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ABSTRACT

This thesis discusses the problems caused by united
modes in ALGOL 68. An algorithm is presented which uniquely
orders modes. Applications of the algorithm are described
which eliminate the difficulties associated with united
modes. It is also shown how mode ordering may be used to
speed up and increase the power of an ALGOL 68

implementation.
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CHAPTER I

Introduction

The Report on the Algorithmic Language ALGOL 68 (1]
(hereinafter referred to as the Report) defines a new
programming language intended to be the official successor
to ALGOL 60 [2]. ALGOL 68 is designed around the concept
that all program and data structures, desired of a computer,
have convenient representation in a general purpose
programming language. In such a language the compiler can
reasonably restrict the use of any structure. This
restriction has two consequences: the compiler can detect a
large class of erroneous program constructs that would
otherwise be treated as valid, and the limitation on the use
of any structure allows the compiler to deduce much more
exactly the intention of any program construct. The latter
facility both enables a program to be much 1less explicit
about the operations it requires to be performed, and
enables the compiler to profuce more efficient object
programs based om its increased knowledge of what is

intended by those programs.

The format and intended use of a data object is



described by its mode. Besides providing primitive data
types and mechanisms for constructing complex data objects,
the Report provides for data objects whose mode is either
not known exactly at the time a program is compiled or whose
mode may vary when the program is executed. These data
objects have united modes, and have at any time during the
execution one of a number of moods, or non-united nodes,
specified by the united mode. 1In Section 3.3, comparisons
will be nade between the representation of objects of united
mode suggested by previous authors, and a more efficient

representation introduced in that section.

The thesis presupposes a certain familiarity with
ALGOL 68. Introductory expositions of the language are
contained in [7, 8]). The first occurrence of any technical
term or notion from the Report will, where necessary, be
followed by a reference to the particular section of the
Report in which the definition may be found. [R1.1.6i]
will, for instance, denote Section 1.1.6.i of the Report.
The concepts discussed in the thesis are illustrated by a
nunber of short examples in Chapter III, and a longer one in

APPENDIX B.



Chapter II of the thesis presents an algorithm which
generates a unique ordering for any set of modes in ALGOL
68. Chapter III describes the uses of the algorithm in
inplementing ALGOL 68, The implementation of the algorithnm
itself is discussed in Chapter IV. Finally Chapter V

summarises the advantages gained from use of the algorithuo.



CHAPTER II

The Algorithm

2.1 Outline of the Algorithnm

A node[R2.2.4.1] is any terminal production of the
metanotion[ R1.1.3b] MODE[R1.2.1a]. Two modes are equivalent
if either they are the same sequence of small syntactic
marks[R1.1.2a], or there is some sequence of production from
the rules 7.1.1dd to 7.1.1jj in the Report which will derive

one of the modes from the other.

Given an unordered set of modes, the algorithm will
produce an ordered set of classes of these modes such that
modes within a class will be equivalent. The ordering so
imposed on any given pair of modes in the set will be
independent of both the initial representations of the modes
and the other modes in the set being ordered. The relation
defined between modes in each class is reflexive, symmetric
and transitive, and is therefore an equivalence relation.
The relation between non-equivalent modes is transitive, and
is therefore an ordering. Also each pair of modes has a
putual ordering, so that any given set of nonequivalent

nodes has a unique linear ordering.



- The algorithm 1is iterative, At each stage of the
algorithm, a class is selected for sub-division. The
selected class must contain non-equivalent members, If
there is no class which can be so selected, the algorithm is

terminated.

On sub-division of a class, its parts are assigned
positions in the ordering of classes being established. An
attempt is then made to select another class for division.
At the first stage of the algorithm, there is just one

class, containing all the modes under consideration.

The algorithm is based on that of Zosel [9] and only
differs from it by assigning thé parts of a sub-divided
class their position in the ordering being established. The
function of ordering is therefore added to that of

equivalencing.

The selection of a unique class to divide, and a
unique method of division, forms the crux of the algorithm.
Section 2.2 Mescribes the algorithm in detail, and section
2.3 discusses the correctness of the algorithm, based on the

above-mentioned uniqueness.

2.2 Statement of the Algorithm

The algorithm is most easily described as ordering the

modes occurring in a given particular-program[R2.1d].



Consider all declarers{R7.1.1a] in the given particular-
program. Protect them{R7.1.2b] and continue to develop
then[R7.1.2c] as follows., Represent each declarer, which is
not a void-declarer[R7.1.1z], by a unique designation Mi, so
that #0, M1, M2, ..., Mn (for some integer n) represent
every declarer in the particular program. In the following,
“the mode represented by the declarer designated by Hi" is
referred to more simply as "the mode Mi", Replace each Hi,
which represents a declarer which is a node-
indication[R4.2.1b], by that HMj which represents the actual-
MODE-declarer[R7.1.1b] of the indication-defining
occurrence[ R2.2.2c] of the mode-indication. Repeat this
replacenent until there are no further replacements to make.
This process will fail to terminate only in the case for
which the declaration[R4.4.4c]-condition has been violated.
It can always be determined whether the process will fail to
terminate, because in such a case, and only in such a case,
will any mode-indication be successively replaced more times
than there are mode-indications in the complete set of modes
being ordered [10]. The algorithm can be forced to

terminate when such a condition is detected.

The ¥i which ultimately replaces the representation of
a declarer 1is used to represent the mode of the declarer.
Let the constituent[{R1.1.6f] modes of Mi be those Mj which
are the nodes of the declarers that are

descendents[R1.1.6€,f] of the declarer represented by Mi but



are descendents of mno declarers which are themselves

descendents of the declarers represented by the Mj.

Each mode Mi is represented by a terminal (the T(Mi)
below), a possible sequence of tags, and zero or more
constituent modes, represented by other Mj. This notation

is due to Peck [10].

For each mode Mi define T(Mi) as follovs.

(@) If the mode of the declarer represented by Mi begins
with  'LONGSETY integral’, 'LONGSETY real', 'boolean',
‘character', 'format', 'union of!, 'row of', 'reference to!
or 'structured with', let T(Mi) be that sequence of symbols.
(b) If the mode of the declarer represented by Mi begins
with 'procedure!' and ends with a void-declarer,
T(Mi) ='proc void!'.

(c) If the mode of the declarer represented by Mi begins
with 'procedure! and ends with other than a void-declarer,

T (Mi)='procedure’.

CONST is used to select constituents of modes. Each
Mi has a number of constituent modes. Let N(Mi) be this
number. Define, for 1<n<N(Mi), CONST(Mi,n) to be the nth
constituent mode of Mi in the textual order of the declarer

represented by HMi.

For each Mi for which T(Mi)='structured with' define

TAG(Mi,n), for 1<n<N(Mi), to be the tag associated with



CONST (Mi,n).

For each Mi such that T(Mi) is not 'union of!, define

L(Mi)=N(Mi). For united modes, L(Mi) is defined in Step 2.

The algorithm follows.
Step 1. The Mi are initially ordered based on the values of

T(Mi), TAG(Mi,k), and L(Mi), as follows. First define

order[1] = 'structured with!'
order[2] = 'union of!
order{ 3] = 'boolean!
order{4] = fcharacter!
order{5] = 'format!

order[6] = 'reference to!
order{7] = 'row of!

order{8] = 'procvoid’
order{9] = tprocedure!
order[ 10] = 'integral!

order[ 11} = 'real!

order{n] = 'long' order[n-2] for n>11.

This latter recurrence relationship provides for ordering
all INTREAL[R1.2.1e] modes on their corresponding T (4i).
Define, for each pair of modes ¥i, Mj under consideration,

T(Mi)<T(Mj) if T (Mi)=order[i'], T(Mj)=order[j'] and i'<j*.

Define TAG(Mi,n)<TAG(#j,m) if the relation is true

with respect to some fixed alphanumeric ordering.



Define C(Mi) fer each Mi in the set of modes under
consideration in the following substeps:- initially let p=g,
(a) Call any Mi an "unassigned structure" if C(Mi) has not
been defined and for which T(Mi) ='structured with'. Fing an
unassigned structure MHi such that for all unassigned
structures Mine|Mj either

(i) F(Mi)<¥(u(3)); or

(ii) N(Mi)=N(Mj), and there is some n, 1<n<N(#i), such

that TAG(Mi,n)<TAG(Mj,n), and for all k, 1<k<n,

TAG (Mi, k) =TAG (M3,k); or

(1ii) N(Mi)=N(Mj), and for all  k,  1<ks<N(Mi),

TAG (M1, k) =T2G (¥5,k) .

Set C(Mi)=P, Likewise, for all Mj such that N(¥i)=N(Hj) and
TAG (Mi,k)=TAG (M3,k) for all 1<k<n, set C(Mi)=P. Set P to be

one greater than C(Mi) and return to substep (a).

If no Mi exists which satisfies substep (@) , continue
to substep (b).
(b) For all Mi for which T(Mi)="union of' set C(Mi)=P, If
there is any such ¥i, set P to be one greater than C(Mi).
(c) Find an Mi for which C(Mi) has not been defined, such
that there is no 43 for which T(Mi)>T(Mj), and such that
there is no M3y with T(Mi)=T(Mj) and N(Mi)>N(Mj). Set
C(Mi)=P. For all Mj for which T(Mi)=T(Mj) and N(Mi)=N (M)
set C(Nj)=P. Set P to be one gréater than C (Mi). 1If any Mi
exists for which C(Mi) has not been assigned a value, return

to substep (c).
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If Cc(Mi) has been defined for all modes in the set under
consideration, step 1 is finished and P is the number of

classes of modes at this stage in the algorithm.

If C(Mi)<C(Mj) then it can be said that #i<Mj. The
values of C(Mi) partition the set of modes into classes,
which will be further partitioned by steps 3, 4 and 5 until

each class contains only equivalent modes.

Step 2 determines the distinct classes into which the
constituents of each united mode fall, and orders these
classes. Sets of ordered classes of constituents are used
to order the united modes in steps 4 and 5 in much the same
vay that ordered contituents are used to order non-united
nodes.

Step 2. For each Mi such that T(Mi)='union of!', perform the
following substeps.

(a) Let g=1, h=-1.

(b) Find the smallest value of C(CONST(Mi,n)), 1SnsN(Mi),
such that C(CONST(Mi,n))>h. Define S(Mi,g)=C(CONST (Mi,n)).
(c) Let h=S(Mi,g). If h2C(CONST(Mi,n)) for all 1<n<N(Mi),
go to substep (d). Otherwise let g be incremented by one
and return to substep (b).

(d) Define L(Mi)=g.

Step 3 orders non-united modes on their constituent
nodes. Constituent modes which have not yet been found to

be nonequivalent are skipped over until a mode is found on
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which ordering can be done. The skipping is performed

independently of the ordering the modes may ultipately

acquire., The validity of doing this and the similar

mechanisns of steps 4 and 5 will be discussed in Section

2.3.

Step 3. Consider the class of modes for which the following

are true.

(@) T(Mi)#'union of' for any Mi in this class.

(b) There is an n such that 1<n<L(Mi) for the Mi in the

class, and for all Mi, Hj in the class,for all m, 1<m<n,
C(CONST (Mi,m) ) =C (CONST (Mj,m)) .

(c) For the n of (b), there are Mi and Mj in the class such

that C (CONST (Mi,n))#C (CONST (M5,n)) .

(d) For any Mi in the class, and any Mj in another class

satisfying (a), (b) and (c), C (Mi) <C (M7).

