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Abstract

This thesis deals with some models concerning various aspects of periodic
systems of differential equations. including uniform persistence, and the existence
and stability of ‘interior’ periodic solutions. Biological implications. significance
and relevance of the results in each chapter are included. The mathematical tech-
niques used include Floquet theory, persistence theory. dissipative theory, topo-

logical degree theory and the theory of monotone dynamical systems.
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CHAPTER 1

INTRODUCTION

Differential equations have played important roles in the history of theoreti-
cal population dynamics. and they will no doubt continue to serve as indispensable
tools in future investigations. However, most of those discussion have been devoted
to models governed by autonomous ordinary differential equations( ODEs). delay
differential equations(DDEs) and reaction-diffusion equations(RDEs). Because of
seasonal fluctuations and periodic availability of food. the question of a periodi-
cally varying environment has been attracting more and more attention(see the
following chapters for references). Generally. a discussion of periodic systems is
much more difficult than a discussion of autonomous systems. particularly for the
study of stability of a periodic orbit. In this thesis. we are going to discuss periodic
single-species models of dispersal in a patchy environment, a periodic chemostat
with general uptake functions, and a periodic Gause-type predator-prey system
with periodic time delays.

The subject of dispersal is a major area of mathematical ecology and the
reader is refered to the excellent bibliography{Lev?2]. There mainly exist two types
of models involving populations moving through patchy environments: (1) models
of populations dispersing among discrete patches involving ordinary differential
equations, and (ii) models of populations diffusing in continuous patches involving
parabolic partial differential equations. In a patchy environment. a species could
disperse among different habitats at some cost to the population in the sense that
the survival probability during a change of habitat may be less than one since there

exist barrier strengths between different habitats. Generally, dispersal in a patchy




environment is good for species survival. Once the population is too crowded in
a patch. many individuals disperse to other patches. Once the environment in a
certain patch degenerates. the population in that patch may seek temporary refuge
in the other patches.

Competition modelling is one of the more challenging aspects of mathemat-
ical ecology. Competition is clearly important in nature. The simplest form of
competition occurs when two or more populations compete for the same resource.
for example. the same food supply or the same growth limiting nutrient. One can
view the “competitors” as “predators” on the “nutrient”. and this produces an

entirely different type of behavior for the resulting dynamical systems.

The chemostat is a piece of laboratory apparatus used to culture microor-
ganisms. The apparatus consists of three connected vessels. The first contains all
of the nutrients needed for growth of a microorganism. all in excess except for one
called the limiting nutrient. The nutrient is pumped into the second vessel. the
culture vessel. The culture vessel is charged with a variety of microorganisms. so
it contains a mixture of nutrient and organisms. Its output is collected in the third
vessel which represents the “production” of the chemostat. The chemostat is of
ecological interest because it is a laboratory model of a very simple lake. It also
is one place where the mathematics is tractable. the parameters are measurable.

and the experiments are reasonable.

Models of Gause-type predator-prey systems were introduced by Gause[Gau]
and Gause, Smaragdova and Witt[GSW] to help analyze paramecium-didinium in-
teractions. Since then, various forms of these models(both continuous and discrete)
have been utilized by many experimental and field biologists in studying predator-
prey interactions. Meanwhile, there have been many mathematicians attracted
to the mathematical analysis of these models(see references contained in [Frl]).

However, most of the previous work done were concerned with the existence and
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local stability of equilibria or limit cycles in autonomous Gause-type predator-prey
systems modeled by ODEs. More realistic models should include some of the past
states of those systems and the environmental fluctuations. It is one of the pur-
poses of this thesis to discuss the periodic Gause-type predator-prey systemn with

periodic time delays.

A good understanding of a system largely depends on the availability of
the detailed global analysis of the qualitative nature of the corresponding mathe-
matical models. In a periodic ecological system, we are usually interested in the
existence, uniqueness and stability(local or global) of non-negative periodic solu-
tions. It is well-known that the existence. uniqueness and stability of periodic
solutions of a periodic system of differential equations are equivalent to that of
the fixed points of its associated Poincaré periodic mapping. It is also well-known
that a periodic cooperative model or a periodic two-species competitive model
generates a discrete monotone dynamical system. In chapter 4. we are going to
prove some general results on global dynamics in discrete monotone dynamical
systems. Floquet theory has played an important role in discussing the stability
of a periodic solution. The Floquet theorem asserts that for linear periodic ordi-
nary differential equations. there exists a linear invertible periodic transformation
that will transform the equation to an autonomous one. For details on the Floquet
theory, we refer to [Fal.

This thesis is organized as follows. In chapter 2. a single species which
disperses among n patches with periodic or asymptotically periodic carrying
capacities and barrier strengths is modeled by a system of time-dependent or-
dinary differential equations. Criteria for uniform persistence and the existence
of globally stable periodic solutions are established. The case of time-dependent
(inverse) barrier strengths is considered for the first time in the literature. In sec-

tion 2.2. we first present a detailed description of our model, both biologically and
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mathematically. Then we discuss the uniform persistence and the existence of pos-
itive periodic solutions for the system. In section 2.4. we deal with the question of
global asymptotic stability of the positive periodic solution in details. Section 2.5
contains a detailed discussion on the asymptotic periodic case. A brief discussion

follows in the last section of this chapter.

In chapter 3. we consider a chemostat model of two microbial populations
competing for a nutrient, where nutrient inputs and chemostat washouts are pe-
riodic. As well, general nutrient uptake functions which may also be time depen-
dent and periodic are considered. Criteria are derived for there to exist a globally
attracting positive periodic solution and a theorem on global monotonicity of at-
tracting solutions between different systems is proved. In section 3.2. we describe
the model and derive some preliminary results. In section 3.3. we consider the
submodel consisting of nutrient and one microbial population. Here we obtain cri-
teria for extinction of the microbes as well as criteria for the existence and global
stability of a positive periodic solution. In section 3.4. we obtain criteria for the
extinction of the second microbial population. as well as criteria for the existence
of a positive periodic solution. In obtaining these latter results. we prove a com-
parison theorem concerning solutions of scalar periodic systems. which may be of
independent interest. Furthermore. we address a conjecture on the local stability
of a positive periodic solution. Based on the local stability. by topological degree
theory we show that if on the boundary of R} there exists no asymptotically
stable solution. then the considered full chemostat system has a strictly positive
periodic solution which is globally asymptotically stable. Usually, it is rather eas-
ler to discuss the local stability than to discuss the global stability. However. the
difficulty here lies in the discussion of local stability and we state a conjecture for
future research. In section 3.5, we discuss the structure of a global attractor of the

full chemostat system. Finally, a brief discussion on the biological implications is
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contained in section 3.6.

In chapter 4. some results on the global dynamics in the theory of discrete
monotone dynamical systems are obtained. Specifically, with weak monotonicity
for a mapping and without the property that the Frechét derivative of the mapping
at a fixed point is strongly positive, the existence and global attractivity of a
strictly positive fixed point of the mapping are obtained. To the best of our

knowledge. this is the first time this weak case has been dealt with.

As mentioned above, the systems considered in chapters 2 and 3 could gener-
ate discrete monotone dynamical systems. Generally. it is a little easier to discuss
a periodic system generating a monotone periodic semiflow in terms of the theory
of monotone dynamical systems(continuous or discrete) than to discuss a periodic
system without any monotonicity. Furthermore. for a nonmonotone periodic sys-
tem. specifically one which generates an infinite-dimensional dynamical system. a
discussion of the dynamics is likely to be considerably more difficult.

In chapter 3. we consider a periodic Gause-type predator-prey system with
periodic delays. It is difficult to describe completely the dynamics of the con-
sidered system since our model generates an infinite-dimensional nonmonotone
semi-dynamical system( ¢ > 0 ). Hence we first discuss the long-term behav-
ior described roughly by dissipativity and uniform persistence. Since the growth
of the predator has no logistic self-limitation, this results in a nontrivial discus-
sion of the dissipativity. Under some reasonable hypotheses. we prove that the
considered system is point dissipative. Our result improves those in the related
literature. Criteria are derived for the considered system to be uniformly persis-
tent. In section 5.1, we present a detailed description of our model. Some related
preliminary results on uniform persistence and global attractivity for dynamical
systems(continuous or discrete) are introduced in section 5.2. A nontrivial dissi-

pativity discussion follows in section 5.3. In section 5.4, we mainly show that the
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considered system is uniformly persistent. A brief discussion of periodic coexis-
tence states and some remarks are also conrained in section 5.4. F inally. we briefly
explain our main result with biological implications.

The final chapter contains a concluding discussion and some remarks. Some
interesting and challenging problems for future reseach are posed.

Some remarks on this thesis are necessary. We adopt the constructive
method to prove the existence of positive periodic solutions for systems discussed
in chapters 2 and 3 although we could do it by persistence theory, which may
simplify our proofs. However. chapter 2 is based on [FrPel] and chapter 3 is based
on [PeFrl]. which were done about two vears ago. The most important reason
why we keep the original versions is that the constructive method gives us more
details and ideas. One can easily find that most results in chapters 2 and 3 could
be proved by our general results proved in chapter 4.

Our main tools are persistence theory. dissipative theory. infinite-dimensional
dynamical systems theory. monotone dynamical systems theory. topological degree

theory and a standard but important comparison argument.



CHAPTER 2

DISPERSAL IN A PATCHY ENVIRONMENT -

2.1. Introduction

Models involving populations moving through patchy environments are mainly
of two types: (i) models of populations dispersing among discrete patches involv-
ing ordinary differential equations. and  {ii) models of populations diffusing in
centinuous patches involving parabolic partial differential equations. This chapter
is concerned with the first of these. namely dispersal among discrete patches.

In the work done to date. the models were concerned with patches separated
by a barrier with constant barrier strength BeTall. 'Fr2]. Fr3!. FRWL. FrTal).
[FrTa2!. [FrWal]. [Takel]. ‘Take2]. .Take3]. [TOM]. In these papers. the svstems
were autonomous. i.e. the parameters of the models representing growth rartes.
carrying capacities. probabilities of survival while dispersing. etc.. were all deemed
to be constant. However. in the “real world”. all these parameters may vary
seasonally or even diurnally.

In this chapter we discuss a model of a single species dispersing among n
patches. where all parameters may vary periodically in time. This would be the
next step towards “reality”. We then carry this even further by considering models
where the parameters are asymptotic periodic. Qur model is derived by modify-
ing a submodel discussed in [FrTal]] and [FrTa2]. Models involving interactions

between several species are left to future work.

This chapter is adopted from [FrPel].

=~1




This chapter is organized as follows. In the next section we formulate our
model. In section 3, we discuss the uniform persistence and the existence of
periodic solutions for our model. Section 4 deals with the question of global
stability of the periodic solution. In section 5, we consider the asymptotic periodic
case. A brief discussion follows in the last section.

Throughout this chapter we assume that all functions are sufficiently smooth
so that solutions to initial value problems exist. are unique and are continuable

for all positive time.

2.2. The Patchy Model

We consider a time-dependent system in a patchy environment where a pop-
ulation is able to disperse among the n different habitats(see Fig 2.1) at some
cost to the population in the sense that the probability of survival during a change
of habitat may be less than one. We also suppose that both the barrier strengths
and the survival probabilities vary either periodically in time with the same period

as the species parameters and dispersing functions or are asymptotically periodic.

Figure 2.1: Patchy environment showing n interconnected patches




The model is described by the system of nonautonomous ordinary differential

equations
i = zigi(t. z;) — ei(t)hi(t. z,) + Z pji(t)e;(t)hj(t. x;)
J€J;
£i(0) >0, i=1.....n. (2.1)
with 3" pi; < 1. where - =d/dt. J = {1..... t—1la+1.. ... n}. gi.h;:
JEJ;

R? - R are continuously differentiable. positive. and either T-periodic or
asymptotically T-periodic for some common period T > 0 in the variable
t. and &, pjj: R— R are nonnegative and T-periodic or asymptotically
T-periodic.

Here. r;(t) represents the same population in the ith patch. ;| =
l.....n. at a given time ¢ > 0: gi(t,z;) 1is the intrinsic growth rate of the
population in the P habitat at a given time ¢t > 0; &,(¢). which is not
necessarily small but is positive represents the inverse barrier strength at time ¢
in going out of the *P habitat: hi(t.z,) is the rate of dispersal out of the
patch at time ¢ and pji(t) is the probability of successful transition from the
J'*® patch to the ;th patch, where i is different from J-

We make the following hypotheses. which are modified from the standard

ones in modelling such phenomena [Fri]. [FrTal].

(Hi) All solutions of the initial value problem (2.1) exist uniquely and are countinu-
able for all positive time.

(H2)  gi(,0) > 0, a—g%;'f—‘)- <0, zigi(t.ri) - —x as r; — +x. ;=

l....,n, for all time ¢ > 0.
(Hj) hi(t,0) = 0, ahg$)->0, !=1....,n at any time t>0.

The inequalities in (H;) above state that the rate of dispersal out of the

" patch is density dependent and an increasing function of the population of
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the #** patch for any fixed ¢ > 0.

We note that the positive cone RZ in R™ is positively invariant.

2.3. Uniform Persistence and Periodic Solutions

In this section, we suppose that all functions contained in model (2.1) are
T-periodic. Firstly, following [BFW], [BuWa]. [FrMo]. [FrWal]. [FrWa2] we recall
briefly some terminology. Let z(t) be the population density at time ¢. We
say that z(t), z(0) > 0, is persistent if litrgiaxclf I(t) > 0. Wesay that r(¢) is
uniformly persistent if there exists ¢ >0 such that H,IE, gxclf z(t) > 6 indepen-
dent of r(0) > 0. We say that a system exhibits (uniform) persistence if each
component (uniformly) persists. Finally. we say that r(t) exhibits extinction
if limsup r(¢) = 0 and a system exhibits extinction if at least one component

t—oc

becomes extinct.

Theorem 2.1. Assume

T ) \
./ bdtm—aﬁ)gﬂiglﬁ>o.i=1z ..... n. (2.
o 01, B

holds. Then system (2.1) ezhibits uniformly persistence.

V]
[AV]
~—

Proof. Note that the positive cone R in R"™ is positively invariant with
respect to (2.1) and hence the term 3 pji(t)s;(t)hy(t, z;) is positive. Letting
JEJ;

ui(t) (1 =1,2,....n) denote the solution of the following system

i = uigi(t.ui) — =5(t)h(t. uy)

ui(0) = z;(0)

then clearly, we have
ri(t) > ui(t) forall t>0 and ;= 1.2.....n.

For the purpose of finding a persistent lower bound, we consider
¥ =yg(t.y) —(t)h(t,y)

y(0) > 0.
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Here the functions g(t,y). £(t) and h(t,y) arearepresentative of gi(t. z;). =,(¢)
and h(t.z;) respectively. Obviously, y =0 isan equilibrium of (2.3) and R.

is also positively invariant. Now we will see that y =0 is unstable provided
T Oh(t,0
/ {g(t,O) —=(t) -—M}(h‘ > 0. (2.4)
0 dy

Indeed. the characteristic equation of (2.3) about the equilibrium y=0 1s

Oh(t.0) )y.

= (9(6:0) - =(0) =52

(2.5)

We know that in (2.3). y = 0 is unstable provided (2.4) holds. Hence under
condition (2.4) we can conclude that there exists a constant 4§ > 0. which could
be sufficiently small but positive, such that [0, +oc) s positively invariant and
globally attractive with respect to R+. Similarly. under condition (2.2). for
each ¢ thereexistsa &; >0 such that (0i.+oc) has the same property. Let

J= I<Illél {6;}. Then we have actually proved that
1<i<n

Is positively invariant and globally attractive with respect to RE. Thus. svstem

(2.1) is uniformly persistent.

—_—

Theorem 2.2. System (2.1) has at least one positive T -periodic solution under

condition (2.2).

Proof. From the fact that if z = Zx,-, then

=1
J." S Z l'ig,'(t. .'1.‘,')
=1
and by (H;) if [z is sufficiently large,

/

z <0,

11




it follows from the fact that R7? is positively invariant that there exists a con-

stant k& >0 such that
z(t)<k. 1=1,....n. for ¢ large enough.

By condition (2.2) and the proof of theorem 2.1, it is obvious that the set

1s not only positive invariant, but also globally attractive with respect to RZ.
We define z(t,z9) to be that solution of (2.1) such that z;(0. Ig) =x5. Ifwe

further define F:S — R™ by

then from degree theory. deg (F. Int S, 0)=1. where IntS = {(zy..... Iy) €
RAld<zi<hk,i=1..... n}. Actually. let 7= (Fr..... Tn) be a definite point
in IntS. Forany r = (r,.... .Tn) € S. since Int S is convex. then for all

A1 (T + Mza(Tor) =Fi)ew T+ AzalTor) = Fa)) = N(rA) € Inc S,
where (z;(¢t.r)..... In(t.r)) is the solution of system (2.1) with initial value
r.. We can define a homotopic mapping H : § x 0.1 = R™® by H{r.\) =
r—XN(r.A). Then H(r,1)= F(r) and H(r.0)=(ri=71.....rp=7,) = G(r).
It is obvious that deg (G. Int S, 0) = 1. By homotopy invariance of degree. it

follows that

deg (F, Int $.0) = 1.

Hence, there exists at least one such 0 = (ri.....r% € Int S satisfving
F(r% =o.

that is, system (2.1) has at least one positive T-periodic solution lvingin S.

3




Remark. The proof of theorem 2.2 does not imply that the T-periodic solu-
tion found is necessarily nontrivial. However. what is important in the periodic
literature (i.e. in systems with periodic coefficients) is the existence of periodic

solutions. whether trivial or not.

2.4. Global Stability
In this section we study the global stability of the positive periodic solution

of the following system

z; = zigi(t. z;) — =;(t)z; + Z pji(t)e;(t)r;. i=1.2.... n. (2.6)

J€J;
where g;(t.-). z(t) and pji(t) are T-periodic functions about the time
variable t. Actually. if we assume the dispersal is proportional with the density
of population. then system (2.1) becomes system (2.6) and (H3) is still satisfied.
We suppose system (2.6) has ar least one positive  T-periodic  solution

and denote it by r*(t) = (z3(t)..... r;(t)) which liesin S Consider the

variational equation of system (2.6) about r*(t).

(91 (. 27(2)) +ri(e) 22U o (g par(t)ea(t)
pra(t)z1(2) g2(t.23(1)) + r3(t) 22L220) gy
X = )
Pin(t)z1(t) P2n(t)ea(t)
(2.7)
Pn1(t)za(t)
Pn2(t)sn(2)
X.
gn(t. 25 (1)) + 23(1) e GZaO) o (4
If we set Q(t) = diag (zf(t),...,z’,“l(t)), then Q(0) = Q(T). Apply the

transformation Y'(t) = Q)X (t)Q™1(0). Then
Y (t) = B(t)Y (¢) (2.8)

13




where

x5\ g1 (.23 (t)) () o
(l'l(t)g_laﬁ; szﬂ(t)"l s le(t)f?’z(t)f;T:;
N=PA
1(t) (41 9g2(8,25(8)) £ (t)
Plz(t)fl(t)?;?) ‘Z'Z(t)g_az{:h - Z pJ’(t *-J(t)x =(t)
B(t) = - JIEJ;
- 1 (¢t) . 2(t)
\ pin(t)1(t) 2 Pan(t)ez (8) 200
(2.9)
- ZIn(t)
Pnl(t)C I(g)
Pn’-n(t)r—'gt(*t))
Fgn(t.x>(t)) riit)
In(t) L o J.?_,; pjn( ) (t)}-':‘(;g))
<

In order to obtain our results. we recall some concepts and known results
concerning Floquet theory[Fa].

