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Abstract

The electromechanical behaviour of piezoelectric actuators and the adhesive layer, which
connects the actuator and the host structure can have an effect on the performance of smart
piezoelectric structures. In this study, a newly thin-sheet piezoelectric actuator model with
an adhesive layer, which undergoes bending deformation, is proposed. This thesis is to
present a comprehensive theoretical study of the effects of material mismatch and geom-
etry parameters of the piezoelectric actuator model upon the coupled electromechanical
characteristics of piezoelectric actuator systems. The emphasis of the current study is on
the load transfer, local stress field, axial force and bending moment near the imperfectly
bonded actuators. Theoretical electromechanical solutions to the interfacial stresses based
on the integral governing equations are provided using Chebyshev polynomial expansion.
Detailed numerical simulations are conducted to evaluate the effects of the geometry and
the material mismatch of the piezoelectric actuator and adhesive layer upon the actuating
process. The effects of the interfacial debonding are also presented and discussed. The
results indicate that the geometry and material properties of the actuator system affect the
stress distribution, load transfer, axial force and bending moment significantly, and the cor-
responding effects have been discussed and analyzed in detail. This study could provide

some new insights into the design of piezoelectric actuator system.
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Chapter 1: Introduction and objectives

This chapter is divided into three sections. The background and motivation of the thesis
topics are presented in Section 1.1. The research objectives are provided in Section 1.2.

Section 1.3 lists outline of the thesis.

1.1 Background and metivation

In a common definition, smart materials differ from the ordinary materials since they can
change properties in a predictable or controllable manner in response to external stimuli
(Newnham and Ruschau, 1993). For linear systems the materials could return to their orig-
inal states once the external stimulus expires and all changes are reversible. The stimuli
could be temperature, forces, electric or magnetic fields, chemical compounds, and hu-
midity. There is a wide range of different smart materials, which include shape-memory
alloys, piezoelectric materials, magnetostrictive materials, electroactive polymers and bi-
component fibers (Otsuka and Wayman, 1999). Over the past several decades, the smart
materials and systems have experienced tremendous growth through research and engi-
neering. They also have been harnessed in a variety of high-tech and everyday applica-
tions, which range from sensors/actuators or pediatric cardiovascular devices to electroac-
tive polymers (Levi et al., 2008; Schwartz, 2009). Piezoelectric materials are very popular
as a kind of smart material and they have been widely used in practical applications for the
ability to transform electrical energy to mechanical energy and vice versa, functioning as

both actuators and sensors (Tani et al., 1998).



Piezoelectric actuators/sensors have been applied to the control of static and dynamic
deformation of structures, vibration, noise and wave propagation (Boller, 2000; Duan et al.,
2010; Na and Baek, 2018a). Usually, piezoelectric actuator/sensor is surface-bonded onto
or embedded into a structure in the form of thin-sheets. In order to optimize the effec-
tiveness and reliability of the piezoelectric actuators/sensors systems, the actuating/sensing
process and the resulting electromechanical response should be well understood. The elec-
tromechanical behaviour of the piezoelectric actuator system is the first issue that needs to
be evaluated. The second concern lies in the bonding condition of the interface between
the actuator and host, particularly the adhesive layer and the interfacial debonding. The
local stress field near the interface is very important since it can affect the property of
the actuator and the bonding condition. Interfacial debonding condition may occur when
high local electromechanical stress field is generated or poor bonding condition around the
edges of the actuators/sensors (Denoyer and Kwak, 1996; Park et al., 2000b; Rabinovitch

and Vinson, 2002a; Tylikowski, 2001a).

To address above issues, various works have been carried out to uncover the electrome-
chanical behaviour of piezoelectric actuator systems by considering different geometries
and materials, as well as load combinations. The pioneer study was made by Crawley et
al.(Crawley and Anderson, 1990; Crawley and De Luis, 1987). An analytical model was
presented by treating axial stress across the thickness of piezoelectric actuator as uniform
or linear. Luo and Tong (Luo and Tong, 2002a,b) developed a theoretical model includ-
ing adhesive layers for a PZT smart beam, and analyzed the effects of debonding on the

distributions of strain, stress and displacement. Plate and shell models have also been ex-



tensively used in the study of electromechanical behaviour of smart piezoelectric structures
(Reddy, 1999; Tzou and Gadre, 1989; Zhang et al., 2019). Considering the disadvantages
of predicting the interfacial stress field near the ends of piezoelectric actuators in all works
mentioned above by modeling the piezoelectric layers as beams, plates and shells. Wang
et al. (Wang and Meguid, 2000) first examined the coupled electromechanical behaviour
of a thin piezoceramic actuator embedded in or bonded to an infinite elastic medium under
inplane mechanical and electrical loadings. Here, the host structure is treated as a semi-
infinite plane because both length and thickness of the piezoelectric actuator are much
smaller than the size of the host. The actuator is modelled as an electro-elastic line and
only the interfacial shear stress is considered. The results showed that this treatment is an
effective way to analyze local stress and load transfer between the actuator and the host
structure. Jin et al. (Jin and Wang, 2011a,b) modified the model presented by Wang (Wang
and Meguid, 2000) by adding a bonding layer between the piezoelectric actuator and the
host structure. Yuetal. (Yu and Wang, 2016) further modified the electro-elastic line model
by introducing bending deformation of the actuator. However, in the model, the adhesive
layer is not considered and thus the model is only suitable for very rigid adhesive layers.
An analytical model to study the electromechanical behavior of a piezoelectric actuator
bonded to a semi-infinite host structure with a partially debonded adhesive layer between
them will be presented in this thesis. The actuator is modeled as a classical beam with
an applied axial force. The bending effect of the actuator will be involved and the normal
stress along the interface of upper and lower surfaces of adhesive layer are considered.
The different geometrical parameters and material mismatch of the actuator system and the

partially debonding condition are also investigated.
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1.2 Research objectives

It is the objective of the current thesis to develop a piezoelectric actuator model involving
the bending effect and partial debonding with an adhesive layer under static loads. Specif-

ically, the detailed objectives of this research are identified as :

(1) establishing a new piezoelectric actuator model that is a thin-sheet piezoelectric
layer bonded to an elastic semi-infinite host structure through an adhesive layer between

them;

(2) conducting analytical and numerical analysis to investigate the electromechanical

behaviour of debonding with bending effect under the static loading;

(3) investigating the effects of the different geometrical and material parameters of the
system, especially that of the imperfect adhesive layer, upon the coupled response of the

actuator.

1.3 Outline of the thesis

This thesis is organised into six chapters.
The current chapter provides the background, motivation and objectives.
The review of the state of the art of the relevant studies is presented in chapter 2.

In chapter 3, a modified model of partially debonded piezoelectric actuator with bend-

ing deformation and an adhesive layer is presented.

In chapter 4, the theoretical solutions of the actuator are presented, based on the use of



singular integral equations and Chebychev Polynomial expansion.

In chapter 5, FEM simulations are conducted and the analysis of adhesive layer are
presented. The results of current model are compared with existing results under some
different cases. The influences of the geometry and the material mismatch upon the elec-

tromechanical behaviour of the actuators are discussed in detail.

Chapter 6 summarizes a set of final conclusions and contributions, and recommenda-

tions are suggested for future studies.



Chapter 2: Review of the state of the art

This chapter gives the review of the state of the art of the piezoelectric actuator/sensors
studies. Firstly, the brief history of the piezoelectricity and piezoelectric devices is dis-
cussed. Then, the modelling and analysis of the piezoelectric sensors/actuators to date are
presented. The last section will present the applications of the piezoelectric actuator in the

structural health monitoring (SHM).
2.1 History of piezoelectricity and piezoelectric devices

The past several decades have witnessed rapid progress in the engineered material struc-
tures with various functionalities (Li and Wang, 2016; Li et al., 2018, 2019; Wang, 2014).
The exploration of piezoelectric materials serves as one of the most lasting and stimu-
lating field of material research. Piezoelectric materials involve the interaction between
the mechanical and electrical behaviour of the objects. This kind of materials possess
mechanical-electrical and electrical-mechanical energy conversions properties. It can gen-
erate electrical charge when subjected to mechanical loads, referred to as the direct piezo-
electric effect. The converse effect illustrates that an applied electrical field can generate

mechanical deformation (Yang, 2006).

The direct piezoelectric effect was discovered by French physicists brothers Jacques
and Pierre Curie in 1880 and they demonstrated the piezoelectric phenomena through sys-
tematic experiments on specially prepared tourmaline crystals. This effect was quickly
termed piezoelectricity by Hankel to distinguish it from other areas of scientific phenomeno-

6



logical experience such as "contact electricity" and "pyroelectricity". However, the Curie
brothers didn’t predict the converse piezoelectric effect. In 1881, Lippman mathematically
proved this property by using fundamental thermodynamic principles. Soon thereafter,
Curie brothers confirmed the existence of the piezoelectric converse effect through exper-
iment, and the quantitative proof of the complete piezoelectric effects was obtained later.
Simultaneously, the piezoelectric effects were discovered in other natural crystals, such as

quartz, zinc blende, and Rochelle salt (tartaric acid) (Jaffe, 2012).

In the subsequent 25 years, many physicists endeavoured to develop an exact theory on
the basis of thermodynamics in quantifying complex relationships among mechanical and
electrical variables. In 1910, Voigt first gave comprehensive explanation of the complex re-
lationship in his published work. Since the underlying mathematics was very complicated,
piezoelectricity didn’t catch much attention at that time, lacking practical applications. Un-
til the World War I, piezoelectricity had the first important application. In 1917, P. Langevin
developed the first ultrasonic submarine detector and the transducer included a thin quartz
crystal sandwiched between two steel plates. The plates could launch ultrasound waves
into the water after the quartz crystal was excited. Then, the second quartz device was
used to detect the return of the sound wave. Based on the time from launching pulse to
returning, the depth of the submarine could be determined. Their success made piezoelec-
tric materials possible to apply into other aspects except for underwater application such as
ultrasonic transducers, microphones, and accelerometers. However, the available materials
at that time were natural crystals with piezoelectric properties, which limited performance

of the device and the related commercial applications.



The second breakthrough for piezoelectric material happened in World War II. The
first ceramic material, barium titanate (BaTiO3), was discovered by different groups from
the US, Japan and Soviet Union separately in 1943. This kind of material could increase
dielectric constants up to 100 times larger than natural crystals. Furthermore, another man-
made material called the ferroelectric was manufactured to have similar improvements in
piezoelectric properties. These discoveries sped up research and development of numerous
ceramic piezoelectric materials. Among these discoveries, the most notable ones were the
findings of lead metaniobate (PMN) and lead zirconate titanate (PZT) in 1950s. Compared
with natural piezoelectric crystals, they can be made in almost any shape or size thanks to
their ceramic nature. Since then, these kinds of materials have been exploited in a wide
range of applications, such as actuators, sensors and transducers in structural health moni-

toring, intelligent structures, noise, shape and vibration controls etc.