If there is no class satisfying the above, proceed to
step 4. Otherwise partition the class as follows.
(a) For each Mi for which C(#i)>C(Mj) for any Mj in the
considered class, redefine C(Mi) to be one greater than it
was before this elaboration of step 3 was commenced.
(b) Find the value of C(CONST(Mi,n)) which is minimal for
the above n and every Mi in the considered class. Redefine
C(Mi) to be one greater than it was before this execution of
step 3 was commenced for each Mi such that C (CONST (Mi,n)) is
greater than the found minimum. Some such Mi exists by

condition (c) above.
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Return to step 2.

Step 4 separates unions using the L function. This
was done for non-united modes in step 1. At each stage of
the algorithm, the L function for a mode is the number of
its constituent modes that have already been found to be
distinct. At the termination of the algorithm, the L
function will be the actual number of constituents of the
node. A mode has.

Step 4. Consider the class of modes for which the following
are true:

(@) T(Mi)="union of' for any Mi in this class.

(b) There is an n such that for some Mi in the class,
L(Mi)=n and for some other Mj in the class, L(Mj) >n.

(c) For all Mi, Mj in the class, for all m, 1<msn for the
above n, S(Mi,m)=S(Mj,m).

(d) For any HMi in the class, and any Mj in another class

satisfying (a), (b) and (c), C(Mi)<c(Md).

If there is no class satisfying the above, proceed to
step 5. Otherwise partition the class as follows.
(a) For each Hi fcr which C(Mi)>C(Mj) for any Mj in the
considered class, redefine C(Mi) to be one greater than it
was before this elaboration of step 4 was commenced.
(b) For each Mi in the considered class for which L(Mi)ﬁn,
for the above n, redefine C(Mi) to be one greater than it

vas before this elaboration of step 4 was commenced.
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Return to step 2.

Step 4 guarantees that before step 5 is begun, L(Mi)
for each Mi in a class of unions is the same, Step 5 orders
unions on their constituent modes much as step 3 did for
non-united modes.

Step 5. Consider the class of modes for which the following
are true:

() T(Mi)='union of' for each Mi in this class.

(b) There is an 1n such that 1<n<L(Mi) for the Mi in the
class and for all Mi, Mj in the class, for all m, 1<n<n,
S(Mi, m)=S (8j,m).

(c) For the n of (b), there are Mi and Mj in the class such
that S(Mi,n)#S(#j,n).

(d) For any Mi in the class, and any HMj in another class

satisfying (a), (b) and (c), C(Mi)<C(M]).

If there 1is no class satisfying the above, terminate
the algorithm. Otherwise partition the class as follows.
(a) For each Mi for which C(Mi)>C(Mj) for any Hj in the
considered class, redefine C(Mi) to hé one greater than it
was before this elaboration of step 5 was commenced.
(b) Find the value of S(Mi,n) which is minimal for the above
n and every Mi in the considered class. Redefine C(Mi) to
be one greater than it was before this elaboration of step 5
was commenced for each Mi such that S(Mi,n) is greater than

the found minimum.
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Return to step 2.

On termination of the algorithm, duplicate modes in
constituent subclasses of unions can be eliminated. The
nodes Mi and Mj can now be ordered by saying Mi<Mj if and

only if C(Mi)<C(Mj), and Mi=Mj if and only if C (Mi)=C (Mj).

2.3 Correctness of the Algorithm

Four properties of the preceeding algorithm will be
demonstrated, First, the procedure terminates and is
therefore indeed an algorithm., Second, the classes produced
are equivalence classes, Third, the relative ordering
imposed on any given pair of mnodes is independent of
anything other than the modes themselves. And fourth, the
ordering given is transitive, so that any given set of nodes
can be reduced to a unique linear ordering of nonequivalent

nodes. These are the required properties of the algorithnm.

The operation of the procedure on classes of modes is
that of partitioning those classes. For the algorithm to
return to step 2, one of the steps 3, 4 or 5 must be
performed successfully. ZEach of these steps properly
divides a class, without moving any mode out of its previous
order in the set of modes being ordered. Inasmuch as
partitioning of a finite set is a finite process, the

process will terminate whenever applied to a finite set of
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modes.

Two modes are equivalent if the T function applied to
each of them gives the same value, they have the same number
of distinct constituent modes, the tags on their fields are
correspondingly the same, and their distinct immediately
constituent modes are correspondingly equivalent. The steps
of the algorithm explicitly ensure that at termination no
class contains modes which can be distinguished by these

criteria.

consider any given pair of modes which are not
equivalent. Any decision by the algorithm to separate these
tvo modes or any of their constituents is made strictly on
the relative properties of the considered modes. Any modes
n&t constituent to the considered modes do not affect the
decision. Therefore each such decision is unique, and the
operation that partitions the considered pair of modes will

always divide them in the same order.

By extension of the arqument of the last paragraph,
the operations that partition any given subset are unique,
and so any finite set of modes is uniquely ordered in a

transitive manner.



CHAPTER III

Applications of the Algorithm

3.1 Representations ¢f United Modes

There are four types of mode-dependent representations
in an ALGOL 68 implementation: the declarers of an ALGOL 68
source program, the representation of modes in the
compiler's tables, the representation of mode information on
external media, and those data objects at run-time that
require mode-dependent processing of a sort that cannot be
uniquely determined at compile-time. These four types of
representations require successively less processing by
whatever part of an implementation receives each of them as

input.

The basis for the representations used in this Chapter
is the fact that each union can be represented by a uniquely

ordered set of moods.

3.2 Compile~-Time Handling of Modes

The algorithm of Chapter II is applied during or

inmediately after the pass of an ALGOL 68 compiler which
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completes processing of the mode- declarations and declarers
in the input source program. A compiler which allows mode-
declarations after use as provided for in the full language
must scan the source program, or some intermediate
representations thereof, at least three times to be able to
extract enough information tc properly translate that
program. All declarers cannot be discovered until two
passes have been nade over the source text. This can be

shown by the example of a proper particular-progran

begin a;
aaj;
mode a = int;
skip

end .

It cannot be known that the "a" in the declaration "3 a" is
not a monadic-operator[R4.3.1e] until the second scan of the
text. The algorithm produces information on mode
equivalence which is required by the coercion
processor[R8.2] and code generator in the compiler.
Inasnuch as these operations can be performed no earlier
than during the third scan of the source text, the ideal
time to elaborate the algorithm is between the second and

third scans.

A compiler which translates the source text in ore
pass needs to process some coercions before all the source

program has been scanned. It is therefore inappropriate to
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use an algorithm, such as that in Chapter II, which
processes all the modes in a particular-program at one time.
The principle applied in that algorithm can be used in a
nethod of incrementally building a mode table, which is
intrinsically faster than other methods proposed for
processing modes in a one-pass compiler as will be shown in
the next Chapter. The implementation of the algorithm and
the application of its methods to a one-pass compiler is

also discussed in Chapter IV,

Apart from . the above-mentioned contribution of the
algorithm to mode-list handling in a one-pass compiler, and
the greater speed with which an ordered mode-list can be
searched for a known mode, there seems to be no advantage to
the compiler in using the algorithm of Chapter 1II rather
than, say, that of Zosel. The order imposed on the modes
has no relation to any sequence which may be the result of
coercion, and therefore can »give no aid to that process.
The algorithm's application does, however, leave the mode-
list in a state suitable for the processing of coercions.
Almost ail modes that can occur in coercion sequences are
represented in  the source program by declarers,
denotations[R5.0.1a] or the use of operators or identifiers
from the standard prelude[R10J. The exception is the mode
transformation that can be produced by slicing{ R8.6.1.1a] or
selection[R8.5.2.1a]. Consider, for exanple, the

particular-program
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begin ref[1:2)int a = loc[1:2]int := (1,2);

end .
The unit "a[1]" is of mode ref int, a mode which does not
occur explicitly in the program. However, this and all
similar  constructions have the properties that ‘"extra
modes", such as the ref int above, only occur in the
intermediate stage of a coercion sequence, and that the
extra modes are all of the form ref M, where M is a node
which is represented somewhere in the particular-program by
a declarer. The problem has two possible solutions. The
coercion process can check for equivalence of modes by
checking if either they are both in the ordered mode-list
and equivalent by the algorithm, or they are both 'reference
to' some two modes which are in the mode-list and are
equivalent. The second solution is to add to the set of
modes under consideration all "extra modes" which could be
produced from the modes in the table. This must be done

before the algorithm is elaborated.

3.3 Intermediate Representation of Particular-Programs

The general computer user is concerned with three
representations of an ALGOL 68 program: the source progranm,
the intermediate representation of the program which is

output by the compiler, usually referred to as the object
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program, and the machine-code representation of a progranm
that is loaded into the memory of the computer and is
suitable for direct elaboration. The intermediate
representation may be dispensed with if the ALGOL 68
compiler initiates elaboration directly. It may be suitable
for loading and elaboration in a very simple and direct
panner, On the other hand, the intermediate representation
nay require considerable processing before it is suitable

for loading.

One case in which considerable processing of the
intermediate representation is required is where differenmt
rarts of the particular-program to be elaborated are
compiled  independently. Independent compilation is a
technique which makes the modification of programs and use
of subroutine 1libraries easier and more economical than if
complete re-compilation were required each time a progranm
was changed. Since its introduction in FORTRAN, the first
widely used higher-level programming language, independent
compilation has come to be supported by almost all computer
installations., The chief device by which independent
compilation has been supported is the symbolic resolution of
references by one compiled module to the memory locations
occupied by another. This allows transfer of control of
elatoration between the modules at run-time. It is
sufficient for linking FORTRAN routines but to previous

authors seemed to be deficient for 1linking ALGOL 68
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routines.

The problem stems from the fact that there is a
countably infinite number of distinct modes which are
available for representation in a  proper ALGOL 68
particular-program. This fact does not especially
complicate any aspect of code generation except the
representation of objects whose mode could change during
run-time elaboration, here referred to as "united objects".
The proposed solution has been to represent each distinct
mode appearing in a source program by a unique index, and
appending the appropriate index to each united object at
run-time to allow the identification of its current mnode
{3, 5]. The infinite number of possible modes, and the lack
of direct communication between independently compiled
progran modules at compile-time prevents the unique
determination of mode indices. This implementation of
united objects requires, for the linking of independently
compiled routines, that the program which does the linking
resolve the representations of the mode indices which may
occur in united objects accessible to more than one

independently compiled program module [4, 6].

Apart from the construction of such a linking program,
three solutions are available. Requiring that the compiler
have access to all compiled modules, that can be referenced

by the module that is being compiled, allows the compiler
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itself to resolve representations of mode indices by
compiling the new module to comform to the conventions of
the older ones. This method has been used with success
[11], but has certain disadvantages. It may be impractical
for the computer user to supply the required modules. The
method prevents the changing of modules used by a program
without recompilation, thus losing one of the chief
advantages of independent compilation. It imposes a fixed
order of compilation of modules which prevents, for example,
the use of an object defined in a main program by an

independently compiled subroutine,

Another soluticn to the problem of representing mode
indices is to use as the index a canonical representation of
the mode involved. The total number of modes being
countable, for each valid mode, there must be some
particular-program which has as its first declarer a
representation of that mode and which is the "smallest" such
particular-program by some fixed ordering sequence. Such a
sequence could be created by the comparison of the source
representations of particular-programs as character strings.
This canonical representation is generally much too large to
ke of any practical use as a mode index for run-time united
objects. Such canonical representations are intrinsically
large, as will be shown in section 3.5. However, that
section will also suggest a practical method of deriving

these canonical representations, and suggest a use for then.
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The only representation of mode information that is
needed at run-time is that used to distinguish the current
node of a united object. Im an ALGOL 68 program this is the
only situation where resolution of data representations
between  independently compiled modules would ever be
required. The run-time representation of united objects
described in section 3.4, takes recognition of the fact that
for any united object, the compiler has available a
description of those modes of which that object can be an
instance of a value. The representation therefore need only
distinquish between the modes of the object, and not between
all modes in the particular-program under consideration.
The algorithm of Chapter II allows the compiler to order
uniquely the appropriate modes for a united object and
choose a unique set of indices based on this ordering.
Therefore no special processing of the intermediate

representation of an ALGOL 68 program is required.

