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Abstract

Multiple imputation is a method to quantify geometric data uncertainty to improve
the performance of modeling the geological domain of tabular vein deposits. Having a
stable geological domain is the prerequisite of applying other geostatistical methods
to estimate mineral resources and reserve. There are many implicit and explicit
modeling methods for simple tabular vein deposits, which are single-layered or multi-
layered vein deposits with gentle folds. Applying multiple imputation can characterize
the uncertainty in the geological domain and the workflow of modeling tabular vein
deposits starts from geological data imputation in order to get the stable geological
domain.

Geometric data include the position of the hangingwall and the position of the
footwall as well as the thickness of the deposit. There is uncertainty in geometric
data and this uncertainty increases with highly deviated drill holes. In order to have
homotopic geometric data to model the deposits by having one position and one
thickness, multiple imputation is used to quantify geometric uncertainty.

During the process of multiple imputation, the primary position distribution from
spatial information and the secondary thickness distribution from spatial information
are formed. The thickness distribution is transformed into the position. Then, these
two distributions are merged together to characterize the local conditional distribution
of the position.

The method can be applied to many scenarios. The original application is for
single-layered deposits. The method can be extended to multiple-layered deposits.

The difference is that there are more thickness values that can be transformed. Fur-
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thermore, with assumptions about the distribution of elevation and thickness, the
method can be extended to areas with highly deviated long drill holes. The method
has an acceptable performance for all three scenarios.

There are many parameters that can influence the performance of the method.
The first parameter in the angle tolerance. It is important to have an optimum angle
tolerance to save enough samples to conduct distribution transformation, variogram
calculation and modeling, as well as form kriging systems, and to eliminate inap-
propriate calculated thickness values. The imputation sequence should start from
the most vertical drill holes to the most inclined drill holes. The merging method is
another important parameters. The method of Bayesian updating performs slightly
better if there are well known prior distributions. If the scenarios start to become
complicated, the method of error ellipses perform better.

There are some limitations of the method. The most important limitation is that
during the transformation, there is no guarantee that the imputed values would be
in the original range of the geometric variables. Another important limitation is
that imputation is mostly based on the geometric samples and the distributions of
the imputed results tend to have lower variances than the true distributions of the
geometric variables; furthermore, the calculated sample of thickness may not represent
the true distribution of thickness.

The workflow of multiple imputation can be applied to the modeling of the geo-
logical domain and be integrated into the entire workflow of probabilistic modeling

tabular vein deposits.
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Chapter 1

Introduction

A stationary geological domain is a vital prerequisite to applying geostatistical meth-
ods. For tabular vein deposits, this geological domain can be defined by the position
of the hangingwall and the footwall. Sparse sampling leads to geometric uncertainties
in the domain boundaries. This uncertainty increases with highly deviated drill holes
that are relative to the plane of continuity of the deposits. Multiple imputation is
a method to quantify this uncertainty and to improve the modeling of the geological
domain; however, the method is not fully tested and understood for geometric posi-
tion variables. The method is developed and implemented for different scenarios to

evaluate geometric uncertainties of tabular vein deposits.

1.1 Modeling of Tabular Vein Deposits

Geostatistics is applied within clear geological domains. The first step is to create
a geological model of the domain boundaries, and the second step is to estimate or
simulate grades in the geological model. Practical methods of modeling include ex-
plicit modeling and implicit modeling (Cowan et al., 2003; McInerney et al., 2007;
Vollgger et al., 2013). Explicit modeling uses manual digitisation to define the sur-
faces. Implicit modeling uses interpolation of volume functions or indicators to define
the surfaces. Implicit modeling does not require manual interpretation and is widely
applied because it is automated and thus fast (Cowan et al., 2003; McLennan and
Deutsch, 2006). Furthermore, many improvements, like using hydrogeological data
(D’Affonseca et al., 2020), training the interpolation functions with machine learning
(ftalo Gomes Gongalves et al., 2017), and using a linear combination of interpola-
tion functions (Yang et al., 2021), are made in implicit modeling, making implicit

modeling a very flexible and popular method.



Explicit and implicit modeling produce a single geometry of the deposits and ge-
ometric uncertainties are not assessed. In order to quantify the geometric uncertain-
ties, independent simulation of the hangingwall and the footwall using Sequential
Gaussian Simulation (SGS) has been applied (Silva and Deutsch, 2015). Unrealistic
simulations can be produced from independently simulated surfaces. In order to pre-
vent unrealistic simulations, manual intervention could be included in the simulation.
Developments in geometric modeling of irregular tabular deposits started to involve
other improvements, like local coordinate systems (Ostenberg and Deutsch, 2017) and
thickness as a geometric variable, to make realistic models (Manchuk and Deutsch,
2015). A recent framework of probabilistic resource modeling for tabular vein deposits
was proposed (Carvalho and Deutsch, 2017a,b,c, 2018a,b,c). Simple tabular vein de-
posits with single or multiple layers and gentle folds are considered (Carvalho, 2018).
These deposits are common in mining including certain hydrothermal vein deposits,
magmatic deposits, sedimentary-exhalative (SEDEX) lead-zinc deposits, nickel lat-
erite deposits, coal deposits, and uranium deposits (Carvalho, 2018).

The framework consists of quantifying several uncertainties including geometric un-
certainty, boundary uncertainty, grade uncertainty, and parameter uncertainty. Sev-
eral methods were proposed to quantify these uncertainties, as shown in the following
list. Implementations of the workflow also include post-processing and sensitivity

analysis (Carvalho, 2018).

1. Using data imputation to quantify geometric uncertainty.
2. Using distance function (DF) to quantify boundary uncertainty.

3. Using simulation in an unstructured grid of tetrahedrons to quantify grade

uncertainty.

4. Using spatial bootstrap to quantify input parameter uncertainty.

This framework of modeling tabular vein deposits can provide a probabilistic evalu-
ation of the resources and reserves and assess uncertainties by producing realizations
of the deposit geometry. The framework is different from traditional determinis-

tic methods and preliminary application has been applied to NexGen Energy Ltd.’s



Arrow Deposit (Batty and Boisvert, 2020a,b,c, 2021a,b). Multiple imputation can

improve the performance of modeling of the geological domain.

1.2 Geometric Uncertainty

A tabular vein deposit is bounded by a hangingwall and a footwall. The drill holes
provide geometric data consisting of the position of these surfaces. The thickness
is computed as the difference between the two surfaces measured perpendicular to
the plane of greatest continuity. The thickness must be considered in the modeling
process in order to prevent the unrealistic crossing of the hangingwall and surfaces
footwall (Manchuk and Deutsch, 2015). Then, the geological domain can be modeled
by having one thickness of one position from either the hangingwall or the footwall.
For example, it is possible to model the hangingwall by adding the thickness to
the footwall position. A drill hole usually penetrates both the hangingwall and the
footwall, giving two coordinates (Xyw, Yaw, and Zgw) and (Xrw, Yew, and Zry )
of the piercing points. From these two coordinates, it is possible to get the thickness
between the two surfaces if the drill hole penetrates the deposit perpendicular to the
plane of the vein. The positions of the hangingwall and the footwall and thickness
provide the geometric values for modeling geometries and surfaces of the deposit.
Geometric uncertainty, one of the uncertainties quantified in the workflow of prob-
abilistic modeling of tabular vein deposits, arises from sparse drilling and increases
with inclined drill holes. In Figure 1.1, the configuration of two drill holes is shown
in a 2D schematic example. Drill holes do not always penetrate the tabular vein
deposit perpendicular to the plane of greatest continuity. For the vertical drill hole 1,
both the position of the hangingwall and the footwall are observed and the thickness
can be calculated uniquely. The geometry and surfaces can be modeled by having
one position and one thickness value. As a result, geometric data imputation is not
required. However, for the inclined drill hole 2, the horizontal coordinates are not
the same between the two pierce points with the deposit, so the opposing position
of the hangingwall and footwall are not known and the thickness cannot be uniquely
calculated. The red lines in Figure 1.1 represent one possible geometric configuration

of the tabular vein deposit. There are many other possible geometric configurations.



Furthermore, the dashed lines in Figure 1.1 show that because the thickness values
are now known, there are various possibilities of the position of the surfaces of the
tabular vein deposits for drill hole 2. The modeling method of having one position
and one thickness value for each drill hole must be modified in order to model these

locations. Geometric data imputation is required for these locations.

DH 1 DH 2

A B C

Figure 1.1: Configuration of Drill Holes of the Schematic Example

The schematic example shows the configuration of a tabular vein deposits with two drill holes. The
first drill hole is vertical, so geometric data imputation is not required. The second drill hole is
inclined, so geometric data imputation is required. (not to scale)

This context of missing thickness because of inclined drill holes motivates the
imputation of geometric data at the locations of inclined drill holes to get the full
geometric data in order to aid the assessment of geometric uncertainty and other

uncertainties as well as the modeling of the geological domain.

1.3 Multiple Imputation

Highly inclined drill holes lead to a need for geometric data imputation at pierce
points. Data imputation infers missing values at locations with partial data. Missing
data are common in a geostatistical dataset. However, many methods, like multivari-
ate transformation, require an equal valued or homotopic dataset (Barnett, 2015).
Being homotopic means that each sampled location has all measurable variables. As
a result, imputation of the missing data is necessary. There are many data imputation
methods (Enders, 2010), like data exclusion, single imputation (mean imputation, re-

gression imputation), and multiple imputation.
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The theory of data missing mechanism (Enders, 2010) is considered in order to
choose a method to conduct geometric data imputation for tabular vein deposits.
The data set is considered as a data matrix Z, and a missing data matrix M that
has the same dimension as Z can be defined. Each component of M has values of
1 (observed value) or, 0 (missing value). The data missing mechanism investigates
the conditional distribution of M given Z, F(M|Z) (Little and Rubin, 2002). The
missing matrix M can be shown in Table 1.1 for the 2D schematic example shown in

Figure 1.1.

Table 1.1: Missing Matrix M

DH Location Wall Horizontal Coordinate Vertical Coordinate Thickness

1 A HW 1 1 1
1 A FW 1 1 1
2 B HW 1 0 0
2 B FW 0 1 0
2 C HW 0 1 0
2 C FW 1 0 0

Observed values of Z can be specified as Z,,s, and missing values of Z can be
specified as Z,,;s. In the case of geometric data imputation, if the observed data Z

is from the vertical drill hole 1, the M will be:

1 1 1
1 11
and if the observed data Z,, is from the inclined drill hole 2, the M will be:

0
1

(1.1)

(1.2)
1

0

- o O =
o o o o

As a result, the data missing mechanism is missing at random (MAR) because the

conditional distribution of M are dependent on the value of Z,,s (Barnett, 2015).
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FMI|Z,¢) = F(M|Zobs, 0)VZis, ¢ (1.3)

where ¢ is an unknown parameter describing the relationship between M given Z
(Little and Rubin, 2002).

Because of this data missing mechanism, data exclusion and simple imputation
(mean imputation, regression imputation) will include biases. As a result, multiple
imputation is a preferred method to impute geometric data because this method does
not introduce biases (Barnett, 2015). Multiple imputation, which has been adopted
into geostatistics recently, can be seen as a derivative of SGS.

The process of multiple imputation is schematically illustrated in Figure 1.2. Multi-
ple imputation starts from a heterotopic dataset and generates 100 to 200 realizations
of homotopic dataset realizations based on this heterotopic dataset. The number of
realizations match the number of geostatistical realizations that will be simulated in
the subsequent workflow. These imputed data realizations are considered as the for
each realization data and will be used for the modeling. After the modeling workflow,

these geostatistical realizations are used for resources and reserves calculation.

‘ Homotopic Data Geostatistical
Heterotopic Realizations Realizations
Data Y Modeling Response Uncertainty
ve * e . K Workflow &
. s & _| Multiple |+’ " Transfer &
@ Yq . e oy e 3
L 3 Imputation : Function
b e P  — kit

_14

== >

Possible Responses'

Figure 1.2: Schematic Hlustration of Multiple Imputation (Barnett and Deutsch,
2015)

The workflow of multiple imputation is shown. Multiple imputation generates many homotopic
data realizations from the heterotopic data. Geostatistical simulations are based on these
homotopic data realizations. Transfer function is applied after generating geostatistical simulations.

The method of multiple imputation is modified to suit the problem of imputation of
tabular vein geometric data. The position and the thickness of nearby perpendicular
drill hole pierce points are used to constrain the unknown geometric data at specific

locations having inclined drill holes. The position is used as the primary distribution,



and the thickness is used as the secondary distribution to make realistic models. After
the geometric data imputation, the geological domain can be modeled by having one

position and one thickness can be applied for the tabular vein deposits.

1.4 Problem Statement

Geometric uncertainty exists in geological domain modeling of tabular vein deposits
due to sparse sampling and increases in areas with more inclined drill holes. Geomet-
ric uncertainty is assessed by geometric data imputation with multiple imputation.
The method is not fully implemented and understood in current literature. Further-
more, there are alternative approaches to using multiple imputation to quantify the
geometric uncertainties for tabular vein deposits, including single-layered deposits,
multiple-layered deposits, and along long drill holes. There is a need to evaluate
the performance of multiple imputation and conduct sensitivity analysis on parame-
ters that can influence the performance of multiple imputation. Developing flexible
workflows that can correctly conduct multiple imputation allows the method to be

implemented in real case studies.

1.5 Thesis Outline

Chapter 2 gives the basic method and workflow of multiple imputation for single-
layered deposits. This basic method and workflow serves as the foundation of all
other chapters. Chapter 2 also demonstrates the method of multiple imputation step
by step using a detailed 2D schematic example. Chapter 3 applies the method to 3D
single-layered deposits. Examples with true datasets are demonstrated in order to
compare the result of multiple imputation. Chapter 3 also discusses the parameters
that can influence the performance of the method of multiple imputation as well as
some limitations of the method. Chapter 4 extends the basic multiple imputation
methods used for single-layered deposits to multi-layered deposits. It demonstrates
the method with examples with true datasets and discusses the parameters that can
influence the performance of the method. It also concludes with some limitations of
the method. Chapter 5 develops multiple imputation to assess geometric uncertainty

along long drill holes with both schematic example and examples with true datasets.



Parameters that can influence the performance of the method are also discussed.
Chapter 6 illustrates the method with a real case study. The method and the workflow

is shown. Chapter 7 discusses conclusions and future work.



Chapter 2

Workflow of Multiple Imputation
of Geometric Data

The workflow of multiple imputation of geometric data serves as the basis for the
thesis. The workflow consists of constructing a local coordinates system, angle and
thickness calculation, variogram calculation and modeling, simulation of elevation and
thickness in a sequential manner, transforming elevation and thickness distribution
into the same units, merging elevation and thickness distributions, and sampling from
the merged distribution to generate multiple imputation results. There are two merging
methods considered: Bayesian updating and error ellipses. The chapter starts with
the prerequisites of multiple imputation before proposing the framework of multiple
imputation. A 2D schematic example is shown to demonstrate the method. The

chapter concludes with a discussion on the two merging methods.

2.1 Local Coordinates System

The scope of multiple imputation is about simple single-layered and multi-layered
tabular vein deposits with gentle folds. Some non-linear transformations can be used
to constrain the deposits into this scope. These transformations include applying
a stratigraphic coordinates system, and unfolding straightening function (Rossi and
Deutsch, 2014).

