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Abstract

Let n > 3 and B C R™. The Illumination Conjecture states that the minimal number
Z(B) of directions/‘light sources’ that illuminate the boundary of a convex body B, which
is not the affine image of a cube, is strictly less than 2". The conjecture in most cases is
widely open, and it has only been verified for certain special classes of convex bodies. For
instance, significant progress in dimension 3 has been made for convex bodies with certain
symmetries. Moreover, in large dimensions with dimension greater than some universal
constant C', Konstantin Tikhomirov [22] showed the conjecture in the setting of 1-symmetric
bodies, but unfortunately there is a gap in his proof which still leaves a case to be handled.
In addition, an explicit value for this constant C' was not computed. The natural question
which follows from Tikhomirov’s paper is whether we can use Tikhomirov’s method for 1-
symmetric bodies or 1-unconditional bodies in low dimensions. In this thesis, we will first
fill the gap in Tikhomirov’s results. Through this process, we are also able to prove the
Hlumination Conjecture, with bound 2" (and not < 2"), for any 1-symmetric convex body
regardless of dimension. Additionally, we are able to show that for 1-symmetric convex bodies
in dimensions 3 and 4, Z(B) < 7 and Z(B) < 15, respectively. Finally, we are also able to
show that for 1-unconditional polytopes in dimensions 3 and 4, Z(B) < 6 and Z(B) < 16,

respectively.
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1 Introduction

1.1 Some Brief History

The conjecture of interest is a question of Combinatorial Geometry and Discrete Geometry.
It is motivated by the idea of covering a convex body, a compact convex set with nonempty
interior, with slightly smaller copies of itself. The notion of covering which I refer to is “to

set theoretically contain”. The origin of our question is:

Let L,, denote the smallest natural number such that any n-dimensional convex body can be

covered by the interior of a union of at the most L, of its translates.
What is L,, forn > 37

e -

(a) Covering the cube with 4 copies (b) Covering the ball with 3 copies
of its interior. of its interior.

Figure 1: Examples of covering by copies of the interior in dimension 2.

Hadwiger was well known for coming up with such unsolved problems [9, pp. 389-
390], including the above conjecture, known as the Hadwiger Conjecture [11]. However, this
problem was previously studied by Levi who solved the question for the 2-dimensional case
in 1955 [16]. In 1960, Gohberg and Markus restated the question in terms of covering by

homothetic copies [10]|, which, roughly speaking, are translations of smaller copies of the
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original object. The Covering Conjecture stated by Gohberg and Markus [10] is the topic of

interest.

We can cover any n-dimensional convex body by 2™ or fewer of its smaller homothetic
copies in Fuclidean n-space, n > 3. Furthermore, 2™ homothetic copies are required only if

the body is an affine n-cube.

In this thesis, we will indirectly work on this conjecture via illumination. To introduce
the idea of illumination, picture an object suspended and centered in a dark room. Without
considering reflections, in how many different directions we would have to shine a light on
the object for each point on the surface of the object to be slightly penetrated by light?
Formally, let B C R™ be a convex body. A boundary point x € 0B is illuminated by a
direction d € R™\{0} if there exists an € > 0 such that x 4 ed belongs to the interior of B.
The illumination number of a convex body, Z(B), is the smallest number of directions which

can illuminate the boundary of a convex body.

(a) Iluminating the cube with 4 directions. (b) Hluminating the ball with 3 directions.

Figure 2: Examples of illuminating in dimension 2.

The following conjecture by Hadwiger and Boltyanski is the Illumination Conjecture
and it is equivalent to the Covering Conjecture |3, 12]. This is because the illumination

number Z(B) of a convex body B and its covering number are always equal.



The illumination number, Z(B), of any n-dimensional conver body B, n > 3, is at most 2"
and Z(B) = 2™ only if B is an affine n-cube.

Since the problem is still unsolved in full generality, even for low dimensions greater
than n = 2, a proof for this conjecture will have a lead to a better understanding of the

boundaries of convex bodies in different dimensions.

1.2 Known Results

Recall that Levi already solved the conjecture in dimension 2. He also observed that for
smooth convex bodies of any dimension Z(B) < n + 1 [16] (smooth here means that every

boundary point of the body has a unique tangent/supporting hyperplane).
Definition 1.1.

1. A zonotope is a set which can be expressed as the Minkowski sum of line segements.

A zonotope will always be a convex body.
2. A zonoid is a convex body that is the limit of zonotopes in the Hausdorff metric.

For zonoids which are not the parallelepipeds, Boltyanski and P.S. Soltan have shown
that Z(B) < 3-2"72 [4, 5].

So far, the best result for general convex bodies in dimension 3 is due to Papadoper-
akis, who was able to show that Z(B) < 16 [17]. There are also some results due to Prymak
and Shepelska who gave upper bounds for Z(B) of 96, 1091 and 15373 in dimensions 4, 5,
6, respectively [18]. As we can see, the results for general convex bodies are still rather
crude when compared to the conjecture. There are many partial results in R? which are not
stronger than each other and do not contradict the conjecture. For many of such results

there is some underlying symmetry.

Definition 1.2. We say that a convex polyhedron B has affine symmetry if the affine

symmetry group of B is non trivial.

Bezdek has shown that if B C R3 is a convex polyhedron with affine symmetry, then
Z(B) <8[1].



Definition 1.3.
1. We say that a convex body B C R" is o-symmetric (origin symmetric) if B = —B.

2. We say that a convex body B C R"™ is centrally symmetric if some translate of B is

o-symmetric.
Through collaboration, Erdés, Rogers and Shepard has shown the following. [8, 19, 20|

vol,(B — B)

vol.(B) n(lnn+Inlnn +5) <O (4"/nlnn).

Z(B) = covering number <
This bound was the best estimate for general convex bodies for a long time. It was proven

using covering rather than illumination. If B is centrally symmetric, we get

vol,(B — B)

1 Inl <0 (2"nl .
voL.(B) n(Inn+1Inlnn +5) <O (2"nlnn)

Z(B) = covering number <

Lassak has shown that the boundary of any centrally symmetric convex body B C R?
can be illuminated by four pairs of opposite directions, and thus Z(B) < 8 [14]. Dekster has
given the following complementary result: if B C R? is a convex body symmetric about a
plane then Z(B) < 8 [7].

Regarding Lassak’s result, in his paper [14], it was conjectured that for any centrally
symmetric convex body B C R", where n > 3, which is not a parallelepiped, there are
271 1 pairs of opposite directions which form an illuminating set. Although our results
are focused on more restricted classes, the 1-symmetric and 1-unconditional cases, it turns
out that at least many of our results confirm his conjecture. In fact in the case where B C R3

is a l-unconditional polytope, we are able to show that this conjecture is true (Theorem 6.9).
Definition 1.4.

1. The width of a convex body B C R" is given by

Width(B) =  min  d(H, Ha)
Hi||Ha,
H1,Hg support B



2. We say that a convex body B C R" is of constant width if for any hyperplanes H;, H,
which are parallel and support B,

Width(B) = d(H,, Hy)

For convex bodies of constant width in dimension 3, it has been shown that Z(B) < 6;
this was also shown by Lassak [15]. In R", for convex bodies of constant width, Schramm
has shown that

1

I(B) < 5ny/n(4 + log(n)) (g) " 211,

which gives Z(B) < 2™ for n > 15.

Definition 1.5. We say that B is a cap body of a ball if B is the convex hull of a Euclidean
ball and a countable set of points outside the ball under the condition that each segment

connecting two of these points intersects the ball.

Definition 1.6. We say that a convex body B C R" is 1-unconditional if
(1, .0y y) € B = (f14,...,+7,) € B.

Ivanov and Strachan have shown that for if B C R” is a centrally symmetric cap
body of the ball, then I(B) < 6 [13]. Moreover, in R?, for 1-unconditional cap bodies B of
the ball, they have shown that I(B) < 8 [13].

There are many results regarding illumination. If the reader would like to know more
on this topic, we recommend reading the survey paper by Bezdek and Khan [2]. Another
good reference is the textbook by Brass, Moser and Pach [6]. We finish with one more result,

the most relevant for this thesis.

Definition 1.7. We say that a convex body B C R" is 1-symmetric if B satisfies the

1-unconditional condition, and

(Qj’l, ,Zl‘n) €cEB = ($g(1),---7xa(n)) €B



for any permutation ¢ on n elements.

Tikhomirov has shown that there exists a universal constant C, so that when n > C,
if B C R™ is a 1-symmetric convex body, then Z(B) < 2", except in the following subcase (for
which we discovered his proof has a gap): if 1 # d(B,[-1,1])" < 2 and |le; + ¢;[|g > |leillg
for every 7, € [n].

In this thesis, we will study Tikhomirov’s paper in depth in sections 3 and 4. In
section 5 we are able to fill in the gap in Tikhomirov’s results and also obtain some of
our main results. Then we will stem off and discuss our findings in sections 6 and 7 for
l-unconditional convex polytopes. Let’s take closer a look at Tikhomirov’s method and our

results in the next subsection.

1.3 Tikhomirov’s Method and Our Main Results

Tikhomirov’s idea is to start with a common illuminating set with 3™ — 1 illuminating direc-

tions

n.={—1,0,1}"\{0}.

Then he shows that one can find sufficiently smaller subsets of it that are still illuminating.

We can see that for any boundary point = € B, if we set d € R” so that

—sign(z;), @i #0

di: 5
0, LIIl:O

then d € 70 and d illuminates = (lemma 2.42).

Recall that for a direction d € R™\{0} to illuminate a boundary point z € 0B, it
means there exists ¢ > 0 so that x 4+ ed € int B. Thus, arbitrary scalar multiples of d will
illuminate (parts of the boundary of) B as long as d illuminates (parts of the boundary of)
B. Because of this, just as Tikhomirov does, we will only consider d which satisfies ||d||,, =
1. Finally, it is enough to consider affine transformations of convex bodies (because both

the illumination number and the covering number of a convex body are affine invariants),



so WLOG we can require that ||e;||g = 1. We will give justification for this choice of
normalization of B at the beginning of section 5. Alongside convexity, this condition implies
that [|z]| < 1 and z € B. In layman’s terms, we will shrink or enlarge our 1-symmetric
convex body so that it will fit tightly into the unit cube.

For Tikhomirov’s proof to work, we require the dimension of the smaller Euclidean
space which contains B to be sufficiently large. So, a natural approach would be to try to
estimate the maximum ‘low’ dimension for which Tikhomirov’s proof stops working. In this
paper, we find that if B lives in dimensions 3 and 4, his method does not go through, and
perhaps it is too ‘rigid’ to work (see lemmas 4.1, 4.2, and 5.5, and remark 5.6). In fact, we
also found an error in his method, which we will discuss in section 4, which is why we have
only stated his result as partial for now. On the other hand, Tikhomirov uses certain norm
conditions to distinguish between interesting cases which is very important for our methods

too in sections 6 and 7. In the 1-symmetric case, we look at the cases:
Vi,j €[n], i #j, lle;+ejllg = lleillg or Vi,j€lnl, |le;+ellg > lleills-

We will also look at an analogue of these cases in the 1-unconditional setting. At the same
time, our methods to prove illumination will differ significantly at certain points from those of
Tikhromirov’s. We will be carefully choosing sections of our convex bodies in order to see that
the boundary points belonging to those sections are illuminated by certain directions. While
imitating the cases/subcases Tikhomirov distinguishes, and while playing with directions
similar to his, we successfully develop some core combinatorial and geometric intuition for
choosing appropriate sections of our convex body to look at and construct small illuminating
sets.

With our methods, we are able to strengthen Tikhomirov’s result: when n > C, if
B C R™ is a 1-symmetric convex body, then Z(B) < 2". This is because we are able to find
a replacement for the remaining, problematic case (corollary 5.20). Alongside this, we are
able to show that for every n > 3, if B C R" is a 1-symmetric convex body, then Z(B) < 2"
(Theorem 5.18). When combining our results with Tikhomirov’s results, we are even able
to show that in dimensions 3 and 4, if B is a 1-symmetric convex body, then Z(B) < 7
(corollary 5.21) and Z(B) < 15 (corollary 5.22), respectively.



Sections 7 and 8 are dedicated to l-unconditional polytopes. In the case of 3-
dimensional 1-unconditional polytopes, we are able to construct sets to show that Z(B) <
6 < 23 (Theorem 6.9); in the case of dimension 4, we are able to show that for many cases,
Z(B) < 14, and Z(B) < 16 for the remaining cases (sce Theorem 7.15 and table 9).

Our method of proof relies on looking at specific sections of the convex body, therefore
the proofs that we give already come with a concrete construction of an illuminating set,
similar to that of Tikhomirov’s and Lassak’s but different from Levi’s.

For the sake of transparency, Prof. Vritsiou suggested several crucial technical details
and changes which led to a simplified proof of proposition 5.13, and strengthenings of previous
versions of Theorem 5.18, and corollary 5.20. Additionally, she has also pushed some results

further, such as in propositions 7.4, 7.6 and 7.12.



2 Preliminaries and Notations

We begin here with some basic definitions and lemmas about convex geometry and illumi-
nation. We attempt to keep the notation as consistent as possible to the notation from

Tikhomirov’s paper.

2.1 Basic Notations

Notation 2.1. We use the following notation to denote the set of naturals less than or equal

to n:
[n] :={1,2,...,n}.
Notation 2.2. Let n € N, ¢ € R. For a vector z = (x1, ..., z,) € R"| let
I7:={i€n]:x;=c}.

In particular, by setting ¢ = 0, this set keeps track of how many zero entries there

are in a vector, and also where the zero entries are located.

Notation 2.3. Let n € N and i € [n]. We use the following notation for the standard basis

coordinates of R™:

e; =(0,...,0,1,0,...,0).

ith entry

2.2 Convex Geometry

Definition 2.4. A convex body B C R" is a compact convex set with non-empty interior.

The polytopes in this thesis will all be convex bodies.
Definition 2.5.

1. We say B € 8" if B C R" is a 1-symmetric convex body that satisfies ||e;||g = 1 for

every i € [n].



2. We say B € U™ if B C R" is a l-unconditional convex body that satisfies ||e;|lg = 1

for every ¢ € [n].
We will justify why we impose ||e;||g = 1 for every i € [n] in subsection 2.3.

Definition 2.6. Let B C R" be a convex body. A supporting hyperplane H is a hyperplane
in R"” which satisfies HNB = H N 0B # @.

Notation 2.7. Let x,n € R". We can denote

Hy(n) :={{ € R": ({,;n) = (z,n)}.

So n is a normal unit vector to H,(n).

Definition 2.8. Let B € R" be a convex body and x € dB. An outer normal is a unit

vector n € S™ ! so that
Bc{¢eR": (n) < (x,n)}.

Moreover, then H,(n) is a supporting hyperplane of B. The set of outer normals of B at x
is denoted by v(B, z).

Definition 2.9. Let z € R®, n € S 1. We call the set

{¢ eR": {¢,n) < (z,n)}

the negative half-space of R™ out of the two half-spaces with boundary H,(n), and

{eR":({{n) > (z,m}

the positive half-space of R™ with boundary H,(n).

Fact 2.10. A convex body is the intersection of the negative half-spaces of all of its sup-
porting hyperplanes.

Notation 2.11. Let » > 0. We denote the following convex bodies in dimension n centered

at the origin as follows.
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1. The cube (with sidelength 2r) is denoted by:

Cl={zeR":|z|  <r}

2. The cross-polytope (with diameter 2r) is denoted by:

oP" = {z € R": |||, <7}

Definition 2.12. Let x € R" and B be an origin symmetric convex body. The norm induced
on R"™ by the convex body B is defined by

|z||g := min{t > 0:z € tB}.
Notation 2.13. Let x € R™. Then according to our notation
12/l = llzllcp -

Definition 2.14. Let S C R”™ be a set, the conver hull of S is the smallest convex set
containing S, or equivalently, the intersection of all convex sets containing S. It can be

shown that

conv S = {Z)\zxzmeNa xl?"'axmesy Z)\Z:17 OS)\L“':)\m S 1}7

i=1 i=1
which is the set of all possible convex combinations of points from S.

Definition 2.15. We define the distance between two centrally symmetric convex bodies,
B.,B; C R™ to be

d(B1,B3) = min{\ > 1: B; C rBy C AB; for some r > 0}.

Remark 2.16. This looks quite similar to the Banach-Mazur distance; however, since we

do not allow arbitrary lincar transformations of By and By, this means that d(C' P2, C?) # 1.

11



Lemma 2.17. Let B € U", then
dB,[-1,1]") = flex + ... + enlls-

Proof. We will borrow lemma 2.37 which is from a later subsection in the preliminaries of
this thesis for this proof.
Using the notation C7 = [—1,1]™

d(B,C}) = min{A > 1: B C rC} C AB for some r > 0}

1

= min{% >1: B C Cl C ;B for some Ay, Ay > O}.

Recall that by our normalization, ||e;||g = 1 for every i € [n]. We want to minimize i—f;
therefore we want to maximize \;. By our normalization and the 1-unconditional condition,
B C 7 thus A\ > 1. Fix ¢ € [n]. If A\; > 1, then A\je; € \yB C C7. This contradicts the
definition of C7'. Hence, it must be the case that A\; = 1.

On the other hand, for any s > 0, lemma 2.37 implies that
s(er + ... +e,) € B <= sCl' =[—s,s]" C B.

We need to minimize Ay, so we want to find the largest sy so that soCT C B.

1
min{t > 0: (e; + ... + e,) € tB}
1

ller + ... +enllg’

max{s > 0:s(e; + ... +e,) € B} =

Overall, we have
1
B cC} c —B.
So

Does there exist a better choice (larger value) for Ay than Sp7 In the method of how we

12



attained sp, we can see that i is the best choice (smallest value) for A\,. Hence

n 1
d(B,CT) = S_o =|le1 + ... + e

0

Here are some important facts about lines and convex bodies which we will use
throughout the thesis. Since these results are rather elementary, we will state them without

proof.
Fact 2.18.

1. If @ is an interior point and b a boundary point of a convex body B, then all points of

segment ab except b are interior points of B.

2. If the endpoint of a ray (line segment) is on the interior of a convex body B, then the

ray (line segment) will only intersect OB exactly (at most) once.

Example 2.19. Suppose B C R" is convex and contains +e; for every i € [n], then B
contains the convex hull of those points (which is the cross-polytope). This means that
0 € int B. Fix 7 and let ¢ € R so that 0 < ¢ < 1. We can create a ray which starts from 0

and passes ce; then through e;, so ce; must be interior to B by fact 2.18.

Definition 2.20. Let B C R" be a convex body and x € B, then z is called an extreme
point of B if it does not lie between any two distinct points of B. That is, if there do not
exist ¥,z € B and 0 < A < 1 such that y # z and © = Ay + (1 — X\)z. We denote the extreme
points of B by:

ext B := {xr € B : x extreme} .

Example 2.21.
1. The vertices of convex polytopes are the only extreme points.

2. The boundary points of the ball are precisely its extreme points.

13



We will use the following fact implicitly throughout the thesis.

Fact 2.22. Let B C R" be a convex body. A hyperplane supports B if and only if it supports
ext B, meaning B lies in the negative half-space of a hyperplane if and only if its extreme

points lie in that half-space as well.

Lemma 2.23. Let By, Bs C R™ be convex bodies, then
ext conv(B; UBs) C ext By U ext Bo.

Proof. First, we claim that ext conv(B; UBs) C B; UBsy. Let z € extconv(B; U Bs), and
suppose = € By U B,. However, this means that x € conv(B; UB;)\(B; UBs;) and thus, it
is a convex combination of at least two different points from B; and Bs. This contradicts x
being an extreme point, hence it must be that x € B; U Bs.

In addition, suppose = € By, since x € ext conv(B; U By), then there does not exist
such y, z € conv(B; UBy) D By and 0 < A < 1 such that y # z and x = Ay + (1 — \)z; this

means r € ext By. Similarly if z € By, then x € ext By, which proves the claim. O
Definition 2.24. In R”, an affine set is the translation of a vector subspace.
Definition 2.25. In R", a hyperplane is an affine set of dimension n — 1.

Definition 2.26. Let S C R" be a set. The affine hull of S is the smallest affine set
containing S, or equivalently, the intersection of all affine sets containing S. It can be shown
that

k k
aﬂS:{Z)\ixi: k>0, z,€8 Y N=1, AieR}.

i=1 =1
This is the set of all possible affine combination of points from S.

Definition 2.27. The relative interior of a set .S is given by

relint S :={{ €S :3 >0, B.(§)Natf S C S}.

14



Example 2.28. The ball of R? which lives in R? described by

B = {(61752753) € Rg : 51 +€2 < ]-7 63 :O}

is its own closure in R®, therefore its interior is empty. The affine set which contains this
ball will be the copy of R? in R? i.e.

aff B = span(ey, e3).
So, we get
relint B = {(51752753) € R3 : 51 + 52 < ]-) 53 = O}

Remark 2.29. The notion of relative interior can be thought of as giving a notion of interior

to a set of R™ which has empty interior by giving it a relative topology.

Lemma 2.30. Let B C R" be a convex body and H be an affine set. If x € relint (H N B)
and H Nint B # & then x € int B.

Proof. Let x € relint(H N B) and suppose H Nint B # &. By way of contradiction, assume
x € 0B, and since H Nint B is non empty and convex, we can travel from x along H to enter
the interior of B, i.e. there exists a d in the subspace parallel to H so that z+d € H Nint B.
We identify a ray with end point x 4+ d € int B, passing through z € 0B. So by fact 2.18,
x+d—ed ¢ B for every € > 1 or equivalently, z — ed € B for every ¢ > 0. This means that

x ¢ relint(H Nint B) so we have reached a contradiction. O

This ends the preliminary section part for convex geometry, we will now introduce

some basics and lemmas ideas for illumination.

2.3 Illumination

Definition 2.31. Let B;, B, € R" and Z C R™\{0}. A point € 9B, is By-illuminated
by T if there exists d € 7 and € > 0 so that x + ed € int B,. Similarly, we say that B, is
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By-illuminated by T if for every x € 0By, x is By illuminated by Z. In the case Z = {d}, we

will say = or By is Ba-illuminated by d instead.

If the convex body here is not important or if it is obvious that B; = By, we will
use the terminology, = or By is illuminated by Z. In fact, in most of our cases, B; = Bo;
however, we will see why we sometimes need to distinguish between B; and B, as in lemma
2.36.

Definition 2.32. We denote the #llumination number by:

I(B):= min |Z].
7 illuminates B

Let’s simplify the problem a little bit. The number required to cover a set using
homothetic covering does not change due to shifting, shearing or stretching of a convex body,
and thus affine transformations. Therefore, the problem of illumination is also invariant of
affine transformations. We should note that the affine transformations we are looking at will
be invertible, and in our cases, due to the symmetries imposed we will not need translations,
so we will only be looking at invertible linear transformations (linear homeomorphisms). Let
T be our linear homeomorphism and x € ext B, d € R" so that © + ed € int B for some
e >0, then T(z)+eT(d) = T(x+ed) € int B. We can see that if Z is an illuminating set for
B, then T'(Z) is an illuminating set for T'(B). Hence, we can simplify our process: we will

only look at 1-symmetric convex bodies B C R™ which satisfy |le;||g = 1 for every ¢ € [n].

Notation 2.33. Let n € N, we use the following notation for Tikhomirov’s large illuminating

set:
i =A{x = (x1,...,2,) € R" 1 2; € {0,1,—1}}\{0}.

Note that |Z}| = 3" — 1.

Lemma 2.34. Let n > 2 and B C R” be a convex body. A direction d € R™\{0} illuminates
x € 0B if and only if (d,n) < 0 for all n € v(B, ).

Proof.
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= Suppose d € R™\{0} illuminates x € 0B. Then there exists ¢ > 0 so that x + ed €
int B. Now let n € v(B, ), then H,(n) is a supporting hyperplane of B at x. Since
T+ ed € int B,

(x,n) > (r +ed,n) = (x,n) + ¢ (d,n) = (d,n) <O0.

< Assume that (d,n) < 0 for all n € v(B,x). Suppose for contradiction that for any
e >0, z+ed ¢ int B. One possibility is that there is g > 0 such that x + £¢od € 0B.
Then x4+ £2d is also in OB (since by convexity it must be in B, and by our assumption
it cannot be in int B), and thus we can find a unit vector ng such that H, %d(no) is
a supporting hyperplane of B at x + 2d. Since x,r + 5'd and = + g9d must be found
in the negative half-space of H,, < 4(ng), we have that x and x 4 ¢od are also found on

Hﬁ%od(no). Thus ny € v(B, z), and moreover

<IE, IlQ) = <l’ + Eod, Il0> — <d, IlQ) = O,

which contradicts our assumption about d.

The only other possibility is that « + ed ¢ B for every ¢ > 0. Then for each
Em = %, we can find a hyperplane H, (n,,) separating B and x + ¢,,d, where n,, is

some unit vector and y,, € 0B. In other words, for every point z € B
<27 nm> < <ym» nm> =0y < <37 + Emda nm> .