2.2 Modelling and analysis of piezoelectric sensors/actuators

The piezoelectric actuators and sensors provide a good approach to obtain an active control
strategy. Over the past several decades, in order to study the coupled electromechanical
behaviour and static load transfer between the piezo-actuator and the host structure, re-
searchers have proposed different modelling approaches. Piezoelectric thin films are usu-
ally bonded to the surface of the host structure. The majority of the available methods can

be categorized into three classes, namely analytical, numerical and hybrid approaches.

The first category is the analytical approach. Analytical models include the pin-force

model, the beam-theory-based-model, the piezoelectric plates and shells models and the



elasticity equation-based model. The pin-force model is one of the earliest models devel-
oped for beams actuated in bending. This model treats the actuators and host substrate
as separate elastic bodies and the transferred forces from the actuator to the substrate are
through "pins" at the edges of the actuators, which means shear stress is concentrated in
a small area. Baily (Bailey and Hubbard, 1985) firstly established this kind of model, in
which a thin piezoelectric polymer was bonded to one side of the cantilever beam, with
only the transverse vibrations of the beam being analyzed. Although this model worked
well in perfect bonding scenario, it failed to provide correct structural response when the
actuator was relatively thick. Crawley and De Luis (Crawley and De Luis, 1987) firstly
proposed a comprehensive static model of the interaction between the thin piezoelectric
actuators bonded to or embedded in beam-like structures. This model assumed uniform ax-
ial strain across the actuator and the host structure was treated as a Euler-Bernoulli beam.
Later, Crawley and Andeson (Crawley and Anderson, 1990) presented a model assuming
both structure and actuators undergoes consistent Euler-Bernoulli strain, which is the linear
strain distribution across the actuator. This model could illustrate the induced extension,
bending, and localized shear deformations. For further modifications, Im and Atluri (Im
and N. Atluri, 1989) took into account the effects of transverse shear and axial forces as
well as a bending moment in the beam (Crawley and De Luis, 1987). Ziya KK et al. (Kus-
culuoglu et al., 2002) extended the Euler-Bernoulli beam models to Timoshenko beam

models by considering the shear deformation and the rotary inertia.

Plate and shell models have also been extensively developed in modelling the piezo-

electric sensors/actuators. The earliest model of plate could date back to the year 1952.



Mindlin (Mindlin, 1952) gave an approximate theory of the piezoelectric crystal plates in
thickness-shear and flexural modes, which involved the early terms of series expansions
of the mechanical displacement and electric potential. Then, an exact solution for static
analysis of simply supported laminated piezoelectric plate using double Fourier series was
obtained (Mindlin, 1972). Dimitriadis et al. (Dimitriadis et al., 1991) designed a model
with a two-dimensional thin piezoelectric patches bonded to the opposite plate surfaces.
They investigated the static and dynamic cases. The results showed the potential for con-
trolling vibration in distributed systems. Mitchell and Reddy (Mitchell and Reddy, 1995)
derived the theories for laminated piezoelectric plate using the classical plate theory and the
third-order shear deformation theory. M. Rahmoune et al. (Rahmoune et al., 1998) devel-
oped a new thin piezoelectric plate model and analyzed its mechanical behaviour by using
a mathematical asymptotic approach. Tzou and Gadre (Tzou and Gadre, 1989) derived
the equations of motion of the generalized multi-layered thin piezoelectric shell by using
Hamilton’s principle. Then, they developed a new theoretical model with thick anisotropic
composite piezoelectric shells made of multi-layered triclinic piezoelectric laminates by
assuming that each layer was perfectly bonded together to become a single thick piezoelec-
tric laminate system. A composite piezolaminated shallow thin shell theory was developed
(Miller and Abramovich, 1995), in which the individual laminate is capable of electrome-
chanical transduction. The theoretical parameters of segmented transducers laminated on
a piezoelectric cylindrical shell were analyzed (Tzou et al., 1996). The dynamic behaviour
of piezoelectric shells was investigated by (K Chai and Arnold, 2006; Tzou et al., 2002)
and the piezoelectric shells have applications in aerospace technology, such as rocket noz-

zles. The three-dimensional vibration characteristics of coupled motions for piezoelectric
10



cylindrical shells with free boundary conditions were investigated by using three different
experimental methods and finite element numerical modeling. A latest review on modeling
of piezoelectric integrated plates and shells can be found (Zhang et al., 2019). In the mod-
els mentioned above, the integrated structures were modelled as beams, plates or shells.
In what follows, only the global responses of the whole systems were focused without the
local information. As a result, these models were not suitable for predicting local stress

distribution near the ends of the actuators.

The elasticity equation-based model can provide an alternative choice for the main in-
terest of local stress concentration and the load transfer near the actuator. When a thin-sheet
piezoelectric actuator is embedded into or bonded to an elastic structure, the host structure
can be assumed to be semi-infinite which is governed by the equations of elasticity. Be-
cause the thickness of an actuator is usually much thinner than the host structure. Wang
and Meguid (Wang and Meguid, 2000) first developed an analytical model featuring the
static coupled electromechanical behaviour with a thin piezoceramic actuator embedded in
or bonded to an elastic medium under inplane mechanical and electrical loadings, in which
the local stress distribution and load transfer near the actuator were studied. This work
was further extended and modified by Jin and Wang (Jin and Wang, 2011b) to investigate
the effect of the bonding layer between the actuator and the host structure. The analytical
results of these models are in good agreement with the corresponding finite element re-
sults. But these kind of models just characterize the shear stress along the interface, so they
don’t provide information on the normal stress between the piezoelectric layer and the host

structure. This thesis will provide a model of a thin-sheet piezoelectric actuator bonded

11



to a semi-infinite host structure with an adhesive layer between them and investigate the
coupled electromechanical behaviour, in consideration of the bending deformation of the

piezoelectric actuator and partial debonding along the interface.

Numerical approaches have also been widely utilized to analyze the electromechani-
cal behaviour induced by the piezoelectric actuators (Allik and Hughes, 1970; Ha et al.,
1992; Hwang and Park, 1993; Tzou and Tseng, 1990). In modelling piezoelectric actua-
tors, some commercial finite element software, e.g., COMSOL Multiphysics and ANSYS,
provide researchers convenient tools to simulate coupled physical behaviour. A.benjeddou
(Benjeddou, 2000) surveyed and discussed the advances and trends in the formulations
of finite element modeling of piezoelectric-based structure. The modelling approaches of
piezeoelectric actuators bonded to an elastic medium have been demonstrated and the dis-
advantages of FEM simulations as follows (Huang et al., 2010). First, it can’t provide a
direct insight into the physical structures for targeted parameters. Besides, a classical FEM
model is not applicable to infinite open waveguides since it works within spatially restricted
discretization domains (Glushkov et al., 2007). The last one is that unaffordable computa-
tional costs are usually required due to a slow convergence for obtaining the responses of
a three-dimensional model at high frequencies. Hybrid approaches which combine FEM
with analytical approaches were proposed to compensate for the disadvantages of pure
FE simulations. In this approach, the analytical methods are mainly utilized for the host
structures, and the FE methods are mainly used for the remaining structures of the system.
The hybrid schemes consume less computational efforts because the host structure model

usually have much more elements than actuator model. However, this approach still can’t
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provide a direct insight of the physical explanation of the calculated results (Huang et al.,

2010).

2.3 Modelling of the partial debonding of piezoelectric actuators

In the previous section, the perfectly bonded layers conditions have been discussed. How-
ever, the damage initiation and propagation occur in a series of events when a load is
applied to a laminated composite. There are three principal damage modes in a composite
laminate, which are interlaminar matrix delamination, intra-ply cracking and fiber failure
(Garg, 1988). Among these failure modes, the interlaminar matrix delamination is one of
the most serious failure modes. Due to the substantial in-plane residual compressive stress,
the delamination along the interface of the piezoelectric actuator and the host structure hap-
pen. The delamination is defined as a debonding or separation between individual layers
of the laminate when subjected to in-plane loads. As a result, it may affect some design

parameters like natural frequencies and mode shapes (Della and Shu, 2007).

A considerable amount of analytical models and numerical analysis have been reported
for modelling the partial debonding of the piezoelectric actuators. Seeley and Chattopad-
hyay (Seeley-C-1998) investigated the significant effect of the partial debonding at the
piezoelectric actuator and smart composite laminates interface on the dynamic response.
The experimental results showed good agreement with the previous numerical results (See-
ley and Chattopadhyay, 1996). Wang and Meguid (Wang and Meguid, 2000) developed
the solutions of the edge debonding and the central debonding of the piezoelectric layer,

which is bonded on an elastic semi-infinite host under plane strain loading. Then, several

13



analytical models for a smart beam with a debonded piezoelectric actuator by using the
region approach and classical beam theory have been presented (Liyong et al., 2001b; Sun
et al., 2001; Tylikowski, 2001b). For the debonding region, it was assumed that there was
no stress transferring between the piezoelectric actuator and the host beam. Using simi-
lar assumptions, Luo and Tong (Luo and Tong, 2002a,b) got the the exact static solutions
numerically and analytically, which included the normal stress for a PZT composite beam
with adhesive layers. A closed-loop control based damage detection scheme was presented
to detect debonding of a piezoelectric actuator patch from its host structure. The simulation
results showed that even a very small debonding length can destabilize the control system.
Then, the shear lag effect on the impedance formulations was analyzed and the results il-
lustrated that the bonding layer could modify the measured electromechanical admittance
(Bhalla and Bajaj, 2008). The existing analytical models and numerical analysis of the de-
laminated composite laminates with piezoelectric sensors/actuators have been intensively
reviewed (Della and Shu, 2007). A model with a partially debonded piezoelectric actua-
tor in smart laminates was proposed by using layerwise displacement field (Huang et al.,
2015). Recently, a theoretical model of a thin piezoelectric actuator bonded to a graded

half plane with an adhesive layer is analyzed (Chen et al., 2018a,b).

2.4 The investigation of the effects of the adhesive layer

In order to precisely detect the vibrational behaviour of smart structures using PZTs, piezo-
electric sensors and actuators need to be attached to the structure. One of the commonly
utilized ways is to attach the piezoelectric layers on the surface of the structure by using

adhesives since adhesives do not change material properties of the target structure (Kwak
14



and Sciulli, 1996; Shen, 1994). However, It has been reported that the vibration control-
lability of smart structures may suffer when the mechanical properties of adhesive layers
are ignored in the dynamic model of the smart structures (Akella et al., 1994; Nakra, 1998;

Prakah-Asante and Craig, 1994).