For an n-dimensional linear periodic differential system

r = A(t)z (2.10)

where A(t) is a continuous, T-periodic n x n matrix. let X(t) be a fun-

damental matrix of system (2.10) which satisfies

C2

X(0) = I. Then there exists

a

nonsingular T-periodic n x n matrix W(t) and a constant n x n

matrix R such that

X(t) = W(t)exp (Rt).

An eigenvalue of the matrix R

is called a characteristic exponent or Floquet exponent of system (2.10).

Floquet theory implies that for each characteristic exponent o there cor-
responds a solution r(t) of system (2.10) with the form
z(t) = 3(t)e**
where the vector function 3(t) is periodicin ¢t with period T. ie. 3(t+

14




We denote an eigenvector of the matrix R corresponding to the eigenvalue
p by v, ie. Rv = pv. Consider the solution r(t) with initial value

z(0) = v. Then
z(t) = X(t)v = W(t)exp (Rt)v = W(t)e 'y = Wi(t)vett = 3(t)e*!

where J3(t) = W(¢)r which is obviously T-periodic.

The following result is well-known.

Lemma 2.3. System (2.10) is uniformly asymptotically stable if and only if all of

its characteristic ezponents have negative real parts. that is
Re i <90

where u; are the roots of det (R—ul) =0.
a

Now let us continue discussing the stability of the positive T -periodic so-

lution z*(t) of system (2.6).

Theorem 2.4. Assume

Then system (2.6) has only one positive, T-periodic solution which is globally

asymptotically stable with respect to the first octant RZ.

Proof. STEP 1. We prove system (2.8), namely. Y(t) = B(t)Y(t). where B(t)
has the form (2.9), is uniformly asymptotically stable.

Clearly. system (2.8) is a linear cooperative system since all off-diagonal el-
ements in the coefficient matrix B(t) are positive. Denote by ®(t) = W(t)el!

the fundamental matrix solution of (2.8) satisfying @(0) = I(identity). Then
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®(T) = e®T  and one can easily see that &(¢t) >0 for any ¢ > 0. That is.
the fundamental matrix is positive and irreducible. A standard argument(Peron-
Frobenius theorem) shows that the largest Floquet multiplier A of system (2.8)
Is an eigenvalue of &®(7T) with a positive eigenvector v. Let t be a charac-
teristic exponent of system (2.8) corresponding to A\. and y(¢) be a nontrivial

solution of system (2.8) of the form
y(t) = 3(t)e"!

where 3(t + T) = 3(t) and the coordinates of 3 never vanish at the same
time since y(t) is nontrivial. Then uz € R and we can choose J3(¢t) € R™ for
any t €[0.T]. Indeed. any eigenvector of R corresponding to u is also an
eigenvector of @(T) = T corresponding to A = e#T, Furthermore, since \
1s an algebraically simple eigenvalue of ®(T). the corresponding eigenspace is
spanned by v. Hence v is also an eigenvector of R corresponding to .

Choose y(t) = ®(t)v. Then 3(t) € R". From
g = 3e* + p3ert = B(t)y = B(t)3(t)et!,

it follows that
3= —u3+ B(t)3. (2.11)
Because J3(¢) is T-periodic and continuously differentiable. there exist an

integer %k and a time t; € [0.7]. such that

Ir(t = b, X |3 (t)].
|3k (o) B tg[lg}cj |3:(¢)].

as a result of which we have

Bk(l‘o) = 0.
Substituting into (2.11) gives
~u3k(to) + Y _ bi(ta)3;(to) = 0 (2.12)
J=1
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where we denote B(t) = (b;;(t))

nxn’
From (2.9). we know that
. Ogi(t.x3(t)) I*it;
bk(t) = rp(t) ———E— _ pyk(t)z,(t) —— |
al'k J; Ik(t}
bi(t t)z,(t I;(t) ) =k 2,
; =0p; z; . =2 I (c .

th

Hence substituting (2.13) into (2.12) give

9gk(to. x3(t0)) r;(tg)
—u3p(to) = (r'(t ) Lk — k(to)z,{tg) —2 '>3 tg i
H o)+ \lo} al‘k ijk‘o} sita) IZ(tO) k{tg)

J€ T

+ Z Pikits)z;(tg]
1€ Jx

t

r]-(
Ipi

to)

31 {tg) = 0.
o)
Rewriting shows

<, . Ogklte. r5ito)) o . ity .
(_#_‘_Ik(to) g k /: )3k[t0)-.‘-z plk(to}:‘]‘lfo,l ] (jjtto)—-jk"to') =0.

dry J=7. Ipitg)
12,144
Case 1. If 3kitg) > 0. then J,{te) < Jxttsr for any j = k.
Hence from (2.14;. it follows that
., Ogritg.xiitg))
—H = Iklto) a . 2
I
thart is.
P agk(to.l".(to‘})
H# < ri{to) 3 b
3
CASE 2. If 3i(tg) < 0. then 3,(ta} > 3k(ts). for all = k.
Similarly. we get
. . gk(to.l".(to )
ESHIEES
Tk
Case 3. If 3k(to) =0. then 3(t)=0. Thisisa contradiction. Thus
ern « Ogr(to.z5(tg))
4 < zi(to) . <o (2.13)
17




by (H,) and hence from lemma 2.3, we know that system (2.8) is uniformly

asymptotically stable.

STEP 2. Suppose X (t) isa fundamental matrix of the variational equation (2.7)
satisfying X (0) = I. We prove that there exist two constants a.b > 0 such
that

IX(t)| < ae™®. (2.16)

From step 1. we know there exist a;.5; >0 such that
[¥°(t)] < are=.
The transformation Y (t) = Q' ()X(t)Q(0) gives
X(t) = Q)Y (H)Q™H(0)

and hence

@) = Q)Y (1)QTH0)] < Q) 1Q™(0)] 1¥(¢)-.

Here Q(t) = diag (z3(t)..... r(t)) and the periodic solution r*(t) liesin S
so |Q(t)] 'Q™'(0)] is bounded and then (2.16) holds. that is. (2.7) is uniformly

asymptotically stable.

STEP 3. From step 2. we see that every positive T-periodic solution of (2.6)
s at least locally asymptotically stable. From step 1. we see that all the Floquet
exponents of system (2.8) have negative real parts. which are independent of the
specificity of a positive periodic solution r*(t). Indeed. from (2.13). we see that
all Floquet exponents of sytem (2.8) are negative since the considered periodic
solution z*(t) >0 and the hypothesis (H») implies af'a(‘;’) <0 in [0.T]x
(0. +oc).  Moreover. under the transformation Y(¢) = Q7'{t)X(t)Q(0). the

linearized variational system (2.7) about z*(¢t) of system (2.6) is transformed
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into system (2.8) and since Q(0) = Q(T). systems (2.7) and (2.8) have the
same Floquet exponents. that is. all the Floquet exponents of system (2.7) are
also negative. This implies that every fixed point of the corresponding Poincaré
periodic map. if it exists, must be isolated and has index 1. where the index
of a fixed point of the corresponding Poincaré periodic map is defined as usual
by the Brouwer degree of the Poincaré periodic map at the fixed point [L1]. Note
that in either step 1 or step 2. we did not require any condition for the stability
of z*(t) except for the positivity of z*(¢). This is the key to show the global
stability of a positive periodic solution and this is true only for certain systems.
Recall that the compact set § is globally attractive with respect to RZ. So
if a positive periodic solution exists for system (2.6). it must be in S. It follows
from a simple compactness argument that there are at most finitely many positive
periodic solutions in S. Furthermore. from the proof of theorem 2.2, we know
that deg (F. Int 5.0) = 1. It follows immediately from the additivity of the
fixed point index that the positive T-periodic solution of system (2.6) if it
exists. must be unique since the sum of all indices s equal to deg(F. Int 5.0).

Shi(tr;)
Here B

t

= 1. So (2.2) becomes fOT{s,-(t) — gi(t.0)]dt < 0. under which
the existence of a positive T-periodic solution holds. Hence system (2.6) does

contain only one positive T-periodic solution.

STEP 4. Note that S = {(z1.22.....2,) € RYl6<zr, <k.i= L.2.....n} is
globally attractive. So without loss of generality, we can limit our attention to these
solutions initiating in  S. Generally, let A(t.zo) (¢ > 0) denote the semiflow
of solutions of (2.6) initiating at some point zo € S, i.e. A(0.z20) = zq.
Then one can see that A(t.zg) is actually a monotone semiflow in the sense
that A(t,zo) > A(t,yo) if o € S. Yo €S and z0 > Yo Here a vector

To 2 Yo is in the componentwise sense. So for any z4 € S. if we denote
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do=(d.4....,8) €S and ko = (k.k..... k) € S, then

.-1(‘{,0.0) S .A(t,l‘o) S :1(t, ko), (217)
since ¢ <z; <k. Furthermore, one can verify that
B0 = A(0.80) < A(t.d0) < At + T.00) < A(t + T ko) < A(T- ko) < A(0. ko) = kg

for all ¢t > 0. Now for all ¢t € |0, T], the monotone sequences {A(t +
nT,d0)}%, and {A(t+nT. ko)}olo are uniformly convergent to two positive
T-periodic solutions. Based on the uniqueness of positive T-periodic solutions
proved in step 3, the global attractivity of r*(t) follows from (2.17). In step 2.

we also proved local stability. and therefore r*(t) is globally asymptotically

stable.

(W

2.5. The Asymptotic Periodic Case
In this section. we study the global properties of solutions of system (2.6).

when all functions are asymptotically periodic.

Definition 2.1 [FRS]. Let , v : 0.+<) — R, < is said to approach v

asymptotically, in notation . ~ u, if

Definition 2.2. Let col (P1:---5¢n). col (€1,-...wp) ¢+ 0. +x) — R™
Then
col (¢1,...,9,) is said to approach col (v;,...,u,) asymptotically. in nota-
tion
col (@1....,0,) ~ col(¥1.... . ¥p), if g~ W forall 1=1.9. ... . n.
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It is easy to verify that “ ~ " is an equivalence relationship. The main

result of this section is the following theorem.

Theorem 2.5. Forall i,7=1,....n, let s;(t),a(t),pi,-(t),j)',-j(t): [0.+x) —
R*  be such that gi(t) ~ &i(t), pij(t) ~ pij(t) and let gilt.r;).gi(t. r,) :

[0.+oc) x Rt — R be such that gi ~ gi for each fized second variable. Here

¢

i- pij and §; are T-periodic in ¢t If. in addition. the inequalities

(U]

t+T t+T
lim inf / gi(s,0)ds — lim sup / £i(s)ds >0. i=1,2.....n (2.18)
t—oc ¢ t—oc t
hold. then for any positive solution col (T1.....2,) of system (2.6). we have
col (rq..... In)~ col(Zy..... Tn)
where col (Ty,....T,) is the globally asymptotically stable positive T -periodic
solution of
Iy =z1gi(t.x;) — si(t)r; + Z ﬁj,’(t)gj(t).rj. r=1..... n. (2.19)
JE€J;

We defer the proof to later in this section.

Corollary 2.6. If (2.18) holds then system (2.6) 1s uniformly persistent.

Firstly, we prove a general result concerning differential systems of the form

i = fi(ry...., Init) 1 =1.2 n (2.20)
I = ];;(zl ..... Tpis.t), 1=1,2..... n (2.21)

Theorem 2.7. Assume that both systems (2.20) and (2.21) are T-periodic  sys-

tems. Suppose

hmﬁ(rl,---,zngs.t)zf,-(a:l.---.xn.,t) forall i=1.2. .. .. n
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and there ezist unique positive T-periodic solutions col (u1.....uy,), col (uf.....
of systems (2.20) and (2.21) respectively. Denote their trajectories by T and
[ respectively. If in addition, {Tel 0 < e <20} is a bounded subset of R™,
then for any n > 0. no matter how small. there exists an a > 0 such that
. CO(T.n) (the n-neighbourhood of T in R") forall 0<:z<a. in

notation

Proof. Because of the continuity of solutions of differentjal equations with respect
to initial values and parameters. to prove col (u§..... ut) ~ col (uy.... sUn). It

suffices to show that for any 1 > 0. there exists an o« >0 such that
d(z) = uf(0) = ui(0)] < g (2.22)
=1
forall 0 <=z <a. Suppose (2.22) does not hold. Then

lim sup Z {ui(0) —u;(0)] = limsup d(z) = d > 0.

£—0 ; £—0

Since {T.|0 < ¢ < 2} is boundedin R™ and the Euclidean space R" is

complete. there exist a sequence {z;}>= C (0.29) such that

lim d(¢;)=d >0

£;—0
and limo col (uy’(0),.... uy’ (0)) = col (©1(0).....7,(0)).
Let col (#;,...,%,) denote the solution of system (2.20) with the ini-
tial value col (u;(0),... :un(0)). Continuous dependence of initial values and

parameters for system (2.21) leads to

forall ¢t €[0.7]. Then col (T@i(t).....Wn(t)) ispositive and T-periodic since




col (uj’(t),...,uf (1)) is T-periodic and positive. Because of the uniqueness
of positive T-periodic solutions of system (2.20). when we take col (Ty..... Uy,)

as the unique 7-periodic solution col (ug..... un) of system (2.20) as given

in the hypotheses of this theorem. we have
0= [@(0) — ui(0)| =d > 0.
=1

This contradiction shows that (2.22) holds. Thus

Assume that z; ~ &, pij ~pi; and g;(t.-) ~ gi(t.r). 1.j=1.2... .. n. i #

J- Then for any 4 € (0.4], thereexistsa T3>0 such that

pij(t) — pij| < 4. (2.23)
lgi(t.z;) —gi(t.z;)| < é when = (ry..... r,) S

for all ¢ > Tj.

We construct the following two auxiliary systems:
JEJ:
and
JEJ:

where we choose 4§ so small as to guarantee that




and

T
/ [(Gi(t.0) = 6) — (5:(t) + 6) dt > 0 (2.26)
0

under the assumption (2.18).

Theorem 2.8. Assume inequalities (2.26) hold. Then there ezist unique positive

T-periodic  solutions col(ul—"_....,u;‘s). col(u‘l’-....,u‘fl) and col (T,..... I,)

of systems (2.24), (2.25) and (2.19) respectively. which are globally asymptotically

stable with respect to RZ.

Proof. The proof is analogous to the proofs of theorems 2.2 and 2.4. and we omit
1t.
O
Finally. in order to prove theorem 2.5. we give the following comparison

relationship of solutions among systems (2.6). (2.24) and (2.25).
6 N

Lemma 2.9. Suppose that col (rl—"— ...... r.°) and col (r$..... ry) are solu-

tions of systems (2.24) and (2.23) respectively. satisfying

col (£7%(Ty).... .. r?(Ts)) = col (29(Ts). . . .. o (Ts)) 2% e R
Then
) <zi(t) < 20(t). i=1... . n (2.27)
for all t>Ts;. where col (z1(t)..... zn(t)) s the solution of (2.6) with initial
value col (z1(T5),...,z,(T5)) = V9.

Proof. Inequalities (2.23) lead to
gi(t) — 4 < &u(t) < F(t) + 6.
Pij(t) — & < pij(t) < pij(t) + 6,
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gi(t.z;) —d < gi(t.z;) < gi(t.z;) + 6

forall t>T;. i.5=1.2..... n.

Then it follows that

2i(T5) — £7%(Ts) > 0. £(T5) — #5(T5) < 0
and hence the inequalities (2.27), namely.
x70(t) < z.(t) < 28(t)
will hold for t—T7; >0 and sufficiently small. If inequalities (2.27) do not hold

forall t > Ts. thereexist 7.7 > T; such that

7(t) <zi(t) forall te(T;.Ty). i=1.... n.

4

ri(t) <zl(t) forall te(T;.Tn). i=1.....n.
and there exists at least one component, which we denote by lg. such that
() = 2i(T1). 27T < 2i(Ty) (2.28)

and

2io(T2) = 25 (T2).  zi(ts) < 23(Ty) (2.29)

for all i # i5. Suppose (2.28) holds. The fact that

z7°(t) < 1iy(t) forall t<T; and 1T = 2 (Th)

to

gives that

#0(Th) = £4(T1) > 0.
However, from (2.24) and (2.6), we have that

i';J(TL) —Zio(Th) = IE,J(Tl)@io(Tl,I;&(Tﬂ) —6) - (5, (TV) + J)I;J(Tl)
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+ D Biio(T1) = O)(E(T1) = 8)27%(Th)
J€Jiq

— Tig(T1)gio (Th. 2io (Th)) + 4o (Th )z, (T)

— > Piio(Th);(Ty)zj(Th)
J€J,

< 0.

This contradiction shows that

£70(t) < i(t). i

Il
=
o
3

hold for all ¢ > Tj.

Similary, (2.29) is also impossible. Thus we have proved (2.27) is true.

Now let us show the main result of this section.

Proof of theorem 2.5. Let col (z1,....rn) be a given positive solution of SVs-
tem (2.6). Since system (2.6) approaches svstem (2.19) asymptotically. given any
0 > 0. thereexists a 75 > 0 such that (2.23) holds. From condition {2.18).
we can pick up a sufficiently small d > 0 such thar (2.26) holds. For the con-
structed systems (2.24) and (2.25) and from theorem 2.8. we know that there
exist positive T-periodic solutions col (uf’.....u*). s= -1 or =1 and
col (T1.....Tn) of systems (2.24), (2.25) and (2.19) respectively. each of which is
globally asymptotically stable with respect to R _:

From theorem 2.7, we have

col (ufd.... u®) X col (3y,....7,) (2.30)
where s = +1. Take col (zf‘s,...,xff), s =—1 or +1, as the solutions of

systems (2.24) and (2.25) respectively, satisfving

col (z3°(Ts).....225(T3)) = col (x\(Ts). . ... ra(T5)).
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Then from lemma 2.9, it follows that

() <ty <zit). i=1.....n. (2.31)
forall ¢ > Tj.
Since col (£{%,....15) ~ col (u}®..... uy’). (2.30) and (2.31) imply that
col (ry.....z,) ~ col (T;..... In) and the proof is completed.
=

2.6. Discussion

In this chapter we considered a model of a population dispersing among
discrete patches in an environment whose carrying capacities. barrier strengths
etc. fluctuate periodically or in an asymptotic periodic manner.

Our main focus was persistence. i.e. the survival in all patches of the popu-
lation. and the existence of a periodic solution. We have shown that under very
general conditions. the populations will settle down to a stable periodic fluctuation.

In theorem 2.1. condition (2.2) is natural. which says that in a period. once
the average birth rate of the species is larger than the average rate of species
going out in every patch. then the system is uniformly persistent. i.e. the species
could survive forever in every patch. In theorem 2.9. it was shown that under the
same condition for uniform persistence. the system has a positive periodic solution
representing the survival of the population in every patch. In the case that the
dispersal of species is proportional with the density of population. we proved in
theorems 2.4-2.5 that under the corresponding uniform persistence condition. in
such a case , the system exhibits certain stable structure in the sense that for
any initial distribution, the long time behavior of the system could be described
roughly by a positive periodic orbit. Biologically. for example, at different time,
one could know in every habitat how many populations there are. and thereby

choose the higher-density habitats to harvest.
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Of course, in nature, most often, two or more populations will interact with
each other in a given environment. Modeling several interacting populations can
be very complicated, especially when periodicity and patchy environments are
involved. For one thing, what may be a barrier to one of them may not be to the

other [FrTa2]. This will be the next project in these models.