Since the vectors n,, are all unit, we can find a subsequence of them which converges

to a unit vector ng. Passing to this subsequence if needed, we have that

lim (z,n,) = (r,ny) <liminf a,,, = lim inf max (z, n,,) .
m—00 m—r00 m—oo z€B

At the same time, (v + €,,d,n,,) = (z,10,,) + €, (d, ny) — (z,10) (since | (d,ny,) | <

||d||2 and €,,, — 0), and thus

(r,ng) = lim (x + ¢,,d, n,,) > limsup max (z,n,,) .
m—00 m—oo 2€B
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It follows that ny € (B, x), given that, for every 2’ € B,

(+/:no) = lim (2 n,) < limsupmae (2,n,,) < (.00
m o

On the other hand, for every d we have that (d,n,,) > 0 (since (z,n,,) < a, <
(x + emd, ny,)), and thus (d, ng) = lim,, , (d, n,,) > 0. This contradicts the assump-

tion about d again.
]

Lemma 2.35. Let B C R" be a convex body, then B is illuminated by Z if and only if ext B
is illuminated by Z.

Here, by illuminated, we mean B-illuminated as ext B C B.
Proof.
= extB C B.

< Suppose ext B is illuminated by Z. Let x € 0B\ ext B. Then there exists 41, ..., ym €
ext B so that

T = Zkiyi, where Z)‘i =land 0 < Aq,..., A, < 1.
i=1 i=1

Let n € v(B,x), then H,(n) supports B. In particular, since y; € B for i € [m],
(y;,n) < (z,n). Suppose for some j € [m], \; > 0 and (y;,n) < (z,n), then

(x,n} - /\j <yj7n> + Z A; <yivn> < >‘j (x,n> + Z Ai (x,n> - (x,n} .
i€[m|\{j} i€[m|\{j}

This means that (y;,n) = (z,n), i.e. y; € Hy(n). Thus every supporting hyperplane
which contains x will also contain y. Hence v(B,x) C v(B,y). In view of lemma 2.34,
if y € Z illuminates y, then (y,n) < 0 for every n € v(B,y) D v(B,x). Hence, x is
illuminated by Z.
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O

Since for the most part, we will only show that the vertices are illuminated, we will

be using lemma 2.35 implicitly.

Lemma 2.36. Let m € N, i € [m] and B; C R" be convex bodies which can be B;-
illuminated by Z. Then conv (J;*, B;) is conv (., B;)-illuminated by Z.

Proof. Let m = 2, and let B;,By C R" be convex bodies and suppose they are By, Bo-
illuminated by Z, respectively. By lemma 2.35, ext By and ext B, are B; and Bs-illuminated
by Z, respectively. Since By, By C conv(B; UBy), they are both conv(B; UBy)-illuminated
by Z. And thus ext By U ext By is conv(B; U By)-illuminated by Z. From lemma 2.23, we
get

ext conv(B; U Bsy) C ext By U ext Bo.

So ext conv(B; U By) is also conv(B; U By)-illuminated by Z. Again, apply lemma 2.35
to see that conv(B; U Bs) is conv(B; U By)-illuminated by Z. Finally, for convex bodies
B, C R™ which are B;-illuminated by Z, use induction to see that conv (|J;~, B;)-illuminates
conv (U;~, B;) using Z. O

Lemma 2.37 is an observation for any B € U™: if we have points z € R” and y € B
so that |z;| < |y;| for all i € [n], then x € B. If we want to construct B’ so that B C B’, we
have to add points z € R", where for any y € B, x; > y; for some i € [n].

Lemma 2.37. Let B € Y" and = = (z1,...,x,) € R", y = (y1,...,yn) € B with |z;| < |y,
for every i € [n]. Excluding the case of when |z;| = |y;| for every i € [n], then x € B\ext B.

Proof. Let x € R™, y € ext B. If |z;| = |y;] for every i € [n], then z € ext B as B € U". Now
suppose y € B and WLOG assume 0 < z; < y; for exactly one j € [n], then

Ay+ (1= A) | —ye; + Z yi | =z, where Ay; + (1 —X)(—y;) =z; and 0 < X < 1.
i€[n]\j
Beyr

A similar argument using induction can be used to get the claim for the other cases. O
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Lemma 2.38. Let B € U™ and z = (z1,...,x,) € B, y = (Y1, ..., yn) € B with |z;| < |y;| for
every i € [n]. Then z € int B.

Proof. Take & = min;cp(|yi| — |4]), construct the cross-polytope with vertices
{x +ee;:i€n]}

centered at x. We have constructed a cross-polytope in R"™ contained in B due to the
convexity of B. Thus z € int B. O

Corollary 2.39. Let B € Y™ and = = (zy,...,2,) € 0B with |[{| = 0. If d; > 0 for every

i € [n], then d = (—sign(z1)dy, ..., — sign(x,)d,,) illuminates x.

Proof. Let d; > 0 for i € [n]. Since n < oo, pick a small € > 0 so that
ed; < |z;| for every i € [n].
Then
|z; — esign(x;)d;| = ||z;| — ed;| < |x;|  for every i € [n].

Now, we can apply lemma 2.38 to sec that z +ed € int B and thus x is illuminated by d. O

Definition 2.40. Let d € R"\{0} be an illuminating direction, we call the following a
perturbation of d:

d+ Z de; , where 0; € R for every i € [n].

i=1
——

Perturbation

In this above setting, we say that d is perturbed by > ., d;e;.

Notice if we only look at directions d € R” with ||d||_, = 1, this is enough to account
for any direction in R” via scaling. If we perturb directions from Z7., the larger we allow the
perturbations to be, the more directions in R” we account for when attempting to illuminate
our convex body. However, we will see that we can use small (and it is necessary for them

to be small) perturbations to illuminate multiple vertices and attain many of our results. So
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in a sense, Tikhomirov’s original set Z7. is very close to containing sufficiently small subsets

to illuminate even more 1-symmetric and 1-unconditional convex bodies.

Lemma 2.41. Let B C R” be a convex body and d be a illuminating direction of some
x € 0B. Then there exists § > 0 so that, whenever |§;| < ¢ for every i € [n], we will have
that d + Y"1 | d;e; is also an illuminating direction of 2 € dB.

Proof. Let x € 0B and suppose it is B-illuminated by d, then there exists ¢ > 0 so that
x +ed € int B. Then there exists 0 < 7 < ¢ so that every point of the open ball B, (z + d)
lies in int B. Let y € B,(z+ed), theny = x+ed+ ;. n;e;, where |n;| < n for every i € [n].
Setting §; = © for every i € [n], 6 = 2, and ) ;" | "e; to be the perturbation of d satisfies
the claim. O

The next lemma (2.42) will be the main lemma which we use to justify a direction
illuminates a point. It will be the main tool used in sections 5, 6 and 7. This lemma is an

extension of lemma 2.38 and corollary 2.39.

Lemma 2.42. Let B C R" be a convex body, H be an m-dimensional affine set defined by
span(by, ..., by, ) +t, where b; € R"\{0}, ¢ € R™ such that t, by, ..., b, arc mutually orthogonal.
Let B = {by,...,b,} be an orthonormal basis for R™ and suppose p € H N B, then we can
express p = (p1, -+, Pm, 0, ..., 0)5 + t. Now consider the projection

P:HNB—=R™ t+ (x1,...,;Tm,0,....,0)5 — (21, ..., Tp),

and let P(p) € P(HNB).
1. If P(p) € int(P(H N B)), then p € relint(H N B).
2. In addition to 1, if H Nint B # &, then p € int B.

3. In particular, suppose B € U™ and ||e;||g = 1 for every i € [n]. Let v = (z4,...,2,) €

O0B. Pick a rearrangement of [n], {i1, ...,4,} = [n], and assume

n

2.

Jj=m+1

< 1.

oy
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Set b; = ¢;; for j € [m] and
H :=span(by, ..., b szjezj
m+1

If d € span(by,...,b,) and P(x + ed) € int(P(H N B)) for some ¢ > 0, then z is
illuminated by d.

4. In the context of part 3, assume B € U, if [n]\I§ = {i1, ..., i}, then the direction

d= Z sign( ZEZ )d; i¢;; illuminates x where d; > 0.
Jj=1

The main idea of this lemma is to look at cross sections, H N B, of convex bodies, B,
where H is some affine set. If these cross sections are “ P(H N B)-illuminated” (P(x + ed) €
int P(H N B)), then they are also B-illuminated. Simply put, fix H, we use directions to
illuminate the cross section, H N B in its own context, and these directions still work when

we piece the cross section back into B.
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Figure 3: Tllustration of lemma 2.42.

Proof of lemma 2.42.

1. The lemma follows from P being continuous and the preimages of open sets in the

codomain of continuous mappings being relatively open in their domain.
2. This is lemma 2.30.

3. Since P (x + ed) € int(P(H N B)), this satisfies the condition in the first part of the
lemma. Also, |le;||g = 1 for all ¢ € [n], so we know that CP* C B (see remark 5.1).
Then

Z |[L’Z7| <l = Z Tie; € int B.
j=m+1 Jj=m+1
But this means that H Nint B # &, which satisfies the second part of this lemma.
Therefore, x + ed € int B and d illuminates x.
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4. This part follows from part 3 and corollary 2.39.
U

Example 2.43. In the context of the second part of the previous lemma, if we only have
H N B # @, consider the case of the cube, C7 and the hyperplane defined by x; = 1, then
we do not get that p € int B.

Lemma 2.44. Let B C R" be a convex body, x € ext B and ¢ be an isomorphism. If ¢(x)
is +(B)-illuminated by d (or I), then z is B-illuminated by ¢=*(d) (or :=*(I)). And since ¢ is

an isomorphism, |¢~1(I)| = |I|.

Proof. Let £ > 0, since isomorphisms are linear and continuous

((z) +ed €inte(B) = x+e'(d) = (u(z) +ed) € int B.

Lemma 2.45. Let B € U™ which satisfies the following conditions:
L. |le;]|g =1 for every i € [n].
2. |le; +ej|lg > 1 for every i, j € [n].

Then any vertex = = (zy,...,x,) € ext B which has at most two non zero entries can be

illuminated by — sign(x;)e; for some i € [n].

Proof. If |I¥| = n — 1, then x is a vertex of the cross-polytope centered at the origin with
diameter 2. This is illuminated by —x = —x;e; for some i € [n]. Now consider when
|I§| = n — 2. Pick k so that |z)| = [|z|, then  — xre, = xje;, where j € [n] is the other
index for which z; # 0. Since [ley + ¢;||g > 1, it must be the case that |z;| < 1. But z;e; is

an interior point of B as |z;| < 1 and ||e;||g = 1. Hence — sign(zy)ey, illuminates . O

Example 2.46. Let B C R* be a l-unconditional convex body. Additionally suppose

leillg = 1 for every i € [n].

24



1. If (3,2,0,0) € ext B, then we claim

(

By remark 5.1, 0 € int B and by assumption, (1,0,0,0) € B since |le;]|g = 1 for

Y

W

,0,0) — 3¢5 = (3,0,0,0) € B.

N =

every i € [n|. With fact 2.18 in mind, consider the ray which has the endpoint at 0,
and passes through (%, 0,0,0) and then through (1,0,0,0). From this, we deduce that
(3,0,0,0) € int B.

2. If (1,1,0,0) € ext B, then |le; + ¢;]|g > 1 for every 7, j € [n], will not be satisfied.
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3 Tikhomirov’s Results

Because we heavily rely on some of Tikhomirov’s results, we will present the proofs of some

of them in this section. The main theorem of Tikhomirov’s paper is:

Theorem 3.1. There is a universal constant C' > 0 with the following property: let n > C'
and let B € §™. Assume that B is the affine image of a cube, then Z(B) < 2".

In fact, an illuminating set for B with cardinality < 2" can be chosen out of the subsets of
{~1,0,1}".

The proof of this theorem is split into two main cases. The first case is when 1 #
d(B,[-1,1]") < 2 and Tikhomirov has a deterministic approach for this case. This is the
part that we will present proofs for as they are more relevant to our results. As for the
second case, d(B,[—1,1]") > 2, we will simply present the results and outline the ideas of
the proofs. First, we will give an overview of the main lemmas that he uses.

It should also be noted that in the first part of Tikhomirov’s results, there was an
error regarding conjecture 3.7. We will discuss this error in section 4 and we will fix this

error in section 5.
Lemma 3.2. Let n > 2, B e U", x € 0B and n € v(B,z). Then ;n; > 0 for all i € [n].

Proof. Suppose that z;n; < 0 for some ¢ € [n], now consider H,(n). Notice
(x — xie;,mn) = (xz,n) — (z;e;,n) = (xr,n) — x;n; > (x,n)

Since x € B and B € 8", we know that © — z;e; € B by lemma 2.37. This contradicts the
derived inequality. O

Lemma 3.3. Let n > 2, B € 8" and 2 € 0B. Then for all 4,5 € [n] such that |z;| > |z},

we have |n;| > |n;| for any n € v(B, z).

Proof. Fixn € v(B, ). Suppose for contradiction that for some i, j € [n], we have |z;| > |z;|

and |n;| < |n;|. Consider H,(n), a supporting hyperplane for B. Let ¢;, ¢, € {—1,1} so that
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c;xing, c;rn; > 0, and denote:

Y 1= Cirie; + cirie; + Z Tk
ke[n]\{i,j}
Then
(y,n) = (z,n) + [zin;| + [z;0;] — Ti0; — 7)1

= [{@,m)| + (Jz:| — [25])(Iny| — m)
> |(x,n)|.

Hence y ¢ B. This contradicts the definition of the class 8" as

r€B = y=cure; +cjrje; + Z rrer € B.
ken]\{4.7}

O

Based on these tools, Tikhomirov now proves the first subcase of Theorem 3.1, that
is, lemma 3.4. He begins with the preliminary lemma (for the sake of completeness, we

include his proofs for these results):

Lemma 3.4. Let n > 2, B e 8", € 0B and d € {—1,0,1}" be a vector such that
1. I¢ C 1§ and
2. for any ¢ € [n] such that z; # 0, we have d; = —sign (x;).

Finally, assume that z is not illuminated in the direction d. Then necessarily

2
2l Z g

ieln\g || g

Proof. In view of lemma 2.34, if d does not illuminate = then there is a vector n € v(B,x)

27



such that (d,n) > 0. By Lemma 3.2, we have
Y odni= > —sign(z)ni=— Y |ny.
i€[n]\I§ i€[n]\I§ i€n]\I§
Thus, the condition (d,n) > 0 gives

O<Zdnz— Z d;n; + Z din; = Z d;n; — Z |nz|

i€[n] eIz \Ig i€[n]\I§ eIz \Ig i€[n]\I§

— Z din; > Z In;| .

i€IZ\Id iem]\I§
On the other hand,

< Z (—d;) e; + Z diei,n>22 Z In,| Z 9 Z ni” x|z| :2(x,n>.

NG > €Z; €T
i€[n\Ig i€IF\1¢ ie[n]\I¥ Titi= i€[n)\Ig oo ” ||OO

And since H,(n) is a supporting hyperplane for B,
2
x
i€[n]\I1¥ ieIP\I1Y B o0
Using that d € {—1,0,1}" and B € S" gives the claim. O

Lemma 3.4 only uses lemmas 2.34 and 3.2. Furthermore in the final sentence of proof,
we can weaken the condition B € §" to B € U™ and the proof still works. Hence, this lemma

also works for 1-unconditional convex bodies.

Lemma 3.5. Let n > 2, B € §" so that 1 # d (B, [—1,1]") < 2. Then at least one of the

following is true:

1. B can be illuminated in directions

Ty = {(dy,.dy) € {-1,1}" :Ji € [n— 1] with dy = —1} U {e; + ... +eny} .

28



2. For every i,7 € [n]

lei + ¢l > lleillg = 1.

Proof. Recall that ||e;||g = 1 (this implies that B C [—1,1]", i.e, |-[|[g > ||||)- Assume
that the first condition is not satisfied, then there is a vector x € B which is not illuminated

in directions from 77.

Case 1: I # @. There exists a direction d € T} such that I C I¢ and d; = — sign (z;) for
all ¢ € [n] with z; # 0. By lemma 3.4,

D el > > >
1]l

i€[n] B
contradicting the assumption d (B, [—1,1]") < 2.

Case 2: I§ = @ and |z,| < |z;| for all i € [n]. Define d so that for i € [n—1], d; :== —sign (z;)
and
0, dl — ... = dn—l =1

d, =
—sign (z,), otherwise.

By definition, d € Ti, so d does not illuminate x. By lemma 2.34, there exists a
n € v(B, z) such that (d,n) > 0. Using lemma 3.2,

0<(dn)= > —|n.

1€[n—1]

This implies that n; = 0 for all ¢ € [n — 1] (and n, # 0), so H,(sign(x,)e,) is a
supporting hyperplane of B. On the other hand, e,, € B by our assumption, implying
that |z,| > 1. Thus, |z4],...,|z,| > 1 but since B C [—1, 1], it must be the case that

B = [—1,1]" which contradicts our choice of B.

Alternatively, with corollary 2.39 in mind, 77 illuminates all such z € 9B which
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satisfies the hypothesis in the case, except those when
sign(x;) = -+ - = sign(z,—1) = —1.

Since |z,| < 1 (otherwise we reach the same contradiction as in the previous para-

graph), with lemma 2.42 in mind, look in the affine set
{(&, .., &) ER" 1 &, =z, }
to see that e; + - -+ + e,_1 illuminates x € 0B when

sign(zy) = -+ - = sign(z, 1) = —1.

Case 3: I§ = @ and there is j € [n — 1] such that |z;| < |z;| for all i € [n] (j does not have

to be unique). Define d in the following way:

—sign (z:), Q%]
1, i=j

di =

Again, d € T, so there exists n € v(B, z) so that (d,n) > 0. Using Lemma 3.2, we get

0<{(d,n) =—n,; + Z — sign(z;)n,
icln]\{j}

— || >-n; > > |nyl
i€[n]\{j}

= 2[n;| > > || £0.

1€[n]

By lemma 3.3, we have |n;| < |n;| for all ¢ < n such that |z;| > |z;|. The last two

conditions can be simultaneously fulfilled only if the set

J:={i€[n]: |z > |z;]}
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has cardinality at most 1. The case J = @ (when all coordinates of = are equal by
absolute value) was covered in case 2. Thus, we only need to consider the situation
|J| = 1. Let k € [n] so that |2y > [2;]. Since 2|n;| > 37, (, [m[, by lemma 3.3, we
have |ni| = |n;| and n; = 0 for all i # j, k. Define

T = |zj|e; + |vi| e + Z Tie;.
i€[n]\{7,k}

Then z € B as B € §". Then

Hi(n) = {(&, - &) €R™ & + & = |ay] + |awl}
is a supporting hyperplane for B. At the same time,

L=IZllg = lleelerlls = lwxl > [2;]
leillg=1
whence |z;| 4+ |z| < 2. Thus, e + ¢; lies in the positive half-space of H;(n) which
means that e, +e; € B, ie., |lep +¢jlg > 1.

O

Since our research also involves 1-unconditional bodies, one of our aims is to see if
there are any parts from Tikhomirov’s proofs that are salvageable for those purposes. In
view of these, notice that in lemma 3.5, for case 1 and 2, we can extend the argument to
B € U", as lemmas 2.34, 3.4 and corollary 2.39 only require B € U™. However, the method
in case 3 requires the use of lemma 3.3, which heavily relies on the condition B € §". In
fact, the statement itself of lemma 3.5 does not hold for all 1-unconditional convex bodies.

Consider the following example:

Example 3.6. Suppose z = (1,—3,1) € dB. So d(B,[-1,1]*) < 2. Let ¢ > 0 and
d=(—1,-1,-1). Consider

tt+ed=(1—-¢ -3—¢1-¢).
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3
’ 40
to show that x 4+ ed € int B, then our only option is to consider the convex combination

If the coordinate reflections of (1, %,1) and (0, 1,0) are the only vertices of B and we want

yi=(1-4e)(1,-3,1) +4(0,-1,0) = (1 —4e, =2 —¢, 1 — 4¢) € B.

This is because if z + ed € int B, there must be a point in B, where the second coordinate
has absolute value no less than the second coordinate of x + ed. Based on the definition
of y and B and the fact B only has the above mentioned vertices, we can see that it is a
boundary point of B. However, if we suppose x + ed € B, then, with lemma 2.42 in mind,
we can look in the affine set

{(£1,6,&) ER? 1 & = _% —¢}

to see that y € int B, which contradicts the definition of y. Hence, it must be the case that
r+ed&B.

Now we turn to the second subcase of Theorem 3.1. A slightly stronger version of
lemma 3.8 below, which omitted the assumption that there are no vertices of B with zero
coordinates, was originally used to prove conjecture 3.7 (see |22, Lemma 8|); however, there
was an oversight in some minor but crucial details. In section 4, we will give a counter
example to the stronger version of lemma 3.8, which will show why conjecture 3.7 cannot
rely on this version. We will also analyze why the proof given in [22] for lemma 3.8 (and
its stronger version) cannot really be extended in that instance. For the time being, we will

just give the statements.

Conjecture 3.7. Let n > 2, B € 8" and suppose ||e; + ¢;||g > 1 for every i, j € [n]. Then
(B) <2

Proof. Proven by corollary 5.20. O

Lemma 3.8. In addition to the assumptions in conjecture 3.7, if for every = € ext B,
|I§] = 0, then B can be illuminated by

Ty = ({—1,1}"" x {0}) U{=£e,}.
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This concludes the first half of Tikhomirov’s paper. The second half of Tikhomirov’s
paper, which deals with convex bodies B € S™ with d(B,[—1,1]") > 2, takes a probabilistic
approach to the problem.

Let n > 2 and X € R, where X; € {—1, 1}, having equal probability to take on cach

value. Let {X*}2°, be copies of X. Define a random projection

n m
(m) . jn n o e
P R" — R, Tie; — T, € -
i— k=1

-1

We impose that for fixed e, ..., €;,,, Im P™ = span{e;,, ..., ;,, } has probability (") . In

other words, the chance that {j1, ..., jm} = {1, ..., im} has probability (T’;)_l. Therefore, the
projection does not favor any m dimensional subspace spanned by a subset of the standard
basis vectors. Let {P,z(m) | be copies of P(™. For ¢ € [m], we impose that X and P@(m) be
jointly independent. Now for every k < [n/2], define the random (multi)set of vectors

_ {P (2k— 1)(X£)}L2"/n2J
Then

[n/2] n—1
2’” 2” 1
USk <—2—_$<2n‘1.
n n
First, Tikhomirov proves the following technical lemma:

Lemma 3.9. There is a universal constant C' > 0 so that for any n > C and k € [[n/2]],

the event

“for any y = {—1,0,1}" with |[I¥| = n — k, there is £ < 2" /n? so that Pfk_l(y) =y and
X! =y, foralli € [n]\IJ”

has probability at least 1 — exp(—2n).

Assume d(B, [—1, 1]") > 2. Tikhomirov is able to show that for x € 9B which satisfy
‘Ii”x” ‘ > [n/2], we have that z is illuminated by {—1,1}""! x {0}. On the other hand,
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assume x € OB satisfies ‘Ii”x” ’ < [n/2] and let p® Y and 2* be realizations of P2*

and X, respectively, from the good event described in lemma 3.9. He shows that one of
2|12 -1
the vectors pe( 2| )(xg) which works for d := =3, . sign(z;)e;, in the way that

/2]l og
lemma 3.9 states, will illuminate this point x. This gives the following proposition:

Proposition 3.10. There is a universal constant C' > 0 so that when n > C', B € 8" and
d(B, [—1,1]") > 2, with probability of at least 1 — exp(n), B is illuminated by

[n/2]

{1 x{opu |J S
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4 Motivation

Recall that the beginning of this research stems from the natural question which we for-
mulated from Tikhomirov’s results: can we find examples of 1-symmetric convex bodies in
lower dimensions where Theorem 3.1 does not hold? Or where at least the “in fact” part of
this theorem does not hold? Lemmas 4.1 and 4.2 are positive answers to the latter question.
The first example is in dimension 3, and the second example is the direct generalization of

the first example in dimension 4.

Lemma 4.1. Let B C R" be the 1-symmetric body which is the convex hull of ext C3% U
2
ext CP? B requires more than 8 of Tikhomirov’s directions from his large illuminating set,

72, in order to be illuminated, no matter which combinations we consider.

111
272 5)
and their coordinate reflections. The idea of the proof is to show that the vertices contributed

The vertices of this polytope are the coordinate permutations of (1,0,0) and (

by the cross-polytope can only be illuminated by 6 specific directions. Then we show that
those 6 directions cannot be used to illuminate the vertices which are contributed by the

cube. Click here for a picture.

Proof. Let x € ext B. For any indices, i, j € [3], ¢ # j, consider the hyperplanes defined by
=1, (6,6.&) R
Notice that these are a supporting hyperplanes of B since
to;, o, < |xa;to| < |£a+ | L] <+ |z <L

Consider any vertex from ext C'P?; WLOG pick the vertex (1,0,0). Consider any illuminat-
ing direction, d € Z?, such that |Ig| < 1. It must be the case that d; = —1 (if d; = 0, in
the best case scenario, for any small ¢ > 0, we get 2 + ed € 0B; if d; = 1 then = + &d ¢ B).
Since |I¢| < 1, it must be the case that |ds| = 1 or |ds| = 1. If d # 0, then

(1,0,0) + ed = (1 — ¢, edy, sign(ds)e) € {(&1,62,83) € R : & + sign(ds)&s = 1},
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We get a similar result if dy # 0. So (1,0,0) + &d lies in a supporting hyperplane of B. In
view of the link before the proof, the red line and blue lines on the hyperplane in the picture
represent the attempt to illuminate our vertices with directions d € R? which satisfy ‘I d ‘ < 1.
Thus, any illuminating direction y € R?® which satisfies [I¢| < 1 is not an illuminating
direction for any vertex of CP?. Our illuminating direction from Z% for any = € ext C P}
must be —x = +e; for some i € [3].

