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ABSTRACT 

Road collisions are one of the leading causes of death globally (1), with pedestrians, cyclists, and 

motorcyclists accounting for more than 50% of road traffic fatalities. Many countries work hard 

to provide safer roads for all users, especially vulnerable ones, not least because the cost to most 

countries is approximately 3% of their total domestic product. Vision Zero (VZ) aims to eliminate 

fatalities and severe injuries from road collisions. There is a need to determine the contributing 

factors leading to collisions to assess and apply appropriate solutions to accomplish that goal. For 

instance, speeding is a significant causal factor of road collisions, and an increase in the average 

speed increases the probability of a crash and its severity. To deter speed violations, Mobile Photo 

Enforcement (MPE) programs have been used as an effective countermeasure.  

 Past research has investigated the effectiveness of MPE in reducing the number of speed 

violators and providing safer roads. Following that, this thesis’s primary goal is to study the 

potential impact of the MPE deployment efforts on the duration between two consequent 

collisions by examining 250, 175, 212, and 219 sites in the City of Edmonton, Canada, in 2019, 

2018, 2017, and 2016, respectively. These sites had varying traffic volume levels, roadway 

categories, and conditions. The research methodology was performed in two main stages, namely, 

preparing the data for testing and applying a rigorous statistical analysis. The data was obtained 

from the City of Edmonton’s Safe Mobility Section. Survival analysis was applied to investigate 

the relationship between the MPE variables and the duration between collisions. 

 The KM survival estimates were applied to the classified groups to determine those had 

higher survivability. The groups were classified into two clusters based on MPE hours, MPE 
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visits, MPE HpVs, and traffic count separately. A graph highlighted those clusters with a higher 

survival probability and a median survival probability over the study period (one year). Next, log-

rank tests were carried out to emphasize and support the results of the KM survival graphs. The 

log-rank test established whether the two tested groups had the same survivability.  

 The outcomes of this analysis further support the positive effect of deployed MPE hours 

and visits on increasing the duration between consequent collisions, which correspondingly 

reduced the risk of collision occurrence. The results showed that the ratio between hours and visits 

(i.e., hours per visit) has the most impact on increasing the duration between collisions and 

reducing the risk of collision occurrence. The expected reduction in the collision hazard (i.e., 

collision occurrence) varied between 22% and 52%; the maximum reduction could be expected 

when the deployment occurs in high traffic volume locations, and the minimum reduction could 

be expected at "Arterial Only" and "All Sites" together regardless of any classifications. This 

conclusion is based on the results of the Cox proportional hazard models in 2019, 2018, 2017, 

and 2016. Moreover, KM graphs showed that the above-average MPE variables groups had a 

higher survival probability than those below-average. In addition, the log-rank tests confirmed 

the KM graphs inference.  
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1 INTRODUCTION 

Traffic collisions are among the major leading causes of accidents, claiming over 1.3 million lives 

in addition to injuring twenty million people annually (2). Moreover, the World Health 

Organization classifies road collisions within the top ten causes of fatalities (1). In Canada, for 

example, at least five people die daily due to road traffic collisions. In 2001, 2,778 and 224,000 

fatalities and injuries, respectively, resulted in an estimated social cost to Canadians of $25 billion 

(3). The situation is heightened in the US, where reports indicate that about 90 daily deaths occur 

(2). Aside from the tragic toll on the victims, these road collisions greatly impact those around 

them both psychologically and financially (4).  

 Two significant aspects contribute to road collisions: roadway features and drivers’ 

behaviour. Roadway characteristics are considered as contributing factors to collisions that might 

be limited sight distance, weather conditions, pavement conditions, or traffic signals visibility. 

Drivers’ behaviour exerts an even greater influence on road crashes, observed as speeding, 

impaired driving, or fatigue. Indeed, speed alone was identified as the major contributing factor 

in 30% of fatalities in high-income countries and 50% of all crashes in low-income and middle-

income countries (1). Since speeding is defined as either exceeding the speed limit or driving 

within the speed limit but too fast for the road conditions (6), more stopping and braking distances 

are required. If those distances are not factored into drivers’ decision-making, then speeding 

increases the probability of collision occurrence. Furthermore, collision severity is proven to be 
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directly correlated to vehicle speed (7). As such, even small increases in vehicle speed could lead 

to remarkable increases in collision probability and severity (8). 

 As speeding and collision occurrence are significantly related, targeted strategies are 

regularly implemented to deter irresponsible driving behaviour, manage driving speed, and reduce 

violations. At their core, these strategies are based on three approaches: Engineering, Education, 

and Enforcement (3Es) (9 - 11). Research has shown that speed enforcement is one of the most 

effective countermeasures to stop speed violators and improve drivers’ behaviour (12). For 

instance, the Automated Speed Enforcement programs (ASE) are proven interventions that reduce 

the collision severity and frequencies. Previous findings attribute an 8.9 % drop in collision 

numbers and a 12 % decrease in collision fatalities and injuries to ASE programs (13).   

Many Canadian cities, such as Winnipeg, Calgary, and Edmonton, have effectively 

implemented such programs. In Edmonton, for instance, data indicate that ASE programs have 

reduced collisions from 20 to 14 % (6). The City of Edmonton’s primary goal when employing 

these programs is to minimize traffic incidents and enhance road safety. To achieve this, 

authorities have to prioritize and map the collision risk sites. Accordingly, ASE measures must be 

implemented in tandem with camera use at high collision sites for effective enforcement. Findings 

in Alberta suggest that Mobile Photo Enforcement (MPE) deployment is the best alternative at 

these sites (14). However, it is unclear whether the MPE programs have a considerable impact on 

the survivability of collision occurrences at different road locations. Therefore, this study seeks 

to explore this research gap and investigate the influence of deploying different MPE variables 

on the duration between collisions. The work done here emphasizes the effectiveness of the MPE 
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program in reducing the duration between two consequent collisions, demonstrated through 

hazard models. The collision severity, collision frequency, exposure to collision risks, traffic 

counts, and MPE data were analyzed for this research.  

Several national and international reports have shown that the introduction of ASE 

programs has registered positive outcomes in traffic safety (16). However, the consensus leans 

towards speed enforcement because intersection safety devices, in most cases, produce varying 

results (15). Previous reviews of worldwide findings between the late 1990s and 2000s showed 

that the introduction of MPE effectively reduces speeding by 82 and 51 %, respectively (17). In 

particular, Li points out that the MPE program is reliable because the perceived risk of detection 

increases with each subsequent deployment, resulting in broader deterrence levels and lower 

numbers of speed violations (15). Although these studies are based on different methodologies 

and showed a positive effect of ASE, there is still a need to investigate and evaluate its influence 

on the duration between collisions and consequently on enhancing traffic safety. 

1.1 Background 

As highlighted in the introduction, red-light running and speeding constitute the leading causes 

of road accidents in the USA and Canada (13). Research suggests that both increase the risks of 

crashing, death, and injuries. Studies have shown varied consequences from these two infractions 

based on magnitude and severity. Indeed, speeding and the chances of being involved in a 

collision are directly proportional (13). According to Evans, an increase in the average speed by 

roughly 1 % raises the fatality risk from anywhere between 4 and 12 % (18). Doubling the speed 

doubles the risks of collisions, injuries, and death, while exceeding the average speed by 20 % 
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escalates the risks six times the norm (18). In sum, previous meta-analyses engaging more than 

ninety-eight studies concluded that the interrelations between road safety and speed are significant 

and meet all the causality categories typically used in predominant evaluation studies. Elvik 

(2005) argues that not only is speeding the single highest determinant in traffic fatality cases but 

also, there is a significant difference in fatality risk when a moving vehicle moves faster than the 

surrounding traffic (speed dispersion) (19). 

Collisions resulting from red-light running vary in magnitude. Studies suggest that this 

type of infraction often results in right-angle collisions, which are believed to be more severe than 

other collision cases (20), costing more than US$14 billion (21). While excessive speeding 

contributes to more than 18 % of all crashes (21), translating to over 2,000 injuries and deaths 

attributable to the collision every year, red-light running accounts for more than one-quarter of 

the traffic injuries (22). Studies conducted by the Ministry of Transportation Ontario (MTO) in 

2014 noted that disobeying traffic signals account for 42 % of fatal crashes alongside 29 % of 

injury crashes.  

Traffic enforcement is one way the authorities mitigate the number and severity of these 

two serious traffic infractions. Therefore, this research aims to correlate the impact of different 

MPE variables (i.e., hours, visits, and hours/visits) and the survivability of collisions occurrence 

in different road cases. The subsequent sections shall discuss the implementation of MPE 

technologies in reducing the duration between two consequent collisions by employing a survival 

analysis. 
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1.2 MPE Operation 

Today, many cities worldwide have embraced MPE technology, registering positive results by 

limiting speeding and speed-related collisions. For example, the technology has reduced non-fatal 

and fatal collisions in France by 26 and 21 %, respectively (23). In Charlotte, North Carolina, the 

introduction of MPE has reduced collision cases by an average of 10 %. In Washington D.C., the 

speeds were reduced by 14 % with a further reduction of 82 % based on the number of vehicles 

exceeding the posted speed by ten mph (24). In Canada’s British Columbia, speed-related 

collisions were trimmed by 25 % in various enforcement locations (23). Moreover, in Australia, 

collision cases dropped by 22 %, which culminating resulted in a 38 % fall of collision-related 

injuries (23).  

 Moreover, automated enforcement overcomes the equity issues associated with policing 

enforcement. When conducting automated enforcement, officers do not interface directly with 

citizens, unlike traditionally policing which requires in-person exposure,  which might lead to 

racial or personal bias.  

However, despite these reported success cases, it is still unclear how we can assess the 

impact efficacy of this technology in relation to enhancing safety. To this point, the primary 

concern has been how the resources can be assigned and utilized to obtain maximum safety and 

positive impacts (23). However, there is a gap in understanding the relationship between the MPE 

deployment and collision frequency. Therefore, this research aims to incorporate the program 

performance information in the literature alongside the data obtained from its enforcement to 
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produce a robust study on the MPE’s effectiveness in reducing the duration between consequent 

collisions, which subsequently would provide safer roads for all users.  

1.3 Problem Statement  

Current road safety countermeasures vary in their impacts on road users, with the MPE gaining 

greater traction for regulating speed and enhancing road safety. However, the research to date 

lacks data on its effectiveness in increasing the duration between consequent collisions in 

different road conditions. Previous work focused solely on assessing the MPE using the before 

and after Empirical Bayes method (25), applied on urban arterial roads. Since the MPE programs 

are vital resources and need to be appropriately utilized, more comprehensive assessments in 

greater detail are necessary.  

Although previous studies focused on exploring the MPE effectiveness on speeding violations 

and road collisions, it is unknown whether the MPE variables (i.e., deployed MPE hours and 

visits) significantly influence the duration between two consequent collisions on different road 

categories. Therefore, there is a need to investigate the correlation between MPE deployment 

variables and the survival time for different locations if we are to evaluate the MPE program 

performance. Exploring this relationship would assist municipalities in understanding the 

consequences of deploying MPE hours, visits, and the ratio between them. As a result, they may 

consider adopting a proper MPE program and efficiently invest their resources.  
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1.4 Research Objective 

The research's main objective is to correlate the deployed MPE variables (i.e., hours, visits, and 

hours/visit) and the interval between two consequent collisions. In order to achieve this goal, the 

MPE and collision data are analyzed using survival analysis, which illustrates the survival 

probabilities as a result of deploying MPE hours and visits within various road categories. 

Moreover, this research has two sub-objectives i) to investigate the impact of deployed MPE 

variables on different road categories (i.e., All sites, Arterials, Collectors, High/low traffic volume 

locations, & Speeding-related collisions) and ii) to determine the optimal MPE deployment 

variable that provides the longest duration between collisions and correspondingly reduces 

collision hazards. Also, the analysis predicts the expected reduction of collision occurrence by 

deploying different MPE variables. These outcomes result in a better understanding of the optimal 

MPE deployment strategies for different roadway categories. 

1.5 Research Methodology & Organization 

To achieve the research objective, the methodology employed here is shown in Figure 1. It was 

executed in two major stages: i) preparing the data and ii) applying the survival analysis. The 

analysis used available MPE and collision data from 2016 to 2019 and was applied to explore the 

relationship between the frequency of deployed MPE (i.e., number of visits and hours) and the 

duration between two consequent collisions. 
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Figure 1: Summary of the Research Framework. 