CHAPTER 3

A PERIODIC CHEMOSTAT *

3.1. Introduction

There has been a considerable interest over the past two decades in math-
ematical models of the chemostat and its extension (the gradostat). The basic
theory and the initial chemostat models are reviewed in (Wal]. Since the earliest
models. attempts to generalize them so as to make them more realistic and/or
more complex mathematically have followed several routes.

One such route is to consider models with general uptake functions [BaWol,.

[BaWo2]. [BuWol], [BuWo2]. [BuWo3]. [SmWaj. [Ta

B4

The original models utilized
Michaelis-Menton uptakes. In the models mentioned above. except for [BuWol].
utilized general uptake functions which were monotonically increasing. In (BuWol,
even more general (piecewise monotonic) uptakes were considered.

Another route is to allow periodicities in the input or the washout (or both)
[BSW]. HaSo]. [Smi], [Sm7], [YaFr]. In this case the question of existence and
stability of periodic solutions is of prime importance.

A third route is to incorporate time delays. both discrete and distributed.
into the model [BBS], [BeTa2], (BeTa3]. [FSW]. [FrXu] Here one may also deduce
the existence of periodic solutions as a function of the length of delay.

Of importance in the above models is the question of global stability of either

equilibria or periodic solutions [BeTa2], [BeTa3]. [Pel]. This is usually the hardest

This chapter is mainly adopted from [PeFrl].
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question to address.

In all the above considerations, it was assumed that the chemostat was “well
stirred.” i.e. diffusivity did not play a role. For the purpose of the present discus-
sion. we continue to make this assumption.

In this chapter we consider a chemostat model of two microbial populations
competing for a nutrient. with general, monotonically increasing (in nutrient den-
sity) uptake functions. and with periodicities in the nutrient input. washout. and
uptakes. To the best of our knowledge. this is the first time that periodicities in
the uptake of nutrient by the microbial populations is allowed.

In the next section we describe the model and derive some preliminary re-
sults. In section 3.3 we consider the submodel consisting of nutrient and one
microbial population. Here we obtain criteria for extinction of the microbes as
well as criteria for the existence and global stability of a positive periodic solu-
tion. In section 3.4. we obtain criteria for the extinction of the second microbial
population. as well as criteria for the existence of a positive periodic solution. In
obtaining these latter results. we prove a comparison theorem concerning solutions
of scalar periodic systems. which may be of independent interest. Furthermore. we
address a conjecture on the local stability of a positive periodic solution. Based
on the local stability. by topological degree theory we show that if on the bound-
ary of Ri there exists no asymptotically stable solution. then the considered
full chemostat system has a strictly positive periodic solution which is globally
asymptotically stable. Usually, it is rather easier to discuss the local stability than
to discuss the global stability. However. the difficulty here lies in the discussion
of local stability and we state a conjecture for future research. In section 3.3. we
discuss the structure of a global attractor of the full chemostat system. Finally. a

brief discussion on the biological implications is contained In section 3.6.

Throughout this chapter. we assume that al] functions are sufficiently smooth
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so that solutions to initial value problems exist uniquely and are continuable for

all positive time.

3.2. The Model

The chemostat is a piece of laboratory apparatus used to culture microor-
ganisms. The apparatus consists of three connected vessels. The first contains
all of the nutrients needed for growth of a microorganism, all in excess except for
one called the limiting nutrient. The nutrient is pumped into the second vessel,
the culture vessel. The culture vessel is charged with a variety of microorganisms.
so it contains a mixture of nutrient and organisms. Its output is collected in the

third vessel which represents the “production” of the chemostat(see Fig 3.1).

Figure 3.1: A schematic of a simple chemostat

The chemostat model to be analyzed in this chapter is of the form

5(t) = D(t)(S° + be(t) — S(¢)) — z(t)p(t. S(t)) — y(t)q(t. S(t))
z(t) = z(t)(p(t, S(t)) — D(t))
y(t) = y(t)(q(t. S(t)) — D(t))

S(O) = So Z O, 1‘(0) = Tg 2 0, y(O) = Yo Z 0.
where S b>0 and D(t), p(t.-), q(t.-) are continuous, positive w-periodic

functions of ¢, and e(t) is a continuous periodic function of period .
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In these equations, at given time ¢. S represents the nutrient concen-
tration. r and y denote the concentrations of the competing microorganism
populations, p and ¢ are the uptake functions representing the rate of nu-
trient conversion to biomass. that is, the per capita growth rate as functions of
both time and nutrient. $§° + be(t) denotes the periodically varying nutrient
concentration in the feed bottle. D(t) is the input rate from the feed hottle
containing the nutrient substrate as well as the washout rate of substrate and
microorganisms.

We make the following reasonable assumptions concerning the parameters

and functions involved in (3.1):

0<b< S% Je(t) <1 (3.2)
and p.g: R. xR — R are continuously differentiable in ¢.S satisfving
p(t.0) =0. q(¢,0)=0.

Op(t, S) > 0 dq(t. S)

_——

35 . T>O. (3.3)

In the remainder of this section we obtain some preliminary results. First
we note that every solution is nonnegative and bounded (as it should be for any
reasonable model of a chemostat). We then show the invariance of system (3.1) in

the region of interest.

Lemma 3.1. R%  is invariant for system (3.1).
Proof.  S|s—q = D(t)(S° + be(t)) > 0,

2(t) = 2o exp ( / (b(E. S(€)) ~ D(€))de
¥(£) = yo exp / (a(€. S(€)) - D(e)) de.

Hence R3 is invariant. d




We now consider the submodel describing the behaviour of nutrient in the

absence of microbes

S5(t) = D(t)(S° + be(t) — S(¢)), S(0) =S, > 0. (3.4)

Theorem 3.2. There ezists a unique positive periodic solution Sg(t)  of (3.4)
which is globally asymptotically stable. Moreover
S —b<S*(t) < S+ (3.5)

for all t> 0.

Proof. Clearly [S°—5.59+b] is an invariant closed interval of system (3.4). It

is easy to find the general solution of equation (3.4) as follows:

S(t) = S exp (—/tD(u)du) -{-exp(—/otD(u)du) (3.6)

0
X /0‘ [exp (A“ D(v)dv)]D(u)(SO-i-be(u))du.

Clearly. S(t) isan w-periodic solution of (3.4) if

/ D(u)du # 0. (3.7)
0

and S(t) is globally asymptotically exponentially stable if

/ D(u)du > 0. (3.8)
0

In our case, D(t) is a positive w-periodic  function. Therefore Sg(t) is
globally asymptotically exponentially stable and satisfies (3.3).

a

From now on, we always denote by S3(¢) the solution of (3.4) as given in
the above theorem.
Finally we show that for the full system (3.1), S;(t) is an attractor for

S(t) + z(t) + y(2).
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Theorem 3.3. Define
I(t) = S(t) + z(t) + y(2). (3.9)

Then if Sp. zo.yo > 0. for system (3.1), I(t) tends ezponentially to S5(t).

Proof. Computing I(t). we obtain
L(t) = —=D(t)I + D(t)(S° + be(t)). (3.10)

Since (3.10) is another version of (3.4). the theorem follows from theorem 3.2, i.e.
we always have

Lim [S(8) +z(t) + y(t) - S5(¢)] = 0. (3.11)

3.3. The Single Microbe Subcase
In this section we consider the subcase of a single microbe living on the

nutrient. The system then reduces to

S(t) = D(t)(S° + be(t) — S(t)) - r(t)p(t. S(t))
(3.12)

£(t) = (1) (p(t. S(2)) - D(1)).
where the assumptions on the parameters and functions are similar to those given
in section 2. We introduce the notation (f) to mean the mean value of any

continuous w-periodic function f, i.e.

l (s
= — dt. .
(f) W/O f(t)dt (3.13)

Obviously, (So‘(t),O) iIs an  w-periodic solution of system (3.12). Our
first concern is the stability of (S3(¢).0). The following theorem gives a criterion
for stability which is equivalent to the extinction of microorganism r(t) due to

a lack of nutrient.
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Theorem 3.4. For system (3.12), the solution (55(¢).0) s asymptotically sta-
ble 1f
(p(t.55(t)) = D(t)) < 0

and unstable if

(p(t.S5(t)) — D(t)) > 0.

Proof. Consider the variational equation about the <-periodic solution (S3(t).0)
of (3.12),

. _(=D(t)  —p(t.53(t)) ) -
X—( 0 p(t,551) =Dty ) o

Then the characteristic multipliers. p;.ps, of (3. 14) can be computed as follows:

p1 = exp(—/odD(t)dt). Py = exp(/:; (p(t.Sg(t))—D(t))a’t).

Hence (53(¢).0) is asymptotically stable when (p(t.S55(t)) — D(t)) <0 and
unstable when (p(t. S5(t)) — D(t)) > 0. since lp1! < 1.

G

We now show the existence and stability of a positive w-periodic solution
of system (3.12) under the condition (p(t,Sg(t)) — D(t)} > 0 (survival of the

microbe).

Theorem 3.5. There ezists a unique positive w-periodic solution of system

(3.12) which is globally asymptotically stable provided (p(t.S;(t)) — D(t)) > 0.

In order to prove theorem 3.5, we first need to prove some lemmas.

Lemma 3.6. Any solution (S(t),r(t)) of (3.12) with 5(0) > 0. r(0) >0

has the property that z(t) + S(t) ezponentially approaches  Sg(t).

Proof. This is a special case of theorem 3.3 when y(t) =0.
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Now consider the equation
2(t) = z(¢)(p(t. S5 (t) — z(t)) — D(t)). (3.13)

Obviously the interval [0,5° + 8] is invariant with respect to (3.13). From the

hypothesis

(p(t.S5(t)) — D(t)) = % /0w (p(t.55()) — D(t))dt > 0.

we can choose a constant § > Q satisfving 4 < §S®—b and
(p(t.S5(t) — &) — D(t)) > 0.

Let Dy = max D(t). The next result gives the lower boundary of solutions of
0<t<w

(3.13).
Lemma 3.7. If z(t) is a solution of (3.13) satisfying r(0) > 4. then

r(t) > §eDov for all t>0.

Proof. Assume there exists some T >0 such that
(T) < §e~ Do~

Let To = sup{tjz(t) =4. 0< ¢t < T}. Then r(Ty) =4, r(t) < ¢ for any
t€(lo.T] and T-To<w. If T-To>w, ie. T 2To+w. then z(t) <
for all t e (Tp.To +«] C (To.T). Hence

To+w

0 > z(To +w) = 2(Tp) eXP(/

(p(t.55(t) = 2(1)) — D(t)) dt)
To

To+w
2 (o) exp ([ 7 (o(t.55(0) - 5) - (o)) a)

= 2(To) exp ([ (p(2.55() - ) - D(e)) )
2 I(TO) = 57
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a contradiction. So T — Ty < w, in which case

T

dePo% > 2(T) = 1(Ty) exp (/ (p(t. Sg(t) — zit)) - D(t))dt)

Te

2 (To) exp (/TT (p(t.S5(t) — 8) — D(t))df)

T
> r(1p) exp —Dqydt
To

= J exp ( — Do(T - TQ))

> de~Dow,

This is also a contradiction. implying z(t) > de~Dov for all ¢ > 0.

—

From the above we know the solution r(t.rg) of (3.13) has the following

property:

T(t.[8.8° +8]) C 18P S0 1] forall ¢ >0,
The next result implies the existence of a positive .-periodic solution of (3.13}.
Lemma 3.8. Under the assumption
(p(t.S5(t)) — D(t)) > 0. (3.16)

equation (3.15) has at least one positive «-periodic solution rj(t).

Proof. Consider a solution z(t) of (3.15) satisfying  z(0) € {8. S +b]. Then

z(t) € [deDow g0 4 bj. thatis Jde~Dow < z(t) <S5%°+b forall t>0.

CAase 1. If z(0) = z(w), then z(t+w)= z(t). thatis, r(¢) isan w-periodic

solution of (3.153).

CasE 2. If z(0) < z(w), define Ta(t) = 2(t + nw). where n is any integer.

Then z,(t) is also a solution of (3.15) with r,(0) = r(nw). By uniqueness of
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solutions of initial value problems, the mequality
(0) < r(w) = 21(0) gives z(t) < I1(t) = r(t+w) forall ¢>0.
Similarly. by induction
0 < e < a(t) < z1(t) < x2(t) < -+ < 2n(t) < Tni1(t) <--- < S% 40

Hence there exists r§(t) such that lim In(t) = rg5(t). Obviously r5(t)

n—2c

must be in  [fe~DPo~. 5% L bl Furthermore
ro(t +w) = lim za(t +w) = Lim zn40(2) = 25(2).
Le. zi(t) isan w-periodic function.
On the other hand. since the monotone increasing sequence {r,(t)} is
uniformly bounded and equicontinuous in [0.<]. it follows that r,(¢t) con-
verges uniformly to r3(t) in [0..]. Thus r5(t) is an  w-periodic solution

of (3.15) and lies in the interval [de~Dow G0 1 b].

Case 3. If z(0) > r(w). a similar discussion as in Case 2 will also result in
an  w-periodic  solution of (3.13). Consequently. condition (3.16) guarantees the

existence of a positive w-periodic solution of (3.15) and the lemma is proved.
c

The next lemma addresses the question of global stability.

Lemma 3.9. If(3.16) holds, the positive w-periodic  solution rg(t) described

in the above lemma is globally asymptotically stable.

Proof. Given any solution z(t) of (3.15) with z(0) > 0. define a Liapunov
function by V(¢) = |ln z(¢) - In z5(t)|. Then

D¥V = ~p(t.55(t) - 2(t)) — p(t. S5(t) — 25(1))|

as 0
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where » s between S; -z and S5 —z3.

Lee C= min 3 50 Then D+1 < ~Clr —z4|. Similarly, we
0<S<S%+b
0<t<wy
have lim [z(t) — z&(¢)| = 0.

t—oc

Consider the linearized equation about £3(t) as a solution of ( 3.15):

z30t) Op(t. Sg(t) — 5(t)) )

: = (p(t. S3(t) - 23(t)) — D(1) - 5% :.

Let W=%. Then W= -z 2USi0-rie) - o z5(t) is asymptoti-
cally stable, and hence globally asymptotically stable.
a

Corollary 3.10. Under condition (3.16). equation (3.15) has a unique positive

w-periodic  solution which is globally asymptotically stable.
NOTE: for T big enough, the following hold

r(t) < S5(t) for all ¢ >7T and (3.17)

z3(t) < Sg(t)  forall ¢ >0, (3.18)

Proof. Firstly we prove (3.18). Let z5(tg) = orélz%'cura(t). Then 15(t) = 0.
Hence p(to.S55(t0) — z5(to)) = D(to) > 0. and ;o_ Sg(to) > z4(ts). We claim
that S§(¢) > zi(t) forall ¢ 2> tg. For otherwise choosing ¢; = sup{t*|Sz(¢) >
Io(t) forall ¢ > ¢, and ¢ < t*}. it follows that Sg(t1) = z3(t1) and
Sg(t) > z5(t) forall t€[to.t;). So S3(ty) — 25(t1) < 0. However

= D(tl)(SO + be(t1 )) > 0,
a contradiction. Moreover because both of S55(t) and z5(t) are w-periodic,
it must be that S5(t) > z3(t) forall ¢t>0 and (3.18) holds.
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Now we prove (3.17). Assume that z(t) > S5(tj forall ¢>0. Then
2(t) = 2(t)(p(t. S5 — 2(t)) = D(t}) < ~D(t)z(t) < ~Dpiarit).

As a result. tlim z{t) = 0 holds. On the other hand S5(t) > 5% —b >0
for all t > 0. Thisis a contradiction. Therefore. there exists T sufficiently
large such that r(T) < S;(T). Then similarly. we can claim (3.17) holds for all

t>T.

For the sake of emphasis. we rewrite ( 3.18) as the following lemma.
Lemma 3.11. Under condition (3.16). Sgit) > z5it) for all ¢ >0.
Proof of theorem 3.5. We shall prove that (Sg(¢) — Iglth.z5it)) is the uniqne

positive  .-periodic  solution of (3.12) which is globally asymprotically stable

under the condition (3.16). Denote I*{t) = 5;(t) — r5it; > 0. Then

I = S¢— 15= D(t)(S5% ~be(t) — S;) — z5(pit. S5 — x>y — Dit))
= D(t)(S° + be(t) —I*) — rzpit. I* .

26 = 75(p(t. S5 — z5) = D(t)) = 25(p(t. 1" - D(¢}).

Consequently. (I'(t).ra(t)) Is a solution of (3.12).
From lemmas 3.6. 3.9 and 3.11. we know that (I7(t).25(t)) is the unique
positive w-periodic solution of (3.12) which is globally asymptotically stable and

the theorem is proved.
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3.4. The Full Model
Suppose (I7.z3) and (I5.y) are positive «-periodic  solutions of

system (3.12) and the system

S(t) = D(t)(S° + be(t) — S(t)) — y(tiq(t. S(t))
(3.19)
y(t) = y(t)(q(t.5(t)) — D(¢)).

respectively. Then (I7.z5.0) and (I7.0.y3) are nonnegative ~-periodic so-
lutions of system (3.1). First we discuss the stability of (I7.r5.0). The appro-

priate variational system is

« dp(t. I} - -
=D(t) — x5 Egl  —p(e. 1) ~q(t. I})
Y= w22 per-biy 0 X,
0 0 q(t.I7) — D(t)

Theorem 3.12. If (I7.r3) isa positve asymptotically stable «~-periodic  so-

lution of system (8.12). then (I7.25.0) s asymptotically stable provided
(g(t. S5(t) — z5(t)) — D(t)) < 0

and is unstable if

(q(t. 56(t) — z5(t)) — D(¢t)) > 0. (3.20)

For (I7.0,y5). there exists a similar conclusion, given as follows.

Theorem 3.13. If (I;.y5) isa positive asymptotically stable -periodic so-

lution of system (3.19). then (I3.0.y5) is asymptotically stable if
(p(t.55(t) — y5(t)) — D(¢)) < 0
and is unstale provided

(p(t. S5(t) — y5(t)) — D(t)) > 0. (3.21)
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What we are really interested in is the existence and stability of a strictly
positive .-periodic solution of system (3.1). Thus in the following theorem we

assume inequalities (3.20) and (3.21) hold.

Theorem 3.14. Assume inequalities (3.20) and (3.21) are valid. Then. there

ezsts at least one strictly positive «-periodic  solution of system (3.1).

To prove theorem 3.14. we first require the following lemma.
Theorem 3.15. (Monotonicity of attracting solutions). Consider
(a) u= f(t.u) and (b) € =g(t.v).

Let f(t.u). g(t.v):RxR— R be sufficiently smooth so that solutions to initial
value problems ezist uniquely and are continuable for t>0. Suppose u*(t) and

v*(t) are attracting .-periodic solutions of (a) and (b) respectively. i.e. any

solution u(t) of (a) and v(t) of (b) satisfy

im |u(t) —u®(t)] =0 and tlirn ity — vty =0.

t— >

Then if f(t.-) > g(t.-). it follows that ut(t) > v*(t) for all ¢.