The above statement does not mean to inmply that the
facilities provided by current linking programs are
satisfactory. ALGOL 68 is notable in that a compiler for
the language is capable of checking for almost all erroneous
and inconsistent uses of data objects, but the compiler
cannot check to see that modes of corresponding data objects
in  independently compiled modules are equivalent.

Furthermore, an optional feature of the compiler nay produce
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a module that can be reasonakbly linked only to modules which
have been compiled with that feature enabled. Especially in
the use of subroutine libraries, errors that would be caught
by checks for such inconsistencies have a high probability
of cccurence, Language-dependent checks could be performed
by allowing checking routines to pe input to the linking
Program and by providing a method for the linking program to

use these routines at the appropriate tinmes.

Bost current linking Programs could be nodified to
include a general mechanism for the comparison of various
strings which would be input for the purpose of ensuring
consistency of Progran features. Such a mechanisnm could be
used to check for consistent use of objects in independently
compiled nodules and for consistent use of optional scope
checking, ALGOL 68 dependent processing of intermediate

Progran representations is therefore probably not required.

3.4 Run-Time Handling of Modes

An ALGOL 68 compiler can, for any particular-progran,
determine what machine language code is required to perforn
all run-time data manipulation. The only case in which
there is any uncertainty regarding which segment of code is
to be elaborated is the copying of a united object or the
checking of its mode. The copying of a united object must

fall into one of three classes: copying objects whose modes
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have been united to[R8.2.4] more inclusive ones, copying
united objects without any change in the inclusiveness of
the union, and copying united objects as a result of a
conformity operation, and so reducing the inclusiveness of
the union. In all types of such copying the method of
implenentation is the same: a routine appropriate to the
node of the object being copied must be chosen to perform
the operation, and transfer of control must them be passed
to that routine. In a conformity relation, transfer of

control may pass to an exit if the relation fails.

Application of the algorithm of Chapter II produces a
very fast and efficient method of selectingAthe appropriate
routine. Assigning an index to each mode in a particular-
program and using this index to identify the mode of united
objects produces a significantly slower and less efficient
inplementation. Using the latter method requires that when
selecting a routine each possibility for the mode of the
object being copied has to be checked separately. This
requires a table of mode indices which are checked against
the index of the considered object. Use of the table
requires the overhead of a program loop and the handling of
a pointer to the table. A conformity relation which
requires no copying still requires the use of a loop to

check for the truth of the relation.

Identifying the mode of a united object by the index
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of its mode in a list of its possible modes, allows the
index to be used to access a table of routine addresses
directly. Thus the correct routine is selected quickly and
only a table of addresses is required. In a machine whose
address unit is less than its word size, for instance in a
character addressed machine, the mode indices can be kept as
nultiples of the word address increment. This further
speeds the operation. The range of values of the index in
each united object is known at compile time. Thus the
storage it occupies can readily be chosen to optimize either
the speed or storage requirements of the particular progran.
A useful special case of optimizing storage requirements is
that of a union with two moods. In this case the mode index
need occupy only cne bit of storage. Testing this bit
directly can produce a very fast nethod of selecting an
appropriate course of action, which does not require an

inconsistent method of representation.

It has been suggested [12] that the conformity
relation[R8.3.2.1a] and the conformity case clause[R9.4] are
not satisfactory mechanisms for examining and extracting the
value of united objects. To check whether or not a
tertiary[R8.1.1b] "I" is an instance of a value of mode "t*,
for example, the unit "loc t :: T" must be used. Involved
is the totally wasted expense of the local generation
"loc t". This case is easy to detect and optimize, but is

confusing for the user, especially in the case that the mode
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involved has some bounds in it which must be specified in
spite of the fact they are unused. A more difficult example
is

begin a a, b b, ¢ c;

case a, b, c ::=U ip
B, B, C out 7 esac

end .
Where U is a tertiary of a mode which is a union of a, b,
¢ and possibly some other modes, and A, B, C, and Z are
units to be elaborated using the value of U if U is of wmode
a, b, ¢ or none of these, respectively. Apart from being
clumsy, the construction again requires the 1local
generations used tc produce a, b and ¢, even though they may
not be used as variables in A, B and C. Moreover one or two
of the identifiers may not be used in the body of the case

statement, making the copying operation in the conformity

relation potentially superfluous.

A formulation of the conformity case clause has been
suggested ([13] which answers these criticisms and is
syntactically easier for the compiler to handle. In the new
formulation the above example would be written as

casec U in

(€ ¢:C out 2 cesac .

The alternative which is selected is elaborated so that the
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appropriate identifier, if any, is made to possess[R2.2.2g]
a new instance[R2.2.1] of the value of the tertiary U, it
being of the correct mode, of course. No extraneous local
generators[R8.5.1.1b] are needed, and if, for example, the
value of U is not required, to elaborate B, then the second
alternative can be written as "(b): B", eliminating the need
to copy the value of U in this case. The method of
compiling the new ccrformity case is very straight-forward.
The union U is elaborated, and a branch table formed to

direct its alternate results.

Another example illustrates an interesting anomaly.
Consider the two particular-progranms
begin int i;
ise= 2

case i in

{bool): skip cesac

end .
On most nmachines the case clause[R9.4c,d] in the second

example will execute faster than in the first., This is
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because the integer used as an index may need more
manipulation before it is suitable as a table index, and in
any case it has to be checked to see if it has a value other
than 1, 2 or 3. In the second case, the index in the united
object "u" can have only one of three values. This suggests
that a method of specifying the range of values and use of a
integer may have some application in a higher-level

programming language.

The indexed method of implementing unions makes their
handling a highly efficient operation, justifying their
introduction into ALGOL 68 and assuring their place in

future programming languages.

3.5 Transput of United Objects

Each valid ALGOL 68 mode consists of a "terminal" (the
T(Mi) of Chapter II), and zero or more constituents, which
are themselves modes. This construct corresponds to the
"List" of Knuth [17, page 312]. The constituents of each
mode have a wunique crdering, provided by either their
definition in the case of non-united modes, or by the
algorithm of Chapter II in the case of united modes. Any
List whose constituents are ordered can be given a unigque
linear representation similar to that described below for

ALGOL 68 modes.

Label each node in the List representation of the mode
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under consideration. This can be done uniquely as there is
a starting node, that of the mode under consideration, and
the offspring of each node are uniquely ordered. The mode
can now be represented by a linear representation of the
List with all but the first instance of each node

represented by the label of that node.

As an example, consider
union form = (ref const, ref var, ref triple,
struct const = (real value);
var = (string name, real value);

—— ———

struct triple = (forr left operand, int operator,

form right operand);

struct function = (ref var bound var, form body);

-+

struct call = (ref function function name,

form parameter); .

Application of the mode-ordering algorithm of Chapter 1II
will order the constituents of the union form as ref comst,
ref var, ref call, ref triple. So after ordering and
labeling of nmodes in a left-hand first order, the set of
nodes is

1: wnion(2, 5, 9, 13) {form}

2: ref 3

3: struct (4 value) {const}

4: real

6: struct(7 name, 4 value) {var}
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10: struct (11 function name, 1 parameter) fcall}
102 ref 12
12: struct (9 bound var, 1 body) {function}
13: ref 14
14: struct (1 left operand, 15 operator, 1 right operand)
{triple}
15: int .
The above reduces to the canonical form for the mode form:
union (
Ief struct(real value),
ref struct (
rowof char name,
4 value),
Ief struct(

Lef struct(

5 bound var,
1 body) function nane,
1 parameter),
ref struct(
1 left operand,
int operator,

1 right operand)) .

Note that the labels need not be included in this final
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form, as they can be readily regenerated by counting through

the modes in the canonical form.

The above example illustrates that a constituent of a
canonical form is rot necessarily the canonical form of a
constituent. To extract mode information from a canonical
form, therefore, the List representation of the mode nmust be

regenerated,

It vill be noticed immediately that the above form is
rather large, and due to the presence of field-tags, which
can be represented in a no nmore compact form, cannot be
significantly reduced in size. Such a representation is
therefore only of use where a canonical representation is
required for modes. In any case the amount of manipulation
that such a form undergoes should be reduced to a wnininum.
There are two uses of such a form, both of which require
mode information to be stored on external media. Firstly,
in the intermediate representation of an independently
coupiled module of a particular-program, each identifier
which 1is accessible to scme other module, or is accessed
fron some other module, can have associated with it its
canonical form. This allows a linking program to check for
compatibility of use of that identifier in all modules.
Secondly, the mode of objects stored on backing media can be
represented in canonical form, so increasing the flexibility

of the transput[R5.5.1aa] facility in ALGOL 68 [14].
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The representation of external media as arrays of mode
int is very inappropriate to many applications. It has
three main disadvantages: no data type other than int, real,
bool, char or some multiple or structure[ R2.2.3] thereof can
be transput; multiple data types lose their structure when
transput; and the «representation of file structure,
especially that on direct-access devices, is severely
lipited, reducing both the utility and efficiency of the use
of backing nmedia. One solution to these problems is to
generalize a file to allow it to be of any mode. This
allows both simple files more realistically, such as [+ Jchar
for an alphanumeric card reader, and complex files, such as
@ nulti-level structure for a symbolically indexed direct
access file. There is great advantage in the transput of

non-primitive data types, as is discussed below.

The ability of an arrays to retain the bound
information in its descriptor on backing media would reduce
the housekeeping activities of computationally-oriented
programs with cthervise straight-forward transput

requirements.

The placing of routines on backing media would only be
a recognition of the standard practice of keeping subroutine
libraries. The only limitation on the transput of procedure
objects is that they cannot have full generality of external

references. This limitation has the general formulation



34

that backing media have a globality greater than that of any
particular-program. Procedure objects are therefore limited
in transput by the scope restrictions in ALGOL 68. 1In the
same way the transput of formats can be reasonably defined,

and the transput of references prevented.

The fact that procedure objects can be placed on
external media doesn't eliminate the usefulness of linking
prograns. The types of external references allowed routines
which can be transput are too limited to provide for all the
facilities available with independent compilation. The
class of routines which can be transput is, however, a
useful one, being essentially those routines with no side

effects at the level of globality of a particular-progran.

The creation of files with united constituent modes
not only allows the transput of unions but allows the
creation of files with records of varying formats. On input
the mode of the object on the backing medium could be
readily discovered. Not only would the placing of a
canonical form of the mode of a file allow checking for
errors in its use, but it would also allow access by a user
unaware of all the data types stored on a nmedium. By a
mechanism similar to the conformity relation a program could
access those records of whose data type it was aware, and be
informed of attempts to access other data types. Such a

facility would be useful for accessing a data base whose



35

form developed over a lcng period of time.