On the other hand, consider any vertex x € ext C%. Denote [3] = {4, j, k} and consider

2
xr *+ ee;, where € > 0. Then

r+ee; = (:I:% + 5) e; = %ej + %ek € {(&1,6,8) €R?: sign(z;)¢&; + sign(zy)&, = 1}.

So x &+ ee; lies in a supporting hyperplane of B. Again in view of the link, this case is
demonstrated by the green line on the hyperplane. Then e; is not an illuminating direction
for any x € ext CP} and its coordinate reflections.

We have illuminated 6 vertices (those of C'P) using the least amount of directions
possible, which was also 6 directions ({+te;, £eq, *e3}); however to illuminate the remaining
8 vertices, if we pick directions from Z?, we definitely require more than 2 different directions

than the previous 6. Hence to illuminate B, we require more than 8 directions from Z3. [J

Lemma 4.2. Let B = conv(ext C1 Uext CP}!). B requires no less than 16 of directions from
2

77} to be illuminated.

The above lemma is the dimension 4 analogue of lemma 4.1. The proof is essentially

the same idea.

Proof. As in lemma 4.1, let i, j € [4], i # j. Then the hyperplanes defined by

T6+6 =1, (£,6,86.&) €R!

are supporting hyperplanes of B. For similar reasoning to lemma 4.1, vertices of B which
come from ext CP{ can only be illuminated by +e¢;, i € [n] (8 directions).
Again, consider the vertices z € ext C1. Let i,j € [4] = {i, 4, k, 1}, € > 0 and consider
2

r + esignae; or x + e(signx;e; + signx,e;). Both of these points lie on the supporting

36



hyperplane

{(&,&. &, &) € R* :sign(x) & + sign(z)& = 1}

This rules out the directions d € Z3 with |I¢] > 2 as illuminating directions for z.

First, we will try to illuminate z using directions y € Z3 with |I§| = 0. By lemma
2.39, we can illuminate x using d if we define d; = —sign(z;) for every i € [n|. If we fix
T € ext C’% and define d € T4 so that d; = —sign(#;) for all i € [4], then we claim that & is

the only vertex in ext C4 that d illuminates. For the following cases: let z € ext C'4\{Z}.
2 2

Case 1: Let i,j € [4], i # j. Suppose x and d disagree in sign in at least one coordinate,
i, but not in every coordinate, j. For € > 0, the point = + ed lies in the supporting
hyperplane

{(€1,62,6, &) € RY - sign(z;)¢; + sign(z;)¢; = 1}

since
sign(z;)(z; + ed;) + sign(z;)(z; +ed;) = |z;| —e + |zj| +e=1.

Case 2: Suppose z and d agree in sign in every coordinate. By way of contradiction, suppose
that d is an illuminating direction of x, then for some small ¢ > 0, u + ed € int B. On

the other hand, since sign(z;) = sign(d;) for all i € [4], (z + ed); > x; for every i € [4].

By lemma 2.38, z is an interior point which contradicts z € ext C1.
2
Now we try to illuminate x € ext C{ using directions d € Z7. which satisfy |Ig‘ =1
2
Let d := 3 e jy — sign(@;)e;, which means {j} = Ig. We can illuminate x using d as

v+ 5d=uje; =£3e; and |[|ze5]lp < lejllg =1.

We can also illuminate x — 2z e; € ext C' with the same reasoning. For example, in the case
2 ~
j=4, (3,333 and (3, 3,3, —3) are both illuminated by (-1, —1,—1,0). If we fix j € [4],
icextC? and d = D icingy — sign(zi)e; € T3, then we claim that the only vertices that
2

are illuminated by d are Z and & — 27;e;. For the following cases: let z € ext C4\{Z}.
2

Case 1': Suppose x and d disagree in sign in at least 1 non-zero coordinate of d, but not
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every non-zero coordinate of d. We can use the same reasoning from case 1 to see that

z + &d lies in a supporting hyperplane for any € > 0.

Case 2': Suppose x and d agree in sign in every non-zero coordinate of d and that Ig = {i}
for some fixed index i € [4]. By way of contradiction, suppose that d is an illuminating
direction of z, then = + ed € int B for some & > 0.

z+ed= %sign(:ci)ei + (% + g)J, T = %Sign(sci)ei + %j

Consider the ray defined by % sign(z;)e; + cd for ¢ > 0. Notice that the ray starts at
%sign(aji)ei € int B and as we increase ¢, the ray passes through x before it passes
through = + ed. In view of fact 2.18, since z + ed was an interior point, x must also be
an interior point as well. This contradicts our choice of x. For example, if our vertex
s = (%, %, %, %) and d = (1,1,1,0), then notice that (0,0,0, %), z, x + ed all lie on
the ray: (0,0,0,%) + cd, where ¢ > 0.

From these cases, at best, we can only illuminate two vertices from ext C1 at a time
2

using directions from Z7. Since ’ext ct ‘ = 16 we can use at best 8 directions from Z7 to
illuminate the vertices contributed by eict C1. Additionally, these directions are all different
from those which illuminate the vertices contributed by C'P} and CP; requires 8 directions
from Z7} to illuminate. Conversely, the directions which illuminate C'P{! cannot illuminate

those from C. At best, we can only illuminate B using 16 directions from Z7. O
2

Remark 4.3. We will later show that when we perturb the directions from Z3 and Z7}, the
polytopes in lemmas 4.1 and 4.2 can be illuminated by 6 (Theorem 6.9) and 8 (lemma 5.5)

directions, respectively.

The original statement from Tikhomirov’s paper [22| (|22, Lemma 8|) claimed that
when n > 2, B € 8" which satisfies [|e; + €|z > ||ei|lg for every i, j € [n], then B could
be illuminated by 75 from lemma 3.8. However, the examples in lemmas 4.1 and 4.2 satisfy
the hypothesis of this statement, yet not the conclusion. In fact, we even showed that we
cannot find sufficiently small subsets of Z7 which are illuminating sets. This means we must
resort to perturbations in these low dimensions. Before going in that direction, let’s take a

look at why Tikhomirov’s method does not hold for the convex body in lemma 4.1.
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Proof of lemma 3.8 as given in [22]. Recall ||e;||g = 1. Let x € ext B and recall
Ty = ({-1,1}"" x {0}) U {Le,}.

Case 1: |z,| > |x;| for all i € [n — 1]. In view of lemmas 3.2 and 3.3, for any n € v(B, z),

we have n,, # 0 and sign (n,,) = sign (z,,).
(n, —sign(x,)e,) = —sign(z,)n, = —|n,| <0 for every n € v(B,x).

Hence by lemma 2.34, x is illuminated by the direction — sign (x,) e, € Ts.
Case 2: There is j € [n — 1] such that |z;| > |z;| for all i € [n]. Define d in the following

way:

" —sign(x;), i€ n—1]
B 0, 1=n

By definition, d € Ts. If d illuminates x, then we are done. Otherwise, by lemmas 2.34

and 3.2, for some n € v(B, z),

0<(dmn)=- > |n

i€[n—1]

Hence, n = +e,, and H,(n) supports B. This means that ||z,e,|g = 1. On the other

hand, in view of the assumptions of the lemma,
[zl > llzje; + znenllg > llznenllg =1

which contradicts the choice of z € ext B.

0

We now compare with how this proof would play out for the convex body from lemma

4.1. Consider the boundary point & = e;. Notice that this has the outer normal vectors

(1;2—0) and (1’\_/%’0) (we can see this if we view B from a bird’s eye view on the z — y plane).
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If we choose d = (—1,+1,0), then x + ed lies on the boundary of the body. Notice that
n= % € v(B,x) and (n,d) = 0. So it is not necessarily true that n = +e,, as required
for the contradiction in case 2 of the previous proof.

We have touched upon a very important subtlety in Tikhomirov’s method, that is,
when z € 0B and has entries of value 0, it is not clear what n € v(B, ) will look like. This
makes it difficult to test if a direction d illuminates x using lemma 2.34. This is the major
motivation for why we need to use a different method later on.

Notice that if B = conv(ext C7 Uext CPJ'), then Z(B) < 2"~! + 2n. This is because
the vertices from the cross—polytopeQCan always be illuminated by the set {e; : i € [n]}
which has cardinality 2n, and the vertices from the cube can always be illuminated by the
set {—1,1}"* x {0} which has cardinality 2"~! (by using the same idea as in lemma 4.2).
Notice

n<4 < 2""'+2n>2"

So it could be possible that the universal constant to which Tikhomirov referred in his paper
is 5. This is one avenue to explore; however, we will instead try to illuminate 1-symmetric
and 1-unconditional convex bodies using perturbations of the diretions from Z7 and will also
investigate possible replacements of the set in Tikhomirov’s claim. As is probably clear from

these, we will be using his directions as a stepping stone for more results.
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5 Main Results for 1-Symmetric Convex Bodies

In this section, we are will be focused on the Illumination Conjecture regarding 1-symmetric
convex bodies so let B € §™. It should be noted that conjecture 3.7 does not require
the dimension to be high and Tikhomirov’s approach to it does not use the condition 1 #
d(B,[-1,1]") < 2. It was discovered that his approach to conjecture 3.7 (lemma 3.8) does
not work, as lemmas 4.1 and 4.2 serve as counterexamples. The first subsection of results
was done under the assumption that conjecture 3.7 holds. In the second subsection, we first
prove some preliminary lemmas. Then we use those lemmas then prove both our first two

main results:
1. the Illumination Conjecture for B € §™ short of the equality cases (Theorem 5.18) and
2. proof of conjecture 3.7 (corollary 5.22).

The latter gives Tikhomirov’s Theorem 3.1. Then immediately when coupled with the results
from the first subsection, we are able to get that for n = 3 and n = 4, Z(B) < 7 (corollary
5.21) and Z(B) < 15 (corollary 5.22), respectively.

5.1 Large Distance to the Cube for 1-Symmetric in Dimension 4

Let B € §*. Notice that for any B € 8*, we cannot satisfy d(B, [—1,1]") > 2 as |||z = 1
forces B to contain the cross-polytope and d(C' P}, [—1,1]") = 2. If conjecture 3.7 is correct,
then we only need to consider the case when B satisfies ||le; + ¢;||g = 1 for every i, j € [4],
i # 7, and d(B,[—-1,1]*) = 2. Tt turns out imposing both these conditions on 1-symmetric
bodies, will force B = C{ N CP;} (lemma 5.7). Such B can be illuminated by 10 directions

from Z7 or 8 directions which are perturbations of directions from Z7 (lemma 5.4).

Remark 5.1. Any convex body B C R" will contain C'P* when B satisfies ||e;||g = 1 for
all i € [n].

Notation 5.2. Define the set:
S:={seR":|[J| =2, s; € {—1,1} foric [4\I$}.
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This is the set of points that have exactly 2 entries with 1 or —1, and 0 in the
remaining entries. For example (1,0,0,1),(—1,0,1,0) € S.

Lemma 5.3.
conv(S) = C{ N CPy

Click here for a picture.

Proof. Consider the supporting hyperplanes of C' Py defined by

O +otGEE4H =2, (§4,6,86.4) R
Let s € S, and s;,s; € {—1,1}, where 4,5 € [4] = {i,7,k,{}. So {k,l} = I§.
sign(s;)s; + sign(s;)s; £ sp £ s = |s;| + |s;] = 2.

So every element of S lies in the negative half-space of every supporting hyperplane of C' Py
which means S C CP;. Also since S C [—1,1]%,

ScCinCP) = conv(S) C C{NCPy.

convex

Now, we will show that ext(CP} N CPy) = S. Note that Cf N CP;} can also be described
by the hyperplanes which support Cf and C'Py. For fixed i € [4], the following are both
supporting hyperplanes of C:

{(51762753754) = R4 : 61 = 1}7 {<£17§27§37£4) S R4 : fz = —].}

Let’s look at (1,1,0,0); does there exist © = (x1, xo, 23, 4), ¥ = (Y1, Y2, Y3, ¥a) € R™\:S which
satisfy

FOH T L EEEL <2 and  [[(6,62,86,8) ] <1

so that Az + (1 — ANy = (1,1,0,0) for 0 < X\ < 1?7 Since x1,x2, 41, y2 < 1, it must be the

case that 1 = 9 = y; = yo = 1; however, this also forces z3 = x4 = y3 = y4 = 0, and thus
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(1,1,0,0) = = y which contradicts the choice of x and y. Since (1,1,0,0) € ext(C{NCPy),
by l-symmetry, it must be the case that S C ext(C} N CPY)).

For the other inclusion, by way of contradiction, suppose there exists x € ext(C{ N
CPH\S. WLOG, assume that x; € [0,1] for all « € [4]. Moreover, since S does not favor
any entries, WLOG again, assume z; < xo < x3 < x4. In the case x4 > x1 + x9 + 23, it
follows that 1 + x5 + 23 < 1 so

(1,29, 23,1) = 21(1,0,0,1) + 22(0,1,0,1) + 23(0,0,1,1) + (1 — (z1 + 22 + x3))(0,0,0,1),

which contradicts the choice of x. Suppose z4 < x1 + 3 + x3. Solve the following system of

equations:

(x17x27x37x4)
=M (1,1,0,0) + A2(0,0,1,1) + A3(1,0,0,1) + A4(0,1,1,0) + A5(1,0,1,0) + A6(0,1,0, 1)
= ()\1+/\3+/\5,/\1+>\4+>\6,>\2+)\4+/\5,/\2+/\3+/\6).

If we set Ay = A3 =0, then

<)\17 )\27 )\37 )\47 )\57 )\6)

1
=500, =21 — @2 + @3 + 14,0, =21 + @2 + 3 — 24,221, 11 + T2 — T3+ Ty)

Notice that by the assumption 0 < z; < zy < 23 < 14, we automatically get Ao, A5, Ag > 0.
Also note that in the case z4—x3 < x9—x; then Ay > 0. In addition, 2?21 A = % 2?21 x; < 1.

So if vy — a3 < w9 — x1, then
6
Ai> 5
i=1

2= X3(0,0,1,1) + A\y(0,1,1,0) + A5(1,0,1,0) + Ag(0,1,0,1) + (1 -

convex combination
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This contradicts the choice of z. If x4, — x5 > 29 — 21, set Ay = Ay = 0, then

()\17 )\27 )\37 )\47 )\57 )\6)

= 5(0, —I1 —I'Q+£C3+[E4,£L‘1 — X9 —1‘3+£L‘4,0,331 +$Q+£L‘3 —$4,25L‘2).

Notice that Ag, \g > 0. Since z1 + x5+ x3 > x4, We get X5 > 0. Also, since x4 — x3 > 19 — 7,
A3 > 0. Finally, we again have E?Zl A = %Zle x; < 1. Then

6
2= X(0,0,1,1) + A3(1,0,0, 1) + A5(1,0,1,0) + Ag(0,1,0,1) + (1 = A,-) 0.
=1

convex combination

This also contradicts the choice of x. Hence, it must be the case that ext(C{NCPy)) C S. O

Lemma 5.4. C} N CPy can be illuminated by 10 directions from Z}. We can show that
Z(B) < 8 if we allow for perturbations.

Proof.

Method 1: We restrict ourselves to using a subset of Z#. Consider vertex (1,0,0,1); we

can illuminate this with (—1,1,0,—1) as
(17 07 07 1) + %(_]—7 17O> _1> = (%7 %, O, %) .

This is because (3,4,0,3) € intCt and (3,4,0,3) € intCP}. In the table below
you can see that we can use this reasoning to illuminate C{ N CPy in using only 10

directions.
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Vertices [luminating
direction
(1,0,0,1), (1,-1,0,0), (0,-1,0,1) (—=1,1,0,—1)
(0,0,1,1), (0,1,1,0), (0,1,0,1) (0,—-1,-1,-1)
(1,0,1,0), (1,0,0,-1), (0,0,1, 1) (—=1,0,-1,1)
(1,1,0,0), (1,0,—1,0), (0,1,-1,0) (—-1,-1,1,0)
(0,1,0,-1), (—=1,0,0,-1), (— 1,1,0,0) (1,-1,0,1)
(0,-1,0,-1), (0, -1), (0,—1,-1,0) (0,1,1,1)
(—1,0,-1,0), (— ,—1,0,0) (1,1,1,0)
(—1,0,0,1), (—=1,0,1,0) (1,0,—1,-1)
(0,—1,1,0) (0,1,-1,-1)
(0,0,-1,1) (0,-1,1,-1)

Table 1: Hluminating C{ N C' Py using a subset of Z7.

Method 2: We allow for perturbations of directions from Z}. Again consider the direction
(1,0,0,1). For small ¢ > 0, the direction (—1—4, —1, —1, —1) illuminates this direction
as

(1,0,0,1) + 4(-1-6, -1, -1, -1) = (3 = 4, =%, -5, -1 et C{ N CP;.

In the table below, we can use this reasoning to illuminate C! N C'P; while using only
8 directions (maybe an interested reader can come up with an even smaller number of

directions needed, but 8 is good enough for the purposes of this thesis).
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Vertices [Mluminating direction
(1,0,1,0), (1,1,0,0), (1,0,0,1) (—1—5,—1,—1,—1)
(0,0,1,1), (0,1,1,0), (0,1,0,1) (—1+5 -1,—-1,-1)
(0,1,0,-1), (0,0,1,-1), (1,0,0,—1) (-1,-1,—-1 1+5)
(0,1,—-1,0), (1,0,—1,0), (0,0,—-1,1) (—1, -1, 1-1—5 —1)
(0,—1,1,0), (1,-1,0,0), (0,—1,0,1) (— 1,1+5 —1)
(—1,0,0,1), (—1,0,1,0), (—1,1,0,0) (1+6,— —1)
(—1,0,—-1,0), (—=1,-1,0,0), (—=1,0,0,-1) (1+5,1,1,1)
(0,0,—1,-1), (0,—1,0,-1), (0,—1,-1,0) (1-9,1,1,1)

Table 2: Tlluminating Cf N C' Py using perturbed vectors from a subset of Z7.

Lemma 5.5. The convex body in lemma 4.2 can be illuminated with 8 directions.

Proof. Observe that

100 0 1 =100
010 0 1100
2 T N (ext Ot Uext CP}) = S.
004i —3f]J0o 0 10 2
001 32 0 0 01

Recall by lemma 5.4 that we can illuminate conv(S) using only 8 directions, hence we can
illuminate conv(ext C1 Uext CP!) by 8 directions.
2
U

Remark 5.6. Recall also that in lemma 5.4 we showed that conv(S) can be illuminated
by 10 directions from Z7. So doesn’t that mean we can illuminate ext C} U ext CP} by

2
10 directions from Z} as well? Wouldn’t this contradict our counterexample (lemma 4.2)7
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There is a subtlety here. Observe that

-1

100 0 5 -5 00 /2 1/2 0 0
L0100 13 00 | -v2z 2 000
0041 2110 0 10 0o 0 1/2 1/2
001 2 0 0 01 0 0 =1/2 1/2

So,

12 1/2 0 0
~1/2 1/2 0 0
0 0 1/2 1/2
0 0 —1/2 1/2

S = ext C1 Uext CP}.
2

Recall that one of the directions we used in lemma 5.4 to illuminate conv(S) was (—1,1,0, —1).
Observe that

1/2 1/2 0 0 -1 0
~1/2 1/2 0 0 I
o 0 1/2 12]|of| |3
0 0 —1/2 1/2 1 -1

The problem here is that (0,1, —%, —1%) is not a scalar multiple of any element from Z7. So
being able to illuminate conv(S) with 10 directions from Z7. does not imply that we can

illuminate conv(ext C’;l* Uext CP!) by 10 directions from Z7 as well.
Lemma 5.7. If B € S* satisfies the following conditions:

L. |le; +ejllg = 1 for every 4,5 € [4], i # j and

2. d(B,[-1,1]*) > 2,
then B = C{ N CP} and d(B,[-1,1]%) = 2.

Recall that we impose ||e;||g = 1 for every i € [4]. If we do not impose this condition
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and we adapt the first condition in the statement of the above lemma to be ||e; + €;]| = |lei] g,
B will instead be a scalar multiple of C{ N CPy.

Proof. Recall
d(CINCP,[-1,1]") = [ler + €2 + €3 + eall cuncps-
Notice (3, 3, 3, 3) lics in the supporting hyperplane
{(61,60,65,60) €R* &1+ &+ &3+ & = 2}

d(CE N OPLI-L1)) = fler 4 e2 + e + eallasnrs = 1L L L Dlasneps = 1 = 2

O] =

Recall ||e;||g = 1. Consider any B € §* which contains, but is not equal to C{ NCP,
(so we satisfy the condition |le; + ej||g = 1 for every 4,5 € [4], i # j). We will show that
d(B,[~1,1]*) < 2. There exists some point z € B which must lie outside C'Py but inside
the unit cube. WLOG, consider the case, where z; > 0 for i € [4]. By the l-symmetry
condition, we can create at most 4! distinct points that reside in our current octant and in

B by rearranging the entries of x. They all satisfy
$1+$2+CE3+$4:C>2.

We impose C' > 2 because otherwise these points lic on C'P;. Consider the convex combi-

nation
1 1 1 1 1
1(21, 22, w3, 4) + 3(¥2, T3, T4, 1) + 3 (X3, T4, T1, T2) + 1 (T4, 21, T2, 33) = 3(C, C, C, C),
which by convexity, is contained in B.

AB, [~1,1") = |les +ea +es +eallg = |(1, 1, 1,1)]|g < = < 2,

~Ql —

which is what we wanted O

48



It turns out we do not even need the 1-symmetry condition in lemma 5.7, but 1-
symmetry simplifies the proof of lemma 5.7 significantly. In lemma 5.9, we can weaken the

1-symmetry condition to 1-unconditional and get the same result.

Remark 5.8. By adjusting the proof in lemma 5.7, we can see that for B € ™ which satisfy
le; + €;]lg = 1 for every i,j € [n], i # j (meaning (2, ..., 2) € B), we get:

%)

dB,[-1,1]") = |les + ... +enllg <

n
5"

3| =

In the case of n =3, we get d(B, [-1,1]*) < 2 < 2.

If conjecture 3.7 is true, we can couple it with lemma 3.4, giving that any 1-symmetric
convex body B € 82 which satisfies 1 # d(B, [—1, 1]?) < 2, can be illuminated by 7 directions
or less. If d(B, [—1,1]*) > 2, then by the previous remark, |le; + ¢;]|g > 1 for every i, j € [3].
Conjecture 3.7 states that in this case, B can be illuminated by 6 directions. Thus, if we
prove conjecture 3.7, we will immediately get that for any B € S8, Z(B) < 7.

Although this next lemma is the generalization of lemma 5.7, the proof for lemma
5.9 gives geometric intuition of why the 1-symmetric condition is much stronger and easier

to work with than the 1-unconditional condition.
Lemma 5.9. If B € U* satisfies the following conditions:
L. |le; + es]|g =1 for every 4,5 € [4], i # j and
2. d(B,[-1,1]") > 2,
then B = C{ N CP} and d(B,[-1,1]*) = 2.

Proof. By way of contradiction, consider any l-unconditional convex body B C U* which
contains, but is not equal to C{ N CP}. So, there must exist some point z which must
lie outside CP} but on C}. With the 1-unconditional condition in mind, WLOG, we let
x = (x1,29,23,24) € B such that 0 < 27 < 29 < 23 < 2y < 1 and 27 + x5 + 23 +
xy = C > 2. Geometrically this point is located nearest to the plane defined by z, = 1;
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therefore, we should use the points (1,1,0,0), (1,0,1,0), (0,1,1,0) € B to create some

convex combinations & = (#1, &2, T3, %4) € B such that 2; = &; > % for every i,j € [4], 1 # j.