Proof. CASE 1. If there exists t; such that u™(to) > v*(tg). then u*(t) >
v*(t) forall ¢ >¢,. For otherwise let t1 = sup{t*ju*(¢) > v*(t) forall ¢ >t
and ¢t <t*} Then u*(t;)= v*(t1) and u'(t) > c(¢) forall te [to.t,). So
u*(t1) —¢*(t1) < 0. However u*(t;)— ei(t) = f(ti.u"(t1)) — g(t;. v*(t1)) > 0.
This is a contradiction. Further. because u* and ©* are «-periodic. then

u*(t) > v*(t) for all ¢

CASE 2. If there exists to suchthat u*(tg) = v*(t). then by hypothesis there

must be #; >t; and near to fy such that u*(t;) > v*(¢t;). By Case 1. this
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is a contradiction.

CASE 3. Let u®(t) < v*(#) for all ¢ Suppose v*(¢y) = ,max v*(t) and
St<w

let u(¢) be the solution of (a) satisfving u(to) = v*(tg). Then similarly to

the previous case, wu(t) > v*(t) forall ¢ > to- Denote d = dist (u*, v*) =

inf |u*(t) —v*(2)] > 0.

0<t<w

From the assumption v*(¢) > u*(t). we have u(t)—u*(¢) > vi(t)—ut(t) >
d > 0. This is a contradiction because u™(t) is the attracting solution of (a)
and the lemma is proved.

a

Next we construct monotone sequences which are convergent to the solution

we need. Our attention will mostly focus on the related model:

£(t) = z(2)(p(t. Sg(t) — £(t) — y(t)) — D(t))

y(t) = y(t)(q(t. S5(¢) — 2(t) — y(t)) - D(t)).

Lemma 3.16. System (3.22) has at least one positive «-periodic  solution pro-

vided inequalities (3.20) and (3.21) hold.

Proof. STEP 1. Condition (3.21) guarantees that 7 — z(p(t. S5 —r—y3) - D(t))
has a unique positive w-periodic solution zZ_(¢) which is globally attracting.
Condition (3.20) gives that v =uy(q(t,. S5 — x5 — y)—D(t)) hasa unique positive
w-periodic  solution y2 (¢) which is globally attracting.

By theorem 3.15 we know that Yy (t) <yi(t) and T (t) < 2§(t) for all

t>0.

STEP 2. Consider 7 = x(p(t,Sg—y;c—x)—D(t)). Since (p(t.S§~yz)—D(¢)) >

(p(t, S6—Y5)—D(t)) > 0. then there exists a unique positive w-periodic solution
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zi(t) which is globally attracting. By theorem 3.15

1.(t) < zi(t) < z3(t) forall ¢t >0.

STEP 3. Consider y = y(q(t,Sg—rf—y)—D(t)). From (q(t.S;—z3)—-D(t)) >
(q(t. S5 — x§) — D(¢)) > 0. there exists a unique positive w-periodic solution

yi(t) which is globally attracting and similarly

Yo (t) <yi(t) <ys(t) forall ¢>o0.

STEP 4. Consider 7 = r(p(t. S —y;—r) —D(t)). Similarly, there exist a unique

positive globally attracting w«-periodic solution r3(t) satisfying

ri_(t) < ri(t) < ri(t) < ro(t) for all ¢ > 0.
STEP 5. Consider y = y(g(t.Sg—xr3—y)— D(t)). and obtain a similar solution
y3(t) satisfving yZ(t) < yi(t) < y3(t) < yg(t) forall ¢ > 0.

STEP 6. According to the proofs in steps 1 to 5 above. we may construct similar
related equations giving two monotone sequences {r;(¢)} and {yn(t)} which

are positive w-periodic functions satisfying

0<rl(t) <. <o (t) <ep(t) <~ < 23(t) < ri(t) < r5(t) < 5% +b
and

0 <¥(t) i) < w(t) < < ya(t) < ylas(t) <o < y2(1) < SO = b,
for all ¢ > 0.

STEP 7. From the previous steps, there exist functions u*(#) and v*(t) defined

on [0,oc) such that

lim z;(¢) = «*(¢) and lim Ya(t) = v*(t) forall ¢>0. (3.23)

n—oc n—oc
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Furthermore. u*(t) and v*(¢t) are w-periodic functions because

ut(t+w) = lirr;cz;(t +«) = lim z}(¢t) = ut(t).

vi(t+w) = lim yu(t+w) = lm ya(t) = v*(t).

By the w-periodicity in ¢ and the boundedness of the right-hand sides of
all the equations constructed above. it follows that the derivatives of the mem-
bers of the sequences {zx(t)} and {y2(t)} are bounded in [0.2c), that
is {z;(t)} and {y:(t)} are uniformly bounded and equicontinuous. Then by
virtue of Arzela-Ascoli’s lemma [CoLe]. for any compact subinterval of [0, ),
there exist subsequences of {z%(t)} and {yn(t)} which converge uniformly to
u*(¢) and v*(t) respectively on this subinterval. Thus u*(t) and v*(¢t) are
continuous. By the monotonicity of these sequences we see that the convergences
given by (3.23) are uniform on any compact subinterval of (0. x<). Hence by

Dini’s theorem [Kel]. u*(t) and v*(t) are continuously differentiable and

wt =ut(p(t. 5§ —u" - ") — D(t))
(3.24)
0= (q(t. S5 —ut - vt) = D(t)).

that is to say (u*.v") is a solution of system (3.22). Obviously. (u*.v*) is
positive and w-periodic and we have really constructed a positive -periodic

solution (u*(t).v*(t)) of system (3.22) and the lemma is proved.

i1

Similar to lemma 3.11, we have:
Lemma 3.17. S§(t) — u*(¢) — v*(t) >0 forall t>0. a
We are now ready to prove the first main result of this section.

Proof of theorem 8.14. Under assumptions (3.20) and (3.21). we show that

(S¢ —u* —v*,u*,v*) is a positive w-periodic  solution of system (3.1).
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Define [I*(t) = S5(t) —u*(t) — v*(t). Then I"(t)>0 and

I* = D(t)(S° + be(t) = S3(t)) — u* (p(t. S5 — u” — ") — D(t))
—v*(q(t. 55 — u™ —v") — D(¢))

= D(t)(S° + be(t) = I*) —u*p(t.I") — v q(t, I7).
Rewriting (3.24) gives
4" =u*(p(t.I") = D(t)) and v*= v (p(t. I") — D(t)).

Thus (I*.u*.v*) is exactly a positive w-periodic  solution of system (3.1).
proving the theorem.

.

To discuss the stability of (I*.u".v*). we require the analysis of the sta-
bility of (u*,v*) as a solution of system (3.22). The variational system about

the positive w-periodic solution (u™.v*) of (3.22) is:

i = ( pIEI%) = D(t) —ur 2D —u 2L ) _
—v* aq(at:s‘[.) q(tlt) _ D(t) - aq(at:sf')
Let p(t) £ <u O(t) —v(')(t)) . The change of variable ¥ = p~!X gives
—u* ap(.t.I') vt Gp(z.[')
V= o5 o5 Y 2 46y, (3.25)
. g(LI") = dq(e.I")
U 53 vV Tas

We know that the local stability of (u*.v*) is the same as the stability of
(0.0) in (3.25). Clearly, for any fixed ¢, one of the eigenvalues of A(t) is 0
and another one is negative. However in a linear periodic system, the eigenvalues
of the coefficient matrix cannot supply the same information as in an autonomous
linear system on the stability of the trivial solution. Here the matrix A(t) is

very special and we have reason to address the following conjecture.

46




Conjecture 3.18. Assume inequalities (3.20) and (3.21) hold. Further assume
8e(t.5\i

-85
8qit.5)
-y

that 13 not a constant. Then system (3.25) is asymptotically stable. i.e.

system (3.1) has a positive w-periodic solution which is asymptotically stable.

If conjecture 3.18 is true, then we are able to show the asymptotic stability
of the w-periodic solution (I*.u". v") to be global under (3.20) and (3.21).
To do this. we first set up the fixed point index machinery. In the remainder of
this section. we assume that conjecture 3.18 is true and the Floquet characteristic
multipliers of (3.23) have moduli less than 1 under (3.20) and (3.21).

Let (E.P) be an ordered Banach space with positive normal cone P.

Following [Danl]. for y € P. define
P,={z€E:y+treP for some ¢ > 0}

and

Syz{ref’y:—reﬁy}.

Let a be a fixed point of some compact operator I : P — P. and denote by
L the Frechét derivative of T at a. We say that L has property a at
a if there exists ¢ € (0.1) and Yy € Po\'S, such that y—tly e S,. We
state a general result of Dancer([Danl]. [Dan4]) on fixed point index with respect

to the positive cone P (see also [DL1]. [DL2}. [Li1]. [Li2]).

Proposition 3.19.
(1)) If I—L isinvertible on E., and £ has property o on P,. then
indexp(T.a) = 0;
(W) If I —L isinvertible on E, and £ does not have property « on

P.. then indexp(T,a) = (=1)°. where o is the sum of the algebraic

multiplicities of the eigenvalues of L whose moduli are greater than 1:
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(w) If I — L s not invertible on E  but Ker(I - LY P, = @. then
indezrp(T.a) = 0.

a

Suppose E; and E, are ordered Banach spaces with positive cones €,
and (5. respectively. Let E = E| ZE; and C=C;=C,. Then clearly F
is an ordered Banach space with positive cone C. Let O be an open set in C
containing O and 4;:Q —=C; be completely continuous operators. i = 1. 2.
Denote by (u,v) a general element in C with u€C, and v &C,. Let

4:Q = C be defined by
Alu,v) = (A (u.v). A (. v)).

Also we define

Caz) ={veCy: vl g, < <}

The following general result of Dancer and Du (IDaDu]. theorem 2.1) on

degree calculation is crucial for our applications.

Proposition 3.20. Suppose [ C10Q  is relatively open and bounded. and

A (u.0) # u for uwedU

A2(u.0)=0 for uel.

Suppose  As : Q — C, eztends to a continuously differentiable mapping of a
neighbourhood of € into Ey, Cs—~Cy s dense in E, and T ={uc€
U:u=4,(u,0)}. Then the following are trye:

(1) dege(I — AU x Ca(€),0) = 0 for > 0 small if for any u € T,

o

the spectral radius r(A5(u,0)|lc.) > 1 and 1 is not an eigenvalue of

A5 (u.0)|c, corresponding to a positive etgenvector;
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(1) dege(I — A.U x Ca(e).0) = dege, (I — A1j¢,.U.0) for =>0 small iof
forany uweT. r(Ad)(u.0)lc,) <l

g

In our system (3.1), theorem 3.3 implies that (I*.u".v*) is globally stable
with respect to (3.1) provided that (u®. v*) is globally stable with respect to
(3.22). In the following, we are going to show that (u*.v*) isa globally stable
solution of system (3.22) under the condition that inequalities (3.20) and (3.21)
hold.

Denote by S = (51.5;) the w«-periodic Poincaré mapping generated
by system (3.22). It is well-known that S is a compact operator and ev-
ery w«-periodic solution of system (3.22) corresponds to a fixed point of S.
Clearly, (0.0). (rZ.0) and (0.yg) are all of the w-periodic solutions of
system (3.22) on the boundary of R%Z. We denote by a* the fixed points of S
in int(R2). For the simplicity of notation. we further denote the fixed points of
S on the boundary R2 by O. z* and y® respectively. The indices of
all fixed points ([LI],[Ro]) of S in the cone Ri are calculated in the following

theorem.

Theorem 3.21. Assume inequalities (3.20) and (3.21) hold. Then the following
are true:
(1) index(S)=1. where indez(S) = deg(I-S,0) which means the Brouwer
degree in the cone R2;
(1) indez(S,0) = 0;
(111) indez(S,z*) = index(S,y*) = 0:

(w) index(S.a*) = 1.
Proof.
(1) Clearly, system (3.22) is point dissipative and S is compact. It follows
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from [Hale2] or [HaWa] that there exists a connected global attractor A of
S in RZ. Hence all fixed points of S in R2 must be contained in
A. Without loss of generality, we suppose A C [0. A} x [0. K] for certain

constant A > 0. Recall that system (3.22) is of the form
2(t) = z(t)(p(t. S5(t) — z(t) — y(¢)) — D(t))
y(t) = y(t)(q(t. S5(t) — z(t) — y(t)) - D(t)).

Furthermore functions p and ¢ satisfy (3.3). that is

p(t,0) =0, ¢(t.0)=0.

dp(t. S) dq(t.S)
as % —33

As a result, we can choose constant A large enough to guarantee that
[0.A] x [0.A7] is not only globally attractive but also positively invariant.
Clearly, for any constant K > A, [0.K)x[0.A) is positively invariant.
Let Q=[0.A+1)x[0.A+1)C R2. Clearly Q is openin R2 with
relative boundary 9Q = {(r.y) < RZ : {z.y)lsup = K+ 1}. By the

excision property of topological degree. it follows that
deg(I — S.0) = deg(I — S. 0. 0).

Define a homotopy

H(t)y=I-t5:Q - R2
Claim:. H(t) is Q -admissible forall te€[0.1]. ie. O & (I —tS)(990).

It suffices to show that for any (z.y) € 90 (I —tS)(r.y) # (0.0).
Clearly, when ¢ =0, then I—-tS=7 and (0,0) ¢ 9Q. When ¢ =1.
then I —-tS =171-35, and since we have supposed that all fixed points
of S in R2 are contained in A ¢ [0.A] x [0.K], hence (0.0) ¢
(I — S)(0%). Similarly, for any te (0.1). (0,0)¢ (I~ tS)(0Q) since
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Q) is positively invariant. This completes the proof of our claim. Thus by
homotopy invariance. we have
deg(I — S5.Q.0) = deg(H (1), Q. 0)
= deg(H(0),0.0)
=1.
where the last identity is because of the normalization property of topological
degree. Hence deg(I —S5.0)=1 and index(S) = 1.

Let us prove inder(S.0) = 0. By definition. we know that
Po={(z.y) eR?:0 +t(zr.y) € R:“)_ for some ¢t > 0} = Ri.
and

So ={(z.y) € Po: —(1.y) € Pp}

= {O}.
The variational system about (0, 0) of (3.22) is:
i p(t.55) — D(¢) 0
X= ( ° X
0 alt. S5) - D(t)

By a standard argument, one can easily verify that
DS(0)(a-y) = (zexp( [ [p(t. 55) - D(t)jat). y exps [ tate- 55~ peena).
0 0
(3.26)
where DS(O) is the Frechét derivative of S at O. Furthermore. it
follows from inequalities (3.20) and (3.21) that

ry 2 exp(/o [p(t.53) — D(t)]dt) > 1.

2 & exp( [ la(t.53) ~ D)) > 1
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(iii)

Now one can easily see that DS(O) has property a. Indeed. by the
definition. it suffices to choose certain {r.y) ¢ R2 \ {0} such that for
some fo € (0.1). tDS(O)z.y) = (z.y). ie. (tor1z.toray) = (z.y).
Clearly. we can choose any (z.0) with r > 0 and to = } € (0.1)
since r; > 1. Furthermore. clearly I — DS5(0) is invertible and (0.0)
is an isolated fixed point of S. Therefore it follows from proposition 3.19(i)
that indez(S.0) = 0.

We are going to apply proposition 3.20 to show that
indez(S.r") = index(S.y") = 0.

It suffices to show indez(S.z*) = 0. Similarly. one can show inder(S.y") =
0. Replace A4,. 4, inproposition 3.20 by Si. S» respectively. One
can easily verify that all conditions required in proposition 3.20 are satisfied

here. Clearly. we have
IT={ueRi:u=5(u0)}= {0.z5}.

Furthermore. it follows from (3.26) and (3.27) that r, > 1 is the only

eigenvalue of DS5(0.0). The variational system about (z5.0) of (3.22)

1s:
= - = Op(t.S5—z; - C .Sq—r,
v (p(t.so—m—D(t)—roL‘asL—’ —zg > .
0 q(t. 55 — ) — D(t)
(3.28)

Clearly, r; 2 exp( [y [q(t. 5§ — z3) — D(t)]dt) is the only eigenvalue of
DS5(x5,0) and r3 > 1 because of (3.20). Therefore it follows from
proposition 3.20(i) that indez(S.r*) = 0. Analogously. it follows from
(3.21) that index(S.y*) =0.

For any fixed points a* € int(RZ) of S. from the previous assumption.

it follows that p(DS(a*)) < 1 under (3.20) and (3.21). Note that both
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(3.20) and (3.21) are independent of a* itself. According to [Dan4. lemma
2(c)i. DS{(a") does not have property a. Again by proposition 3.19(ii).
one can easily see that indez(S.a") = 1.

O

Theorem 3.22. Assume inequalities (3.20) and (3.21) are valid. Then. there
eTists a strictly positive .-periodic  solution of system (3.1) which is globally

asymptotically stable.

Proof. Since system (3.22) generates a discrete monotone dynamical system {S™ }o-
we need only to prove the uniqueness of a strictly positive «-periodic solution
of system (3.22). It follows from a simple compactness argument that there are at
most finitely many fixed pointsof S in int(R2). Let them be {ri:1<i<t}
where [ € Z. From theorem 3.21. we have inder(S.x7)=1. inderiS.0) =

0. index(S.r*) = 0. index(S.y*) =0 and indez(S) = 1. Hence by the

additivity of the fixed point index. it follows that
1l =index(S) = inder(S.0) +index(S. 1" j+~inder(S.y" )~ flez'rzde.r(s.r,') =1

This implies the uniqueness. The global asymptotical stability follows from theo-

rem 1.10 in chapter 4. completing the proof.

I
-

Remark. Theorem 3.22 implies that if on the boundary of R2? there exists no
asymptotically stable solution, then system (3.1) has a strictly positive «-periodic
solution which is globally asymptotically stable. Therefore. if one can prove that
under (3.20) and (3.21) the two Floquet multipliers of (3.25) have moduli less than
1, then the structure of the global attractor of system (3.1) is very simple, just a

positive w-periodic solution.




3.5. Global Attractor

Since at present we are unable to prove conjecture 3.18. in this section we are
going to discuss the structure of a global attractor of system (3.1) in terms of some

general results in competitive systems due to Hsu. Smith and Waltman([HSW]).

Clearly. system (3.1) is a point dissipative ordinary differential system. It
follows from Hale's dissipative theory([Hale2]) that there is a connected global at-
tractor in system (3.1). Furthermore. theorem 3.3 implies that S(t)+ r(¢) + y(t)
tends exponentially to SZ(¢t). Therefore to discuss the structure of a global at-
tractor of system (3.1) is equivalent to discussing the structure of a global attractor
of system (3.22). Obviously system (3.22) is an . -periodic competitive system
between two species. Hence system ( 3.22) generates a strictly order-preserving
~-periodic semiflow with respect to the competitive order <. where for any
(ri.yi) € RL  we define (r,.41) <& (z2.y2) if 1, < z5 and y1 >y,
(z1.41) Sw (22.92) if 2, < r» and y; > 2o (Iioyt) <k o (ra.ys) if
(£1:91) Sk (r2.42) and (r1y1) # (£2.42). Denote by T:R: - &? the
standard Poincaré .-periodic mapping generated by svstem (3.22). It is easy
to verify that (H,)—(H,) in [HSW](page 4084) hold by (3.3} and since system
(3.22) is of Kolmogrov type. Recall that in lemma 3.16. we have proved thar un-
der (3.20) and (3.21). system (3.22) has at least one strictly positive .-periodic
solution. That is, 7 has at least one strictly positive fixed point correspond-
ing to (u*,v*). Denote E, = (0.0), Ey = (£5(0),0). Ey = (0.y5(0)).
E = (u*(0),v*(0)). Then E,. E,. E; and E are fixed points of T
in Ri. Furthermore it follows from theorem 3.15 that E, <x E <wn E,. In-
equalities (3.20) and (3.21) imply that Eo. E; and E; areall isolated and

unstable. It is well-known that for any (z.y) €ER2 and neZt we have

I7(0.y) <k T™(2.y) <w T™(z.0).
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From lemma 3.9, we know that

lim T%(r.0) = E;, forallr > 0.

n—2C
and

lim T"(0.y) = E, for all y>0.

n—oc

Hence the order interval [E,. E|y = {(z.y) :0< 2 < 25(0). 0< y < y5(0)}
is a global attractor of mapping 7. Moreover. it follows from proposition 2 in
[HSW](page 4086) that there exist two positive fixed points E, and E.. such
that

T"(r) - E. forallz = (r1,72) satisfving E. <p z <p E; and Ty # 0.
and

T"(y) =+ E.. forally= (y1.y2) satisfying Ey <p y <p E.. and y1 # 0.