In the works which considered mechanical properties of adhesives in their structural
models, the effects of three different adhesives on the vibration damping properties of
composite beams was investigated (Park et al., 2000c). The influence of the adhesive layer
parameters on the active damping response of the controlled beams was analyzed (Pietrza-
kowski, 2001). In this study, the adhesive layers were assumed as visco-elastic materials
and only the longitudinal extension of the piezoelectric layer and the adhesive layer was
considered. The frequency response of the system showed that the stiffness of the adhesive
layers significantly affected the active damping efficiency. The interfacial stress increased

greater near the sensor ends for a stiffer bonding layer than a soft bonding layer.

A different approach for the modelling of a closed-loop vibration control of a smart
beam with adhesive layers, piezoelectric sensor and actuator patches was presented (Sun
et al., 2001). Although the normal and shear strains of the adhesive layer were taken into
account, these strains were assumed to be constant along the thickness of the adhesive layer.
Then, the influence of the mechanical and geometrical properties of the adhesive layer on
the static response of the active structure was analyzed by utilizing the high-order theory
(Rabinovitch and Vinson, 2002b). The adhesive layers were modelled as a two-dimensional
linear elastic media with shear and vertical stresses in consideration. The sensitivity study

results revealed that the geometries and the material properties of the adhesive layers could
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influence the response of the piezoelectric patch. Thus, proper selection of the adhesive
layers properties can enhance the performance of such smart structures. The impact of the
bonding quality of the adhesive layer on the sensing capability of piezoelectric sheets was
addressed (Faria, 2003). The adhesive layer was assumed to be elastic and in a pure shear
stress state, which is between the piezoelectric material and the host structure. The results
of this two-dimensional FE model showed that the shear lag effects due to edge effects on
the strain distributions and end-bonding needed to be carefully assessed in order to improve

the sensing efficiency of piezoelectric sensors.

The interfacial debonding behaviour of composite beams with a piezoelectric layer, an
adhesive layer and a host beam was studied (Liang et al., 2010; Wang et al., 2013). The
piezoelectric layer and the host beam were modelled as Timoshenko beams; the adhesive
layer was modelled as a continuous spring with shear and peel stiffness. The analytical
electromechanical solutions for the adhesively bonded composite single-lap joints were
presented using the full layerwise method (Yousefsani and Tahani, 2013). The accuracy and
effectiveness of the model were verified by the corresponding numerical and experimental
results. The same approach was utilized to investigate the void edge effects (Yousefsani
and Tahani, 2018). It was observed that there were high interfacial stress concentration

around the void edges.

All of the aforementioned works are based on limited thickness of the host structures.
Lu and Wang (Han et al., 2008a,b) examined the effect of the adhesive layer on the coupled
dynamic behaviour of a thin piezeolectric sensor and actuator bonded to an elastic medium

under inplane mechanical and electrical loadings. The shear stress deformation was dis-
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cussed. However, the normal stress distribution was not considered. The analytical results
indicated that the modulus and the thickness of the bonding layer have significant effects
on shear stress distribution. The static electromechanical behaviour of the piezoelectric
sensor/actuator was analyzed later (Jin and Wang, 2011a,b). The results showed that the
analytical results and those of finite element simulations were in a good agreement. How-
ever, the normal stresses in the adhesive layer and the bending effects in the piezoelectric

layer were neglected in the whole invetigation.

2.5 Applications of piezoelectric sensors/actuators in structural health

monitoring (SHM)

The piezoelectric material as a kind of smart material can convert mechanical energy
into electrical energy and vice versa. This reciprocal energy transforming capability en-
ables the materials to function as sensors, actuators or transducers. Owning to its unique
electromechanical coupling effects, together with some other good characteristics such as
light weight, distributed characteristics, high coupling factor, quick response, low energy
consumption and low cost, piezoelectric actuators/sensors have been utilized in a wide
range of applications, which include piezoelectric ultrasonic motors (Milsom et al., 1977;
Monkhouse et al., 2000; Staszewski et al., 2009), vibration control or noise suppression
using piezoelectric layer (Choi and Han, 2016; Ha et al., 1992; Wang et al., 2001), energy
harvesting (Calio et al., 2014; Kim et al., 2011), and piezoelectric transducers for structural

health monitoring (SHM) (Tua et al., 2004, 2005).

SHM, as one of the most typical applications of the piezoelectric materials, has re-
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ceived increasing attention from the researching community and the industry in the past
several decades. It aims at detecting damages and providing a diagnosis of structural health.
Many researchers have explored the built-in sensor network-based structural health moni-
toring for rapid non-destructive evaluation in real time and provide long-term monitoring
of structural health status. In general, there are two existing techniques based on piezoelec-
tric transducers. Electromechanical impedance based technique for near-field damage and

wave propagation based for far field damage have been developed.

2.5.1 Electromechanical impedance (EMI) based technique

Electromechanical impedance (EMI) based technique is a relatively new non-destructive
testing method. The mechanism of this technique is to utilize a single PZT transducer,
which acts as an actuator and a sensor, simultaneously. The PZT patches just require a very
low level voltage, typically less than 1 V, to produce a very high frequency excitation in
the host structure. This will cause the host to vibrate, which makes the PZT to generate a
current to flow through the PZT transducer. Any changes in the vibration behaviour of the
host structure will be reflected in terms of the electrical admittance signatures across the

PZT patch.

In the pioneering theoretical research of the EMI based on technique, a one-dimensional
model was presented, which showed that the electrical admittance of the PZT was directly
related to the mechanical impedance of the structure (Liang et al., 1994). Then, a frequency
domain impedance-based technique for health monitoring was developed (Sun et al., 1995).
This newly technique could act as a promising tool for real-time structural damage assess-

ments by testing an assembled truss structure.
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Numerous researchers utilized the EMI technique for structural health monitoring, to
detect and examine the severity of damages in a variety of systems. Experimental investiga-
tion were carried out by Park et al. (Park et al., 2000a) and the results showed the capability
and effectiveness of EMI in monitoring damages on various civil structures. Monitoring
of a prototype reinforced concrete (RC) bridge structure had been performed by Soh et al.
(Soh et al., 2000). The feasibility of using PZT patches for monitoring the real time health
of the critical regions of real-life civil structural systems had been demonstrated. Victor and
Andrei (Giurgiutiu and Zagrai, 2005) have used the impedance method for health monitor-
ing of thin plates and aerospace structures. An investigation has been conducted to utilize
the impedance method in identifying structural damage in space systems and satellites in
particular, with the factors affecting realization of the SHM system discussed (Zagrai et al.,
2010). The EMI based techniques have also been introduced to the field of biomechanics
for non-invasive assessment of the dental implants stability (Boemio et al., 2011; Ribolla
and Rizzo, 2015). The comprehensive reviews on the engineering SHM applications of the
EMI based techniques have been conducted (Annamdas and Soh, 2010; Mei et al., 2019;

Na and Baek, 2018b; Park et al., 2003; Qing et al., 2019; Yang et al., 2008).

Despite of its widely used applications, the EMI based technique is a near-field damage
detection method that uses high frequency excitation. To develop an efficient SHM system
detecting near-field and far-field damages, another method should be incorporated. The
EMI technique and the guided wave-based technique had been used simultaneously for
structural-interrogation and damage detection (Giurgiutiu et al., 2002, 2004). The study

showed that the EMI technique was found to be very sensitive for assessing the health of

19



a near field while the guided wave based technique was more suitable for far-field damage

detection.

2.5.2 The wave propagation (WP) based technique

The wave propagation (WP) based technique, as one of practical NDE techniques for struc-
tural health monitoring, has also attracted much attention (Bourasseau et al., 2000; Ghosh
et al., 1998; Tan et al., 1995). The WP technique employs two or more piezoelectric trans-
ducers, which can be embedded into or bonded onto the host structure. Utilizing the piezo-
electric effects, one transducer acts as an actuator to generate pre-selected diagnostic sig-
nals, and the other transducers serve as sensors to collect the diagnostic signals, which
contains the information of the size and location of the damage or the material property
changes within the structure. This is due to the fact that any structural property change
along the travelling path of the induced elastic waves will be reflected in the changes of

electrical signatures (Giurgiutiu, 2007; Ihn and Chang, 2004; Yu and Giurgiutiu, 2008).

To date, a large number of WP based technique studies have been carried out. The
wave propagation method originally was proposed by Chang et al. (Wang and Chang,
1999). In the WP based technique, guided waves, such as Lamb and Rayleigh waves, are
mainly used for damage detection in metallic structures and composite structures. Moulin
et al. (Moulin et al., 2000) presented a modeling technique for lamb waves transducers
attached to or embedded in composite plates. The applicability of the model was validated
with experimental study. A piezoelectric based built-in diagnostic technique for monitor-
ing crack growth in metallic structures was presented by Thn and Chang (Ihn and Chang,

2004). Giurgiutiu derived a model of plane harmonic Lamb waves tuning mechanism with
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piezoelectric transducers (Giurgiutiu and Zagrai, 2005). Then, a series of one-dimensional
and three-dimensional modeles involving piezoelectric generated guided waves propagat-
ing in thin metallic strip was presented (Giurgiutiu, 2007). Recently, the applications of
the WP technique have been extended to concrete structures, including damage monitoring
(Lim et al., 2018; Lu et al., 2013), concrete hydration (Lim et al., 2016; Tawie and Lee,

2011) and strength monitoring (Gu et al., 2006; Song et al., 2008).

Although the wave can propagate over long distances in a structure, the major diffi-
culties to conduct a nondestructive test using the wave propagation based technique are
dispersive properties of waves, existing of multiple wave modes at a given frequency (Al-
leyne and Cawley, 1992) . These difficulties have resulted in substantial efforts to study
about the interaction between piezoelectric material layers and host structures, and the re-
sulting complicated electromechanical behaviour in a SHM system (Wang and Mai, 2002;

Xuetal., 2015).
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Chapter 3: Modelling of the piezoelectric actuator with an

adhesive layer

3.1 Introduction

This chapter develops a new model of thin-sheet piezoelectric actuators bonded to the sur-
face of a homogenous and isotropic semi-infinite elastic structure with an adhesive layer
between them, under in-plane electrical loading to study its coupled electromechanical be-
haviour. The current model is an extension of the work presented in Wang and Meguid
(2000), where the piezoelectric actuator is modelled as an electro-elastic line subjected to
a transverse electric field with its poling direction perpendicular to its length. In this study,
the possible partial debonding of the piezoelectric actuator is simulated through an imper-
fectly bonded adhesive layer. The Euler-Bernoulli beam theory is utilized for describing
the behaviour of the actuator, and the adhesive layer is modelled as a continuous spring
with the shear and normal moduli. The model developed in this chapter provides the theo-
retical formulation of the problem for the further analysis and discussion in the following

chapters.
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3.2 The piezoelectric actuator model

3.2.1 The assumptions and governing equations

Consider the problem of a thin piezoelectric actuator layer bonded to a homogeneous and
isotropic elastic structure on the top surface through an adhesive layer, as illustrated in
figure 3.1. The dimension of the piezoelectric actuator is much smaller than that of the
structure, which makes the modelling of the structure as a semi-infinite medium valid.
Also, plane strain deformation is assumed due to the fact that the width of the actuator is
significantly large in comparison with its thickness in this model. As shown in figure 3.1,
the thickness and length of the actuator are denoted by 4 and 2c, respectively. The thickness
of the adhesive layer is /. It should be mentioned that to simplify the formulation, without
loss of generality, the structure is assumed to have unit width in this study. The origin of the
coordinate system is located at the center of the interface of the host structure and adhesive
layer, and the so-called poling direction of the actuator is along z-axis, i.e. the thickness
direction. An electric potential V is applied between the upper and lower electrodes of the

piezoelectric actuator and the resulting magnitude of the electric field can be expressed as

V(v -V
E=—r=t (3.1)

where V* and V~ stand for the electric potentials at the upper and lower surfaces of the
piezoelectric actuator, respectively, as illustrated in figure 3.1. In this study, the subscripts
p. a and s are used for representing the piezoelectric actuator layer, the adhesive layer, and

the host structure, respectively.
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Figure 3.1: Schematics of the actuator configuration.

