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Abstract

Policy gradient methods typically estimate both explicit policy and value func-

tions. The long-extant view of policy gradient methods as approximate policy

iteration—alternating between policy evaluation and policy improvement by

greedification—is a helpful framework to elucidate algorithmic choices. Effective

policy evaluation under function approximation is being actively investigated;

approximate greedification, however, has yet to be systematically explored. In

this work, we highlight and investigate the difference between the forward and

reverse KL divergences when used for policy improvement. We show that the

reverse KL has stronger theoretical guarantees for policy improvement, but that

the forward KL can also induce improvement under additional assumptions.

Finally, on both small-scale and large-scale experiments, we empirically analyze

the behaviour and practical performance of these variants. We observe few

consistent differences between the reverse and forward KLs on discrete-action

spaces, but relatively more substantial stability and convergence differences

emerge on continuous-action spaces.
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How should we like it were stars to burn

With a passion for us we could not return?

If equal affection cannot be,

Let the more loving one be me.

– “The More Loving One”, W.H. Auden

Why?

– Michael Peters
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Chapter 1

Introduction

A central issue in artificial intelligence (AI) research is the development of agents

that can learn or improve themselves based upon interaction with the world.

Just as humans can learn without explicit supervision, we desire artificial agents

that can discover knowledge about the world through independent exploration

and inquiry. After all, if we want AI systems to help us solve problems that

we might not be able to solve, how much help would those agents be if they

needed explicit human supervision all the time?

Much recent attention has focused on the design of agents that can learn

without explicit supervision, perhaps best typified by the field of reinforcement

learning (RL). In reinforcement learning, researchers try to develop agents

that can learn to improve their own performance over time, according to a

quantity called a reward function that is (usually) specified.The reward function

encapsulates a desired goal of the designer: for example, a reward function

may return 1 if an agent reaches the end of an obstacle course, and return 0

otherwise. Maximizing the rewards received is taken to be a proxy for achieving

the goal. Such a view is not uncontroversial, but is useful in permitting the

application of mathematical tools to the RL problem.

A RL agent observes the world, taking actions that subsequently change

the world and (hopefully) bring about the desired goal by maximizing reward.

A compact way of summarizing what actions an RL agent might take is known

as a policy, which provides possible actions for each possible state of the world.

A policy may itself be represented by a collection of parameters (i.e., some
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numbers, like the parameters of a neural network), which collectively determine

what actions an agent may take in each state. The aim of RL is therefore to

develop agents that improve their own policies so as to achieve goals.

In service of this aim, one area of inquiry in reinforcement learning is policy

optimization, where analogies are drawn between policy improvement and the

mathematical field of optimization. In optimization, one is typically interested

in maximizing (or minimizing) a certain quantity called an objective function.

Much work in optimization can trace its roots to the 20th century,1 where

the demands of war and command economies necessitated the development

of mathematical techniques that told you how to get the best “bang for the

buck”, so to speak. The fit between RL and optimization seems natural given

the proxy definition of goals as rewards.

More technically, policy optimization involves explicit, parameterized poli-

cies that are modified to maximize an objective function, commonly taken to

be a sum of rewards. A policy that maximizes the objective function is known

as an optimal policy. The most popular methods are policy gradient (PG)

methods, which iteratively update the policy parameters using the gradient of

either the discounted return or the average reward, given by the policy gradient

theorem (Sutton et al., 2000). Although not a recent invention, with early

work introducing actor-critic (Konda and Tsitsiklis, 2000; Sutton, 1984), PG

methods have recently seen a surge of renewed interest given their ease of

application in high-dimensional, continuous action spaces when combined with

neural networks (Mnih et al., 2016; Schulman et al., 2016; Wang et al., 2017).

Recent developments include learning deterministic polices (Lillicrap et al.,

2016; Silver et al., 2014), trust-regions (Schulman et al., 2015; Schulman et al.,

2017b), continuous-action extensions of Q-learning (Haarnoja et al., 2017; Lim

et al., 2018; Ryu et al., 2020), probabilistic approaches (Abdolmaleki et al.,

2018; Fellows et al., 2019), and entropy regularization (Haarnoja et al., 2017;

Haarnoja et al., 2018; Levine, 2018; Rawlik et al., 2013; Ziebart, 2010; Ziebart

et al., 2008).
1Even earlier origins exist as well, as typified in the works of Fermat, Lagrange, Newton,

Cauchy, and Gauss.
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Theoretical and empirical work into PG is growing. Theoretically, CPI

(Kakade and Langford, 2002) is an early example of theoretical insights into

obtaining guaranteed policy improvement with PG . More recently, Agarwal

et al. (2019a) derive finite-sample and approximation bounds for a variety of

PG methods; Mei et al. (2020) show that, with a softmax policy parameteriza-

tion, entropy-regularized PG converges faster than unregularized PG; Liu et al.

(2019), Neu et al. (2017), and Shani et al. (2019) reformulate TRPO as mirror

descent and prove convergence; Ahmed et al. (2019) show that entropy regu-

larization may lead to smoother optimization landscapes; and Bhandari and

Russo (2019)2 show global optimality of local minima under certain restrictions

on the MDP.

Empirically, recent investigations have both unveiled some of the short-

comings and increased our understanding of current PG methods. Many

implementations of PG in practice use an incorrect, simplified gradient (Imani

et al., 2018; Nota and Thomas, 2020; Thomas, 2014). Somewhat unfortunately,

the apparent superiority of some more modern PG methods seem to be due

to code-level optimizations rather than algorithmic advances (Engstrom et al.,

2019; Ilyas et al., 2020). In the context of entropy-regularized PG, (Ahmed

et al., 2019) suggest that entropy-regularized PG methods have smoother

optimization landscapes than non-regularized methods.

One way to provide clarity in the analysis of PG methods is to revisit the

insight that many PG methods can be seen as approximate policy iteration

(API). To find an optimal policy, API methods (Bertsekas, 2011; Scherrer,

2014) interleave approximate policy evaluation—understanding how a pol-

icy is currently performing with a value function—and (approximate) policy

improvement–making the current policy better based on policy-evaluation in-

formation. The policy improvement step is sometimes called the greedification

step, which refers to the fact that in exact PI, the subsequent policy is set to

be the greedy action at each state (i.e., the action that maximizes the current
2We note that the results in Bhandari and Russo (2019) bear a striking resemblance to

earlier results in Scherrer and Geist (2014). In particular, both works rely on convex policy
classes and a closure of the policy class under greedification.
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action-value function).

The connection between PG and Approximate PI arises because the efficient

implementation of PG methods often requires the estimation of a value function.

One could estimate the PG purely through Monte Carlo samples, just as

REINFORCE (Williams, 1992) does, but it is less wasteful to use data to

inform future estimates of the gradient. In particular, with environment data,

one is able to estimate the action-value function with temporal-difference

methods (Sutton and Barto, 2018). Numerous papers have linked PG methods

to policy iteration (Bhandari and Russo, 2019; Kakade and Langford, 2002;

Perkins and Pendrith, 2002; Perkins and Precup, 2003; Scherrer and Geist,

2014; Sutton et al., 2000; Wagner, 2011; Wagner, 2013), including recent work

connecting maximum-entropy PG and value-based methods (Nachum et al.,

2017b; Nachum et al., 2019; O’Donoghue et al., 2017; Schulman et al., 2017a).

Viewing one gradient step (PG) as a policy greedification step (API) suggests

that one way to understand PG methods is to understand their greedification

steps; in particular, after greedifying, what is the quality of the resulting policy?

For tabular policies, policy greedification is straightforward: at each state, we

set the policy to place unit mass on the greedy action (or mass spread arbitrarily

around the greedy actions), with zero mass on non-greedy actions. If a new

policy is greedy with respect to the action-value function of an old policy, the

classical policy improvement theorem (Sutton and Barto, 2018) guarantees that

the new policy is at least as good as the old policy. For parameterized policies

(e.g., neural-network policies), however, exact greedification in ecah state is

rarely possible as not all policies will be representable by a given function

approximator class.

To define an approximate greedification scheme, one can minimize the KL

divergence of the current policy to a Boltzmann distribution over the action

values (Wagner, 2011). The use of a Boltzmann distribution is common in

pseudo-likelihood methods (Kober and Peters, 2009; Levine, 2018; Neumann et

al., 2011), ensuring that one has a target distribution based on the action-values.

The KL divergence is a convenient choice because stochastically estimating the

objective only requires the ability to sample from the distributions and evaluate
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the values of the distributions at single points. It is unclear, however, whether

to use the reverse or the forward KL divergence. That is, should the policy

π be the first argument of the KL divergence, or should it be the Boltzmann

distribution over the action values? For example, Neumann et al. (2011) argues

in favour of the reverse KL divergence as such a resulting policy would be

cost-averse, while Norouzi et al. (2016) uses the forward KL divergence to

induce a policy that is more exploratory (i.e., has a more diverse state visitation

distribution).

The policy update for many PG methods can be seen as optimizing a reverse

KL, though some work has employed the forward KL (Agarwal et al., 2019b;

Nachum et al., 2017a; Norouzi et al., 2016; Vieillard et al., 2020), including

implicitly some of the work in classification for RL (Farahmand et al., 2015;

Lagoudakis and Parr, 2003; Lazaric et al., 2010). Despite the fact that both

have been used, there is no comprehensive investigation into the differences

between these two choices for approximate greedification; the typical default is

the reverse KL. The reverse KL without entropy regularization corresponds

to a standard actor-critic update and is easy to compute. More recently, it

was shown that the reverse KL guarantees policy improvement when the KL

can be minimized separately for each state (Haarnoja et al., 2018, p. 4). At

the same time, reverse KL objectives have known problems, primarily that

they are non-convex, even in an ideal case with a linear Boltzmann policy. For

contextual bandits, Chen et al. (2019) showed improved performance when

using a surrogate, forward KL objective for the smoothed risk. Some works

also use the forward KL ostensibly to prevent mode collapse, given that the

forward KL is mode-covering (Agarwal et al., 2019b; Mei et al., 2019). The

forward KL divergence is also used in supervised learning, in the form of the

cross-entropy loss.

No work thus far has explored the difference between the KLs in the

framework of what policy improvement guarantees can be provided, and whether

the conditions of any such policy improvement results hold in experimental

settings.

The goal of this thesis is to investigate how one should perform

5



the greedification step for parameterized policies. In particular, for

a given action-value estimate, we investigate the difference between using a

forward or reverse KL divergence, primarily in the context of entropy regulari-

sation. We ask, given that we optimize a policy to reduce either the forward or

the reverse KL divergence to a Boltzmann distribution over the action values,

what is the quality of the resulting policy?

We provide some clarity on this question with the following contributions.

1. We highlight four choices for greedication: forward or reverse KL to a

Boltzmann distribution on the action-values, with or without entropy

regularization.

2. We show that the policy improvement result for the reverse KL extends

to certain function-approximation settings.

3. We construct a counterexample where optimizing for the forward KL can

fail to induce policy improvement.

4. Nevertheless, we show that under some additional conditions on the

temperature, KL reduction, and entropy, optimizing for the forward KL

can induce policy improvement.

5. On small-scale experiments, we find that the reverse KL can converge

faster, but sometimes to worse solutions, than the forward KL, particularly

under continuous actions. However, depending on the degree of entropy

regularization, the forward KL can provide worse solutions than the

reverse KL.

6. On large-scale benchmarks, we found no consistent superiority of either

KL divergence over the other, but we note intriguing trends influenced by

the forward KL, entropy regularization, and the function approximation

architecture.

6



Chapter 2

Background

In this section, we introduce the necessary background on reinforcement learn-

ing, KL divergences, and approximate greedification with KL divergences.

Readers already familiar with the RL problem setting may skip to Section 2.3.

2.1 Reinforcement Learning

In designing a general artificial intelligence, a priority is the ability of any

such agent to act to achieve goals in the world. Upon observing some state of

the world, we would like the agent to be able to determine the best course of

action according to its own knowledge; after all, we would like general artificial

intelligences to help us solve our own intractable problems.

One way of formalizing these desiderata is through the reinforcement learn-

ing (RL) framework. RL is a collection of both problems and solution methods

for addressing the challenge of general artificial intelligence. In RL, a “state of

the world” is simply called a state, a “course of action” is called a policy, and

“goal” is a numerical quantity called the return. Although the formalization of

goal as return–the reward hypothesis (Sutton and Barto, 2018)–might be ques-

tionable, and further research into alternatives is desirable, such a formulation

will enable us to bring centuries of mathematics to bear upon RL.

We formalize RL as a Markov Decision Process (MDP), characterized by

a tuple (S,A, γ, r, p). S is the state space; A is the action space; γ ∈ [0, 1)

is the discount factor; r : S × A → R is the reward function; and for every

(s, a) ∈ S × A, p(· | s, a), called the transition kernel, gives the conditional

7



transition probabilities over S. We also additionally specify a distribution

ρ0 over S of starting states, from which an agent begins interaction with

the environment. Where necessary for our proofs, we will state additional

assumptions on S and A.

A policy is a mapping π : S → ∆A, where ∆A is the space of probability

distributions over A. At the beginning of interaction, a state s0 is drawn from

ρ0. At this point, and for each subsequent, discrete time step t, draws an

action from its policy: at ∼ π(· | st). The agent sends the action at to the

environment, from which it receives the reward signal r(st, at)1 and observes

the next state st+1.

We will assume that our MDPs are episodic; that is, for every policy π, the

Markov chain induced by π, p will almost surely reach an absorbing state sT

in finite time. Once sT is reached, one considers the episode to have “ended”,

and restarts the agent by drawing another s0 from ρ0. In other words, our RL

agents only have a limited amount of time to interact with the environment,

after which they are replaced at a starting state.

Informally, the goal of an RL agent is to maximize the expected return,

usually defined as the expectation of a discounted sum of rewards 2. To

formalize this goal, given a policy π, one may define the value function V π

associated to that policy.

V π(s) := Eπ,p

[︄
∞∑︂
k=0

γkr(Sk, Ak) | S0 = s

]︄
.

V π(s) tells us, starting from state s and following policy π, what is the

average return the agent receives? The expectation above is over the trajectory

(s0, a0, s1, a1, · · · ) induced by π and the transition kernel p. As the MDP is

usually clear from the context, we will henceforth suppress p in our notation.

We may also define the action-value function, which also conditions on a
1It is also possible to condition on the future state st+1, but we do not do so to minimize

notational clutter.
2In this work, we neglect the average reward formulation of RL. Further information on

this alternative may be found in (Puterman, 2014).
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selected action a.

Qπ(s, a) := Eπ

[︄
∞∑︂
k=0

γkr(Sk, Ak) | S0 = s, A0 = a

]︄
= r(s, a) + γEs′∼p(·|s,a)[V

π(s′)] (2.1)

For γ ∈ [0, 1), it is a consequence of the Banach Fixed-Point theorem that there

is precisely one value function V ∗, called the optimal value-function, such that

V ∗(s) ≥ V π(s) for all π and s. Given V ∗, we can define Q∗ by Equation (2.1).

The policy induced by selecting a = argmaxbQ
∗(s, b) at every state s is known

as the optimal (deterministic) policy π∗. There can be more than one optimal

policy, and an optimal policy may be stochastic. An optimal policy in general

depends on γ,3 but we suppress dependence on γ for simplicity. It is a standard

result4 that V π∗
= V ∗, although this equality does not uniquely define π∗ in

general. We can thus formalize the RL goal as finding any π∗ that induces the

optimal value function V ∗.

For small, finite S and A, finding V ∗ and π∗ is tractable through value

iteration (VI) or policy iteration (PI) (Sutton and Barto, 2018). In policy itera-

tion for example, one begins with an initial policy π0 and initial value function

estimate v0. The following procedure is then iterated until the maintained

estimates converge, or some other error criterion is attained.

πt+1 := G(Qt+1) Qt+1 := Qπt

G(Qt+1) is the policy obtained by setting π to be the Dirac delta distribution on

argmaxbQt+1(s, b) for every s. We refer to the act of applying G as greedifying

a policy. We refer to the right-hand operation of PI as policy evaluation,

which classically can be performed with dynamic programming. PI is thus the

interleaving of policy greedification and policy evaluation.