Note that from proposition 2 in [HSW]. we only know that E. and E..

are positive. Actually, from lemma 3.9. we further know that except for Ej.
E;. E; there does not exist any other semitrivial fixed point on the boundary
of R2Z. Therefore E, and E.. are strictly positive.

A

Y
E s \
E
E «
\ X
—
Eg Eq

Figure 3.2: Structure of a global attractor of T

The structure of a global attractor of (3.22) is shown as the shadowed part

in Fig 3.2 described by the corresponding Poincaré periodic mapping. Clearly. if
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conjecture 3.18 is true. then E, = E.. = E . that is the global attractor of T
in :nt(R3) is just one point E and (55(2) — u*(t) — v*(t). u"(t). v*(¢)) is

globally attractive with respect to system (3.1) in int(R3).

3.6. Discussion

The chemostat is a piece of laboratory apparatus used to culture microor-
ganisms. In this chapter. we discussed the competition for microbial organisms
competing in a mixed-growth laboratory culture with a periodically varying ca-
pacity environment. The competition takes place in a well-stirred chemostat with
general monotonically increasing(in nutrient density) uptake functions. and with
periodicities in the nutrient input. washout. and uptakes. In a chemostat. tem-
perature and nutrient input are controlled by the experimenter. If temperature
is adjusted periodically and nutriend is input periodically with a common period.
then system (3.1) well models such an experiment mechanism. The key feature
of model (3.1) is the periodicity to simulate the periodically varving(seasons or
day/night cycles) culture environment. We derived criteria for the coexistence or
non-coexistence of the competing species. Mathematically. we roughly know the

structure of the global attracror of system (3.1).




CHAPTER 4

DISCRETE MONOTONE DYNAMICAL SYSTEMS -

4.1. Introduction

As remarked by Hal Smith([SmS]). there is a long history of applications of
monotone methods and comparison arguments in differential equations. Usually.
to study a periodic system is equivalent to studying the corresponding Poincaré
periodic mapping. Hence the theory of discrete monotone dynamical systems.
which is contributed to by Dancer and Hess([DaHel). is important in the study of
periodic monotone systems. Generally. the theory of discrete monotone dynamical
systems is more difficult than that of continuous monotone dynamical systems since
the monotonicity does not restrict the dynamics of mappings as severely as it does
continuous flows. In the related literature, except for the order compactness. it
1s usually required to show the strong monotonicity of the mapping or the strong
positivity of the Frechét derivative of the mapping at some fixed points. It is
well-known that in parabolic systems. a maximum principle plays a key role. As
a result, strong monotonicity is usually satisfied in systems generated by reaction-
diffusion differential equations. However, in a large class of biological models
described by delayed functional differential equations, there are no such strong

monotonicity and strong positivity properties. Hence it is necessary to discuss

This chapter is adopted from [PeFr3]. The application part of [PeFr3] is not included here.
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the dynamics of a weakly monotone semi-flow. In this chapter. we develop some

results in discrete monotone dynamical systems with weak monotonicity.

In section 4.2, we list some preliminary results which are often basic tools in

discussing discrete monotone dynamical systems.

In section 4.3, theorem 4.4 is an extension of some ideas of Hirsch([Hirl}).
Dancer and Hess([DaHe]), which says that the uniqueness of fixed points of the
mapping implies the global attractivity of the fixed point. We then prove some
results on the global dynamics when the Frechét derivative of the mapping is
strongly positive(theorems 4.6 and 4.8). Finally, we set up two important results
on the existence and global dynamics with weak monotonicity(theorems 4.9 and
4.10). Theorem 4.9 tells us when a positive fixed point still exists without strong
monotonicity and strong positivity. Theorem 4.10 deals with the case when the
positive fixed point is globally attractive. These two results are veryv important
in discussing a system with delay. All these conditions given in theorems 4.9 and

4.10 are often satisfied in applications.

4.2. Preliminary Results

In the present section, we make some related preparation for the following
discussion on the global properties in monotone(order-preserving) discrete dyvnam-
ical systems. The fundamental work in discrete monotone dynamical systems is
due to Dancer and Hess([DaHe]). For a general theory of continuous-time mono-

tone dynamical systems, we refer to the AMS monograph [Sm8] and references

therein.

Let (E.P) be an ordered Banach space with positive normal cone P (1.e.

a closed convex cone with vertex at O such that PN (-P) = {0} ) whose

38




interior, denoted as int(P). is nonempty. For . y € E. we write
r2y fr—yeP:
t>y ifr—yeP\ {0}
>y ifr—yeintP).

Let V' be an open subset of E. A continuous mapping S :V — V
is said to be monotone(order-preserving) if S(z) > S(y) whenever r. y eV
with r >y, strictly monotone if r > y implies S(z)> S(y). and strongly
monotone if S(z) > S(y) whenever z.y eV with = > y.

A linear operator A € L(E) is called strongly positive if A (P \ {0}) C
int(P). For a given compact and strongly positive operator A € L(E). we
denote p(A) as its spectral radius. The following well-known Krein-Rutman
theorems are often powerful in discussing the uniqueness and stability of fixed

points of a Frechét differentiable mapping.

Proposition 4.1(Klein-Rutman). Let (E.P) be an ordered Banach space
with int(P)# @. and let K € L(E) be compact and strongly positive. Then
P(R') is the unique eigenvalue of K having a positive engenfunction r. that is.
r > 0. and p(R) isan algebraically simple eigenvalue. Moreover I\ < p(R)
forall Nco(R) with A\ p(K).

Proposition 4.2(Klein-Rutman). Let (E.P) be an ordered Banach space
with a totally ordered cone. i.e, E = CH{P - P). Let K ¢ L(E) be compact
and positive, and assume P(K) >0. Then p(K) isan eigenvalue of K with

eigenfunction > O.

Often p(RA) is also called the principal eigenvalue of K and =z is called
the corresponding principal eigenfunction. We consider now the inhomogeneous
equation

Au—Ru=h>0 inE. (4.1)
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Proposition 4.3. Suppose that K satisfies all the assumptions of proposition 4.1.
Then:

(i) equation (4.1) has a unique solution u if A\ > p(R)., and u> O:

(11) equation ({.1) has no positiove solution if A< p(R);

(1) for A= p(K), there ezists no solution of (4.1) at all.

For the proofs of the above results, we refer to ([De]. [Kra], [KrRu], (Ze]).
Finally, we state two fundamental principles of set theory(see. for exam-
ple,[Fol]), which play important roles in the study of discrete monotone dynamical

systems(e.g, [DaHe]).

The Hausdorff Maximal Principle. Every partially ordered set has a mazimal

totally ordered subset.

Zorn’s Lemma. If X is a partially ordered set and every totally ordered subset

of X has an upper bound. then X has a mazimal element.

4.3. Global Dynamics

Based on previously published works. it seems that some improvements in
the theory of the global stability in discrete monotone dynamical systems are

needed. utilizing certain conditions that are usually satisfied in applications.

Theorem 4.4. Let P be an ordered cone with nonempty interior. Assume that
(1) P has the property that for any two elements r.y€P. {r. y} havea
least upper bound element in P:;
(i) S:P — P is a continuous and monotone mapping:
(ii) S(O) =0 and O is the unique fized point of S in P:
(1) There ezists a compact subset K in P such that K attracts each point

of P under §.
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Then z = O is globally attractive with respect to P, i.e. w(z) = {0}. for all

re P
Before we proceed with the lengthy proof. we make the following remarks.

Remark 4.1. Comparing with some related works(for examples. [DaHe] and [Zh2]).
here we do not require either that S is a strongly order-preserving mapping or that

P is a normal cone.

Remark 4.2. Condition (i) is natural and motivated by the following fact: For any
01.02 € Ct £ C*([-7.0],R"), define v e Ct by w(8) = max{0;(6).0,(8)}.
Then wu is the least upper bound element of ©1.02 in C7. Recall the proof
in Massera's theorem([Mas]). where the hypothesis of the uniqueness of initial
value problems(IVPs) is not necessary since we can consider the least upper bound

solution instead.

Remark {.3. In condition (iv), it is not necessary for K to be a global attrac-
tor. What is necessary here is the compactness of A as an attractjve region
of P. This hypothesis corresponds to the assumptions that  S(17) is relatively
compact[DaHe| and that S is order-compact{Zh2]. In applications. the existence of
sucha K is trivial from Hale's dissipative theory({Hale2]). since the dissipativity

in a considered FDE or RDFDE is often satisfied.

Proof of theorem 4.4. We divide the complicated proof into several steps. It is an
extension of some ideas of Hirsch [Hirl], Dancer and Hess [DaHe|. From condition
(iv). to show that r = O is globally attractive with respect to P. it is equivalent

to show that w(z) = {O} forany =z € K.

Step 1. First, for any z € K, w(z) is nonempty and compact. Recall that
a point p € P is wandering if there exist a neighborhood U of p and

no € Z%¥ such that U S™U = 0 for all (n > ng). Apoint pe P is
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nonwandering if it is not wandering. i.e. for any neighborhood [~ of p and
k € Z* there exists an integer n; > k such that UM S™U # 0. Then the
nonwandering set contains all limit points «(zr) for any r € P (see [Hirl]).
Denote B = CI Uxepw(z). Clearly. O € B and B is a subset of the non-
wandering set. Indeed, for any point b € B, there is a sequence b, € w(r,)
such that b, - b as n — oc. Then for any neighborhood " of b. there
exists certain integer N suchthatforany n > N. [ isalsoa neighborhood
of bn. which is nonwandering. Hence it follows from the definition that B is a
subset of the nonwandering set. Furthermore BC K. B is closed and thereby
compact. Next we claim that B is inductively ordered. that is. each totally or-
dered subset T C B has an upper bound in B. Indeed. using a positive linear
functional f € E*. we may represent T as T = {Ta :a € A7 C R}. where
a) < ay implies z,, < I, (set a =< f.r> )(see {DaHe]). By the Hausdorff
Maximal Principle, we can suppose that {r,.} is the maximal totally ordered
subset containing T in B. Let a, 2 sup Ay = sup{a,} < +x. as n — x.
Then {rq,} CB isanondecreasing precompact sequence since B is compact.
Thus. there exists an rg € B such that Io, /' Ig as n — x. Clearly g
Is an upper bound of T in B. By Zorn's Lemma. B has a maximal element
peB. If p=0. then we have nothing to prove. In the following. we suppose

p> 0.

Step 2. Fix y € P such that y > p, the existence of which is guaranteed by
the assumption that P is an ordered cone with nonempty interior. Indeed, for
any p; € int(P). by definition p; +p > p. Since pE€B. then p isa
nonwandering point and there exist r; — p as J = oc in P and an integer
sequence nj — oc such that S"(z;) = p as j— oc (see [Hirl]). By the

choiceof y > p, thereexistsa jo such that for any j 2 jo. z; <y. Since

{S™(y)}; is precompact, there exists a subsequence {n; } C {n;} such that
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S™k(y) - q as k — . By the monotonicity of S. it follows that q > p.
Obviously ¢ € B. Recall that p is a maximal element in B. Hence g =p.
Le. S™i(y) —+p as k — oc. Again from the choice of Yy > p. there must

be an integer. say m >0 suchthat S™(y) < y.

Step 3. Denote T = S™. Then T(y) < y. Clearly from the properties of S.
T is also a continuous and monotone mapping. Now we get a strictly superso-
lution y of T. That is. the sequence {T™(y)} is nonincreasing and precom-
pact. Thus there exists a unique element Yo € «(y) C B such that T y) \
Yo as n — x and T(y) = yo. That is. S™(y) = yo and <(y) =
{y0-S(yo).....5™ Y(yo)} which is an m-cvcle. We have already shown that

p=4q¢&€ «(y). sowecanrepresent «(y) as ~(y)= {p.S(p)..... Sm=l(p)}.

Step 4. We finally claim that m = 1. ie. p is a fixed point of S. Assume.
by contradiction. that m > 1. From condition (1). we can choose the least
upper bound element of .(y). denoted by u. ie. uy = inf{r € P:r >
S p).j=0.1.....m — 1}. Notethat u< P and u maynot bein B. Then
S(u) > «(y) since S is monotone and <{y) 1s invariant. Therefore S(u) > u
by the choice of u. It follows from an analogous proof to step 3 for T. that
~(u)={v} and v >u>p. Hence v > p. Clearly v &€ B. Since p isa
maximal element in B. then v =p. Therefore p is a fixed point of S in P.
Step 5. It follows from condition (iii) that p = O. That is. any maximal element
in B is O itself. Hence B = {0O}. Therefore .(r] = {0} forany reP
since «(r) isnonempty. Thatis, z =0 is globally attractive with respect to
P. Hence if we know further that r = O is also locally stable. then r =0 is

globally asymptotically stable with respect to P.
In the following, we first answer when z = O is the unique fixed point of
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Sin P and when z =0 is locally stable.

Definition 4.1([DaHe)). 4 fized point u € P is stable with respect to P pro-
vided for each = > 0. there exists ¢ >0 such that S™Mz) € N{u.s)(\P  for

all 1€ Nu.d)(\P andall neN.

Remark 4.4. The stability in the sense of Dancer and Hess(Definition 4.1) is equiv-

alent to Lyapunov stability.
Theorem 4.5. Assume that
(1) §:P — P 1is a continuous and monotone mapping:
(uj S(O)=0. DS(O) is compact and strongly positive with p(DS(0)) <
1. where DS(O) 1s the Frechét derivative of S at O:
(wr) DS(O)r >z forany re€ P\ {O} with S{r) =r.
Then r =0 is the unique fized point of S in P.

Proof. According to the Krein-Rutman theorem. assumption (i) makes sense.

Suppose that there exists an z € P\ {O} suchthat S(r)==r. Then —r<O

and by assumption (iii). it follows that
(—z) -~ DS(O)(~z) = DS(O)r —r > O.

Checking proposition 2.3. it is easily seen that p(DS(0)j > 1. which contradicts

assumption (ii). Therefore r =0 is the unique fixed point of S in P.

As an immediate result of theorems 4.4 and 4.5. we have:

Theorem 4.6. Assume that
(1) Pis a normal order cone and has the property that any two elements I.y €
P have a least upper bound element in P:
() S:P — P isa continuous and monotone mapping. and there erists g

compact subset K of P such that K attracts each point in P under S:
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(#) S(0)=0. DS(O) is compact and strongly positive with p(DS(0)) <
L:

(iv) DS(O)z >z forall reP\{O} with S(z)=rz.

Then =0 s globally attractive with respect to P. Moreover. if p(DS(0)) < 1

then r =0 s globally asymptotically stable with respect to P.

Proof. It follows directly from theorems 4.4 and 4.5 that r — O is globally at-
tractive with respect to P. Suppose p(DS(0)) <1. Let e O with flellg =
1 be the corresponding principal eigenfunction of DS(0Q). Then DS (O)e =
p(DS(O))e. Since p(DS(0)) <1 and for each sufficiently small ¢ > 0.

5(de) = S(O) + DS(0)ée + o(9)
=4dD5S(0)e + o(4)

= d§p(DS(0j)e + o{d).

there exists a o > 0 such that for any 4 € [0.dg]. S(de) < de. Therefore
{S™(de)} is a nonincreasing sequence in P and lim,_,» S™(de) = O. For any
given <> 0. choose A =min{z.d5}. Then for any r € V(O.A)P and

all n € N. there exists certain ¢ ¢ (0.2] suchthat O <« < Jde and

O < S™z) < S™(de) < de < Ae < ze.

m

Hence S™(r) e N(O.:) (P, thatis. =0 isstable with respect to P. where
the normality of cone P is required. Thus z = 0O js globally asymprotically

stable with respect to P.

O

Remark 4.5. A similar result({Zh2], theorem 2.2) was proved under stronger condi-
tions. For the purpose of comparing. we cite it here. Let either V = [0.b]g with

b>0 or V=P, S:V5V bea continuous and strongly order-preserving
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mapping(i.e, z,y €V, >y implies S(z) > S(y) ) and order-compact(i.e,
S([u.v]g s relatively compact for all u.v € V' with u < v ). Assume that
(1) S(0) =0, DS(0) iscompactand strongly positive, and p(DS(0)) < 1;
(2) S(u) < DS(O)u forany u€V with u>0O. Then u=0 is globally

asymptotically stable with respect to V.

Recall that a continuous mapping S:X — X issaid to be asymptotically
smooth if for any nonempty closed and bounded set B c X for which $ (B) C
B. there is a compact set K C B such that K atracts B. l.e, for any
€ > 0 there exists an ng = ng(¢.K.B) such that S™(B) is contained in the

-neighborhood of K for all n > ng. Clearly for an asymptotically smooth

(L)

mapping, any bounded positive orbit ~*(r) is precompact. For more details
and examples of interesting asymptotically smooth mappings, we refer to the AMS
monograph [Hale2].

The following result is theorem 2.1 and remark 2.1 in[ZhJi}. which is very

similar to a result due to Hal Smith([Sm3]. theorem 2.1).

Proposition 4.1. Let P be a normal cone with nonempty interior. Assume that
(1) S:V =a+ P — V is a continuous and monotone mapping and any
bounded positive orbit in V is precompact(i.e. for any r €V for which
~+*(z) s bounded, then Cly*(z) s compact in Vj;
(2) S(a) = a. DS(a) 1is compact and strongly positive, and p(DS(a)) >
1.
Then either
(1) forany u >a, limpoe ||S™(u)|E = oc
or alternatively
(11) there exzists u* = S(u*) > a such that for any a < u < u*, lim,_, . S*u) =

u .
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Moreover. if S is also asymptotically smooth. then in the alternative (11). there
ezists a monotone entire orbit {un} connecting a and u*. i.e, Uney = S(un).

Un+l 2Un, nNEZ. limps-cUn=a and lim,,..cu, = u".