Some reasonable control over the structure of a data
base is a requirement in many business and information
retrieval applications. The array structure of files in
ALGCL 68 makes the construction of one or more levels of
symtolic  indexing highly impractical. For instance,
insertion of records into the middle of files requires a
very inefficient simulation. 2 list-structured object would
be much more appropriate. Reference data types are well
suited to represent certain methods of record linkage in
files, The particular-program must be prevented from
accessing these references, as their representation would be
quite incompatible with that of references within a
particular-progran, For reasons of efficiency and
compatibility with external standards, the representation of
many data types on external media could differ from that
within a particular-program., Therefore installation-defined
rovtines would be needed to buffer the transput operation.
This practice could be facilitated by the separation of
formatting from transput. After all, formatting is the
process of transfcrming data objects to and from character

strings, with no direct reference to transput.
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The introduction of a practical method of representing
united objects on external media allows the structure of
files to be generalized, so greatly improving the ability of

ALGCL 68 programs to communicate with the outside world.



CHAPTER IV

Ipplementation of the Algorithn

4,1 General Considerations

The algorithm described in Chapter II need be
implemented only in the ALGOL 68 compiler. All other
components of an ALGOL 68 implementation can use the mode
information as processed by that algorithm. The savings
involved are considerable, inasmuch as processing the output
of the algorithm, either in the form of mode indices in
united objects, or of canonical forms, is very nuch less

complex than processing its tree-structured input.

There is a large class of formulations of  the
algorithm. The crux of the algorithm is that for any set of
modes, the same partitionings of the set be performed in the
same order at each invocation of the algorithm. The
formulation in Chapter II is one of the simplest, but a
practical implementation would require some improvements for

the sake of speed.

Initial collection of the declarers from the source

progranm to provide modes on which the algorithm can operate
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is intrinsically a far slower process than the operation of
the algorithm itself. The speed with which declarers are
discovered is dependent on the parsing technique. Building
the table of modes to be processed, or mode-list, will be

considercd below.

The number of declarers in a particular-program is
typically far larger than the number of distinct modes in
that program. Most declarers can be eliminated by simple
checks for the more obvious mode equivalences. These checks
should be applied before entering a newly found declarer in
the mode-list. Primitive modes have no criteria for
equivalence besides the equality of their written
representation. Therefore the primitive modes can be kept
in a separate list on input with no need for duplicates.
Two declarers also represent equivalent modes if they are
btoth the same indicant in the same range. Except for the
resolution of indicants, step 1 of section 2.2 can be
conpleted while ingputing the declarers by forming the
initial classes based on the terminals of the modes, the
T(Mi) of section 2.2, at that time. This can readily be
taken to the extent of actually doing the ordering based on
the T(Mi) on input., The advantage of ordering is that the
appropriate place for a newly encountered ncde in the mode-
list can be much more readily found if a binary search of
the list can be made. It is also practical on input to find

equivalence between a newly entered mode and one in the list
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by comparing the immediate constituents for known
equivalence. The above simple checks will probably leave
the algorithm very 1little or nc vwork to do for most
particular-programs. They take advantage of a programmer's
inclination to write declarers in a consistent manner and to
use indicants to represent complex modes. They also reduce
the number of modes'in the mode-list to very nearly the

nunber of distinct modes in the progran.

The above  input method does most of the work
associated with mode ordering for programs with a small
nunber of simple modes. Programs with a significant number
cf complicated modes require a lot of work that cannot be
done on input. It 1is just these programs, though, that
benefit from the algorithm during the coercion phase of the
conpiler, and at run-time. Therefore an inefficient form of
the algorithm, used for considerations of space or speed of
implementation, detracts only slightly from its benefits,

and only in proporticn to its benefits.

During the application of the algorithm, the least
recently examined class is the most likely to have criteria
for partitioning. Continuing to scan for a class to
partition after one has been found and partitioned, instead
of restarting at the begining of the mode-list is therefore
to ke recommended. This change in the order of finding

partitionable classes preserves the <fixed order of



40

partitioning required by the algorithm. Likewise the sub-
ordering of the immediate constituents of united modes can
be postponed until those modes are found in a class being
considered for partition. This saves the redundant scans of

the mode-list described in step 2 of Section 2.2.

If the scanning of the mode-list is to be continued
after a partitioning, then further care must be taken that
the order in which partitioning operations are performed on
any set of modes is independent of all other modes being
processed at the same time. It is therefore required to
partition a class using all possible criteria before
progressing tc ancther class. A class should be partitioned
into as many classes as required to ensure that all
resultant classes contain only indistinguishable modes.
This certainly ensures that there is no skipping over
partitionings, caused by modes extraneous to any subset of
those being processed. It also drastically reduces the
total number of scans of the mode-list required to complete

the algorithm.

No class of primitive modes can be partitioned by the
algorithm. Any other class may be subject to a sequence of
partitionings during the process of the algorithm. Any
class which is the immediate result of partitioning, and
contains any mode whose immediate constituents are members

of classes which can definitely not be partitioned any
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further, can itself definitely not be partitioned any
further. A class which contains any such mode has that

property for all its modes, so the test is easily nade.

The form in which the mode-list should be kept during
the application of the algorithm is as an ordered 1list of
unordered sets of modes. Thus at any stage of the
algorithm, any two modes are either certainly not equivalent
or there has been no reason to suspect their non-
equivalence. No optimizations can be made on the basis of

suspicions of the relation between two modes.

The detection of all context-condition violationms
except those which would prevent the elaboration of the mode
ordering algorithm should be postponed until after its
elaboration., This prevents the duplication of checks on
equivalent modes. The only forn of mode declaration which
would adversely affect the algorithm would be those in which
an indicant is defined as being itself, such as

mode a = b; mode b = a; .
These cases can be readily detected in the first step of the
algorithm. The output of the algorithm is a mode-list of

the same sort as Zosel's, except that it is ordered. All

context conditions can therefore be readily checked for.

4,2 special Considerations for One-Pass Compilers

Compilers which must generate object code for part of
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a particular-progranm before reading all of the source text,
nust usually perform coercion operations on some coercends
pefore all the declarers in the progran have been
encountered. A one-pass compiler can handle only a subset
of ALGOL 68 which requires definition of all indicants
before use of declarers containing them as constituents.
The exact limitations on such a subset of the language have

been discussed elsewhere [15].

The requirements of a one-pass compiler  make
inappropriate an algorithm which equivalences or orders all
the modes in a particular-program at once. The
equivalencing algorithm of C.H.A. Koster [ 16] can be used,
but its formulation makes it undesirable in one-pass
compilers, where speed and space usage are usually
overriding considerations in the compiler's design. The
method of the mode ordering algorithm yields a technique for
incrementally constructing a mode table and is also quite

fast.

The technique is essentially to reapply the algorithm
to all known modes whenever mode equivalence information is
needed. This apparently wasteful method can be optimized to
the extent of making it probably the fastest mode-list
handling technique proposed. All the optimizations of
section 4.1 can be applied to a one-pass compiler.  The

algorithm need not be used vhen no new modes have been added



43

to the list since its last application. The fact that the
modes already subject to the algorithm are ordered and non-
redundant can be used to Prevent regeneration of information

already known,

The information that the modes already in the nmode-
list, or old modes, are crdered can be used in two ways.
All nodes which fall into classes requiring no new entries
to the mode-list, or contituents thereof, need no further
processing, as their mutuwal relative ordering and their
ordering with respect to all nodes outside the class is
determined by a prvious invocation of the algorithm. The
ordering relation between any new mode ir a class and any
old mode in that class can be used to determine immediately
the new mode's relation to some or all of the other old
modes in that class. Thus it can quickly be determined

where to partition a class.

A class which contains only old modes, two or more of
which are constituents of npew modes, must go through the
steps that would be required if those constituent modes had
been new nmodes. This is to retain the vital order of
partitioning which is the crux of the algorithm. 01a modes
and new wmodes in the same class must be partitioned in the
regular manner in order that their proper relation can be

determined.

By taking advantage of the transitivity of the mode-
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ordering relation, the insertion of new modes into an
ordered mode list can be made faster. One-pass compilers
are traditionally designed for compile-and-go applicationms,
but the ordering of modes also makes it practical to include

the facility of independent compilation in their features.



CHAPTER V

Conclusion

An  algorithm has been presented which can be
implemented in an ALGOL 68 compiler as am inexpensive
procedure for uniquely ordering its internal table of modes.
Methods have been described by which the ordering of modes
can be made to speed the operation of both the compiler and
the object programs it produces. Ordering modes also makes
implementation of existing features of ALGOL 68 easier, and

implementation of new features practical.

There are four ways in which ordered modes aid the
implementation of ALGOL 68. Firstly, the handling of mode
tables in the compiler is made more efficient, enabling the
conpiler to perfornm its searches of them faster. Secondly,
the handling of united objects at run-time can be made more
efficient by using the order of the moods of the object's
nodes to address takles directly. Thirdly, the uniqueness
of the ordering provides a unique representation of united
objects, thus eliminating the only property of the
language's implementation which otherwise requires special

processing by linking programs. Pourthly, a unique and



46

efficient representation of =mede imformation is made
available Lty ordering, whick =xakes possible a much more
flexible and poverful formulatiom of the tramsput facility.
The value of such a facility sceld e furtber enhanced by
the establishment of a standaré mcfe ordering w#hich would
allov the construction of dzta files with formats

indeperdent of particular ALGQL ££ implemsntations.

Eigher-level languages have eem criticized for their
inefficient handling of data strectares, and for the
difficulty of incorporating them imte t»e facilities of a
conputer inmstallaticn. The agpplication of mode ordering
contribuetes significantly tc thke imvalidation of  Dboth
arguments, and should therefore fartker the utility and

acceptance of higher-level prggrzamimg iangumages.
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APPENDIX A

BEGIN COMMENT

The following program is an implementation of the
algorithm of Chapter II. It inputs modes in a form similar
to that of an ALGOL 68 mode-declaration. On command it
outputs the canonical form of the mode of any indicant
that has been defined or outputs the defined indicants in
the order determined by the algorithnm.

The program is written in ALGOL-W, which is
described in ALGOL-W Reference Manual by R.L. Sites, (Computer
Science Department, Stanford University, 1971). Examples
of the program's use follow the listing.

The records defined below represent the compiler's
internal tables. MODE holds an entry in the mode-list,
representing one mode. Its fields are

MCDEKY terminal symbol of mode (e.g. int, ref,
procvoid)

MCDELN L(Mi) of Chapter II

MODENF N(Mi) of Chapter 1I

MODECLS C(4i) of Chapter II

MCDEPR pointer to the fields or constituents of Hi

MODEBK,MODEFW linkage for the mode-list.

PRAM holds an entry for a field of a mode described in a
MODE record. Its fields are

PRAMMD constituent mode of field
PRANMTG field-tag if this is a field of a structure
PRAMLK linkage for the fields of a mode.