Unfortunately, with a large or infinite number of states or actions, exact VI

and PI become intractable. Exact VI in particular suffers from the following

problems: (1) applying G across all states is not feasible if the number of states
3See, however, Blackwell optimal policies (Mahadevan, 1996).
4For example, one can see this result by examining the Bellman optimality equation for

V ∗.
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is large or infinite; (2) even applying G at a single state may be intractable

if |A| is large or infinite, as an inner maximization problem would have to be

solved; (3) exact policy evaluation at all state-action pairs (s, a) may not be

possible.

We thus turn to approximation, and must address two issues: (A) how to

represent a policy over many states and (B) how to relax the goal of finding

π∗.

To address (A), we introduce a set of parameters θ ∈ Rk, for some k ∈ N,

to represent our policy. Instead of specifying a mapping for every state s ∈ S,

θ induces a function πθ : S → ∆A. For example, πθ could be a neural network

that takes the state as input and returns a probability distribution over the

actions. Note, however, that such a mapping πθ is usually not surjective onto

∆A; in particular, there might not be a θ∗ such that πθ∗ = π∗.

Introducing parameters to represent our policy allows us to address (B).

We introduce a common objective in policy optimization: the value function

V πθ averaged over a distribution ρ0 over starting states.

η(πθ) :=

∫︂
S
ρ0(s)

∫︂
A
πθ(a|s)Qπθ(s, a) da ds.

Our goal may be stated now as finding the θ that maximize η(πθ). If πθ

is differentiable with respect to θ, we may attempt to apply gradient-based

optimization to this problem.

The policy gradient theorem gives us the gradient of η(πθ) (Sutton et al.,

2000),

∇θη(πθ) =

∫︂
S
dπθ(s)

∫︂
A
Qπθ(s, a)∇θπθ(a | s) da ds, (2.2)

where

dπθ(s) :=
∞∑︂
t=0

γt Pr(st = s | s0 ∼ ρ0, π) (2.3)

is the unnormalized discounted state visitation distribution. Intuitively, .πθ

provides the probability that π visits a given state s at any time t, discounted

by γt.
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To perform this optimization, a number of options are available. In REIN-

FORCE (Williams, 1992), a sampled return from (s, a) is used as an unbiased

estimate of Qπθ(s, a). While unbiased, REINFORCE is somewhat wasteful

of data; it seems possible to use any collected trajectory data to improve an

existing estimate of Qπθ(s, a), rather than start afresh with every trajectory.

REINFORCE can also suffer from high variance given its complete reliance on

Monte Carlo estimates of the action-value function.

To address these shortcomings, we can try to estimate Qπθ . Commonly,

a biased5, but lower-variance, choice is to use a learned estimate Q of Qπθ ,

obtained through policy evaluation algorithms like SARSA (Sutton and Barto,

2018). In these Actor-Critic algorithms, the actor—the policy—updates with a

(biased) estimate of the above gradient, given by this Q—the critic.

In practice, if one insists on performing an update at every timestep t and

does not multiply the update by γt, one in effect ignores dπθ(s) and instantiates

a biased gradient update (Thomas, 2014). Despite this concern, one tends

to exclude the γt in practice because of concerns about sample-efficiency; the

longer the episode, the smaller the update at time t will be. There has yet to

be a systematic empirical study of the impacts of excluding γt.

Using the gradient in Equation (2.2) to update the policy while learning an

action-value estimate can be interpreted as Approximate Policy Iteration (API).

API methods alternate between (1) approximate policy evaluation to obtain a

new Q and (2) approximate greedification to get a policy π that is more greedy

with respect to Q. As we show in the next section, the gradient in Equation

(2.2) can be recast as the gradient of a KL divergence to a policy peaked at

maximal actions under Q; reducing this KL updates the policy to increase its

own probabilities of these maximal actions, and so become more greedy with

respect to Q. Under this view, we obtain a clear separation between estimating

Q and greedifying π. We can be agnostic to the strategy for updating Q—we
5We note here that relatively little attention has been paid to the assumption of compatible

features in Sutton et al. (2000). Given this assumption, which amounts to requiring the the
action-value function estimate is linear in the normalized features of the policy, replacing
Qπθ with Q in the policy gradient yields no bias. Further investigation into the importance
of this choice is needed.
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can even use soft action values (Ziebart, 2010) or Q-learning (Watkins and

Dayan, 1992)—and focus on answering: for a given Q, how can we perform an

approximate greedification step and which approaches are most effective?

2.2 KL Divergences

Before we continue our discussion about greedification, it will be necessary

to introduce some concepts from statistics. Later, it will be useful for us

to measure the distance between π and some target policy πbetter, which is

presumably “better” than π. If we can close the distance between π and πbetter,

then we will hopefully end up with a better policy. However, we must first

make sense of how to define “distance” between probability distributions.

One option is to appeal to information theory. Let X be an event with

probability P . We can derive6 a notion of the surprise of X; how surprised

were we that X occurred? The surprise of X is given by

− logP.

What if we were interested in how surprised we were on average, across all

events? Asked another way, how much information do we get on average?

Fixing some probability distribution p of a random variable X, the surprise of

the event X = x is

− log Pr(X = x) = − log p(x).

This definition makes sense: if the event is impossible, I should be infinitely

surprised; if the event was certain, I should not be surprised at all; if I observe

two independent events, my joint surprise should just be the sum of the

individual surprises. The negative logarithm satisfies all of these properties.

The average surprise, or information content, is just the surprise averaged

across p.

Ep[− log p].

6https://en.wikipedia.org/wiki/Information_content

12

https://en.wikipedia.org/wiki/Information_content


The information content is also known as the entropy, and intuitively captures

the spread of the probability mass of the policy amongst the actions.

Now, given distributions p, q, we might wonder how much information might

we gain from observing an event we think is drawn from q, but really is from p.

This quantity is known as the cross-entropy between p and q.

Ep[− log q].

Suppose as well that we want to compare the difference in information between

(1) knowing that the true distribution is p and (2) believing that the true

distribution is q. We can form the following quantity, which will turn out to

be the KL divergence.

Ep[− log q]− Ep[− log p].

We can now define a pseudo-distance7 based on these informational con-

siderations. Given two probability distributions p, q on A, the KL divergence

between p and q is defined as

KL(p ∥ q) :=

∫︂
A
p(a) log

p(a)

q(a)
da,

where p is assumed to be absolutely continuous (Billingsley, 2008) with respect

to q, to ensure that the KL divergence exists. The KL divergence is zero iff

p = q almost everywhere, and is always non-negative.

A post-hoc reason why the KL divergence is nice to consider is that sampling

the KL divergence, instead of performing the integral, requires just the ability

to sample from p and to calculate p and q. This feature is in contrast to the

Wasserstein metric8 for example, which generally requires solving an infimum.

The KL divergence is not symmetric; for example, KL(p ∥ q) may be defined

while KL(q ∥ p) may not even exist if q is not absolutely continuous with respect

to p. This asymmetry leads to the two possible choices for measuring differences
7Note that the KL divergence is not a metric in the mathematical sense, as it does not

obey symmetry or the triangle inequality.
8Some interesting work has explored the benefits of the Wasserstein metric. (Arjovsky

et al., 2017) show that the Wasserstein metric induces a weaker notion of convergence than
the KL divergence, allowing for better stability and convergence during GAN training.
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between distributions: the reverse KL and the forward KL. Assume that p is

a true distribution that we would like to match with our learned distribution

qθ, where qθ is smooth with respect to θ ∈ Rk. The forward KL divergence is

KL(p ∥ qθ) and the reverse KL divergence is KL(qθ ∥ p).

2.3 Approximate Greedification

2.3.1 Defining a Target Policy

We return to the subject of greedification. At the beginning of Section 2.2,

we discussed the use of probability distances to improve a policy π. If we

had access to some better policy πbetter, we could “close the distance”, using

something like the KL divergence, to improve π. But what πbetter should we

use? A natural choice is the action-value function Q(s, a) itself; indeed, one

can view the greedification step of exact policy iteration as such a gap-closing.

However, Q(s, ·) is generally not a distribution over a since it may be negative!

One solution to this problem is to apply a transformation to Q whose range is

the non-negative real numbers.

Let τ > 0 and let Q be an action-value function estimate. We define the

transformed action-value BQτ by

BQτ (s, a) :=
exp(Q(s, a)τ−1)∫︁

A exp(Q(s, b)τ−1) db
. (2.4)

Firstly, note that the definition in Equation (2.4) does not depend upon a

particular policy. In other words, we can input any function of the form f(s, a).

The τ in Equation (2.4) corresponds to the division by τ in the argument of

the exponential. If Q is a soft action-value, to be defined subsequently, τ also

refers to the temperature of the soft action-value. BQτ provides the optimal

soft greedification with respect to Q. To understand why, we turn to soft value

functions (Ziebart, 2010). First, we define the entropy of a distribution, which

captures how “spread out” the distribution is. The higher the entropy, the less

the probability mass of π(· | s) is concentrated in any particular area.

H(π(· | s)) := −
∫︂
A
π(a | s) log π(a | s) da.
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Now, we define the soft value functions; they are essentially just regular value

functions where an entropy term is added to the reward.

V π
τ (s) := Eπ

[︄
∞∑︂
k=0

γk [r(Sk, Ak) + τH(π(·|Sk))] | S0 = s

]︄

We can also define the soft action-value function.

Qπ
τ (s, a) := r(s, a) + γEs′∼p(·|s,a)[V

π
τ (s

′)]

We can also write the state-value function in terms of the action-value function.

V π
τ (s) = Eπ[Q

π
τ (s, a)− τ log π(a | s)].

Intuitively, the soft value functions penalize determinism in our policies. Using

soft value functions instead of (regular) value functions changes the RL problem

slightly, as we are no longer interested in just the return, but rather the return

plus the determinism penalty.

One might also wonder at why the entropy bonus for the state-action pair

(s, a) is not added to the reward r(s, a). Intuitively, since the agent has already

taken action a, it is meaningless to incentivize any randomness at s. One other

consistency reason is that the definition of the soft action-value function is

exactly the same as the definition of the non-soft action value function, except

with V π(s′) replaced with V π
τ (s

′).

If we set π′(·|s) = BQτ (s, ·) for all s ∈ S, then Qπ′
τ (s, a) ≥ Qπ

τ (s, a) for

all (s, a) (Haarnoja et al., 2017, Theorem 4). As τ approaches zero, Qπ
τ (s, a)

approaches Qπ(s, a), which is a motivation using BQτ as a target policy for

greedification.

Another way to understand this definition, and especially why we divide

Q(s, a) by τ in the exponential of BQτ , is through the theory of entropy-

regularized MDPs (Geist et al., 2019). One desire for a target policy might

be that it is greedy in some sense with respect to the action values. In the

case of RL with no entropy regularisation, the greedy policy is conventionally

the policy that returns the maximum action at each state. The reason is, if

Qπ is an action value corresponding to π, and if π′ is the greedy policy with
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respect to Qπ′ , then π′ is a superior policy to π according to the classical policy

improvement result (Sutton and Barto, 2018).

When we introduce entropy regularisation, a different sense of greedy is

needed, as we are interested not just in the reward r of the original MDP, but

also the entropy of the policy. To understand how to do so, it is helpful to

discuss another formulation of the greedy policy. Assume for the moment that

the state and action spaces are finite. One definition of the Bellman operator

is the following.

(T πv)[s] := Eπ[q(s, a)], (2.5)

where q(s, a) = r(s, a) + γEs′∼p(·|s,a)[v(s
′)]. In other words, we define the

Bellman operator state-wise for a state s, and take the expectation with respect

to the action a over the policy π. We use lower-case letters here to connote the

fact that v and q may not correspond to any value functions. The greedy policy

πgreedy in the non-entropy-regularized RL setting can therefore be written as

πgreedy := argmax
π

T πv,

where the argmax is taken for each state separately. To define a sense of

greedy for entropy-regularized RL, we can define entropy-regularized Bellman

operators and perform a similar argmax.

First, for a policy π and temperature τ , we can define T π
H , the entropy-

regularized Bellman operator for π.

(T π
Hv)[s] = Eπ[q(s, a)] + τH(π(· | s))

where H is the entropy function. At a given state, the greedy policy is given by

πgreedy(· | s) := argmax
πs∈∆A

∑︂
a

q(s, a)πs(a) + τH(πs),

where πs is a probability distribution over A, and πs(a) refers to the a-th

element of πs. Since H is concave, −H is convex, so the greedy policy turns

out to be the maximizing argument in the definition of the convex conjugate of

−τH evaluated at q(s, ·)! Let’s explicitly solve for this maximizing argument.
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Since
∑︁

a q(s, a)πs(a) + τH(πs) is concave with respect to πs, it suffices to find

a stationary point, subject to the condition that
∑︁

b πs(b) = 1. Setting λ as

the Lagrange multiplier,

∂

∂πs(b)

(︄∑︂
a

q(s, a)πs(a) + τH(πs)− λ
∑︂
a

πs(a)

)︄
= q(s, b)− τ log πs(b)− τ + λ

=⇒ πs(b) = exp
(︁
q(s, b)τ−1 − 1− λτ−1

)︁
=⇒ πs(b) ∝ exp

(︁
q(s, b)τ−1

)︁
=⇒ πs(b) =

exp(q(s, b)τ−1)∑︁
a exp(q(s, a)τ

−1)
.

One interpretation of this result is that as the temperature decreases, the soft

action-value becomes closer to the unregularized action-value. In this setting,

we do want to act more greedily, and care relatively less about maximizing

entropy. As the temperature decreases, the Boltzmann distribution becomes

more sharply peaked at the maximum of the logits.

2.3.2 Approximate Greedification with the KLs

Returning to the question of objectives, the idea is to set qθ = πθ(·|s), p =

BQτ (s, ·), and use a KL divergence to bring πθ closer to BQτ . One might

wonder why we cannot set π(·|s) = BQτ (s, ·) in practice and be done with it.

Indeed, for discrete action spaces, we can draw actions from BQτ (s, ·) easily

at each time step. However, for continuous actions, even calculating BQτ (s, ·)

requires approximating a (usually) intractable integral. Furthermore, even in

the discrete-action regime, using BQτ might not be desirable as Q is usually

just an action-value estimate.

Define the Reverse KL (RKL) for greedification at a given state s and

action-value Q (Q may be soft or not):

RKL(θ; s,Q) := KL (πθ(· | s) ∥ BQτ (s, ·))

Notice that τ plays the role of an entropy regularization parameter: a larger

τ results in more entropy regularization on πθ(· | s). We can take a limiting

case with no entropy regularization to get the Hard Reverse KL.

Hard RKL(θ; s,Q) := lim
τ→0

τRKL(θ; s,Q) = −
∫︂
A
πθ(a | s)Q(s, a) da (2.6)
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If we view the action-value Q as fixed, the gradient of Equation (2.6) is

exactly the inner term of the policy gradient in Equation (2.2).9 This means

that the typical policy gradient update in actor-critic can be thought of as a

greedification step with a hard reverse KL.

Similarly, we can define the Forward KL (FKL) for greedification

FKL(θ; s,Q) := KL (BQτ (s, ·) ∥ πθ(· | s))

Finally, we can again consider a limiting case, where the temperature parameters

goes to zero, to get a Hard Forward KL objective.

Hard FKL(θ; s,Q) := lim
τ→0

FKL(θ; s,Q)

= − lim
τ→0

∫︂
A

exp(Q(s, a)τ−1)∫︁
A exp(Q(s, b)τ−1) db

log πθ(a | s) da

= −
∫︂
A
lim
τ→0

exp(Q(s, a)τ−1)∫︁
A exp(Q(s, b)τ−1) db

log πθ(a | s) da

= −
∫︂
A
1a=argmaxb Q(s,b) log πθ(a | s) da

= − log πθ(argmax
a

Q(s, a) | s)

This expression looks quite similar to the cross-entropy loss in supervised

classification, if one views the maximum action of Q(s, ·) as the correct class of

state s. The FKL has been used for a CPI algorithm (Vieillard et al., 2020),

but we are unaware of any literature that analyzes the Hard FKL.