(r2 —21)(1,0,1,0) + (21, 22, T3, 4)
= (T2, T2, T3 + T2 — 71, T4)
(w3 —21)(1,1,0,0) + (22, T2, x5 + T2 — X1, T4)

= (r3+ 23 — X1, T3+ To — T1, Ty + To — T1, Tyg)

Positive scalar combinations can always be scaled into convex combinations. Hence, we can

denote y = (y1,91,y1,v4) € B to be the scaling of the latter vector above, so that

y=AM(1,1,0,0) + Ao(1,0,1,0) + Ag(w1, 22,25, 24) €B, D Ni=1, 0< )<L
€3]

Then

Zyi :2)\1+2>\2+)\3sz > 2.

i€[4] i€[4]

If y4 = 11, we are done. So, consider y; > y4. Since (1,0,0,1), (0,1,0,1), (0,0,1,1) € B,
5(1,0,0,1) +3(0,1,0,1) + 5(0,0,1,1) = (5, 3,3, 1) € B,

3 3

Consider the positive scalar combination

which satisfies

Y1+ 51 = ya + i > 0.
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Since 0 < y4 < y; and pq > 0, there exists 0 < us < 1 so that

2! (%7 %7 %; 1) + (1 — p2)(y1, 1, y1,94) € B,
where
(1= pa)yr + pog = (1 — p2)ya + pio
In fact, solving for us gives pus = £L-. Setting & to be the above vector gives the claim

14-p1
as Zi€[4] y; > 2. Now consider the case y; < y4. This time, we consider the vectors

(1,1,0,0),(1,0,1,0) and (0,1,1,0) and proceed similarly to get & € B which satisfies our
desired conditions.
Since B C [—1, 1], notice d(B, [-1,1]*) <|(1,1,1,1)||g < & < 2 which contradicts
1
our choice of B.
]

5.2 Main Results for 1-Symmetric Convex Bodies.

The first main result of this subsection is Theorem 5.18 which proves the Illumination Con-
jecture short of the equality cases for 1-symmetric convex bodies. Furthermore, we have
proven conjecture 3.7, which gives not only Theorem 3.1, but also the Illumination Conjec-
ture for 1-symmetric bodies in dimensions 3 and 4 (corollaries 5.21 and 5.22) when coupled

with the results from the previous subsections.

Lemma 5.10. Let n > 3, B € 8" and = € 0B. If there exists ¢ € [n] so that |z;| > |z;| for
J € [n]\{i}. Then we can illuminate x using {+e;}.

It should be noted that Tikhomirov’s proof for the first case of lemma 3.8 (see proof
from section 4) can also be generalized to this statement. The proof above is simply an
alternative proof for this result. We give this alternative result to emphasize on the fact that

we use the definition of illumination, rather than its equivalent formulation (lemma 2.34).

Proof. Let z € 0B and WLOG, in the above setting, let i = 1, so |zs], ..., |z,| < 1. Using
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the 1-symmetry of B, consider the following convex combination:

1
m[(ll?l ) |ZL‘1| ) |IL'3| 3 ey |xn|) + (|5E3| ’ |$2| ’ |$1| ) |$4| JEEEY) |xn|) +

+ (|lzal, [22], o) [2n-1], [21])] € B.
In the above convex combination, the j™ vector swaps the first coordinate and the j +

1 coordinate of (|xy],...,|x,|) for every j € [n]\{1}. The first coordinate of the convex

. . . 1 mn 'th . .
combination is —= > ", |zx| > 0. The j*" coordinate is

1 n — 1
Ll =) oyl +lanl) = T a4+ ]

Since n > 3, we know that 0 < 2=2, -1 < 1. Additionally, 2=2 + L= = 1 and |21| > ||, so

nl’

— (= 2) [ + | ] > ).
If there exists j € [n]\{1} so that z; # 0, then —= >~} |z)| > 0, so we can use lemma 2.38
to see —sign(xy)e; illuminates z. On the other hand, if z; = 0 for every j € [n]\{1}, then

we again see that — sign(x;)e; illuminates . O

The lemma just below is not needed in what follows (it was being used in a previous
version of the thesis), however it still seems worth mentioning to motivate the sets used in

proposition 5.13 and in the results following from that proposition.

Lemma 5.11. Let n > 3, B € §", and « € 9B. Consider k € [n] such that z; # 0. Then
for some 6 > 0 (in fact, J small enough compared to |xj| and to the dimension n), z is

illuminated by

—sign(xy)ex + Z —d sign(z;)e;
i€[n]\{k}

(here, if 2; = 0, we simply make a choice for sign(z;), setting it equal to either +1 or —1; no

matter the choice of signs for these coordinates, the conclusion remains the same).

92



Proof. Let x € 0B and fix k € [n] such that xy # 0. WLOG, suppose k = 1 and |z;| > |x;11|
for 2 < i < n—1 (we can always reorder these indices in this argument if this is not the
case). Consider the case when |I¢] = 0. Let 0 < § < 22=1l "and define

|z1]

d := (—sign(z), — sign(zs)d, ..., — sign(z, )0, 0).

Consider

x4+ x1d = (0,29 — 1 sign(z2)0, ..., xp_1 — 1 sign(x,)d, z,)
Compare this vector with (|z,_1|, |21], ..., |Tn_2| , z,) € B. Since |z,_1| > 0 and for i € [n—2]
we have

lz;| > |xiva| > ||| — dxy| = |y — 2 sign(z;)0] .
In view of lemma 2.42, look in the affine set

{(517 7€n) e R": gn = xn}

to deduce that we can illuminate x using d. This proof also works when z,, = 0. If x5 = 0,
then x; # 0 by the assumptions in the lemma and at the beginning of the proof. In view
of the proof of lemma 2.45, we can see that — sign(z;)e; illuminates . Then we can use
lemma 2.41 to get the claim. So, let’s suppose z,, = 0 and z,,_1 # 0 for some m > 2. Let
0<d< min('xf;’;ll', —_

that 4+ ed € int B by comparing it with the convex combination

) and d := (—sign(xy), — sign(x2)0, ..., — sign(z,)d,0). We will show

1
[(0, 29, .o, Tm—1,21,0, ..., 0, 2,) + (0,29, ..., Xpy—1,0,21,0,...,0, 2,,) + ...
n—m
e+ (0,29, oy 21,0, ...,0, 21, )]
1 1
= (07'1727 vy -1, —— L1, -y xhxn) € B.
n—m n—m
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With lemma 2.42 in mind, look in the affine set

{(517 76?1) eR™: 51 = 07 €n = mn}

Notice that for ¢ € [m — 1]\{1}, we have |z;| > ||z;| — 210] and for i € [n — 1]\[m — 1],
we have |——z;| > |621]. Thus, z + ed € intB. Let # € extB such that |z,| < 1, and
WLOG suppose that £ = 1, that is, the first coordinate of x is non-zero. For simplicity
in notation, we assume that |z;| > |z;11| for i € [n — 1]\{1} (we can always reorder these
indices in this argument if this is not the case). We first deal with the case where x; # 0
for all other i € [n — 1] as well, that is, I& C {n}. Let 0 < § < =1l and define d :=

[z1] 2

(—sign(zy), —sign(zy)d, ..., — sign(x,_1)d,0). Consider
x4+ |z1|d = (0, 2 — |21] sign(x2)d, ..., Tp_1 — |21|sign(z,_1)d, x,).
Compare this vector with the following one, which is found in B because B € §™ C U™:
0, x|y ooy [Tn1] s T0).
Both the above point and = + |z;|d are found in the affine set
{(&, &) ER" 16 =0, & =z}
which also contains x,e, € int B. Since § < % < % for all ¢ € [n — 1]\{1}, we have that
|25 — |a1| sign(z;)0| = |[zi| — |1]0] = |ws| — [21]6 < |z,

and thus z + |x;|d is in the relative interior of the above affine set. We can then apply lemma
2.42 to conclude that z + |z1]|d € int B.

In the more general case, assume that
|za| > |z3| > | Tmet| > |Xm| =0 = |Tpi1] = ... = |Tp_1]
for some m > 2 (the case z; = 0 for all i € [n — 1]\{1} is analogous and slightly simpler).
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Again, we will consider the point x + |x;|d with d of the above form for a suitable § > 0,
and we will try to find another point in B for coordinate comparison.

Since B € 8™, the following is a convex combination of points in B:

1
n— m[(07 L2y sy Tm—1, L1, 07 sty 07 xn) + (07 L2y vy Tm—1, 07 I, 07 sy 07 'r'rl) + ..
e+ (0,29, oy 1,0, ...,0, 21,0, 2,) + (0, 22, .oy Ty1, 0, .0y 0, 1, )]
1 1 1
= (O, Loy vovy Typ—1, L1y eny I, x1, Z’n) € B.
n—m n—m n—m

Let 0 < 6 < min(Ez=tl L) Notice that for i € [m — 1]\{1}, we have

lz1] ? n—m

[2i > ||| = [21] 6] = |2 — || sign(z:)d]

and for ¢ € [n — 1]\[m — 1], we have

1
n_

In view of lemma 2.42, look in the affine set

1| > |(SQ?1| .

{(517 7€n) ER™: 51 = 07 gn = :L'n}

to conclude that x + |z1]d € int B, and thus d illuminates z. O

The following lemma is a stronger version of the lemma we just stated, in that it

allows ¢ to depend only on the dimension n.
Lemma 5.12. Let n > 3, B € §". Consider k € [n] such that zx # 0. Then for any
6 € (0,1),  is illuminated by
— sign(xy)ex + Z —0sign(z;)e;
i€[n]\{k}

(here, if 2; = 0, we simply make a choice for sign(z;), setting it equal to either +1 or —1; no

matter the choice of signs for these coordinates, the conclusion remains the same).
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Proof. Denote the direction in the statement of the lemma by d. WLOG, suppose k = 1
and also that |z;| > |x;4q| for 2 < i < n — 1 (we can always reorder the indices in this
argument if this is not the case; note also that the second assumption does not hinge on
whether |z;| = ||z|,, or not, we simply order the remaining coordinates of x).

If |I¥| = 0, then the conclusion follows immediately by lemma 2.38 (note that = + ed
will have strictly smaller respective entries in absolute value compared to x, as long as ¢ > 0
is sufficiently small).

Thus we focus on the case where
|332| > |$3| > 2 |$m—1| > |xm| =0 = |Tms1| = - = |74|

for some 2 < m < n. Let us examine the entries of x + |x;|d:
o (z+ |x1]d) = 0;

e forevery 2 <i <m—1, |(z+ |z1|d);| = max(|x;|—|z1|0, |z1]0—]|x;]) (and the maximum

should probably be equal to the first argument, unless |z;| is very small);
o for every m < i <mn, |(z + |x1|d);| = |z1]0.

Let m’ be the smallest index > 2 such that |z, < £|z1]. We consider the following convex

combination, which will be in B because of the 1-symmetry:

1
m[(|xl|7|$2|le3|v'”v|an—1|7|$n|) + (|zne |, 2], sl - |l |2l o] [2n]) +
+ <|xm’+1|7 |$2|, |x3|> SRR |xm’—1|, |f17m’|7 |IE1|7 SR |xn—1|7 |xn|) +
e (ool ol il ol feal) + (2ol 22l ol foacal 2.

We can observe the following regarding its entries:
e its Ist entry is —4— (Ja| + S0 |o|) > 2L > 0.

n—m'+2 n—m'+2

e For every 2 <i <m’ — 1, its i*® entry is equal to |z;|.
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e For every m’ <1i < m — 1, its i*® entry is equal to

n—m +1

L >
n—m +2 |x1|_

|zi| + |21].

n—m +2 n—m +2

e For every m < i < n, its i*® entry is equal to #/HMH

Thus, as long as we have chosen § < %, we will have that this convex combination has strictly
larger respective entries in absolute value compared to x + |z;|d. Indeed, this is immediately
clear for ¢ = 1 or i > m. For 2 <i < m’ — 1, we have that |z;] > X|z1| > d|a1], and thus
(x + |z1]d); = |xs] — |21]0 < |a;]. Finally, for m’ <i<m —1,
fral 2 o] > max(f], O]} > max(f] — 116, rald — )

— |z —|x max(|z;|, 0|x1|) > max(|x;| — |x1|0, |21|0 — |x4]),

n—m 421" = ! ! ! !
which gives the desired inequality. We can then apply lemma 2.38 to see that = + |z1|d €
int B. O

Proposition 5.13. Let n > 2, 6 > 0, and

S"={ke;+ > e, €R": j€n]
iel\}

There exists a subset, Z" C S™, with |Z"| = 2", so that for any vector z € R™\{0}, there

exists a d € Z" so that sign(x;) = —sign(d;) for every i € [n] such that x; # 0 and
|d;| = ||d||, =1 for an index j € [n] such that x; # 0.

Definition 5.14. In the context of proposition 5.13, for vector x € R™\{0} and a set Z C S™
(or singleton {d} C S™), we say Z (or d) deep illuminates x if there exists a d € Z so that
sign(z;) = —sign(d;) for every i € [n] such that x; # 0 and |d;| = ||d||,, = 1 for an index
J € [n] such that x; # 0.

We provide some examples here to give some geometric intuition of the proof. See

example 5.16.
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Proof. We first show that we can find a closed and simple curve/path P" on the boundary of
the n-dimensional cube [—1, 1]™ which starts at a vertex w; of the cube and has the following

two important properties:

e the path P™ passes by every vertex of the cube (exactly once since it will be simple)

and returns to ws;

e consecutive vertices on the path share an edge, or in other words differ in exactly one
coordinate. This will also be true for the pair of the last vertex ws» on the path and
wry; in other words, P™ returns to w; through one of the vertices which differ from w,

in exactly one coordinate.

Given that we can travel from one vertex on the path to the next one along the edge
they share, finding such a path is completely equivalent to finding a sequence/ordering

Wi, Wa, ..., wen Of the vertices of the cube
e such that all vertices appear in the sequence

e and such that consecutive vertices in the sequence differ in exactly one coordinate; this

should be true also for the pair of vertices wo» and wy.

Moreover, since the path is going to be closed, we could start at any vertex of the cube
that we want. Also observe that applying a symmetry of the cube to this path (combinations
of coordinate permutations and sign changes) will just give us another path with the same
properties. Thus it is fine to require that w; = (1,1, 1,...,1, 1), while won = (1,1,1,...,1,—1).

In the dimension 2 case, we can see that the sequence
Wy = (]_, ].), Wo = (-1, 1), W3 = (—]_, —1), Wy = (]_, —]_) (].)

satisfies the desired properties. We can use this path to construct desirable paths in higher
dimensions via recursion.

In dimension n > 2, we use the following method to find a path P™ with the de-
sired properties. Suppose we have already found an analogous path P"! for the (n — 1)-

dimensional cube, and that the corresponding sequence of vertices is wi ! wy!, ..., wg,f_ll.
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As explained before, WLOG we can also assume that

n—1 n—2
wi™t = E €; while wg,” L= —e, 1 + E €
i1 i=1

(the e;’s here are the standard basis vectors in R"1). Then the sequence for the path P"

can be chosen to be

w = (wi', 1), wy= (v 1),..

W = (Wi, 1), whie g = (Wit —1),
wgnfl_i_g = (wgn 11 —1 _1)7 wa”*l—H’) = (ug”'_—ll—Z’ _1)’
swh_y = (wih, =1), wh = (v, -1).

It is not hard to check that the constructed sequence has the desired properties, as long as
the sequence arising from P"~! did so as well.

Fixing 1 gives us an explicit desirable sequence using the above method. We have a
different example of such a sequence as well (see example 5.17).

Next we explain how we construct a subset Z" of S™ once we have a path P™ on
the boundary of the cube with the above properties. Let w},wy, ..., w}. be the sequence of
vertices arising from this path, and let » € {1,2,...,2"} (from now on we will be suppressing
the superscript n which indicates the dimension). Consider the pair of vertices (w,., w,41) (if

r = 2", then the pair to consider is (wgn,w;)). This leads to the direction

d, := —sign(w,;,)e;, + Y (=0 sign(w,,))e;,
icln]\{ir}

where i, is the index of the unique entry in which w, and w,; differ (in fact, — sign(w,;,) =
Wy414,). For instance, dgn = (=9, =6, ..., =3, =0, +1).
Finally we show that the set

"= In(é) = {dl,dz, ...,dzn_l,dgn}
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deep illuminates any vector x € R™\ {0}. Indeed, fix such a vector z, and consider the vector

z of its coordinate signs:

z = z, = (sign(z1), sign(as), ..., sign(zan_1), sign(zan)),

where sign(z;) = sign(z;) if 2; # 0, and sign(z;) = 0 if z; = 0.

Clearly z, is found on the boundary of the cube [—1,1]", and if z has no zero coor-
dinates, then z, is in fact a vertex of the cube. Otherwise there is a unique face F), of the
cube with dimension k € {1,2,...,n — 1} such that z is in the relative interior of F,.

Consider now the vertices of the cube which belong to F, and call them ‘good’ for
z. More simply, these are precisely the vertices v; of the cube which agree with z in all
entries where z has a non-zero coordinate: v; € F, if and only if v;; = 2; for all i € [n] such
that z; # 0. Observe that there will be 2* vertices which will be ‘good’ for z, where k is
the number of zero coordinates of z (same as the number of zero coordinates of z). Since
x € R™\ {0}, there will be at most 2"~ ! ‘good’ vertices for z.

Claim. There exists an index r¢ € {1,2,...,2"} such that the ro-th vertex w,, on the
path P™ is ‘good’ for z, while the next vertex w,,1 is ‘bad’ for z (here we take ro+1 mod 2",
that is, ro +1 = 1 if ry = 2").

Proof of the claim. Since there exists at least one and at most 2"~ ! ‘good’ vertices
for z, we can set sy € {1,2,...,2"} to be the largest index of a ‘good’ vertex for z, and we
can also set ty to be the smallest index of a ‘bad’ vertex for z. We distinguish the following

cases.

1. sp < 2" Then so + 1 < 2" and is larger than sy, so it cannot be the index of a ‘good’
vertex for z. Thus we can set ry = sp, since ws, is a ‘good’ vertex for z and wy,1; is a

‘bad’ vertex for z.

2a. sop = 2" and t; = 1. By our choices for sy and ¢y, we have that ws, is a ‘good’ vertex
for z and wy, is a ‘bad’ vertex for z. Moreover, in this case sy + 1 mod 2" = ¢, mod 2",

SO we can set ro = sy again.

2b. tg > 1. Then ty — 1 > 1 and is smaller than ¢y, so, by our choice for ¢y, t; — 1 cannot

be the index of a ‘bad’ vertex for z (while wy, is indeed a ‘bad’ vertex for z). Thus we
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can set rg =ty — 1.

Finally, we verify that, if ro € {1,2,...,2"} is an index which satisfies the property
in the claim, then the direction d,, deep illuminates the points z and x. Indeed, recall that
respective entries of d,, and of the vertex w,, have opposite signs. Since w,, is ‘good’ for z,
for every i € [n| such that z; # 0 we have that z; = w,,; = —sign(d,, ;). On the other hand,
Wyo41 18 a ‘bad’ vertex for z, so we can find some index iy such that z;, # 0 and 2;;, 7 Wyy41,40-
But w,, and w,,4+1 are consecutive vertices on the path P", so they can only differ in exactly
one entry; then this must be the ip-th entry. By construction of the directions d,, we see
that ||d,,||,, is attained in the i-th entry for which we have z;, # 0. These combined show
that d,,, deep illuminates z (which is equivalent to d,, deep illuminating x).

The proof is complete. U

Notation 5.15. Let n € N, x = (21, ..., 2,) € R", i € [n — 1], denote

n %
P = R" — Ri, E TpCr E TCk -
k=1 k=1

Notice in the above definition: P; : R® — R?, not R™ — R, so there is a slight abuse

of notation when using e; in the definition of P;.

Example 5.16. Lets observe proposition 5.13 in dimensions 3 and 4. We will also use the

notation and notions of ‘good’” and ‘bad’ from proposition 5.13 .

n = 3: Recall:
wy = (1,1), wy = (—1,1), wg =(—1,-1), wy = (1,—1).

Assign variables to the vertices of the cube using the following table:
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Variable Entries Variable Entries
w3 (1,1,1) w? (1,-1,-1)
w? (—1,1,1) w? (—1,-1,-1)
w? (—1,—1,1) w? (=1,1,-1)
w3 (1,-1,1) w? (1,1,-1)

Table 3: Dimension 3 case. Sequence representing vertices of the cube.

wy

(b) Directions created from the sequence of
vertices.

(a) Path on the cube induced by sequence of
vertices, P3.

Figure 4: Directions based on P3.

So
TP ={d; e R*:i € [8]}.

We can see from figure 4b that Z° deep illuminates any x € R® which satisfies
12| = 0.

Suppose |IF| > 1. Let’s look at the example x = (x1,x9,0), where z1, 29 > 0,
then z := 2z, = (1,1,0).
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Figure 5: 1-D face on the cube which contains (1,1,0).

Observe from figure 5 that z lies in the relative interior of the 1-D face F, :=
wiw? (the blue line segment). We will use the P? from 4a to determine which ¢ € [8] has
the property d; deep illuminates z, (thereby also illuminating ). In figure 4b, observe
that the sign of d; depends on w?, while the location of the entry with absolute 1 is
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the same entry that is non zero for the vector w},, — w;.

So to make sure that
sign((d;);) = —sign(z;) = —1 and sign((dy)s) = —sign(xs) = —1,

we need to pick a direction which is leaving from either w3 or w?, this means we can

only pick either d; or ds.

Now we need to determine whether d; or dg has absolute value 1 in entries two
or three. w3 and w?$ are consecutive entries; however, they are both good vertices for z.
This means that except for the zero entries of z,, wi and w} agree on those values. So
w} — w3 must have zero entries on on a non zero entries of z,. So, we can rule out dsg.

On the other hand, the location of the entry with absolute value 1 of d; is determined
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by w} and wj. Consider the unique non zero entry of w3 — w$. In this entry, w3 must
also differ in sign with z, since w? and z agree in sign in their non zero entries, and
w3 is a bad vertex as w3 ¢ F,. So d; must be the direction which deep illuminates .

This is the case as dy = (=1, —0, —9).

The general principle is that for any m-D face (m < n), if there exist a part of
the path which is leaving the face (meaning for that segment of the path, the beginning
node lies in the face and the end node lies outside of the face), we can use that part
of the path to define the direction which deep illuminates any z, which lies inside the
face, hence deep illuminating any x which has the same zero entries as z, and signs
in their corresponding non zero entries. A simply connected path has nodes which are
precisely every vertex on the cube, and each consecutive node only differs in sign in
one entry does the job here. We can see that P? from figure 4a satisfies both of these

conditions.

Note that the vertices which lie in the face are called the good vertices. The
vertex which is the end node to a path leaving the face are actually what we call bad

vertices.

Recall that we do not need to worry about vectors that look like (1,0,0) or
(0,1,0). We still present the figures 6a and 6b below to show that these are deep

illuminated for geometric intuition.
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wy

(a) 2-D face on the cube which (b) 2-D face on the cube which
contains (1,0,0). contains (0, 1,0).

Figure 6: 2-D faces on the cube.

Finally, we can identify any z € R*\{0} with some z, which lies on the boundary

of the cube via

—_— —

T~ z, <= sign(z;) = sign(z;).

So we can see that 7% deep illuminates R3.

In a similar manor, it can be verified that if we construct
J? = {d; e R®: i € [16]\[8]}

using the sequence (w?);%, (see table 4) and the same method we used to construct Z?,
then J? also deep illuminates R*\{0}. The sequence (w?);%, is simply (w?)}_q.
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Variable Entries Variable Entries
w?(). (1,1,1) wil)’2 (1,-1,-1)
wi)’5 (—1,1,1) w:l)’l (—-1,-1,-1)
w:l)’4 (—1,-1,1) w:l)’o (—1,1,-1)
w, (1,-1,1) w (1,1,-1)

Table 4: Dimension 3 case. Alternative sequence representing vertices of the cube.

n = 4: We use the sequence from tables 3 and 4 to construct the following sequence.

Variable Entries Variable Entries
wq (1,1,1,1) Wo (1,1,-1,-1)
wWo (—-1,1,1,1) W (-1,1,-1,-1)
ws (—=1,-1,1,1) w1y (-1,-1,-1,-1)
wy (1,-1,1,1) Wi (1,-1,-1,-1)
ws (1,-1,-1,1) w3 (1,-1,1,-1)
we (—-1,-1,-1,1) w1y (—-1,-1,1,-1)
wr (=1,1,-1,1) wis (—-1,1,1,-1)
wg (1,1,-1,1) Wi (1,1,1,-1)

Table 5: Dimension 4 case. Sequence representing vertices of the cube.
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w;

Figure 8: Directions based on P*.

67



So
7' = {d} e R*:i € [16]}.

Here, the superscript notation on the directions indicate the dimension it lives in. So

from the previous example,
P ={d?cR*:ic[8} and J°={d}cR*:ic]l6]\[8]}.

Notice that P,_1(d}) = d? for every i € [16]\{8,16} and sign(P,_(d});) =
sign((d?);) for every j € [3] and i € {8,16}. This implies that if z € R* and x4 > 0,

then we can deep illuminate z using
{d} e R*:i € [8]}.
If x4 < 0, then we can deep illuminate x using
{d} e R*: i € [16]\[8]}.
Suppose x4 = 0. Since Z% and J? deep illuminate R?, we can see that
{d} € R": 7 € [7]} deep illuminates R® x {OP\{(&1,&, —€,0) : &1,6,6 >0} (2)

and

{d} e R : i € [16]\[9]} deep illuminates R? x {0}\{(&1,&2,85,0) : &1, 82,65 > 0} (3)

The remaining vectors in R™\{0} are in the form of (z1, 2, 0,0) where z1, 25 > 0.
We do not have to worry about the cases x; = 0 or x5 = 0 since the directions from
T* are perturbations of {+e; : i € [n]}. With similar reasoning from the n = 3
example, we can see that deduce that df = (—1,—4,—d,—§) and dj = (—1,—6,4,0)
deep illuminates (z1,72,0,0). Thus, we can deep illuminate R*\{0} with Z%. If we

construct J* in similar way to how we construct J2, one can verify that J* also deep
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illuminates R*\{0}.