TAG holds part of a variable length string used as an
indicant or field-tag, TABLE holds an entry for an indicant.
INDICANTS points to the table of indicants and MODES points
to the mode-list, ;

RECORD MODE (STRING(6) MODEKY;
INTEGER MODELN,MODEPLC,MODENF ,MODECLS ;
LOGICAL MODEMK;
REFERENCE (PRAM, TAG) MODEPR;
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REFERENCE (MODE) MODEBK,MODEFH) ;
RECORD ERAM (REFERENCE (MODE) PRAMMD;
REFERENCE (TAG) PRAMTG;
REFERENCE (PRAM) PRAMLK) ;
RECORD TAG(STRING(16) TAGNM;
REFERENCE (TAG) TAGLK) ;
RECORD TABLE (REFERENCE (TAG) TABLENM;
LOGICAL TABLEMNK;
REFERENCE (MODE) TABLEMD;
REFERENCE (TABLE) TABLELK) ;
REFERENCE (TABLE) INDICANTS;
REFERENCE (HODE) MODES;
INTEGER NUMBINDIC;

LOGICAL ORDERFLAG;

COMMENT
ORDER is the implementation of the algorithm of
Chapter II. ;

PROCEDURE ORDER;

IF (ORDERFLAG) ANL (MODES~=NULL) THEN

BEGIN REFERENCE (MODE) M,HM,MT,MTT,MBK,NFW;
INTEGER N;

COMMENT Step 1:

Replace the indicants with their definitions, unravel
the unions, and form classes on the basis of the T (i) of
Chapter II. Note that the modes in the node-list are
partially ordered by GTPRIO on input (in the routine
ENTER) .

UNTABLE;

UNRAVEL;

M:=MODES;

N:=1;

MH:=NULL;

WHILE M-=NULL DO

BEGIN MODECLS (M) :=N;
MODEBK (M) : =HN;
MM:=H;
MODEMK (M) : =FALSE;
IF MODEFW (M) -~=NULL THEN
IF GTPRIO (MODEFW(M),M) THEN
Ni=N+1;
M:=MODEFH (M)

END;

CCMMENT Steps 2 to 5:

order the moods of unions, then search for a class
that can be partitioned on the criteria of steps 3, 4, and
5 of the algorithm. 3
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WHILE (BEGIN ORDERMOODS;

M:=MCDES;

WHILE(BEGIN MBKs=NODEBK (M) ;
MFW:=MODEFH () ;
MODEFW (M) :=NULL;
MM:=NULL;

WHILE IF MFW=NULL THEN FALSE ELSE
MODECLS (MFR)=MODECLS (M) DC

BEGIN MT:=MFW;
MFH:=MODEF& (MFH) ;
MODEFW (MT) :=Ml;

M :=NT

END;

HT:=NULL;

WHILE MM-=NULL DO

IF GTPOST (M,MM) THEN

BEGIN MT:=MODECAT (MT,M);
Me=MN;
MM:=MODEFW (M¥) ;
MODEFW (M) :=NULL

END ELSE

IF GTPOST (MM,M) THEN

BEGIN MTT:=MODEFW (MM);
MODEFW (MIt) e=MT;
HT:=HMN;

MM:=HIT

END ELSE

BEGIN MTT:=MODEFW (MN) ;
MODEFH (MM) :=M;
Mi=MY;

MM:=MIT

END;

IF MBK=NULL THEN MODES:=M ELSE

MODEFW (MBK) :=M;

WHILE (BEGIN MODEBK (M) :=MBK;
MBK:=M;
M:=MODEFW (Y) ;
M~=NULL

END) DO;

MM:=NT;

MODEFW (MBK) :=MT;

WHILE XH-=NWULL DO

BEGIN MODEBK (MM) :=MBK;
MBK:=MN;
MM:=HMODEFW (M)

END;

MODEFW (MBK) :=MFW;

IF MFH-~=NULL THEN

MODEBK (MFW) :=MBK;

M:=MFW;

(M~=NULL) AND (MT=NULL)
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END) DO;
HTT:=HT;
IF MT+=NULL THEN
BEGIN WHILE MT-=NULL DO
BEGIN MODECLS {NT) :=MODECLS (MT) +1;
MT:=MODEFH (MT)

END
END;
MTT-=NULL
END) DO;
CRUNCH;
OFDERFLAG:=TRUE
END;
COMMENT

CRUNCH deletes all duplicate modes, deletes duplicate
fields from united modes, and makes indicants point to the
representative of their defined mode. ;

PROCEDURE CRUNCH;
BEGIN REFERENCE(IABLE) I;
REFERENCE (MODE) M, HMH;
REFERENCE (PRAM) P;
INTEGER N;
I:=INDICANTS;
WHILE I-=NULL DO
IF MODEKY (TABLEMD (I))-="TAG " THEN
BEGIN M:=TABLEMD(I);
N:=MOLECLS (Y) ;
WHILE IF MODEFW(M)=NULL THEN FALSE ELSE
MODECLS (MODEFW (M) )=N DO
M:=MODEFH (M) ;
TABLEND (I) :=M;
I:=TABLELK (I)
END ELSE
I:=TABLELK(I);
M:=MODES;
WHILE M-=NULL DO
BEGIN P:=MODEER (M) ;
WHILE P~=NULL DO
IF MODEKY (PRAMMD (P))="IAG " THEN
P:=PRAMLK(P) ELSE
BEGIN MM:=PRAMMD (P) ;
N:=MODECLS (4M) ;
WHILE IF MODEFW(MM)=NULL THEN FALSE ELSE
MODECLS (MODEF K (MM)) =N DO
MM:=MODEFW (MM) ;
PRAMMD (P) :=NN;
P:=PRAMLK (F)
END;
IF MODEKY (M)="UNION " THEN
BEGIN P:=MODEPR (M) ;
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WHILE P-=NULL DO
BEGIN WHILE IF PRAMLK(P)=NULL THEN
FALSE ELSE MODECLS(PRAMMD(P)) =
MODECLS (PRAMMD (PRAMLK(P))) DO
PRAMLK (P) :=PRAMLK (PRAMLK(P)) ;
P:=PRAMLK (P)
END
END;
M:=MODEFH (M)
END;
WHILE IF MCDEFW (MODES)=NULL THEN FALSE ELSE
MODECLS (HODES) = =MODECLS (MODEFW (MODES)) DO
MODES :=MODEEW (MODES) ;
M:=MODES;
WHILE (BEGIN MM:=MCDEEFW (M) ;
MM-=NULL
END) DO
BEGIN WHILE IF MODEFW (MM)=NULL THEN FALSE ELSE
HODECLS(HM)‘MODECLS(MODEFH(MH)) DO
MM:=MODEFW (HH) ;
MODEFW (M) : =MM;
Hs=HH
END
END;

COMMENT

GTTAG, like EQTAG below, compares two tags. GITAG
returns true if the first tag is “greater than"
the second, and EQTAG returns true 1f they are equal. ;

LOGICAL PROCEDURE GTTAG (REFERENCE (TAG) VALUE A,B);
(BEGIN WHILE IF(A=NULL)OR(B=NULL)THEN FALSE ELSE
TAGNM (A) =TAGNM (B) DO
BEGIN A:=TAGLK ()
B:=TAGLK (B)
END;
IF A=NULL THEN FALSE ELSE
IF B=NULL THEN TRUE ELSE
TAGNM (3) >TAGNM (B)
END) ;

LOGICAL PROCEDURE EQTAG(REFERENCE (TAG) VALUE A,B);
BEGIN WHILE IF (A=NULL)OR(B=NULL) THEN FALSE ELSE
TAGNM (A) =TAGNH (B) DO
BEGIN A:=TAGLK(A);
B:=TAGLK (B)
END;
(A=NULL) AND (B=NULL)
END;

COMMENT
GTPRIO compares two modes on the criteria of step
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1 of section 2.2. ;

LOGICAL PROCEDURE GTPRIO (REFERENCE(MODE) VALUE A,B);
IF MODEKY (A)="TAG " THEN FALSE ELSE
IF MODEKY (B)=%"TAG " THEN TRUE ELSE
IF MODEKY(A) >MODEKY (B) THEN ITRUE ELSE
IF MODEKY (A)<MODEKY(B) THEN FALSE ELSE
IF MODEKY (A)="UNION " THEN FALSE ELSE
- IF MODELN(A)-~=MODELN(B) THEN MODELN (A) >MODELN (B) ELSE

IF MODENF (A)~=MODENF (B) THEN MODENF (A) >MODENF (B) ELSE
IF MODEKY (A)~="STRUCT" THEN FALSE ELSE
(BEGIN REFERENCE (ERAM) P,Q;

P:=NODEPR (3) ;

Q:=MODEPR(B) ;

WHILE IF P=NULL THEN FALSE ELSE

EQTAG (PRAMTG (P) ,PRANTG (Q) ) DO
BEGIN P:=PRAMLK(P);
Q:=PRAMLK (Q)

END;

IF P=NULL THEN FALSE ELSE

GTTAG (PRANTG (P) , PRAMTG (Q))
END) ;

COMMENT

GTPOST, like GIPRIO, comfares two nodes, but based
on the criteria used in steps 3, 4 and 5 to determine if
tvo modes should be placed in different classes. ;

LOGICAL PROCEDURE GTPOST (REFERENCE (XODE) VALUE A,B);
IF MODEKY(A)="TAG " THEN FALSE ELSE
IF MODEKY (B)="TAG " THEN TRUE ELSE
IF MODECLS (A) -=MODECLS (B) THEN MODECLS (A) >MODECLS (B) ELSE
IF MODEKY (A)-~="UNION " THEN
(BEGIN REFERENCE (ERAHN) P,Q;
P:=MODEPR () ;
Q:=MODEPR (B) ;
WHILE IF P=NULL THEN FALSE ELSE
MODECLS (PRANMD (P)) =MODECLS (PRAMMD (Q)) DO
BEGIN P:=PRAMLK(F);
Q:=PRAMLK (Q)
END;
IF P=NULL THEN FALSE ELSE
MODECLS (PRAMMD (P) ) >MODECLS (PRAMMD(Q))
END) ELSE
(BEGIN REFERENCE (PRAN) P,Q;
INTEGER N;
P:=HODEPR(R)
Q:=MODEPR (B) ;
WHILE IF(E=NULL)OER(Q=NULL)THEN FALSE ELSE
MODECLS (PRAMMD (P) ) =MOLECLS (PRANMD (Q)) DO
BEGIN N:=MODECLS(PRAMMD(P)) ;
WHILE(BEGIN P:=PRAMLK (P);
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IF P=NULL THEN FALSE ELSE
MCDECLS (PRANMD (P) ) =N
END) DO;
WHILE (BEGIN Q:=PRAMLK (Q);
IF Q=NULL THEN FALSE ELSE
MODECLS (PRAMMD (Q) ) =N
END) DO
END;
IF P=NULL THEN FALSE ELSE
IF Q=NULL THEN TRUE FLSE
MODECLS (PRAMMD (P) ) >MODECLS (PRAMMD (Q) )
END) ;

COMMENT

ORDERMOODS orders the constituents of all united
modes in the set under consideration, and so implements
step 2 of section 2.2.