Although switching πθ and BQτ might seem like a small change, there are

several consequences. The forward KL is popularly known to be mean-seeking :

to minimize the forward KL, πθ will likely place mass on the a with the largest

probability mass according to BQτ . Furthermore, the forward KL can be more

difficult to optimize because it requires access to BQτ to sample the gradient.

But, favourably, if πθ is parameterized with a Boltzmann distribution over θ,

then the forward KL is convex with respect to θ. The reverse KL, on the other

hand, is characterized as mode-seeking : if BQτ (s, a) is small for a given a, then

πθ(a | s) is also forced to be small. The RKL can also be easier to optimize as
9We are unaware of a previous statement of this result in the literature, but some references

to a connection between value-based methods with entropy regularisation and policy gradient
can be found in (Nachum et al., 2017b).
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access to p is not required to sample the gradient. Less favourably, however, it

is generally not convex with respect to θ, even if πθ is parameterized with a

Boltzmann distribution.

2.3.3 The Weighting over States

The above greedification objectives, and corresponding gradients, are defined

per state. To specify the full greedification objective across states, we need

a weighting d : S → [0,∞) on the relative importance of each state; un-

der function approximation, the agent requires this distribution to trade-off

accuracy of greedification across states. The full objective for the RKL is∫︁
S d(s)RKL(θ; s,Q); the other objectives are specified similarly.

This role of the weighting might seem quite different from the typical role

in the policy gradient, but there are some clear connections. When averaging

the gradient of the Hard RKL with weighting d, we have

−
∫︂
S
d(s)

∫︂
A
Q(s, a)∇πθ(a | s) da ds.

For this to correspond to the true policy gradient when τ = 0 and Q = Qπθ ,

the weighting should be d = dπθ ; otherwise, this quantity may not correspond

to the gradient of any function (Nota and Thomas, 2020). The weighting dπθ

indicates that the weighting for greedification should be higher in states closer

to the start state. This choice is sensible for allocating function approximation

resources; it seems key to get action selection as accurate as possible in early

states given the downstream effects.

Nevertheless, other choices are possible. An open, worthwhile question is

to better understand which weightings can help avoid poor stationary points

and improve convergence rates. Many algorithms in practice use something

closer to a uniform weighting on observed data. It is as yet not well under-

stood what weighting is ideal, nor the implications from deviating from the

policy gradient weighting. There are, however, some insights from both CPI

and from the literature on policy gradients. It is clear that there are some

instances where using d ≠ dπ results in convergence to a poor stationary point:∫︁
S d(s)

∫︁
AQπθ(s, a)∇πθ(a | s) da ds = 0 for a certain d that produces a highly
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suboptimal πθ, whereas weighting by d = dπθ (or with an emphatic weighting)

does not (Imani et al., 2018). This counterexample assumes exact Q = Qπθ ,

but still has implications for API, if an exact policy evaluation step is used. It

seems likely that a similar counterexample could be found for nearly accurate

Q. On the other hand, the work on CPI indicates that the weighting with dπ

can require a large number of samples to get accurate gradient estimates, and

moving to a more uniform weighting over states is significantly better (Kakade

and Langford, 2002).
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Chapter 3

Theoretical Results

In this section, we consider the policy improvement guarantees, or lack thereof,

for the reverse and forward KL. To the best of our knowledge, there is as yet

only one with guarantees: the reverse KL when assuming exact minimization

in each state (Haarnoja et al., 2018, Lemma 2). We first provide an extension

of this result to rely only upon reverse KL minimization on average across

states. Next, we provide a counterexample where optimizing the forward KL

does not induce policy improvement. Finally, we discuss further assumptions

that can be made to ensure that forward KL does induce policy improvement.

3.1 Reverse KL

Throughout, we assume that the class of policies Π consists of policies whose

entropies are finite; this assumption is not restrictive for finite action-spaces as

entropy is always finite in that setting. The assumption of finite entropies is

necessary just to ensure that the soft value functions are well-defined.

First, we note a strengthening of the original result for policy improvement

under the reverse KL (Haarnoja et al., 2018). By examining the proof of their

Lemma 2, their new policy πnew does not have to minimize the reverse KL;

rather, it suffices that πnew is smaller in reverse KL than πold at every state s.

Lemma 1 (Policy Improvement under RKL Reduction, Restatement of Lemma

2 (Haarnoja et al., 2018)). For πold, πnew ∈ Π, if for all s

KL(πnew(· | s) ∥ BQπold
τ (s, ·)) ≤ KL(πold(· | s) ∥ BQπold

τ (s, ·))
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then Qπnew
τ (s, a) ≥ Qπold

τ (s, a) for all (s, a) and τ > 0.

Proof. Same proof as in Haarnoja et al. (2018).

It turns out that a version of this result is true under expectation. First,

however, it will be useful to note a “soft” counterpart to the classical performance

difference lemma (Kakade and Langford, 2002). To state the performance

difference lemma, we need to define some concepts.

Definition 1 (Performance Criterion). For a start state distribution ρ0, the

performance criterion is defined to be

η(π) := Eρ0 [V
π(s)].

Definition 2 (State Visitation Distribution). For a policy π and starting state

distribution ρ, the (future) state visitation distribution is defined as follows.

dπ(s) := (1− γ)
∞∑︂
t=0

γt Pr(St = s | s0 ∼ ρ0, π),

where Pr(st = s | s0 ∼ ρ0, π) is the probability of the t-th state with respect to

the start state distribution and the trajectory induced by π.

Often in the literature, Definition 2 is defined without the additional (1−γ)

term in front. This version is known as the unnormalized visitation distribution.

Definition 3 (Advantage). For any policy π, the advantage is

Aπ(s, a) := Qπ(s, a)− V π(s).

The advantage asks, what is the average benefit if I take action a in state

s, as opposed to drawing an action from π?

The classical performance difference lemma is the following.

Lemma 2 (Performance Difference Lemma (Kakade and Langford, 2002)). For

any policies πold, πnew, we obtain the following relationship when using non-soft

values,

η(πnew) = η(πold) +
1

1− γ
Edπnew ,πnew [A

πold(s, a)],
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where the notation Edπnew ,πnew indicates the distributions for the states and

actions, respectively

Edπnew ,πnew [A
πold(s, a)] :=

∫︂
S
dπnew(s)

∫︂
A
πnew(a|s)Aπold(s, a) da ds.

Let’s define the soft performance criterion.

Definition 4 (Soft Performance Criterion). The soft performance criterion is

defined by the following, for a given temperature τ > 0.

ητ (π) := Eρ0 [V
π
τ (s)].

It will also be helpful to have a soft version of the advantage. An intuition

for the advantage in the non-soft setting is that it should be zero when averaged

over π. To enforce this requirement in the soft setting, we require a small

modification.

Definition 5 (Soft Advantage). For a policy π and temperature τ > 0, the

soft advantage is

Aπ
τ (s, a) := Qπ

τ (s, a)− τ log π(a | s)− V π
τ (s).

If τ = 0, we recover the usual definition of the advantage function. It is also

true that Eπ[A
π
τ (s, a)] = 0, by definition of the soft value functions. We are

ready for a soft performance difference lemma.

Lemma 3 (Soft Performance Difference). For any policies πold, πnew, the fol-

lowing is true for any τ ≥ 0.

ητ (πnew)− ητ (πold) =

1

1− γ
Edπnew ,πnew [A

πold
τ (s, a)] +

τ

1− γ
Edπnew [KL(πnew(· | s) ∥ πold(· | s))].

Proof. The calculation is straightforward. When we write E without any

subscripts, we mean the expectation over the trajectory distribution induced
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by ρ0 and πnew.

1

1− γ
Edπnew ,πnew [A

πold
τ (s, a)]] = E

[︄
∞∑︂
t=0

γtAπold(st, at)

]︄
▷ by definition of the visitation distribution

= E

[︄
∞∑︂
t=0

γt(Qπold
τ (st, at)− τ log πold(· | st)− V πold(st))

]︄
▷ by definition of the soft advantage

= E

[︄
∞∑︂
t=0

γt(r(st, at) + γV πold
τ (st+1)− τ log πold(· | st)− V πold

τ (st))

]︄
▷ from expanding Qπold

τ and pulling the expectation outside

= E

[︄
∞∑︂
t=0

γt(r(st, at)− τ log πold(· | st))− V πold
τ (s0)

]︄
▷ from the telescoping series γV πold

τ (st+1)− V πold
τ (st)

= −ητ (πold) + E

[︄
∞∑︂
t=0

γt(r(st, at)− τ log πold(· | st))

]︄
▷ by definition of ητ (πold)

= −ητ (πold) + ητ (πnew) + E

[︄
∞∑︂
t=0

γtτ(log πnew(· | st)− log πold(· | st))

]︄
▷ adding and subtracting τ log πnew(· | st)

= −ητ (πold) + ητ (πnew) +
τ

1− γ
Edπnew [KL(πnew(· | s) ∥ πold(· | s))]

The presence of the extra KL term in Lemma 3 is intriguing. Since the KL

divergence is non-negative, one may be able improve upon ητ (πold) even with a

negative advantage Aπ
τ (s, a); the degree of this “bonus” is modulated by τ . If

we set τ = 0, we recover the classical performance difference lemma.

Proposition 1 (Policy Improvement under Average RKL Reduction). For

πold, πnew ∈ Π, if

Edπnew [KL(πold(· | s) ∥ BQπold
τ (s, ·))] ≥ Edπnew [KL(πnew(· | s) ∥ BQπold

τ (s, ·))],

then ητ (πnew) ≥ ητ (πold).
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Proof. First, we calculate the KL inequality.

Edπnew [KL(πold(· | s) ∥ BQπold
τ (s, ·))] ≥ Edπnew [KL(πnew(· | s) ∥ BQπold

τ (s, ·))]

=⇒ Edπnew [Eπold
[τ log πold(· | s)−Qπold(s, ·)]]

≥ Edπnew [Eπnew [τ log πnew(· | s)−Qπold(s, ·)]]

▷ expanding the RKL definition and multiplying by τ

=⇒ −Edπnew [V
πold(s)] ≥ Edπnew [Eπnew [τ log πnew(· | s)−Qπold(s, ·)]

▷ because V πold
τ (s) = Eπold

[Qπold
τ (s, a)− τ log πold(a | s)]

=⇒ Edπnew ,πnew [Q
πold
τ (s, a)− V πold

τ (s)] ≥ τEdπnew ,πnew [log πnew(· | s)]

▷ rearranging

=⇒ Edπnew ,πnew [A
πold
τ (s, a)] ≥ τEdπnew [KL(πnew(· | s) ∥ πold(· | s))]

▷ subtracting τEdπnew ,πnew [log πold(· | s)] from both sides

Since the KL divergence is non-negative, the inequality we just derived implies

that the RHS of Lemma 3 is also non-negative. Hence, ητ (πnew) ≥ ητ (πold).

Note that we cannot set τ = 0 in the above proof as we divide by τ in BQ.

We remark that the guarantee for Proposition 1 is in terms of ητ , whereas

the result in Lemma 1 is in terms of Qπ
τ . The reason for this distinction is

that in assuming an average KL reduction in Proposition 1, there does not

seem to be a way to extract the action values on a per-state basis. Hence, the

guarantee must of necessity be an average guarantee across states, rather than

a guarantee for the value function at each state.

3.2 Forward KL

Unfortunately, the same policy improvement properties do not hold unmodified

for the forward KL.

Proposition 2 (Counterexample for Policy Improvement with FKL). There

exists an MDP, a state s′, an initial policy πold, policy πnew, and temperature

τ > 0 such that for any γ ∈ (0, 1]

∀s ∈ S, KL(BQπold
τ (s, ·) ∥ πold(· | s) ≥ KL(BQπold

τ (s, ·) ∥ πnew(· | s))
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but ∀a ∈ A, Qπnew
τ (s′, a) < Qπold

τ (s′, a).

Proof. Let us first construct the MDP. The MDP is episodic with two states

and three actions in each state. s0 is the start state, transitioning to state

s1 under any action, which then transitions to the terminal state under any

action. The numbers near the arrows represent the reward upon taking the

action corresponding to an arrow, from a state. From top to bottom, we have

actions a0, a1, a2.

s0 s1 T
0
-1

1
0
-2

1

Let our initial policy πold be the equiprobable policy for all states and

actions. That is, ∀ (s, a), πold(a | s) = 1
3
. Consider πnew to be the following.

πnew(· | s0) = πold(· | s0)

πnew(a0 | s1) = 3/8

πnew(a1 | s1) = 2/8

πnew(a2 | s1) = 3/8

Our strategy is the following: show that (1) πnew reduces the forward KL as it

“commits” more at s1, but that (2) πold has higher entropy and thus a higher

soft action-value at s0. A straightforward calculation provides the soft value

functions of πold and πnew at s1.

V πold
τ (s1) = −1/3 + τ ln 3

V πnew
τ (s1) = −2 · 3/8 + 3/8 + τH(πnew(· | s1)) = −3/8 + τH(πnew(· | s1))

Recall that the soft action-value can be written as

Qπ
τ (s, a) := r(s, a) + γEs′∼p(·|s,a)[V

π(s)].

Because this MDP is deterministic, we can rewrite the expectation above as
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the evaluation V π(s′). The soft action-value of πold is

Qπold
τ (s0, a0) = −1 + γ V πold

τ (s1) = γ τ ln 3− 3 + γ

3
Qπold

τ (s1, a0) = −2

Qπold
τ (s0, a1) = 0 + γ V πold

τ (s1) = γ τ ln 3− γ

3
Qπold

τ (s1, a1) = 0

Qπold
τ (s0, a2) = 1 + γ V πold

τ (s1) =
3− γ

3
+ γ τ ln 3 Qπold

τ (s1, a2) = 1

The exponentiated action-value BQτ is as follows.

BQτ (s, a) :=
exp(Q(s, a)τ−1)∑︁
b

exp(Q(s, b)τ−1)

The partition function at s1 is given by the following.

Z(s1) :=
∑︂
a

exp
(︁
Qπold

τ (s1, a)τ
−1
)︁
= 1 + exp

(︁
τ−1
)︁
+ exp

(︁
−2τ−1

)︁
.

Calculating the exponentiated soft action-values at s1,

BQπold
τ (s1, a0) =

exp(−2τ−1)

1 + exp(τ−1) + exp(−2τ−1)
,

BQπold
τ (s1, a1) =

1

1 + exp(τ−1) + exp(−2τ−1)
,

BQπold
τ (s1, a2) =

exp(τ−1)

1 + exp(τ−1) + exp(−2τ−1)
.

The new soft action-value at s0 is given by

Qπnew
τ (s0, a0) = −1 + γ V πnew

τ (s1)

= −1− 3γ

8
+ γ τ H(πnew(· | s1))

=
−8− 3γ

8
+ γ τ H(πnew(· | s1)),

Qπnew
τ (s0, a1) = −3 γ

8
+ γ τ H(πnew(· | s1)),

Qπnew
τ (s0, a2) =

8− 3γ

8
+ γ τ H(πnew(· | s1))

Let’s now compare Qπnew
τ and Qπold

τ . Note that entropy is maximized by a

uniform distribution, so τ H(πnew(· | s1)) < τ ln 3, regardless of the value of

τ > 0 and γ > 0. Let’s put the reward terms under a common denominator.

Qπold
τ (s0, a0)−Qπnew

τ (s0, a0) > −3 + γ

3
+

8 + 3γ

8
=

γ

24
,

Qπold
τ (s0, a1)−Qπnew

τ (s0, a1) > −γ

3
+

3 γ

8
=

γ

24
,

Qπold
τ (s0, a2)−Qπnew

τ (s0, a2) >
3− γ

3
− 8− 3γ

8
=

γ

24
.
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Thus, for any γ ∈ (0, 1], Qπnew
τ (s0, a) < Qπold

τ (s0, a) for all actions a.