1.6 Thesis Structure  

The remainder of the thesis is divided into five chapters as described below: 

• Chapter 2 reviews existing studies on the MPE program and its effectiveness. The chapter 

also outlines previous assessment methods used for analyzing deployed MPE hours and 

visits. Moreover, Survival Analysis and its use in transportation engineering are 

introduced.  
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• Chapter 3 describes the data provided by the City of Edmonton and highlights the main 

variables considered in this study. It also provides details of the analysis period and how 

it is utilized in the analysis process. 

• Chapter 4 illustrates the methodology’s two major stages: i) preparing the data and ii) 

applying the survival analysis. The details of each step are provided and supported by 

relevant sources.  

• Chapter 5 outlines the significant analysis results, as tested on different road categories, 

followed by an in-depth discussion of their implications. 

• Chapter 6 summarizes the research conclusions and discusses the study’s contribution to 

our understanding of the effects of MPE on traffic safety. Moreover, it outlines the 

research limitations and potential future work. 
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2 LITERATURE REVIEW 

This chapter provides an overview of the MPE and previous studies on the MPE allocations, 

applications, and impacts. It also presents background information on survival analysis and its 

usage in transportation engineering. Moreover, the Cox proportional hazard model is introduced 

to illustrate building a hazard regression model using survival analysis. 

2.1 Mobile Photo Enforcement (MPE) 

Studies on MPE generally cover its effectiveness on collisions and speeding by underscoring the 

particular deterrence effects, deployment strategies, and resource allocation. Most studies 

reviewed for this research concern the MPE programs’ influence on collisions and vehicle speeds. 

Previous studies have shown that the practical application of MPE can minimize mean vehicle 

speeds by 2% (23). Also, related studies have pointed out that MPE reduces severe collision cases 

causing injuries and fatalities. 

The effectiveness of the MPE program can be attributed to the immediacy, unavoidability, 

and severity of punishment, which influences driver behaviour and attitude based on the specific 

and general deterrence mechanisms. General deterrence is when potential violators adhere to the 

outlined standards when they become aware of others being punished or possible consequences 

for breaking road traffic rules. Research has linked general deterrence with dangerous driving 

education, MPE, and awareness campaigns. On the other hand, specific deterrence is where a 

driver receives a firsthand experience of detection and punishment (25). Some scholars posit that 

general deterrence can be enhanced by targeting high-risk periods and locations through non-
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visible and visible enforcement strategies. Utilizing both can enhance unpredictability and 

enforcement publicity while also embracing long-term schemes in the enforcement program (23). 

In Edmonton, for instance, an increased number of issued tickets and enforcement sites 

simultaneously reduced speed-related collision cases (16). Significantly, the same City of 

Edmonton report indicated that the reduction in collisions was linked to the MPE program’s 

reliability, notably when implemented with higher location coverage, increased issued tickets, 

and consistent checks (25).  

Although different jurisdictions shape the guidance and regulations of these programs 

(e.g., Alberta’s provincially-dictated Automated Enforcement Guidelines (14)), MPE units are 

typically located at sites known for speed limit violations, collisions, and public complaints 

regarding speeding (26). Additionally, officers deploy MPE units when they receive a special 

request from the local government.  

There are some cases where the conventional speed control measures have failed or are 

infeasible. Studies show that public awareness is effective for speed management. Programs, such 

as the Speed Management programs in Alberta and Manitoba, aim to change the perceptions and 

attitudes of drivers by raising awareness of the risks linked to red-light running and speeding 

(23,26). In addition, reports have shown that public awareness can be effective when 

complemented with other enforcement techniques (23).  

Speed cameras and enforcement programs are not without controversy, however. Carnis 

(2011) highlights persistent public debates over privacy, reliability of cameras, and fairness that 

can emerge in jurisdictions when speed cameras are installed. Additionally, there is some 
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skepticism by segments of the population that moderate speeding heightens crash risks, although 

some evidence shows that public awareness programs could be instrumental in reducing such 

beliefs (27) by targeting drivers through visible enforcement programs, awareness, and education 

efforts. 

 Further research assessed the MPE using the before and after Empirical Bayes method 

(28). This method showed a reduction of 14% to 20% in collision severities by deploying speed 

enforcement with the highest effect of the MPE scored for severe collisions. However, the method 

was limited to only urban arterial roads, limiting our understanding of MPE programs’ 

effectiveness in varying road conditions.  

2.2 Survival Analysis & Hazard Models in Transportation Engineering 

Survival analysis and hazard models have been widely used in medical applications. However, 

engineering is increasingly applying both to field-related problems. Broadly speaking, survival 

analysis is used to determine how long an event lasts, either in terms of “survival” or “failure,” 

with failure often meaning structural failure in many engineering applications. More specifically, 

transportation engineering commonly uses survival analysis in relation to the duration that 

roadway incidents, such as car crashes, impact traffic (29 - 32).  

There are three related functions in survival analysis: the failure function, the survival 

function, and the hazard function. The failure function illustrates the probability of a failure 

incident occurring before the specified point in time (29). The survival function is the inverse of 

the failure function, representing the likelihood that the recorded duration continues beyond the 
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specified point in time. The hazard function is related to, but distinct, from the other two. It 

represents the potential that an individual will “fail” at a specific point in time, having survived 

until then (29). For instance, Nam and Mannering (1999) examined the duration of traffic 

incidents from a dataset of incidents in Washington State during 1994-1995, related to reporting, 

response, and clearance times by the Washington State Incident Response Teams (31). The 

researchers considered the “failure” to be when an Incident Response Team fully cleared the 

incident and “survival” to be the persistence of the incident. The hazard function represented the 

probability that the incident would be removed at any given point in time. 

Previous studies show several variables that may impact transportation engineering 

outcomes (i.e., incidents). For instance, researchers using the Cox proportional hazard model 

found that both young and male drivers (i.e., gender and age variables) received speeding citations 

more often than other gender and age groups (33). Moreover, drivers who receive speeding 

citations (i.e., tickets) are more likely to get them more frequently, which means speeding 

citations have little influence on changing speeding behaviour compared to other speeding 

penalties (33). 

Studies in transportation engineering have used survival analysis to examine the vehicles’ 

mandatory lane-changing behaviours and related variables using the Cox proportional hazard 

model (34). They show that the type of vehicle has no significant impact on the duration of 

mandatory lane changing and that the mandatory lane-changing survival rate during the peak 

period is higher than the off-peak time (i.e., time is the considered factor).  
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2.2.1 Cox Proportional Hazard Models & Log-Rank Tests 

The Cox regression is applied to evaluate survival statistics and compute the regression constant 

of multi-impacting aspects represented by β1. Unlike the conventional regression evaluation, the 

Cox regression does not use survival duration t as the dependent adjustable of the regression 

function (30). All the inclining aspects are undertaken as a covariate adjustable x. Moreover, the 

hazard function h (t, x) relative to standard hazard function h0 (t) describes the measurable 

influence of all the covariates adjustable to the survival duration, where h0 (t) is the intrinsic 

hazard equation under the state of no impacting aspects (30). Therefore, the Cox regression is 

also referred to as a proportional hazard prototype. The Cox proportional hazard sample can be 

applied in the co-evolution evaluation of multi-inclining aspects of traffic event time without any 

statement of survival time spreading. 

A log-rank trial can be applied to analyze the importance of the inclining aspects. If an 

individual refutes the aspects that their importance gratifies a state, the inclining or influencing 

aspects are persistent, each of which has a distinctly substantial impact on traffic event duration 

(30). The factors include event type, event scene, night and daytime, traffic condition, count of 

lanes, event region, trailer condition, and bottleneck condition. The Cox proportional hazard can 

be used to analyze the co-evolution among the inclining aspects of the traffic event period.  

This model can apply the reverse technique to choose a significant covariate adjustable 

and approximate its constant regression filter, the ultimate probability ratio. Even though one 

prompting factor can have enormous importance to the traffic event time discretely, it may have 
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a negligible impact under the mixture of these multi-prompting aspects when considering other 

factors (30). Thus, the approximation outcomes for the Cox proportional hazard sample-based 

parameter may show only part of the prompting aspects that can endure in the prototype of traffic 

event time (35). The factors may include event location, vehicle number, night and daytime, trailer 

condition, event type, bottleneck condition, and intricate lane number. 

2.3 Discussion & Research Gaps 

As illustrated in the literature review, speeding is considered a primary contributing factor to 

collisions. Therefore, municipalities exert significant effort to deter speed violators using different 

tools and programs such as speed cameras, increasing the fines for speed violating, Mobile Photo 

Enforcement (MPE), and educational campaigns. Studies add to this knowledge by identifying 

relevant factors contributing to road safety. For instance, variables such as age, gender, time, and 

vehicle type significantly affect the likelihood of receiving a speeding citation. Moreover, 

previous research focused on assessing the effectiveness of deployed MPE programs by using the 

Before and After Empirical Bayes method. In addition, previous methods evaluated the MPE 

programs without insights into how to efficiently relate MPE deployment parameters to 

improvements in safety. Therefore, it is vital to move forward from studies that evaluate the MPE 

programs to studies that can explain how MPE strategies can improve road safety outcomes. 

Moreover, there is room for improvement and potential development to assess the impact of MPE 

variables on different roadway categories and conditions.  
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Survival analysis has been increasingly utilized in transportation engineering studies. 

Previously, survival analysis was used in examining the duration of traffic incidents. By using 

survival analysis, this research explores the effectiveness of MPE deployment variables in 

increasing the time between collisions and consequently reducing the risk of collisions occurring 

and improving the safety of the roads.    
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3 DATA DESCRIPTION 

The data used in the analysis was accessed through the Safe Mobility Section in the City of 

Edmonton (CoE) and provided in various spreadsheet files: “All-collision data,” “MPE data,” 

“Site,” and “Event.” The all-collision data spreadsheet included historical information, and these 

files combined data about collision cause, time, location, and travel direction. The MPE data file 

established the MPE control types, and the start and the end of the MPE at each location. By using 

this spreadsheet, detailed information regarding the duration and number of MPE visits for each 

location was extracted. The control types covered all the feasible methods of the MPE in the city. 

The Site spreadsheet contained site IDs for all locations and detailed descriptions of each site. 

The “site ID” info was the core element that linked all the files together, clarified in the following 

sections. Finally, the Event dataset was a supporting file that provided an overall idea of the traffic 

count in each location. 

The analysis period for this study is four years, from 2016 to 2019. Although data for the 

year 2020 was available, it was excluded from the study due to the documented impact of the 

COVID-19 pandemic on the transportation system. The data were analyzed for each year 

separately and then integrated for further analysis. 

This work was implemented on various sites with different geometric characteristics and 

traffic volumes. All the available MPE control sites with sufficient information were analyzed 

based on the provided data. Therefore, the number of sites and locations differed yearly based on 
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the available information. The following sub-sections show the received data format and some 

data descriptive statistics. 

3.1.1 Data  

An extensive set of data was provided across several unlinked spreadsheets. The following bullets 

outline the file titles and their contents. 

• All collision data: Data included collision code, attachment code, collision key, collision 

cause, collision classification, collision data, collision location name, collision month, 

collision time, collision report year, travel direction, on-street name, and at-the street 

name.  

• Control – MPE: Data provided included control ID, site ID, violation category, control 

type, start date, end date, posted speed, and speed threshold. The data was filtered to 

contain only the MPE control type.  

• Site: Data included site ID, location description, police division, direction, speed, double 

fine site, speed time site, speed posted, photo enforcement posted, and site type. 

• Jenoptik Event: Data included deployment, site ID, watch date, and traffic. This data was 

integrated to get the traffic count for each site.  
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3.1.2 Data Descriptive Statistics 

With respect to the number of MPE sites, it was found that they varied through the study period. 

The maximum number of MPE sites was recorded in 2016 as it might be related to the initiation 

of Vision Zero in the City of Edmonton. Moreover, as shown in Figure 2 the number of MPE 

sites tended to decelerate from 2016 to hit the minimum in 2018, then increased in 2019. This 

fluctuation in the number of deployed MPE sites could be associated with the historical collision 

records for each site.  

 

Figure 2: The Recorded Number of MPE Sites. 

In addition, the MPE deployments were implemented on different road classifications. 

The majority of deployed MPE visits and hours were focused on arterials and collector roads as 

the speeding violations and potential collisions are more expected in these categories. The 

following chart shows the distribution of arterial and collector MPE sites. 
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Figure 3: Distribution of Number of Arterials and Collector Roads. 

Regarding the number of collisions at the enforced sites, it decreased dramatically from 

2016 to 2019 which might reflect the influence of deployed MPE and other countermeasures. 

Moreover, the number of speeding-related collisions was recorded at its minimum value in 2019 

at 217 collisions, compared to 625 collisions in 2016. Figure 4 shows the distribution of the total 

number of collisions and speeding-related collisions. 
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Figure 4: Distribution of Total Number of Collisions and Speeding-Related Collisions. 