Figure 3.2 depicts the free-body diagram of the infinitesimal actuator, adhesive layer
and the host structure with N, Q and M being the resultant axial force, the transverse shear
force and the bending moment, respectively. In light of the structural feature of the actu-
ator, the following assumptions can be made. Firstly, the average axial stress oy and the
displacement u} in the actuator can be assumed to be uniform across the thickness of the
actuator. Secondly, these stresses in the actuator, o;;f’ and 0'){;,, can be ignored. Thirdly, the
shear stress 7 and normal stress ¢ transferred along the interface between the piezoelectric
actuator and the adhesive layer will act as distributed body forces for the actuator. In what
follows, the piezoelectric actuators can be modelled as an electro-elastic Euler-Bernoulli
beam undergoing longitudinal and transverse deformations, which is subjected to an uni-
form electric field E; and distributed axial and transverse forces, 7/h and o. While, the

adhesive layer is assumed to only carry shear and normal stresses. Based on the above
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Figure 3.2: Free-body diagrams of the piezoelectric actuator, adhesive layer and the host
structure.

assumptions, the equilibrium equations of the actuator can be obtained as

dN —1dy=0, (Y F,=0), (3.2)
dQ—ody=0, (Y F,=0), (3.3)
dM+Qdy=0, (Y. M =0). (3.4)

Based on the force stress relation dN = hdoy , the governing equations can be converted

into
dof 1t
———=0, 3.5
dy n (3.5)
d’M

The average axial stress o} in the actuator can be expressed through the integration of
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equation (3.5) as

af(y) = f: %dﬁ +7c, (3.7)

where ¢ is an unknown constant, which can be solved with the boundary condition at the
ends of the piezoelectric actuator. Also, the bending moment in terms of the transverse
displacement component «? will be in the form of

d*uf
dy?’

M =EPI (3.8)

with 7 and E? being the moment of inertia and the effective Young’s modulus of piezoelec-

tric actuator, respectively.

Z
Voltage | E. | T
]

A 4

Host substrate

Figure 3.3: Schematics of the actuator configuration with partial debonding.

Generally, high localized stress concentration or poor interfacial conditions may result
in the partial debonded region along the interface of two layers, which may consequently
change the load transfer at the interface. Figure 3.3 illustrates the case of the piezoelectric
actuator with partial central debonding in |y| < b, where, b represents the half length of
the debonded part. In this case, the effective length of the actuator is reduced to (2¢ —2b).

Traction free condition is assumed along the surfaces of the debonded interfaces, the possi-
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Host structure

Figure 3.4: Free-body diagrams of the piezoelectric actuator with partial debonding.

ble contact of which is ignored for simplicity. In the bending state, the ends of the debonded

part of the piezoelectric actuator [y| = b are subjected to a resultant compressive force, T,

and a moment, M, as shown in figure 3.4.

3.2.2 Constitutive relations of the actuator

According to the electro-elastic line piezoelectric actuator model under plane strain condi-

tion (Wang and Meguid, 2000), the related constitutive relation can be described as

ol (v) = EPel (y) — €5, Ez, (3.9)

where E? and egl are the effective piezoelectric constants. These effective material con-

stants are given by

e = €31

C13
—e33—.
€33

(3.10)

The detailed mathematic procedure can be found in Appendix A.
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3.2.3 Boundary conditions

The traction free boundary condition at the two ends of the piezoelectric layer will result in

zero bending moment and zero transverse shear force, namely,
of =0, M=0, Q0=0, atl|yl=c. (3.11)
Since this study is focused on a thin sheet piezo-actuator, the transverse shear force at

the end of debonded part is assumed to be zero, as shown in figure 3.4. These boundary

conditions at the bebonded part are expressed as

T
of ==, M=My Q=0 arly|=b (3.12)
du?
uf :ufb, a’; =—06,, at|y|=0b; (3.13)

where 7T stands for axial compressive force in the debonded part and M} represents the
bending moment at the ends of debonded part, as shown in figure 3.4. There is no stress
transferring between the piezoelectric actuator and the host structure in the debonded part,
where 6 =0 and 7 = 0 can be expected. At the center of the debonding section, symmetry

of the structure indicates the following the boundary conditions,

du? d>*ul
-0 =0. aty=0. 3.14
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3.2.4 General solution for the actuator

Substituting the average axial stress 0'5? in equation (3.7) into constitutive equation (3.9),

the axial strain £} in terms of the interface shear stress 7(y) can be written as

erer(y) = [ “ag 1ol E, 3.15
Y (v) = . Th & +ez E 4. (3.15)
At the left end of the piezoelectric actuator, y = —c, the axial stress is named as 0')‘3. Ac-

cording to equation (3.7), it is equal to ¢ in value. Equation (3.15) can then be rewritten

as

y
EPel(y) = f_ %déﬂgwﬁa;‘;. (3.16)

Similarly, at the right end of the actuator, y = ¢, the axial stress is named as O')‘E:- and it can

be expressed as

c (v
oh = ol +f %a’y. (3.17)

—C

Then, from equations (3.16) and (3.17), the axial strain can also be expressed as,

EPS§ZQ§1E2+Uﬁ—£C%®d§. (3.18)

Traction free conditions at the ends of the actuator lead to

ol =cP =0. (3.19)

In what follows, equations (3.16) and (3.18) can be rewritten as

EPe)(y) = f_ y %&’)dé +ey Ex, (3.20)
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EPe](y) =e§1f3z—fc$dé (3.21)
y

with

f i t(y)dy = 0. (3.22)

—C

After central debonding occurs, the axial strain &) (y) of the piezoelectric actuator can
be determined in terms of the shear stress 7 by making use of the boundary condition at
point b, 6/ = —T /h,

1

eP(y) = ﬁ T +

AE T
o — ~_ b<y<ec (3.23)

EP  EPh’

Combining equations (3.6) and (3.8) yields the transverse deflection of the piezoelectric

actuator as a function of the interfacial normal stress,

i o(é)
i = B (3.24)

To obtain the solution for bending deformation, successive integration is needed for the

equation (3.24). First, the first integration of equation (3.24) is shown in

— _fy c(E)dE -0, b<y<ec. (3.25)
b

The integration of equation (3.25) results in the curvature of the actuator,

d*u?

Yy orn y L
EPI— :_ff U(ﬂ)dndé—f 0dé+M, b<y<c. (3.26)
dy b Jb b

The integration of equation (3.26) yields the slope of the piezoelectric actuator, which can
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be expressed as

du? y rn € y rn_ y _
gr e _ —f f f &(0)dCdndE —f f Qdnde +f MdE+A, b<y<ec.
dy b Jb Jb b Jb b

(3.27)
Based on the boundary condition illustrated in equation (3.12), O = Qp = 0. Also, M is
equal to the bending moment at point b, M. In what follows, the resulting slope of the

piezoelectric actuator can be further written as

duf Lot Mp(y—b)
5 ﬂ ﬂ ﬂ o()agandg + 0 0, b<y<e ()

where 0, = —d—;’gbzb represents the slope of piezoelectric actuator at the point y = b.

Based on the relation between the bending moment and the deflection of the piezoelec-
tric actuator illustrated in equation (3.8), the deflection angle 6, of the debonded part can

be determined in terms of the bending moment Mj at y = b as
0p = ———b. (3.29)

In addition, substituting axial stress 0')‘? in equation (3.12) into equation (3.9), the horizontal
displacement at debonded point b can be expressed as

b Eh—T

b. 3.30
Zh (3.30)

uf|y=p =

3.3 The adhesive layer

The adhesive layer between the piezoelectric actuator and the elastic structure is modelled
as a continuous spring with both shear stiffness and normal stiffness. Due to the fact that all

the mechanical response of the actuator is transferred through the adhesive layer, also, the
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modulus of the adhesive layer is usually lower than that of the actuator and the host struc-
ture. So, the geometry and material properties of the adhesive layer may have significant

effect upon the load transfer between the actuator and host structure.

Referring to figure 3.2 and using the constant shear strain assumption (Liyong et al.,

2001a) along the thickness, the interfacial shear stress 7 is determined by the stress-strain

relation,
T =ki(Auy) = k1 (u§ (y.1") — u§ (,0)) , (3.31)
where
ki =p/H, (3.32)
with u% = 2(%;) being the shear modulus of the adhesive layer; Auy, is interfacial displace-

ment jumps between the actuator and the host structure. u§ (y, ') and u (y,0) are the upper
and lower surface longitudinal displacements of the adhesive layer, respectively. Accord-
ing to the continuity conditions of the displacements, u§ (y,h’) and u§ (y,0) also represent
the longitudinal displacements of lower surface of the actuator and the upper surface of the

host, respectively.

Using the similar assumption with uniform normal strain along the thickness, the nor-

mal stress o along the interface also can be given as,

o =ka(Auz) = ko (ul (v, h') —uf (v,0)), (3.33)

where

 ES(1—vY)
(1+va) (1 —2va)n’
32

ko (3.34)



with E% and v being the Young’s modulus and Poisson’s ratio of the adhesive layer; Au,
is interfacial displacement jumps between the actuator and the host structure. u? (y,/’) and
u? (y,0) are the transverse displacement of upper adhesive layer and lower adhesive layer,
respectively. According to the continuity conditions of the displacements, u? (y, ') and
5 (y, 0) also represent the transverse displacements of lower surface of the actuator and the

upper surface of the host, respectively.

3.4 The host structure

The load transfer between the piezoelectric actuator and the host structure is realized
through the interfacial normal and shear stresses. For the host structure, the boundary

conditions are given as below

} (y), b<ly<c, ) c(y), b<lyl<ec,
oy, (v,0) = c; (»,0) = (3.35)
0, ly| > ¢, |y| < b, 0, ly| > ¢, |y| <b.