The first prerequisite of multiple imputation is to build a local coordinate system.
Tabular vein deposits can be inclined with different dips. Using the original real
world coordinate system can be inefficient and may not represent the true anisotropy
correctly. Furthermore, it may not be possible to represent the thickness in an ar-
bitrary coordinate system. As a result, a local coordinate system is constructed by

Total Least Squares (TLS) (Ostenberg and Deutsch, 2017). The method, which is a



linear regression fitting process, minimizes the error between the intercepts and the
fitted plane (Carvalho and Deutsch, 2017a,b; Carvalho, 2018). The result of TLS is
transforming the original Cartesian coordinates system with X, Y, and Z into a local
coordinates system of U, V, and W where these new coordinates are aligned with
the dip, strike, and thickness, respectively, of the tabular vein deposit. Figure 2.1
shows the original coordinate system and the local coordinate system transformed
after applying TLS. TLS allows an efficient use of the coordinate system and the cal-
culation of thickness values along the plane of continuity. The detailed step by step
calculation of TLS (Carvalho and Deutsch, 2018a, 2017b, 2018d; Carvalho, 2018) can

be found in these references.

wl "
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Figure 2.1: Total Least Square for Single-Layered Deposits

The coordinates of the pierce points of the drill holes with an inclined deposit are shown in (a).
After TLS, the coordinates are shown in (b), making the calculation of thickness easier.

The U, V, and W coordinates are required for geometric data imputation, and the
multiple imputation for the elevation (W) is executed in the U and V' 2D plane for
the hangingwall and the footwall. After the transformation, the elevation (W) of the
hangingwall and or the footwall, and the thickness (T'H), as a function of the U and

V' coordinates, are variables in a 2D space.

2.2 Other Prerequisites

After TLS, the local coordinate system allows the thickness to be calculated. There

are other prerequisites for multiple imputation, including angle and thickness cal-
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culation, normal score transform and variogram calculation and modeling. These
prerequisites enable the application of multiple imputation. Angle and thickness cal-
culation decides the locations that are necessary to be imputed and construct the
thickness distribution, and normal score transform and variogram calculation and

modeling allows the implementation of SGS.

2.2.1 Angle and Thickness Calculation

The geometric uncertainty increases with highly deviated drill holes. As a result,
the calculated angle for each drill hole is used to determine whether it is necessary
to conduct imputation to quantify the geometric uncertainty. The drill hole angle is

calculated by the following equation:

1 Waw — Wew
\/(UHW — UFW)2 + (Vaw — VFW)2 + Whuw — VVFW)2

0 = cos™

(2.1)

where 6 is the angle between the drill hole and the tabular vein deposit from 0 degree
(perpendicular to the reference plane) to 90 degrees (parallel to reference plane),
Unw, Urw, Vaw, Vew, Waw, and Wegy are the U, V, and W coordinates of the
pierce points of the hangingwall and the footwall.

It is important to include the thickness of the tabular vein deposit in the model
in order to create realistic surfaces. All thickness values must be greater than 0,
otherwise the hangingwall and the footwall surfaces will cross. After the calculation
of the angles, a maximum possible angle tolerance will decide whether the thickness
values can be calculated or should be imputed. If the angle of the drill hole is smaller
than angle tolerance, the drill hole will be considered as perpendicular to the plane
of continuity and the drill hole can provide information about the hangingwall and
the footwall surfaces and a thickness value. If the angle of the drill hole is larger than
the angle tolerance, the drill hole is consider as inclined and the thickness will be
imputed. The geometric data derived from the drill holes having small angles that
do not require imputation can be used to form local thickness values and the global
thickness distribution. The geometric data including the elevation and the thickness

of other drill holes will be imputed.
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After the TLS transformation, the elevation (W) and the thickness (T'H) are a
function of U and V' coordinates. As a result, the thickness can be calculated by the

following equation, and is added into the raw data:

TH = Wyw — Wew (2.2)

where T'H is the calculated thickness value, Wy is the elevation of the hangingwall,
and Wgy is the elevation of the footwall. The calculated thickness approximates the
true thickness if the drill hole is perpendicular to the hangingwall and the footwall.
After the calculation of the angles and the thickness, the geometric variables in-
cluding the elevation and the thickness used for multiple imputation can be normal

score transformed.

2.2.2 Normal Score Transform

It is necessary to normal score transform the three geometric variables, Wgw, Wew,
and T'H, because multiple imputation is conducted in Gaussian units. The trans-
formation tables should be saved for further processing and simulation. The three

geometric variables should be transformed independently by the following equations:

YWaw = G (FWHW (WHW)> (23)
YWew = G (FWFW (WFVV)) (24)
yru = G~ (Fry (TH)) (2.5)

where Fyw,., Fwpy, and Fy,, are the cumulative distribution functions, G™! is
the quantile function of the standard univariate Gaussian distribution. Wgw, Wew,
and T'H are variables in their original units, and yw,,, , Ywpy, and yrg are the
values in the standard Gaussian distribution, respectively. Manual interpretation
after declustering can derive the cumulative distribution functions. yw,,.,, Ywu, , and

yry are used to form the kriging system and the distribution for imputation.
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2.2.3 Variograms Calculation and Modeling

Variograms of the normal score variables are required to infer the covariances used
to calculate conditional distributions at unsampled locations. yw,,., , Ywew» a0d yrg
data are used to calculate the variograms. Variograms of the elevation of the hang-
ingwall and the footwall as well as the thickness are calculated in the U and V 2D
plane. If there are insufficient perpendicular data to calculate and model a thickness
variogram, then the variogram of the thickness can be set to either the variogram
of the elevation of the hangingwall or the variogram of the elevation of the footwall.
It is recommended to use a Gaussian variogram model and a small nugget effect to
model the variogram because the elevation (W) and thickness (T'H) are expected to
be quite continuous and the short scale variability is expected to be quite low (Isaaks

and Srivastava, 1989).

2.3 Multiple Imputation

After applying the prerequisites of building a local coordinate system, calculation of
the angle and the thickness, normal score transformation, and variogram calculation
and modeling, it is possible to conduct multiple imputation. Multiple imputation
consists of forming local distributions using kriging, transforming distributions of
thickness into elevation, merging these two distributions and drawing from the merged
distribution.

Multiple imputation considers the elevation (W) as the primary distribution and
the thickness (T'H) as the secondary distribution. The thickness (7'H) distribution is
transformed into the elevation distribution (W) by considering the opposing surface
position, allowing the merging of these two distributions to constrain the unknown

pierce points’ locations.

2.3.1 Local Distributions by Kriging

Multiple imputation uses SGS to form the distribution of the elevation of the hanging-
wall (Wgw), footwall (Wpy ) and the thickness (T'H), and samples from the merged

distribution. It is assumed that the local distribution can be fully characterized by
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the conditional mean and conditional variance in Gaussian units and can be defined
under a multivariate Gaussian distribution.

The distribution of the elevation (W), which is considered as the primary data, is
characterized by the conditioned mean y (1), and the conditioned variance o7~ (u).

Simple kriging is applied here to incorporate the spatially correlated data, which can

be calculated by the following equations (Barnett, 2015):
yw (Ll) = Z )\ozyW (ua) (26)
a=1

ooy () =1=) A\Cyy, (u,u,) (2.7)

where Cy,, (u,u,) is the covariance of the elevation values between the missing data
value at u and the observed data values at u,,. The covariance comes directly from the

variogram model (1 — 7). The weights, \,, are calculated by the normal equations:

Z AsCyy (U, ug) =Cyy, (yu,)  a=1,---.n (2.8)
B=1

The distribution of the thickness (T'H), which is considered as the secondary

data, is characterized by the conditioned mean y7y (u), and the conditioned vari-

ance o2 (u). Simple kriging is applied as well, which is shown in the following

YTH
equations:
yru (W) =Y Aayra (uq) (2.9)
a=1
Oy (W) =1 =3 AaClpy (1, 14) (2.10)
a=1
where Cy,,, (1,u,) is the covariance of the thickness between the missing data value

at u and the observed data value at u,. The weights, \,, are calculated by the normal

equations and are different from the weights calculated above in Equation 2.8:

Z AIBCZ/TH (um uﬁ) = C?JTH (u7 ua) a=1--.n (211>
B=1
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The number of data (n) used in the kriging system in the same search radius for
the elevation (7)) and the thickness (T'H) are likely different because one vertical
drill hole can provide both the elevation and the thickness, while one inclined drill
hole can provide one elevation of the hangingwall and one elevation of the footwall,
but no thickness value can be provided. As a result, the data number of elevation
(nw) is always larger than or equal to the data number of thickness (nyp).

The two local distributions are both formed by simple kriging using surrounding
data, which is different from the original multiple imputation method. The original
method uses the covariance between the primary and many collocated secondary
variables to form the local distribution and it is similar to linear regression which gives
a distribution of the primary variable. The calculations are shown in the following

equations (Barnett, 2015; Barnett and Deutsch, 2015):

p(w) =3 Aii(u) (2.12)

K

o’(w) =1-) NGy, (2.13)

i=1
where K is the number of secondary data, and C,; is the covariance between the
primary variable and the i*" secondary variable. The weights, )\;, are calculated by

the following equation:

K
Z )\jCi,j - Cpﬂ' Z - 1, e ,K (214)
7=1

where C; ; is the covariance between the two secondary variables.

In geometric data imputation, the thickness, as the secondary data, is used as a
reference to convert the uncertainty to elevation uncertainty. The thickness distribu-
tion is fully determined by kriging Equations 2.9, 2.10, and 2.11 and thickness values
are not used to form a distribution of elevation directly by regression Equations 2.12,
2.13, and 2.14. Consequently, there are two different distributions, the distribution
of elevation and the distribution of thickness. So, it is necessary to transform the

distribution of thickness into the distribution of elevation.
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2.3.2 Transforming Thickness to Elevation

The distributions of elevation and thickness are not in the same units. As a result, it is
necessary to transform the distribution of the thickness before merging them together
(Batty and Boisvert, 2020c). Because the elevation is the final imputed value, the
thickness distribution is transformed into the elevation distribution by the following

procedure:

1. Generate many random yrpy values from the thickness distribution characterized

by the local mean y7p (u) and local variance o, ().

2. Back transform the thickness values yrpg into original units by the following

equation:

TH[ = FTH_I(G(yTHJ)) l = 1, s ,L (215)

where G is the cumulative distribution function of the standard univariate Gaus-
sian distribution, Fry ' is the quantile function of the thickness, and TH is

the thickness in the original unit.

3. Calculate the opposite elevation using the back transformed thickness value in
the original unit and the known elevation value. For an inclined drill holes, there
are four geometric data, including two hangingwall and two footwall values,
and one hangingwall and one footwall are known and the other two are not
known. If the elevation of the hangingwall is being imputed, get the transformed
distribution of the hangingwall by adding the thickness and the footwall shown

in the following equation:

and if the elevation of the footwall is being imputed, get the transformed distri-
bution of the footwall by subtracting the thickness from the hangingwall shown

in the following equation:
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where Wy is the elevation of the hangingwall and Wgyy is the elevation of the

footwall.

4. Normal score transform the calculated elevation values using the corresponding
distribution. If the elevation of the hangingwall is being imputed, use equation

2.3 and if the elevation of the footwall is being imputed, use equation 2.4.

5. Calculate the mean and the variance of the transformed elevation distribution.
The transformed local distribution could be assumed as Gaussian characterized

by the mean and the variance.

The generation of random thickness values in step 1 follows the following steps. L
is usually set to 100 and [ is randomly generated. yrg is used to back transform the

thickness values into original units in Step 2.

l
P=— =1,---.L 2.1
= T (2.18)
YTH = ny(u) + UyTH(u)G_l(PZ) l= L., L (2'19)

After the transformation, the primary distribution of the elevation is not changed
and the secondary distribution of the thickness is changed into the distribution of

elevation unit.

2.3.3 Merging Two Distributions

After the transformation of the thickness distribution to elevation, the distributions
can be merged into one distribution.

There are two methods applied in geostatistics to merge compatible conditional
distributions. Bayesian updating is a widely used method and should be considered
for geometric data imputation (Batty and Boisvert, 2020c). The method can be
summarized by the following equations (Zhang et al., 2020):

ol YW + oo YW
_ YW (p y p)
Ywim)py = 3 e 2 e 2 (2.20)

— 2
UyW(p) ayW(p) ayW(t) + UyW(t)
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O-EW( )gjwu)
_ P
UyW<m)2BU g2 42 2 + 02 (2'21)

Yw (p) Yw (p) ~ YW (t) Yw (1)

The error ellipses method is the proposed method for the original workflow to
quantify geometric uncertainties (Carvalho, 2018). The method can be summarized

by the following equations (Erten and Deutsch, 2020):

_ o Ywep) | Yw
Ywm) g = Tywm) (0-2 T3 > (2:22)

Yw (p) Yw (t)

-1
L 2 (2.23)
Uy m2 = .
e Ugvv(m Ugw(t)

2
Yw (m)

2
YW (p)

is the primary mean and variance of the elevation distribution, yw ), ajw(t) is the

where Yy () is the merged mean and o is the merged variance and yy (), o
transformed mean and variance of the elevation distribution from the thickness dis-
tribution, respectively.

Both of the methods can combine probability distributions but there are some dif-
ferences. Bayesian updating assumes a known prior distribution (Zhang et al., 2020),
and the method of error ellipses assumes a infinite variance prior (Erten and Deutsch,
2020). The merging method is one of the determining factors of the performance of
multiple imputation and will be investigated in the following chapters.

At the end, it is possible to draw a value from the merged elevation distribution
to form one realization of the missing geometric data at the pierce point. Once
both the elevation of the hangingwall and the elevation of the footwall are known,
the thickness can be uniquely calculated. These imputed values can be added to
the dataset and are used in the future as known data when forming new elevation
and thickness distributions. The imputation can proceed to the next location in
an organized sequence which will be discussed in the following chapters. After all
missing data locations are imputed, a homotopic imputation geometric data file will

be generated.
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2.4 Surface and Solid Modeling

The number of homotopic geometric data files generated by multiple imputation
matches the number of realizations required by the following simulation and trans-
fer functions. Surface and solid modeling can proceed using the generated imputed
geometric data. There will be many different surface and solid models at the end
of surface simulation. The geometric uncertainty can be quantified from these sim-
ulated geological domains. Other sources of uncertainty, like boundary uncertainty
and grade and tonnage uncertainty, can be quantified using these generated solids

(Carvalho and Deutsch, 2017a,b,c; Carvalho, 2018; Carvalho and Deutsch, 2018d).

2.5 Schematic Example

A 2D schematic example is shown in this section to demonstrate the method (Bai and
Deutsch, 2020b; Batty and Boisvert, 2020b). The simplified prerequisites of multiple
imputation are given and the detailed workflow of multiple imputation is illustrated.
Imputation results and local distributions after multiple imputation are shown and

the performance of merging method is discussed at the end.

2.5.1 Data and Prerequisites of the Schematic Example

The figure in Section 1.2 is extended to create this 2D schematic example. The
merged 1D U and V coordinates of the pierce points of the deposit and drill holes
are added to the original Figure 1.1. The elevation (W) is also added to the figure.
The configuration of the drill holes of the 2D schematic example with coordinates is

shown in Figure 2.2.
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Figure 2.2: Configuration of Drill Holes for the Schematic Example

1D schematic example with the coordinates U/V and W of the pierce points between the drill
holes and the deposits is shown. (not to scale)

The geometric data shown in Figure 2.2, including drill hole (DH), wall type (Wall)
and the coordinates of the pierce points can be summarized into Table 2.1. For vertical
drill hole 1, both the elevation of the hangingwall and the elevation of the footwall are
known; for inclined drill hole 2, one elevation of the hangingwall and one elevation of

the footwall are not known.