With respect to collision causes, following too closely was the most common collision cause 

(34%) throughout the study period. The following figure shows the distribution of the top 5 

collision causes. 

 

Figure 5: Distribution of Collision Causes. 
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4 METHODOLOGY 

4.1 Data Preparation 

The data was first organized to be used readily in the survival analysis (i.e., the second stage). 

This step aimed to merge all the data files into one, then change all the combined files into a 

survival analysis format. The output from this process was an excel sheet that contained the 

essential info for each location (i.e., Site ID). While this step could be done manually, the time 

required made it impractical. So, a MATLAB code (attached in the appendix) was scripted to 

speed up the processing time. The following subsections clarify this data preparation step 

thoroughly.  

4.1.1 Merging & Preparing All Files 

In order to overcome the difficulty of merging files manually, a MATLAB code was scripted and 

tested on the raw data files. The code read the input data files and stored them in four tables (All-

collision data, Site IDs, MPE data, and Traffic data), setting up the excel files to store the output 

along with all the headers for the data. The code then looped through all the Site IDs to determine 

locations for each, i.e., the street and avenue number/name and the direction of travel (e.g., Site 

ID 104 represents the location of 142nd street and 95th avenue, Northbound direction). Thereafter, 

a filter was applied to extract all the collisions for particular locations within the given site 

description (i.e., street and avenue name and travel direction) along with information to determine 

collision dates, times, and seasons (i.e., winter, summer, etc.), accomplished by looking at each 

collision individually and checking its location.  
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Using another loop, the collisions were sorted, and the number of hours visited, the 

number of visits, traffic volume, and the time difference between collisions were all calculated. 

The number of hours visited was calculated by filtering all data from the MPE data table for those 

within a given year. The aim was to extract the time from the start to the end of each visit. The 

number of visits was calculated by counting the total visits from the MPE data table that fell 

within the time range. The traffic count was calculated by filtering all the data from the traffic 

data table to search only for the ones within the given year and extract the amount of traffic. These 

loops were executed on all site IDs for each year.  

Finally, each year’s calculated data was stored within a proper excel spreadsheet. The 

average processing time for this step was 90 minutes. The code outputs were visually inspected 

to verify accuracy and that they matched the expected results.  

4.1.2 K-Means Clustering 

K-means clustering was used to categorize the sites based on different variables; MPE number of 

hours, MPE number of visits, MPE hours/visit, and traffic count. This form of clustering groups 

observations with similar characteristics (36) (i.e., into clusters in which each observation belongs 

to the set with the nearest mean). First, the number of clusters (K) should be determined. The K 

was determined to be two clusters, therefore, each cluster would have enough observations to 

represent the behaviour of each cluster. It is worth noting that, the observations were tested and 

clustered into three clusters (i.e., high, intermediate, and low) but it was found that the high and 

intermediate observations had the same behaviour. Therefore, only two clusters were used in this 
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study, namely, above-average and below-average variables. Then, two cluster seeds were 

randomly specified as the clusters’ centroids. After that, each observation was assigned to one of 

the clusters based on its proximity that had the least squared Euclidean distance. Finally, the 

centroid of each cluster was calculated, and iterations were done until convergence was reached 

(i.e., the same points were assigned to the same cluster in repetitive cycles). In order to apply the 

K-means clustering process, SAS software was used. Though the K-means was conducted in SAS, 

the data was entered and clustered into two groups 

Table 1 shows the clustered groups. 

 

Table 1: The Clustered Groups. 

Variable Group 1 Group 2 

#MPE hours Above-average MPE hours Below-average MPE hours 

#MPE visits Above-average MPE visits Below-average MPE visits 

#MPE (hours/visit) Below-average MPE HpV Above-average MPE HpV 

Traffic volume Below-average traffic volume Above-average traffic volume 

 

4.2 Survival Analysis 

The second phase in the methodology was to apply the survival analysis process. Survival analysis 

was used to study the time to event occurrence. Thus, in this case, the failure event was the 

collision occurrence. The basic concepts of the survival analysis are to define the hazard and 

survival functions, create the Kalan-Meier survival curves for different variables and compare 

two survival curves using the log-rank test. In order to execute this step, Stata Statistical Software 
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was used. There were five stages applied to perform the survival analysis. The relationship 

between the MPE variables (the number of hours, the number of visits, and the ratio of hours to 

visits) and the duration between two consequent collisions was determined by this process’s end. 

The following subsections will illustrate the implemented phases. 

4.2.1 Inputting the Data 

The data was first classified as survival-time data and was tabulated to include the time and failure 

variables. The time variable represented the duration between two consequent collisions in days, 

and the failure variable was a binary value (i.e., 0 or 1). The failure value was 0 when there was 

no collision and 1 when there was a collision during the specified period. Moreover, the data in 

this step included site ID, duration between every two consequent collisions, first and second 

collision dates used to estimate the time between collisions, number of deployed MPE visits, 

number of deployed MPE hours, the ratio between the number of MPE hours to the number of 

MPE visits (HpV), first and second collisions occurrence season, collision severity, collision 

cause, land-use, and traffic count.  

4.2.2 Variables 

The concerned variables were determined to be the number of deployed MPE visits, the number 

of deployed MPE hours, the ratio between them (HpV), and the traffic count. The impact of these 

variables on the duration between two consequent collisions would be examined separately in the 

survival analysis phase to establish the variable with a higher impact on collision occurrence. 
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Moreover, these variables were clustered in the previous stage to explore whether the above-

average or below-average variable provided more survivability to the exposed MPE locations. 

4.2.3 Cox-proportional Hazard Model 

The cox-proportional hazard model was used to investigate the effect of each variable on the time 

between collisions. This model is the most popular technique of the semi-parametric methods 

since it does not make a hazard baseline assumption. This is beneficial when choosing a predictive 

model (37) since it explores the rate of a specific event occurrence (i.e., hazard rate) influencing 

different factors. 

The general Cox proportional hazard model is: 

 h (t, x) = h0 (t) exp(β1x1 + β2x2 +…+βixt) 

The Cox regression prototype can be changed into another equation by the logarithmic 

transformation (30); 

ln
ℎ (𝑡,𝑥)

ℎ0 (𝑡)
= β1x1 + β2x2 +…+βixt 

The relative risk RR can be denoted as  
ℎ (𝑡,𝑥)

ℎ0 (𝑡)
, then, the COX regression is the linear model 

of the logarithm of the RR. Under other covariate variables remaining constant, βi shows the 

logarithm changes of the RR with the unit change of the ith covariate variable. Based on the 

definition above, the COX regression has the following properties: 1) If βi>0, it means that the ith 

variable is a risk factor, and its hazard may be higher with the increasing time. And this indicates 
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that the incident may be disposed of quickly. 2) If β<0, it means this variable is a protective factor, 

and the duration of the traffic incident is longer, indicating that the incident takes longer to be 

cleared. 3) If β=0, it means this variable has nothing to do with the traffic incident duration. 

(30); 

ln
ℎ (𝑡,𝑥)

ℎ0 (𝑡)
= β1x1 + β2x2 +…+βixt 

On the other hand, S (t/Y = 1, x) = exp (- exp (β’x) ∫ ℎ0(𝑢/𝑌 = 1)𝑑𝑢)
𝑡

0
  

Significantly,  

The outcome of this step is a regression model that relates the deployed MPE hours, visits, 

and HpV separately. These models provide the hazard ratio for each variable; the impact of the 

aforementioned variables will now be explored. 

4.2.4 Kaplan-Meier Hazard Estimates (KM) 

The KM hazard estimate is a univariate nonparametric analysis used to estimate the survival 

probability from observed survival times (38). In this study, the KM survival curve was 

established to differentiate the impact of MPE variables on different road categories. It was 

generated by taking the product of conditional probabilities sequences and obtaining the standard 

estimator (i.e., KM estimator). Carroll provides full details of the calculation (37). As shown in 
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the following figure, this curve consists of a series of steps, and each step represents an event 

occurrence (i.e., collision). The survival probability is on the Y-axis of the curve, and the time 

duration is on the X-axis. Thus, the cumulative survival probability can be extracted at any time 

point by obtaining the corresponding value on the Y-axis. The estimated cumulative survival at 

any time point is at 95% confidence intervals.  

If Ti represents the event period of the traffic of the ith term example, as the time-series 

established T gratifies the traffic event in the state where T1 < T2 <… Tn, then the Kaplan-Meier 

based survival likelihood of traffic occurrence period represented by Š (t) is given by; 

 Š (t)= ∏
𝑛−𝑖

𝑛−𝑖+1𝑇𝑖
𝑐 ∑ 𝑡  

In this case, the traffic event time is represented by 𝑇𝑖
𝑐

 of the ith term entire samples. 

However, for a sample to be complete, it has to attain certain conditions, including, 𝑇𝑖
𝑐 is less than 

t besides being a positive integer, where 𝑇𝑖
𝑐 ≤ 𝑡 and𝑇𝑖

𝑐 ∈ 𝑍 (39). 
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Figure 6: Example of KM Graph. 

The curve shown in Figure 6 provides a beneficial data summary that can be used to 

estimate measures such as median survival time. It is used to plot the difference between the 

survival probability for two comparable groups (i.e., clustered variables). The data of these groups 

should be in categories as this method estimates the cumulative survival probability for each 

group separately. These groups are determined after being clustered based on the K-means 

Clustering method that is performed in Stage 1, previously outlined. 

Therefore, this step’s output is a graph for each variable that shows the survival probability 

at any time point during the analysis period. Also, it can be used to compare the survival 

probabilities for different categorical groups. The survival probability for each group is generally 

checked against the mean value (50%) to facilitate comparison between the groups.  
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4.2.5 Comparing Two Survival Functions Using Log-rank Test 

There are two methods to compare survival functions; the first method uses a prespecified time 

point; the other compares the overall survival experience, called the log-rank test. The log-rank 

test is considered more reliable than the prespecified time point method for reasons outlined in 

(36). Based on these reasons, the log-rank test was applied and executed in this study across the 

entire survival time range. The test null hypothesis between the two groups is:   

𝐻0:  𝑆1 (. )  =  𝑆2 (. ) 

where the dot represents the whole survival time range. 

The alternative hypothesis is applicable when this null hypothesis is rejected. Moreover, 

the log-rank test compares the observed and expected collisions if the two groups have the same 

survival function. Thus, if the null hypothesis is true, the two groups would have the same survival 

probability, determined based on the P-value. This test estimates the Chi-square value for the 

compared groups and concludes the result. Then, the Chi-square value is compared for each group 

using the standard Chi-square test. By the end of this step, the equity test of the two groups will 

determine whether or not they have the same survival time probability. In this study, the log-rank 

test is used as a validator for the previous steps as it shows whether the different road categories 

have the same survivability or not.     
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5 DATA ANALYSIS & RESULTS 

As discussed, the methodology involved two major stages, as shown in Figure 1. The following 

section discusses the results of the implemented procedure, shown in detail for the year of 2019. 

In addition, the analysis for each year was carried out for different groups (i.e., arterials, 

collectors, high-traffic volume locations, and low-traffic volume locations), as illustrated in the 

following subsections. 

5.1 Survival Analysis Results (2019) 

5.1.1 All Sites 

The methodology was applied to all sites from Jan 1, 2019, to Dec 31, 2019. There were 250 sites 

in Edmonton that employed MPE during this period. These sites experienced 573 collisions, 

mainly classifiable as Property Damage Only (PDO). In addition, there were seven major 

collisions and fifty-two minor collisions. The prime collision cause was following too closely, 

often coupled with speeding, and considered to be a speeding-related collision cause. With respect 

to deployed MPE units between two collisions, the number of deployed MPE visits ranged from 

0 to 195, the number of deployed MPE hours varied between 0 to 620, and the ratios between 

hours and visits were estimated as low as 0 and as high as 4 hours/visit.  

For the all-sites group, the Cox PH models were conducted, the Kaplan-Meir graphs were 

then plotted for different variables groups, and, finally, the log-rank tests were carried out. Table 

2 a-c summarise the results: 
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5.1.1.1 Cox-proportional hazard model: 

Table 2: The Hazard Ratio Estimates for the MPE Variables (All Sites). 

 Haz. Ratio Std. Err. P>|z| [95% Conf. Interval] 

Deployment 

Hours 
0.9942 0.0008 0.000 0.9925 0.995 

 

(a) The total number of deployed MPE hours. 

 Haz. Ratio Std. Err. P>|z| [95% Conf. Interval] 

Deployment 

Visits 
0.9795 0.0026 0.000 0.9742 0.9848 

 

(b) The total number of deployed MPE visits. 