Let’s now compare the forward KL divergences. Because the policies are

the same at s0, we have

KL(BQπold
τ (s0, ·) ∥ πnew(· | s0)) = KL(BQπold

τ (s0, ·) ∥ πold(· | s0)).

Calculating the rest of the forward KL divergences,

KL(BQπold
τ (s1, ·) ∥ πold(· | s1)) =

−H(BQπold
τ (s1, ·))− log(1/3)

exp(−2τ−1) + 1 + exp(τ−1)

1 + exp(τ−1) + exp(−2τ−1)

KL(BQπold
τ (s1, ·) ∥ πnew(· | s1)) =

−H(BQπold
τ (s1, ·))−

exp(−2τ−1) log(3/8) + log(2/8) + exp(τ−1) log(3/8)

1 + exp(τ−1) + exp(−2τ−1)

In order to have KL(BQπold
τ (s1, ·) ∥ πold(· | s1)) > KL(BQπold

τ (s1, ·) ∥ πnew(· |

s1)), it is sufficient and necessary to have

− log(1/3)
exp(−2τ−1) + 1 + exp(τ−1)

1 + exp(τ−1) + exp(−2τ−1)

> −exp(−2τ−1) log(3/8) + log(2/8) + exp(τ−1) log(3/8)

1 + exp(τ−1) + exp(−2τ−1)
.

Or, after simplifying,

− log(1/3)(exp
(︁
−2τ−1

)︁
+ 1 + exp

(︁
τ−1
)︁
)

> −(exp
(︁
−2τ−1

)︁
log(3/8) + log(2/8) + exp

(︁
τ−1
)︁
log(3/8))

⇐⇒ exp
(︁
−2τ−1

)︁
(log(3/8)− log(1/3)) + log(2/8)− log(1/3)

+ exp
(︁
τ−1
)︁
(log(3/8)− log(1/3)) > 0

⇐⇒ exp
(︁
−2τ−1

)︁
log(9/8) + log(3/4) + exp

(︁
τ−1
)︁
log(9/8) > 0

⇐⇒ log(9/8) + log(3/4) exp
(︁
2τ−1

)︁
+ exp

(︁
3τ−1

)︁
log(9/8) > 0.

Setting y = exp(τ−1), we are interested in the cubic inequality

log(9/8) + log(3/4)y2 + y3 log(9/8) > 0.

Noting that the leading term of the cubic is positive, there must be some y0 such

that for y > y0, the inequality above holds. This y0 must be the largest root
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of the cubic expression. A root-solver gives y0 > 2.25, so the above inequality

holds for exp(τ−1) = y > 2.25, or in other words for 1.23 ≈ 1
log 2.25

> τ .

Proposition 2 shows that there is an MDP and two policies in which one

policy πnew can have a lower FKL, but fail to be a better policy for small enough

τ . It might seem like Proposition 2 could contradict the RKL improvement

result in Lemma 1, but Proposition 2 is a statement about a particular policy,

and not about any policy that reduces the RKL.

From examining the proof of Proposition 2, it might also be surprising

that the result holds for sufficiently small τ . That is, for τ < τ0, for some τ0,

there will always be a policy that reduces the FKL, but that has strictly worse

performance than the previous policy. Such a result might seem unintuitive

since one would expect that the more one reduces the FKL, the better the

policy should be, given that the FKL is minimized by setting the subsequent

policy to be exactly the target distribution. Nevertheless, such reasoning says

nothing about the path of policies to the superior, target distribution policy.

A natural question is if this counterexample is pathological. Since reducing

the FKL to 0 corresponds to reducing the RKL to 0 (i.e., setting πnew = BQπold
τ ),

it seems plausible that if the FKL is reduced enough, the new policy πnew

will be better. One may also wonder if by selecting a temperature judiciously

enough, optimizing for the forward KL might induce policy improvement. With

some qualifications, the answer is in the positive.

Proposition 3 (Policy Improvement for FKL with Sufficient Reduction).

Assume a discrete action space with |A| < ∞, with a policy space Π that

consists of policies where π(a | s) > 0 for all a. Let C, πold, πnew ∈ Π be such

that for a state s,

KL(BQπold(s, ·) ∥ πnew(· | s)) + C ≤ KL(BQπold(s, ·) ∥ πold(· | s)), (3.1)
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where C additionally satisfies

C ≥ 1

2

∑︂
a

(︃
1− 1

πold(a | s)

)︃2(︃
1 +

Qπold(s, a)

τ
+

exp(τ−1Qπold(s, a))Qπold(s, a)2

2τ 2

)︃
+

1

2

∑︂
a

exp
(︁
τ−1Qπold(s, a)

)︁
τ−2Qπold(s, a)2(1− πold(a | s))

with τ > 0. Then,∑︂
a

Qπold(s, a)πold(a | s) ≤
∑︂
a

Qπold(s, a)πnew(a | s).

Proof. For the steps below, we will need to consider shifted, positive values

Qπold(s, a) + b where b := max(0,−mina∈AQπold(s, a)) + 0.01. This shift does

not affect Equation (3.1) because the Boltzmann function is invariant to

shifts in the logits. It suffices to focus on a single state s. We will suppress

dependence on this state for notational simplicity. Let π(a) := πold(a|s) and

Q(a) := Qπold(s, a) + b > 0. After cancelling the common entropy term and

multiplying both sides by the partition function, Equation (3.1) yields∑︂
a

exp
(︁
τ−1Q(a)

)︁
log

1

πnew(a)
+ C ≤

∑︂
a

exp
(︁
τ−1Q(a)

)︁
log

1

πold(a)
. (3.2)

For x ≥ 0, we have 1+x ≤ exp(x) and for x ∈ (0, 1) we have log 1
x
= − log(x) ≥

1− x. Since we assumed Q(a) > 0 and πold, πnew are not deterministic, these

inequalities may be applied. Applying them to Equation (3.2) gives∑︂
a

(1 + τ−1Q(a))(1− πnew(a)) + C ≤
∑︂
a

exp
(︁
τ−1Q(a)

)︁
log

1

πold(a)
. (3.3)

To get any further, we proceed by Taylor expansion. We will expand exp(x)

around x = 0 and log(x) around x = 1. Now, using the Lagrange form of the
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remainder of Taylor expansions yields

exp
(︁
τ−1Q(a)

)︁
= 1 + τ−1Q(a) +

1

2
exp(ξa)τ

−2Q(a)2,

=⇒ exp
(︁
τ−1Q(a)

)︁
≤ 1 + τ−1Q(a) +

1

2
exp
(︁
τ−1Q(a)

)︁
τ−2Q(a)2,

log(πold(a)) = πold(a)− 1− 1

2κ2
a

(πold(a)− 1)2,

=⇒ log
1

πold(a)
= 1− πold(a) +

1

2κ2
a

(πold(a)− 1)2

=⇒ log
1

πold(a)
≤ 1− πold(a) +

1

2πold(a)2
(πold(a)− 1)2

=⇒ log
1

πold(a)
≤ 1− πold(a) +

1

2

(︃
1− 1

πold(a)

)︃2

for some ξa ∈ (0, τ−1Q(a)) and κa ∈ (πold(a), 1). Using the inequalities on the

RHS of Equation (3.3) yields the following.∑︂
a

exp
(︁
τ−1Q(a)

)︁
log

1

πold(a)

≤
∑︂
a

(1 + τ−1Q(a))(1− πold(a)) +X,

where X represents terms we have neglected for the moment. From re-examining

Equation (3.3), noting that
∑︁

a(1− πold(a)) =
∑︁

a(1− πnew(a)), and canceling

out
∑︁

a τ
−1Q(a) on both sides, we have

−
∑︂
a

τ−1Q(a)πnew(a) + C ≤ −
∑︂
a

τ−1Q(a)πold(a) +X

C −X ≤ τ−1
∑︂
a

Q(πnew(a)− πold(a))

Notice that ∑︂
a

Q(a)πnew(a) =
∑︂
a

(Qπold(s, a) + b)πnew(a)

=
∑︂
a

Qπold(s, a)πnew(a) + b
∑︂
a

πnew(a)

=
∑︂
a

Qπold(s, a)πnew(a) + b

=⇒
∑︂
a

Q(a)(πnew(a)− πold(a)) =
∑︂
a

Qπold(s, a)(πnew(a)− πold(a))
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Therefore, to show that
∑︁

aQ
πold(s, a)πnew(a) ≥

∑︁
a Q

πold(s, a)πold(a), it suffices

that C −X ≥ 0, or equivalently that C ≥ X.

X :=
1

2

∑︂
a

(︃
1− 1

πold(a)

)︃2

(1 + τ−1Q(a) +
1

2
exp
(︁
τ−1Q(a)

)︁
τ−2Q(a)2)

+
1

2

∑︂
a

exp
(︁
τ−1Q(a)

)︁
τ−2Q(a)2(1− πold(a))

Noting that every term is non-negative by assumption, the conclusion follows.

The conclusions of Proposition 3 hold if C is large enough; as τ decreases, C

must be larger, which explain the failure of policy improvement in Proposition 2.

On the other hand, if τ is large, then the requirement for C becomes less

onerous, although the resulting conclusion might be quite weak; soft action-

values for large τ become dominated by the entropy term, weighing much less

the contribution of reward from the environment.

How large can the minimal C required get? Using the MDP of Proposition 2,

in Figure 3.1 we plot the minimal C as a function of temperature. The minimal

C is in fact larger than KL(BQπold(s1, ·) ∥ πold(· | s1))! This suggests that the

minimal C is in fact an overestimate, which seems due to the looseness of the

bounds, log x ≤ x− 1 in particular, we used in deriving it.

If the conclusions of Figure 3.1 do hold across all states, and with an

additional assumption, we can guarantee policy improvement.

Corollary 1. If

Edπnew ,πold
[Qπold

τ (s, a)] ≤ Edπnew ,πnew [Q
πold
τ (s, a)],

and if

τEdπnew [H(πnew(· | s))] ≥ τEdπnew [H(πold(· | s))],

then ητ (πnew) ≥ ητ (πold). This conclusion also holds for τ = 0.

Proof. If τ = 0, then
∑︁

a πold(a | s)Qπold(s, a) = V πold(s). If the above holds

for all states s, then V πold(s) ≤
∑︁

aQ
πold(s, a)πnew(a | s) for all states and so

32



Figure 3.1: The minimal C in Proposition 3 as a function of τ , plotted against
the KL divergence between BQπold and πold at s1 of the MDP in Proposition 2.

V πnew ≥ V πold by the classical policy improvement theorem (Sutton and Barto,

2018). It follows that η(πnew) ≥ η(πold).

If τ > 0, we may use Lemma 3, the soft performance difference lemma.

Note that since we are working with soft value functions, we have the following

relation between the soft state-value and the soft action-value.∑︂
a

Qπold
τ (s, a)πold(a | s) = V πold

τ (s)− τH(πold(· | s)).

Using the first assumption of the Corollary,

Edπnew ,πold
[V πold

τ (s) + τ log πold(· | s)] = Edπnew ,πold
[Qπold

τ (s, a)]

≤ Edπnew ,πnew [Q
πold
τ (s, a)].
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Rearranging and taking expectations, we have

Edπnew ,πnew [Q
πold
τ (s, a)−V πold

τ (s)] ≥ τEdπnew ,πold
[log πold(· | s)],

Edπnew ,πnew [A
πold
τ (s, a)] ≥ τEdπnew [Eπold

[log πold(· | s)]− Eπnew [log πold(· | s)]].

▷ adding − τEdπnew ,πnew [log πold(· | s)] to both sides

From Gibbs’s inequality, the entropy of any distribution is strictly less than the

cross-entropy of that distribution with any other distribution. In other words,

H(πnew(· | s)) ≤ H(πnew(· | s), πold(· | s))

−Eπnew [log πnew(· | s)] ≤ −Eπnew [log πold(· | s))]

Applying this inequality,

Edπnew ,πnew [A
πold
τ (s, a)] ≥ τEdπnew [Eπold

[log πold(· | s)]− Eπnew [log πnew(· | s)]]

= τEdπnew [H(πnew(· | s))−H(πold(· | s))]

≥ 0

▷ by the entropy assumption of the Corollary

The entropy assumption in Corollary 1 is a bit strange; for πnew to be better, it

must “commit” less to actions, the opposite of what we would expect a policy

to do when learning optimal actions.

3.3 Summary

Here are some takeaways of the above discussion.

1. The RKL has a stronger policy improvement result than the FKL as it

requires only that the RKL of πnew be no greater than the RKL of πold.

2. The FKL can fail to induce policy improvement, but this failure is linked

to a temperature that is too low and/or an insufficient reduction in the

FKL. For a large enough reduction and large enough temperature, coupled

with an additional entropy assumption, policy improvement follows.
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There are some limitations of this theory. We had to assume a finite action

space for Proposition 3. The reason here was to ensure that we could sensibly

manipulate the remainder terms in the Taylor expansions. A general treatment

of action spaces would at least require some work into the measurability and

integrability of such terms as a function of the action. Moreover, the theory

developed in this chapter is under ideal settings, assuming in particular access

to the true value functions. For Proposition 3 and corollary 1, the looseness of

the bounds we employed resulted in extremely strong sufficient conditions for

FKL policy improvement. As we will see in our experiments, the FKL is often

able to induce policy improvement in practice, suggesting a gap between the

theory developed and the practical performance.
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Chapter 4

Microworld Experiments

The goal in this section is to understand differences between FKL and RKL

in terms of (1) the loss surface and (2) the behaviour of iterates optimized

under the losses. By behaviour, we mean whether the iterates reach multiple

local optima, how stable iterates under that loss are, and how often iterates

reach the global optimum (or optima). Given the fine-grained nature of our

questions, we focus upon small-scale environments, which we call microworlds.

Doing so allows us to avoid any possible confounding factors associated with

larger, more complicated environments, and furthermore allows us more fully

to separate any issues to do with stochasticity.

We begin with continuous actions, and note results for discrete actions in

Section 4.4. We use two types of low-dimensional microworlds to allow us to

visualize and thoroughly investigate behavior.

Our first microworld is a Bimodal Bandit in Figure 4.2. For continuous

actions, we designed a continuous bandit with action space [−1, 1] and reward

function Q(a) := exp
(︁
−1

2
(2a+1

0.2
)2
)︁
+ 3

2
exp
(︁
−1

2
(2a−1

0.2
)2
)︁
. The two unequal modes

at -0.5 and 0.5 enable us to test the mean-seeking and mode-seeking behavior as

well as simulate a realistic scenario where the agent’s policy parameterization

(here, unimodal) cannot represent the true distribution (bimodal). For discrete

actions, we designed a discrete bandit with rewards (1, 1.5).

Our second microworld is the Switch-Stay domain in Figure 4.1. From s0,

action 0 (stay) gives a reward of 1 and transitions to state 0. From s1, action 0

gives a reward of 2 and transitions to s1. From s0, action 1 (switch) gives a
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reward of -1 and transitions to s1, while action 1 from s1 gives a reward of 0

and transitions to s0.

To adapt this environment to the continuous action setting, we treat actions

> 0 as switch and actions ≤ 0 as stay. We set γ = 0.9 to ensure that the

optimal action from s0 is to switch, which ensures the existence of a short-

term/long-term trade-off inherent to realistic RL environments.

s0 s1

-1

1

0

2

Figure 4.1: Switch-Stay.

Figure 4.2: Continuous-action Bimodal Bandit.

4.1 Common Implementation Details

All policies are tabular in the state. To calculate the FKL and RKL for the

continuous action setting, we use the Clenshaw-Curtis (Clenshaw and Curtis,

1960) numerical integration scheme with 1024 points from the package quadpy

(Schlömer, n.d.), excluding the first and the last points at -1 and 1 because of

numerical stability. Numerical integration is used to minimize any confounding
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influence of stochasticity on the behaviour, but we also note additional results

for Monte Carlo integration in Section 4.5.