Table 2.1: Geometric Data of the Schematic Example

DH Wall U/V W

1 HW 81 34

1 FW 81 34
2 HW 163 31
2 FW 222 18

The thickness can be calculated for drill hole 1 and the thickness cannot be calcu-
lated for drill hole 2. The calculated value of the thickness can be added into the raw
geometric data set in order to form the data set for imputation, which is summarized
in Table 2.2. The question marks in Figure 2.2 represent the pierce points that are

not known and need to be imputed.

20



Table 2.2: Geometric Data with Thickness of the Schematic Example

DH Wall U/V Hangingwall Footwall Thickness

1 HW 81 34 8 34-8=26
2  HW 163 31 ? ?
2 FW 222 ? 18 ?

For the schematic example, the distribution of the three geometric variables and
the variograms are known. It is assumed that the elevation of the hangingwall fol-
lows a triangular distribution of Tri (20, 30, 40), the elevation of the footwall follows
a triangular distribution of Tri (0, 10, 20), and the thickness follows a uniform distri-
bution of Uni(5,30). For a random variable X following a triangular distribution
X ~ Tri(a,c,b), ais the lower limit, b is the upper limit, and ¢ is the mode. For
a random variable X following a uniform distribution X ~ Uni (a,b), a is the lower
limit, and b is the upper limit. All these three variables can be normal score trans-

formed based on the distribution functions. The transformed data values are added

in Table 2.3.

Table 2.3: Geometric Data with NS Values of the Schematic Example

DH Wall X WHW WFW TH YWw YWerw YrH

1 HW 81 34 8 26 09154 -0.4677 0.9945
2 HW 163 31 ? 7 0.2404 ? ?
2 FW 222 ? 18 ? ? 2.0537 ?

It is also assumed that the variograms of the elevation of the hangingwall, the
elevation of the footwall, and the thickness can be all modeled as Gaussian with a
nugget effect of 0.01 and a range of 200. The following equation shows this variogram

model.

0 h=0

T = 0014099 % (1—emp (3% £5)) h#0

(2.24)

where h is the 1D distance between data points. The covariance values used in the
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kriging system come from the variogram model (1 — v (h)).
After these prerequisites of thickness calculation, normal score transform, and var-

iogram modeling, distributions can be derived for multiple imputation.

2.5.2 Multiple Imputation of Schematic Example

It is possible to form the distributions using the geometric data shown in Table 2.3
and the variogram shown in equation 2.24 and it is assumed that the sequence of
imputation starts from the footwall at 163 and goes to the hangingwall at 222.

The distribution of elevation of the footwall can be formed by kriging using the
data at 81 and 222. The variogram and covariance based on the distance and the
variogram model can be calculated. The kriging equations can be constructed and

solved. The mean and variance of the local distribution can be derived.

1 1—~(222—81)] |\ 1—~(163 — 81
ol ) o ol ) (2.25)
1— (222 — 81) 1 Ao 1—~(222 — 163)
1 0.2229 0.5979
C = D= (2.26)
02229 1 0.7625
» 0.4503
A=C'D= (2.27)
0.6621
Y () = 0.4503 x —0.4677 + 0.6621 x 2.0537 = 1.1493 (2.28)
020, = 1= 04503 x 0.5979 — 0.6621 x 0.7625 = 0.2259 (2.29)

So, the mean and variance of the primary distribution of the elevation of the
footwall is 1.1493 and 0.2259. The distribution of the thickness can be formed by
kriging using the data at 81.

[1] [)\1} = [1 — (163 — 81)] (2.30)

C = [1] D = [0.5070] (2.31)
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A=C7'D= [0.5979} (2.32)
yrine = 0.5979 x 0.9945 = 0.5946 (2.33)

o2 =1-0.5979 x 0.5979 = 0.6425 (2.34)

YTH(s)
So, the mean and variance of the secondary distribution of the thickness of the
footwall is 0.5946 and 0.6425. The thickness distribution can be transformed into the
elevation of the footwall at 163.

1. Generate random values and corresponding quantiles of the distribution char-

acterized by (0.5946, 0.6425).

—0.9002 —0.7250 --- 0.5785 0.5946 0.6107 --- 1.8030 1.9142

2. Transform the quantile values to the original unit of the thickness.
TH = Fry (G (yrn))
[9.6004 10.956 --- 22.963 23.098 23.232 --- 29.108 29.305]

3. Calculate the footwall based on the thickness. It is possible to find that the
hangingwall is 31 at 163. Because the elevation of the footwall follow a triangular
distribution Tri ~ (0, 10,20), some values that are higher than 20 are labeled
as -999.

Wrw = Wyw —TH

—-999 —-999 ... 8.0368 7.0916 7.7676 --- 1.8923 1.6950

4. Normal score transform the elevation of the footwall.
YWerw = G_l (FWFW (WFVV))

-999 —-999 ... —-0.4594 -—-0.4897 —-0.5196 --- —2.0991 —2.1872]
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5. Calculate the mean and the variance of the new distribution, which is -0.3502

and 1.1746.

and o2

. — 2 —
After the transformation, the values of yw ., ), Ty o () IWEW (1) YWy (6)

are known. The merged distribution can be calculated by the following equation,

assuming the method of error ellipses is used.

1.1493  —0.3502
= 9 2.35
Yw(m) = Oy (0.2259 + 1.1746 > (235)
1
gjwm) - (2.36)

02259  T.1746
The final merged distribution is characterized by (1.2701, 0.2653) and a value of

the elevation of the footwall can be drawn from this distribution. The thickness can
be calculated using the known hangingwall value. The dataset with the imputed

result is shown in Table 2.4.

Table 2.4: Imputation Result at 163 of the Schematic Example

DH Wall Horizontal Coordinate Hangingwall Footwall Thickness

1 HW 81 34 8 26
2 HW 163 31 16.341 14.659
2 FW 222 ? 18 ?

After imputing the elevation of the footwall at 163, the imputation can proceed
to the hangingwall at 222. The previously imputed value at 163 is used for future
imputation. The distribution of the elevation of the hangingwall can be formed by
kriging using the data at 81 and 163 and the thickness distribution can be formed by
kriging using the data at 81 and 163. The thickness value of 14.659 is imputed before.
The thickness distribution can be transformed into the elevation of the hangingwall
at 222 by adding 18. The final distribution can be formed by merging these two
distributions using the same method as illustrated above. The imputed dataset is
shown in Table 2.5.

The drill hole plot is shown in black in Figure 2.3 at the top and one realization

of the imputed result of multiple imputation is shown in blue in Figure 2.3. The

24



Table 2.5: Imputed Result of the Schematic Example

DH Wall Horizontal Coordinate Hangingwall Footwall Thickness

1 HW 81 34 8 26
2 HW 163 31 16.341 14.659
2 FW 222 29.078 18 11.078

elevation of the footwall at 163 is 16.341 and the elevation of the hangingwall at 222
is 29.078.
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Figure 2.3: Drill Plot and One Imputation of the Schematic Example

The geometric data with two drill holes before imputation are shown at the top. One realization of
the imputed result is shown at the bottom.
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2.5.3 Result of Schematic Example

The imputation can be repeated many times in order to match the final number
required by future geostatistical simulations. The imputed values with 200 realiza-
tions are shown in Figure 2.4. The two bolded blue areas show the distribution of the

elevation and it is possible to assess the geometric uncertainties at these two locations.
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Figure 2.4: 200 Imputed Realizations of the Schematic Example

200 imputed realizations show the possible distribution of the elevation of the hangingwall and the
footwall.

A simple comparison between the method of Bayesian updating and error ellipses
is presented here. The method of error ellipses is chosen as the method in the orig-
inal workflow because it always gives a distribution in the middle of two merging
distributions (Carvalho, 2018). However, the method of Bayesian updating is also a
robust and simple method widely used, which should be tried in multiple imputa-
tion. In Figure 2.5, the distributions formed by Bayesian updating and error ellipses
are shown. The means are similar, and the variances of Bayesian updating shown
in orange are slightly larger than the ones of error ellipses shown in blue. A more
complete comparison will be shown in the next chapter.

Building a local coordinates system, angle and thickness calculation, normal score
transform, and variogram calculation and modeling serve as the prerequisites of mul-
tiple imputation. Multiple imputation consists of forming distributions of elevation

and thickness, transforming thickness distribution to elevation, merging elevation dis-
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In (a), the results of the Bayesian updating and error ellipses are plotted in a scatter plot. The
results are similar. In (b), the local distribution of the imputed values are shown. The results by
the two methods are still similar. (BU for Bayesian updating and EE for error ellipses)

tribution and thickness distribution. This workflow of multiple imputation serves as

the basis to assess geometric uncertainty and many applications will be demonstrated

in the following chapters.

(b)
Figure 2.5: Bayesian Updating and Error Ellipses Results of the Schematic Example
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Chapter 3

Single-Layered Deposits

The application of multiple imputation for geometric data imputation in single-layered
deposits is developed. This chapter starts with the demonstration of the workflow with
two synthetic examples. The distributions and the variograms of the wvariables in
the first example are assumed known, while this assumption is relaxed in the second
example. The imputed results are compared with the true values in order to validate the
method. Through a sensitivity analysis investigating various influencing parameters
that can affect the performance of the method, it is found that choosing an appropriate
angle tolerance and transformation method is important and the best sequence is to
start from the most vertical drill holes. Also, error ellipses performs slightly better
than Bayesian updating. This chapter concludes with some limitations that include
that the calculated thickness distribution may not reflect the entire distribution and

there is no guarantee that the imputed values will be in the range of the distribution.

3.1 Demonstration of Single-Layered Deposits

Two examples demonstrate the major steps and the results of multiple imputation
for single-layered deposits. Omne full synthetic true dataset is generated for both
examples. The same workflow is applied to the two examples, but the transformation
methods and variograms are different. It is assumed that the true distributions and
variograms of all the geometric variables in the first example are known, while in the
second example, the distributions and the variograms of all the geometric variables
are not known and are derived in a non-parametric way from the drill hole samples.
The validation of the method of multiple imputation is achieved through comparing
the true synthetic values with the imputed values. Several statistics, including error

rate, Pearson correlation coefficient (p), and root mean square error (RMSE) are
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calculated. Cumulative distributions and variograms are accessed to compare global
distribution and spatial continuity. A comparison of the results from the two examples

concludes the section.

3.1.1 True Data for Demonstration of Single-Layered De-
posits

A full geometric dataset, including the elevation of the hangingwall, the elevation
of the footwall and the thickness is generated by unconditional simulation in order
to draw geometric samples to conduct multiple imputation and check the results of
multiple imputation.

The elevation of the hangingwall and the elevation of the footwall are simulated
unconditionally and independently. The two sets of simulated normal values are
transformed into original units. The elevation of the hangingwall follows a normal
distribution with a mean of 100 and a variance of 5, and the elevation of the footwall
follows a normal distribution with a mean of 70 and a variance of 5. Figure 3.1 shows
2-D location maps of the elevation of the hangingwall and the elevation of the footwall
in the simulated true dataset.

Because the elevation of the hangingwall and the elevation of the footwall are
simulated independently, there exists a possibility that the two surfaces would cross
each other; however, no crossing of the hangingwall and the footwall is observed.

Then, the thickness values in the true dataset can be calculated by subtracting the
elevation of the footwall from the elevation of the hangingwall. The thickness follows
a normal distribution with a mean of 30 (100 — 70) and a variance of 7.07 (v/5% + 52).
Other types of distributions could be considered. Figure 3.2 displays a map of the
calculated 2-D locations and values of thickness. These distributions are used to build
the cumulative distribution function and inverse cumulative distribution function for

data transformation.
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Figure 3.1: Location Map of the Simulated Elevation Data for Single-Layered Deposits

In (a), the simulated values of the elevation of the hangingwall are shown in the location map. In
(b), the simulated values of the elevation of the footwall are shown in the location map.

Thickness (m), True Data

Northing (m)

ssssss ssse

20 30
Easting (m)

Figure 3.2: Location Map of the Calculated Thickness Data for Single-Layered De-
posits

The thickness that is derived from the simulated elevation of the hangingwall and the elevation of
the footwall is shown in the location map.

After the generation of the true dataset, it is possible to draw samples from the
dataset. A set of synthetic drill holes are drawn randomly to mimic a drill hole

campaign by selecting 50 pairs of U and V coordinates at both the hangingwall
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wall and the footwall. Straight lines are used to connect these pairs of pierce points
with the surfaces to form drill holes samples. It is assumed that all drill holes are
straight. A triangulated surface plot of the true simulated data with drill holes is
shown in Figure 3.3a. The blue surface is the hangingwall, and the orange surface
is the footwall. The black straight lines represent drill holes. Figure 3.3b shows a

cross-sectional drill plot.

Simulated Surface with Drill Holes

Drill Plot

Elevation (m)

0 10 20 30 40 50
Easting (m)

(a) (b)

Figure 3.3: Simulated Surfaces with Drill Holes

In (a), the sample is synthesized by unconditional simulation of the hangingwall and the footwall
and drawing drill holes that pierce both the hangingwall and the footwall. In (b), a cross-sectional
view of the drill holes is shown.

Although random generation can provide unrealistic highly deviated drill holes, it
can provide challenging data for testing. And the unrealistically small distance (Om

to 50m) of easting and northing in the true dataset is for demonstration only.

3.1.2 Single-Layered Deposit Example 1

The workflow of multiple imputation is applied. The prerequisites of the method of
multiple imputation include angle and thickness calculation, normal score transform,
and variograms calculation and modeling. The first step is to calculate the angles of
the 50 drill holes and the thickness values based on the angle tolerance. An angle

tolerance of 30 degrees is used. All drill holes with an angle larger than 30 degrees
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will be imputed in the workflow. This empirical limit is decided by trial and error in
order to improve the performance of the method. Other angle tolerances are tried and
will be discussed in Section 3.2.1. A distribution plot of the angles is shown in Figure
3.4. The angles of the 50 drill holes have a range from 10 degrees to 60 degrees. The
vertical dashed line shows the angle tolerance of 30 degrees, keeping 11 drill holes as
perpendicular to the plane of the continuity. Other drill holes are thus considered as

inclined drill holes and will be imputed.

Calculated Angles For Each Intercepts
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Figure 3.4: Cumulative Distribution of the Angles of the Drill Holes for Single-Layered
Deposit Example 1

The cumulative distribution function of the angles of the drill holes are plotted and an angle
tolerance of 30 degrees is used.

The geometric data samples used in the method of multiple imputation can be
formed after calculating the angles and the thicknesses. Figure 3.5 displays a 2-D
location map of the elevation of the hangingwall, the elevation of the footwall, and
the thickness. The elevation values are derived directly from the coordinates of the
pierce points, and the thickness values are calculated. The values in normal score
units at these locations are used to conduct multiple imputation. There are 50 drill
holes, so there are 50 elevation values of the hangingwall and 50 elevation values of

the footwall. Based on the drill holes and the angle tolerance, there are 11 drill holes
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having angles less than 30 degrees. As a result, there are only 11 thickness values that
can be calculated by Equation 2.2. Other drill holes only provide information about
the elevation of the hangingwall and the elevation of the footwall. Consequently, the
sample size of the thickness is always equal or smaller than the sample size of the

elevation. The total sample size after imputation will be 89 (50 + 50 — 11).
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Figure 3.5: Location Maps of the Sample for Single-Layered Deposit Example 1

In (a), the location map of the thickness in the sample is shown. In (b), the location map of the
elevation of the hangingwall in the sample is shown. In (c), the location map of the elevation of the
footwall in the sample is shown.
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In this example, it is assumed that the variograms of geometric variables are avail-
able. The variograms are calculated and modeled from the true data. Figure 3.6
shows the modeled variograms. If there are few thickness values and it is hard to
model the thickness variogram, it is possible to assign the variogram of one of the

surfaces as the variogram of the thickness.
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Figure 3.6: Modeled Variograms for Single-Layered Deposit Example 1

In (a), the calculated and modeled variogram of the thickness is shown. In (b), the variogram of
the elevation of the hangingwall is shown. In (c), the variogram of the elevation of the footwall is
shown.
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The imputation includes forming local distribution of elevations and thicknesses by
kriging, transforming the distribution of thickness into the distribution of elevation,
merging the distribution of thickness and the distribution of elevation, and drawing
an imputed value from this merged distribution. The imputation proceeds from the
most constrained area to the least constrained area.