 Haz. Ratio Std. Err. P>|z| [95% Conf. Interval] 

Hours per 

Visits 
0.7861 0.0235 0.000 0.7413 0.8336 

 

(c) The ratio between the number of MPE visits and hours (HpV). 

The results of this group show that there is significant evidence of MPE impact on 

reducing the duration between two consequent collisions. The deployed MPE hours and visits 

showed only small percentage reductions (1% and 3% respectively) in the collision hazards. 

Given the percentage difference between the two, one conclusion might be that investing in 

increased visits would produce better outcomes than increasing the number of hours. For instance, 

if a municipality invested four MPE hours, a more significant benefit would be to split these into 

distinct shorter visits. In addition, the ratio of deployed MPE hours to visits (HpV) has a hazard 

ratio (HR) of 0.78 with a reduction of 22% (i.e., (1 – HR) %) in collision occurrences for locations 

that had a high HpV compared to sites without MPE.  
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5.1.1.2 Kaplan-Meier Graphs: 

The following figures show the results of the Kaplan-Meier survival estimates for all sites. 

 

(a) The clustered two groups of deployed MPE hours. 

1 = Above-average  

2 = Below-average 
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(b) The clustered two groups of deployed MPE visits. 

 

(c) The clustered two groups of deployed MPE hours/visit. 

Figure 7: The KM Survival Estimates for the MPE Groups (All Sites). 

1 = Above-average  

2 = Below-average 

1 = Below-average  

2 = Above-average 
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Figure 8: The KM Survival Estimates for the Clustered Traffic Groups (All Sites). 

The KM graphs were plotted to compare the survival probability for different locations 

that experienced two levels of deployed MPE (i.e., above-average deployed MPE and below-

average deployed MPE). The KM graphs yielded the same results regarding the deployed MPE 

hours and visits, showing that the locations that experienced high MPE hours or visits (above 

average) have higher survivability than those with lower MPE hours or visits (below average). 

As shown in Figure 7 a, the median survival probability (at 0.5 on Y-axis) for sites with above-

average deployed MPE hours is 198 days. These days represent the cumulative survival time in 

days for the above-average deployed MPE hours at the median.  In comparison, the below-average 

ones had a survival probability of 38 days. Similarly, in Figure 7 b, the survival probability at 

0.5 on Y-axis for sites that had above-average MPE visits is 248 days; meanwhile, the below-

average group is 37 days. Moreover, groups with below-average MPE hours and visits 

1 = Below-average  

2 = Above-average 
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encountered more frequent steps in the KM graphs, indicating that these sites experienced more 

collisions over a shorter time than the above-average MPE groups.  

Figure 7 c shows that, for the clustered MPE hours/visit groups, the sites that experienced a higher 

ratio of the deployed MPE hours to visits have more survival probability than the below-average 

locations. Figure 8 illustrates that above-average traffic volume locations have higher 

survivability than the below-average sites. This difference may be because drivers tend to speed 

up, exceeding speed limits, when roadways have less or no congestion.   
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5.1.1.3 Log-rank Equality Test: 

Table 3: The Log-Rank Test for Different Groups (All Sites). 

Hours Observed 

Events 

Expected 

Events 

Above-

average 

Below-

average 

18 

 

555 

41.37 

 

531.63 

Total 573 573.00 

Chi2(1) = 14.61 

Pr>chi2 = 0.0001 
 

 

Visits Observed 

Events 

Expected 

Events 

Above-

average 

Below-

average 

17 

 

556 

41.74 

 

531.26 

Total 573 573.00 

Chi2(1) = 14.34 

Pr>chi2 = 0.0001 

a) Log-rank test for MPE hours groups b) Log-rank test for MPE visits groups 

HpV 
Observed 

Events 

Expected 

Events 

Below-

average 

Above-

average 

228 

 

345 

126.12 

 

446.88 

Total 573 573.00 

Chi2(1) = 111.63 

Pr>chi2 = 0.0000 
 

 

Traffic 

Count 

Observed 

Events 

Expected 

Events 

Below-

average 

Above-

average 

123 

 

450 

66.91 

 

506.09 

Total 573 573.00 

Chi2(1) = 55.29 

Pr>chi2 = 0.0000 

c) Log-rank test for MPE hours/visit groups d) Log-rank test for traffic volume groups 

The log-rank tests were to establish whether two different groups have the same 

survivability (i.e., null hypothesis) and whether those comply with the results from the KM graphs. 

Thus, if the Pr value is less than 0.05, the tested groups do not have the same survival probability. 
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As shown in Table 3, all of the tested groups had Pr < 0.05, proving the previous results of the 

KM graphs.  

5.1.2 Arterial & Collector Roads 

In this subsection, only arterial and collector sites are analyzed. This category was tested to 

examine the impact of MPE on the main roadway categories. There were 111 arterial and collector 

sites data available in 2019. These locations had 566 collisions, the main reasons for which were 

following too closely and left turn crossing path. These collisions resulted in seven major and 

fifty-two minor crashes.  

5.1.2.1 Results Discussion 

The outcomes of the Cox PH models provide almost the same results for all sites. The 

results for all the MPE variables are significant at a 95% confidence interval and had HR values 

less than 1, reflecting the positive impact of deployed MPE variables. The HR for the deployed 

MPE hours/visit surpassed other MPE variables as it resulted in a reduction in collisions 

occurrence of 22%. 

The KM survival estimates for the arterial and collector locations yielded the same 

conclusion for all sites’ results and followed similar trends. For instance, sites that experienced 

above-average MPE hours, visits, or HpV possessed a higher survival probability other than the 

below-average category. In addition, the below-average traffic volume locations were at higher 

risk of collision occurrence. 
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The log-rank tests examined the equity of the survival probability for the clustered groups. 

The Pr values for all tests were significant (i.e., Pr < 0.05). Thus, the log-rank test results compare 

favourably with the outcomes of KM graphs.   

5.1.3 Arterial Sites Only 

The arterial sites were tested separately to examine the impact of MPE variables. Sixty-four 

arterial sites recorded 436 collisions in 2019. These collisions’ severity was mainly PDO, with 

four major and thirty-eight minor collisions. The leading causes for the arterial road collisions 

were following too closely, left turn cross-path, and improper lane change. Furthermore, the 

deployed MPE hours and visits between collisions ranged from 0 to 620 and 0 to 195, 

respectively. 

5.1.3.1 Results Discussion 

The results of the Cox PH models showed that the MPE variables had a proactive effect 

on collision occurrence in comparison to locations that were not exposed to MPE deployment. 

For example, the deployed MPE hours/visit HR was 0.78, which means an expected reduction in 

the risk of collision occurrence of 22%. These results are significant at a 95% confidence interval. 

The KM survival graphs, emphasize the overall conclusion that the higher the level of 

deployed MPE, the less risk of collisions occurrence. To illustrate, locations with above-average 

MPE hours had an average survival probability of 231 days, while below-average sites survived 

for an average of 27 days. In other words, the below-average MPE locations experienced more 
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frequent collisions. Moreover, the survival probability for above-average traffic volume locations 

was higher than for below-average traffic volume sites, possibly due to changes in drivers’ 

propensity for speeding that otherwise may lead to a speeding-related collision. 

Furthermore, the log-rank tests that examine the survival probability equity for two 

different groups were significant as the Pr<0.05 for all the test groups. Therefore, the survival 

probabilities for each of the two tested groups were not equal, both proving and matching the 

previous results of the KM graphs. 

5.1.4 Collector Sites Only 

In this section, the effectiveness of the deployed MPE variables is examined to explore whether 

the MPE is more efficient for collector roads. Forty-eight collector sites had 134 collisions in 

2019, mainly classified as PDO. In addition, there were two major and fourteen minor collisions. 

The deployed MPE hours between two crashes varied between 0 and 280 hours, and the number 

of deployed MPE visits ranged from 0 to 86. In addition, the ratio between the number of deployed 

MPE hours to visits reached four hours/visit.  

5.1.4.1 Results Discussion 

The analysis of the collector sites data showed that the MPE variables’ impacts on the 

duration between collisions are more beneficial than other categories (i.e., all sites, arterials and 

collectors, and arterials only groups). For instance, the deployed MPE hours/visit variable had 

HR = 0.65. Therefore, the consequence of accounting for the MPE hours/visit is a reduction in 



 

   

 

 

41 

 

the risk of a collision occurrence by 35%. Also, the deployed MPE visits trigger a decrease of 5% 

in collisions.   

The KM graphs results provided the same summary as previously explained for different 

categories. For example, the median survival probability (at 0.5 on Y-axis) for above-average 

MPE hours/visit locations is 265 days, compared to 34 days for the sites in the below-average 

group. Moreover, it is noticeable that the KM graph for the traffic volume clusters intersects at 

many points and yields almost the same survival probability over the year. This indicates that the 

traffic volume does not impact the survival probability for the collectors’ sites. In other words, 

the traffic volume is not a factor that affects the survival probability of collector roadways.  

The log-rank tests were not significant for all groups (i.e., Pr value> 0.05 in one case). 

For instance, the Pr < 0.05 for the MPE hours, visits, and hours/visit groups indicate that these 

groups have different survival probabilities. As expected, the Pr value was greater than 0.05 for 

the traffic volume groups, yielding the same results as the KM graphs. This indicates that the null 

hypothesis was not rejected, and both traffic volume clusters have similar survival probability. 

5.1.5 High Traffic Volume Locations Only 

All sites were classified based on roadway type to study the impact of MPE variables on different 

roadway categories. They were then classified based on the traffic volume to compare the 

effectiveness of deployed MPE variables on two different traffic volume categories (i.e., above-

average and below-average traffic volume sites). Ten high-traffic volume sites experienced 133 

collisions in 2019. These sites were all arterial roadways. 
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5.1.5.1 Results Discussion 

The procedure’s outputs for the high traffic volume sites indicated that the different MPE 

variables impacted the duration between two consequent collisions. All MPE variables 

significantly correlated to the period between collisions (95% confidence interval). The ratio of 

deployed MPE hours to visits (HpV) showed a remarkable influence on the collision occurrence. 

The hazard ratio for this variable is 0.48, indicating a 52% reduction in the risk of a collision. 

Moreover, the deployed MPE hours and visits had an HR of 0.97 and 0.91, respectively. This 

reflects a decrease in collisions by 3% and 9% by implementing MPE hours and visits, 

respectively. These results comply with the previous conclusion that deploying MPE visits is 

more effective than deploying MPE hours. 

The KM charts’ results showed that above-average MPE sites had a higher survival 

probability than below-average MPE sites. Notably, when the survival probability was at 0.5 on 

Y-axis, the above-average MPE hours group was 91 days while the below-average group was 15 

days. Similarly, the survivability for the above-average MPE hours/visit cluster is at an average 

of 21 days, and the below-average is 1 day. This result continues to demonstrate that higher MPE 

hours, visits, or hours/visit are linked to higher survivability and lower risk of collision 

occurrence, along with correspondingly the longer durations between two consequent collisions. 

With respect to the log-rank test results, the equity tests were significant for all considered 

groups. The Pr value was less than 0.05, which means the null hypothesis was rejected, and the 
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clusters of each group have different survival probabilities. These results support the KM graphs 

by providing the same conclusion.  

5.1.6 Low Traffic Volume Locations Only 

One hundred four low-traffic volume sites had 450 collisions in 2019. The categories of these 

sites varied between arterials, collectors, and locals, with a balanced presence of both arterial and 

collectors’ categories. The leading cause of these collisions was following too closely, followed 

by left turn cross path, and stop sign violations.  

5.1.6.1 Results Discussion 

The Cox-proportional hazard models for the below-average traffic volume sites showed 

that the deployed MPE hours, visits, and HpV significantly reduced collision risk. For instance, 

the ratio of deployed MPE hours to visits had the highest impact on collision rates with an HR = 

0.7, which means a 30% reduction in the risk of collisions when considering the MPE HpV. 

Moreover, the deployed MPE visits have a higher positive impact than MPE hours since it reduces 

the risk of collision by 3%.  

The clustered groups of MPE hours, visits, and HpV have different survivability for the 

KM graphs. The survival probability for the above-average MPE hours is 257 days, compared to 

forty-five days for the below-average group, in addition, similar survivability for the deployed 

MPE visits groups. Furthermore, for the HpV MPE clusters, the above-average sites survived for 

138 days on average. On the other hand, the below-average sites survived for twenty-four days.    
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The log-rank tests were significant for all variables’ groups. The Pr values for MPE hours, 

visits, and HpV clusters are zero, emphasizing these groups’ different survivability. These results 

match the KM graphs’ outcome.  