To calculate the Hard FKL, we use the true maximum action as determined

by the environment. In the discrete action setting, we may calculate the non-

hard FKL losses in closed form by summing across all actions. For Switch-Stay,

we calculate and optimize the mean KL across the two states.

We use the true action-values when calculating the KL losses; in the bimodal

bandit, the action-value is given by the reward function, while in Switch-Stay

it is calculated (i.e., not learned). For policy parameterizations, in continuous

action settings we use a Gaussian policy with mean and variance learned as

(µ̂, log(1 + exp(σ̂)) and in discrete action settings we use a softmax policy. The

action sampled from the learned Gaussian is passed through tanh to ensure

that the action is in the feasible range [−1, 1] and to avoid the bias induced in

the policy gradient when action ranges are not enforced (Chou et al., 2017).

Finally, we use the RMSprop optimizer (Tieleman and Hinton, 2012).

Overall trends for Adam (Kingma and Ba, 2015) were similar to those for

RMSprop, while results for SGD resulted in slower learning for both FKL and

RKL and a wider range of limit points, most likely due to oscillation from

the constant step-size. We focus on RMSprop here to avoid any confounding

factors associated with momentum.

4.2 Continuous Action Results in the Bimodal
Bandit

Firstly, we might expect the FKL to have a smoother loss surface. Given that

policies often are part of an exponential class (e.g., softmax policy), having

the policy π be the second argument of KL(p ∥ q) might be advantageous as

KL(p | π) removes the exponential in π.

4.2.1 Loss Surface

We visualize the KL loss surfaces in Figure 4.3 with five different temperatures.

The heatmaps depict the loss for each mean and standard deviation pair. The
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last row depicts the target distribution over which the KL loss is optimized.

The surfaces suggest the following.

1) The FKL surface has a single valley, while the RKL surface has two

valleys that are separated from one another. In this sense, the FKL surface

seems much smoother than the RKL surface, suggesting that iterates under

the FKL will more likely reach the global optimum than iterates under the

RKL, which seem likely to fall into either of the valleys.

2) The smoothness of the RKL landscape increases with temperature as

the gap between the peaks becomes less steep. A higher temperature also

causes the valley in the FKL map to become less sharply peaked, and for the

optimal µ to move closer to 0. The optimal µ for the FKL seems to move more

quickly to zero, as τ increases, than the optimal µ for the RKL, although both

eventually reach 0. It is possible that the FKL may become suboptimal sooner

than the RKL as τ increases.

3) It may seem strange that two valleys exist for the RKL at τ = 0 given

that the target distribution is unimodal. Note, however, that when τ = 0,

the loss function is no longer a distributional loss; that is, we are no longer

minimizing any pseudo-distance between the policy and a distribution.
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<latexit sha1_base64="lvyZoKvoZUxrKiFUU0rzTGhqwKY=">AAACFXicbVDLSsNAFJ34rPVVdelmsAgVpSRFUFwJblxWsFVoQplMb9rBySTM3Igl5Cfc+CtuXCjiVnDn3zh9LHwduJfDOfcyc0+YSmHQdT+dmdm5+YXF0lJ5eWV1bb2ysdk2SaY5tHgiE30dMgNSKGihQAnXqQYWhxKuwpuzkX91C9qIRF3iMIUgZn0lIsEZWqlbOfAR7jAf9zDKDfaK4oRKVfP24S6t+QNmTSP6MSv29rqVqlt3x6B/iTclVTJFs1v58HsJz2JQyCUzpuO5KQY50yi4hKLsZwZSxm9YHzqWKhaDCfLxVQXdtUqPRom2pZCO1e8bOYuNGcahnYwZDsxvbyT+53UyjI6DXKg0Q1B88lCUSYoJHUVEe0IDRzm0hHEt7F8pHzDNONogyzYE7/fJf0m7UffcundxWD1tTOMokW2yQ2rEI0fklJyTJmkRTu7JI3kmL86D8+S8Om+T0RlnurNFfsB5/wLATJ8V</latexit><latexit sha1_base64="lvyZoKvoZUxrKiFUU0rzTGhqwKY=">AAACFXicbVDLSsNAFJ34rPVVdelmsAgVpSRFUFwJblxWsFVoQplMb9rBySTM3Igl5Cfc+CtuXCjiVnDn3zh9LHwduJfDOfcyc0+YSmHQdT+dmdm5+YXF0lJ5eWV1bb2ysdk2SaY5tHgiE30dMgNSKGihQAnXqQYWhxKuwpuzkX91C9qIRF3iMIUgZn0lIsEZWqlbOfAR7jAf9zDKDfaK4oRKVfP24S6t+QNmTSP6MSv29rqVqlt3x6B/iTclVTJFs1v58HsJz2JQyCUzpuO5KQY50yi4hKLsZwZSxm9YHzqWKhaDCfLxVQXdtUqPRom2pZCO1e8bOYuNGcahnYwZDsxvbyT+53UyjI6DXKg0Q1B88lCUSYoJHUVEe0IDRzm0hHEt7F8pHzDNONogyzYE7/fJf0m7UffcundxWD1tTOMokW2yQ2rEI0fklJyTJmkRTu7JI3kmL86D8+S8Om+T0RlnurNFfsB5/wLATJ8V</latexit><latexit sha1_base64="lvyZoKvoZUxrKiFUU0rzTGhqwKY=">AAACFXicbVDLSsNAFJ34rPVVdelmsAgVpSRFUFwJblxWsFVoQplMb9rBySTM3Igl5Cfc+CtuXCjiVnDn3zh9LHwduJfDOfcyc0+YSmHQdT+dmdm5+YXF0lJ5eWV1bb2ysdk2SaY5tHgiE30dMgNSKGihQAnXqQYWhxKuwpuzkX91C9qIRF3iMIUgZn0lIsEZWqlbOfAR7jAf9zDKDfaK4oRKVfP24S6t+QNmTSP6MSv29rqVqlt3x6B/iTclVTJFs1v58HsJz2JQyCUzpuO5KQY50yi4hKLsZwZSxm9YHzqWKhaDCfLxVQXdtUqPRom2pZCO1e8bOYuNGcahnYwZDsxvbyT+53UyjI6DXKg0Q1B88lCUSYoJHUVEe0IDRzm0hHEt7F8pHzDNONogyzYE7/fJf0m7UffcundxWD1tTOMokW2yQ2rEI0fklJyTJmkRTu7JI3kmL86D8+S8Om+T0RlnurNFfsB5/wLATJ8V</latexit><latexit sha1_base64="lvyZoKvoZUxrKiFUU0rzTGhqwKY=">AAACFXicbVDLSsNAFJ34rPVVdelmsAgVpSRFUFwJblxWsFVoQplMb9rBySTM3Igl5Cfc+CtuXCjiVnDn3zh9LHwduJfDOfcyc0+YSmHQdT+dmdm5+YXF0lJ5eWV1bb2ysdk2SaY5tHgiE30dMgNSKGihQAnXqQYWhxKuwpuzkX91C9qIRF3iMIUgZn0lIsEZWqlbOfAR7jAf9zDKDfaK4oRKVfP24S6t+QNmTSP6MSv29rqVqlt3x6B/iTclVTJFs1v58HsJz2JQyCUzpuO5KQY50yi4hKLsZwZSxm9YHzqWKhaDCfLxVQXdtUqPRom2pZCO1e8bOYuNGcahnYwZDsxvbyT+53UyjI6DXKg0Q1B88lCUSYoJHUVEe0IDRzm0hHEt7F8pHzDNONogyzYE7/fJf0m7UffcundxWD1tTOMokW2yQ2rEI0fklJyTJmkRTu7JI3kmL86D8+S8Om+T0RlnurNFfsB5/wLATJ8V</latexit>
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mean : µ
<latexit sha1_base64="WUE73AAJO1+Dj0975b3tAjyRwyg=">AAACAnicbVDLSgMxFM34tr6qrsRNsAiuyowIiivBjcsK9gGdoWTSOzWYZIbkjliG4sZfceNCEbd+hTv/xvSx0NYD93I4516Se+JMCou+/+3NzS8sLi2vrJbW1jc2t8rbOw2b5oZDnacyNa2YWZBCQx0FSmhlBpiKJTTju8uh37wHY0Wqb7CfQaRYT4tEcIZO6pT3QoQHLEY9TgoFTA8G5zRUeadc8av+CHSWBBNSIRPUOuWvsJvyXIFGLpm17cDPMCqYQcElDEphbiFj/I71oO2oZgpsVIxOGNBDp3RpkhpXGulI/b1RMGVtX8VuUjG8tdPeUPzPa+eYnEWF0FmOoPn4oSSXFFM6zIN2hQGOsu8I40a4v1J+ywzj6FIruRCC6ZNnSeO4GvjV4PqkcnE8iWOF7JMDckQCckouyBWpkTrh5JE8k1fy5j15L9679zEenfMmO7vkD7zPHxDDl8g=</latexit><latexit sha1_base64="WUE73AAJO1+Dj0975b3tAjyRwyg=">AAACAnicbVDLSgMxFM34tr6qrsRNsAiuyowIiivBjcsK9gGdoWTSOzWYZIbkjliG4sZfceNCEbd+hTv/xvSx0NYD93I4516Se+JMCou+/+3NzS8sLi2vrJbW1jc2t8rbOw2b5oZDnacyNa2YWZBCQx0FSmhlBpiKJTTju8uh37wHY0Wqb7CfQaRYT4tEcIZO6pT3QoQHLEY9TgoFTA8G5zRUeadc8av+CHSWBBNSIRPUOuWvsJvyXIFGLpm17cDPMCqYQcElDEphbiFj/I71oO2oZgpsVIxOGNBDp3RpkhpXGulI/b1RMGVtX8VuUjG8tdPeUPzPa+eYnEWF0FmOoPn4oSSXFFM6zIN2hQGOsu8I40a4v1J+ywzj6FIruRCC6ZNnSeO4GvjV4PqkcnE8iWOF7JMDckQCckouyBWpkTrh5JE8k1fy5j15L9679zEenfMmO7vkD7zPHxDDl8g=</latexit><latexit sha1_base64="WUE73AAJO1+Dj0975b3tAjyRwyg=">AAACAnicbVDLSgMxFM34tr6qrsRNsAiuyowIiivBjcsK9gGdoWTSOzWYZIbkjliG4sZfceNCEbd+hTv/xvSx0NYD93I4516Se+JMCou+/+3NzS8sLi2vrJbW1jc2t8rbOw2b5oZDnacyNa2YWZBCQx0FSmhlBpiKJTTju8uh37wHY0Wqb7CfQaRYT4tEcIZO6pT3QoQHLEY9TgoFTA8G5zRUeadc8av+CHSWBBNSIRPUOuWvsJvyXIFGLpm17cDPMCqYQcElDEphbiFj/I71oO2oZgpsVIxOGNBDp3RpkhpXGulI/b1RMGVtX8VuUjG8tdPeUPzPa+eYnEWF0FmOoPn4oSSXFFM6zIN2hQGOsu8I40a4v1J+ywzj6FIruRCC6ZNnSeO4GvjV4PqkcnE8iWOF7JMDckQCckouyBWpkTrh5JE8k1fy5j15L9679zEenfMmO7vkD7zPHxDDl8g=</latexit><latexit sha1_base64="WUE73AAJO1+Dj0975b3tAjyRwyg=">AAACAnicbVDLSgMxFM34tr6qrsRNsAiuyowIiivBjcsK9gGdoWTSOzWYZIbkjliG4sZfceNCEbd+hTv/xvSx0NYD93I4516Se+JMCou+/+3NzS8sLi2vrJbW1jc2t8rbOw2b5oZDnacyNa2YWZBCQx0FSmhlBpiKJTTju8uh37wHY0Wqb7CfQaRYT4tEcIZO6pT3QoQHLEY9TgoFTA8G5zRUeadc8av+CHSWBBNSIRPUOuWvsJvyXIFGLpm17cDPMCqYQcElDEphbiFj/I71oO2oZgpsVIxOGNBDp3RpkhpXGulI/b1RMGVtX8VuUjG8tdPeUPzPa+eYnEWF0FmOoPn4oSSXFFM6zIN2hQGOsu8I40a4v1J+ywzj6FIruRCC6ZNnSeO4GvjV4PqkcnE8iWOF7JMDckQCckouyBWpkTrh5JE8k1fy5j15L9679zEenfMmO7vkD7zPHxDDl8g=</latexit>

mean : µ
<latexit sha1_base64="WUE73AAJO1+Dj0975b3tAjyRwyg=">AAACAnicbVDLSgMxFM34tr6qrsRNsAiuyowIiivBjcsK9gGdoWTSOzWYZIbkjliG4sZfceNCEbd+hTv/xvSx0NYD93I4516Se+JMCou+/+3NzS8sLi2vrJbW1jc2t8rbOw2b5oZDnacyNa2YWZBCQx0FSmhlBpiKJTTju8uh37wHY0Wqb7CfQaRYT4tEcIZO6pT3QoQHLEY9TgoFTA8G5zRUeadc8av+CHSWBBNSIRPUOuWvsJvyXIFGLpm17cDPMCqYQcElDEphbiFj/I71oO2oZgpsVIxOGNBDp3RpkhpXGulI/b1RMGVtX8VuUjG8tdPeUPzPa+eYnEWF0FmOoPn4oSSXFFM6zIN2hQGOsu8I40a4v1J+ywzj6FIruRCC6ZNnSeO4GvjV4PqkcnE8iWOF7JMDckQCckouyBWpkTrh5JE8k1fy5j15L9679zEenfMmO7vkD7zPHxDDl8g=</latexit><latexit sha1_base64="WUE73AAJO1+Dj0975b3tAjyRwyg=">AAACAnicbVDLSgMxFM34tr6qrsRNsAiuyowIiivBjcsK9gGdoWTSOzWYZIbkjliG4sZfceNCEbd+hTv/xvSx0NYD93I4516Se+JMCou+/+3NzS8sLi2vrJbW1jc2t8rbOw2b5oZDnacyNa2YWZBCQx0FSmhlBpiKJTTju8uh37wHY0Wqb7CfQaRYT4tEcIZO6pT3QoQHLEY9TgoFTA8G5zRUeadc8av+CHSWBBNSIRPUOuWvsJvyXIFGLpm17cDPMCqYQcElDEphbiFj/I71oO2oZgpsVIxOGNBDp3RpkhpXGulI/b1RMGVtX8VuUjG8tdPeUPzPa+eYnEWF0FmOoPn4oSSXFFM6zIN2hQGOsu8I40a4v1J+ywzj6FIruRCC6ZNnSeO4GvjV4PqkcnE8iWOF7JMDckQCckouyBWpkTrh5JE8k1fy5j15L9679zEenfMmO7vkD7zPHxDDl8g=</latexit><latexit sha1_base64="WUE73AAJO1+Dj0975b3tAjyRwyg=">AAACAnicbVDLSgMxFM34tr6qrsRNsAiuyowIiivBjcsK9gGdoWTSOzWYZIbkjliG4sZfceNCEbd+hTv/xvSx0NYD93I4516Se+JMCou+/+3NzS8sLi2vrJbW1jc2t8rbOw2b5oZDnacyNa2YWZBCQx0FSmhlBpiKJTTju8uh37wHY0Wqb7CfQaRYT4tEcIZO6pT3QoQHLEY9TgoFTA8G5zRUeadc8av+CHSWBBNSIRPUOuWvsJvyXIFGLpm17cDPMCqYQcElDEphbiFj/I71oO2oZgpsVIxOGNBDp3RpkhpXGulI/b1RMGVtX8VuUjG8tdPeUPzPa+eYnEWF0FmOoPn4oSSXFFM6zIN2hQGOsu8I40a4v1J+ywzj6FIruRCC6ZNnSeO4GvjV4PqkcnE8iWOF7JMDckQCckouyBWpkTrh5JE8k1fy5j15L9679zEenfMmO7vkD7zPHxDDl8g=</latexit><latexit sha1_base64="WUE73AAJO1+Dj0975b3tAjyRwyg=">AAACAnicbVDLSgMxFM34tr6qrsRNsAiuyowIiivBjcsK9gGdoWTSOzWYZIbkjliG4sZfceNCEbd+hTv/xvSx0NYD93I4516Se+JMCou+/+3NzS8sLi2vrJbW1jc2t8rbOw2b5oZDnacyNa2YWZBCQx0FSmhlBpiKJTTju8uh37wHY0Wqb7CfQaRYT4tEcIZO6pT3QoQHLEY9TgoFTA8G5zRUeadc8av+CHSWBBNSIRPUOuWvsJvyXIFGLpm17cDPMCqYQcElDEphbiFj/I71oO2oZgpsVIxOGNBDp3RpkhpXGulI/b1RMGVtX8VuUjG8tdPeUPzPa+eYnEWF0FmOoPn4oSSXFFM6zIN2hQGOsu8I40a4v1J+ywzj6FIruRCC6ZNnSeO4GvjV4PqkcnE8iWOF7JMDckQCckouyBWpkTrh5JE8k1fy5j15L9679zEenfMmO7vkD7zPHxDDl8g=</latexit>