So what is going on geometrically? In figure 7, take a look at the cube on the
left (x4 > 0) and the directions we take, lets call this C. We will call other cube
(x4 <0) Cy. Notice that the path on Cf,

4 4 4
wi — wy = ... = Wy,

is identical to the path in figure 4a, except for the line segments wiw? and wiwa. The
path induced by (w;)!8, (call it —P3) has the same trace as the path from 4a; however

it has the opposite orientation. This second path is identical to the path on C5,
Wy — Wiy — ... = Wig — wi,

except for the line segments wizws and wizwi. So to construct P*, we can use P? and
—P3. We break the connection at the end of P3 (w3w?) and connect the last node of
P3 (w}) to the first node of —P? (w3). Then we break the connection at the end of

—P? (wiw?) and connect the last node of —P? (w¥) to the first node of P? (w}).

To see that the illuminating set induced by this construction Z* deep illuminates
R*\{0}, take a look at the locations of C; and Cy. C} is located on the side z > 0,
therefore, the directions we derive from it will deep illuminate some z € R* where
x > 0 as these directions will have a negative entry for the last coordinate. However,
we know that P? induces Z° with deep illuminates R?, by the way we construct Z%, dg
and d have the same signs in the first three corresponding entries since dg is derived
from the part of the path that is leaving the node wi and dj is derived from the part
of the path that is leaving the node wi. So we can use (2) to deep illuminate such
vertices. Similarly this is why (3) is used to deep illuminate x € R* which satisfy

x4y < 0.
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u.vjx { 0 }

Figure 9: 3-cube living in R* on the plane z; = 0 with Z*\{ds, ds}.

What if = 07 Geometrically, this should be the easiest case (see figure 9).
This is because we are now allowed to look at directions from both C and Cs, except
for dj and djg as those are the only directions from Z* which have last entry of absolute
value 1. We only have to consider families of vectors (xy, 29, x3,0), which are not deep
illuminated by both

dg = (—6,-6,6,—1) and dj; = (=6, =6, =6, 1).

This leaves us with only the family of vectors which look like (x4, 22,0, 0) where x1, x >
0. Being able to deep illuminate this family of vectors is equivalent to deep illuminating
(1,1,0,0), (1,0,0,0) and (0,1,0,0). Referring back to figures 6a 6b and 5, we can see
that we can deep illuminate (1,1,0), (1,0,0) and (0, 1,0) without using d3 to deep
illuminate any of these vectors; that is, we can just use Z*\{d3}. Thus, we can see
that we don’t need dj to deep illuminate (1,1,0,0), (1,0,0,0) and (0,1,0,0) either.
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Analogously, we do not need di as well. Hence, we can deep illuminate 2 € R* which
satisfy x4 = 0 using Z%\{d3, dis}

Example 5.17. Let n > 4. We will construct a desirable sequence for proposition 5.13, that

is a sequence which satisifies the following conditions:
e such that all vertices appear in the sequence

e and such that consecutive vertices in the sequence differ in exactly one coordinate; this

should be true also for the pair of vertices ws» and wy.

First, enumerate the vertices of the n-cube. The following table shows how the first

3 entries of a vertex are determined.

Letter Entries Letter Entries
A (1,1,1,...) E (-1,-1,1,...)
B (1,1,-1,...) F (—-1,-1,-1,...)
C (1,—1,-1,...) G (=1,1,-1,...)
D (1,-1,1,...) H (-1,1,1,...)

Table 6: Assignment of letters to vertices of the n-cube based on their first 3 entries.

Now we will find a way to determine the other entries. First note that every natural
number k € N can be expressed as 2° + 2715 for some 4, j € Ny. If k is odd, then set i = 0 to
see this. If k is even, this question is equivalent to: does there exists ¢ € Ny so that k = 2°
mod 27717 Since k is even, take out the greatest power of 2 which divides &, i.e. k = 2k for
some k € N and 7 € N. Since 21k, k=1 mod 2. Thus there exists j € Ny so that

k=2j+1 = 2k=2"j4+2 = k=2 mod 2"
Setting } = j and i=1i gives the claim.

Now we will show that this representation is unique. In other words, suppose k = 2¢ +
215 for some i, j € [n], does there exists i’ € [n]\{i} and j' € [n]\{j} so that k = 27" +-2¢'+15/?
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By way of contradiction, suppose that this is the case, WLOG suppose ¢ = i’ + m for some

m € N, then

. . y y 1
2z+21+1j:2z +2z+1j/ _— 2m—1+2m]:§+]l
Since m € N and 7, j' € Ny, this is impossible. Thus this representation of k is unique. To
emphasize the dependency on k, we will use the notation i(k) and j(k). Define the following

sequelnce:

s €; , (k) odd
(S =4 "
—ei(k)+4, J(k) even or 0.

For 1> 2,V € {A, ..., H} define

-1
Vii=(x%,%,1,..,1), V=V + 22 Sk,
k=1
where the first three entries of V; are determined by the letter V' is. Now we can label the

vertices of the n-cube. We pick the directions in the following way:

Ay — H, — H, = = A, — As = = Agn-3 = A
dA1 dG1 Hy de de dAz dAg 5 n—3 dAzn—S

One can check that this sequence is “desirable”.

Theorem 5.18. Let n > 2 and let B € §". Then there is § = dg > 0 such that Z"(9)
illuminates B. It follows that Z(B) < 2".

Proof. Set a = (|lex + ez + ... + e,|lg)'; note that « is the largest positive constant such
that (o, «,...,a) € B. We can also observe that, since e¢; € OB for each i, by convexity we
have that (+,2,..., 1) € B, and thus o > . We will sce that the conclusion in the statement
can be satisfied as long as we choose 0 < 575.

Because B is 1-symmetric, by lemma 2.38 we know that, if y = (1,2, ..., yn) is such

that |y;| < « for each ¢ € [n], then y € int B. Thus for each x € 0B, we will have that
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2]l = a.

As mentioned before, we fix some ¢ < 5. Consider x € IB; we will show that there
is d € Z"(6) which illuminates x (that is, B-illuminates ).

Consider the non-negative numbers |z1|, |xa], |23], ..., |Tn_1], |zn|, and observe that
they are found in the interval [0, ||z||]. Divide this interval into, say, M disjoint subin-
tervals of the form (v;41,7:] each of which has length -, except for the last one which

may have shorter length (and will also be of the form [yar41,va] = [0,7x]). Given that

|lz||,, = length([0,||z||.]) > «, we need at least 2n such subintervals. Moreover, the
first subinterval (v2,71] = (||l — 55, ||2]l.) definitely contains some of the numbers
|z, |z2l, [23], s |Tn-1], |zn|. Given that there are at most n different such numbers, we

can find an index
ro€{1,2,omn+1} C{1,2,.., %], | ¥] +1}

such that the subinterval (v,,+1, V] does not contain any of the |z;|, i € [n].

It follows that, if x;,x,,,...,x;, are the coordinates of x which have absolute value
> Yrot1, and x5, T, ..., T;, are the coordinates of  which have absolute value < «, 41, then
the former have actually absolute value > v,, = v,,41 + 3, and

(4)

|xiu| - |x]w| > 77’0 - 77”04—1 - %

for every 1 < u < s and 1 < w < t. Note also that we always have s > 1 (while in some

cases we might not have any ‘small’ coordinates, but this won’t matter).

s
€r = E xiueiu

u=1

Consider now the vector

(that is, the vector we get if we keep the ‘big’ coordinates of z, but set the remaining ones
equal to 0). By proposition 5.13, we know that there is a direction d € Z"(d) which deep
illuminates x. We will show that d B-illuminates z. By the definition of deep illumination,
|d||,, is attained in one of the coordinates which is non-zero for z, and thus for one of the

coordinates which is ‘big’ for z; let’s denote this by .
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We examine the vector
t
v+, ld = Y (w5, = dsign(ai,)lw, e, + D (w5, +dsign(dy,)lw, |) e,
uFug w=1
First of all, recall that 7o < n + 1, and thus 7., = [[z[|, — (ro — 1)55 > §. It follows that,
for cach 1 <wu <'s, |z;,| > 7, > § > 6, and thus, if u # uy,

|0, [0 <0 < |z, | = |2, — Isign(a,)|ai,, || = o, — 0l | < |2

In the case that o has only ‘big’ coordinates, we can conclude that z + [z;, |d € int B.
On the other hand, if ¢ > 1, then we first consider the following convex combination,

which will be in B because B is 1-symmetric:

1
uFug w#1
+ <Z i, lei, + ) i les, + |5Eiu0|€jz> + o
uFug w#£2
b (S b+ Dol + bt ) + (el
uFuo w#t =1
1 N 1
= 1 ilCiy F D lwilen + ) (H_llewl ™ t—l——1|$z‘uo|) €
uFug w=1

For each 1 < w <t, we have that

t 1 i, | — %50 a/(2n)
H—1|%’w| + H—1|$z‘u0| — |zl = Ot 1 1 because of (4)
> & > 9
~ 2n? '

At the same time, the absolute value of the j,-th coordinate of the vector x + |z;, |d is

|z, + 0 sign(dy, )i, || < |, | + 6l | < |z, |+,
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which, based on the above, is strictly smaller than the absolute value of the j,-th coordinate
of the above convex combination. Thus, each of the coordinates of this convex combination

is strictly larger in absolute value than the corresponding coordinate of x + |z;, |[d. We

conclude that z + |;, |d € int B.
Since x was an arbitrary point of 0B, we conclude that Z"(d) illuminates B for the
fixed o we started with. O

Remark 5.19. Suppose that Bisa 1-symmetric convex body in R™, which is not necessarily
in 8. That is, we don’t necessarily have ¢; € 9B < lellg = 1.

We can still illuminate B using a set of the form Z"(8) (simply because B is a dilation
of a convex body in §"), but a careful inspection of the above proof can also give us an explicit
estimate of what 0 work here: as long as

1 lells

0< — - ,
2n? ler+ex+ ... +enllg

~ 1
Z"(9) illuminates B. In particular, by convexity it always suffices to take 0 < 55
n

Corollary 5.20. Let n > 3, B € 8" and suppose |le; +¢j||g > 1 for every 4,5 € [n].
There exists § > 0 such that, if Z"71(§) is the set from proposition 5.13, then the set
(Z"1(0) x {0})U{=%e,} illuminates B. Thus, if B satisfies the above norm assumption, then
I(B) < |(Z(0) x {0}) U {£e,}| =21 + 2.

Proof. Consider x € 0B, and assume first that ||z||_ is uniquely attained at the last coor-
dinate of x. In particular, because of the norm assumption of the lemma, this is guaranteed

to happen if
|z,| > B, where /8 is the maximum positive constant such that fe; + fe; € B, i # j.

More precisely here, 3 = (|le; + ea|/g) " < 1. Then by lemma 5.10 one of +e,, illuminates z.
Now consider z for which |z, | < |z;| for some i < n. As we said above, this implies
that |x,| < 8 < 1. Consider then the subset

By=BN{eR": ¢, =ux,}
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We have that Proj.. (Bo) is a l-symmetric convex body in R"!, and thus by Theorem 5.18

and the subsequent remarks we know that Proj..(z) can be Proj..(By)-illuminated by a

1
direction in I"7'(d) as long as § < m; denote this direction by d?”~'. We obtain
n J—
that, for some € > 0, z+¢-(d”!,0) will be contained in the relative interior of By, which
combined with lemma 2.42 shows that x is illuminated by (d”~!,0).

This completes the proof. O

Theorem 5.18 gives us Z(B) < 2" for any B € 8" which proves the Illumination
Conjecture up short of the equality cases for 1-symmetric convex bodies! If we want Z(B) <
2" corollary 5.20 proves conjecture 3.7 and when combined with Tikhomirov’s results, we
get Theorem 3.1. Recall that Theorem 3.1 comes at the cost of assuming n to be larger than

some universal constant C'. We also have the following:
Corollary 5.21. Let B € 8% which is not an affine image of the cube, then Z(B) < 7.
Proof.

Case 1: |le; + ¢j|lg = 1 for every 4,5 € [4], i # j. Recall from remark 5.8 that it must be
the case that d(B,[—1,1]?) < 2. We can use lemma 3.5 which tells us that we only

need 7 directions.

Case 2: |le; + ¢z > 1 for every 4,5 € [4]. Using lemma 5.20, we get Z(B) < 6.

Corollary 5.22. Let B € 8* which is not an affine image of the cube, then Z(B) < 15.
Proof.

Case 1: |[le; + ¢j|lg = 1 for every 7,5 € [4], i # j. We separate this case into two subcases.
The first subcase is when d(B,[—1,1]%) > 2. Recall that lemma 5.7 tells us that we
only need to consider when d(B,[—1,1]*) = 2, and in this subcase, we only need 8
directions (lemma 5.4). In the subcase 1 # d(B,[—1,1]*) < 2, lemma 3.5 tells us that

we only need 15 directions.
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Case 2: |le; + ¢|lg > 1 for every 7,5 € [4]. Using lemma 5.20, we can see that in this case
Z(B) < 10.
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6 Dimension 3, 1-Unconditional Polytopes

Definition 6.1. We say B € i if B C R" is a 1-unconditional polytope.

Now it is time to move onto 1-unconditional convex bodies. We will start with the
case: |le; + ej]|g = 1 for some 7,5 € [4], 7 # j. The geometric implication of imposing this
condition for any pair of 7, j is adding a 2-d square which will lie on a subspace perpendicular
to eg, where k # ¢,7. Then we will continue adding this condition for more pairs until we
look at the case |le; + ;|| = 1 for every i, j € [4], i # j. Completing this process gives us the
main result of this section (Theorem 6.9). There is even an additional feature of this theorem
which Lassak conjectured at the end of his paper [14] (which was more generally about origin-
symmetric convex bodies): the directions we find come in pairs of opposite vectors (in our
case 3 pairs, compared to the illuminating sets found by Lassak, which consisted of 4 pairs

of opposite vectors).

Proposition 6.2. Let B € U3 and suppose |le; + ¢;]|g > 1 for every 7, € [3]. Then there

exists § > 0 so that B can be illuminated by some coordinate permutation of the set

Zs == {(1,0,0), (0,1,-4), (0,5.1),

?

(—1,0,0), (0,—1,5), (0,—3, —1)}.

Proof. Let B € Uy and suppose ||e; + ¢;||g > 1 for every i, j € [3]. Recall from example 2.46

that for any vertex of B, there can only be one entry with absolute value of 1.

Step 1: Let x € ext B be a vertex so that |[§| > 0. So |[J] € {1,2}. Then we can illuminate
x by Zs by first applying lemma 2.45 then lemma 2.41.

Step 2: Let x € ext B be a vertex so that |I§| = 0 with 1, 29, 23 > 0. Suppose |z|| <1
or x; = 1 for exactly one i € {2,3}. Consider the case when x = (x1, z2,23). Let § > 0
and d = (0, =4, —1). With lemma 2.42 in mind, look in the affine set

{(€1,6.,8) e R® : & = 21}
to see that x + d € int B. Using this method, we can construct the following table:
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Type of vertex [luminating
direction
(21, 22, 23), (=21, 22, x3) (0, -9, -1)
(x1, —x9, —x3), (—x1,—T2, —x3) (0,9,1)
(21, T2, —x3), (—x1, T2, —3) (0,—1,9)
(1, —22, 73), (—x1, —22,x3) (0,1,-0)

Table 7: Summary of method.

Now, suppose that Zm.x = (Tmax1, Tmax.2s Tmax,3) € €xt B so that |Zyax2| = 1 and
1 > |Zmaxs| > |z;] for all x € ext B which satisfy |IJ| = 0 and for all i € [3] except
when |z;| = 1. In other words, Ty, has an entry which has the largest absolute value
out of those entries which are not equal to 1 among vertices with non-zero entries, and
we assign this entry to be the third entry. By imposing that |Zmax 2| = 1, we know that
this vertex can be illuminated by some direction in table 7. Since B € U?, WLOG, we
can assume that Tpa.; > 0 for all ¢ € [3]. Let € extB so that |z;| = 1. Consider
the direction d := (—sign(z1),0,0) and compare the coordinates of = + d coordinates

to those of X ax.

x1 —sign(z)| =1 —1=0 < |Tmax1]
|372| <l= |xmax,2|

|[L'3| S |$max,3| <1

The second inequality holds as vertices of B can only have one entry with absolute
value of 1. If |z3] < |Zmax3|, then we can apply lemma 2.38 to see that = + d € int B.

If |z3] = |Zmax3/, in the context of lemma 2.42, look at the affine set

{(&1,6,8) € R?: £3 = a3}

to see that © + d € int B. And thus, z is illuminated by d. Thus we have shown that

for arbitrary x € ext B, we can illuminate these vertices using Zs, given that such a

79



Tmax €xists. It should be noted that 6 > 0 in table 7 can take on any value in R. as

this was the case for ¢ > 0 in corollary 2.39.

Step 3: In the previous step, we made a choice which favored some coordinates when defin-
ing Znax, we will now show this choice does not affect the outcome if we “adjust B

accordingly”. Consider ¢(x), t(Zmax) € ext t(B), where ¢ is the isomorphism

. R3 3
t:R>—= R s E 2 €y T (Zil,ZiQ,ZiB)
ke[3]

and Tmax = (Tmax,1> Tmax2, Tmax3) € €xt B s0 that [Tmaxi,| =1 and 1 > [Tmaxis| > |24, |
for all z € ext B with |I§| = 0 and for all & € [3] except when |z;, | = 1. Now we are
reduced to the previous step, so +71(Zs) illuminates B. Note such 2., from this step

exists for any B € U;).

Recall from step 2 that § > 0 has no restrictions; however they are bounded by above in step
1. Let x € ext B. Since each ¢, which allows Zs to illuminate x, depends on x, we will denote
them by 0,. Note that we can also illuminate z, using Z; for any 0 < d < 4. Since each

lext B| < 0o, we can take a sufficiently small 6 > 0 so that Z; illuminates any x € ext B. [
Example 6.3. The steps in this example refer to the steps from proposition 6.2.
1. Let B € U}, suppose
_ (311 _ 13 _ (11
v=(313),y=(131%), 2= (3.3 1) €extB.

In the context of step 3, iy = 3, i3 = 2, i3 = 1 and z,.x = =. After applying ¢, as
defined in step 3,

)= (5.13). o) = (2 11) . 1(2) = (L4 8) € exto(B),

Notice «(z) and ¢(y) are in the form of vertices from step 2, so we know these are

illuminated by the set
{(0,—0,—1), (0,0,1), (0,-1,9), (0,1,=9)}

80



for some § > 0. 1(z) — le; = (0, %7%

entries of ¢(z) — ey, so, by lemma 2.38, we know that ¢(z) — e; is an interior point of

). The entries of «(x) are strictly greater than the

t(B). Let 6 > 0, we can illuminate ¢(z), t(y), t(z) and their coordinate reflections using
Zs = {(1,0,0), (—=1,0,0), (0,—4,—1), (0,0,1), (0,—1,4), (0,1,—0)}.
This means we can illuminate z,y, z and their coordinate reflections using

v H(Zs) = {(0,0,1), (0,0,-1), (=1,-6,0), (1,4,0), (§,—1,0), (=§,1,0)}.

R[S

).

2. In the setting of the previous example, now suppose z = (%, %, 1). So «(z) = (1, %,

In the context of lemma 2.42, consider the affine set

{(&,6,86) eR? 1 & =3}

Notice that ¢(z) has strictly greater absolute values than ¢(z) — e; = (0,3, 2) in the

first two entries. But this means that ¢(z) — ey is an interior point of +(B).

Proposition 6.4. Let B € U} and suppose ||e; + ¢;|lg = 1 for exactly one pair of distinct
i,7 € [3]. Then there exists § > 0 so that B can be illuminated by some coordinate

permutation of the set

T == {(1,0,0), (0,1,—=6), (0,4, 1),
(~1,0,0), (0,—1,8), (0,—8, —1)}.

Proof. Suppose that i = 2 and j = 3, meaning we have vertices of the form = = (21, £1, £1) €
ext B, where |z1| < 1. Let y € ext B.

Case 1: |Ij| = 2. Then we can illuminate y by Zs by first applying lemma 2.45 then lemma
2.41.

Case 2: |I§| € {0,1}. Lemma 2.37 and our initial assumption implies that for vertices
y € ext B\{z}, it must be the case that I, ¢ {{1,3},{1,2},{1,2,3}}. Therefore, if
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1 € I, then I{; = {1}, so suppose this is the case. Then, we can apply lemma 5.10
to see that +e; illuminates y. Now suppose 1 ¢ I¥,, which means that |y;| < 1. If
Y2, Y3 7 0, then in view of lemma 2.42, look in the affine set

{(&.&.&) e R : & =1}

to see that we can use the following set to illuminate .
t76 = {(07 17 _5)7 (07 _17 6)7 (07 57 1)7 (07 _57 _1)}

Since |I§| € {0, 1}, the remaining cases are either yo = 0 or y3 = 0 but not y, = y3 = 0.
But in both cases, we can again apply lemma 2.45 then lemma 2.41 to see that Jjs

illuminates y.

Using the fact that |ext B| < co, minimize ¢ in cases 1 and 2 to attain an Z; which
illuminates every y € ext B.
In the general setting, if ¢ = iy and j = i3, then we can use the method above and

the following isomorphism to get the result:

3
3 5 RS, E Tip€ip > (Tiy, Tiy, Tiy)-
ke[3]

0

Notation 6.5. We will need to take perturbations of perturbed directions to illuminate
some sets. For § € R, when we write 75, we mean that 7s is a constant which depends on 6,

and when we write (,;, we mean that ¢, is a constant which depends on 7s.

From this point on, we need to be careful about B being an affine image of the cube.
This means that we impose (£1,+1,£1) ¢ B since ||e;||g = 1 for every i € [3].

Proposition 6.6. Let B € Z/{g which is not an affine image of the cube and suppose
lles + ejllg = 1 for exactly two pairs of distinct 4, j € [3]. Then one of the following holds:
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1. There exists 6 > 0 and ns > 0 so that B can be illuminated by some coordinate

permutation of the set

15»77 = {(17_7757_5)7 (7757]-)5)7 (7767_571)7
(_1777575)7 (_7757_17_5)7 (_775757_1)}'

2. There exists ¢ > 0 so that B can be illuminated by some coordinate permutation of
the set

Ts = {(~1,6,1), (5, ~1,1), (1,1,1),
(1,-6,-1), (=6,1,—1), (=1,—1,—1)}.

Proof. Let |z41],|z2|, 3] < 1. Suppose that |le; + e3]|g = 1 and ||e + e3|lg = 1. This means
we must have vertices in the form of (z1,£1,+1) or (1, x5, =1), but no vertices in the form
of (£1,£1, z3).

Case 1: Supposing we have vertices of the form (xy,+1,41) and (£1,25,£1) (where x;
must be the largest in absolute value first coordinate of points of the form (z1,+1,+1)
in B, and analogously for x5), we first consider the possibility that at most one of x;
and x5 equals 0; that is, either both x1,z9 # 0 or exactly one of them is = 0. WLOG

we also assume that |xe| > |z].

We first deal with any vertices y of B which satisfy ‘Ii1| < 2. If |If,’ﬂ| = 0,
or if I, is equal to {1} or to {2}, then one of +e; will illuminate y. Indeed, if
y = (£1,y2,y3), then y — sign(y1)e; = (0,92, y3) € int B given that A(|z|,1,1) + (1 —
A)(1, 2|, 1) will have larger respective coordinates for some A sufficiently close to 1. If
y = (y1, 11, y3), then it’s even simpler to see that y — sign(ys)es is in int B using just
the vertex (1,|xs|,1) to compare to. If y = (y1, Y2, y3) with either y; or yo # 0, then
similarly we can use one of the directions +e;, +e, to illuminate; the case y; = y» =0
cannot arise here, because yses is not a boundary point of B given that |les|lg = 1.

Finally, if y = (y1,0,%£1), then y — sign(ys)es € int B, whereas if y = (y;,y2, 1) with
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y2 # 0, then we can use lemma 2.42 applied with the affine set

{(517€27€3) € R3 : €1 = yl}

to see that, for any § > 0, one of the directions in the set
{(0,1,6),(0,-1,-9),(0,-4,1),(0,6,—1)}

will illuminate y.

Now we observe that if §, and subsequently 7s, are chosen sufficiently small,
then the corresponding sets Zs, will consist of suitable perturbations of the directions
used so far, which should work too to illuminate the finitely many vertices of B which
satisfy |I%;] < 2.

It remains to consider the vertices of the form (xy,41,+1) and (£1, 29, £1).
Recall that WLOG we have assumed that |z| > |21] and that at least x5 # 0.

For vertices of the form (x1,+1, £1) we can use again lemma 2.42 applied with
the affine set

{(&.8.&) e R : & = a1}

to see that perturbations of directions in the set
{(0,1,6), (0,—-1,-9), (0,—6,1), (0,9,—1)}

illuminate them (no matter what § > 0 is); thus, for sufficiently small 7, sets of the

form Zs, work for them as well.