Remark 4.6. In the alternative (i), u® > a since DS(a) is strongly positive
and in a small neighborhood of a, S almost operates as a strongly monotone
mapping. The Dancer-Hess connecting orbit theorem implies the existence of such
a monotone entire orbit, but not an entire orbit of strictly subsolutions. connecting

aand u®* (see, [DaHe], proposition 1 and remark 1.1).
An inductive result of proposition 4.1 is the following

Corollary 4.7. Let P be a normal cone with nonempty interior. Assume that
(1) S:P — P s a continuous and monotone mapping and every bounded
positive orbit in P is precompact:
(2) S(O)=0. DS(0) 1is compact and strongly pesitive. and p(DS(0)) >
1.
Then we have
(2} S s uniformly persistent.
(11) The following statements are equivalent.
(11)a  There ezists at least one strictly positive fized pownt of S in  int(P).
(2i)s  There ezists a bounded nonzero orbit in P.

a

From the general persistence theory, we know that condition p(DS(0)) > 1
is almost sufficient to guarantee that S is uniformly persistent. Comparing corol-
lary 4.7 with proposition 5.4 in chapter 3. it is not too hard to note some advantages
of monotone systems. Clearly, in a monotone system generated by an asymptoti-
cally smootk mapping S, uniform persistence and point dissipativity together imply

the existence of a coexistence state of S. One of our ultimate purposes is to derive
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certain conditions under which the discrete semiflow {S"} has a unique strictly
positive coexistence state which is globally asymptotically stable with respect to
the positive cone P. We first state the following result. from which one can see

another advantage of monotone semiflows on the global stability.

Theorem 4.8. Let P be a normal order cone with nonempty interior. Assume
that
(1) P has the property that any two elements r.y € P have a least upper
bound element in P;
(@) S:P — P isa continuous and monotone mapping:
(wi) S{O)=0. DS(O) is compact and strongly positive. and p(DS(0)) >
1
(w) there exists a compact subset K in P such that K  attracts each point of
P under S.
Then there exists a fized point a € int(P). ie. S(a) = a. such that for any
O<zr<a, limpox S™z)=a. andforany > 0. lim inf, - S™(r) > a.
t.e. S is uniformly persistent.
Furthermore. if in addition
(v) T =a 1is the unique fized point of S in int(P).
then r =a 1is globally attractive with respect to P\{O}, i.e, lim,o+ S™(z) =

a forall > 0.

Proof. Condition (iv) implies that any bounded positive orbit in P is precompact
and the discrete monotone semiflow generated by S is point dissipative. According
to proposition 4.1, there exists a fixed point a > 0. ie. a € int(P) and

S(a) =a suchthatforany O <z<a limui,o S*(zr) = a.
Claim 1:. Forany >0, w(z)>a

Firstly. condition (iv) implies that w(z) #@. Forany small >0 such that
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cr <r, we have
S(z) > S(cx) =S5(0)+ DS(0) . zr + o(z) = zDS(0)r + of=).

Since DS(O) is strongly positive and r > O, DS(O)r > O and hence
there exists o > 0 such that for all = ¢ (0.c0].  =DS(O)x +o(z) > O.
Let € » O be the corresponding principal eigenfunction of DS(0) with
lele =1. ie. DS(O)e = p(DS(O))e. whose existence comes from the Klein-
Rutman theorem. Then there exist ¢t; >0 and ¢ >0 such that tie < S(z)
and tse <a since S(z)> 0O and > 0. Choose to = min{t;.¢2}. Then
to >0 and O < tge < S(x). O < tge < a. By the monotonicity of S. we
have

S™(toe) < S™(S{z)) = S"TY(r).

Therfore it follows from lim,_,. S™(tge) = a that «(r) > a. That is for any

r>0, lminf, 4o S™(z)>a andSis uniformly persistent.
Claim 2:. Under additional condition (v). .(r) = {a} forany r>O.

Let Po={r€P:r>a}. Define T: P, — P, by T(r) = S(rj. Then
T is a continuous and monotone mapping, which generates a discrete monotone
semiflow {T"} definedon Py. Clearly from conditions (iv)and (v). KNPy #
@ since at least a € K()Py. Furthermore KPPy is compact and attracts
all points in  Py. A completely analogous manner to the proof of theorem 3.1
shows that for any z € P;. limne T™(z) = a. That is for any r > a.
limy, 5"(z) = a. Thus for any z € P for which either O < r < a or
r 2> a holds, we have limp,_oc S™(z) = a. Now pickan r € P\ {O} and
suppose that there is no partial order relationship between r and «. From
condition (i), there exists a u € P such that u is the least upper bound

element of z and a inP. Then z < u and a < v Clearly S"(r) <
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S™(u) > a as n -+ oc. Hence it also follows that ~(z) < a. Together with
Claim 1. we have w(z) = {a} since «(z)# @. That is lim, - S™*(z) =a

forall ze P\ {O}.

]

Remark 4.7. There is a similar result on a continuous monotone semiflow [7(#)
due to Hirsch([Hir2|. theorems 3.2-3.3). We cite it here from ((MaSm]. theorem
4.1). Suppose A is a compact attractor for the semifiow U. Then A contains
an equilibrium and if A contains exactly one equilibrium. p. then every orbit

attracted to A4 converges to p.

In applications. it is very easy to verify conditions (1)-(iv) listed in theorem
4.8. However. it is not so easy to check condition (v). For the uniqueness of coexis-
tence states. in published works. some popular conditions on the mapping S are the
properties such as concavity(i.e. DS(v)-DS(u)>0 if u> v > O ). strong
concavity(for any u > O. a € (0.1). there exists n=n(u.a) >0 such
that S{au) > (1 + n)aS(u) ). sublinearity or subhomogeneity(for any u € P.
a € [0.1l.  S(au) > aS(u) ). strict sublinearity or strictly subhomogeneity(for
any u€ P, a€(0.1). S(au)>aS(u) ). and strongly subhomogeneity(for
any u € P. a€(0,1), S(au)> aS(u) ). For details. we refer to [FrZh].
[Hes]. [Hir4], [Kra], [KrNu]. [Mar], [Sm2]. (Takal]. [Taka2)]. [Zh2] and some ref-
erences therein. Those assumptions could upon occassion work in showing the
uniqueness of coexistence states in autonomous FDE or RDFDE systems since
there the coexistence states are same as the equilibra or coexistence states in a
corresponding system without delays. However. in non-autonomous systems. the
situation becomes much more complicated. We are going to deal with the unique-

ness of coexistence states in terms of the topological degree theory.

In applications, there is another exception, that is, DS(0) in theorem 4.8
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may not be strongly positive, but only positive. Then the above arguments will
not work well. We are going to give an example from which one will see that this

case often happens. Consider the following scalar monotone system

z(t) = z(t)g(t. z(t). 2(t — 7(t)))

0 €CT =C([-7".0,RY).

where g(t.z.y) is w-periodic in ¢ and continuously differentiable in each
variable. For system (4.2) to generate a monotone w-periodic semi-dynamical
system. a sufficient conditionon g is often given by the following quasimonotone

condition.

(QM). 9g(t.x.y)/0y >0 in [0.u]x CT x C+.

If g is not continuously differentiable. we refer to a corresponding quasi-
monotone condition explicitly described by the order in ¢ ([SmS]. page T78).
Clearly. the w«-periodic semiflow generated by ( 4.2) is monotone but not strongly
monotone. Moreover, r = O isatrivial «-periodic solution. Denote S(o)(8) =
Ir(w+6.0) forall 8¢ [—7=.0]. o € CT. where r(t.o) is the solution of
(£.2) with z(6.0) =o(f) in [-7".0]. Then S:C* — C* isa continuous
and monotone mapping with S(O) = O. Consider the linearized variational

equation of system (4.2) at r =0

z(t) = =(t)g(¢.0,0)

:0=C5€C.

]

Clearly :(t) = o(0)exp (fot g(s.0, 0)ds>.
By a standard argument, it follows that the Frechét derivativeof S at O.

71




DS(0):C = C is given by

w8
DS(0)o(8) = o(0)exp (/ g(t.0.0)dt)
0

) w+8

= exp (/c; g(t.0.0)dt)o(O)exp(/ g(t.0.0)dt)
w ]

= exp (/0 g(t,0,0)dt) o(O)exp<‘/o g(t.0.0)dt).

It is well-known that DS(0) is compact and positive but it is not strongly
positive. For instance. when the initial o satisfies o(8) >0 in [-77.0) and
©(0) = 0. then in the usual pointwise ordering o > 0 implies DS{0)o = O.

Furthermore. DS(0O) has ~ £ exp (foug(t.0.0)dt> as an eigenvalue with

an eigenfunction exp <fo g(t.0, O)dt) in int(C7). Hence if we suppose that
system (4.2) is point dissipative. then it follows from the following theorem 4.9
that there exists a strictly positive w-periodic solution. denoted by r*. for
system (-.2) provided

/ g(t,0.0)dt > 0. (3.2)
0

Now let us analyze under what conditions in this weak case. there still exists
a strictly positive fixed point of S which is also globally attractive. As demon-
strated in the above example. the following theorems will play important roles in

applications.

Theorem 4.9. Let P be a normal cone with nonempty interior. Assume that
(1) S:P — P 1isa continuous and monotone mapping:
(1) S(0)=0, DSO) is compact and positive. Moreover. there ezists at
least one eigenvalue, denoted by ~ of DS(O) such that ~ > 1. which
has a corresponding eigenfunction in int(P):

(i) there exists a compact subset K C P such that K attracts each point of
P under S.

=]
(8]




Then there ezists a fized point a € int(P), ie, S(a)=a with a> 0.

Proof. Let e € int(P) with |leilg =1 such that DS(O)e = ~e. For small
z>0,

S(ce) = 5(0) +:DS(O)e + o) = ~ze + o(z).

1

Since % > 1. e € int(P). there exists certain o0 > 0 such that for any

n

€(0.50]. (7 —1)ce + o(z) € int(P). and hence
S(ce)—ze=(v—1)ce +o(s) > O. i.e. S(ze) > ze > O.

So we get a nondecreasing sequence v+ = {§ "(c€)}3Z, which is precompact in

P from assumption (iii). Therefore there exists an a € P such that
S™"(ze) Sta. as n — x.

Clearly. S(a) =a and a & int(P) since a > S™ze) > ze > O for all
n>1.

d
Remark 4.8. Here we do not require that S is compact. but we need the corre-
sponding eigenfunction of ~ to be strictly positive. From another Krein-Rutman
theorem(proposition 4.2). we can only draw the conclusion that p(DS(0)) >0

is an eigenvalue of DS(0) with an eigenfunction r > 0. not 1> O.

Theorem 4.10. Let P be a normal order cone with nonempty interior. Assume
that
(1) P has the property that any two elements I.y € P have a least upper
bound element and a greatest lower bound element in P:
(¢t) S:P — P isa continuous and monotone mapping;
(Wi) S(O) =0, DS(0) is compact and positive. Moreover. there ezists at
least one eigenvalue. denoted by ~+ of DS(O) such that v >1 and

has a corresponding eigenfunction in  int(P);
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(1) there ezists a compact subset K in P such that A attracts each point of

P under S:

(vJ z =a 1isthe unique fized point of S in int(P), where r=a isa fized

point of S as showed in theorem 4.9.

Then r =a 1is globally attractive with respect to int(P). ie lim,_. S™(z)
a forall > 0.
Proof. The proof is standard and analogous to those of theorems 4.4 and 4.9. We

omit the details.
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CHAPTER 5

A PREDATOR-PREY SYSTEM WITH PERIODIC DELAYS -

5.1. Introduction

A basic problem in population dynamics is to derive crireria for the long-
term coexistence of interacting species. The main object of this chapter is to
study the problem of coexistence for two Interacting species. one predator and one
prey. modeled by the following periodic Gause-type predator- prey system involving

discrete but periodic delays

ILi{t) = r(t)git. rit). it — vty — yltipit. rit)
y(t) =yiti{—r(t) —cit)pit.rit —ait)) 13.1
ris)=0o(s)20. foralls€ —=.0 and yi0i >0

where . = d/dt. To = maxX,e ;{7it).o(t)} and where rit;. y(t) rep-

resent the population densities of prev and predator at time t. respectively.
g(t.z(t).z{t ~ 7(t))) is the specific growth function of the prey in the absence of
predators. p(t.z(t)} is the predator response function. which satisfies p(t.0) =
0 and OJp(t.z)/0z > 0. which are natural assumptions since if there are no
prey. the predator can not get energy. and the more prey there are. the more en-
ergy for the predators. c¢(t) is the energy conversion efficiency function which

could be interpreted to represent energy transfer from prey to predators since

This chapter is adopted from [PeFr2].




there must be some energy loss during the conversion. The transfer process is not
uniform but changes with the varying environment. The delays r(t) and oft)
both reflect certain time lags in the energy transfer. and also vary with the season
and the environment. r(¢). a nonnegative function satisfying j;;’ r(t)dt > 0.
represents the death rate of the predator. and implies that the predator will die
out in the absence of prey. Here we suppose that all functions g(t....).  p(t..).
r(¢).  c(t). 7(t) and o(t) are periodic in ¢t with constant period ..
This could be due for example to a periodically varying environment. We further
assume that all functions are smooth enough such that solutions to initial value
problems exist uniquely and are continuable for all positive time. We are going
to show the dissipativity, uniform persistence and the existence of strictly posi-
tive periodic solutions of the retarded functional differential equation system (3.1)

which has the feature of periodicity of time delays due to gestation and other birth

considerations in a periodically varying environment.

This research is motivated by the laboratory work of the group led by Hal-
bach [BWH]. [Hal]. [Ha2]. [Ha3]. HSWK]. [WBH] on rotifers and a mathematical
analysis by Freedman and Wu [FrWu] which is the first paper with periodic delay
considered in the literature. Laboratory work showed that in laboratory popu-
lations. periodic phenomena due to time delays in gestation occured. and that
the length of delay was a function of the controlled temperature. These peri-
odic variations in population numbers also occured when the temperature itself
was varied periodically(thereby inducing periodic delays) on a daily basis. This
leads to a natural conjecture that there should exist periodic solutions in such
delay models with periodic delays. In [FrWu]. such a conjecture was proved for
single-species delay models with periodic delay. It was shown that if the self-
inhibition rate is sufficiently large compared to the reproduction rate. then the

model equation has a globally asymptotically stable positive periodic solution.

6



However, their models are of Lotka-Voterra tvpe and some of the technical steps in
their method of proofs require the Lotka-Volterra format. The main tools applied
there are Horn’s fixed point theorem([Horn]) and Lyapunov-Razumikhim stabil-
ity arguments([Halel]. [Kul]). More specifically, the models discussed in [FriWu]
belong to intra-species cooperative type and generate monotone semiflows. Hence
the theory of monotone dynamical systems could be applied. Following the work
of [FrWul]. another discussion on Lotka-Volterra models with periodic delays was
given by Wang, Chen and Lu([WCL]) in which some easier verifiable conditions
were obtained for there to be a globally asymptotically stable periodic solution.

Similarly, their analysis still depended on the Lotka-Volterra formact.

It is difficult to describe completely the dynamics of system (5.1) since our
model generates an infinite-dimensional non-monotone semi-dynamical system( ¢t >
0 ). Hence we first discuss the long-term behavior described roughly by dissipativ-
ity and uniform persistence. The advantage in doing this is that it provides criteria
for long-term coexistence but does not require a complete knowledge of the dvnam-
ics of the system. There have been extensive studies on uniform persistence(see
the review paper [HuSc] or the survey paper | Wa2] and references therein). Most
of those discussions have been devoted to those systems modeled by autonomous
differential equations(ODEs, FDEs and reaction-diffusion equations). Because of
seasonal fluctuations and periodic availability of food. the question of a periodi-
cally varying environment has been attracting more and more attention [BrHe],
[BuFr], [FrPel], [Go], [Hes], [Sm1], [Sm4], [Sm3]. [Sm7]. [YaFr], {Zhl], [ZhHu].
Generally, a discussion of periodic systems is much more difficult than a discus-
sion of autonomous systems, particularly for the study of stability of a periodic
orbit. It is easier to discuss a periodic system generating a monotone periodic
semiflow in terms of the theory of monotone dynamical systems(continuous or dis-

crete) due to Miller, Kamke, Hirsch. Matano. Smith, Thieme and Dancer. Hess

—p—
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(see [DaHe], [Sm8] and references therein) than to discuss a periodic system with-
out any monotonicity. However for a nonmonotone periodic system. specifically
one which generates an infinite-dimensional dynamical system. a discussion of the
dynamics is likely to be considerably more difficult. Qur analysis is based on
persistence theory. dissipativity theory, infinite-dimensional system theory and a
standard but important comparison argument.

The organization of this chapter is as follows. Some related preliminary
results on uniform persistence. global attractivity and periodic coexistence states
for dynamical systems(continuous or discrete) are introduced in section 5.2. A
nontrivial dissipativity discussion follows in section 5.3. In section 5.4. we mainly
show that system (5.1) is uniformly persistent. A brief discussion of periodic
coexistence states and some remarks are also contained in section 3.4. Finally. we

briefly explain our main result with biological implications.
5.2. Definitions and Preliminary Results

In this section we establish our terminologies and give some background ma-
terial on uniform persistence as well as the existence of a global attractor and
coexistence states for either continuous periodic or discrete semi-dynamical sys-
tems.

Let (X.d) be a complete metric space with metric d and suppose that
T(t): X - X.,t>0, isa CO%semigroup on X, that is. TO)=I1.T(t+s) =
T(t)T(s) forall t,s >0, and T(t)r is continuousin (t.r) € [0.oc) x X.
The positive orbit 5+ through r € X is defined by ~% = Ueso{T ()2}

Given a subset B of X, the positive orbit ~*(B) is given by

+*B) = | vH).



The w-limit set of z € X is defined as
<(z) = [ ct{J{T(t)e}
>0 >
This is equivalent to saying that y € «(z) if and only if there is a sequence
th #oc as n—oc suchthat T(t,)r >y as n — x. Similarly. we define
the w-limit setof BC X as
<(B)= [ Cl|JT®B
320 t>q

where T(¢)B = |J,cg{T(t)z}. This is equivalent to saying that y € «(B)
if and only if there exist sequences ¢, — oc and {z.} © B such that
T(tp)r, -y as n — . Note that the set U,egw(r) is generally smaller
than the set «(B).

Aset B C X is said to be invariant if T(¢)B = B for all ¢ > 0.
This implies. in particular. that there is a negative orbit passing through each
point of an invariant set. This observation sometimes plays an important role. A
nonempty invariant subset M C X is called an isolated invariant set if it is the
maximal invariant set of a neighborhood of itself. The stable (or attracting) set
of a compact invariant set A, denoted by 117 A). is defined as

Wi A)={reX:w(z)#©@ and «(z)C A}

From this definition, we see that if A consists of a single point r* and for

every r € X. ~%(z) is precompact. then
W{r'h={reX :w@)={z*}}={zreX: tli)m T(t)r =2"}.

This simple observation will play a role in proving uniform persistence.
Aset A is said to be a global attractor if it is compact, invariant and for

any bounded set B C X, §(T(¢)B.A) =0 as t— oc. where 0(B,4A) is
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the unsymmetric distance from the set B to the set A -

d(B. A) = sup inf d(y. ).
yeBT€A

Specifically. this implies that w(B) is nonempty and belongs to A. A global
attractor is always a maximal compact invariant set.

The semigroup T (¢) is saidto be asymptotivally smooth if for any bounded
subset B C X. for which T(¢)B C B for all t 2> 0, there exists a compact
set K CB suchthat §(T(¢)B.A)—0 as t— oc. Hence «(B) C K. The
semigroup T (t) is said to be point dissipative (compact dissipative) if there is a

bounded set B C X that attracts each point of X (each compact set of X ).

M

that is. there is a bounded nonempty set B C X such that. for any point .«
X (for any compact set A C X ), thereisa ¢3 = to(r.B) ( tg =to(N.B) )

such that T(t)r € B ( T(t)K C B )for all ¢t > t,. In the classical theory

of differential equations. “point dissipative” is often referred to as “ultimately

bounded™.