PROCEDURE ORDERMOODS;
BEGIN REFERENCE (MODE) M;
REFERENCE (ERAM) P,Q,R,S;
M:=MODES;
WHILE IF M=NULL THEN FALSE ELSE
MODEKY (M) ~="UNION " DO
M:=MODEFW (¥);
WHILE IF M=NULL THEN FALSE ELSE
MODERY (M) ="UNION " DO
IF MODEPR (M)-~=NULL THEN
BEGIN P:=PRAMLK(MCDEPR(M));
Q:=HODEPR (M) ;
PRAMLK(Q) :=NULL;
WHILE P-~=NULL DO
IF MCDECLS (PRAMMD (P)) >MODECLS (PRAMMD (Q) ) THEN
BEGIN R:=Q;
WHILE IF PRAMLK (R)=NULL THEN FALSE
ELSE MODECLS (PRAHMMD (P))>
MODECLS (PRAMMD (PRAMLK (R))) DO
R:=PRAMLK (B) ;
S:=PRAMLK(R) ;
PRAMLK (F) ==P;
P:=PRAMLK(P) ;
PRAMLK (ERAMLK (R) ) :=S
END ELSE
BEGIN R:=(Q;
Q:=p;
P:=PRAMLK (E) ;
PRAMLK (Q) :=R
END; .
MODEPR (M) = =Q;
M:=MCDEFH (i)
END ELSE
M:=MODEFW (H)
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END;

REFERENCE (HODE) EROCEDURE MODECAT
(REFERENCE (MODE) VALUE A,B);

IF A=NULL THEN E ELSE

(BEGIN REFERENCE (MODE) M;
Mi=A;

WHILE MODEFW (A)-=NULL DO

A:=MODEFW (1) ;
MODEFW (3) :=B;
H

END)

COMMENT

UNTABLE replaces all uses of indicants in mode
definitions by their defined values, that is their modes.
At this point the unshielded mode definitions which would
adversely affect the algorithm are detected.

PROCEDURE UNTABLE;
BEGIN REFERENCE (TABLE) I;
REFERENCE (MCDE) M, HM;
REFERENCE (PRAN) P;
INTEGER N;
I:=INDICANIS;
WHILE I-~=NUIL DO
BEGIN M:=TABLEMD(I);
N:=0;
MH:=NULL,;
WHILE (MODEKY (M)="TAG ") AND
(N<KNUMBINDIC) AND
(M~=MM) DO
BEGIN MH:=HM;
N:=N+1;
M:=LOOKUP (MODEPR (H) )
END;
IF N>=NUMBINDIC THEN
BEGIN WRITE ("***ERROR¥*¥* MODE ");
PRINTTAG (TABLENM (I));
WRITEON ("=") ;
PRINTTAG (TABLENM(I));
WRITEON ("; ") ;
I0CCNTROL (2)
END ELSE
TABLEMD (I) : =M;
I:=TABLELK (I)
END ;
M:=MODES;
WHILE M-=NULL DO
BEGIN P:=MODEPR(M);
WHILE P-=NULL DO
BEGIN



58

IF MODEKY (PRAMMD(P))="1AG " THEN
PRAMMD (P) :=LOOKUP (MODEPR (PRAMMD (P))) }
P:=PRAMLK (P)
END;
M:=MODEFH (M)
END
END;

REFERENCE (MODE) EROCEDURE LOOKUP
(REFERENCE (TAG) VALUE T);
(BEGIN REFERENCE(TABLE) SYMPT;
SYMPT :=INDICANTS;
WHILE IF SYMPT=NULL THEN FALSE ELSE
~EQTAG (TABLENN (SYHPT) ,T) DO
SYMPT:=TABLELK (SYUPT) ;
IF SYMPT-=NULL THEN TABLEMD (SYMPT) ELSE
(BEGIN WRITE ("**ERROR*¥* UNDEFINED INDICANT:");
PRINTTAG(T) ;
TOCONTROL (2)
ENTER ("TAG",0,T)
END)
END) ;

COMHMENT
UNRAVEL and UNBOX unravel all united modes so that

all their constituents are non-united modes. ;

PROCEDURE UNRAVEL;
BEGIN REFERENCE (MODE) H,MM;
M:=MODES;
WHILE IF M=NULL THEN FALSE ELSE
MODEKY (M) ~="UNION " DO
M:=MODEFNW (H) ;
MMi=NM;
WHILE IF MM=NULL THEN FALSE ELSE
MODEKY (MM) ="UNION " LO
BEGIN HMODECLS (MM) :=0;
MM :=MODEFW (MN)
END;
WHILE IF M=NULL THEN FALSE ELSE
MODEKY (M) ="UNION " DO
BEGIN MODEPR (M) :=UNBOX () ;
M3:=MODEFW (M)
END
END;

REFERENCE (PRAN) EROCEDURE UNBOX
(REFERENCE (HODE) VALUE HM) ;
IF MODECLS(M)=2 THEN MODEPR(M) ELSE
IF MODECLS (M)=1 THEN
(BEGIN WRITE (WH*XERROR¥¥* NODE *=UNION(eeeo¥yeee)i™)
ICCONTROL (2) ;
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MODECLS (H) :=2;
PRAN (8,NULI,NULL)
END) ELSE
(BEGIN REFERENCE (ERAM) P,Q;
MODECLS (M) :=1;
P:=MODEPR (M) ;
WHILE P-~=NULL DO
BEGIN IF MCDEKY (PRAMMD(P))="UNION " THEN
BEGIN Q:=UNBOX (PRAMMD (P)) ;
PRAMMD (P) : =PRAMMD (Q) ;
WHILE PRAMLK (Q)-=NULL DO
BEGIN Q:=PRAMLK (Q);
PRAMLK (P) :=PRAM (PRANMD (Q) ,
NULL,PRAMLK(P)) ;
B:=PRAMILK (P)
END
END,
P:=PRAMLK (P)
END;
MODECLS (M) :=2;
MODEPR (M)
END) ;

INTEGER PLACE;

COMMENT
PRINTHMODE prints the canonical form of a mode using an
ordered mode-list to produce that form. ;

PROCEDURE PRINTMCLE (REFERENCE (MODE) VALUE W) ;
IF MODEKY (M) ="INT " THEN
BEGIN PRINTSHONGS (MODELN (M));

WRITEON ("INT )
END ELSE .
IF MODEKY (M) ="REAL " THEN
BEGIN PRINTSHONGS(MODELN(M));

WRITEON ("REAL ")
END ELSE
IF MODEKY (¥)="BOOL " THEN WRITEON("BOOL ") ELSE
IF MODEKY (4)="CH?R " THEN WRITEON("CHAR ") ELSE
IF MODEKY (4)="FORMAT" THEN WRITEON("PORMAT ") ELSE
IF MODEKY (M) ="TAG " THEN WRITEON (“*UNDEFINED* ") ELSE
IF (BEGIN PLACE:=FLACE+1;

MODEPLC (M) ~=0
END) THEN PRINTNUM (MODEPLC (¥)) ELSE
IF (BEGIN MODEPLC (M) :=PLACE;
MODEKY (M) ="REF "
END) THEN

BEGIN WRITEON ("REF ");

PRINTMODE (PRANMD (HODERR (M) ) )
END ELSE
TF (MODEKY (M) ="ROW ") OR (HODEKY (M) ="ROWOF ") THEN
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BEGIN WRITEON (" (");
WHILE MODEKY (M)="EOW " DO
BEGIN WRITECN(",");:

M:=PRAMMD (MODEPR (M) )

END;
WRITEON (") ") ;
PRINTMODE (PRAMMD (HODEPR (M) ) )

END ELSE

IF MODEKY (M)="PROC " THEN

BEGIN WRITEON ("PROC ")
ERINTPRAM (PRAMLK (HODEPR (M)) ) ;
PRINTMODE (PRAMMD (MODEPR (M) ))

END ELSE

IF MODEKY (M) ="PRVOID" THEN

BEGIN WRITEON ("PROC ");
PRINTPRAM (MODEPR (M) ) ;
WRITEOK ("VOIL ")

END ELSE

IF MODEKY (M)="UNION " THEN

BEGIN WRITEON ("UNION ");
PRINTPRAM (MODEPR (H) )

END ELSE

BEGIN WRITEON ("STRUCT ");
PRINTPRAM (MODEPR (H))

END;

PROCEDURE PRINTPRAM (REFERENCE (PRAM) VALUE P);
IF P-~=NULL THEN
BEGIN WRITEON ("(");
WHILE (BEGIN PRINTHODE (PRAMND (P));
PRINTTAG (PRANTG (P)) ;
P:=PRAMLK (E) ;
P~=NULL
END) DC
WRITEON (", ") ;
WEITEON (") ")
END;

PROCEDURE PRINTNUM (INTEGER VALUE N);
BEGIN STRING(13) S;
S$(0112) :=INTBASE10(N);
S(12{1):=" "
IF N<O THEN
BEGIN WRITEON("-");
N:=-N
END;
IF N<10 THEN WRITEON(S(1112)) ELSE
IF N<100 THEN WRITEON(S(10]3)) ELSE
IF N<1000 THEN WRITE(S(9{4)) ELSE
WRITEON (S(2)11))
END;
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PROCEDURE PRINTTAG (REPERENCE (TAG) VALUE T);
IF T~=NULL THEN
BEGIN WHILE TAGLK (T)-~=NULL DO

BEGIN WRITEON (TAGNM(T)):

T:=TAGLK(T)

END;

PRINTCHOP (TAGNH(T))
END;

PROCEDURE PRINTCHOP (STRING(16) VALUE S);
IF 5(8]8)=" " THEN
BEGIN IF S(4{4)=" " THEN
BEGIN IF S(2{2)=" " THEN
BEGIN IF S(1]1)~=" " THEN WRITEON(S(0]2))
ELSE IF S(0f1)~=" " THEN WRITEON (S(0[1))
END ELSE
IF S(3|1)=" " THEN WRITEON(S(0|3)) ELSE
WRITEON (S (0]4))
END ELSE
IF S(6{2)=" " THEN
BEGIN IF S(5|1)=" " THEN WRITEON(S(0[5)) ELSE
WRITECN (S (0(6))

END ELSE
IF S(7]1)=" " THEN WRITEON(S(0(7)) ELSE
WRITEON (S (018))

END ELSE

IF S(12Q4)=" " THEN
BEGIN IF 5(10]2)=" " THEN
BEGIN IF S(9]1)=" " THEN WRITEON(S(0[9)) ELSE
WRITEON (S (0110))
END ELSE
IF S(11]1)=" " THEN WRITEON(S(0{11)) ELSE
WRITEON (S(0}12))
END ELSE
IF S(14]2)=" " THEN
BEGIN IF S(13]1)=" " THEN WRITEON(S(0(13)) ELSE
HRITEON (S (0114))
END ELSE
IF S(15]1)=" * THEN WRITEON(S(0[{15)} ELSE
WRITEON (S) ;

PROCEDURE PRINTSHONGS (INTEGER VALUE N);
IF N>0 THEN
BEGIN FOR I:=1 UNTIL N DO
WRITEON ("LONG ")
END ELSE
IF N<O THEN
BEGIN FOR I:=1 UNTIL -N DO
WRITEON (YSHORT ")
END;

LOGICAL ERRORFLAG;
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COMMENT

INMODE reads in a mode and enters it and its
constituents in the mode-list. It uses none of the
optimizations of Chapter IV to aid the algorithm proper.
The routines for input are structured on three levels:
inputting a mode (by INMODE), inputting a symbol, tag,
or indicant (by INTAG), and inputting a symbol (by
LOOKCHAR). A simple BNF grammar for modes is

<mode>::= <shongsety> INT | <shongsety> REAL | BOOL |
CHAR | FORMAT | <indicant> } REF <mode> |
PROC <moid> | PROC (<pram>)<moid> | UNION(<pram>) |
STRUCT (<fields>) | (<rowsety>) <mode>
<{shongsety>::= <longs> | <shorts> | <empty>
<longs>::= LONG | LONG <longs>
<shorts>::= SHORT | SHORT <shorts>