Finally, vertices of the form (1, +|zs|,1) or (=1, £|xs|, —1) can be illuminated
by the directions (—ns, —1,—6), (—ns, 9, —1) or (ns,1,9), (ns, —9, 1), respectively, which

appear in all sets Z;, which we can use. On the other hand, for vertices of the form

84



(1, £|aza], —1) or (=1, £|zs], 1), we can first use lemma 2.42 applied with the affine set

{(51762763) € R?) : 52 = $2}

to see that directions of the form (—1,0,0) or (1,0, —¢) will illuminate these vertices
(no matter what 6 > 0 is). Thus, for sufficiently small 7;, directions from Zs,, will also

work.

Note also that, if we had |z;] > |z| instead, then suitable choices of the sets

Zs,, would illuminate the set «(B), where

L R® — R3, Z zrer — (T2, 1, 13).
ke[3]

Thus B can be illuminated by :™(Zs,,).

Case 2: First, note that if ext B = {(0, +1,£1), (+1,0,+£1)}, then B is an affine image of
the cube.
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Figure 10: ext B = {(0,£1,+1), (£1,0,%+1)}.

If 21 = x9 = 0 then we must have a vertex in the form of y = (y1, 2, y3), where
lyal, vl s lysl < 1 and |yi| + |y2| > 1, otherwise ext B = {(0,£1,+£1), (£1,0,+1)}.
For example, if |y;| + |y2| = 1, then

|y1| (1707 1) + |y2| (0) 17 1) = (|y1| ) |y2| ) 1)

And thus (y1,99,y3) ¢ ext B lemma 2.37. The geometric intuition here is that the
cross section {(&1,&,&3) € R3 : & = ¢} N B must contain the 2-D cross-polytope C?
for any —1 < ¢ < 1. If we want to add vertices to B, they must lie outside of these

cross-polytopes.

Step 1: Suppose we have vertices in the form (0,£1,+1) and (£1,0,%1). Notice
by lemma 2.37, we cannot have any vertices which satisfy |[I§| = 2. So let y €
ext B\{(0,£1,£1), (£1,0,£1)} (which we will deal with later) so that |[J| = 1.
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Since |y1]| + |y2| > 1 and |Jy||,, < 1, it must be the case that 1,2 ¢ I{; in other
words I§ = {3}. It should also be noted that we cannot have vertices of the form
(£1,+£1, x3) by assumption.

If we have a vertex of the form (y1,y2,0), where 0 < |11], |y2] < 1, notice

(¥1,92,0) +y1(—=1,0,1) = (0, y2, 11)-

If we compare this point to the vertex (0,1,1), in the context of lemma 2.42,

consider the affine set

{(&1,6,&) € R? 1 & =0}

to see that (y;,ys,0) is illuminated by sign(y;)(—1,0, 1).

Now, we will look at the vertices that still fall into this case which also
satisfy ||y||., = 1. Suppose we have a vertex of the form (yi,y»,0), where |yo| < 1

and |y;| = 1. Consider the convex combination
A (1, ]y2],0) + A2(0,1,1) + A3(1,0,1) € B.
Set Ay = Ay which means A\ < % So
AL(L, [y2] 5 0) + X2(0,1,1) + A3(1,0,1) = (A1 + Az, A(fe] + 1), A1 + A3) € B.
Set A\; so that

|Z/2|
(lyo] + 1)

which is possible since |ys| < 1 and A; is allowed to be arbitrarily close to % Now

>\1>

consider

(1,2, 0) + 2(=1,0,1) = (4,1, %)

Since D icp Ak = 1, we get A + Az > 5, and since Ay ([y2] + 1) > |yo| we can
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apply lemma 2.38 to see that (y;,y2,0) is illuminated by — sign(y;)(—1,0,1). We
can illuminate vertices of the form (yi,y9,0), where |y;| < 1 and |yo| = 1 by

sign(y2)(0, —1,1) in a similar fashion.

Step 2: Now suppose that |I{| = 0, so our vertex is in the form of y = (y1,y2,y3),
where |y1], |y2|, |lys] < 1. Because of corollary 2.39, we can ignore any direc-
tion which has opposite signs of the directions in Zg. This means we only need
to consider the vertices of the form (y1,y2, —y3) and (—y1, —yo,y3), where 0 <
Y1,Y2,y3 < 1. Notice only one of yi,¥y.,y3 can be 1, or else we contradict the
assumption that the only vertices which satisfy ||e; + e;||z = 1 are (0,%1,%1)
and (£1,0,+1). Let’s look at vertices of the form y = (y1, 2, —y3). If y1 =1 or

y3 = 1, with lemma 2.42 we can use (—1,0, 1) and look in the affine set

{(&1,&,&) e R" 1 & = y0}

to see that (—1,0, 1) illuminates y. Similarly, if yo = 1, then we can use (0,—1,1)
to illuminate y. Now use lemma 2.41 to see that Zs illuminates y for sufficiently
small 9 > 0. Since Z; is a set constructed by pairs of opposite directions, it also

illuminates vertices of the form (—y;, —ys, y3).

Step 3: The remaining vertices we need to consider are (£1,0,£1) and (0,41, £1).
We can see for sufficiently small 6 > 0 that the vertex (1,0,—1) is illuminated
by (—1,6,1). Similarly (—1,0,1), (0,1, —1), and (0,—1,1) are illuminated by Zs.
However, the vertices (1,0,1), (—=1,0,—1), (0,1,1), (0,—1,—1) require slightly

more attention. Consider

(-1,0,-1)+1(1,1,1) = (3,3, -

).

Recall we must have a vertex of the form y = (yi,y2,y3), where |yi| + |yo| > 1
and |y1], 52!, Jys| < 1. Since B € Uy, we know that (|yi], |12, [ys]) € ext B. Set

N[

1 - 2 - 2
W W | 71 7 S W 71 el -1 e

3 6 ’ 6 ’
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then consider the convex combination

)‘1(|y1| ; |y2| ) |y3|) + )‘2(17 07 1) + >\3(07 17 1)

_ il 4+ yel +2 |yl + ly2l +2 |ys| +2
6 ’ 6 ’ 3 '

Since |y1|+g’2|+27 |y3£+2 > £ we can apply lemma 2.38 to see that (1,1,1) illuminates

(—1,0,—1). Similarly, (1,0,1), (0,1,1), (0,—1,—1) are also illuminated by Z;.

Suppose €;, + €;,,€;, + €;, € ext B, then the isomorphism to take here is

3
3 R3, E xzneln (Tiys Ty, Tig).-

Finally since B € U}, we can use a minimizing argument to attain § and 7; to get the

result.
O

Example 6.7. An example of the second part of proposition 6.6 can be seen pictorially in

the figure below.
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« AXis (,'oming outwards
iy

A

Vy=0

0<y,<1

Ye=1

— > T,

Figure 11: Proposition 6.6 example.

The top most layer (y3 = 1), middle (0 < y3 < 1) and bottom layer (y3 = 1) are a
cross-polytope, hexagon and octagon, respectively. The red, green and blue vectors represent
the directions (1, —d,—1), (—d,1,—1) and (—1, —1,—1), respectively. The orange direction
is —(1,—0, —1), the negative vector of the red vector. Recall that when we are not looking
at what is the affine image of the cube, we required a vertex y € ext B so that |y; |+ |ys| > 1.
This is precisely why the blue vector (—1,—1, —1) is able to illuminate (1,0, 1) and (0,1, 1).

If we flip 11 so that x3 is entering the page, we can use the negative directions of the

directions we have already listed. Since the orange and red directions are opposite directions
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already, we will only need 3 pairs of opposite directions in total to illuminate this convex
body.

Proposition 6.8. Let B € Z/{S which is not an affine image of the cube and suppose
llei +ejllg = 1 for all 4,5 € [3], ¢ # j. Then there exists § > 0 and 7 > 0 so that B

can be illuminated by

1.6»77 = {(17_7757_5)7 (77571)5)7 (7757_5’1)7
(_1717575)7 (_7757_17_5)7 (_775757_1)}'

Proof. First, we should note that it is only possible to have vertices
z € ext B\{(£1,0,+1), (0,£1,+1), (£1,£1,0)}

which satisty |I§| = 0. With lemma 2.37 in mind, we can see this by comparing the points
e; +e; € B, where i,j € [3], ¢ # j, with any such vectors which do not satisfy |I§] = 0.
Additionally if a vertex does not satisfy I7; = 2, then we can use {xe; : i € [3]} to
illuminate it. For example (1,%,3) —e; = (0,3, 3) € int B as (0,1,1) € B. Note that the set
{%e; : i € [3]} can be perturbed into Zs,,.

Consider a vertex of the form x = (x1,zy, x3), where |z;| < 1 and |z3| = |z3] = 1.

With lemma 2.42 in mind, consider the affine set

{(51752753) € Rn?fl = fL'l}
to see that such vertices are illuminated by the set
{(0,1,0), (0,—-6,1), (0,—1,-06), (0,9,—1)}.

Analogously if |zs| < 1, we can also illuminate (1, z9, —1) and (—1, z9, 1) using (—1,0,J) and
(1,0, —0), respectively. It remains to be seen how to pick ¢ and 7, so that the set Z;, can
illuminate vertices of the form (1,x2,1), (=1,22,—1) or (£1,+1, x3).

For a vertex of the form (1,1, z3), where |z3] < 1, pick § so that |z3| +J < 1 and
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0 < s < 2 and consider

(1,1,23) + (—ns, —1,—=0) = (1 —ns, 0, z3 — 9).

With lemma 2.42 in mind, look in the affine set

to see that we can illuminate z using (—ns, —1, —9). With this line of reasoning, we construct

the following table:

{(&.6.8&) e R : & =0}

Type of [Muminating Type of [Muminating

vertex direction vertex direction
(]-7]-7373) (—7]5,—1,—5) (_]—)_]—71:3) (T](Sv]-)é)
(_1717$3) (17_/’75)_5) (1,—1,1'3) (_1»71675)
(1,1‘2,1) (_775757_1) (_1)$27_1) (7757_57 1)

Table 8: Summary of method.

0

Theorem 6.9. Let B € U} which is not an affine image of the cube, then Z(B) < 6. In

fact, the illuminating sets are all 3 pairs of opposite directions.

As already mentioned, at the end of Lassak’s paper, one of the questions is: for cen-
trally symmetric convex bodies, which are not parallelotopes, does there exist an illuminating
set constructed by 3 pairs of opposite directions [14]? Theorem 6.9 gives a positive answer
to this question in a less general setting. In the next section, we will see how far we can

push these methods into dimension 4.
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7 Dimension 4, 1-Unconditional Polytopes

In this section, we will focus on 1-unconditional convex polytopes which are not affine images
of the cube in dimension 4. We apply similar methods to that of the previous section and are
able to show that to prove the [llumination Conjecture for 1-unconditional convex polytopes
up to the equality case: for B € U, we have shown that Z(B) < 16 (Theorem 7.15).

Since |le;||g = 1 for any i € [4], when we say that B is not an affine image of the
cube, this means that (£1,+1,+1,+1) ¢ B.

Again, the strategy here is to first solve the problem when |e; + ¢;||g > 1 and impose
the condition |le; 4 e;||g = 1 for pairs of distinct 4,5 € [4]. In each case, we will gradually
increase the number of pairs of distinct ¢, j. As we impose ||e; + ¢,||g = 1 for three or more
pairs of distinct 4, j € [4], it is possible for the convex body B to satisfy |le, + e+ €,]|g = 1
for a triple of distinct r,s,t € [4]. We will first assume that ||e, + e + e|lg > 1 for every
triple of distinct r, s,¢ € [4] and see what happens when we impose the condition ||e; + ¢;||g =
1 for more pairs of distinct 4, j € [4]. Then, we will deal with the case ||e, + s+ €]|g =1
for some triple of distinct r, s,t € [4] after.

Although for B € U, we have shown that Z(B) < 16, there also many cases in this
section where Z(B) < 14. This can be seen in propositions 7.4, 7.5, 7.6 and 7.9. For the
sake of transparency, we suspect that with this method of proof, it is possible to construct
illuminating sets with cardinality of no greater than 14 for any 1l-unconditional polytope.
A step in this direction is to analyze propositions 7.7, 7.12 and 7.14 more carefully in the
sense that we avoid situations where B becomes an affine image of the cube. We already
assume that (+1,+1,4+1,+1) ¢ B; however, there are more situations where B can be an
affine image of the cube which we did not account for in the mentioned propositions. This
is a good place to continue this research.

A summary of results is given in the following table.
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Dimension 4, 1-unconditional (Theorem 7.15)
Vr,s,t € [4], |ler +es+elg>1 Ir, s, t € 4], |le,+es+ellg =1
Pairs of distinct Z(B) Proposition Z(B) upper Proposition
1,] so that upper bound
lles +ejllg =1 bound
0 16 7.1
1 14 7.4
2 14 7.5
3 14 7.6 16 7.14
4 16 7.7
) 14 7.9
6 16 7.12

Table 9: Summary of results in dimension 4 for 1-unconditional convex polytopes.

Proposition 7.1. Let B € L[;} and suppose |le; + ¢;||g > 1 for every 4,5 € [4]. Then there
exists 0 > 0, s > 0 so that B can be illuminated by some coordinate permutations of the
set 7, UZy UZs,, where

7, ={(1,0,1,0), (1,0,—1,0), (—1,0,1,0), (—1,0,—1,0)},

7, ={(0,1,0,1), (0,1,0,-1), (0,—1,0,1), (0,—1,0,—1)},

Zsy = {(0,-1,-0,-n5), (—=1,75,0,—0), (0,—0,1,—ns), (6,75,0, 1),
—(0,—1,-9,—ns), —(—1,15,0,=9), —(0,—0d,1,—ns), —(,15,0,—1)}.

Note that |Z; UZy U Zs,| = 16.

Remark 7.2. We will first show that if = € ext B and |[}| € {2, 3}, then we can illuminate
these vertices using perturbations on +e; for every ¢ € [4]. When |I§| = 1, we will show that
7T, UI, UZs,, is sufficient to illuminate such vertices. In the final case, when |[§| = 0, we first
will make a key assumption favouring two coordinates over the other two. We will address this
assumption by showing that it does not matter in the sense that a bijective transformation

of 7y U7y U Is,, will compensate for the assumption when it’s more appropriate to favor
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another pair of coordinates. Additionally, this transformation will simply be a swapping of
coordinates, and since the cases |[[J| € {1,2,3} do not favor any entry, after we apply the

transformation onto Z; UZ, U Zs,, it will not affect the other cases.
Proof. Let B € U and suppose |le; + ¢;[5 > 1 for every i, j € [4].

Case 1: Let x € ext B be a vertex so that |[J]| € {2,3}. We can illuminate z by Zs,, by first
applying lemma 2.45 then lemma 2.41.

Case 2: Now, we will look at the vertices € ext B which satisfy |I§| = 1. Consider a
vertex in the form of (xq,x9,x3,0) € ext B, where |z1] = 1 and 0 < |29, |z3] < 1. By
the assumption in the lemma, it cannot be the case that either |xo] =1 or |z3| = 1. In

the setting of lemma 2.42, consider the affine set

{(61,6,6.6) €R* 1 & =0, & = a0}

to see that 7Z; illuminates such vertices. Using this method, we can construct the

following table:

Type of vertex [luminating
set
(£1,29,23,0), (x1,0,£1,24), (x1,22,%1,0), (£1,0,23,24) 7
(371,:':].,0,.1’4), (0,1‘2,563,:‘:1), (0,:|:1,.753,1‘4), ('r17x2707:|:1) IZ

Table 10: Summary of method.

If ||z]| . < 1, the argument for the vertices in table 10 still holds for any such
vertex = € ext B that satisfies |I§]| = 1.

Now let z € ext B so that |z3] = 1, |x4] = 0 and |x4], |z3] > 0. So z is in the
form of (x1,+1,x3,0). We look in the affine set

{(61,6,63,€4) R : & =21, & =0}
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We can apply lemma 2.42 to see that for any 6 > 0, either (0, — sign(z3), —d sign(xs),0)

or (0, —dsign(zy), — sign(xs),0) illuminate x, hence x can be illuminated by the set
{(0,-1,-6,0), (0,6,1,0), —(0, —1,—4,0), —(0,—3,1,0)}.

Therefore by lemma 2.41, there exists 75 > 0 so that Z;, illuminates z. In a similar

fashion, we can illuminate the vertices in the table below using Zs,,.

Type of vertex Mluminating set

(x1,£1,23,0), (0,29,x1,24) || {(0,—1,=6,—ns), (0,-=0,1,—ns),

_(07_17_57 _775>> _(O> _5717_776)}
(£1,29,0,24), (21,0,23,£1) || {(—=1,7s0,—=9), (0,ms,0,—1),
—(=1,75,0,—6),  —(0,15,0,—1)}

Table 11: Summary of method.

So we have illuminated all the vertices, x € ext B, which satisfy |z;| = 1 for
exactly one ¢ € [4] and || = 1. This is because we have illuminated 12 different types
of vertices which satisfy this condition, but since we can only choose four positions to
put 0 as an entry, with three remaining spots for 41, there are only 4 x 3 = 12 types

of vertices.

Due to the usage of lemma 2.41 in case 1 and the later part of case 2, each ¢

and 7, depend on x;, i € [4] for each type of vertex. We will address this after case 3.

Case 3: Consider the case when x = (21,22, 23,74) € ext B and |[§| = 0. In addition,
suppose 0 < xq,x9, 23,24 < 1 or z; = 1 for exactly one ¢ € {2,4}. Using lemma 2.42

and either the affine set

{(61,6,8,&) eR" & =a ) or {(£1,62,63,6) €R" : &3 = a3}

we can construct the following table:
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Type of vertex [luminating
direction
(21, T2, T3, 24), (—x1, T2, x3,24) (0, -1, -0, —ns)
—(x1, 22, 3, 4), —(—x1, T2, T3, 24) —(0,—1, =6, —ns)
(1, —2, 3, 24), (1, —T2, —x3,24) (—1,75,0,—9)
—(x1, — 22,23, 24), —(x1, =9, —x3,24) —(=1,75,0,—9)
(21, 29, —x3,24), (—x1, T2, —x3,24) (0,—4,1,—ns)
—(x1, T2, —3, 24), —(—x1, T9, —x3,X4) —(0,—-9,1,—ns)
(—x1, —T2, 3, 24), (—x1, =9, —3,X4) (6,7ms,0,—1)
—(—x1, =22, x3,24),  —(—x1, —T, —T3,T4) —(0,ms,0,—1)

Table 12: Summary of method.

Suppose that Lmax = (xma,x,h$max,27xmax.37xmax,4) S eXtB SO that |xmax,4| =1

and 1 > |[Tmax2| > |z;| for all z € ext B

with |I§] = 0 and for all i € [4] except when

|z;] = 1. We imposed that |Zmax4| = 1 so we know that this vertex can be illuminated

by some direction in table 12. Since B €

Z/{;}, let’s assume that Tpm,,; > 0 for all ¢ € [4].

Let 0 < A < 1, x € ext B so that |z;] = 1 and consider the convex combination

Ammax + (1 - A)(|x1| ) |:1;2| ) |$3| ) |._'174|) € B.

Comparing the vector above with x,

Tmax,1 <Al‘max,l +
|.le2| SAxmax,Z +

0< )\J?max,?, +

~~

|24| <ATmaxa +

This implies that

1—A |ZB1|<1:|ZL‘1|
A
A

1= |zs] < 1= Tmaxa

1— |'r2| S Tmax,2
1= A) [z

)
)
)
)

()\ZL‘maX’l + (1 — )\) |l‘1| ,ZBQ,O, )\xmax,4 + (1 — )\) |ZE4|) € B.
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Choose A sufficiently close to 0 so that ATmax1 + (1 — A) |21] > 21| — |z3| and compare

the above vector to
x + |z3| (—sign(xy),0, — sign(xs), 0) = (21 — sign(xq)s, 2,0, x4).
With lemma 2.42 in mind, consider the affine set

{(&,6,83,6) €R" 1 & = a9, &3 =0}

to see that (—sign(z),0, —sign(z3),0) illuminates z. Thus Z; illuminates x. When

x € ext B with |[J| = 0 and |z3| = 1, it is analogously illuminated by Z;.
In case 3, we made the key assumptions:
Lo 1> |Zmaxe| > |a;| for all @ € [4)\I{, for all x € ext B with || = 0,
2. and @paxa = 1.

Now assume this condition for Zpax;, in place of Zpaco and that ryax;,, = 1 for some

ia,14 € [4]. Consider the linear isomorphism

4
1 5 RY, E Zi €in V> (Ziyy Zigs Zigs Zig)-
neld]

We can apply the method from case 3 to see that Z; UZ; ,, illuminates «(B). Hence . (Z1UZ;,))
illuminates B.

The last item to address is that 6 and 7s from steps 1 and 2 are not completely
arbitrary; however, since B € L[If, we know that |ext B] < oco. Recall lemma 2.41. This
means we can choose a sufficiently small § > 0 so that all the vertices from step 1 and the
first part of step 2 are illuminated by Zsy. Then choose a sufficiently small s > 0 so that

all those mentioned vertices are still illuminated by Zs,,. O

The following lemma is an attempt at a partial improvement of proposition 7.1.
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Lemma 7.3. Let B € U, suppose [le; + €;]|g > 1 for every 4,5 € [4]. Suppose that for
every « € ext B, we have |I§| # 1. Then there exists § > 0, 75 > 0, ¢,, > 0 so that B can be

illuminated by some coordinate permutation of the set Z3 UZs, ¢, where

I3 = {(]—)07 _170)7 <_]-707 170)}
I(S,n,g :{(Cn57—5,17—775)» (_Cn57_17_57 _775)7 (_177767_Cn57_5)7 (5vn57€n57_1)7
_(<n57_5717_n5)7 _<_C7757_17_57 _7]5)7 _(_177]57_C7757_5)7 —(577757@757—1)}-

Note that |Z; U Zs,, ¢| = 10.

Proof. In proposition 7.1, case 1 and case 3 only require Zs,, - and Z; U Zs,, ¢, respectively. For
x € ext B, when |I§| = 0, recall that Zs, . can illuminate x as long as I7, € {@, {2}, {4}}. If
I7, € {{1},{3}}, with corollary 2.39 in mind, it can be verified that the only vertices which
are not illuminated by Zs,, . are ones which satisfy sign(z;) = — sign(xs). These vertices are

illuminated by Z3 using a similar method to case 3 of proposition 7.1
O

Proposition 7.4. Let B € L{;f, and suppose ||e; + ;]| = 1 for exactly one pair of distinct
i,j € [4]. Then there exists 6 > 0,75 > 0, and (,, > 0 so that B can be illuminated by some

coordinate permutation of the set

(1,6,ns5,0), —(1,6,15,0), (6,—1,15,0), —(3,—1,7s,0),
(=75,0,1,0), —(=15,0,1,0), (15,9, —-1,0), —(ns,d,—1,0),
(=15,0,6,1), —(=15,0,0,1), (=1s,0,0, 1), —(=ns,0,9, —1),
(1,0,1,0), (—1,0,—1,0)}

Note that |Zs, | = 14.

Proof. Suppose i = 1 and j = 2, so we must have a vertex of the form y = (y1, o, y3,94) €
ext B so that |y;| = |ye| = 1 and |ys|, [ya] < 1. Let 2 € ext B.

Case 1: Suppose |I¥| € {2,3}. With the exception of (£1,41,0,0), such vertices are illu-
minated by {£e; : ¢ € [4]}. So by lemma 2.45, these vertices can also be illuminated
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by Zs,, for sufficiently small 6,75 > 0. For any 6 > 0, (£1,+£1,0,0) can be illuminated
by the set

{(1,4,0,0), (6,—1,0,0), —(1,6,0,0), —(d,—1,0,0)}.

So there exists sufficiently small 75 > 0, so that (+1,+1,0,0) can be illuminated by
the set

{(175777570)7 _(175777570)7 (57_1777570)7 _(57_1777570)}'

Case 2: Suppose |IF| = 1. Using the reasoning from step 2 of proposition 7.1, we can

construct the following table:

Type of vertex Mluminating set
(IL‘l,j:]_,l‘;;,O), ($17i1,0,1‘4), {(175) ,’7570)) (57_17775)0)7
(:l:l,[l‘g,l’g,()), (i1,$2,0,$4), _(1767 77570)7 _(57_1777570)}
(£1,+1,23,0), (£1,%1,0,z,)

($1,$2,:|:1,0), (0,:&1,1337374), {(_775767 17O>7 (77675>—1>0)7
(0,1’2,:|:].,£L'4) _(_77(5)6a 170)7 _(n575)_1)0)}
(.’L’l,o,xg,j:l), (07'1;2)'1;37:&1)7 {(_77(5707671)7 (_7757075)_1))
(ZL'],O,ZE].,ZC4) _(_775707571)7 _(_77570757_1)}

Set 75 = 0 and use lemma 2.42 with the appropriate affine set. Then use
lemma 2.41 to get sufficiently small non zero values of 7.

Table 13: Summary of method.

The remaining vertices are of the form
(r1,22,0,+1) and (+£1,0,x3,24),

where |x1|, |22, |23, |24] < 1.

First consider a vertex of the form (zq,z5,0,£1). Since (1,1,0,0) € B and
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|z1], |x2| < 1, the affine set

{(&1,6,8,8) €RY 1 & =21, & = 29}

has non trivial intersection with int B. Thercfore we can use lemma 2.42 to sce that
vertices of the form (x,z5,0,+1) can be illuminated by +e,. Then we can use lemma
2.41 to see that for sufficiently small 6 > 0 and ns > 0,

{(_775707571)7 —(—77570757 1)7 (_77570757_1)7 _(_77570757_1)}

is an illuminating set for such vertices.