mean : µ
<latexit sha1_base64="WUE73AAJO1+Dj0975b3tAjyRwyg=">AAACAnicbVDLSgMxFM34tr6qrsRNsAiuyowIiivBjcsK9gGdoWTSOzWYZIbkjliG4sZfceNCEbd+hTv/xvSx0NYD93I4516Se+JMCou+/+3NzS8sLi2vrJbW1jc2t8rbOw2b5oZDnacyNa2YWZBCQx0FSmhlBpiKJTTju8uh37wHY0Wqb7CfQaRYT4tEcIZO6pT3QoQHLEY9TgoFTA8G5zRUeadc8av+CHSWBBNSIRPUOuWvsJvyXIFGLpm17cDPMCqYQcElDEphbiFj/I71oO2oZgpsVIxOGNBDp3RpkhpXGulI/b1RMGVtX8VuUjG8tdPeUPzPa+eYnEWF0FmOoPn4oSSXFFM6zIN2hQGOsu8I40a4v1J+ywzj6FIruRCC6ZNnSeO4GvjV4PqkcnE8iWOF7JMDckQCckouyBWpkTrh5JE8k1fy5j15L9679zEenfMmO7vkD7zPHxDDl8g=</latexit><latexit sha1_base64="WUE73AAJO1+Dj0975b3tAjyRwyg=">AAACAnicbVDLSgMxFM34tr6qrsRNsAiuyowIiivBjcsK9gGdoWTSOzWYZIbkjliG4sZfceNCEbd+hTv/xvSx0NYD93I4516Se+JMCou+/+3NzS8sLi2vrJbW1jc2t8rbOw2b5oZDnacyNa2YWZBCQx0FSmhlBpiKJTTju8uh37wHY0Wqb7CfQaRYT4tEcIZO6pT3QoQHLEY9TgoFTA8G5zRUeadc8av+CHSWBBNSIRPUOuWvsJvyXIFGLpm17cDPMCqYQcElDEphbiFj/I71oO2oZgpsVIxOGNBDp3RpkhpXGulI/b1RMGVtX8VuUjG8tdPeUPzPa+eYnEWF0FmOoPn4oSSXFFM6zIN2hQGOsu8I40a4v1J+ywzj6FIruRCC6ZNnSeO4GvjV4PqkcnE8iWOF7JMDckQCckouyBWpkTrh5JE8k1fy5j15L9679zEenfMmO7vkD7zPHxDDl8g=</latexit><latexit sha1_base64="WUE73AAJO1+Dj0975b3tAjyRwyg=">AAACAnicbVDLSgMxFM34tr6qrsRNsAiuyowIiivBjcsK9gGdoWTSOzWYZIbkjliG4sZfceNCEbd+hTv/xvSx0NYD93I4516Se+JMCou+/+3NzS8sLi2vrJbW1jc2t8rbOw2b5oZDnacyNa2YWZBCQx0FSmhlBpiKJTTju8uh37wHY0Wqb7CfQaRYT4tEcIZO6pT3QoQHLEY9TgoFTA8G5zRUeadc8av+CHSWBBNSIRPUOuWvsJvyXIFGLpm17cDPMCqYQcElDEphbiFj/I71oO2oZgpsVIxOGNBDp3RpkhpXGulI/b1RMGVtX8VuUjG8tdPeUPzPa+eYnEWF0FmOoPn4oSSXFFM6zIN2hQGOsu8I40a4v1J+ywzj6FIruRCC6ZNnSeO4GvjV4PqkcnE8iWOF7JMDckQCckouyBWpkTrh5JE8k1fy5j15L9679zEenfMmO7vkD7zPHxDDl8g=</latexit><latexit sha1_base64="WUE73AAJO1+Dj0975b3tAjyRwyg=">AAACAnicbVDLSgMxFM34tr6qrsRNsAiuyowIiivBjcsK9gGdoWTSOzWYZIbkjliG4sZfceNCEbd+hTv/xvSx0NYD93I4516Se+JMCou+/+3NzS8sLi2vrJbW1jc2t8rbOw2b5oZDnacyNa2YWZBCQx0FSmhlBpiKJTTju8uh37wHY0Wqb7CfQaRYT4tEcIZO6pT3QoQHLEY9TgoFTA8G5zRUeadc8av+CHSWBBNSIRPUOuWvsJvyXIFGLpm17cDPMCqYQcElDEphbiFj/I71oO2oZgpsVIxOGNBDp3RpkhpXGulI/b1RMGVtX8VuUjG8tdPeUPzPa+eYnEWF0FmOoPn4oSSXFFM6zIN2hQGOsu8I40a4v1J+ywzj6FIruRCC6ZNnSeO4GvjV4PqkcnE8iWOF7JMDckQCckouyBWpkTrh5JE8k1fy5j15L9679zEenfMmO7vkD7zPHxDDl8g=</latexit>

mean : µ
<latexit sha1_base64="WUE73AAJO1+Dj0975b3tAjyRwyg=">AAACAnicbVDLSgMxFM34tr6qrsRNsAiuyowIiivBjcsK9gGdoWTSOzWYZIbkjliG4sZfceNCEbd+hTv/xvSx0NYD93I4516Se+JMCou+/+3NzS8sLi2vrJbW1jc2t8rbOw2b5oZDnacyNa2YWZBCQx0FSmhlBpiKJTTju8uh37wHY0Wqb7CfQaRYT4tEcIZO6pT3QoQHLEY9TgoFTA8G5zRUeadc8av+CHSWBBNSIRPUOuWvsJvyXIFGLpm17cDPMCqYQcElDEphbiFj/I71oO2oZgpsVIxOGNBDp3RpkhpXGulI/b1RMGVtX8VuUjG8tdPeUPzPa+eYnEWF0FmOoPn4oSSXFFM6zIN2hQGOsu8I40a4v1J+ywzj6FIruRCC6ZNnSeO4GvjV4PqkcnE8iWOF7JMDckQCckouyBWpkTrh5JE8k1fy5j15L9679zEenfMmO7vkD7zPHxDDl8g=</latexit><latexit sha1_base64="WUE73AAJO1+Dj0975b3tAjyRwyg=">AAACAnicbVDLSgMxFM34tr6qrsRNsAiuyowIiivBjcsK9gGdoWTSOzWYZIbkjliG4sZfceNCEbd+hTv/xvSx0NYD93I4516Se+JMCou+/+3NzS8sLi2vrJbW1jc2t8rbOw2b5oZDnacyNa2YWZBCQx0FSmhlBpiKJTTju8uh37wHY0Wqb7CfQaRYT4tEcIZO6pT3QoQHLEY9TgoFTA8G5zRUeadc8av+CHSWBBNSIRPUOuWvsJvyXIFGLpm17cDPMCqYQcElDEphbiFj/I71oO2oZgpsVIxOGNBDp3RpkhpXGulI/b1RMGVtX8VuUjG8tdPeUPzPa+eYnEWF0FmOoPn4oSSXFFM6zIN2hQGOsu8I40a4v1J+ywzj6FIruRCC6ZNnSeO4GvjV4PqkcnE8iWOF7JMDckQCckouyBWpkTrh5JE8k1fy5j15L9679zEenfMmO7vkD7zPHxDDl8g=</latexit><latexit sha1_base64="WUE73AAJO1+Dj0975b3tAjyRwyg=">AAACAnicbVDLSgMxFM34tr6qrsRNsAiuyowIiivBjcsK9gGdoWTSOzWYZIbkjliG4sZfceNCEbd+hTv/xvSx0NYD93I4516Se+JMCou+/+3NzS8sLi2vrJbW1jc2t8rbOw2b5oZDnacyNa2YWZBCQx0FSmhlBpiKJTTju8uh37wHY0Wqb7CfQaRYT4tEcIZO6pT3QoQHLEY9TgoFTA8G5zRUeadc8av+CHSWBBNSIRPUOuWvsJvyXIFGLpm17cDPMCqYQcElDEphbiFj/I71oO2oZgpsVIxOGNBDp3RpkhpXGulI/b1RMGVtX8VuUjG8tdPeUPzPa+eYnEWF0FmOoPn4oSSXFFM6zIN2hQGOsu8I40a4v1J+ywzj6FIruRCC6ZNnSeO4GvjV4PqkcnE8iWOF7JMDckQCckouyBWpkTrh5JE8k1fy5j15L9679zEenfMmO7vkD7zPHxDDl8g=</latexit><latexit sha1_base64="WUE73AAJO1+Dj0975b3tAjyRwyg=">AAACAnicbVDLSgMxFM34tr6qrsRNsAiuyowIiivBjcsK9gGdoWTSOzWYZIbkjliG4sZfceNCEbd+hTv/xvSx0NYD93I4516Se+JMCou+/+3NzS8sLi2vrJbW1jc2t8rbOw2b5oZDnacyNa2YWZBCQx0FSmhlBpiKJTTju8uh37wHY0Wqb7CfQaRYT4tEcIZO6pT3QoQHLEY9TgoFTA8G5zRUeadc8av+CHSWBBNSIRPUOuWvsJvyXIFGLpm17cDPMCqYQcElDEphbiFj/I71oO2oZgpsVIxOGNBDp3RpkhpXGulI/b1RMGVtX8VuUjG8tdPeUPzPa+eYnEWF0FmOoPn4oSSXFFM6zIN2hQGOsu8I40a4v1J+ywzj6FIruRCC6ZNnSeO4GvjV4PqkcnE8iWOF7JMDckQCckouyBWpkTrh5JE8k1fy5j15L9679zEenfMmO7vkD7zPHxDDl8g=</latexit>
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Figure 4.3: KL loss over mean and standard deviation across temperature.
Note that the actual action taken applies tanh to the samples of the resulting
distribution (i.e., the optimal mean is at tanh−1(0.5) ≈ 0.55). FKL loss has
been upper-bounded for better visualization of minima. Arrows indicate the
global minimum.
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4.2.2 Behaviour

To confirm whether our intuitions about the smooth loss surface result in

iterates that reach the global optimum, we visualize 1000 random (mean,

standard deviation) iterates over 1000 gradient steps to minimize either the

FKL or RKL. The mean is initialized uniformly in (−0.95, 0.95) and σ̂ is

initialized uniformly in (log(exp(0.1)− 1), log(exp(1)− 1)), so that the initial

standard deviation σ0 is in (0.1, 1). We only show one learning rate, but results

are similar for different learning rates. From looking at Figures 4.4a and 4.4b,

we observe the following.

1) FKL seems to facilitate more stable convergence of the iterates to the

global optimum when σ0 > 0.3. Indeed, outside of that setting, all iterates

converge to a single optimum across all temperatures.

2) Behaviour can vary across different standard deviation initializations.

For τ < 0.4, FKL iterates learn the optimal mode for all settings except when

the σ0 < 0.3. The achieved limit points of RKL iterates can differ depending

on σ0, such as with τ = 0.4.

3) RKL iterates converge to different local optima. The only case in which

RKL iterates only converged to the optimal mode was for τ = 0.01.

4) At τ = 0.4, FKL iterates converged to a point closer to zero than the

RKL points, some of which remained at 0.5. This observation is consistent

with our visualization of the loss surface, where the global optimum of the FKL

loss moved to 0 more quickly than did the global optimum of the RKL loss.

These results are generally consistent with the FKL and RKL heatmaps,

suggesting that for large enough σ0, the FKL has a much smoother optimization

landscape that directs iterates to the global minimum, but the global minimum

might be suboptimal with respect to the original target distribution. One

discrepancy with the visualization of the loss surfaces, however, is that both

RKL and FKL exhibited limit points that do not appear to correspond to any

optima on the heatmaps. In particular, FKL with σ0 < 0.3 and τ ≤ 0.1 have

iterates that stay in a neighbourhood away from 0, while the RKL at τ = 0.4

and σ0 < 0.3 has iterates that converge to 0. The same phenomenon was
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(a) Forward KL.

(b) Reverse KL.

Figure 4.4: Each plot tracks the mean over 1000 gradient steps of each of 1000
iterates. Each iterate is represented as a translucent, coloured dot with alpha
value 0.01. Temperature is varied on the x-major-axis and initial standard
deviation σ0 is varied on the y-major axis. Colour-coded by σ0. Learning rate
is 0.01.

also present with both smaller and larger learning rates, and with RMSprop

and SGD. While our initial surprise at the RKL limit point may be due to a

limitation of our heatmaps–indeed, 0 might be a local minimum that is hard
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to distinguish amidst the dark area of Figure 4.3–the FKL limit point is more

puzzling. The area around the line σ = 0.3 in Figure 4.3 for τ = 0.01 seems

not to contain a local optimum.

An earlier version of this experiment used integration points within the

range [−0.98, 0.98], rather than using all points but {-1, 1}. In this earlier

setting, RKL iterates often diverged for σ0 > 0.3 while FKL iterates maintained

the same behaviour, suggesting that FKL is more robust to this type of bias

than RKL. We comment more on the effect of numerical integration error in

Section 4.5.

4.3 Switch-Stay

Given our previous results, we might expect the FKL to perform better. If FKL

iterates can reach the global optimum more easily, surely those policies would

be better than policies updated under the RKL? One important factor, which

we explore further below, is that the global minimum of the FKL objective may

not correspond well with the optimal solution of the original, unregularized

objective.

We investigate the behavior of iterates when there is more than one state:

the Switch-Stay environment. As a simple instantiation of the full RL problem,

we are interested in understanding any possible differences between FKL and

RKL in the presence of short-term/long-term trade-offs. In particular, on

Switch-Stay, from state 0 one should incur a short-term penalty by switichng

to state 1 to maximize return, given that γ = 0.9.

Another reason why we selected the Switch-Stay environment is for ease

of visualization. Since the MDP has only two states, one can plot any value

function as a point on a 2-dimensional plane. In particular, one can view

the entire space of value functions, shown recently to be a polytope in the

discrete-action setting (Dadashi et al., 2019). Plotting the value function

corresponding to a policy as it changes over time allows us to view the progress

of an algorithm and avoids the stochasticity inherent in performing rollouts

and plotting learning curves.
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To plot the boundary of the value function polytope in Switch-Stay, we plot

the value functions corresponding to semi-deterministic policies (i.e., policies

that are deterministic in at least one state) (Dadashi et al., 2019). Given a

policy π, the value function V π is calculated exactly as (I−γPπ)
−1rπ, where Pπ

and rπ are respectively the transition matrix and the reward function induced

by π.

In the continuous version of switch-stay, we treat any action ≤ 0 as stay,

and any action > 0 as switch. To calculate the value function corresponding

to a continuous policy π, we convert π to an equivalent discrete policy πdiscrete

of the underlying discrete MDP. The conversion requires the calculation of

the probability that π outputs an action ≤ 0 in each state, which we do with

numerical integration of the policy PDF. We then calculate the value function

of π as (I − γPπdiscrete
)−1rπdiscrete

.