The fundamental solution of a half elastic plane subjected to a horizontal concentrated force

dt and a vertical concentrated force do at y = 0 is (Muskhelishvili, 1953)

dosgn(y) 1—v?

duy (y,0) = T(l +v)(1—-2v)—2dtin|y| o (3.36)
dtsgn(y) 1—-v?2

du;, (y,0) = _T(l +v)(1—2v)—2donl|y| o (3.37)

Using the superposition principle, the resulting displacements along the interface from the

transferring stresses can be obtained. Along the bonded range, b <y < ¢, the interfacial



axial displacement and transverse displacement in the host structure will be

0.0 =2t o [ o(€)dt ~ [ o(&)ae] .
2ty ele@az + [ nly - Ele@rae.
—_ —b y c
00 =~ gl [ e@ae+ [ et - [ e
L, ) (339)
U mb—glo@z+ [ by —lo(@)az)

Then, the interfacial axial displacement at the tip of debonded part b is

2 —b
o b,0) = —— In
5.0 =— | [

where E¥ = E*/(1 — v?) with ES and v being the Young’s modulus and the Poisson’s ratio

b—¢
S

b—¢
S

T(E)dE + ﬂ “In

(& )dé] . (3.40)

of the host structure, respectively. Taking the first derivative of above displacements with
respect to the horizontal axis, namely y axis, the corresponding strains resulting from the

applied force can be expressed as

dg00) _ -avi 1 2 () 2 ()
dy (I—V)E B ) . y—E d§ — I’IFS,/E; y_édéa (3.41)

} _ —b
d"f:(J,O):_(l 2V)%T_ﬁf_c ;’(5; d — f “f; dE. (3.42)

The strain at the tip of debonded part b caused by transverse displacement will be

d(b,0)  1-2v.1 2 [Pe@E) . 2 o)
dy GIF® nfsf_c b—éé :rEfb éda' G4
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3.5 Continuity conditions

To ensure continuity at the interface of the bonding parts, all displacements, interfacial
stresses and strains must be identical. In what follows, the following continuity conditions

are imposed,

dif (y ) _ dug () dul () _ du? (3 })

b ) , 3.44

duy (y,0)  duy(y,0)  dug(y,0) duf(y0)
y ? y 3 Z b z b
— - — - b - 3-45
dy dy dy dy <hl<e ( )

Also, two additional continuity conditions of the displacements and strains at the tips

of debonded part b need to be satisfied,

)

=b, 3.46

“5 (y:' h!) - u; (y: 0) =

dul (v ) di(v,0) _do(y) |

. y=bh 3.47
dy dy dy k' ° (3.47)

3.6 Formulation of the integral equations

Taking the derivative of both sides of equation (3.31) and (3.33) with respect to y yields

du® (v, du® (y.0
dt i y(hh) - duy (v,0) | (3.48)
dy dy dy
d du® (v. W du® (v,0
_0- — kz uz (} ) _ uz (} ) . (3'49)
dy dy dy

According to the continuity equations (3.44) and (3.45), the above equations can be
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rewritten as

d d P 2, h‘r du’ s 0
dy dy dy
4 N dul (y,0
d—o-:kz duz (y?h)_ uZ(ya ) . (3.51)
dy dy dy

Substituting equations (3.23) and (3.41) into equation (3.50) in terms of the interfacial

stress T and o, the following integral governing equation can be obtained

1) 2 [“z(5) P
nE | . y & :rfsf y—éé ( )ESU(}) (3.52)

LE, 1dt
(J’) M
hEp hEP EP kl dy

Substituting equations (3.28) and (3.42) into (3.51) leads to

Po), 0(6) 1y 12V, ]
2 [ %+ % [ a4 (22w .

b(y—b) Mp 1 do
O)dldnd b= .
EPlfff Sdnde +— o T’ T hdy

Substituting the continuity equation (3.46) at the debonded tip into the equations (3.30) and

d& +

(3.40) get

) —b
— f In
nE —c

Similarly, based on the equation (3.47), the equations (3.29) and (3.43) can be reduced into

"o@), CoE) . 1-2v 1 _ M,
7B J o y—E& s+ stb y_gd§+(1_v)?"’(b) 22 =0 (3.55)

—<

b & b E, — T/h, _t(b)
S

EP k1

7(&€)dE +£C In T(E)dE | + . (3.54)

b—
S

In the four equations above, the four unknowns, i.e. the compressive force 7', the bending

moment Mjp, the interfacial stresses ¢ and 7, are related, which has been illustrated as

—b c
| w@ae=-r. [ c@az-T. (3.56)
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and

c ry c
_ ﬂ ﬂ o(E)dEdy+My =0, — ﬂ & (E)dE = 0. (3.57)

Equations (3.52) - (3.57) can be utilized to obtain the solution of this model, namely, the
interfacial stresses 7 and o, the axial force T and the bending moment M} at the ends of

the debonded part of the actuator.
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Chapter 4: Solution of the integral equations

4.1 Introduction

This chapter presents the analytical solutions of the governing integral equations for a
piezoelectric actuator and an adhesive layer bonded to an elastic structure. The integral
governing equations are solved mainly through two steps. Firstly, local coordinates are in-
troduced to normalize the integral equations. Secondly, the solutions of the results singular
integral equations are solved using Chebyshev polynomials expansions of the interfacial

shear and normal stresses.

4.2 Normalized singular integral equations

In chapter 3, the governing integral equations for the coupled electromechanical problem

that a piezoelectric actuator of thickness i, with the poling direction parallel to z-axis and

an adhesive layer of thickness K, are bonded to a semi-infinite elastic structure, have been
derived in terms of the interfacial shear and normal stresses 7 and ¢ as

L&) e 2_st @) e (!

nE Jp y—¢ 1

TCE —c Y — g
1 T eg’IEz 1 dt
i, T =y

2a), OE) g, 1=V, 1
2 [ %+ % [ a4 (22w "

My(y— b) | do
EPlfffG(é dedndS +—pp; EPIb ko dy’

dg

2v._ 1
)=50(y)
v E 4.1)
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Also, the continuity of displacement at one end of the debonding point (y = b) will result

in
2 b o1p—¢ ¢ |b—¢& S E.~T/h  1(b)
My
0 — o7 b=0, (4.4)

where T and M), are the axial force, the bending moment of the piezoelectric actuator at the
tips of the debonded part, and 7 and o are the interfacial normal and shear stresses, respec-
tively. By making use of the boundary conditions of this model, the following relations can

be obtained

—b c
f_ P(E)dE = T, fb P(E)dE =T, 4.5)
c pry
- f f o (E)dEdy+ My =0, (4.6)
b Jb
and
[ oo, @)

in which equation (4.5) shows that the total interfacial shear force along the bonded part is
equal to the compressive force T at the end of the debonded part (y = —b or y = b); equa-
tion (4.6) illustrates that the double integral of the interfacial normal stress is equal to the
bending moment at the right tip of the debonding part, as well-known for Euler-Bernoulli
beam theory; equation (4.7) defines that the total interfacial normal force along the bonded
part is equal to zero at the right tip of the debonding part. Here the governing equations,

equations (4.1) - (4.7), can be solved numerically by using the Chebyshev polynomials. To
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solve these equations, firstly, the following functions in equations (4.2) and (4.6) have been

defined as

Fo)= | ' / g / " 6(&)agandc, 48)

60)= [ ) / ’ o(&)dEdy. 49)

After a simple mathematical manipulation, equations (4.8) and (4.9) can be simplified as

PO =5 [ 6-8ro@uE. (@.10)
60) = [ (e=E)o (@)t @1

Substituting equations (4.10) and (4.11) into equations (4.2) and (4.6) will yield, respec-

tively,

—b c .
> [ g = [T e+ (220

:rFS c y—E& nE Jp y—§ | E (4.12)
M(y b 1 do
~ 73 [ 0—Po@as + 6, - F.
—f:(c—é)a(é)dé My =0, (4.13)

The singular integral equations, equations (4.1), (4.3), (4.5), (4.7), (4.12) and (4.13), can

then be normalized to the non-dimensional forms as

brr(€) (&) —v\T .
f—c }’—édéJrﬁ; édé_( —v’2°

T 1 Y, . 1 xE'dr*
— | t*dy—T
2 hEP J, ki 2 dy

(4.14)

=1,
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(3 o*(€), —2v .,
f —éd“f —gdet 5 5"

1 mE’ . Mb(y b) _EP 1 1xE doc*
d —Gp— ————— =0

f_bln —¢

S

1 nE

T*(&)dE +f:1n

[ e @ae=1/(3 5on)

[ o @6z -/ (gg%) 0,

ky 2

and

C
| or@az—o
b
The normalized shear stress, normal stress, and axial force are given by

tTt=1t/p, o'=o0c T5=—,
/p: /p1 ho_b;

with

ney E.ES g ES

= 51, 9b

P=""5Ep 2 EP

where o) = eglEz is the blocking stress of the piezoelectric actuator.

The integral, fg T*dy, in equation (4.14) can be rewritten as

y ¢ n ES
Tdy = — *dy+T/| =——o0
fyrar== [ wareri (S 5m).

and the bending moment is normalized by

bMp,
fO'b ’

%
I
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(4.16)

(4.17)

(4.18)

(4.19)

(4.20)

(4.21)

(4.22)

(4.23)



Finally, the singular integral equations can be rewritten as,

—b _x C % C 5 *
1-2 ES 1 1 mE" d
f T (é)dé f T (é)dé ( VT i« T '.':*a” nE dt Y
—c b

R I 1—v’2 2 hEP "2 ay
(4.24)
f_c R e A RAOT .
L (y—b , 1 7E do* '
+Mb( b )_9 Tk 2 dy
o b=¢&] . < |p=g| . . 1 7E
f_c In z r(é)d§+£ln Z T(E)dE —-T b_HTT (b) = —b, (4.26)
2EPh,
f T (8)dE =T = (4.27)
| o*@ac=o. (428)
and
c . L2EP]
ﬂ 0" (§)EdE My = =0 (4.29)

Then, the axial force T', the bending moment M}, the interfacial shear and normal stress

T and o can be readily determined from the applied electric field.