It is assumed that all the distributions of geometric variables are available in this
example. As a result, the parametric cumulative distribution functions and inverse
cumulative distribution functions can be used to conduct transformations.

After imputation, every location will have one value for all the geometric variables.
Figure 3.7 shows the location maps of samples before imputation as well as one im-
puted realization. By comparing these location plots, it is possible to see that multiple
imputation transforms the heterotopic geometric data samples into homotopic geo-
metric data samples. The homotopic geometric data samples includes all the pierce
points from the hangingwall and footwall, as well as all the thickness values. The
number of imputed locations of the elevation of the hangingwall and the elevation of
the footwall are the same. The number of the imputed locations of the thickness is
bigger. After imputation, it is possible to model the deposit by having one elevation
of the surface and one corresponding thickness value.

After imputing 100 realizations, the imputed values are validated against the true
values. E-type values, which are the mean values of all the imputed realizations, are
used to compared with the true values. Three summary statistics: error rate, Pearson
correlation coefficient (p) and root mean square error (RMSE) are summarized in

Table 3.1. The error rate is defined by the following formula and the unit is percentage.

|Imputed Value — True Value|

Error rate =

1 1
True Value *100% (3.1)

The p is defined by the following formula and has no unit.

S (True Value; — True Value) (Imputed Value; — Imputed Value)

P

\/ >, (True Value; — True Value)2 >, (Imputed Value; — Imputed Value)2
(3.2)

The RMSE is defined by the following formula and the unit is meter (m).
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Figure 3.7: One Realization after Imputation for Single-Layered Deposit Example 1

In (a), (c), (e), the samples of the elevation of the hangingwall, the elevation of the footwall, and
the thickness before imputation are shown respectively. In (b), (d), (f), one realization of the
elevation of the hangingwall, the elevation of the footwall, and the thickness after imputation is
shown.
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1 n
RMSE = | — E (True Value; — Imputed Value;)? (3.3)
n
—

The error rate of the elevation (around 1) is smaller than the error rate of the
thickness (around 3), however, the correlation of the thickness (around 0.95) is higher
than the elevation (around 0.9). 0.9 means a strong correlation. The RMSE for the
elevation and the thickness are more consistent (around 1). The better result is bolded
in the table in order to compare the two merging methods. From the results, the

method of Bayesian updating outperforms very slightly the method of error ellipses.

Table 3.1: Summary Statistics for Single-Layered Deposit Example 1

Variable Merging Method Error Rate Correlation RMSE

Waw EE 0.926 0.899 1.127
Waw BU 0.890 0.901 1.104
Wew EE 1.196 0.870 1.017
Wew BU 1.161 0.871 1.035
TH EE 2.931 0.955 1.073
TH BU 2.840 0.953 1.070

Accuracy and bias of the results are also compared in Figure 3.8a, 3.8c, and 3.8e. In
these scatter plots, e-type estimates are plotted on the x-axis against the true values
that are plotted on the y-axis. The overall regression line shows a strong correlation,
which is consistent with the calculated correlation. The regression line illustrates a
very slight conditional bias. The method tends to over-estimate the low values and
under-estimate the high values. The two merging methods are also plotted and again
similar results are produced.

Histograms of local distributions of the elevation of the hangingwall, the elevation
of the footwall, and the thickness at one random location are plotted in Figure 3.8b,
3.8d, and 3.8f, respectively. The local distributions from 100 realizations are plotted
in blue and orange, and the true values are plotted in a red line. The local estimates
can be slightly away from the true values. Again, the two merging methods show

similar results.
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Figure 3.8: Validation Plot for Single-Layered Deposit Example 1

In scatter plots (a), (c), (e), the imputed values of the elevation of the hangingwall, the elevation of
the footwall, and the thickness are plotted against the true values, respectively. In histograms (b),

(d), (f), one local distribution of the three geometric variables is plotted.
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Reproduction of the cumulative distribution of the imputed one hundred realiza-
tions is shown in Figure 3.9. The imputed distributions are plotted in gray. The true
distributions in red and the sample distributions in blue are plotted for comparison.
The imputed distributions overlap with the true distributions as well as the sample
distributions. The imputed distributions have higher variance than the sample dis-
tributions, but lower variance than the true distributions. The method reproduces
the cumulative distribution quite well overall, but it slightly reduces the variance for
all three geometric variables. The reproduction of the thickness seems better than
the elevation. After comparing Figure 3.9a with Figure 3.9d, Figure 3.9b with Fig-
ure 3.9e, and Figure 3.9¢ with Figure 3.9f, it seems that the two merging methods
perform similarly.

Reproduction of the variograms of the imputed one hundred realizations are dis-
played against the true variograms in Figure 3.10. The true variograms are plotted
in red, and the variograms from the realizations are plotted in blue and green. The
method can reproduce the overall spatial relationship, but the anisotropy does not
appear to be reproduced very well. After comparing Figure 3.10a with Figure 3.10b,
Figure 3.10c with Figure 3.10d, and Figure 3.10e with Figure 3.10f, it seems that the
two merging methods perform similarly.

The overall performance of the method of multiple imputation appears reasonable
in this case when all the distributions and the variograms of the variables are known.
The method has an acceptable correlation, and can reproduce the distribution and

variogram.

3.1.3 Single-Layered Deposit Example 2

The same workflow of multiple imputation and the same samples are used in this
example; however, it is assumed that the distribution of all three geometric variables,
and the variograms models are not known. So, the transformation methods are
now non-parametric and the variograms need to be calculated and modeled from
the samples shown in Figure 3.5.

The prerequisites for the method are the same. The angle and thickness calcula-
tion can be done without having the distributions and variograms. As a result, the

same samples can be derived. However, the normal score transform and variograms
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Figure 3.9: Distribution Reproduction of Single-Layered Deposit Example 1

In plot (a), (c), (e), the distribution of the imputed realizations by Bayesian updating of the
elevation of the hangingwall, the footwall, and the thickness are plotted, respectively. In plot (b),
(d), (f), the results by error ellipses are plotted.
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Figure 3.10: Variogram Reproduction of Single-Layered Deposit Example 1

In plot (a), (c), (e), the variogram of the imputed realizations by Bayesian updating of the
elevation of the hangingwall, the footwall, and the thickness are plotted, respectively. In plot (b),
(d), (f), the results by error ellipses are plotted.
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calculation and modeling are different.

Three methods, linear interpolation on a non-parametric CDF (Linear), kernel
density estimation (KDE), and Gaussian mixture model (GMM) form different em-
pirical distributions and allow transformation from original units to normal score
units and vice versa. These three methods allow a comparison. Figure 3.11a shows
fitted cumulative distribution functions by the three methods and sample values of
the thickness. The sample values are in blue, and three methods use these samples
values to construct non-parametric distributions. It seems that the empirical distri-
butions fitted by Linear in green and GMM in red provide better results than the
one fitted by KDE in orange. Figure 3.11b shows a histogram of the thickness and
the probability density function fitted by KDE and GMM. Using the method of KDE
and GMM enables imputation to provide extreme values that are beyond the range
of the original distribution of geometric variables. A comparison of the imputation

results will be show in Section 3.2.3.
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Figure 3.11: Fitted Thickness Distributions of Single-Layered Deposit Example 2

In (a), the empirical cumulative distribution of the sample of the 11 thickness values is shown with
three different fitting methods. In (b), the histogram of the thickness distribution is shown with
the fitted probability density function.

The variograms of the variables are calculated and modeled based on the sample

in Figure 3.5. The true variograms of the three geometric variables in Section 3.1.2
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are shown on the left of Figure 3.12 and the calculated and model variograms using
the samples are shown on the right of Figure 3.12. The variograms of the elevation of
the hangingwall and the variograms of the elevation of the footwall are less stable but
can still be modeled, however, because there are fewer samples for the thickness, the
variogram of the thickness is very different from the true variogram of the thickness.
It can not be used for kriging. In this example, the variogram of the thickness is
set to be the variogram of the true thickness in Figure 3.12e. If the true variogram
of the thickness is not available, it is possible to set the variogram of the thickness
to be the variogram of a more stable surface because geometric variables tend to be
very continuous. In this example, the variogram of the thickness can be set to be the
variogram of the elevation of the footwall shown in Figure 3.12d.

Then, the same method of forming and merging distributions is applied except
that the three non-parametric methods are used to conduct transformation on the
three geometric variables. After imputing 100 realizations, every location will have
one value for all the geometric data and the imputed values are validated against the
true values. The results using GMM are shown in this section.

The three summary statistics which compare the E-type values and true values are
summarized in Table 3.2. The calculation of the three summary statistics can be found
in Section 3.1.2. The overall performance based on the non-parametric methods is not
as accurate as the performance based on the correct distribution functions. The error
rate of the elevation changes from 1 to 1.3. The error rate of the thickness changes
from 3 to 4. The correlation decreases from 0.9 to 0.8. The RMSE increases from 1
to 1.5. The results of the elevation are different from the results of the thickness.

The best result is bolded in the table. From the results, the method of Bayesian
updating outperforms very slightly the method of error ellipses. The slight advantage
of Bayesian updating in this example is smaller than the first example because prior
distribution is uncertain.

Accuracy and bias of the results are also compared in Figure 3.13a, 3.13c, and
3.13e. In these scatter plots, e-type estimates are plotted on the x-axis against the
true values on the y-axis. The overall regression line shows a moderate to strong
correlation, which is consistent with the calculated correlation. The regression line

illustrates a slight conditional bias. This conditional bias is larger than the bias in
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Figure 3.12: Modeled Variograms for Single-Layered Deposit Example 2

In plot (a), (c), (e), the variogram of the elevation of the hangingwall, the footwall, and the
thickness from the true data are plotted, respectively. In plot (b), (d), (f), the modeled variograms
from the sample are plotted. The variogram of the thickness can not be used.
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Table 3.2: Summary Statistics for Single-Layered Deposit Example 2

Variable Merging Method Error Rate Correlation RMSE

Waw EE 1.180 0.748 1.632
Waw BU 1.189 0.761 1.615
Wew EE 1.505 0.730 1.395
Wew BU 1.503 0.733 1.397
TH EE 3.925 0.905 1.518
TH BU 3.928 0.905 1.510

the previous example. The method tends to over-estimate the low values and under-
estimate the high values again. The two merging methods are also plotted and again
similar results are produced.

Histograms of local distributions of the elevation of the hangingwall, the elevation
of the footwall, and the thickness at one random location are plotted in Figure 3.13b,
3.13d, and 3.13f, respectively. The local distributions from 100 realizations are plotted
in blue and orange, and the true values are plotted in a red line. The local estimates
can be slightly different from the true values. Again, the two merging methods show
similar results.

Reproduction of the cumulative distribution of the imputed one hundred realiza-
tions is shown in Figure 3.14. The imputed distributions are plotted in gray. The true
distributions are plotted in red and the sample distributions plotted in blue are shown
for comparison. The imputed distributions usually overlap with the true distributions
as well as the sample distributions.

The method reproduces the cumulative distribution approximately well overall, but
it reduces the variance for all three geometric variables because the transformation
is based on the sample data. This result is not clear in the reproduction of the
elevation of the hangingwall, but the reproduction of the elevation of the footwall
shows a reduction in variance and some deviations. Furthermore, this result is very
clear in the reproduction of the thickness distribution. In Figure 3.14e and Figure
3.14f, the reproduction of the thickness is mainly based on the samples. As a result,

the reproduction is not as accurate as the previous case. After comparing the results
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Figure 3.13: Validation Plot for Single-Layered Deposit Example 2

In scatter plots (a), (c), (e), the imputed values of the elevation of the hangingwall, the elevation of
the footwall, and the thickness are plotted against the true values, respectively. In histograms (b),
(d), (f), one local distribution of the three geometric variables is plotted.
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by Bayesian updating on the left of Figure 3.14 and the results by error ellipses on
the right of Figure 3.14, it seems that the two merging methods perform similarly.

Reproduction of the variograms of the imputed one hundred realizations are dis-
played against the true variograms in Figure 3.15. The true variograms are plotted
in red, and the variograms from the realizations are plotted in blue and green. The
method can reproduce approximately reproduce the spatial relationship. However,
the reproduction is not as good as the reproduction in the previous example. The
anisotropy does not appear to be reproduced fully and the reproduction of the var-
iogram of the thickness appears poor. After comparing Figure 3.15a with Figure
3.15b, Figure 3.15¢ with Figure 3.15d, and Figure 3.15e with Figure 3.15f, it seems
that the two merging methods perform nearly the same for the elevation. Error
ellipses performs better for the thickness.

The performance of the method based on GMM provides reasonable results. Of
course, it is better to have the full correct distribution. These two examples demon-
strate the method of multiple imputation, which includes the primary spatial eleva-
tion values and secondary collocated thickness values together when constructing local
conditional distributions. The correlation, the reproduction of the global distribution,

and the reproduction of spatial continuity appears acceptable.

3.2 Sensitivity Analysis of Single-Layered Deposit

Various decisions and parameters during the process of multiple imputation can influ-
ence the performance of the method. These parameters include the angle tolerance,
the sequence of imputation, the transformation methods, as well as the merging
method. Sensitivity analysis is conducted in order to find the best parameters to
choose when conducting multiple imputation. The correlation and the RMSE values
between the true values and the imputed results calculated in different cases are used

to justify different decisions and parameters.

3.2.1 Angle Tolerance

During multiple imputation, there are many quantile-to-quantile transformations. As

a result, having a representative distribution, especially for thickness, is very impor-
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Figure 3.14: Distribution Reproduction of Single-Layered Deposit Example 2

In plot (a), (¢), (e), the distribution of the imputed realizations by Bayesian updating of the
elevation of the hangingwall, the footwall, and the thickness are plotted, respectively. In plot (b),
(d), (f), the results by error ellipses are plotted.
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Figure 3.15: Variogram Reproduction of Single-Layered Deposit Example 2

In plot (a), (c), (e), the variogram of the imputed realizations by Bayesian updating of the
elevation of the hangingwall, the footwall, and the thickness are plotted, respectively. In plot (b),
(d), (f), the results by error ellipses are plotted.
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tant. The global distribution of thickness is built by subtracting the elevation of the
footwall from the elevation of the hangingwall and depends on the angle tolerance
used. In Figure 3.16, this relationship is displayed by plotting the cumulative distri-
bution of the drill holes angles and the corresponding thickness samples. From Figure
3.4 and Figure 3.5 in Section 3.1.2, if the angle tolerance is 30 degrees, there are 11
thickness values. From Figure 3.16, if the angle tolerance is 25 degrees, there are 7
thickness values. If the angle tolerance is 35 degrees, there are 13 thickness values. If
the angle tolerance is 40 degrees, there are 19 thickness values. The higher the angle
tolerance is, the more thickness values are included in the calculated distribution of
thickness.