<rowsety>::= <empty> | ,<rowsety>

<moid>::= <mode> | VOID

<pram>::= <mode> | <pram>,<mode>

<fields>::= <mode> <tag> | <fields>,<mode> <tag>
<tag>::= <alphanumeric string>

<indicant>::= <alphanumeric string>

<empty>::=

REFERENCE (MODE) PROCEDURE INMODE;
IF LOOKT("INT")OF LOOK1("REAL")OR LOOK1("BOOL")OR
LOOK 1("CHAR") OR LOOK1("FORMAT") THEN
(BEGIN REFERENCE (TAG) T;
T:=INTAG(FALSE);
ENTER (TAGNHM(T) (0] 6),0,NULL)
END) ELSE
IF LOOK1("LONG") THEN INSHONGS("LONG") ELSE
IF LOOK1("SHORI") THEN INSHONGS ("SHORT") ELSE
IF LOOK1("REF") THEN
(BEGIN SEQTAG;
ENTER ("REF",0,PRAM (INMODE,NULL, NULL))
END) ELSE
IF LOOKT(" (") THEN
(BEGIN REFERENCE (MODE) RES;
INTEGER N;
SEQTAG;
N:=0;
WHILE LOOK1(“,%) DO
BEGIN N:=N+1;
SEQTAG
END;
IF -LOOK1(")") THEN
BEGIN ERRORFLAG:=TRUE;
WRITE ("k**ERROR*¥* ROWOF NOT TERMINATED ",
UBY 1)),
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I0CONTROL (2)
END;
SEQTAG;
RES:=ENTER ("ROWOF", 0, PRAM (INNODE,NULL,NULL) ) ;
FOR I:=1 UNTIL N DO
RES:=ENTER ("ROW",0,PRAN (RES,NULL,NULL) ) ;
RES
END) ELSE
IF LOOK1("PROC") THEN
(BEGIN REFERENCE (PRAM) P;
SEQTAG;
P:=INPRAM (FALSE, FALSE) ;
IF LOOK1("VOIDY) THEN
(BEGIN SEQTAG;
ENTEE ("PRVOID",0,P)
END) ELSE
ENTER ("PROC",0,PRAM (INMODE, NULL,P))
END) ELSE
IF LOOK1("UNION") THEN
(BEGIN SEQTAG;
ENTER ("UNION",0,INPRAM(FALSE,TRUE))
END) ELSE
IF LOOK1("STRUCT") THEN
(BEGIN SEQTAG;
ENTER ("STRUCT",0,INPRAM(TRUE, TRUE))
END) ELSE
ENTER("TAG",0,INTAG(TRUE));

REFERENCE (MODE) PROCEDURE ENTER(STRING(6) VALUE KY;
INTEGER VALUE LN;REPERENCE (PRAM,TAG) VALUE PR);
BEGIN REFERENCE (MODE) M,L;
INTEGER N;
M:=MODE (KY,LN,,,0,,PR,,);
IF KY-="TAG " THEN
IF(BEGIN N:=0;
WHILE PR-=NULL DO
BEGIN N:=N+1;
PR:=PRAMLK (PR)
END;
MODENF () :=N;
IF MODES=NULL THEN TRUE ELSE
GTPRIO (MODES, M)
END) THEN
BEGIN MODEFW (M) :=HODES;
MODES :=H
END ELSE
BEGIN L:=MCDES;
WHILE IF MODEFW(L)=NULL THEN FALSE ELSE
GTPRIO (M, MODEFW (L)) DO
L:=MODEFW (L) ;
MODEFW (¥) s=MODEFW (L) ;
MODEFW (L) :=H
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END;
HODEMK (M) :=TRUE;
¥

END;

REFERENCE (PRAM) PROCEDURE INPRAM(LOGICAL VALUE T,F);
IF IF ~LOOK1("(") THEN TRUE ELSE
LOOK2 (", ") CR LOCK2(")") THEN
(BEGIN IF F THEN
BEGIN ERRORFLAG:=TRUE;
WRITE ("***ERROR*** NOPRAM NONPROC")
END;
NULL
END) ELSE
(BEGIN REFERENCE (PRAN) P,Q,R;
P:=NULL;
WHILE (BEGIN SEQTAGS
P:=PRAH (INNODE,NULL,P);
IF T THEN PRAMTG(P) :=INTAG(TRUE);
IF(«LO0K1(","))AND(ﬂLO0K1(")"))THEN
(BEGIN ERRORFLAG:=TRUE;
WRITE ("***ERROR¥¥% BAD DELIMI",
WTER IN FIELD");
TOCONTROL (2) 5

FALSE
END) ELSE
LOOK1 (", ")
END) DO;
SEQTAG;
Q:=NULL;

WHILE P~=NULL DO

BEGIN R:=Q;
Q:=P;
P:=PRAMLK(P) ;
PRAMLK(Q) :=R

END;

Q

END)

REFERENCE (HODE) PROCEDURE INSHONGS (STRING (5) VALUE S) s
BEGIN INTEGER N;
SEQTAG;
:=1;
WHILE LOOK1(S) DO
BEGIN N:=N+1;
SEQTAG
END;
IF LOOK1("INT")OR LOOK1 ("REAL") THEN
(BEGIN EEFERENCE (TAG) T;
T:=INTAG (FALSE);
ENTER (TAGNM (T) (016), (IF S="LONG "THEN N ELSE
-~ -N) ,NULL) ’
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END) ELSE

(BEGIN ERRORFLAG:=TRUE;
WRITE ("#**ERROR*** SHENGTH OF NON-INTREALY,

"o ;

IOCONTROL(2) ;
NULL

END)

END;

INTEGER AHFAD;
REFERENCE (TAG) WEXTELEM1, NEXTELEM?Z;

REFERENCE (TAG) PROCEDURE INTAG(LOGICAL VALUE ALPH);
BEGIN REFERENCE (TAG) T;
LOGICAL X;
X:=LOOK1 (" Xv);
T:=NEXTELEM1;
IF (TAGNM (T) (0] 1) <"a") AND (TAGNM(T) (01)~="a") AND
ALPH THEN
(BEGIN EFRCRFLAG:=TRUE;
WRITE ("*#*ERROR*** MISSING ALPHA STRING ",
WBEFORE ", TAGNH (T) (011),"*");
NULL
END) ELSE
(BEGIN
AHEAD:=AHEAD-1;
~IF AHEAD>0 THEN NEXTELEM1:=NEXTELEN2;
T
END)
END;

PROCEDURE SEQTAG;

BEGIN REFERENCE (TAG) T;
T:=INTAG (FALSE)

END;

LOGICAL EROCELURE LCOK1(STRING(16) VALUE S);
BEGIN IF AHEAD=0 THEN
BEGIN AHEAL:=1;
NEXTELEM1:=INELEM
END;
IF NEXTELEM1=NULL THEN S=" " ELSE
IF TAGLK (NEXTELEM1)-~=NULL THEN FALSE ELSE
TAGNM (NEXTELEM1) =5
END;

LOGICAL PROCECURE LOOK2 (STRING (16) VALUE S);
BEGIN IF AHEAL=0 THEN
BEGIN AHEAD:=2;
NEXTELEN1:=INELEM;
NEXTELEM2: =INELEN
END ELSE
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IF AHEAL=1 THEW
BEGIN AHEAD:=2;
NEXTELEM2:=INELEN
END;
IF NEXTELEM2=NULL THEN S=* " ELSE
IF TAGLK(NEXTELEM2)-=NULL THEN FALSE ELSE
TAGNM (NEXTELEN2) =S

REFERENCE (TAG) PROCEDURE INELEM;
(BEGIN STRING(1) CHAR;

END) ;

STRING (16) GROUP;

INTEGER P;

REFERENCE (TAG) RES,PCINT;

WHILE (BEGIN CHAR:=INCHAR;
C HAR:" "

END) DC;
IF(CHARC"A") AND (CHAR-="a") THEN TAG (CHAR,NULL)ELSE
{BEGIN GRCUE:=CHAR;

P:=1;

RES:=POINT:=TAG;

WHILE (BEGIN CHAR:=LOOKCHAR;

(CHAR>="A") OR (CHAR="3")
END) DO
IF(BEGIN SEQCHAR;
P<16
END) THEN
BEGIN GROUP(P|1) :=CHAR;
P:=P+1;
END ELSE
BEGIN TAGNM (POINT) :=CROUP;
GRCUP:=CHAR;
P:=1;
TAGLK (PCINT) :=TAG;
POINT:=TAGLK (POINT)
END;
TAGLK (POINT) :=NULL;
TAGNM (PCINT) :=GROUP;

RES

END)

INTEGER AHEADCHAR,CHARPOINT;
LOGICAL ECHO,CHARQUO;
STRING (1) NEXTCHAR;

STRING (256) CHARBUE;

STRING (1) PROCEDURE INCHAR;
BEGIN STRING (1) CHAR;

CHAR:=LOOKCHAR;
SECCHAR;
CHAR
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END;

PROCEDURE SEQCHAR;
IF ~CHARQUO THEN
IF AHEALCHAR~=(0 THEN AHEADCHAR:=AHEADCHAR-1 ELSE
BEGIN STRING(1) C;
C:=LOOKCHAR;
RHEADCHAR:=C
ENLD;

STRING (1) PROCELURE LOOKCHAR;
BEGIN STRING (1) C;
WHILE (BEGIN C:=LOOKCHARNC;
C:ll*“
END) DO
REGIN AHEALCHAR:=0;
WHILE (BEGIN C:=LOOKCHARNC;
AHEADCHAR:=0;

Caczitgn
END) DO
END;
CHARQUO :=C="; 1,
C

END;

STRING (1) PROCELURE LCOKCHARNC;
IF AHEALCHAR=1 THEN NEXTCHAR ELSE
(BEGIN IF CHARPOINT>255 THEN
BEGIN READCARD (CHARBUF) ;
CHARPOINT:=0;
IF ECHO THEN
BEGIN WRITE ("***ECHO *%% ™, CHARBUF(0|57));
IOCONTROL (2)
END
END;
NEXTCHAR :=CHARBUF (CHARPOINT| 1) ;
CHARPOINT :=CHARPOINT+1;
AHEADCHAR:=1;
NEXTCHAR
END) ;

INTEGER N,CLS;
LOGICAL MK;
REFERENCE (TAG) TG;
REFERENCE (MODE) MD;
REFERENCE (TABLE) I;
REFERENCE (PRAM) PK;

WHILE (BEGIN
AHEAD:=0;
AHEADCHAR:=0;
CHARPOINT:=256;
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NUMBINDIC:=0;
CHARQUO:=FALSE;
INCICANTS:=NULL;
MODES:=NULL;
ORDERFLAG:=FALSE;
ECHO:=FALSE;

COMMENT
The commands supported by the program are
EXIT stop the program
RESTART clear all definitions and restart
the program
ECHO echo all input to the output
ORDER list all defined indicants in order
FORM <indicant> print the canonical form of the

node designated by <indicant>
MODE <imndicant>=<mode> define <indicant>

A1l commands are terminated by semicolons. ;