Two local coordinates 1 and 12 normalized for the two bonded parts of the actuator
are needed to get the solution. The origin of the first local coordinate 1; is located at the
center of the left bonded part of the actuator, and the origin of the second local coordinate
12 is located at the center of the right bonded part of the actuator. Here, 1y and 1, are given

by

= , (4.30)



where

c—b b+c b+c
p— p— = — = - -3
cl1 =02 ( 3 )1 dy ( > )1 dy ( 5 ) (4.31)

In what follows, the left and right ends of two bonded parts of the actuator correspond to
—1 and 1 in the local coordinates, respectively. The integrals in the equations above, which

are related to the interfacial shear stress, can be changed to

71(5) f T
dE = dny, 4.32
f_c y—=¢ ¢ yi—m , (4.32)
“13(8) f‘ (3
dE = dno. 4.33
A y—=¢& ¢ —12—1M 2 ( )
c 1
f 7 (8)dy =2 f Tdn, (4.34)
y y2
—b b—& el 23’-;-2%-1 1r*dm
In THE)dE = — S Rk L 4.35
f—c 3 (6)de 2,/1 ,/—1)’1—111 i, (4.35)
c . -1 1 %
[ wl = sew-2 [ | 2, (4.36)
b 3 2 )28 pin/ay2-m
with
w=7, wm=, w=" (4.37)

And the integrals related to the interfacial normal stress can be similarly reorganized as

_bO'*(é) 1 o*
1\27 € = L __an, 4.38
f_c y—¢& . f_m—m m it
“o3(&) fl 3
230 g = dny, 4.39
ﬂ y—=¢ ¢ 12— Mm (e (4.39)



c 1 1
fb o3 (E)EdE = cxdy f ojdm-+d} f ofmdn, (4.40)

y y2
ﬁ (y—&)*05(8)dy =3 f 02— m)03dm. (4.41)
Then, the integral equations (4.24)-(4.29), can be further rewritten as

1 * 1 *
d 1‘|‘f d 2— —O
,/_1)’1—711 1 1y2—m n (l—v 2

nES 1 IT* J 1 nE’ dt* |
_mE 1 _1aEdr
2 nEr ), PR T T ay T

(4.42)

1 * 1 * =y
c (o 1-2v.w , mE’ 2 .
f L_dny + f 2_dny+ ( )2t =3 [ (y2—m)*c3dm
— — —1

1yi—m 1y2—1m2 I1—v 2 4EP]
()] 1 JIFSdO'*
M (y2+1 (—)—9*——— —0,
+My(2+1) (- b 2 dy
(4.43)
C1 2%_2%_1f1 T’l"dnl dn +C2f_1 fl ‘Ez*dnz dn
= 1+ 2
2 _ — 2 J 9% % 12—
1 1y1—M 2@ 24112712 (4.44)
1 nE°
—T*h——""1*(b) = —b,
G ) =b,
b, w ES
Cz[lfzdnzzT/ (550‘5)1 (445)
1
czf o,dn, =0, (4.46)
-1
and
d 1 yd 2 [ o d M*zgm 0 4.47
(o7 (o —M;———=0. ;
szf_lzn2+62f_l 212412 2 E b (4.47)
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4.3 General solutions using Chebyshev polynomial expansion

Because the resulting governing equations (4.42)-(4.47) are singular integral equations, the
solutions involve a square-root singularity at the ends of the bonded parts (Muskhelishvili,
1953). Accordingly, the general solutions of interfacial shear and normal stresses can be

expressed in terms of the following expansion of Chebyshev polynomials of the first kind

as
T = (l—déil;)uﬁ (1—11112)1;22“’:'(”??(110, (4.48)
T = ( _diz))uz T (1— ,1]22)1;2 ,; dP (), (4.49)
e —egli)lf’z g R o .
%0 —ei;)lﬂ G ) e

where T; is the Chebyshev polynomial of the first kind. It is defined by the relation 7;(n) =

cosi® when 1 = cos 0.

For the current problem, the interfacial shear and normal stresses along the bonded part

of the actuator satisfy the symmetric relation that

t1(m)=—-5%(m), ojf(m)=o3(—m). (4.52)

Substituting equations (4.48)-(4.51) into equation (4.52), the following recursive relations
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for the right part and left part of the actuator can be derived,

dV =—d®, dV=d® d¥=-d? .. dY=(-1)*d?, (4.53)

e =e V=@ Vo V= (1) (4.54)

I' .

In the following discussion, only the right bonded part is considered. Here, the Chebyshev
polynomial expansions are truncated to the (N — 2)’h term. The equations are satisfied at

the following collocation points at each bonded segment of the actuator, given by

m:cosJf

, J=23,..,.N—1 4.55
N—]_JIJ ] 1= 3 ( )

Through the Chebyshev polynomial expansion, the first part of equation (4.42) becomes

1 * N-2 j i
T 2 » « 1 —1 2 .
f : dm=-x Z di( : [ ()’1})2_ 1 _ylj] S, —er(() )/ (J’U)z_ L,
- i=1

1yYi—m !(yTj)z -1

(4.56)

where

c+b
c—b

Vi=mj+2—2, (4.57)

which is the coordinate of collocation point j in the left bonded part of the actuator.

The second part of equation (4.42) becomes

1 * N-2 sin [i%n]
f 2y =-ny dP———1 (4.58)
12— i—1 sin [";_ln]

The third part of equation (4.42) becomes

(4.59)

(1—2V)£O_*:(1—2V)E i e(g)

I=v72 I-vi25" sin[j;lln]
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The fourth part of equation (4.42) becomes

nEs 1 : N2 i—1 ey i—1
— sdmp=n Y, d’ 22 Ao d 4.60
2 h.rzp‘:zfy2 Tdm =7 ), s [‘N—l ] e R

where

nE

=— 4.61
SEP (4.61)
The last part of equation (4.42) becomes
j—1 j—1 j—1
dt* 1 N-2 2 CcOoS [IN ITC] COSs [mfc} . |:l—175:|
ar _ 1 Z di( ) 2 (4.62)
dy 25 (sm [ D (sm [Qn )
N= 1
Combined with equation (4.53), equation (4.42) reduces to
N-2 sin [iﬁn] -
2 N-1 . « 1! N
—Ezd;() TR -—+[w(}?1j)2_1_}?1j} / (ylj)2_1
i=1 sin [hn
N-2 -
@ | /=1 | Ao =1 @ _ @, [
— T g di sin [lmfc- ? — A N— 1 d{] —J"Cdo / (ylj)z —1 (463)
i
1=2v N-2 cos Ihfc:l 1 Esd *
—( )”Zem - At j=23,.N—1.
1—v 72 sin g{r;_]n] ki 2 dy
Similarly, the equations (4.43) and (4.44) lead to
sin [zj—llir} i
7 Z — =~ oI 1] /0121
sin [—IJ‘I]
L j—1 _
1 —2v TCN_Z 2 Ccos [ITITC] nES 3N—2 5 n;j (5)
e 520-:-” N —4Ep1,‘322€§) (mj— &) ——25(8)d&
i=1 sin [I{Tln} i=1 ~1 V1—E
1 nE° do*
M; 1 -0y — —— =0, j=23,.,.N—1,
(4.64)
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i i
_ngNiZd.(Z) fz%_Z%_l [ (yl)z . _yl] dyl +f_l [ (}}2)2 ! _y2:| dyZ
. 1 \/W —2%-{-2%4_1 (}12)2 —1

— 224 fz_ Pa ! dy; + - ;dyz
2 1 \/(yl)2 22811 \/(v2)?

_T* b_klﬁ *(b) =
1 (4.65)

Substituting equations (4.49) and (4.51) into equations (4.45) - (4.47) and making use of

the orthogonality of Chebyshev polynomials referred from Appendix A.2, the unknown

) (2

coefficients d[gz , ey and e(z)

can be readily determined. Here, d[gz) is expressed in terms

of the axial force in the debonded part; e{()Z) and 8(12) are related to the bending moment at

the tips of the debonded part, i.e.,

EPI
d? =~ o2 (4.66)
TTpca
P =0, (4.67)
2) 2 ,EP 1 .
= —\— :—M N 4.68
@ =) 5 o™ (%65)

with o? = T*hoy /EPI

The algebraic equations (4.63), (4.64) and (4.65) contain (N — 1) unknowns for a’l-(z), =
0,1,2,..N —2, (N — 3) unknowns for egz),i =2,..N —2 and Mj;. These 2N — 3 unknowns
can be solved through (2N — 3) equations, corresponding to (N — 2) equations from (4.63),

(N —2) equations from (4.64) and one equation from (4.65).
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Chapter 5: Results and Discussion

The solution obtained in the previous chapter can be used to evaluate the distribution of
the resultant stresses and forces. In this chapter, the FEM simulation is conducted to ver-
ify the current model at first. Then, in order to evaluate the effects of different material
properties, the geometries of the piezoelectric actuator model components and the inter-
facial debonding of the current model on the electromechanical behavior of the integrated
actuator-host structure are presented. The attention is focused on the distributions of the
shear stress, normal stress, axial force, bending moment and axial displacement along the
interface between the adhesive layer and host structure. The convergence of the solution
by using Chebyshev polynomial expansion is carefully evaluated, which uses 40 terms to

ensure the current results considered convergent.
5.1 Comparison with FEM results

To verify the validity of the current model with bending and adhesive layer, the finite ele-
ment method is also implemented to determine stress distribution along the adhesive layer.
The COMSOL Multiphysics 5.2a is chosen for modelling the piezoelectric actuator sys-
tem. A static analysis of the model with a piezoelectric actuator attached to a semi-infinite
host through a thin adhesive layer between them has been conducted. Here, a PZT ceramic
as the piezoelectric material and aluminum as the elastic material are chosen for analytical
calculations and numerical simulations. The piezoelectric actuator material (PZT-4) with

poling along z direction is a transversely isotropic material; the host is an isotropic material,
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which is stiffer than the adhesive layer. Usually, the thickness of a typical thin piezoelectric
ceramic sheet is from 0.1mm to Imm. So in the FEM model, the 0.1mm and 0.01mm are
selected as the thickness of the piezoelectric actuator and adhesive layer, respectively. The
length of the actuator and adhesive layer are 2mm. The length and thickness of the host
are 10 times compared to the actuator in order to model the semi-infinite host structure.
An electric field is applied along to the poling direction of the actuator. In the numerical
model, mapped square elements and free triangular elements are utilized for the piezoelec-
tric actuator and adhesive layer and the host structure, respectively. Specifically, the quad
element size in the piezoelectric actuator is around 1.0 x 10~2/ and there are at least 5
layers of elements in the adhesive layer to ensure the accuracy of the numerical simulation

results. The mesh of FEM model for 4’ /h = 10 is shown in figure 5.1.

Figure 5.1: The mesh of the FEM model for 4’ /h = 10.

The elastic and piezoelectric constants of the piezoelectric actuator, host structure and

adhesive layer are listed in Tables 5.1 and 5.2, respectively. All parameters are defined in
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the appendix A.1.