It is necessary to have enough data to construct the distribution of thickness. How-
ever, a large angle tolerance and more thickness values may decrease the performance
because the calculated thickness by Equation 2.2 is not exactly the true thickness.
If the angle tolerance is too big, the calculated thickness values start to differ from
the true thickness distribution. Different angle tolerances are tried, and the results
of summary statistics are shown in Figure 3.17. Different angle tolerances from 25
degrees to 50 degrees are plotted on the x-axis, an the corresponding correlation and

RMSE are plotted on the y-Axis.
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(a) (b)
Figure 3.17: Correlation and RMSE of Different Angle Tolerance

In (a), the correlation of the imputed values with the true values decreases with the increase of the
angle tolerance. In (b), the RMSE of the imputed values with the true values increases with the
increase of the angle tolerance.

Based on Figure 3.17, having an angle tolerance of 30 degrees appears reasonable.
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In (a), (¢), (e), different angle tolerances are shown. In (b), (d), (f), the corresponding thickness
values based on the angle tolerances are shown. The larger the angle tolerance, the bigger the
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Figure 3.16: Angle tolerance and sample size

sample size.
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When the angle tolerance is larger than 35 degrees, the performance of the method
decreases (the RMSE increases) because many incorrect thickness values are kept in
the distribution. It is recommend to use trial and error to find the best angle tolerance
for different deposits with different thickness values.

On the other hand, if too few thickness values are kept with a smaller angle toler-
ance, the distribution of thickness will be unstable. It is important to have enough
sample values to form distributions, calculating and modeling variograms, and form
kriging equations. From Figure 3.18, once enough drill holes are available, the accu-
racy will not change significantly. With a angle tolerance of 30 degrees, the minimum
drill hole number that can produce reasonable result is 45. After this number of drill
holes, the performances look the same.

By considering the angle tolerance (30 degrees) and the number of drill holes to-
gether, 10 thickness values start to produce reasonable imputation results. This
number comes from the number of drill holes timing the percentage of perpendicular

drill holes after applying the angle of tolerance.
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Figure 3.18: Correlation and RMSE of different drill holes number

In (a), the correlation of the imputed values with the true values increases with the increase of the
drill hole number. In (b), the RMSE of the imputed values with the true values decreases with the
increase of the drill hole number.

It is important to mention that these numbers are specific for these examples. The
angle tolerance and the number of drill holes must be considered together in order to
achieve the number of samples required for forming empirical distributions, variogram

calculation and modeling, as well as forming the kriging equations.
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Figure 3.19: Schematic llustration for Demonstration of Sequence of Imputation

A schematic illustration of three drill holes is shown. Six locations A, B, C, D, E, and F are going
to be imputed. Several sequences are applied. (not to scale)

3.2.2 Imputation Sequence

Imputation starts from the most constrained location to the least constrained location.
There are many ways to measure the degree of constraint. The kriging variance is
one way. A smaller kriging variance means a higher constraint. Thus, the imputation
could start from the location with the smallest kriging variance to the location with
the highest kriging variance. Another practical measure is the angle of the drill hole
(Bai and Deutsch, 2021a). Locations having vertical drill holes are more constrained
than locations having inclined drill holes. A schematic illustration shown in Figure
3.19 is used to demonstrate various sequences of imputation considered.
Independent global kriging of the elevation of the hangingwall and the elevation
of the footwall are used to determine the kriging variance of each location under
imputation. The hypothetical calculated kriging variances are listed in Table 3.3.
There are three imputation sequences considered. In the first sequence (Kriging
Variance), the calculated kriging variance values at the hangingwall and at the foot-
wall are combined together into one sequence. This sequence is shown in the following
path. The imputation starts at the location with the smallest kriging variance to the

location with the largest kriging variance.

A(0.1) = B(0.2) = C(0.3) = E(0.4) = F (0.5) = D (0.6) (3.4)

In the second sequence (Layer), the calculated kriging variance values at the hang-
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Table 3.3: Kriging Variance of the Schematic Example

Location Kriging Variance

A 0.1
0.2

0.3

0.6

0.4

H i " O A

0.5

ingwall and at the footwall are compared separately at first and then combined. A
more stable layer is decided at the first by comparing the variogram range. The im-
putation starts at the layer with the smallest variance and goes to the other layer
after all locations at the first layer are imputed. It is assumed that the hangingwall is

more stable. The sequence of the schematic example is shown in the following path.

B(0.2) = C(0.3) = F(0.5) = N
A(0.1) = E(0.4) = D(0.6) (3.5)

The final sequence considered (Angle) is based on the drill hole angles. In this
method, the angles of all the drill holes are calculated first. The imputation starts
from the drill hole with the smallest drill hole angle. Within one drill hole, the
sequence starts from the location with the smallest kriging variance. As a result, the
imputation in the schematic example starts from the drill hole with E and F and to

the drill hole with C and D. The sequence is shown in the following path.

E(0.4)= F(0.5) =
A(0.1)= B(0.2) = (3.6)
C(0.3) = D (0.6)
It is shown that this method provides the best results. The RMSE decreases

significantly while the method is used. The results shown in Figure 3.20 reflect that

there is no major difference between these two sequences.
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Figure 3.20: Correlation and RMSE of Different Sequence

In (a), the correlation of the imputed values with the true values increases with different sequence
is shown. In (b), the RMSE is shown. The sequence based on the angle is the best.

The performance of the two merging methods: Bayesian updating and error el-
lipses can usually be improved together. However, in Figure 3.20a, when the third
imputation sequence (Angle) is used, the performance of Bayesian updating decreases
and the performance of error ellipses increases. As a result, the two merging method

can behavior differently.

3.2.3 Transformation Method

The true distributions of the geometric data variables are not available to conduct
the transformation; the transformation functions must be derived from the samples.
Three non-parametric transformation methods have been tried. They are linear trans-
formation, KDE, and GMM. From Figure 3.21, the transformation with the para-
metric function performs the best apparently and among the three non-parametric

methods, the method of GMM produces the best results.
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Figure 3.21: Correlation and RMSE of Different Transformation Methods

In (a), the correlation of the imputed values with the true values with different transformation
methods are shown. In (b), the RMSE are shown. The performance of GMM is the best in the
three non-parametric method.

3.2.4 How to Deal with Drill Holes Positions

While the drill holes with an angle smaller than the angle tolerance are considered
as perpendicular to the plane of continuity, the U and V' coordinates of the pierce
points at the hangingwall and the footwall are not exactly the same. Two methods
to deal with this problem are tried. The first one is to merge these two pierce points
into one point having the same U and V' coordinate by using the mean of the U and
V' coordinates. The second one is to assume two drill holes having different U and
V' coordinate with the same thickness values. It is better to combine the two pierce
points into one point from Figure 3.22 because the second method can increase the

redundancy in the sample.
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Figure 3.22: Correlation and RMSE of Different Drill Holes Treatments

In (a), the correlation of the imputed values with the true values with different drill hole treatment
methods are shown. In (b), the RMSE are shown. The method of merging two points is better.

3.2.5 Merging method

There are two merging methods: Bayesian updating and error ellipses. In the two
previous examples in Section 3.1.2 and Section 3.1.2, Bayesian updating performs
slightly better than error ellipses. From Figures 3.17, 3.18, 3.20, 3.21, 3.22 in Section
3.2, the method of error ellipses performs slightly better than Bayesian updating by
comparing the correlation and RMSE. The method of error ellipses appears more
stable than Bayesian updating, especially when the distributions of the variables are

not known.

3.3 Discussion on Single-Layered Deposit

The overall performance of the method appears reasonable. However, there are some
limitations related to the method. The problems come from transformation as well
as the addition or subtraction of the thickness.

The first limitation is that there is no guarantee that when transforming the sec-
ondary collocated distribution derived from the thickness to the opposite elevation,
the transformed values will be in the range of the original elevation distribution. In
some extreme cases, imputed values must be truncated at the tails of the distribu-
tions to enable transformation. These cases do not happen if a Gaussian distribution
is used to form the true dataset. However, if a distribution with a finite upper and

lower limit, like uniform distribution or triangular distribution, is used to form the
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true dataset, truncation at the limit could happen. For example, Figure 3.23 shows a
validation plot using a true dataset formed by a triangular distribution. It is shown
that there are many imputed values at the minimum values of the elevation of the
footwall. During the process of imputation, many elevation values that are lower than
the minimum value of the distribution are generated and they are truncated around
the minimum value. Although this is an extreme cases, the method of multiple im-

putation with truncation tends to have a lower variability than the true values.

Validation Plot, Footwall {m}

74

% 2 B, o 3

True Vaiue, Elevation of Footwall {m}

8
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& &7 & & 7 7 73 7 7
imputation E-type, Elevation of Footwall {m)

Figure 3.23: Scatter Plot of an Example with Many Truncation

There are many imputed values around the minimum values of the elevation of the footwall
because of truncation.

Because of this problem, it is interesting to see that in some cases, geometric vari-
ables with higher variance values can be imputed with a high accuracy because it is
less likely that the imputed values are truncated during the transformation process.
About 1 percent of the imputed values are truncated. Furthermore, using a distri-
bution of a fitting method like GMM without upper limit and lower limit can reduce
the probability of truncation.

The second limitation is that when drawing the imputed value from the merged

distribution, the drawn elevation value is always in the range of the distribution of the
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elevation. However, again there is no guarantee that the calculated thickness value is
in the range of the distribution of thickness. Iteration is used to try to find a valid pair
of elevation and thickness value based on the merged distribution at the beginning.
However, sometimes it is impossible to find a pair that satisfies both distributions.
As a result, a random pair is drawn and set as the imputed results. This can decrease
the performance of the method. In the examples shown above about 6 percent of the
imputed values come from this iterative method and about 1 percent of the imputed
values come from random drawing.

The third limitation is that the distribution of the thickness from the calculated
thickness values does not always represent the true distribution of the thickness. The
distribution from the calculated thickness values tends to have less variability for
the case considered. When the parametric distributions are available, this effect is
not very obvious. However, when the parametric distributions are not available, the
calculated thickness values reduce the variability of the thickness greatly. In Figure
3.24, the reproduction of the thickness is only based on the samples. Furthermore,
if many thickness values from inclined drill holes are used in the calculation, the

calculated thickness distribution may not represent the true thickness values correctly.
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Figure 3.24: CDF Reproduction of Thickness with A Lower Variability

The reproduction of thickness values in black are derived from the sample in blue. They have lower
variability than the true distribution in red.

Another characteristic of the method is that the variance of the primary distri-
bution and the secondary distribution can be very different. There are always more
elevation values than thickness values, so if the same variograms and the same search-
ing radius are used for the elevation and the thickness, the local conditional variance
of the thickness is always larger than the local conditional variance of the elevation.
This variability stays when transforming the thickness values to the elevation val-
ues. So, when these two elevations distributions are merged, the primary elevation
distribution derived from the spatial sources tends to dominate the final merged dis-
tribution and the secondary elevation distribution has less impact on the final merged
distribution. This can further reduce the variability of the imputed values. This phe-
nomenon decreases through the process of imputation, as more and more imputed

thickness values are available.
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Chapter 4

Multi-Layered Deposits

The method of multiple imputation used for multi-layered tabular deposits extends
from the basic method used for single-layered deposits. The difference is the sequence
of imputation and the details of how thickness is transformed into elevation. A syn-
thetic example demonstrates the application of the method. The imputed results are
compared with the true values in order to assess the performance of the method. Then,
a sensitivity analysis demonstrates that using the elevation from the closest opposite
surface is the best way to transform thickness into elevation and the best sequence
s to process imputation according to drill hole angles. This chapter ends with some
challenges related to multi-layered deposits, such as the number of imputation loca-
tions and drill hole configurations that can affect the sequence of multiple imputation.

The method are changed to fit this kind of configurations to run imputation smoothly.

4.1 Difference Between Single-Layered and Multi-
Layered Deposits

The definition of tabular vein deposits includes both single-layered and multi-layered
deposits with simple structures (Carvalho, 2018). The method applied to single-
layered deposits in Chapter 2 and Chapter 3 can be extended to multi-layered de-
posits. The basic methodology of forming a primary spatial distribution of elevation
and a secondary collocated distribution of thickness remains the same. The differ-
ence is that there are different thickness values that can be used when adding to or
subtracting from the known surface elevation values. This difference can change the
sequence of imputation. Sensitivity analysis also shows that the merging method can

behave differently.
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4.2 Demonstration of Multi-Layered Deposits

In this section, a synthetic dataset is used to demonstrate the method. The workflow
is shown and the results are compared with the true data by comparing summary
statistics, reproduction of distributions and variograms. Because there is no con-
ventional name for different surfaces in multi-layered deposits like hangingwall and
footwall in single-layered deposits, the surfaces are named as Wall 1, Wall 2, Wall 3,
... from the top to the bottom. The thickness between Wall 1 and Wall 2 is named
Thickness 12. For example, if this naming convention is applied to a single-layered
deposit, the hangingwall is named as Wall 1, the footwall is named as Wall 2, and

the thickness is named as Thickness 12.

4.2.1 True Data for Demonstration of Multi-Layered De-
posits

A full geometric dataset is used to draw samples and evaluate the performance of the
method. The dataset is generated by unconditional simulation of elevation of Wall
1, Wall 2, and Wall 3. The simulated normal score values are these three elevations
are transformed into their original units separately. The elevation of Wall 1 follows a
normal distribution with a mean of 100 and a variance of 5, the elevation of Wall 2
follows a normal distribution with a mean of 75 and a variance of 5, and the elevation
of Wall 3 follows a normal distribution with a mean of 40 and a variance of 5.
Because the elevations are generated independently, there exists a possibility that
the three surfaces would cross. It is checked that there is no crossing of these surfaces
in the true data by assuring that the elevation of Wall 1 is larger than the elevation
of Wall 2, and the elevation is larger than the elevation of Wall 3 at all locations.
After the simulation of the elevation values, the values of Thickness 12, Thickness
23, and Thickness 13 of the true dataset can be calculated from the simulated surfaces.

The following equations show the calculation of thickness and the naming convention.

Thickness 12 (u,v) = Wall 1 (u, v) — Wall 2 (u, v) (4.1)

Thickness 23 (u,v) = Wall 2 (u,v) — Wall 3 (u,v) (4.2)
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Thickness 13 (u,v) = Wall 1 (u,v) — Wall 3 (u, v) (4.3)

Thickness 13 can also be calculated by adding Thickness 12 and Thickness 23.

Thickness 13 (u,v) = Thickness 12 (u, v) 4+ Thickness 23 (u, v) (4.4)

All thickness values are greater than zero. Thickness 12 follows a normal distri-
bution with a mean of 25 (100 — 75) and a variance of 7.07 (v/5% 4 52), Thickness
23 follows a normal distribution with a mean of 35 (75 — 40) and a variance of
7.07 (v/52 + 52), and Thickness 13 follows a normal distribution with a mean of 60
(100—40) and a variance of 7.07 (v/52 + 52). The distributions of the elevation and the
thickness are used to build the cumulative distribution function (CDF) and inverse
cumulative distribution function to conduct data transformation.

Figure 4.1 shows 2-D location maps of the simulated values in the true dataset.
The elevations are shown on the left, and the thicknesses are shown on the right.