5.1.7 Speeding Related Collisions Only 

The speeding-related collisions are defined as the collisions that happened due to following too 

closely, run-off-road, or striking a parked vehicle. Two hundred seventeen speeding-related 

collisions took place in 2019. This study considered the impact of deployed MPE variables on 

these collisions.  

5.1.7.1 Results Discussion 

 The results of the speeding-related collisions proved that deploying a higher rate of hours 

to visits increases the period between two consequent collisions, hence, decreasing the probability 

of collision occurrence. Comparing the results of all site analyses and the speeding-related 

collisions only shows that the deployed MPE is more effective on these specific collision causes. 

For instance, the MPE HpV’s HR for the speeding-related collisions is 0.67, which means a 33% 

reduction in the risk of collision occurrence by accounting for the MPE HpV ratio. On the other 

hand, the HR for all collisions is generally 22%. 

The KM graphs showed that the average survival probability for above-average MPE 

hours or visits sites is 220 days, while it is seventeen days for below-average MPE locations. This 

difference means that the survivability for the above-average MPE hours or visits sites is more 
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than ten times higher than that of the below-average MPE sites. For the deployed MPE hours/visit, 

the survival probability for the below-average site group is ten days, compared to forty-five days 

for the above-average MPE hours/visit sites.  

Moreover, the log-rank tests are proof of the KM graphs results. The Pr values for all 

clustered groups are less than 0.05, reflecting that these different clusters do not have the same 

survivability. For instance, the Pr equals 0.0026 for the clusters of MPE hours per visit. Thus, 

these results comply with the KM graphs. 

5.2 Survival Analysis Results (2018, 2017, 2016, and All years) 

The methodology was applied to each year (2018, 2017, 2016) separately, then integrated into 

one study. The results of each year and the combined years yield the same conclusion that the 

MPE variables have a considerable impact on collision occurrence, whereby there is an increase 

in the time between two collisions and a corresponding decrease in the risk of collision. To sum 

up the results, the positive effect of the deployed number of MPE visits is greater than that of the 

number of deployed MPE hours. Moreover, the ratio between MPE hours to visits has the most 

influence on reducing the hazard of collision occurrence. Through applying the analysis 

procedure to different road categories and traffic volume classifications, the outcomes of these 

processes provided similar results to those for the 2019 analysis. The following table summarizes 

the hazard ratio for the optimal MPE variable (i.e., hours/visit) for all years.  
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Table 4: Hazard Ratios for Deployed MPE Hours per Visit from 2016 to 2019 and All Years. 

Year 2019 2018 2017 2016 All years 

Site Classification 
Hazard 

Ratio 

Reduction in 

Collision 

Hazard (%) 

Hazard 

Ratio 

Reduction in 

Collision 

Hazard (%) 

Hazard 

Ratio 

Reduction in 

Collision 

Hazard (%) 

Hazard 

Ratio 

Reduction in 

Collision 

Hazard (%) 

Hazard 

Ratio 

Reduction in 

Collision 

Hazard (%) 

All Sites 0.78 22 0.90 10 0.85 15 0.72 28 0.82 18 

Arterial Only 0.78 22 0.74 26 0.74 26 0.71 29 0.75 25 

Collectors Only 0.65 35 0.65 34 0.68 32 0.64 36 0.66 36 

High Traffic 

Volume 
0.48 52 0.52 48 0.63 37 0.45 55 0.52 48 

Low Traffic 

Volume 
0.70 30 0.78 22 0.72 28 0.68 32 0.72 28 

Speeding-Related 

Collisions 
0.67 33 0.72 28 0.71 29 0.66 34 0.69 31 
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6 CONCLUSIONS 

This chapter summarizes the research conclusions and includes a discussion of the contribution. 

It also outlines research limitations and potential areas for future research. 

6.1 Research Summary 

The main goal of this research has been to develop survival analysis models that investigate the 

impact of deployed MPE hours, visits, and HpV on the duration between two consequent 

collisions, thereby helping authorities effectively mitigate the issue of speed violators who cause 

different types of collisions. MPE programs are considered an effective solution to restrict 

irresponsible drivers’ behaviour. Therefore, this research explored the survival probability of 

various locations exposed to different MPE hours and visits. Moreover, it detected the potential 

reduction of the risk of collision occurrence by understanding the effect of deploying MPE hours 

and visits. 

 The proposed methodology consisted of two phases: preparing the provided data and 

applying the survival analysis. The output of the first step was a Microsoft Excel spreadsheet that 

contained the necessary survival data. Thus, the outcome table combined the duration between 

two consequent collisions and the corresponding number of MPE hours and visits in each time 

period. Moreover, the outcome contained collision causes, traffic count, and the first and second 

collision dates. Next, the data were categorized into separate groups based on the MPE variables 

and traffic counts. These groups were classified using K-means clusters, and MATLAB and SAS 

software were utilized to execute this step. The second step was to apply the survival analysis, 
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including Cox proportional hazard models, KM survival estimates, and log-rank tests. The Cox 

proportional hazard models investigated the impact of MPE hours, visits, and HpV on the duration 

between two consequent collisions. In other words, it explored the expected reduction in collision 

occurrence by deploying MPE hours and visits. The KM graphs were plotted on different MPE 

clusters to emphasize the influence of the deployed number of MPE hours, visits, and HpV. These 

clusters were classified into two groups (i.e., above average and below average) based on MPE 

hours, MPE visits, MPE HpV, and traffic count. Finally, the log-rank tests were conducted to 

examine the clusters’ survival probability, which was subsequently expected to comply with the 

KM graphs’ conclusion. All steps were executed on different locations’ groups. 

 The results showed that accounting for the ratio between hours and visits had the most 

impact on increasing the period between collisions and reducing the risk of collision. The 

expected reduction in the collision hazard varied between 52% and 22%, where the maximum 

reduction could be expected in high traffic volume locations, and the minimum reduction could 

be expected for all locations. In addition, the deployed MPE HpV had a better effect on collector 

roads compared to arterial roads. Also, it was noted that the number of deployed MPE visits had 

a higher impact on increasing the duration between collisions than the number of deployed MPE 

hours. Those planning for future use of the MPE program should consider this by providing more 

timing options for critical deployments. 

 The KM survival estimates were plotted for different groups of MPE hours, visits, HpV, 

and traffic volume. These graphs concluded that the groups of above-average MPE hours, MPE 
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visits, and MPE HpV have higher survivability than the below-average ones. These results 

emphasize the importance of MPE deployment to reduce the risk of collisions occurring. The KM 

survival graphs were carried out for traffic count clusters. The results showed that the above-

average traffic volume locations had higher survivability than those with below-average traffic 

volume, possibly because drivers tend to exceed the speed limit when the traffic flow is light. In 

addition, the log-rank tests were done, and the outputs comply with the conclusions drawn from 

KM survival estimates. Finally, the same methodology was applied to the data from 2016 to 2019.  

6.2 Research Contributions  

This thesis presented multiple contributions to the study of Mobile Photo Enforcement (MPE) 

use for controlling collision occurrence. The contributions are provided below. 

1. Create a better understanding of the impact of using the MPE on the duration between two 

consequent collisions for different road types. The impact was explored by applying 

survival analysis to have a general idea of the influence of MPE variables (i.e., MPE hours, 

MPE visits, and MPE HpV) on road collision frequency. This investigation concluded that 

the MPE variables positively affect the duration between two consequent collisions, thus 

improving road safety. However, although all the MPE variables have acceptable 

probabilities of reducing the collision occurrence, the deployed MPE HpV demonstrates 

the most impact. Therefore, knowledge can be practically applied when allocating MPE 

deployment.   

2. Recognize the relationship between the deployed MPE variables and the duration between 

collisions on different road hierarchies, i.e., arterial and collector roads. The most 
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significant finding is that MPE deployment was more impactful on collector locations 

compared to arterial roads. This conclusion helps in deploying the MPE units more 

efficiently. Therefore, better, more efficient utilization of the available MPE resources 

could be deployed.  

3. Identify the impact of deploying MPE variables on the duration between collisions on 

high and low traffic volume sites. MPE variables were shown to be more potent in low 

traffic volume sites. As a result, the MPE programs should be allocated accordingly to 

benefit from it.   

4. Predict the influence of MPE deployment on speeding-related collisions only. This finding 

emphasizes the importance of the MPE program in improving road safety by increasing 

the duration between two consequent collisions. 

5. Estimate the expected reduction in road collisions as a consequence of deploying MPE 

variables for each aforementioned contribution. In other words, the expected survivability 

percent for different road categories and conditions is estimated and illustrated. 

In conclusion, this thesis employed statistical analysis to comprehend the relationship between 

the deployed MPE variables; hours, visits, and hours/visits, and the duration between two 

consequent collisions. This analysis accounted for different road types and conditions. Moreover, 

the outcomes of this analysis fill a literature gap and can be practically adopted by transportation 

planners and authorities to improve road safety and allocate the MPE resources properly.  
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6.3 Limitations and Future Research 

This research covered the previously discussed gaps in the literature. However, further 

investigation and improvements would be expected. Moreover, this research has limitations and 

assumptions. For instance, this research was limited to exploring the impact of one MPE variable 

(i.e., hours, visits, or HpV) at a time using the Cox proportional hazard model. The results, then, 

only show an understanding of the influence of a single variable without considering the presence 

of other variables. This limitation can be addressed by exploring the impact of multi-variables in 

the Cox proportional hazard model. 

Moreover, this thesis analyzes the impact of deployed MPE variables on road collisions 

for different road types and conditions. However, there is a need to investigate the influence of 

deploying MPE on other road characteristics. For example, sites can be categorized based on the 

posted speed limit, which might provide significant results in understanding the drivers’ 

behaviour and the influence of MPE variables on reducing the risk of getting involved in road 

crashes by increasing the duration between consequent collisions. In addition, locations could be 

categorized to account for roads’ number of lanes. This classification might assist in exploring 

the effect of MPE variables on road collisions in sites where drivers have more lanes in which to 

maneuver.  

Furthermore, this research can be expanded to include studying the impact of deployed 

MPE variables on the duration between collisions during different seasons (i.e., Fall, Winter, 

Spring, and Summer). This analysis can be implemented by categorizing the collisions into four 

groups based on the occurrence season and applying the same methodology to each group. The 



 

   

 

 

52 

 

outcomes of this proposed analysis might lead to a better understanding of the optimal timing for 

deploying the MPE. 

 In summary, the limitations of this thesis can act as the starting point for further research. 

This thesis studied the correlation between deployed MPE variables and the duration between 

consequent collisions using a single-variant model. Thus, it is recommended to analyze this 

relationship using multi-variants Cox proportional models. Moreover, this thesis used different 

road types and conditions, and it is encouraged to explore the impact of MPE variables on road 

collisions based on other classifications.  
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➢ Arterial and Collector Roads in 2019  

• Cox Proportional Hazard Model: 

 Haz. Ratio Std. Err. P>|z| [95% Conf. Interval] 

Deployment 

Hours 

0.99414 0.00085 0.000 0.99247 0.9958 

 

(a) The total number of deployed MPE hours. 

 Haz. Ratio Std. Err. P>|z| [95% Conf. Interval] 

Deployment 

Visits 

0.9791 0.00275 0.000 0.9737 0.9845 

 

(b) The total number of deployed MPE visits. 

 Haz. Ratio Std. Err. P>|z| [95% Conf. Interval] 

Hours per 

Visits 

0.78519 0.0234 0.000 0.7405 0.8324 

 

(c) The ratio between the number MPE of visits and hours (HpV). 
 

• KM Graphs 

 

(a) The clustered two groups of deployed MPE hours. 

1 = Above-average  

2 = Below-average 
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(b) The clustered two groups of deployed MPE visits.  

 

(c) The clustered two groups of deployed MPE hours/visit. 

1 = Above-average  

2 = Below-average 

1 = Below-average  

2 = Above-average 
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(d) The clustered two groups of traffic volume 

 

• Log-Rank Equality Test 

Hours Observed 

Events 

Expected 

Events 

1 

2 

18 

548 

41.97 

524.03 

Total 566 566.00 

Chi2(1) = 15.21 

Pr>chi2 = 0.0001 
 

 

Visits Observed 

Events 

Expected 

Events 

1 

2 

16 

550 

39.15 

526.85 

Total 566 566.00 

Chi2(1) = 15.14 

Pr>chi2 = 0.0001 

a) Log-rank test for MPE hours groups. b) Log-rank test for MPE visits groups. 