Now we will consider a vertex of the form (41,0, z3,x4). With lemma 2.42 in

mind, consider the affine set

{(&1,62,63,64) € R 1 & = 0}

to see that for any 6 > 0 and ns > 0, the set

{(_775707571)7 _(_n§70757 1)7 (_7](570757_1)7 _(_7]570757_1)}

illuminates every vertex of the form (£1, 0, x3, x4) which satisfies sign(x;) = — sign(zs).

Using lemma 2.42 again, look in the affine set

{(6,6,85,86) €R* 1 & =0, & = x4}

to see that £(1,0, 1,0) illuminates every vertex of the form (£1, 0, x3, z4) which satisfies

sign(z;) = sign(z3).

Case 3: Suppose |[J| = 0. If |z4] < 1, observe that the set

{(175)77570)) _(175777570)7 (57_1777570)7 _(57_]—777570)7
(_775757170)7 _(_n5757170)7 (n5757_170)7 _(7]5757_170)}
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has the following property: any two elements from the set differ in sign in at least one
of their first three corresponding entries. This means that we can rely on lemma 2.42

and look in the affine set

{(61,6,8,&) € R*: §4 = 4}

to see that the set above illuminates x.

If |z4] = 1, then |xy|,|z2] < 1. And since (1,1,0,0) € B, we can use lemma
2.42 and look in the set

{(&1,&,8,&) € RY:é =1, &= T2}

to see that for any § > 0,
{(0,0,0,1), —(0,0,4,1), (0,0,d,—1), —(0,0,6,—1)}
illuminates z. Now apply lemma 2.41 to see that
{(=15,0,0,1), =(=15,0,0,1), (=n5,0,0, 1), —(=15,0,0, =1)}

also illuminates z.

To get the result for the general case, if 1 = i; and j = 75, then consider the isomorphism:

4
4 5 RY, E Tip i V> (Tiy s Ty, Tigs Tiy)-
ke[4]

O

Proposition 7.5. Let B € Ll;,l, and suppose ||e; 4 ¢;||g = 1 for exactly two pairs of distinct
i,j € [4]. Then Z(B) < 14.

Proof. Let x € ext B.

Step 1: Suppose (1,1,y3,v4), (21, 22,1, 1) € ext B, where 0 < |21, [2a|, |ys|, [ya] < 1. Notice

we cannot have vertices which satisfy |I§| = 3. Suppose || = 2. For vertices which
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are not (1,1,0,0) or (0,0,1, 1), by lemma 2.45, we can illuminate them by using {+e; :
i € [4]}. Let 6 > 0. By lemma 2.42, (1,1,0,0) and (0,0,1,1) can be illuminated by

Zs .= {(1,6,0,0), (-4,1,0,0), (0,0,1,—-4), (0,0,9,1),
- (1,6,0,0), —(—6,1,0,0), —(0,0,1,—-9), —(0,0,6,1)}.

For the case |If| € {0,1}, let’s take a look at the following example: consider = =
(21, x2,23,0), where 0 < |z1], |za] <1 and 0 < |z3| < 1. Then z is illuminated by the

set
{(1,0,0,0), (—0,1,0,0), —(1,6,0,0), —(—6,1,0,0)}
for any § > 0. If |z3| = 1, then |z1], 22| < 1.
x — sign(zz)es = (1, x9,0,0).

With lemma 2.42, compare the above vector with (1, 1,0,0) to see that it is an interior
point, hence x is illuminated by — sign(x3)es. It turns out for any = € ext B so that
|I7] € {0,1}, x can be illuminated in a similar method. Finally, minimize § so that Zs

is an illuminating set for B.

Step 2: Suppose (1,1,y3,v4), (21,1,1,24) € ext B, where 0 < |ys|, |va|,|21], |24] < 1. For

the same reasons from the previous step, there exists sufficiently small § > 0 and 75 so

that we can use the following set to illuminate vertices, x which satisty |IF| € {1,2,3}:

Lsne = {(L,=0,=15,Cps)s (—1,0, =15, Cps)s (8, 1,5, Cos)s (=0, = 1,75, ),
(=15,0, 1, =Cys )y (M8, =0, 1, =Gy )5 (=15, =0, =1, =Gy )5 (15,0, =1, =Gy,
(M6, —Cns» 0: 1) (M6, Cyss —0: 1), (=05, =G0 6, —1), (=75, Cyss =6, —1),
(—6,0,0,1), (0,0,0,—1)}.

The only exception is if = (21,0, x3,24), where |z1| = 1, and |z3|,|z4] < 1. In this
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case, note that we can use

{(7757_C77575> 1)7 (7757C7757_571)7 (_7757_C775757_1)7 (_n57C7757_57_1)}

to illuminate every vertex which does not satisfy sign(z;) = —sign(z4). For such

vertices, we can use (—0,0,0,1) or (4,0,0,—1).

Suppose |IF| =0 and |z4| < 1. With lemma 2.42 in mind, look at the affine set

{(61,6,83,8) € R" : &4 = a4}

Then we can illuminate x using the set

{(17_57 —7757@;5)7 (_17(57 _7757(7)5)7 (57177]57<775)7 (_57_177757<775)7
(_n57571>_Cn5)7 (7757_5717_C775)7 (_n57_57_17_c775)7 <n5757_17_<.?75)}'

This is because every different pair of directions above differ in sign in at least one of
the first three corresponding entries. If |z4| = 1, then by assumption, it cannot be the

case that |z;| = 1 for i € [3]. Use corollary 2.39 to illuminate 12 types of vertices using

{(17_57 _7]67<775)> (_1757 —7767@75)7 (57177]5><n5>7 (—(5,—1,7]5,&75)7
(_n575717_Cﬂ5)) (775)_571a_<775)7 (_77(57_57_17_Cn5)7 (n5757_17_<-775)7
(7757_C775757 1)7 (7757C775>_571)7 (_7757_C775757_1)7 (_7767C775>_57_1)}'

It can be checked that the remaining four types of vertices are of the form
(—fEl? X2, T3, $4)7 _(_x17 Lo, T3, .’134)7 (—.171, —X2, —T3, 21:'4), _(_x17 —X2, —T3, 21:'4),

where 0 < x1, 29, 23,24 < 1. Notice the above vertices satisfy sign(z;) = — sign(z4).

Since 0 < ||, |x3| < 1, with lemma 2.42 in mind, look in the affine set

{(61,62,83,8) €R™ 1 & = w9, & = 13}
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to see that such directions can be illuminated by (—6,0,0,1), or (4,0,0, —1).
For the general case, suppose that |[e;, + e;,||g = 1 and ||e;; + €;,||g = 1. In the case

{i1,12} N {i3,i4} = &, we can use the isomorphism

4 E
_> R ‘rzkezk x117xi27xi37 xi4)7
kel4]

then apply the method from step 1. In the case {i1,is} N {is,is} # &, WLOG suppose that

19 = 14 and denote the remaining index by i5. Then we can use the isomorphism,
. 4 4
LR = RY @6, + Ty + Tig€iy + Tiglip > (Tiyy Tiy,y Tig, Tig )

and apply the method from step 2. O

The isomorphisms we have used so far have all been coordinate permutations. From
here on, we will only consider cases up to coordinate permutations and the explicit iso-
morphisms will not be stated as identifying them should be clear based on the previous

parts.

Proposition 7.6. Let B € L{;}, and suppose ||e; + €|z = 1 for exactly three pairs of distinct
i,j € [4] and ||e, + e + et||g > 1 for every triple of distinct 7, s,t € [4]. Then Z(B) < 14.

Notice that ||e, + 5 + e]|g > 1 for every r,s,t € [4] means that for every x € OB D
ext B, we have |Ii1| < 3.

Proof. For x € B with |Iil‘ = 2, there are (3) ways to place entries with absolute value of

1 up to sign.

Case 1: Suppose |le1 + eslg = |les + esl|g = |le2 + e3llg = 1. So B has vertices which look
like

(£1,£1, 23, 24), (y1,92, 1, £1), (21, £1,£1, zy),

where |z3], |x4|, |11], [y2] s |21, |2a] < 1. The other cases only differ by permutation of

coordinates (see following table).
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Vertex combinations Coordinate

permutation
(il,il,x3,$4), (yl,yg,:tl,:tl), (:l:l,Zg,:l:l,Z4) (1 2)
(il,il,ﬂ?g,x4), (y17y27:|:17:|:1)7 (217:|:17Z37:|:1) (34)

(i]-v :l:la I3, .T4), (yla Y2, :I:]-a :I:]-)v (:I:]-a 22, 23, :l:l) (]' 2)(3 4)

Table 14: Cases up to coordinate permutation.

Notice that if e;, +e;,, €, +¢€;, € B and {i1, 12,143,474} = [4], then we can use a coordinate
permutation to get a case that is listed in table 14 or the case we are currently working

on.

Let u € extB, recall that it cannot be the case that |I}| = 3. Suppose
|I¥| = 2; using lemmas 2.42 and 2.41 we can see that (£1,+1,0,0), (0,+1,+£1,0)
and (0,0, £1, £1) are illuminated by Zs, U J5, U K5, where

Iév"] = {(1’67 n570)7 _<1757 776»0)7 (5’_1777570)7 _(57_1777570)}7
¥75777 = {(_775757190)7 _(_775757170)7 (775757_]-70)7 _(776757_170)}7
Ks:={(0,0,6,1), —(0,0,0,1), (0,0,—6,1), —(0,0,—6,1)}

As for other vertices which satisfy |I'| = 2, we can use lemma 2.45 then lemma
2.41 to see that Zs, U Js, U K; illuminates such vertices.

Suppose |[§| = 1. Let’s take a look at the vertex of the form u = (uy, ug, us,0).
If |up| < 1, with lemmas 2.41 and 2.42 in mind, look in the affine set

{<€17£2)£3’§4) e R": 51 = Uz, 54 = 0}

to see that we can illuminate v with Js,,.

If |u;] = 1, by assumption it cannot be the case that |uz| = 1, hence we can

illuminate u with Zs,. With similar reasoning, we can construct the following table:
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Type of Condition [Mluminating Condition [Mluminating
vertex set sct
(w1, ug,us,0) lug| < 1 Tsm lug| =1 sy
(uy,usg, 0, uy) lug| < 1 Ts lug| =1 Ks
(u1,0,us, uq) lur| < 1 Ks lug| =1 sy
(0, ug, ug, uyg) lug| < 1 Tsm lug| =1 Ks

Table 15: Summary of method.

If |I§| = 0, and |ug| # 1, then we can illuminate u using Z;, U J5,, as any two
directions from this set differ in sign in at least one of their first three corresponding
entries. If |uy| = 1, then by assumption, it must be the case that 0 < |uy]|, |us| < 1.
Since (1,1,0,0) € B, look in the affine set

{(61,62,83,64) €R" 1 & = uy, & = uo}

which contains the interior point (uq,us,0,0) to see that we can illuminate u by Ks.
For this case Z(B) < 12.

Case 2: Suppose |e; + es]|g = |le2 + es]lg = 1. To avoid overlapping with the first case, it
must be the case that ||e; + es]|g = 1 or [lex + e4]|g = 1. So B has vertices which look
like

(1,1, 23, 24), (y1,1,1,94), and (1, 29,1, 24),
or
(1,1, 23, 24), (v1,1,1,94), and (21,1, 23, 1),
where |x3|, |z4], 1], |v2], |21], [22] s |23] s |24] < 1. If €5, + ey, €55 + €4y, €5 + €1, € B,

where {i1,42}, {i3,i4}, {i5,16} are distinct and mutually intersect, then this case only

differs by the two cases above by up to coordinate permutations.
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In this case we will suppose (1,1, 23, 24), (y1,1,1,94), (1, 22,1, z4) € B and con-
sider the remaining case in case 3. Let u € ext B . Suppose |[{| € {2,3}. With the ex-
ception of (+1,+1,0,0), (0, £1,+1,0) and (%1, 0, £1,0), using sufficiently small § > 0,
ns > 0 and ¢,, > 0, we can illuminate v (lemma 2.41) using Zs,, ¢ U Js.5.c UK, U{Eea},

where

1—5777,4 = {(17577757Cn5)7 (17_5 7757C776) (_1 0, —7)5,—@75), (_1
\75»777C = {(—T}g,l,(s, _C%)? (7757 ) 5 Cna) (_7757_175» _C%)? (7767_1
IC(SJ%C = {(570717_775)7 (5707_17775)) (_57071)775)7 (_5707_17775)}-

5 _57 —Ns, _Cﬂé)}a
7_57 _4776)}7

Using any 6 > 0 and adjusting 15 and (,, to be sufficiently small, we can see that
Tsne U Tspe U Ky illuminates (£1,4£1,0,0), (0,£1,+£1,0) and (£1,0,+£1,0). If
|I¥| = 1, let’s look at the vertex of the form (u1, ug, ug, 0), where 0 < |uq], |us|, lug| < 1.
Assume |u;| = 1. Then with sufficiently small 75 and (,,, we can illuminate u with
Isne or Kspe. If |ug| < 1, then we can use Js, ¢ instead. We use similar methods to

construct the following table:

Type of Condition [luminating Condition [Nluminating
vertex set set
(u1, ug, us, 0) ua| <1 s ur| =1 Loy U Koy
(uy,us,0,u4) lug] < 1 Lsne lug| =1 {xeq}
(u1, 0, us, uq) lug| < 1 KsneU{teq} lug| =1 Ko
(0, ug, ug, uyg) lug| < 1 Tsm.c lug| =1 {xeq}

Table 16: Summary of method.

Suppose [ = 0 and uy < 1. Notice that any two directions from Zs, - U Js5.¢
have different sign in at least one of the first three corresponding entries. So for any
0 > 0, and ns > 0, we can find sufficiently small (,, > 0 so that u is illuminated by
Tsne U Tsye. Now suppose |ug| =1 and let 0 < uy, ug, ug, < 1. Using lemma 2.42 and

corollary 2.39, we construct the following table:
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Type of vertex luminating set
or direction
<u17 Uz, us, 1)7 <u17 —U2, U3, 1)7 Zé,n,(
(—Ul,—UQ,—U?,,—].), <—'LL1,'U,2,—'U/3,—].)
(uh —Ug, —U3, 1)7 <U’17 Uz, —U3, 1)7 kZS,'r],C
(—Ul,—UQ,Ug,l), (—Ul,UQ,Ug,]_)
(—Ul,UQ,—Ug,l), (—Ul,—UQ,—Ug, 1) (570717_7]5)
(_u17u27u37 1)7 (—Ul,—UQ,Ug,—l) (5707_17775)
(u17u27_u37_1)7 (Ul,—UQ,—Ug,—l) (_57 07177]5)
(u17u2)u37_1)7 (Ul,—UQ,Ug,—l) (_570)_17775)

Table 17: Application of corollary 2.39 and lemma 2.42.

Hence Zs,, ¢ U Js.nc U Ksy U {£eq} is an illuminating set in this case, thus Z(B) < 14.

Case 3: Now suppose (1,1,0,0),(0,1,1,0),(0,1,0,1) € B. Let u € ext B. Note that it
cannot be the case that [I§] = 3. Suppose |[§| = 2 and |I¥,]| < 1. If u € extB
and us = 1, then exactly one of uy, us, us has non zero absolute value. For example,
if u; was non zero, then |u;| < 1 as [I%,| < 1. But then (uy,1,0,0) ¢ extB as
(1,1,0,0) € extB. Thus, we can see that if |I§| = 2 and |I%;| < 1, then that it
cannot be the case that I, = {2}. Hence {£e; : i € [4]\{2}} is an illuminating set
for such vertices. With sufficiently small § > 0, 75 > 0 and (,, > 0, we can see that

Lsn U Tspc UKs,y ¢ is an illuminating set for such vertices, where

Iéﬂ? = {(177757 _57 0)7 (17 —776757 0)7 <_177}5757 O) (_1 —"Ns, _5 0)}
\75:777C = {(Cn5>77671>5)7 (—Cn57—7767175)7 (Cﬂgané)_ 5 ) ( C%? —MNs, — 6)}7
’C&ﬁ»C = {(Cﬂa’n& _5’ 1)7 (_<7757 s, _57 )7 (Cn(;ané) y ) ( CTI&’ 7757 ) 1)}

In this case we will also be using the directions

(17_7757_57 0) and (_177757_67 O)
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which gives us a total of 14 directions. Let’s take a look at the vertex (1,1,0,0). Let
0<0<1and0<ns <2, and take d = (—1, —ns, —0,0), then

(1,1,0,0) +d = (0, 1 — ns, —6, 0).

Note that |1 —ns] < 1, || < 1 and (0,1,1,0) € B. With lemma 2.42 in mind, we can
see that x + d € int B when looking in the affine set

{(&,62,8,8) eR* 1 & =0, & =0}

This calculation shows us that the sign of d3 = —9 does not matter for this sub-case, we
are only looking at the signs of d; = —1 and dy = —ns. We can see that (+1,+1,0,0)
is illuminated by Zs,. If we treat ¢,, = 0, we can illuminate vertices of the form
(0,£1,+£1,0) and (0,0,+1,£1) using Js,¢ and s, ¢, respectively. Then use lemma
2.41 to get a sufficiently small non zero (,, > 0 so that (0,%1,41,0) and (0,0, £1, £1)
are still illuminated by Js, ¢ and KCs, ¢ after applying perturbations.

Now suppose |[{| = 1. Let’s first take a look at a vertex of the form (0, us, us, u4),
where 0 < |ug], |ug|, |us| < 1. Note that any two directions from T, U ICs,, ¢ differ
in sign in at least one of their last three corresponding entries. With lemmas 2.42 and
2.41 in mind, look in the affine set

{(51752753?&1) € ]R4 . fl = O}

to see that Js, ¢ U Ks, ¢ illuminates u for any ¢ > 0, s > 0 and sufficiently small
Cé,n > 0.

Suppose u = (u1,0,ug, uy), where 0 < |uy|, |us|, |us| < 1. Either |uy] = 1 or
|ug] < 1. Suppose |uy| = 1, then by our initial assumptions, |u;| < 1. With lemma
2.42 in mind, look in the affine set

{(&1,&,8,8) €R* 1 &,=0, & = uq}

to see that (£1,0, £4, 0) illuminates uy for any § > 0. Thus for sufficiently small s > 0,
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Is, also illuminates w. If |ug| < 1, then we can use a similar argument to get that

Tsmc U Ks ¢ lluminates u for any § > 0 and sufficiently small 75 > 0 and ¢, > 0.

Now suppose u = (uy, ug,us,0), where 0 < |uq|, |ugl, Jus| < 1. If |ug| = 1, it
must be the case that |u;| < 1. Let’s look at the example u = (u,ug,1,0), where
w1, uz, > 0 (it is possible that us = 1). Let 0 < 6 < 1 —wuy, 0 < 15 < 1 and
d = (0,—ns, —1,—0), then

u+d= (u, ug — s, 0, =9).
Let’s compare u + d with

(1—-10)(1,1,0,0) +46(0,1,0,1) =(1-4,1,0,) € B
— (1-46,1,0, =) € B.

By the choice of ¢ and 75, we have uy < 1 — § and |us — 15| < 1. Now apply lemma
2.42 with the affine set

{(5175%53754) S R4 : 53 = O, 54 = —5}

to see that u + d € int B. Observe that the sign on dy = —0 does not matter here.
Now we can use lemma 2.41 to see that for sufficiently small ¢,, > 0, Js,, ¢ illuminates
vertices of the form (uy,ug,+1,0), where 0 < |u;| < 1 and 1 < |ug] < 1. Now assume
lug] < 1 and let’s look at the example u = (uy, ug, —us,0), where 0 < wy, ug,ug < 1.
Let0<d< % 0<pn<landd=(—1,-ns—6,0), then

u1

u+uyd = (0, ug — u1ns, —(us + uyd), 0).

By our choice of § and 75, |us — uins| < 1 and |ug + u1] < 1. Recall that (0,1,1,0) €
B. Now we can use lemma 2.42 and the affine set

{(51752753754) € R* : 51 =0, 54 = O}
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to see that u + u;d € int B. We choose this specific example for this calculation
to emphasize the fact that the sign on d3 = —¢ does not matter here. Hence we
can see that Zs, is an illuminating set for vertices of the form (uq,us,us3,0), where
1 <u|,|ug| <1 and 0 < |us| <1

Now we move onto the case u = (uy,ug,0,us), where 0 < |uy], Jus| Jus| < 1.
If |uy] = 1, we can use a similar argument to the previous case (u = (uq,uz,us,0)
and |ug| = 1) to get that K;, ¢ is an illuminating set for u for sufficiently small §,
ns and (,, > 0 (the signs of the entries which we care about here are dy = £n and
dy = £1). So suppose |uy| < 1 and let’s look at the example u = (uq,uz, 0, uy), where
0 < uy,uz,uq <1 (here we allow ug =1 or ug = 1). Let 0 < § < 1_6"4, 0<mns <1and
d=(-1,-75-4,0)

u+urd = (0, ug — u1ns, —u1d, uy).
Compare u + uyd with

w6(0,1,1,0) 4 (1 — u16)(0,1,0,1) =(0, 1, w18, 1 — us6) € B
- (O, 1, —ulé, 1-— Ulé) € B.

By the choice of ¢ and 7, |uy — u1n| < 1 and uy < 1 — uy0. Now we can apply lemma
2.42 and look in the affine set

{(€1,6,6,6) €R' 1 & =0, & = —uid}

to see that u 4+ uyd € int B. Again, the sign on d3 = —¢ is not important while the
signs on d; = —1 and dy — 75 are important. So we can see that Zs, is an illuminating

set in this case.

Finally, consider the when |[§| = 1. If |u;| < 1, recall that any two directions

from Js,, c U5, ¢ differ in sign in at least one of their last three corresponding entries.
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With lemmas 2.42 and 2.41 in mind, look in the affine set

{(&1,6,8,8) eR - & =ui}

to see that Js, ¢ U Ksy¢ illuminates u for any 6 > 0, n; > 0 and sufficiently small
G, > 0. If |uy| = 1, we know that |us| < 1. Apply lemma 2.39 to see that for any
0 >0,n5 >0 and (5, > 0, TsycUKsy illuminates precisely the vertices which satisfy

sign(uy) = sign(us). Use lemma 2.42 and the affine set

{(&1,&,8,8) eRY 1 & = wy}

to see that the following directions illuminate u which satisfy — sign(u;) = sign(us):

(17_7757570)7 (_177]57670)7 (17_7]57_570)7 (—177)57—570)7

€Ls €Ls,y
where 0 > 0 and n; > 0.

O

Proposition 7.7. Let B € U, and suppose ||le; + ¢;{|g = 1 for exactly four pairs of distinct
i,j € [4] and ||e, + e + et||g > 1 for every triple of distinct 7, s,¢ € [4]. Then Z(B) < 16.

Proof. First we will construct B with specific vertices which is a representative family of

examples of this case. Notice it must be the case that there exists vertices z,y € ext B so
that |I%,| = [I{,| = 2 and I3, N IY, = @. Let’s take a look at the example,

S :=1{(1,1,0,0), (1,0,1,0), (1,0,0,1)} C B.

Let z € S, then 1 € I3,. Notice if we want to add another vertex y so that I¥, # I, for

every z € S, then it must be case that I, NI{, = & for at least one x € S. There is nothing

special about the choice we made, that is: all three elements of S satisfy 1 € I7,. Hence

we can see that it must be the case that if ||e; + e[|z = 1 for exactly four pairs of distinct
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i,j € [4], then there must exist z,y € B so that I{, N I, = @. WLOG assume
z e {(£1,£1,0,0)} c B, g€ {(0,0,£1,£1)} C B.
Since 12, U I, = [4], if we want to add another vertex Z to B so that
Ii # 1 # T,

it must be the case that IZ, € {{1,3},{2,3},{1,4},{2,4}}. Notice that IZ, I, and
{{1,3},{2,3},{1,4},{2,4}} are all invariant under combinations of the coordinate trans-
positions (12) and (34). Hence WLOG, we can assume that in addition to Z,y € B,

7 € {(0,%1,%1,0)} C B.

Case 1: {£1,0,0,£1} C B. Let u € B. First notice that |I{{| # 3. Suppose |[}| = 2.
Notice that if |I{;| = 2, then by lemma 2.42 we can use the following set to illuminate

{(#£1,46,0,0)} U {(£5,0,0,+1)} U {(0,0, %1, +6)} U {(0, £6, £1,0)},

where 0 > 0. If |Ii1‘ < 2, then for sufficiently small ¢ > 0, we can still use the above
directions to illuminate u (lemma 2.45). Suppose |I}/| = 1, let’s take a look at the case

u = (u1,ug,ug,0), where 0 < |uq|, |ug|, |us| < 1.