After the generation of the true dataset, it is possible to draw samples to conduct
multiple imputation. A set of synthetic drill holes are drawn randomly to mimic a
drill hole campaign by selecting 30 pairs of U and V' coordinates at Wall 1 and Wall
3. It is assumed that all the drill holes are straight and these straight lines connect
pairs of points at Wall 1 and Wall 3 to form drill holes samples. The coordinates of
the pierce points between the drill holes and Wall 2 are the gridded coordinates that
have the smallest distance between the drill holes and Wall 2.

4.2.2 Multi-Layered Deposits Example

The same workflow of multiple imputation is applied. The required prerequisites
are the same, including angle and thickness calculation, variogram calculation and
modeling, and normal score transform. The sample used for imputation can be derived
by calculating angles and thickness values based on the angle tolerance. The angles
of all the drill holes are calculated and the best angle tolerance is chosen to be 20
degrees using trial and error. The way of choosing the best angle tolerance is the same
as documented in Section 3.2.1. The same workflow is applied with different angle

tolerances, and the best angle tolerance is the one that has the highest correlation
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Figure 4.1: Location Map of the Simulated True Dataset for Multi-Layered Deposit

In (a), (c), (e), the location maps of the true data of elevation of Wall 1, Wall 2, and Wall 3 are
shown. In (b), (d), (f), the location maps of the true data of Thickness 12, Thickness 23, and
Thickness 13 are shown.
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Figure 4.2: Cumulative Distribution of the Angles of the Drill Holes for Multi-Layered
Deposit Example

The cumulative distribution function of the angles of the drill holes are plotted and an angle
tolerance of 25 degrees is used.

and lowest RMSE. Any thickness value provided by drill holes that have angles that
are larger than 25 degrees will not be used to form the distribution of the thickness.
Figure 4.2 shows the calculated angles of the drill holes, and the dashed line indicates
the angle tolerance of 25 degrees. Based on the angle tolerance, the thickness values
chosen form the distribution of the thickness. Other drill holes are thus considered
as inclined drill holes and will be imputed.

After the calculation of the angle tolerance and thickness, the geometric data sam-
ples used in multiple imputation can be formed. Figure 4.3 illustrates 2-D location
maps of the geometric variables of the samples. There are 30 drill holes with 30 sam-
ples of elevation on each surface. However, there are only 14 thickness samples based
on the drill hole angles and the angle tolerance. The number of the samples of the
thickness values is always smaller than the number of the elevation values because
inclined drill holes provide only elevation samples.

In this example, it is assumed that all the distributions and the variograms of the six

geometric variables are available. The parametric cumulative distribution functions
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Figure 4.3: Location Maps of the Sample of Multi-Layered Deposit Example

In (a), (c), (e), the location map of the samples of elevation of Wall 1, elevation of Wall 2, and
elevation of Wall 3 are shown. In (b), (d), (f), the location map of the samples of Thickness 12,
Thickness 23, and Thickness 13 are shown.
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and inverse cumulative distribution functions can be used to conduct transformations.
The variograms are calculated and modeled from the true data set, which are shown
in Figure 4.4. If the experimental variograms are calculated and modeled based on
closely-gridded data, the experimental variograms will be almost identical to the true
variograms (Bai and Deutsch, 2020a).

After these prerequisites, the process of imputation follows the basic methodology
demonstrated in Chapters 2 and 3. When the imputation proceed to a location being
imputed, local elevation and thickness distribution comes from surrounding samples
by kriging. However, there are two collocated elevations can be used to transform
the thickness distribution to the elevation distribution. For example, if the elevation
of Wall 1 is being imputed, it is possible to get the secondary distribution by the

following two ways.

Wall 1 = Wall 2 + Thickness 12 (4.5)

Wall 1 = Wall 3 + Thickness 13 (4.6)

The two merging methods allow a merging of the spatial and collocated information
afterwards and a realization is drawn from this merged distribution. The sequence of
imputation starts from the most constrained location to the least constrained location.
The discussion about the elevation values used and the sequence of imputation are in
Section 4.3.

After imputation, every location will have a set of all six geometric variables con-
taining elevation of Wall 1, Wall 2, Wall 3, Thickness 12, Thickness 23, and Thickness
13. The results of the imputed values are validated against the true values. Multiple
imputation transfer the heterotopic geometric dataset to many homotopic geometric
datasets.

The realizations are compared with the true data. E-type values are considered
with three summary statistics, which are error rate, Pearson correlation coefficient
(p), and root mean square error (RMSE). These summary statistics are defined in
Section 3.1.1. The results of the performance of multiple imputation for multi-layered

deposits are shown in the following Table 4.1. The error rate and the RMSE of the
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Figure 4.4: Modeled Variograms for Multi-Layered Deposit Example

In (a), (c), (e), the calculated and modeled variogram of the elevations are shown. In (b), (d), (f),
the calculated and modeled variograms of the thicknesses are shown.

68



Table 4.1: Summary Statistics for Multi-Layered Deposit Example

Variable Merging Method Error Rate Correlation RMSE

Wall 1 EE 0.654 0.927 0.848
Wall 1 BU 0.711 0.916 0.858
Wall 2 EE 1.066 0.887 0.979
Wall 2 BU 1.181 0.855 1.101
Wall 3 EE 3.011 0.794 1.374
Wall 3 BU 3.222 0.727 1.500
TH 12 EE 3.474 0.933 1.149
TH 12 BU 3.679 0.927 1.214
TH 23 EE 4.401 0.889 1.438
TH 23 BU 4.491 0.867 1.517
TH 13 EE 2.001 0.941 1.925
TH 13 BU 2.028 0.924 1.963

elevation are lower than the error rate and the RMSE of the thickness, but the
correlation of the elevation are lower. The correlation of the result is around 0.85,
which is lower than the result of single-layered deposit (around 0.9). The RMSE is
around 1.5, which is higher than the result of single-layered deposit (around 1.0).
The overall performance of the method applied to multi-layered deposit is weaker.
The better results of the two merging methods are bolded in the table. Here, the
method of error ellipses outperforms the method of Bayesian updating consistently
and slightly.

Accuracy and bias are also compared in Figure 4.5. In these scatter plots, e-type
estimates are plotted on the x-axis against the true values on the y-axis. The overall
performance has a correlation of 0.85, showing a strong correlation. The regression
line illustrates some conditional biases. Considering the e-type tends to reduce the
variance of the geometric variables; in other words, it tends to overestimate low values
and underestimate high values. This phenomenon is most obvious for Thickness 13,

considering the realizations mitigates this.
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The two merging methods produce similar results, as they usually appear as close
pairs in the scatter plots. But the difference is bigger than observed in single-layered
deposits. From the summary statistics, the method of error ellipses performs better.

Reproduction of the CDF of the imputed realization is shown in Figure 4.6. As
the method of error ellipses performance better, the results of it are shown. The
distribution of realizations are plotted in gray. The true distribution in red and the
sample distribution in blue are plotted for comparison. The method reproduces the
distribution approximately, but it reduces the variances for all geometric variables
slightly as the imputed distributions only overlap with the true distributions in the
middle. Some reproductions reduce the variance greatly, as shown in Figure 4.6d and
in Figure 4.6e.

Reproduction of variograms of the imputed realization are displayed against the
true variograms in Figure 4.7. The true variograms are plotted in red and the im-
puted variograms are plotted in green and blue. The method reproduces the vari-
ograms overall, but it seems that it does not reproduce the anisotropy very well again,
especially in Figure 4.7b.

The overall performance of the method of multiple imputation applied to multi-
layered deposits appears reasonable. The correlation is acceptable (around 0.85) and
the RMSE is around 1.5, and the reproduction of the distribution follows the sampled

data. But the variance is lower and the variogram reproduction is not very good.

4.3 Sensitivity Analysis of Multi-Layered Deposits

There are many decisions and parameters that can influence the performance of the
method of multiple imputation. In Chapter 3, some of them, like angle tolerance and
transformation method, are discussed. Sensitivity analysis shows that these parame-
ters have the same influence on multiple imputation applied to multi-layered deposits
as the method applied to single-layered deposits discussed in Chapter 3. However, the
merging method of error ellipses performs consistently better than Bayesian updating
for multi-layered deposits probably because the scenarios are more complicated, and
the method of error ellipses is more stable. In this section, a sensitivity analysis is

used to find the best sequence to conduct imputation and the best opposite elevation
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Figure 4.5: Validation Plot for Multi-Layered Deposit Example

In (a), (c), (e), the imputed values of the elevations are plotted against the true values. In (b), (d),
(f), the imputed values of the thicknesses are plotted against the true values.
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Figure 4.6: Distribution Reproduction of Multi-Layered Deposit Example

In (a), (c), (e), the reproduction of distribution of the imputed realizations of the elevations are
plotted. In plot (b), (d), (f), the reproduction of distribution of the imputed realizations of the
thicknesses are plotted.
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Figure 4.7: Variogram Reproduction of Multi-Layered Deposit

In (a), (c), (e), the variogram reproduction of elevation are shown. In (b), (d), (f), the variograms
reproduction of thicknesses are shown.
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Figure 4.8: Schematic Illustration of Difference Elevations

A schematic illustration shows three elevations. If C is being imputed, existed pierce point A or
previously imputed B can be both used as an elevation value. (no to scale)

to use to transform thickness distributions into elevation distributions.

4.3.1 Elevation Value Used

The first parameter is which elevation value should be used when transforming thick-
ness into elevation. During imputation, to add to or subtract from the simulated
conditional distribution of thickness in order to merge this thickness distribution and
elevation distribution.

During the transformation of multi-layered deposits, many elevation values can
be used. These choices are demonstrated by a schematic illustration. It is assumed
that location C in being imputed in Figure 4.8. It is possible to use the elevation
value at pierce point A, or to use the previously imputed elevation value at location
B. The first choice (Known Pierce Point) uses the observed pierce point of the drill
hole, which is the most certain elevation value can be used of this location. In this
example, A is the observed pierce point. The second choice (Nearest) uses the nearest
opposite surface which has the smallest difference of elevation. Here the elevation of
B is closer to the elevation of C than the elevation of A. This opposite elevation of B
can be derived derived from previously imputed values.

In Figure 4.9, the result of the sensitivity analysis are shown by comparing corre-
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lation and RMSE. Using the nearest elevation is a better choice because it has higher

correlation and lower RMSE.
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Figure 4.9: Correlation and RMSE of Different Elevation Used

In (a), the correlation of the imputed values with the true values with different elevation used
during transformation are shown. In (b), the RMSE are shown. The method of using nearest
elevation value is better.

4.3.2 Imputation Sequence

Another parameter analyzed is the sequence of imputation. A schematic example
in Section 3.2.2 demonstrates the three imputation sequences considered. The first
sequence (Kriging Variance) is to use global kriging to decide the kriging variance and
start from the lowest kriging variance to the highest variance. The second sequence
(Layer) is to start from the most stable elevation and use global kriging to decide the
sequence at this elevation and go to the next elevation afterwards. The third sequence
(Angle) is to start from the least inclined drill hole to the most inclined drill hole (Bai
and Deutsch, 2021b). These three sequences are compared for multi-layered deposits.
The results are shown in Figure 4.10 and show that the best sequence is to use the
angle of the drill holes because it produces the highest correlation and lowest RMSE.
The optimum sequence is the same as the one for single-layered deposits. Further-
more, for one inclined drill hole, the sequence of its different imputation locations has
no significant influence on the performance, but it is still better to use the kriging

variance to proceed the imputation for one drill hole.
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Figure 4.10: Correlation and RMSE of Different Imputation Sequence

In (a), the correlation of the imputed values with the true values with different imputation
sequence are shown. In (b), the RMSE are shown. The method of using angles to determine the
sequence is the best.

As a conclusion, it is better to use the nearest known elevation value to transform
thickness distribution into elevation distribution and the best imputation sequence is
to start from the most vertical drill hole to the most inclined drill hole. Influences of
other parameters remain the same as in Section 3.2, and the method of error ellipses

performs better.

4.4 Discussion on Multi-Layered Deposits

Multiple imputation applied to multi-layered deposits is similar to single-layered de-
posits. Furthermore, the performance of the method and the results from the sensitiv-
ity analysis remain quite similar. One difference is that the method of error ellipses is
consistently better than the method of Bayesian updating. However, there are some
extra limitations about multiple imputation that is applied to multi-layered deposits
because of the increasing number of surfaces.

The first limitation is that the number of the locations that are required to be
imputed increases quadratically with the number of the layers of the deposits. For
example, there are 2 locations that are required to be imputed for an inclined drill
hole at a single-layered deposit. However, there are 6 locations that are required to
be imputed for an inclined drill hole at a double-layered deposit. The relationship

between the number of the positions that are required to be imputed and the number
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of the layers of the deposits follows the following equation:

N=n’>+n (4.7)

where N is the number of the locations that are required to be imputed, and n is
the number of the layers. As a result, it takes longer to impute geometric data from
multi-layered deposits.

A second problem is that as the number of the layers and the number of the
locations that are required to be imputed increase, the imputation process may need
to change. The situation is shown in a schematic illustration of configuration of drill
holes in Figure 4.11. If there are 2 inclined drill holes, there should be 4 locations that
are necessary to be imputed. However, there exists the possibility that the location at
the footwall that is required to be imputed coincides with the known footwall location
provided by other inclined drill hole. As a result, although there are 2 inclined drill
holes, there is no need to conduct imputation in this situation. For example, in theory,
it is necessary to impute inclined drill hole 1 as well as inclined drill hole 2, however,
the geometric variables do not need to be imputed because location A and location B
are already highly constrained. Another more common example is that for inclined
drill hole 3 and inclined drill hole 4, it is necessary to imputed at location C and
location E and it is not necessary to impute at location D because the inclined drill

holes here do provide both the elevation and the thickness.

DH 1 DH 2 DH 3 DH 4

Figure 4.11: Configuration of Situation Changing the Imputation Process

Two situations that can change the process of imputation are plotted. Location A, B, and D are
already highly constrained. There is no need to impute at these locations. (no to scale)
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If the imputation still proceeds at the inclined drill holes here, the covariance
matrices can take both the imputed value and the true value at the same time. This
leads to singular covaraince matrices that can not be used to form kriging systems.
This problem occurs more often when multiple imputation is applied to multi-layered
deposits. This problem can be fully solved by modifying the method to skip this kind
of highly constrained locations in order to proceed multiple imputation smoothly.
Nevertheless, it is important to avoid having singular matrices during imputation.

A third limitation is that TLS can be less efficient when there are many surfaces
(Bai and Deutsch, 2021a). As shown in Figure 2.1, TLS performs quite well when
there are only two surfaces. In Figure 4.12, TLS is applied to inclined surfaces in
order to build a local coordinates system in order to derive the thickness distribution.
However, even after applying TLS, the thickness values between different surfaces are

still difficult to calculate sometimes.
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Figure 4.12: TLS for Multi-Layered Deposits

The coordinates of the pierce points of the drill holes with inclined surfaces are shown in (a). After
TLS, the coordinates are shown in (b). It is still hard to calculate the thickness here.

This problem can be solved by fitting each plane individually by TLS. Figure 4.13
illustrates the result of fitting by the new method, which allows a better calculation

of thickness values.
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Figure 4.13: TLS Fitted to Each Plane for Multi-Layered Deposits

After the new fitting by TLS, the coordinates are shown. It is easier to calculate the thickness.