 

 

 

 

 

 

1 = Below-average  

2 = Above-average 
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HpV Observed 

Events 

Expected 

Events 

1 

2 

225 

341 

124.59 

441.41 

Total 566 566.00 

Chi2(1) = 109.52 

Pr>chi2 = 0.0000 
 

 

Traffic Count Observed 

Events 

Expected 

Events 

1 

2 

123 

443 

68.26 

497.74 

Total 566 566.00 

Chi2(1) = 51.82 

Pr>chi2 = 0.0000 

c) Log-rank test for MPE hours/visit groups. d) Log-rank test for traffic volume groups. 
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➢ Arterial Sites Only in 2019  

• Cox Proportional Hazard Model 

 Haz. Ratio Std. Err. P>|z| [95% Conf. Interval] 

Deployment 

Hours 

0.9939 0.00085 0.000 0.99230 0.99567 

 

(a) The total number of deployed MPE hours. 

 Haz. Ratio Std. Err. P>|z| [95% Conf. Interval] 

Deployment 

Visits 

0.9798 0.00278 0.000 0.9743 0.9852 

 

(b) The total number of deployed MPE visits. 

 Haz. Ratio Std. Err. P>|z| [95% Conf. Interval] 

Hours per 

Visits 

0.78457 0.0255 0.000 0.73609 0.8362 

 

           (c) The ratio between the number of visits and hours (HpV). 

• KM Graphs 

 

(a) The clustered two groups of deployed MPE hours. 

1 = Above-average  

2 = Below-average 
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(b) The clustered two groups of deployed MPE visits. 

 

(c) The clustered two groups of deployed MPE HpV. 

1 = Above-average  

2 = Below-average 

1 = Below-average  

2 = Above-average 
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(d) The clustered two groups of traffic volume 

 

• Log-Rank Equality Test 

Hours Observed 

Events 

Expected 

Events 

1 

2 

14 

422 

43.37 

392.63 

Total 436 436.00 

Chi2(1) = 23.98 

Pr>chi2 = 0.0000 
 

 

Visits Observed 

Events 

Expected 

Events 

1 

2 

16 

420 

46.85 

389.15 

Total 436 436.00 

Chi2(1) = 24.63 

Pr>chi2 = 0.0000 

a) Log-rank test for MPE hours groups. b) Log-rank test for MPE visits groups. 

 

 

 

 

 

 

1 = Below-average  

2 = Above-average 
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HpV Observed 

Events 

Expected 

Events 

1 

2 

164 

272 

92.37 

343.63 

Total 436 436.00 

Chi2(1) = 74.16 

Pr>chi2 = 0.0000 
 

 

Traffic Count Observed 

Events 

Expected 

Events 

1 

2 

90 

346 

57.40 

378.60 

Total 436 436.00 

Chi2(1) = 21.85 

Pr>chi2 = 0.0000 

c) Log-rank test for MPE hours/visit groups. d) Log-rank test for traffic volume groups. 
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➢ Collectors Sites Only in 2019 

• Cox Proportional Hazard Model 

 Haz. Ratio Std. Err. P>|z| [95% Conf. Interval] 

Deployment 

Hours 

0.9851 0.00310 0.000 0.9790 0.99119 

 

a) The total number of deployed MPE hours. 

 Haz. Ratio Std. Err. P>|z| [95% Conf. Interval] 

Deployment 

Visits 

0.9586 0.00809 0.000 0.9429 0.9746 

 

b) The total number of deployed MPE visits. 

 Haz. Ratio Std. Err. P>|z| [95% Conf. Interval] 

Hours per 

Visits 

0.65281 0.04603 0.000 0.5685 0.7495 

 

c) The ratio between the number of MPE visits and hours (HpV). 

• KM Graphs 

 

a) The clustered two groups of deployed MPE hours. 

1 = Below-average  

2 = Above-average 
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b) The clustered two groups of deployed MPE visits. 

 

c) The clustered two groups of deployed MPE hours per visit. 

1 = Below-average  

2 = Above-average 

1 = Above-average  

2 = Below-average 
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d) The clustered two groups of traffic volume 

• Log-rank Equality Test 

Hours Observed 

Events 

Expected 

Events 

1 

2 

130 

4 

124.06 

9.94 

Total 134 134.00 

Chi2(1) = 4.08 

Pr>chi2 = 0.0433 
 

 

Visits Observed 

Events 

Expected 

Events 

1 

2 

129 

5 

116.85 

17.15 

Total 134 134.00 

Chi2(1) = 10.68 

Pr>chi2 = 0.0011 

a) Log-rank test for MPE hours groups. b) Log-rank test for MPE visits groups. 

 

 

 

 

 

 

1 = Below-average  

2 = Above-average 
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HpV Observed 

Events 

Expected 

Events 

1 

2 

71 

63 

105.70 

28.30 

Total 134 134.00 

Chi2(1) = 58.78 

Pr>chi2 = 0.0000 
 

 

Traffic Count Observed 

Events 

Expected 

Events 

1 

2 

105 

29 

103.29 

30.71 

Total 134 134.00 

Chi2(1) = 0.13 

Pr>chi2 = 0.7233 

c) Log-rank test for MPE hours/visit groups. d) Log-rank test for traffic volume groups. 
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➢ High Traffic Volume Locations Only in 2019 

• Cox Proportional Hazard Model 

 Haz. Ratio Std. Err. P>|z| [95% Conf. Interval] 

Deployment 

Hours 

0.97506 0.00286 0.000 0.96945 0.9806 

 

(a) The total number of deployed MPE hours. 

 Haz. Ratio Std. Err. P>|z| [95% Conf. Interval] 

Deployment 

Visits 

0.9168 0.00908 0.000 0.8991 0.9347 

 

(b) The total number of deployed MPE visits. 

 Haz. Ratio Std. Err. P>|z| [95% Conf. Interval] 

Hours per 

Visits 

0.4884 0.0545 0.000 0.3924 0.6078 

 

       (c) The ratio between the number of visits and hours (HpV). 

• KM Graphs 

 

(a) The clustered two groups of deployed MPE hours. 
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(b) The clustered two groups of deployed MPE visits. 

 

(c) The clustered two groups of deployed MPE visits. 

 

1 = Below-average  

2 = Above-average 

1 = Above-average  

2 = Below-average 
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• Log-rank Equality Test 

Hours Observed Events Expected Events 

Above average 

Below-average 

14 

109 

44.25 

78.75 

Total 123 123.00 

Chi2(1) = 48.42 

Pr>chi2 = 0.0000 

 

Visits Observed Events Expected Events 

Above average 

Below-average 

14 

109 

44.25 

78.75 

Total 123 123.00 

Chi2(1) = 48.42 

Pr>chi2 = 0.0000 

 

a) Log-rank test for MPE hours groups. b) Log-rank test for MPE visits groups. 

HpV Observed Events Expected Events 

Above average 

Below-average 

111 

12 

121.69 

1.31 

Total 123 123.00 

Chi2(1) = 92.06 

Pr>chi2 = 0.0000 

 

c) Log-rank test for MPE hours/visit groups. 
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➢ Low Traffic Volume Locations Only in 2019 

• Cox Proportional Hazard Model 

 Haz. Ratio Std. Err. P>|z| [95% Conf. Interval] 

Deployment 

Hours 

0.9918 0.00124 0.000 0.9894 0.9943 

 

(a) The total number of deployed MPE hours. 

 Haz. Ratio Std. Err. P>|z| [95% Conf. Interval] 

Deployment 

Visits 

0.9726 0.0037 0.000 0.9652 0.9800 

 

(b) The total number of deployed MPE visits. 

 Haz. Ratio Std. Err. P>|z| [95% Conf. Interval] 

Hours per 

Visits 

0.7072 0.0244 0.000 0.6608 0.7569 

 

       (c) The ratio between the number of MPE visits and hours (HpV). 

• KM Graph 

 

(a) The clustered two groups of deployed MPE hours. 
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(b) The clustered two groups of deployed MPE visits. 

 

(c) The clustered two groups of deployed MPE hours/visit. 
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• Log-rank Equality Test 

Hours Observed Events Expected 

Events 

Above average 

Below-average 

10 

440 

24.78 

425.22 

Total 450 450.00 

Chi2(1) = 9.67 

Pr>chi2 = 0.0019 
 

Visits Observed Events Expected 

Events 

Above average 

Below-average 

10 

440 

26.11 

423.89 

Total 450 450.00 

Chi2(1) = 11.03 

Pr>chi2 = 0.0009 
 

a) Log-rank test for MPE hours groups. b) Log-rank test for MPE visits groups. 

HpV Observed Events Expected Events 

Above average 

Below-average 

234 

216 

340.67 

109.33 

Total 450 450.00 

Chi2(1) = 149.95 

Pr>chi2 = 0.0000 
 

c) Log-rank test for MPE hours/visit groups. 

 

  



 

   

 

 

77 

 

➢ Speeding Related Collisions Only in 2019 

• Cox Proportional Hazard Model 

 Haz. Ratio Std. Err. P>|z| [95% Conf. Interval] 

Deployment 

Hours 

0.9929 0.0015 0.000 0.9900 0.9959 

 

(a) The total number of deployed MPE hours. 

 Haz. Ratio Std. Err. P>|z| [95% Conf. Interval] 

Deployment 

Visits 

0.9742 0.0050 0.000 0.9644 0.9841 

 

(b) The total number of deployed MPE visits. 

 Haz. Ratio Std. Err. P>|z| [95% Conf. Interval] 

Hours per 

Visits 

0.6789 0.0352 0.000 0.6131 0.7517 

 

       (c) The ratio between the number of visits and hours (HpV). 

• KM Graph 

 

(a) The clustered two groups of deployed MPE hours. 
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(b) The clustered two groups of deployed MPE visits. 

 

(c) The clustered two groups of deployed MPE hours/visit. 
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(d) The clustered two groups of traffic volume 

• Log-rank Equality Test 

Hours Observed Events Expected 

Events 

Above average 

Below-average 

5 

212 

16.16 

200.84 

Total 217 217.00 

Chi2(1) = 9.07 

Pr>chi2 = 0.0026 
 

Visits Observed Events Expected Events 

Above average 

Below-average 

5 

12 

16.16 

200.84 

Total 217 217.00 

Chi2(1) = 9.07 

Pr>chi2 = 0.0026 
 

a) Log-rank test for MPE hours groups. b) Log-rank test for MPE visits groups. 
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HpV Observed Events Expected 

Events 

Above average 

Below-average 

126 

91 

170.44 

46.56 

Total 217 217.00 

Chi2(1) = 58.60 

Pr>chi2 = 0.0000 
 

Traffic Count Observed Events Expected Events 

Above average 

Below-average 

173 

44 

184.06 

32.94 

Total 217 217.00 

Chi2(1) = 4.53 

Pr>chi2 = 0.0333 
 

c) Log-rank test for MPE hours/visit groups. d) Log-rank test for traffic volume groups. 
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The used MATLAB Code in Phase One (Data Preparation): 

% -- Average Collision per day -- % 

%prints out the average collision per day for each year for a given location 

%{ 

avgCollision(colData) 

input: 

colData - Data set filled with the collision reports (eg. "Collsion 

Data.xlsx") 

Return: 

a table containing the average duration between collision in each year 

%} 

  

function avgCollisionV5(colData) 

    %Read tables from excel sheets 

    disp("Start reading data"); 

    format long; 

    [num,txt,allData] = xlsread(colData,1,'A1:BL587577'); 

    tempallData = allData; 

    clear txt; 

    clear num; 

    allData = cell2table(allData(2:end,:)); 

    allData.Properties.VariableNames = tempallData(1,:); 

    locationsID = readtable(colData,'ReadVariableName',true,'Sheet',2); 

    mpeData = readtable(colData,'ReadVariableName',true,'Sheet',3); 

    trafficData = readtable(colData,'ReadVariableName',true,'Sheet',4); 

    siteIds = unique(locationsID.SiteId)'; % get an array of all the unique 

siteIDs 

     

    % Generates a table filled with 0 for the average Collision Duration 

    avgCollDur = array2table(zeros(length(siteIds),10)); 

    avgCollDur.Properties.VariableNames = 

{'SiteID','2013','2014','2015','2016','2017','2018','2019',... 

        '2013-2015','2016-2019'}; 

     

    % Use this if the output needs strings like "N/A" being display on excel 

sheet 

    % these are the field names 

    strOutput = ["SiteID" "2013" "2014" "2015" "2016" "2017" "2018" "2019" 

"2013-2015" "2016-2019"]; 

     

    % Generates tables filled with 

    collDur09 = 

table(zeros(0,1),zeros(0,1),strings(0,1),strings(0,1),zeros(0,1),zeros(0,1),s

trings(0,1),strings(0,1),strings(0,1)); 

    collDur09.Properties.VariableNames = {'SiteID','Days b/w 

Collision','First Collision Date','Second Collision Date',... 