Suppose that S : X — X is a continuous mapping. The set {S"}X, is
said to be a discrete semi-dynamical system generatedby S if S%=J] ~§mTn =
S™S" for all integers m.n > 0. For each point r € Y. the positive orbit
vT(z) through «r is defined as +T(z) = Unzo S™(r). The w-limit set
«(r) 1is defined as

w(z) =) cl S*).

n>0  k>n
For any set B C X, define the positive orbit vt(B) and the w«-limit set

w(B) of B as
++(B) = | v* (),

reB

wmzﬂaU§w)

n2>0 k>n
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where S(B) =U,cp S(z). Clearly, y € w(z) ifand only if there is a sequence
of integers n; — oc such that S™(r) — y as J = x while y & »(B)
if and only if there is a sequence {z;} C B and a sequence of integers n, —
> such that S™(r;) — o as j — oc. Similarly. the set Usegw(r) s
generally much smaller than the set w(B).

Aset B CX issaid to be invariant under S if S(B)y=B. Aset A
1s said to be a global attractor if it is compact. invariant and for any bounded set
BcX, §S*B).A)—=0 as n— <.

A continuous mapping S : X — X is asymptotically smooth if for any
nonempty closed bounded set B C X for which S(B) C B. thereisa compact
set N C B such that KA attracts B. A continuous mapping S on a
complete metric space X is said to be point dissipative (compact dissipative)
on X if there is a bounded set B C X suchthat B attracts each point in
X (each compact set of X ) under S.

A continuous mapping S: X — X s a-condensing if § is hounded.
1.e. takes bounded sets into bounded sets. and a(5(4)) < a(d) for any bounded
set 4 C X with a(d) > 0. Here a(d4) is the Kuratowski measure of

noncompactness of 4, defined by
a(4) = inf{z : A has a finite cover of diameter < =}

A continuous mapping S :.X — X is an a-contraction of order k. 0 <
k<1, if a(S(4)) <ka(A) forall boundedsets A C X for which S(4) is
bounded.

The above definitions are taken from [Hale2]. In what follows. for some
unexplained terminologies, we still refer to [Hale2].

Now suppose that T(¢t): X — X. ¢ > 0. isan w-periodic semiflow

on X with constant period w« > 0, that is, T(0) = I.T(t+w) = T()T(w)
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forall ¢>0 and T(t)z is continuousin (t.z} ¢ [0.<) x X. A point r*
corresponds to an w-periodic orbitif T(t+w)r* = IT(t)r* forall +>0. For
an w-periodic semiflow. the point z* is exactly a fixed point of its associated
Poincaré mapping T(w).

We further assume that the metric space X is the closure of an open set
X% thatis, X = X°(JOX°, where 9X° is the boundary of X9, and
X% is positively invariant. i.e, T(t)X° C X° foral ¢>0. We say that a set
0" in X° isstrongly bounded in X° ifit is boundedin X and there is an

n >0 such that

d(z.0X°)>n forallz el

For the purpose of emphasis. we note the following two definitions.

Definition 5.1. A periodic semiflow T(t). ¢>0 (or discrete semiflow {S"}X, )
18 said to be uniformly persistent with respect to (X°, 9X°) ifthereisan n >0
such that for any r € X°  liminf,_, . d( T(t)x.9X°)>n (or lim infp_ o d(S"r.0X%) >

n J.

Difinition 5.2. A point z* s said to be a coezistence state of the discrete
semiflow {S™}7, if 1™ isafized point of S in X°. e p* € X% and

S(z*) =r*. A coezistence state of a periodic semiflow T(t). t> 0 refers to

a periodic orbit in XO,

The following are some basic facts that will be applied to discuss uniform

persistence and coexistence states.

Proposition 5.1([Hale2], theorem 24.7). If S X - X s completely

continuous and point dissipative, then there is a connected global attractor A.

Proposition 5.2([FrSo] and [HoSo]). Let S : X = X be a continuous

mapping with S(X%) C X°. Assume that
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(1) S:X = X has a global attractor A:

(1) let Ap be the mazimal compact invariant set of S in OXPO. As =
Uren, «(z) has an isolated and acyclic covering Uf=l M; in 0X°, that
is, A C Uf=1 Mi. where My, M,. ... M. are pairuise disjoint.
compact and isolated invariant sets of S in 9X° such that each M,
i also an isolated invariant set in X. and no subset of the M, s forms

a cycle for Sz = S|A45 in Aj;.

Il
—
H
!\'J
>

Then S s uniformly persistent if and only if for each IM,;.

W (M) X° = @.

Proposition 5.3([Zh1]). Let T(t) be an .-periodic semiflow in X with
T(t)X° C X° +>0. Assume that S = T(«) satisfies the following condi-
tions:
(1) S is point dissipative:
() S s compact: or alternatively. S is asymptotically smooth and ~7(U)
1s strongly bounded in  X° if U is strongly bounded in X©°.
Then the uniform persistence of S with respect to (X°.9X°) implies the

uniform persistence of T(t) with respect to  (X°.9X0).

Proposition 5.4([Zh1]). Let S: X — X be a continuous map with S(X%) C
X9 Assume that:
(1) S:X =X s point dissipative:
(11} S is compact; or alternatively, S 1is a-condensing and ~F(U7) s
strongly bounded in X° if U s strongly bounded in X0©;
(111) S is uniformly persistent with respect to  (X°.9X0°).
Then there ezists a global attractor Ao for S in X% relative to strongly

bounded sets in X° and S has a coezistence state 1y € Ag.
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5.3. Dissipativity

In this section. we discuss the dissipativity of the following system:

2(t) = z(t)g(t. x(t). x(t — 7(t))) — y(t)p(t. 2(t)) & F(t.z(t). 2(t — 7(t)). y(2))
(5.2)q
y(t) = y(&)(=r(t) + c(t)p(t. z(t — a(t)}) £ y(¢)G(t. 2(t — o (t)). y(1)).
(5.2)

Denote 7 = maxo<i<u{7(¢).0(t)}. Let X = C({~7.0]. R)xR. For any
(0.9) € X. define J(o.y)l| = max-r,co<010(6)] + lyl. Then (X.[.[) isa
Banach space. Let X* = {(0.y) € X :0(8) >0 forallf c [—7.0] andy >
0} with a metric d deduced from the above norm .. Then (X*.d) is

a complete metric space. Denote
X°={(o.y) €X7:0(0)#0 and. y # 0}

and

9X° = {(o.y) € XT: either o(0)=0 ory=0}.

It is easy to verify that X° and 9X° are relatively open and closed subsets
of X7*. respectively, with X+ = X°Jax° and Xx© N9X° = @. For any
pair of initial values (o.yo) € X¥. let (r(t.o.y0).1 y(t.o.ya)) be the solution
of (5.2) with z(6,0,y0) = o(f) forall 6 e [~70.0] and y(0.0.y0) = yo.
Clearly (z(t.o.y0),y(t.0.y0)) € X*. Define T(t)(o.yo) € XT. t>0. by
T(t)(o(0).y0) = (z(t+6.0.y0) y(t. 0. 0)). —10 <86 <0. Then T(t), t>0
is a continuous w-periodic semiflow satisfying T(¢)X° ¢ X° and T(t)oX° C
0X° forall ¢ >0. Itis well-known that T (t) is completely continuous for
all t> 7. We say that T(t) is strongly point dissipative in  X° if there is
a strongly bounded set B C X% such that for any (o.yo) € X° there is a

to = to(@,y0. B) such that T(t)(o.yo) € B for all t> t,.
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In applications. we usually need to suppose that the considered syvstem is
point dissipative. i.e. all solutions are ultimately bounded. For syvstem (3.2).
point dissipativity is not trivial and in fact is rather complicated. We will impose

the following assumption on (3.2) for future discussion:
(PDj. System (5.2) is point dissipative.

In the remainder of this section. we will concentrate on discussing in detail
under which conditions (PD) could be realized. For this purpose. we further

assume:

(H1). There exists a constant A > 0 such that 0. K] is globally attractive
for the subsystem:

I(t) = z{t)g(t. z(t). z(t — ~(t))) (5.3)
with respect to C* = C{[—70.0].R7).

Theorem 5.1. Suppose that there ezists a Lipschitz function g,(r) such that
sup{g(t.1.y): 0<t <.y >0} < gy(r)
for all r>0. and for some K > 0.
gi1{r) <0 ifr > K.

If z(t.o) is a solution of (35.3) with initial function o € C*. then 0<

z(t.o) < =(t). where =(t) satisfies

:=2:01(2) (5.4)

with initial value =(0) = sup{o(f) : -7 < 6 < 0}. Moreover, r(t.0) < K

for t  sufficiently large. and if 0 < o) < K foral 6 c [—70.0] then
0<z(t.o) <K forall t>0.




Proof. We observe that C* is positively invariant with respect to (3.3). There-

fore. the periodicity of g(t. z(t). z(¢t — 7(t))) in ¢t implies that

g(t.z(2). z(t — 7(t))) < g1(2(2))

which gives

z(t)g(t. £(t), z(t — 7(t))) < z(t)g1(2(2))

whenever r(t) > 0. Hence a standard comparison argument shows that

r(t.o) < =(t) forall t > 0.

Furthermore. it is well-known that [0.A7] is globally attractive with respect
to (5.4) under the assumption that g¢,(r) < 0 whenever r > A Hence
z(t.o) <K for t sufficiently large, that is. z(t.o) is ultimately bounded. If

0 <o) <A forall 6€[-7,0]. then 0 < 2(0) < A which implies that

0<:z(t)<K holdsforall t>0. So 0<r(t.o) <K forall t>0.

0

Remark 5.1. The hypothesis on function g given in the above theorem could be

met by any functions of the form

g(t. z(¢). 2(t — 7(¢))) = a(t) — blt)z(t) — c(t)z(t — (¢))

where a(.),b(.).c(.),7(.) are w-periodic functions and b(t) > bg >0 for all

t>0.

In applications, there is another class of models in which the specific growth
functions have positive a feedback like a(t)+c(t)z(t—7(t)) and a self-inhibition.

that is,
9(t.2(t), z(t ~7(t))) = a(t) — b(t)a(t) + c(t)z(t ~ (t)).
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In [FrWu], Freedman and Wu discussed the following model
£(t) = z(t)(a(t) — b{t)z(t) + c(t)z(t — 7(1))) (5.3)

where a(.).5(.),¢(.),7(.) arecontinuously differentiable. nonnegative w-periodic
functions and a(t) >0, b(t) > 0. We state one of their main results here. The
main tools used there are Horn’s fixed-point theorem and Lyapunov-Razumikhim

stability arguments. For details, we refer to [FrWu].

Proposition 5.5. Suppose that the equation
a(t) — b(t)k(t) + c(t)k(t - r(¢)) = 0

has a positive. w-periodic. continuous differentiable solution k(t). Then the
model equation (5.5) has a positive w-periodic  solution Q(t). Moreover. if
b(t) > c(t)Q(t —7(¢))/Q(t) forall te€[0..1. then Q(t) s globally asymptot-

wally stable with respect to positive solutions of (5.5).

Based on proposition 5.5, we are able to write out immediately the following

result.

Theorem 5.2. Assume that the conditions of proposition 5.5 are satisfied. Then
(H1) holds for system (5.5.
4

Now let us return to system (5.2). We have already observed that X T is
positively invariant with respect to (5.2). In what follows. we will only consider
(5.2) in X*. Since P(t,0) =0 and Ip(t.z)/dr > 0, forall ¢ > 0. it
follows that under (H1), z(t,0,y0) is ultimately bounded with K as an upper
boundary. In order to confirm (PD), we will need to show that y(t.o,yo) is
also ultimately bounded. However, the growth of species v has no logistic self-

limitation. This makes the discussion of species y's dissipativity much more dif-
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ficult. The following is our first result on the dissipativity of system (5.2) with

some specificity.

Theorem 5.3. Assume that (H1) is satisfied and c(t) = c, o(t) =0 for all

t € [0.w]. Then system (6.2) is point dissipative with q globally attractive region

A={(o.y) e XT:0< K. co+y < M}

where

M =sup{cz(1 + g(t.r,y)/r(t)) : 0 St<w. 0<z.y<RA}.

Proof. Since c¢(t)=c. o(t)=0 forall te [0.<]. system (5.2) becomes

£(t) = x(t)g(t. z(t). z(t — 7(¢))) — y(¢)p(t. 2(t))

y(t) = y(t)(=r(t) + cp(t. 2(t))).
Denote v(t) = cxz(t) + y(¢). Then we have

C(t) = ez(t) + y(t) = cz(t)g(t. z(t). x(t — 7(¢))) — r(t)y(t)
=r(t)ex(t)(1 + g(t.2(t). 2(t — 7(¢)))/r(t)) — v(t)]

Sr(t) (M —v(2) for t large.

Hence limsup, . v(t) < M. that is, limsup,_,(cz(t) + y(t)) < M. This
completes the proof.

a

The proof of theorem 5.3 is analogous to that for the autonomous case. For
the more general case, we have the following assertion. Comparing their proofs.

one can easily find some difference between autonomous and periodic cases.
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Theorem 5.4. Assume that (H1) is satisfied. Then system (5.2) is point dissi-

pative provided that

/ min{dp(t, z)/0z : 0 < z < R}dt > 0. (*1)
0

Proof. We divide the lengthy proof into several steps.

Step 1. It follows from assumption (H1) and proposition 3.1 that there exists a
compact subset A C [0.A] suchthat A4 s positively invariant and attracts all
solutions of subsystem (3.3) with respect to Ct. Actually. A could further
be chosen as the global attractor of system (5.3) with respect to C*. whose

existence is guaranteed by theorem 2.2 in (HaWa]

Note that if we view y as
a parameter in  (35.2),. then for any y 2> 0. the compact set A is still
positively invariant and globally attractive for (5.2); with respect to C*+. So
without loss of generality, we first suppose that r € A. Specifically. we have

that 0 <r < KA.

Step 2. We consider the case first where
/OM[—r(t) + c(t)p(t. K)jdt < 0.
Since X7 is positively invariant, from (5.2) we have
y(t) < y(t)[=r(t) + c(t)p(t. K)].

Then a standard comparison argument and Floquet theory on periodic linear sys-

tems imply that lim; .. y(t) = 0. Hence system (3.2) is point dissipative.
Now suppose
/ [—r(t) + c(t)p(t. K)|dt > 0.
0
Step 9. We show the following argument.
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Claim 1:. There ezists a constant up* >0 such that forany p>p* and for

the following induced system
z(t) = z(t)g(t, z(t), 2(t — 7(t))) — up(t, z(t)). (5.6)
r =0 1s globally asymptotically stable.

Indeed. it is clear that C*([~7*.0],R). where r* = max{r(¢) : 0 <t < u}.
is positively invariant with respect to system (5.6) and r =0 is a steady state
of system (5.6). The linear variational equation of system (35.6) with respect to
r=0 1s

u(t) = [g(¢.0.0) — udp(t.0)/dz]u(t).
Therefore if u > [ 9(t.0.0)dt/ ["[Op(t.0)/dx]dt £ 1y. then r=0 is locally
asymptotically stable with respect to  C*+([~+*.0]. R). Denote g* =max{g(t.r.y) :

0<t<w, 0<cr.y<A} I followsfrom (5.2), that
z(t) < g"z(t) — up(t. z(t)) < g"x(t)

which implies that if g¢* < 0. then the claim is done. Suppose g* > 0. By
the well-known mean value theorem. for any given r € [0.K]. there exists a

€€[0.r] C[0.K] such that

p(t.x) = p(t.0) + 20p(t.£)/dz = rdp(t,€)/0z > rmin{dp(t.2)/dr : 0 < r < K'}.

from which. if we denote a(t) = min{dp(t.z)/8z : 0 < r < K}. it follows that
£(t) < g™ — pa(t)lz(t).

Hence when u > wg*/ fod a(t)dt £ 4, where one can see why we require condi-
tion(*1), a standard comparison argument again implies that r =0 is globally
attractive with respect to system (5.6). Let u* = max{pg.u;}. Then for any
#2p*, =0 Iis globally asymptotically stable with respect to (3.6).

Step 4. We show another argument.
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Claim 2:. liminf, . y(t) < u".

Otherwise. assume that there exists certain T >0 such that y(t) > pu* for all

t>T. Thenforall t>T. itfollows from (5.2), that
2(t) < z(t)g(t.z(t), z(t — 7(t))) — p"p(t. £(¢)).

Then Claim 1 in step 3 tells us that lim,_, r(t) = 0. Hence for such a fixed

constant £ >0 satisfying
/ [—r(t) + c(t)p(t.z)}dt < 0 (*2)
0

there exists a 77 > 0 such that 0 Sz(t) <z forall t>T, «T. Therefore

as we did in step 2. we have
y(t) < [=r(t) + clt)p(t. =)jy(t)

forall t>Ty4+0*+7T. where o* = max{o(t): 0 <t < «}. which implies that
limi y(t) = 0. This contradicts our assumption and thus liminf,_, . y(t) <
#*. Note that such an = satisfying (*2) does exist since p(t.0) = 0. Fur-
thermore. note that 7, could be independent of initial conditions for all those

solutions starting in the compact set 4. of system (3.6) where u =",

Step 5. Let 4(I) = max{—r(¢) +c(t)p(t.l) : 0 <t < w} for all ! > 0.
Then 4(!) is nondecreasing with respect to [. It follows from the assumption

fo';[—r(t) + ¢(t)p(t,K)]dt > 0 that d(K) > 0. Consequently, if J(R) = 0.

then —r(t) +c(t)p(t.K) =0 forall te [0,«] and hence
y(t) Sy(t)[=r(t) + c()p(t. )] = 0. ie () <o.

From the above, together with Claim 2, that is lminf,, . y(t) < p*. we get
that

limsup y(¢) = lim infy(t) < u*.
t—oc t—=x
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This means that system (5.2) is point dissipative.

Step 6. If §(K) > 0. denote dy = O(A’). Recall that functions r(t) and

p(t.z) satisfy the following properties:

/_, r(t)dt > 0,
0

p(t.0)=0 and 9p(t.z)/dr >0.

Hence, there exists an zg > 0 such that

§+w
/ [~r(t) + c(t)p(t.co0)]dt < 0 forall £ > 0. (*3)

S
Fix 20 >0 satisfving (*3) and consider

z(t) = z(t)g(t. z(t). 2(t — (1)) — pu"p(t. 2(t))

r(0) € A forall 6 ¢ [—77.0].

From Claim 1. there exists a T* >0 such that 0 Sr(t)<zo forall t>7T
uniformly for all z(t) satisfving (5.7). Let \f = max{A. " expldo(T* + o +
«)[}. which is obviously a constant independent of initial data. Evidently. (H1)
implies that

lim sup z(¢t) < M.

t— ¢

We are going to show that lim SUp; o ¥(t) < M. Assume conversely that
limsup y(t) > u” expldo(T* + o~ <)l > u.
t—oc

Together with Claim 2, l.e, liminf, .. y(¢) < u*. there exist large t; >¢, >0
suchthat y(t;) = u*,  y(t2) = u” exp[do( Ttot+w)] and y(t1) < y(t) < y(ty)
for all ¢ € [t;,t5]. Recall that

y(t) < y()[=r(t) + e(t)p(t, K)]
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which implies that

ta
y(ta) < y(tl)exp{/ [—r(t) = c(t)p(t. K)]dt} < y(t1)expldo(ts —t;)}.
t

Hence ¢, —t; > Ln &) _ 7~ +o'+w. le. ) +T +0" +o <t,. Thenit
follows that

0<z(t) <z forallt, + T <t<t,

and

y(t) S y(t)[—=r(t) + c(t)p(t. 0)] forallt) + T*+o" <t <ty

Specifically. we have
ts

ylt2) S yltz —w)exp{ [ T=r(t) + c(t)plt. 20)]dt} < y(ts)

to—w
since  y(t1) < y(tr—w) <y(ts). to—(t;+7T" +0%) 2« and the last inequality
1s from (*3). This contradiction shows that

limsup y(t) < u* exp[do(T* — 5~ + ).

t—oc

and therefore limsup,_, . y(t) < M.