One final discussion is about the two different types of continuity. Different geome-
tries of the tabular deposits can influence the performance of multiple imputation.
There are two types of continuities discussed for simple geometries of tabular vein de-
posits (Carvalho, 2018). In Figure 4.14, these two types of continuities are shown. In
A, the elevation of the footwall is more stable than the thickness. In B, the thickness

is more stable than the elevation of the footwall.

w
10 HW

Thickness

Figure 4.14: Two Continuities

In A, the elevation of the footwall is more stable than the thickness. In B, the thickness is more
stable than the elevation (Carvalho, 2018). (no to scale)

It is found that multiple imputation performs better in case B when the thickness

is more stable. It is probably because thickness distribution is calculated from the

79



samples, and if it is possible to have a representative and stable thickness distribution,
the higher uncertainty of thickness can be reduced.

It is important to consider these limitations during multiple imputation for multi-
layered deposits. It is not necessary to impute at locations that are already highly

constrained even there are inclined drill holes there.
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Chapter 5

Imputation Along Long Deviated
Drill Holes

The basic method of multiple imputation starts from imputation at pierce points that
can provide geometric variables directly. Yet the internal data along drill holes pro-
vides additional information, especially when drill holes are highly deviated. There are
constraints along the drill holes that the surfaces of the deposits cannot cross the drill
hole intersection in the vein. It is necessary to tmpute along drill holes to integrate
this internal data. Assumptions about the mean and the variance of the distribution
of thickness as well as the opposite elevation are made. A 2D schematic example
demonstrates the method and a 3D synthetic example is presented. Sensitivity analy-
sis shows that imputation along drill holes has a lower but acceptable accuracy and it

1s better to impute at pierce points at first.

5.1 Assumptions for Imputation Along Drill Holes

Geometric data including elevation and thickness are provided by the pierce points
between drill holes and surfaces defining the deposits. The method of multiple im-
putation in Chapters 2, 3, and 4 quantifies geometric uncertainty near these pierce
points. Highly deviated drill holes show increased geometric uncertainty along long
deviated drill holes. In Figure 5.1, a schematic drawing shows a configuration of drill
holes. It is possible that the drill hole stays inside the vein between the hangingwall
and the footwall intersections (in red) or outside the layers (in orange). Furthermore,
for long drill holes, there are few drill holes that can provide geometric information
about thickness. Although the data along these drill holes can not provide geometric
data like pierce points, this information is important and can be used for modeling

as well.
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Figure 5.1: Configuration of Drill Holes for Long Deviated Drill Holes

A schematic drawing shows that there can be many possible configurations along drill holes with
the same pierce points. (not to scale)

During the workflow of multiple imputation, the secondary thickness distribution
is transformed into primary elevation distribution using an opposite elevation value.
However, the geometric data provided along the drill holes have neither a direct
thickness distribution nor an opposite elevation value for transformation. As a result,
some assumptions about the elevation used during transformation and the distribution
of thickness should be made in order to extend the basic method for geometric data
imputation along long drill holes.

Several coordinate points on the projection of the drill hole onto the plane of
reference are added to the geometric dataset, and geometric data of these points
will be imputed in the workflow. The assumptions of the relative elevation and the
relative thickness are based on the coordinates of these coordinate points along drill
holes that depends on the trajectory along the length of the drill holes.

The first assumption is about the opposite elevation. It is necessary to calculate
the opposite elevation value. We assume that the drill holes are straight and the W

can be calculated by the following equation if the U and V' coordinates are known.

U—-Urw V — Vew W — Wrw

_ — 5.1
Uasw —Urw  Vaw —Vew  Wpw — Wew (5.1)

where Ugw, Urw, Vaw, Vrw, Wraw, and Wy are the U, V, and W coordinates of
the intercepts of the hangingwall and the footwall of the drill hole. U and V' are the

coordinates along drill holes under imputation, and they must be along the projection
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of the drill hole onto the plane of continuity. After the derivation of this W value,

the thickness distribution can be added to or subtract from it. Furthermore, these

U—UFW V—VFW W_WFW

fractions Uasw—Urw’ Vaw—Vrw’ Waw —Wrw

are used in the second assumption to
construct local thickness distribution.

The second assumption is about the distribution of thickness. The primary distri-
bution of elevation in multiple imputation comes from kriging and it can be derived
using the same method in Chapters 2, 3, and 4. The secondary distribution in mul-
tiple imputation comes from the collocated thickness distribution by kriging as well.
However, the thickness distribution provided by kriging is the conditional distribution
of the thickness from the hangingwall to the footwall. There is no direct thickness
distribution along drill holes. In order to build a conditional distribution of thickness
along drill holes, assumptions about the mean and the variance of the distribution

are made. The assumptions are listed in the following formulae.

T Hrotat = T H apove + T HBelow (5.2)
THapove = F X THrotal (5.3)

THpeiow = (1 = F) X THrota (5.4)
Orttpoy =F X 00 +(1=F) X0y, (5.5)

where T Hroq and J%HT()W are the conditional mean and the conditional variance
derived by kriging and back-transform, T H v and o2 Hapon. ar€ the conditional mean
and the conditional variance of the thickness above the drill hole to the hangingwall,
and T H pejow and UCZFHBezow are the conditional mean and the conditional variance of

the thickness below the drill hole to the footwall. F is the fraction of the thickness

above the drill hole over the total thickness, and it can be UU_?FUW , VV_Y@W ,
HW FW HW FW
W—Wew

Waw—-Wrw *

or

After making these two assumptions, it is possible to use multiple imputation to
quantify geometric uncertainty along drill holes. It is possible to construct a condi-

tional distribution of thickness and an opposite elevation to transform this thickness
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distribution into elevation distribution. Other steps remain the same as the basic

method of multiple imputation.

5.2 Schematic Example of Along Drill Holes

The 2D schematic example shown at the end of Chapter 2 is used in this section
to demonstrate multiple imputation along drill holes. In Table 5.1, one realization
of geometric data after multiple imputation at pierce points is shown. Figure 5.2
shows a location map of the drill holes and the imputed values. The demonstration
of imputation along drill holes is based on this dataset. The parameters of the data

are listed in Chapter 2.

Table 5.1: Data for Schematic Example Along Drill Holes

DH Horizontal Coordinate Hangingwall Footwall Thickness

1 81 34 8 26
2 163 31 16.341 14.659
2 222 29.078 18 11.078

For the schematic example, it is assumed that multiple imputation proceeds to
the hangingwall location at 200 along the drill hole 2. 200 is between 163 and 222.
The conditional distribution of the elevation of the hangingwall at 200 can be formed
by kriging using the data at 81, 163, and 222. The covariance matrix based on the
distance can be derived from the variogram model. The kriging equations can be

constructed and solved. The mean and the variance of the local distribution can be

derived.
1 1 —~(163 —81) 1—~(222—81) A 1 —~(200 — 81)
1 —~(163 —81) 1 1—7(222—-163)| [A2]| = |1 —~(200 — 163)
1—~(222 -81) 1—~(222—163) 1 A3 1 —~(222 — 200)
(5.6)
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Figure 5.2: Location Plot of Schematic Example of Imputation Along Drill Hole

Data for schematic example is shown. The two individual points come from previous imputation.
(no to scale)

1 04021 0.7771 0.3423
C= (04021 1 0.2375| D= [0.8934 (5.7)
0.7771 02375 1 0.9547
—0.7773
A=C'D=| 04742 (5.8)
0.6104
Y = —0.7773 x 0.9153 + 0.4742 x 0.2404 + 0.6104 x —0.2223 = —0.0923  (5.9)

aiw =1-——0.7773 x 0.3423 — 0.4742 x 0.8934 — 0.6104 x 0.9547 = 0.0201 (5.10)
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After the calculation, the primary mean of the elevation is —0.0923, and the pri-
mary variance of the elevation is 0.0201. The conditional distribution of the total
thickness at 200 can be formed by kriging using the same covariance matrix. Conse-

quently, the same kriging weights can be applied.

YTotar = —0.7773 x 0.9945 + 0.4742 x —0.2889 + 0.6104 x —0.6963 = —0.6388 (5.11)

2 _ 2 _
o =0, = 0.0201 (5.12)

YTotal

The conditional variance with a value of 0.0201 is the same as the variance of the
elevation, but the conditional mean with a value of —0.6388 is different from the mean
of the elevation. This distribution quantifies the distribution of the total thickness,
and it is necessary to transform it into the distribution of the thickness above the drill
hole. Before transforming this total thickness distribution into elevation distribution,
the two stated assumptions in Section 5.1 are made. The intercept of the drill hole
with the hangingwall is at (163,31), and the intercept of the drill hole with the
footwall is at (222,18). As a result, the elevation along the drill hole at 200 can be

calculated by the following equations.

200 — 163 W —31
222 — 163 18 — 31

(5.13)

W = 22.847 (5.14)

The calculated W value serves as the value to which can be used to perform addition
or subtraction. The conditional mean and the conditional variance of thickness above
the drill hole at 200 is estimated by proportion. The calculation of the fraction is

shown in the following equation.

31 -W
31 —18

After calculating this fraction, it is possible to get the conditional distribution

= 0.627 (5.15)

of the thickness above the drill hole at 200 to the hangingwall. After making this

two assumptions about the opposite elevation and the thickness distribution, the
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distribution of the total thickness can be transformed into the thickness above the
drill hole at first. Then, the distribution of the thickness above the drill hole can be
transformed into the distribution of the elevation of the hangingwall. The steps of
the transformation are shown below. The difference is how to use the assumption to

transform the distribution of the total thickness to the thickness above the drill hole.

1. Generate original unit values of the total thickness based on the conditional

distribution (—0.6388,0.0201).
TH = Fry (G (yrn))
10.527 12.263 --- 10.947 11.392
2. Calculate the mean and the variance of original unit values of the total thickness.
THropa = 11.630
0T gy, = 1.796

3. Apply the fraction 0.637 to the mean and the variance of original unit values of
the total thickness and get the mean and the variance of original unit values of

the thickness above the drill holes.
TH ppoe = 0.627 x 11.630 = 7.294
OT bt 1o, = 0.627 X 1.796 = 1.126

4. Generate original unit values of the thickness above the drill holes based on
(7.294,1.126).
[8.491 6.370 --- 7.223 6.414]

5. Calculate the hangingwall based on the thickness above the drill holes. The
elevation at 200 is 22.847.

Waw = 22.847 + T H spove

31.339 29.217 --- 30.070 29.261
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6. Normal score transform the elevation of the hangingwall.
YWuw = G (FWHW (WHW))

0.318 —-0.190 --- 0.018 —-0.179

7. Calculate the mean and the variance of the new distribution, which is 0.0201

and 0.0697.

After the derivation of the secondary distribution of the elevation of the hangingwall
from thickness, it is possible to merge it with the primary distribution of the elevation
of the hangingwall, which is calculated at the beginning. Values can be drawn from
the merged distribution. Furthermore, it is possible to impute the elevation of the
footwall at 200 using the same method. In Figure 5.3a, one realization of imputation

along the drill hole is shown in orange.

50 100 150 200 250 o 50 100 150 200 250 0 50 100 150 200 250 0
uiv u/v u/v

(a) (b) (¢)

Figure 5.3: Imputation results of the schematic example of along drill holes

In (a), one realization of imputation at 200 is shown. In (b), 100 realizations of imputation at 200
is shown. In (c), one realization of imputation along drill holes is shown.

In Figure 5.3b, 100 simulations of imputation are shown in orange. Furthermore,
using different fractions and different elevation values, it is possible to proceed impu-
tation along drill holes as long as the U, and V' coordinate is in the projection of the
drill hole. In Figure 5.3c, one realization of imputation along the drill hole is shown

in orange with an interval of 5.
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5.3 Demonstration of Imputation Along Long De-
viated Drill Holes

The dataset used in Chapter 3 is used in this section to demonstrate the method.
The same workflow of imputation applied in Chapter 2, 3, and 4 can be applied to
the pierce points.

For imputation along long drill holes, one more prerequisite for the method is
to decide what set of points between pierce points should be imputed. After the
calculation of angles of the drill holes, a set of coordinates of points within long
deviated drill holes are added to the raw data and they do not provide any new
geometric information. These coordinates points must be points along the projection
of the drill holes onto the 2D surface of the deposit. The adding of coordinates points
will be discussed in Section 5.4.1. Other prerequisites are the same. The geometric
variables should be normal score transformed and the variograms should be calculated
and modeled.

The same method can be applied at the pierce points. For the points along long
drill holes, the similarity is that the conditional distribution of the elevation is formed
by kriging, but the conditional distribution of the thickness is characterized by a
proportional mean and variance and the opposite elevation is the coordinates points
of the drill holes. Then, this thickness distribution is transformed into elevation
distribution and merged with the primary elevation distribution. The sequence of the
imputation will be discussed in Section 5.4.2.

After imputation, every pierce points will have a set of geometric variables including
elevation of the hangingwall, elevation of the footwall, and thickness. Furthermore,
there will be these geometric variables along long drill holes.

The realizations are compared with the true data. E-type statistics are compared
with three summary statistics, error rate, correlation, and RMSE. These summary
statistics are defined in Section 3.1.1. The results of the performance of imputation
along long drill holes are shown in Table 5.2. The imputation of the elevation looks
reasonable. The correlation of the elevation is around 0.9 and RMSE is around 1.7.
However, the imputation of the thickness is not very good. The correlation is around

0.75. The best results of the two merging methods are bolded in the table. The two
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methods perform similarly.

Table 5.2: Summary Statistics for Along Drill Holes

Variable Merging Method Error Rate Correlation RMSE

Wrw EE 1.397 0.928 1.753
Waw BU 1.451 0.901 1.768
Werw EE 1.940 0.932 1.707
Wew BU 1.919 0.931 1.649
TH EE 5.067 0.741 2.299
TH BU 4.897 0.756 2.262

Accuracy and bias are also compared in Figure 5.4. In these scatter plots, e-types
estimates are plotted on the x-axis against the true values on the y-axis. The overall
performance of the imputation of elevation shows a strong correlation, however, the
performance of the thickness is not as good. The regression lines illustrate some
conditional bias. Again, the method tends to lower the variance. The two merging
method produce similar results.

Reproduction of the CDF and variograms of the imputed realization are shown in
Figure 5.5. The method reproduce the CDF and variograms quite well. The imputed
results of global distribution does not reduce the variance. It is probably because
the imputation along long drill holes does not have a strong constraint on elevation.
The reproduction of the variogram of the thickness is slightly away from the true
variogram.

The overall performance of the method seems acceptable for elevation and thick-
ness. The reproduction of CDF and variogram are good. Furthermore, the global
distribution imputed represents the true distribution. It seems that the assumptions

about the distribution and the elevation used are reasonable.
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Figure 5.4: Validation Plot for Along Long Drill Hole

In (a), the imputed values of the thickness are plotted against the true values. In (b), (¢), the

imputed values of the elevation are plotted against the true values.

5.4 Sensitivity Analysis of Imputation Along Drill
Holes

Two parameters that influence the performance of the method are evaluated in this

Section. The first one is the imputation frequency and the second is the imputation

sequemnce.
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Figure 5.5: Reproduction of CDF and Variogram Along Drill Holes

In (a), (c¢), (e), the reproduction of the CDF are plotted. In (b), (d), (f), the reproduction of
variogram are plotted.
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5.4.1 Imputation Frequency

During the prerequisites of imputation along long drill holes, a set of coordinates must
be added to the geometric dataset. The imputation frequency determines how many
additional coordinates are added along long drill holes. Figure 5.6 illustrates four
figures showing the imputed results of hangingwall. The imputation frequencies are
2,4, 8, 16, respectively. In the last figure, it is possible to see the general configuration
of the long drill holes imputed.