        '# of time visited','Deployment Hours','Season','Severity','Collision 

Cause'}; 
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    collDur10 = 

table(zeros(0,1),zeros(0,1),strings(0,1),strings(0,1),zeros(0,1),zeros(0,1),s

trings(0,1),strings(0,1),strings(0,1)); 

    collDur10.Properties.VariableNames = {'SiteID','Days b/w 

Collision','First Collision Date','Second Collision Date',... 

        '# of time visited','Deployment Hours','Season','Severity','Collision 

Cause'}; 

    collDur11 = 

table(zeros(0,1),zeros(0,1),strings(0,1),strings(0,1),zeros(0,1),zeros(0,1),s

trings(0,1),strings(0,1),strings(0,1)); 

    collDur11.Properties.VariableNames = {'SiteID','Days b/w 

Collision','First Collision Date','Second Collision Date',... 

        '# of time visited','Deployment Hours','Season','Severity','Collision 

Cause'}; 

    collDur12 = 

table(zeros(0,1),zeros(0,1),strings(0,1),strings(0,1),zeros(0,1),zeros(0,1),s

trings(0,1),strings(0,1),strings(0,1)); 

    collDur12.Properties.VariableNames = {'SiteID','Days b/w 

Collision','First Collision Date','Second Collision Date',... 

        '# of time visited','Deployment Hours','Season','Severity','Collision 

Cause'}; 

    collDur13 = 

table(zeros(0,1),zeros(0,1),strings(0,1),strings(0,1),zeros(0,1),zeros(0,1),s

trings(0,1),strings(0,1),strings(0,1)); 

    collDur13.Properties.VariableNames = {'SiteID','Days b/w 

Collision','First Collision Date','Second Collision Date',... 

        '# of time visited','Deployment Hours','Season','Severity','Collision 

Cause'}; 

    collDur14 = 

table(zeros(0,1),zeros(0,1),strings(0,1),strings(0,1),zeros(0,1),zeros(0,1),s

trings(0,1),strings(0,1),strings(0,1)); 

    collDur14.Properties.VariableNames = {'SiteID','Days b/w 

Collision','First Collision Date','Second Collision Date',... 

        '# of time visited','Deployment Hours','Season','Severity','Collision 

Cause'}; 

    collDur15 = 

table(zeros(0,1),zeros(0,1),strings(0,1),strings(0,1),zeros(0,1),zeros(0,1),s

trings(0,1),strings(0,1),strings(0,1)); 

    collDur15.Properties.VariableNames = {'SiteID','Days b/w 

Collision','First Collision Date','Second Collision Date',... 

        '# of time visited','Deployment Hours','Season','Severity','Collision 

Cause'}; 

    collDur16 = 

table(zeros(0,1),zeros(0,1),strings(0,1),strings(0,1),zeros(0,1),zeros(0,1),s

trings(0,1),strings(0,1),strings(0,1)); 

    collDur16.Properties.VariableNames = {'SiteID','Days b/w 

Collision','First Collision Date','Second Collision Date',... 

        '# of time visited','Deployment Hours','Season','Severity','Collision 

Cause'}; 
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    collDur17 = 

table(zeros(0,1),zeros(0,1),strings(0,1),strings(0,1),zeros(0,1),zeros(0,1),s

trings(0,1),strings(0,1),strings(0,1)); 

    collDur17.Properties.VariableNames = {'SiteID','Days b/w 

Collision','First Collision Date','Second Collision Date',... 

        '# of time visited','Deployment Hours','Season','Severity','Collision 

Cause'}; 

    collDur18 = 

table(zeros(0,1),zeros(0,1),strings(0,1),strings(0,1),zeros(0,1),zeros(0,1),s

trings(0,1),strings(0,1),strings(0,1)); 

    collDur18.Properties.VariableNames = {'SiteID','Days b/w 

Collision','First Collision Date','Second Collision Date',... 

        '# of time visited','Deployment Hours','Season','Severity','Collision 

Cause'}; 

    collDur19 = 

table(zeros(0,1),zeros(0,1),strings(0,1),strings(0,1),zeros(0,1),zeros(0,1),s

trings(0,1),strings(0,1),strings(0,1)); 

    collDur19.Properties.VariableNames = {'SiteID','Days b/w 

Collision','First Collision Date','Second Collision Date',... 

        '# of time visited','Deployment Hours','Season','Severity','Collision 

Cause'}; 

    collDur20 = 

table(zeros(0,1),zeros(0,1),strings(0,1),strings(0,1),zeros(0,1),zeros(0,1),s

trings(0,1),strings(0,1),strings(0,1)); 

    collDur20.Properties.VariableNames = {'SiteID','Days b/w 

Collision','First Collision Date','Second Collision Date',... 

        '# of time visited','Deployment Hours','Season','Severity','Collision 

Cause'}; 

    collDurID16 = 

table(zeros(2017,1),zeros(2017,1),zeros(2017,1),zeros(2017,1)); 

    collDurID16.Properties.VariableNames = {'SiteId','# of time 

visited','Deployment Hours','Total Traffic'}; 

    collDurID17 = 

table(zeros(2017,1),zeros(2017,1),zeros(2017,1),zeros(2017,1)); 

    collDurID17.Properties.VariableNames = {'SiteId','# of time 

visited','Deployment Hours','Total Traffic'}; 

    collDurID18 = 

table(zeros(2017,1),zeros(2017,1),zeros(2017,1),zeros(2017,1)); 

    collDurID18.Properties.VariableNames = {'SiteId','# of time 

visited','Deployment Hours','Total Traffic'}; 

    collDurID19 = 

table(zeros(2017,1),zeros(2017,1),zeros(2017,1),zeros(2017,1)); 

    collDurID19.Properties.VariableNames = {'SiteId','# of time 

visited','Deployment Hours','Total Traffic'}; 

     

    tic 

    % Iterates through the MPE Comb sheet locations 

    x = 0; 

    disp("Start looping through each SiteId"); 

    tableLocationName = cell2table(allData.COLLISION_LOCATION_NAME); 

    tableLocationName = string(tableLocationName{:,:}); 
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    north = (string(allData.TRAVEL_DIRECTION) == "NORTH")'; 

    south = (string(allData.TRAVEL_DIRECTION) == "SOUTH")'; 

    west = (string(allData.TRAVEL_DIRECTION) == "WEST")'; 

    east = (string(allData.TRAVEL_DIRECTION) == "EAST")'; 

    for siteId = 1:length(siteIds) 

        avgCollDur{siteId,1} = siteIds(siteId); 

        disp(siteId); 

        myStr = locationsID.LocationDescription(siteId); 

        myStr = convertCharsToStrings(myStr); 

        colIndex = zeros(1,587576); 

        if contains(locationsID.LocationDescription(siteId),'-') 

            commaLocation = strfind(myStr,','); 

            hyphenLocation = strfind(myStr,'-'); 

            firstLocation = upper(extractBetween(myStr,1,commaLocation-

1,'Boundaries','inclusive')); 

            secondNumber = 

str2double(extractBetween(myStr,commaLocation+2,hyphenLocation-

2,'Boundaries','inclusive')); 

            thirdNumber = 

str2double(extractBetween(myStr,hyphenLocation+2,strfind(extractBetween(myStr

,hyphenLocation+2,hyphenLocation+6,'Boundaries','inclusive'),' 

')+hyphenLocation+1,'Boundaries','inclusive')); 

            roadName = 

upper(extractBetween(myStr,hyphenLocation+strfind(extractBetween(myStr,hyphen

Location+2,hyphenLocation+6,'Boundaries','inclusive'),' ')+2,... 

                strlength(myStr),'Boundaries','inclusive')); 

            if secondNumber < thirdNumber 

                smallerNumber = secondNumber; 

            else 

                smallerNumber = thirdNumber; 

            end 

            tableFirstLocation = table(firstLocation); 

            tableFirstLocation.Properties.VariableNames = ["Var1"]; 

            for i = 1:abs(thirdNumber-secondNumber)+1 

                secondLocation = upper(string(smallerNumber+i-1) + ' ' + 

roadName); 

                tableSecondLocation = table(secondLocation); 

                tableSecondLocation.Properties.VariableNames = ["Var1"]; 

                tempcolIndex = 

((startsWith(tableLocationName,tableFirstLocation{1,1}) | 

contains(tableLocationName," "+tableFirstLocation{1,1})) &... 

                    (startsWith(tableLocationName,tableSecondLocation{1,1}) | 

contains(tableLocationName," "+tableSecondLocation{1,1})))'; 

                colIndex = colIndex | tempcolIndex; 

            end 

        else 

            commaLocation = strfind(myStr,','); 

            firstLocation = upper(extractBetween(myStr,1,commaLocation-

1,'Boundaries','inclusive')); 
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            secondLocation = 

upper(extractBetween(myStr,commaLocation+1,strlength(myStr),'Boundaries','inc

lusive')); 

            tableFirstLocation = table(firstLocation); 

            tableFirstLocation.Properties.VariableNames = ["Var1"]; 

            tableSecondLocation = table(secondLocation); 

            tableSecondLocation.Properties.VariableNames = ["Var1"]; 

            tempcolIndex = 

((startsWith(tableLocationName,tableFirstLocation{1,1}) | 

contains(tableLocationName," "+tableFirstLocation{1,1})) &... 

                (startsWith(tableLocationName,tableSecondLocation{1,1}) | 

contains(tableLocationName," "+tableSecondLocation{1,1})))'; 

            colIndex = colIndex | tempcolIndex; 

        end 

        switch string(locationsID.Direction(siteId)) 

            case "NB" 

                colIndex = colIndex & north; 

            case "SB" 

                colIndex = colIndex & south; 

            case "WB" 

                colIndex = colIndex & west; 

            case "EB" 

                colIndex = colIndex & east; 

            otherwise 

                colIndex = colIndex & zeros(1,587576); 

        end 

        % Creating a cell array to orgainize the reports in terms of year 

2013-2019 

        reportArray = cell(1,12); 

         

        for q = 1:12 

            reportArray{q}{1,end+1} = datestr(datetime(q + 2008,1,1,0,0,1)); 

            reportArray{q}{2,end} = "Winter"; 

            reportArray{q}{3,end} = "N/A"; 

            reportArray{q}{4,end} = "N/A"; 

        end 

         

        % Check which reports has the combCode 

        collDurID16{siteId,1} = siteIds(siteId); 

        collDurID17{siteId,1} = siteIds(siteId); 

        collDurID18{siteId,1} = siteIds(siteId); 

        collDurID19{siteId,1} = siteIds(siteId); 

        colReports = allData(colIndex,:); 

        % Going through each report to organize it by year 

        for j = 1:size(colReports,1) 

            report = colReports(j,:); 

             

            %2012 use to get index because the oldest year recorded is 2013 

            cellIndex = report.COLLISION_REPORT_YEAR - 2008; 

  

            % Formating datetime  
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            if (report.HOUR_NAME{1,1}/100 == 24) 

                reportDate = 

datetime(report.COLLISION_REPORT_YEAR,report.COLLISION_MONTH,... 

                    report.DAY_OF_MONTH,report.HOUR_NAME{1,1}/100-1,59,59); 

            elseif (isa(report.HOUR_NAME{1,1},'char')) 

                reportDate = 

datetime(report.COLLISION_REPORT_YEAR,report.COLLISION_MONTH,... 

                    report.DAY_OF_MONTH,0,0,1); 

            else 

                reportDate = 

datetime(report.COLLISION_REPORT_YEAR,report.COLLISION_MONTH,... 

                    report.DAY_OF_MONTH,report.HOUR_NAME{1,1}/100,59,59); 

            end 

            reportDate.Format = 'yyyy-MM-dd HH:mm:SS'; 

            reportDate = datestr(reportDate); 

             

            % Find Season 

            switch (report.COLLISION_MONTH) 

                case {3,4,5} 

                    reportSeason = "Spring"; 

                case {6,7,8} 

                    reportSeason = "Summer"; 

                case {9,10,11} 

                    reportSeason = "Fall"; 

                case {1,2,12} 

                    reportSeason = "Winter"; 

            end 

             