Table 5.1: Material properties of the piezoelectric actuator

Elastic stiffness parameters ¢y c12 Ci3 c33 Ca4
(x10'9Pq) 139 678 743 115 256
Piezoelectric constants €3l €33 els
(c/m?) 52 15.08 12.71
Dielectric constants €11 £33
(x1072C/Vm) 6.45 5.62

Table 5.2: Material properties of the host structure and adhesive layer

Host structure

Young’s modulus E*(x 10'0Pa) 5.27 Possion’s ratio v¥ 0.3
Adhesive layer
Young’s modulus E%(x 10”Pa) 2.6 Possion’s ratio v¢ 0.3

Figure 5.2 shows the interfacial stress distribution no bending, with bending and FEM
simulation with perfect bonding condition for A = 1, ¢/h = 10 and /' /c = 0.001, which
means there is an adhesive layer added to the system. The shear stress distribution is anti-
symmetrical, and the normal stress distribution is symmetrical with regard to the center
of piezoelectric actuator, respectively. It can be observed in figure 5.2 that a limited dis-
crepancy exists near the ends of the piezoelectric actuator for normal stresses. Overall, the
comparison shows a very good agreement between the current and FEM results. The error
between current and FEM results are within 10% in the range of 0.5 to 0.85. The interfa-
cial stresses with bending and FEM simulation results with the partially debonded actuator
are shown in figure 5.3, for A = 1, ¢/h = 10, b/c = 0.5 and k' /c = 0.001. Similar to the
previous case with perfect bonding condition, shear stress with bending shows a good con-

sistency with FEM simulation results. As shown in the governing equations (4.42) - (4.47)
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Figure 5.2: Interfacial stress distribution for the perfect bonding condition (A =1, ¢/h =10
and h /¢ =0.001).

of the piezoelectric system, the normalized interfacial stress, axial force, bending moment
and axial displacement are controlled by these parameters, A, ¢/h, i’ /c and b/c. Here, A
represents material mismatch of the piezoelectric actuator and the host structure. ¢/h and
h'/c illustrate the geometrical relation of the actuator and the adhesive layer, respectively.
b/c represents the ratio of the debonding length and length of the piezoelectric actuator. As
aforementioned, the thickness of a typical thin piezoelectric ceramic sheet is usually from
0.1 mm to 1 mm. If half of the length of the piezoelectric actuator is assumed to be 5 mm,
the ¢/h would be in the range from 5 to 50. In the following discussion, the values of above
parameters will vary to evaluate different electromechanical responses of the piezoelectric

actuator system.
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Figure 5.3: Interfacial stress distribution for the partial debonding condition (A =1, b/c =
0.5,¢/h=10and h /c =0.001).

5.2 The case for the piezoelectric actuator perfectly bonded to the

semi-infinite elastic host with an adhesive layer

The variation of the interfacial shear and normal stresses with different #’/c for A = 1 and
¢/h = 10 are shown in figures 5.4 and 5.5, respectively. The results of shear and normal
stresses with bending match the FEM simulation results well. In these four scenarios, the

highest stress concentration occurs at the ends of the piezoelectric actuator when 4’ /c = 0.

To study the effect of the material mismatch A, the geometry of piezoelectric actuator
is fixed. Figures 5.6 and 5.7 show the results for normalized interfacial stresses along the

bonding interface for different A with 4’ /c = 0 and 0.01, respectively. In these two figures,



both shear stress and normal stress along the interface show strong stress concentration at
the ends of the piezoelectric actuator. In this case, a smaller A means a stiffer piezoelec-

tric actuator layer compared to the host structure and larger stress level at the ends of the

0.0
0.1 F
45 A=1,¢ch=10
4
- e h'lc = 0.0000, Shear stress with bending
-0.2 h'/e = 0.0000, FEM shear stress ]
* * * + h'/e=0.0005, Shear stress with bending
= ¥H e h'/e = 0.0005, FEM shear stress
-0.3 * * = * h'e=0.0010, Shear stress with bending ]
""" h'/c = 0.0010, FEM shear stress
0.4 == v == h'/c=0.0100, Shear stress with bending
o =s+mes hi/e=0.0100, FEM shear stress ]
-0.5 .
0.6 s 1 1 1 1 1 1 1 1
-1.0 -0.8 -0.6 0.4 0.2 0.0
ylc

Figure 5.4: Interfacial shear stress distribution for the perfect bonding condition (A = 1
and ¢/h = 10).

piezoelectric actuator. The stress concentration is more focused around the ends of the
piezoelectric actuator with the larger value of the A. The increased shear and normal stress
level along the entire length of the actuator due to decreasing A value are observed. 5.7
show that the stress level decreases with the adhesive layer involved, and the stress dis-
tribution becomes less concentrated around the ends of the piezoelectric actuator. Higher
stress concentration indicates higher possibility of the debonding between the piezoelectric

actuator and the host structure.

To investigate the effect of the geometry of the piezoelectric actuator, various ratios of
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Figure 5.5: Interfacial normal stress distribution for the perfect bonding condition (A = 1
and ¢/h = 10).

length to thickness, ¢/h, with the same material properties are considered. Specifically,
c/h =5, 10, 20, and 50 are chosen for two cases, h'/c = 0 and ' /c = 0.01, the stress
distribution of which has been illustrated in figures 5.8 and 5.9, respectively. For the case
without the adhesive layer, A’ /c =0, the stress distribution becomes more concentrated
around the ends of the piezoelectric actuator with the increase of ¢/h, as shown in figure
5.8. With the increasing of ¢/h, an decreasing of interfacial stress level along the actuator
can be observed. After adding the adhesive layer with &’ /c = 0.01, the stress concentration
decreases dramatically around the ends of the piezoelectric actuator, which can be clearly

observed from figures 5.8 and 5.9.
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Figure 5.6: Interfacial stress distribution of current model for perfect bonding condition (
c¢/h=10and h /c =0).

5.3 The case for the piezoelectric actuator partially debonded to the

semi-infinite elastic host with an adhesive layer

Debonding might occur due to poor bonding condition of high interface stress level around
the piezoelectric actuator. The piezoelectric actuator is assumed to be debonded at the cen-
tre symmetrically, as shown in figure 3.3, where 2b represents the length of the debonding
length. In the following section, half of the actuator will be discussed. After debonding
occurs, the local stress distribution along the interface may change dramatically. The effect
of the debonding length 25 on the redistribution of shear and normal stresses along the
piezoelectric actuator for A = 1 and ¢/h = 20 with k' /c = 0 and ' /c = 0.01 are shown in
figures 5.10 and 5.11, where the results of the perfect bonding case is given for comparison.
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Figure 5.7: Interfacial stress distribution of current model for perfect bonding condition (
c¢/h=10and h /¢ =0.01).

It is obvious that the interfacial shear stress and normal stress vary significantly with dif-
ferent debonding length. The results show that the debonding causes stress concentration
around the tip of the debonding part. It does not significantly affect the stress distribution
far away from the debonding part. The stress concentration is increased at the two tips of
the debonding part with the increase of the debonding length. However, when the adhesive
layer is involved, the stress concentration near the debonding tip is decreased significantly,
which can be observed in figures 5.10 and 5.11. Also, as shown in figure 5.11, the normal
stress distribution, compared with that of the shear stress, is less affected by the debonding
length.

Figures 5.12 and 5.13 illustrates the stress distribution variation along the piezoelectric

actuator with central debondings for A = 1, b/c = 0.5 with different ¢ /A ratios for & /c =0
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Figure 5.8: Interfacial stress distribution of current model for perfect bonding condition (
A=1landh /c=0).

and ' /e =0.01, respectively. The results show that with the increase of ¢/h ratio, the inter-
facial stress levels along the piezoelectric actuator decrease, and the stress concentration at
the tips of the debonding part decreases. As shown in figure 5.13, the stress concentration
around the ends of the piezoelectric actuator is decreased significantly after an adhesive

layer is included.

When debonding occurs, there is no stress transfer in the debonding part. However,
the bending moment, axial force, and axial displacement at the debonding edge will affect
the electromechanical behavior of the piezoelectric system. In the following discussion,
the effects of these parameters will be investigated for different debonding lengths. Five
different adhesive layer thicknesses (4’ /c = 0.000, 0.001, 0.005, 0.010 and 0.020) for A =

1 and ¢/h = 20 are studied. The normalized axial force T* = T /hop in the debonded
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Figure 5.9: Interfacial stress distribution of current model for perfect bonding condition (
A=1landh /c=0.01).

tip of the piezoelectric actuator, as a function of b/c with bending or without bending
conditions, is shown in figure 5.14. There is no significant difference of the axial force at
the ends of the piezoelectric actuator, indicating limited influence from the bending effect.
It is, however, evident that the adhesive layer thickness has a significant effect upon the
axial force. With the increase of adhesive layer thickness, the axial force decreases. From
the figure 5.15, with the increase of A, the axial force level is substantially increased. It
should be mentioned that the normalized axial force varies very subtly when the debonding
length is small for a given constant A. Also, the normalized axial force is less sensitive
to the change of the debonding length for larger A, corresponding to a softer piezoelectric
actuator. The normalized axial force tend to one when the actuator is extremely soft, which

means the remaining actuator acts as a fixed boundary.
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Figure 5.10: Shear stress distribution of current model for partial debonding actuators (
A =1and c/h =20).

The variation of the normalized bending moment M™* = bM}, /Icp, in the debonded tip of
the piezoelectric actuator with the normalized debonding length b/c is illustrated in figure
5.16. It shows that the bending moment increases with an increasing of the adhesive layer
thickness. Figure 5.17 shows the variation of M* with the debonding length for different
material mismatch A. The significance of the bending moment remarkably depends on the
normalized debonding length. It is small when the normalized debonding length is short
and increases rapidly when the normalized debonding length is over 0.7 . It is observed
that M* increases with decreasing A. As expected, the bending moment is less sensitive to

the normalized debonding length for a softer piezoelectric actuator.
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Figure 5.11: Normal stress distribution of current model for partial debonding actuators (
A =1and c/h =20).