For the hard FKL, we require access to the greedy action of the action-

value function. In the continuous-action setting, this greedy action is usually

infeasible to obtain. For the purposes of this experiment, if the greedy action

is stay, we represent it in [−1, 1] by drawing a uniform random number from

[−1, 0]. If the greedy action is switch, we represent it as a uniform random

number in [0, 1]. This design choice is meant to simulate noisy access to the

greedy action in practice.

As the policy is tabular in the states, we simply use the mean KL across

states as the loss.

4.3.1 Behaviour

For all of these experiments, we initialized means in the range (−0.95, 0.95).

All experiments are run for 500 gradient steps and each experiment has 1000

iterates. We plot the value function of the final policy for each iterate and

experiment in Figures 4.5 and 4.6, by visualizing the value function polytope

(Dadashi et al., 2019).

1) FKL with τ = 0 converged noticeably slower than the other temperatures,

which seems to be an artifact of our encoding of continuous actions to the

underlying discrete dynamics of switch-stay, and the fact that we used random
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(a) Forward KL, learning rate = 0.005.

(b) Reverse KL, learning rate = 0.005.

Figure 4.5: Each subplot plots the final value functions on the continuous
version of switch-stay after 500 gradient steps with γ = 0.9 for 1000 iterates.
The top-right corner of the polytope in each subplot is the optimal value
function and the bottom-left corner is the pessimal value function. Each iterate
is represented by a translucent dot with alpha value 0.01. Using RMSprop.
Temperature is varied on the x-major-axis.

tie-breaking when computing the argmax for hard FKL.

2) RKL iterates converge slightly faster than FKL iterates across all temper-

ature settings. RKL iterates with τ = 0 sometimes converged to non-optimal

value functions on the corners.

3) The limiting value functions of the FKL iterates seem more suboptimal

than the limiting value functions of the RKL iterates; the latter are closer to

the optimal value function of the original MDP. This result is consistent with

our observations in the continuous bandit; although the FKL optimum may be

more easily reached, that optimal point may be suboptimal with respect to an

“original” objective (in this case, the optimal value function of the unregularized

MDP).

To further our understanding of 3), we plot the final means and standard

deviations of the learned policies for the learning rate of 0.01. In Figures 4.7
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(a) Forward KL, learning rate = 0.01.

(b) Reverse KL, learning rate = 0.01.

Figure 4.6: See Figure 4.5.

and 4.8, we see that the final FKL iterates have higher standard deviation,

meaning that the final policies are further from the optimal deterministic policy

of the unregularized MDP. Put informally, the FKL tends to “commit” less

than the RKL.

In Figures 4.7 and 4.8 as well, we note that the spread of the final iterates

is much larger for the leftmost column, representing τ = 0, than for any of

the other columns. This spread is consistent with the spread observed in the

leftmost columns of Figures 4.5 and 4.6. For the RKL, this spread seems to

be a representation of the local minima. For the FKL, this result is likely an

artifact of our encoding of the maximum action as a uniform random point in

either [0, 1] or [-1, 0], depending on if the maximum action is respectively stay

or switch.

We also note here that when fewer integration points were used in an

earlier version of this experiment, RKL exhibited substantial instability and

a large number of iterates across temperatures and σ0 values converged to

suboptimal deterministic policies. This phenomenon might be related to the
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(a) Forward KL on state 0.

(b) Reverse KL on state 0.

Figure 4.7: Each subplot plots the final mean (x-axis) and standard deviation
(y-axis) on the continuous version of switch-stay after 500 gradient steps with
γ = 0.9 for 1000 iterates. Each iterate is represented by a translucent dot
with alpha value 0.1. Using RMSprop with learning rate 0.01. Temperature
is varied on the x-major-axis. Every action ≤ 0 is treated as “stay” and every
action > 0 is treated as “switch”. The blue dotted line in subplots corresponds
to the line µ = 0.

effect of stochasticity when approximating the KL loss, which is discussed in

Section 4.5.

4.4 Discrete-Action Results

Overall, there is markedly less distinction between RKL and FKL in the

discrete action setting with a softmax policy parameterization. In the heatmap

in Figure 4.9, the loss surfaces for both KLs are very similar for a given

temperature, in contrast to the heatmap for the continuous bandit. As the

temperature increases, the black region (region with low loss) moves closer

46



(a) Forward KL on state 1.

(b) Reverse KL on state 1.

Figure 4.8: See Figure 4.7.

to the middle of the plot, which is consistent with the fact that the target

distribution becomes closer to uniform as the temperature increases.

Figure 4.9: Heatmap for the KLs on the discrete bandit. In a given subplot,
the x-axis is the logit for the optimal arm and the y-axis is the logit for the
suboptimal arm.
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Next, we track the progress of 1000 iterates over 1000 gradient steps. For

each iterate, we initialize each logit–one for each arm–uniformly in (−1, 1).

The behaviour policy is thus the result of the softmax function applied to the

logit vector.

When looking at 1000 iterates over 1000 gradient steps, both RKL and

FKL iterates learn the optimal arms in Figures 4.10a and 4.10b. There is little

difference in the behaviour of iterates under either KL; there seems just to be

one global optimum to which iterates under either KL converge reliably.

(a) Forward KL.

(b) Reverse KL.

Figure 4.10: Each subplot tracks the learned probability of each arm for 1000
iterates over 1000 gradient steps. The learning rate is set to be 0.005.

Results for discrete Switch-Stay are in Figure 4.11. Both FKL and RKL

iterates move in the direction of the optimal value function, but RKL iterates

seem to converge faster. While a difference in convergence speed did also exist

on the continuous version of Switch-Stay, the distinction is less notable here.

For higher temperatures, the limit point of the iterates is slightly further

away from the optimal value function of the original MDP than for lower

temperatures. This result is to be expected given that in general, the optimal

entropy-regularized policy is different from the optimal non-regularized policy
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(Geist et al., 2019).

(a) Forward KL, learning rate = 0.005.

(b) Reverse KL, learning rate = 0.005.

(c) Forward KL, learning rate = 0.01.

(d) Reverse KL, learning rate = 0.01.

Figure 4.11: Final value functions on discrete version of switch-stay after 500
gradient steps, γ = 0.9. Using RMSprop for learning rates ∈ {0.005, 0.01}.
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4.5 The Impact of Stochasticity

Although with discrete actions it is practical to sum across all actions when

calculating the KL losses, difficulty emerges with high-dimensional continuous

action spaces. Quadrature methods scale exponentially with the dimension of

the action-space, leaving methods like Clenshaw-Curtis impractical; Monte-

Carlo integration seems the only feasible answer in this setting.

We repeated the continuous-action microworld experiments to understand

any differences induced by using Monte-Carlo integration (i.e., sampling actions

from the current policy) instead of Clenshaw-Curtis quadrature to calculate

the losses.

Since Hard FKL only depends upon the maximum action, we do not modify

the algorithm in this regime. Hard and soft RKL are modified to use sampled

actions from the current policy π. To derive a sampling-based version of

soft FKL, we use weighted importance sampling to approximate the integral

−
∫︁
A BQ(s, a) log π(a | s) da, noting that the omitted term H(BQ(· | s)) does

not depend on π. In particular, for samples {ai}ni=1 ∼ π(· | s) we estimate

−
∫︂
A
BQ(s, a) log π(a | s) da ≈

n∑︂
i=1

ρi log π(ai | s),

ρi :=
ρ̃i∑︁n
j=1 ρ̃j

ρ̃i :=
exp(Q(s, ai)τ

−1)

π(ai | s)
.

Note that we do not have to estimate H(BQ(s, ·)), the other term in the FKL,

as it does not depend on π. Weighted importance sampling lets us avoid

calculating the partition function in BQ, and may be a fruitful avenue to

explore in making FKL practical for high-dimensional action spaces.

While overall behaviour for the continuous bandit is consistent with the

results using Clenshaw-Curtis quadrature, the iterates seem to cluster more

slowly around their limit points, or not at all.

On Switch-Stay, more notable differences emerged. RKL iterates converged

to minima to which they did not converge in the Clenshaw-Curtis regime, even

for larger numbers of sample points. In Figure 4.15b, there is an interesting
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(a) Forward KL.

(b) Reverse KL.

Figure 4.12: Continuous bandit with 10 sample points, learning rate = 0.005,
with RMSprop.

trend across temperatures. Temperatures below 0.4 induced many suboptima

far from the optimal value function, while temperatures 0.4 and 1 seemed better

at clustering RKL iterates near the optimal value function. On the other hand,

FKL seemed relatively insensitive both to the temperature and the number of

sample points. This relative insensitivity could be due to having a smoother

loss landscape to begin with, which tends to direct iterates to a single global

optimum. Nevertheless, that global optimum was often quite suboptimal with

respect to the unregularized MDP, especially since many RKL iterates were

much closer to the optimal policy of the unregularized MDP.
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(a) Forward KL.

(b) Reverse KL.

Figure 4.13: Continuous bandit with 500 sample points, learning rate = 0.005,
with RMSprop.

4.6 Summary

Given the amount of data in this chapter, it is helpful to summarize our

discussion thus far.

1. The relative difference between the KLs in continuous-action settings is

larger than that in discrete-action settings.

2. On our bimodal bandit, the FKL was better at directing iterates to the

global optimum, excepting some iterates that stayed near the suboptimal

mode when the initial standard deviation was set sufficiently low. However,

as the temperature increased, the global optimum of the FKL seemed to

approach a suboptimal point with respect to the bandit reward function

faster than the global optimum of the RKL did.
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(a) Forward KL.

(b) Reverse KL.

Figure 4.14: Switch-stay with 10 sample points, learning rate = 0.01, with
RMSprop.

(a) Forward KL.

(b) Reverse KL.

Figure 4.15: Switch-stay with 500 sample points, learning rate = 0.01, with
RMSprop.
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3. On the continuous version of Switch-Stay, the FKL iterates converged

more slowly than the RKL iterates and to a policy that was less optimal,

which seemed primarily due to a larger final standard deviation for

the FKL iterates. The increased suboptimality of the FKL solution is

consistent with our bandit results.

4. In the continuous-action setting, stochastic sampling of the loss function

impacted RKL more than FKL. RKL tended to exhibit more spurious

minima in this setting, even when increasing the number of sample points

in the calculation of the loss.

5. In the discrete-action setting, little significant difference emerged between

FKL and RKL. Both converged to nearly identical optima, although the

convergence of iterates under FKL seemed slightly slower.

We suspect that the differences here are heavily due to the policy parame-

terization. One reason for the difference in the number of minima seems to be

that a Gaussian policy is unimodal, whereas a softmax policy can represent

multimodal distributions. As well, given that the behaviour in the bandit set-

ting depended on the initial standard deviation, we hypothesize that the added

complexity of learning the standard deviation contributes to the differences we

observed between continuous and discrete actions.

We also did not learn action-values in our experiments. Especially given

the additional differences between the KLs that we observed with stochasticity,

using learned action-values might drastically change our results. In this setting,

the accuracy of the action-value estimate would depend on the actions taken

by the agent, which in turn are affected by the process of policy optimization.

For instance, if an agent tends to commit to an action at a given state and

not try other actions, the resulting action-value estimate could be poor. In

the literature in general, more investigation into the interplay of learning value

functions and policy optimization is necessary.
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Chapter 5

Benchmark Results

We compare the KL methods on benchmark continuous and discrete-action

environments, using non-linear function approximation. Here, we wish to

understand (1) if our observations from the microworld experiments apply to

more complicated environments and (2) if any new differences as a result of

function approximation or increased environment complexity.

5.1 Implementation Details

5.1.1 Hyperparameters

Hyperparameter sweeps are performed separately for each domain. We sweep

over the learning rates {10−5, 10−4, 10−3}; for Pendulum, we additionally sweep

over actor learning rate 10−2. In the continuous-action setting, we sweep both

the actor and the critic learning rate, while in the discrete-action setting we have

a shared learning rate because of a shared architecture. We sweep temperatures

in {0.01, 0.1, 1} for the soft action-value methods and set the temperature

in BQ and the temperature in the soft action-value function to be the same

value. For example, if τ = 0.01, then we learn a soft action-value function with

τ = 0.01 and use a KL target distribution proportional to exp(Q(s, a)τ−1).

RMSprop (Tieleman and Hinton, 2012) is used as the optimizer to be consistent

with our focus in the microworld domains.

We perform 30 runs for all hyperparameter settings and plot the mean

return averaged over the past 20 episodes; shaded areas represent standard

errors.
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5.1.2 Updating

We perform bootstrapping as per the recommendations in Pardo et al. (2018).

If a transition (s, a, r, sp) results in the true termination of the episode, the

bootstrap target for value function updates is r instead of the usual r−τ log π(a |

s) + γV (sp). If the transition results in a timeout, r − τ log π(a | s) + γV (sp)

is used. Otherwise, r − τ log π(a | s) + γV (sp) is used as the bootstrap target.

On the continuous-action domains we use Clenshaw-Curtis (Clenshaw and

Curtis, 1960) numerical integration scheme to estimate the FKL and the

RKL. To generate the points for Clenshaw-Curtis, we use the Python package,

quadpy.1. For computational efficiency, we use 64 points for 1D environments,

and l = 6 for multi-dimensional environments using the nested univariate

quadrature formula for Clenshaw-Curtis (Gerstner and Griebel, 1998). In

learning value functions we learn both Q(s, a) and V (s), using the same

target as done in SAC (Haarnoja et al., 2018). In particular, the target

for V (s) is Q(s, a) − log(π(a | s)). On preliminary experiments, we found

that the target of Q(s, a)− log(π(a | s)) performed better than the target of

r(s)− τ log π(a | s) + γV (s′) for all methods.

On the discrete-action domains, the value function update target is r(s)−

τ log π(a | s)+γV (s′) instead of the update that SAC uses, Q(s, a)−log π(a | s).

Preliminary experiments indicated that the former update was superior for all

methods. Both Q and V are learned.

For reference, we also include the gradient updates of the various KL
1https://github.com/nschloe/quadpy

56

https://github.com/nschloe/quadpy


divergences.

RKL : ∇θKL(πθ(· | s) ∥ BQτ (s, ·))

= −∇θH(πθ(· | s))−
∫︂
A
∇θπθ(a | s) logBQτ (a | s) da (5.1)

FKL : ∇θKL(BQτ (s, ·) ∥ πθ(· | s))

= −
∫︂
A
BQτ (a | s)∇θ log πθ(a | s) da (5.2)

Hard RKL : −
∫︂
A
∇θπθ(a | s)Q(s, a) da (5.3)

Hard FKL : −∇θ log πθ

(︃
argmax

b
Q(s, b) | s

)︃
. (5.4)

Algorithm 1 Agent for Benchmark Experiments
Given: policy πθ (parameters θ); action-value estimate Qv (parameters v);
state-value estimate Vw (parameters w); experience replay buffer; choice of
KL divergence; temperature τ ≥ 0; learning rates for θ, v, w; optimizer (e.g.,
RMSprop).
for t = 0, . . . , do

Draw action at ∼ πθ(· | st)
Observe and store transition (st, at, st+1, r,DoneFlag). Replace the oldest

transition if the buffer size limit is reached.
if samples in buffer ≥ 32 then

Draw random mini-batch of size 32 from buffer.
for each transition (s, a, r, sp,DoneFlag) in the mini-batch do

Calculate KL gradients according to Equations (5.1) to (5.4), based
on choice of τ and KL divergence.

end for
Update w, v with DiscreteUpdateValueFunctions if action space is

discrete; otherwise call ContinuousUpdateValueFunctions.
Update θ with the learning rate and optimizer.

end if
end for

In all our plots, we refer to the number of “frames” on the x-axis. We use

“frames” synonomously with “timestep”.

5.1.3 Architecture

On our continuous-action domains, all policy and value function networks are

implemented as two-layer neural networks of size 128, with ReLU activations.
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Algorithm 2 DiscreteUpdateValueFunctions
Given: policy πθ (parameters θ); action-value estimate Qv (parameters v);
state-value estimate Vw (parameters w); temperature τ ≥ 0; optimizers (e.g.,
RMSprop) for v and w; batch of data D, with each transition written in the
form (s, a, r, sp,DoneFlag)
To update the state-value function, pass the following as the gradient to the
optimizer for w.

