^  m y m  (m + n)2 t___________m y n  (m + n)2 J

~  d u  ~  V 2 1 5 5 i?i 5 5 i?2 j ’
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which provides the basis for true amplitude common-azimuth migration. With equation

C.10, the derivative of vertical wavenumber over temporal frequency can be calculated 

and used to correct the downward continued wavefield before the imaging condition is 

applied.

For a flat reflector, the inverse imaging Jacobian can be simplified by using the fact 

that SSRi = S S R 2  = u  cos 9/v, and kmy = 0. Then the inverse of the imaging Jacobian is

J , : 1 =  — ^ - 7  (C.ll)
**1 v cos 6

The inverse imaging Jacobian can also be derived in terms of the inline offset ray 

parameter phz- Some algebra leads to

7-1 1 f u  1 I n  72 4 1 ( / U 2
~  SSRi  tv *  +  4 V ' m x  ~ uph=>Ph* +  (M + N)2 V v 2 ~

1 * ^  1 r M 2 + N 2\ y 1

i  “ **■)(* -  • - j m r n  1

l r u l r  2 4 1 ( fU2
+  SSR2i v 2 ~  4 V * m i  +  uph^ Ph* +  *"»v ' n  '  (M  +  N)2 “

-  M) -  I ■ ^ N - ) ] }. (C.12)

where

N  = - u -Ph.)2

For a flat reflector, the inverse imaging Jacobian can be simplified into

J £  =  . (C.13)

It is easy to verify that for flat reflectors

(c i4 >

Equation C.13 tells us that the amplitude of a flat reflector can be corrected by the 

cosine of the incident angle after migration.
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