            % Adding the report to the correct year where cellIndex 1-7 is 

2013-2016 respectively 

            reportArray{cellIndex}{1,end+1} = reportDate; 

            reportArray{cellIndex}{2,end} = reportSeason; 

            reportArray{cellIndex}{3,end} = report.COLLISION_CLASSIFICATION; 

            reportArray{cellIndex}{4,end} = report.COLLISION_CAUSE_NAME; 

        end 

        for q = 1:12 

            reportArray{q}{1,end+1} = datestr(datetime(q + 

2008,12,31,23,59,59)); 

            reportArray{q}{2,end} = "Winter"; 

            reportArray{q}{3,end} = "N/A"; 

            reportArray{q}{4,end} = "N/A"; 

        end 

         

        avDCArray = zeros(1,12); 

        % Calculating the Avg duration between collisions 

        for cellIndex = 1:size(reportArray,2) 

            totalHours = 0; 

            numVisits = 0; 

            whichArray = (mpeData.StartDate > datetime(cellIndex + 

2007,12,31)) & (mpeData.EndDate < datetime(cellIndex + 2009,1,1)) & 

(mpeData.SiteId == siteIds(siteId)); 
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            whichSite = mpeData(whichArray,:); 

            for k = 1:height(whichSite) 

                if ~isempty(whichSite.Duration_dep{k,1}) 

                    [Y,M,D,H,MN,S] = 

datevec(datetime(string(whichSite.Duration_dep(k)),'InputFormat','H:mm')); 

                    totalHours = totalHours + H + MN/60; 

                end 

            end 

            numVisits = height(whichSite); 

            trafficArray = (trafficData.WatchDate > datetime(cellIndex + 

2007,12,31)) & (trafficData.WatchDate < datetime(cellIndex + 2009,1,1)) & 

(trafficData.Site == siteIds(siteId)); 

            trafficSite = trafficData(trafficArray,:); 

            traffic = 0; 

            for k = 1:height(trafficSite) 

                if ~isempty(trafficSite.Traffic(k)) 

                    traffic = traffic + trafficSite.Traffic(k); 

                end 

            end 

            switch cellIndex 

                case 8 

                    collDurID16{siteId,2} = numVisits; 

                    collDurID16{siteId,3} = totalHours; 

                    collDurID16{siteId,4} = traffic; 

                case 9 

                    collDurID17{siteId,2} = numVisits; 

                    collDurID17{siteId,3} = totalHours; 

                    collDurID17{siteId,4} = traffic; 

                case 10 

                    collDurID18{siteId,2} = numVisits; 

                    collDurID18{siteId,3} = totalHours; 

                    collDurID18{siteId,4} = traffic; 

                case 11 

                    collDurID19{siteId,2} = numVisits; 

                    collDurID19{siteId,3} = totalHours; 

                    collDurID19{siteId,4} = traffic; 

            end 

            b = size(reportArray{cellIndex}); 

            if b(2) > 2 

                 

                % Getting the list of dates and sorting them 

                dates = reportArray{cellIndex}; 

                dates = dates'; 

                % disp(x); 

                [~,idx] = sort(datenum(dates(:,1),'dd-mm-yyyy HH:MM:SS'), 1, 

'ascend'); 

                x = x+1; 

                dates = dates(idx,:,:,:)'; 

                numCol = size(dates); 

                dates{1,1} = datetime(cellIndex + 2008,1,1); 

                dates{1,end} = datetime(cellIndex + 2008,12,31); 
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                % If there is 1 collision assume 0 for now 

                if numCol(2) == 1 

                    % Assigned as "N/A" but since table is double will appear 

as "NaN" 

                    avDCArray(cellIndex) = "N/A"; 

                else 

                    % Calculating the time difference in days between each 

dates 

                    clear onlyTimes; 

                    for a = 1:numCol(2) 

                        dates{1,a} = datetime(dates{1,a}); 

                        onlyTimes(a) = dates{1,a}; 

                    end 

                    timediff = caldiff(onlyTimes,'time'); 

                    timediff = time(timediff); 

                    timediff = days(timediff); % Doing this way makes it more 

precise 

                     

                    % Calculating the Average Duration between Collisions 

                    avDCArray(cellIndex) = round(mean(timediff),1);   

                    mpeDurations = zeros(length(timediff),2); 

                    for z = 1:length(timediff) 

                        timeVisit = 0; 

                        truthArray = (mpeData.StartDate > dates{1,z}) & 

(mpeData.EndDate < dates{1,z+1}) & (mpeData.SiteId == siteIds(siteId)); 

                        truthMpe = mpeData(truthArray,:); 

                        for y = 1:height(truthMpe) 

                            if ~isempty(truthMpe.Duration_dep{y,1}) 

                                [Y,M,D,H,MN,S] = 

datevec(datetime(string(truthMpe.Duration_dep(y)),'InputFormat','H:mm')); 

                                mpeDurations(z,2) = mpeDurations(z,2) + H + 

MN/60; 

                            end 

                        end 

                        mpeDurations(z,1) = height(truthMpe); 

                    end 

                    % Assigning the duration between collision to the correct 

year to be printed. 

                    if cellIndex == 1 

                        for duration = 1:length(timediff) 

                            collDur09{end+1,:} = [ [siteIds(siteId)], 

[round(timediff(duration),1)], [datestr(dates{1,duration})], 

[datestr(dates{1,duration+1})],... 

                                

[mpeDurations(duration,1)],[mpeDurations(duration,2)],[dates{2,duration+1}], 

[dates{3,duration+1}], [dates{4,duration+1}]]; 

                        end 

                    elseif cellIndex == 2 

                        for duration = 1:length(timediff) 
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                            collDur10{end+1,:} = [ [siteIds(siteId)], 

[round(timediff(duration),1)], [datestr(dates{1,duration})], 

[datestr(dates{1,duration+1})],... 

                                

[mpeDurations(duration,1)],[mpeDurations(duration,2)],[dates{2,duration+1}], 

[dates{3,duration+1}], [dates{4,duration+1}]]; 

                        end   

                    elseif cellIndex == 3 

                        for duration = 1:length(timediff) 

                            collDur11{end+1,:} = [ [siteIds(siteId)], 

[round(timediff(duration),1)], [datestr(dates{1,duration})], 

[datestr(dates{1,duration+1})],... 

                                

[mpeDurations(duration,1)],[mpeDurations(duration,2)],[dates{2,duration+1}], 

[dates{3,duration+1}], [dates{4,duration+1}]]; 

                        end 

                    elseif cellIndex == 4 

                        for duration = 1:length(timediff) 

                            collDur12{end+1,:} = [ [siteIds(siteId)], 

[round(timediff(duration),1)], [datestr(dates{1,duration})], 

[datestr(dates{1,duration+1})],... 

                                

[mpeDurations(duration,1)],[mpeDurations(duration,2)],[dates{2,duration+1}], 

[dates{3,duration+1}], [dates{4,duration+1}]]; 

                        end 

                    elseif cellIndex == 5 

                        for duration = 1:length(timediff) 

                            collDur13{end+1,:} = [ [siteIds(siteId)], 

[round(timediff(duration),1)], [datestr(dates{1,duration})], 

[datestr(dates{1,duration+1})],... 

                                

[mpeDurations(duration,1)],[mpeDurations(duration,2)],[dates{2,duration+1}], 

[dates{3,duration+1}], [dates{4,duration+1}]]; 

                        end 

                    elseif cellIndex == 6 

                        for duration = 1:length(timediff) 

                            collDur14{end+1,:} = [ [siteIds(siteId)], 

[round(timediff(duration),1)], [datestr(dates{1,duration})], 

[datestr(dates{1,duration+1})],... 

                                

[mpeDurations(duration,1)],[mpeDurations(duration,2)],[dates{2,duration+1}], 

[dates{3,duration+1}], [dates{4,duration+1}]]; 

                        end 

                    elseif cellIndex == 7 

                        for duration = 1:length(timediff) 

                            collDur15{end+1,:} = [ [siteIds(siteId)], 

[round(timediff(duration),1)], [datestr(dates{1,duration})], 

[datestr(dates{1,duration+1})],... 

                                

[mpeDurations(duration,1)],[mpeDurations(duration,2)],[dates{2,duration+1}], 

[dates{3,duration+1}], [dates{4,duration+1}]]; 
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                        end 

                    elseif cellIndex == 8 

                        for duration = 1:length(timediff) 

                            collDur16{end+1,:} = [ [siteIds(siteId)], 

[round(timediff(duration),1)], [datestr(dates{1,duration})], 

[datestr(dates{1,duration+1})],... 

                                

[mpeDurations(duration,1)],[mpeDurations(duration,2)],[dates{2,duration+1}], 

[dates{3,duration+1}], [dates{4,duration+1}]]; 

                        end 

                    elseif cellIndex == 9 

                        for duration = 1:length(timediff) 

                            collDur17{end+1,:} = [ [siteIds(siteId)], 

[round(timediff(duration),1)], [datestr(dates{1,duration})], 

[datestr(dates{1,duration+1})],... 

                                

[mpeDurations(duration,1)],[mpeDurations(duration,2)],[dates{2,duration+1}], 

[dates{3,duration+1}], [dates{4,duration+1}]]; 

                        end 

                    elseif cellIndex == 10 

                        for duration = 1:length(timediff) 

                            collDur18{end+1,:} = [ [siteIds(siteId)], 

[round(timediff(duration),1)], [datestr(dates{1,duration})], 

[datestr(dates{1,duration+1})],... 

                                

[mpeDurations(duration,1)],[mpeDurations(duration,2)],[dates{2,duration+1}], 

[dates{3,duration+1}], [dates{4,duration+1}]]; 

                        end 

                    elseif cellIndex == 11 

                        for duration = 1:length(timediff) 

                            collDur19{end+1,:} = [ [siteIds(siteId)], 

[round(timediff(duration),1)], [datestr(dates{1,duration})], 

[datestr(dates{1,duration+1})],... 

                                

[mpeDurations(duration,1)],[mpeDurations(duration,2)],[dates{2,duration+1}], 

[dates{3,duration+1}], [dates{4,duration+1}]]; 

                        end 

                    else 

                        for duration = 1:length(timediff) 

                            collDur20{end+1,:} = [ [siteIds(siteId)], 

[round(timediff(duration),1)], [datestr(dates{1,duration})], 

[datestr(dates{1,duration+1})],... 

                                

[mpeDurations(duration,1)],[mpeDurations(duration,2)],[dates{2,duration+1}], 

[dates{3,duration+1}], [dates{4,duration+1}]]; 

                        end 

                    end 

                end 

            end        

        end 
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        % Splitting avDCArray so it faster to go through and take value that 

are not "NaN" 

        firstHalf = avDCArray(1:3); 

        secondHalf = avDCArray(4:7); 

        % Getting the avg between 2013-2015 and 2016-2019 

        avDCArray(end+1) = round(mean(firstHalf(~isnan(firstHalf))),1); 

        avDCArray(end+1) = round(mean(secondHalf(~isnan(secondHalf))),1); 

         

        strOutput(siteId+1,1) = siteIds(siteId); 

        strOutput(siteId+1,2:15) = string(avDCArray); 

        replace = find(isnan(avDCArray)); % Finding the indices with "NaN" to 

replace with "N/A" 

        strOutput(siteId+1, (replace+1)) = "N/A";  

        %avgCollDur{siteId,2:10} = avDCArray;  

         

    end  

    toc  

    %disp(avgCollDur); % has NaN 

    % Saving Datasheet with averages in case the datasheet is large 

     

    %writetable(avgCollDur,'avgCollDur.xlsx'); % Comment line if table can't 

use NaN in table 

    writematrix(strOutput,'avgCollDurV3.xlsx'); % Comment line if table can't 

use strings like "N/A" in table 

     

    % Saving duration between collision of each year at each location  

    writetable(collDur09,'Duration btwn Collision2009.xlsx'); 

    writetable(collDur10,'Duration btwn Collision2010.xlsx'); 

    writetable(collDur11,'Duration btwn Collision2011.xlsx'); 

    writetable(collDur12,'Duration btwn Collision2012.xlsx'); 

    writetable(collDur13,'Duration btwn Collision2013.xlsx'); 

    writetable(collDur14,'Duration btwn Collision2014.xlsx'); 

    writetable(collDur15,'Duration btwn Collision2015.xlsx'); 

    writetable(collDur16,'Duration btwn Collision2016.xlsx'); 

    writetable(collDur17,'Duration btwn Collision2017.xlsx'); 

    writetable(collDur18,'Duration btwn Collision2018.xlsx'); 

    writetable(collDur19,'Duration btwn Collision2019.xlsx'); 

    writetable(collDur20,'Duration btwn Collision2020.xlsx'); 

    writetable(collDurID16,'siteID16.xlsx'); 

    writetable(collDurID17,'siteID17.xlsx'); 

    writetable(collDurID18,'siteID18.xlsx'); 

    writetable(collDurID19,'siteID19.xlsx'); 

end 

 