WHILE (~LOOK 1("EXIT"))AND (-LOOK1 ("RESTARI")) DO
BEGIN IF LOOK1(";") THEN ELSE
IF LOOK1("ECHO") THEN ECHO:=TRUE ELSE
IF LOOK1("NOECHO") THEN ECHO:=FALSE ELSE
IF LOOK1("ORDER") THEN
BEGIN ORDER;
N:=0;
CLs:=1;
I:=INDICANTS;
WHILE I-=NULL DO
BEGIN IF MODEKY (TABLEMD(I))="TAG " THEN
N:=N+1;
I:=TABLELK (I})
END;
WHILE N<NUMBINLIC DO
BEGIN I:=INDICANIS;
MK:=FALSE;
WHILE I-~=NULL DO
IF MODEKY (TABLEMD (I))="TAG " THEWN
I:=TABLELK (I) ELSE
IF MODECLS(TABLEMD(I))-~=CLS THEN
I:=TABLELK (I) ELSE
BEGIN IF N=0 THEN ELSE
IF MK THEN WRITEON("=") ELSE
WRITEON (",");
MK:=TRUE;
Ne=N+1;
PRINTTAG (TABLENMN (I));
I:=TABLELK (I)
END;
CLS:=CLS+1
END;
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WRITECN (";");
IOCONTROL (2)
END ELSE
IF LOOK1("FORM") THEN
BEGIN SEQTAG;
ERRORFLAG:=FALSE;
IF ~ERRORFLAG THEN
BEGIN
TG:=INTAG (TRUE) ;
ORDER;
PLACE:=0;
MD:=MCDES;
WHILE MD-~=NULL DO
BEGIN MODEPLC (MD) :=0;
HD:=HODEFH (MD)
END;
MD:=LCOKUP (TG) ;
WRITE ("MODE ") ;
PRINTTAG(TG) ;
WRITEON ("=") ;
PRINTMOLE (MD) ;
WRITEON (";") ;
IOCONTROL (2)
END
END ELSE
IF LOOK1("MODE") THEN
BEGIN SEQTAG;
ERRORFLAG: =FALSE;
TG:=INTAG(TRUE) ;
IF ~ERRORFLAG THEN
BEGIN
IF LOOK1("=") THEN SEQIAG ELSE
BEGIN WRITE ("*#*ERROR*** NO '=11);
TIOCONTROL (2)
END;
MD:=MODES;
WHILE MD~=NULL DO
BEGIN MODEMK (MD) :=FALSE;
¥D:=MODEEW (MD)
END;
MD:=INMODE;
IF ERRORFLAG THEN
BEGIN WHILE IF MODES=NULL THEN FALSE ELSE
MODEMK (MOLCES) DO
MODES:=MODEF¥ (MODES) ;
MD:=MCDES;
IF MD-~=NULL THEN
WHILE MODEFW (MD)-~=NULL DO
IF MODEMK (MODEFW (MD)) THEN
MODEFW (MD) :=MODEFW (MODEF¥ (MD)) ELSE
MD:=MCDEF¥ (MD)
END ELSE
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BEGIN I:=INDICANTS;

ORDERFLAG:=FALSE;

WHILE IF I=NULL THEN FALSE ELSE
~EQTAG (TG, TABLENH (I)) DO

I:=TABLELK(I);

IF I=NULL THEN

BEGIN NUMBINDIC:=NUMBINDIC#+1;
INDICANTS:=TABLE (16 ,,MD,

INDICANIS)
END ELSE
TABLEMD (I) :=MD
END :
END
END ELSE
BEGIN WRITE ("¥**ERRQR¥*% UNRECOGNIZABLE COMMANDY);
TOCONTROL (2)
END;
WEILE ~LOOK1(":;") DO
SEQTAG;

CHARQUO :=FALSE;
AHEADCHAR:=0;
SEQTAG

END;

LOOK1("RESTART")

END) DO;
WRITE("***GOOD-BYEX¥*")



EXAMPLES

# The following examples illustrate the operation of the
progran listed in this appendix. The ordering produced by
the program differs from the ordering described by the
algorithp in Chapter II and from that of the nodified form
of the algorithm described in Chapter IV. The difference
is in the ordering of terminals T(Mi). The canonical form
produced by the program differs from that of Section 3.5
in that primative modes are not included in the "counting"
process that produces the integers used to represent the
loops in the graph which represents a mode.

Comments can te entered in comment-symbols{R1.1.3i],
namely "##", Input is represented by lower-case lines,
and output from the program is represented by upper-case
lines. #

pode a=union(ref a, ref b, int);

pnode b=union(ref a, real);

order;

a,B;

forn a;

MODE A=UNION (INT ,REF 1 ,REF UNION (REAL ,2 ));
form b;

MODE B=UNION (REAL ,REF UNICN (INT ,2 ,REF 1));
restart;

# Example from Section 11.11 of the Report (also used in
Section 3.5 of the thesis). #

node form=union (ref const, ref var, ref triple,ref call);
node const=struct (real value);
mode var=struct(string name, real value);
pode triplesstruct (form leftoperand, int operator,
form rightoperand);
node function=struct (ref var boundvar, form body);
mode call=struct(ref function functionname,
form parameter);
node string=()char;
order;
STRING,CONST,FUNCTION,CALL, VAR, TRIPLE, FORY;
form form;
MODE FORM=UNION (REF STRUCT (REAL VALUE), REF STRUCT (REF
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STRUCT (REF STRUCT (()CHAR NAME,REAL VALUE) BOUNDVAR,1 BODY)
FUNCTIONNAME,1 PARAMETER),8 ,REF STRUCT (1 LEFTOPERAND,INT
OPERATOR, 1 RIGHTOPERAND));

restart;

# Exanple to illustrate the order used by the program for
the terminals T (Mi). #

mode x=union(int,long int,real,long real,bool,char,format,
ref int,()int, (,)int, () ()int,proc void,proc int,
proc (int) void, proc (int) int,struct (int i));
form x;
MODE X=UNION (BOOL ,CHAR ,FORMAT ,INT ,LONG INT ,PROC INT ,
PROC (INT )INT ,PRCC VOID ,EROC (INT ) voID ,REAL ,LONG REAL
,REF INT , (,)INT ,()INT ,()8 ,STRUCT (INT I));
restart;

$Exanmple to illustrate certain properties of united nodes. #

mode a=union(int,real);
node b=union(real,int);
node c=union(real,union(int,real));
order;

C=E=3;

form a;

MODE A=UNION (INT ,REAL );
form b;

MODE B=UNION (INT ,RERAL );
exit;

¥%%GOOD-BYE*¥*



APPENDIX B

The algorithm of Chapter II is illustrated in this appendix
by an example using the following mode-declarations:

node a = union(ref b,ref a, proc(bool)char) ;
mode b = uniop(ref a, d);

node ¢ = proc(int)veid;

mode 4 = [1:2,1:3]int;

mode e = struct(d x,bool y);

mode £ = struct(d x, char y);

mode g = struct(d x, bool z);

mode h = union(ref a, d, proc(boel, char)d);

In the example the Mi are, before elimination of
indicants:

u0 = union (M1, M3, H5)

M1 = ref M2

M2 =1

M3 = ref M4

M4 = a

M5 = proc (M6) M7

M6 = union (M7, M9)

M7 = ref B8

M8 = a

B9 =4

M10 = proc (M11)yveid

H11 = int

M12 = rowof H13

¥13 = rowof H14

¥14 = int

M15 = struct (816 x, H17 y)
M16 = 4

¥17 = bool

M18 = struct(M19 x, 420 y)
19 = d

M20 = char

M21 = struct(M22 x, M23 z)
M22 = 4

M23 = char

M24 = union (M25, M27, H28)
M25 = ref M26

M26 = a

M27 = 4

M28 = proc(M29, M30)¥31
M29 = bool

M30 = char
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M31=4d.
After elimination of indicants, the modified modes are:
M1 = ref M6
M3 = ref M0
46 = union(#7, M12)
M7 = ref MO
M15 = struct (812 x, 17 y)
M18 = struct (M12 x, 420 y)

M21 = struct (M12 x, 423 z)

M24 = union (M25, M12, M28)

M25 = ref MO

M28 = proc(M29, ¥30)H31 .

Step 1. The classes defined in substep (a) are

(1) C(415) = c(M18) = 1
c(M11) =2
(ii) C(M0) = C(M6) = C(M24) = 3
(iii)
C(H17) = C(M29) = &
C{M20) = C(H23) = C(M30) = 5
C(M1) = C(M3) = C(MT) = C(M25) = 6
c(112) = c(n13) = 7
C(N10) = 8
c(M5) = 9
C(428) = 10
C(M11) = c(M1L) = 11.

The value of P is therefore 11.

Step 2. At the first iteration of the algorithm:
for ¥0: L(MO) = 2
S(u0,1) =6
S(M0,2) =9
for M6: L(M6) = 2
S(6,1) = 6
S(M6,2) =17
for M24: L (M24
S(M24,1)
S (M24,2)
S(M24,3)

now o~

P K-}

0.

Step 3. The first class to be divided on its constituents
is that for which C(Mi) = 1. Its members are M15 and H18.

CONST (M15,1) = N12
CONST (M18,1) = 12
S0 C(CONST(M15,1)) = C(CONST(¥18,1)) = 7.
CONST (M15,2) = 17
CONST (¥18,2) = M20

so C(CONST(M15,2)) = 4 < 5 = C(CONST(M18,2)).

Therefore, using n = 2 (for substep (b)), the step redefines
C(M18) = 2, and each Mi for which C(Mi) > 1 has its class
nunker incremented by one.
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Returning to step 2 produces no change in the values
of the S(Mi, k), except to reflect the increase in the
class-number values. On the second iteration, the class for
which C(Mi) = 8 is divided. Its members are M12 and M13.

CONST (M12,1) = H13
CONST (M13,1) M4
so C(CONST(M12,1)) = 8 < 12 = C(CONST(M13,1)).

Therefore, using n = 1, the step redefines C (M13) = 9,
and leaves the classes as follows:

C(K15) = 1

C(M18) = 2

c(u21) =3

C(M0) = C(M6) = C(M24) = &
C(H17) = C(M29) = 5

C(M20) = C(M23) = C(M30) = 6
C(K1) = C(M3) = C(M7) = C(M26) = 7
C(M12) = 8

c(13) =9

C(M10) = 10

c(s) = N

C(M28) = 12

C(H11) = c(n14) = 13.

Returning to step 2 produces no changes and step 3 now
fails. In step U4, however, fcr the class containing M0, M6
and M24,

L(M0) = L(M6) = 2

L(K24) = 3.
Therefore, step 4 redefines C(M4) =5, and likewise, all
class numbers above 4 are incremented by one.
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Step 2 again produces no changes, and steps 3 and 4
fail to produce any results. At step 5, the class
containing M0 and M6 is divided:

S(M0,1) = S(M6,1) =7

S(M6,2) = 11 < 12 = S(10,2)
so that the united modes M0 and M6 are divided and ordered,
not on their actually distinct first constituents, nor on
their actually different lengths, but on their last fields.
The only remaining division to be made is to divide the
class of references containing 1, M3, M7 and M25. This
division leaves the terminal set of classes:

C(H0) = 5

c(M1) =9

C(M3) = c(u7) = 10
c(M5) = 14

C(M6) = 4

c(110) = 13

C(M11) = C(H14) = 15
c(12) = 1

C(813) = 12

C(M15) = 1

C(M1T) = C(M29) = T
C(H18) =

C(M20) = C(H23) = C(N30) = 8
c(¥21) = 3

c(M24) = 6

-
o

C (28)