Step 7. We remark that if w: didn't require r € A. the conclusion is still
true and our idea of the above proof still works. Indeed for any (o.yg) € X'T.
denote by (z(t),y(t)) the corresponding solution of system (5.2) with initial
values (o,y0). Then there exists a I, = Th(o.yo) such that r(t) € A for
all t>T,. In step 6. since we were discussing the long term behavior of y(t).
without loss of generality, we could suppose that t; > ¢, > 75 + ¢*. Then the
proof we did in the above steps is still valid. Except fora T, shift delay of time.

every step is exactly the same.

]
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Remark 5.2. Biologically. the predator response function p(t.z) always satisfies

dp(t.r)/dr > 0. and so condition (*1) is automatically satisfied.

Remark 5.3. This result is an improvement of those in the related literature (see.

for example [CCH]. [ZhHuj. [Zh1] and related references therein).

5.4. Uniform Persistence

In this section. we are going to prove that system (35.2) is uniformly persistent
under certain conditions in terms of the behavior of the flow on AGH

Since the period « > 0. there exists an integer m >0 suchthat me >
79, Thereforeif we denote U =T (mw). itiswell-knownthat [ is completely

continuous. As an immediate result of proposition 5.1. we then have the following.

Theorem 5.5. Under (PD). there is a connected global attractor A for U in
X-.

Clearly. (0.0) is a rrivial solution of system (5.2). If system (3.2) is uni-
formly persistent. then the trivial solution (0.0) must be unstable. The lin-

earized variational system of (5.2) about (0.0] is

()= ("2 2 ().

We see that the following condition could be imposed on system (3.2) in order

that it be uniformly persistent.
(H2). [ g(t,0,0)dt > 0.

For system (5.2) to be uniformly persistent. we further require the following

assumptions:

(H3). System (35.3) has finite isolated and acyclic mw-periodic solutions {z7}, C

C* which is the global attractor of (5.3) with respect to C+\ {0}.
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(H{). Foreach z7, fomw[—r(t)-i-c(t)p(t.x,‘(t—a(t)))]dt >0. (=1.2...n.

Theorem 5.6. Under (PD). (H2). (HS). and (H{). U s uniformly persistent
with respect to (X°.9X9).

Proof. In order to apply proposition 5.2. we first need to know the structure of
As = U(o.y)ea.‘{“ «w(o.y). Let y = 0. Then (52), becomes (3.3). By
the assumption (H3). {(0.0)}U{(2:.0)}™, is the w-limit set of (3.2) on

C*x{0}. If r,=0. then (5.2), becomes
y(t) = —r(t)y(2). (3.8)

Clearly. for system (5.8) the trivial solution y = 0 1s globally asymptotically

stable with respect to R* provided fo"d r(t)dt >0 holds. Hence we get

As = {(0.0).(z}.0). ....(r5.0)}

which is disjoint. compact. isolated and acvclic for [” on 9X?.

Denote 1y =(0.0). ;= (r7.0). i=1....n. We prove that
W) [)X°=@  foralli=0.1....n
Recall the definition of the stable set of a compact invariant set A,
W (A)={z€X:w(z) #2 and <(z)C A}

Here each M; consists of a single point (z7.0) and U is completely contin-
uous which implies that for every v € X+. {T™(v)}e, is precompact. Hence
for any v € W*(M;), it follows that impo o U™(v) = (£7.0). Thus to prove
W*(M;)N X° = @. it suffices to show that for each M. i=0.1,....n. there
exists a d; >0 such that

limsup d(T7™(v). M;) > 6; for all v € X°

n—oc
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which is equivalent to proving that there exists a d; > 0, such that for any
v € V(M 6) ) X%  where N(M;.48,) is the d;-neighborhood of M, in
X7. thereexistsan n; =n;(v) >1 such that U™(v) € V(M. di). We firse

consider M;. Since
/ [(=r(t) + c(t)p(t, 2] (t — o(2)))]dt > 0.
0
there exists an =9 > 0. such that for any =z € (0.29). we have

[ " lor(t) + e(tplt. 212 = () — <ldt > 0.

Denote a = maXo<t<mw £1(t) + 1. For any fixed = ¢ (0.z9). by the uniform
continuity of G(t.z(t — o(t)).y(t)) on the compact set [0.mw] x [0. 4] x [0.al.
there exists a constant 6. € (0.1) such that for any (rp1,y1) and (r2.y2) in
[0.4] x [0.a] with |21 = r2sup < be. Y1 —ya2| < 5. and f € 0.mwl. we
have

IG(t.z1(t — o(t). 41 (t)) — Glt. ra(t - a(t)). y2(t))] < <.
where . € C* is a constant function and |« lsup 1s the sup-norm in C-.

Since

lim T(.)(v) = (z7(.).0)

U—*.‘Il

uniformly for all t € [0.mw]. there exists a constant 61 >0 such thar for any

v € .V(M;.d;), it follows that
lz(t + . v) —z}(t + sup < I

and ly(t,v)| <8, forallte [0. mu].

Assume, by contradiction, that there exists a to € N(M1,6,)NX° such

that forall n>1, Un(y)e N(My,4;). Forany ¢ >0, decompose ¢t into
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t=nm« +t;, where ¢ €[0,mw) and n= [t/mw]. the greatest integer less

than or equal to ¢/mw. Then it follows that
il‘(t +.0g) — Ir(t + .),,,up = ll‘(tl + ..[.n(l.'o)) - l‘;(tl + -)jsup < é.

and

ly(t.vo)| = |y(t;. U™ (vo))| < 4.

forall ¢ > 0. Denote (x(t).y(t)) = (x(t.v0).y(t.vo)). Then by the periodicity

of G(t.z.y) int. it follows that
|G(t.2(t — o(t)). y(t) = G(t. 21 (t = 3()).0)] <z forall ¢ > 0.
which implies
G(t.z(t = o(t)).y(t) > G(t. zi(t = 0(t)).0) — = for all t > 0.

Consider

2(t) = z(t)(G(t. x{(t = o()).0) — 2)

=(0) = y(0) >0 since g € X°.

Then a standard comparison argument implies that

y(t) > =(¢) for all t > 0.

where =z(t) = :(O)exp[fot(G(s.rf(s —0(s)).0) —z)ds]. However lim,, . z(¢) =

muw

g l=r(t) =

+>x since z(0) > 0 and fo ""(G('t..rf(t —o(t)).0) — =)dt =
c(t)p(t.x{(t—a(t)))—;‘]dt > 0. Hence limsup,__y(t) = +x. This contradicts
our assumption that U™ (vg) € N(M], 01) forall n>1. Thusforall @ € XO.

we have

limsupd(T"(v), My) > 4,.

n—oc

In the same way, from fom”[—r(t) + c(t)p(t. z(t — a(t)))ldt > 0. we can

prove that there exists a 4; >0 such that for all v € X9 it follows that

imsupd(U™(v), M;) > 6; foralli = 2,....n.

n—2oc
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There is some difference in discussing Mo since intuitively the growth of species
I 1s not of Kolmogorov-type. Fortunately, this shortage will not result in causing
our idea not to work. Indeed the properties of the function p(t.r)., namely that
p(t.0) =0, Op(t.z)/0z >0 imply that lyp(t.z)l < =z for arbitrarily small
¢ > 0 whenever r and y are both sufficiently small but positive. Then
the remaining discussion is analogous provided fou g(t.0.0)dt > 0. We omit the
details. Thus W*(M)NX°=0 forall i=0.1.....n.

Note that in the above, we actually have also proved that {M; - =
0.1....n} isisolated and acyclicfor U" in X~T. Then the uniform persistence
of U" with respect to (X°.9X°) follows from theorem 3.3 and proposition 5.2.

&
Now we are in a position to prove that system (35.2) is uniformly persistent.

Theorem 5.7. System (5.2) is uniformly persistent provided (PD). (H2). (H3)
and (Hj) hold.

Proof. T(t) isan w«-periodic semiflow on X% with T(t)X% Cc X° for all
t>20. Then T(t) is certainly also an mw-periodic semiflowon XT. where
we choose integer m such that mw 2 7. Let U =T(mw). Then we know
that
(1) U is point dissipative in X* since T(t) is point dissipative in X+
by assumption (PD);
(i) U is compact since mw > 79 and the fact that T(¢) is compact for
all ¢t > n.
From theorem 5.6, U is uniformly persistent. Then the uniform persistence of
T(t) follows from proposition 5.3. That is, system (3.2) is uniformly persistent.

O

It is clear that compactness or certain weak compactness, such as asymptotic
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smoothness or a-contraction of the semiflow, is very important in discussing ei-
ther continuous or discrete dynamical systems. However. it is well-known that the
semiflow T(¢), t>0 generated by a functional differential system is compact
only when the time ¢ is no less than the maximum of ajl delays appearing in the
system. As a complement to this shortage. a significant result due to Hale([Hale2].
theorem 4.1.1) asserts that in an equivalent norm in C = C([-65.0].R™). the
semiflow T(t): C — C, ¢>0 isan a-contraction for all ¢+ > 0. With
this argument and some newly developed fixed point theorems. one could show the
existence of w-periodic orbits in w-periodic systems without the requirement
that « > 4. This is a significant improvement. Furthermore. there are many
recent papers which really depend on this argument. Nevertheless. we found some
minor mistakes in Hale's proof([Hale?]. theorem 4.1.1. pages 61-62). First. the
defined mapping S(t):C = C. ¢>0 isnot really an easily-shown semigroup
on C since S5(0) # I(identity). Secondly. the newly defined *x —norm” is
not equivalent to the supernorm in C. For example. choose o € C to be a
nonzero constant function. denoted by © = d. then [©lsup = la] > 0 while
|o[* = 0. They are not equivalent to each other. The reason is that S(¢) is not
a semigroup on C  at all, whereas in the verification of the equivalence hetween
the x—norm and the super-norm. the property of S5(t) being a semigroup on
C was assumed. Unfortunately, at the present stage we can neither give a cor-
rected proof nor give a counterexample. We leave the discussion on the existence
and uniqueness of w-periodic coexistence states with least period « to future

research in terms of topological degree theory and global bifurcation theory.

From proposition 5.4, theorem 5.6 or theorem 3.7, 1t easily follows that there
exist mw-periodic coexistence states for all integers m >0 such that mw >
7o. In this sense periodic coexistence states still exist. To show the existence

of w-periodic coexistence states with least period w«w. our idea is to show
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first the uniqueness of muw-periodic coexistence states for all such m. then
to suppose that there exist at least two integers. say my and m,. such that
miw > 7o, t =12 and m; and m, are coprime, so we can claim the
existence and uniqueness of an w-periodic coexistence state with m=1To
do this. topological degree theory will play a keyv role.

It is well-known that both delay systems(FDEs) and reaction-diffusion Svs-
tems(PDEs) generate infinite-dimensional dynamical systems, which we denote by
T(t), t>0. The significant difference between these two is that the semiflow
generated by a reaction-diffusion svstem is compact whenever ¢ > 0. whereas in
the case of FDEs, only when t is no less than the delays does compactness oc-
cur. In this sense, one will see that it is easier to deal with an infinite-dimensional
dynamical system resulting from spatial heterogeneity than one arising from time
delays. For example. in [Zh1] a two-species periodic Kolmogorov reaction-diffusion
system with spatial heterogeneity was discussed. For more details on periodic-
parabolic boundary value problems. we refer to (Hes]. In this area. one of the
interesting and challengable problems is the Turing instability problem. i.e. how

diffusion changes the stability of an ODE or FDE system [Con]. [CGS]. [Dan§].
5.5. Biological Implication

In this chapter, we discussed a very general Gause-type predator-prey system
with periodic delays and answered a fundamental question of biological interest
concerning model (35.1), that is, how the periodic delays in both predator and prey
dynamics affects the long-term survival of both species. We derived criteria for
the coexistence of both the predator and the prey. Furthermore. since the growth
of the predator has no logistic self-limitation. we developed a very techanical dis-
cussion on the dissipativity of system (3.1). We actually have shown the so-called

permanence(dissipativity and uniform persistence) of both the predator and the
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prey. Biologically. dissipativity means the species will not grow bevond all bounds.
and uniform persistence means the species’ survival for all time. The criteria de-
rived here are natural in that in theorem 3.7. condition (PD) implies that the
growth of either species cannot become unbounded. and condition (H2) implies
that the prey, as the food sourse for predator, cannot become extinct. since in our
system the predator is assumed to die out in the absence of prey. Conditions (H3)-
(H4) imply that the predator response cannot be too small. Under these natural
hypotheses, the predator-prey system exhibits permanence(long-term survival of

the system).
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CHAPTER 6

FURTHER DISCUSSION AND REMARKS

In this thesis, we have carried out a detailed discussion for the long term
dynamical behaviors of periodic systems (2.1). (3.1) and (5.1). Throughout this
thesis. our emphasis centred around the global asymptotical stabilities for mono-
tone periodic systems (chapters 2. 3 and 4) and permanence (dissipativity and
uniform persistence) for a non-monotone Gause-type predator-prey periodic sys-
tem(chapter 3).

On the basis of what we did in this thesis. it is possible to extend some of our
ideas to more general cases in applications. Specifically, those results derived n
chapter 4 on discrete monotone dynamical systems should have very good applica-
tions in periodic differential delay systems if we could analogously set up a Floquet
theory for linear periodic differential delay systems. Furthermore. in this thesis we
did not consider spatial heterogeneity and randomness. Hence the following three
topics, i.e, Floquet theory for delay periodic systems. the Turing instability prob-
lem(spatial heterogeneity) and stochastic differential systems(randomness), will be

very important for further discussion.
6.1. Floquet Theory for Delay Equations

For ordinary differential equations, Floquet theory has been wel established.

The Floquet theorem asserts that for linear periodic ordinary differential equations,
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there exists a linear invertible periodic transformation that will transform the
equation to an autonomous one. One might expect to establish a F loquet theorem
for differential delay equations in an analogous way. However. differential delay
equations have many different features from ordinary differential equations. First
of all, they are infinite dimensional systems. As a result. their Floquet theorem
might be much more complicated. Secondly. there may exist a nontrivial solution
that goes to zero faster than any exponential. Such solutions are called small
solutions. Thus. an invertible periodic transformation. in general. does not exist
and the analog of the Floquet theorem may not hold anymore. Examples can be
found in Hale’s book [Halel].

Floquet theory would play a very important role in the study of linear pe-
riodic differential delay equations. However. a general Floquet theorem for linear
periodic differential delay equations is still under investigation. At present. we

only can almost prove the following conjecture (PeFr3]:

Conjecture 6.1. Consider
#(t) = a(t)z(t) + b(t)zit - r(t)). (6.1)

where a(t), b(t). 7(t) are supposed to be T-periodic and b(t) >0. +(t)>

0 i [0.T. Then r=0 in equation (6.1) is asymptotically stable if
T
/ [a(t) + b(t)jdt < 0.
0
This conjecture is analogous to a result in the autonomous case where the
linear stability of all equilibra could be determined by the associated cooperative

and irreducible system of ordinary differential equations since they have exactly

same equilibra([Sm8] pages 92-93).
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6.2. Turing Instability Problem

In 1952, Turing [Tur| found that in some systems. when diffusions were
considered, the stability of the corresponding ODE systems may be changed. The
Turing instability problem is to fully understand just what features of reaction-
diffusion systems are necessary and sufficient for Turing instability [Con]. [Dané].
[FrPe2], [Tur]. In the past decades, the Turing instability problem has attracted
more and more mathematicians and became z very hard and challenging problem.

In [Dan6]. Dancer considered

gt_u =ri(t)Au + u(a(t) — b(t)u + c(t)v) inQ x 0. x)
% =r2(t)Av + v(d(t) + e(t)u — f(t)v) (6.2)
%:%:0 on 992 x [0.x).
and
Z_;‘ = u(a(t) — b(t)u + o(t)o) o
o | (6.3)
- = v(d(t) +e(thu — f(t)v),

where A\ is the Laplacian operator, ) is a bounded open set in R™ with
smooth boundary and a.b.¢.d. e.f.ri.r2 are T-periodic and ri(t).ry(t) > 0.

Suppose that (ug. vo) is a strictly positive T-periodic solution of (6.3) which is
stable (as a solution of (6.3)). We say that a Turing instability occurs if (ug.vo)
is unstable as a solution of the partial differential equations (6.2). In the au-
tonomous case and with ug and vo independent of time, this problem has
been studied extensively [Con] and it is found that Turing instabilities do not oc-
cur for the standard ecological models (standard predator-prey. competing species
or cooperating species) but sometimes do occur in general. For these three classes

of models, one can also easily show that there are no non-constant periodic solu-

tions in the antonomous case. Thus the interesting case is where the equations are
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not autonomous. Dancer proved in [Dan6] that Turing instabilities do not occur
for the competing species or cooperating species models in the time dependent
case. His proof depends on the order structure., More surprisingly. it was shown
that for predator-prey models, Turing instabilities sometimes occur, These even
occur if r; and r, are constant although Turing instabilities do not occur
if ri(t) = ra{t). As pointed out by Dancer [Dan6]. this has significant impli-
cations for the partial differential equation in the predator-prey case because it
implies that the solution of (6.2) that one sees need not be the simplest solution
and that bifurcations of solutions with r dependence occur. Dancer's methods
also imply that uniqueness of strictly positive periodic solutions may fail for a
periodic predator-prey model. As pointed out by Dancer {Dan6] once again. the
time periodic problem may be significantly more complicated than the autonomous
problem.

In [FrPe2], the following initial boundary value problem was discussed:

S

% =di(r)AI(x.t) + am(z.t — o) —~I(z.t) - ae”""m(r.t —7)
am(l‘~t) —=T 2 .
Tzdg(r)Am(r.t)—f—ae mlr.t —rj—3mi(r.t)
in 2x[0,x) (6.4)
oI am
%—O, %—0 on 99 x [0, )

I(r.8) = £(2.6) >0, m(z.0) = v(z.6) >0, reQ. fe¢ [—7.0].

where o, 3, r are positive constants and ¢ > 0. the diffusive coefficients
di(z) and do(z) are non-negative. It was shown that Turing instability does
not occur in (6.4). However diffusions benefit the population survival.

As indicated by those few published works. it is very interesting and chal-

lenging to investigate the Turing instability problem.




6.3. Stochastic Models

If we allow for some randomness in some of the coefficients of a differential
equation. we often obtain a more realistic mathematica] model of the situation.

As pointed out by Oksendal [Ok|, there are several reasons why one should
learn more about stochastic differential equations: they have a wide range of
applications outside mathematics. there are many fruitful connections to other
mathematical disciplines and the subject has a rapidly developing life of its own
as a fascinating research field with many interesting unanswered questions. To

consider stochastic models is one of our future research interests.
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