The performance of different imputation frequency is shown in Figure 5.7. It shows
that there is no significant difference between different imputation frequencies. As a
result, it is possible to choose any imputation frequencies. Of course, if the frequency

is too small, there may be violations of the drill hole data in subsequent simulation.

5.4.2 Imputation Sequence

The sequence of imputation is tested again. The imputation starts from the most
vertical drill hole towards the most inclined drill holes. Here, the imputation sequence
considers the area near pierce points, and the added points along the drill holes. The
first sequence is to impute pierce points at first and then the points added. The
second sequence is to impute both the pierce points and the points added together.
It is shown that it is better to impute at pierce points first. The sequence of the
added points within a drill holes does not appear to influence the performance of the

method significantly.

5.5 Discussion on Imputation Along Drill Holes

The method of multiple imputation can be use to impute a location if the coordinates
of this location is along the projection of the drill hole. The overall performance of
the method is acceptable. However, there are some differences between the results
of the pierce points and added points. In Figure 5.9, the imputation results using
the pierce points and using the added points are shown. It is shown that the results
of the pierce points are better than the results of the added points. The results for
elevation are quite similar, however, the results for thickness are much better for the

pierce points.
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Figure 5.6: Imputed Realizations with Different Imputation Frequency

Location maps of imputed realizations with different imputation frequency are shown. It is
possible to see the general configuration of the long drill holes imputed in (d).

It seems that the assumptions about the elevation and the distribution of thickness

can be applied. If the imputed value of the elevation are beyond the range of the

original distribution, it is better to reject the imputed results and draw again.
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Figure 5.7: Correlation and RMSE of Different Imputation Frequency

In (a), the correlation of the imputed values with the true values with different imputation
frequency are shown. In (b), the RMSE are shown. These is no significant difference between
different imputation frequency.
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Figure 5.8: Correlation and RMSE of Different Imputation Sequence

In (a), the correlation of the imputed values with the true values with different imputation sequence
are shown. In (b), the RMSE are shown. The better sequence is to impute pierce points at first.

95



o

©

v
)

o
©
o

Correlation
o o (@]
4 »
w o w

EE
BU

0.70 L, i
Pierce Points Points Along Drill Holes

Pierce Points vs Points Along Drill Holes
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The correlation of the imputed values from the pierce points and from the points along drill holes
are compared. The pierce points have a higher correlation, especially for the thickness.
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Chapter 6

Case Study

A case study demonstrates the workflow of multiple imputation applied to tabular vein
deposits to quantify geometric uncertainty to better model the geological domain. The
data for the case study consist of a tabular gold vein. The workflow of geometric
data imputation including the prerequisites and the results for inclined drill holes are

shown. A cross validation is used to evaluate the performance of the method.

6.1 Case Study 1

The data of the case study comes from a gold mine in Brazil. The information about
the deposit and data description can be found in this reference (Carvalho, 2018). In
Figure 6.1, the configuration of drill holes are shown. The plan view of the pierce
points of the drill holes with the deposit is plotted, and the drill plot is plotted.

Multiple imputation is the method to quantify geometric uncertainty. The prereq-
uisites of multiple imputation include TLS, angle tolerance and thickness calculation,
normal score transform, and variogram calculation and modeling. The detailed cal-
culation of TLS can be found in this reference (Carvalho, 2018). Angles of all the
drill holes are calculated. In Figure 6.2, the cumulative distribution of the calculated
angles as well as the angle tolerance applied are shown. The angle tolerance is set
to be 34 degrees, which includes 90 percent of the drill hole angles, because most of
the drill holes has small angles (perpendicular to the plane of continuity) and the
geometric uncertainty is low (Carvalho, 2018).

After applying the angle tolerance, the sample of the geometric variables, including
the elevation of the hangingwall, the elevation of the footwall, and the thickness, can
be shown in Figure 6.3. These samples include all the pierce points of the drill holes

that have smaller angles than the angle tolerance. Other drill holes that have larger
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Figure 6.1: Location Map of Drill Holes in Case Study 1

In (a), a location map of the plan view of the pierce points is shown. In (b), a cross section view of
the drill hole is shown.
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Figure 6.2: Cumulative Distribution of the Angles of Drill Holes for Case Study 1

The cumulative distribution function of the angles of the drill holes are plotted and an angle
tolerance of 34 degrees is used.
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angles than the angle tolerance will be imputed. There are fewer sample for the

thickness than the elevation.
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Figure 6.3: Location Map of Samples in Case Study 1

o

In (a), the location map of the elevation of the hangingwall is shown. In (b), the location map of
the elevation of the footwall is shown. In (c), the location map of the thickness is shown.

The normal scored geometric variables are used for data imputation. Because the
parametric distributions of these geometric variables are not known, they are normal
score transformed by fitting these distributions by GMM. The results of the transfor-
mation are shown in Figure 6.4. The transformation also enables the calculation and
modeling of variograms as well as the transformations during multiple imputation.

The variograms of these geometric variables can be calculated and modeled inde-
pendently. The modeled variograms are shown in Figure 6.5. These variograms are
fitted with a Gaussian model with a zero nugget effect, as well as a long range.

After these prerequisites, multiple imputation can be executed at both the hang-
ingwall and the footwall. At locations that is being imputed, local distributions of
elevation and thickness are formed by kriging. Then, the distribution of the thickness
are transformed into the elevation. Both the distribution of elevation and the trans-
formed distribution of thickness are merged by error ellipses and imputed values can
be drawn.

After the imputation of the geometric variables, many homotopic imputation data
files will be generated. One realization is shown in 6.6 Each imputation file has
different values of the geometric variables. And it is possible to use these geometric
data to help the modeling of the geological domains. And other quantification of

uncertainties based on these different imputation files can be processed.

99



Footwall Samples with Fitted Distribution

0.006

0.005

o
o
(=]
5

o
o
S
&

Frequency

0.002

0.001

£.000

Hangingwall Samples with Fitted Distribution

— GMM
[ Sample

600 700 800
Hangingwall {m)

(a)

Thickness Samples with Fitted Distribution

— GMM

0.006
[ Sample

0.005

0.004

0.003

Frequency

0.002

0.001

0.000

600

700
Footwall {m}

(b)

0.06

0.05

0.04

Frequency
o
o=
(=)

0.02

0.01

200 0.00

— GMM
[ Sample

20 30
Thickness {m)}

(c)

Figure 6.4: Distributions of Geometric Samples in Case Study 1

In (a), the fitted distribution of elevation of the hangingwall is shown. In (b), the fitted distribution
of elevation of the footwall is shown. In (c), the fitted distribution of the thickness is shown.

A cross-validation is used to test the results of the imputation. 70 percent of the

data are used as the training data and multiple imputation is applied to impute the

other 30 percent of the data, which serve as the testing data. These testing data are

randomly left out. After multiple imputation, the e-type values of the imputed results

are compared with the testing data. Three summary statistics: error rate, Pearson
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Figure 6.5: Variograms of Geometric Samples in Case Study 1

In (a), the variogram of the elevation of the hangingwall is shown. In (b), the variogram of the
elevation of the footwall is shown. In (c), the variogram of the thickness is shown.
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Figure 6.6: One Realization of Case Study 1

In (a), the imputed results of the elevation of the hangingwall is shown. In (b), the imputed results
of the elevation of the footwall is shown. In (c), the imputed results of the thickness is shown.

correlation coefficient (p) and root mean square error (RMSE) are summarized in
Table 6.1.

From the results, the method of Bayesian updating outperforms slightly the method
of error ellipses for the elevation. The error rate of the elevation can be reduced from
around 3 to around 1 by Bayesian updating. However, for the thickness, the method
of error ellipses performs better. As a result, it is possible better to use different
merging method for different geometric variables. The overall correlation is around
0.9, which means a strong correlation. The results of the RMSE are consistent with
the error rates. The better result is bolded in the table in order to compare the two

merging methods.
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Table 6.1: Summary Statistics for Case Study 1

Variable Merging Method Error Rate Correlation RMSE

Waw EE 2.606 0.890 25.69
Waw BU 1.618 0.967 14.23
Wew EE 3.638 0.878 36.07
Wew BU 1.122 0.971 9.727
TH EE 6.002 0.937 2.556
TH BU 7.883 0.866 3.512

Accuracy and bias are compared in Figure 6.7. In these scatter plots, e-type
estimates of the training data are plotted on the x-axis against the testing data on
the y-axis. The overall performance shows a strong correlation. The regression line
illustrates some conditional biases. Again, the method tends to reduce the variance
of the geometric variables.

The difference of the results by the two merging methods are much more obvious
than the one from the synthetic example. In the scatter plot, the close pairs of the
two merging methods are not observed.

Reproduction of the CDF of the imputed realization is shown in Figure 6.8. The
distribution of realizations are plotted in gray. The true distribution in red and the
sample distribution in blue are plotted for comparison. The method reproduces the
distribution approximately, but it reduces the variances for all geometric variables
slightly.

Reproduction of the variograms of the imputed realization is shown in Figure
6.9. The method reproduces the variograms approximately for the elevation. The
variogram reproduction of the thickness is more disperse. It is probably because that
there are more thickness values being imputed, and the variogram of the thickness
are more unstable.

The results of the cross-validation show that the method has an strong correlation,

and acceptable reproduction of the distribution and the variogram.
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Figure 6.7: Validation Plot for Case Study 1

The imputed values using the training data are compared with the test data. In (a), the results of
the hangingwall are shown. In (b), the results of the footwall are shown. In (c), the results of the
thickness are shown.
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Figure 6.8: Distribution Reproduction of Case Study 1

In (a), the distribution of the imputed realizations of the elevation of the hangingwall is plotted. In
(b), the elevation of the footwall is plotted. In (c), the thickness is plotted.
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Figure 6.9: Variogram Reproduction of Case Study 1

In (a), the reproduction of the variogram of the imputed realizations of the elevation of the
hangingwall is plotted. In (b), the reproduction of the footwall is plotted. In (c), the reproduction
of the thickness is plotted.
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Chapter 7

Conclusion and Future Work

The workflows of multiple imputation used to model the geological domain for single-
layered, multi-layered tabular deposits and multiple imputation along drill holes are
presented. Synthetic examples are used to demonstrate the steps and enable the dis-
cussion of the results and the sensitivity analysis. This chapter reviews the problem

and contributions made in this thesis. Proposals for future work are presented.

7.1 Review and Contributions

Geometric uncertainty is one of the uncertainties encountered during the modeling
of the geological domain of tabular vein deposits. It is due to sparse drilling and
it increases with inclined drill holes. Multiple imputation is a kind of sequential
Gaussian simulation used to quantify this geometric uncertainty.

The prerequisites of the method includes building a local coordinates system, angle
and thickness calculation, as well as normal score transform and variogram calculation
and modeling. The building of a local coordinates system by Total Least Square (TLS)
allows the calculation of thickness. The calculation of the angles of the drill holes
decides whether a drill hole should be imputed or not. The thickness values from the
vertical drill holes form the distribution of the thickness, and others will be imputed.
After that, the geometric variables, including elevation (position vertical to the plane
of continuity) and thickness, can be normal score transformed. Variogram calculation
and modeling can be performed for these geometric variables.

Multiple imputation combines distribution of elevation and distribution of thick-
ness in order to make realistic realization. The mean and the variance of the primary
distribution of elevation is derived from kriging using nearby spatial information.

The mean and the variance of the secondary distribution of thickness is derived from
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kriging using nearby spatial information as well. Then, the secondary distribution
of thickness is transformed into the distribution of elevation. The two distributions
of elevation are merged. After forming this distribution, a realization of multiple
imputation can be drawn. The workflow can proceed to the next location.

The method can be applied to three scenarios. The first one is for single-layered
deposits. The second one is for multi-layered deposits. The third one is for high-
deviated long drill holes. The original method can be used for single-layered deposits
and it can extended to multi-layered deposits. The difference is that there are more
places being imputed and there are more opposite elevation values that can be used
to transform thickness distribution into elevation distribution. In order to impute
areas with highly deviated long drill holes, assumption about the opposite elevation
and the distribution of thickness are made. Results with synthetic data show that
the method can provide acceptable imputation results.

In order to achieve optimum performance of multiple imputation, many parameters
must be considered. It is important to choose a good angle tolerance. If the angle
tolerance is too low, there will be too few data to form the global distribution and
conduct kriging; however, if the angle tolerance is too high, inappropriate thickness
values would be included in the global distribution. It is important to consider the
angle tolerance with drill holes numbers to form a sample with a proper size. Imputa-
tion Sequence is another important factor. The sequence of imputation always starts
from the most constrained area to the least constrained area. For multiple imputa-
tion, it is shown that the imputation should start from the most vertical drill hole to
the most inclined drill hole. Within a drill hole, it is better to use kriging variance
to decide the sequence. During transformation, it is the best to have a global para-
metric distribution; empirical fitting by linear interpolation and Gaussian mixture
models (GMM) also provide good results. Overall, the method of Bayesian updat-
ing and the method of error ellipses performance quite similarly. Bayesian updating
performs better when the distribution of geometric variables are known. The later
method performs better when the distribution of geometric data is not known and
when the layers of the deposits increases. For multi-layered deposits, it is better to
use the nearest opposite elevation value to conduct transformation. For imputation

along long drill holes, it seems that it is possible to impute locations along drill holes
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without sacrificing the accuracy.

There are some limitations of multiple imputation. The most important limitation
is that during the transformation, there is no guarantee that the imputed values would
be in the original range of the geometric variables. Another important limitation
is that the imputed values can have a lower variance because the imputed values
are sometimes based on the sample only and the calculated thickness distribution
may not represent the true thickness distribution. Another characteristic is that
because there is fewer data for thickness values, the variance of the thickness can be
larger than the elevation. As a result, during the merging of the two distributions,
the distribution of elevation can have more weights. For multi-layered deposits, the
number of imputed values can increase dramatically. As a result, some areas can be
highly constrained and do not need imputation. TLS can provide inclined results
for multi-layered deposits. For imputation along drill holes, although the overall
performance is acceptable, the imputed areas along drill holes are less accurate than
the imputed areas near pierce points.

The main contribution of the thesis is the implementation of the method of mul-
tiple imputation for different scenarios. Multiple imputation now integrates both
the distribution of elevation and the distribution thickness during imputation. Fur-
thermore, the sensitivity analysis about different parameters that the method should
choose allows a better performance of the method. The method can be applied to

model the geological domain problematically.

7.2 Future Work

The complete workflow of multiple imputation can be integrated into the framework
of probabilistic resource modeling of tabular vein deposits. After geometric data im-
putation to construct probabilistic geological domains, the surface simulation can be
conducted as the next step of the probabilistic modeling of the deposits. Then, the
boundary modeling, the grade simulation, and the post-processing including sensitiv-
ity analysis.

The proposed method of multiple imputation has some limitations.

It is important to have a representative thickness distribution. The current method
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approximately calculates the thickness values. Furthermore, it is possible that there
is no vertical drill hole that can provide thickness values near some locations. Addi-
tional research is required to determine the thickness distribution in these challenging
circumstances. Some iterative methods can be used to get the thickness distribution
by explicit modeling. Furthermore, it is assumed that the three geometric variables
are independent. However, it is likely that there are some dependency between the
elevation and the thickness. These correlation can be considered when modeling the
geological domain.

The definition of simple tabular deposits can be extended to complex deposits
with reverse folds and other complex geological units. Currently, some unfolding
techniques can be applied to constrain deposits into this definition and normal faults
can be handled. The assumption used in imputation along long drill holes can be
used to reject possible imputed results and decide whether a point is within a certain

surface. Additional research would be required for such complex deposits.
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