If |up] < 1, with lemma 2.42 in mind, we can use {(0,44, +1,0)} to illuminate
w. If |ug| = 1, then by assumption, it must be the case that |us| < 1. In this case,
we can use {(+1,4£6,0,0)} to illuminate u. Using this method we can construct the

following table:
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Type of Condition [Mluminating Condition [Mluminating
vertex directions directions
(21, x2,x3,0) |z < 1 (0, %06, £1,0) lz1] =1 (£1,46,0,0)
(21, 22,0, 24) lz4] < 1 (£1,46,0,0) lz4] =1 (£0,0,0,+1)
(21,0, x3,24) lz| < 1 (0,0,+1, £9) |z1| =1 (£0,0,0,£1)
(0, 29, x3, T4) lz4| < 1 (0,+4,+1,0) |z4] =1 (0,0,+1, £9)

Table 18: Summary of method.

Suppose |If| = 0. Suppose |u;| = max;cp|us|. By assumption, this implies either
lug|, Jug| < 1 or |ug|, |us| < 1. In the first case, we can use lemma 2.42 and look in the

affine set

{(€1,62,63,81) €RY 1 & =y, & = wq}

to see that (£1,46,0,0) illuminates w. Similarly in the latter case, we can use
(£6,0,0,41). This is one method to illuminate vertices which satisfy |[j| = 0. A
second method would be to perturb the current directions we have so that any two of
them have at least one entry with opposite signs. Then this new set of directions will
illuminate all such u. So Z(B) < 16 in this case.

Case 2: Suppose {(£1,0,+1,0)} C B. If instead {(0,£1,0,£1)} C B, apply the coordi-
nate permutation (14)(23) to see that this is the same as assuming {(£1,0,£1,0)} C
B. Let w € B. Again it cannot be the case that || = 3. By lemmas 2.45 and
2.41, we can see that if |[/| = 2, and 6 > 0 and 7; > 0 are sufficiently small, then
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Lsy U TsnUKsyUHs illuminates u, where

Ts, = {(1,0,-15,0), (—1,68,7s,0),

—(1,6,—15,0), —(=1,0,75,0)},
T =1{(5,1,6,0), (—ns,—1,6,0),

— (75:1,6,0) — (=5, —1,6,0)},
Ksy = 1{(5,—ns,—1,0), (9,-1s,1,0),

— (0, =5, —1,0), —(d, —ns, —1,0)},
Hs :={(0,0,40, £1)}.

We can also see that for sufficiently small ns, Zs,, U Js,, U K5, U Hs also illuminates
(£1,%+1,0,0), (+1,0,41,0), (0,£1,41,0) and (0,0, +1, +1).

Now suppose |I¥| = 1. Let’s look at the case when u = (uy,ug,us,0), where
0 < |ugl|,|uz|, lug| < 1. If Juy| < 1, then by lemma 2.42, look in the affine set

{(&1,6,63,6) €RY & =uy, & =0}

to see that {(0, £1,+6,0)} illuminates . By lemma 2.41, with sufficiently small n, J;,,
illuminates w. Similarly, if |us| < 1 or |us| < 1, then we can illuminate u using /Cs,, or

Tsy, respectively. We can use similar reasoning to construct the following table:

Type of Condition [Nluminating Condition [Nluminating
vertex set set
(ZL‘],ZBQ,O,I‘4) |[L‘4| <1 I‘Sﬂi |l‘4| =1 7‘[5
(21,0, 23, 24) lzy] < 1 s |zy] =1 Hs
(0, 22, 73, 74) 24| < 1 Tsm |[zo| =1 Hs
Table 19: Summary of method.
If I = 0 and |ugq| < 1, then Z;, U Js, is an illuminating set as any two
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directions from this set have opposite signs in one of their first three corresponding
entries (lemma 2.42). If |uy| = 1, then by assumption, 0 < |u], Jus| < 1. With lemma
2.42 in mind, look in the affine set

{(61,6,83,&) € R*: &1 =11, & = us}

to see that #; illuminates w. In this case Z(B) < 16.

Remark 7.8. Consider the product of the following invertible matrices

100 O % —% 0 0 T T1 — T
010 0 503 00 [z] 1|ai4m
00 % =10 o 1o as]| 2|as—u
00 % % 0 0 01 T4 T3+ 14

Notice that if 21, xq, 23,24 € {—1, 1} then exactly two of
%(161 — T3), %(1’1 + T3), %(373 — T4), %(353 + 14)

are 0, and the other two are either 1 or —1. Thus,

1 00 0 5 —3 00
010 0 11 99
L1 22 ext O}
0031 -21]0 0 10
00 35 3 0 0 01

= {(£1,0,+1,0), (0,%1,0,+1), (£1,0,0,41), (0,£1,+1,0)}

Notice that if we apply the coordinate transposition (2 3) to the above set of vectors, we can
see that if

ext B = {(+1,0,41,0), (0,£1,0,=+1), (£1,0,0,+1), (0, %1, +1,0)},
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then this case is covered in case 1 of lemma 7.7. Therefore, in order to show that Z(B) < 16
in the context of lemma 7.7, the analysis of case 1 requires some extra special assumptions.

Alternatively, notice that

{(£1,0,41,0), (0,41,0,41), (£1,0,0,£1), (0,£1,+1,0)}
= {(£1,0), (0,£1)} x {(£1,0), (0,41)}
= COP? x CP}.

Since the cross-polytope is a rotated cube in dimension 2, the cartesian product of two 2-D

cross-polytopes is a 4-D cube.

Proposition 7.9. Let B € Z/{;1 which is not an affine image of the cube and suppose
lle; +ejllg = 1 for exactly five pairs of distinct 4,7 € [4] and |le, + es + e|[g > 1 for ev-
ery triple r, s,t € [4]. Then Z(B) < 14.

Proof. WLOG suppose that (1,1,0,0) ¢ B. Let x € ext B. First note that it cannot be the
case that |I¥| = 3. In this setting, the following set illuminates B:

{(6,0,=4,1), (—=1,0,=6,0), (=d,ns,1,9),
—(0,0,-9,1), —(—=1,0,-4,9) — (=9,ns,1,0),
(s, —0,6,1), (0,—1,8,—6), (0,68,1,—6),

— (s, —6,0,1), —(0,—1,5,—6), —(0,8,1,—5),

(1,1,1,1), —(1,1,1,1)}

Case 1: |[J| =2. Let 0 < 6 < 1, observe that
(0,1,1,0) € B = (0,1,0,1) + (0, =3, 3, —1) = (0, 1 — &, —4, 0) € int B.

Using this method, we create the following table:
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Type of vertex Muminating set
(0,£1,0,+£1) {(0,-4,6,1), (0,—1,9,-9),
—(0,-9,9,1), —(0,-1,0,—0)}
(0,£1,+1,0) {(0,0,1,—9), (0,—1,6,—0),
—(0,4,1,—0), —(0,-1,6,—0)}
(£1,0,+1,0) {(=6,0,1,9), —(—0,0,1,0),
(—1,0,-46,0), —(=1,0,-6,0)}
(+£1,0,0,+£1) {(6,0,-6,1), (—=1,0,—-9,9),
—(6,0,—0,1), —(—1,0,-6,0)}
(0,0, £1,+£1) {(0,—4d,0,1), (0,9,1,—0),
—(0,-4,4,1), —(0,4,1,-0)}

Table 20: Summary of method.

For vertices of the form x = (z1,25,0,0), where 0 < |21/, |z2] < 1, it must be

the case that [I1,| < 1, hence {+e;, +e,} is an illuminating set for such vertices. By

lemma 2.41, we can use the following set instead:

{(=1,0,-6,8), —(=1,0,—6,3), (0,—1,8,—3), —(0,—1.8,—d)}.

Case 2: |I}| = 1.

Suppose 0 < 3, < 1, 0 < z1,73 < 1 and x = (x1, 29, —73,0).

0<d< Ii_;l’ and d = (—0,0,1,6), then

x + |:E3| d= (331 — |I‘3| 5, x2, 0, |5173|5)-

Consider the convex combination

(1 - |$3| 5)1‘ + |$3| 5(07 L0, 1)

= (21 — 21 |w3| 0, 22(1 — |z3|6) + |23] 0, (1 — |23]| )3, 23] 0) € B
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Comparing the entries of the above vector with x + |x3| d,

x1 — X1 |2g| 6 >z — |xs| o

T —5132|$3|(5+ |.7}3|5 > To

IL']Sl

Z‘2<]..

And thus,
(iEl — |£L'3| 5, J?Q(l — |£E3| 6) + |l’3| 5, 0, |I’3| 5) € B.

Since (1,0,0,1) € B, we can see that (x; — |x3]d, 0, 0, |z3|J) € int B. Hence, look in
the affine set

{(5175275&54) € R4 : 51 =T — |xd| 5) 53 = 0) 54 = |IL'3| 5}

to see that d illuminates x. With similar reasoning, we can construct the following
table:

Type of Condition [luminating set Condition [Nluminating set
vertex
(!171,332,233,0) |ZI}2| <1 {:I:(—5,0,1,5), |!172| =1 {:t(0,5,1,—5),
+(—1,0,-9,6)} +(0,—1,0,—9)}
(ZL‘],ZL‘Q,O,I‘4) |£L‘2| <1 {:E((S,O, —5,1), |l‘2| =1 {:I:(O, —5, 5,1),
+(—1,0,-6,0)} +(0,—1,9,—6)}

Table 21: Summary of method.

If v = (21,0, 23, 24), where 0 < |xq], |23, |z4] < 1. With the exception of the case

sign(x1) = sign(x3) = sign(z4), we can use lemma 2.42 to illuminate x using the set

{(5,0,—4,1), (=1,0,-4,5), (—5,0,1,8),
—(5,0,—8,1), —(=1,0,-4,5), —(—3,0,1,8)}.

Similarly, if z = (0, 22, 3, x4), where 0 < |z3], |z3], |x4] < 1, with the exception of the
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case sign(zy) = sign(z3) = sign(xy), we can illuminate = using

(0,-4,6,1), (0,—1,6,—0), (0,6,1,—9),
—(0,-6,0,1), —(0,—-1,9,—6), —(0,0,1,—0).

Suppose x = (1,0, x3,74) and z1, 23,24 > 0. If 24 < 1, let 0 < 0 < 1 — x4 and
d=(-1,0,-9,9), then

(0,0,1,1) e B = z+ |z1|(-1,0,—0,9) = (0,0,23 — §, 24 + J) € int B.

With this method, we create the following table:

Condition | Illuminating Condition | Illuminating Condition | Illuminating
directions directions directions

lza) <1 | £(=1,0,-6,8)| |os| <1 | £(6,0,—6,1) || |o| <1 | +(=6,0,1,6)
lza) <1 | £(0,6,1,-8) || |as| <1 | £(0,—1,8,—08)| |wa| <1 | £(0,—6,6,1)

Row 1 and 2 are for vertices of the form (x1,0, 3, z4) and (0, x2, 3, x4), respectively.

Table 22: Summary of method.

Case 3: |[J| = 0. Recall we assumed that (1,1,0,0) ¢ B. Since B € Z/I;‘, if v € ext B and
|z1| = 1, then |xo| < 1. Similarly, if |z9| = 1, then |z;| < 1. Let’s assume |zo| < 1.
With lemma 2.42 in mind, we can see that the following directions illuminate = unless

sign(zy) = sign(zs) = sign(zy):

(6,0,—6,1), (—1,0,—5,5), (=5,0,1,5),
_(5707 _671)7 _(_1707 _576)7 _(_6707176)

Let 1, 9, x5, 24 > 0, let’s take a look at the vertex = = (1, —x2, 23, 74). In this case,
consider d = (—ns, 0, —0, —1), where § > 0 and 7y > 0 are sufficiently small so that all
the vertices illuminated by (0,4, —d, —1) are also illuminated by d. Similarly, we can

illuminate (—z1, zg, —x3, —24) using —d. All that remains are the vertices of the form
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(21, 22, x3,24) and —(xq, T2, 3, 24); for these we will use £(1,1,1,1). If |x1| < 1, using

the same reasoning from above,

(0,-4,6,1), (0,—1,6,—0), (0,6,1,—=9),
—(0,-46,0,1), —(0,—1,9,—4), —(0,9,1,—0)

illuminates = unless sign(zy) = sign(zs) = sign(xy). We will use +(—4,7s,1,9) to
illuminate z, where sign(x1) = — sign(zy) and £(1, 1, 1, 1) for when sign(z;) = sign(zs).
Overall we have used the 14 directions at the beginning of the proof to illuminate B. O

Lemma 7.10. Let B € U", suppose (3,...,3) € intB. Then we can illuminate B by
{-=1,1}™
Proof. Let x € B. Consider

1 n
T+ 3 ;(— sign(z;)e;),

where we choose to set sign(z;) = 1 if x; = 0 (and as we will now see, any other choice for

these coordinates of = would work here). For i € [n], |2; — sign(z;)3| = ||3c7 — 1 <3 So

the point above lies in C7 = conv({—%, % ") C int B (convex combination of interior points
2

is an interior point). O

Corollary 7.11. Let B € U*, and suppose {e;, +e¢;, : 4,7 € [4], i # j} C B and ext B\{e; +
ej 1,7 € [4], i # j} # @. Then we can illuminate B by {—1,1}*.

Proof. By the hypothesis of the corollary, C{ N CP} C B, so by the proof of lemma 5.9, we

can see that (%, %, %, %) € int B. Then apply lemma 7.10 to get the result. O

Proposition 7.12. Let B € U, and suppose ||e; + €;]|g = 1 for every pair of distinct
i,j € [4]. Then Z(B) < 16.

Proof. By the hypothesis of the proposition,
{ei+e;:i,5€4], i#j} CIB.
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We distinguish two cases. If the only extreme points of B are in {e;+€; : 4,5 € [4], ¢ # j}, and
thus each of the points in this set is an extreme point of B, then we know from lemmas 5.4 and
5.3 that B = C! N CPy and that Z(B) < 8. If there is x € ext B\{e; +¢; : 4,5 € [4], i # j},
then corollary 7.11 gives us that B can be illuminated by {—1,1}*, and thus Z(B) < 16. O

Lemma 7.13. Let B e Y". If (1,...,1,2,,) € B and |z,,| > 0, then (3,...,3) € int B,
Proof. Suppose = (1,...,1,xz,) € ext B, where 0 < |z,| < 1. We know that

1 1 z,+1

2(1,..1,2,) + £(0,...,0,1) = (5, o e

)EB (1.1 eB.

Notice that (3,...,3,0) € intB as (1,...,1,0) € B. Then (
1,0) and (3, ..., 3, 25, Thus (2,

1 27

1) lies in the line segment

1
with end points (3, ;) € int B. O
Proposition 7.14. Let B € U}, and suppose |le, + €5 + e;[|g = 1 for some distinct r, s, €
[4]. Then Z(B) < 16.

Proof. Let v € ext B. If u ¢ {r,s,t} and u € I§, then x = e, + e5 + €;.

Case 1: Suppose (1,1,1,2,) € B and |z,| > 0. This is an application of lemmas 7.13 and

7.10 in dimension 4.

Case 2: Suppose (1,1,1,0) € extB and |le, + €5+ ¢|g > 1 for any indices {r,s,t} #
{1,2,3}. Let z € ext B and suppose |z4| = max;cy |7;|. Additionally, suppose |z1| =

max;cpg |7;|. Let 0 < d < min(ﬂff', 1|I|“‘|3|, 1), and
d = (—sign(z)d, — sign(xy)d, — sign(x1)d, — sign(zy)).
Consider

x+d=(—sign(z)||z1| — |, zo — sign(zy)d, x3 — sign(z)d, 0).

Since ||e;, + €;, +eyllg > 1 for any indices {i1,i2,43} # {1,2,3}, we know that
|za|, |x3| < 1. By the choice of §, we know that

||1] = sign(z1)d], |y — sign(z1)d], |25 — sign(x1)d] < 1.
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With lemma 2.42 in mind, compare = + d to (1,1, 1,0) while looking at the affine set

{(&1,6,85,64) € R* 1 &4 = 0}

We can deduce that x + d € int B. Thus d illuminates . An anologous proof shows
that d illuminates x if |z1| = max;cfs) |2;] or |x2] = max;e |o;|. Thus far, we only

require the following four directions:

(57 57 57 1)7 (_57 _57 _57 1)7 (57 57 57 _1)7 (_57 _57 _57 _1)

Suppose |x4] < maxcp |@;|. If |I§] € {2,3}, then we can apply lemma 2.45 to see
that {£e; : ¢ € [4]} is an illuminating set for such vertices. The only vertices left to

illuminate are in the form of

(331,.172,0,5['4), (331,0,1'3,.1‘4), (0,$2,$3,3§4), ($1,$2,$3,$4),

where 0 < |xy|, |22, |zs] < 1 and |x4] < 1. Let’s take a look at vertices of the form

x = (x1,22,0,24). With lemma 2.42 in mind, look in the affine set
{(6,6,6,84) €R 1 & =0, & =24},
we can see that x is illuminated by
(—sign(zy), —sign(z2)d,0,0) or (—sign(zy)d, — sign(zz),0,0)

for any 0 > 0. By lemma 2.41, with sufficiently small ns > 0, we can illuminate x using

the following set:

I5,77 = {<]‘7577]5)0)7 _(175777570)7 (57_]-777570)7 _(5)_1)77570),
(_7757]-7570)7 _(_n5717570)7 (775757_170)) _(,’75757_170)}'

For analogous reasons, vertices of the form (0, xs,x3,24) can also be illuminated by

124



Zs,. It should be noted that there are no two directions in Zs, which share signs in
every non zero entry. Thus we can illuminate any vertex of the form (z1, z9, 23, 24) by

looking in the affine set

{(61,6,8,&) € R*: §4 = 4}

and applying lemma 2.42. The last type of vertex left is in the form of (x1,0, x5, x4).
If sign(z1) = sign(x3), let d = (— sign(z1)d, — sign(xq)d, — sign(z)d, — sign(xy)), then

x — |z4]d

= (—sign(zy) |z1 — |x4| 6|, —sign(xy) |z4| d, —sign(zy) |25 — |24] 6], 0) € int B

for sufficiently small 6 > 0 as (1,1,1,0) € B. To illuminate the remaining vertices of

the form (x1,0, x3,x4), we only need
{(1,0,-1,0), (=1,0,1,0)},

as |z4] < 1. Recall we need small 6 > 0 and ns > 0 so that Zs, can still illuminate the
vertices which satisfy [I7] € {2,3}. For sufficiently small § > 0 and ns > 0, we can see
that

L, U{(1,0,-1,0), (=1,0,1,0)} U {(c16,c10,¢16,¢0) € R* | e1,¢0 € {—1,1}}

is an illuminating set for B, and it has only 14 directions.

Case 3: Suppose (1,1,1,0) € extB and |le, +es+ €] = 1 for some indices {r,s,t} #
{1,2,3}. WLOG, suppose (0,1,1,1) € B as it will always be the case that 4 €
{i1,12,13}. Let x € ext B. First, consider the case x = (xy, x9, z3,24), where |x1| =

|z4] = 1 and |xo], |z3| < 1. Observe
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Notice tha,t (3,3, 3. 3) lies in the line segment between (0, 3, 5,1) and (1,3,3,3) € B.

129999
Thus (3 is an interior point and lemma 7.10 gives the result.

3 30203)
Suppose that we do not have a vertex in B in the form of y = (y1,y2, Y3, v4),
where |ya|, lyz| < 1 and |y;| = |ys] = 1. Let x € ext B. The only type of vertex which
can possibly satisty [[J| € {2,3} is (21,0,0,24), where 0 < min(|z1|,|z4]) < 1. We
know that {+e;, £e4} is an illuminating set for such vertices (lemma 2.45). By lemma
2.41, we can see that for sufficiently small § > 0 and ns > 0, Z;,, U Js,, illuminates x,

where

Loy = {(1,6,n5,0), —(1,6,15,0), (6, —1,n5,0), —(3,—1,7s,0),
(=15,1,6,0), —(=ns,1,0,0), (ns,6,—1,0), —(ns,0,—1,0)},
={(0,1,75,6), —(0,1,m5,6), (0,—1,—m5,6), —(0,—1,—ns,9),
(0,-ns,6,1), —(0,—ns,0,1), (0,—ns,6,—1), —(0, —ns, 6, —1)}.

The only vertices which can possibly satisfy |IZ| = 1 are (x1,x2,0,24) and
(21,0, 23, 24), where 0 < min(|z4|, |x4]) < 1. First consider = (x1, z9,0,z4). Suppose
|z4] > |x1|; this means |z1] < 1. With lemma 2.42 in mind, look at the affine set
defined by

{(61,6,86.&) e R* 1 & =21}
to see that z is illuminated by
(0, —sign(x), 0, —sign(z4)d) or (0, —sign(xs)d, 0, — sign(xy))
for any 6 > 0. Similarly, If |z4| < |z;|, then « is illuminated by
(—sign(zy), —sign(x2)0,0,0) or (—sign(x)d, —sign(z,),0,0).

We can apply lemma 2.41 to see that there exist sufficiently small ns; > 0 so that

Zs, U Js, illuminates .
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All that’s left are (+1,£1,+1,0), (0,41, £1,4+1) and (xy, 22, 23, x4), where 0 <
|1, |22, 23], |z4] < 1. (£1,£1,£1,0) can be illuminated by Z;,, as any two directions
from this set have different sign in at least one of their first three corresponding entries.
Similarly (0,£1,+1,+£1) can be illuminated by Js,,.

Assume finally |/J| = 0. Recall, it cannot be the case that |x;| = |x4] = 1. If

21| < |x4|, we can use Js,, to illuminate . We can see this by looking in the affine set
g Y g

{(61,&,&,8) € R* 1 & = 1}

Similarly, if |z1| > |24], we can illuminate = by Zs,,.

Theorem 7.15. Let B € U, then Z(B) < 16.

Proof. 1f ||e, +es +elg > 1 for every r,s,t € [4], then by propositions 7.1, 7.4, 7.5, 7.6,
7.7,7.9 and 7.12, we can see that Z(B) < 16. If ||e, + e; + €;||g = 1 for some 7, s,t € [4], we

can use proposition 7.14. D
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8 Remarks About the Method

Let B € U", x € 0B. The first step to the method we are using to construct the illuminating
sets to look at the entries of x which have maximum value, and those entries which take on
the value 0 and determine if any vertices of B can take on this form. We try to illuminate
as many potential vertices as possible using only {£e; : i € [n]}. Usually, it is the vertices
which satisfy |I§| = 1 which are the most tedious to illuminate. In these cases, we use lemma
2.42 and we have to identify a coordinate projection of x that is in the interior of B and
then choose signs for a direction d such that x + ed will satisfy the hypothesis of lemma 2.42
(for some € > 0). Usually to check the latter, we evaluate x + ed and compare it with some
desirable convex combination in B. The desirable convex combination is determined by the
entries of  + ed and it can be constructed by using z or whatever vertices are assumed to
already be in B based on whether B satisfies ||e; + ¢;||g = 1 for specific pairs of 7,5 € [n].
Moreover, for any d here which can also be viewed as small perturbations of +e;, i € [n],
we choose specific perturbations (by also employing lemma 2.41) so that d will illuminate a
maximal number of vertices.

The upside to this method is that we are able to reduce this geometric problem into
a combinatorial problem using only basic topology. Also, using this method, we are able to
avoid the issue of determining the signs of n € v(B, z) which may cause problems as seen in
section 4.

There are also a few downsides, that is, when using lemma 2.41, we implicitly force
B to be a polytope. This is because we need to “minimize” /optimize over all the permissible
perturbations so that all the extremal points of our convex body can be illuminated, but
at the same time, we cannot allow the perturbations to essentially have more zero entries
than before, since it’s usually the combinations of signs on the entries of a perturbation that
allow us to use lemma 2.42. Therefore, to generalize our results to non-polytopal/piecewise
smooth convex bodies would most probably not be a trivial task.

However, in the case of 1-symmetric convex bodies, a previous version of this thesis
focused primarily on results for polytopes from this class using the set Z"(4) from proposition
5.13. These results were essentially the polytope analogue of Theorem 5.18 and corollary 5.20.

The § in those results was found through the use of lemma 2.41, and this was restricting us
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from generalizing from 1-Symmetric polytopes to general 1-symmetric bodies. Prof. Vritsiou
was able to use the same type of sets to get Theorem 5.18 and corollary 5.20, but avoided the
use of lemma 2.41, which would impose a dependence of § on each vertex. Thus in the end it
was possible to choose 9, which depended only on the 1-symmetric convex body instead. A
good place to continue is to try to see if we can avoid using 2.41 and still illuminate convex
bodies using the same sets in our 1-unconditional polytope results.

Another major limitation of our method is the amount of cases that we have to
consider. As one can see, in dimension 4, we are already dealing with many cases. We
personally did not feel it was reasonable to attempt this method in dimension 5 without
some sort of adaptations. If one would want to extend this method into higher dimensions,
we recommend using matrices with rotation blocks to reduce some cases to other cases. In
fact, we suspect that in dimension 4, we are able to simplify many of our cases using the

following isomorphism:

100 0 5 —2 00
010 O 1 3 00
004+ —2[]JO 0 10
00 35 3 0 0 01

Finally, notice that almost every direction we picked is a small perturbation of +e; for
i € [n]. Even the directions which are not small perturbation of +e; for i € [n] can be replaced
by these directions. Because of this, we hypothesize that we can apply a linear transformation
onto the directions we used to illuminate any convex polytope which is inscribed in the
cube. Since this problem is invariant under affine transformations, showing the previous

claim would give the result for any convex polytope in dimensions 3 and 4.
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