−ED[(r − τ log π(a | s) + γ · (1− DoneFlag) · Vw(sp)− V (s))∇wV (s)]

To update the action-value function, pass the following as the gradient to
the optimizer for v.

−ED[(r + γ · (1− DoneFlag) · Vw(sp)−Qv(s, a))∇vQv(s, a)]

Algorithm 3 ContinuousUpdateValueFunctions
Given: policy πθ (parameters θ); action-value estimate Qv (parameters v);
state-value estimate Vw (parameters w); temperature τ ≥ 0; optimizers (e.g.,
RMSprop) for v and w; batch of data D, with each transition written in the
form (s, a, r, sp,DoneFlag)
For each state s in the batch D, draw a new action ã ∼ πθ(· | s).
To update the state-value function, pass the following as the gradient to the
optimizer for w.

ED[(Vw(s)−Qv(s, ã) + τ log πθ(ã | s))∇Vw(s)]

To update the action-value function, pass the following as the gradient to
the optimizer for v.

−ED[(r + γ · (1− DoneFlag) · Vw(sp)−Qv(s, a))∇vQv(s, a)]
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We use experience replay of buffer size 106 with batch size of 32. On our

discrete-action domains, we employ the following architectures.

OpenAI Gym: The architecture is a two-layer neural network, with the

policy and value functions as separate heads off of the main two-layer body.

ReLU activations are used between layers. We report results for three hidden

layer sizes: small (32), medium (128), and large (512).

MinAtar: The architecture is a convolutional network into one fully-

connected layer for each of the policy, action value function, and state value

function. The convolutional layer has 16 3x3 convolutions with stride 1, the

same as in Young and Tian (2019); we vary the size of the fully-connected layer

in {32, 128}. ReLU activations are used between layers.

On the discrete-action domains, experience replay is used with a buffer size

of 105 and a batch size of 32.

5.2 Continuous-Action Results

We compare agents on Pendulum (Brockman et al., 2016), Reacher, and

Swimmer (Todorov et al., 2012), with results shown in Figure 5.1. We exclude

Hard FKL in our comparison since it requires access to maxaQ(s, a), which is

difficult to obtain with continuous actions.

For certain temperatures, FKL either learns faster than or achieves supe-

rior final return to RKL. This difference is especially striking on Pendulum

Figure 5.1a, where FKL learns vastly faster than RKL for τ = 0.1, 0.01. It’s

interesting to note that RKL with τ = 1 has a similarly-shaped learning curve

to FKL with τ = 0.01, 0.1, 1. In a sense, the higher temperature of RKL with

τ = 1 might be compensating for committal behaviour of RKL that we observed

in the microworld experiments. It does seem possible to be too non-committal.

On Reacher in Figure 5.1b, FKL with τ = 1 completely fails to learn, while

all other settings learn appreciably. Nevertheless, these observations suggest a

connection between the impacts of FKL and of entropy regularization, as we

discuss further below in the discrete-action setting.

It is difficult to comment on the importance of the policy parameteri-
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Figure 5.1: Continuous-action environments. Shown are the best hyperparame-
ters for each algorithm, which are selected by largest area under the last half
of the learning curve. The colours go from hot (red, temperature = 1) to cool
(yellow, temperature = 0).

zation for these experiments relative to our microworld experiments. Any

influence from the Gaussian policy parameterization is conflated with function

approximation. Moreover, as we will see below, no stark pattern seems to

divide continuous and discrete action settings, as one did in our microworld

experiments.

5.3 Discrete-Action Results

We report results for environments from the OpenAI gym (Brockman et al.,

2016) and MinAtar (Young and Tian, 2019).

The results on the OpenAI Gym environments suggest that for small hidden

layer sizes, FKL may be at least as good as RKL, and sometimes better. As the

hidden layer size increases, however, this dominance is negated. For a hidden
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(a) Acrobot

(b) CartPole

(c) Lunar Lander.

Figure 5.2: OpenAI Gym discrete-action environments. Plot settings are
identical to Figure 5.1.

layer size of 128, RKL seems to learn a little bit faster than FKL for τ ̸= 1,

and RKL has a slightly higher final performance for a hidden layer size of 512,

although the difference does not appear to be significant. It is possible that

these observations are related to how the optimization landscape of a neural

network changes with larger hidden layer sizes. The influence of the choice of

policy gradient objective on the optimal function approximation architecture

deserves further consideration.

The superiority of FKL in Lunar Lander for τ = 0, 0.01 and sometimes

τ = 0.1 is interesting. For these temperatures, FKL with non-zero temperature

consistently matches or exceeds the corresponding learning curve for RKL.

Indeed, when τ = 0, a large gap separates FKL and RKL. A possible reason

for this dominance is the difficulty of exploration in Lunar Lander: one must

learn to manoeuvre the spacecraft, discover the correct landing area, learn how
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to land correctly, and learn to turn off the fuel. That FKL might “commit” less

(i.e., have higher standard deviation than RKL, all other things equal) suggests

that more actions are tried to facilitate discovery of good actions. We further

discuss exploration below in our MinAtar experiments.

(a) Asterix

(b) Breakout

(c) Freeway

Figure 5.3: MinAtar discrete-action environments. Plot settings are identical
to those in Figure 5.1.

As with the OpenAI Gym environments, there is no consistent dominance

of either KL over the other in the MinAtar environments. The most striking
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(a) Seaquest

(b) Space Invaders

Figure 5.4: MinAtar discrete-action environments continued. Plot settings are
identical to those in Figure 5.1.

observation is the superiority of FKL with τ = 0 over all other methods and

across both hidden layer sizes on Seaquest in Figure 5.4a. As Seaquest is

generally considered to be a hard exploration problem, we might expect FKL

to perform better because of its relative slowness in moving probability mass

to regions with high target density, as with RKL. If this reason were the only

relevant factor, we would expect FKL to be superior across all temperatures;

however, FKL performs similarly to RKL for the other temperatures, excepting

slightly better final performance for τ = 0.1 and a hidden layer size of 32.

Another possibility to explain the results in Seaquest is to differentiate

between the supposed exploration benefits of entropy and of FKL. When we say

that a method benefits exploration, we mean that the method induces a state

visitation distribution whose support is larger (i.e., covers more of the state

space). Accumulating more transitions from more diverse parts of the state

space presumably allows for more accurate estimates of the action value function,
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and hence more reliable policy improvement. Entropy-regularized RL, as it is

currently formulated, only benefits exploration by proxy, through penalizing

the negative entropy of the policy. In the context of reward maximization,

entropy is only a means to an end; at times, the means may conflict with the

end. A policy with higher entropy may have a more diverse state visitation

distribution, but it may be prevented from exploiting that information to

the fullest capacity because of the penalty to negative entropy. In contrast,

FKL benefits exploration by causing the agent’s policy to commit more slowly

to actions that apparently have high value under the current value function

estimate. Especially since value function estimates can be atrocious (Ilyas et al.,

2020), this non-committal behaviour may help the policy avoid spurious local

optima. However, FKL does not necessarily prevent a policy from committing

to a particular action. Furthermore, nothing in principle prevents a policy

under the hard FKL from converging to the optimal policy of the original

MDP, whereas introducing entropy regularization induces a different optimal,

entropy-regularized policy.

Nevertheless, the effects of entropy and of non-committal behaviour might

not be independent in all scenarios. On Freeway in Figure 5.3c, RKL bests

FKL for τ = 0.01, but the opposite is true for τ = 0. It is conceivable that a

higher temperature offsets the committal behaviour of RKL enough to impact

exploration positively, while when τ = 0, the RKL objective induces the policy

to place large mass on actions that only appear to be optimal. A particularly

striking failure case of RKL with τ = 0 is on Breakout in Figure 5.3b, where this

setting fails to learn appreciably compared to all other KL and τ combinations.

A next step to investigate the exploration effects of entropy and of FKL would

be to plot the induced state distributions of FKL and RKL over time, along

with the corresponding value function estimation errors.

5.4 Summary

We examined the differences between FKL and RKL in high-dimensional en-

vironments that necessitate function approximation. While any differences
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depended on the environment and the temperature, there are a few key take-

aways.

1. We hypothesize that using the FKL may benefit exploration (i.e., inducing

a state visitation distribution with larger support).

2. Entropy-regularization and the FKL in conjunction may both benefit

exploration, but may also inhibit learning.

3. The size of the hidden layer, and the function approximation architecture

in general, may affect the relative superiority of FKL to RKL.
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Chapter 6

Conclusion

6.1 Summary

Based on our theoretical and empirical analyses, we can summarize our findings

as follows.

1. Theoretically, while the FKL may not be guaranteed to induce policy

improvement as reliably as the RKL, policy improvement can still occur

if a sufficiently high reduction in FKL occurs, with a sufficiently high

temperature, and with a sufficiently high entropy in the new policy. These

combined conditions seem quite strong, but weaker conditions may be

able to be derived through more sophisticated techniques. We hypothesize

that the superior policy improvement result of the RKL may be related

to its committing to actions with high action-value that we observed in

our experiments. As Neumann et al. (2011) also observes, the RKL seems

less averse to costs than the FKL.

2. On the microworld experiments, there were more differences between

FKL and RKL in the continuous-action setting than in the discrete-action

setting. In the former, the FKL tended to have a smoother loss landscape

that directed iterates to a global optimum, although this global optimum

was sometimes less optimal, especially with higher temperature, than

the optima of the RKL. In both continuous-action and discrete-action

settings, iterates under the RKL tended to have limit points closer to the

global optimum of the unregularized Switch-Stay problem. These results,
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too, are related to the cost-averse nature of the RKL. One additional,

confounding factor seems to be the policy parameterization, as a tanh-

Gaussian policy cannot represent all possible probability distributions;

given this limitation, the RKL and FKL enforce different trade-offs.

3. On our benchmark experiments, while there was no consistent domi-

nance of either KL over the other, some interesting trends emerged. Using

the FKL may benefit exploration in possibly encouraging a state visitation

distribution with wider support. This impact intersects with the impact

of entropy regularization; we observed that using both the FKL and a

high degree of entropy-regularization could prevent learning, although

this effect was heavily environment-dependent. We also observed some

evidence that the FKL was superior to RKL under small hidden layer

sizes, but this observation did not hold across all environments.

An important conclusion from this work is that the FKL is promising

for policy greedification, even though it is rarely used. To start using it, we

need simpler ways to optimize it. We used numerical integration for most of

our experiments, but such a method does not scale well to high-dimensional

action spaces and is susceptible to truncation error. Indeed, two applications

of integration are required: (1) to calculate the partition function and (2) to

calculate the loss. If τ = 0, then one must instead find the maximum action of a

continuous action value function, which seems equally difficult. Sampling-based

approaches like weighted importance sampling, which we used in one of our

microworld experiments, would be fruitful to explore further in the context of

large-scale environments.

6.2 Limitations

There are some limitations of the current study that we should keep in mind,

especially in informing future work.

1. Theoretically, we assumed that true action-values are available. In

practice, action-value estimates tend to be quite poor, and work remains

67



to be done in characterizing the possibility of policy improvement with

these estimates.

2. Our policy improvement result for the FKL was weaker than the corre-

sponding RKL result and required strong assumptions. In our experi-

ments, the fact that the FKL was sometimes superior to the RKL suggests

that weaker assumptions may suffice.

3. In our microworld experiments, we also focused on the case of having

access to the true action-values. Having to learn the action-values would

have added an additional confounding factor to our experiments, but is

essential for expanding the scope of applicability of this work.

4. On our continuous-action experiments, we did not test FKL with weighted

importance sampling. Our microworld experiments suggested that FKL

could perform well with this method, obviating the need for expensive

quadrature procedures.

5. While our theoretical results did not assume any prior reward structure,

we did not explore how different reward structures may impact the policy

improvement differences between the KL divergences in our experiments.

6. We used RMSprop on our benchmark experiments. Although results

for RMSprop and Adam were similar on our microworlds, the impact of

momentum may be greater in more complex environments.

7. For all of our continuous-action experiments, our policy was the pushfor-

ward distribution induced by applying tanh to the output of a Gaussian

distribution. We made this design choice to ensure that any output

actions would remain in [-1, 1], avoiding the bias (Chou et al., 2017)

in the policy gradient that results when action constraints are ignored.

While we believe our choice to be reasonable, it would be interesting to

understand if our results hold for the unmodified Gaussian policy, or for

another pushforward distribution.
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6.3 Future Work

A natural question from this study is why the differences were the largest

for continuous actions in our microworld experiments. One potential reason

is the policy parameterization: the Gaussian policy is likely more restrictive

than the softmax as it cannot capture multimodal structure. Learning the

standard deviation of a Gaussian policy may be another source of instability.

In contrast, a softmax policy can represent multiple modes, and does not

separate the parameterization of the measure of central tendency (e.g., mean)

and the measure of variation (e.g., standard deviation). With a Gaussian policy,

FKL seems to have a better optimization surface (having smooth and single

optima across different temperatures) despite the multimodality of the target

distribution in our continuous bandit. However, none of these observations may

hold for other policy parameterizations. A promising next step is to compare

FKL and RKL with different policy parameterizations for continuous actions.

Recent work into alternative policy paramaterizations has explored the Beta

distribution (Chou et al., 2017), quantile regression (Richter and Wattenhofer,

2019), and normalizing flows (Ward et al., 2019). While the latter two works

in particular have focused on the motivation of multimodality for domains

that have multiple goals, we believe that the relevance of multimodality for

optimization is as important.

We should also recall the approach of soft Q-learning (Haarnoja et al., 2017),

which approximates the target policy with a number of particles, updating

each particle with Stein variational gradient descent (Liu and Wang, 2016; Liu

et al., 2017). In this case, it is not necessary to have explicit policies. This

approach, however, does make it difficult to deploy a learned policy to other

environments.

Let us not forget that there are many other possible choices for a greedifica-

tion objective! Besides the KL divergences, one may consider the Wasserstein

distance, Cramer distance, the JS divergence, and many more. One reason we

focused on the KL in this work was its ease of optimization, compared to the

Wasserstein distance for example. There may however be other cogent reasons
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for selecting an objective; modeling the quantiles of the policy, for instance,

suggests using the quantile loss.

The choice of target distribution in the greedification objective is another

sticky issue. The Boltzmann distribution over action values is a natural choice

for entropy-regularized RL, but one might not want to be tied this framework,

especially given sensitivity to the temperature parameter and exploration

that is undirected. Instead of maximizing the entropy of a distribution over

actions, one could try to maximize the entropy of the discounted state visitation

distribution (Islam et al., 2019). If the goal is exploration of the state space,

perhaps one should let the agent decide how to do so, rather than imposing

the proxy of high entropy in the action distribution.

Finally, let us return to a point we noted in the introduction. Most policy

gradient methods today do not follow the gradient of any objective function

(Nota and Thomas, 2020; Thomas, 2014) because a γt term is omitted from the

update. Thomas (2014) showed that the resulting semi-gradient corresponds

to one of two terms in the gradient of the average-reward objective; this “semi-

gradient” neglects the effect of the policy parameters upon the state visitation

distribution. Coupled with the fact that one tries to set γ as close to 1 as

possible in practice while avoiding instability issues, this line of work suggests

that we should try instead to optimize the average-reward objective instead of

the discounted objective. In many applications of RL, one would presumably

desire those agents to optimize for a long-sighted criterion, rather than one

susceptible to nearsightedness as a result of a discount factor too far from 1.

In fact, the original policy gradient theorem includes a policy gradient for the

average reward objective (Sutton et al., 2000). In introducing natural gradient

methods, Kakade (2002) focuses on the average reward setting. Although

the average reward criterion is most suitable for the continuing–rather than

episodic–setting, it might be possible to lift insights from the former to the

latter. We hope that future research will address all of these shortfalls.
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