Figure 5.18 shows the normalized axial displacement u™* = —% at the debonded
tip of the piezoelectric actuator with bending or without bending effects. It shows that
the axial displacement with bending is almost the same as the displacement without bend-
ing, which can be expected from the result of axial force T*. The bending effect doesn’t
have significant effect on the axial displacement at the debonded tip of the piezoelectric
actuator. It can be observed that with the increase of the adhesive layer thickness or the
normalized debonding length, the normalized axial displacement increases. The normal-
ized axial displacement at the debonded tip of the piezoelectric actuator for five different

material mismatch A is shown in figure 5.19. When the piezoelectric actuator becomes
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Figure 5.12: Shear stress distribution of current model for partial debonding actuators (
A=1,b/c=0.5and h /c=0).

softer (larger A), the normalized axial displacement decreases. When A is very large, the

remaining actuator will act as a fixed boundary, limiting the axial displacement.
5.4 The case for the interacting of the two piezoelectric actuators

To evaluate the interaction between multiple actuators, two identical actuators bonded to
an elastic host structure are investigated, as shown in figure 5.20. In this case 2b represents
the distance between the two actuators. Five normalized distances b/c = 0.7, 0.5, 0.3, 0.1
and 0.01 are selected for A = 1 and ¢/h = 10. Figures 5.21 and 5.22 show the normal-
ized shear stress and normal stress distributions along the piezoelectric actuator with and
without adhesively layer, respectively. y/c = 1 corresponds to the outer end of the actuator,
y/c = —1 corresponds to its inner end of the actuator. The results are shown in figures 5.21
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Figure 5.13: Normal stress distribution of current model for partial debonding actuators (
A=1,b/c=0.5and h /c=0.01).

and 5.22. It is observed that with the decrease of the distance, the stress magnitudes become
unsymmetrical, which is induced by the interaction between the two bonded piezoelectric
actuators. Although the stress near the inner end is significantly affected by the interac-
tion, it is interesting to note that the stress at the outer end show very limited effect of the
interaction. After considering the adhesive layer, the stress magnitudes become less un-
symmetrical, especially for the normal stress. Also, the level of stress concentration at the

ends of the piezoelectric actuators decrease.
5.5 Concluding remarks

This chapter is focused on the effects of material properties, the geometry and the adhesive
layer on the load transfer between the piezoelectric actuator and the host structure. The
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Figure 5.14: The normalized axial force of current model at the tips of the debonded part
(c/h=20and A =1).

validity of the current model has been demonstrated by comparing with FEM results. The
simulation results indicate that adhesive layer can reduce the stress concentration level at
the ends of the piezoelectric actuator and increase the stress level along the piezoelectric
actuator. Then, for actuator with partial debonding, the redistribution of the interfacial
shear and normal stresses under different material and geometry conditions has been dis-
cussed. Similar to situation without debonding, the increase of the adhesive layer thickness
can reduce stress concentration at the tips of debonded part and increase the stress level.
The variation of the normalized bending moment, axial force and axial displacement with
the normalized debonding length is also investigated for various adhesive layer thicknesses
and material mismatches. The introduction of bending effect provides a more accurate de-

scription of the deformation and loading condition in the debonded part of the piezoelectric

64



1.0 PO T R T T Ty Y R Ty e,
Tereee
0.8 ST
06F &oeennana.. T
S
e ¢/h=20, h'/c=0 teel
—2=0.01 ..
0.4 - .. ad=02 .
-——)=1
- )=5
e=a }=10
02 .
0.0 L 1 L 1 1 1 1 1 1
0.0 0.2 04 0.6 0.8 1.0

b/c

Figure 5.15: The normalized axial force of current model at the tips of the debonded part
with different A (c/h =20 and 4’ /c = 0.000).

actuator, however, the axial force and displacement at the tips of debonded part keep al-
most the same after adding the bending effect. With the increase of the debonded length,
the normalized bending moment and axial displacement increased. However, the normal-
ized axial force decreases slightly when the debonding length increases. The interaction
of two piezoelectric actuators has also been studied. With the decrease of the distance be-
tween the two bonding actuators, the magnitudes of the normal and shear stresses become
unsymmetrical, corresponding to the direct interaction between the actuators. With the ad-
hesive layer included the stress magnitudes become less unsymmetrical, especially for the

normal stress, indicating relatively weaker interaction.
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Figure 5.16: The normalized bending moment of current model at the tips of the debonded
part (A =1 and ¢/h =20).

L]
* L]
Z a2t oh=20, h/c=0 -
—2=0.01 '
I .. X=02 .
-—=] .
-aa )=5 N
S -== A=10 .
-4 L 1 L 1 L 1 L 1 L
0.0 0.2 04 0.6

0.8 1.0
b/c

Figure 5.17: The normalized bending moment of current model at the tips of the debonded
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Figure 5.21: The normalized shear stress distribution of current model for interacting

actuators (A =1 and ¢/h = 10).
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Figure 5.22: The normalized normal stress distribution of current model for interacting
actuators (A =1 and ¢/h = 10).
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Chapter 6: Contributions and future work

This chapter summarizes the main contributions of this thesis on the modelling of piezo-
electric actuator and illustrates several problems that remain to be addressed in the subse-

quent research.

6.1 Main contributions and Conslusions

This thesis aims to estimate the effects of the imperfect bonding condition on the static
electromechanical behavior of the surface-bonded piezoelectric actuators. This study is an
extension of the previous work, in which an adhesive layer is included between a piezoelec-
tric sensor/actuotor and an semi-infinite host structure and only the interfacial shear stress
is considered (Jin and Wang, 2011a,b). The main contributions of this thesis to the field of

the research are summarized as follows.

I. A new theoretical model considering the bending deformation of the thin-sheet
piezoelectric actuator with an adhesive layer has been established. The integrated sys-
tem contains an elastic semi-infinite host structure, attached by an adhesive layer and then

a piezoelectric actuator on the top of adhesive layer under inplane electric loading.

2. The theoretical analysis and the corresponding FEM simulations have been con-
ducted under static loading conditions. Considering that piezoelectric actuators are mostly
used under dynamic loading conditions. The current model is corresponding to a quasi-
static loading condition where the loading frequency is so low that the wavelength is much

larger than the length of the piezoelectric actuator. The effects of the geometry, the material
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mismatch, the material property of the piezoelectric actuator on the electromechanical be-
haviour of the system have been analyzed, for the cases under perfect bonding and partial

debonding conditions.

3. The results of the study provide guidelines for the design of piezoelectric actuator
systems. For example, with the existence of the adhesive layer, the stress concentration
at the ends of actuator is decreased. The results also indicate that the thickness of the
adhesive layer significantly affects the stress distribution. Thicker adhesive layers possess
lower stress concentration around the ends of the piezoelectric actuators. Thus, there is less

chance to peel off of the piezoelectric actuator from the host structure.

The specific conclusions, based on the results and observations on the variations of
the interfacial stresses, the axial force, the bending moment and the axial displacement

conducted in chapter 5, are as follows.

1. It is found that in order to reduce the interfacial stress concentration, the piezoelectric
layer should be bonded to the host structure through an adhesive layer with low stiffness,

namely large thickness.

2. The level of the interfacial stress concentration is closely related to the ratio of the
length to thickness of the piezoelectric actuator. When the ratio decreases, the stress con-
centration will decrease. Also, larger thickness of the adhesive layer will make the model

more resistant to the debonding between the piezoelectric actuator and the host structure.

3. The material combination of the piezoelectric actuator and the host structure needs
to be carefully determined. When the piezoelectric material is very soft in comparison with

the host structure, the bending moments at the two debonded tips approach zero and the
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axial force is close to the blocking force of the piezoelectric actuator, corresponding to a
high stress concentration near the ends of the piezoelectric actuator. A stiffer piezoelectric

actuator will induce higher interfacial stress in the interior of the interface.

4. The debonding length also has a substantial influence on the interfacial stresses. With
the increasing debonding length, the interfacial stress concentration level at the debonding

tips becomes higher.

These conclusions could be potentially helpful for the design of smart systems and

structures with piezoelectric actuators.

6.2 Future work

One of the main objectives of this thesis is to investigate the effect of the adhesive layer
properties on the static electromechanical behaviour of the piezoelectric system with bend-
ing deformation. Although this thesis has tried to cover the important challenges and lim-
itations of the current model with piezoelectric actuators, there are still some issues that

need to be further addressed in the future work, which are listed as follow.

1. Under certain loading conditions, buckling of the debonding actuator may occur. The
effect of the buckling of the piezoelectric actuator could be considered to better investigate

the electromechanical behaviour of the system.

2. To make the piezoelectric model more realistic, it could be extended from two di-

mensions into three dimensions.

3. This thesis is mainly based on the theoretical analysis and FEM simulations of the

piezoelectric model. The results of current model with bending match the FEM results very

72



well. However, corresponding experiments need to be conducted to validate the effective-
ness of the current piezoelectric model. Proper modification of the model may be needed

according to experiment results.

4. Some cracks with different sizes and orientations could be introduced into the host
medium to form a health monitoring system, which could show the potentials of this model

for practical applications.
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Appendix

A.1 Effective material constants

This part is intended to provide the fundamental equations, which can fully describe the
mechanical and electric properties of the piezoelectric materials. The general equation of

motion is
Giji + fi = piij. (A1)
According to Gauss’ law,
Di; =0. (A2)
The constitutive equations of the piezoelectric actuator are
{o} =I[cl{e} —[el{E}, {D}=l[el{e}+AI{E}, (A3)
with the strain field {€} and the electric field intensity {E} given by

1
&jj = E(ui,j +uji), Ex=—Vg. (A4)

Here, {c} and {&e} are the stress and strain fields, f; and p represent the body force and the
mass density, respectively. {D}, {E} and V are the electric displacement, the electrical field
and the potential, respectively. [c| is elastic stiffness constant matrix for a constant electric

potential, [e] represents a tensor containing the piezoelectric constants and [A] represents
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the dielectric constants for zero strains. Equation A3 can be rewritten in a matrix form as

1

C12

€13

€31

12 €13
€11 €13
€13 €33
0 O
0 O
0 O
0 O
0 O
€31 €33

€15

C44

€66

0 0 e3
0 0 e3
0 0 es3
0 e5 O
e;s 0 0
0O 0 O
Ar 0 0
0 Anp O
0 0 A3

(AS)

(A6)

In this study, plane strain condition is assumed, which means & = 0. Then, the following

relation can be obtained from equation (A4)
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Oy = C11&y +C13€; — €31 E;,
O, = C13€y 1+ C33E; — 63353,

Dz =e31& t+e336;+ ’133Ez-

(AT)

(A8)

(A9)



Equations (A7) and (A9) also can be rearranged as

oy = E*e, — 4 E,, (A10)
D, = 318+ A33E;, (Al1)

in which E*, €3,, and 13*3 are the effective material constants of the piezoelectric actuator

model. According to the electroelastic line actuator model, these material constants are

given by
2 2
C C €
13 13 33
E*=cni——=2, €3 =e31—e33—, A33=—=+42133, (A12)
€33 C33 C33

where the poling direction is designated along the z-axis.

A.2 The properties used in the context of Chebyshev polynomials

The polynomial of the first kind T;(x) is defined as

Ti(x) = cos(iarccosx), (A13)

or equivalently

Ti(cos0) =cos(iB). (Al14)

The polynomial of the second kind U;(x) is defined as

Uj(x) = sin(iarcsinx), (A15)
or equivalently
in(i+1)6
Us(cosg) = SnU 1O (A16)
sin @
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In what follows, the following relation can be obtained

T!(x) = iU;i_y (x). (A17)

A direct integration of the Chebyshev polynomial of first kind 7;(x) on the interval

[—1, 1] can be derived,

1
T;
f i) dx=nUi_1(y), i>1 and |y|<1. (A18)

L)/

The polynomials of the first kind 7;(x) are orthogonal with respect to the weight func-

1

tion G On the interval [—1, 1],
0, i#],
1! L)T()
— —————dx = { = (A19)
nf_lm boi=7=0
1/2, i=j>1.
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